]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] Breakpoints on task bodies
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
28010a5d 65#include "exceptions.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
4c4b4cd2
PH
272\f
273
76a01679 274
4c4b4cd2 275/* Maximum-sized dynamic type. */
14f9c5c9
AS
276static unsigned int varsize_limit;
277
4c4b4cd2
PH
278/* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280static char *ada_completer_word_break_characters =
281#ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283#else
14f9c5c9 284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 285#endif
14f9c5c9 286
4c4b4cd2 287/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 288static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 289 = "__gnat_ada_main_program_name";
14f9c5c9 290
4c4b4cd2
PH
291/* Limit on the number of warnings to raise per expression evaluation. */
292static int warning_limit = 2;
293
294/* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296static int warnings_issued = 0;
297
298static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300};
301
302static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304};
305
306/* Space for allocating results of ada_lookup_symbol_list. */
307static struct obstack symbol_list_obstack;
308
e802dbe0
JB
309 /* Inferior-specific data. */
310
311/* Per-inferior data for this module. */
312
313struct ada_inferior_data
314{
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
3eecfa55
JB
320
321 /* The exception_support_info data. This data is used to determine
322 how to implement support for Ada exception catchpoints in a given
323 inferior. */
324 const struct exception_support_info *exception_info;
e802dbe0
JB
325};
326
327/* Our key to this module's inferior data. */
328static const struct inferior_data *ada_inferior_data;
329
330/* A cleanup routine for our inferior data. */
331static void
332ada_inferior_data_cleanup (struct inferior *inf, void *arg)
333{
334 struct ada_inferior_data *data;
335
336 data = inferior_data (inf, ada_inferior_data);
337 if (data != NULL)
338 xfree (data);
339}
340
341/* Return our inferior data for the given inferior (INF).
342
343 This function always returns a valid pointer to an allocated
344 ada_inferior_data structure. If INF's inferior data has not
345 been previously set, this functions creates a new one with all
346 fields set to zero, sets INF's inferior to it, and then returns
347 a pointer to that newly allocated ada_inferior_data. */
348
349static struct ada_inferior_data *
350get_ada_inferior_data (struct inferior *inf)
351{
352 struct ada_inferior_data *data;
353
354 data = inferior_data (inf, ada_inferior_data);
355 if (data == NULL)
356 {
357 data = XZALLOC (struct ada_inferior_data);
358 set_inferior_data (inf, ada_inferior_data, data);
359 }
360
361 return data;
362}
363
364/* Perform all necessary cleanups regarding our module's inferior data
365 that is required after the inferior INF just exited. */
366
367static void
368ada_inferior_exit (struct inferior *inf)
369{
370 ada_inferior_data_cleanup (inf, NULL);
371 set_inferior_data (inf, ada_inferior_data, NULL);
372}
373
4c4b4cd2
PH
374 /* Utilities */
375
720d1a40 376/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 377 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
378
379 Normally, we really expect a typedef type to only have 1 typedef layer.
380 In other words, we really expect the target type of a typedef type to be
381 a non-typedef type. This is particularly true for Ada units, because
382 the language does not have a typedef vs not-typedef distinction.
383 In that respect, the Ada compiler has been trying to eliminate as many
384 typedef definitions in the debugging information, since they generally
385 do not bring any extra information (we still use typedef under certain
386 circumstances related mostly to the GNAT encoding).
387
388 Unfortunately, we have seen situations where the debugging information
389 generated by the compiler leads to such multiple typedef layers. For
390 instance, consider the following example with stabs:
391
392 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
393 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
394
395 This is an error in the debugging information which causes type
396 pck__float_array___XUP to be defined twice, and the second time,
397 it is defined as a typedef of a typedef.
398
399 This is on the fringe of legality as far as debugging information is
400 concerned, and certainly unexpected. But it is easy to handle these
401 situations correctly, so we can afford to be lenient in this case. */
402
403static struct type *
404ada_typedef_target_type (struct type *type)
405{
406 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
407 type = TYPE_TARGET_TYPE (type);
408 return type;
409}
410
41d27058
JB
411/* Given DECODED_NAME a string holding a symbol name in its
412 decoded form (ie using the Ada dotted notation), returns
413 its unqualified name. */
414
415static const char *
416ada_unqualified_name (const char *decoded_name)
417{
418 const char *result = strrchr (decoded_name, '.');
419
420 if (result != NULL)
421 result++; /* Skip the dot... */
422 else
423 result = decoded_name;
424
425 return result;
426}
427
428/* Return a string starting with '<', followed by STR, and '>'.
429 The result is good until the next call. */
430
431static char *
432add_angle_brackets (const char *str)
433{
434 static char *result = NULL;
435
436 xfree (result);
88c15c34 437 result = xstrprintf ("<%s>", str);
41d27058
JB
438 return result;
439}
96d887e8 440
4c4b4cd2
PH
441static char *
442ada_get_gdb_completer_word_break_characters (void)
443{
444 return ada_completer_word_break_characters;
445}
446
e79af960
JB
447/* Print an array element index using the Ada syntax. */
448
449static void
450ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 451 const struct value_print_options *options)
e79af960 452{
79a45b7d 453 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
454 fprintf_filtered (stream, " => ");
455}
456
f27cf670 457/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 458 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 459 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 460
f27cf670
AS
461void *
462grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 463{
d2e4a39e
AS
464 if (*size < min_size)
465 {
466 *size *= 2;
467 if (*size < min_size)
4c4b4cd2 468 *size = min_size;
f27cf670 469 vect = xrealloc (vect, *size * element_size);
d2e4a39e 470 }
f27cf670 471 return vect;
14f9c5c9
AS
472}
473
474/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 475 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
476
477static int
ebf56fd3 478field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
479{
480 int len = strlen (target);
5b4ee69b 481
d2e4a39e 482 return
4c4b4cd2
PH
483 (strncmp (field_name, target, len) == 0
484 && (field_name[len] == '\0'
485 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
486 && strcmp (field_name + strlen (field_name) - 6,
487 "___XVN") != 0)));
14f9c5c9
AS
488}
489
490
872c8b51
JB
491/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
492 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
493 and return its index. This function also handles fields whose name
494 have ___ suffixes because the compiler sometimes alters their name
495 by adding such a suffix to represent fields with certain constraints.
496 If the field could not be found, return a negative number if
497 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
498
499int
500ada_get_field_index (const struct type *type, const char *field_name,
501 int maybe_missing)
502{
503 int fieldno;
872c8b51
JB
504 struct type *struct_type = check_typedef ((struct type *) type);
505
506 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
507 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
508 return fieldno;
509
510 if (!maybe_missing)
323e0a4a 511 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 512 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
513
514 return -1;
515}
516
517/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
518
519int
d2e4a39e 520ada_name_prefix_len (const char *name)
14f9c5c9
AS
521{
522 if (name == NULL)
523 return 0;
d2e4a39e 524 else
14f9c5c9 525 {
d2e4a39e 526 const char *p = strstr (name, "___");
5b4ee69b 527
14f9c5c9 528 if (p == NULL)
4c4b4cd2 529 return strlen (name);
14f9c5c9 530 else
4c4b4cd2 531 return p - name;
14f9c5c9
AS
532 }
533}
534
4c4b4cd2
PH
535/* Return non-zero if SUFFIX is a suffix of STR.
536 Return zero if STR is null. */
537
14f9c5c9 538static int
d2e4a39e 539is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
540{
541 int len1, len2;
5b4ee69b 542
14f9c5c9
AS
543 if (str == NULL)
544 return 0;
545 len1 = strlen (str);
546 len2 = strlen (suffix);
4c4b4cd2 547 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
548}
549
4c4b4cd2
PH
550/* The contents of value VAL, treated as a value of type TYPE. The
551 result is an lval in memory if VAL is. */
14f9c5c9 552
d2e4a39e 553static struct value *
4c4b4cd2 554coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 555{
61ee279c 556 type = ada_check_typedef (type);
df407dfe 557 if (value_type (val) == type)
4c4b4cd2 558 return val;
d2e4a39e 559 else
14f9c5c9 560 {
4c4b4cd2
PH
561 struct value *result;
562
563 /* Make sure that the object size is not unreasonable before
564 trying to allocate some memory for it. */
714e53ab 565 check_size (type);
4c4b4cd2 566
41e8491f
JK
567 if (value_lazy (val)
568 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
569 result = allocate_value_lazy (type);
570 else
571 {
572 result = allocate_value (type);
573 memcpy (value_contents_raw (result), value_contents (val),
574 TYPE_LENGTH (type));
575 }
74bcbdf3 576 set_value_component_location (result, val);
9bbda503
AC
577 set_value_bitsize (result, value_bitsize (val));
578 set_value_bitpos (result, value_bitpos (val));
42ae5230 579 set_value_address (result, value_address (val));
14f9c5c9
AS
580 return result;
581 }
582}
583
fc1a4b47
AC
584static const gdb_byte *
585cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
586{
587 if (valaddr == NULL)
588 return NULL;
589 else
590 return valaddr + offset;
591}
592
593static CORE_ADDR
ebf56fd3 594cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
595{
596 if (address == 0)
597 return 0;
d2e4a39e 598 else
14f9c5c9
AS
599 return address + offset;
600}
601
4c4b4cd2
PH
602/* Issue a warning (as for the definition of warning in utils.c, but
603 with exactly one argument rather than ...), unless the limit on the
604 number of warnings has passed during the evaluation of the current
605 expression. */
a2249542 606
77109804
AC
607/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
608 provided by "complaint". */
a0b31db1 609static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 610
14f9c5c9 611static void
a2249542 612lim_warning (const char *format, ...)
14f9c5c9 613{
a2249542 614 va_list args;
a2249542 615
5b4ee69b 616 va_start (args, format);
4c4b4cd2
PH
617 warnings_issued += 1;
618 if (warnings_issued <= warning_limit)
a2249542
MK
619 vwarning (format, args);
620
621 va_end (args);
4c4b4cd2
PH
622}
623
714e53ab
PH
624/* Issue an error if the size of an object of type T is unreasonable,
625 i.e. if it would be a bad idea to allocate a value of this type in
626 GDB. */
627
628static void
629check_size (const struct type *type)
630{
631 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 632 error (_("object size is larger than varsize-limit"));
714e53ab
PH
633}
634
0963b4bd 635/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 636static LONGEST
c3e5cd34 637max_of_size (int size)
4c4b4cd2 638{
76a01679 639 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 640
76a01679 641 return top_bit | (top_bit - 1);
4c4b4cd2
PH
642}
643
0963b4bd 644/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 645static LONGEST
c3e5cd34 646min_of_size (int size)
4c4b4cd2 647{
c3e5cd34 648 return -max_of_size (size) - 1;
4c4b4cd2
PH
649}
650
0963b4bd 651/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 652static ULONGEST
c3e5cd34 653umax_of_size (int size)
4c4b4cd2 654{
76a01679 655 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 656
76a01679 657 return top_bit | (top_bit - 1);
4c4b4cd2
PH
658}
659
0963b4bd 660/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
661static LONGEST
662max_of_type (struct type *t)
4c4b4cd2 663{
c3e5cd34
PH
664 if (TYPE_UNSIGNED (t))
665 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
666 else
667 return max_of_size (TYPE_LENGTH (t));
668}
669
0963b4bd 670/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
671static LONGEST
672min_of_type (struct type *t)
673{
674 if (TYPE_UNSIGNED (t))
675 return 0;
676 else
677 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
678}
679
680/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
681LONGEST
682ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 683{
76a01679 684 switch (TYPE_CODE (type))
4c4b4cd2
PH
685 {
686 case TYPE_CODE_RANGE:
690cc4eb 687 return TYPE_HIGH_BOUND (type);
4c4b4cd2 688 case TYPE_CODE_ENUM:
690cc4eb
PH
689 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
690 case TYPE_CODE_BOOL:
691 return 1;
692 case TYPE_CODE_CHAR:
76a01679 693 case TYPE_CODE_INT:
690cc4eb 694 return max_of_type (type);
4c4b4cd2 695 default:
43bbcdc2 696 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
697 }
698}
699
700/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
701LONGEST
702ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 703{
76a01679 704 switch (TYPE_CODE (type))
4c4b4cd2
PH
705 {
706 case TYPE_CODE_RANGE:
690cc4eb 707 return TYPE_LOW_BOUND (type);
4c4b4cd2 708 case TYPE_CODE_ENUM:
690cc4eb
PH
709 return TYPE_FIELD_BITPOS (type, 0);
710 case TYPE_CODE_BOOL:
711 return 0;
712 case TYPE_CODE_CHAR:
76a01679 713 case TYPE_CODE_INT:
690cc4eb 714 return min_of_type (type);
4c4b4cd2 715 default:
43bbcdc2 716 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
717 }
718}
719
720/* The identity on non-range types. For range types, the underlying
76a01679 721 non-range scalar type. */
4c4b4cd2
PH
722
723static struct type *
18af8284 724get_base_type (struct type *type)
4c4b4cd2
PH
725{
726 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
727 {
76a01679
JB
728 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
729 return type;
4c4b4cd2
PH
730 type = TYPE_TARGET_TYPE (type);
731 }
732 return type;
14f9c5c9 733}
4c4b4cd2 734\f
76a01679 735
4c4b4cd2 736 /* Language Selection */
14f9c5c9
AS
737
738/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 739 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 740
14f9c5c9 741enum language
ccefe4c4 742ada_update_initial_language (enum language lang)
14f9c5c9 743{
d2e4a39e 744 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
745 (struct objfile *) NULL) != NULL)
746 return language_ada;
14f9c5c9
AS
747
748 return lang;
749}
96d887e8
PH
750
751/* If the main procedure is written in Ada, then return its name.
752 The result is good until the next call. Return NULL if the main
753 procedure doesn't appear to be in Ada. */
754
755char *
756ada_main_name (void)
757{
758 struct minimal_symbol *msym;
f9bc20b9 759 static char *main_program_name = NULL;
6c038f32 760
96d887e8
PH
761 /* For Ada, the name of the main procedure is stored in a specific
762 string constant, generated by the binder. Look for that symbol,
763 extract its address, and then read that string. If we didn't find
764 that string, then most probably the main procedure is not written
765 in Ada. */
766 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
767
768 if (msym != NULL)
769 {
f9bc20b9
JB
770 CORE_ADDR main_program_name_addr;
771 int err_code;
772
96d887e8
PH
773 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
774 if (main_program_name_addr == 0)
323e0a4a 775 error (_("Invalid address for Ada main program name."));
96d887e8 776
f9bc20b9
JB
777 xfree (main_program_name);
778 target_read_string (main_program_name_addr, &main_program_name,
779 1024, &err_code);
780
781 if (err_code != 0)
782 return NULL;
96d887e8
PH
783 return main_program_name;
784 }
785
786 /* The main procedure doesn't seem to be in Ada. */
787 return NULL;
788}
14f9c5c9 789\f
4c4b4cd2 790 /* Symbols */
d2e4a39e 791
4c4b4cd2
PH
792/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
793 of NULLs. */
14f9c5c9 794
d2e4a39e
AS
795const struct ada_opname_map ada_opname_table[] = {
796 {"Oadd", "\"+\"", BINOP_ADD},
797 {"Osubtract", "\"-\"", BINOP_SUB},
798 {"Omultiply", "\"*\"", BINOP_MUL},
799 {"Odivide", "\"/\"", BINOP_DIV},
800 {"Omod", "\"mod\"", BINOP_MOD},
801 {"Orem", "\"rem\"", BINOP_REM},
802 {"Oexpon", "\"**\"", BINOP_EXP},
803 {"Olt", "\"<\"", BINOP_LESS},
804 {"Ole", "\"<=\"", BINOP_LEQ},
805 {"Ogt", "\">\"", BINOP_GTR},
806 {"Oge", "\">=\"", BINOP_GEQ},
807 {"Oeq", "\"=\"", BINOP_EQUAL},
808 {"One", "\"/=\"", BINOP_NOTEQUAL},
809 {"Oand", "\"and\"", BINOP_BITWISE_AND},
810 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
811 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
812 {"Oconcat", "\"&\"", BINOP_CONCAT},
813 {"Oabs", "\"abs\"", UNOP_ABS},
814 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
815 {"Oadd", "\"+\"", UNOP_PLUS},
816 {"Osubtract", "\"-\"", UNOP_NEG},
817 {NULL, NULL}
14f9c5c9
AS
818};
819
4c4b4cd2
PH
820/* The "encoded" form of DECODED, according to GNAT conventions.
821 The result is valid until the next call to ada_encode. */
822
14f9c5c9 823char *
4c4b4cd2 824ada_encode (const char *decoded)
14f9c5c9 825{
4c4b4cd2
PH
826 static char *encoding_buffer = NULL;
827 static size_t encoding_buffer_size = 0;
d2e4a39e 828 const char *p;
14f9c5c9 829 int k;
d2e4a39e 830
4c4b4cd2 831 if (decoded == NULL)
14f9c5c9
AS
832 return NULL;
833
4c4b4cd2
PH
834 GROW_VECT (encoding_buffer, encoding_buffer_size,
835 2 * strlen (decoded) + 10);
14f9c5c9
AS
836
837 k = 0;
4c4b4cd2 838 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 839 {
cdc7bb92 840 if (*p == '.')
4c4b4cd2
PH
841 {
842 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
843 k += 2;
844 }
14f9c5c9 845 else if (*p == '"')
4c4b4cd2
PH
846 {
847 const struct ada_opname_map *mapping;
848
849 for (mapping = ada_opname_table;
1265e4aa
JB
850 mapping->encoded != NULL
851 && strncmp (mapping->decoded, p,
852 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
853 ;
854 if (mapping->encoded == NULL)
323e0a4a 855 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
856 strcpy (encoding_buffer + k, mapping->encoded);
857 k += strlen (mapping->encoded);
858 break;
859 }
d2e4a39e 860 else
4c4b4cd2
PH
861 {
862 encoding_buffer[k] = *p;
863 k += 1;
864 }
14f9c5c9
AS
865 }
866
4c4b4cd2
PH
867 encoding_buffer[k] = '\0';
868 return encoding_buffer;
14f9c5c9
AS
869}
870
871/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
872 quotes, unfolded, but with the quotes stripped away. Result good
873 to next call. */
874
d2e4a39e
AS
875char *
876ada_fold_name (const char *name)
14f9c5c9 877{
d2e4a39e 878 static char *fold_buffer = NULL;
14f9c5c9
AS
879 static size_t fold_buffer_size = 0;
880
881 int len = strlen (name);
d2e4a39e 882 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
883
884 if (name[0] == '\'')
885 {
d2e4a39e
AS
886 strncpy (fold_buffer, name + 1, len - 2);
887 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
888 }
889 else
890 {
891 int i;
5b4ee69b 892
14f9c5c9 893 for (i = 0; i <= len; i += 1)
4c4b4cd2 894 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
895 }
896
897 return fold_buffer;
898}
899
529cad9c
PH
900/* Return nonzero if C is either a digit or a lowercase alphabet character. */
901
902static int
903is_lower_alphanum (const char c)
904{
905 return (isdigit (c) || (isalpha (c) && islower (c)));
906}
907
c90092fe
JB
908/* ENCODED is the linkage name of a symbol and LEN contains its length.
909 This function saves in LEN the length of that same symbol name but
910 without either of these suffixes:
29480c32
JB
911 . .{DIGIT}+
912 . ${DIGIT}+
913 . ___{DIGIT}+
914 . __{DIGIT}+.
c90092fe 915
29480c32
JB
916 These are suffixes introduced by the compiler for entities such as
917 nested subprogram for instance, in order to avoid name clashes.
918 They do not serve any purpose for the debugger. */
919
920static void
921ada_remove_trailing_digits (const char *encoded, int *len)
922{
923 if (*len > 1 && isdigit (encoded[*len - 1]))
924 {
925 int i = *len - 2;
5b4ee69b 926
29480c32
JB
927 while (i > 0 && isdigit (encoded[i]))
928 i--;
929 if (i >= 0 && encoded[i] == '.')
930 *len = i;
931 else if (i >= 0 && encoded[i] == '$')
932 *len = i;
933 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
934 *len = i - 2;
935 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
936 *len = i - 1;
937 }
938}
939
940/* Remove the suffix introduced by the compiler for protected object
941 subprograms. */
942
943static void
944ada_remove_po_subprogram_suffix (const char *encoded, int *len)
945{
946 /* Remove trailing N. */
947
948 /* Protected entry subprograms are broken into two
949 separate subprograms: The first one is unprotected, and has
950 a 'N' suffix; the second is the protected version, and has
0963b4bd 951 the 'P' suffix. The second calls the first one after handling
29480c32
JB
952 the protection. Since the P subprograms are internally generated,
953 we leave these names undecoded, giving the user a clue that this
954 entity is internal. */
955
956 if (*len > 1
957 && encoded[*len - 1] == 'N'
958 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
959 *len = *len - 1;
960}
961
69fadcdf
JB
962/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
963
964static void
965ada_remove_Xbn_suffix (const char *encoded, int *len)
966{
967 int i = *len - 1;
968
969 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
970 i--;
971
972 if (encoded[i] != 'X')
973 return;
974
975 if (i == 0)
976 return;
977
978 if (isalnum (encoded[i-1]))
979 *len = i;
980}
981
29480c32
JB
982/* If ENCODED follows the GNAT entity encoding conventions, then return
983 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
984 replaced by ENCODED.
14f9c5c9 985
4c4b4cd2 986 The resulting string is valid until the next call of ada_decode.
29480c32 987 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
988 is returned. */
989
990const char *
991ada_decode (const char *encoded)
14f9c5c9
AS
992{
993 int i, j;
994 int len0;
d2e4a39e 995 const char *p;
4c4b4cd2 996 char *decoded;
14f9c5c9 997 int at_start_name;
4c4b4cd2
PH
998 static char *decoding_buffer = NULL;
999 static size_t decoding_buffer_size = 0;
d2e4a39e 1000
29480c32
JB
1001 /* The name of the Ada main procedure starts with "_ada_".
1002 This prefix is not part of the decoded name, so skip this part
1003 if we see this prefix. */
4c4b4cd2
PH
1004 if (strncmp (encoded, "_ada_", 5) == 0)
1005 encoded += 5;
14f9c5c9 1006
29480c32
JB
1007 /* If the name starts with '_', then it is not a properly encoded
1008 name, so do not attempt to decode it. Similarly, if the name
1009 starts with '<', the name should not be decoded. */
4c4b4cd2 1010 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1011 goto Suppress;
1012
4c4b4cd2 1013 len0 = strlen (encoded);
4c4b4cd2 1014
29480c32
JB
1015 ada_remove_trailing_digits (encoded, &len0);
1016 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1017
4c4b4cd2
PH
1018 /* Remove the ___X.* suffix if present. Do not forget to verify that
1019 the suffix is located before the current "end" of ENCODED. We want
1020 to avoid re-matching parts of ENCODED that have previously been
1021 marked as discarded (by decrementing LEN0). */
1022 p = strstr (encoded, "___");
1023 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1024 {
1025 if (p[3] == 'X')
4c4b4cd2 1026 len0 = p - encoded;
14f9c5c9 1027 else
4c4b4cd2 1028 goto Suppress;
14f9c5c9 1029 }
4c4b4cd2 1030
29480c32
JB
1031 /* Remove any trailing TKB suffix. It tells us that this symbol
1032 is for the body of a task, but that information does not actually
1033 appear in the decoded name. */
1034
4c4b4cd2 1035 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1036 len0 -= 3;
76a01679 1037
a10967fa
JB
1038 /* Remove any trailing TB suffix. The TB suffix is slightly different
1039 from the TKB suffix because it is used for non-anonymous task
1040 bodies. */
1041
1042 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1043 len0 -= 2;
1044
29480c32
JB
1045 /* Remove trailing "B" suffixes. */
1046 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1047
4c4b4cd2 1048 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1049 len0 -= 1;
1050
4c4b4cd2 1051 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1052
4c4b4cd2
PH
1053 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1054 decoded = decoding_buffer;
14f9c5c9 1055
29480c32
JB
1056 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1057
4c4b4cd2 1058 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1059 {
4c4b4cd2
PH
1060 i = len0 - 2;
1061 while ((i >= 0 && isdigit (encoded[i]))
1062 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1063 i -= 1;
1064 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1065 len0 = i - 1;
1066 else if (encoded[i] == '$')
1067 len0 = i;
d2e4a39e 1068 }
14f9c5c9 1069
29480c32
JB
1070 /* The first few characters that are not alphabetic are not part
1071 of any encoding we use, so we can copy them over verbatim. */
1072
4c4b4cd2
PH
1073 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1074 decoded[j] = encoded[i];
14f9c5c9
AS
1075
1076 at_start_name = 1;
1077 while (i < len0)
1078 {
29480c32 1079 /* Is this a symbol function? */
4c4b4cd2
PH
1080 if (at_start_name && encoded[i] == 'O')
1081 {
1082 int k;
5b4ee69b 1083
4c4b4cd2
PH
1084 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1085 {
1086 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1087 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1088 op_len - 1) == 0)
1089 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1090 {
1091 strcpy (decoded + j, ada_opname_table[k].decoded);
1092 at_start_name = 0;
1093 i += op_len;
1094 j += strlen (ada_opname_table[k].decoded);
1095 break;
1096 }
1097 }
1098 if (ada_opname_table[k].encoded != NULL)
1099 continue;
1100 }
14f9c5c9
AS
1101 at_start_name = 0;
1102
529cad9c
PH
1103 /* Replace "TK__" with "__", which will eventually be translated
1104 into "." (just below). */
1105
4c4b4cd2
PH
1106 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1107 i += 2;
529cad9c 1108
29480c32
JB
1109 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1110 be translated into "." (just below). These are internal names
1111 generated for anonymous blocks inside which our symbol is nested. */
1112
1113 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1114 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1115 && isdigit (encoded [i+4]))
1116 {
1117 int k = i + 5;
1118
1119 while (k < len0 && isdigit (encoded[k]))
1120 k++; /* Skip any extra digit. */
1121
1122 /* Double-check that the "__B_{DIGITS}+" sequence we found
1123 is indeed followed by "__". */
1124 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1125 i = k;
1126 }
1127
529cad9c
PH
1128 /* Remove _E{DIGITS}+[sb] */
1129
1130 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1131 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1132 one implements the actual entry code, and has a suffix following
1133 the convention above; the second one implements the barrier and
1134 uses the same convention as above, except that the 'E' is replaced
1135 by a 'B'.
1136
1137 Just as above, we do not decode the name of barrier functions
1138 to give the user a clue that the code he is debugging has been
1139 internally generated. */
1140
1141 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1142 && isdigit (encoded[i+2]))
1143 {
1144 int k = i + 3;
1145
1146 while (k < len0 && isdigit (encoded[k]))
1147 k++;
1148
1149 if (k < len0
1150 && (encoded[k] == 'b' || encoded[k] == 's'))
1151 {
1152 k++;
1153 /* Just as an extra precaution, make sure that if this
1154 suffix is followed by anything else, it is a '_'.
1155 Otherwise, we matched this sequence by accident. */
1156 if (k == len0
1157 || (k < len0 && encoded[k] == '_'))
1158 i = k;
1159 }
1160 }
1161
1162 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1163 the GNAT front-end in protected object subprograms. */
1164
1165 if (i < len0 + 3
1166 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1167 {
1168 /* Backtrack a bit up until we reach either the begining of
1169 the encoded name, or "__". Make sure that we only find
1170 digits or lowercase characters. */
1171 const char *ptr = encoded + i - 1;
1172
1173 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1174 ptr--;
1175 if (ptr < encoded
1176 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1177 i++;
1178 }
1179
4c4b4cd2
PH
1180 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1181 {
29480c32
JB
1182 /* This is a X[bn]* sequence not separated from the previous
1183 part of the name with a non-alpha-numeric character (in other
1184 words, immediately following an alpha-numeric character), then
1185 verify that it is placed at the end of the encoded name. If
1186 not, then the encoding is not valid and we should abort the
1187 decoding. Otherwise, just skip it, it is used in body-nested
1188 package names. */
4c4b4cd2
PH
1189 do
1190 i += 1;
1191 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1192 if (i < len0)
1193 goto Suppress;
1194 }
cdc7bb92 1195 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1196 {
29480c32 1197 /* Replace '__' by '.'. */
4c4b4cd2
PH
1198 decoded[j] = '.';
1199 at_start_name = 1;
1200 i += 2;
1201 j += 1;
1202 }
14f9c5c9 1203 else
4c4b4cd2 1204 {
29480c32
JB
1205 /* It's a character part of the decoded name, so just copy it
1206 over. */
4c4b4cd2
PH
1207 decoded[j] = encoded[i];
1208 i += 1;
1209 j += 1;
1210 }
14f9c5c9 1211 }
4c4b4cd2 1212 decoded[j] = '\000';
14f9c5c9 1213
29480c32
JB
1214 /* Decoded names should never contain any uppercase character.
1215 Double-check this, and abort the decoding if we find one. */
1216
4c4b4cd2
PH
1217 for (i = 0; decoded[i] != '\0'; i += 1)
1218 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1219 goto Suppress;
1220
4c4b4cd2
PH
1221 if (strcmp (decoded, encoded) == 0)
1222 return encoded;
1223 else
1224 return decoded;
14f9c5c9
AS
1225
1226Suppress:
4c4b4cd2
PH
1227 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1228 decoded = decoding_buffer;
1229 if (encoded[0] == '<')
1230 strcpy (decoded, encoded);
14f9c5c9 1231 else
88c15c34 1232 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1233 return decoded;
1234
1235}
1236
1237/* Table for keeping permanent unique copies of decoded names. Once
1238 allocated, names in this table are never released. While this is a
1239 storage leak, it should not be significant unless there are massive
1240 changes in the set of decoded names in successive versions of a
1241 symbol table loaded during a single session. */
1242static struct htab *decoded_names_store;
1243
1244/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1245 in the language-specific part of GSYMBOL, if it has not been
1246 previously computed. Tries to save the decoded name in the same
1247 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1248 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1249 GSYMBOL).
4c4b4cd2
PH
1250 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1251 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1252 when a decoded name is cached in it. */
4c4b4cd2 1253
76a01679
JB
1254char *
1255ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1256{
76a01679 1257 char **resultp =
afa16725 1258 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1259
4c4b4cd2
PH
1260 if (*resultp == NULL)
1261 {
1262 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1263
714835d5 1264 if (gsymbol->obj_section != NULL)
76a01679 1265 {
714835d5 1266 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1267
714835d5
UW
1268 *resultp = obsavestring (decoded, strlen (decoded),
1269 &objf->objfile_obstack);
76a01679 1270 }
4c4b4cd2 1271 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1272 case, we put the result on the heap. Since we only decode
1273 when needed, we hope this usually does not cause a
1274 significant memory leak (FIXME). */
4c4b4cd2 1275 if (*resultp == NULL)
76a01679
JB
1276 {
1277 char **slot = (char **) htab_find_slot (decoded_names_store,
1278 decoded, INSERT);
5b4ee69b 1279
76a01679
JB
1280 if (*slot == NULL)
1281 *slot = xstrdup (decoded);
1282 *resultp = *slot;
1283 }
4c4b4cd2 1284 }
14f9c5c9 1285
4c4b4cd2
PH
1286 return *resultp;
1287}
76a01679 1288
2c0b251b 1289static char *
76a01679 1290ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1291{
1292 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1293}
1294
1295/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1296 suffixes that encode debugging information or leading _ada_ on
1297 SYM_NAME (see is_name_suffix commentary for the debugging
1298 information that is ignored). If WILD, then NAME need only match a
1299 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1300 either argument is NULL. */
14f9c5c9 1301
2c0b251b 1302static int
40658b94 1303match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1304{
1305 if (sym_name == NULL || name == NULL)
1306 return 0;
1307 else if (wild)
73589123 1308 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1309 else
1310 {
1311 int len_name = strlen (name);
5b4ee69b 1312
4c4b4cd2
PH
1313 return (strncmp (sym_name, name, len_name) == 0
1314 && is_name_suffix (sym_name + len_name))
1315 || (strncmp (sym_name, "_ada_", 5) == 0
1316 && strncmp (sym_name + 5, name, len_name) == 0
1317 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1318 }
14f9c5c9 1319}
14f9c5c9 1320\f
d2e4a39e 1321
4c4b4cd2 1322 /* Arrays */
14f9c5c9 1323
28c85d6c
JB
1324/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1325 generated by the GNAT compiler to describe the index type used
1326 for each dimension of an array, check whether it follows the latest
1327 known encoding. If not, fix it up to conform to the latest encoding.
1328 Otherwise, do nothing. This function also does nothing if
1329 INDEX_DESC_TYPE is NULL.
1330
1331 The GNAT encoding used to describle the array index type evolved a bit.
1332 Initially, the information would be provided through the name of each
1333 field of the structure type only, while the type of these fields was
1334 described as unspecified and irrelevant. The debugger was then expected
1335 to perform a global type lookup using the name of that field in order
1336 to get access to the full index type description. Because these global
1337 lookups can be very expensive, the encoding was later enhanced to make
1338 the global lookup unnecessary by defining the field type as being
1339 the full index type description.
1340
1341 The purpose of this routine is to allow us to support older versions
1342 of the compiler by detecting the use of the older encoding, and by
1343 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1344 we essentially replace each field's meaningless type by the associated
1345 index subtype). */
1346
1347void
1348ada_fixup_array_indexes_type (struct type *index_desc_type)
1349{
1350 int i;
1351
1352 if (index_desc_type == NULL)
1353 return;
1354 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1355
1356 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1357 to check one field only, no need to check them all). If not, return
1358 now.
1359
1360 If our INDEX_DESC_TYPE was generated using the older encoding,
1361 the field type should be a meaningless integer type whose name
1362 is not equal to the field name. */
1363 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1364 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1365 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1366 return;
1367
1368 /* Fixup each field of INDEX_DESC_TYPE. */
1369 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1370 {
1371 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1372 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1373
1374 if (raw_type)
1375 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1376 }
1377}
1378
4c4b4cd2 1379/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1380
d2e4a39e
AS
1381static char *bound_name[] = {
1382 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1383 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1384};
1385
1386/* Maximum number of array dimensions we are prepared to handle. */
1387
4c4b4cd2 1388#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1389
14f9c5c9 1390
4c4b4cd2
PH
1391/* The desc_* routines return primitive portions of array descriptors
1392 (fat pointers). */
14f9c5c9
AS
1393
1394/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1395 level of indirection, if needed. */
1396
d2e4a39e
AS
1397static struct type *
1398desc_base_type (struct type *type)
14f9c5c9
AS
1399{
1400 if (type == NULL)
1401 return NULL;
61ee279c 1402 type = ada_check_typedef (type);
720d1a40
JB
1403 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1404 type = ada_typedef_target_type (type);
1405
1265e4aa
JB
1406 if (type != NULL
1407 && (TYPE_CODE (type) == TYPE_CODE_PTR
1408 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1409 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1410 else
1411 return type;
1412}
1413
4c4b4cd2
PH
1414/* True iff TYPE indicates a "thin" array pointer type. */
1415
14f9c5c9 1416static int
d2e4a39e 1417is_thin_pntr (struct type *type)
14f9c5c9 1418{
d2e4a39e 1419 return
14f9c5c9
AS
1420 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1421 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1422}
1423
4c4b4cd2
PH
1424/* The descriptor type for thin pointer type TYPE. */
1425
d2e4a39e
AS
1426static struct type *
1427thin_descriptor_type (struct type *type)
14f9c5c9 1428{
d2e4a39e 1429 struct type *base_type = desc_base_type (type);
5b4ee69b 1430
14f9c5c9
AS
1431 if (base_type == NULL)
1432 return NULL;
1433 if (is_suffix (ada_type_name (base_type), "___XVE"))
1434 return base_type;
d2e4a39e 1435 else
14f9c5c9 1436 {
d2e4a39e 1437 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1438
14f9c5c9 1439 if (alt_type == NULL)
4c4b4cd2 1440 return base_type;
14f9c5c9 1441 else
4c4b4cd2 1442 return alt_type;
14f9c5c9
AS
1443 }
1444}
1445
4c4b4cd2
PH
1446/* A pointer to the array data for thin-pointer value VAL. */
1447
d2e4a39e
AS
1448static struct value *
1449thin_data_pntr (struct value *val)
14f9c5c9 1450{
828292f2 1451 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1452 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1453
556bdfd4
UW
1454 data_type = lookup_pointer_type (data_type);
1455
14f9c5c9 1456 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1457 return value_cast (data_type, value_copy (val));
d2e4a39e 1458 else
42ae5230 1459 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1460}
1461
4c4b4cd2
PH
1462/* True iff TYPE indicates a "thick" array pointer type. */
1463
14f9c5c9 1464static int
d2e4a39e 1465is_thick_pntr (struct type *type)
14f9c5c9
AS
1466{
1467 type = desc_base_type (type);
1468 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1469 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1470}
1471
4c4b4cd2
PH
1472/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1473 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1474
d2e4a39e
AS
1475static struct type *
1476desc_bounds_type (struct type *type)
14f9c5c9 1477{
d2e4a39e 1478 struct type *r;
14f9c5c9
AS
1479
1480 type = desc_base_type (type);
1481
1482 if (type == NULL)
1483 return NULL;
1484 else if (is_thin_pntr (type))
1485 {
1486 type = thin_descriptor_type (type);
1487 if (type == NULL)
4c4b4cd2 1488 return NULL;
14f9c5c9
AS
1489 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1490 if (r != NULL)
61ee279c 1491 return ada_check_typedef (r);
14f9c5c9
AS
1492 }
1493 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1494 {
1495 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1496 if (r != NULL)
61ee279c 1497 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1498 }
1499 return NULL;
1500}
1501
1502/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1503 one, a pointer to its bounds data. Otherwise NULL. */
1504
d2e4a39e
AS
1505static struct value *
1506desc_bounds (struct value *arr)
14f9c5c9 1507{
df407dfe 1508 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1509
d2e4a39e 1510 if (is_thin_pntr (type))
14f9c5c9 1511 {
d2e4a39e 1512 struct type *bounds_type =
4c4b4cd2 1513 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1514 LONGEST addr;
1515
4cdfadb1 1516 if (bounds_type == NULL)
323e0a4a 1517 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1518
1519 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1520 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1521 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1522 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1523 addr = value_as_long (arr);
d2e4a39e 1524 else
42ae5230 1525 addr = value_address (arr);
14f9c5c9 1526
d2e4a39e 1527 return
4c4b4cd2
PH
1528 value_from_longest (lookup_pointer_type (bounds_type),
1529 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1530 }
1531
1532 else if (is_thick_pntr (type))
05e522ef
JB
1533 {
1534 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1535 _("Bad GNAT array descriptor"));
1536 struct type *p_bounds_type = value_type (p_bounds);
1537
1538 if (p_bounds_type
1539 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1540 {
1541 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1542
1543 if (TYPE_STUB (target_type))
1544 p_bounds = value_cast (lookup_pointer_type
1545 (ada_check_typedef (target_type)),
1546 p_bounds);
1547 }
1548 else
1549 error (_("Bad GNAT array descriptor"));
1550
1551 return p_bounds;
1552 }
14f9c5c9
AS
1553 else
1554 return NULL;
1555}
1556
4c4b4cd2
PH
1557/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1558 position of the field containing the address of the bounds data. */
1559
14f9c5c9 1560static int
d2e4a39e 1561fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1562{
1563 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1564}
1565
1566/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1567 size of the field containing the address of the bounds data. */
1568
14f9c5c9 1569static int
d2e4a39e 1570fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1571{
1572 type = desc_base_type (type);
1573
d2e4a39e 1574 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1575 return TYPE_FIELD_BITSIZE (type, 1);
1576 else
61ee279c 1577 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1578}
1579
4c4b4cd2 1580/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1581 pointer to one, the type of its array data (a array-with-no-bounds type);
1582 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1583 data. */
4c4b4cd2 1584
d2e4a39e 1585static struct type *
556bdfd4 1586desc_data_target_type (struct type *type)
14f9c5c9
AS
1587{
1588 type = desc_base_type (type);
1589
4c4b4cd2 1590 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1591 if (is_thin_pntr (type))
556bdfd4 1592 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1593 else if (is_thick_pntr (type))
556bdfd4
UW
1594 {
1595 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1596
1597 if (data_type
1598 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1599 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1600 }
1601
1602 return NULL;
14f9c5c9
AS
1603}
1604
1605/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1606 its array data. */
4c4b4cd2 1607
d2e4a39e
AS
1608static struct value *
1609desc_data (struct value *arr)
14f9c5c9 1610{
df407dfe 1611 struct type *type = value_type (arr);
5b4ee69b 1612
14f9c5c9
AS
1613 if (is_thin_pntr (type))
1614 return thin_data_pntr (arr);
1615 else if (is_thick_pntr (type))
d2e4a39e 1616 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1617 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1618 else
1619 return NULL;
1620}
1621
1622
1623/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1624 position of the field containing the address of the data. */
1625
14f9c5c9 1626static int
d2e4a39e 1627fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1628{
1629 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1630}
1631
1632/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1633 size of the field containing the address of the data. */
1634
14f9c5c9 1635static int
d2e4a39e 1636fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1637{
1638 type = desc_base_type (type);
1639
1640 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1641 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1642 else
14f9c5c9
AS
1643 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1644}
1645
4c4b4cd2 1646/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1647 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1648 bound, if WHICH is 1. The first bound is I=1. */
1649
d2e4a39e
AS
1650static struct value *
1651desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1652{
d2e4a39e 1653 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1654 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1655}
1656
1657/* If BOUNDS is an array-bounds structure type, return the bit position
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
14f9c5c9 1661static int
d2e4a39e 1662desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1663{
d2e4a39e 1664 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1665}
1666
1667/* If BOUNDS is an array-bounds structure type, return the bit field size
1668 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1669 bound, if WHICH is 1. The first bound is I=1. */
1670
76a01679 1671static int
d2e4a39e 1672desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1673{
1674 type = desc_base_type (type);
1675
d2e4a39e
AS
1676 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1677 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1678 else
1679 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1680}
1681
1682/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1683 Ith bound (numbering from 1). Otherwise, NULL. */
1684
d2e4a39e
AS
1685static struct type *
1686desc_index_type (struct type *type, int i)
14f9c5c9
AS
1687{
1688 type = desc_base_type (type);
1689
1690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1691 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1692 else
14f9c5c9
AS
1693 return NULL;
1694}
1695
4c4b4cd2
PH
1696/* The number of index positions in the array-bounds type TYPE.
1697 Return 0 if TYPE is NULL. */
1698
14f9c5c9 1699static int
d2e4a39e 1700desc_arity (struct type *type)
14f9c5c9
AS
1701{
1702 type = desc_base_type (type);
1703
1704 if (type != NULL)
1705 return TYPE_NFIELDS (type) / 2;
1706 return 0;
1707}
1708
4c4b4cd2
PH
1709/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1710 an array descriptor type (representing an unconstrained array
1711 type). */
1712
76a01679
JB
1713static int
1714ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1715{
1716 if (type == NULL)
1717 return 0;
61ee279c 1718 type = ada_check_typedef (type);
4c4b4cd2 1719 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1720 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1721}
1722
52ce6436 1723/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1724 * to one. */
52ce6436 1725
2c0b251b 1726static int
52ce6436
PH
1727ada_is_array_type (struct type *type)
1728{
1729 while (type != NULL
1730 && (TYPE_CODE (type) == TYPE_CODE_PTR
1731 || TYPE_CODE (type) == TYPE_CODE_REF))
1732 type = TYPE_TARGET_TYPE (type);
1733 return ada_is_direct_array_type (type);
1734}
1735
4c4b4cd2 1736/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1737
14f9c5c9 1738int
4c4b4cd2 1739ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1740{
1741 if (type == NULL)
1742 return 0;
61ee279c 1743 type = ada_check_typedef (type);
14f9c5c9 1744 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1745 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1746 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1747 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1748}
1749
4c4b4cd2
PH
1750/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1751
14f9c5c9 1752int
4c4b4cd2 1753ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1754{
556bdfd4 1755 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1756
1757 if (type == NULL)
1758 return 0;
61ee279c 1759 type = ada_check_typedef (type);
556bdfd4
UW
1760 return (data_type != NULL
1761 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1762 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1763}
1764
1765/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1766 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1767 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1768 is still needed. */
1769
14f9c5c9 1770int
ebf56fd3 1771ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1772{
d2e4a39e 1773 return
14f9c5c9
AS
1774 type != NULL
1775 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1776 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1777 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1778 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1779}
1780
1781
4c4b4cd2 1782/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1783 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1784 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1785 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1786 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1787 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1788 a descriptor. */
d2e4a39e
AS
1789struct type *
1790ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1791{
ad82864c
JB
1792 if (ada_is_constrained_packed_array_type (value_type (arr)))
1793 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1794
df407dfe
AC
1795 if (!ada_is_array_descriptor_type (value_type (arr)))
1796 return value_type (arr);
d2e4a39e
AS
1797
1798 if (!bounds)
ad82864c
JB
1799 {
1800 struct type *array_type =
1801 ada_check_typedef (desc_data_target_type (value_type (arr)));
1802
1803 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1804 TYPE_FIELD_BITSIZE (array_type, 0) =
1805 decode_packed_array_bitsize (value_type (arr));
1806
1807 return array_type;
1808 }
14f9c5c9
AS
1809 else
1810 {
d2e4a39e 1811 struct type *elt_type;
14f9c5c9 1812 int arity;
d2e4a39e 1813 struct value *descriptor;
14f9c5c9 1814
df407dfe
AC
1815 elt_type = ada_array_element_type (value_type (arr), -1);
1816 arity = ada_array_arity (value_type (arr));
14f9c5c9 1817
d2e4a39e 1818 if (elt_type == NULL || arity == 0)
df407dfe 1819 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1820
1821 descriptor = desc_bounds (arr);
d2e4a39e 1822 if (value_as_long (descriptor) == 0)
4c4b4cd2 1823 return NULL;
d2e4a39e 1824 while (arity > 0)
4c4b4cd2 1825 {
e9bb382b
UW
1826 struct type *range_type = alloc_type_copy (value_type (arr));
1827 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1828 struct value *low = desc_one_bound (descriptor, arity, 0);
1829 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1830
5b4ee69b 1831 arity -= 1;
df407dfe 1832 create_range_type (range_type, value_type (low),
529cad9c
PH
1833 longest_to_int (value_as_long (low)),
1834 longest_to_int (value_as_long (high)));
4c4b4cd2 1835 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1836
1837 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1838 {
1839 /* We need to store the element packed bitsize, as well as
1840 recompute the array size, because it was previously
1841 computed based on the unpacked element size. */
1842 LONGEST lo = value_as_long (low);
1843 LONGEST hi = value_as_long (high);
1844
1845 TYPE_FIELD_BITSIZE (elt_type, 0) =
1846 decode_packed_array_bitsize (value_type (arr));
1847 /* If the array has no element, then the size is already
1848 zero, and does not need to be recomputed. */
1849 if (lo < hi)
1850 {
1851 int array_bitsize =
1852 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1853
1854 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1855 }
1856 }
4c4b4cd2 1857 }
14f9c5c9
AS
1858
1859 return lookup_pointer_type (elt_type);
1860 }
1861}
1862
1863/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1864 Otherwise, returns either a standard GDB array with bounds set
1865 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1866 GDB array. Returns NULL if ARR is a null fat pointer. */
1867
d2e4a39e
AS
1868struct value *
1869ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1870{
df407dfe 1871 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1872 {
d2e4a39e 1873 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1874
14f9c5c9 1875 if (arrType == NULL)
4c4b4cd2 1876 return NULL;
14f9c5c9
AS
1877 return value_cast (arrType, value_copy (desc_data (arr)));
1878 }
ad82864c
JB
1879 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1880 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1881 else
1882 return arr;
1883}
1884
1885/* If ARR does not represent an array, returns ARR unchanged.
