]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
PROVIDE in linker script vs. built-in symbols
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0e9f083f 23#include <string.h>
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
a53b64ea 35#include "varobj.h"
14f9c5c9
AS
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2 45#include "completer.h"
53ce3c39 46#include <sys/stat.h>
14f9c5c9 47#include "ui-out.h"
fe898f56 48#include "block.h"
04714b91 49#include "infcall.h"
de4f826b 50#include "dictionary.h"
60250e8b 51#include "exceptions.h"
f7f9143b
JB
52#include "annotate.h"
53#include "valprint.h"
9bbc9174 54#include "source.h"
0259addd 55#include "observer.h"
2ba95b9b 56#include "vec.h"
692465f1 57#include "stack.h"
fa864999 58#include "gdb_vecs.h"
79d43c61 59#include "typeprint.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
0fcd72ba 65#include "cli/cli-utils.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 112 const struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
4c4b4cd2
PH
319/* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321static char *ada_completer_word_break_characters =
322#ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324#else
14f9c5c9 325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 326#endif
14f9c5c9 327
4c4b4cd2 328/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 329static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 330 = "__gnat_ada_main_program_name";
14f9c5c9 331
4c4b4cd2
PH
332/* Limit on the number of warnings to raise per expression evaluation. */
333static int warning_limit = 2;
334
335/* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337static int warnings_issued = 0;
338
339static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341};
342
343static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345};
346
347/* Space for allocating results of ada_lookup_symbol_list. */
348static struct obstack symbol_list_obstack;
349
c6044dd1
JB
350/* Maintenance-related settings for this module. */
351
352static struct cmd_list_element *maint_set_ada_cmdlist;
353static struct cmd_list_element *maint_show_ada_cmdlist;
354
355/* Implement the "maintenance set ada" (prefix) command. */
356
357static void
358maint_set_ada_cmd (char *args, int from_tty)
359{
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361}
362
363/* Implement the "maintenance show ada" (prefix) command. */
364
365static void
366maint_show_ada_cmd (char *args, int from_tty)
367{
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369}
370
371/* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373static int ada_ignore_descriptive_types_p = 0;
374
e802dbe0
JB
375 /* Inferior-specific data. */
376
377/* Per-inferior data for this module. */
378
379struct ada_inferior_data
380{
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
3eecfa55
JB
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
e802dbe0
JB
391};
392
393/* Our key to this module's inferior data. */
394static const struct inferior_data *ada_inferior_data;
395
396/* A cleanup routine for our inferior data. */
397static void
398ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399{
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405}
406
407/* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415static struct ada_inferior_data *
416get_ada_inferior_data (struct inferior *inf)
417{
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
41bf6aca 423 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428}
429
430/* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433static void
434ada_inferior_exit (struct inferior *inf)
435{
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438}
439
ee01b665
JB
440
441 /* program-space-specific data. */
442
443/* This module's per-program-space data. */
444struct ada_pspace_data
445{
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448};
449
450/* Key to our per-program-space data. */
451static const struct program_space_data *ada_pspace_data_handle;
452
453/* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458static struct ada_pspace_data *
459get_ada_pspace_data (struct program_space *pspace)
460{
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537}
538
539/* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542static char *
543add_angle_brackets (const char *str)
544{
545 static char *result = NULL;
546
547 xfree (result);
88c15c34 548 result = xstrprintf ("<%s>", str);
41d27058
JB
549 return result;
550}
96d887e8 551
4c4b4cd2
PH
552static char *
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
714e53ab 676 check_size (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
74bcbdf3 687 set_value_component_location (result, val);
9bbda503
AC
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
42ae5230 690 set_value_address (result, value_address (val));
eca07816 691 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
692 return result;
693 }
694}
695
fc1a4b47
AC
696static const gdb_byte *
697cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
698{
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703}
704
705static CORE_ADDR
ebf56fd3 706cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
707{
708 if (address == 0)
709 return 0;
d2e4a39e 710 else
14f9c5c9
AS
711 return address + offset;
712}
713
4c4b4cd2
PH
714/* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
a2249542 718
77109804
AC
719/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
a0b31db1 721static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 722
14f9c5c9 723static void
a2249542 724lim_warning (const char *format, ...)
14f9c5c9 725{
a2249542 726 va_list args;
a2249542 727
5b4ee69b 728 va_start (args, format);
4c4b4cd2
PH
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
a2249542
MK
731 vwarning (format, args);
732
733 va_end (args);
4c4b4cd2
PH
734}
735
714e53ab
PH
736/* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740static void
741check_size (const struct type *type)
742{
743 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 744 error (_("object size is larger than varsize-limit"));
714e53ab
PH
745}
746
0963b4bd 747/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 748static LONGEST
c3e5cd34 749max_of_size (int size)
4c4b4cd2 750{
76a01679 751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 752
76a01679 753 return top_bit | (top_bit - 1);
4c4b4cd2
PH
754}
755
0963b4bd 756/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758min_of_size (int size)
4c4b4cd2 759{
c3e5cd34 760 return -max_of_size (size) - 1;
4c4b4cd2
PH
761}
762
0963b4bd 763/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 764static ULONGEST
c3e5cd34 765umax_of_size (int size)
4c4b4cd2 766{
76a01679 767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 768
76a01679 769 return top_bit | (top_bit - 1);
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
773static LONGEST
774max_of_type (struct type *t)
4c4b4cd2 775{
c3e5cd34
PH
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780}
781
0963b4bd 782/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
783static LONGEST
784min_of_type (struct type *t)
785{
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
790}
791
792/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
793LONGEST
794ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 795{
8739bc53 796 type = resolve_dynamic_type (type, 0);
76a01679 797 switch (TYPE_CODE (type))
4c4b4cd2
PH
798 {
799 case TYPE_CODE_RANGE:
690cc4eb 800 return TYPE_HIGH_BOUND (type);
4c4b4cd2 801 case TYPE_CODE_ENUM:
14e75d8e 802 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
803 case TYPE_CODE_BOOL:
804 return 1;
805 case TYPE_CODE_CHAR:
76a01679 806 case TYPE_CODE_INT:
690cc4eb 807 return max_of_type (type);
4c4b4cd2 808 default:
43bbcdc2 809 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
810 }
811}
812
14e75d8e 813/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
814LONGEST
815ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 816{
8739bc53 817 type = resolve_dynamic_type (type, 0);
76a01679 818 switch (TYPE_CODE (type))
4c4b4cd2
PH
819 {
820 case TYPE_CODE_RANGE:
690cc4eb 821 return TYPE_LOW_BOUND (type);
4c4b4cd2 822 case TYPE_CODE_ENUM:
14e75d8e 823 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
824 case TYPE_CODE_BOOL:
825 return 0;
826 case TYPE_CODE_CHAR:
76a01679 827 case TYPE_CODE_INT:
690cc4eb 828 return min_of_type (type);
4c4b4cd2 829 default:
43bbcdc2 830 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
831 }
832}
833
834/* The identity on non-range types. For range types, the underlying
76a01679 835 non-range scalar type. */
4c4b4cd2
PH
836
837static struct type *
18af8284 838get_base_type (struct type *type)
4c4b4cd2
PH
839{
840 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
841 {
76a01679
JB
842 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
843 return type;
4c4b4cd2
PH
844 type = TYPE_TARGET_TYPE (type);
845 }
846 return type;
14f9c5c9 847}
41246937
JB
848
849/* Return a decoded version of the given VALUE. This means returning
850 a value whose type is obtained by applying all the GNAT-specific
851 encondings, making the resulting type a static but standard description
852 of the initial type. */
853
854struct value *
855ada_get_decoded_value (struct value *value)
856{
857 struct type *type = ada_check_typedef (value_type (value));
858
859 if (ada_is_array_descriptor_type (type)
860 || (ada_is_constrained_packed_array_type (type)
861 && TYPE_CODE (type) != TYPE_CODE_PTR))
862 {
863 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
864 value = ada_coerce_to_simple_array_ptr (value);
865 else
866 value = ada_coerce_to_simple_array (value);
867 }
868 else
869 value = ada_to_fixed_value (value);
870
871 return value;
872}
873
874/* Same as ada_get_decoded_value, but with the given TYPE.
875 Because there is no associated actual value for this type,
876 the resulting type might be a best-effort approximation in
877 the case of dynamic types. */
878
879struct type *
880ada_get_decoded_type (struct type *type)
881{
882 type = to_static_fixed_type (type);
883 if (ada_is_constrained_packed_array_type (type))
884 type = ada_coerce_to_simple_array_type (type);
885 return type;
886}
887
4c4b4cd2 888\f
76a01679 889
4c4b4cd2 890 /* Language Selection */
14f9c5c9
AS
891
892/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 893 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 894
14f9c5c9 895enum language
ccefe4c4 896ada_update_initial_language (enum language lang)
14f9c5c9 897{
d2e4a39e 898 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 899 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 900 return language_ada;
14f9c5c9
AS
901
902 return lang;
903}
96d887e8
PH
904
905/* If the main procedure is written in Ada, then return its name.
906 The result is good until the next call. Return NULL if the main
907 procedure doesn't appear to be in Ada. */
908
909char *
910ada_main_name (void)
911{
3b7344d5 912 struct bound_minimal_symbol msym;
f9bc20b9 913 static char *main_program_name = NULL;
6c038f32 914
96d887e8
PH
915 /* For Ada, the name of the main procedure is stored in a specific
916 string constant, generated by the binder. Look for that symbol,
917 extract its address, and then read that string. If we didn't find
918 that string, then most probably the main procedure is not written
919 in Ada. */
920 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
921
3b7344d5 922 if (msym.minsym != NULL)
96d887e8 923 {
f9bc20b9
JB
924 CORE_ADDR main_program_name_addr;
925 int err_code;
926
77e371c0 927 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 928 if (main_program_name_addr == 0)
323e0a4a 929 error (_("Invalid address for Ada main program name."));
96d887e8 930
f9bc20b9
JB
931 xfree (main_program_name);
932 target_read_string (main_program_name_addr, &main_program_name,
933 1024, &err_code);
934
935 if (err_code != 0)
936 return NULL;
96d887e8
PH
937 return main_program_name;
938 }
939
940 /* The main procedure doesn't seem to be in Ada. */
941 return NULL;
942}
14f9c5c9 943\f
4c4b4cd2 944 /* Symbols */
d2e4a39e 945
4c4b4cd2
PH
946/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
947 of NULLs. */
14f9c5c9 948
d2e4a39e
AS
949const struct ada_opname_map ada_opname_table[] = {
950 {"Oadd", "\"+\"", BINOP_ADD},
951 {"Osubtract", "\"-\"", BINOP_SUB},
952 {"Omultiply", "\"*\"", BINOP_MUL},
953 {"Odivide", "\"/\"", BINOP_DIV},
954 {"Omod", "\"mod\"", BINOP_MOD},
955 {"Orem", "\"rem\"", BINOP_REM},
956 {"Oexpon", "\"**\"", BINOP_EXP},
957 {"Olt", "\"<\"", BINOP_LESS},
958 {"Ole", "\"<=\"", BINOP_LEQ},
959 {"Ogt", "\">\"", BINOP_GTR},
960 {"Oge", "\">=\"", BINOP_GEQ},
961 {"Oeq", "\"=\"", BINOP_EQUAL},
962 {"One", "\"/=\"", BINOP_NOTEQUAL},
963 {"Oand", "\"and\"", BINOP_BITWISE_AND},
964 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
965 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
966 {"Oconcat", "\"&\"", BINOP_CONCAT},
967 {"Oabs", "\"abs\"", UNOP_ABS},
968 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
969 {"Oadd", "\"+\"", UNOP_PLUS},
970 {"Osubtract", "\"-\"", UNOP_NEG},
971 {NULL, NULL}
14f9c5c9
AS
972};
973
4c4b4cd2
PH
974/* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
14f9c5c9 977char *
4c4b4cd2 978ada_encode (const char *decoded)
14f9c5c9 979{
4c4b4cd2
PH
980 static char *encoding_buffer = NULL;
981 static size_t encoding_buffer_size = 0;
d2e4a39e 982 const char *p;
14f9c5c9 983 int k;
d2e4a39e 984
4c4b4cd2 985 if (decoded == NULL)
14f9c5c9
AS
986 return NULL;
987
4c4b4cd2
PH
988 GROW_VECT (encoding_buffer, encoding_buffer_size,
989 2 * strlen (decoded) + 10);
14f9c5c9
AS
990
991 k = 0;
4c4b4cd2 992 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 993 {
cdc7bb92 994 if (*p == '.')
4c4b4cd2
PH
995 {
996 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
997 k += 2;
998 }
14f9c5c9 999 else if (*p == '"')
4c4b4cd2
PH
1000 {
1001 const struct ada_opname_map *mapping;
1002
1003 for (mapping = ada_opname_table;
1265e4aa
JB
1004 mapping->encoded != NULL
1005 && strncmp (mapping->decoded, p,
1006 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1007 ;
1008 if (mapping->encoded == NULL)
323e0a4a 1009 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
d2e4a39e 1014 else
4c4b4cd2
PH
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
14f9c5c9
AS
1019 }
1020
4c4b4cd2
PH
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
14f9c5c9
AS
1023}
1024
1025/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
d2e4a39e
AS
1029char *
1030ada_fold_name (const char *name)
14f9c5c9 1031{
d2e4a39e 1032 static char *fold_buffer = NULL;
14f9c5c9
AS
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
d2e4a39e 1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1037
1038 if (name[0] == '\'')
1039 {
d2e4a39e
AS
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1042 }
1043 else
1044 {
1045 int i;
5b4ee69b 1046
14f9c5c9 1047 for (i = 0; i <= len; i += 1)
4c4b4cd2 1048 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1049 }
1050
1051 return fold_buffer;
1052}
1053
529cad9c
PH
1054/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056static int
1057is_lower_alphanum (const char c)
1058{
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060}
1061
c90092fe
JB
1062/* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
29480c32
JB
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
c90092fe 1069
29480c32
JB
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074static void
1075ada_remove_trailing_digits (const char *encoded, int *len)
1076{
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
5b4ee69b 1080
29480c32
JB
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1088 *len = i - 2;
1089 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1090 *len = i - 1;
1091 }
1092}
1093
1094/* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097static void
1098ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099{
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
0963b4bd 1105 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114}
1115
69fadcdf
JB
1116/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118static void
1119ada_remove_Xbn_suffix (const char *encoded, int *len)
1120{
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134}
1135
29480c32
JB
1136/* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
14f9c5c9 1139
4c4b4cd2 1140 The resulting string is valid until the next call of ada_decode.
29480c32 1141 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1142 is returned. */
1143
1144const char *
1145ada_decode (const char *encoded)
14f9c5c9
AS
1146{
1147 int i, j;
1148 int len0;
d2e4a39e 1149 const char *p;
4c4b4cd2 1150 char *decoded;
14f9c5c9 1151 int at_start_name;
4c4b4cd2
PH
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
d2e4a39e 1154
29480c32
JB
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
4c4b4cd2
PH
1158 if (strncmp (encoded, "_ada_", 5) == 0)
1159 encoded += 5;
14f9c5c9 1160
29480c32
JB
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
4c4b4cd2 1164 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1165 goto Suppress;
1166
4c4b4cd2 1167 len0 = strlen (encoded);
4c4b4cd2 1168
29480c32
JB
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1171
4c4b4cd2
PH
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1178 {
1179 if (p[3] == 'X')
4c4b4cd2 1180 len0 = p - encoded;
14f9c5c9 1181 else
4c4b4cd2 1182 goto Suppress;
14f9c5c9 1183 }
4c4b4cd2 1184
29480c32
JB
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
4c4b4cd2 1189 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1190 len0 -= 3;
76a01679 1191
a10967fa
JB
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1197 len0 -= 2;
1198
29480c32
JB
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
4c4b4cd2 1202 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1203 len0 -= 1;
1204
4c4b4cd2 1205 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1206
4c4b4cd2
PH
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
14f9c5c9 1209
29480c32
JB
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
4c4b4cd2 1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1213 {
4c4b4cd2
PH
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
d2e4a39e 1222 }
14f9c5c9 1223
29480c32
JB
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
4c4b4cd2
PH
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
14f9c5c9
AS
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
29480c32 1233 /* Is this a symbol function? */
4c4b4cd2
PH
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
5b4ee69b 1237
4c4b4cd2
PH
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
14f9c5c9
AS
1255 at_start_name = 0;
1256
529cad9c
PH
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
4c4b4cd2
PH
1260 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1261 i += 2;
529cad9c 1262
29480c32
JB
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
529cad9c
PH
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1285 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
4c4b4cd2
PH
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
29480c32
JB
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
4c4b4cd2
PH
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
cdc7bb92 1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1350 {
29480c32 1351 /* Replace '__' by '.'. */
4c4b4cd2
PH
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
14f9c5c9 1357 else
4c4b4cd2 1358 {
29480c32
JB
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
4c4b4cd2
PH
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
14f9c5c9 1365 }
4c4b4cd2 1366 decoded[j] = '\000';
14f9c5c9 1367
29480c32
JB
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
4c4b4cd2
PH
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1373 goto Suppress;
1374
4c4b4cd2
PH
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
14f9c5c9
AS
1379
1380Suppress:
4c4b4cd2
PH
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
14f9c5c9 1385 else
88c15c34 1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1387 return decoded;
1388
1389}
1390
1391/* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396static struct htab *decoded_names_store;
1397
1398/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1403 GSYMBOL).
4c4b4cd2
PH
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1406 when a decoded name is cached in it. */
4c4b4cd2 1407
45e6c716 1408const char *
f85f34ed 1409ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1410{
f85f34ed
TT
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1414
f85f34ed 1415 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1418 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1419
f85f34ed 1420 gsymbol->ada_mangled = 1;
5b4ee69b 1421
f85f34ed
TT
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
76a01679 1425 {
f85f34ed
TT
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
76a01679
JB
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
5b4ee69b 1433
76a01679
JB
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
4c4b4cd2 1438 }
14f9c5c9 1439
4c4b4cd2
PH
1440 return *resultp;
1441}
76a01679 1442
2c0b251b 1443static char *
76a01679 1444ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1445{
1446 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1447}
1448
1449/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
14f9c5c9 1455
2c0b251b 1456static int
40658b94 1457match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1458{
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
73589123 1462 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1463 else
1464 {
1465 int len_name = strlen (name);
5b4ee69b 1466
4c4b4cd2
PH
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (strncmp (sym_name, "_ada_", 5) == 0
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1472 }
14f9c5c9 1473}
14f9c5c9 1474\f
d2e4a39e 1475
4c4b4cd2 1476 /* Arrays */
14f9c5c9 1477
28c85d6c
JB
1478/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501void
1502ada_fixup_array_indexes_type (struct type *index_desc_type)
1503{
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
0d5cff50 1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531}
1532
4c4b4cd2 1533/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1534
d2e4a39e
AS
1535static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538};
1539
1540/* Maximum number of array dimensions we are prepared to handle. */
1541
4c4b4cd2 1542#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1543
14f9c5c9 1544
4c4b4cd2
PH
1545/* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
14f9c5c9
AS
1547
1548/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1549 level of indirection, if needed. */
1550
d2e4a39e
AS
1551static struct type *
1552desc_base_type (struct type *type)
14f9c5c9
AS
1553{
1554 if (type == NULL)
1555 return NULL;
61ee279c 1556 type = ada_check_typedef (type);
720d1a40
JB
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1265e4aa
JB
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1564 else
1565 return type;
1566}
1567
4c4b4cd2
PH
1568/* True iff TYPE indicates a "thin" array pointer type. */
1569
14f9c5c9 1570static int
d2e4a39e 1571is_thin_pntr (struct type *type)
14f9c5c9 1572{
d2e4a39e 1573 return
14f9c5c9
AS
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576}
1577
4c4b4cd2
PH
1578/* The descriptor type for thin pointer type TYPE. */
1579
d2e4a39e
AS
1580static struct type *
1581thin_descriptor_type (struct type *type)
14f9c5c9 1582{
d2e4a39e 1583 struct type *base_type = desc_base_type (type);
5b4ee69b 1584
14f9c5c9
AS
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
d2e4a39e 1589 else
14f9c5c9 1590 {
d2e4a39e 1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1592
14f9c5c9 1593 if (alt_type == NULL)
4c4b4cd2 1594 return base_type;
14f9c5c9 1595 else
4c4b4cd2 1596 return alt_type;
14f9c5c9
AS
1597 }
1598}
1599
4c4b4cd2
PH
1600/* A pointer to the array data for thin-pointer value VAL. */
1601
d2e4a39e
AS
1602static struct value *
1603thin_data_pntr (struct value *val)
14f9c5c9 1604{
828292f2 1605 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1607
556bdfd4
UW
1608 data_type = lookup_pointer_type (data_type);
1609
14f9c5c9 1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1611 return value_cast (data_type, value_copy (val));
d2e4a39e 1612 else
42ae5230 1613 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1614}
1615
4c4b4cd2
PH
1616/* True iff TYPE indicates a "thick" array pointer type. */
1617
14f9c5c9 1618static int
d2e4a39e 1619is_thick_pntr (struct type *type)
14f9c5c9
AS
1620{
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1624}
1625
4c4b4cd2
PH
1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1628
d2e4a39e
AS
1629static struct type *
1630desc_bounds_type (struct type *type)
14f9c5c9 1631{
d2e4a39e 1632 struct type *r;
14f9c5c9
AS
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
4c4b4cd2 1642 return NULL;
14f9c5c9
AS
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
61ee279c 1645 return ada_check_typedef (r);
14f9c5c9
AS
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1652 }
1653 return NULL;
1654}
1655
1656/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
d2e4a39e
AS
1659static struct value *
1660desc_bounds (struct value *arr)
14f9c5c9 1661{
df407dfe 1662 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1663
d2e4a39e 1664 if (is_thin_pntr (type))
14f9c5c9 1665 {
d2e4a39e 1666 struct type *bounds_type =
4c4b4cd2 1667 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1668 LONGEST addr;
1669
4cdfadb1 1670 if (bounds_type == NULL)
323e0a4a 1671 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1672
1673 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1674 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1675 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1677 addr = value_as_long (arr);
d2e4a39e 1678 else
42ae5230 1679 addr = value_address (arr);
14f9c5c9 1680
d2e4a39e 1681 return
4c4b4cd2
PH
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1684 }
1685
1686 else if (is_thick_pntr (type))
05e522ef
JB
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
14f9c5c9
AS
1707 else
1708 return NULL;
1709}
1710
4c4b4cd2
PH
1711/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
14f9c5c9 1714static int
d2e4a39e 1715fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1716{
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718}
1719
1720/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1721 size of the field containing the address of the bounds data. */
1722
14f9c5c9 1723static int
d2e4a39e 1724fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1725{
1726 type = desc_base_type (type);
1727
d2e4a39e 1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
61ee279c 1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1732}
1733
4c4b4cd2 1734/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
4c4b4cd2 1738
d2e4a39e 1739static struct type *
556bdfd4 1740desc_data_target_type (struct type *type)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
4c4b4cd2 1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1745 if (is_thin_pntr (type))
556bdfd4 1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1747 else if (is_thick_pntr (type))
556bdfd4
UW
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1754 }
1755
1756 return NULL;
14f9c5c9
AS
1757}
1758
1759/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
4c4b4cd2 1761
d2e4a39e
AS
1762static struct value *
1763desc_data (struct value *arr)
14f9c5c9 1764{
df407dfe 1765 struct type *type = value_type (arr);
5b4ee69b 1766
14f9c5c9
AS
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
d2e4a39e 1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1771 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1772 else
1773 return NULL;
1774}
1775
1776
1777/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1778 position of the field containing the address of the data. */
1779
14f9c5c9 1780static int
d2e4a39e 1781fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1782{
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784}
1785
1786/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1787 size of the field containing the address of the data. */
1788
14f9c5c9 1789static int
d2e4a39e 1790fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1791{
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1796 else
14f9c5c9
AS
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798}
1799
4c4b4cd2 1800/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
d2e4a39e
AS
1804static struct value *
1805desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1806{
d2e4a39e 1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1808 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1809}
1810
1811/* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
14f9c5c9 1815static int
d2e4a39e 1816desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1817{
d2e4a39e 1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1819}
1820
1821/* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
76a01679 1825static int
d2e4a39e 1826desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
d2e4a39e
AS
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1834}
1835
1836/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
d2e4a39e
AS
1839static struct type *
1840desc_index_type (struct type *type, int i)
14f9c5c9
AS
1841{
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
14f9c5c9
AS
1847 return NULL;
1848}
1849
4c4b4cd2
PH
1850/* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
14f9c5c9 1853static int
d2e4a39e 1854desc_arity (struct type *type)
14f9c5c9
AS
1855{
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861}
1862
4c4b4cd2
PH
1863/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
76a01679
JB
1867static int
1868ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1869{
1870 if (type == NULL)
1871 return 0;
61ee279c 1872 type = ada_check_typedef (type);
4c4b4cd2 1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1874 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1875}
1876
52ce6436 1877/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1878 * to one. */
52ce6436 1879
2c0b251b 1880static int
52ce6436
PH
1881ada_is_array_type (struct type *type)
1882{
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888}
1889
4c4b4cd2 1890/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1891
14f9c5c9 1892int
4c4b4cd2 1893ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1894{
1895 if (type == NULL)
1896 return 0;
61ee279c 1897 type = ada_check_typedef (type);
14f9c5c9 1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1902}
1903
4c4b4cd2
PH
1904/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
14f9c5c9 1906int
4c4b4cd2 1907ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1908{
556bdfd4 1909 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1910
1911 if (type == NULL)
1912 return 0;
61ee279c 1913 type = ada_check_typedef (type);
556bdfd4
UW
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1917}
1918
1919/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1920 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1921 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1922 is still needed. */
1923
14f9c5c9 1924int
ebf56fd3 1925ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1926{
d2e4a39e 1927 return
14f9c5c9
AS
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1933}
1934
1935
4c4b4cd2 1936/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1937 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1939 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1942 a descriptor. */
d2e4a39e
AS
1943struct type *
1944ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1945{
ad82864c
JB
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1948
df407dfe
AC
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
d2e4a39e
AS
1951
1952 if (!bounds)
ad82864c
JB
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
14f9c5c9
AS
1963 else
1964 {
d2e4a39e 1965 struct type *elt_type;
14f9c5c9 1966 int arity;
d2e4a39e 1967 struct value *descriptor;
14f9c5c9 1968
df407dfe
AC
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
14f9c5c9 1971
d2e4a39e 1972 if (elt_type == NULL || arity == 0)
df407dfe 1973 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1974
1975 descriptor = desc_bounds (arr);
d2e4a39e 1976 if (value_as_long (descriptor) == 0)
4c4b4cd2 1977 return NULL;
d2e4a39e 1978 while (arity > 0)
4c4b4cd2 1979 {
e9bb382b
UW
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1984
5b4ee69b 1985 arity -= 1;
0c9c3474
SA
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
4c4b4cd2 1989 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
4c4b4cd2 2011 }
14f9c5c9
AS
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
d2e4a39e
AS
2022struct value *
2023ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2024{
df407dfe 2025 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2026 {
d2e4a39e 2027 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2028
14f9c5c9 2029 if (arrType == NULL)
4c4b4cd2 2030 return NULL;
14f9c5c9
AS
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2035 else
2036 return arr;
2037}
2038
2039/* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2041 be ARR itself if it already is in the proper form). */
2042
720d1a40 2043struct value *
d2e4a39e 2044ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2045{
df407dfe 2046 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2047 {
d2e4a39e 2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2049
14f9c5c9 2050 if (arrVal == NULL)
323e0a4a 2051 error (_("Bounds unavailable for null array pointer."));
529cad9c 2052 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2053 return value_ind (arrVal);
2054 }
ad82864c
JB
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
d2e4a39e 2057 else
14f9c5c9
AS
2058 return arr;
2059}
2060
2061/* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2063 packing). For other types, is the identity. */
2064
d2e4a39e
AS
2065struct type *
2066ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2067{
ad82864c
JB
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
17280b9f
UW
2070
2071 if (ada_is_array_descriptor_type (type))
556bdfd4 2072 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2073
2074 return type;
14f9c5c9
AS
2075}
2076
4c4b4cd2
PH
2077/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
ad82864c
JB
2079static int
2080ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2081{
2082 if (type == NULL)
2083 return 0;
4c4b4cd2 2084 type = desc_base_type (type);
61ee279c 2085 type = ada_check_typedef (type);
d2e4a39e 2086 return
14f9c5c9
AS
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089}
2090
ad82864c
JB
2091/* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094int
2095ada_is_constrained_packed_array_type (struct type *type)
2096{
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099}
2100
2101/* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104static int
2105ada_is_unconstrained_packed_array_type (struct type *type)
2106{
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109}
2110
2111/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114static long
2115decode_packed_array_bitsize (struct type *type)
2116{
0d5cff50
DE
2117 const char *raw_name;
2118 const char *tail;
ad82864c
JB
2119 long bits;
2120
720d1a40
JB
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
720d1a40 2135 gdb_assert (tail != NULL);
ad82864c
JB
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145}
2146
14f9c5c9
AS
2147/* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits. */
2155
d2e4a39e 2156static struct type *
ad82864c 2157constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2158{
d2e4a39e
AS
2159 struct type *new_elt_type;
2160 struct type *new_type;
99b1c762
JB
2161 struct type *index_type_desc;
2162 struct type *index_type;
14f9c5c9
AS
2163 LONGEST low_bound, high_bound;
2164
61ee279c 2165 type = ada_check_typedef (type);
14f9c5c9
AS
2166 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2167 return type;
2168
99b1c762
JB
2169 index_type_desc = ada_find_parallel_type (type, "___XA");
2170 if (index_type_desc)
2171 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2172 NULL);
2173 else
2174 index_type = TYPE_INDEX_TYPE (type);
2175
e9bb382b 2176 new_type = alloc_type_copy (type);
ad82864c
JB
2177 new_elt_type =
2178 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2179 elt_bits);
99b1c762 2180 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2181 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2182 TYPE_NAME (new_type) = ada_type_name (type);
2183
99b1c762 2184 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2185 low_bound = high_bound = 0;
2186 if (high_bound < low_bound)
2187 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2188 else
14f9c5c9
AS
2189 {
2190 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2191 TYPE_LENGTH (new_type) =
4c4b4cd2 2192 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2193 }
2194
876cecd0 2195 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2196 return new_type;
2197}
2198
ad82864c
JB
2199/* The array type encoded by TYPE, where
2200 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2201
d2e4a39e 2202static struct type *
ad82864c 2203decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2204{
0d5cff50 2205 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2206 char *name;
0d5cff50 2207 const char *tail;
d2e4a39e 2208 struct type *shadow_type;
14f9c5c9 2209 long bits;
14f9c5c9 2210
727e3d2e
JB
2211 if (!raw_name)
2212 raw_name = ada_type_name (desc_base_type (type));
2213
2214 if (!raw_name)
2215 return NULL;
2216
2217 name = (char *) alloca (strlen (raw_name) + 1);
2218 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2219 type = desc_base_type (type);
2220
14f9c5c9
AS
2221 memcpy (name, raw_name, tail - raw_name);
2222 name[tail - raw_name] = '\000';
2223
b4ba55a1
JB
2224 shadow_type = ada_find_parallel_type_with_name (type, name);
2225
2226 if (shadow_type == NULL)
14f9c5c9 2227 {
323e0a4a 2228 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2229 return NULL;
2230 }
cb249c71 2231 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2232
2233 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 {
0963b4bd
MS
2235 lim_warning (_("could not understand bounds "
2236 "information on packed array"));
14f9c5c9
AS
2237 return NULL;
2238 }
d2e4a39e 2239
ad82864c
JB
2240 bits = decode_packed_array_bitsize (type);
2241 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2242}
2243
ad82864c
JB
2244/* Given that ARR is a struct value *indicating a GNAT constrained packed
2245 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2246 standard GDB array type except that the BITSIZEs of the array
2247 target types are set to the number of bits in each element, and the
4c4b4cd2 2248 type length is set appropriately. */
14f9c5c9 2249
d2e4a39e 2250static struct value *
ad82864c 2251decode_constrained_packed_array (struct value *arr)
14f9c5c9 2252{
4c4b4cd2 2253 struct type *type;
14f9c5c9 2254
11aa919a
PMR
2255 /* If our value is a pointer, then dereference it. Likewise if
2256 the value is a reference. Make sure that this operation does not
2257 cause the target type to be fixed, as this would indirectly cause
2258 this array to be decoded. The rest of the routine assumes that
2259 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2260 and "value_ind" routines to perform the dereferencing, as opposed
2261 to using "ada_coerce_ref" or "ada_value_ind". */
2262 arr = coerce_ref (arr);
828292f2 2263 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2264 arr = value_ind (arr);
4c4b4cd2 2265
ad82864c 2266 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2267 if (type == NULL)
2268 {
323e0a4a 2269 error (_("can't unpack array"));
14f9c5c9
AS
2270 return NULL;
2271 }
61ee279c 2272
50810684 2273 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2274 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2275 {
2276 /* This is a (right-justified) modular type representing a packed
2277 array with no wrapper. In order to interpret the value through
2278 the (left-justified) packed array type we just built, we must
2279 first left-justify it. */
2280 int bit_size, bit_pos;
2281 ULONGEST mod;
2282
df407dfe 2283 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2284 bit_size = 0;
2285 while (mod > 0)
2286 {
2287 bit_size += 1;
2288 mod >>= 1;
2289 }
df407dfe 2290 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2291 arr = ada_value_primitive_packed_val (arr, NULL,
2292 bit_pos / HOST_CHAR_BIT,
2293 bit_pos % HOST_CHAR_BIT,
2294 bit_size,
2295 type);
2296 }
2297
4c4b4cd2 2298 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2299}
2300
2301
2302/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2303 given in IND. ARR must be a simple array. */
14f9c5c9 2304
d2e4a39e
AS
2305static struct value *
2306value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2307{
2308 int i;
2309 int bits, elt_off, bit_off;
2310 long elt_total_bit_offset;
d2e4a39e
AS
2311 struct type *elt_type;
2312 struct value *v;
14f9c5c9
AS
2313
2314 bits = 0;
2315 elt_total_bit_offset = 0;
df407dfe 2316 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2317 for (i = 0; i < arity; i += 1)
14f9c5c9 2318 {
d2e4a39e 2319 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2320 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 error
0963b4bd
MS
2322 (_("attempt to do packed indexing of "
2323 "something other than a packed array"));
14f9c5c9 2324 else
4c4b4cd2
PH
2325 {
2326 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2327 LONGEST lowerbound, upperbound;
2328 LONGEST idx;
2329
2330 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 {
323e0a4a 2332 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2333 lowerbound = upperbound = 0;
2334 }
2335
3cb382c9 2336 idx = pos_atr (ind[i]);
4c4b4cd2 2337 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2338 lim_warning (_("packed array index %ld out of bounds"),
2339 (long) idx);
4c4b4cd2
PH
2340 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2341 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2342 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2343 }
14f9c5c9
AS
2344 }
2345 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2346 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2347
2348 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2349 bits, elt_type);
14f9c5c9
AS
2350 return v;
2351}
2352
4c4b4cd2 2353/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2354
2355static int
d2e4a39e 2356has_negatives (struct type *type)
14f9c5c9 2357{
d2e4a39e
AS
2358 switch (TYPE_CODE (type))
2359 {
2360 default:
2361 return 0;
2362 case TYPE_CODE_INT:
2363 return !TYPE_UNSIGNED (type);
2364 case TYPE_CODE_RANGE:
2365 return TYPE_LOW_BOUND (type) < 0;
2366 }
14f9c5c9 2367}
d2e4a39e 2368
14f9c5c9
AS
2369
2370/* Create a new value of type TYPE from the contents of OBJ starting
2371 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2372 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2373 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2374 VALADDR is ignored unless OBJ is NULL, in which case,
2375 VALADDR+OFFSET must address the start of storage containing the
2376 packed value. The value returned in this case is never an lval.
2377 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2378
d2e4a39e 2379struct value *
fc1a4b47 2380ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2381 long offset, int bit_offset, int bit_size,
4c4b4cd2 2382 struct type *type)
14f9c5c9 2383{
d2e4a39e 2384 struct value *v;
4c4b4cd2
PH
2385 int src, /* Index into the source area */
2386 targ, /* Index into the target area */
2387 srcBitsLeft, /* Number of source bits left to move */
2388 nsrc, ntarg, /* Number of source and target bytes */
2389 unusedLS, /* Number of bits in next significant
2390 byte of source that are unused */
2391 accumSize; /* Number of meaningful bits in accum */
2392 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2393 unsigned char *unpacked;
4c4b4cd2 2394 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2395 unsigned char sign;
2396 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2397 /* Transmit bytes from least to most significant; delta is the direction
2398 the indices move. */
50810684 2399 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2400
61ee279c 2401 type = ada_check_typedef (type);
14f9c5c9
AS
2402
2403 if (obj == NULL)
2404 {
2405 v = allocate_value (type);
d2e4a39e 2406 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2407 }
9214ee5f 2408 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2409 {
53ba8333 2410 v = value_at (type, value_address (obj));
9f1f738a 2411 type = value_type (v);
d2e4a39e 2412 bytes = (unsigned char *) alloca (len);
53ba8333 2413 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2414 }
d2e4a39e 2415 else
14f9c5c9
AS
2416 {
2417 v = allocate_value (type);
0fd88904 2418 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2419 }
d2e4a39e
AS
2420
2421 if (obj != NULL)
14f9c5c9 2422 {
53ba8333 2423 long new_offset = offset;
5b4ee69b 2424
74bcbdf3 2425 set_value_component_location (v, obj);
9bbda503
AC
2426 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2427 set_value_bitsize (v, bit_size);
df407dfe 2428 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2429 {
53ba8333 2430 ++new_offset;
9bbda503 2431 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2432 }
53ba8333
JB
2433 set_value_offset (v, new_offset);
2434
2435 /* Also set the parent value. This is needed when trying to
2436 assign a new value (in inferior memory). */
2437 set_value_parent (v, obj);
14f9c5c9
AS
2438 }
2439 else
9bbda503 2440 set_value_bitsize (v, bit_size);
0fd88904 2441 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2442
2443 srcBitsLeft = bit_size;
2444 nsrc = len;
2445 ntarg = TYPE_LENGTH (type);
2446 sign = 0;
2447 if (bit_size == 0)
2448 {
2449 memset (unpacked, 0, TYPE_LENGTH (type));
2450 return v;
2451 }
50810684 2452 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2453 {
d2e4a39e 2454 src = len - 1;
1265e4aa
JB
2455 if (has_negatives (type)
2456 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2457 sign = ~0;
d2e4a39e
AS
2458
2459 unusedLS =
4c4b4cd2
PH
2460 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2461 % HOST_CHAR_BIT;
14f9c5c9
AS
2462
2463 switch (TYPE_CODE (type))
4c4b4cd2
PH
2464 {
2465 case TYPE_CODE_ARRAY:
2466 case TYPE_CODE_UNION:
2467 case TYPE_CODE_STRUCT:
2468 /* Non-scalar values must be aligned at a byte boundary... */
2469 accumSize =
2470 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2471 /* ... And are placed at the beginning (most-significant) bytes
2472 of the target. */
529cad9c 2473 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2474 ntarg = targ + 1;
4c4b4cd2
PH
2475 break;
2476 default:
2477 accumSize = 0;
2478 targ = TYPE_LENGTH (type) - 1;
2479 break;
2480 }
14f9c5c9 2481 }
d2e4a39e 2482 else
14f9c5c9
AS
2483 {
2484 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2485
2486 src = targ = 0;
2487 unusedLS = bit_offset;
2488 accumSize = 0;
2489
d2e4a39e 2490 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2491 sign = ~0;
14f9c5c9 2492 }
d2e4a39e 2493
14f9c5c9
AS
2494 accum = 0;
2495 while (nsrc > 0)
2496 {
2497 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2498 part of the value. */
d2e4a39e 2499 unsigned int unusedMSMask =
4c4b4cd2
PH
2500 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2501 1;
2502 /* Sign-extend bits for this byte. */
14f9c5c9 2503 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2504
d2e4a39e 2505 accum |=
4c4b4cd2 2506 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2507 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2508 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2509 {
2510 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2511 accumSize -= HOST_CHAR_BIT;
2512 accum >>= HOST_CHAR_BIT;
2513 ntarg -= 1;
2514 targ += delta;
2515 }
14f9c5c9
AS
2516 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2517 unusedLS = 0;
2518 nsrc -= 1;
2519 src += delta;
2520 }
2521 while (ntarg > 0)
2522 {
2523 accum |= sign << accumSize;
2524 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 ntarg -= 1;
2528 targ += delta;
2529 }
2530
2531 return v;
2532}
d2e4a39e 2533
14f9c5c9
AS
2534/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2535 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2536 not overlap. */
14f9c5c9 2537static void
fc1a4b47 2538move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2539 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2540{
2541 unsigned int accum, mask;
2542 int accum_bits, chunk_size;
2543
2544 target += targ_offset / HOST_CHAR_BIT;
2545 targ_offset %= HOST_CHAR_BIT;
2546 source += src_offset / HOST_CHAR_BIT;
2547 src_offset %= HOST_CHAR_BIT;
50810684 2548 if (bits_big_endian_p)
14f9c5c9
AS
2549 {
2550 accum = (unsigned char) *source;
2551 source += 1;
2552 accum_bits = HOST_CHAR_BIT - src_offset;
2553
d2e4a39e 2554 while (n > 0)
4c4b4cd2
PH
2555 {
2556 int unused_right;
5b4ee69b 2557
4c4b4cd2
PH
2558 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2559 accum_bits += HOST_CHAR_BIT;
2560 source += 1;
2561 chunk_size = HOST_CHAR_BIT - targ_offset;
2562 if (chunk_size > n)
2563 chunk_size = n;
2564 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2565 mask = ((1 << chunk_size) - 1) << unused_right;
2566 *target =
2567 (*target & ~mask)
2568 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2569 n -= chunk_size;
2570 accum_bits -= chunk_size;
2571 target += 1;
2572 targ_offset = 0;
2573 }
14f9c5c9
AS
2574 }
2575 else
2576 {
2577 accum = (unsigned char) *source >> src_offset;
2578 source += 1;
2579 accum_bits = HOST_CHAR_BIT - src_offset;
2580
d2e4a39e 2581 while (n > 0)
4c4b4cd2
PH
2582 {
2583 accum = accum + ((unsigned char) *source << accum_bits);
2584 accum_bits += HOST_CHAR_BIT;
2585 source += 1;
2586 chunk_size = HOST_CHAR_BIT - targ_offset;
2587 if (chunk_size > n)
2588 chunk_size = n;
2589 mask = ((1 << chunk_size) - 1) << targ_offset;
2590 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2591 n -= chunk_size;
2592 accum_bits -= chunk_size;
2593 accum >>= chunk_size;
2594 target += 1;
2595 targ_offset = 0;
2596 }
14f9c5c9
AS
2597 }
2598}
2599
14f9c5c9
AS
2600/* Store the contents of FROMVAL into the location of TOVAL.