1886 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1887 be ARR itself if it already is in the proper form). */
1888
720d1a40 1889struct value *
d2e4a39e 1890ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1891{
df407dfe 1892 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1893 {
d2e4a39e 1894 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1895
14f9c5c9 1896 if (arrVal == NULL)
323e0a4a 1897 error (_("Bounds unavailable for null array pointer."));
529cad9c 1898 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1899 return value_ind (arrVal);
1900 }
ad82864c
JB
1901 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1902 return decode_constrained_packed_array (arr);
d2e4a39e 1903 else
14f9c5c9
AS
1904 return arr;
1905}
1906
1907/* If TYPE represents a GNAT array type, return it translated to an
1908 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1909 packing). For other types, is the identity. */
1910
d2e4a39e
AS
1911struct type *
1912ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1913{
ad82864c
JB
1914 if (ada_is_constrained_packed_array_type (type))
1915 return decode_constrained_packed_array_type (type);
17280b9f
UW
1916
1917 if (ada_is_array_descriptor_type (type))
556bdfd4 1918 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1919
1920 return type;
14f9c5c9
AS
1921}
1922
4c4b4cd2
PH
1923/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1924
ad82864c
JB
1925static int
1926ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1927{
1928 if (type == NULL)
1929 return 0;
4c4b4cd2 1930 type = desc_base_type (type);
61ee279c 1931 type = ada_check_typedef (type);
d2e4a39e 1932 return
14f9c5c9
AS
1933 ada_type_name (type) != NULL
1934 && strstr (ada_type_name (type), "___XP") != NULL;
1935}
1936
ad82864c
JB
1937/* Non-zero iff TYPE represents a standard GNAT constrained
1938 packed-array type. */
1939
1940int
1941ada_is_constrained_packed_array_type (struct type *type)
1942{
1943 return ada_is_packed_array_type (type)
1944 && !ada_is_array_descriptor_type (type);
1945}
1946
1947/* Non-zero iff TYPE represents an array descriptor for a
1948 unconstrained packed-array type. */
1949
1950static int
1951ada_is_unconstrained_packed_array_type (struct type *type)
1952{
1953 return ada_is_packed_array_type (type)
1954 && ada_is_array_descriptor_type (type);
1955}
1956
1957/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1958 return the size of its elements in bits. */
1959
1960static long
1961decode_packed_array_bitsize (struct type *type)
1962{
720d1a40 1963 char *raw_name;
ad82864c
JB
1964 char *tail;
1965 long bits;
1966
720d1a40
JB
1967 /* Access to arrays implemented as fat pointers are encoded as a typedef
1968 of the fat pointer type. We need the name of the fat pointer type
1969 to do the decoding, so strip the typedef layer. */
1970 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1971 type = ada_typedef_target_type (type);
1972
1973 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return 0;
1979
1980 tail = strstr (raw_name, "___XP");
720d1a40 1981 gdb_assert (tail != NULL);
ad82864c
JB
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991}
1992
14f9c5c9
AS
1993/* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits. */
2001
d2e4a39e 2002static struct type *
ad82864c 2003constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2004{
d2e4a39e
AS
2005 struct type *new_elt_type;
2006 struct type *new_type;
14f9c5c9
AS
2007 LONGEST low_bound, high_bound;
2008
61ee279c 2009 type = ada_check_typedef (type);
14f9c5c9
AS
2010 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2011 return type;
2012
e9bb382b 2013 new_type = alloc_type_copy (type);
ad82864c
JB
2014 new_elt_type =
2015 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2016 elt_bits);
262452ec 2017 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2018 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2019 TYPE_NAME (new_type) = ada_type_name (type);
2020
262452ec 2021 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2022 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2023 low_bound = high_bound = 0;
2024 if (high_bound < low_bound)
2025 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2026 else
14f9c5c9
AS
2027 {
2028 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2029 TYPE_LENGTH (new_type) =
4c4b4cd2 2030 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2031 }
2032
876cecd0 2033 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2034 return new_type;
2035}
2036
ad82864c
JB
2037/* The array type encoded by TYPE, where
2038 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2039
d2e4a39e 2040static struct type *
ad82864c 2041decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2042{
727e3d2e
JB
2043 char *raw_name = ada_type_name (ada_check_typedef (type));
2044 char *name;
2045 char *tail;
d2e4a39e 2046 struct type *shadow_type;
14f9c5c9 2047 long bits;
14f9c5c9 2048
727e3d2e
JB
2049 if (!raw_name)
2050 raw_name = ada_type_name (desc_base_type (type));
2051
2052 if (!raw_name)
2053 return NULL;
2054
2055 name = (char *) alloca (strlen (raw_name) + 1);
2056 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2057 type = desc_base_type (type);
2058
14f9c5c9
AS
2059 memcpy (name, raw_name, tail - raw_name);
2060 name[tail - raw_name] = '\000';
2061
b4ba55a1
JB
2062 shadow_type = ada_find_parallel_type_with_name (type, name);
2063
2064 if (shadow_type == NULL)
14f9c5c9 2065 {
323e0a4a 2066 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2067 return NULL;
2068 }
cb249c71 2069 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2070
2071 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2072 {
0963b4bd
MS
2073 lim_warning (_("could not understand bounds "
2074 "information on packed array"));
14f9c5c9
AS
2075 return NULL;
2076 }
d2e4a39e 2077
ad82864c
JB
2078 bits = decode_packed_array_bitsize (type);
2079 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2080}
2081
ad82864c
JB
2082/* Given that ARR is a struct value *indicating a GNAT constrained packed
2083 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2084 standard GDB array type except that the BITSIZEs of the array
2085 target types are set to the number of bits in each element, and the
4c4b4cd2 2086 type length is set appropriately. */
14f9c5c9 2087
d2e4a39e 2088static struct value *
ad82864c 2089decode_constrained_packed_array (struct value *arr)
14f9c5c9 2090{
4c4b4cd2 2091 struct type *type;
14f9c5c9 2092
4c4b4cd2 2093 arr = ada_coerce_ref (arr);
284614f0
JB
2094
2095 /* If our value is a pointer, then dererence it. Make sure that
2096 this operation does not cause the target type to be fixed, as
2097 this would indirectly cause this array to be decoded. The rest
2098 of the routine assumes that the array hasn't been decoded yet,
2099 so we use the basic "value_ind" routine to perform the dereferencing,
2100 as opposed to using "ada_value_ind". */
828292f2 2101 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2102 arr = value_ind (arr);
4c4b4cd2 2103
ad82864c 2104 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2105 if (type == NULL)
2106 {
323e0a4a 2107 error (_("can't unpack array"));
14f9c5c9
AS
2108 return NULL;
2109 }
61ee279c 2110
50810684 2111 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2112 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2113 {
2114 /* This is a (right-justified) modular type representing a packed
2115 array with no wrapper. In order to interpret the value through
2116 the (left-justified) packed array type we just built, we must
2117 first left-justify it. */
2118 int bit_size, bit_pos;
2119 ULONGEST mod;
2120
df407dfe 2121 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2122 bit_size = 0;
2123 while (mod > 0)
2124 {
2125 bit_size += 1;
2126 mod >>= 1;
2127 }
df407dfe 2128 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2129 arr = ada_value_primitive_packed_val (arr, NULL,
2130 bit_pos / HOST_CHAR_BIT,
2131 bit_pos % HOST_CHAR_BIT,
2132 bit_size,
2133 type);
2134 }
2135
4c4b4cd2 2136 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2137}
2138
2139
2140/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2141 given in IND. ARR must be a simple array. */
14f9c5c9 2142
d2e4a39e
AS
2143static struct value *
2144value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2145{
2146 int i;
2147 int bits, elt_off, bit_off;
2148 long elt_total_bit_offset;
d2e4a39e
AS
2149 struct type *elt_type;
2150 struct value *v;
14f9c5c9
AS
2151
2152 bits = 0;
2153 elt_total_bit_offset = 0;
df407dfe 2154 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2155 for (i = 0; i < arity; i += 1)
14f9c5c9 2156 {
d2e4a39e 2157 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2158 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2159 error
0963b4bd
MS
2160 (_("attempt to do packed indexing of "
2161 "something other than a packed array"));
14f9c5c9 2162 else
4c4b4cd2
PH
2163 {
2164 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2165 LONGEST lowerbound, upperbound;
2166 LONGEST idx;
2167
2168 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2169 {
323e0a4a 2170 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2171 lowerbound = upperbound = 0;
2172 }
2173
3cb382c9 2174 idx = pos_atr (ind[i]);
4c4b4cd2 2175 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2176 lim_warning (_("packed array index %ld out of bounds"),
2177 (long) idx);
4c4b4cd2
PH
2178 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2179 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2180 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2181 }
14f9c5c9
AS
2182 }
2183 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2184 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2185
2186 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2187 bits, elt_type);
14f9c5c9
AS
2188 return v;
2189}
2190
4c4b4cd2 2191/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2192
2193static int
d2e4a39e 2194has_negatives (struct type *type)
14f9c5c9 2195{
d2e4a39e
AS
2196 switch (TYPE_CODE (type))
2197 {
2198 default:
2199 return 0;
2200 case TYPE_CODE_INT:
2201 return !TYPE_UNSIGNED (type);
2202 case TYPE_CODE_RANGE:
2203 return TYPE_LOW_BOUND (type) < 0;
2204 }
14f9c5c9 2205}
d2e4a39e 2206
14f9c5c9
AS
2207
2208/* Create a new value of type TYPE from the contents of OBJ starting
2209 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2210 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2211 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2212 VALADDR is ignored unless OBJ is NULL, in which case,
2213 VALADDR+OFFSET must address the start of storage containing the
2214 packed value. The value returned in this case is never an lval.
2215 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2216
d2e4a39e 2217struct value *
fc1a4b47 2218ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2219 long offset, int bit_offset, int bit_size,
4c4b4cd2 2220 struct type *type)
14f9c5c9 2221{
d2e4a39e 2222 struct value *v;
4c4b4cd2
PH
2223 int src, /* Index into the source area */
2224 targ, /* Index into the target area */
2225 srcBitsLeft, /* Number of source bits left to move */
2226 nsrc, ntarg, /* Number of source and target bytes */
2227 unusedLS, /* Number of bits in next significant
2228 byte of source that are unused */
2229 accumSize; /* Number of meaningful bits in accum */
2230 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2231 unsigned char *unpacked;
4c4b4cd2 2232 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2233 unsigned char sign;
2234 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2235 /* Transmit bytes from least to most significant; delta is the direction
2236 the indices move. */
50810684 2237 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2238
61ee279c 2239 type = ada_check_typedef (type);
14f9c5c9
AS
2240
2241 if (obj == NULL)
2242 {
2243 v = allocate_value (type);
d2e4a39e 2244 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2245 }
9214ee5f 2246 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2247 {
2248 v = value_at (type,
42ae5230 2249 value_address (obj) + offset);
d2e4a39e 2250 bytes = (unsigned char *) alloca (len);
42ae5230 2251 read_memory (value_address (v), bytes, len);
14f9c5c9 2252 }
d2e4a39e 2253 else
14f9c5c9
AS
2254 {
2255 v = allocate_value (type);
0fd88904 2256 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2257 }
d2e4a39e
AS
2258
2259 if (obj != NULL)
14f9c5c9 2260 {
42ae5230 2261 CORE_ADDR new_addr;
5b4ee69b 2262
74bcbdf3 2263 set_value_component_location (v, obj);
42ae5230 2264 new_addr = value_address (obj) + offset;
9bbda503
AC
2265 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2266 set_value_bitsize (v, bit_size);
df407dfe 2267 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2268 {
42ae5230 2269 ++new_addr;
9bbda503 2270 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2271 }
42ae5230 2272 set_value_address (v, new_addr);
14f9c5c9
AS
2273 }
2274 else
9bbda503 2275 set_value_bitsize (v, bit_size);
0fd88904 2276 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2277
2278 srcBitsLeft = bit_size;
2279 nsrc = len;
2280 ntarg = TYPE_LENGTH (type);
2281 sign = 0;
2282 if (bit_size == 0)
2283 {
2284 memset (unpacked, 0, TYPE_LENGTH (type));
2285 return v;
2286 }
50810684 2287 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2288 {
d2e4a39e 2289 src = len - 1;
1265e4aa
JB
2290 if (has_negatives (type)
2291 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2292 sign = ~0;
d2e4a39e
AS
2293
2294 unusedLS =
4c4b4cd2
PH
2295 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2296 % HOST_CHAR_BIT;
14f9c5c9
AS
2297
2298 switch (TYPE_CODE (type))
4c4b4cd2
PH
2299 {
2300 case TYPE_CODE_ARRAY:
2301 case TYPE_CODE_UNION:
2302 case TYPE_CODE_STRUCT:
2303 /* Non-scalar values must be aligned at a byte boundary... */
2304 accumSize =
2305 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2306 /* ... And are placed at the beginning (most-significant) bytes
2307 of the target. */
529cad9c 2308 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2309 ntarg = targ + 1;
4c4b4cd2
PH
2310 break;
2311 default:
2312 accumSize = 0;
2313 targ = TYPE_LENGTH (type) - 1;
2314 break;
2315 }
14f9c5c9 2316 }
d2e4a39e 2317 else
14f9c5c9
AS
2318 {
2319 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2320
2321 src = targ = 0;
2322 unusedLS = bit_offset;
2323 accumSize = 0;
2324
d2e4a39e 2325 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2326 sign = ~0;
14f9c5c9 2327 }
d2e4a39e 2328
14f9c5c9
AS
2329 accum = 0;
2330 while (nsrc > 0)
2331 {
2332 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2333 part of the value. */
d2e4a39e 2334 unsigned int unusedMSMask =
4c4b4cd2
PH
2335 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2336 1;
2337 /* Sign-extend bits for this byte. */
14f9c5c9 2338 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2339
d2e4a39e 2340 accum |=
4c4b4cd2 2341 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2342 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2343 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2344 {
2345 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2346 accumSize -= HOST_CHAR_BIT;
2347 accum >>= HOST_CHAR_BIT;
2348 ntarg -= 1;
2349 targ += delta;
2350 }
14f9c5c9
AS
2351 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2352 unusedLS = 0;
2353 nsrc -= 1;
2354 src += delta;
2355 }
2356 while (ntarg > 0)
2357 {
2358 accum |= sign << accumSize;
2359 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2360 accumSize -= HOST_CHAR_BIT;
2361 accum >>= HOST_CHAR_BIT;
2362 ntarg -= 1;
2363 targ += delta;
2364 }
2365
2366 return v;
2367}
d2e4a39e 2368
14f9c5c9
AS
2369/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2370 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2371 not overlap. */
14f9c5c9 2372static void
fc1a4b47 2373move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2374 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2375{
2376 unsigned int accum, mask;
2377 int accum_bits, chunk_size;
2378
2379 target += targ_offset / HOST_CHAR_BIT;
2380 targ_offset %= HOST_CHAR_BIT;
2381 source += src_offset / HOST_CHAR_BIT;
2382 src_offset %= HOST_CHAR_BIT;
50810684 2383 if (bits_big_endian_p)
14f9c5c9
AS
2384 {
2385 accum = (unsigned char) *source;
2386 source += 1;
2387 accum_bits = HOST_CHAR_BIT - src_offset;
2388
d2e4a39e 2389 while (n > 0)
4c4b4cd2
PH
2390 {
2391 int unused_right;
5b4ee69b 2392
4c4b4cd2
PH
2393 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2394 accum_bits += HOST_CHAR_BIT;
2395 source += 1;
2396 chunk_size = HOST_CHAR_BIT - targ_offset;
2397 if (chunk_size > n)
2398 chunk_size = n;
2399 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2400 mask = ((1 << chunk_size) - 1) << unused_right;
2401 *target =
2402 (*target & ~mask)
2403 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2404 n -= chunk_size;
2405 accum_bits -= chunk_size;
2406 target += 1;
2407 targ_offset = 0;
2408 }
14f9c5c9
AS
2409 }
2410 else
2411 {
2412 accum = (unsigned char) *source >> src_offset;
2413 source += 1;
2414 accum_bits = HOST_CHAR_BIT - src_offset;
2415
d2e4a39e 2416 while (n > 0)
4c4b4cd2
PH
2417 {
2418 accum = accum + ((unsigned char) *source << accum_bits);
2419 accum_bits += HOST_CHAR_BIT;
2420 source += 1;
2421 chunk_size = HOST_CHAR_BIT - targ_offset;
2422 if (chunk_size > n)
2423 chunk_size = n;
2424 mask = ((1 << chunk_size) - 1) << targ_offset;
2425 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2426 n -= chunk_size;
2427 accum_bits -= chunk_size;
2428 accum >>= chunk_size;
2429 target += 1;
2430 targ_offset = 0;
2431 }
14f9c5c9
AS
2432 }
2433}
2434
14f9c5c9
AS
2435/* Store the contents of FROMVAL into the location of TOVAL.
2436 Return a new value with the location of TOVAL and contents of
2437 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2438 floating-point or non-scalar types. */
14f9c5c9 2439
d2e4a39e
AS
2440static struct value *
2441ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2442{
df407dfe
AC
2443 struct type *type = value_type (toval);
2444 int bits = value_bitsize (toval);
14f9c5c9 2445
52ce6436
PH
2446 toval = ada_coerce_ref (toval);
2447 fromval = ada_coerce_ref (fromval);
2448
2449 if (ada_is_direct_array_type (value_type (toval)))
2450 toval = ada_coerce_to_simple_array (toval);
2451 if (ada_is_direct_array_type (value_type (fromval)))
2452 fromval = ada_coerce_to_simple_array (fromval);
2453
88e3b34b 2454 if (!deprecated_value_modifiable (toval))
323e0a4a 2455 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2456
d2e4a39e 2457 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2458 && bits > 0
d2e4a39e 2459 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2460 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2461 {
df407dfe
AC
2462 int len = (value_bitpos (toval)
2463 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2464 int from_size;
d2e4a39e
AS
2465 char *buffer = (char *) alloca (len);
2466 struct value *val;
42ae5230 2467 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2468
2469 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2470 fromval = value_cast (type, fromval);
14f9c5c9 2471
52ce6436 2472 read_memory (to_addr, buffer, len);
aced2898
PH
2473 from_size = value_bitsize (fromval);
2474 if (from_size == 0)
2475 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2476 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2477 move_bits (buffer, value_bitpos (toval),
50810684 2478 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2479 else
50810684
UW
2480 move_bits (buffer, value_bitpos (toval),
2481 value_contents (fromval), 0, bits, 0);
52ce6436 2482 write_memory (to_addr, buffer, len);
8cebebb9
PP
2483 observer_notify_memory_changed (to_addr, len, buffer);
2484
14f9c5c9 2485 val = value_copy (toval);
0fd88904 2486 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2487 TYPE_LENGTH (type));
04624583 2488 deprecated_set_value_type (val, type);
d2e4a39e 2489
14f9c5c9
AS
2490 return val;
2491 }
2492
2493 return value_assign (toval, fromval);
2494}
2495
2496
52ce6436
PH
2497/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2498 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2499 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2500 * COMPONENT, and not the inferior's memory. The current contents
2501 * of COMPONENT are ignored. */
2502static void
2503value_assign_to_component (struct value *container, struct value *component,
2504 struct value *val)
2505{
2506 LONGEST offset_in_container =
42ae5230 2507 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2508 int bit_offset_in_container =
2509 value_bitpos (component) - value_bitpos (container);
2510 int bits;
2511
2512 val = value_cast (value_type (component), val);
2513
2514 if (value_bitsize (component) == 0)
2515 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2516 else
2517 bits = value_bitsize (component);
2518
50810684 2519 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2520 move_bits (value_contents_writeable (container) + offset_in_container,
2521 value_bitpos (container) + bit_offset_in_container,
2522 value_contents (val),
2523 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2524 bits, 1);
52ce6436
PH
2525 else
2526 move_bits (value_contents_writeable (container) + offset_in_container,
2527 value_bitpos (container) + bit_offset_in_container,
50810684 2528 value_contents (val), 0, bits, 0);
52ce6436
PH
2529}
2530
4c4b4cd2
PH
2531/* The value of the element of array ARR at the ARITY indices given in IND.
2532 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2533 thereto. */
2534
d2e4a39e
AS
2535struct value *
2536ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2537{
2538 int k;
d2e4a39e
AS
2539 struct value *elt;
2540 struct type *elt_type;
14f9c5c9
AS
2541
2542 elt = ada_coerce_to_simple_array (arr);
2543
df407dfe 2544 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2545 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2546 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2547 return value_subscript_packed (elt, arity, ind);
2548
2549 for (k = 0; k < arity; k += 1)
2550 {
2551 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2552 error (_("too many subscripts (%d expected)"), k);
2497b498 2553 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2554 }
2555 return elt;
2556}
2557
2558/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2559 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2560 IND. Does not read the entire array into memory. */
14f9c5c9 2561
2c0b251b 2562static struct value *
d2e4a39e 2563ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2564 struct value **ind)
14f9c5c9
AS
2565{
2566 int k;
2567
2568 for (k = 0; k < arity; k += 1)
2569 {
2570 LONGEST lwb, upb;
14f9c5c9
AS
2571
2572 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2573 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2574 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2575 value_copy (arr));
14f9c5c9 2576 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2577 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2578 type = TYPE_TARGET_TYPE (type);
2579 }
2580
2581 return value_ind (arr);
2582}
2583
0b5d8877 2584/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2585 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2586 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2587 per Ada rules. */
0b5d8877 2588static struct value *
f5938064
JG
2589ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2590 int low, int high)
0b5d8877 2591{
b0dd7688 2592 struct type *type0 = ada_check_typedef (type);
6c038f32 2593 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2594 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2595 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2596 struct type *index_type =
b0dd7688 2597 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2598 low, high);
6c038f32 2599 struct type *slice_type =
b0dd7688 2600 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2601
f5938064 2602 return value_at_lazy (slice_type, base);
0b5d8877
PH
2603}
2604
2605
2606static struct value *
2607ada_value_slice (struct value *array, int low, int high)
2608{
b0dd7688 2609 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2610 struct type *index_type =
0b5d8877 2611 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2612 struct type *slice_type =
0b5d8877 2613 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2614
6c038f32 2615 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2616}
2617
14f9c5c9
AS
2618/* If type is a record type in the form of a standard GNAT array
2619 descriptor, returns the number of dimensions for type. If arr is a
2620 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2621 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2622
2623int
d2e4a39e 2624ada_array_arity (struct type *type)
14f9c5c9
AS
2625{
2626 int arity;
2627
2628 if (type == NULL)
2629 return 0;
2630
2631 type = desc_base_type (type);
2632
2633 arity = 0;
d2e4a39e 2634 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2635 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2636 else
2637 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2638 {
4c4b4cd2 2639 arity += 1;
61ee279c 2640 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2641 }
d2e4a39e 2642
14f9c5c9
AS
2643 return arity;
2644}
2645
2646/* If TYPE is a record type in the form of a standard GNAT array
2647 descriptor or a simple array type, returns the element type for
2648 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2649 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2650
d2e4a39e
AS
2651struct type *
2652ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2653{
2654 type = desc_base_type (type);
2655
d2e4a39e 2656 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2657 {
2658 int k;
d2e4a39e 2659 struct type *p_array_type;
14f9c5c9 2660
556bdfd4 2661 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2662
2663 k = ada_array_arity (type);
2664 if (k == 0)
4c4b4cd2 2665 return NULL;
d2e4a39e 2666
4c4b4cd2 2667 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2668 if (nindices >= 0 && k > nindices)
4c4b4cd2 2669 k = nindices;
d2e4a39e 2670 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2671 {
61ee279c 2672 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2673 k -= 1;
2674 }
14f9c5c9
AS
2675 return p_array_type;
2676 }
2677 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2678 {
2679 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2680 {
2681 type = TYPE_TARGET_TYPE (type);
2682 nindices -= 1;
2683 }
14f9c5c9
AS
2684 return type;
2685 }
2686
2687 return NULL;
2688}
2689
4c4b4cd2 2690/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2691 Does not examine memory. Throws an error if N is invalid or TYPE
2692 is not an array type. NAME is the name of the Ada attribute being
2693 evaluated ('range, 'first, 'last, or 'length); it is used in building
2694 the error message. */
14f9c5c9 2695
1eea4ebd
UW
2696static struct type *
2697ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2698{
4c4b4cd2
PH
2699 struct type *result_type;
2700
14f9c5c9
AS
2701 type = desc_base_type (type);
2702
1eea4ebd
UW
2703 if (n < 0 || n > ada_array_arity (type))
2704 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2705
4c4b4cd2 2706 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2707 {
2708 int i;
2709
2710 for (i = 1; i < n; i += 1)
4c4b4cd2 2711 type = TYPE_TARGET_TYPE (type);
262452ec 2712 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2713 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2714 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2715 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2716 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2717 result_type = NULL;
14f9c5c9 2718 }
d2e4a39e 2719 else
1eea4ebd
UW
2720 {
2721 result_type = desc_index_type (desc_bounds_type (type), n);
2722 if (result_type == NULL)
2723 error (_("attempt to take bound of something that is not an array"));
2724 }
2725
2726 return result_type;
14f9c5c9
AS
2727}
2728
2729/* Given that arr is an array type, returns the lower bound of the
2730 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2731 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2732 array-descriptor type. It works for other arrays with bounds supplied
2733 by run-time quantities other than discriminants. */
14f9c5c9 2734
abb68b3e 2735static LONGEST
1eea4ebd 2736ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2737{
1ce677a4 2738 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2739 int i;
262452ec
JK
2740
2741 gdb_assert (which == 0 || which == 1);
14f9c5c9 2742
ad82864c
JB
2743 if (ada_is_constrained_packed_array_type (arr_type))
2744 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2745
4c4b4cd2 2746 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2747 return (LONGEST) - which;
14f9c5c9
AS
2748
2749 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2750 type = TYPE_TARGET_TYPE (arr_type);
2751 else
2752 type = arr_type;
2753
1ce677a4
UW
2754 elt_type = type;
2755 for (i = n; i > 1; i--)
2756 elt_type = TYPE_TARGET_TYPE (type);
2757
14f9c5c9 2758 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2759 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2760 if (index_type_desc != NULL)
28c85d6c
JB
2761 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2762 NULL);
262452ec 2763 else
1ce677a4 2764 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2765
43bbcdc2
PH
2766 return
2767 (LONGEST) (which == 0
2768 ? ada_discrete_type_low_bound (index_type)
2769 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2770}
2771
2772/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2773 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2774 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2775 supplied by run-time quantities other than discriminants. */
14f9c5c9 2776
1eea4ebd 2777static LONGEST
4dc81987 2778ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2779{
df407dfe 2780 struct type *arr_type = value_type (arr);
14f9c5c9 2781
ad82864c
JB
2782 if (ada_is_constrained_packed_array_type (arr_type))
2783 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2784 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2785 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2786 else
1eea4ebd 2787 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2788}
2789
2790/* Given that arr is an array value, returns the length of the
2791 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2792 supplied by run-time quantities other than discriminants.
2793 Does not work for arrays indexed by enumeration types with representation
2794 clauses at the moment. */
14f9c5c9 2795
1eea4ebd 2796static LONGEST
d2e4a39e 2797ada_array_length (struct value *arr, int n)
14f9c5c9 2798{
df407dfe 2799 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2800
ad82864c
JB
2801 if (ada_is_constrained_packed_array_type (arr_type))
2802 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2803
4c4b4cd2 2804 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2805 return (ada_array_bound_from_type (arr_type, n, 1)
2806 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2807 else
1eea4ebd
UW
2808 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2809 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2810}
2811
2812/* An empty array whose type is that of ARR_TYPE (an array type),
2813 with bounds LOW to LOW-1. */
2814
2815static struct value *
2816empty_array (struct type *arr_type, int low)
2817{
b0dd7688 2818 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2819 struct type *index_type =
b0dd7688 2820 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2821 low, low - 1);
b0dd7688 2822 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2823
0b5d8877 2824 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2825}
14f9c5c9 2826\f
d2e4a39e 2827
4c4b4cd2 2828 /* Name resolution */
14f9c5c9 2829
4c4b4cd2
PH
2830/* The "decoded" name for the user-definable Ada operator corresponding
2831 to OP. */
14f9c5c9 2832
d2e4a39e 2833static const char *
4c4b4cd2 2834ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2835{
2836 int i;
2837
4c4b4cd2 2838 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2839 {
2840 if (ada_opname_table[i].op == op)
4c4b4cd2 2841 return ada_opname_table[i].decoded;
14f9c5c9 2842 }
323e0a4a 2843 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2844}
2845
2846
4c4b4cd2
PH
2847/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2848 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2849 undefined namespace) and converts operators that are
2850 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2851 non-null, it provides a preferred result type [at the moment, only
2852 type void has any effect---causing procedures to be preferred over
2853 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2854 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2855
4c4b4cd2
PH
2856static void
2857resolve (struct expression **expp, int void_context_p)
14f9c5c9 2858{
30b15541
UW
2859 struct type *context_type = NULL;
2860 int pc = 0;
2861
2862 if (void_context_p)
2863 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2864
2865 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2866}
2867
4c4b4cd2
PH
2868/* Resolve the operator of the subexpression beginning at
2869 position *POS of *EXPP. "Resolving" consists of replacing
2870 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2871 with their resolutions, replacing built-in operators with
2872 function calls to user-defined operators, where appropriate, and,
2873 when DEPROCEDURE_P is non-zero, converting function-valued variables
2874 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2875 are as in ada_resolve, above. */
14f9c5c9 2876
d2e4a39e 2877static struct value *
4c4b4cd2 2878resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2879 struct type *context_type)
14f9c5c9
AS
2880{
2881 int pc = *pos;
2882 int i;
4c4b4cd2 2883 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2884 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2885 struct value **argvec; /* Vector of operand types (alloca'ed). */
2886 int nargs; /* Number of operands. */
52ce6436 2887 int oplen;
14f9c5c9
AS
2888
2889 argvec = NULL;
2890 nargs = 0;
2891 exp = *expp;
2892
52ce6436
PH
2893 /* Pass one: resolve operands, saving their types and updating *pos,
2894 if needed. */
14f9c5c9
AS
2895 switch (op)
2896 {
4c4b4cd2
PH
2897 case OP_FUNCALL:
2898 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2899 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2900 *pos += 7;
4c4b4cd2
PH
2901 else
2902 {
2903 *pos += 3;
2904 resolve_subexp (expp, pos, 0, NULL);
2905 }
2906 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2907 break;
2908
14f9c5c9 2909 case UNOP_ADDR:
4c4b4cd2
PH
2910 *pos += 1;
2911 resolve_subexp (expp, pos, 0, NULL);
2912 break;
2913
52ce6436
PH
2914 case UNOP_QUAL:
2915 *pos += 3;
17466c1a 2916 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2917 break;
2918
52ce6436 2919 case OP_ATR_MODULUS:
4c4b4cd2
PH
2920 case OP_ATR_SIZE:
2921 case OP_ATR_TAG:
4c4b4cd2
PH
2922 case OP_ATR_FIRST:
2923 case OP_ATR_LAST:
2924 case OP_ATR_LENGTH:
2925 case OP_ATR_POS:
2926 case OP_ATR_VAL:
4c4b4cd2
PH
2927 case OP_ATR_MIN:
2928 case OP_ATR_MAX:
52ce6436
PH
2929 case TERNOP_IN_RANGE:
2930 case BINOP_IN_BOUNDS:
2931 case UNOP_IN_RANGE:
2932 case OP_AGGREGATE:
2933 case OP_OTHERS:
2934 case OP_CHOICES:
2935 case OP_POSITIONAL:
2936 case OP_DISCRETE_RANGE:
2937 case OP_NAME:
2938 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2939 *pos += oplen;
14f9c5c9
AS
2940 break;
2941
2942 case BINOP_ASSIGN:
2943 {
4c4b4cd2
PH
2944 struct value *arg1;
2945
2946 *pos += 1;
2947 arg1 = resolve_subexp (expp, pos, 0, NULL);
2948 if (arg1 == NULL)
2949 resolve_subexp (expp, pos, 1, NULL);
2950 else
df407dfe 2951 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2952 break;
14f9c5c9
AS
2953 }
2954
4c4b4cd2 2955 case UNOP_CAST:
4c4b4cd2
PH
2956 *pos += 3;
2957 nargs = 1;
2958 break;
14f9c5c9 2959
4c4b4cd2
PH
2960 case BINOP_ADD:
2961 case BINOP_SUB:
2962 case BINOP_MUL:
2963 case BINOP_DIV:
2964 case BINOP_REM:
2965 case BINOP_MOD:
2966 case BINOP_EXP:
2967 case BINOP_CONCAT:
2968 case BINOP_LOGICAL_AND:
2969 case BINOP_LOGICAL_OR:
2970 case BINOP_BITWISE_AND:
2971 case BINOP_BITWISE_IOR:
2972 case BINOP_BITWISE_XOR:
14f9c5c9 2973
4c4b4cd2
PH
2974 case BINOP_EQUAL:
2975 case BINOP_NOTEQUAL:
2976 case BINOP_LESS:
2977 case BINOP_GTR:
2978 case BINOP_LEQ:
2979 case BINOP_GEQ:
14f9c5c9 2980
4c4b4cd2
PH
2981 case BINOP_REPEAT:
2982 case BINOP_SUBSCRIPT:
2983 case BINOP_COMMA:
40c8aaa9
JB
2984 *pos += 1;
2985 nargs = 2;
2986 break;
14f9c5c9 2987
4c4b4cd2
PH
2988 case UNOP_NEG:
2989 case UNOP_PLUS:
2990 case UNOP_LOGICAL_NOT:
2991 case UNOP_ABS:
2992 case UNOP_IND:
2993 *pos += 1;
2994 nargs = 1;
2995 break;
14f9c5c9 2996
4c4b4cd2
PH
2997 case OP_LONG:
2998 case OP_DOUBLE:
2999 case OP_VAR_VALUE:
3000 *pos += 4;
3001 break;
14f9c5c9 3002
4c4b4cd2
PH
3003 case OP_TYPE:
3004 case OP_BOOL:
3005 case OP_LAST:
4c4b4cd2
PH
3006 case OP_INTERNALVAR:
3007 *pos += 3;
3008 break;
14f9c5c9 3009
4c4b4cd2
PH
3010 case UNOP_MEMVAL:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
67f3407f
DJ
3015 case OP_REGISTER:
3016 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3017 break;
3018
4c4b4cd2
PH
3019 case STRUCTOP_STRUCT:
3020 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3021 nargs = 1;
3022 break;
3023
4c4b4cd2 3024 case TERNOP_SLICE:
4c4b4cd2
PH
3025 *pos += 1;
3026 nargs = 3;
3027 break;
3028
52ce6436 3029 case OP_STRING:
14f9c5c9 3030 break;
4c4b4cd2
PH
3031
3032 default:
323e0a4a 3033 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3034 }
3035
76a01679 3036 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3037 for (i = 0; i < nargs; i += 1)
3038 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3039 argvec[i] = NULL;
3040 exp = *expp;
3041
3042 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3043 switch (op)
3044 {
3045 default:
3046 break;
3047
14f9c5c9 3048 case OP_VAR_VALUE:
4c4b4cd2 3049 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3050 {
3051 struct ada_symbol_info *candidates;
3052 int n_candidates;
3053
3054 n_candidates =
3055 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3056 (exp->elts[pc + 2].symbol),
3057 exp->elts[pc + 1].block, VAR_DOMAIN,
3058 &candidates);
3059
3060 if (n_candidates > 1)
3061 {
3062 /* Types tend to get re-introduced locally, so if there
3063 are any local symbols that are not types, first filter
3064 out all types. */
3065 int j;
3066 for (j = 0; j < n_candidates; j += 1)
3067 switch (SYMBOL_CLASS (candidates[j].sym))
3068 {
3069 case LOC_REGISTER:
3070 case LOC_ARG:
3071 case LOC_REF_ARG:
76a01679
JB
3072 case LOC_REGPARM_ADDR:
3073 case LOC_LOCAL:
76a01679 3074 case LOC_COMPUTED:
76a01679
JB
3075 goto FoundNonType;
3076 default:
3077 break;
3078 }
3079 FoundNonType:
3080 if (j < n_candidates)
3081 {
3082 j = 0;
3083 while (j < n_candidates)
3084 {
3085 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3086 {
3087 candidates[j] = candidates[n_candidates - 1];
3088 n_candidates -= 1;
3089 }
3090 else
3091 j += 1;
3092 }
3093 }
3094 }
3095
3096 if (n_candidates == 0)
323e0a4a 3097 error (_("No definition found for %s"),
76a01679
JB
3098 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3099 else if (n_candidates == 1)
3100 i = 0;
3101 else if (deprocedure_p
3102 && !is_nonfunction (candidates, n_candidates))
3103 {
06d5cf63
JB
3104 i = ada_resolve_function
3105 (candidates, n_candidates, NULL, 0,
3106 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3107 context_type);
76a01679 3108 if (i < 0)
323e0a4a 3109 error (_("Could not find a match for %s"),
76a01679
JB
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 }
3112 else
3113 {
323e0a4a 3114 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3115 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3116 user_select_syms (candidates, n_candidates, 1);
3117 i = 0;
3118 }
3119
3120 exp->elts[pc + 1].block = candidates[i].block;
3121 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3122 if (innermost_block == NULL
3123 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3124 innermost_block = candidates[i].block;
3125 }
3126
3127 if (deprocedure_p
3128 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3129 == TYPE_CODE_FUNC))
3130 {
3131 replace_operator_with_call (expp, pc, 0, 0,
3132 exp->elts[pc + 2].symbol,
3133 exp->elts[pc + 1].block);
3134 exp = *expp;
3135 }
14f9c5c9
AS
3136 break;
3137
3138 case OP_FUNCALL:
3139 {
4c4b4cd2 3140 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3141 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3142 {
3143 struct ada_symbol_info *candidates;
3144 int n_candidates;
3145
3146 n_candidates =
76a01679
JB
3147 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3148 (exp->elts[pc + 5].symbol),
3149 exp->elts[pc + 4].block, VAR_DOMAIN,
3150 &candidates);
4c4b4cd2
PH
3151 if (n_candidates == 1)
3152 i = 0;
3153 else
3154 {
06d5cf63
JB
3155 i = ada_resolve_function
3156 (candidates, n_candidates,
3157 argvec, nargs,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3159 context_type);
4c4b4cd2 3160 if (i < 0)
323e0a4a 3161 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3163 }
3164
3165 exp->elts[pc + 4].block = candidates[i].block;
3166 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3167 if (innermost_block == NULL
3168 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3169 innermost_block = candidates[i].block;
3170 }
14f9c5c9
AS
3171 }
3172 break;
3173 case BINOP_ADD:
3174 case BINOP_SUB:
3175 case BINOP_MUL:
3176 case BINOP_DIV:
3177 case BINOP_REM:
3178 case BINOP_MOD:
3179 case BINOP_CONCAT:
3180 case BINOP_BITWISE_AND:
3181 case BINOP_BITWISE_IOR:
3182 case BINOP_BITWISE_XOR:
3183 case BINOP_EQUAL:
3184 case BINOP_NOTEQUAL:
3185 case BINOP_LESS:
3186 case BINOP_GTR:
3187 case BINOP_LEQ:
3188 case BINOP_GEQ:
3189 case BINOP_EXP:
3190 case UNOP_NEG:
3191 case UNOP_PLUS:
3192 case UNOP_LOGICAL_NOT:
3193 case UNOP_ABS:
3194 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3195 {
3196 struct ada_symbol_info *candidates;
3197 int n_candidates;
3198
3199 n_candidates =
3200 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3201 (struct block *) NULL, VAR_DOMAIN,
3202 &candidates);
3203 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3204 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3205 if (i < 0)
3206 break;
3207
76a01679
JB
3208 replace_operator_with_call (expp, pc, nargs, 1,
3209 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3210 exp = *expp;
3211 }
14f9c5c9 3212 break;
4c4b4cd2
PH
3213
3214 case OP_TYPE:
b3dbf008 3215 case OP_REGISTER:
4c4b4cd2 3216 return NULL;
14f9c5c9
AS
3217 }
3218
3219 *pos = pc;
3220 return evaluate_subexp_type (exp, pos);
3221}
3222
3223/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3224 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3225 a non-pointer. */
14f9c5c9 3226/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3227 liberal. */
14f9c5c9
AS
3228
3229static int
4dc81987 3230ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3231{
61ee279c
PH
3232 ftype = ada_check_typedef (ftype);
3233 atype = ada_check_typedef (atype);
14f9c5c9
AS
3234
3235 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3236 ftype = TYPE_TARGET_TYPE (ftype);
3237 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3238 atype = TYPE_TARGET_TYPE (atype);
3239
d2e4a39e 3240 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3241 {
3242 default:
5b3d5b7d 3243 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3244 case TYPE_CODE_PTR:
3245 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3246 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3247 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3248 else
1265e4aa
JB
3249 return (may_deref
3250 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3255 {
3256 case TYPE_CODE_INT:
3257 case TYPE_CODE_ENUM:
3258 case TYPE_CODE_RANGE:
3259 return 1;
3260 default:
3261 return 0;
3262 }
14f9c5c9
AS
3263
3264 case TYPE_CODE_ARRAY:
d2e4a39e 3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3266 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3267
3268 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3269 if (ada_is_array_descriptor_type (ftype))
3270 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3271 || ada_is_array_descriptor_type (atype));
14f9c5c9 3272 else
4c4b4cd2
PH
3273 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3274 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3275
3276 case TYPE_CODE_UNION:
3277 case TYPE_CODE_FLT:
3278 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3279 }
3280}
3281
3282/* Return non-zero if the formals of FUNC "sufficiently match" the
3283 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3284 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3285 argument function. */
14f9c5c9
AS
3286
3287static int
d2e4a39e 3288ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3289{
3290 int i;
d2e4a39e 3291 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3292
1265e4aa
JB
3293 if (SYMBOL_CLASS (func) == LOC_CONST
3294 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3295 return (n_actuals == 0);
3296 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3297 return 0;
3298
3299 if (TYPE_NFIELDS (func_type) != n_actuals)
3300 return 0;
3301
3302 for (i = 0; i < n_actuals; i += 1)
3303 {
4c4b4cd2 3304 if (actuals[i] == NULL)
76a01679
JB
3305 return 0;
3306 else
3307 {
5b4ee69b
MS
3308 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3309 i));
df407dfe 3310 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3311
76a01679
JB
3312 if (!ada_type_match (ftype, atype, 1))
3313 return 0;
3314 }
14f9c5c9
AS
3315 }
3316 return 1;
3317}
3318
3319/* False iff function type FUNC_TYPE definitely does not produce a value
3320 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3321 FUNC_TYPE is not a valid function type with a non-null return type
3322 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3323
3324static int
d2e4a39e 3325return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3326{
d2e4a39e 3327 struct type *return_type;
14f9c5c9
AS
3328
3329 if (func_type == NULL)
3330 return 1;
3331
4c4b4cd2 3332 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3333 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3334 else
18af8284 3335 return_type = get_base_type (func_type);
14f9c5c9
AS
3336 if (return_type == NULL)
3337 return 1;
3338
18af8284 3339 context_type = get_base_type (context_type);
14f9c5c9
AS
3340
3341 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3342 return context_type == NULL || return_type == context_type;
3343 else if (context_type == NULL)
3344 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3345 else
3346 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3347}
3348
3349
4c4b4cd2 3350/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3351 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3352 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3353 that returns that type, then eliminate matches that don't. If
3354 CONTEXT_TYPE is void and there is at least one match that does not
3355 return void, eliminate all matches that do.
3356
14f9c5c9
AS
3357 Asks the user if there is more than one match remaining. Returns -1
3358 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3359 solely for messages. May re-arrange and modify SYMS in
3360 the process; the index returned is for the modified vector. */
14f9c5c9 3361
4c4b4cd2
PH
3362static int
3363ada_resolve_function (struct ada_symbol_info syms[],
3364 int nsyms, struct value **args, int nargs,
3365 const char *name, struct type *context_type)
14f9c5c9 3366{
30b15541 3367 int fallback;
14f9c5c9 3368 int k;
4c4b4cd2 3369 int m; /* Number of hits */
14f9c5c9 3370
d2e4a39e 3371 m = 0;
30b15541
UW
3372 /* In the first pass of the loop, we only accept functions matching
3373 context_type. If none are found, we add a second pass of the loop
3374 where every function is accepted. */
3375 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3376 {
3377 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3378 {
61ee279c 3379 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3380
3381 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3382 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3383 {
3384 syms[m] = syms[k];
3385 m += 1;
3386 }
3387 }
14f9c5c9
AS
3388 }
3389
3390 if (m == 0)
3391 return -1;
3392 else if (m > 1)
3393 {
323e0a4a 3394 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3395 user_select_syms (syms, m, 1);
14f9c5c9
AS
3396 return 0;
3397 }
3398 return 0;
3399}
3400
4c4b4cd2
PH
3401/* Returns true (non-zero) iff decoded name N0 should appear before N1
3402 in a listing of choices during disambiguation (see sort_choices, below).