2601 Return a new value with the location of TOVAL and contents of
2602 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2603 floating-point or non-scalar types. */
14f9c5c9 2604
d2e4a39e
AS
2605static struct value *
2606ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2607{
df407dfe
AC
2608 struct type *type = value_type (toval);
2609 int bits = value_bitsize (toval);
14f9c5c9 2610
52ce6436
PH
2611 toval = ada_coerce_ref (toval);
2612 fromval = ada_coerce_ref (fromval);
2613
2614 if (ada_is_direct_array_type (value_type (toval)))
2615 toval = ada_coerce_to_simple_array (toval);
2616 if (ada_is_direct_array_type (value_type (fromval)))
2617 fromval = ada_coerce_to_simple_array (fromval);
2618
88e3b34b 2619 if (!deprecated_value_modifiable (toval))
323e0a4a 2620 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2621
d2e4a39e 2622 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2623 && bits > 0
d2e4a39e 2624 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2625 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2626 {
df407dfe
AC
2627 int len = (value_bitpos (toval)
2628 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2629 int from_size;
948f8e3d 2630 gdb_byte *buffer = alloca (len);
d2e4a39e 2631 struct value *val;
42ae5230 2632 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2633
2634 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2635 fromval = value_cast (type, fromval);
14f9c5c9 2636
52ce6436 2637 read_memory (to_addr, buffer, len);
aced2898
PH
2638 from_size = value_bitsize (fromval);
2639 if (from_size == 0)
2640 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2641 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2642 move_bits (buffer, value_bitpos (toval),
50810684 2643 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2644 else
50810684
UW
2645 move_bits (buffer, value_bitpos (toval),
2646 value_contents (fromval), 0, bits, 0);
972daa01 2647 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2648
14f9c5c9 2649 val = value_copy (toval);
0fd88904 2650 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2651 TYPE_LENGTH (type));
04624583 2652 deprecated_set_value_type (val, type);
d2e4a39e 2653
14f9c5c9
AS
2654 return val;
2655 }
2656
2657 return value_assign (toval, fromval);
2658}
2659
2660
52ce6436
PH
2661/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2662 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2663 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2664 * COMPONENT, and not the inferior's memory. The current contents
2665 * of COMPONENT are ignored. */
2666static void
2667value_assign_to_component (struct value *container, struct value *component,
2668 struct value *val)
2669{
2670 LONGEST offset_in_container =
42ae5230 2671 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2672 int bit_offset_in_container =
2673 value_bitpos (component) - value_bitpos (container);
2674 int bits;
2675
2676 val = value_cast (value_type (component), val);
2677
2678 if (value_bitsize (component) == 0)
2679 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2680 else
2681 bits = value_bitsize (component);
2682
50810684 2683 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2684 move_bits (value_contents_writeable (container) + offset_in_container,
2685 value_bitpos (container) + bit_offset_in_container,
2686 value_contents (val),
2687 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2688 bits, 1);
52ce6436
PH
2689 else
2690 move_bits (value_contents_writeable (container) + offset_in_container,
2691 value_bitpos (container) + bit_offset_in_container,
50810684 2692 value_contents (val), 0, bits, 0);
52ce6436
PH
2693}
2694
4c4b4cd2
PH
2695/* The value of the element of array ARR at the ARITY indices given in IND.
2696 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2697 thereto. */
2698
d2e4a39e
AS
2699struct value *
2700ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2701{
2702 int k;
d2e4a39e
AS
2703 struct value *elt;
2704 struct type *elt_type;
14f9c5c9
AS
2705
2706 elt = ada_coerce_to_simple_array (arr);
2707
df407dfe 2708 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2709 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2710 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2711 return value_subscript_packed (elt, arity, ind);
2712
2713 for (k = 0; k < arity; k += 1)
2714 {
2715 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2716 error (_("too many subscripts (%d expected)"), k);
2497b498 2717 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2718 }
2719 return elt;
2720}
2721
2722/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2723 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2724 IND. Does not read the entire array into memory. */
14f9c5c9 2725
2c0b251b 2726static struct value *
d2e4a39e 2727ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2728 struct value **ind)
14f9c5c9
AS
2729{
2730 int k;
2731
2732 for (k = 0; k < arity; k += 1)
2733 {
2734 LONGEST lwb, upb;
14f9c5c9
AS
2735
2736 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2737 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2738 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2739 value_copy (arr));
14f9c5c9 2740 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2741 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2742 type = TYPE_TARGET_TYPE (type);
2743 }
2744
2745 return value_ind (arr);
2746}
2747
0b5d8877 2748/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2749 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2750 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2751 per Ada rules. */
0b5d8877 2752static struct value *
f5938064
JG
2753ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2754 int low, int high)
0b5d8877 2755{
b0dd7688 2756 struct type *type0 = ada_check_typedef (type);
6c038f32 2757 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2758 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2759 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2760 struct type *index_type
2761 = create_static_range_type (NULL,
2762 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2763 low, high);
6c038f32 2764 struct type *slice_type =
b0dd7688 2765 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2766
f5938064 2767 return value_at_lazy (slice_type, base);
0b5d8877
PH
2768}
2769
2770
2771static struct value *
2772ada_value_slice (struct value *array, int low, int high)
2773{
b0dd7688 2774 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2775 struct type *index_type
2776 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2777 struct type *slice_type =
0b5d8877 2778 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2779
6c038f32 2780 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2781}
2782
14f9c5c9
AS
2783/* If type is a record type in the form of a standard GNAT array
2784 descriptor, returns the number of dimensions for type. If arr is a
2785 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2786 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2787
2788int
d2e4a39e 2789ada_array_arity (struct type *type)
14f9c5c9
AS
2790{
2791 int arity;
2792
2793 if (type == NULL)
2794 return 0;
2795
2796 type = desc_base_type (type);
2797
2798 arity = 0;
d2e4a39e 2799 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2800 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2801 else
2802 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2803 {
4c4b4cd2 2804 arity += 1;
61ee279c 2805 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2806 }
d2e4a39e 2807
14f9c5c9
AS
2808 return arity;
2809}
2810
2811/* If TYPE is a record type in the form of a standard GNAT array
2812 descriptor or a simple array type, returns the element type for
2813 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2814 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2815
d2e4a39e
AS
2816struct type *
2817ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2818{
2819 type = desc_base_type (type);
2820
d2e4a39e 2821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2822 {
2823 int k;
d2e4a39e 2824 struct type *p_array_type;
14f9c5c9 2825
556bdfd4 2826 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2827
2828 k = ada_array_arity (type);
2829 if (k == 0)
4c4b4cd2 2830 return NULL;
d2e4a39e 2831
4c4b4cd2 2832 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2833 if (nindices >= 0 && k > nindices)
4c4b4cd2 2834 k = nindices;
d2e4a39e 2835 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2836 {
61ee279c 2837 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2838 k -= 1;
2839 }
14f9c5c9
AS
2840 return p_array_type;
2841 }
2842 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2843 {
2844 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2845 {
2846 type = TYPE_TARGET_TYPE (type);
2847 nindices -= 1;
2848 }
14f9c5c9
AS
2849 return type;
2850 }
2851
2852 return NULL;
2853}
2854
4c4b4cd2 2855/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2856 Does not examine memory. Throws an error if N is invalid or TYPE
2857 is not an array type. NAME is the name of the Ada attribute being
2858 evaluated ('range, 'first, 'last, or 'length); it is used in building
2859 the error message. */
14f9c5c9 2860
1eea4ebd
UW
2861static struct type *
2862ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2863{
4c4b4cd2
PH
2864 struct type *result_type;
2865
14f9c5c9
AS
2866 type = desc_base_type (type);
2867
1eea4ebd
UW
2868 if (n < 0 || n > ada_array_arity (type))
2869 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2870
4c4b4cd2 2871 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2872 {
2873 int i;
2874
2875 for (i = 1; i < n; i += 1)
4c4b4cd2 2876 type = TYPE_TARGET_TYPE (type);
262452ec 2877 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2878 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2879 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2880 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2881 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2882 result_type = NULL;
14f9c5c9 2883 }
d2e4a39e 2884 else
1eea4ebd
UW
2885 {
2886 result_type = desc_index_type (desc_bounds_type (type), n);
2887 if (result_type == NULL)
2888 error (_("attempt to take bound of something that is not an array"));
2889 }
2890
2891 return result_type;
14f9c5c9
AS
2892}
2893
2894/* Given that arr is an array type, returns the lower bound of the
2895 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2896 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2897 array-descriptor type. It works for other arrays with bounds supplied
2898 by run-time quantities other than discriminants. */
14f9c5c9 2899
abb68b3e 2900static LONGEST
fb5e3d5c 2901ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2902{
8a48ac95 2903 struct type *type, *index_type_desc, *index_type;
1ce677a4 2904 int i;
262452ec
JK
2905
2906 gdb_assert (which == 0 || which == 1);
14f9c5c9 2907
ad82864c
JB
2908 if (ada_is_constrained_packed_array_type (arr_type))
2909 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2910
4c4b4cd2 2911 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2912 return (LONGEST) - which;
14f9c5c9
AS
2913
2914 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2915 type = TYPE_TARGET_TYPE (arr_type);
2916 else
2917 type = arr_type;
2918
2919 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2920 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2921 if (index_type_desc != NULL)
28c85d6c
JB
2922 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2923 NULL);
262452ec 2924 else
8a48ac95
JB
2925 {
2926 struct type *elt_type = check_typedef (type);
2927
2928 for (i = 1; i < n; i++)
2929 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2930
2931 index_type = TYPE_INDEX_TYPE (elt_type);
2932 }
262452ec 2933
43bbcdc2
PH
2934 return
2935 (LONGEST) (which == 0
2936 ? ada_discrete_type_low_bound (index_type)
2937 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2938}
2939
2940/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2941 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2942 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2943 supplied by run-time quantities other than discriminants. */
14f9c5c9 2944
1eea4ebd 2945static LONGEST
4dc81987 2946ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2947{
df407dfe 2948 struct type *arr_type = value_type (arr);
14f9c5c9 2949
ad82864c
JB
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2952 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2953 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2954 else
1eea4ebd 2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2956}
2957
2958/* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
14f9c5c9 2963
1eea4ebd 2964static LONGEST
d2e4a39e 2965ada_array_length (struct value *arr, int n)
14f9c5c9 2966{
df407dfe 2967 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2968
ad82864c
JB
2969 if (ada_is_constrained_packed_array_type (arr_type))
2970 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2971
4c4b4cd2 2972 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2973 return (ada_array_bound_from_type (arr_type, n, 1)
2974 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2975 else
1eea4ebd
UW
2976 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2977 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2978}
2979
2980/* An empty array whose type is that of ARR_TYPE (an array type),
2981 with bounds LOW to LOW-1. */
2982
2983static struct value *
2984empty_array (struct type *arr_type, int low)
2985{
b0dd7688 2986 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2987 struct type *index_type
2988 = create_static_range_type
2989 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2990 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2991
0b5d8877 2992 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2993}
14f9c5c9 2994\f
d2e4a39e 2995
4c4b4cd2 2996 /* Name resolution */
14f9c5c9 2997
4c4b4cd2
PH
2998/* The "decoded" name for the user-definable Ada operator corresponding
2999 to OP. */
14f9c5c9 3000
d2e4a39e 3001static const char *
4c4b4cd2 3002ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3003{
3004 int i;
3005
4c4b4cd2 3006 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3007 {
3008 if (ada_opname_table[i].op == op)
4c4b4cd2 3009 return ada_opname_table[i].decoded;
14f9c5c9 3010 }
323e0a4a 3011 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3012}
3013
3014
4c4b4cd2
PH
3015/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3016 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3017 undefined namespace) and converts operators that are
3018 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3019 non-null, it provides a preferred result type [at the moment, only
3020 type void has any effect---causing procedures to be preferred over
3021 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3022 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3023
4c4b4cd2
PH
3024static void
3025resolve (struct expression **expp, int void_context_p)
14f9c5c9 3026{
30b15541
UW
3027 struct type *context_type = NULL;
3028 int pc = 0;
3029
3030 if (void_context_p)
3031 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3032
3033 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3034}
3035
4c4b4cd2
PH
3036/* Resolve the operator of the subexpression beginning at
3037 position *POS of *EXPP. "Resolving" consists of replacing
3038 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3039 with their resolutions, replacing built-in operators with
3040 function calls to user-defined operators, where appropriate, and,
3041 when DEPROCEDURE_P is non-zero, converting function-valued variables
3042 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3043 are as in ada_resolve, above. */
14f9c5c9 3044
d2e4a39e 3045static struct value *
4c4b4cd2 3046resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3047 struct type *context_type)
14f9c5c9
AS
3048{
3049 int pc = *pos;
3050 int i;
4c4b4cd2 3051 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3052 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3053 struct value **argvec; /* Vector of operand types (alloca'ed). */
3054 int nargs; /* Number of operands. */
52ce6436 3055 int oplen;
14f9c5c9
AS
3056
3057 argvec = NULL;
3058 nargs = 0;
3059 exp = *expp;
3060
52ce6436
PH
3061 /* Pass one: resolve operands, saving their types and updating *pos,
3062 if needed. */
14f9c5c9
AS
3063 switch (op)
3064 {
4c4b4cd2
PH
3065 case OP_FUNCALL:
3066 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3067 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3068 *pos += 7;
4c4b4cd2
PH
3069 else
3070 {
3071 *pos += 3;
3072 resolve_subexp (expp, pos, 0, NULL);
3073 }
3074 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3075 break;
3076
14f9c5c9 3077 case UNOP_ADDR:
4c4b4cd2
PH
3078 *pos += 1;
3079 resolve_subexp (expp, pos, 0, NULL);
3080 break;
3081
52ce6436
PH
3082 case UNOP_QUAL:
3083 *pos += 3;
17466c1a 3084 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3085 break;
3086
52ce6436 3087 case OP_ATR_MODULUS:
4c4b4cd2
PH
3088 case OP_ATR_SIZE:
3089 case OP_ATR_TAG:
4c4b4cd2
PH
3090 case OP_ATR_FIRST:
3091 case OP_ATR_LAST:
3092 case OP_ATR_LENGTH:
3093 case OP_ATR_POS:
3094 case OP_ATR_VAL:
4c4b4cd2
PH
3095 case OP_ATR_MIN:
3096 case OP_ATR_MAX:
52ce6436
PH
3097 case TERNOP_IN_RANGE:
3098 case BINOP_IN_BOUNDS:
3099 case UNOP_IN_RANGE:
3100 case OP_AGGREGATE:
3101 case OP_OTHERS:
3102 case OP_CHOICES:
3103 case OP_POSITIONAL:
3104 case OP_DISCRETE_RANGE:
3105 case OP_NAME:
3106 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3107 *pos += oplen;
14f9c5c9
AS
3108 break;
3109
3110 case BINOP_ASSIGN:
3111 {
4c4b4cd2
PH
3112 struct value *arg1;
3113
3114 *pos += 1;
3115 arg1 = resolve_subexp (expp, pos, 0, NULL);
3116 if (arg1 == NULL)
3117 resolve_subexp (expp, pos, 1, NULL);
3118 else
df407dfe 3119 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3120 break;
14f9c5c9
AS
3121 }
3122
4c4b4cd2 3123 case UNOP_CAST:
4c4b4cd2
PH
3124 *pos += 3;
3125 nargs = 1;
3126 break;
14f9c5c9 3127
4c4b4cd2
PH
3128 case BINOP_ADD:
3129 case BINOP_SUB:
3130 case BINOP_MUL:
3131 case BINOP_DIV:
3132 case BINOP_REM:
3133 case BINOP_MOD:
3134 case BINOP_EXP:
3135 case BINOP_CONCAT:
3136 case BINOP_LOGICAL_AND:
3137 case BINOP_LOGICAL_OR:
3138 case BINOP_BITWISE_AND:
3139 case BINOP_BITWISE_IOR:
3140 case BINOP_BITWISE_XOR:
14f9c5c9 3141
4c4b4cd2
PH
3142 case BINOP_EQUAL:
3143 case BINOP_NOTEQUAL:
3144 case BINOP_LESS:
3145 case BINOP_GTR:
3146 case BINOP_LEQ:
3147 case BINOP_GEQ:
14f9c5c9 3148
4c4b4cd2
PH
3149 case BINOP_REPEAT:
3150 case BINOP_SUBSCRIPT:
3151 case BINOP_COMMA:
40c8aaa9
JB
3152 *pos += 1;
3153 nargs = 2;
3154 break;
14f9c5c9 3155
4c4b4cd2
PH
3156 case UNOP_NEG:
3157 case UNOP_PLUS:
3158 case UNOP_LOGICAL_NOT:
3159 case UNOP_ABS:
3160 case UNOP_IND:
3161 *pos += 1;
3162 nargs = 1;
3163 break;
14f9c5c9 3164
4c4b4cd2
PH
3165 case OP_LONG:
3166 case OP_DOUBLE:
3167 case OP_VAR_VALUE:
3168 *pos += 4;
3169 break;
14f9c5c9 3170
4c4b4cd2
PH
3171 case OP_TYPE:
3172 case OP_BOOL:
3173 case OP_LAST:
4c4b4cd2
PH
3174 case OP_INTERNALVAR:
3175 *pos += 3;
3176 break;
14f9c5c9 3177
4c4b4cd2
PH
3178 case UNOP_MEMVAL:
3179 *pos += 3;
3180 nargs = 1;
3181 break;
3182
67f3407f
DJ
3183 case OP_REGISTER:
3184 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3185 break;
3186
4c4b4cd2
PH
3187 case STRUCTOP_STRUCT:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 nargs = 1;
3190 break;
3191
4c4b4cd2 3192 case TERNOP_SLICE:
4c4b4cd2
PH
3193 *pos += 1;
3194 nargs = 3;
3195 break;
3196
52ce6436 3197 case OP_STRING:
14f9c5c9 3198 break;
4c4b4cd2
PH
3199
3200 default:
323e0a4a 3201 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3202 }
3203
76a01679 3204 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3205 for (i = 0; i < nargs; i += 1)
3206 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3207 argvec[i] = NULL;
3208 exp = *expp;
3209
3210 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3211 switch (op)
3212 {
3213 default:
3214 break;
3215
14f9c5c9 3216 case OP_VAR_VALUE:
4c4b4cd2 3217 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3218 {
3219 struct ada_symbol_info *candidates;
3220 int n_candidates;
3221
3222 n_candidates =
3223 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3224 (exp->elts[pc + 2].symbol),
3225 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3226 &candidates);
76a01679
JB
3227
3228 if (n_candidates > 1)
3229 {
3230 /* Types tend to get re-introduced locally, so if there
3231 are any local symbols that are not types, first filter
3232 out all types. */
3233 int j;
3234 for (j = 0; j < n_candidates; j += 1)
3235 switch (SYMBOL_CLASS (candidates[j].sym))
3236 {
3237 case LOC_REGISTER:
3238 case LOC_ARG:
3239 case LOC_REF_ARG:
76a01679
JB
3240 case LOC_REGPARM_ADDR:
3241 case LOC_LOCAL:
76a01679 3242 case LOC_COMPUTED:
76a01679
JB
3243 goto FoundNonType;
3244 default:
3245 break;
3246 }
3247 FoundNonType:
3248 if (j < n_candidates)
3249 {
3250 j = 0;
3251 while (j < n_candidates)
3252 {
3253 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3254 {
3255 candidates[j] = candidates[n_candidates - 1];
3256 n_candidates -= 1;
3257 }
3258 else
3259 j += 1;
3260 }
3261 }
3262 }
3263
3264 if (n_candidates == 0)
323e0a4a 3265 error (_("No definition found for %s"),
76a01679
JB
3266 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3267 else if (n_candidates == 1)
3268 i = 0;
3269 else if (deprocedure_p
3270 && !is_nonfunction (candidates, n_candidates))
3271 {
06d5cf63
JB
3272 i = ada_resolve_function
3273 (candidates, n_candidates, NULL, 0,
3274 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3275 context_type);
76a01679 3276 if (i < 0)
323e0a4a 3277 error (_("Could not find a match for %s"),
76a01679
JB
3278 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3279 }
3280 else
3281 {
323e0a4a 3282 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3283 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3284 user_select_syms (candidates, n_candidates, 1);
3285 i = 0;
3286 }
3287
3288 exp->elts[pc + 1].block = candidates[i].block;
3289 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3290 if (innermost_block == NULL
3291 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3292 innermost_block = candidates[i].block;
3293 }
3294
3295 if (deprocedure_p
3296 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3297 == TYPE_CODE_FUNC))
3298 {
3299 replace_operator_with_call (expp, pc, 0, 0,
3300 exp->elts[pc + 2].symbol,
3301 exp->elts[pc + 1].block);
3302 exp = *expp;
3303 }
14f9c5c9
AS
3304 break;
3305
3306 case OP_FUNCALL:
3307 {
4c4b4cd2 3308 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3309 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3310 {
3311 struct ada_symbol_info *candidates;
3312 int n_candidates;
3313
3314 n_candidates =
76a01679
JB
3315 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3316 (exp->elts[pc + 5].symbol),
3317 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3318 &candidates);
4c4b4cd2
PH
3319 if (n_candidates == 1)
3320 i = 0;
3321 else
3322 {
06d5cf63
JB
3323 i = ada_resolve_function
3324 (candidates, n_candidates,
3325 argvec, nargs,
3326 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3327 context_type);
4c4b4cd2 3328 if (i < 0)
323e0a4a 3329 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3330 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3331 }
3332
3333 exp->elts[pc + 4].block = candidates[i].block;
3334 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3335 if (innermost_block == NULL
3336 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3337 innermost_block = candidates[i].block;
3338 }
14f9c5c9
AS
3339 }
3340 break;
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_CONCAT:
3348 case BINOP_BITWISE_AND:
3349 case BINOP_BITWISE_IOR:
3350 case BINOP_BITWISE_XOR:
3351 case BINOP_EQUAL:
3352 case BINOP_NOTEQUAL:
3353 case BINOP_LESS:
3354 case BINOP_GTR:
3355 case BINOP_LEQ:
3356 case BINOP_GEQ:
3357 case BINOP_EXP:
3358 case UNOP_NEG:
3359 case UNOP_PLUS:
3360 case UNOP_LOGICAL_NOT:
3361 case UNOP_ABS:
3362 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3363 {
3364 struct ada_symbol_info *candidates;
3365 int n_candidates;
3366
3367 n_candidates =
3368 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3369 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3370 &candidates);
4c4b4cd2 3371 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3372 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3373 if (i < 0)
3374 break;
3375
76a01679
JB
3376 replace_operator_with_call (expp, pc, nargs, 1,
3377 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3378 exp = *expp;
3379 }
14f9c5c9 3380 break;
4c4b4cd2
PH
3381
3382 case OP_TYPE:
b3dbf008 3383 case OP_REGISTER:
4c4b4cd2 3384 return NULL;
14f9c5c9
AS
3385 }
3386
3387 *pos = pc;
3388 return evaluate_subexp_type (exp, pos);
3389}
3390
3391/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3392 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3393 a non-pointer. */
14f9c5c9 3394/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3395 liberal. */
14f9c5c9
AS
3396
3397static int
4dc81987 3398ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3399{
61ee279c
PH
3400 ftype = ada_check_typedef (ftype);
3401 atype = ada_check_typedef (atype);
14f9c5c9
AS
3402
3403 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3404 ftype = TYPE_TARGET_TYPE (ftype);
3405 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3406 atype = TYPE_TARGET_TYPE (atype);
3407
d2e4a39e 3408 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3409 {
3410 default:
5b3d5b7d 3411 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3412 case TYPE_CODE_PTR:
3413 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3414 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3415 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3416 else
1265e4aa
JB
3417 return (may_deref
3418 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3419 case TYPE_CODE_INT:
3420 case TYPE_CODE_ENUM:
3421 case TYPE_CODE_RANGE:
3422 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3423 {
3424 case TYPE_CODE_INT:
3425 case TYPE_CODE_ENUM:
3426 case TYPE_CODE_RANGE:
3427 return 1;
3428 default:
3429 return 0;
3430 }
14f9c5c9
AS
3431
3432 case TYPE_CODE_ARRAY:
d2e4a39e 3433 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3434 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3435
3436 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3437 if (ada_is_array_descriptor_type (ftype))
3438 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3439 || ada_is_array_descriptor_type (atype));
14f9c5c9 3440 else
4c4b4cd2
PH
3441 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3442 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3443
3444 case TYPE_CODE_UNION:
3445 case TYPE_CODE_FLT:
3446 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3447 }
3448}
3449
3450/* Return non-zero if the formals of FUNC "sufficiently match" the
3451 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3452 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3453 argument function. */
14f9c5c9
AS
3454
3455static int
d2e4a39e 3456ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3457{
3458 int i;
d2e4a39e 3459 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3460
1265e4aa
JB
3461 if (SYMBOL_CLASS (func) == LOC_CONST
3462 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3463 return (n_actuals == 0);
3464 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3465 return 0;
3466
3467 if (TYPE_NFIELDS (func_type) != n_actuals)
3468 return 0;
3469
3470 for (i = 0; i < n_actuals; i += 1)
3471 {
4c4b4cd2 3472 if (actuals[i] == NULL)
76a01679
JB
3473 return 0;
3474 else
3475 {
5b4ee69b
MS
3476 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3477 i));
df407dfe 3478 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3479
76a01679
JB
3480 if (!ada_type_match (ftype, atype, 1))
3481 return 0;
3482 }
14f9c5c9
AS
3483 }
3484 return 1;
3485}
3486
3487/* False iff function type FUNC_TYPE definitely does not produce a value
3488 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3489 FUNC_TYPE is not a valid function type with a non-null return type
3490 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3491
3492static int
d2e4a39e 3493return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3494{
d2e4a39e 3495 struct type *return_type;
14f9c5c9
AS
3496
3497 if (func_type == NULL)
3498 return 1;
3499
4c4b4cd2 3500 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3501 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3502 else
18af8284 3503 return_type = get_base_type (func_type);
14f9c5c9
AS
3504 if (return_type == NULL)
3505 return 1;
3506
18af8284 3507 context_type = get_base_type (context_type);
14f9c5c9
AS
3508
3509 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3510 return context_type == NULL || return_type == context_type;
3511 else if (context_type == NULL)
3512 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3513 else
3514 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3515}
3516
3517
4c4b4cd2 3518/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3519 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3520 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3521 that returns that type, then eliminate matches that don't. If
3522 CONTEXT_TYPE is void and there is at least one match that does not
3523 return void, eliminate all matches that do.
3524
14f9c5c9
AS
3525 Asks the user if there is more than one match remaining. Returns -1
3526 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3527 solely for messages. May re-arrange and modify SYMS in
3528 the process; the index returned is for the modified vector. */
14f9c5c9 3529
4c4b4cd2
PH
3530static int
3531ada_resolve_function (struct ada_symbol_info syms[],
3532 int nsyms, struct value **args, int nargs,
3533 const char *name, struct type *context_type)
14f9c5c9 3534{
30b15541 3535 int fallback;
14f9c5c9 3536 int k;
4c4b4cd2 3537 int m; /* Number of hits */
14f9c5c9 3538
d2e4a39e 3539 m = 0;
30b15541
UW
3540 /* In the first pass of the loop, we only accept functions matching
3541 context_type. If none are found, we add a second pass of the loop
3542 where every function is accepted. */
3543 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3544 {
3545 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3546 {
61ee279c 3547 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3548
3549 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3550 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3551 {
3552 syms[m] = syms[k];
3553 m += 1;
3554 }
3555 }
14f9c5c9
AS
3556 }
3557
3558 if (m == 0)
3559 return -1;
3560 else if (m > 1)
3561 {
323e0a4a 3562 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3563 user_select_syms (syms, m, 1);
14f9c5c9
AS
3564 return 0;
3565 }
3566 return 0;
3567}
3568
4c4b4cd2
PH
3569/* Returns true (non-zero) iff decoded name N0 should appear before N1
3570 in a listing of choices during disambiguation (see sort_choices, below).
3571 The idea is that overloadings of a subprogram name from the
3572 same package should sort in their source order. We settle for ordering
3573 such symbols by their trailing number (__N or $N). */
3574
14f9c5c9 3575static int
0d5cff50 3576encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3577{
3578 if (N1 == NULL)
3579 return 0;
3580 else if (N0 == NULL)
3581 return 1;
3582 else
3583 {
3584 int k0, k1;
5b4ee69b 3585
d2e4a39e 3586 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3587 ;
d2e4a39e 3588 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3589 ;
d2e4a39e 3590 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3591 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3592 {
3593 int n0, n1;
5b4ee69b 3594
4c4b4cd2
PH
3595 n0 = k0;
3596 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3597 n0 -= 1;
3598 n1 = k1;
3599 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3600 n1 -= 1;
3601 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3602 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3603 }
14f9c5c9
AS
3604 return (strcmp (N0, N1) < 0);
3605 }
3606}
d2e4a39e 3607
4c4b4cd2
PH
3608/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3609 encoded names. */
3610
d2e4a39e 3611static void
4c4b4cd2 3612sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3613{
4c4b4cd2 3614 int i;
5b4ee69b 3615
d2e4a39e 3616 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3617 {
4c4b4cd2 3618 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3619 int j;
3620
d2e4a39e 3621 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3622 {
3623 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3624 SYMBOL_LINKAGE_NAME (sym.sym)))
3625 break;
3626 syms[j + 1] = syms[j];
3627 }
d2e4a39e 3628 syms[j + 1] = sym;
14f9c5c9
AS
3629 }
3630}
3631
4c4b4cd2
PH
3632/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3633 by asking the user (if necessary), returning the number selected,
3634 and setting the first elements of SYMS items. Error if no symbols
3635 selected. */
14f9c5c9
AS
3636
3637/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3638 to be re-integrated one of these days. */
14f9c5c9
AS
3639
3640int
4c4b4cd2 3641user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3642{
3643 int i;
d2e4a39e 3644 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3645 int n_chosen;
3646 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3647 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3648
3649 if (max_results < 1)
323e0a4a 3650 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3651 if (nsyms <= 1)
3652 return nsyms;
3653
717d2f5a
JB
3654 if (select_mode == multiple_symbols_cancel)
3655 error (_("\
3656canceled because the command is ambiguous\n\
3657See set/show multiple-symbol."));
3658
3659 /* If select_mode is "all", then return all possible symbols.
3660 Only do that if more than one symbol can be selected, of course.
3661 Otherwise, display the menu as usual. */
3662 if (select_mode == multiple_symbols_all && max_results > 1)
3663 return nsyms;
3664
323e0a4a 3665 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3666 if (max_results > 1)
323e0a4a 3667 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3668
4c4b4cd2 3669 sort_choices (syms, nsyms);
14f9c5c9
AS
3670
3671 for (i = 0; i < nsyms; i += 1)
3672 {
4c4b4cd2
PH
3673 if (syms[i].sym == NULL)
3674 continue;
3675
3676 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3677 {
76a01679
JB
3678 struct symtab_and_line sal =
3679 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3680
323e0a4a
AC
3681 if (sal.symtab == NULL)
3682 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3683 i + first_choice,
3684 SYMBOL_PRINT_NAME (syms[i].sym),
3685 sal.line);
3686 else
3687 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3689 symtab_to_filename_for_display (sal.symtab),
3690 sal.line);
4c4b4cd2
PH
3691 continue;
3692 }
d2e4a39e 3693 else
4c4b4cd2
PH
3694 {
3695 int is_enumeral =
3696 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3697 && SYMBOL_TYPE (syms[i].sym) != NULL
3698 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3699 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3700
3701 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3702 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3705 symtab_to_filename_for_display (symtab),
3706 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3707 else if (is_enumeral
3708 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3709 {
a3f17187 3710 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3711 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3712 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3713 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3714 SYMBOL_PRINT_NAME (syms[i].sym));
3715 }
3716 else if (symtab != NULL)
3717 printf_unfiltered (is_enumeral
323e0a4a
AC
3718 ? _("[%d] %s in %s (enumeral)\n")
3719 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3720 i + first_choice,
3721 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3722 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3723 else
3724 printf_unfiltered (is_enumeral
323e0a4a
AC
3725 ? _("[%d] %s (enumeral)\n")
3726 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3727 i + first_choice,
3728 SYMBOL_PRINT_NAME (syms[i].sym));
3729 }
14f9c5c9 3730 }
d2e4a39e 3731
14f9c5c9 3732 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3733 "overload-choice");
14f9c5c9
AS
3734
3735 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3736 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3737
3738 return n_chosen;
3739}
3740
3741/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3742 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3743 order in CHOICES[0 .. N-1], and return N.
3744
3745 The user types choices as a sequence of numbers on one line
3746 separated by blanks, encoding them as follows:
3747
4c4b4cd2 3748 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3749 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3750 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3751
4c4b4cd2 3752 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3753
3754 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3755 prompts (for use with the -f switch). */
14f9c5c9
AS
3756
3757int
d2e4a39e 3758get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3759 int is_all_choice, char *annotation_suffix)
14f9c5c9 3760{
d2e4a39e 3761 char *args;
0bcd0149 3762 char *prompt;
14f9c5c9
AS
3763 int n_chosen;
3764 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3765
14f9c5c9
AS
3766 prompt = getenv ("PS2");
3767 if (prompt == NULL)
0bcd0149 3768 prompt = "> ";
14f9c5c9 3769
0bcd0149 3770 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3771
14f9c5c9 3772 if (args == NULL)
323e0a4a 3773 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3774
3775 n_chosen = 0;
76a01679 3776
4c4b4cd2
PH
3777 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3778 order, as given in args. Choices are validated. */
14f9c5c9
AS
3779 while (1)
3780 {
d2e4a39e 3781 char *args2;
14f9c5c9
AS
3782 int choice, j;
3783
0fcd72ba 3784 args = skip_spaces (args);
14f9c5c9 3785 if (*args == '\0' && n_chosen == 0)
323e0a4a 3786 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3787 else if (*args == '\0')
4c4b4cd2 3788 break;
14f9c5c9
AS
3789
3790 choice = strtol (args, &args2, 10);
d2e4a39e 3791 if (args == args2 || choice < 0
4c4b4cd2 3792 || choice > n_choices + first_choice - 1)
323e0a4a 3793 error (_("Argument must be choice number"));
14f9c5c9
AS
3794 args = args2;
3795
d2e4a39e 3796 if (choice == 0)
323e0a4a 3797 error (_("cancelled"));
14f9c5c9
AS
3798
3799 if (choice < first_choice)
4c4b4cd2
PH
3800 {
3801 n_chosen = n_choices;
3802 for (j = 0; j < n_choices; j += 1)
3803 choices[j] = j;
3804 break;
3805 }
14f9c5c9
AS
3806 choice -= first_choice;
3807
d2e4a39e 3808 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3809 {
3810 }
14f9c5c9
AS
3811
3812 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3813 {
3814 int k;
5b4ee69b 3815
4c4b4cd2
PH
3816 for (k = n_chosen - 1; k > j; k -= 1)
3817 choices[k + 1] = choices[k];
3818 choices[j + 1] = choice;
3819 n_chosen += 1;
3820 }
14f9c5c9
AS
3821 }
3822
3823 if (n_chosen > max_results)
323e0a4a 3824 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3825
14f9c5c9
AS
3826 return n_chosen;
3827}
3828
4c4b4cd2
PH
3829/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3830 on the function identified by SYM and BLOCK, and taking NARGS
3831 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3832
3833static void
d2e4a39e 3834replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3835 int oplen, struct symbol *sym,
270140bd 3836 const struct block *block)
14f9c5c9
AS
3837{
3838 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3839 symbol, -oplen for operator being replaced). */
d2e4a39e 3840 struct expression *newexp = (struct expression *)
8c1a34e7 3841 xzalloc (sizeof (struct expression)
4c4b4cd2 3842 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3843 struct expression *exp = *expp;
14f9c5c9
AS
3844
3845 newexp->nelts = exp->nelts + 7 - oplen;
3846 newexp->language_defn = exp->language_defn;
3489610d 3847 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3848 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3849 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3850 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3851
3852 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3853 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3854
3855 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3856 newexp->elts[pc + 4].block = block;
3857 newexp->elts[pc + 5].symbol = sym;
3858
3859 *expp = newexp;
aacb1f0a 3860 xfree (exp);
d2e4a39e 3861}
14f9c5c9
AS
3862
3863/* Type-class predicates */
3864
4c4b4cd2
PH
3865/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3866 or FLOAT). */
14f9c5c9
AS
3867
3868static int
d2e4a39e 3869numeric_type_p (struct type *type)
14f9c5c9
AS
3870{
3871 if (type == NULL)
3872 return 0;
d2e4a39e
AS
3873 else
3874 {
3875 switch (TYPE_CODE (type))
4c4b4cd2
PH
3876 {
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_FLT:
3879 return 1;
3880 case TYPE_CODE_RANGE:
3881 return (type == TYPE_TARGET_TYPE (type)
3882 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3883 default:
3884 return 0;
3885 }
d2e4a39e 3886 }
14f9c5c9
AS
3887}
3888
4c4b4cd2 3889/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3890
3891static int
d2e4a39e 3892integer_type_p (struct type *type)
14f9c5c9
AS
3893{
3894 if (type == NULL)
3895 return 0;
d2e4a39e
AS
3896 else
3897 {
3898 switch (TYPE_CODE (type))
4c4b4cd2
PH
3899 {
3900 case TYPE_CODE_INT:
3901 return 1;
3902 case TYPE_CODE_RANGE:
3903 return (type == TYPE_TARGET_TYPE (type)
3904 || integer_type_p (TYPE_TARGET_TYPE (type)));
3905 default:
3906 return 0;
3907 }
d2e4a39e 3908 }
14f9c5c9
AS
3909}
3910
4c4b4cd2 3911/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3912
3913static int
d2e4a39e 3914scalar_type_p (struct type *type)
14f9c5c9
AS
3915{
3916 if (type == NULL)
3917 return 0;
d2e4a39e
AS
3918 else
3919 {
3920 switch (TYPE_CODE (type))
4c4b4cd2
PH
3921 {
3922 case TYPE_CODE_INT:
3923 case TYPE_CODE_RANGE:
3924 case TYPE_CODE_ENUM:
3925 case TYPE_CODE_FLT:
3926 return 1;
3927 default:
3928 return 0;
3929 }
d2e4a39e 3930 }
14f9c5c9
AS
3931}
3932
4c4b4cd2 3933/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3934
3935static int
d2e4a39e 3936discrete_type_p (struct type *type)
14f9c5c9
AS
3937{
3938 if (type == NULL)
3939 return 0;
d2e4a39e
AS
3940 else
3941 {
3942 switch (TYPE_CODE (type))
4c4b4cd2
PH
3943 {
3944 case TYPE_CODE_INT:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_ENUM:
872f0337 3947 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3948 return 1;
3949 default:
3950 return 0;
3951 }
d2e4a39e 3952 }
14f9c5c9
AS
3953}
3954
4c4b4cd2
PH
3955/* Returns non-zero if OP with operands in the vector ARGS could be
3956 a user-defined function. Errs on the side of pre-defined operators
3957 (i.e., result 0). */
14f9c5c9
AS
3958
3959static int
d2e4a39e 3960possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3961{
76a01679 3962 struct type *type0 =
df407dfe 3963 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3964 struct type *type1 =
df407dfe 3965 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3966
4c4b4cd2
PH
3967 if (type0 == NULL)
3968 return 0;
3969
14f9c5c9
AS
3970 switch (op)
3971 {
3972 default:
3973 return 0;
3974
3975 case BINOP_ADD:
3976 case BINOP_SUB:
3977 case BINOP_MUL:
3978 case BINOP_DIV:
d2e4a39e 3979 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3980
3981 case BINOP_REM:
3982 case BINOP_MOD:
3983 case BINOP_BITWISE_AND:
3984 case BINOP_BITWISE_IOR:
3985 case BINOP_BITWISE_XOR:
d2e4a39e 3986 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3987
3988 case BINOP_EQUAL:
3989 case BINOP_NOTEQUAL:
3990 case BINOP_LESS:
3991 case BINOP_GTR:
3992 case BINOP_LEQ:
3993 case BINOP_GEQ:
d2e4a39e 3994 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3995
3996 case BINOP_CONCAT:
ee90b9ab 3997 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3998
3999 case BINOP_EXP:
d2e4a39e 4000 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4001
4002 case UNOP_NEG:
4003 case UNOP_PLUS:
4004 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4005 case UNOP_ABS:
4006 return (!numeric_type_p (type0));
14f9c5c9
AS
4007
4008 }
4009}
4010\f
4c4b4cd2 4011 /* Renaming */
14f9c5c9 4012
aeb5907d
JB
4013/* NOTES:
4014
4015 1. In the following, we assume that a renaming type's name may
4016 have an ___XD suffix. It would be nice if this went away at some
4017 point.
4018 2. We handle both the (old) purely type-based representation of
4019 renamings and the (new) variable-based encoding. At some point,
4020 it is devoutly to be hoped that the former goes away
4021 (FIXME: hilfinger-2007-07-09).