3403 The idea is that overloadings of a subprogram name from the
3404 same package should sort in their source order. We settle for ordering
3405 such symbols by their trailing number (__N or $N). */
3406
14f9c5c9 3407static int
4c4b4cd2 3408encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3409{
3410 if (N1 == NULL)
3411 return 0;
3412 else if (N0 == NULL)
3413 return 1;
3414 else
3415 {
3416 int k0, k1;
5b4ee69b 3417
d2e4a39e 3418 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3419 ;
d2e4a39e 3420 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3421 ;
d2e4a39e 3422 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3423 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3424 {
3425 int n0, n1;
5b4ee69b 3426
4c4b4cd2
PH
3427 n0 = k0;
3428 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3429 n0 -= 1;
3430 n1 = k1;
3431 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3432 n1 -= 1;
3433 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3434 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3435 }
14f9c5c9
AS
3436 return (strcmp (N0, N1) < 0);
3437 }
3438}
d2e4a39e 3439
4c4b4cd2
PH
3440/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3441 encoded names. */
3442
d2e4a39e 3443static void
4c4b4cd2 3444sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3445{
4c4b4cd2 3446 int i;
5b4ee69b 3447
d2e4a39e 3448 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3449 {
4c4b4cd2 3450 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3451 int j;
3452
d2e4a39e 3453 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3454 {
3455 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3456 SYMBOL_LINKAGE_NAME (sym.sym)))
3457 break;
3458 syms[j + 1] = syms[j];
3459 }
d2e4a39e 3460 syms[j + 1] = sym;
14f9c5c9
AS
3461 }
3462}
3463
4c4b4cd2
PH
3464/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3465 by asking the user (if necessary), returning the number selected,
3466 and setting the first elements of SYMS items. Error if no symbols
3467 selected. */
14f9c5c9
AS
3468
3469/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3470 to be re-integrated one of these days. */
14f9c5c9
AS
3471
3472int
4c4b4cd2 3473user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3474{
3475 int i;
d2e4a39e 3476 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3477 int n_chosen;
3478 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3479 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3480
3481 if (max_results < 1)
323e0a4a 3482 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3483 if (nsyms <= 1)
3484 return nsyms;
3485
717d2f5a
JB
3486 if (select_mode == multiple_symbols_cancel)
3487 error (_("\
3488canceled because the command is ambiguous\n\
3489See set/show multiple-symbol."));
3490
3491 /* If select_mode is "all", then return all possible symbols.
3492 Only do that if more than one symbol can be selected, of course.
3493 Otherwise, display the menu as usual. */
3494 if (select_mode == multiple_symbols_all && max_results > 1)
3495 return nsyms;
3496
323e0a4a 3497 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3498 if (max_results > 1)
323e0a4a 3499 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3500
4c4b4cd2 3501 sort_choices (syms, nsyms);
14f9c5c9
AS
3502
3503 for (i = 0; i < nsyms; i += 1)
3504 {
4c4b4cd2
PH
3505 if (syms[i].sym == NULL)
3506 continue;
3507
3508 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3509 {
76a01679
JB
3510 struct symtab_and_line sal =
3511 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3512
323e0a4a
AC
3513 if (sal.symtab == NULL)
3514 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3515 i + first_choice,
3516 SYMBOL_PRINT_NAME (syms[i].sym),
3517 sal.line);
3518 else
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3520 SYMBOL_PRINT_NAME (syms[i].sym),
3521 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3522 continue;
3523 }
d2e4a39e 3524 else
4c4b4cd2
PH
3525 {
3526 int is_enumeral =
3527 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3528 && SYMBOL_TYPE (syms[i].sym) != NULL
3529 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3530 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3531
3532 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3533 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3534 i + first_choice,
3535 SYMBOL_PRINT_NAME (syms[i].sym),
3536 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3537 else if (is_enumeral
3538 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3539 {
a3f17187 3540 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3541 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3542 gdb_stdout, -1, 0);
323e0a4a 3543 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3545 }
3546 else if (symtab != NULL)
3547 printf_unfiltered (is_enumeral
323e0a4a
AC
3548 ? _("[%d] %s in %s (enumeral)\n")
3549 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3550 i + first_choice,
3551 SYMBOL_PRINT_NAME (syms[i].sym),
3552 symtab->filename);
3553 else
3554 printf_unfiltered (is_enumeral
323e0a4a
AC
3555 ? _("[%d] %s (enumeral)\n")
3556 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3557 i + first_choice,
3558 SYMBOL_PRINT_NAME (syms[i].sym));
3559 }
14f9c5c9 3560 }
d2e4a39e 3561
14f9c5c9 3562 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3563 "overload-choice");
14f9c5c9
AS
3564
3565 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3566 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3567
3568 return n_chosen;
3569}
3570
3571/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3572 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3573 order in CHOICES[0 .. N-1], and return N.
3574
3575 The user types choices as a sequence of numbers on one line
3576 separated by blanks, encoding them as follows:
3577
4c4b4cd2 3578 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3579 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3580 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3581
4c4b4cd2 3582 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3583
3584 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3585 prompts (for use with the -f switch). */
14f9c5c9
AS
3586
3587int
d2e4a39e 3588get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3589 int is_all_choice, char *annotation_suffix)
14f9c5c9 3590{
d2e4a39e 3591 char *args;
0bcd0149 3592 char *prompt;
14f9c5c9
AS
3593 int n_chosen;
3594 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3595
14f9c5c9
AS
3596 prompt = getenv ("PS2");
3597 if (prompt == NULL)
0bcd0149 3598 prompt = "> ";
14f9c5c9 3599
0bcd0149 3600 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3601
14f9c5c9 3602 if (args == NULL)
323e0a4a 3603 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3604
3605 n_chosen = 0;
76a01679 3606
4c4b4cd2
PH
3607 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3608 order, as given in args. Choices are validated. */
14f9c5c9
AS
3609 while (1)
3610 {
d2e4a39e 3611 char *args2;
14f9c5c9
AS
3612 int choice, j;
3613
3614 while (isspace (*args))
4c4b4cd2 3615 args += 1;
14f9c5c9 3616 if (*args == '\0' && n_chosen == 0)
323e0a4a 3617 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3618 else if (*args == '\0')
4c4b4cd2 3619 break;
14f9c5c9
AS
3620
3621 choice = strtol (args, &args2, 10);
d2e4a39e 3622 if (args == args2 || choice < 0
4c4b4cd2 3623 || choice > n_choices + first_choice - 1)
323e0a4a 3624 error (_("Argument must be choice number"));
14f9c5c9
AS
3625 args = args2;
3626
d2e4a39e 3627 if (choice == 0)
323e0a4a 3628 error (_("cancelled"));
14f9c5c9
AS
3629
3630 if (choice < first_choice)
4c4b4cd2
PH
3631 {
3632 n_chosen = n_choices;
3633 for (j = 0; j < n_choices; j += 1)
3634 choices[j] = j;
3635 break;
3636 }
14f9c5c9
AS
3637 choice -= first_choice;
3638
d2e4a39e 3639 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3640 {
3641 }
14f9c5c9
AS
3642
3643 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3644 {
3645 int k;
5b4ee69b 3646
4c4b4cd2
PH
3647 for (k = n_chosen - 1; k > j; k -= 1)
3648 choices[k + 1] = choices[k];
3649 choices[j + 1] = choice;
3650 n_chosen += 1;
3651 }
14f9c5c9
AS
3652 }
3653
3654 if (n_chosen > max_results)
323e0a4a 3655 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3656
14f9c5c9
AS
3657 return n_chosen;
3658}
3659
4c4b4cd2
PH
3660/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3661 on the function identified by SYM and BLOCK, and taking NARGS
3662 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3663
3664static void
d2e4a39e 3665replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3666 int oplen, struct symbol *sym,
3667 struct block *block)
14f9c5c9
AS
3668{
3669 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3670 symbol, -oplen for operator being replaced). */
d2e4a39e 3671 struct expression *newexp = (struct expression *)
8c1a34e7 3672 xzalloc (sizeof (struct expression)
4c4b4cd2 3673 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3674 struct expression *exp = *expp;
14f9c5c9
AS
3675
3676 newexp->nelts = exp->nelts + 7 - oplen;
3677 newexp->language_defn = exp->language_defn;
3489610d 3678 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3679 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3680 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3681 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3682
3683 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3684 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3685
3686 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3687 newexp->elts[pc + 4].block = block;
3688 newexp->elts[pc + 5].symbol = sym;
3689
3690 *expp = newexp;
aacb1f0a 3691 xfree (exp);
d2e4a39e 3692}
14f9c5c9
AS
3693
3694/* Type-class predicates */
3695
4c4b4cd2
PH
3696/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3697 or FLOAT). */
14f9c5c9
AS
3698
3699static int
d2e4a39e 3700numeric_type_p (struct type *type)
14f9c5c9
AS
3701{
3702 if (type == NULL)
3703 return 0;
d2e4a39e
AS
3704 else
3705 {
3706 switch (TYPE_CODE (type))
4c4b4cd2
PH
3707 {
3708 case TYPE_CODE_INT:
3709 case TYPE_CODE_FLT:
3710 return 1;
3711 case TYPE_CODE_RANGE:
3712 return (type == TYPE_TARGET_TYPE (type)
3713 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3714 default:
3715 return 0;
3716 }
d2e4a39e 3717 }
14f9c5c9
AS
3718}
3719
4c4b4cd2 3720/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3721
3722static int
d2e4a39e 3723integer_type_p (struct type *type)
14f9c5c9
AS
3724{
3725 if (type == NULL)
3726 return 0;
d2e4a39e
AS
3727 else
3728 {
3729 switch (TYPE_CODE (type))
4c4b4cd2
PH
3730 {
3731 case TYPE_CODE_INT:
3732 return 1;
3733 case TYPE_CODE_RANGE:
3734 return (type == TYPE_TARGET_TYPE (type)
3735 || integer_type_p (TYPE_TARGET_TYPE (type)));
3736 default:
3737 return 0;
3738 }
d2e4a39e 3739 }
14f9c5c9
AS
3740}
3741
4c4b4cd2 3742/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3743
3744static int
d2e4a39e 3745scalar_type_p (struct type *type)
14f9c5c9
AS
3746{
3747 if (type == NULL)
3748 return 0;
d2e4a39e
AS
3749 else
3750 {
3751 switch (TYPE_CODE (type))
4c4b4cd2
PH
3752 {
3753 case TYPE_CODE_INT:
3754 case TYPE_CODE_RANGE:
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_FLT:
3757 return 1;
3758 default:
3759 return 0;
3760 }
d2e4a39e 3761 }
14f9c5c9
AS
3762}
3763
4c4b4cd2 3764/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3765
3766static int
d2e4a39e 3767discrete_type_p (struct type *type)
14f9c5c9
AS
3768{
3769 if (type == NULL)
3770 return 0;
d2e4a39e
AS
3771 else
3772 {
3773 switch (TYPE_CODE (type))
4c4b4cd2
PH
3774 {
3775 case TYPE_CODE_INT:
3776 case TYPE_CODE_RANGE:
3777 case TYPE_CODE_ENUM:
872f0337 3778 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3779 return 1;
3780 default:
3781 return 0;
3782 }
d2e4a39e 3783 }
14f9c5c9
AS
3784}
3785
4c4b4cd2
PH
3786/* Returns non-zero if OP with operands in the vector ARGS could be
3787 a user-defined function. Errs on the side of pre-defined operators
3788 (i.e., result 0). */
14f9c5c9
AS
3789
3790static int
d2e4a39e 3791possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3792{
76a01679 3793 struct type *type0 =
df407dfe 3794 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3795 struct type *type1 =
df407dfe 3796 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3797
4c4b4cd2
PH
3798 if (type0 == NULL)
3799 return 0;
3800
14f9c5c9
AS
3801 switch (op)
3802 {
3803 default:
3804 return 0;
3805
3806 case BINOP_ADD:
3807 case BINOP_SUB:
3808 case BINOP_MUL:
3809 case BINOP_DIV:
d2e4a39e 3810 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3811
3812 case BINOP_REM:
3813 case BINOP_MOD:
3814 case BINOP_BITWISE_AND:
3815 case BINOP_BITWISE_IOR:
3816 case BINOP_BITWISE_XOR:
d2e4a39e 3817 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3818
3819 case BINOP_EQUAL:
3820 case BINOP_NOTEQUAL:
3821 case BINOP_LESS:
3822 case BINOP_GTR:
3823 case BINOP_LEQ:
3824 case BINOP_GEQ:
d2e4a39e 3825 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3826
3827 case BINOP_CONCAT:
ee90b9ab 3828 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3829
3830 case BINOP_EXP:
d2e4a39e 3831 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3832
3833 case UNOP_NEG:
3834 case UNOP_PLUS:
3835 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3836 case UNOP_ABS:
3837 return (!numeric_type_p (type0));
14f9c5c9
AS
3838
3839 }
3840}
3841\f
4c4b4cd2 3842 /* Renaming */
14f9c5c9 3843
aeb5907d
JB
3844/* NOTES:
3845
3846 1. In the following, we assume that a renaming type's name may
3847 have an ___XD suffix. It would be nice if this went away at some
3848 point.
3849 2. We handle both the (old) purely type-based representation of
3850 renamings and the (new) variable-based encoding. At some point,
3851 it is devoutly to be hoped that the former goes away
3852 (FIXME: hilfinger-2007-07-09).
3853 3. Subprogram renamings are not implemented, although the XRS
3854 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3855
3856/* If SYM encodes a renaming,
3857
3858 <renaming> renames <renamed entity>,
3859
3860 sets *LEN to the length of the renamed entity's name,
3861 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3862 the string describing the subcomponent selected from the renamed
0963b4bd 3863 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3864 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3865 are undefined). Otherwise, returns a value indicating the category
3866 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3867 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3868 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3869 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3870 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3871 may be NULL, in which case they are not assigned.
3872
3873 [Currently, however, GCC does not generate subprogram renamings.] */
3874
3875enum ada_renaming_category
3876ada_parse_renaming (struct symbol *sym,
3877 const char **renamed_entity, int *len,
3878 const char **renaming_expr)
3879{
3880 enum ada_renaming_category kind;
3881 const char *info;
3882 const char *suffix;
3883
3884 if (sym == NULL)
3885 return ADA_NOT_RENAMING;
3886 switch (SYMBOL_CLASS (sym))
14f9c5c9 3887 {
aeb5907d
JB
3888 default:
3889 return ADA_NOT_RENAMING;
3890 case LOC_TYPEDEF:
3891 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3892 renamed_entity, len, renaming_expr);
3893 case LOC_LOCAL:
3894 case LOC_STATIC:
3895 case LOC_COMPUTED:
3896 case LOC_OPTIMIZED_OUT:
3897 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3898 if (info == NULL)
3899 return ADA_NOT_RENAMING;
3900 switch (info[5])
3901 {
3902 case '_':
3903 kind = ADA_OBJECT_RENAMING;
3904 info += 6;
3905 break;
3906 case 'E':
3907 kind = ADA_EXCEPTION_RENAMING;
3908 info += 7;
3909 break;
3910 case 'P':
3911 kind = ADA_PACKAGE_RENAMING;
3912 info += 7;
3913 break;
3914 case 'S':
3915 kind = ADA_SUBPROGRAM_RENAMING;
3916 info += 7;
3917 break;
3918 default:
3919 return ADA_NOT_RENAMING;
3920 }
14f9c5c9 3921 }
4c4b4cd2 3922
aeb5907d
JB
3923 if (renamed_entity != NULL)
3924 *renamed_entity = info;
3925 suffix = strstr (info, "___XE");
3926 if (suffix == NULL || suffix == info)
3927 return ADA_NOT_RENAMING;
3928 if (len != NULL)
3929 *len = strlen (info) - strlen (suffix);
3930 suffix += 5;
3931 if (renaming_expr != NULL)
3932 *renaming_expr = suffix;
3933 return kind;
3934}
3935
3936/* Assuming TYPE encodes a renaming according to the old encoding in
3937 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3938 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3939 ADA_NOT_RENAMING otherwise. */
3940static enum ada_renaming_category
3941parse_old_style_renaming (struct type *type,
3942 const char **renamed_entity, int *len,
3943 const char **renaming_expr)
3944{
3945 enum ada_renaming_category kind;
3946 const char *name;
3947 const char *info;
3948 const char *suffix;
14f9c5c9 3949
aeb5907d
JB
3950 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3951 || TYPE_NFIELDS (type) != 1)
3952 return ADA_NOT_RENAMING;
14f9c5c9 3953
aeb5907d
JB
3954 name = type_name_no_tag (type);
3955 if (name == NULL)
3956 return ADA_NOT_RENAMING;
3957
3958 name = strstr (name, "___XR");
3959 if (name == NULL)
3960 return ADA_NOT_RENAMING;
3961 switch (name[5])
3962 {
3963 case '\0':
3964 case '_':
3965 kind = ADA_OBJECT_RENAMING;
3966 break;
3967 case 'E':
3968 kind = ADA_EXCEPTION_RENAMING;
3969 break;
3970 case 'P':
3971 kind = ADA_PACKAGE_RENAMING;
3972 break;
3973 case 'S':
3974 kind = ADA_SUBPROGRAM_RENAMING;
3975 break;
3976 default:
3977 return ADA_NOT_RENAMING;
3978 }
14f9c5c9 3979
aeb5907d
JB
3980 info = TYPE_FIELD_NAME (type, 0);
3981 if (info == NULL)
3982 return ADA_NOT_RENAMING;
3983 if (renamed_entity != NULL)
3984 *renamed_entity = info;
3985 suffix = strstr (info, "___XE");
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix + 5;
3988 if (suffix == NULL || suffix == info)
3989 return ADA_NOT_RENAMING;
3990 if (len != NULL)
3991 *len = suffix - info;
3992 return kind;
3993}
52ce6436 3994
14f9c5c9 3995\f
d2e4a39e 3996
4c4b4cd2 3997 /* Evaluation: Function Calls */
14f9c5c9 3998
4c4b4cd2 3999/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4000 lvalues, and otherwise has the side-effect of allocating memory
4001 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4002
d2e4a39e 4003static struct value *
40bc484c 4004ensure_lval (struct value *val)
14f9c5c9 4005{
40bc484c
JB
4006 if (VALUE_LVAL (val) == not_lval
4007 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4008 {
df407dfe 4009 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4010 const CORE_ADDR addr =
4011 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4012
40bc484c 4013 set_value_address (val, addr);
a84a8a0d 4014 VALUE_LVAL (val) = lval_memory;
40bc484c 4015 write_memory (addr, value_contents (val), len);
c3e5cd34 4016 }
14f9c5c9
AS
4017
4018 return val;
4019}
4020
4021/* Return the value ACTUAL, converted to be an appropriate value for a
4022 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4023 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4024 values not residing in memory, updating it as needed. */
14f9c5c9 4025
a93c0eb6 4026struct value *
40bc484c 4027ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4028{
df407dfe 4029 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4030 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4031 struct type *formal_target =
4032 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4033 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4034 struct type *actual_target =
4035 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4036 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4037
4c4b4cd2 4038 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4039 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4040 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4041 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4042 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4043 {
a84a8a0d 4044 struct value *result;
5b4ee69b 4045
14f9c5c9 4046 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4047 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4048 result = desc_data (actual);
14f9c5c9 4049 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4050 {
4051 if (VALUE_LVAL (actual) != lval_memory)
4052 {
4053 struct value *val;
5b4ee69b 4054
df407dfe 4055 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4056 val = allocate_value (actual_type);
990a07ab 4057 memcpy ((char *) value_contents_raw (val),
0fd88904 4058 (char *) value_contents (actual),
4c4b4cd2 4059 TYPE_LENGTH (actual_type));
40bc484c 4060 actual = ensure_lval (val);
4c4b4cd2 4061 }
a84a8a0d 4062 result = value_addr (actual);
4c4b4cd2 4063 }
a84a8a0d
JB
4064 else
4065 return actual;
4066 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4067 }
4068 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4069 return ada_value_ind (actual);
4070
4071 return actual;
4072}
4073
438c98a1
JB
4074/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4075 type TYPE. This is usually an inefficient no-op except on some targets
4076 (such as AVR) where the representation of a pointer and an address
4077 differs. */
4078
4079static CORE_ADDR
4080value_pointer (struct value *value, struct type *type)
4081{
4082 struct gdbarch *gdbarch = get_type_arch (type);
4083 unsigned len = TYPE_LENGTH (type);
4084 gdb_byte *buf = alloca (len);
4085 CORE_ADDR addr;
4086
4087 addr = value_address (value);
4088 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4089 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4090 return addr;
4091}
4092
14f9c5c9 4093
4c4b4cd2
PH
4094/* Push a descriptor of type TYPE for array value ARR on the stack at
4095 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4096 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4097 to-descriptor type rather than a descriptor type), a struct value *
4098 representing a pointer to this descriptor. */
14f9c5c9 4099
d2e4a39e 4100static struct value *
40bc484c 4101make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4102{
d2e4a39e
AS
4103 struct type *bounds_type = desc_bounds_type (type);
4104 struct type *desc_type = desc_base_type (type);
4105 struct value *descriptor = allocate_value (desc_type);
4106 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4107 int i;
d2e4a39e 4108
0963b4bd
MS
4109 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4110 i > 0; i -= 1)
14f9c5c9 4111 {
19f220c3
JK
4112 modify_field (value_type (bounds), value_contents_writeable (bounds),
4113 ada_array_bound (arr, i, 0),
4114 desc_bound_bitpos (bounds_type, i, 0),
4115 desc_bound_bitsize (bounds_type, i, 0));
4116 modify_field (value_type (bounds), value_contents_writeable (bounds),
4117 ada_array_bound (arr, i, 1),
4118 desc_bound_bitpos (bounds_type, i, 1),
4119 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4120 }
d2e4a39e 4121
40bc484c 4122 bounds = ensure_lval (bounds);
d2e4a39e 4123
19f220c3
JK
4124 modify_field (value_type (descriptor),
4125 value_contents_writeable (descriptor),
4126 value_pointer (ensure_lval (arr),
4127 TYPE_FIELD_TYPE (desc_type, 0)),
4128 fat_pntr_data_bitpos (desc_type),
4129 fat_pntr_data_bitsize (desc_type));
4130
4131 modify_field (value_type (descriptor),
4132 value_contents_writeable (descriptor),
4133 value_pointer (bounds,
4134 TYPE_FIELD_TYPE (desc_type, 1)),
4135 fat_pntr_bounds_bitpos (desc_type),
4136 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4137
40bc484c 4138 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4139
4140 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4141 return value_addr (descriptor);
4142 else
4143 return descriptor;
4144}
14f9c5c9 4145\f
963a6417 4146/* Dummy definitions for an experimental caching module that is not
0963b4bd 4147 * used in the public sources. */
96d887e8 4148
96d887e8
PH
4149static int
4150lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4151 struct symbol **sym, struct block **block)
96d887e8
PH
4152{
4153 return 0;
4154}
4155
4156static void
4157cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4158 struct block *block)
96d887e8
PH
4159{
4160}
4c4b4cd2
PH
4161\f
4162 /* Symbol Lookup */
4163
4164/* Return the result of a standard (literal, C-like) lookup of NAME in
4165 given DOMAIN, visible from lexical block BLOCK. */
4166
4167static struct symbol *
4168standard_lookup (const char *name, const struct block *block,
4169 domain_enum domain)
4170{
4171 struct symbol *sym;
4c4b4cd2 4172
2570f2b7 4173 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4174 return sym;
2570f2b7
UW
4175 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4176 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4177 return sym;
4178}
4179
4180
4181/* Non-zero iff there is at least one non-function/non-enumeral symbol
4182 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4183 since they contend in overloading in the same way. */
4184static int
4185is_nonfunction (struct ada_symbol_info syms[], int n)
4186{
4187 int i;
4188
4189 for (i = 0; i < n; i += 1)
4190 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4191 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4192 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4193 return 1;
4194
4195 return 0;
4196}
4197
4198/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4199 struct types. Otherwise, they may not. */
14f9c5c9
AS
4200
4201static int
d2e4a39e 4202equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4203{
d2e4a39e 4204 if (type0 == type1)
14f9c5c9 4205 return 1;
d2e4a39e 4206 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4207 || TYPE_CODE (type0) != TYPE_CODE (type1))
4208 return 0;
d2e4a39e 4209 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4210 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4211 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4212 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4213 return 1;
d2e4a39e 4214
14f9c5c9
AS
4215 return 0;
4216}
4217
4218/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4219 no more defined than that of SYM1. */
14f9c5c9
AS
4220
4221static int
d2e4a39e 4222lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4223{
4224 if (sym0 == sym1)
4225 return 1;
176620f1 4226 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4227 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4228 return 0;
4229
d2e4a39e 4230 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4231 {
4232 case LOC_UNDEF:
4233 return 1;
4234 case LOC_TYPEDEF:
4235 {
4c4b4cd2
PH
4236 struct type *type0 = SYMBOL_TYPE (sym0);
4237 struct type *type1 = SYMBOL_TYPE (sym1);
4238 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4239 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4240 int len0 = strlen (name0);
5b4ee69b 4241
4c4b4cd2
PH
4242 return
4243 TYPE_CODE (type0) == TYPE_CODE (type1)
4244 && (equiv_types (type0, type1)
4245 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4246 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4247 }
4248 case LOC_CONST:
4249 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4250 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4251 default:
4252 return 0;
14f9c5c9
AS
4253 }
4254}
4255
4c4b4cd2
PH
4256/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4257 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4258
4259static void
76a01679
JB
4260add_defn_to_vec (struct obstack *obstackp,
4261 struct symbol *sym,
2570f2b7 4262 struct block *block)
14f9c5c9
AS
4263{
4264 int i;
4c4b4cd2 4265 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4266
529cad9c
PH
4267 /* Do not try to complete stub types, as the debugger is probably
4268 already scanning all symbols matching a certain name at the
4269 time when this function is called. Trying to replace the stub
4270 type by its associated full type will cause us to restart a scan
4271 which may lead to an infinite recursion. Instead, the client
4272 collecting the matching symbols will end up collecting several
4273 matches, with at least one of them complete. It can then filter
4274 out the stub ones if needed. */
4275
4c4b4cd2
PH
4276 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4277 {
4278 if (lesseq_defined_than (sym, prevDefns[i].sym))
4279 return;
4280 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4281 {
4282 prevDefns[i].sym = sym;
4283 prevDefns[i].block = block;
4c4b4cd2 4284 return;
76a01679 4285 }
4c4b4cd2
PH
4286 }
4287
4288 {
4289 struct ada_symbol_info info;
4290
4291 info.sym = sym;
4292 info.block = block;
4c4b4cd2
PH
4293 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4294 }
4295}
4296
4297/* Number of ada_symbol_info structures currently collected in
4298 current vector in *OBSTACKP. */
4299
76a01679
JB
4300static int
4301num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4302{
4303 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4304}
4305
4306/* Vector of ada_symbol_info structures currently collected in current
4307 vector in *OBSTACKP. If FINISH, close off the vector and return
4308 its final address. */
4309
76a01679 4310static struct ada_symbol_info *
4c4b4cd2
PH
4311defns_collected (struct obstack *obstackp, int finish)
4312{
4313 if (finish)
4314 return obstack_finish (obstackp);
4315 else
4316 return (struct ada_symbol_info *) obstack_base (obstackp);
4317}
4318
96d887e8
PH
4319/* Return a minimal symbol matching NAME according to Ada decoding
4320 rules. Returns NULL if there is no such minimal symbol. Names
4321 prefixed with "standard__" are handled specially: "standard__" is
4322 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4323
96d887e8
PH
4324struct minimal_symbol *
4325ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4326{
4c4b4cd2 4327 struct objfile *objfile;
96d887e8
PH
4328 struct minimal_symbol *msymbol;
4329 int wild_match;
4c4b4cd2 4330
96d887e8 4331 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4332 {
96d887e8 4333 name += sizeof ("standard__") - 1;
4c4b4cd2 4334 wild_match = 0;
4c4b4cd2
PH
4335 }
4336 else
96d887e8 4337 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4338
96d887e8
PH
4339 ALL_MSYMBOLS (objfile, msymbol)
4340 {
40658b94 4341 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4342 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4343 return msymbol;
4344 }
4c4b4cd2 4345
96d887e8
PH
4346 return NULL;
4347}
4c4b4cd2 4348
96d887e8
PH
4349/* For all subprograms that statically enclose the subprogram of the
4350 selected frame, add symbols matching identifier NAME in DOMAIN
4351 and their blocks to the list of data in OBSTACKP, as for
4352 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4353 wildcard prefix. */
4c4b4cd2 4354
96d887e8
PH
4355static void
4356add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4357 const char *name, domain_enum namespace,
96d887e8
PH
4358 int wild_match)
4359{
96d887e8 4360}
14f9c5c9 4361
96d887e8
PH
4362/* True if TYPE is definitely an artificial type supplied to a symbol
4363 for which no debugging information was given in the symbol file. */
14f9c5c9 4364
96d887e8
PH
4365static int
4366is_nondebugging_type (struct type *type)
4367{
4368 char *name = ada_type_name (type);
5b4ee69b 4369
96d887e8
PH
4370 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4371}
4c4b4cd2 4372
8f17729f
JB
4373/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4374 that are deemed "identical" for practical purposes.
4375
4376 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4377 types and that their number of enumerals is identical (in other
4378 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4379
4380static int
4381ada_identical_enum_types_p (struct type *type1, struct type *type2)
4382{
4383 int i;
4384
4385 /* The heuristic we use here is fairly conservative. We consider
4386 that 2 enumerate types are identical if they have the same
4387 number of enumerals and that all enumerals have the same
4388 underlying value and name. */
4389
4390 /* All enums in the type should have an identical underlying value. */
4391 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4392 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4393 return 0;
4394
4395 /* All enumerals should also have the same name (modulo any numerical
4396 suffix). */
4397 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4398 {
4399 char *name_1 = TYPE_FIELD_NAME (type1, i);
4400 char *name_2 = TYPE_FIELD_NAME (type2, i);
4401 int len_1 = strlen (name_1);
4402 int len_2 = strlen (name_2);
4403
4404 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4405 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4406 if (len_1 != len_2
4407 || strncmp (TYPE_FIELD_NAME (type1, i),
4408 TYPE_FIELD_NAME (type2, i),
4409 len_1) != 0)
4410 return 0;
4411 }
4412
4413 return 1;
4414}
4415
4416/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4417 that are deemed "identical" for practical purposes. Sometimes,
4418 enumerals are not strictly identical, but their types are so similar
4419 that they can be considered identical.
4420
4421 For instance, consider the following code:
4422
4423 type Color is (Black, Red, Green, Blue, White);
4424 type RGB_Color is new Color range Red .. Blue;
4425
4426 Type RGB_Color is a subrange of an implicit type which is a copy
4427 of type Color. If we call that implicit type RGB_ColorB ("B" is
4428 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4429 As a result, when an expression references any of the enumeral
4430 by name (Eg. "print green"), the expression is technically
4431 ambiguous and the user should be asked to disambiguate. But
4432 doing so would only hinder the user, since it wouldn't matter
4433 what choice he makes, the outcome would always be the same.
4434 So, for practical purposes, we consider them as the same. */
4435
4436static int
4437symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4438{
4439 int i;
4440
4441 /* Before performing a thorough comparison check of each type,
4442 we perform a series of inexpensive checks. We expect that these
4443 checks will quickly fail in the vast majority of cases, and thus
4444 help prevent the unnecessary use of a more expensive comparison.
4445 Said comparison also expects us to make some of these checks
4446 (see ada_identical_enum_types_p). */
4447
4448 /* Quick check: All symbols should have an enum type. */
4449 for (i = 0; i < nsyms; i++)
4450 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4451 return 0;
4452
4453 /* Quick check: They should all have the same value. */
4454 for (i = 1; i < nsyms; i++)
4455 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4456 return 0;
4457
4458 /* Quick check: They should all have the same number of enumerals. */
4459 for (i = 1; i < nsyms; i++)
4460 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4461 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4462 return 0;
4463
4464 /* All the sanity checks passed, so we might have a set of
4465 identical enumeration types. Perform a more complete
4466 comparison of the type of each symbol. */
4467 for (i = 1; i < nsyms; i++)
4468 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4469 SYMBOL_TYPE (syms[0].sym)))
4470 return 0;
4471
4472 return 1;
4473}
4474
96d887e8
PH
4475/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4476 duplicate other symbols in the list (The only case I know of where
4477 this happens is when object files containing stabs-in-ecoff are
4478 linked with files containing ordinary ecoff debugging symbols (or no
4479 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4480 Returns the number of items in the modified list. */
4c4b4cd2 4481
96d887e8
PH
4482static int
4483remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4484{
4485 int i, j;
4c4b4cd2 4486
8f17729f
JB
4487 /* We should never be called with less than 2 symbols, as there
4488 cannot be any extra symbol in that case. But it's easy to
4489 handle, since we have nothing to do in that case. */
4490 if (nsyms < 2)
4491 return nsyms;
4492
96d887e8
PH
4493 i = 0;
4494 while (i < nsyms)
4495 {
a35ddb44 4496 int remove_p = 0;
339c13b6
JB
4497
4498 /* If two symbols have the same name and one of them is a stub type,
4499 the get rid of the stub. */
4500
4501 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4502 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4503 {
4504 for (j = 0; j < nsyms; j++)
4505 {
4506 if (j != i
4507 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4508 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4509 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4510 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4511 remove_p = 1;
339c13b6
JB
4512 }
4513 }
4514
4515 /* Two symbols with the same name, same class and same address
4516 should be identical. */
4517
4518 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4519 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4520 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4521 {
4522 for (j = 0; j < nsyms; j += 1)
4523 {
4524 if (i != j
4525 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4526 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4527 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4528 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4529 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4530 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4531 remove_p = 1;
4c4b4cd2 4532 }
4c4b4cd2 4533 }
339c13b6 4534
a35ddb44 4535 if (remove_p)
339c13b6
JB
4536 {
4537 for (j = i + 1; j < nsyms; j += 1)
4538 syms[j - 1] = syms[j];
4539 nsyms -= 1;
4540 }
4541
96d887e8 4542 i += 1;
14f9c5c9 4543 }
8f17729f
JB
4544
4545 /* If all the remaining symbols are identical enumerals, then
4546 just keep the first one and discard the rest.
4547
4548 Unlike what we did previously, we do not discard any entry
4549 unless they are ALL identical. This is because the symbol
4550 comparison is not a strict comparison, but rather a practical
4551 comparison. If all symbols are considered identical, then
4552 we can just go ahead and use the first one and discard the rest.
4553 But if we cannot reduce the list to a single element, we have
4554 to ask the user to disambiguate anyways. And if we have to
4555 present a multiple-choice menu, it's less confusing if the list
4556 isn't missing some choices that were identical and yet distinct. */
4557 if (symbols_are_identical_enums (syms, nsyms))
4558 nsyms = 1;
4559
96d887e8 4560 return nsyms;
14f9c5c9
AS
4561}
4562
96d887e8
PH
4563/* Given a type that corresponds to a renaming entity, use the type name
4564 to extract the scope (package name or function name, fully qualified,
4565 and following the GNAT encoding convention) where this renaming has been
4566 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4567
96d887e8
PH
4568static char *
4569xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4570{
96d887e8 4571 /* The renaming types adhere to the following convention:
0963b4bd 4572 <scope>__<rename>___<XR extension>.
96d887e8
PH
4573 So, to extract the scope, we search for the "___XR" extension,
4574 and then backtrack until we find the first "__". */
76a01679 4575
96d887e8
PH
4576 const char *name = type_name_no_tag (renaming_type);
4577 char *suffix = strstr (name, "___XR");
4578 char *last;
4579 int scope_len;
4580 char *scope;
14f9c5c9 4581
96d887e8
PH
4582 /* Now, backtrack a bit until we find the first "__". Start looking
4583 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4584
96d887e8
PH
4585 for (last = suffix - 3; last > name; last--)
4586 if (last[0] == '_' && last[1] == '_')
4587 break;
76a01679 4588
96d887e8 4589 /* Make a copy of scope and return it. */
14f9c5c9 4590
96d887e8
PH
4591 scope_len = last - name;
4592 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4593
96d887e8
PH
4594 strncpy (scope, name, scope_len);
4595 scope[scope_len] = '\0';
4c4b4cd2 4596
96d887e8 4597 return scope;
4c4b4cd2
PH
4598}
4599
96d887e8 4600/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4601
96d887e8
PH
4602static int
4603is_package_name (const char *name)
4c4b4cd2 4604{
96d887e8
PH
4605 /* Here, We take advantage of the fact that no symbols are generated
4606 for packages, while symbols are generated for each function.
4607 So the condition for NAME represent a package becomes equivalent
4608 to NAME not existing in our list of symbols. There is only one
4609 small complication with library-level functions (see below). */
4c4b4cd2 4610
96d887e8 4611 char *fun_name;
76a01679 4612
96d887e8
PH
4613 /* If it is a function that has not been defined at library level,
4614 then we should be able to look it up in the symbols. */
4615 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4616 return 0;
14f9c5c9 4617
96d887e8
PH
4618 /* Library-level function names start with "_ada_". See if function
4619 "_ada_" followed by NAME can be found. */
14f9c5c9 4620
96d887e8 4621 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4622 functions names cannot contain "__" in them. */
96d887e8
PH
4623 if (strstr (name, "__") != NULL)
4624 return 0;
4c4b4cd2 4625
b435e160 4626 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4627
96d887e8
PH
4628 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4629}
14f9c5c9 4630
96d887e8 4631/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4632 not visible from FUNCTION_NAME. */
14f9c5c9 4633
96d887e8 4634static int
aeb5907d 4635old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4636{
aeb5907d
JB
4637 char *scope;
4638
4639 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4640 return 0;
4641
4642 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4643
96d887e8 4644 make_cleanup (xfree, scope);
14f9c5c9 4645
96d887e8
PH
4646 /* If the rename has been defined in a package, then it is visible. */
4647 if (is_package_name (scope))
aeb5907d 4648 return 0;
14f9c5c9 4649
96d887e8
PH
4650 /* Check that the rename is in the current function scope by checking
4651 that its name starts with SCOPE. */
76a01679 4652
96d887e8
PH
4653 /* If the function name starts with "_ada_", it means that it is
4654 a library-level function. Strip this prefix before doing the
4655 comparison, as the encoding for the renaming does not contain
4656 this prefix. */
4657 if (strncmp (function_name, "_ada_", 5) == 0)
4658 function_name += 5;
f26caa11 4659
aeb5907d 4660 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4661}
4662
aeb5907d
JB
4663/* Remove entries from SYMS that corresponds to a renaming entity that
4664 is not visible from the function associated with CURRENT_BLOCK or
4665 that is superfluous due to the presence of more specific renaming
4666 information. Places surviving symbols in the initial entries of
4667 SYMS and returns the number of surviving symbols.
96d887e8
PH
4668
4669 Rationale:
aeb5907d
JB
4670 First, in cases where an object renaming is implemented as a
4671 reference variable, GNAT may produce both the actual reference
4672 variable and the renaming encoding. In this case, we discard the
4673 latter.
4674
4675 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4676 entity. Unfortunately, STABS currently does not support the definition
4677 of types that are local to a given lexical block, so all renamings types
4678 are emitted at library level. As a consequence, if an application
4679 contains two renaming entities using the same name, and a user tries to
4680 print the value of one of these entities, the result of the ada symbol
4681 lookup will also contain the wrong renaming type.
f26caa11 4682
96d887e8
PH
4683 This function partially covers for this limitation by attempting to
4684 remove from the SYMS list renaming symbols that should be visible
4685 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4686 method with the current information available. The implementation
4687 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4688
4689 - When the user tries to print a rename in a function while there
4690 is another rename entity defined in a package: Normally, the
4691 rename in the function has precedence over the rename in the
4692 package, so the latter should be removed from the list. This is
4693 currently not the case.
4694
4695 - This function will incorrectly remove valid renames if
4696 the CURRENT_BLOCK corresponds to a function which symbol name
4697 has been changed by an "Export" pragma. As a consequence,
4698 the user will be unable to print such rename entities. */
4c4b4cd2 4699
14f9c5c9 4700static int
aeb5907d
JB
4701remove_irrelevant_renamings (struct ada_symbol_info *syms,
4702 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4703{
4704 struct symbol *current_function;
4705 char *current_function_name;
4706 int i;
aeb5907d
JB
4707 int is_new_style_renaming;
4708
4709 /* If there is both a renaming foo___XR... encoded as a variable and
4710 a simple variable foo in the same block, discard the latter.
0963b4bd 4711 First, zero out such symbols, then compress. */
aeb5907d
JB
4712 is_new_style_renaming = 0;
4713 for (i = 0; i < nsyms; i += 1)
4714 {
4715 struct symbol *sym = syms[i].sym;
4716 struct block *block = syms[i].block;
4717 const char *name;
4718 const char *suffix;
4719
4720 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4721 continue;
4722 name = SYMBOL_LINKAGE_NAME (sym);
4723 suffix = strstr (name, "___XR");
4724
4725 if (suffix != NULL)
4726 {
4727 int name_len = suffix - name;
4728 int j;
5b4ee69b 4729
aeb5907d
JB
4730 is_new_style_renaming = 1;
4731 for (j = 0; j < nsyms; j += 1)
4732 if (i != j && syms[j].sym != NULL
4733 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4734 name_len) == 0
4735 && block == syms[j].block)
4736 syms[j].sym = NULL;
4737 }
4738 }
4739 if (is_new_style_renaming)
4740 {
4741 int j, k;
4742
4743 for (j = k = 0; j < nsyms; j += 1)
4744 if (syms[j].sym != NULL)
4745 {
4746 syms[k] = syms[j];
4747 k += 1;
4748 }
4749 return k;
4750 }
4c4b4cd2
PH
4751
4752 /* Extract the function name associated to CURRENT_BLOCK.
4753 Abort if unable to do so. */
76a01679 4754
4c4b4cd2
PH
4755 if (current_block == NULL)
4756 return nsyms;
76a01679 4757
7f0df278 4758 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4759 if (current_function == NULL)
4760 return nsyms;
4761
4762 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4763 if (current_function_name == NULL)
4764 return nsyms;
4765
4766 /* Check each of the symbols, and remove it from the list if it is
4767 a type corresponding to a renaming that is out of the scope of
4768 the current block. */
4769
4770 i = 0;
4771 while (i < nsyms)
4772 {
aeb5907d
JB
4773 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4774 == ADA_OBJECT_RENAMING
4775 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4776 {
4777 int j;
5b4ee69b 4778
aeb5907d 4779 for (j = i + 1; j < nsyms; j += 1)
76a01679 4780 syms[j - 1] = syms[j];
4c4b4cd2
PH
4781 nsyms -= 1;
4782 }
4783 else
4784 i += 1;
4785 }
4786
4787 return nsyms;
4788}
4789
339c13b6
JB
4790/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4791 whose name and domain match NAME and DOMAIN respectively.
4792 If no match was found, then extend the search to "enclosing"
4793 routines (in other words, if we're inside a nested function,
4794 search the symbols defined inside the enclosing functions).
4795
4796 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4797
4798static void
4799ada_add_local_symbols (struct obstack *obstackp, const char *name,
4800 struct block *block, domain_enum domain,
4801 int wild_match)
4802{
4803 int block_depth = 0;
4804
4805 while (block != NULL)
4806 {
4807 block_depth += 1;
4808 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4809
4810 /* If we found a non-function match, assume that's the one. */
4811 if (is_nonfunction (defns_collected (obstackp, 0),
4812 num_defns_collected (obstackp)))
4813 return;
4814
4815 block = BLOCK_SUPERBLOCK (block);
4816 }
4817
4818 /* If no luck so far, try to find NAME as a local symbol in some lexically
4819 enclosing subprogram. */
4820 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4821 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4822}
4823
ccefe4c4 4824/* An object of this type is used as the user_data argument when
40658b94 4825 calling the map_matching_symbols method. */
ccefe4c4 4826
40658b94 4827struct match_data
ccefe4c4 4828{
40658b94 4829 struct objfile *objfile;
ccefe4c4 4830 struct obstack *obstackp;
40658b94
PH
4831 struct symbol *arg_sym;
4832 int found_sym;
ccefe4c4
TT
4833};
4834
40658b94
PH
4835/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4836 to a list of symbols. DATA0 is a pointer to a struct match_data *
4837 containing the obstack that collects the symbol list, the file that SYM
4838 must come from, a flag indicating whether a non-argument symbol has
4839 been found in the current block, and the last argument symbol
4840 passed in SYM within the current block (if any). When SYM is null,
4841 marking the end of a block, the argument symbol is added if no
4842 other has been found. */
ccefe4c4 4843
40658b94
PH
4844static int
4845aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4846{
40658b94
PH
4847 struct match_data *data = (struct match_data *) data0;
4848
4849 if (sym == NULL)
4850 {
4851 if (!data->found_sym && data->arg_sym != NULL)
4852 add_defn_to_vec (data->obstackp,
4853 fixup_symbol_section (data->arg_sym, data->objfile),
4854 block);
4855 data->found_sym = 0;
4856 data->arg_sym = NULL;
4857 }
4858 else
4859 {
4860 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4861 return 0;
4862 else if (SYMBOL_IS_ARGUMENT (sym))
4863 data->arg_sym = sym;
4864 else
4865 {
4866 data->found_sym = 1;
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (sym, data->objfile),
4869 block);
4870 }
4871 }
4872 return 0;
4873}
4874
4875/* Compare STRING1 to STRING2, with results as for strcmp.
4876 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4877 implies compare_names (STRING1, STRING2) (they may differ as to
4878 what symbols compare equal). */
5b4ee69b 4879
40658b94
PH
4880static int
4881compare_names (const char *string1, const char *string2)
4882{
4883 while (*string1 != '\0' && *string2 != '\0')
4884 {
4885 if (isspace (*string1) || isspace (*string2))
4886 return strcmp_iw_ordered (string1, string2);
4887 if (*string1 != *string2)
4888 break;
4889 string1 += 1;
4890 string2 += 1;
4891 }
4892 switch (*string1)
4893 {
4894 case '(':
4895 return strcmp_iw_ordered (string1, string2);
4896 case '_':
4897 if (*string2 == '\0')
4898 {
052874e8 4899 if (is_name_suffix (string1))
40658b94
PH
4900 return 0;
4901 else
1a1d5513 4902 return 1;
40658b94 4903 }
dbb8534f 4904 /* FALLTHROUGH */
40658b94
PH
4905 default:
4906 if (*string2 == '(')
4907 return strcmp_iw_ordered (string1, string2);
4908 else
4909 return *string1 - *string2;
4910 }
ccefe4c4
TT
4911}
4912
339c13b6
JB
4913/* Add to OBSTACKP all non-local symbols whose name and domain match
4914 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4915 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4916
4917static void
40658b94
PH
4918add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4919 domain_enum domain, int global,
4920 int is_wild_match)
339c13b6
JB
4921{
4922 struct objfile *objfile;
40658b94 4923 struct match_data data;
339c13b6 4924
6475f2fe 4925 memset (&data, 0, sizeof data);
ccefe4c4 4926 data.obstackp = obstackp;
339c13b6 4927
ccefe4c4 4928 ALL_OBJFILES (objfile)
40658b94
PH
4929 {
4930 data.objfile = objfile;
4931
4932 if (is_wild_match)
4933 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4934 aux_add_nonlocal_symbols, &data,
4935 wild_match, NULL);
4936 else
4937 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4938 aux_add_nonlocal_symbols, &data,
4939 full_match, compare_names);
4940 }
4941
4942 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4943 {
4944 ALL_OBJFILES (objfile)
4945 {
4946 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4947 strcpy (name1, "_ada_");
4948 strcpy (name1 + sizeof ("_ada_") - 1, name);
4949 data.objfile = objfile;
0963b4bd
MS
4950 objfile->sf->qf->map_matching_symbols (name1, domain,
4951 objfile, global,
4952 aux_add_nonlocal_symbols,
4953 &data,
40658b94
PH
4954 full_match, compare_names);
4955 }
4956 }
339c13b6
JB
4957}
4958
4c4b4cd2
PH
4959/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4960 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4961 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4962 indicating the symbols found and the blocks and symbol tables (if
4963 any) in which they were found. This vector are transient---good only to
4964 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4965 symbol match within the nest of blocks whose innermost member is BLOCK0,
4966 is the one match returned (no other matches in that or
4967 enclosing blocks is returned). If there are any matches in or
4968 surrounding BLOCK0, then these alone are returned. Otherwise, the
4969 search extends to global and file-scope (static) symbol tables.