4022 3. Subprogram renamings are not implemented, although the XRS
4023 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4024
4025/* If SYM encodes a renaming,
4026
4027 <renaming> renames <renamed entity>,
4028
4029 sets *LEN to the length of the renamed entity's name,
4030 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4031 the string describing the subcomponent selected from the renamed
0963b4bd 4032 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4033 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4034 are undefined). Otherwise, returns a value indicating the category
4035 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4036 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4037 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4038 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4039 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4040 may be NULL, in which case they are not assigned.
4041
4042 [Currently, however, GCC does not generate subprogram renamings.] */
4043
4044enum ada_renaming_category
4045ada_parse_renaming (struct symbol *sym,
4046 const char **renamed_entity, int *len,
4047 const char **renaming_expr)
4048{
4049 enum ada_renaming_category kind;
4050 const char *info;
4051 const char *suffix;
4052
4053 if (sym == NULL)
4054 return ADA_NOT_RENAMING;
4055 switch (SYMBOL_CLASS (sym))
14f9c5c9 4056 {
aeb5907d
JB
4057 default:
4058 return ADA_NOT_RENAMING;
4059 case LOC_TYPEDEF:
4060 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4061 renamed_entity, len, renaming_expr);
4062 case LOC_LOCAL:
4063 case LOC_STATIC:
4064 case LOC_COMPUTED:
4065 case LOC_OPTIMIZED_OUT:
4066 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4067 if (info == NULL)
4068 return ADA_NOT_RENAMING;
4069 switch (info[5])
4070 {
4071 case '_':
4072 kind = ADA_OBJECT_RENAMING;
4073 info += 6;
4074 break;
4075 case 'E':
4076 kind = ADA_EXCEPTION_RENAMING;
4077 info += 7;
4078 break;
4079 case 'P':
4080 kind = ADA_PACKAGE_RENAMING;
4081 info += 7;
4082 break;
4083 case 'S':
4084 kind = ADA_SUBPROGRAM_RENAMING;
4085 info += 7;
4086 break;
4087 default:
4088 return ADA_NOT_RENAMING;
4089 }
14f9c5c9 4090 }
4c4b4cd2 4091
aeb5907d
JB
4092 if (renamed_entity != NULL)
4093 *renamed_entity = info;
4094 suffix = strstr (info, "___XE");
4095 if (suffix == NULL || suffix == info)
4096 return ADA_NOT_RENAMING;
4097 if (len != NULL)
4098 *len = strlen (info) - strlen (suffix);
4099 suffix += 5;
4100 if (renaming_expr != NULL)
4101 *renaming_expr = suffix;
4102 return kind;
4103}
4104
4105/* Assuming TYPE encodes a renaming according to the old encoding in
4106 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4107 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4108 ADA_NOT_RENAMING otherwise. */
4109static enum ada_renaming_category
4110parse_old_style_renaming (struct type *type,
4111 const char **renamed_entity, int *len,
4112 const char **renaming_expr)
4113{
4114 enum ada_renaming_category kind;
4115 const char *name;
4116 const char *info;
4117 const char *suffix;
14f9c5c9 4118
aeb5907d
JB
4119 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4120 || TYPE_NFIELDS (type) != 1)
4121 return ADA_NOT_RENAMING;
14f9c5c9 4122
aeb5907d
JB
4123 name = type_name_no_tag (type);
4124 if (name == NULL)
4125 return ADA_NOT_RENAMING;
4126
4127 name = strstr (name, "___XR");
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130 switch (name[5])
4131 {
4132 case '\0':
4133 case '_':
4134 kind = ADA_OBJECT_RENAMING;
4135 break;
4136 case 'E':
4137 kind = ADA_EXCEPTION_RENAMING;
4138 break;
4139 case 'P':
4140 kind = ADA_PACKAGE_RENAMING;
4141 break;
4142 case 'S':
4143 kind = ADA_SUBPROGRAM_RENAMING;
4144 break;
4145 default:
4146 return ADA_NOT_RENAMING;
4147 }
14f9c5c9 4148
aeb5907d
JB
4149 info = TYPE_FIELD_NAME (type, 0);
4150 if (info == NULL)
4151 return ADA_NOT_RENAMING;
4152 if (renamed_entity != NULL)
4153 *renamed_entity = info;
4154 suffix = strstr (info, "___XE");
4155 if (renaming_expr != NULL)
4156 *renaming_expr = suffix + 5;
4157 if (suffix == NULL || suffix == info)
4158 return ADA_NOT_RENAMING;
4159 if (len != NULL)
4160 *len = suffix - info;
4161 return kind;
a5ee536b
JB
4162}
4163
4164/* Compute the value of the given RENAMING_SYM, which is expected to
4165 be a symbol encoding a renaming expression. BLOCK is the block
4166 used to evaluate the renaming. */
52ce6436 4167
a5ee536b
JB
4168static struct value *
4169ada_read_renaming_var_value (struct symbol *renaming_sym,
4170 struct block *block)
4171{
bbc13ae3 4172 const char *sym_name;
a5ee536b
JB
4173 struct expression *expr;
4174 struct value *value;
4175 struct cleanup *old_chain = NULL;
4176
bbc13ae3 4177 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4178 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4179 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4180 value = evaluate_expression (expr);
4181
4182 do_cleanups (old_chain);
4183 return value;
4184}
14f9c5c9 4185\f
d2e4a39e 4186
4c4b4cd2 4187 /* Evaluation: Function Calls */
14f9c5c9 4188
4c4b4cd2 4189/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4190 lvalues, and otherwise has the side-effect of allocating memory
4191 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4192
d2e4a39e 4193static struct value *
40bc484c 4194ensure_lval (struct value *val)
14f9c5c9 4195{
40bc484c
JB
4196 if (VALUE_LVAL (val) == not_lval
4197 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4198 {
df407dfe 4199 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4200 const CORE_ADDR addr =
4201 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4202
40bc484c 4203 set_value_address (val, addr);
a84a8a0d 4204 VALUE_LVAL (val) = lval_memory;
40bc484c 4205 write_memory (addr, value_contents (val), len);
c3e5cd34 4206 }
14f9c5c9
AS
4207
4208 return val;
4209}
4210
4211/* Return the value ACTUAL, converted to be an appropriate value for a
4212 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4213 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4214 values not residing in memory, updating it as needed. */
14f9c5c9 4215
a93c0eb6 4216struct value *
40bc484c 4217ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4218{
df407dfe 4219 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4220 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4221 struct type *formal_target =
4222 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4223 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4224 struct type *actual_target =
4225 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4226 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4227
4c4b4cd2 4228 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4229 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4230 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4231 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4232 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4233 {
a84a8a0d 4234 struct value *result;
5b4ee69b 4235
14f9c5c9 4236 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4237 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4238 result = desc_data (actual);
14f9c5c9 4239 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4240 {
4241 if (VALUE_LVAL (actual) != lval_memory)
4242 {
4243 struct value *val;
5b4ee69b 4244
df407dfe 4245 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4246 val = allocate_value (actual_type);
990a07ab 4247 memcpy ((char *) value_contents_raw (val),
0fd88904 4248 (char *) value_contents (actual),
4c4b4cd2 4249 TYPE_LENGTH (actual_type));
40bc484c 4250 actual = ensure_lval (val);
4c4b4cd2 4251 }
a84a8a0d 4252 result = value_addr (actual);
4c4b4cd2 4253 }
a84a8a0d
JB
4254 else
4255 return actual;
b1af9e97 4256 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4257 }
4258 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4259 return ada_value_ind (actual);
4260
4261 return actual;
4262}
4263
438c98a1
JB
4264/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4265 type TYPE. This is usually an inefficient no-op except on some targets
4266 (such as AVR) where the representation of a pointer and an address
4267 differs. */
4268
4269static CORE_ADDR
4270value_pointer (struct value *value, struct type *type)
4271{
4272 struct gdbarch *gdbarch = get_type_arch (type);
4273 unsigned len = TYPE_LENGTH (type);
4274 gdb_byte *buf = alloca (len);
4275 CORE_ADDR addr;
4276
4277 addr = value_address (value);
4278 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4279 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4280 return addr;
4281}
4282
14f9c5c9 4283
4c4b4cd2
PH
4284/* Push a descriptor of type TYPE for array value ARR on the stack at
4285 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4286 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4287 to-descriptor type rather than a descriptor type), a struct value *
4288 representing a pointer to this descriptor. */
14f9c5c9 4289
d2e4a39e 4290static struct value *
40bc484c 4291make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4292{
d2e4a39e
AS
4293 struct type *bounds_type = desc_bounds_type (type);
4294 struct type *desc_type = desc_base_type (type);
4295 struct value *descriptor = allocate_value (desc_type);
4296 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4297 int i;
d2e4a39e 4298
0963b4bd
MS
4299 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4300 i > 0; i -= 1)
14f9c5c9 4301 {
19f220c3
JK
4302 modify_field (value_type (bounds), value_contents_writeable (bounds),
4303 ada_array_bound (arr, i, 0),
4304 desc_bound_bitpos (bounds_type, i, 0),
4305 desc_bound_bitsize (bounds_type, i, 0));
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 1),
4308 desc_bound_bitpos (bounds_type, i, 1),
4309 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4310 }
d2e4a39e 4311
40bc484c 4312 bounds = ensure_lval (bounds);
d2e4a39e 4313
19f220c3
JK
4314 modify_field (value_type (descriptor),
4315 value_contents_writeable (descriptor),
4316 value_pointer (ensure_lval (arr),
4317 TYPE_FIELD_TYPE (desc_type, 0)),
4318 fat_pntr_data_bitpos (desc_type),
4319 fat_pntr_data_bitsize (desc_type));
4320
4321 modify_field (value_type (descriptor),
4322 value_contents_writeable (descriptor),
4323 value_pointer (bounds,
4324 TYPE_FIELD_TYPE (desc_type, 1)),
4325 fat_pntr_bounds_bitpos (desc_type),
4326 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4327
40bc484c 4328 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4329
4330 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4331 return value_addr (descriptor);
4332 else
4333 return descriptor;
4334}
14f9c5c9 4335\f
3d9434b5
JB
4336 /* Symbol Cache Module */
4337
3d9434b5 4338/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4339 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4340 on the type of entity being printed, the cache can make it as much
4341 as an order of magnitude faster than without it.
4342
4343 The descriptive type DWARF extension has significantly reduced
4344 the need for this cache, at least when DWARF is being used. However,
4345 even in this case, some expensive name-based symbol searches are still
4346 sometimes necessary - to find an XVZ variable, mostly. */
4347
ee01b665 4348/* Initialize the contents of SYM_CACHE. */
3d9434b5 4349
ee01b665
JB
4350static void
4351ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4352{
4353 obstack_init (&sym_cache->cache_space);
4354 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4355}
3d9434b5 4356
ee01b665
JB
4357/* Free the memory used by SYM_CACHE. */
4358
4359static void
4360ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4361{
ee01b665
JB
4362 obstack_free (&sym_cache->cache_space, NULL);
4363 xfree (sym_cache);
4364}
3d9434b5 4365
ee01b665
JB
4366/* Return the symbol cache associated to the given program space PSPACE.
4367 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4368
ee01b665
JB
4369static struct ada_symbol_cache *
4370ada_get_symbol_cache (struct program_space *pspace)
4371{
4372 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4373 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4374
4375 if (sym_cache == NULL)
4376 {
4377 sym_cache = XCNEW (struct ada_symbol_cache);
4378 ada_init_symbol_cache (sym_cache);
4379 }
4380
4381 return sym_cache;
4382}
3d9434b5
JB
4383
4384/* Clear all entries from the symbol cache. */
4385
4386static void
4387ada_clear_symbol_cache (void)
4388{
ee01b665
JB
4389 struct ada_symbol_cache *sym_cache
4390 = ada_get_symbol_cache (current_program_space);
4391
4392 obstack_free (&sym_cache->cache_space, NULL);
4393 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4394}
4395
b50c8614
KS
4396/* STRUCT_DOMAIN symbols are also typedefs for the type. This function tests
4397 the equivalency of two Ada symbol domain types. */
4398
4399static int
4400ada_symbol_matches_domain (domain_enum symbol_domain, domain_enum domain)
4401{
4402 if (symbol_domain == domain
4403 || ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
4404 && symbol_domain == STRUCT_DOMAIN))
4405 return 1;
4406
4407 return 0;
4408}
4409
3d9434b5
JB
4410/* Search our cache for an entry matching NAME and NAMESPACE.
4411 Return it if found, or NULL otherwise. */
4412
4413static struct cache_entry **
4414find_entry (const char *name, domain_enum namespace)
4415{
ee01b665
JB
4416 struct ada_symbol_cache *sym_cache
4417 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4418 int h = msymbol_hash (name) % HASH_SIZE;
4419 struct cache_entry **e;
4420
ee01b665 4421 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4422 {
4423 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4424 return e;
4425 }
4426 return NULL;
4427}
4428
4429/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4430 Return 1 if found, 0 otherwise.
4431
4432 If an entry was found and SYM is not NULL, set *SYM to the entry's
4433 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4434
96d887e8
PH
4435static int
4436lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4437 struct symbol **sym, const struct block **block)
96d887e8 4438{
3d9434b5
JB
4439 struct cache_entry **e = find_entry (name, namespace);
4440
4441 if (e == NULL)
4442 return 0;
4443 if (sym != NULL)
4444 *sym = (*e)->sym;
4445 if (block != NULL)
4446 *block = (*e)->block;
4447 return 1;
96d887e8
PH
4448}
4449
3d9434b5
JB
4450/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4451 in domain NAMESPACE, save this result in our symbol cache. */
4452
96d887e8
PH
4453static void
4454cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4455 const struct block *block)
96d887e8 4456{
ee01b665
JB
4457 struct ada_symbol_cache *sym_cache
4458 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4459 int h;
4460 char *copy;
4461 struct cache_entry *e;
4462
4463 /* If the symbol is a local symbol, then do not cache it, as a search
4464 for that symbol depends on the context. To determine whether
4465 the symbol is local or not, we check the block where we found it
4466 against the global and static blocks of its associated symtab. */
4467 if (sym
4468 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4469 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4470 return;
4471
4472 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4473 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4474 sizeof (*e));
4475 e->next = sym_cache->root[h];
4476 sym_cache->root[h] = e;
4477 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4478 strcpy (copy, name);
4479 e->sym = sym;
4480 e->namespace = namespace;
4481 e->block = block;
96d887e8 4482}
4c4b4cd2
PH
4483\f
4484 /* Symbol Lookup */
4485
c0431670
JB
4486/* Return nonzero if wild matching should be used when searching for
4487 all symbols matching LOOKUP_NAME.
4488
4489 LOOKUP_NAME is expected to be a symbol name after transformation
4490 for Ada lookups (see ada_name_for_lookup). */
4491
4492static int
4493should_use_wild_match (const char *lookup_name)
4494{
4495 return (strstr (lookup_name, "__") == NULL);
4496}
4497
4c4b4cd2
PH
4498/* Return the result of a standard (literal, C-like) lookup of NAME in
4499 given DOMAIN, visible from lexical block BLOCK. */
4500
4501static struct symbol *
4502standard_lookup (const char *name, const struct block *block,
4503 domain_enum domain)
4504{
acbd605d
MGD
4505 /* Initialize it just to avoid a GCC false warning. */
4506 struct symbol *sym = NULL;
4c4b4cd2 4507
2570f2b7 4508 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4509 return sym;
2570f2b7 4510 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
b50c8614
KS
4511
4512 /* STRUCT_DOMAIN symbols also define a typedef for the type. Lookup
4513 a STRUCT_DOMAIN symbol if one is requested for VAR_DOMAIN and not
4514 found. */
4515 if (sym == NULL && domain == VAR_DOMAIN)
4516 sym = lookup_symbol_in_language (name, block, STRUCT_DOMAIN, language_c, 0);
4517
2570f2b7 4518 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4519 return sym;
4520}
4521
4522
4523/* Non-zero iff there is at least one non-function/non-enumeral symbol
4524 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4525 since they contend in overloading in the same way. */
4526static int
4527is_nonfunction (struct ada_symbol_info syms[], int n)
4528{
4529 int i;
4530
4531 for (i = 0; i < n; i += 1)
4532 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4533 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4534 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4535 return 1;
4536
4537 return 0;
4538}
4539
4540/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4541 struct types. Otherwise, they may not. */
14f9c5c9
AS
4542
4543static int
d2e4a39e 4544equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4545{
d2e4a39e 4546 if (type0 == type1)
14f9c5c9 4547 return 1;
d2e4a39e 4548 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4549 || TYPE_CODE (type0) != TYPE_CODE (type1))
4550 return 0;
d2e4a39e 4551 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4552 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4553 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4554 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4555 return 1;
d2e4a39e 4556
14f9c5c9
AS
4557 return 0;
4558}
4559
4560/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4561 no more defined than that of SYM1. */
14f9c5c9
AS
4562
4563static int
d2e4a39e 4564lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4565{
4566 if (sym0 == sym1)
4567 return 1;
176620f1 4568 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4569 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4570 return 0;
4571
d2e4a39e 4572 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4573 {
4574 case LOC_UNDEF:
4575 return 1;
4576 case LOC_TYPEDEF:
4577 {
4c4b4cd2
PH
4578 struct type *type0 = SYMBOL_TYPE (sym0);
4579 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4580 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4581 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4582 int len0 = strlen (name0);
5b4ee69b 4583
4c4b4cd2
PH
4584 return
4585 TYPE_CODE (type0) == TYPE_CODE (type1)
4586 && (equiv_types (type0, type1)
4587 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4588 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4589 }
4590 case LOC_CONST:
4591 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4592 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4593 default:
4594 return 0;
14f9c5c9
AS
4595 }
4596}
4597
4c4b4cd2
PH
4598/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4599 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4600
4601static void
76a01679
JB
4602add_defn_to_vec (struct obstack *obstackp,
4603 struct symbol *sym,
f0c5f9b2 4604 const struct block *block)
14f9c5c9
AS
4605{
4606 int i;
4c4b4cd2 4607 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4608
529cad9c
PH
4609 /* Do not try to complete stub types, as the debugger is probably
4610 already scanning all symbols matching a certain name at the
4611 time when this function is called. Trying to replace the stub
4612 type by its associated full type will cause us to restart a scan
4613 which may lead to an infinite recursion. Instead, the client
4614 collecting the matching symbols will end up collecting several
4615 matches, with at least one of them complete. It can then filter
4616 out the stub ones if needed. */
4617
4c4b4cd2
PH
4618 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4619 {
4620 if (lesseq_defined_than (sym, prevDefns[i].sym))
4621 return;
4622 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4623 {
4624 prevDefns[i].sym = sym;
4625 prevDefns[i].block = block;
4c4b4cd2 4626 return;
76a01679 4627 }
4c4b4cd2
PH
4628 }
4629
4630 {
4631 struct ada_symbol_info info;
4632
4633 info.sym = sym;
4634 info.block = block;
4c4b4cd2
PH
4635 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4636 }
4637}
4638
4639/* Number of ada_symbol_info structures currently collected in
4640 current vector in *OBSTACKP. */
4641
76a01679
JB
4642static int
4643num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4644{
4645 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4646}
4647
4648/* Vector of ada_symbol_info structures currently collected in current
4649 vector in *OBSTACKP. If FINISH, close off the vector and return
4650 its final address. */
4651
76a01679 4652static struct ada_symbol_info *
4c4b4cd2
PH
4653defns_collected (struct obstack *obstackp, int finish)
4654{
4655 if (finish)
4656 return obstack_finish (obstackp);
4657 else
4658 return (struct ada_symbol_info *) obstack_base (obstackp);
4659}
4660
7c7b6655
TT
4661/* Return a bound minimal symbol matching NAME according to Ada
4662 decoding rules. Returns an invalid symbol if there is no such
4663 minimal symbol. Names prefixed with "standard__" are handled
4664 specially: "standard__" is first stripped off, and only static and
4665 global symbols are searched. */
4c4b4cd2 4666
7c7b6655 4667struct bound_minimal_symbol
96d887e8 4668ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4669{
7c7b6655 4670 struct bound_minimal_symbol result;
4c4b4cd2 4671 struct objfile *objfile;
96d887e8 4672 struct minimal_symbol *msymbol;
dc4024cd 4673 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4674
7c7b6655
TT
4675 memset (&result, 0, sizeof (result));
4676
c0431670
JB
4677 /* Special case: If the user specifies a symbol name inside package
4678 Standard, do a non-wild matching of the symbol name without
4679 the "standard__" prefix. This was primarily introduced in order
4680 to allow the user to specifically access the standard exceptions
4681 using, for instance, Standard.Constraint_Error when Constraint_Error
4682 is ambiguous (due to the user defining its own Constraint_Error
4683 entity inside its program). */
96d887e8 4684 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4685 name += sizeof ("standard__") - 1;
4c4b4cd2 4686
96d887e8
PH
4687 ALL_MSYMBOLS (objfile, msymbol)
4688 {
efd66ac6 4689 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4690 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4691 {
4692 result.minsym = msymbol;
4693 result.objfile = objfile;
4694 break;
4695 }
96d887e8 4696 }
4c4b4cd2 4697
7c7b6655 4698 return result;
96d887e8 4699}
4c4b4cd2 4700
96d887e8
PH
4701/* For all subprograms that statically enclose the subprogram of the
4702 selected frame, add symbols matching identifier NAME in DOMAIN
4703 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4704 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4705 with a wildcard prefix. */
4c4b4cd2 4706
96d887e8
PH
4707static void
4708add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4709 const char *name, domain_enum namespace,
48b78332 4710 int wild_match_p)
96d887e8 4711{
96d887e8 4712}
14f9c5c9 4713
96d887e8
PH
4714/* True if TYPE is definitely an artificial type supplied to a symbol
4715 for which no debugging information was given in the symbol file. */
14f9c5c9 4716
96d887e8
PH
4717static int
4718is_nondebugging_type (struct type *type)
4719{
0d5cff50 4720 const char *name = ada_type_name (type);
5b4ee69b 4721
96d887e8
PH
4722 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4723}
4c4b4cd2 4724
8f17729f
JB
4725/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4726 that are deemed "identical" for practical purposes.
4727
4728 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4729 types and that their number of enumerals is identical (in other
4730 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4731
4732static int
4733ada_identical_enum_types_p (struct type *type1, struct type *type2)
4734{
4735 int i;
4736
4737 /* The heuristic we use here is fairly conservative. We consider
4738 that 2 enumerate types are identical if they have the same
4739 number of enumerals and that all enumerals have the same
4740 underlying value and name. */
4741
4742 /* All enums in the type should have an identical underlying value. */
4743 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4744 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4745 return 0;
4746
4747 /* All enumerals should also have the same name (modulo any numerical
4748 suffix). */
4749 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4750 {
0d5cff50
DE
4751 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4752 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4753 int len_1 = strlen (name_1);
4754 int len_2 = strlen (name_2);
4755
4756 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4757 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4758 if (len_1 != len_2
4759 || strncmp (TYPE_FIELD_NAME (type1, i),
4760 TYPE_FIELD_NAME (type2, i),
4761 len_1) != 0)
4762 return 0;
4763 }
4764
4765 return 1;
4766}
4767
4768/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4769 that are deemed "identical" for practical purposes. Sometimes,
4770 enumerals are not strictly identical, but their types are so similar
4771 that they can be considered identical.
4772
4773 For instance, consider the following code:
4774
4775 type Color is (Black, Red, Green, Blue, White);
4776 type RGB_Color is new Color range Red .. Blue;
4777
4778 Type RGB_Color is a subrange of an implicit type which is a copy
4779 of type Color. If we call that implicit type RGB_ColorB ("B" is
4780 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4781 As a result, when an expression references any of the enumeral
4782 by name (Eg. "print green"), the expression is technically
4783 ambiguous and the user should be asked to disambiguate. But
4784 doing so would only hinder the user, since it wouldn't matter
4785 what choice he makes, the outcome would always be the same.
4786 So, for practical purposes, we consider them as the same. */
4787
4788static int
4789symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4790{
4791 int i;
4792
4793 /* Before performing a thorough comparison check of each type,
4794 we perform a series of inexpensive checks. We expect that these
4795 checks will quickly fail in the vast majority of cases, and thus
4796 help prevent the unnecessary use of a more expensive comparison.
4797 Said comparison also expects us to make some of these checks
4798 (see ada_identical_enum_types_p). */
4799
4800 /* Quick check: All symbols should have an enum type. */
4801 for (i = 0; i < nsyms; i++)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4803 return 0;
4804
4805 /* Quick check: They should all have the same value. */
4806 for (i = 1; i < nsyms; i++)
4807 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4808 return 0;
4809
4810 /* Quick check: They should all have the same number of enumerals. */
4811 for (i = 1; i < nsyms; i++)
4812 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4813 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4814 return 0;
4815
4816 /* All the sanity checks passed, so we might have a set of
4817 identical enumeration types. Perform a more complete
4818 comparison of the type of each symbol. */
4819 for (i = 1; i < nsyms; i++)
4820 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4821 SYMBOL_TYPE (syms[0].sym)))
4822 return 0;
4823
4824 return 1;
4825}
4826
96d887e8
PH
4827/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4828 duplicate other symbols in the list (The only case I know of where
4829 this happens is when object files containing stabs-in-ecoff are
4830 linked with files containing ordinary ecoff debugging symbols (or no
4831 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4832 Returns the number of items in the modified list. */
4c4b4cd2 4833
96d887e8
PH
4834static int
4835remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4836{
4837 int i, j;
4c4b4cd2 4838
8f17729f
JB
4839 /* We should never be called with less than 2 symbols, as there
4840 cannot be any extra symbol in that case. But it's easy to
4841 handle, since we have nothing to do in that case. */
4842 if (nsyms < 2)
4843 return nsyms;
4844
96d887e8
PH
4845 i = 0;
4846 while (i < nsyms)
4847 {
a35ddb44 4848 int remove_p = 0;
339c13b6
JB
4849
4850 /* If two symbols have the same name and one of them is a stub type,
4851 the get rid of the stub. */
4852
4853 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4854 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4855 {
4856 for (j = 0; j < nsyms; j++)
4857 {
4858 if (j != i
4859 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4860 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4861 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4862 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4863 remove_p = 1;
339c13b6
JB
4864 }
4865 }
4866
4867 /* Two symbols with the same name, same class and same address
4868 should be identical. */
4869
4870 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4871 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4872 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4873 {
4874 for (j = 0; j < nsyms; j += 1)
4875 {
4876 if (i != j
4877 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4878 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4879 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4880 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4881 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4882 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4883 remove_p = 1;
4c4b4cd2 4884 }
4c4b4cd2 4885 }
339c13b6 4886
a35ddb44 4887 if (remove_p)
339c13b6
JB
4888 {
4889 for (j = i + 1; j < nsyms; j += 1)
4890 syms[j - 1] = syms[j];
4891 nsyms -= 1;
4892 }
4893
96d887e8 4894 i += 1;
14f9c5c9 4895 }
8f17729f
JB
4896
4897 /* If all the remaining symbols are identical enumerals, then
4898 just keep the first one and discard the rest.
4899
4900 Unlike what we did previously, we do not discard any entry
4901 unless they are ALL identical. This is because the symbol
4902 comparison is not a strict comparison, but rather a practical
4903 comparison. If all symbols are considered identical, then
4904 we can just go ahead and use the first one and discard the rest.
4905 But if we cannot reduce the list to a single element, we have
4906 to ask the user to disambiguate anyways. And if we have to
4907 present a multiple-choice menu, it's less confusing if the list
4908 isn't missing some choices that were identical and yet distinct. */
4909 if (symbols_are_identical_enums (syms, nsyms))
4910 nsyms = 1;
4911
96d887e8 4912 return nsyms;
14f9c5c9
AS
4913}
4914
96d887e8
PH
4915/* Given a type that corresponds to a renaming entity, use the type name
4916 to extract the scope (package name or function name, fully qualified,
4917 and following the GNAT encoding convention) where this renaming has been
4918 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4919
96d887e8
PH
4920static char *
4921xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4922{
96d887e8 4923 /* The renaming types adhere to the following convention:
0963b4bd 4924 <scope>__<rename>___<XR extension>.
96d887e8
PH
4925 So, to extract the scope, we search for the "___XR" extension,
4926 and then backtrack until we find the first "__". */
76a01679 4927
96d887e8
PH
4928 const char *name = type_name_no_tag (renaming_type);
4929 char *suffix = strstr (name, "___XR");
4930 char *last;
4931 int scope_len;
4932 char *scope;
14f9c5c9 4933
96d887e8
PH
4934 /* Now, backtrack a bit until we find the first "__". Start looking
4935 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4936
96d887e8
PH
4937 for (last = suffix - 3; last > name; last--)
4938 if (last[0] == '_' && last[1] == '_')
4939 break;
76a01679 4940
96d887e8 4941 /* Make a copy of scope and return it. */
14f9c5c9 4942
96d887e8
PH
4943 scope_len = last - name;
4944 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4945
96d887e8
PH
4946 strncpy (scope, name, scope_len);
4947 scope[scope_len] = '\0';
4c4b4cd2 4948
96d887e8 4949 return scope;
4c4b4cd2
PH
4950}
4951
96d887e8 4952/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4953
96d887e8
PH
4954static int
4955is_package_name (const char *name)
4c4b4cd2 4956{
96d887e8
PH
4957 /* Here, We take advantage of the fact that no symbols are generated
4958 for packages, while symbols are generated for each function.
4959 So the condition for NAME represent a package becomes equivalent
4960 to NAME not existing in our list of symbols. There is only one
4961 small complication with library-level functions (see below). */
4c4b4cd2 4962
96d887e8 4963 char *fun_name;
76a01679 4964
96d887e8
PH
4965 /* If it is a function that has not been defined at library level,
4966 then we should be able to look it up in the symbols. */
4967 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4968 return 0;
14f9c5c9 4969
96d887e8
PH
4970 /* Library-level function names start with "_ada_". See if function
4971 "_ada_" followed by NAME can be found. */
14f9c5c9 4972
96d887e8 4973 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4974 functions names cannot contain "__" in them. */
96d887e8
PH
4975 if (strstr (name, "__") != NULL)
4976 return 0;
4c4b4cd2 4977
b435e160 4978 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4979
96d887e8
PH
4980 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4981}
14f9c5c9 4982
96d887e8 4983/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4984 not visible from FUNCTION_NAME. */
14f9c5c9 4985
96d887e8 4986static int
0d5cff50 4987old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4988{
aeb5907d 4989 char *scope;
1509e573 4990 struct cleanup *old_chain;
aeb5907d
JB
4991
4992 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4993 return 0;
4994
4995 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4996 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4997
96d887e8
PH
4998 /* If the rename has been defined in a package, then it is visible. */
4999 if (is_package_name (scope))
1509e573
JB
5000 {
5001 do_cleanups (old_chain);
5002 return 0;
5003 }
14f9c5c9 5004
96d887e8
PH
5005 /* Check that the rename is in the current function scope by checking
5006 that its name starts with SCOPE. */
76a01679 5007
96d887e8
PH
5008 /* If the function name starts with "_ada_", it means that it is
5009 a library-level function. Strip this prefix before doing the
5010 comparison, as the encoding for the renaming does not contain
5011 this prefix. */
5012 if (strncmp (function_name, "_ada_", 5) == 0)
5013 function_name += 5;
f26caa11 5014
1509e573
JB
5015 {
5016 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5017
5018 do_cleanups (old_chain);
5019 return is_invisible;
5020 }
f26caa11
PH
5021}
5022
aeb5907d
JB
5023/* Remove entries from SYMS that corresponds to a renaming entity that
5024 is not visible from the function associated with CURRENT_BLOCK or
5025 that is superfluous due to the presence of more specific renaming
5026 information. Places surviving symbols in the initial entries of
5027 SYMS and returns the number of surviving symbols.
96d887e8
PH
5028
5029 Rationale:
aeb5907d
JB
5030 First, in cases where an object renaming is implemented as a
5031 reference variable, GNAT may produce both the actual reference
5032 variable and the renaming encoding. In this case, we discard the
5033 latter.
5034
5035 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5036 entity. Unfortunately, STABS currently does not support the definition
5037 of types that are local to a given lexical block, so all renamings types
5038 are emitted at library level. As a consequence, if an application
5039 contains two renaming entities using the same name, and a user tries to
5040 print the value of one of these entities, the result of the ada symbol
5041 lookup will also contain the wrong renaming type.
f26caa11 5042
96d887e8
PH
5043 This function partially covers for this limitation by attempting to
5044 remove from the SYMS list renaming symbols that should be visible
5045 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5046 method with the current information available. The implementation
5047 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5048
5049 - When the user tries to print a rename in a function while there
5050 is another rename entity defined in a package: Normally, the
5051 rename in the function has precedence over the rename in the
5052 package, so the latter should be removed from the list. This is
5053 currently not the case.
5054
5055 - This function will incorrectly remove valid renames if
5056 the CURRENT_BLOCK corresponds to a function which symbol name
5057 has been changed by an "Export" pragma. As a consequence,
5058 the user will be unable to print such rename entities. */
4c4b4cd2 5059
14f9c5c9 5060static int
aeb5907d
JB
5061remove_irrelevant_renamings (struct ada_symbol_info *syms,
5062 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5063{
5064 struct symbol *current_function;
0d5cff50 5065 const char *current_function_name;
4c4b4cd2 5066 int i;
aeb5907d
JB
5067 int is_new_style_renaming;
5068
5069 /* If there is both a renaming foo___XR... encoded as a variable and
5070 a simple variable foo in the same block, discard the latter.
0963b4bd 5071 First, zero out such symbols, then compress. */
aeb5907d
JB
5072 is_new_style_renaming = 0;
5073 for (i = 0; i < nsyms; i += 1)
5074 {
5075 struct symbol *sym = syms[i].sym;
270140bd 5076 const struct block *block = syms[i].block;
aeb5907d
JB
5077 const char *name;
5078 const char *suffix;
5079
5080 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5081 continue;
5082 name = SYMBOL_LINKAGE_NAME (sym);
5083 suffix = strstr (name, "___XR");
5084
5085 if (suffix != NULL)
5086 {
5087 int name_len = suffix - name;
5088 int j;
5b4ee69b 5089
aeb5907d
JB
5090 is_new_style_renaming = 1;
5091 for (j = 0; j < nsyms; j += 1)
5092 if (i != j && syms[j].sym != NULL
5093 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5094 name_len) == 0
5095 && block == syms[j].block)
5096 syms[j].sym = NULL;
5097 }
5098 }
5099 if (is_new_style_renaming)
5100 {
5101 int j, k;
5102
5103 for (j = k = 0; j < nsyms; j += 1)
5104 if (syms[j].sym != NULL)
5105 {
5106 syms[k] = syms[j];
5107 k += 1;
5108 }
5109 return k;
5110 }
4c4b4cd2
PH
5111
5112 /* Extract the function name associated to CURRENT_BLOCK.
5113 Abort if unable to do so. */
76a01679 5114
4c4b4cd2
PH
5115 if (current_block == NULL)
5116 return nsyms;
76a01679 5117
7f0df278 5118 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5119 if (current_function == NULL)
5120 return nsyms;
5121
5122 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5123 if (current_function_name == NULL)
5124 return nsyms;
5125
5126 /* Check each of the symbols, and remove it from the list if it is
5127 a type corresponding to a renaming that is out of the scope of
5128 the current block. */
5129
5130 i = 0;
5131 while (i < nsyms)
5132 {
aeb5907d
JB
5133 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5134 == ADA_OBJECT_RENAMING
5135 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5136 {
5137 int j;
5b4ee69b 5138
aeb5907d 5139 for (j = i + 1; j < nsyms; j += 1)
76a01679 5140 syms[j - 1] = syms[j];
4c4b4cd2
PH
5141 nsyms -= 1;
5142 }
5143 else
5144 i += 1;
5145 }
5146
5147 return nsyms;
5148}
5149
339c13b6
JB
5150/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5151 whose name and domain match NAME and DOMAIN respectively.
5152 If no match was found, then extend the search to "enclosing"
5153 routines (in other words, if we're inside a nested function,
5154 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5155 If WILD_MATCH_P is nonzero, perform the naming matching in
5156 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5157
5158 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5159
5160static void
5161ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5162 const struct block *block, domain_enum domain,
d0a8ab18 5163 int wild_match_p)
339c13b6
JB
5164{
5165 int block_depth = 0;
5166
5167 while (block != NULL)
5168 {
5169 block_depth += 1;
d0a8ab18
JB
5170 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5171 wild_match_p);
339c13b6
JB
5172
5173 /* If we found a non-function match, assume that's the one. */
5174 if (is_nonfunction (defns_collected (obstackp, 0),
5175 num_defns_collected (obstackp)))
5176 return;
5177
5178 block = BLOCK_SUPERBLOCK (block);
5179 }
5180
5181 /* If no luck so far, try to find NAME as a local symbol in some lexically
5182 enclosing subprogram. */
5183 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5184 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5185}
5186
ccefe4c4 5187/* An object of this type is used as the user_data argument when
40658b94 5188 calling the map_matching_symbols method. */
ccefe4c4 5189
40658b94 5190struct match_data
ccefe4c4 5191{
40658b94 5192 struct objfile *objfile;
ccefe4c4 5193 struct obstack *obstackp;
40658b94
PH
5194 struct symbol *arg_sym;
5195 int found_sym;
ccefe4c4
TT
5196};
5197
40658b94
PH
5198/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5199 to a list of symbols. DATA0 is a pointer to a struct match_data *
5200 containing the obstack that collects the symbol list, the file that SYM
5201 must come from, a flag indicating whether a non-argument symbol has
5202 been found in the current block, and the last argument symbol
5203 passed in SYM within the current block (if any). When SYM is null,
5204 marking the end of a block, the argument symbol is added if no
5205 other has been found. */
ccefe4c4 5206
40658b94
PH
5207static int
5208aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5209{
40658b94
PH
5210 struct match_data *data = (struct match_data *) data0;
5211
5212 if (sym == NULL)
5213 {
5214 if (!data->found_sym && data->arg_sym != NULL)
5215 add_defn_to_vec (data->obstackp,
5216 fixup_symbol_section (data->arg_sym, data->objfile),
5217 block);
5218 data->found_sym = 0;
5219 data->arg_sym = NULL;
5220 }
5221 else
5222 {
5223 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5224 return 0;
5225 else if (SYMBOL_IS_ARGUMENT (sym))
5226 data->arg_sym = sym;
5227 else
5228 {
5229 data->found_sym = 1;
5230 add_defn_to_vec (data->obstackp,
5231 fixup_symbol_section (sym, data->objfile),
5232 block);
5233 }
5234 }
5235 return 0;
5236}
5237
db230ce3
JB
5238/* Implements compare_names, but only applying the comparision using
5239 the given CASING. */
5b4ee69b 5240
40658b94 5241static int
db230ce3
JB
5242compare_names_with_case (const char *string1, const char *string2,
5243 enum case_sensitivity casing)
40658b94
PH
5244{
5245 while (*string1 != '\0' && *string2 != '\0')
5246 {
db230ce3
JB
5247 char c1, c2;
5248
40658b94
PH
5249 if (isspace (*string1) || isspace (*string2))
5250 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5251
5252 if (casing == case_sensitive_off)
5253 {
5254 c1 = tolower (*string1);
5255 c2 = tolower (*string2);
5256 }
5257 else
5258 {
5259 c1 = *string1;
5260 c2 = *string2;
5261 }
5262 if (c1 != c2)
40658b94 5263 break;
db230ce3 5264
40658b94
PH
5265 string1 += 1;
5266 string2 += 1;
5267 }
db230ce3 5268
40658b94
PH
5269 switch (*string1)
5270 {
5271 case '(':
5272 return strcmp_iw_ordered (string1, string2);
5273 case '_':
5274 if (*string2 == '\0')
5275 {
052874e8 5276 if (is_name_suffix (string1))
40658b94
PH
5277 return 0;
5278 else
1a1d5513 5279 return 1;
40658b94 5280 }
dbb8534f 5281 /* FALLTHROUGH */
40658b94
PH
5282 default:
5283 if (*string2 == '(')
5284 return strcmp_iw_ordered (string1, string2);
5285 else
db230ce3
JB
5286 {
5287 if (casing == case_sensitive_off)
5288 return tolower (*string1) - tolower (*string2);
5289 else
5290 return *string1 - *string2;
5291 }
40658b94 5292 }
ccefe4c4
TT
5293}
5294
db230ce3
JB
5295/* Compare STRING1 to STRING2, with results as for strcmp.
5296 Compatible with strcmp_iw_ordered in that...
5297
5298 strcmp_iw_ordered (STRING1, STRING2) <= 0
5299
5300 ... implies...
5301
5302 compare_names (STRING1, STRING2) <= 0
5303
5304 (they may differ as to what symbols compare equal). */
5305
5306static int
5307compare_names (const char *string1, const char *string2)
5308{
5309 int result;
5310
5311 /* Similar to what strcmp_iw_ordered does, we need to perform
5312 a case-insensitive comparison first, and only resort to
5313 a second, case-sensitive, comparison if the first one was
5314 not sufficient to differentiate the two strings. */
5315
5316 result = compare_names_with_case (string1, string2, case_sensitive_off);
5317 if (result == 0)
5318 result = compare_names_with_case (string1, string2, case_sensitive_on);
5319
5320 return result;
5321}
5322
339c13b6
JB
5323/* Add to OBSTACKP all non-local symbols whose name and domain match
5324 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5325 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5326
5327static void
40658b94
PH
5328add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5329 domain_enum domain, int global,
5330 int is_wild_match)
339c13b6
JB
5331{
5332 struct objfile *objfile;
40658b94 5333 struct match_data data;
339c13b6 5334
6475f2fe 5335 memset (&data, 0, sizeof data);
ccefe4c4 5336 data.obstackp = obstackp;
339c13b6 5337
ccefe4c4 5338 ALL_OBJFILES (objfile)
40658b94
PH
5339 {
5340 data.objfile = objfile;
5341
5342 if (is_wild_match)
b50c8614
KS
5343 {
5344 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5345 aux_add_nonlocal_symbols,
5346 &data, wild_match, NULL);
5347 if (domain == VAR_DOMAIN)
5348 objfile->sf->qf->map_matching_symbols (objfile, name,
5349 STRUCT_DOMAIN, global,
5350 aux_add_nonlocal_symbols,
5351 &data, wild_match, NULL);
5352 }
40658b94 5353 else
b50c8614
KS
5354 {
5355 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5356 aux_add_nonlocal_symbols,
5357 &data, full_match,
5358 compare_names);
5359 if (domain == VAR_DOMAIN)
5360 objfile->sf->qf->map_matching_symbols (objfile, name,
5361 STRUCT_DOMAIN, global,
5362 aux_add_nonlocal_symbols,
5363 &data, full_match,
5364 compare_names);
5365 }
40658b94
PH
5366 }
5367
5368 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5369 {
5370 ALL_OBJFILES (objfile)
5371 {
5372 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5373 strcpy (name1, "_ada_");
5374 strcpy (name1 + sizeof ("_ada_") - 1, name);
5375 data.objfile = objfile;
ade7ed9e
DE
5376 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5377 global,
0963b4bd
MS
5378 aux_add_nonlocal_symbols,
5379 &data,
40658b94
PH
5380 full_match, compare_names);
5381 }
5382 }
339c13b6
JB
5383}
5384
4eeaa230
DE
5385/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5386 non-zero, enclosing scope and in global scopes, returning the number of
5387 matches.