4970 Names prefixed with "standard__" are handled specially: "standard__"
4971 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4972
4973int
4c4b4cd2 4974ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4975 domain_enum namespace,
4976 struct ada_symbol_info **results)
14f9c5c9
AS
4977{
4978 struct symbol *sym;
14f9c5c9 4979 struct block *block;
4c4b4cd2 4980 const char *name;
4c4b4cd2 4981 int wild_match;
14f9c5c9 4982 int cacheIfUnique;
4c4b4cd2 4983 int ndefns;
14f9c5c9 4984
4c4b4cd2
PH
4985 obstack_free (&symbol_list_obstack, NULL);
4986 obstack_init (&symbol_list_obstack);
14f9c5c9 4987
14f9c5c9
AS
4988 cacheIfUnique = 0;
4989
4990 /* Search specified block and its superiors. */
4991
4c4b4cd2
PH
4992 wild_match = (strstr (name0, "__") == NULL);
4993 name = name0;
76a01679
JB
4994 block = (struct block *) block0; /* FIXME: No cast ought to be
4995 needed, but adding const will
4996 have a cascade effect. */
339c13b6
JB
4997
4998 /* Special case: If the user specifies a symbol name inside package
4999 Standard, do a non-wild matching of the symbol name without
5000 the "standard__" prefix. This was primarily introduced in order
5001 to allow the user to specifically access the standard exceptions
5002 using, for instance, Standard.Constraint_Error when Constraint_Error
5003 is ambiguous (due to the user defining its own Constraint_Error
5004 entity inside its program). */
4c4b4cd2
PH
5005 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5006 {
5007 wild_match = 0;
5008 block = NULL;
5009 name = name0 + sizeof ("standard__") - 1;
5010 }
5011
339c13b6 5012 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5013
339c13b6
JB
5014 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5015 wild_match);
4c4b4cd2 5016 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 5017 goto done;
d2e4a39e 5018
339c13b6
JB
5019 /* No non-global symbols found. Check our cache to see if we have
5020 already performed this search before. If we have, then return
5021 the same result. */
5022
14f9c5c9 5023 cacheIfUnique = 1;
2570f2b7 5024 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5025 {
5026 if (sym != NULL)
2570f2b7 5027 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5028 goto done;
5029 }
14f9c5c9 5030
339c13b6
JB
5031 /* Search symbols from all global blocks. */
5032
40658b94
PH
5033 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5034 wild_match);
d2e4a39e 5035
4c4b4cd2 5036 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5037 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5038
4c4b4cd2 5039 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5040 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5041 wild_match);
14f9c5c9 5042
4c4b4cd2
PH
5043done:
5044 ndefns = num_defns_collected (&symbol_list_obstack);
5045 *results = defns_collected (&symbol_list_obstack, 1);
5046
5047 ndefns = remove_extra_symbols (*results, ndefns);
5048
d2e4a39e 5049 if (ndefns == 0)
2570f2b7 5050 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5051
4c4b4cd2 5052 if (ndefns == 1 && cacheIfUnique)
2570f2b7 5053 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5054
aeb5907d 5055 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5056
14f9c5c9
AS
5057 return ndefns;
5058}
5059
f8eba3c6
TT
5060/* If NAME is the name of an entity, return a string that should
5061 be used to look that entity up in Ada units. This string should
5062 be deallocated after use using xfree.
5063
5064 NAME can have any form that the "break" or "print" commands might
5065 recognize. In other words, it does not have to be the "natural"
5066 name, or the "encoded" name. */
5067
5068char *
5069ada_name_for_lookup (const char *name)
5070{
5071 char *canon;
5072 int nlen = strlen (name);
5073
5074 if (name[0] == '<' && name[nlen - 1] == '>')
5075 {
5076 canon = xmalloc (nlen - 1);
5077 memcpy (canon, name + 1, nlen - 2);
5078 canon[nlen - 2] = '\0';
5079 }
5080 else
5081 canon = xstrdup (ada_encode (ada_fold_name (name)));
5082 return canon;
5083}
5084
5085/* Implementation of the la_iterate_over_symbols method. */
5086
5087static void
5088ada_iterate_over_symbols (const struct block *block,
5089 const char *name, domain_enum domain,
5090 int (*callback) (struct symbol *, void *),
5091 void *data)
5092{
5093 int ndefs, i;
5094 struct ada_symbol_info *results;
5095
5096 ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5097 for (i = 0; i < ndefs; ++i)
5098 {
5099 if (! (*callback) (results[i].sym, data))
5100 break;
5101 }
5102}
5103
d2e4a39e 5104struct symbol *
aeb5907d 5105ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5106 domain_enum namespace, struct block **block_found)
14f9c5c9 5107{
4c4b4cd2 5108 struct ada_symbol_info *candidates;
14f9c5c9
AS
5109 int n_candidates;
5110
aeb5907d 5111 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
5112
5113 if (n_candidates == 0)
5114 return NULL;
4c4b4cd2 5115
aeb5907d
JB
5116 if (block_found != NULL)
5117 *block_found = candidates[0].block;
4c4b4cd2 5118
21b556f4 5119 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5120}
5121
5122/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5123 scope and in global scopes, or NULL if none. NAME is folded and
5124 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5125 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5126 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5127 table in which the symbol was found (in both cases, these
5128 assignments occur only if the pointers are non-null). */
5129struct symbol *
5130ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5131 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5132{
5133 if (is_a_field_of_this != NULL)
5134 *is_a_field_of_this = 0;
5135
5136 return
5137 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5138 block0, namespace, NULL);
4c4b4cd2 5139}
14f9c5c9 5140
4c4b4cd2
PH
5141static struct symbol *
5142ada_lookup_symbol_nonlocal (const char *name,
76a01679 5143 const struct block *block,
21b556f4 5144 const domain_enum domain)
4c4b4cd2 5145{
94af9270 5146 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5147}
5148
5149
4c4b4cd2
PH
5150/* True iff STR is a possible encoded suffix of a normal Ada name
5151 that is to be ignored for matching purposes. Suffixes of parallel
5152 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5153 are given by any of the regular expressions:
4c4b4cd2 5154
babe1480
JB
5155 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5156 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5157 TKB [subprogram suffix for task bodies]
babe1480 5158 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5159 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5160
5161 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5162 match is performed. This sequence is used to differentiate homonyms,
5163 is an optional part of a valid name suffix. */
4c4b4cd2 5164
14f9c5c9 5165static int
d2e4a39e 5166is_name_suffix (const char *str)
14f9c5c9
AS
5167{
5168 int k;
4c4b4cd2
PH
5169 const char *matching;
5170 const int len = strlen (str);
5171
babe1480
JB
5172 /* Skip optional leading __[0-9]+. */
5173
4c4b4cd2
PH
5174 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5175 {
babe1480
JB
5176 str += 3;
5177 while (isdigit (str[0]))
5178 str += 1;
4c4b4cd2 5179 }
babe1480
JB
5180
5181 /* [.$][0-9]+ */
4c4b4cd2 5182
babe1480 5183 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5184 {
babe1480 5185 matching = str + 1;
4c4b4cd2
PH
5186 while (isdigit (matching[0]))
5187 matching += 1;
5188 if (matching[0] == '\0')
5189 return 1;
5190 }
5191
5192 /* ___[0-9]+ */
babe1480 5193
4c4b4cd2
PH
5194 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5195 {
5196 matching = str + 3;
5197 while (isdigit (matching[0]))
5198 matching += 1;
5199 if (matching[0] == '\0')
5200 return 1;
5201 }
5202
9ac7f98e
JB
5203 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5204
5205 if (strcmp (str, "TKB") == 0)
5206 return 1;
5207
529cad9c
PH
5208#if 0
5209 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5210 with a N at the end. Unfortunately, the compiler uses the same
5211 convention for other internal types it creates. So treating
529cad9c 5212 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5213 some regressions. For instance, consider the case of an enumerated
5214 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5215 name ends with N.
5216 Having a single character like this as a suffix carrying some
0963b4bd 5217 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5218 to be something like "_N" instead. In the meantime, do not do
5219 the following check. */
5220 /* Protected Object Subprograms */
5221 if (len == 1 && str [0] == 'N')
5222 return 1;
5223#endif
5224
5225 /* _E[0-9]+[bs]$ */
5226 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5227 {
5228 matching = str + 3;
5229 while (isdigit (matching[0]))
5230 matching += 1;
5231 if ((matching[0] == 'b' || matching[0] == 's')
5232 && matching [1] == '\0')
5233 return 1;
5234 }
5235
4c4b4cd2
PH
5236 /* ??? We should not modify STR directly, as we are doing below. This
5237 is fine in this case, but may become problematic later if we find
5238 that this alternative did not work, and want to try matching
5239 another one from the begining of STR. Since we modified it, we
5240 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5241 if (str[0] == 'X')
5242 {
5243 str += 1;
d2e4a39e 5244 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5245 {
5246 if (str[0] != 'n' && str[0] != 'b')
5247 return 0;
5248 str += 1;
5249 }
14f9c5c9 5250 }
babe1480 5251
14f9c5c9
AS
5252 if (str[0] == '\000')
5253 return 1;
babe1480 5254
d2e4a39e 5255 if (str[0] == '_')
14f9c5c9
AS
5256 {
5257 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5258 return 0;
d2e4a39e 5259 if (str[2] == '_')
4c4b4cd2 5260 {
61ee279c
PH
5261 if (strcmp (str + 3, "JM") == 0)
5262 return 1;
5263 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5264 the LJM suffix in favor of the JM one. But we will
5265 still accept LJM as a valid suffix for a reasonable
5266 amount of time, just to allow ourselves to debug programs
5267 compiled using an older version of GNAT. */
4c4b4cd2
PH
5268 if (strcmp (str + 3, "LJM") == 0)
5269 return 1;
5270 if (str[3] != 'X')
5271 return 0;
1265e4aa
JB
5272 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5273 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5274 return 1;
5275 if (str[4] == 'R' && str[5] != 'T')
5276 return 1;
5277 return 0;
5278 }
5279 if (!isdigit (str[2]))
5280 return 0;
5281 for (k = 3; str[k] != '\0'; k += 1)
5282 if (!isdigit (str[k]) && str[k] != '_')
5283 return 0;
14f9c5c9
AS
5284 return 1;
5285 }
4c4b4cd2 5286 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5287 {
4c4b4cd2
PH
5288 for (k = 2; str[k] != '\0'; k += 1)
5289 if (!isdigit (str[k]) && str[k] != '_')
5290 return 0;
14f9c5c9
AS
5291 return 1;
5292 }
5293 return 0;
5294}
d2e4a39e 5295
aeb5907d
JB
5296/* Return non-zero if the string starting at NAME and ending before
5297 NAME_END contains no capital letters. */
529cad9c
PH
5298
5299static int
5300is_valid_name_for_wild_match (const char *name0)
5301{
5302 const char *decoded_name = ada_decode (name0);
5303 int i;
5304
5823c3ef
JB
5305 /* If the decoded name starts with an angle bracket, it means that
5306 NAME0 does not follow the GNAT encoding format. It should then
5307 not be allowed as a possible wild match. */
5308 if (decoded_name[0] == '<')
5309 return 0;
5310
529cad9c
PH
5311 for (i=0; decoded_name[i] != '\0'; i++)
5312 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5313 return 0;
5314
5315 return 1;
5316}
5317
73589123
PH
5318/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5319 that could start a simple name. Assumes that *NAMEP points into
5320 the string beginning at NAME0. */
4c4b4cd2 5321
14f9c5c9 5322static int
73589123 5323advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5324{
73589123 5325 const char *name = *namep;
5b4ee69b 5326
5823c3ef 5327 while (1)
14f9c5c9 5328 {
aa27d0b3 5329 int t0, t1;
73589123
PH
5330
5331 t0 = *name;
5332 if (t0 == '_')
5333 {
5334 t1 = name[1];
5335 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5336 {
5337 name += 1;
5338 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5339 break;
5340 else
5341 name += 1;
5342 }
aa27d0b3
JB
5343 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5344 || name[2] == target0))
73589123
PH
5345 {
5346 name += 2;
5347 break;
5348 }
5349 else
5350 return 0;
5351 }
5352 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5353 name += 1;
5354 else
5823c3ef 5355 return 0;
73589123
PH
5356 }
5357
5358 *namep = name;
5359 return 1;
5360}
5361
5362/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5363 informational suffixes of NAME (i.e., for which is_name_suffix is
5364 true). Assumes that PATN is a lower-cased Ada simple name. */
5365
5366static int
5367wild_match (const char *name, const char *patn)
5368{
5369 const char *p, *n;
5370 const char *name0 = name;
5371
5372 while (1)
5373 {
5374 const char *match = name;
5375
5376 if (*name == *patn)
5377 {
5378 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5379 if (*p != *name)
5380 break;
5381 if (*p == '\0' && is_name_suffix (name))
5382 return match != name0 && !is_valid_name_for_wild_match (name0);
5383
5384 if (name[-1] == '_')
5385 name -= 1;
5386 }
5387 if (!advance_wild_match (&name, name0, *patn))
5388 return 1;
96d887e8 5389 }
96d887e8
PH
5390}
5391
40658b94
PH
5392/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5393 informational suffix. */
5394
c4d840bd
PH
5395static int
5396full_match (const char *sym_name, const char *search_name)
5397{
40658b94 5398 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5399}
5400
5401
96d887e8
PH
5402/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5403 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5404 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5405 OBJFILE is the section containing BLOCK.
5406 SYMTAB is recorded with each symbol added. */
5407
5408static void
5409ada_add_block_symbols (struct obstack *obstackp,
76a01679 5410 struct block *block, const char *name,
96d887e8 5411 domain_enum domain, struct objfile *objfile,
2570f2b7 5412 int wild)
96d887e8
PH
5413{
5414 struct dict_iterator iter;
5415 int name_len = strlen (name);
5416 /* A matching argument symbol, if any. */
5417 struct symbol *arg_sym;
5418 /* Set true when we find a matching non-argument symbol. */
5419 int found_sym;
5420 struct symbol *sym;
5421
5422 arg_sym = NULL;
5423 found_sym = 0;
5424 if (wild)
5425 {
c4d840bd
PH
5426 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5427 wild_match, &iter);
5428 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5429 {
5eeb2539
AR
5430 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5431 SYMBOL_DOMAIN (sym), domain)
73589123 5432 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5433 {
2a2d4dc3
AS
5434 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5435 continue;
5436 else if (SYMBOL_IS_ARGUMENT (sym))
5437 arg_sym = sym;
5438 else
5439 {
76a01679
JB
5440 found_sym = 1;
5441 add_defn_to_vec (obstackp,
5442 fixup_symbol_section (sym, objfile),
2570f2b7 5443 block);
76a01679
JB
5444 }
5445 }
5446 }
96d887e8
PH
5447 }
5448 else
5449 {
c4d840bd 5450 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5451 full_match, &iter);
c4d840bd 5452 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5453 {
5eeb2539
AR
5454 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5455 SYMBOL_DOMAIN (sym), domain))
76a01679 5456 {
c4d840bd
PH
5457 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5458 {
5459 if (SYMBOL_IS_ARGUMENT (sym))
5460 arg_sym = sym;
5461 else
2a2d4dc3 5462 {
c4d840bd
PH
5463 found_sym = 1;
5464 add_defn_to_vec (obstackp,
5465 fixup_symbol_section (sym, objfile),
5466 block);
2a2d4dc3 5467 }
c4d840bd 5468 }
76a01679
JB
5469 }
5470 }
96d887e8
PH
5471 }
5472
5473 if (!found_sym && arg_sym != NULL)
5474 {
76a01679
JB
5475 add_defn_to_vec (obstackp,
5476 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5477 block);
96d887e8
PH
5478 }
5479
5480 if (!wild)
5481 {
5482 arg_sym = NULL;
5483 found_sym = 0;
5484
5485 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5486 {
5eeb2539
AR
5487 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5488 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5489 {
5490 int cmp;
5491
5492 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5493 if (cmp == 0)
5494 {
5495 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5496 if (cmp == 0)
5497 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5498 name_len);
5499 }
5500
5501 if (cmp == 0
5502 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5503 {
2a2d4dc3
AS
5504 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5505 {
5506 if (SYMBOL_IS_ARGUMENT (sym))
5507 arg_sym = sym;
5508 else
5509 {
5510 found_sym = 1;
5511 add_defn_to_vec (obstackp,
5512 fixup_symbol_section (sym, objfile),
5513 block);
5514 }
5515 }
76a01679
JB
5516 }
5517 }
76a01679 5518 }
96d887e8
PH
5519
5520 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5521 They aren't parameters, right? */
5522 if (!found_sym && arg_sym != NULL)
5523 {
5524 add_defn_to_vec (obstackp,
76a01679 5525 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5526 block);
96d887e8
PH
5527 }
5528 }
5529}
5530\f
41d27058
JB
5531
5532 /* Symbol Completion */
5533
5534/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5535 name in a form that's appropriate for the completion. The result
5536 does not need to be deallocated, but is only good until the next call.
5537
5538 TEXT_LEN is equal to the length of TEXT.
5539 Perform a wild match if WILD_MATCH is set.
5540 ENCODED should be set if TEXT represents the start of a symbol name
5541 in its encoded form. */
5542
5543static const char *
5544symbol_completion_match (const char *sym_name,
5545 const char *text, int text_len,
5546 int wild_match, int encoded)
5547{
41d27058
JB
5548 const int verbatim_match = (text[0] == '<');
5549 int match = 0;
5550
5551 if (verbatim_match)
5552 {
5553 /* Strip the leading angle bracket. */
5554 text = text + 1;
5555 text_len--;
5556 }
5557
5558 /* First, test against the fully qualified name of the symbol. */
5559
5560 if (strncmp (sym_name, text, text_len) == 0)
5561 match = 1;
5562
5563 if (match && !encoded)
5564 {
5565 /* One needed check before declaring a positive match is to verify
5566 that iff we are doing a verbatim match, the decoded version
5567 of the symbol name starts with '<'. Otherwise, this symbol name
5568 is not a suitable completion. */
5569 const char *sym_name_copy = sym_name;
5570 int has_angle_bracket;
5571
5572 sym_name = ada_decode (sym_name);
5573 has_angle_bracket = (sym_name[0] == '<');
5574 match = (has_angle_bracket == verbatim_match);
5575 sym_name = sym_name_copy;
5576 }
5577
5578 if (match && !verbatim_match)
5579 {
5580 /* When doing non-verbatim match, another check that needs to
5581 be done is to verify that the potentially matching symbol name
5582 does not include capital letters, because the ada-mode would
5583 not be able to understand these symbol names without the
5584 angle bracket notation. */
5585 const char *tmp;
5586
5587 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5588 if (*tmp != '\0')
5589 match = 0;
5590 }
5591
5592 /* Second: Try wild matching... */
5593
5594 if (!match && wild_match)
5595 {
5596 /* Since we are doing wild matching, this means that TEXT
5597 may represent an unqualified symbol name. We therefore must
5598 also compare TEXT against the unqualified name of the symbol. */
5599 sym_name = ada_unqualified_name (ada_decode (sym_name));
5600
5601 if (strncmp (sym_name, text, text_len) == 0)
5602 match = 1;
5603 }
5604
5605 /* Finally: If we found a mach, prepare the result to return. */
5606
5607 if (!match)
5608 return NULL;
5609
5610 if (verbatim_match)
5611 sym_name = add_angle_brackets (sym_name);
5612
5613 if (!encoded)
5614 sym_name = ada_decode (sym_name);
5615
5616 return sym_name;
5617}
5618
2ba95b9b
JB
5619DEF_VEC_P (char_ptr);
5620
41d27058
JB
5621/* A companion function to ada_make_symbol_completion_list().
5622 Check if SYM_NAME represents a symbol which name would be suitable
5623 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5624 it is appended at the end of the given string vector SV.
5625
5626 ORIG_TEXT is the string original string from the user command
5627 that needs to be completed. WORD is the entire command on which
5628 completion should be performed. These two parameters are used to
5629 determine which part of the symbol name should be added to the
5630 completion vector.
5631 if WILD_MATCH is set, then wild matching is performed.
5632 ENCODED should be set if TEXT represents a symbol name in its
5633 encoded formed (in which case the completion should also be
5634 encoded). */
5635
5636static void
d6565258 5637symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5638 const char *sym_name,
5639 const char *text, int text_len,
5640 const char *orig_text, const char *word,
5641 int wild_match, int encoded)
5642{
5643 const char *match = symbol_completion_match (sym_name, text, text_len,
5644 wild_match, encoded);
5645 char *completion;
5646
5647 if (match == NULL)
5648 return;
5649
5650 /* We found a match, so add the appropriate completion to the given
5651 string vector. */
5652
5653 if (word == orig_text)
5654 {
5655 completion = xmalloc (strlen (match) + 5);
5656 strcpy (completion, match);
5657 }
5658 else if (word > orig_text)
5659 {
5660 /* Return some portion of sym_name. */
5661 completion = xmalloc (strlen (match) + 5);
5662 strcpy (completion, match + (word - orig_text));
5663 }
5664 else
5665 {
5666 /* Return some of ORIG_TEXT plus sym_name. */
5667 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5668 strncpy (completion, word, orig_text - word);
5669 completion[orig_text - word] = '\0';
5670 strcat (completion, match);
5671 }
5672
d6565258 5673 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5674}
5675
ccefe4c4 5676/* An object of this type is passed as the user_data argument to the
7b08b9eb 5677 expand_partial_symbol_names method. */
ccefe4c4
TT
5678struct add_partial_datum
5679{
5680 VEC(char_ptr) **completions;
5681 char *text;
5682 int text_len;
5683 char *text0;
5684 char *word;
5685 int wild_match;
5686 int encoded;
5687};
5688
7b08b9eb
JK
5689/* A callback for expand_partial_symbol_names. */
5690static int
f8eba3c6
TT
5691ada_expand_partial_symbol_name (const struct language_defn *language,
5692 const char *name, void *user_data)
ccefe4c4
TT
5693{
5694 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5695
5696 return symbol_completion_match (name, data->text, data->text_len,
5697 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5698}
5699
41d27058
JB
5700/* Return a list of possible symbol names completing TEXT0. The list
5701 is NULL terminated. WORD is the entire command on which completion
5702 is made. */
5703
5704static char **
5705ada_make_symbol_completion_list (char *text0, char *word)
5706{
5707 char *text;
5708 int text_len;
5709 int wild_match;
5710 int encoded;
2ba95b9b 5711 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5712 struct symbol *sym;
5713 struct symtab *s;
41d27058
JB
5714 struct minimal_symbol *msymbol;
5715 struct objfile *objfile;
5716 struct block *b, *surrounding_static_block = 0;
5717 int i;
5718 struct dict_iterator iter;
5719
5720 if (text0[0] == '<')
5721 {
5722 text = xstrdup (text0);
5723 make_cleanup (xfree, text);
5724 text_len = strlen (text);
5725 wild_match = 0;
5726 encoded = 1;
5727 }
5728 else
5729 {
5730 text = xstrdup (ada_encode (text0));
5731 make_cleanup (xfree, text);
5732 text_len = strlen (text);
5733 for (i = 0; i < text_len; i++)
5734 text[i] = tolower (text[i]);
5735
5736 encoded = (strstr (text0, "__") != NULL);
5737 /* If the name contains a ".", then the user is entering a fully
5738 qualified entity name, and the match must not be done in wild
5739 mode. Similarly, if the user wants to complete what looks like
5740 an encoded name, the match must not be done in wild mode. */
5741 wild_match = (strchr (text0, '.') == NULL && !encoded);
5742 }
5743
5744 /* First, look at the partial symtab symbols. */
41d27058 5745 {
ccefe4c4
TT
5746 struct add_partial_datum data;
5747
5748 data.completions = &completions;
5749 data.text = text;
5750 data.text_len = text_len;
5751 data.text0 = text0;
5752 data.word = word;
5753 data.wild_match = wild_match;
5754 data.encoded = encoded;
7b08b9eb 5755 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5756 }
5757
5758 /* At this point scan through the misc symbol vectors and add each
5759 symbol you find to the list. Eventually we want to ignore
5760 anything that isn't a text symbol (everything else will be
5761 handled by the psymtab code above). */
5762
5763 ALL_MSYMBOLS (objfile, msymbol)
5764 {
5765 QUIT;
d6565258 5766 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5767 text, text_len, text0, word, wild_match, encoded);
5768 }
5769
5770 /* Search upwards from currently selected frame (so that we can
5771 complete on local vars. */
5772
5773 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5774 {
5775 if (!BLOCK_SUPERBLOCK (b))
5776 surrounding_static_block = b; /* For elmin of dups */
5777
5778 ALL_BLOCK_SYMBOLS (b, iter, sym)
5779 {
d6565258 5780 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5781 text, text_len, text0, word,
5782 wild_match, encoded);
5783 }
5784 }
5785
5786 /* Go through the symtabs and check the externs and statics for
5787 symbols which match. */
5788
5789 ALL_SYMTABS (objfile, s)
5790 {
5791 QUIT;
5792 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5793 ALL_BLOCK_SYMBOLS (b, iter, sym)
5794 {
d6565258 5795 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5796 text, text_len, text0, word,
5797 wild_match, encoded);
5798 }
5799 }
5800
5801 ALL_SYMTABS (objfile, s)
5802 {
5803 QUIT;
5804 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5805 /* Don't do this block twice. */
5806 if (b == surrounding_static_block)
5807 continue;
5808 ALL_BLOCK_SYMBOLS (b, iter, sym)
5809 {
d6565258 5810 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5811 text, text_len, text0, word,
5812 wild_match, encoded);
5813 }
5814 }
5815
5816 /* Append the closing NULL entry. */
2ba95b9b 5817 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5818
2ba95b9b
JB
5819 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5820 return the copy. It's unfortunate that we have to make a copy
5821 of an array that we're about to destroy, but there is nothing much
5822 we can do about it. Fortunately, it's typically not a very large
5823 array. */
5824 {
5825 const size_t completions_size =
5826 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5827 char **result = xmalloc (completions_size);
2ba95b9b
JB
5828
5829 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5830
5831 VEC_free (char_ptr, completions);
5832 return result;
5833 }
41d27058
JB
5834}
5835
963a6417 5836 /* Field Access */
96d887e8 5837
73fb9985
JB
5838/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5839 for tagged types. */
5840
5841static int
5842ada_is_dispatch_table_ptr_type (struct type *type)
5843{
5844 char *name;
5845
5846 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5847 return 0;
5848
5849 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5850 if (name == NULL)
5851 return 0;
5852
5853 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5854}
5855
963a6417
PH
5856/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5857 to be invisible to users. */
96d887e8 5858
963a6417
PH
5859int
5860ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5861{
963a6417
PH
5862 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5863 return 1;
73fb9985
JB
5864
5865 /* Check the name of that field. */
5866 {
5867 const char *name = TYPE_FIELD_NAME (type, field_num);
5868
5869 /* Anonymous field names should not be printed.
5870 brobecker/2007-02-20: I don't think this can actually happen
5871 but we don't want to print the value of annonymous fields anyway. */
5872 if (name == NULL)
5873 return 1;
5874
5875 /* A field named "_parent" is internally generated by GNAT for
5876 tagged types, and should not be printed either. */
5877 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5878 return 1;
5879 }
5880
5881 /* If this is the dispatch table of a tagged type, then ignore. */
5882 if (ada_is_tagged_type (type, 1)
5883 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5884 return 1;
5885
5886 /* Not a special field, so it should not be ignored. */
5887 return 0;
963a6417 5888}
96d887e8 5889
963a6417 5890/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5891 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5892
963a6417
PH
5893int
5894ada_is_tagged_type (struct type *type, int refok)
5895{
5896 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5897}
96d887e8 5898
963a6417 5899/* True iff TYPE represents the type of X'Tag */
96d887e8 5900
963a6417
PH
5901int
5902ada_is_tag_type (struct type *type)
5903{
5904 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5905 return 0;
5906 else
96d887e8 5907 {
963a6417 5908 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5909
963a6417
PH
5910 return (name != NULL
5911 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5912 }
96d887e8
PH
5913}
5914
963a6417 5915/* The type of the tag on VAL. */
76a01679 5916
963a6417
PH
5917struct type *
5918ada_tag_type (struct value *val)
96d887e8 5919{
df407dfe 5920 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5921}
96d887e8 5922
963a6417 5923/* The value of the tag on VAL. */
96d887e8 5924
963a6417
PH
5925struct value *
5926ada_value_tag (struct value *val)
5927{
03ee6b2e 5928 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5929}
5930
963a6417
PH
5931/* The value of the tag on the object of type TYPE whose contents are
5932 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5933 ADDRESS. */
96d887e8 5934
963a6417 5935static struct value *
10a2c479 5936value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5937 const gdb_byte *valaddr,
963a6417 5938 CORE_ADDR address)
96d887e8 5939{
b5385fc0 5940 int tag_byte_offset;
963a6417 5941 struct type *tag_type;
5b4ee69b 5942
963a6417 5943 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5944 NULL, NULL, NULL))
96d887e8 5945 {
fc1a4b47 5946 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5947 ? NULL
5948 : valaddr + tag_byte_offset);
963a6417 5949 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5950
963a6417 5951 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5952 }
963a6417
PH
5953 return NULL;
5954}
96d887e8 5955
963a6417
PH
5956static struct type *
5957type_from_tag (struct value *tag)
5958{
5959 const char *type_name = ada_tag_name (tag);
5b4ee69b 5960
963a6417
PH
5961 if (type_name != NULL)
5962 return ada_find_any_type (ada_encode (type_name));
5963 return NULL;
5964}
96d887e8 5965
963a6417
PH
5966struct tag_args
5967{
5968 struct value *tag;
5969 char *name;
5970};
4c4b4cd2 5971
529cad9c
PH
5972
5973static int ada_tag_name_1 (void *);
5974static int ada_tag_name_2 (struct tag_args *);
5975
4c4b4cd2 5976/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5977 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5978 The value stored in ARGS->name is valid until the next call to
5979 ada_tag_name_1. */
5980
5981static int
5982ada_tag_name_1 (void *args0)
5983{
5984 struct tag_args *args = (struct tag_args *) args0;
5985 static char name[1024];
76a01679 5986 char *p;
4c4b4cd2 5987 struct value *val;
5b4ee69b 5988
4c4b4cd2 5989 args->name = NULL;
03ee6b2e 5990 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5991 if (val == NULL)
5992 return ada_tag_name_2 (args);
03ee6b2e 5993 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5994 if (val == NULL)
5995 return 0;
5996 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5997 for (p = name; *p != '\0'; p += 1)
5998 if (isalpha (*p))
5999 *p = tolower (*p);
6000 args->name = name;
6001 return 0;
6002}
6003
e802dbe0
JB
6004/* Return the "ada__tags__type_specific_data" type. */
6005
6006static struct type *
6007ada_get_tsd_type (struct inferior *inf)
6008{
6009 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6010
6011 if (data->tsd_type == 0)
6012 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6013 return data->tsd_type;
6014}
6015
529cad9c
PH
6016/* Utility function for ada_tag_name_1 that tries the second
6017 representation for the dispatch table (in which there is no
6018 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 6019 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
6020
6021static int
6022ada_tag_name_2 (struct tag_args *args)
6023{
6024 struct type *info_type;
6025 static char name[1024];
6026 char *p;
6027 struct value *val, *valp;
6028
6029 args->name = NULL;
e802dbe0 6030 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
6031 if (info_type == NULL)
6032 return 0;
6033 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6034 valp = value_cast (info_type, args->tag);
6035 if (valp == NULL)
6036 return 0;
2497b498 6037 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
6038 if (val == NULL)
6039 return 0;
03ee6b2e 6040 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
6041 if (val == NULL)
6042 return 0;
6043 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6044 for (p = name; *p != '\0'; p += 1)
6045 if (isalpha (*p))
6046 *p = tolower (*p);
6047 args->name = name;
6048 return 0;
6049}
6050
6051/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 6052 a C string. */
4c4b4cd2
PH
6053
6054const char *
6055ada_tag_name (struct value *tag)
6056{
6057 struct tag_args args;
5b4ee69b 6058
df407dfe 6059 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6060 return NULL;
76a01679 6061 args.tag = tag;
4c4b4cd2
PH
6062 args.name = NULL;
6063 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6064 return args.name;
6065}
6066
6067/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6068
d2e4a39e 6069struct type *
ebf56fd3 6070ada_parent_type (struct type *type)
14f9c5c9
AS
6071{
6072 int i;
6073
61ee279c 6074 type = ada_check_typedef (type);
14f9c5c9
AS
6075
6076 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6077 return NULL;
6078
6079 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6080 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6081 {
6082 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6083
6084 /* If the _parent field is a pointer, then dereference it. */
6085 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6086 parent_type = TYPE_TARGET_TYPE (parent_type);
6087 /* If there is a parallel XVS type, get the actual base type. */
6088 parent_type = ada_get_base_type (parent_type);
6089
6090 return ada_check_typedef (parent_type);
6091 }
14f9c5c9
AS
6092
6093 return NULL;
6094}
6095
4c4b4cd2
PH
6096/* True iff field number FIELD_NUM of structure type TYPE contains the
6097 parent-type (inherited) fields of a derived type. Assumes TYPE is
6098 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6099
6100int
ebf56fd3 6101ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6102{
61ee279c 6103 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6104
4c4b4cd2
PH
6105 return (name != NULL
6106 && (strncmp (name, "PARENT", 6) == 0
6107 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6108}
6109
4c4b4cd2 6110/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6111 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6112 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6113 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6114 structures. */
14f9c5c9
AS
6115
6116int
ebf56fd3 6117ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6118{
d2e4a39e 6119 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6120
d2e4a39e 6121 return (name != NULL
4c4b4cd2
PH
6122 && (strncmp (name, "PARENT", 6) == 0
6123 || strcmp (name, "REP") == 0
6124 || strncmp (name, "_parent", 7) == 0
6125 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6126}
6127
4c4b4cd2
PH
6128/* True iff field number FIELD_NUM of structure or union type TYPE
6129 is a variant wrapper. Assumes TYPE is a structure type with at least
6130 FIELD_NUM+1 fields. */
14f9c5c9
AS
6131
6132int
ebf56fd3 6133ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6134{
d2e4a39e 6135 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6136
14f9c5c9 6137 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6138 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6139 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6140 == TYPE_CODE_UNION)));
14f9c5c9
AS
6141}
6142
6143/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6144 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6145 returns the type of the controlling discriminant for the variant.
6146 May return NULL if the type could not be found. */
14f9c5c9 6147
d2e4a39e 6148struct type *
ebf56fd3 6149ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6150{
d2e4a39e 6151 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6152
7c964f07 6153 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6154}
6155
4c4b4cd2 6156/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6157 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6158 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6159
6160int
ebf56fd3 6161ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6162{
d2e4a39e 6163 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6164
14f9c5c9
AS
6165 return (name != NULL && name[0] == 'O');
6166}
6167
6168/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6169 returns the name of the discriminant controlling the variant.
6170 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6171
d2e4a39e 6172char *
ebf56fd3 6173ada_variant_discrim_name (struct type *type0)
14f9c5c9 6174{
d2e4a39e 6175 static char *result = NULL;
14f9c5c9 6176 static size_t result_len = 0;
d2e4a39e
AS
6177 struct type *type;
6178 const char *name;
6179 const char *discrim_end;
6180 const char *discrim_start;
14f9c5c9
AS
6181
6182 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6183 type = TYPE_TARGET_TYPE (type0);
6184 else
6185 type = type0;
6186
6187 name = ada_type_name (type);
6188
6189 if (name == NULL || name[0] == '\000')
6190 return "";
6191
6192 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6193 discrim_end -= 1)
6194 {
4c4b4cd2
PH
6195 if (strncmp (discrim_end, "___XVN", 6) == 0)
6196 break;
14f9c5c9
AS
6197 }
6198 if (discrim_end == name)
6199 return "";
6200
d2e4a39e 6201 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6202 discrim_start -= 1)
6203 {
d2e4a39e 6204 if (discrim_start == name + 1)
4c4b4cd2 6205 return "";
76a01679 6206 if ((discrim_start > name + 3
4c4b4cd2
PH
6207 && strncmp (discrim_start - 3, "___", 3) == 0)
6208 || discrim_start[-1] == '.')
6209 break;
14f9c5c9
AS
6210 }
6211
6212 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6213 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6214 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6215 return result;
6216}
6217
4c4b4cd2
PH
6218/* Scan STR for a subtype-encoded number, beginning at position K.
6219 Put the position of the character just past the number scanned in
6220 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6221 Return 1 if there was a valid number at the given position, and 0
6222 otherwise. A "subtype-encoded" number consists of the absolute value
6223 in decimal, followed by the letter 'm' to indicate a negative number.
6224 Assumes 0m does not occur. */
14f9c5c9
AS
6225
6226int
d2e4a39e 6227ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6228{
6229 ULONGEST RU;
6230
d2e4a39e 6231 if (!isdigit (str[k]))
14f9c5c9
AS
6232 return 0;
6233
4c4b4cd2 6234 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6235 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6236 LONGEST. */
14f9c5c9
AS
6237 RU = 0;
6238 while (isdigit (str[k]))
6239 {
d2e4a39e 6240 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6241 k += 1;
6242 }
6243
d2e4a39e 6244 if (str[k] == 'm')
14f9c5c9
AS
6245 {
6246 if (R != NULL)
4c4b4cd2 6247 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6248 k += 1;
6249 }
6250 else if (R != NULL)
6251 *R = (LONGEST) RU;
6252
4c4b4cd2 6253 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6254 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6255 number representable as a LONGEST (although either would probably work
6256 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6257 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6258
6259 if (new_k != NULL)
6260 *new_k = k;
6261 return 1;
6262}
6263
4c4b4cd2
PH
6264/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6265 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6266 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6267
d2e4a39e 6268int
ebf56fd3 6269ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6270{
d2e4a39e 6271 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6272 int p;
6273
6274 p = 0;
6275 while (1)
6276 {
d2e4a39e 6277 switch (name[p])
4c4b4cd2
PH
6278 {
6279 case '\0':
6280 return 0;
6281 case 'S':
6282 {
6283 LONGEST W;
5b4ee69b 6284
4c4b4cd2
PH
6285 if (!ada_scan_number (name, p + 1, &W, &p))
6286 return 0;
6287 if (val == W)
6288 return 1;
6289 break;
6290 }
6291 case 'R':
6292 {
6293 LONGEST L, U;
5b4ee69b 6294
4c4b4cd2
PH
6295 if (!ada_scan_number (name, p + 1, &L, &p)
6296 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6297 return 0;
6298 if (val >= L && val <= U)
6299 return 1;
6300 break;
6301 }
6302 case 'O':
6303 return 1;
6304 default:
6305 return 0;
6306 }
6307 }
6308}
6309
0963b4bd 6310/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6311
6312/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6313 ARG_TYPE, extract and return the value of one of its (non-static)
6314 fields. FIELDNO says which field. Differs from value_primitive_field
6315 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6316
4c4b4cd2 6317static struct value *
d2e4a39e 6318ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6319 struct type *arg_type)
14f9c5c9 6320{
14f9c5c9
AS
6321 struct type *type;
6322
61ee279c 6323 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6324 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6325
4c4b4cd2 6326 /* Handle packed fields. */
14f9c5c9
AS
6327
6328 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6329 {
6330 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6331 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6332
0fd88904 6333 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6334 offset + bit_pos / 8,
6335 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6336 }
6337 else
6338 return value_primitive_field (arg1, offset, fieldno, arg_type);
6339}
6340
52ce6436
PH
6341/* Find field with name NAME in object of type TYPE. If found,
6342 set the following for each argument that is non-null:
6343 - *FIELD_TYPE_P to the field's type;
6344 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6345 an object of that type;
6346 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6347 - *BIT_SIZE_P to its size in bits if the field is packed, and
6348 0 otherwise;
6349 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6350 fields up to but not including the desired field, or by the total
6351 number of fields if not found. A NULL value of NAME never
6352 matches; the function just counts visible fields in this case.
6353
0963b4bd 6354 Returns 1 if found, 0 otherwise. */
52ce6436 6355
4c4b4cd2 6356static int
76a01679
JB
6357find_struct_field (char *name, struct type *type, int offset,
6358 struct type **field_type_p,
52ce6436
PH
6359 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6360 int *index_p)
4c4b4cd2
PH
6361{
6362 int i;
6363
61ee279c 6364 type = ada_check_typedef (type);
76a01679 6365
52ce6436
PH
6366 if (field_type_p != NULL)
6367 *field_type_p = NULL;
6368 if (byte_offset_p != NULL)
d5d6fca5 6369 *byte_offset_p = 0;
52ce6436
PH
6370 if (bit_offset_p != NULL)
6371 *bit_offset_p = 0;
6372 if (bit_size_p != NULL)
6373 *bit_size_p = 0;
6374
6375 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6376 {
6377 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6378 int fld_offset = offset + bit_pos / 8;
6379 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6380
4c4b4cd2
PH
6381 if (t_field_name == NULL)
6382 continue;
6383
52ce6436 6384 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6385 {
6386 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6387
52ce6436
PH
6388 if (field_type_p != NULL)
6389 *field_type_p = TYPE_FIELD_TYPE (type, i);
6390 if (byte_offset_p != NULL)
6391 *byte_offset_p = fld_offset;
6392 if (bit_offset_p != NULL)
6393 *bit_offset_p = bit_pos % 8;
6394 if (bit_size_p != NULL)
6395 *bit_size_p = bit_size;
76a01679
JB
6396 return 1;
6397 }
4c4b4cd2
PH
6398 else if (ada_is_wrapper_field (type, i))
6399 {
52ce6436
PH
6400 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6401 field_type_p, byte_offset_p, bit_offset_p,
6402 bit_size_p, index_p))
76a01679
JB
6403 return 1;
6404 }
4c4b4cd2
PH
6405 else if (ada_is_variant_part (type, i))
6406 {
52ce6436
PH
6407 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6408 fixed type?? */
4c4b4cd2 6409 int j;
52ce6436
PH
6410 struct type *field_type
6411 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6412
52ce6436 6413 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6414 {
76a01679
JB
6415 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6416 fld_offset
6417 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6418 field_type_p, byte_offset_p,
52ce6436 6419 bit_offset_p, bit_size_p, index_p))
76a01679 6420 return 1;
4c4b4cd2
PH
6421 }
6422 }
52ce6436
PH
6423 else if (index_p != NULL)
6424 *index_p += 1;
4c4b4cd2
PH
6425 }
6426 return 0;
6427}
6428
0963b4bd 6429/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6430
52ce6436
PH
6431static int
6432num_visible_fields (struct type *type)
6433{
6434 int n;
5b4ee69b 6435
52ce6436
PH
6436 n = 0;
6437 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6438 return n;
6439}
14f9c5c9 6440
4c4b4cd2 6441/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6442 and search in it assuming it has (class) type TYPE.
6443 If found, return value, else return NULL.
6444
4c4b4cd2 6445 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6446
4c4b4cd2 6447static struct value *
d2e4a39e 6448ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6449 struct type *type)
14f9c5c9
AS
6450{
6451 int i;
14f9c5c9 6452
5b4ee69b 6453 type = ada_check_typedef (type);
52ce6436 6454 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6455 {
6456 char *t_field_name = TYPE_FIELD_NAME (type, i);
6457
6458 if (t_field_name == NULL)
4c4b4cd2 6459 continue;
14f9c5c9
AS
6460
6461 else if (field_name_match (t_field_name, name))
4c4b4cd2 6462 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6463
6464 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6465 {
0963b4bd 6466 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6467 ada_search_struct_field (name, arg,
6468 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6469 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6470
4c4b4cd2
PH
6471 if (v != NULL)
6472 return v;
6473 }
14f9c5c9
AS
6474
6475 else if (ada_is_variant_part (type, i))
4c4b4cd2 6476 {
0963b4bd 6477 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6478 int j;
5b4ee69b
MS
6479 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6480 i));
4c4b4cd2
PH
6481 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6482
52ce6436 6483 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6484 {
0963b4bd
MS
6485 struct value *v = ada_search_struct_field /* Force line
6486 break. */
06d5cf63
JB
6487 (name, arg,
6488 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6489 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6490
4c4b4cd2
PH
6491 if (v != NULL)
6492 return v;
6493 }
6494 }
14f9c5c9
AS
6495 }
6496 return NULL;
6497}
d2e4a39e 6498
52ce6436
PH
6499static struct value *ada_index_struct_field_1 (int *, struct value *,
6500 int, struct type *);
6501
6502
6503/* Return field #INDEX in ARG, where the index is that returned by
6504 * find_struct_field through its INDEX_P argument. Adjust the address
6505 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6506 * If found, return value, else return NULL. */
52ce6436
PH
6507
6508static struct value *
6509ada_index_struct_field (int index, struct value *arg, int offset,
6510 struct type *type)
6511{
6512 return ada_index_struct_field_1 (&index, arg, offset, type);
6513}
6514
6515
6516/* Auxiliary function for ada_index_struct_field. Like
6517 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6518 * *INDEX_P. */
52ce6436
PH
6519
6520static struct value *
6521ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6522 struct type *type)
6523{
6524 int i;
6525 type = ada_check_typedef (type);
6526
6527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6528 {
6529 if (TYPE_FIELD_NAME (type, i) == NULL)
6530 continue;
6531 else if (ada_is_wrapper_field (type, i))
6532 {
0963b4bd 6533 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6534 ada_index_struct_field_1 (index_p, arg,
6535 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6536 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6537
52ce6436
PH
6538 if (v != NULL)
6539 return v;
6540 }
6541
6542 else if (ada_is_variant_part (type, i))
6543 {
6544 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6545 find_struct_field. */
52ce6436
PH
6546 error (_("Cannot assign this kind of variant record"));
6547 }
6548 else if (*index_p == 0)
6549 return ada_value_primitive_field (arg, offset, i, type);
6550 else
6551 *index_p -= 1;
6552 }
6553 return NULL;
6554}
6555
4c4b4cd2
PH
6556/* Given ARG, a value of type (pointer or reference to a)*
6557 structure/union, extract the component named NAME from the ultimate
6558 target structure/union and return it as a value with its
f5938064 6559 appropriate type.
14f9c5c9 6560
4c4b4cd2
PH
6561 The routine searches for NAME among all members of the structure itself
6562 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6563 (e.g., '_parent').
6564
03ee6b2e
PH
6565 If NO_ERR, then simply return NULL in case of error, rather than
6566 calling error. */
14f9c5c9 6567
d2e4a39e 6568struct value *
03ee6b2e 6569ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6570{
4c4b4cd2 6571 struct type *t, *t1;
d2e4a39e 6572 struct value *v;
14f9c5c9 6573
4c4b4cd2 6574 v = NULL;
df407dfe 6575 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6576 if (TYPE_CODE (t) == TYPE_CODE_REF)
6577 {
6578 t1 = TYPE_TARGET_TYPE (t);
6579 if (t1 == NULL)
03ee6b2e 6580 goto BadValue;
61ee279c 6581 t1 = ada_check_typedef (t1);
4c4b4cd2 6582 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6583 {
994b9211 6584 arg = coerce_ref (arg);
76a01679
JB
6585 t = t1;
6586 }
4c4b4cd2 6587 }
14f9c5c9 6588
4c4b4cd2
PH
6589 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6590 {
6591 t1 = TYPE_TARGET_TYPE (t);
6592 if (t1 == NULL)
03ee6b2e 6593 goto BadValue;
61ee279c 6594 t1 = ada_check_typedef (t1);
4c4b4cd2 6595 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6596 {
6597 arg = value_ind (arg);
6598 t = t1;
6599 }
4c4b4cd2 6600 else
76a01679 6601 break;
4c4b4cd2 6602 }
14f9c5c9 6603
4c4b4cd2 6604 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6605 goto BadValue;
14f9c5c9 6606
4c4b4cd2
PH
6607 if (t1 == t)
6608 v = ada_search_struct_field (name, arg, 0, t);
6609 else
6610 {
6611 int bit_offset, bit_size, byte_offset;
6612 struct type *field_type;
6613 CORE_ADDR address;
6614
76a01679
JB
6615 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6616 address = value_as_address (arg);
4c4b4cd2 6617 else
0fd88904 6618 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6619
1ed6ede0 6620 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6621 if (find_struct_field (name, t1, 0,
6622 &field_type, &byte_offset, &bit_offset,
52ce6436 6623 &bit_size, NULL))
76a01679
JB
6624 {
6625 if (bit_size != 0)
6626 {
714e53ab
PH
6627 if (TYPE_CODE (t) == TYPE_CODE_REF)
6628 arg = ada_coerce_ref (arg);
6629 else
6630 arg = ada_value_ind (arg);
76a01679
JB
6631 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6632 bit_offset, bit_size,
6633 field_type);
6634 }
6635 else
f5938064 6636 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6637 }
6638 }
6639
03ee6b2e
PH
6640 if (v != NULL || no_err)
6641 return v;
6642 else
323e0a4a 6643 error (_("There is no member named %s."), name);
14f9c5c9 6644
03ee6b2e
PH
6645 BadValue:
6646 if (no_err)
6647 return NULL;
6648 else
0963b4bd
MS
6649 error (_("Attempt to extract a component of "
6650 "a value that is not a record."));
14f9c5c9
AS
6651}
6652
6653/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6654 If DISPP is non-null, add its byte displacement from the beginning of a
6655 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6656 work for packed fields).
6657
6658 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6659 followed by "___".
14f9c5c9 6660
0963b4bd 6661 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6662 be a (pointer or reference)+ to a struct or union, and the
6663 ultimate target type will be searched.
14f9c5c9
AS
6664
6665 Looks recursively into variant clauses and parent types.
6666
4c4b4cd2
PH
6667 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6668 TYPE is not a type of the right kind. */
14f9c5c9 6669
4c4b4cd2 6670static struct type *
76a01679
JB
6671ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6672 int noerr, int *dispp)
14f9c5c9
AS
6673{
6674 int i;
6675
6676 if (name == NULL)
6677 goto BadName;
6678
76a01679 6679 if (refok && type != NULL)
4c4b4cd2
PH
6680 while (1)
6681 {
61ee279c 6682 type = ada_check_typedef (type);
76a01679
JB
6683 if (TYPE_CODE (type) != TYPE_CODE_PTR
6684 && TYPE_CODE (type) != TYPE_CODE_REF)
6685 break;
6686 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6687 }
14f9c5c9 6688
76a01679 6689 if (type == NULL
1265e4aa
JB
6690 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6691 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6692 {
4c4b4cd2 6693 if (noerr)
76a01679 6694 return NULL;
4c4b4cd2 6695 else
76a01679
JB
6696 {
6697 target_terminal_ours ();
6698 gdb_flush (gdb_stdout);
323e0a4a
AC
6699 if (type == NULL)
6700 error (_("Type (null) is not a structure or union type"));
6701 else
6702 {
6703 /* XXX: type_sprint */
6704 fprintf_unfiltered (gdb_stderr, _("Type "));
6705 type_print (type, "", gdb_stderr, -1);
6706 error (_(" is not a structure or union type"));
6707 }
76a01679 6708 }
14f9c5c9
AS
6709 }
6710
6711 type = to_static_fixed_type (type);
6712
6713 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6714 {
6715 char *t_field_name = TYPE_FIELD_NAME (type, i);
6716 struct type *t;
6717 int disp;
d2e4a39e 6718
14f9c5c9 6719 if (t_field_name == NULL)
4c4b4cd2 6720 continue;
14f9c5c9
AS
6721
6722 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6723 {
6724 if (dispp != NULL)
6725 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6726 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6727 }
14f9c5c9
AS
6728
6729 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6730 {
6731 disp = 0;
6732 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6733 0, 1, &disp);
6734 if (t != NULL)
6735 {
6736 if (dispp != NULL)
6737 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6738 return t;
6739 }
6740 }
14f9c5c9
AS
6741
6742 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6743 {
6744 int j;
5b4ee69b
MS
6745 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6746 i));
4c4b4cd2
PH
6747
6748 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6749 {
b1f33ddd
JB
6750 /* FIXME pnh 2008/01/26: We check for a field that is
6751 NOT wrapped in a struct, since the compiler sometimes
6752 generates these for unchecked variant types. Revisit
0963b4bd 6753 if the compiler changes this practice. */
b1f33ddd 6754 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6755 disp = 0;
b1f33ddd
JB
6756 if (v_field_name != NULL
6757 && field_name_match (v_field_name, name))
6758 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6759 else
0963b4bd
MS
6760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6761 j),
b1f33ddd
JB
6762 name, 0, 1, &disp);
6763
4c4b4cd2
PH
6764 if (t != NULL)
6765 {
6766 if (dispp != NULL)
6767 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6768 return t;
6769 }
6770 }
6771 }
14f9c5c9
AS
6772
6773 }
6774
6775BadName:
d2e4a39e 6776 if (!noerr)
14f9c5c9
AS
6777 {
6778 target_terminal_ours ();
6779 gdb_flush (gdb_stdout);
323e0a4a
AC
6780 if (name == NULL)
6781 {
6782 /* XXX: type_sprint */
6783 fprintf_unfiltered (gdb_stderr, _("Type "));
6784 type_print (type, "", gdb_stderr, -1);
6785 error (_(" has no component named <null>"));
6786 }
6787 else
6788 {
6789 /* XXX: type_sprint */
6790 fprintf_unfiltered (gdb_stderr, _("Type "));
6791 type_print (type, "", gdb_stderr, -1);
6792 error (_(" has no component named %s"), name);
6793 }
14f9c5c9
AS
6794 }
6795
6796 return NULL;
6797}
6798
b1f33ddd
JB
6799/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6800 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6801 represents an unchecked union (that is, the variant part of a
0963b4bd 6802 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6803
6804static int
6805is_unchecked_variant (struct type *var_type, struct type *outer_type)
6806{
6807 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6808
b1f33ddd
JB
6809 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6810 == NULL);
6811}
6812
6813
14f9c5c9
AS
6814/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6815 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6816 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6817 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6818
d2e4a39e 6819int
ebf56fd3 6820ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6821 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6822{
6823 int others_clause;
6824 int i;
d2e4a39e 6825 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6826 struct value *outer;
6827 struct value *discrim;
14f9c5c9
AS
6828 LONGEST discrim_val;
6829
0c281816
JB
6830 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6831 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6832 if (discrim == NULL)
14f9c5c9 6833 return -1;
0c281816 6834 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6835
6836 others_clause = -1;
6837 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6838 {
6839 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6840 others_clause = i;
14f9c5c9 6841 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6842 return i;
14f9c5c9
AS
6843 }
6844
6845 return others_clause;
6846}
d2e4a39e 6847\f
14f9c5c9
AS
6848
6849
4c4b4cd2 6850 /* Dynamic-Sized Records */
14f9c5c9
AS
6851
6852/* Strategy: The type ostensibly attached to a value with dynamic size
6853 (i.e., a size that is not statically recorded in the debugging
6854 data) does not accurately reflect the size or layout of the value.
6855 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6856 conventional types that are constructed on the fly. */
14f9c5c9
AS
6857
6858/* There is a subtle and tricky problem here. In general, we cannot
6859 determine the size of dynamic records without its data. However,
6860 the 'struct value' data structure, which GDB uses to represent
6861 quantities in the inferior process (the target), requires the size
6862 of the type at the time of its allocation in order to reserve space
6863 for GDB's internal copy of the data. That's why the
6864 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6865 rather than struct value*s.
14f9c5c9
AS
6866
6867 However, GDB's internal history variables ($1, $2, etc.) are
6868 struct value*s containing internal copies of the data that are not, in
6869 general, the same as the data at their corresponding addresses in
6870 the target. Fortunately, the types we give to these values are all
6871 conventional, fixed-size types (as per the strategy described
6872 above), so that we don't usually have to perform the
6873 'to_fixed_xxx_type' conversions to look at their values.
6874 Unfortunately, there is one exception: if one of the internal
6875 history variables is an array whose elements are unconstrained
6876 records, then we will need to create distinct fixed types for each
6877 element selected. */
6878
6879/* The upshot of all of this is that many routines take a (type, host
6880 address, target address) triple as arguments to represent a value.
6881 The host address, if non-null, is supposed to contain an internal
6882 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6883 target at the target address. */
14f9c5c9
AS
6884
6885/* Assuming that VAL0 represents a pointer value, the result of
6886 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6887 dynamic-sized types. */
14f9c5c9 6888
d2e4a39e
AS
6889struct value *
6890ada_value_ind (struct value *val0)
14f9c5c9 6891{
d2e4a39e 6892 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6893
4c4b4cd2 6894 return ada_to_fixed_value (val);
14f9c5c9
AS
6895}
6896
6897/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6898 qualifiers on VAL0. */
6899
d2e4a39e
AS
6900static struct value *
6901ada_coerce_ref (struct value *val0)
6902{
df407dfe 6903 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6904 {
6905 struct value *val = val0;
5b4ee69b 6906
994b9211 6907 val = coerce_ref (val);
d2e4a39e 6908 val = unwrap_value (val);
4c4b4cd2 6909 return ada_to_fixed_value (val);
d2e4a39e
AS
6910 }
6911 else
14f9c5c9
AS
6912 return val0;
6913}
6914
6915/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6916 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6917
6918static unsigned int
ebf56fd3 6919align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6920{
6921 return (off + alignment - 1) & ~(alignment - 1);
6922}
6923
4c4b4cd2 6924/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6925
6926static unsigned int
ebf56fd3 6927field_alignment (struct type *type, int f)
14f9c5c9 6928{
d2e4a39e 6929 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6930 int len;
14f9c5c9
AS
6931 int align_offset;
6932
64a1bf19
JB
6933 /* The field name should never be null, unless the debugging information
6934 is somehow malformed. In this case, we assume the field does not
6935 require any alignment. */
6936 if (name == NULL)
6937 return 1;
6938
6939 len = strlen (name);
6940
4c4b4cd2
PH
6941 if (!isdigit (name[len - 1]))
6942 return 1;
14f9c5c9 6943
d2e4a39e 6944 if (isdigit (name[len - 2]))
14f9c5c9
AS
6945 align_offset = len - 2;
6946 else
6947 align_offset = len - 1;
6948
4c4b4cd2 6949 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6950 return TARGET_CHAR_BIT;
6951
4c4b4cd2
PH
6952 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6953}
6954
6955/* Find a symbol named NAME. Ignores ambiguity. */
6956
6957struct symbol *
6958ada_find_any_symbol (const char *name)
6959{
6960 struct symbol *sym;
6961
6962 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6963 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6964 return sym;
6965
6966 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6967 return sym;
14f9c5c9
AS
6968}
6969
dddfab26
UW
6970/* Find a type named NAME. Ignores ambiguity. This routine will look
6971 solely for types defined by debug info, it will not search the GDB
6972 primitive types. */
4c4b4cd2 6973
d2e4a39e 6974struct type *
ebf56fd3 6975ada_find_any_type (const char *name)
14f9c5c9 6976{
4c4b4cd2 6977 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6978
14f9c5c9 6979 if (sym != NULL)
dddfab26 6980 return SYMBOL_TYPE (sym);
14f9c5c9 6981
dddfab26 6982 return NULL;
14f9c5c9
AS
6983}
6984
aeb5907d
JB
6985/* Given NAME and an associated BLOCK, search all symbols for
6986 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6987 associated to NAME. Return this symbol if found, return
6988 NULL otherwise. */
6989
6990struct symbol *
6991ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6992{
6993 struct symbol *sym;
6994
6995 sym = find_old_style_renaming_symbol (name, block);
6996
6997 if (sym != NULL)
6998 return sym;
6999
0963b4bd 7000 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
7001 sym = ada_find_any_symbol (name);
7002 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7003 return sym;
7004 else
7005 return NULL;
7006}
7007
7008static struct symbol *
7009find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7010{
7f0df278 7011 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7012 char *rename;
7013
7014 if (function_sym != NULL)
7015 {
7016 /* If the symbol is defined inside a function, NAME is not fully
7017 qualified. This means we need to prepend the function name
7018 as well as adding the ``___XR'' suffix to build the name of
7019 the associated renaming symbol. */
7020 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7021 /* Function names sometimes contain suffixes used
7022 for instance to qualify nested subprograms. When building
7023 the XR type name, we need to make sure that this suffix is
7024 not included. So do not include any suffix in the function
7025 name length below. */
69fadcdf 7026 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7027 const int rename_len = function_name_len + 2 /* "__" */
7028 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7029
529cad9c 7030 /* Strip the suffix if necessary. */
69fadcdf
JB
7031 ada_remove_trailing_digits (function_name, &function_name_len);
7032 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7033 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7034
4c4b4cd2
PH
7035 /* Library-level functions are a special case, as GNAT adds
7036 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7037 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7038 have this prefix, so we need to skip this prefix if present. */
7039 if (function_name_len > 5 /* "_ada_" */
7040 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7041 {
7042 function_name += 5;
7043 function_name_len -= 5;
7044 }
4c4b4cd2
PH
7045
7046 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7047 strncpy (rename, function_name, function_name_len);
7048 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7049 "__%s___XR", name);
4c4b4cd2
PH
7050 }
7051 else
7052 {
7053 const int rename_len = strlen (name) + 6;
5b4ee69b 7054
4c4b4cd2 7055 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7056 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7057 }
7058
7059 return ada_find_any_symbol (rename);
7060}
7061
14f9c5c9 7062/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7063 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7064 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7065 otherwise return 0. */
7066
14f9c5c9 7067int
d2e4a39e 7068ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7069{
7070 if (type1 == NULL)
7071 return 1;
7072 else if (type0 == NULL)
7073 return 0;
7074 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7075 return 1;
7076 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7077 return 0;
4c4b4cd2
PH
7078 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7079 return 1;
ad82864c 7080 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7081 return 1;
4c4b4cd2
PH
7082 else if (ada_is_array_descriptor_type (type0)
7083 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7084 return 1;
aeb5907d
JB
7085 else
7086 {
7087 const char *type0_name = type_name_no_tag (type0);
7088 const char *type1_name = type_name_no_tag (type1);
7089
7090 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7091 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7092 return 1;
7093 }
14f9c5c9
AS
7094 return 0;
7095}
7096
7097/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7098 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7099
d2e4a39e
AS
7100char *
7101ada_type_name (struct type *type)
14f9c5c9 7102{
d2e4a39e 7103 if (type == NULL)
14f9c5c9
AS
7104 return NULL;
7105 else if (TYPE_NAME (type) != NULL)
7106 return TYPE_NAME (type);
7107 else
7108 return TYPE_TAG_NAME (type);
7109}
7110
b4ba55a1
JB
7111/* Search the list of "descriptive" types associated to TYPE for a type
7112 whose name is NAME. */
7113
7114static struct type *
7115find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7116{
7117 struct type *result;
7118
7119 /* If there no descriptive-type info, then there is no parallel type
7120 to be found. */
7121 if (!HAVE_GNAT_AUX_INFO (type))
7122 return NULL;
7123
7124 result = TYPE_DESCRIPTIVE_TYPE (type);
7125 while (result != NULL)
7126 {
7127 char *result_name = ada_type_name (result);
7128
7129 if (result_name == NULL)
7130 {
7131 warning (_("unexpected null name on descriptive type"));
7132 return NULL;
7133 }
7134
7135 /* If the names match, stop. */
7136 if (strcmp (result_name, name) == 0)
7137 break;
7138
7139 /* Otherwise, look at the next item on the list, if any. */
7140 if (HAVE_GNAT_AUX_INFO (result))
7141 result = TYPE_DESCRIPTIVE_TYPE (result);
7142 else
7143 result = NULL;
7144 }
7145
7146 /* If we didn't find a match, see whether this is a packed array. With
7147 older compilers, the descriptive type information is either absent or
7148 irrelevant when it comes to packed arrays so the above lookup fails.
7149 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7150 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7151 return ada_find_any_type (name);
7152
7153 return result;
7154}
7155
7156/* Find a parallel type to TYPE with the specified NAME, using the
7157 descriptive type taken from the debugging information, if available,
7158 and otherwise using the (slower) name-based method. */
7159
7160static struct type *
7161ada_find_parallel_type_with_name (struct type *type, const char *name)
7162{
7163 struct type *result = NULL;
7164
7165 if (HAVE_GNAT_AUX_INFO (type))
7166 result = find_parallel_type_by_descriptive_type (type, name);
7167 else
7168 result = ada_find_any_type (name);
7169
7170 return result;
7171}
7172
7173/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7174 SUFFIX to the name of TYPE. */
14f9c5c9 7175
d2e4a39e 7176struct type *
ebf56fd3 7177ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7178{
b4ba55a1 7179 char *name, *typename = ada_type_name (type);
14f9c5c9 7180 int len;
d2e4a39e 7181
14f9c5c9
AS
7182 if (typename == NULL)
7183 return NULL;
7184
7185 len = strlen (typename);
7186
b4ba55a1 7187 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7188
7189 strcpy (name, typename);
7190 strcpy (name + len, suffix);
7191
b4ba55a1 7192 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7193}
7194
14f9c5c9 7195/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7196 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7197
d2e4a39e
AS
7198static struct type *
7199dynamic_template_type (struct type *type)
14f9c5c9 7200{
61ee279c 7201 type = ada_check_typedef (type);
14f9c5c9
AS
7202
7203 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7204 || ada_type_name (type) == NULL)
14f9c5c9 7205 return NULL;
d2e4a39e 7206 else
14f9c5c9
AS
7207 {
7208 int len = strlen (ada_type_name (type));
5b4ee69b 7209
4c4b4cd2
PH
7210 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7211 return type;
14f9c5c9 7212 else
4c4b4cd2 7213 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7214 }
7215}
7216
7217/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7218 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7219
d2e4a39e
AS
7220static int
7221is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7222{
7223 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7224
d2e4a39e 7225 return name != NULL
14f9c5c9
AS
7226 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7227 && strstr (name, "___XVL") != NULL;
7228}
7229
4c4b4cd2
PH
7230/* The index of the variant field of TYPE, or -1 if TYPE does not
7231 represent a variant record type. */
14f9c5c9 7232
d2e4a39e 7233static int
4c4b4cd2 7234variant_field_index (struct type *type)
14f9c5c9
AS
7235{
7236 int f;
7237
4c4b4cd2
PH
7238 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7239 return -1;
7240
7241 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7242 {
7243 if (ada_is_variant_part (type, f))
7244 return f;
7245 }
7246 return -1;
14f9c5c9
AS
7247}
7248
4c4b4cd2
PH
7249/* A record type with no fields. */
7250
d2e4a39e 7251static struct type *
e9bb382b 7252empty_record (struct type *template)
14f9c5c9 7253{
e9bb382b 7254 struct type *type = alloc_type_copy (template);
5b4ee69b 7255
14f9c5c9
AS
7256 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7257 TYPE_NFIELDS (type) = 0;
7258 TYPE_FIELDS (type) = NULL;
b1f33ddd 7259 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7260 TYPE_NAME (type) = "<empty>";
7261 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7262 TYPE_LENGTH (type) = 0;
7263 return type;
7264}
7265
7266/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7267 the value of type TYPE at VALADDR or ADDRESS (see comments at
7268 the beginning of this section) VAL according to GNAT conventions.
7269 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7270 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7271 an outer-level type (i.e., as opposed to a branch of a variant.) A
7272 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7273 of the variant.
14f9c5c9 7274
4c4b4cd2
PH
7275 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7276 length are not statically known are discarded. As a consequence,
7277 VALADDR, ADDRESS and DVAL0 are ignored.
7278
7279 NOTE: Limitations: For now, we assume that dynamic fields and
7280 variants occupy whole numbers of bytes. However, they need not be
7281 byte-aligned. */
7282
7283struct type *
10a2c479 7284ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7285 const gdb_byte *valaddr,
4c4b4cd2
PH
7286 CORE_ADDR address, struct value *dval0,
7287 int keep_dynamic_fields)
14f9c5c9 7288{
d2e4a39e
AS
7289 struct value *mark = value_mark ();
7290 struct value *dval;
7291 struct type *rtype;
14f9c5c9 7292 int nfields, bit_len;
4c4b4cd2 7293 int variant_field;
14f9c5c9 7294 long off;
d94e4f4f 7295 int fld_bit_len;
14f9c5c9
AS
7296 int f;
7297
4c4b4cd2
PH
7298 /* Compute the number of fields in this record type that are going
7299 to be processed: unless keep_dynamic_fields, this includes only
7300 fields whose position and length are static will be processed. */
7301 if (keep_dynamic_fields)
7302 nfields = TYPE_NFIELDS (type);
7303 else
7304 {
7305 nfields = 0;
76a01679 7306 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7307 && !ada_is_variant_part (type, nfields)
7308 && !is_dynamic_field (type, nfields))
7309 nfields++;
7310 }
7311
e9bb382b 7312 rtype = alloc_type_copy (type);
14f9c5c9
AS
7313 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7314 INIT_CPLUS_SPECIFIC (rtype);
7315 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7316 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7317 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7318 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7319 TYPE_NAME (rtype) = ada_type_name (type);
7320 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7321 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7322
d2e4a39e
AS
7323 off = 0;
7324 bit_len = 0;
4c4b4cd2
PH
7325 variant_field = -1;
7326
14f9c5c9
AS
7327 for (f = 0; f < nfields; f += 1)
7328 {
6c038f32
PH
7329 off = align_value (off, field_alignment (type, f))
7330 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7331 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7333
d2e4a39e 7334 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7335 {
7336 variant_field = f;
d94e4f4f 7337 fld_bit_len = 0;
4c4b4cd2 7338 }
14f9c5c9 7339 else if (is_dynamic_field (type, f))
4c4b4cd2 7340 {
284614f0
JB
7341 const gdb_byte *field_valaddr = valaddr;
7342 CORE_ADDR field_address = address;
7343 struct type *field_type =
7344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7345
4c4b4cd2 7346 if (dval0 == NULL)
b5304971
JG
7347 {
7348 /* rtype's length is computed based on the run-time
7349 value of discriminants. If the discriminants are not
7350 initialized, the type size may be completely bogus and
0963b4bd 7351 GDB may fail to allocate a value for it. So check the
b5304971
JG
7352 size first before creating the value. */
7353 check_size (rtype);
7354 dval = value_from_contents_and_address (rtype, valaddr, address);
7355 }
4c4b4cd2
PH
7356 else
7357 dval = dval0;
7358
284614f0
JB
7359 /* If the type referenced by this field is an aligner type, we need
7360 to unwrap that aligner type, because its size might not be set.
7361 Keeping the aligner type would cause us to compute the wrong
7362 size for this field, impacting the offset of the all the fields
7363 that follow this one. */
7364 if (ada_is_aligner_type (field_type))
7365 {
7366 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7367
7368 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7369 field_address = cond_offset_target (field_address, field_offset);
7370 field_type = ada_aligned_type (field_type);
7371 }
7372
7373 field_valaddr = cond_offset_host (field_valaddr,
7374 off / TARGET_CHAR_BIT);
7375 field_address = cond_offset_target (field_address,
7376 off / TARGET_CHAR_BIT);
7377
7378 /* Get the fixed type of the field. Note that, in this case,
7379 we do not want to get the real type out of the tag: if
7380 the current field is the parent part of a tagged record,
7381 we will get the tag of the object. Clearly wrong: the real
7382 type of the parent is not the real type of the child. We
7383 would end up in an infinite loop. */
7384 field_type = ada_get_base_type (field_type);
7385 field_type = ada_to_fixed_type (field_type, field_valaddr,
7386 field_address, dval, 0);
27f2a97b
JB
7387 /* If the field size is already larger than the maximum
7388 object size, then the record itself will necessarily
7389 be larger than the maximum object size. We need to make
7390 this check now, because the size might be so ridiculously
7391 large (due to an uninitialized variable in the inferior)
7392 that it would cause an overflow when adding it to the
7393 record size. */
7394 check_size (field_type);
284614f0
JB
7395
7396 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7397 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7398 /* The multiplication can potentially overflow. But because
7399 the field length has been size-checked just above, and
7400 assuming that the maximum size is a reasonable value,
7401 an overflow should not happen in practice. So rather than
7402 adding overflow recovery code to this already complex code,
7403 we just assume that it's not going to happen. */
d94e4f4f 7404 fld_bit_len =
4c4b4cd2
PH
7405 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7406 }
14f9c5c9 7407 else
4c4b4cd2 7408 {
9f0dec2d
JB
7409 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7410
720d1a40
JB
7411 /* If our field is a typedef type (most likely a typedef of
7412 a fat pointer, encoding an array access), then we need to
7413 look at its target type to determine its characteristics.
7414 In particular, we would miscompute the field size if we took
7415 the size of the typedef (zero), instead of the size of
7416 the target type. */
7417 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7418 field_type = ada_typedef_target_type (field_type);
7419
9f0dec2d 7420 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7421 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7422 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7423 fld_bit_len =
4c4b4cd2
PH
7424 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7425 else
d94e4f4f 7426 fld_bit_len =
9f0dec2d 7427 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7428 }
14f9c5c9 7429 if (off + fld_bit_len > bit_len)
4c4b4cd2 7430 bit_len = off + fld_bit_len;
d94e4f4f 7431 off += fld_bit_len;
4c4b4cd2
PH
7432 TYPE_LENGTH (rtype) =
7433 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7434 }
4c4b4cd2
PH
7435
7436 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7437 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7438 the record. This can happen in the presence of representation
7439 clauses. */
7440 if (variant_field >= 0)
7441 {
7442 struct type *branch_type;
7443
7444 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7445
7446 if (dval0 == NULL)
7447 dval = value_from_contents_and_address (rtype, valaddr, address);
7448 else
7449 dval = dval0;
7450
7451 branch_type =
7452 to_fixed_variant_branch_type
7453 (TYPE_FIELD_TYPE (type, variant_field),
7454 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7455 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7456 if (branch_type == NULL)
7457 {
7458 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7459 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7460 TYPE_NFIELDS (rtype) -= 1;
7461 }
7462 else
7463 {
7464 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7465 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7466 fld_bit_len =
7467 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7468 TARGET_CHAR_BIT;
7469 if (off + fld_bit_len > bit_len)
7470 bit_len = off + fld_bit_len;
7471 TYPE_LENGTH (rtype) =
7472 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7473 }
7474 }
7475
714e53ab
PH
7476 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7477 should contain the alignment of that record, which should be a strictly
7478 positive value. If null or negative, then something is wrong, most
7479 probably in the debug info. In that case, we don't round up the size
0963b4bd 7480 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7481 the current RTYPE length might be good enough for our purposes. */
7482 if (TYPE_LENGTH (type) <= 0)
7483 {
323e0a4a
AC
7484 if (TYPE_NAME (rtype))
7485 warning (_("Invalid type size for `%s' detected: %d."),
7486 TYPE_NAME (rtype), TYPE_LENGTH (type));
7487 else
7488 warning (_("Invalid type size for <unnamed> detected: %d."),
7489 TYPE_LENGTH (type));
714e53ab
PH
7490 }
7491 else
7492 {
7493 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7494 TYPE_LENGTH (type));
7495 }
14f9c5c9
AS
7496
7497 value_free_to_mark (mark);
d2e4a39e 7498 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7499 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7500 return rtype;
7501}
7502
4c4b4cd2
PH
7503/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7504 of 1. */
14f9c5c9 7505
d2e4a39e 7506static struct type *
fc1a4b47 7507template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7508 CORE_ADDR address, struct value *dval0)
7509{
7510 return ada_template_to_fixed_record_type_1 (type, valaddr,
7511 address, dval0, 1);
7512}
7513
7514/* An ordinary record type in which ___XVL-convention fields and
7515 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7516 static approximations, containing all possible fields. Uses
7517 no runtime values. Useless for use in values, but that's OK,
7518 since the results are used only for type determinations. Works on both
7519 structs and unions. Representation note: to save space, we memorize
7520 the result of this function in the TYPE_TARGET_TYPE of the
7521 template type. */
7522
7523static struct type *
7524template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7525{
7526 struct type *type;
7527 int nfields;
7528 int f;
7529
4c4b4cd2
PH
7530 if (TYPE_TARGET_TYPE (type0) != NULL)
7531 return TYPE_TARGET_TYPE (type0);
7532
7533 nfields = TYPE_NFIELDS (type0);
7534 type = type0;
14f9c5c9
AS
7535
7536 for (f = 0; f < nfields; f += 1)
7537 {
61ee279c 7538 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7539 struct type *new_type;
14f9c5c9 7540
4c4b4cd2
PH
7541 if (is_dynamic_field (type0, f))
7542 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7543 else
f192137b 7544 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7545 if (type == type0 && new_type != field_type)
7546 {
e9bb382b 7547 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7548 TYPE_CODE (type) = TYPE_CODE (type0);
7549 INIT_CPLUS_SPECIFIC (type);
7550 TYPE_NFIELDS (type) = nfields;
7551 TYPE_FIELDS (type) = (struct field *)
7552 TYPE_ALLOC (type, nfields * sizeof (struct field));
7553 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7554 sizeof (struct field) * nfields);
7555 TYPE_NAME (type) = ada_type_name (type0);
7556 TYPE_TAG_NAME (type) = NULL;
876cecd0 7557 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7558 TYPE_LENGTH (type) = 0;
7559 }
7560 TYPE_FIELD_TYPE (type, f) = new_type;
7561 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7562 }
14f9c5c9
AS
7563 return type;
7564}
7565
4c4b4cd2 7566/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7567 whose address in memory is ADDRESS, returns a revision of TYPE,
7568 which should be a non-dynamic-sized record, in which the variant
7569 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7570 for discriminant values in DVAL0, which can be NULL if the record
7571 contains the necessary discriminant values. */
7572
d2e4a39e 7573static struct type *
fc1a4b47 7574to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7575 CORE_ADDR address, struct value *dval0)
14f9c5c9 7576{
d2e4a39e 7577 struct value *mark = value_mark ();
4c4b4cd2 7578 struct value *dval;
d2e4a39e 7579 struct type *rtype;
14f9c5c9
AS
7580 struct type *branch_type;
7581 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7582 int variant_field = variant_field_index (type);
14f9c5c9 7583
4c4b4cd2 7584 if (variant_field == -1)
14f9c5c9
AS
7585 return type;
7586
4c4b4cd2
PH
7587 if (dval0 == NULL)
7588 dval = value_from_contents_and_address (type, valaddr, address);
7589 else
7590 dval = dval0;
7591
e9bb382b 7592 rtype = alloc_type_copy (type);
14f9c5c9 7593 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7594 INIT_CPLUS_SPECIFIC (rtype);
7595 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7596 TYPE_FIELDS (rtype) =
7597 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7598 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7599 sizeof (struct field) * nfields);
14f9c5c9
AS
7600 TYPE_NAME (rtype) = ada_type_name (type);
7601 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7602 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7603 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7604
4c4b4cd2
PH
7605 branch_type = to_fixed_variant_branch_type
7606 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7607 cond_offset_host (valaddr,
4c4b4cd2
PH
7608 TYPE_FIELD_BITPOS (type, variant_field)
7609 / TARGET_CHAR_BIT),
d2e4a39e 7610 cond_offset_target (address,
4c4b4cd2
PH
7611 TYPE_FIELD_BITPOS (type, variant_field)
7612 / TARGET_CHAR_BIT), dval);
d2e4a39e 7613 if (branch_type == NULL)
14f9c5c9 7614 {
4c4b4cd2 7615 int f;
5b4ee69b 7616
4c4b4cd2
PH
7617 for (f = variant_field + 1; f < nfields; f += 1)
7618 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7619 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7620 }
7621 else
7622 {
4c4b4cd2
PH
7623 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7624 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7625 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7626 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7627 }
4c4b4cd2 7628 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7629
4c4b4cd2 7630 value_free_to_mark (mark);
14f9c5c9
AS
7631 return rtype;
7632}
7633
7634/* An ordinary record type (with fixed-length fields) that describes
7635 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7636 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7637 should be in DVAL, a record value; it may be NULL if the object
7638 at ADDR itself contains any necessary discriminant values.
7639 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7640 values from the record are needed. Except in the case that DVAL,
7641 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7642 unchecked) is replaced by a particular branch of the variant.
7643
7644 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7645 is questionable and may be removed. It can arise during the
7646 processing of an unconstrained-array-of-record type where all the
7647 variant branches have exactly the same size. This is because in
7648 such cases, the compiler does not bother to use the XVS convention
7649 when encoding the record. I am currently dubious of this
7650 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7651
d2e4a39e 7652static struct type *
fc1a4b47 7653to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7654 CORE_ADDR address, struct value *dval)
14f9c5c9 7655{
d2e4a39e 7656 struct type *templ_type;
14f9c5c9 7657
876cecd0 7658 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7659 return type0;
7660
d2e4a39e 7661 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7662
7663 if (templ_type != NULL)
7664 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7665 else if (variant_field_index (type0) >= 0)
7666 {
7667 if (dval == NULL && valaddr == NULL && address == 0)
7668 return type0;
7669 return to_record_with_fixed_variant_part (type0, valaddr, address,
7670 dval);
7671 }
14f9c5c9
AS
7672 else
7673 {
876cecd0 7674 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7675 return type0;
7676 }
7677
7678}
7679
7680/* An ordinary record type (with fixed-length fields) that describes
7681 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7682 union type. Any necessary discriminants' values should be in DVAL,
7683 a record value. That is, this routine selects the appropriate
7684 branch of the union at ADDR according to the discriminant value
b1f33ddd 7685 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7686 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7687
d2e4a39e 7688static struct type *
fc1a4b47 7689to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7690 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7691{
7692 int which;
d2e4a39e
AS
7693 struct type *templ_type;
7694 struct type *var_type;
14f9c5c9
AS
7695
7696 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7697 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7698 else
14f9c5c9
AS
7699 var_type = var_type0;
7700
7701 templ_type = ada_find_parallel_type (var_type, "___XVU");
7702
7703 if (templ_type != NULL)
7704 var_type = templ_type;
7705
b1f33ddd
JB
7706 if (is_unchecked_variant (var_type, value_type (dval)))
7707 return var_type0;
d2e4a39e
AS
7708 which =
7709 ada_which_variant_applies (var_type,
0fd88904 7710 value_type (dval), value_contents (dval));
14f9c5c9
AS
7711
7712 if (which < 0)
e9bb382b 7713 return empty_record (var_type);
14f9c5c9 7714 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7715 return to_fixed_record_type
d2e4a39e
AS
7716 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7717 valaddr, address, dval);
4c4b4cd2 7718 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7719 return
7720 to_fixed_record_type
7721 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7722 else
7723 return TYPE_FIELD_TYPE (var_type, which);
7724}
7725
7726/* Assuming that TYPE0 is an array type describing the type of a value
7727 at ADDR, and that DVAL describes a record containing any
7728 discriminants used in TYPE0, returns a type for the value that
7729 contains no dynamic components (that is, no components whose sizes
7730 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7731 true, gives an error message if the resulting type's size is over
4c4b4cd2 7732 varsize_limit. */
14f9c5c9 7733
d2e4a39e
AS
7734static struct type *
7735to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7736 int ignore_too_big)
14f9c5c9 7737{
d2e4a39e
AS
7738 struct type *index_type_desc;
7739 struct type *result;
ad82864c 7740 int constrained_packed_array_p;
14f9c5c9 7741
b0dd7688 7742 type0 = ada_check_typedef (type0);
284614f0 7743 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7744 return type0;
14f9c5c9 7745
ad82864c
JB
7746 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7747 if (constrained_packed_array_p)
7748 type0 = decode_constrained_packed_array_type (type0);
284614f0 7749
14f9c5c9 7750 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7751 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7752 if (index_type_desc == NULL)
7753 {
61ee279c 7754 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7755
14f9c5c9 7756 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7757 depend on the contents of the array in properly constructed
7758 debugging data. */
529cad9c
PH
7759 /* Create a fixed version of the array element type.
7760 We're not providing the address of an element here,
e1d5a0d2 7761 and thus the actual object value cannot be inspected to do
529cad9c
PH
7762 the conversion. This should not be a problem, since arrays of
7763 unconstrained objects are not allowed. In particular, all
7764 the elements of an array of a tagged type should all be of
7765 the same type specified in the debugging info. No need to
7766 consult the object tag. */
1ed6ede0 7767 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7768
284614f0
JB
7769 /* Make sure we always create a new array type when dealing with
7770 packed array types, since we're going to fix-up the array
7771 type length and element bitsize a little further down. */
ad82864c 7772 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7773 result = type0;
14f9c5c9 7774 else
e9bb382b 7775 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7776 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7777 }
7778 else
7779 {
7780 int i;
7781 struct type *elt_type0;
7782
7783 elt_type0 = type0;
7784 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7785 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7786
7787 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7788 depend on the contents of the array in properly constructed
7789 debugging data. */
529cad9c
PH
7790 /* Create a fixed version of the array element type.
7791 We're not providing the address of an element here,
e1d5a0d2 7792 and thus the actual object value cannot be inspected to do
529cad9c
PH
7793 the conversion. This should not be a problem, since arrays of
7794 unconstrained objects are not allowed. In particular, all
7795 the elements of an array of a tagged type should all be of
7796 the same type specified in the debugging info. No need to
7797 consult the object tag. */
1ed6ede0
JB
7798 result =
7799 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7800
7801 elt_type0 = type0;
14f9c5c9 7802 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7803 {
7804 struct type *range_type =
28c85d6c 7805 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7806
e9bb382b 7807 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7808 result, range_type);
1ce677a4 7809 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7810 }
d2e4a39e 7811 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7812 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7813 }
7814
ad82864c 7815 if (constrained_packed_array_p)
284614f0
JB
7816 {
7817 /* So far, the resulting type has been created as if the original
7818 type was a regular (non-packed) array type. As a result, the
7819 bitsize of the array elements needs to be set again, and the array
7820 length needs to be recomputed based on that bitsize. */
7821 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7822 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7823
7824 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7825 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7826 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7827 TYPE_LENGTH (result)++;
7828 }
7829
876cecd0 7830 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7831 return result;
d2e4a39e 7832}
14f9c5c9
AS
7833
7834
7835/* A standard type (containing no dynamically sized components)
7836 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7837 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7838 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7839 ADDRESS or in VALADDR contains these discriminants.
7840
1ed6ede0
JB
7841 If CHECK_TAG is not null, in the case of tagged types, this function
7842 attempts to locate the object's tag and use it to compute the actual
7843 type. However, when ADDRESS is null, we cannot use it to determine the
7844 location of the tag, and therefore compute the tagged type's actual type.
7845 So we return the tagged type without consulting the tag. */
529cad9c 7846
f192137b
JB
7847static struct type *
7848ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7849 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7850{
61ee279c 7851 type = ada_check_typedef (type);
d2e4a39e
AS
7852 switch (TYPE_CODE (type))
7853 {
7854 default:
14f9c5c9 7855 return type;
d2e4a39e 7856 case TYPE_CODE_STRUCT:
4c4b4cd2 7857 {
76a01679 7858 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7859 struct type *fixed_record_type =
7860 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7861
529cad9c
PH
7862 /* If STATIC_TYPE is a tagged type and we know the object's address,
7863 then we can determine its tag, and compute the object's actual
0963b4bd 7864 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7865 type (the parent part of the record may have dynamic fields
7866 and the way the location of _tag is expressed may depend on
7867 them). */
529cad9c 7868
1ed6ede0 7869 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7870 {
7871 struct type *real_type =
1ed6ede0
JB
7872 type_from_tag (value_tag_from_contents_and_address
7873 (fixed_record_type,
7874 valaddr,
7875 address));
5b4ee69b 7876
76a01679 7877 if (real_type != NULL)
1ed6ede0 7878 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7879 }
4af88198
JB
7880
7881 /* Check to see if there is a parallel ___XVZ variable.
7882 If there is, then it provides the actual size of our type. */
7883 else if (ada_type_name (fixed_record_type) != NULL)
7884 {
7885 char *name = ada_type_name (fixed_record_type);
7886 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7887 int xvz_found = 0;
7888 LONGEST size;
7889
88c15c34 7890 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7891 size = get_int_var_value (xvz_name, &xvz_found);
7892 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7893 {
7894 fixed_record_type = copy_type (fixed_record_type);
7895 TYPE_LENGTH (fixed_record_type) = size;
7896
7897 /* The FIXED_RECORD_TYPE may have be a stub. We have
7898 observed this when the debugging info is STABS, and
7899 apparently it is something that is hard to fix.
7900
7901 In practice, we don't need the actual type definition
7902 at all, because the presence of the XVZ variable allows us
7903 to assume that there must be a XVS type as well, which we
7904 should be able to use later, when we need the actual type
7905 definition.
7906
7907 In the meantime, pretend that the "fixed" type we are
7908 returning is NOT a stub, because this can cause trouble
7909 when using this type to create new types targeting it.
7910 Indeed, the associated creation routines often check
7911 whether the target type is a stub and will try to replace
0963b4bd 7912 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7913 might cause the new type to have the wrong size too.
7914 Consider the case of an array, for instance, where the size
7915 of the array is computed from the number of elements in
7916 our array multiplied by the size of its element. */
7917 TYPE_STUB (fixed_record_type) = 0;
7918 }
7919 }
1ed6ede0 7920 return fixed_record_type;
4c4b4cd2 7921 }
d2e4a39e 7922 case TYPE_CODE_ARRAY:
4c4b4cd2 7923 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7924 case TYPE_CODE_UNION:
7925 if (dval == NULL)
4c4b4cd2 7926 return type;
d2e4a39e 7927 else
4c4b4cd2 7928 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7929 }
14f9c5c9
AS
7930}
7931
f192137b
JB
7932/* The same as ada_to_fixed_type_1, except that it preserves the type
7933 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7934
7935 The typedef layer needs be preserved in order to differentiate between
7936 arrays and array pointers when both types are implemented using the same
7937 fat pointer. In the array pointer case, the pointer is encoded as
7938 a typedef of the pointer type. For instance, considering:
7939
7940 type String_Access is access String;
7941 S1 : String_Access := null;
7942
7943 To the debugger, S1 is defined as a typedef of type String. But
7944 to the user, it is a pointer. So if the user tries to print S1,
7945 we should not dereference the array, but print the array address
7946 instead.
7947
7948 If we didn't preserve the typedef layer, we would lose the fact that
7949 the type is to be presented as a pointer (needs de-reference before
7950 being printed). And we would also use the source-level type name. */
f192137b
JB
7951
7952struct type *
7953ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7954 CORE_ADDR address, struct value *dval, int check_tag)
7955
7956{
7957 struct type *fixed_type =
7958 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7959
96dbd2c1
JB
7960 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7961 then preserve the typedef layer.
7962
7963 Implementation note: We can only check the main-type portion of
7964 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7965 from TYPE now returns a type that has the same instance flags
7966 as TYPE. For instance, if TYPE is a "typedef const", and its
7967 target type is a "struct", then the typedef elimination will return
7968 a "const" version of the target type. See check_typedef for more
7969 details about how the typedef layer elimination is done.
7970
7971 brobecker/2010-11-19: It seems to me that the only case where it is
7972 useful to preserve the typedef layer is when dealing with fat pointers.
7973 Perhaps, we could add a check for that and preserve the typedef layer
7974 only in that situation. But this seems unecessary so far, probably
7975 because we call check_typedef/ada_check_typedef pretty much everywhere.
7976 */
f192137b 7977 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7978 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7979 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7980 return type;
7981
7982 return fixed_type;
7983}
7984
14f9c5c9 7985/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7986 TYPE0, but based on no runtime data. */
14f9c5c9 7987
d2e4a39e
AS
7988static struct type *
7989to_static_fixed_type (struct type *type0)
14f9c5c9 7990{
d2e4a39e 7991 struct type *type;
14f9c5c9
AS
7992
7993 if (type0 == NULL)
7994 return NULL;
7995
876cecd0 7996 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7997 return type0;
7998
61ee279c 7999 type0 = ada_check_typedef (type0);
d2e4a39e 8000
14f9c5c9
AS
8001 switch (TYPE_CODE (type0))
8002 {
8003 default:
8004 return type0;
8005 case TYPE_CODE_STRUCT:
8006 type = dynamic_template_type (type0);
d2e4a39e 8007 if (type != NULL)
4c4b4cd2
PH
8008 return template_to_static_fixed_type (type);
8009 else
8010 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8011 case TYPE_CODE_UNION:
8012 type = ada_find_parallel_type (type0, "___XVU");
8013 if (type != NULL)
4c4b4cd2
PH
8014 return template_to_static_fixed_type (type);
8015 else
8016 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8017 }
8018}
8019
4c4b4cd2
PH
8020/* A static approximation of TYPE with all type wrappers removed. */
8021
d2e4a39e
AS
8022static struct type *
8023static_unwrap_type (struct type *type)
14f9c5c9
AS
8024{
8025 if (ada_is_aligner_type (type))
8026 {
61ee279c 8027 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8028 if (ada_type_name (type1) == NULL)
4c4b4cd2 8029 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8030
8031 return static_unwrap_type (type1);
8032 }
d2e4a39e 8033 else
14f9c5c9 8034 {
d2e4a39e 8035 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8036
d2e4a39e 8037 if (raw_real_type == type)
4c4b4cd2 8038 return type;
14f9c5c9 8039 else
4c4b4cd2 8040 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8041 }
8042}
8043
8044/* In some cases, incomplete and private types require
4c4b4cd2 8045 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8046 type Foo;
8047 type FooP is access Foo;
8048 V: FooP;
8049 type Foo is array ...;
4c4b4cd2 8050 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8051 cross-references to such types, we instead substitute for FooP a
8052 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8053 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8054
8055/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8056 exists, otherwise TYPE. */
8057
d2e4a39e 8058struct type *
61ee279c 8059ada_check_typedef (struct type *type)
14f9c5c9 8060{
727e3d2e
JB
8061 if (type == NULL)
8062 return NULL;
8063
720d1a40
JB
8064 /* If our type is a typedef type of a fat pointer, then we're done.