9f88c959 5388 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5389 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5390 any) in which they were found. This vector is transient---good only to
5391 the next call of ada_lookup_symbol_list.
5392
5393 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5394 symbol match within the nest of blocks whose innermost member is BLOCK0,
5395 is the one match returned (no other matches in that or
d9680e73 5396 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5397 surrounding BLOCK0, then these alone are returned.
5398
9f88c959 5399 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5400 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5401
4eeaa230
DE
5402static int
5403ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5404 domain_enum namespace,
5405 struct ada_symbol_info **results,
5406 int full_search)
14f9c5c9
AS
5407{
5408 struct symbol *sym;
f0c5f9b2 5409 const struct block *block;
4c4b4cd2 5410 const char *name;
82ccd55e 5411 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5412 int cacheIfUnique;
4c4b4cd2 5413 int ndefns;
14f9c5c9 5414
4c4b4cd2
PH
5415 obstack_free (&symbol_list_obstack, NULL);
5416 obstack_init (&symbol_list_obstack);
14f9c5c9 5417
14f9c5c9
AS
5418 cacheIfUnique = 0;
5419
5420 /* Search specified block and its superiors. */
5421
4c4b4cd2 5422 name = name0;
f0c5f9b2 5423 block = block0;
339c13b6
JB
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
4c4b4cd2
PH
5432 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5433 {
4c4b4cd2
PH
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
339c13b6 5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5439
4eeaa230
DE
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
5445 namespace, wild_match_p);
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
5453 namespace, NULL, wild_match_p);
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
d2e4a39e 5458
339c13b6
JB
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
14f9c5c9 5463 cacheIfUnique = 1;
2570f2b7 5464 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5465 {
5466 if (sym != NULL)
2570f2b7 5467 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5468 goto done;
5469 }
14f9c5c9 5470
339c13b6
JB
5471 /* Search symbols from all global blocks. */
5472
40658b94 5473 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5474 wild_match_p);
d2e4a39e 5475
4c4b4cd2 5476 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5477 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5478
4c4b4cd2 5479 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5480 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5481 wild_match_p);
14f9c5c9 5482
4c4b4cd2
PH
5483done:
5484 ndefns = num_defns_collected (&symbol_list_obstack);
5485 *results = defns_collected (&symbol_list_obstack, 1);
5486
5487 ndefns = remove_extra_symbols (*results, ndefns);
5488
2ad01556 5489 if (ndefns == 0 && full_search)
2570f2b7 5490 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5491
2ad01556 5492 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5493 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5494
aeb5907d 5495 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5496
14f9c5c9
AS
5497 return ndefns;
5498}
5499
4eeaa230
DE
5500/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5501 in global scopes, returning the number of matches, and setting *RESULTS
5502 to a vector of (SYM,BLOCK) tuples.
5503 See ada_lookup_symbol_list_worker for further details. */
5504
5505int
5506ada_lookup_symbol_list (const char *name0, const struct block *block0,
5507 domain_enum domain, struct ada_symbol_info **results)
5508{
5509 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5510}
5511
5512/* Implementation of the la_iterate_over_symbols method. */
5513
5514static void
5515ada_iterate_over_symbols (const struct block *block,
5516 const char *name, domain_enum domain,
5517 symbol_found_callback_ftype *callback,
5518 void *data)
5519{
5520 int ndefs, i;
5521 struct ada_symbol_info *results;
5522
5523 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5524 for (i = 0; i < ndefs; ++i)
5525 {
5526 if (! (*callback) (results[i].sym, data))
5527 break;
5528 }
5529}
5530
f8eba3c6
TT
5531/* If NAME is the name of an entity, return a string that should
5532 be used to look that entity up in Ada units. This string should
5533 be deallocated after use using xfree.
5534
5535 NAME can have any form that the "break" or "print" commands might
5536 recognize. In other words, it does not have to be the "natural"
5537 name, or the "encoded" name. */
5538
5539char *
5540ada_name_for_lookup (const char *name)
5541{
5542 char *canon;
5543 int nlen = strlen (name);
5544
5545 if (name[0] == '<' && name[nlen - 1] == '>')
5546 {
5547 canon = xmalloc (nlen - 1);
5548 memcpy (canon, name + 1, nlen - 2);
5549 canon[nlen - 2] = '\0';
5550 }
5551 else
5552 canon = xstrdup (ada_encode (ada_fold_name (name)));
5553 return canon;
5554}
5555
4e5c77fe
JB
5556/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5557 to 1, but choosing the first symbol found if there are multiple
5558 choices.
5559
5e2336be
JB
5560 The result is stored in *INFO, which must be non-NULL.
5561 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5562
5563void
5564ada_lookup_encoded_symbol (const char *name, const struct block *block,
5565 domain_enum namespace,
5e2336be 5566 struct ada_symbol_info *info)
14f9c5c9 5567{
4c4b4cd2 5568 struct ada_symbol_info *candidates;
14f9c5c9
AS
5569 int n_candidates;
5570
5e2336be
JB
5571 gdb_assert (info != NULL);
5572 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5573
4eeaa230 5574 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5575 if (n_candidates == 0)
4e5c77fe 5576 return;
4c4b4cd2 5577
5e2336be
JB
5578 *info = candidates[0];
5579 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5580}
aeb5907d
JB
5581
5582/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5583 scope and in global scopes, or NULL if none. NAME is folded and
5584 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5585 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5586 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5587
aeb5907d
JB
5588struct symbol *
5589ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5590 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5591{
5e2336be 5592 struct ada_symbol_info info;
4e5c77fe 5593
aeb5907d
JB
5594 if (is_a_field_of_this != NULL)
5595 *is_a_field_of_this = 0;
5596
4e5c77fe 5597 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5598 block0, namespace, &info);
5599 return info.sym;
4c4b4cd2 5600}
14f9c5c9 5601
4c4b4cd2
PH
5602static struct symbol *
5603ada_lookup_symbol_nonlocal (const char *name,
76a01679 5604 const struct block *block,
21b556f4 5605 const domain_enum domain)
4c4b4cd2 5606{
94af9270 5607 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5608}
5609
5610
4c4b4cd2
PH
5611/* True iff STR is a possible encoded suffix of a normal Ada name
5612 that is to be ignored for matching purposes. Suffixes of parallel
5613 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5614 are given by any of the regular expressions:
4c4b4cd2 5615
babe1480
JB
5616 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5617 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5618 TKB [subprogram suffix for task bodies]
babe1480 5619 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5620 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5621
5622 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5623 match is performed. This sequence is used to differentiate homonyms,
5624 is an optional part of a valid name suffix. */
4c4b4cd2 5625
14f9c5c9 5626static int
d2e4a39e 5627is_name_suffix (const char *str)
14f9c5c9
AS
5628{
5629 int k;
4c4b4cd2
PH
5630 const char *matching;
5631 const int len = strlen (str);
5632
babe1480
JB
5633 /* Skip optional leading __[0-9]+. */
5634
4c4b4cd2
PH
5635 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5636 {
babe1480
JB
5637 str += 3;
5638 while (isdigit (str[0]))
5639 str += 1;
4c4b4cd2 5640 }
babe1480
JB
5641
5642 /* [.$][0-9]+ */
4c4b4cd2 5643
babe1480 5644 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5645 {
babe1480 5646 matching = str + 1;
4c4b4cd2
PH
5647 while (isdigit (matching[0]))
5648 matching += 1;
5649 if (matching[0] == '\0')
5650 return 1;
5651 }
5652
5653 /* ___[0-9]+ */
babe1480 5654
4c4b4cd2
PH
5655 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5656 {
5657 matching = str + 3;
5658 while (isdigit (matching[0]))
5659 matching += 1;
5660 if (matching[0] == '\0')
5661 return 1;
5662 }
5663
9ac7f98e
JB
5664 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5665
5666 if (strcmp (str, "TKB") == 0)
5667 return 1;
5668
529cad9c
PH
5669#if 0
5670 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5671 with a N at the end. Unfortunately, the compiler uses the same
5672 convention for other internal types it creates. So treating
529cad9c 5673 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5674 some regressions. For instance, consider the case of an enumerated
5675 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5676 name ends with N.
5677 Having a single character like this as a suffix carrying some
0963b4bd 5678 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5679 to be something like "_N" instead. In the meantime, do not do
5680 the following check. */
5681 /* Protected Object Subprograms */
5682 if (len == 1 && str [0] == 'N')
5683 return 1;
5684#endif
5685
5686 /* _E[0-9]+[bs]$ */
5687 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5688 {
5689 matching = str + 3;
5690 while (isdigit (matching[0]))
5691 matching += 1;
5692 if ((matching[0] == 'b' || matching[0] == 's')
5693 && matching [1] == '\0')
5694 return 1;
5695 }
5696
4c4b4cd2
PH
5697 /* ??? We should not modify STR directly, as we are doing below. This
5698 is fine in this case, but may become problematic later if we find
5699 that this alternative did not work, and want to try matching
5700 another one from the begining of STR. Since we modified it, we
5701 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5702 if (str[0] == 'X')
5703 {
5704 str += 1;
d2e4a39e 5705 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5706 {
5707 if (str[0] != 'n' && str[0] != 'b')
5708 return 0;
5709 str += 1;
5710 }
14f9c5c9 5711 }
babe1480 5712
14f9c5c9
AS
5713 if (str[0] == '\000')
5714 return 1;
babe1480 5715
d2e4a39e 5716 if (str[0] == '_')
14f9c5c9
AS
5717 {
5718 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5719 return 0;
d2e4a39e 5720 if (str[2] == '_')
4c4b4cd2 5721 {
61ee279c
PH
5722 if (strcmp (str + 3, "JM") == 0)
5723 return 1;
5724 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5725 the LJM suffix in favor of the JM one. But we will
5726 still accept LJM as a valid suffix for a reasonable
5727 amount of time, just to allow ourselves to debug programs
5728 compiled using an older version of GNAT. */
4c4b4cd2
PH
5729 if (strcmp (str + 3, "LJM") == 0)
5730 return 1;
5731 if (str[3] != 'X')
5732 return 0;
1265e4aa
JB
5733 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5734 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5735 return 1;
5736 if (str[4] == 'R' && str[5] != 'T')
5737 return 1;
5738 return 0;
5739 }
5740 if (!isdigit (str[2]))
5741 return 0;
5742 for (k = 3; str[k] != '\0'; k += 1)
5743 if (!isdigit (str[k]) && str[k] != '_')
5744 return 0;
14f9c5c9
AS
5745 return 1;
5746 }
4c4b4cd2 5747 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5748 {
4c4b4cd2
PH
5749 for (k = 2; str[k] != '\0'; k += 1)
5750 if (!isdigit (str[k]) && str[k] != '_')
5751 return 0;
14f9c5c9
AS
5752 return 1;
5753 }
5754 return 0;
5755}
d2e4a39e 5756
aeb5907d
JB
5757/* Return non-zero if the string starting at NAME and ending before
5758 NAME_END contains no capital letters. */
529cad9c
PH
5759
5760static int
5761is_valid_name_for_wild_match (const char *name0)
5762{
5763 const char *decoded_name = ada_decode (name0);
5764 int i;
5765
5823c3ef
JB
5766 /* If the decoded name starts with an angle bracket, it means that
5767 NAME0 does not follow the GNAT encoding format. It should then
5768 not be allowed as a possible wild match. */
5769 if (decoded_name[0] == '<')
5770 return 0;
5771
529cad9c
PH
5772 for (i=0; decoded_name[i] != '\0'; i++)
5773 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5774 return 0;
5775
5776 return 1;
5777}
5778
73589123
PH
5779/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5780 that could start a simple name. Assumes that *NAMEP points into
5781 the string beginning at NAME0. */
4c4b4cd2 5782
14f9c5c9 5783static int
73589123 5784advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5785{
73589123 5786 const char *name = *namep;
5b4ee69b 5787
5823c3ef 5788 while (1)
14f9c5c9 5789 {
aa27d0b3 5790 int t0, t1;
73589123
PH
5791
5792 t0 = *name;
5793 if (t0 == '_')
5794 {
5795 t1 = name[1];
5796 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5797 {
5798 name += 1;
5799 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5800 break;
5801 else
5802 name += 1;
5803 }
aa27d0b3
JB
5804 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5805 || name[2] == target0))
73589123
PH
5806 {
5807 name += 2;
5808 break;
5809 }
5810 else
5811 return 0;
5812 }
5813 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5814 name += 1;
5815 else
5823c3ef 5816 return 0;
73589123
PH
5817 }
5818
5819 *namep = name;
5820 return 1;
5821}
5822
5823/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5824 informational suffixes of NAME (i.e., for which is_name_suffix is
5825 true). Assumes that PATN is a lower-cased Ada simple name. */
5826
5827static int
5828wild_match (const char *name, const char *patn)
5829{
22e048c9 5830 const char *p;
73589123
PH
5831 const char *name0 = name;
5832
5833 while (1)
5834 {
5835 const char *match = name;
5836
5837 if (*name == *patn)
5838 {
5839 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5840 if (*p != *name)
5841 break;
5842 if (*p == '\0' && is_name_suffix (name))
5843 return match != name0 && !is_valid_name_for_wild_match (name0);
5844
5845 if (name[-1] == '_')
5846 name -= 1;
5847 }
5848 if (!advance_wild_match (&name, name0, *patn))
5849 return 1;
96d887e8 5850 }
96d887e8
PH
5851}
5852
40658b94
PH
5853/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5854 informational suffix. */
5855
c4d840bd
PH
5856static int
5857full_match (const char *sym_name, const char *search_name)
5858{
40658b94 5859 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5860}
5861
5862
96d887e8
PH
5863/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5864 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5865 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5866 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5867
5868static void
5869ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5870 const struct block *block, const char *name,
96d887e8 5871 domain_enum domain, struct objfile *objfile,
2570f2b7 5872 int wild)
96d887e8 5873{
8157b174 5874 struct block_iterator iter;
96d887e8
PH
5875 int name_len = strlen (name);
5876 /* A matching argument symbol, if any. */
5877 struct symbol *arg_sym;
5878 /* Set true when we find a matching non-argument symbol. */
5879 int found_sym;
5880 struct symbol *sym;
5881
5882 arg_sym = NULL;
5883 found_sym = 0;
5884 if (wild)
5885 {
8157b174
TT
5886 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5887 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5888 {
b50c8614 5889 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain)
73589123 5890 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5891 {
2a2d4dc3
AS
5892 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5893 continue;
5894 else if (SYMBOL_IS_ARGUMENT (sym))
5895 arg_sym = sym;
5896 else
5897 {
76a01679
JB
5898 found_sym = 1;
5899 add_defn_to_vec (obstackp,
5900 fixup_symbol_section (sym, objfile),
2570f2b7 5901 block);
76a01679
JB
5902 }
5903 }
5904 }
96d887e8
PH
5905 }
5906 else
5907 {
8157b174
TT
5908 for (sym = block_iter_match_first (block, name, full_match, &iter);
5909 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5910 {
b50c8614 5911 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain))
76a01679 5912 {
c4d840bd
PH
5913 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5914 {
5915 if (SYMBOL_IS_ARGUMENT (sym))
5916 arg_sym = sym;
5917 else
2a2d4dc3 5918 {
c4d840bd
PH
5919 found_sym = 1;
5920 add_defn_to_vec (obstackp,
5921 fixup_symbol_section (sym, objfile),
5922 block);
2a2d4dc3 5923 }
c4d840bd 5924 }
76a01679
JB
5925 }
5926 }
96d887e8
PH
5927 }
5928
5929 if (!found_sym && arg_sym != NULL)
5930 {
76a01679
JB
5931 add_defn_to_vec (obstackp,
5932 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5933 block);
96d887e8
PH
5934 }
5935
5936 if (!wild)
5937 {
5938 arg_sym = NULL;
5939 found_sym = 0;
5940
5941 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5942 {
b50c8614 5943 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5944 {
5945 int cmp;
5946
5947 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5948 if (cmp == 0)
5949 {
5950 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5951 if (cmp == 0)
5952 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5953 name_len);
5954 }
5955
5956 if (cmp == 0
5957 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5958 {
2a2d4dc3
AS
5959 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5960 {
5961 if (SYMBOL_IS_ARGUMENT (sym))
5962 arg_sym = sym;
5963 else
5964 {
5965 found_sym = 1;
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (sym, objfile),
5968 block);
5969 }
5970 }
76a01679
JB
5971 }
5972 }
76a01679 5973 }
96d887e8
PH
5974
5975 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5976 They aren't parameters, right? */
5977 if (!found_sym && arg_sym != NULL)
5978 {
5979 add_defn_to_vec (obstackp,
76a01679 5980 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5981 block);
96d887e8
PH
5982 }
5983 }
5984}
5985\f
41d27058
JB
5986
5987 /* Symbol Completion */
5988
5989/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5990 name in a form that's appropriate for the completion. The result
5991 does not need to be deallocated, but is only good until the next call.
5992
5993 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5994 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5995 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5996 in its encoded form. */
5997
5998static const char *
5999symbol_completion_match (const char *sym_name,
6000 const char *text, int text_len,
6ea35997 6001 int wild_match_p, int encoded_p)
41d27058 6002{
41d27058
JB
6003 const int verbatim_match = (text[0] == '<');
6004 int match = 0;
6005
6006 if (verbatim_match)
6007 {
6008 /* Strip the leading angle bracket. */
6009 text = text + 1;
6010 text_len--;
6011 }
6012
6013 /* First, test against the fully qualified name of the symbol. */
6014
6015 if (strncmp (sym_name, text, text_len) == 0)
6016 match = 1;
6017
6ea35997 6018 if (match && !encoded_p)
41d27058
JB
6019 {
6020 /* One needed check before declaring a positive match is to verify
6021 that iff we are doing a verbatim match, the decoded version
6022 of the symbol name starts with '<'. Otherwise, this symbol name
6023 is not a suitable completion. */
6024 const char *sym_name_copy = sym_name;
6025 int has_angle_bracket;
6026
6027 sym_name = ada_decode (sym_name);
6028 has_angle_bracket = (sym_name[0] == '<');
6029 match = (has_angle_bracket == verbatim_match);
6030 sym_name = sym_name_copy;
6031 }
6032
6033 if (match && !verbatim_match)
6034 {
6035 /* When doing non-verbatim match, another check that needs to
6036 be done is to verify that the potentially matching symbol name
6037 does not include capital letters, because the ada-mode would
6038 not be able to understand these symbol names without the
6039 angle bracket notation. */
6040 const char *tmp;
6041
6042 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6043 if (*tmp != '\0')
6044 match = 0;
6045 }
6046
6047 /* Second: Try wild matching... */
6048
e701b3c0 6049 if (!match && wild_match_p)
41d27058
JB
6050 {
6051 /* Since we are doing wild matching, this means that TEXT
6052 may represent an unqualified symbol name. We therefore must
6053 also compare TEXT against the unqualified name of the symbol. */
6054 sym_name = ada_unqualified_name (ada_decode (sym_name));
6055
6056 if (strncmp (sym_name, text, text_len) == 0)
6057 match = 1;
6058 }
6059
6060 /* Finally: If we found a mach, prepare the result to return. */
6061
6062 if (!match)
6063 return NULL;
6064
6065 if (verbatim_match)
6066 sym_name = add_angle_brackets (sym_name);
6067
6ea35997 6068 if (!encoded_p)
41d27058
JB
6069 sym_name = ada_decode (sym_name);
6070
6071 return sym_name;
6072}
6073
6074/* A companion function to ada_make_symbol_completion_list().
6075 Check if SYM_NAME represents a symbol which name would be suitable
6076 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6077 it is appended at the end of the given string vector SV.