8065 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8066 what allows us to distinguish between fat pointers that represent
8067 array types, and fat pointers that represent array access types
8068 (in both cases, the compiler implements them as fat pointers). */
8069 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8070 && is_thick_pntr (ada_typedef_target_type (type)))
8071 return type;
8072
14f9c5c9
AS
8073 CHECK_TYPEDEF (type);
8074 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8075 || !TYPE_STUB (type)
14f9c5c9
AS
8076 || TYPE_TAG_NAME (type) == NULL)
8077 return type;
d2e4a39e 8078 else
14f9c5c9 8079 {
d2e4a39e
AS
8080 char *name = TYPE_TAG_NAME (type);
8081 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8082
05e522ef
JB
8083 if (type1 == NULL)
8084 return type;
8085
8086 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8087 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8088 types, only for the typedef-to-array types). If that's the case,
8089 strip the typedef layer. */
8090 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8091 type1 = ada_check_typedef (type1);
8092
8093 return type1;
14f9c5c9
AS
8094 }
8095}
8096
8097/* A value representing the data at VALADDR/ADDRESS as described by
8098 type TYPE0, but with a standard (static-sized) type that correctly
8099 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8100 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8101 creation of struct values]. */
14f9c5c9 8102
4c4b4cd2
PH
8103static struct value *
8104ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8105 struct value *val0)
14f9c5c9 8106{
1ed6ede0 8107 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8108
14f9c5c9
AS
8109 if (type == type0 && val0 != NULL)
8110 return val0;
d2e4a39e 8111 else
4c4b4cd2
PH
8112 return value_from_contents_and_address (type, 0, address);
8113}
8114
8115/* A value representing VAL, but with a standard (static-sized) type
8116 that correctly describes it. Does not necessarily create a new
8117 value. */
8118
0c3acc09 8119struct value *
4c4b4cd2
PH
8120ada_to_fixed_value (struct value *val)
8121{
df407dfe 8122 return ada_to_fixed_value_create (value_type (val),
42ae5230 8123 value_address (val),
4c4b4cd2 8124 val);
14f9c5c9 8125}
d2e4a39e 8126\f
14f9c5c9 8127
14f9c5c9
AS
8128/* Attributes */
8129
4c4b4cd2
PH
8130/* Table mapping attribute numbers to names.
8131 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8132
d2e4a39e 8133static const char *attribute_names[] = {
14f9c5c9
AS
8134 "<?>",
8135
d2e4a39e 8136 "first",
14f9c5c9
AS
8137 "last",
8138 "length",
8139 "image",
14f9c5c9
AS
8140 "max",
8141 "min",
4c4b4cd2
PH
8142 "modulus",
8143 "pos",
8144 "size",
8145 "tag",
14f9c5c9 8146 "val",
14f9c5c9
AS
8147 0
8148};
8149
d2e4a39e 8150const char *
4c4b4cd2 8151ada_attribute_name (enum exp_opcode n)
14f9c5c9 8152{
4c4b4cd2
PH
8153 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8154 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8155 else
8156 return attribute_names[0];
8157}
8158
4c4b4cd2 8159/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8160
4c4b4cd2
PH
8161static LONGEST
8162pos_atr (struct value *arg)
14f9c5c9 8163{
24209737
PH
8164 struct value *val = coerce_ref (arg);
8165 struct type *type = value_type (val);
14f9c5c9 8166
d2e4a39e 8167 if (!discrete_type_p (type))
323e0a4a 8168 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8169
8170 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8171 {
8172 int i;
24209737 8173 LONGEST v = value_as_long (val);
14f9c5c9 8174
d2e4a39e 8175 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8176 {
8177 if (v == TYPE_FIELD_BITPOS (type, i))
8178 return i;
8179 }
323e0a4a 8180 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8181 }
8182 else
24209737 8183 return value_as_long (val);
4c4b4cd2
PH
8184}
8185
8186static struct value *
3cb382c9 8187value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8188{
3cb382c9 8189 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8190}
8191
4c4b4cd2 8192/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8193
d2e4a39e
AS
8194static struct value *
8195value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8196{
d2e4a39e 8197 if (!discrete_type_p (type))
323e0a4a 8198 error (_("'VAL only defined on discrete types"));
df407dfe 8199 if (!integer_type_p (value_type (arg)))
323e0a4a 8200 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8201
8202 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8203 {
8204 long pos = value_as_long (arg);
5b4ee69b 8205
14f9c5c9 8206 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8207 error (_("argument to 'VAL out of range"));
d2e4a39e 8208 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8209 }
8210 else
8211 return value_from_longest (type, value_as_long (arg));
8212}
14f9c5c9 8213\f
d2e4a39e 8214
4c4b4cd2 8215 /* Evaluation */
14f9c5c9 8216
4c4b4cd2
PH
8217/* True if TYPE appears to be an Ada character type.
8218 [At the moment, this is true only for Character and Wide_Character;
8219 It is a heuristic test that could stand improvement]. */
14f9c5c9 8220
d2e4a39e
AS
8221int
8222ada_is_character_type (struct type *type)
14f9c5c9 8223{
7b9f71f2
JB
8224 const char *name;
8225
8226 /* If the type code says it's a character, then assume it really is,
8227 and don't check any further. */
8228 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8229 return 1;
8230
8231 /* Otherwise, assume it's a character type iff it is a discrete type
8232 with a known character type name. */
8233 name = ada_type_name (type);
8234 return (name != NULL
8235 && (TYPE_CODE (type) == TYPE_CODE_INT
8236 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8237 && (strcmp (name, "character") == 0
8238 || strcmp (name, "wide_character") == 0
5a517ebd 8239 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8240 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8241}
8242
4c4b4cd2 8243/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8244
8245int
ebf56fd3 8246ada_is_string_type (struct type *type)
14f9c5c9 8247{
61ee279c 8248 type = ada_check_typedef (type);
d2e4a39e 8249 if (type != NULL
14f9c5c9 8250 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8251 && (ada_is_simple_array_type (type)
8252 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8253 && ada_array_arity (type) == 1)
8254 {
8255 struct type *elttype = ada_array_element_type (type, 1);
8256
8257 return ada_is_character_type (elttype);
8258 }
d2e4a39e 8259 else
14f9c5c9
AS
8260 return 0;
8261}
8262
5bf03f13
JB
8263/* The compiler sometimes provides a parallel XVS type for a given
8264 PAD type. Normally, it is safe to follow the PAD type directly,
8265 but older versions of the compiler have a bug that causes the offset
8266 of its "F" field to be wrong. Following that field in that case
8267 would lead to incorrect results, but this can be worked around
8268 by ignoring the PAD type and using the associated XVS type instead.
8269
8270 Set to True if the debugger should trust the contents of PAD types.
8271 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8272static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8273
8274/* True if TYPE is a struct type introduced by the compiler to force the
8275 alignment of a value. Such types have a single field with a
4c4b4cd2 8276 distinctive name. */
14f9c5c9
AS
8277
8278int
ebf56fd3 8279ada_is_aligner_type (struct type *type)
14f9c5c9 8280{
61ee279c 8281 type = ada_check_typedef (type);
714e53ab 8282
5bf03f13 8283 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8284 return 0;
8285
14f9c5c9 8286 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8287 && TYPE_NFIELDS (type) == 1
8288 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8289}
8290
8291/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8292 the parallel type. */
14f9c5c9 8293
d2e4a39e
AS
8294struct type *
8295ada_get_base_type (struct type *raw_type)
14f9c5c9 8296{
d2e4a39e
AS
8297 struct type *real_type_namer;
8298 struct type *raw_real_type;
14f9c5c9
AS
8299
8300 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8301 return raw_type;
8302
284614f0
JB
8303 if (ada_is_aligner_type (raw_type))
8304 /* The encoding specifies that we should always use the aligner type.
8305 So, even if this aligner type has an associated XVS type, we should
8306 simply ignore it.
8307
8308 According to the compiler gurus, an XVS type parallel to an aligner
8309 type may exist because of a stabs limitation. In stabs, aligner
8310 types are empty because the field has a variable-sized type, and
8311 thus cannot actually be used as an aligner type. As a result,
8312 we need the associated parallel XVS type to decode the type.
8313 Since the policy in the compiler is to not change the internal
8314 representation based on the debugging info format, we sometimes
8315 end up having a redundant XVS type parallel to the aligner type. */
8316 return raw_type;
8317
14f9c5c9 8318 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8319 if (real_type_namer == NULL
14f9c5c9
AS
8320 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8321 || TYPE_NFIELDS (real_type_namer) != 1)
8322 return raw_type;
8323
f80d3ff2
JB
8324 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8325 {
8326 /* This is an older encoding form where the base type needs to be
8327 looked up by name. We prefer the newer enconding because it is
8328 more efficient. */
8329 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8330 if (raw_real_type == NULL)
8331 return raw_type;
8332 else
8333 return raw_real_type;
8334 }
8335
8336 /* The field in our XVS type is a reference to the base type. */
8337 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8338}
14f9c5c9 8339
4c4b4cd2 8340/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8341
d2e4a39e
AS
8342struct type *
8343ada_aligned_type (struct type *type)
14f9c5c9
AS
8344{
8345 if (ada_is_aligner_type (type))
8346 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8347 else
8348 return ada_get_base_type (type);
8349}
8350
8351
8352/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8353 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8354
fc1a4b47
AC
8355const gdb_byte *
8356ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8357{
d2e4a39e 8358 if (ada_is_aligner_type (type))
14f9c5c9 8359 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8360 valaddr +
8361 TYPE_FIELD_BITPOS (type,
8362 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8363 else
8364 return valaddr;
8365}
8366
4c4b4cd2
PH
8367
8368
14f9c5c9 8369/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8370 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8371const char *
8372ada_enum_name (const char *name)
14f9c5c9 8373{
4c4b4cd2
PH
8374 static char *result;
8375 static size_t result_len = 0;
d2e4a39e 8376 char *tmp;
14f9c5c9 8377
4c4b4cd2
PH
8378 /* First, unqualify the enumeration name:
8379 1. Search for the last '.' character. If we find one, then skip
177b42fe 8380 all the preceding characters, the unqualified name starts
76a01679 8381 right after that dot.
4c4b4cd2 8382 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8383 translates dots into "__". Search forward for double underscores,
8384 but stop searching when we hit an overloading suffix, which is
8385 of the form "__" followed by digits. */
4c4b4cd2 8386
c3e5cd34
PH
8387 tmp = strrchr (name, '.');
8388 if (tmp != NULL)
4c4b4cd2
PH
8389 name = tmp + 1;
8390 else
14f9c5c9 8391 {
4c4b4cd2
PH
8392 while ((tmp = strstr (name, "__")) != NULL)
8393 {
8394 if (isdigit (tmp[2]))
8395 break;
8396 else
8397 name = tmp + 2;
8398 }
14f9c5c9
AS
8399 }
8400
8401 if (name[0] == 'Q')
8402 {
14f9c5c9 8403 int v;
5b4ee69b 8404
14f9c5c9 8405 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8406 {
8407 if (sscanf (name + 2, "%x", &v) != 1)
8408 return name;
8409 }
14f9c5c9 8410 else
4c4b4cd2 8411 return name;
14f9c5c9 8412
4c4b4cd2 8413 GROW_VECT (result, result_len, 16);
14f9c5c9 8414 if (isascii (v) && isprint (v))
88c15c34 8415 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8416 else if (name[1] == 'U')
88c15c34 8417 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8418 else
88c15c34 8419 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8420
8421 return result;
8422 }
d2e4a39e 8423 else
4c4b4cd2 8424 {
c3e5cd34
PH
8425 tmp = strstr (name, "__");
8426 if (tmp == NULL)
8427 tmp = strstr (name, "$");
8428 if (tmp != NULL)
4c4b4cd2
PH
8429 {
8430 GROW_VECT (result, result_len, tmp - name + 1);
8431 strncpy (result, name, tmp - name);
8432 result[tmp - name] = '\0';
8433 return result;
8434 }
8435
8436 return name;
8437 }
14f9c5c9
AS
8438}
8439
14f9c5c9
AS
8440/* Evaluate the subexpression of EXP starting at *POS as for
8441 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8442 expression. */
14f9c5c9 8443
d2e4a39e
AS
8444static struct value *
8445evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8446{
4b27a620 8447 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8448}
8449
8450/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8451 value it wraps. */
14f9c5c9 8452
d2e4a39e
AS
8453static struct value *
8454unwrap_value (struct value *val)
14f9c5c9 8455{
df407dfe 8456 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8457
14f9c5c9
AS
8458 if (ada_is_aligner_type (type))
8459 {
de4d072f 8460 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8461 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8462
14f9c5c9 8463 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8464 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8465
8466 return unwrap_value (v);
8467 }
d2e4a39e 8468 else
14f9c5c9 8469 {
d2e4a39e 8470 struct type *raw_real_type =
61ee279c 8471 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8472
5bf03f13
JB
8473 /* If there is no parallel XVS or XVE type, then the value is
8474 already unwrapped. Return it without further modification. */
8475 if ((type == raw_real_type)
8476 && ada_find_parallel_type (type, "___XVE") == NULL)
8477 return val;
14f9c5c9 8478
d2e4a39e 8479 return
4c4b4cd2
PH
8480 coerce_unspec_val_to_type
8481 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8482 value_address (val),
1ed6ede0 8483 NULL, 1));
14f9c5c9
AS
8484 }
8485}
d2e4a39e
AS
8486
8487static struct value *
8488cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8489{
8490 LONGEST val;
8491
df407dfe 8492 if (type == value_type (arg))
14f9c5c9 8493 return arg;
df407dfe 8494 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8495 val = ada_float_to_fixed (type,
df407dfe 8496 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8497 value_as_long (arg)));
d2e4a39e 8498 else
14f9c5c9 8499 {
a53b7a21 8500 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8501
14f9c5c9
AS
8502 val = ada_float_to_fixed (type, argd);
8503 }
8504
8505 return value_from_longest (type, val);
8506}
8507
d2e4a39e 8508static struct value *
a53b7a21 8509cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8510{
df407dfe 8511 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8512 value_as_long (arg));
5b4ee69b 8513
a53b7a21 8514 return value_from_double (type, val);
14f9c5c9
AS
8515}
8516
4c4b4cd2
PH
8517/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8518 return the converted value. */
8519
d2e4a39e
AS
8520static struct value *
8521coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8522{
df407dfe 8523 struct type *type2 = value_type (val);
5b4ee69b 8524
14f9c5c9
AS
8525 if (type == type2)
8526 return val;
8527
61ee279c
PH
8528 type2 = ada_check_typedef (type2);
8529 type = ada_check_typedef (type);
14f9c5c9 8530
d2e4a39e
AS
8531 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8532 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8533 {
8534 val = ada_value_ind (val);
df407dfe 8535 type2 = value_type (val);
14f9c5c9
AS
8536 }
8537
d2e4a39e 8538 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8539 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8540 {
8541 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8542 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8543 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8544 error (_("Incompatible types in assignment"));
04624583 8545 deprecated_set_value_type (val, type);
14f9c5c9 8546 }
d2e4a39e 8547 return val;
14f9c5c9
AS
8548}
8549
4c4b4cd2
PH
8550static struct value *
8551ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8552{
8553 struct value *val;
8554 struct type *type1, *type2;
8555 LONGEST v, v1, v2;
8556
994b9211
AC
8557 arg1 = coerce_ref (arg1);
8558 arg2 = coerce_ref (arg2);
18af8284
JB
8559 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8560 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8561
76a01679
JB
8562 if (TYPE_CODE (type1) != TYPE_CODE_INT
8563 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8564 return value_binop (arg1, arg2, op);
8565
76a01679 8566 switch (op)
4c4b4cd2
PH
8567 {
8568 case BINOP_MOD:
8569 case BINOP_DIV:
8570 case BINOP_REM:
8571 break;
8572 default:
8573 return value_binop (arg1, arg2, op);
8574 }
8575
8576 v2 = value_as_long (arg2);
8577 if (v2 == 0)
323e0a4a 8578 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8579
8580 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8581 return value_binop (arg1, arg2, op);
8582
8583 v1 = value_as_long (arg1);
8584 switch (op)
8585 {
8586 case BINOP_DIV:
8587 v = v1 / v2;
76a01679
JB
8588 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8589 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8590 break;
8591 case BINOP_REM:
8592 v = v1 % v2;
76a01679
JB
8593 if (v * v1 < 0)
8594 v -= v2;
4c4b4cd2
PH
8595 break;
8596 default:
8597 /* Should not reach this point. */
8598 v = 0;
8599 }
8600
8601 val = allocate_value (type1);
990a07ab 8602 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8603 TYPE_LENGTH (value_type (val)),
8604 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8605 return val;
8606}
8607
8608static int
8609ada_value_equal (struct value *arg1, struct value *arg2)
8610{
df407dfe
AC
8611 if (ada_is_direct_array_type (value_type (arg1))
8612 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8613 {
f58b38bf
JB
8614 /* Automatically dereference any array reference before
8615 we attempt to perform the comparison. */
8616 arg1 = ada_coerce_ref (arg1);
8617 arg2 = ada_coerce_ref (arg2);
8618
4c4b4cd2
PH
8619 arg1 = ada_coerce_to_simple_array (arg1);
8620 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8621 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8622 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8623 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8624 /* FIXME: The following works only for types whose
76a01679
JB
8625 representations use all bits (no padding or undefined bits)
8626 and do not have user-defined equality. */
8627 return
df407dfe 8628 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8629 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8630 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8631 }
8632 return value_equal (arg1, arg2);
8633}
8634
52ce6436
PH
8635/* Total number of component associations in the aggregate starting at
8636 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8637 OP_AGGREGATE. */
52ce6436
PH
8638
8639static int
8640num_component_specs (struct expression *exp, int pc)
8641{
8642 int n, m, i;
5b4ee69b 8643
52ce6436
PH
8644 m = exp->elts[pc + 1].longconst;
8645 pc += 3;
8646 n = 0;
8647 for (i = 0; i < m; i += 1)
8648 {
8649 switch (exp->elts[pc].opcode)
8650 {
8651 default:
8652 n += 1;
8653 break;
8654 case OP_CHOICES:
8655 n += exp->elts[pc + 1].longconst;
8656 break;
8657 }
8658 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8659 }
8660 return n;
8661}
8662
8663/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8664 component of LHS (a simple array or a record), updating *POS past
8665 the expression, assuming that LHS is contained in CONTAINER. Does
8666 not modify the inferior's memory, nor does it modify LHS (unless
8667 LHS == CONTAINER). */
8668
8669static void
8670assign_component (struct value *container, struct value *lhs, LONGEST index,
8671 struct expression *exp, int *pos)
8672{
8673 struct value *mark = value_mark ();
8674 struct value *elt;
5b4ee69b 8675
52ce6436
PH
8676 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8677 {
22601c15
UW
8678 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8679 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8680
52ce6436
PH
8681 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8682 }
8683 else
8684 {
8685 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8686 elt = ada_to_fixed_value (unwrap_value (elt));
8687 }
8688
8689 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8690 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8691 else
8692 value_assign_to_component (container, elt,
8693 ada_evaluate_subexp (NULL, exp, pos,
8694 EVAL_NORMAL));
8695
8696 value_free_to_mark (mark);
8697}
8698
8699/* Assuming that LHS represents an lvalue having a record or array
8700 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8701 of that aggregate's value to LHS, advancing *POS past the
8702 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8703 lvalue containing LHS (possibly LHS itself). Does not modify
8704 the inferior's memory, nor does it modify the contents of
0963b4bd 8705 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8706
8707static struct value *
8708assign_aggregate (struct value *container,
8709 struct value *lhs, struct expression *exp,
8710 int *pos, enum noside noside)
8711{
8712 struct type *lhs_type;
8713 int n = exp->elts[*pos+1].longconst;
8714 LONGEST low_index, high_index;
8715 int num_specs;
8716 LONGEST *indices;
8717 int max_indices, num_indices;
8718 int is_array_aggregate;
8719 int i;
52ce6436
PH
8720
8721 *pos += 3;
8722 if (noside != EVAL_NORMAL)
8723 {
52ce6436
PH
8724 for (i = 0; i < n; i += 1)
8725 ada_evaluate_subexp (NULL, exp, pos, noside);
8726 return container;
8727 }
8728
8729 container = ada_coerce_ref (container);
8730 if (ada_is_direct_array_type (value_type (container)))
8731 container = ada_coerce_to_simple_array (container);
8732 lhs = ada_coerce_ref (lhs);
8733 if (!deprecated_value_modifiable (lhs))
8734 error (_("Left operand of assignment is not a modifiable lvalue."));
8735
8736 lhs_type = value_type (lhs);
8737 if (ada_is_direct_array_type (lhs_type))
8738 {
8739 lhs = ada_coerce_to_simple_array (lhs);
8740 lhs_type = value_type (lhs);
8741 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8742 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8743 is_array_aggregate = 1;
8744 }
8745 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8746 {
8747 low_index = 0;
8748 high_index = num_visible_fields (lhs_type) - 1;
8749 is_array_aggregate = 0;
8750 }
8751 else
8752 error (_("Left-hand side must be array or record."));
8753
8754 num_specs = num_component_specs (exp, *pos - 3);
8755 max_indices = 4 * num_specs + 4;
8756 indices = alloca (max_indices * sizeof (indices[0]));
8757 indices[0] = indices[1] = low_index - 1;
8758 indices[2] = indices[3] = high_index + 1;
8759 num_indices = 4;
8760
8761 for (i = 0; i < n; i += 1)
8762 {
8763 switch (exp->elts[*pos].opcode)
8764 {
1fbf5ada
JB
8765 case OP_CHOICES:
8766 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8767 &num_indices, max_indices,
8768 low_index, high_index);
8769 break;
8770 case OP_POSITIONAL:
8771 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8772 &num_indices, max_indices,
8773 low_index, high_index);
1fbf5ada
JB
8774 break;
8775 case OP_OTHERS:
8776 if (i != n-1)
8777 error (_("Misplaced 'others' clause"));
8778 aggregate_assign_others (container, lhs, exp, pos, indices,
8779 num_indices, low_index, high_index);
8780 break;
8781 default:
8782 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8783 }
8784 }
8785
8786 return container;
8787}
8788
8789/* Assign into the component of LHS indexed by the OP_POSITIONAL
8790 construct at *POS, updating *POS past the construct, given that
8791 the positions are relative to lower bound LOW, where HIGH is the
8792 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8793 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8794 assign_aggregate. */
52ce6436
PH
8795static void
8796aggregate_assign_positional (struct value *container,
8797 struct value *lhs, struct expression *exp,
8798 int *pos, LONGEST *indices, int *num_indices,
8799 int max_indices, LONGEST low, LONGEST high)
8800{
8801 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8802
8803 if (ind - 1 == high)
e1d5a0d2 8804 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8805 if (ind <= high)
8806 {
8807 add_component_interval (ind, ind, indices, num_indices, max_indices);
8808 *pos += 3;
8809 assign_component (container, lhs, ind, exp, pos);
8810 }
8811 else
8812 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8813}
8814
8815/* Assign into the components of LHS indexed by the OP_CHOICES
8816 construct at *POS, updating *POS past the construct, given that
8817 the allowable indices are LOW..HIGH. Record the indices assigned
8818 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8819 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8820static void
8821aggregate_assign_from_choices (struct value *container,
8822 struct value *lhs, struct expression *exp,
8823 int *pos, LONGEST *indices, int *num_indices,
8824 int max_indices, LONGEST low, LONGEST high)
8825{
8826 int j;
8827 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8828 int choice_pos, expr_pc;
8829 int is_array = ada_is_direct_array_type (value_type (lhs));
8830
8831 choice_pos = *pos += 3;
8832
8833 for (j = 0; j < n_choices; j += 1)
8834 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8835 expr_pc = *pos;
8836 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8837
8838 for (j = 0; j < n_choices; j += 1)
8839 {
8840 LONGEST lower, upper;
8841 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8842
52ce6436
PH
8843 if (op == OP_DISCRETE_RANGE)
8844 {
8845 choice_pos += 1;
8846 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8847 EVAL_NORMAL));
8848 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8849 EVAL_NORMAL));
8850 }
8851 else if (is_array)
8852 {
8853 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8854 EVAL_NORMAL));
8855 upper = lower;
8856 }
8857 else
8858 {
8859 int ind;
8860 char *name;
5b4ee69b 8861
52ce6436
PH
8862 switch (op)
8863 {
8864 case OP_NAME:
8865 name = &exp->elts[choice_pos + 2].string;
8866 break;
8867 case OP_VAR_VALUE:
8868 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8869 break;
8870 default:
8871 error (_("Invalid record component association."));
8872 }
8873 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8874 ind = 0;
8875 if (! find_struct_field (name, value_type (lhs), 0,
8876 NULL, NULL, NULL, NULL, &ind))
8877 error (_("Unknown component name: %s."), name);
8878 lower = upper = ind;
8879 }
8880
8881 if (lower <= upper && (lower < low || upper > high))
8882 error (_("Index in component association out of bounds."));
8883
8884 add_component_interval (lower, upper, indices, num_indices,
8885 max_indices);
8886 while (lower <= upper)
8887 {
8888 int pos1;
5b4ee69b 8889
52ce6436
PH
8890 pos1 = expr_pc;
8891 assign_component (container, lhs, lower, exp, &pos1);
8892 lower += 1;
8893 }
8894 }
8895}
8896
8897/* Assign the value of the expression in the OP_OTHERS construct in
8898 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8899 have not been previously assigned. The index intervals already assigned
8900 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8901 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8902static void
8903aggregate_assign_others (struct value *container,
8904 struct value *lhs, struct expression *exp,
8905 int *pos, LONGEST *indices, int num_indices,
8906 LONGEST low, LONGEST high)
8907{
8908 int i;
5ce64950 8909 int expr_pc = *pos + 1;
52ce6436
PH
8910
8911 for (i = 0; i < num_indices - 2; i += 2)
8912 {
8913 LONGEST ind;
5b4ee69b 8914
52ce6436
PH
8915 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8916 {
5ce64950 8917 int localpos;
5b4ee69b 8918
5ce64950
MS
8919 localpos = expr_pc;
8920 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8921 }
8922 }
8923 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8924}
8925
8926/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8927 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8928 modifying *SIZE as needed. It is an error if *SIZE exceeds
8929 MAX_SIZE. The resulting intervals do not overlap. */
8930static void
8931add_component_interval (LONGEST low, LONGEST high,
8932 LONGEST* indices, int *size, int max_size)
8933{
8934 int i, j;
5b4ee69b 8935
52ce6436
PH
8936 for (i = 0; i < *size; i += 2) {
8937 if (high >= indices[i] && low <= indices[i + 1])
8938 {
8939 int kh;
5b4ee69b 8940
52ce6436
PH
8941 for (kh = i + 2; kh < *size; kh += 2)
8942 if (high < indices[kh])
8943 break;
8944 if (low < indices[i])
8945 indices[i] = low;
8946 indices[i + 1] = indices[kh - 1];
8947 if (high > indices[i + 1])
8948 indices[i + 1] = high;
8949 memcpy (indices + i + 2, indices + kh, *size - kh);
8950 *size -= kh - i - 2;
8951 return;
8952 }
8953 else if (high < indices[i])
8954 break;
8955 }
8956
8957 if (*size == max_size)
8958 error (_("Internal error: miscounted aggregate components."));
8959 *size += 2;
8960 for (j = *size-1; j >= i+2; j -= 1)
8961 indices[j] = indices[j - 2];
8962 indices[i] = low;
8963 indices[i + 1] = high;
8964}
8965
6e48bd2c
JB
8966/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8967 is different. */
8968
8969static struct value *
8970ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8971{
8972 if (type == ada_check_typedef (value_type (arg2)))
8973 return arg2;
8974
8975 if (ada_is_fixed_point_type (type))
8976 return (cast_to_fixed (type, arg2));
8977
8978 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8979 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8980
8981 return value_cast (type, arg2);
8982}
8983
284614f0
JB
8984/* Evaluating Ada expressions, and printing their result.
8985 ------------------------------------------------------
8986
21649b50
JB
8987 1. Introduction:
8988 ----------------
8989
284614f0
JB
8990 We usually evaluate an Ada expression in order to print its value.
8991 We also evaluate an expression in order to print its type, which
8992 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8993 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8994 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8995 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8996 similar.
8997
8998 Evaluating expressions is a little more complicated for Ada entities
8999 than it is for entities in languages such as C. The main reason for
9000 this is that Ada provides types whose definition might be dynamic.
9001 One example of such types is variant records. Or another example
9002 would be an array whose bounds can only be known at run time.
9003
9004 The following description is a general guide as to what should be
9005 done (and what should NOT be done) in order to evaluate an expression
9006 involving such types, and when. This does not cover how the semantic
9007 information is encoded by GNAT as this is covered separatly. For the
9008 document used as the reference for the GNAT encoding, see exp_dbug.ads
9009 in the GNAT sources.
9010
9011 Ideally, we should embed each part of this description next to its
9012 associated code. Unfortunately, the amount of code is so vast right
9013 now that it's hard to see whether the code handling a particular
9014 situation might be duplicated or not. One day, when the code is
9015 cleaned up, this guide might become redundant with the comments
9016 inserted in the code, and we might want to remove it.
9017
21649b50
JB
9018 2. ``Fixing'' an Entity, the Simple Case:
9019 -----------------------------------------
9020
284614f0
JB
9021 When evaluating Ada expressions, the tricky issue is that they may
9022 reference entities whose type contents and size are not statically
9023 known. Consider for instance a variant record:
9024
9025 type Rec (Empty : Boolean := True) is record
9026 case Empty is
9027 when True => null;
9028 when False => Value : Integer;
9029 end case;
9030 end record;
9031 Yes : Rec := (Empty => False, Value => 1);
9032 No : Rec := (empty => True);
9033
9034 The size and contents of that record depends on the value of the
9035 descriminant (Rec.Empty). At this point, neither the debugging
9036 information nor the associated type structure in GDB are able to
9037 express such dynamic types. So what the debugger does is to create
9038 "fixed" versions of the type that applies to the specific object.
9039 We also informally refer to this opperation as "fixing" an object,
9040 which means creating its associated fixed type.
9041
9042 Example: when printing the value of variable "Yes" above, its fixed
9043 type would look like this:
9044
9045 type Rec is record
9046 Empty : Boolean;
9047 Value : Integer;
9048 end record;
9049
9050 On the other hand, if we printed the value of "No", its fixed type
9051 would become:
9052
9053 type Rec is record
9054 Empty : Boolean;
9055 end record;
9056
9057 Things become a little more complicated when trying to fix an entity
9058 with a dynamic type that directly contains another dynamic type,
9059 such as an array of variant records, for instance. There are
9060 two possible cases: Arrays, and records.
9061
21649b50
JB
9062 3. ``Fixing'' Arrays:
9063 ---------------------
9064
9065 The type structure in GDB describes an array in terms of its bounds,
9066 and the type of its elements. By design, all elements in the array
9067 have the same type and we cannot represent an array of variant elements
9068 using the current type structure in GDB. When fixing an array,
9069 we cannot fix the array element, as we would potentially need one
9070 fixed type per element of the array. As a result, the best we can do
9071 when fixing an array is to produce an array whose bounds and size
9072 are correct (allowing us to read it from memory), but without having
9073 touched its element type. Fixing each element will be done later,
9074 when (if) necessary.
9075
9076 Arrays are a little simpler to handle than records, because the same
9077 amount of memory is allocated for each element of the array, even if
1b536f04 9078 the amount of space actually used by each element differs from element
21649b50 9079 to element. Consider for instance the following array of type Rec:
284614f0
JB
9080
9081 type Rec_Array is array (1 .. 2) of Rec;
9082
1b536f04
JB
9083 The actual amount of memory occupied by each element might be different
9084 from element to element, depending on the value of their discriminant.
21649b50 9085 But the amount of space reserved for each element in the array remains
1b536f04 9086 fixed regardless. So we simply need to compute that size using
21649b50
JB
9087 the debugging information available, from which we can then determine
9088 the array size (we multiply the number of elements of the array by
9089 the size of each element).
9090
9091 The simplest case is when we have an array of a constrained element
9092 type. For instance, consider the following type declarations:
9093
9094 type Bounded_String (Max_Size : Integer) is
9095 Length : Integer;
9096 Buffer : String (1 .. Max_Size);
9097 end record;
9098 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9099
9100 In this case, the compiler describes the array as an array of
9101 variable-size elements (identified by its XVS suffix) for which
9102 the size can be read in the parallel XVZ variable.
9103
9104 In the case of an array of an unconstrained element type, the compiler
9105 wraps the array element inside a private PAD type. This type should not
9106 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9107 that we also use the adjective "aligner" in our code to designate
9108 these wrapper types.
9109
1b536f04 9110 In some cases, the size allocated for each element is statically
21649b50
JB
9111 known. In that case, the PAD type already has the correct size,
9112 and the array element should remain unfixed.
9113
9114 But there are cases when this size is not statically known.
9115 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9116
9117 type Dynamic is array (1 .. Five) of Integer;
9118 type Wrapper (Has_Length : Boolean := False) is record
9119 Data : Dynamic;
9120 case Has_Length is
9121 when True => Length : Integer;
9122 when False => null;
9123 end case;
9124 end record;
9125 type Wrapper_Array is array (1 .. 2) of Wrapper;
9126
9127 Hello : Wrapper_Array := (others => (Has_Length => True,
9128 Data => (others => 17),
9129 Length => 1));
9130
9131
9132 The debugging info would describe variable Hello as being an
9133 array of a PAD type. The size of that PAD type is not statically
9134 known, but can be determined using a parallel XVZ variable.
9135 In that case, a copy of the PAD type with the correct size should
9136 be used for the fixed array.
9137
21649b50
JB
9138 3. ``Fixing'' record type objects:
9139 ----------------------------------
9140
9141 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9142 record types. In this case, in order to compute the associated
9143 fixed type, we need to determine the size and offset of each of
9144 its components. This, in turn, requires us to compute the fixed
9145 type of each of these components.
9146
9147 Consider for instance the example:
9148
9149 type Bounded_String (Max_Size : Natural) is record
9150 Str : String (1 .. Max_Size);
9151 Length : Natural;
9152 end record;
9153 My_String : Bounded_String (Max_Size => 10);
9154
9155 In that case, the position of field "Length" depends on the size
9156 of field Str, which itself depends on the value of the Max_Size
21649b50 9157 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9158 we need to fix the type of field Str. Therefore, fixing a variant
9159 record requires us to fix each of its components.
9160
9161 However, if a component does not have a dynamic size, the component
9162 should not be fixed. In particular, fields that use a PAD type
9163 should not fixed. Here is an example where this might happen
9164 (assuming type Rec above):
9165
9166 type Container (Big : Boolean) is record
9167 First : Rec;
9168 After : Integer;
9169 case Big is
9170 when True => Another : Integer;
9171 when False => null;
9172 end case;
9173 end record;
9174 My_Container : Container := (Big => False,
9175 First => (Empty => True),
9176 After => 42);
9177
9178 In that example, the compiler creates a PAD type for component First,
9179 whose size is constant, and then positions the component After just
9180 right after it. The offset of component After is therefore constant
9181 in this case.
9182
9183 The debugger computes the position of each field based on an algorithm
9184 that uses, among other things, the actual position and size of the field
21649b50
JB
9185 preceding it. Let's now imagine that the user is trying to print
9186 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9187 end up computing the offset of field After based on the size of the
9188 fixed version of field First. And since in our example First has
9189 only one actual field, the size of the fixed type is actually smaller
9190 than the amount of space allocated to that field, and thus we would
9191 compute the wrong offset of field After.
9192
21649b50
JB
9193 To make things more complicated, we need to watch out for dynamic
9194 components of variant records (identified by the ___XVL suffix in
9195 the component name). Even if the target type is a PAD type, the size
9196 of that type might not be statically known. So the PAD type needs
9197 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9198 we might end up with the wrong size for our component. This can be
9199 observed with the following type declarations:
284614f0
JB
9200
9201 type Octal is new Integer range 0 .. 7;
9202 type Octal_Array is array (Positive range <>) of Octal;
9203 pragma Pack (Octal_Array);
9204
9205 type Octal_Buffer (Size : Positive) is record
9206 Buffer : Octal_Array (1 .. Size);
9207 Length : Integer;
9208 end record;
9209
9210 In that case, Buffer is a PAD type whose size is unset and needs
9211 to be computed by fixing the unwrapped type.
9212
21649b50
JB
9213 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9214 ----------------------------------------------------------
9215
9216 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9217 thus far, be actually fixed?
9218
9219 The answer is: Only when referencing that element. For instance
9220 when selecting one component of a record, this specific component
9221 should be fixed at that point in time. Or when printing the value
9222 of a record, each component should be fixed before its value gets
9223 printed. Similarly for arrays, the element of the array should be
9224 fixed when printing each element of the array, or when extracting
9225 one element out of that array. On the other hand, fixing should
9226 not be performed on the elements when taking a slice of an array!
9227
9228 Note that one of the side-effects of miscomputing the offset and
9229 size of each field is that we end up also miscomputing the size
9230 of the containing type. This can have adverse results when computing
9231 the value of an entity. GDB fetches the value of an entity based
9232 on the size of its type, and thus a wrong size causes GDB to fetch
9233 the wrong amount of memory. In the case where the computed size is
9234 too small, GDB fetches too little data to print the value of our
9235 entiry. Results in this case as unpredicatble, as we usually read
9236 past the buffer containing the data =:-o. */
9237
9238/* Implement the evaluate_exp routine in the exp_descriptor structure
9239 for the Ada language. */
9240
52ce6436 9241static struct value *
ebf56fd3 9242ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9243 int *pos, enum noside noside)
14f9c5c9
AS
9244{
9245 enum exp_opcode op;
b5385fc0 9246 int tem;
14f9c5c9
AS
9247 int pc;
9248 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9249 struct type *type;
52ce6436 9250 int nargs, oplen;
d2e4a39e 9251 struct value **argvec;
14f9c5c9 9252
d2e4a39e
AS
9253 pc = *pos;
9254 *pos += 1;
14f9c5c9
AS
9255 op = exp->elts[pc].opcode;
9256
d2e4a39e 9257 switch (op)
14f9c5c9
AS
9258 {
9259 default:
9260 *pos -= 1;
6e48bd2c
JB
9261 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9262 arg1 = unwrap_value (arg1);
9263
9264 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9265 then we need to perform the conversion manually, because
9266 evaluate_subexp_standard doesn't do it. This conversion is
9267 necessary in Ada because the different kinds of float/fixed
9268 types in Ada have different representations.
9269
9270 Similarly, we need to perform the conversion from OP_LONG
9271 ourselves. */
9272 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9273 arg1 = ada_value_cast (expect_type, arg1, noside);
9274
9275 return arg1;
4c4b4cd2
PH
9276
9277 case OP_STRING:
9278 {
76a01679 9279 struct value *result;
5b4ee69b 9280
76a01679
JB
9281 *pos -= 1;
9282 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9283 /* The result type will have code OP_STRING, bashed there from
9284 OP_ARRAY. Bash it back. */
df407dfe
AC
9285 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9286 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9287 return result;
4c4b4cd2 9288 }
14f9c5c9
AS
9289
9290 case UNOP_CAST:
9291 (*pos) += 2;
9292 type = exp->elts[pc + 1].type;
9293 arg1 = evaluate_subexp (type, exp, pos, noside);
9294 if (noside == EVAL_SKIP)
4c4b4cd2 9295 goto nosideret;
6e48bd2c 9296 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9297 return arg1;
9298
4c4b4cd2
PH
9299 case UNOP_QUAL:
9300 (*pos) += 2;
9301 type = exp->elts[pc + 1].type;
9302 return ada_evaluate_subexp (type, exp, pos, noside);
9303
14f9c5c9
AS
9304 case BINOP_ASSIGN:
9305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9306 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9307 {
9308 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9309 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9310 return arg1;
9311 return ada_value_assign (arg1, arg1);
9312 }
003f3813
JB
9313 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9314 except if the lhs of our assignment is a convenience variable.
9315 In the case of assigning to a convenience variable, the lhs
9316 should be exactly the result of the evaluation of the rhs. */
9317 type = value_type (arg1);
9318 if (VALUE_LVAL (arg1) == lval_internalvar)
9319 type = NULL;
9320 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9321 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9322 return arg1;
df407dfe
AC
9323 if (ada_is_fixed_point_type (value_type (arg1)))
9324 arg2 = cast_to_fixed (value_type (arg1), arg2);
9325 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9326 error
323e0a4a 9327 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9328 else
df407dfe 9329 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9330 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9331
9332 case BINOP_ADD:
9333 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9334 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9335 if (noside == EVAL_SKIP)
4c4b4cd2 9336 goto nosideret;
2ac8a782
JB
9337 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9338 return (value_from_longest
9339 (value_type (arg1),
9340 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9341 if ((ada_is_fixed_point_type (value_type (arg1))
9342 || ada_is_fixed_point_type (value_type (arg2)))
9343 && value_type (arg1) != value_type (arg2))
323e0a4a 9344 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9345 /* Do the addition, and cast the result to the type of the first
9346 argument. We cannot cast the result to a reference type, so if
9347 ARG1 is a reference type, find its underlying type. */
9348 type = value_type (arg1);
9349 while (TYPE_CODE (type) == TYPE_CODE_REF)
9350 type = TYPE_TARGET_TYPE (type);
f44316fa 9351 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9352 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9353
9354 case BINOP_SUB:
9355 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9356 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9357 if (noside == EVAL_SKIP)
4c4b4cd2 9358 goto nosideret;
2ac8a782
JB
9359 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9360 return (value_from_longest
9361 (value_type (arg1),
9362 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9363 if ((ada_is_fixed_point_type (value_type (arg1))
9364 || ada_is_fixed_point_type (value_type (arg2)))
9365 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9366 error (_("Operands of fixed-point subtraction "
9367 "must have the same type"));
b7789565
JB
9368 /* Do the substraction, and cast the result to the type of the first
9369 argument. We cannot cast the result to a reference type, so if
9370 ARG1 is a reference type, find its underlying type. */
9371 type = value_type (arg1);
9372 while (TYPE_CODE (type) == TYPE_CODE_REF)
9373 type = TYPE_TARGET_TYPE (type);
f44316fa 9374 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9375 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9376
9377 case BINOP_MUL:
9378 case BINOP_DIV:
e1578042
JB
9379 case BINOP_REM:
9380 case BINOP_MOD:
14f9c5c9
AS
9381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9382 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9383 if (noside == EVAL_SKIP)
4c4b4cd2 9384 goto nosideret;
e1578042 9385 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9386 {
9387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9388 return value_zero (value_type (arg1), not_lval);
9389 }
14f9c5c9 9390 else
4c4b4cd2 9391 {
a53b7a21 9392 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9393 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9394 arg1 = cast_from_fixed (type, arg1);
df407dfe 9395 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9396 arg2 = cast_from_fixed (type, arg2);
f44316fa 9397 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9398 return ada_value_binop (arg1, arg2, op);
9399 }
9400
4c4b4cd2
PH
9401 case BINOP_EQUAL:
9402 case BINOP_NOTEQUAL:
14f9c5c9 9403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9404 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9405 if (noside == EVAL_SKIP)
76a01679 9406 goto nosideret;
4c4b4cd2 9407 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9408 tem = 0;
4c4b4cd2 9409 else
f44316fa
UW
9410 {
9411 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9412 tem = ada_value_equal (arg1, arg2);
9413 }
4c4b4cd2 9414 if (op == BINOP_NOTEQUAL)
76a01679 9415 tem = !tem;
fbb06eb1
UW
9416 type = language_bool_type (exp->language_defn, exp->gdbarch);
9417 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9418
9419 case UNOP_NEG:
9420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9421 if (noside == EVAL_SKIP)
9422 goto nosideret;
df407dfe
AC
9423 else if (ada_is_fixed_point_type (value_type (arg1)))
9424 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9425 else
f44316fa
UW
9426 {
9427 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9428 return value_neg (arg1);
9429 }
4c4b4cd2 9430
2330c6c6
JB
9431 case BINOP_LOGICAL_AND:
9432 case BINOP_LOGICAL_OR:
9433 case UNOP_LOGICAL_NOT:
000d5124
JB
9434 {
9435 struct value *val;
9436
9437 *pos -= 1;
9438 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9439 type = language_bool_type (exp->language_defn, exp->gdbarch);
9440 return value_cast (type, val);
000d5124 9441 }
2330c6c6
JB
9442
9443 case BINOP_BITWISE_AND:
9444 case BINOP_BITWISE_IOR:
9445 case BINOP_BITWISE_XOR:
000d5124
JB
9446 {
9447 struct value *val;
9448
9449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9450 *pos = pc;
9451 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9452
9453 return value_cast (value_type (arg1), val);
9454 }
2330c6c6 9455
14f9c5c9
AS
9456 case OP_VAR_VALUE:
9457 *pos -= 1;
6799def4 9458
14f9c5c9 9459 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9460 {
9461 *pos += 4;
9462 goto nosideret;
9463 }
9464 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9465 /* Only encountered when an unresolved symbol occurs in a
9466 context other than a function call, in which case, it is
52ce6436 9467 invalid. */
323e0a4a 9468 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9469 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9470 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9471 {
0c1f74cf 9472 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9473 /* Check to see if this is a tagged type. We also need to handle
9474 the case where the type is a reference to a tagged type, but
9475 we have to be careful to exclude pointers to tagged types.
9476 The latter should be shown as usual (as a pointer), whereas
9477 a reference should mostly be transparent to the user. */
9478 if (ada_is_tagged_type (type, 0)
9479 || (TYPE_CODE(type) == TYPE_CODE_REF
9480 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9481 {
9482 /* Tagged types are a little special in the fact that the real
9483 type is dynamic and can only be determined by inspecting the
9484 object's tag. This means that we need to get the object's
9485 value first (EVAL_NORMAL) and then extract the actual object
9486 type from its tag.
9487
9488 Note that we cannot skip the final step where we extract
9489 the object type from its tag, because the EVAL_NORMAL phase
9490 results in dynamic components being resolved into fixed ones.
9491 This can cause problems when trying to print the type
9492 description of tagged types whose parent has a dynamic size:
9493 We use the type name of the "_parent" component in order
9494 to print the name of the ancestor type in the type description.
9495 If that component had a dynamic size, the resolution into
9496 a fixed type would result in the loss of that type name,
9497 thus preventing us from printing the name of the ancestor
9498 type in the type description. */
b79819ba
JB
9499 struct type *actual_type;
9500
0c1f74cf 9501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9502 actual_type = type_from_tag (ada_value_tag (arg1));
9503 if (actual_type == NULL)
9504 /* If, for some reason, we were unable to determine
9505 the actual type from the tag, then use the static
9506 approximation that we just computed as a fallback.
9507 This can happen if the debugging information is
9508 incomplete, for instance. */
9509 actual_type = type;
9510
9511 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9512 }
9513
4c4b4cd2
PH
9514 *pos += 4;
9515 return value_zero
9516 (to_static_fixed_type
9517 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9518 not_lval);
9519 }
d2e4a39e 9520 else
4c4b4cd2 9521 {
284614f0
JB
9522 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9523 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9524 return ada_to_fixed_value (arg1);
9525 }
9526
9527 case OP_FUNCALL:
9528 (*pos) += 2;
9529
9530 /* Allocate arg vector, including space for the function to be
9531 called in argvec[0] and a terminating NULL. */
9532 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9533 argvec =
9534 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9535
9536 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9537 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9538 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9539 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9540 else
9541 {
9542 for (tem = 0; tem <= nargs; tem += 1)
9543 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9544 argvec[tem] = 0;
9545
9546 if (noside == EVAL_SKIP)
9547 goto nosideret;
9548 }
9549
ad82864c
JB
9550 if (ada_is_constrained_packed_array_type
9551 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9552 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9553 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9554 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9555 /* This is a packed array that has already been fixed, and
9556 therefore already coerced to a simple array. Nothing further
9557 to do. */
9558 ;
df407dfe
AC
9559 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9560 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9561 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9562 argvec[0] = value_addr (argvec[0]);
9563
df407dfe 9564 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9565
9566 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9567 them. So, if this is an array typedef (encoding use for array
9568 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9569 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9570 type = ada_typedef_target_type (type);
9571
4c4b4cd2
PH
9572 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9573 {
61ee279c 9574 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9575 {
9576 case TYPE_CODE_FUNC:
61ee279c 9577 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9578 break;
9579 case TYPE_CODE_ARRAY:
9580 break;
9581 case TYPE_CODE_STRUCT:
9582 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9583 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9584 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9585 break;
9586 default:
323e0a4a 9587 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9588 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9589 break;
9590 }
9591 }
9592
9593 switch (TYPE_CODE (type))
9594 {
9595 case TYPE_CODE_FUNC:
9596 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9597 return allocate_value (TYPE_TARGET_TYPE (type));
9598 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9599 case TYPE_CODE_STRUCT:
9600 {
9601 int arity;
9602
4c4b4cd2
PH
9603 arity = ada_array_arity (type);
9604 type = ada_array_element_type (type, nargs);
9605 if (type == NULL)
323e0a4a 9606 error (_("cannot subscript or call a record"));
4c4b4cd2 9607 if (arity != nargs)
323e0a4a 9608 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9610 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9611 return
9612 unwrap_value (ada_value_subscript
9613 (argvec[0], nargs, argvec + 1));
9614 }
9615 case TYPE_CODE_ARRAY:
9616 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9617 {
9618 type = ada_array_element_type (type, nargs);
9619 if (type == NULL)
323e0a4a 9620 error (_("element type of array unknown"));
4c4b4cd2 9621 else
0a07e705 9622 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9623 }
9624 return
9625 unwrap_value (ada_value_subscript
9626 (ada_coerce_to_simple_array (argvec[0]),
9627 nargs, argvec + 1));
9628 case TYPE_CODE_PTR: /* Pointer to array */
9629 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9631 {
9632 type = ada_array_element_type (type, nargs);
9633 if (type == NULL)
323e0a4a 9634 error (_("element type of array unknown"));
4c4b4cd2 9635 else
0a07e705 9636 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9637 }
9638 return
9639 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9640 nargs, argvec + 1));
9641
9642 default:
e1d5a0d2
PH
9643 error (_("Attempt to index or call something other than an "
9644 "array or function"));
4c4b4cd2
PH
9645 }
9646
9647 case TERNOP_SLICE:
9648 {
9649 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650 struct value *low_bound_val =
9651 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9652 struct value *high_bound_val =
9653 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9654 LONGEST low_bound;
9655 LONGEST high_bound;
5b4ee69b 9656
994b9211
AC
9657 low_bound_val = coerce_ref (low_bound_val);
9658 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9659 low_bound = pos_atr (low_bound_val);
9660 high_bound = pos_atr (high_bound_val);
963a6417 9661
4c4b4cd2
PH
9662 if (noside == EVAL_SKIP)
9663 goto nosideret;
9664
4c4b4cd2
PH
9665 /* If this is a reference to an aligner type, then remove all
9666 the aligners. */
df407dfe
AC
9667 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9668 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9669 TYPE_TARGET_TYPE (value_type (array)) =
9670 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9671
ad82864c 9672 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9673 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9674
9675 /* If this is a reference to an array or an array lvalue,
9676 convert to a pointer. */
df407dfe
AC
9677 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9678 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9679 && VALUE_LVAL (array) == lval_memory))
9680 array = value_addr (array);
9681
1265e4aa 9682 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9683 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9684 (value_type (array))))
0b5d8877 9685 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9686
9687 array = ada_coerce_to_simple_array_ptr (array);
9688
714e53ab
PH
9689 /* If we have more than one level of pointer indirection,
9690 dereference the value until we get only one level. */
df407dfe
AC
9691 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9692 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9693 == TYPE_CODE_PTR))
9694 array = value_ind (array);
9695
9696 /* Make sure we really do have an array type before going further,
9697 to avoid a SEGV when trying to get the index type or the target
9698 type later down the road if the debug info generated by
9699 the compiler is incorrect or incomplete. */
df407dfe 9700 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9701 error (_("cannot take slice of non-array"));
714e53ab 9702
828292f2
JB
9703 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9704 == TYPE_CODE_PTR)
4c4b4cd2 9705 {
828292f2
JB
9706 struct type *type0 = ada_check_typedef (value_type (array));
9707
0b5d8877 9708 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9709 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9710 else
9711 {
9712 struct type *arr_type0 =
828292f2 9713 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9714
f5938064
JG
9715 return ada_value_slice_from_ptr (array, arr_type0,
9716 longest_to_int (low_bound),
9717 longest_to_int (high_bound));
4c4b4cd2
PH
9718 }
9719 }
9720 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9721 return array;
9722 else if (high_bound < low_bound)
df407dfe 9723 return empty_array (value_type (array), low_bound);
4c4b4cd2 9724 else
529cad9c
PH
9725 return ada_value_slice (array, longest_to_int (low_bound),
9726 longest_to_int (high_bound));
4c4b4cd2 9727 }
14f9c5c9 9728
4c4b4cd2
PH
9729 case UNOP_IN_RANGE:
9730 (*pos) += 2;
9731 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9732 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9733
14f9c5c9 9734 if (noside == EVAL_SKIP)
4c4b4cd2 9735 goto nosideret;
14f9c5c9 9736
4c4b4cd2
PH
9737 switch (TYPE_CODE (type))
9738 {
9739 default:
e1d5a0d2
PH
9740 lim_warning (_("Membership test incompletely implemented; "
9741 "always returns true"));
fbb06eb1
UW
9742 type = language_bool_type (exp->language_defn, exp->gdbarch);
9743 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9744
9745 case TYPE_CODE_RANGE:
030b4912
UW
9746 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9747 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9748 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9750 type = language_bool_type (exp->language_defn, exp->gdbarch);
9751 return
9752 value_from_longest (type,
4c4b4cd2
PH
9753 (value_less (arg1, arg3)
9754 || value_equal (arg1, arg3))
9755 && (value_less (arg2, arg1)
9756 || value_equal (arg2, arg1)));
9757 }
9758
9759 case BINOP_IN_BOUNDS:
14f9c5c9 9760 (*pos) += 2;
4c4b4cd2
PH
9761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9762 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9763
4c4b4cd2
PH
9764 if (noside == EVAL_SKIP)
9765 goto nosideret;
14f9c5c9 9766
4c4b4cd2 9767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9768 {
9769 type = language_bool_type (exp->language_defn, exp->gdbarch);
9770 return value_zero (type, not_lval);
9771 }
14f9c5c9 9772
4c4b4cd2 9773 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9774
1eea4ebd
UW
9775 type = ada_index_type (value_type (arg2), tem, "range");
9776 if (!type)
9777 type = value_type (arg1);
14f9c5c9 9778
1eea4ebd
UW
9779 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9780 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9781
f44316fa
UW
9782 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9783 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9784 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9785 return
fbb06eb1 9786 value_from_longest (type,
4c4b4cd2
PH
9787 (value_less (arg1, arg3)
9788 || value_equal (arg1, arg3))
9789 && (value_less (arg2, arg1)
9790 || value_equal (arg2, arg1)));
9791
9792 case TERNOP_IN_RANGE:
9793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9794 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9795 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9796
9797 if (noside == EVAL_SKIP)
9798 goto nosideret;
9799
f44316fa
UW
9800 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9802 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9803 return
fbb06eb1 9804 value_from_longest (type,
4c4b4cd2
PH
9805 (value_less (arg1, arg3)
9806 || value_equal (arg1, arg3))
9807 && (value_less (arg2, arg1)
9808 || value_equal (arg2, arg1)));
9809
9810 case OP_ATR_FIRST:
9811 case OP_ATR_LAST:
9812 case OP_ATR_LENGTH:
9813 {
76a01679 9814 struct type *type_arg;
5b4ee69b 9815
76a01679
JB
9816 if (exp->elts[*pos].opcode == OP_TYPE)
9817 {
9818 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9819 arg1 = NULL;
5bc23cb3 9820 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9821 }
9822 else
9823 {
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 type_arg = NULL;
9826 }
9827
9828 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9829 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9830 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9831 *pos += 4;
9832
9833 if (noside == EVAL_SKIP)
9834 goto nosideret;
9835
9836 if (type_arg == NULL)
9837 {
9838 arg1 = ada_coerce_ref (arg1);
9839
ad82864c 9840 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9841 arg1 = ada_coerce_to_simple_array (arg1);
9842
1eea4ebd
UW
9843 type = ada_index_type (value_type (arg1), tem,
9844 ada_attribute_name (op));
9845 if (type == NULL)
9846 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9847
9848 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9849 return allocate_value (type);
76a01679
JB
9850
9851 switch (op)
9852 {
9853 default: /* Should never happen. */
323e0a4a 9854 error (_("unexpected attribute encountered"));
76a01679 9855 case OP_ATR_FIRST:
1eea4ebd
UW
9856 return value_from_longest
9857 (type, ada_array_bound (arg1, tem, 0));
76a01679 9858 case OP_ATR_LAST:
1eea4ebd
UW
9859 return value_from_longest
9860 (type, ada_array_bound (arg1, tem, 1));
76a01679 9861 case OP_ATR_LENGTH:
1eea4ebd
UW
9862 return value_from_longest
9863 (type, ada_array_length (arg1, tem));
76a01679
JB
9864 }
9865 }
9866 else if (discrete_type_p (type_arg))
9867 {
9868 struct type *range_type;
9869 char *name = ada_type_name (type_arg);
5b4ee69b 9870
76a01679
JB
9871 range_type = NULL;
9872 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9873 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9874 if (range_type == NULL)
9875 range_type = type_arg;
9876 switch (op)
9877 {
9878 default:
323e0a4a 9879 error (_("unexpected attribute encountered"));
76a01679 9880 case OP_ATR_FIRST:
690cc4eb 9881 return value_from_longest
43bbcdc2 9882 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9883 case OP_ATR_LAST:
690cc4eb 9884 return value_from_longest
43bbcdc2 9885 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9886 case OP_ATR_LENGTH:
323e0a4a 9887 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9888 }
9889 }
9890 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9891 error (_("unimplemented type attribute"));
76a01679
JB
9892 else
9893 {
9894 LONGEST low, high;
9895
ad82864c
JB
9896 if (ada_is_constrained_packed_array_type (type_arg))
9897 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9898
1eea4ebd 9899 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9900 if (type == NULL)
1eea4ebd
UW
9901 type = builtin_type (exp->gdbarch)->builtin_int;
9902
76a01679
JB
9903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9904 return allocate_value (type);
9905
9906 switch (op)
9907 {
9908 default:
323e0a4a 9909 error (_("unexpected attribute encountered"));
76a01679 9910 case OP_ATR_FIRST:
1eea4ebd 9911 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9912 return value_from_longest (type, low);
9913 case OP_ATR_LAST:
1eea4ebd 9914 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9915 return value_from_longest (type, high);
9916 case OP_ATR_LENGTH:
1eea4ebd
UW
9917 low = ada_array_bound_from_type (type_arg, tem, 0);
9918 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9919 return value_from_longest (type, high - low + 1);
9920 }
9921 }
14f9c5c9
AS
9922 }
9923
4c4b4cd2
PH
9924 case OP_ATR_TAG:
9925 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9926 if (noside == EVAL_SKIP)
76a01679 9927 goto nosideret;
4c4b4cd2
PH
9928
9929 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9930 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9931
9932 return ada_value_tag (arg1);
9933
9934 case OP_ATR_MIN:
9935 case OP_ATR_MAX:
9936 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9937 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9938 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9939 if (noside == EVAL_SKIP)
76a01679 9940 goto nosideret;
d2e4a39e 9941 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9942 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9943 else
f44316fa
UW
9944 {
9945 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9946 return value_binop (arg1, arg2,
9947 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9948 }
14f9c5c9 9949
4c4b4cd2
PH
9950 case OP_ATR_MODULUS:
9951 {
31dedfee 9952 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9953
5b4ee69b 9954 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9955 if (noside == EVAL_SKIP)
9956 goto nosideret;
4c4b4cd2 9957
76a01679 9958 if (!ada_is_modular_type (type_arg))
323e0a4a 9959 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9960
76a01679
JB
9961 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9962 ada_modulus (type_arg));
4c4b4cd2
PH
9963 }
9964
9965
9966 case OP_ATR_POS:
9967 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9968 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9969 if (noside == EVAL_SKIP)
76a01679 9970 goto nosideret;
3cb382c9
UW
9971 type = builtin_type (exp->gdbarch)->builtin_int;
9972 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9973 return value_zero (type, not_lval);
14f9c5c9 9974 else
3cb382c9 9975 return value_pos_atr (type, arg1);
14f9c5c9 9976
4c4b4cd2
PH
9977 case OP_ATR_SIZE:
9978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9979 type = value_type (arg1);
9980
9981 /* If the argument is a reference, then dereference its type, since
9982 the user is really asking for the size of the actual object,
9983 not the size of the pointer. */
9984 if (TYPE_CODE (type) == TYPE_CODE_REF)
9985 type = TYPE_TARGET_TYPE (type);
9986
4c4b4cd2 9987 if (noside == EVAL_SKIP)
76a01679 9988 goto nosideret;
4c4b4cd2 9989 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9990 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9991 else
22601c15 9992 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9993 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9994
9995 case OP_ATR_VAL:
9996 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9998 type = exp->elts[pc + 2].type;
14f9c5c9 9999 if (noside == EVAL_SKIP)
76a01679 10000 goto nosideret;
4c4b4cd2 10001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10002 return value_zero (type, not_lval);
4c4b4cd2 10003 else
76a01679 10004 return value_val_atr (type, arg1);
4c4b4cd2
PH
10005
10006 case BINOP_EXP:
10007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10008 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10009 if (noside == EVAL_SKIP)
10010 goto nosideret;
10011 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10012 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10013 else
f44316fa
UW
10014 {
10015 /* For integer exponentiation operations,
10016 only promote the first argument. */
10017 if (is_integral_type (value_type (arg2)))
10018 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10019 else
10020 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10021
10022 return value_binop (arg1, arg2, op);
10023 }
4c4b4cd2
PH
10024
10025 case UNOP_PLUS:
10026 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10027 if (noside == EVAL_SKIP)
10028 goto nosideret;
10029 else
10030 return arg1;
10031
10032 case UNOP_ABS:
10033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10034 if (noside == EVAL_SKIP)
10035 goto nosideret;
f44316fa 10036 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10037 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10038 return value_neg (arg1);
14f9c5c9 10039 else
4c4b4cd2 10040 return arg1;
14f9c5c9
AS
10041
10042 case UNOP_IND:
6b0d7253 10043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10044 if (noside == EVAL_SKIP)
4c4b4cd2 10045 goto nosideret;
df407dfe 10046 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10047 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10048 {
10049 if (ada_is_array_descriptor_type (type))
10050 /* GDB allows dereferencing GNAT array descriptors. */
10051 {
10052 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10053
4c4b4cd2 10054 if (arrType == NULL)
323e0a4a 10055 error (_("Attempt to dereference null array pointer."));
00a4c844 10056 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10057 }
10058 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10059 || TYPE_CODE (type) == TYPE_CODE_REF
10060 /* In C you can dereference an array to get the 1st elt. */
10061 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10062 {
10063 type = to_static_fixed_type
10064 (ada_aligned_type
10065 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10066 check_size (type);
10067 return value_zero (type, lval_memory);
10068 }
4c4b4cd2 10069 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10070 {
10071 /* GDB allows dereferencing an int. */
10072 if (expect_type == NULL)
10073 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10074 lval_memory);
10075 else
10076 {
10077 expect_type =
10078 to_static_fixed_type (ada_aligned_type (expect_type));
10079 return value_zero (expect_type, lval_memory);
10080 }
10081 }
4c4b4cd2 10082 else
323e0a4a 10083 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10084 }
0963b4bd 10085 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10086 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10087
96967637
JB
10088 if (TYPE_CODE (type) == TYPE_CODE_INT)
10089 /* GDB allows dereferencing an int. If we were given
10090 the expect_type, then use that as the target type.
10091 Otherwise, assume that the target type is an int. */
10092 {
10093 if (expect_type != NULL)
10094 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10095 arg1));
10096 else
10097 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10098 (CORE_ADDR) value_as_address (arg1));
10099 }
6b0d7253 10100
4c4b4cd2
PH
10101 if (ada_is_array_descriptor_type (type))
10102 /* GDB allows dereferencing GNAT array descriptors. */
10103 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10104 else
4c4b4cd2 10105 return ada_value_ind (arg1);
14f9c5c9
AS
10106
10107 case STRUCTOP_STRUCT:
10108 tem = longest_to_int (exp->elts[pc + 1].longconst);
10109 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10111 if (noside == EVAL_SKIP)
4c4b4cd2 10112 goto nosideret;
14f9c5c9 10113 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10114 {
df407dfe 10115 struct type *type1 = value_type (arg1);
5b4ee69b 10116
76a01679
JB
10117 if (ada_is_tagged_type (type1, 1))
10118 {
10119 type = ada_lookup_struct_elt_type (type1,
10120 &exp->elts[pc + 2].string,
10121 1, 1, NULL);
10122 if (type == NULL)
10123 /* In this case, we assume that the field COULD exist
10124 in some extension of the type. Return an object of
10125 "type" void, which will match any formal
0963b4bd 10126 (see ada_type_match). */
30b15541
UW
10127 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10128 lval_memory);
76a01679
JB
10129 }
10130 else
10131 type =
10132 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10133 0, NULL);
10134
10135 return value_zero (ada_aligned_type (type), lval_memory);
10136 }
14f9c5c9 10137 else
284614f0
JB
10138 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10139 arg1 = unwrap_value (arg1);
10140 return ada_to_fixed_value (arg1);
10141
14f9c5c9 10142 case OP_TYPE:
4c4b4cd2
PH
10143 /* The value is not supposed to be used. This is here to make it
10144 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10145 (*pos) += 2;
10146 if (noside == EVAL_SKIP)
4c4b4cd2 10147 goto nosideret;
14f9c5c9 10148 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10149 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10150 else
323e0a4a 10151 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10152
10153 case OP_AGGREGATE:
10154 case OP_CHOICES:
10155 case OP_OTHERS:
10156 case OP_DISCRETE_RANGE:
10157 case OP_POSITIONAL:
10158 case OP_NAME:
10159 if (noside == EVAL_NORMAL)
10160 switch (op)
10161 {
10162 case OP_NAME:
10163 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10164 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10165 case OP_AGGREGATE:
10166 error (_("Aggregates only allowed on the right of an assignment"));
10167 default:
0963b4bd
MS
10168 internal_error (__FILE__, __LINE__,
10169 _("aggregate apparently mangled"));
52ce6436
PH
10170 }
10171
10172 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10173 *pos += oplen - 1;
10174 for (tem = 0; tem < nargs; tem += 1)
10175 ada_evaluate_subexp (NULL, exp, pos, noside);
10176 goto nosideret;
14f9c5c9
AS
10177 }
10178
10179nosideret:
22601c15 10180 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10181}
14f9c5c9 10182\f
d2e4a39e 10183
4c4b4cd2 10184 /* Fixed point */
14f9c5c9
AS
10185
10186/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10187 type name that encodes the 'small and 'delta information.
4c4b4cd2 10188 Otherwise, return NULL. */
14f9c5c9 10189
d2e4a39e 10190static const char *
ebf56fd3 10191fixed_type_info (struct type *type)
14f9c5c9 10192{
d2e4a39e 10193 const char *name = ada_type_name (type);
14f9c5c9
AS
10194 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10195
d2e4a39e
AS
10196 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10197 {
14f9c5c9 10198 const char *tail = strstr (name, "___XF_");
5b4ee69b 10199
14f9c5c9 10200 if (tail == NULL)
4c4b4cd2 10201 return NULL;
d2e4a39e 10202 else
4c4b4cd2 10203 return tail + 5;
14f9c5c9
AS
10204 }
10205 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10206 return fixed_type_info (TYPE_TARGET_TYPE (type));
10207 else
10208 return NULL;
10209}
10210
4c4b4cd2 10211/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10212
10213int
ebf56fd3 10214ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10215{
10216 return fixed_type_info (type) != NULL;
10217}
10218
4c4b4cd2
PH
10219/* Return non-zero iff TYPE represents a System.Address type. */
10220
10221int
10222ada_is_system_address_type (struct type *type)
10223{
10224 return (TYPE_NAME (type)
10225 && strcmp (TYPE_NAME (type), "system__address") == 0);
10226}
10227
14f9c5c9
AS
10228/* Assuming that TYPE is the representation of an Ada fixed-point
10229 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10230 delta cannot be determined. */
14f9c5c9
AS
10231
10232DOUBLEST
ebf56fd3 10233ada_delta (struct type *type)
14f9c5c9
AS
10234{
10235 const char *encoding = fixed_type_info (type);
facc390f 10236 DOUBLEST num, den;
14f9c5c9 10237
facc390f
JB
10238 /* Strictly speaking, num and den are encoded as integer. However,
10239 they may not fit into a long, and they will have to be converted
10240 to DOUBLEST anyway. So scan them as DOUBLEST. */
10241 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10242 &num, &den) < 2)
14f9c5c9 10243 return -1.0;
d2e4a39e 10244 else
facc390f 10245 return num / den;
14f9c5c9
AS
10246}
10247
10248/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10249 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10250
10251static DOUBLEST
ebf56fd3 10252scaling_factor (struct type *type)
14f9c5c9
AS
10253{
10254 const char *encoding = fixed_type_info (type);
facc390f 10255 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10256 int n;
d2e4a39e 10257
facc390f
JB
10258 /* Strictly speaking, num's and den's are encoded as integer. However,
10259 they may not fit into a long, and they will have to be converted
10260 to DOUBLEST anyway. So scan them as DOUBLEST. */
10261 n = sscanf (encoding,
10262 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10263 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10264 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10265
10266 if (n < 2)
10267 return 1.0;
10268 else if (n == 4)
facc390f 10269 return num1 / den1;
d2e4a39e 10270 else
facc390f 10271 return num0 / den0;
14f9c5c9
AS
10272}
10273
10274
10275/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10276 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10277
10278DOUBLEST
ebf56fd3 10279ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10280{
d2e4a39e 10281 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10282}
10283
4c4b4cd2
PH
10284/* The representation of a fixed-point value of type TYPE
10285 corresponding to the value X. */
14f9c5c9
AS
10286
10287LONGEST
ebf56fd3 10288ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10289{
10290 return (LONGEST) (x / scaling_factor (type) + 0.5);
10291}
10292
14f9c5c9 10293\f
d2e4a39e 10294
4c4b4cd2 10295 /* Range types */
14f9c5c9
AS
10296
10297/* Scan STR beginning at position K for a discriminant name, and
10298 return the value of that discriminant field of DVAL in *PX. If
10299 PNEW_K is not null, put the position of the character beyond the
10300 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10301 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10302
10303static int
07d8f827 10304scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10305 int *pnew_k)
14f9c5c9
AS
10306{
10307 static char *bound_buffer = NULL;
10308 static size_t bound_buffer_len = 0;
10309 char *bound;
10310 char *pend;
d2e4a39e 10311 struct value *bound_val;
14f9c5c9
AS
10312
10313 if (dval == NULL || str == NULL || str[k] == '\0')
10314 return 0;
10315
d2e4a39e 10316 pend = strstr (str + k, "__");
14f9c5c9
AS
10317 if (pend == NULL)
10318 {
d2e4a39e 10319 bound = str + k;
14f9c5c9
AS
10320 k += strlen (bound);
10321 }
d2e4a39e 10322 else
14f9c5c9 10323 {
d2e4a39e 10324 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10325 bound = bound_buffer;
d2e4a39e
AS
10326 strncpy (bound_buffer, str + k, pend - (str + k));
10327 bound[pend - (str + k)] = '\0';
10328 k = pend - str;
14f9c5c9 10329 }
d2e4a39e 10330
df407dfe 10331 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10332 if (bound_val == NULL)
10333 return 0;
10334
10335 *px = value_as_long (bound_val);
10336 if (pnew_k != NULL)
10337 *pnew_k = k;
10338 return 1;
10339}
10340
10341/* Value of variable named NAME in the current environment. If
10342 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10343 otherwise causes an error with message ERR_MSG. */
10344
d2e4a39e
AS
10345static struct value *
10346get_var_value (char *name, char *err_msg)
14f9c5c9 10347{
4c4b4cd2 10348 struct ada_symbol_info *syms;
14f9c5c9
AS
10349 int nsyms;
10350
4c4b4cd2
PH
10351 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10352 &syms);
14f9c5c9
AS
10353
10354 if (nsyms != 1)
10355 {
10356 if (err_msg == NULL)
4c4b4cd2 10357 return 0;
14f9c5c9 10358 else
8a3fe4f8 10359 error (("%s"), err_msg);
14f9c5c9
AS
10360 }
10361
4c4b4cd2 10362 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10363}
d2e4a39e 10364
14f9c5c9 10365/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10366 no such variable found, returns 0, and sets *FLAG to 0. If
10367 successful, sets *FLAG to 1. */
10368
14f9c5c9 10369LONGEST
4c4b4cd2 10370get_int_var_value (char *name, int *flag)
14f9c5c9 10371{
4c4b4cd2 10372 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10373
14f9c5c9
AS
10374 if (var_val == 0)
10375 {
10376 if (flag != NULL)
4c4b4cd2 10377 *flag = 0;
14f9c5c9
AS
10378 return 0;
10379 }
10380 else
10381 {
10382 if (flag != NULL)
4c4b4cd2 10383 *flag = 1;
14f9c5c9
AS
10384 return value_as_long (var_val);
10385 }
10386}
d2e4a39e 10387
14f9c5c9
AS
10388
10389/* Return a range type whose base type is that of the range type named
10390 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10391 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10392 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10393 corresponding range type from debug information; fall back to using it
10394 if symbol lookup fails. If a new type must be created, allocate it
10395 like ORIG_TYPE was. The bounds information, in general, is encoded
10396 in NAME, the base type given in the named range type. */
14f9c5c9 10397
d2e4a39e 10398static struct type *
28c85d6c 10399to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10400{
28c85d6c 10401 char *name;
14f9c5c9 10402 struct type *base_type;
d2e4a39e 10403 char *subtype_info;
14f9c5c9 10404
28c85d6c
JB
10405 gdb_assert (raw_type != NULL);
10406 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10407
1ce677a4 10408 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10409 base_type = TYPE_TARGET_TYPE (raw_type);
10410 else
10411 base_type = raw_type;
10412
28c85d6c 10413 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10414 subtype_info = strstr (name, "___XD");
10415 if (subtype_info == NULL)
690cc4eb 10416 {
43bbcdc2
PH
10417 LONGEST L = ada_discrete_type_low_bound (raw_type);
10418 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10419
690cc4eb
PH
10420 if (L < INT_MIN || U > INT_MAX)
10421 return raw_type;
10422 else
28c85d6c 10423 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10424 ada_discrete_type_low_bound (raw_type),
10425 ada_discrete_type_high_bound (raw_type));
690cc4eb 10426 }
14f9c5c9
AS
10427 else
10428 {
10429 static char *name_buf = NULL;
10430 static size_t name_len = 0;
10431 int prefix_len = subtype_info - name;
10432 LONGEST L, U;
10433 struct type *type;
10434 char *bounds_str;
10435 int n;
10436
10437 GROW_VECT (name_buf, name_len, prefix_len + 5);
10438 strncpy (name_buf, name, prefix_len);
10439 name_buf[prefix_len] = '\0';
10440
10441 subtype_info += 5;
10442 bounds_str = strchr (subtype_info, '_');
10443 n = 1;
10444
d2e4a39e 10445 if (*subtype_info == 'L')
4c4b4cd2
PH
10446 {
10447 if (!ada_scan_number (bounds_str, n, &L, &n)
10448 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10449 return raw_type;
10450 if (bounds_str[n] == '_')
10451 n += 2;
0963b4bd 10452 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10453 n += 1;
10454 subtype_info += 1;
10455 }
d2e4a39e 10456 else
4c4b4cd2
PH
10457 {
10458 int ok;
5b4ee69b 10459
4c4b4cd2
PH
10460 strcpy (name_buf + prefix_len, "___L");
10461 L = get_int_var_value (name_buf, &ok);
10462 if (!ok)
10463 {
323e0a4a 10464 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10465 L = 1;
10466 }
10467 }
14f9c5c9 10468
d2e4a39e 10469 if (*subtype_info == 'U')
4c4b4cd2
PH
10470 {
10471 if (!ada_scan_number (bounds_str, n, &U, &n)
10472 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10473 return raw_type;
10474 }
d2e4a39e 10475 else
4c4b4cd2
PH
10476 {
10477 int ok;
5b4ee69b 10478
4c4b4cd2
PH
10479 strcpy (name_buf + prefix_len, "___U");
10480 U = get_int_var_value (name_buf, &ok);
10481 if (!ok)
10482 {
323e0a4a 10483 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10484 U = L;
10485 }
10486 }
14f9c5c9 10487
28c85d6c 10488 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10489 TYPE_NAME (type) = name;
14f9c5c9
AS
10490 return type;
10491 }
10492}
10493
4c4b4cd2
PH
10494/* True iff NAME is the name of a range type. */
10495
14f9c5c9 10496int
d2e4a39e 10497ada_is_range_type_name (const char *name)
14f9c5c9
AS
10498{
10499 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10500}
14f9c5c9 10501\f
d2e4a39e 10502
4c4b4cd2
PH
10503 /* Modular types */
10504
10505/* True iff TYPE is an Ada modular type. */
14f9c5c9 10506
14f9c5c9 10507int
d2e4a39e 10508ada_is_modular_type (struct type *type)
14f9c5c9 10509{
18af8284 10510 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10511
10512 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10513 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10514 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10515}
10516
0056e4d5
JB
10517/* Try to determine the lower and upper bounds of the given modular type
10518 using the type name only. Return non-zero and set L and U as the lower
10519 and upper bounds (respectively) if successful. */
10520
10521int
10522ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10523{
10524 char *name = ada_type_name (type);
10525 char *suffix;
10526 int k;
10527 LONGEST U;
10528
10529 if (name == NULL)
10530 return 0;
10531
10532 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10533 we are looking for static bounds, which means an __XDLU suffix.
10534 Moreover, we know that the lower bound of modular types is always
10535 zero, so the actual suffix should start with "__XDLU_0__", and
10536 then be followed by the upper bound value. */
10537 suffix = strstr (name, "__XDLU_0__");
10538 if (suffix == NULL)
10539 return 0;
10540 k = 10;
10541 if (!ada_scan_number (suffix, k, &U, NULL))
10542 return 0;
10543
10544 *modulus = (ULONGEST) U + 1;
10545 return 1;
10546}
10547
4c4b4cd2
PH
10548/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10549
61ee279c 10550ULONGEST
0056e4d5 10551ada_modulus (struct type *type)
14f9c5c9 10552{
43bbcdc2 10553 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10554}
d2e4a39e 10555\f
f7f9143b
JB
10556
10557/* Ada exception catchpoint support:
10558 ---------------------------------
10559
10560 We support 3 kinds of exception catchpoints:
10561 . catchpoints on Ada exceptions
10562 . catchpoints on unhandled Ada exceptions
10563 . catchpoints on failed assertions
10564
10565 Exceptions raised during failed assertions, or unhandled exceptions
10566 could perfectly be caught with the general catchpoint on Ada exceptions.
10567 However, we can easily differentiate these two special cases, and having
10568 the option to distinguish these two cases from the rest can be useful
10569 to zero-in on certain situations.
10570
10571 Exception catchpoints are a specialized form of breakpoint,
10572 since they rely on inserting breakpoints inside known routines
10573 of the GNAT runtime. The implementation therefore uses a standard
10574 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10575 of breakpoint_ops.
10576
0259addd
JB
10577 Support in the runtime for exception catchpoints have been changed
10578 a few times already, and these changes affect the implementation
10579 of these catchpoints. In order to be able to support several
10580 variants of the runtime, we use a sniffer that will determine
28010a5d 10581 the runtime variant used by the program being debugged. */
f7f9143b
JB
10582
10583/* The different types of catchpoints that we introduced for catching
10584 Ada exceptions. */
10585
10586enum exception_catchpoint_kind
10587{
10588 ex_catch_exception,
10589 ex_catch_exception_unhandled,
10590 ex_catch_assert
10591};
10592
3d0b0fa3
JB
10593/* Ada's standard exceptions. */
10594
10595static char *standard_exc[] = {
10596 "constraint_error",
10597 "program_error",
10598 "storage_error",
10599 "tasking_error"
10600};
10601
0259addd
JB
10602typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10603
10604/* A structure that describes how to support exception catchpoints
10605 for a given executable. */
10606
10607struct exception_support_info
10608{
10609 /* The name of the symbol to break on in order to insert
10610 a catchpoint on exceptions. */
10611 const char *catch_exception_sym;
10612
10613 /* The name of the symbol to break on in order to insert
10614 a catchpoint on unhandled exceptions. */
10615 const char *catch_exception_unhandled_sym;
10616
10617 /* The name of the symbol to break on in order to insert
10618 a catchpoint on failed assertions. */
10619 const char *catch_assert_sym;
10620
10621 /* Assuming that the inferior just triggered an unhandled exception
10622 catchpoint, this function is responsible for returning the address
10623 in inferior memory where the name of that exception is stored.
10624 Return zero if the address could not be computed. */
10625 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10626};
10627
10628static CORE_ADDR ada_unhandled_exception_name_addr (void);
10629static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10630
10631/* The following exception support info structure describes how to
10632 implement exception catchpoints with the latest version of the
10633 Ada runtime (as of 2007-03-06). */
10634
10635static const struct exception_support_info default_exception_support_info =
10636{
10637 "__gnat_debug_raise_exception", /* catch_exception_sym */
10638 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10639 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10640 ada_unhandled_exception_name_addr
10641};
10642
10643/* The following exception support info structure describes how to
10644 implement exception catchpoints with a slightly older version
10645 of the Ada runtime. */
10646
10647static const struct exception_support_info exception_support_info_fallback =
10648{
10649 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10650 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10651 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10652 ada_unhandled_exception_name_addr_from_raise
10653};
10654
f17011e0
JB
10655/* Return nonzero if we can detect the exception support routines
10656 described in EINFO.
10657
10658 This function errors out if an abnormal situation is detected
10659 (for instance, if we find the exception support routines, but
10660 that support is found to be incomplete). */
10661
10662static int
10663ada_has_this_exception_support (const struct exception_support_info *einfo)
10664{
10665 struct symbol *sym;
10666
10667 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10668 that should be compiled with debugging information. As a result, we
10669 expect to find that symbol in the symtabs. */
10670
10671 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10672 if (sym == NULL)
a6af7abe
JB
10673 {
10674 /* Perhaps we did not find our symbol because the Ada runtime was
10675 compiled without debugging info, or simply stripped of it.
10676 It happens on some GNU/Linux distributions for instance, where
10677 users have to install a separate debug package in order to get
10678 the runtime's debugging info. In that situation, let the user
10679 know why we cannot insert an Ada exception catchpoint.
10680
10681 Note: Just for the purpose of inserting our Ada exception
10682 catchpoint, we could rely purely on the associated minimal symbol.
10683 But we would be operating in degraded mode anyway, since we are
10684 still lacking the debugging info needed later on to extract
10685 the name of the exception being raised (this name is printed in
10686 the catchpoint message, and is also used when trying to catch
10687 a specific exception). We do not handle this case for now. */
10688 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10689 error (_("Your Ada runtime appears to be missing some debugging "
10690 "information.\nCannot insert Ada exception catchpoint "
10691 "in this configuration."));
10692
10693 return 0;
10694 }
f17011e0
JB
10695
10696 /* Make sure that the symbol we found corresponds to a function. */
10697
10698 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10699 error (_("Symbol \"%s\" is not a function (class = %d)"),
10700 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10701
10702 return 1;
10703}
10704
0259addd
JB
10705/* Inspect the Ada runtime and determine which exception info structure
10706 should be used to provide support for exception catchpoints.
10707
3eecfa55
JB
10708 This function will always set the per-inferior exception_info,
10709 or raise an error. */
0259addd
JB
10710
10711static void
10712ada_exception_support_info_sniffer (void)
10713{
3eecfa55 10714 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10715 struct symbol *sym;
10716
10717 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10718 if (data->exception_info != NULL)
0259addd
JB
10719 return;
10720
10721 /* Check the latest (default) exception support info. */
f17011e0 10722 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10723 {
3eecfa55 10724 data->exception_info = &default_exception_support_info;
0259addd
JB
10725 return;
10726 }
10727
10728 /* Try our fallback exception suport info. */
f17011e0 10729 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10730 {
3eecfa55 10731 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10732 return;
10733 }
10734
10735 /* Sometimes, it is normal for us to not be able to find the routine
10736 we are looking for. This happens when the program is linked with
10737 the shared version of the GNAT runtime, and the program has not been
10738 started yet. Inform the user of these two possible causes if
10739 applicable. */
10740
ccefe4c4 10741 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10742 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10743
10744 /* If the symbol does not exist, then check that the program is
10745 already started, to make sure that shared libraries have been
10746 loaded. If it is not started, this may mean that the symbol is
10747 in a shared library. */
10748
10749 if (ptid_get_pid (inferior_ptid) == 0)
10750 error (_("Unable to insert catchpoint. Try to start the program first."));
10751
10752 /* At this point, we know that we are debugging an Ada program and
10753 that the inferior has been started, but we still are not able to
0963b4bd 10754 find the run-time symbols. That can mean that we are in
0259addd
JB
10755 configurable run time mode, or that a-except as been optimized
10756 out by the linker... In any case, at this point it is not worth
10757 supporting this feature. */
10758
7dda8cff 10759 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10760}
10761
f7f9143b
JB
10762/* True iff FRAME is very likely to be that of a function that is
10763 part of the runtime system. This is all very heuristic, but is
10764 intended to be used as advice as to what frames are uninteresting
10765 to most users. */
10766
10767static int
10768is_known_support_routine (struct frame_info *frame)
10769{
4ed6b5be 10770 struct symtab_and_line sal;
f7f9143b 10771 char *func_name;
692465f1 10772 enum language func_lang;
f7f9143b 10773 int i;
f7f9143b 10774
4ed6b5be
JB
10775 /* If this code does not have any debugging information (no symtab),
10776 This cannot be any user code. */
f7f9143b 10777
4ed6b5be 10778 find_frame_sal (frame, &sal);
f7f9143b
JB
10779 if (sal.symtab == NULL)
10780 return 1;
10781
4ed6b5be
JB
10782 /* If there is a symtab, but the associated source file cannot be
10783 located, then assume this is not user code: Selecting a frame
10784 for which we cannot display the code would not be very helpful
10785 for the user. This should also take care of case such as VxWorks
10786 where the kernel has some debugging info provided for a few units. */
f7f9143b 10787
9bbc9174 10788 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10789 return 1;
10790
4ed6b5be
JB
10791 /* Check the unit filename againt the Ada runtime file naming.
10792 We also check the name of the objfile against the name of some
10793 known system libraries that sometimes come with debugging info
10794 too. */
10795
f7f9143b
JB
10796 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10797 {
10798 re_comp (known_runtime_file_name_patterns[i]);
10799 if (re_exec (sal.symtab->filename))
10800 return 1;
4ed6b5be
JB
10801 if (sal.symtab->objfile != NULL
10802 && re_exec (sal.symtab->objfile->name))
10803 return 1;
f7f9143b
JB
10804 }
10805
4ed6b5be 10806 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10807
e9e07ba6 10808 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10809 if (func_name == NULL)
10810 return 1;
10811
10812 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10813 {
10814 re_comp (known_auxiliary_function_name_patterns[i]);
10815 if (re_exec (func_name))
10816 return 1;
10817 }
10818
10819 return 0;
10820}
10821
10822/* Find the first frame that contains debugging information and that is not
10823 part of the Ada run-time, starting from FI and moving upward. */
10824
0ef643c8 10825void
f7f9143b
JB
10826ada_find_printable_frame (struct frame_info *fi)
10827{
10828 for (; fi != NULL; fi = get_prev_frame (fi))
10829 {
10830 if (!is_known_support_routine (fi))
10831 {
10832 select_frame (fi);
10833 break;
10834 }
10835 }
10836
10837}
10838
10839/* Assuming that the inferior just triggered an unhandled exception
10840 catchpoint, return the address in inferior memory where the name
10841 of the exception is stored.
10842
10843 Return zero if the address could not be computed. */
10844
10845static CORE_ADDR
10846ada_unhandled_exception_name_addr (void)
0259addd
JB
10847{
10848 return parse_and_eval_address ("e.full_name");
10849}
10850
10851/* Same as ada_unhandled_exception_name_addr, except that this function
10852 should be used when the inferior uses an older version of the runtime,
10853 where the exception name needs to be extracted from a specific frame
10854 several frames up in the callstack. */
10855
10856static CORE_ADDR
10857ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10858{
10859 int frame_level;
10860 struct frame_info *fi;
3eecfa55 10861 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10862
10863 /* To determine the name of this exception, we need to select
10864 the frame corresponding to RAISE_SYM_NAME. This frame is
10865 at least 3 levels up, so we simply skip the first 3 frames
10866 without checking the name of their associated function. */
10867 fi = get_current_frame ();
10868 for (frame_level = 0; frame_level < 3; frame_level += 1)
10869 if (fi != NULL)
10870 fi = get_prev_frame (fi);
10871
10872 while (fi != NULL)
10873 {
692465f1
JB
10874 char *func_name;
10875 enum language func_lang;
10876
e9e07ba6 10877 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10878 if (func_name != NULL
3eecfa55 10879 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10880 break; /* We found the frame we were looking for... */
10881 fi = get_prev_frame (fi);
10882 }
10883
10884 if (fi == NULL)
10885 return 0;
10886
10887 select_frame (fi);
10888 return parse_and_eval_address ("id.full_name");
10889}
10890
10891/* Assuming the inferior just triggered an Ada exception catchpoint
10892 (of any type), return the address in inferior memory where the name
10893 of the exception is stored, if applicable.
10894
10895 Return zero if the address could not be computed, or if not relevant. */
10896
10897static CORE_ADDR
10898ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10899 struct breakpoint *b)
10900{
3eecfa55
JB
10901 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10902
f7f9143b
JB
10903 switch (ex)
10904 {
10905 case ex_catch_exception:
10906 return (parse_and_eval_address ("e.full_name"));
10907 break;
10908
10909 case ex_catch_exception_unhandled:
3eecfa55 10910 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10911 break;
10912
10913 case ex_catch_assert:
10914 return 0; /* Exception name is not relevant in this case. */
10915 break;
10916
10917 default:
10918 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10919 break;
10920 }
10921
10922 return 0; /* Should never be reached. */
10923}
10924
10925/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10926 any error that ada_exception_name_addr_1 might cause to be thrown.
10927 When an error is intercepted, a warning with the error message is printed,
10928 and zero is returned. */
10929
10930static CORE_ADDR
10931ada_exception_name_addr (enum exception_catchpoint_kind ex,
10932 struct breakpoint *b)
10933{
10934 struct gdb_exception e;
10935 CORE_ADDR result = 0;
10936
10937 TRY_CATCH (e, RETURN_MASK_ERROR)
10938 {
10939 result = ada_exception_name_addr_1 (ex, b);
10940 }
10941
10942 if (e.reason < 0)
10943 {
10944 warning (_("failed to get exception name: %s"), e.message);
10945 return 0;
10946 }
10947
10948 return result;
10949}
10950
28010a5d
PA
10951static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10952 char *, char **,
c0a91b2b 10953 const struct breakpoint_ops **);
28010a5d
PA
10954static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10955
10956/* Ada catchpoints.
10957
10958 In the case of catchpoints on Ada exceptions, the catchpoint will
10959 stop the target on every exception the program throws. When a user
10960 specifies the name of a specific exception, we translate this
10961 request into a condition expression (in text form), and then parse
10962 it into an expression stored in each of the catchpoint's locations.
10963 We then use this condition to check whether the exception that was
10964 raised is the one the user is interested in. If not, then the
10965 target is resumed again. We store the name of the requested
10966 exception, in order to be able to re-set the condition expression
10967 when symbols change. */
10968
10969/* An instance of this type is used to represent an Ada catchpoint
10970 breakpoint location. It includes a "struct bp_location" as a kind
10971 of base class; users downcast to "struct bp_location *" when
10972 needed. */
10973
10974struct ada_catchpoint_location
10975{
10976 /* The base class. */
10977 struct bp_location base;
10978
10979 /* The condition that checks whether the exception that was raised
10980 is the specific exception the user specified on catchpoint
10981 creation. */
10982 struct expression *excep_cond_expr;
10983};
10984
10985/* Implement the DTOR method in the bp_location_ops structure for all
10986 Ada exception catchpoint kinds. */
10987
10988static void
10989ada_catchpoint_location_dtor (struct bp_location *bl)
10990{
10991 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10992
10993 xfree (al->excep_cond_expr);
10994}
10995
10996/* The vtable to be used in Ada catchpoint locations. */
10997
10998static const struct bp_location_ops ada_catchpoint_location_ops =
10999{
11000 ada_catchpoint_location_dtor
11001};
11002
11003/* An instance of this type is used to represent an Ada catchpoint.
11004 It includes a "struct breakpoint" as a kind of base class; users
11005 downcast to "struct breakpoint *" when needed. */
11006
11007struct ada_catchpoint
11008{
11009 /* The base class. */
11010 struct breakpoint base;
11011
11012 /* The name of the specific exception the user specified. */
11013 char *excep_string;
11014};
11015
11016/* Parse the exception condition string in the context of each of the
11017 catchpoint's locations, and store them for later evaluation. */
11018
11019static void
11020create_excep_cond_exprs (struct ada_catchpoint *c)
11021{
11022 struct cleanup *old_chain;
11023 struct bp_location *bl;
11024 char *cond_string;
11025
11026 /* Nothing to do if there's no specific exception to catch. */
11027 if (c->excep_string == NULL)
11028 return;
11029
11030 /* Same if there are no locations... */
11031 if (c->base.loc == NULL)
11032 return;
11033
11034 /* Compute the condition expression in text form, from the specific
11035 expection we want to catch. */
11036 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11037 old_chain = make_cleanup (xfree, cond_string);
11038
11039 /* Iterate over all the catchpoint's locations, and parse an
11040 expression for each. */
11041 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11042 {
11043 struct ada_catchpoint_location *ada_loc
11044 = (struct ada_catchpoint_location *) bl;
11045 struct expression *exp = NULL;
11046
11047 if (!bl->shlib_disabled)
11048 {
11049 volatile struct gdb_exception e;
11050 char *s;
11051
11052 s = cond_string;
11053 TRY_CATCH (e, RETURN_MASK_ERROR)
11054 {
11055 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11056 }
11057 if (e.reason < 0)
11058 warning (_("failed to reevaluate internal exception condition "
11059 "for catchpoint %d: %s"),
11060 c->base.number, e.message);
11061 }
11062
11063 ada_loc->excep_cond_expr = exp;
11064 }
11065
11066 do_cleanups (old_chain);
11067}
11068
11069/* Implement the DTOR method in the breakpoint_ops structure for all
11070 exception catchpoint kinds. */
11071
11072static void
11073dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11074{
11075 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11076
11077 xfree (c->excep_string);
348d480f 11078
2060206e 11079 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11080}
11081
11082/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11083 structure for all exception catchpoint kinds. */
11084
11085static struct bp_location *
11086allocate_location_exception (enum exception_catchpoint_kind ex,
11087 struct breakpoint *self)
11088{
11089 struct ada_catchpoint_location *loc;
11090
11091 loc = XNEW (struct ada_catchpoint_location);
11092 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11093 loc->excep_cond_expr = NULL;
11094 return &loc->base;
11095}
11096
11097/* Implement the RE_SET method in the breakpoint_ops structure for all
11098 exception catchpoint kinds. */
11099
11100static void
11101re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11102{
11103 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11104
11105 /* Call the base class's method. This updates the catchpoint's
11106 locations. */
2060206e 11107 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11108
11109 /* Reparse the exception conditional expressions. One for each
11110 location. */
11111 create_excep_cond_exprs (c);
11112}
11113
11114/* Returns true if we should stop for this breakpoint hit. If the
11115 user specified a specific exception, we only want to cause a stop
11116 if the program thrown that exception. */
11117
11118static int
11119should_stop_exception (const struct bp_location *bl)
11120{
11121 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11122 const struct ada_catchpoint_location *ada_loc
11123 = (const struct ada_catchpoint_location *) bl;
11124 volatile struct gdb_exception ex;
11125 int stop;
11126
11127 /* With no specific exception, should always stop. */
11128 if (c->excep_string == NULL)
11129 return 1;
11130
11131 if (ada_loc->excep_cond_expr == NULL)
11132 {
11133 /* We will have a NULL expression if back when we were creating
11134 the expressions, this location's had failed to parse. */
11135 return 1;
11136 }
11137
11138 stop = 1;
11139 TRY_CATCH (ex, RETURN_MASK_ALL)
11140 {
11141 struct value *mark;
11142
11143 mark = value_mark ();
11144 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11145 value_free_to_mark (mark);
11146 }
11147 if (ex.reason < 0)
11148 exception_fprintf (gdb_stderr, ex,
11149 _("Error in testing exception condition:\n"));
11150 return stop;
11151}
11152
11153/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11154 for all exception catchpoint kinds. */
11155
11156static void
11157check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11158{
11159 bs->stop = should_stop_exception (bs->bp_location_at);
11160}
11161
f7f9143b
JB
11162/* Implement the PRINT_IT method in the breakpoint_ops structure
11163 for all exception catchpoint kinds. */
11164
11165static enum print_stop_action
348d480f 11166print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11167{
79a45e25 11168 struct ui_out *uiout = current_uiout;
348d480f
PA
11169 struct breakpoint *b = bs->breakpoint_at;
11170
956a9fb9 11171 annotate_catchpoint (b->number);
f7f9143b 11172
956a9fb9 11173 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11174 {
956a9fb9
JB
11175 ui_out_field_string (uiout, "reason",
11176 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11177 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11178 }
11179
00eb2c4a
JB
11180 ui_out_text (uiout,
11181 b->disposition == disp_del ? "\nTemporary catchpoint "
11182 : "\nCatchpoint ");
956a9fb9
JB
11183 ui_out_field_int (uiout, "bkptno", b->number);
11184 ui_out_text (uiout, ", ");
f7f9143b 11185
f7f9143b
JB
11186 switch (ex)
11187 {
11188 case ex_catch_exception:
f7f9143b 11189 case ex_catch_exception_unhandled:
956a9fb9
JB
11190 {
11191 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11192 char exception_name[256];
11193
11194 if (addr != 0)
11195 {
11196 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11197 exception_name [sizeof (exception_name) - 1] = '\0';
11198 }
11199 else
11200 {
11201 /* For some reason, we were unable to read the exception
11202 name. This could happen if the Runtime was compiled
11203 without debugging info, for instance. In that case,
11204 just replace the exception name by the generic string
11205 "exception" - it will read as "an exception" in the
11206 notification we are about to print. */
967cff16 11207 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11208 }
11209 /* In the case of unhandled exception breakpoints, we print
11210 the exception name as "unhandled EXCEPTION_NAME", to make
11211 it clearer to the user which kind of catchpoint just got
11212 hit. We used ui_out_text to make sure that this extra
11213 info does not pollute the exception name in the MI case. */
11214 if (ex == ex_catch_exception_unhandled)
11215 ui_out_text (uiout, "unhandled ");
11216 ui_out_field_string (uiout, "exception-name", exception_name);
11217 }
11218 break;
f7f9143b 11219 case ex_catch_assert:
956a9fb9
JB
11220 /* In this case, the name of the exception is not really
11221 important. Just print "failed assertion" to make it clearer
11222 that his program just hit an assertion-failure catchpoint.
11223 We used ui_out_text because this info does not belong in
11224 the MI output. */
11225 ui_out_text (uiout, "failed assertion");
11226 break;
f7f9143b 11227 }
956a9fb9
JB
11228 ui_out_text (uiout, " at ");
11229 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11230
11231 return PRINT_SRC_AND_LOC;
11232}
11233
11234/* Implement the PRINT_ONE method in the breakpoint_ops structure
11235 for all exception catchpoint kinds. */
11236
11237static void
11238print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11239 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11240{
79a45e25 11241 struct ui_out *uiout = current_uiout;
28010a5d 11242 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11243 struct value_print_options opts;
11244
11245 get_user_print_options (&opts);
11246 if (opts.addressprint)
f7f9143b
JB
11247 {
11248 annotate_field (4);
5af949e3 11249 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11250 }
11251
11252 annotate_field (5);
a6d9a66e 11253 *last_loc = b->loc;
f7f9143b
JB
11254 switch (ex)
11255 {
11256 case ex_catch_exception:
28010a5d 11257 if (c->excep_string != NULL)
f7f9143b 11258 {
28010a5d
PA
11259 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11260
f7f9143b
JB
11261 ui_out_field_string (uiout, "what", msg);
11262 xfree (msg);
11263 }
11264 else
11265 ui_out_field_string (uiout, "what", "all Ada exceptions");
11266
11267 break;
11268
11269 case ex_catch_exception_unhandled:
11270 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11271 break;
11272
11273 case ex_catch_assert:
11274 ui_out_field_string (uiout, "what", "failed Ada assertions");
11275 break;
11276
11277 default:
11278 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11279 break;
11280 }
11281}
11282
11283/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11284 for all exception catchpoint kinds. */
11285
11286static void
11287print_mention_exception (enum exception_catchpoint_kind ex,
11288 struct breakpoint *b)
11289{
28010a5d 11290 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11291 struct ui_out *uiout = current_uiout;
28010a5d 11292
00eb2c4a
JB
11293 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11294 : _("Catchpoint "));
11295 ui_out_field_int (uiout, "bkptno", b->number);
11296 ui_out_text (uiout, ": ");
11297
f7f9143b
JB
11298 switch (ex)
11299 {
11300 case ex_catch_exception:
28010a5d 11301 if (c->excep_string != NULL)
00eb2c4a
JB
11302 {
11303 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11304 struct cleanup *old_chain = make_cleanup (xfree, info);
11305
11306 ui_out_text (uiout, info);
11307 do_cleanups (old_chain);
11308 }
f7f9143b 11309 else
00eb2c4a 11310 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11311 break;
11312
11313 case ex_catch_exception_unhandled:
00eb2c4a 11314 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11315 break;
11316
11317 case ex_catch_assert:
00eb2c4a 11318 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11319 break;
11320
11321 default:
11322 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11323 break;
11324 }
11325}
11326
6149aea9
PA
11327/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11328 for all exception catchpoint kinds. */
11329
11330static void
11331print_recreate_exception (enum exception_catchpoint_kind ex,
11332 struct breakpoint *b, struct ui_file *fp)
11333{
28010a5d
PA
11334 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11335
6149aea9
PA
11336 switch (ex)
11337 {
11338 case ex_catch_exception:
11339 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11340 if (c->excep_string != NULL)
11341 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11342 break;
11343
11344 case ex_catch_exception_unhandled:
78076abc 11345 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11346 break;
11347
11348 case ex_catch_assert:
11349 fprintf_filtered (fp, "catch assert");
11350 break;
11351
11352 default:
11353 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11354 }
d9b3f62e 11355 print_recreate_thread (b, fp);
6149aea9
PA
11356}
11357
f7f9143b
JB
11358/* Virtual table for "catch exception" breakpoints. */
11359
28010a5d
PA
11360static void
11361dtor_catch_exception (struct breakpoint *b)
11362{
11363 dtor_exception (ex_catch_exception, b);
11364}
11365
11366static struct bp_location *
11367allocate_location_catch_exception (struct breakpoint *self)
11368{
11369 return allocate_location_exception (ex_catch_exception, self);
11370}
11371
11372static void
11373re_set_catch_exception (struct breakpoint *b)
11374{
11375 re_set_exception (ex_catch_exception, b);
11376}
11377
11378static void
11379check_status_catch_exception (bpstat bs)
11380{
11381 check_status_exception (ex_catch_exception, bs);
11382}
11383
f7f9143b 11384static enum print_stop_action
348d480f 11385print_it_catch_exception (bpstat bs)
f7f9143b 11386{
348d480f 11387 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11388}
11389
11390static void
a6d9a66e 11391print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11392{
a6d9a66e 11393 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11394}
11395
11396static void
11397print_mention_catch_exception (struct breakpoint *b)
11398{
11399 print_mention_exception (ex_catch_exception, b);
11400}
11401
6149aea9
PA
11402static void
11403print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11404{
11405 print_recreate_exception (ex_catch_exception, b, fp);
11406}
11407
2060206e 11408static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11409
11410/* Virtual table for "catch exception unhandled" breakpoints. */
11411
28010a5d
PA
11412static void
11413dtor_catch_exception_unhandled (struct breakpoint *b)
11414{
11415 dtor_exception (ex_catch_exception_unhandled, b);
11416}
11417
11418static struct bp_location *
11419allocate_location_catch_exception_unhandled (struct breakpoint *self)
11420{
11421 return allocate_location_exception (ex_catch_exception_unhandled, self);
11422}
11423
11424static void
11425re_set_catch_exception_unhandled (struct breakpoint *b)
11426{
11427 re_set_exception (ex_catch_exception_unhandled, b);
11428}
11429
11430static void
11431check_status_catch_exception_unhandled (bpstat bs)
11432{
11433 check_status_exception (ex_catch_exception_unhandled, bs);
11434}
11435
f7f9143b 11436static enum print_stop_action
348d480f 11437print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11438{
348d480f 11439 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11440}
11441
11442static void
a6d9a66e
UW
11443print_one_catch_exception_unhandled (struct breakpoint *b,
11444 struct bp_location **last_loc)
f7f9143b 11445{
a6d9a66e 11446 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11447}
11448
11449static void
11450print_mention_catch_exception_unhandled (struct breakpoint *b)
11451{
11452 print_mention_exception (ex_catch_exception_unhandled, b);
11453}
11454
6149aea9
PA
11455static void
11456print_recreate_catch_exception_unhandled (struct breakpoint *b,
11457 struct ui_file *fp)
11458{
11459 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11460}
11461
2060206e 11462static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11463
11464/* Virtual table for "catch assert" breakpoints. */
11465
28010a5d
PA
11466static void
11467dtor_catch_assert (struct breakpoint *b)
11468{
11469 dtor_exception (ex_catch_assert, b);
11470}
11471
11472static struct bp_location *
11473allocate_location_catch_assert (struct breakpoint *self)
11474{
11475 return allocate_location_exception (ex_catch_assert, self);
11476}
11477
11478static void
11479re_set_catch_assert (struct breakpoint *b)
11480{
11481 return re_set_exception (ex_catch_assert, b);
11482}
11483
11484static void
11485check_status_catch_assert (bpstat bs)
11486{
11487 check_status_exception (ex_catch_assert, bs);
11488}
11489
f7f9143b 11490static enum print_stop_action
348d480f 11491print_it_catch_assert (bpstat bs)
f7f9143b 11492{
348d480f 11493 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11494}
11495
11496static void
a6d9a66e 11497print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11498{
a6d9a66e 11499 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11500}
11501
11502static void
11503print_mention_catch_assert (struct breakpoint *b)
11504{
11505 print_mention_exception (ex_catch_assert, b);
11506}
11507
6149aea9
PA
11508static void
11509print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11510{
11511 print_recreate_exception (ex_catch_assert, b, fp);
11512}
11513
2060206e 11514static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11515
f7f9143b
JB
11516/* Return a newly allocated copy of the first space-separated token
11517 in ARGSP, and then adjust ARGSP to point immediately after that
11518 token.
11519
11520 Return NULL if ARGPS does not contain any more tokens. */
11521
11522static char *
11523ada_get_next_arg (char **argsp)
11524{
11525 char *args = *argsp;
11526 char *end;
11527 char *result;
11528
11529 /* Skip any leading white space. */
11530
11531 while (isspace (*args))
11532 args++;
11533
11534 if (args[0] == '\0')
11535 return NULL; /* No more arguments. */
11536
11537 /* Find the end of the current argument. */
11538
11539 end = args;
11540 while (*end != '\0' && !isspace (*end))
11541 end++;
11542
11543 /* Adjust ARGSP to point to the start of the next argument. */
11544
11545 *argsp = end;
11546
11547 /* Make a copy of the current argument and return it. */
11548
11549 result = xmalloc (end - args + 1);
11550 strncpy (result, args, end - args);
11551 result[end - args] = '\0';
11552
11553 return result;
11554}
11555
11556/* Split the arguments specified in a "catch exception" command.
11557 Set EX to the appropriate catchpoint type.
28010a5d 11558 Set EXCEP_STRING to the name of the specific exception if
f7f9143b
JB
11559 specified by the user. */
11560
11561static void
11562catch_ada_exception_command_split (char *args,
11563 enum exception_catchpoint_kind *ex,
28010a5d 11564 char **excep_string)
f7f9143b
JB
11565{
11566 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11567 char *exception_name;
11568
11569 exception_name = ada_get_next_arg (&args);
11570 make_cleanup (xfree, exception_name);
11571
11572 /* Check that we do not have any more arguments. Anything else
11573 is unexpected. */
11574
11575 while (isspace (*args))
11576 args++;
11577
11578 if (args[0] != '\0')
11579 error (_("Junk at end of expression"));
11580
11581 discard_cleanups (old_chain);
11582
11583 if (exception_name == NULL)
11584 {
11585 /* Catch all exceptions. */
11586 *ex = ex_catch_exception;
28010a5d 11587 *excep_string = NULL;
f7f9143b
JB
11588 }
11589 else if (strcmp (exception_name, "unhandled") == 0)
11590 {
11591 /* Catch unhandled exceptions. */
11592 *ex = ex_catch_exception_unhandled;
28010a5d 11593 *excep_string = NULL;
f7f9143b
JB
11594 }
11595 else
11596 {
11597 /* Catch a specific exception. */
11598 *ex = ex_catch_exception;
28010a5d 11599 *excep_string = exception_name;
f7f9143b
JB
11600 }
11601}
11602
11603/* Return the name of the symbol on which we should break in order to
11604 implement a catchpoint of the EX kind. */
11605
11606static const char *
11607ada_exception_sym_name (enum exception_catchpoint_kind ex)
11608{
3eecfa55
JB
11609 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11610
11611 gdb_assert (data->exception_info != NULL);
0259addd 11612
f7f9143b
JB
11613 switch (ex)
11614 {
11615 case ex_catch_exception:
3eecfa55 11616 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11617 break;
11618 case ex_catch_exception_unhandled:
3eecfa55 11619 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11620 break;
11621 case ex_catch_assert:
3eecfa55 11622 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11623 break;
11624 default:
11625 internal_error (__FILE__, __LINE__,
11626 _("unexpected catchpoint kind (%d)"), ex);
11627 }
11628}
11629
11630/* Return the breakpoint ops "virtual table" used for catchpoints
11631 of the EX kind. */
11632
c0a91b2b 11633static const struct breakpoint_ops *
4b9eee8c 11634ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11635{
11636 switch (ex)
11637 {
11638 case ex_catch_exception:
11639 return (&catch_exception_breakpoint_ops);
11640 break;
11641 case ex_catch_exception_unhandled:
11642 return (&catch_exception_unhandled_breakpoint_ops);
11643 break;
11644 case ex_catch_assert:
11645 return (&catch_assert_breakpoint_ops);
11646 break;
11647 default:
11648 internal_error (__FILE__, __LINE__,
11649 _("unexpected catchpoint kind (%d)"), ex);
11650 }
11651}
11652
11653/* Return the condition that will be used to match the current exception
11654 being raised with the exception that the user wants to catch. This
11655 assumes that this condition is used when the inferior just triggered
11656 an exception catchpoint.
11657
11658 The string returned is a newly allocated string that needs to be
11659 deallocated later. */
11660
11661static char *
28010a5d 11662ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11663{
3d0b0fa3
JB
11664 int i;
11665
0963b4bd 11666 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11667 runtime units that have been compiled without debugging info; if
28010a5d 11668 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11669 exception (e.g. "constraint_error") then, during the evaluation
11670 of the condition expression, the symbol lookup on this name would
0963b4bd 11671 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11672 may then be set only on user-defined exceptions which have the
11673 same not-fully-qualified name (e.g. my_package.constraint_error).
11674
11675 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11676 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11677 exception constraint_error" is rewritten into "catch exception
11678 standard.constraint_error".
11679
11680 If an exception named contraint_error is defined in another package of
11681 the inferior program, then the only way to specify this exception as a
11682 breakpoint condition is to use its fully-qualified named:
11683 e.g. my_package.constraint_error. */
11684
11685 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11686 {
28010a5d 11687 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11688 {
11689 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11690 excep_string);
3d0b0fa3
JB
11691 }
11692 }
28010a5d 11693 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11694}
11695
11696/* Return the symtab_and_line that should be used to insert an exception
11697 catchpoint of the TYPE kind.
11698
28010a5d
PA
11699 EXCEP_STRING should contain the name of a specific exception that
11700 the catchpoint should catch, or NULL otherwise.
f7f9143b 11701
28010a5d
PA
11702 ADDR_STRING returns the name of the function where the real
11703 breakpoint that implements the catchpoints is set, depending on the
11704 type of catchpoint we need to create. */
f7f9143b
JB
11705
11706static struct symtab_and_line
28010a5d 11707ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11708 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11709{
11710 const char *sym_name;
11711 struct symbol *sym;
f7f9143b 11712
0259addd
JB
11713 /* First, find out which exception support info to use. */
11714 ada_exception_support_info_sniffer ();
11715
11716 /* Then lookup the function on which we will break in order to catch
f7f9143b 11717 the Ada exceptions requested by the user. */
f7f9143b
JB
11718 sym_name = ada_exception_sym_name (ex);
11719 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11720
f17011e0
JB
11721 /* We can assume that SYM is not NULL at this stage. If the symbol
11722 did not exist, ada_exception_support_info_sniffer would have
11723 raised an exception.
f7f9143b 11724
f17011e0
JB
11725 Also, ada_exception_support_info_sniffer should have already
11726 verified that SYM is a function symbol. */
11727 gdb_assert (sym != NULL);
11728 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11729
11730 /* Set ADDR_STRING. */
f7f9143b
JB
11731 *addr_string = xstrdup (sym_name);
11732
f7f9143b 11733 /* Set OPS. */
4b9eee8c 11734 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11735
f17011e0 11736 return find_function_start_sal (sym, 1);
f7f9143b
JB
11737}
11738
11739/* Parse the arguments (ARGS) of the "catch exception" command.
11740
f7f9143b
JB
11741 If the user asked the catchpoint to catch only a specific
11742 exception, then save the exception name in ADDR_STRING.
11743
11744 See ada_exception_sal for a description of all the remaining
11745 function arguments of this function. */
11746
9ac4176b 11747static struct symtab_and_line
f7f9143b 11748ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11749 char **excep_string,
c0a91b2b 11750 const struct breakpoint_ops **ops)
f7f9143b
JB
11751{
11752 enum exception_catchpoint_kind ex;
11753
28010a5d
PA
11754 catch_ada_exception_command_split (args, &ex, excep_string);
11755 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11756}
11757
11758/* Create an Ada exception catchpoint. */
11759
11760static void
11761create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11762 struct symtab_and_line sal,
11763 char *addr_string,
11764 char *excep_string,
c0a91b2b 11765 const struct breakpoint_ops *ops,
28010a5d
PA
11766 int tempflag,
11767 int from_tty)
11768{
11769 struct ada_catchpoint *c;
11770
11771 c = XNEW (struct ada_catchpoint);
11772 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11773 ops, tempflag, from_tty);
11774 c->excep_string = excep_string;
11775 create_excep_cond_exprs (c);
3ea46bff 11776 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11777}
11778
9ac4176b
PA
11779/* Implement the "catch exception" command. */
11780
11781static void
11782catch_ada_exception_command (char *arg, int from_tty,
11783 struct cmd_list_element *command)
11784{
11785 struct gdbarch *gdbarch = get_current_arch ();
11786 int tempflag;
11787 struct symtab_and_line sal;
11788 char *addr_string = NULL;
28010a5d 11789 char *excep_string = NULL;
c0a91b2b 11790 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11791
11792 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11793
11794 if (!arg)
11795 arg = "";
28010a5d
PA
11796 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11797 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11798 excep_string, ops, tempflag, from_tty);
9ac4176b
PA
11799}
11800
11801static struct symtab_and_line
f7f9143b 11802ada_decode_assert_location (char *args, char **addr_string,
c0a91b2b 11803 const struct breakpoint_ops **ops)
f7f9143b
JB
11804{
11805 /* Check that no argument where provided at the end of the command. */
11806
11807 if (args != NULL)
11808 {
11809 while (isspace (*args))
11810 args++;
11811 if (*args != '\0')
11812 error (_("Junk at end of arguments."));
11813 }
11814
28010a5d 11815 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11816}
11817
9ac4176b
PA
11818/* Implement the "catch assert" command. */
11819
11820static void
11821catch_assert_command (char *arg, int from_tty,
11822 struct cmd_list_element *command)
11823{
11824 struct gdbarch *gdbarch = get_current_arch ();
11825 int tempflag;
11826 struct symtab_and_line sal;
11827 char *addr_string = NULL;
c0a91b2b 11828 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11829
11830 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11831
11832 if (!arg)
11833 arg = "";
11834 sal = ada_decode_assert_location (arg, &addr_string, &ops);
28010a5d
PA
11835 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11836 NULL, ops, tempflag, from_tty);
9ac4176b 11837}
4c4b4cd2
PH
11838 /* Operators */
11839/* Information about operators given special treatment in functions
11840 below. */
11841/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11842
11843#define ADA_OPERATORS \
11844 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11845 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11846 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11847 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11848 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11849 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11850 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11851 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11852 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11853 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11854 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11855 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11856 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11857 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11858 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11859 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11860 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11861 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11862 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11863
11864static void
554794dc
SDJ
11865ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11866 int *argsp)
4c4b4cd2
PH
11867{
11868 switch (exp->elts[pc - 1].opcode)
11869 {
76a01679 11870 default:
4c4b4cd2
PH
11871 operator_length_standard (exp, pc, oplenp, argsp);
11872 break;
11873
11874#define OP_DEFN(op, len, args, binop) \
11875 case op: *oplenp = len; *argsp = args; break;
11876 ADA_OPERATORS;
11877#undef OP_DEFN
52ce6436
PH
11878
11879 case OP_AGGREGATE:
11880 *oplenp = 3;
11881 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11882 break;
11883
11884 case OP_CHOICES:
11885 *oplenp = 3;
11886 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11887 break;
4c4b4cd2
PH
11888 }
11889}
11890
c0201579
JK
11891/* Implementation of the exp_descriptor method operator_check. */
11892
11893static int
11894ada_operator_check (struct expression *exp, int pos,
11895 int (*objfile_func) (struct objfile *objfile, void *data),
11896 void *data)
11897{
11898 const union exp_element *const elts = exp->elts;
11899 struct type *type = NULL;
11900
11901 switch (elts[pos].opcode)
11902 {
11903 case UNOP_IN_RANGE:
11904 case UNOP_QUAL:
11905 type = elts[pos + 1].type;
11906 break;
11907
11908 default:
11909 return operator_check_standard (exp, pos, objfile_func, data);
11910 }
11911
11912 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11913
11914 if (type && TYPE_OBJFILE (type)
11915 && (*objfile_func) (TYPE_OBJFILE (type), data))
11916 return 1;
11917
11918 return 0;
11919}
11920
4c4b4cd2
PH
11921static char *
11922ada_op_name (enum exp_opcode opcode)
11923{
11924 switch (opcode)
11925 {
76a01679 11926 default:
4c4b4cd2 11927 return op_name_standard (opcode);
52ce6436 11928
4c4b4cd2
PH
11929#define OP_DEFN(op, len, args, binop) case op: return #op;
11930 ADA_OPERATORS;
11931#undef OP_DEFN
52ce6436
PH
11932
11933 case OP_AGGREGATE:
11934 return "OP_AGGREGATE";
11935 case OP_CHOICES:
11936 return "OP_CHOICES";
11937 case OP_NAME:
11938 return "OP_NAME";
4c4b4cd2
PH
11939 }
11940}
11941
11942/* As for operator_length, but assumes PC is pointing at the first
11943 element of the operator, and gives meaningful results only for the
52ce6436 11944 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11945
11946static void
76a01679
JB
11947ada_forward_operator_length (struct expression *exp, int pc,
11948 int *oplenp, int *argsp)
4c4b4cd2 11949{
76a01679 11950 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11951 {
11952 default:
11953 *oplenp = *argsp = 0;
11954 break;
52ce6436 11955
4c4b4cd2
PH
11956#define OP_DEFN(op, len, args, binop) \
11957 case op: *oplenp = len; *argsp = args; break;
11958 ADA_OPERATORS;
11959#undef OP_DEFN
52ce6436
PH
11960
11961 case OP_AGGREGATE:
11962 *oplenp = 3;
11963 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11964 break;
11965
11966 case OP_CHOICES:
11967 *oplenp = 3;
11968 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11969 break;
11970
11971 case OP_STRING:
11972 case OP_NAME:
11973 {
11974 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11975
52ce6436
PH
11976 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11977 *argsp = 0;
11978 break;
11979 }
4c4b4cd2
PH
11980 }
11981}
11982
11983static int
11984ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11985{
11986 enum exp_opcode op = exp->elts[elt].opcode;
11987 int oplen, nargs;
11988 int pc = elt;
11989 int i;
76a01679 11990
4c4b4cd2
PH
11991 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11992
76a01679 11993 switch (op)
4c4b4cd2 11994 {
76a01679 11995 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11996 case OP_ATR_FIRST:
11997 case OP_ATR_LAST:
11998 case OP_ATR_LENGTH:
11999 case OP_ATR_IMAGE:
12000 case OP_ATR_MAX:
12001 case OP_ATR_MIN:
12002 case OP_ATR_MODULUS:
12003 case OP_ATR_POS:
12004 case OP_ATR_SIZE:
12005 case OP_ATR_TAG:
12006 case OP_ATR_VAL:
12007 break;
12008
12009 case UNOP_IN_RANGE:
12010 case UNOP_QUAL:
323e0a4a
AC
12011 /* XXX: gdb_sprint_host_address, type_sprint */
12012 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12013 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12014 fprintf_filtered (stream, " (");
12015 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12016 fprintf_filtered (stream, ")");
12017 break;
12018 case BINOP_IN_BOUNDS:
52ce6436
PH
12019 fprintf_filtered (stream, " (%d)",
12020 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12021 break;
12022 case TERNOP_IN_RANGE:
12023 break;
12024
52ce6436
PH
12025 case OP_AGGREGATE:
12026 case OP_OTHERS:
12027 case OP_DISCRETE_RANGE:
12028 case OP_POSITIONAL:
12029 case OP_CHOICES:
12030 break;
12031
12032 case OP_NAME:
12033 case OP_STRING:
12034 {
12035 char *name = &exp->elts[elt + 2].string;
12036 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12037
52ce6436
PH
12038 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12039 break;
12040 }
12041
4c4b4cd2
PH
12042 default:
12043 return dump_subexp_body_standard (exp, stream, elt);
12044 }
12045
12046 elt += oplen;
12047 for (i = 0; i < nargs; i += 1)
12048 elt = dump_subexp (exp, stream, elt);
12049
12050 return elt;
12051}
12052
12053/* The Ada extension of print_subexp (q.v.). */
12054
76a01679
JB
12055static void
12056ada_print_subexp (struct expression *exp, int *pos,
12057 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12058{
52ce6436 12059 int oplen, nargs, i;
4c4b4cd2
PH
12060 int pc = *pos;
12061 enum exp_opcode op = exp->elts[pc].opcode;
12062
12063 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12064
52ce6436 12065 *pos += oplen;
4c4b4cd2
PH
12066 switch (op)
12067 {
12068 default:
52ce6436 12069 *pos -= oplen;
4c4b4cd2
PH
12070 print_subexp_standard (exp, pos, stream, prec);
12071 return;
12072
12073 case OP_VAR_VALUE:
4c4b4cd2
PH
12074 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12075 return;
12076
12077 case BINOP_IN_BOUNDS:
323e0a4a 12078 /* XXX: sprint_subexp */
4c4b4cd2 12079 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12080 fputs_filtered (" in ", stream);
4c4b4cd2 12081 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12082 fputs_filtered ("'range", stream);
4c4b4cd2 12083 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12084 fprintf_filtered (stream, "(%ld)",
12085 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12086 return;
12087
12088 case TERNOP_IN_RANGE:
4c4b4cd2 12089 if (prec >= PREC_EQUAL)
76a01679 12090 fputs_filtered ("(", stream);
323e0a4a 12091 /* XXX: sprint_subexp */
4c4b4cd2 12092 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12093 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12094 print_subexp (exp, pos, stream, PREC_EQUAL);
12095 fputs_filtered (" .. ", stream);
12096 print_subexp (exp, pos, stream, PREC_EQUAL);
12097 if (prec >= PREC_EQUAL)
76a01679
JB
12098 fputs_filtered (")", stream);
12099 return;
4c4b4cd2
PH
12100
12101 case OP_ATR_FIRST:
12102 case OP_ATR_LAST:
12103 case OP_ATR_LENGTH:
12104 case OP_ATR_IMAGE:
12105 case OP_ATR_MAX:
12106 case OP_ATR_MIN:
12107 case OP_ATR_MODULUS:
12108 case OP_ATR_POS:
12109 case OP_ATR_SIZE:
12110 case OP_ATR_TAG:
12111 case OP_ATR_VAL:
4c4b4cd2 12112 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12113 {
12114 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12115 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12116 *pos += 3;
12117 }
4c4b4cd2 12118 else
76a01679 12119 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12120 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12121 if (nargs > 1)
76a01679
JB
12122 {
12123 int tem;
5b4ee69b 12124
76a01679
JB
12125 for (tem = 1; tem < nargs; tem += 1)
12126 {
12127 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12128 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12129 }
12130 fputs_filtered (")", stream);
12131 }
4c4b4cd2 12132 return;
14f9c5c9 12133
4c4b4cd2 12134 case UNOP_QUAL:
4c4b4cd2
PH
12135 type_print (exp->elts[pc + 1].type, "", stream, 0);
12136 fputs_filtered ("'(", stream);
12137 print_subexp (exp, pos, stream, PREC_PREFIX);
12138 fputs_filtered (")", stream);
12139 return;
14f9c5c9 12140
4c4b4cd2 12141 case UNOP_IN_RANGE:
323e0a4a 12142 /* XXX: sprint_subexp */
4c4b4cd2 12143 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12144 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12145 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12146 return;
52ce6436
PH
12147
12148 case OP_DISCRETE_RANGE:
12149 print_subexp (exp, pos, stream, PREC_SUFFIX);
12150 fputs_filtered ("..", stream);
12151 print_subexp (exp, pos, stream, PREC_SUFFIX);
12152 return;
12153
12154 case OP_OTHERS:
12155 fputs_filtered ("others => ", stream);
12156 print_subexp (exp, pos, stream, PREC_SUFFIX);
12157 return;
12158
12159 case OP_CHOICES:
12160 for (i = 0; i < nargs-1; i += 1)
12161 {
12162 if (i > 0)
12163 fputs_filtered ("|", stream);
12164 print_subexp (exp, pos, stream, PREC_SUFFIX);
12165 }
12166 fputs_filtered (" => ", stream);
12167 print_subexp (exp, pos, stream, PREC_SUFFIX);
12168 return;
12169
12170 case OP_POSITIONAL:
12171 print_subexp (exp, pos, stream, PREC_SUFFIX);
12172 return;
12173
12174 case OP_AGGREGATE:
12175 fputs_filtered ("(", stream);
12176 for (i = 0; i < nargs; i += 1)
12177 {
12178 if (i > 0)
12179 fputs_filtered (", ", stream);
12180 print_subexp (exp, pos, stream, PREC_SUFFIX);
12181 }
12182 fputs_filtered (")", stream);
12183 return;
4c4b4cd2
PH
12184 }
12185}
14f9c5c9
AS
12186
12187/* Table mapping opcodes into strings for printing operators
12188 and precedences of the operators. */
12189
d2e4a39e
AS
12190static const struct op_print ada_op_print_tab[] = {
12191 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12192 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12193 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12194 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12195 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12196 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12197 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12198 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12199 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12200 {">=", BINOP_GEQ, PREC_ORDER, 0},
12201 {">", BINOP_GTR, PREC_ORDER, 0},
12202 {"<", BINOP_LESS, PREC_ORDER, 0},
12203 {">>", BINOP_RSH, PREC_SHIFT, 0},
12204 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12205 {"+", BINOP_ADD, PREC_ADD, 0},
12206 {"-", BINOP_SUB, PREC_ADD, 0},
12207 {"&", BINOP_CONCAT, PREC_ADD, 0},
12208 {"*", BINOP_MUL, PREC_MUL, 0},
12209 {"/", BINOP_DIV, PREC_MUL, 0},
12210 {"rem", BINOP_REM, PREC_MUL, 0},
12211 {"mod", BINOP_MOD, PREC_MUL, 0},
12212 {"**", BINOP_EXP, PREC_REPEAT, 0},
12213 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12214 {"-", UNOP_NEG, PREC_PREFIX, 0},
12215 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12216 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12217 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12218 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12219 {".all", UNOP_IND, PREC_SUFFIX, 1},
12220 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12221 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12222 {NULL, 0, 0, 0}
14f9c5c9
AS
12223};
12224\f
72d5681a
PH
12225enum ada_primitive_types {
12226 ada_primitive_type_int,
12227 ada_primitive_type_long,
12228 ada_primitive_type_short,
12229 ada_primitive_type_char,
12230 ada_primitive_type_float,
12231 ada_primitive_type_double,
12232 ada_primitive_type_void,
12233 ada_primitive_type_long_long,
12234 ada_primitive_type_long_double,
12235 ada_primitive_type_natural,
12236 ada_primitive_type_positive,
12237 ada_primitive_type_system_address,
12238 nr_ada_primitive_types
12239};
6c038f32
PH
12240
12241static void
d4a9a881 12242ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12243 struct language_arch_info *lai)
12244{
d4a9a881 12245 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12246
72d5681a 12247 lai->primitive_type_vector
d4a9a881 12248 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12249 struct type *);
e9bb382b
UW
12250
12251 lai->primitive_type_vector [ada_primitive_type_int]
12252 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12253 0, "integer");
12254 lai->primitive_type_vector [ada_primitive_type_long]
12255 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12256 0, "long_integer");
12257 lai->primitive_type_vector [ada_primitive_type_short]
12258 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12259 0, "short_integer");
12260 lai->string_char_type
12261 = lai->primitive_type_vector [ada_primitive_type_char]
12262 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12263 lai->primitive_type_vector [ada_primitive_type_float]
12264 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12265 "float", NULL);
12266 lai->primitive_type_vector [ada_primitive_type_double]
12267 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12268 "long_float", NULL);
12269 lai->primitive_type_vector [ada_primitive_type_long_long]
12270 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12271 0, "long_long_integer");
12272 lai->primitive_type_vector [ada_primitive_type_long_double]
12273 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12274 "long_long_float", NULL);
12275 lai->primitive_type_vector [ada_primitive_type_natural]
12276 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12277 0, "natural");
12278 lai->primitive_type_vector [ada_primitive_type_positive]
12279 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12280 0, "positive");
12281 lai->primitive_type_vector [ada_primitive_type_void]
12282 = builtin->builtin_void;
12283
12284 lai->primitive_type_vector [ada_primitive_type_system_address]
12285 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12286 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12287 = "system__address";
fbb06eb1 12288
47e729a8 12289 lai->bool_type_symbol = NULL;
fbb06eb1 12290 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12291}
6c038f32
PH
12292\f
12293 /* Language vector */
12294
12295/* Not really used, but needed in the ada_language_defn. */
12296
12297static void
6c7a06a3 12298emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12299{
6c7a06a3 12300 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12301}
12302
12303static int
12304parse (void)
12305{
12306 warnings_issued = 0;
12307 return ada_parse ();
12308}
12309
12310static const struct exp_descriptor ada_exp_descriptor = {
12311 ada_print_subexp,
12312 ada_operator_length,
c0201579 12313 ada_operator_check,
6c038f32
PH
12314 ada_op_name,
12315 ada_dump_subexp_body,
12316 ada_evaluate_subexp
12317};
12318
12319const struct language_defn ada_language_defn = {
12320 "ada", /* Language name */
12321 language_ada,
6c038f32
PH
12322 range_check_off,
12323 type_check_off,
12324 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12325 that's not quite what this means. */
6c038f32 12326 array_row_major,
9a044a89 12327 macro_expansion_no,
6c038f32
PH
12328 &ada_exp_descriptor,
12329 parse,
12330 ada_error,
12331 resolve,
12332 ada_printchar, /* Print a character constant */
12333 ada_printstr, /* Function to print string constant */
12334 emit_char, /* Function to print single char (not used) */
6c038f32 12335 ada_print_type, /* Print a type using appropriate syntax */
be942545 12336 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12337 ada_val_print, /* Print a value using appropriate syntax */
12338 ada_value_print, /* Print a top-level value */
12339 NULL, /* Language specific skip_trampoline */
2b2d9e11 12340 NULL, /* name_of_this */
6c038f32
PH
12341 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12342 basic_lookup_transparent_type, /* lookup_transparent_type */
12343 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12344 NULL, /* Language specific
12345 class_name_from_physname */
6c038f32
PH
12346 ada_op_print_tab, /* expression operators for printing */
12347 0, /* c-style arrays */
12348 1, /* String lower bound */
6c038f32 12349 ada_get_gdb_completer_word_break_characters,
41d27058 12350 ada_make_symbol_completion_list,
72d5681a 12351 ada_language_arch_info,
e79af960 12352 ada_print_array_index,
41f1b697 12353 default_pass_by_reference,
ae6a3a4c 12354 c_get_string,
f8eba3c6
TT
12355 compare_names,
12356 ada_iterate_over_symbols,
6c038f32
PH
12357 LANG_MAGIC
12358};
12359
2c0b251b
PA
12360/* Provide a prototype to silence -Wmissing-prototypes. */
12361extern initialize_file_ftype _initialize_ada_language;
12362
5bf03f13
JB
12363/* Command-list for the "set/show ada" prefix command. */
12364static struct cmd_list_element *set_ada_list;
12365static struct cmd_list_element *show_ada_list;
12366
12367/* Implement the "set ada" prefix command. */
12368
12369static void
12370set_ada_command (char *arg, int from_tty)
12371{
12372 printf_unfiltered (_(\
12373"\"set ada\" must be followed by the name of a setting.\n"));
12374 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12375}
12376
12377/* Implement the "show ada" prefix command. */
12378
12379static void
12380show_ada_command (char *args, int from_tty)
12381{
12382 cmd_show_list (show_ada_list, from_tty, "");
12383}
12384
2060206e
PA
12385static void
12386initialize_ada_catchpoint_ops (void)
12387{
12388 struct breakpoint_ops *ops;
12389
12390 initialize_breakpoint_ops ();
12391
12392 ops = &catch_exception_breakpoint_ops;
12393 *ops = bkpt_breakpoint_ops;
12394 ops->dtor = dtor_catch_exception;
12395 ops->allocate_location = allocate_location_catch_exception;
12396 ops->re_set = re_set_catch_exception;
12397 ops->check_status = check_status_catch_exception;
12398 ops->print_it = print_it_catch_exception;
12399 ops->print_one = print_one_catch_exception;
12400 ops->print_mention = print_mention_catch_exception;
12401 ops->print_recreate = print_recreate_catch_exception;
12402
12403 ops = &catch_exception_unhandled_breakpoint_ops;
12404 *ops = bkpt_breakpoint_ops;
12405 ops->dtor = dtor_catch_exception_unhandled;
12406 ops->allocate_location = allocate_location_catch_exception_unhandled;
12407 ops->re_set = re_set_catch_exception_unhandled;
12408 ops->check_status = check_status_catch_exception_unhandled;
12409 ops->print_it = print_it_catch_exception_unhandled;
12410 ops->print_one = print_one_catch_exception_unhandled;
12411 ops->print_mention = print_mention_catch_exception_unhandled;
12412 ops->print_recreate = print_recreate_catch_exception_unhandled;
12413
12414 ops = &catch_assert_breakpoint_ops;
12415 *ops = bkpt_breakpoint_ops;
12416 ops->dtor = dtor_catch_assert;
12417 ops->allocate_location = allocate_location_catch_assert;
12418 ops->re_set = re_set_catch_assert;
12419 ops->check_status = check_status_catch_assert;
12420 ops->print_it = print_it_catch_assert;
12421 ops->print_one = print_one_catch_assert;
12422 ops->print_mention = print_mention_catch_assert;
12423 ops->print_recreate = print_recreate_catch_assert;
12424}
12425
d2e4a39e 12426void
6c038f32 12427_initialize_ada_language (void)
14f9c5c9 12428{
6c038f32
PH
12429 add_language (&ada_language_defn);
12430
2060206e
PA
12431 initialize_ada_catchpoint_ops ();
12432
5bf03f13
JB
12433 add_prefix_cmd ("ada", no_class, set_ada_command,
12434 _("Prefix command for changing Ada-specfic settings"),
12435 &set_ada_list, "set ada ", 0, &setlist);
12436
12437 add_prefix_cmd ("ada", no_class, show_ada_command,
12438 _("Generic command for showing Ada-specific settings."),
12439 &show_ada_list, "show ada ", 0, &showlist);
12440
12441 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12442 &trust_pad_over_xvs, _("\
12443Enable or disable an optimization trusting PAD types over XVS types"), _("\
12444Show whether an optimization trusting PAD types over XVS types is activated"),
12445 _("\
12446This is related to the encoding used by the GNAT compiler. The debugger\n\
12447should normally trust the contents of PAD types, but certain older versions\n\
12448of GNAT have a bug that sometimes causes the information in the PAD type\n\
12449to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12450work around this bug. It is always safe to turn this option \"off\", but\n\
12451this incurs a slight performance penalty, so it is recommended to NOT change\n\
12452this option to \"off\" unless necessary."),
12453 NULL, NULL, &set_ada_list, &show_ada_list);
12454
9ac4176b
PA
12455 add_catch_command ("exception", _("\
12456Catch Ada exceptions, when raised.\n\
12457With an argument, catch only exceptions with the given name."),
12458 catch_ada_exception_command,
12459 NULL,
12460 CATCH_PERMANENT,
12461 CATCH_TEMPORARY);
12462 add_catch_command ("assert", _("\
12463Catch failed Ada assertions, when raised.\n\
12464With an argument, catch only exceptions with the given name."),
12465 catch_assert_command,
12466 NULL,
12467 CATCH_PERMANENT,
12468 CATCH_TEMPORARY);
12469
6c038f32 12470 varsize_limit = 65536;
6c038f32
PH
12471
12472 obstack_init (&symbol_list_obstack);
12473
12474 decoded_names_store = htab_create_alloc
12475 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12476 NULL, xcalloc, xfree);
6b69afc4 12477
e802dbe0
JB
12478 /* Setup per-inferior data. */
12479 observer_attach_inferior_exit (ada_inferior_exit);
12480 ada_inferior_data
12481 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12482}