6078
6079 ORIG_TEXT is the string original string from the user command
6080 that needs to be completed. WORD is the entire command on which
6081 completion should be performed. These two parameters are used to
6082 determine which part of the symbol name should be added to the
6083 completion vector.
c0af1706 6084 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6085 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6086 encoded formed (in which case the completion should also be
6087 encoded). */
6088
6089static void
d6565258 6090symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6091 const char *sym_name,
6092 const char *text, int text_len,
6093 const char *orig_text, const char *word,
cb8e9b97 6094 int wild_match_p, int encoded_p)
41d27058
JB
6095{
6096 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6097 wild_match_p, encoded_p);
41d27058
JB
6098 char *completion;
6099
6100 if (match == NULL)
6101 return;
6102
6103 /* We found a match, so add the appropriate completion to the given
6104 string vector. */
6105
6106 if (word == orig_text)
6107 {
6108 completion = xmalloc (strlen (match) + 5);
6109 strcpy (completion, match);
6110 }
6111 else if (word > orig_text)
6112 {
6113 /* Return some portion of sym_name. */
6114 completion = xmalloc (strlen (match) + 5);
6115 strcpy (completion, match + (word - orig_text));
6116 }
6117 else
6118 {
6119 /* Return some of ORIG_TEXT plus sym_name. */
6120 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6121 strncpy (completion, word, orig_text - word);
6122 completion[orig_text - word] = '\0';
6123 strcat (completion, match);
6124 }
6125
d6565258 6126 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6127}
6128
ccefe4c4 6129/* An object of this type is passed as the user_data argument to the
bb4142cf 6130 expand_symtabs_matching method. */
ccefe4c4
TT
6131struct add_partial_datum
6132{
6133 VEC(char_ptr) **completions;
6f937416 6134 const char *text;
ccefe4c4 6135 int text_len;
6f937416
PA
6136 const char *text0;
6137 const char *word;
ccefe4c4
TT
6138 int wild_match;
6139 int encoded;
6140};
6141
bb4142cf
DE
6142/* A callback for expand_symtabs_matching. */
6143
7b08b9eb 6144static int
bb4142cf 6145ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6146{
6147 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6148
6149 return symbol_completion_match (name, data->text, data->text_len,
6150 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6151}
6152
49c4e619
TT
6153/* Return a list of possible symbol names completing TEXT0. WORD is
6154 the entire command on which completion is made. */
41d27058 6155
49c4e619 6156static VEC (char_ptr) *
6f937416
PA
6157ada_make_symbol_completion_list (const char *text0, const char *word,
6158 enum type_code code)
41d27058
JB
6159{
6160 char *text;
6161 int text_len;
b1ed564a
JB
6162 int wild_match_p;
6163 int encoded_p;
2ba95b9b 6164 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6165 struct symbol *sym;
6166 struct symtab *s;
41d27058
JB
6167 struct minimal_symbol *msymbol;
6168 struct objfile *objfile;
6169 struct block *b, *surrounding_static_block = 0;
6170 int i;
8157b174 6171 struct block_iterator iter;
b8fea896 6172 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6173
2f68a895
TT
6174 gdb_assert (code == TYPE_CODE_UNDEF);
6175
41d27058
JB
6176 if (text0[0] == '<')
6177 {
6178 text = xstrdup (text0);
6179 make_cleanup (xfree, text);
6180 text_len = strlen (text);
b1ed564a
JB
6181 wild_match_p = 0;
6182 encoded_p = 1;
41d27058
JB
6183 }
6184 else
6185 {
6186 text = xstrdup (ada_encode (text0));
6187 make_cleanup (xfree, text);
6188 text_len = strlen (text);
6189 for (i = 0; i < text_len; i++)
6190 text[i] = tolower (text[i]);
6191
b1ed564a 6192 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6193 /* If the name contains a ".", then the user is entering a fully
6194 qualified entity name, and the match must not be done in wild
6195 mode. Similarly, if the user wants to complete what looks like
6196 an encoded name, the match must not be done in wild mode. */
b1ed564a 6197 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6198 }
6199
6200 /* First, look at the partial symtab symbols. */
41d27058 6201 {
ccefe4c4
TT
6202 struct add_partial_datum data;
6203
6204 data.completions = &completions;
6205 data.text = text;
6206 data.text_len = text_len;
6207 data.text0 = text0;
6208 data.word = word;
b1ed564a
JB
6209 data.wild_match = wild_match_p;
6210 data.encoded = encoded_p;
bb4142cf
DE
6211 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6212 &data);
41d27058
JB
6213 }
6214
6215 /* At this point scan through the misc symbol vectors and add each
6216 symbol you find to the list. Eventually we want to ignore
6217 anything that isn't a text symbol (everything else will be
6218 handled by the psymtab code above). */
6219
6220 ALL_MSYMBOLS (objfile, msymbol)
6221 {
6222 QUIT;
efd66ac6 6223 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6224 text, text_len, text0, word, wild_match_p,
6225 encoded_p);
41d27058
JB
6226 }
6227
6228 /* Search upwards from currently selected frame (so that we can
6229 complete on local vars. */
6230
6231 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6232 {
6233 if (!BLOCK_SUPERBLOCK (b))
6234 surrounding_static_block = b; /* For elmin of dups */
6235
6236 ALL_BLOCK_SYMBOLS (b, iter, sym)
6237 {
d6565258 6238 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6239 text, text_len, text0, word,
b1ed564a 6240 wild_match_p, encoded_p);
41d27058
JB
6241 }
6242 }
6243
6244 /* Go through the symtabs and check the externs and statics for
6245 symbols which match. */
6246
6247 ALL_SYMTABS (objfile, s)
6248 {
6249 QUIT;
6250 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6251 ALL_BLOCK_SYMBOLS (b, iter, sym)
6252 {
d6565258 6253 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6254 text, text_len, text0, word,
b1ed564a 6255 wild_match_p, encoded_p);
41d27058
JB
6256 }
6257 }
6258
6259 ALL_SYMTABS (objfile, s)
6260 {
6261 QUIT;
6262 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6263 /* Don't do this block twice. */
6264 if (b == surrounding_static_block)
6265 continue;
6266 ALL_BLOCK_SYMBOLS (b, iter, sym)
6267 {
d6565258 6268 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6269 text, text_len, text0, word,
b1ed564a 6270 wild_match_p, encoded_p);
41d27058
JB
6271 }
6272 }
6273
b8fea896 6274 do_cleanups (old_chain);
49c4e619 6275 return completions;
41d27058
JB
6276}
6277
963a6417 6278 /* Field Access */
96d887e8 6279
73fb9985
JB
6280/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6281 for tagged types. */
6282
6283static int
6284ada_is_dispatch_table_ptr_type (struct type *type)
6285{
0d5cff50 6286 const char *name;
73fb9985
JB
6287
6288 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6289 return 0;
6290
6291 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6292 if (name == NULL)
6293 return 0;
6294
6295 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6296}
6297
ac4a2da4
JG
6298/* Return non-zero if TYPE is an interface tag. */
6299
6300static int
6301ada_is_interface_tag (struct type *type)
6302{
6303 const char *name = TYPE_NAME (type);
6304
6305 if (name == NULL)
6306 return 0;
6307
6308 return (strcmp (name, "ada__tags__interface_tag") == 0);
6309}
6310
963a6417
PH
6311/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6312 to be invisible to users. */
96d887e8 6313
963a6417
PH
6314int
6315ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6316{
963a6417
PH
6317 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6318 return 1;
ffde82bf 6319
73fb9985
JB
6320 /* Check the name of that field. */
6321 {
6322 const char *name = TYPE_FIELD_NAME (type, field_num);
6323
6324 /* Anonymous field names should not be printed.
6325 brobecker/2007-02-20: I don't think this can actually happen
6326 but we don't want to print the value of annonymous fields anyway. */
6327 if (name == NULL)
6328 return 1;
6329
ffde82bf
JB
6330 /* Normally, fields whose name start with an underscore ("_")
6331 are fields that have been internally generated by the compiler,
6332 and thus should not be printed. The "_parent" field is special,
6333 however: This is a field internally generated by the compiler
6334 for tagged types, and it contains the components inherited from
6335 the parent type. This field should not be printed as is, but
6336 should not be ignored either. */
73fb9985
JB
6337 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6338 return 1;
6339 }
6340
ac4a2da4
JG
6341 /* If this is the dispatch table of a tagged type or an interface tag,
6342 then ignore. */
73fb9985 6343 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6344 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6345 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6346 return 1;
6347
6348 /* Not a special field, so it should not be ignored. */
6349 return 0;
963a6417 6350}
96d887e8 6351
963a6417 6352/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6353 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6354
963a6417
PH
6355int
6356ada_is_tagged_type (struct type *type, int refok)
6357{
6358 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6359}
96d887e8 6360
963a6417 6361/* True iff TYPE represents the type of X'Tag */
96d887e8 6362
963a6417
PH
6363int
6364ada_is_tag_type (struct type *type)
6365{
6366 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6367 return 0;
6368 else
96d887e8 6369 {
963a6417 6370 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6371
963a6417
PH
6372 return (name != NULL
6373 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6374 }
96d887e8
PH
6375}
6376
963a6417 6377/* The type of the tag on VAL. */
76a01679 6378
963a6417
PH
6379struct type *
6380ada_tag_type (struct value *val)
96d887e8 6381{
df407dfe 6382 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6383}
96d887e8 6384
b50d69b5
JG
6385/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6386 retired at Ada 05). */
6387
6388static int
6389is_ada95_tag (struct value *tag)
6390{
6391 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6392}
6393
963a6417 6394/* The value of the tag on VAL. */
96d887e8 6395
963a6417
PH
6396struct value *
6397ada_value_tag (struct value *val)
6398{
03ee6b2e 6399 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6400}
6401
963a6417
PH
6402/* The value of the tag on the object of type TYPE whose contents are
6403 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6404 ADDRESS. */
96d887e8 6405
963a6417 6406static struct value *
10a2c479 6407value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6408 const gdb_byte *valaddr,
963a6417 6409 CORE_ADDR address)
96d887e8 6410{
b5385fc0 6411 int tag_byte_offset;
963a6417 6412 struct type *tag_type;
5b4ee69b 6413
963a6417 6414 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6415 NULL, NULL, NULL))
96d887e8 6416 {
fc1a4b47 6417 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6418 ? NULL
6419 : valaddr + tag_byte_offset);
963a6417 6420 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6421
963a6417 6422 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6423 }
963a6417
PH
6424 return NULL;
6425}
96d887e8 6426
963a6417
PH
6427static struct type *
6428type_from_tag (struct value *tag)
6429{
6430 const char *type_name = ada_tag_name (tag);
5b4ee69b 6431
963a6417
PH
6432 if (type_name != NULL)
6433 return ada_find_any_type (ada_encode (type_name));
6434 return NULL;
6435}
96d887e8 6436
b50d69b5
JG
6437/* Given a value OBJ of a tagged type, return a value of this
6438 type at the base address of the object. The base address, as
6439 defined in Ada.Tags, it is the address of the primary tag of
6440 the object, and therefore where the field values of its full
6441 view can be fetched. */
6442
6443struct value *
6444ada_tag_value_at_base_address (struct value *obj)
6445{
6446 volatile struct gdb_exception e;
6447 struct value *val;
6448 LONGEST offset_to_top = 0;
6449 struct type *ptr_type, *obj_type;
6450 struct value *tag;
6451 CORE_ADDR base_address;
6452
6453 obj_type = value_type (obj);
6454
6455 /* It is the responsability of the caller to deref pointers. */
6456
6457 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6458 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6459 return obj;
6460
6461 tag = ada_value_tag (obj);
6462 if (!tag)
6463 return obj;
6464
6465 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6466
6467 if (is_ada95_tag (tag))
6468 return obj;
6469
6470 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6471 ptr_type = lookup_pointer_type (ptr_type);
6472 val = value_cast (ptr_type, tag);
6473 if (!val)
6474 return obj;
6475
6476 /* It is perfectly possible that an exception be raised while
6477 trying to determine the base address, just like for the tag;
6478 see ada_tag_name for more details. We do not print the error
6479 message for the same reason. */
6480
6481 TRY_CATCH (e, RETURN_MASK_ERROR)
6482 {
6483 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6484 }
6485
6486 if (e.reason < 0)
6487 return obj;
6488
6489 /* If offset is null, nothing to do. */
6490
6491 if (offset_to_top == 0)
6492 return obj;
6493
6494 /* -1 is a special case in Ada.Tags; however, what should be done
6495 is not quite clear from the documentation. So do nothing for
6496 now. */
6497
6498 if (offset_to_top == -1)
6499 return obj;
6500
6501 base_address = value_address (obj) - offset_to_top;
6502 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6503
6504 /* Make sure that we have a proper tag at the new address.
6505 Otherwise, offset_to_top is bogus (which can happen when
6506 the object is not initialized yet). */
6507
6508 if (!tag)
6509 return obj;
6510
6511 obj_type = type_from_tag (tag);
6512
6513 if (!obj_type)
6514 return obj;
6515
6516 return value_from_contents_and_address (obj_type, NULL, base_address);
6517}
6518
1b611343
JB
6519/* Return the "ada__tags__type_specific_data" type. */
6520
6521static struct type *
6522ada_get_tsd_type (struct inferior *inf)
963a6417 6523{
1b611343 6524 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6525
1b611343
JB
6526 if (data->tsd_type == 0)
6527 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6528 return data->tsd_type;
6529}
529cad9c 6530
1b611343
JB
6531/* Return the TSD (type-specific data) associated to the given TAG.
6532 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6533
1b611343 6534 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6535
1b611343
JB
6536static struct value *
6537ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6538{
4c4b4cd2 6539 struct value *val;
1b611343 6540 struct type *type;
5b4ee69b 6541
1b611343
JB
6542 /* First option: The TSD is simply stored as a field of our TAG.
6543 Only older versions of GNAT would use this format, but we have
6544 to test it first, because there are no visible markers for
6545 the current approach except the absence of that field. */
529cad9c 6546
1b611343
JB
6547 val = ada_value_struct_elt (tag, "tsd", 1);
6548 if (val)
6549 return val;
e802dbe0 6550
1b611343
JB
6551 /* Try the second representation for the dispatch table (in which
6552 there is no explicit 'tsd' field in the referent of the tag pointer,
6553 and instead the tsd pointer is stored just before the dispatch
6554 table. */
e802dbe0 6555
1b611343
JB
6556 type = ada_get_tsd_type (current_inferior());
6557 if (type == NULL)
6558 return NULL;
6559 type = lookup_pointer_type (lookup_pointer_type (type));
6560 val = value_cast (type, tag);
6561 if (val == NULL)
6562 return NULL;
6563 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6564}
6565
1b611343
JB
6566/* Given the TSD of a tag (type-specific data), return a string
6567 containing the name of the associated type.
6568
6569 The returned value is good until the next call. May return NULL
6570 if we are unable to determine the tag name. */
6571
6572static char *
6573ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6574{
529cad9c
PH
6575 static char name[1024];
6576 char *p;
1b611343 6577 struct value *val;
529cad9c 6578
1b611343 6579 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6580 if (val == NULL)
1b611343 6581 return NULL;
4c4b4cd2
PH
6582 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6583 for (p = name; *p != '\0'; p += 1)
6584 if (isalpha (*p))
6585 *p = tolower (*p);
1b611343 6586 return name;
4c4b4cd2
PH
6587}
6588
6589/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6590 a C string.
6591
6592 Return NULL if the TAG is not an Ada tag, or if we were unable to
6593 determine the name of that tag. The result is good until the next
6594 call. */
4c4b4cd2
PH
6595
6596const char *
6597ada_tag_name (struct value *tag)
6598{
1b611343
JB
6599 volatile struct gdb_exception e;
6600 char *name = NULL;
5b4ee69b 6601
df407dfe 6602 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6603 return NULL;
1b611343
JB
6604
6605 /* It is perfectly possible that an exception be raised while trying
6606 to determine the TAG's name, even under normal circumstances:
6607 The associated variable may be uninitialized or corrupted, for
6608 instance. We do not let any exception propagate past this point.
6609 instead we return NULL.
6610
6611 We also do not print the error message either (which often is very
6612 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6613 the caller print a more meaningful message if necessary. */
6614 TRY_CATCH (e, RETURN_MASK_ERROR)
6615 {
6616 struct value *tsd = ada_get_tsd_from_tag (tag);
6617
6618 if (tsd != NULL)
6619 name = ada_tag_name_from_tsd (tsd);
6620 }
6621
6622 return name;
4c4b4cd2
PH
6623}
6624
6625/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6626
d2e4a39e 6627struct type *
ebf56fd3 6628ada_parent_type (struct type *type)
14f9c5c9
AS
6629{
6630 int i;
6631
61ee279c 6632 type = ada_check_typedef (type);
14f9c5c9
AS
6633
6634 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6635 return NULL;
6636
6637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6638 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6639 {
6640 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6641
6642 /* If the _parent field is a pointer, then dereference it. */
6643 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6644 parent_type = TYPE_TARGET_TYPE (parent_type);
6645 /* If there is a parallel XVS type, get the actual base type. */
6646 parent_type = ada_get_base_type (parent_type);
6647
6648 return ada_check_typedef (parent_type);
6649 }
14f9c5c9
AS
6650
6651 return NULL;
6652}
6653
4c4b4cd2
PH
6654/* True iff field number FIELD_NUM of structure type TYPE contains the
6655 parent-type (inherited) fields of a derived type. Assumes TYPE is
6656 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6657
6658int
ebf56fd3 6659ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6660{
61ee279c 6661 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6662
4c4b4cd2
PH
6663 return (name != NULL
6664 && (strncmp (name, "PARENT", 6) == 0
6665 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6666}
6667
4c4b4cd2 6668/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6669 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6670 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6671 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6672 structures. */
14f9c5c9
AS
6673
6674int
ebf56fd3 6675ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6676{
d2e4a39e 6677 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6678
d2e4a39e 6679 return (name != NULL
4c4b4cd2
PH
6680 && (strncmp (name, "PARENT", 6) == 0
6681 || strcmp (name, "REP") == 0
6682 || strncmp (name, "_parent", 7) == 0
6683 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6684}
6685
4c4b4cd2
PH
6686/* True iff field number FIELD_NUM of structure or union type TYPE
6687 is a variant wrapper. Assumes TYPE is a structure type with at least
6688 FIELD_NUM+1 fields. */
14f9c5c9
AS
6689
6690int
ebf56fd3 6691ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6692{
d2e4a39e 6693 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6694
14f9c5c9 6695 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6696 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6697 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6698 == TYPE_CODE_UNION)));
14f9c5c9
AS
6699}
6700
6701/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6702 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6703 returns the type of the controlling discriminant for the variant.
6704 May return NULL if the type could not be found. */
14f9c5c9 6705
d2e4a39e 6706struct type *
ebf56fd3 6707ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6708{
d2e4a39e 6709 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6710
7c964f07 6711 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6712}
6713
4c4b4cd2 6714/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6715 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6716 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6717
6718int
ebf56fd3 6719ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6720{
d2e4a39e 6721 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6722
14f9c5c9
AS
6723 return (name != NULL && name[0] == 'O');
6724}
6725
6726/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6727 returns the name of the discriminant controlling the variant.
6728 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6729
d2e4a39e 6730char *
ebf56fd3 6731ada_variant_discrim_name (struct type *type0)
14f9c5c9 6732{
d2e4a39e 6733 static char *result = NULL;
14f9c5c9 6734 static size_t result_len = 0;
d2e4a39e
AS
6735 struct type *type;
6736 const char *name;
6737 const char *discrim_end;
6738 const char *discrim_start;
14f9c5c9
AS
6739
6740 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6741 type = TYPE_TARGET_TYPE (type0);
6742 else
6743 type = type0;
6744
6745 name = ada_type_name (type);
6746
6747 if (name == NULL || name[0] == '\000')
6748 return "";
6749
6750 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6751 discrim_end -= 1)
6752 {
4c4b4cd2
PH
6753 if (strncmp (discrim_end, "___XVN", 6) == 0)
6754 break;
14f9c5c9
AS
6755 }
6756 if (discrim_end == name)
6757 return "";
6758
d2e4a39e 6759 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6760 discrim_start -= 1)
6761 {
d2e4a39e 6762 if (discrim_start == name + 1)
4c4b4cd2 6763 return "";
76a01679 6764 if ((discrim_start > name + 3
4c4b4cd2
PH
6765 && strncmp (discrim_start - 3, "___", 3) == 0)
6766 || discrim_start[-1] == '.')
6767 break;
14f9c5c9
AS
6768 }
6769
6770 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6771 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6772 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6773 return result;
6774}
6775
4c4b4cd2
PH
6776/* Scan STR for a subtype-encoded number, beginning at position K.
6777 Put the position of the character just past the number scanned in
6778 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6779 Return 1 if there was a valid number at the given position, and 0
6780 otherwise. A "subtype-encoded" number consists of the absolute value
6781 in decimal, followed by the letter 'm' to indicate a negative number.
6782 Assumes 0m does not occur. */
14f9c5c9
AS
6783
6784int
d2e4a39e 6785ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6786{
6787 ULONGEST RU;
6788
d2e4a39e 6789 if (!isdigit (str[k]))
14f9c5c9
AS
6790 return 0;
6791
4c4b4cd2 6792 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6793 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6794 LONGEST. */
14f9c5c9
AS
6795 RU = 0;
6796 while (isdigit (str[k]))
6797 {
d2e4a39e 6798 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6799 k += 1;
6800 }
6801
d2e4a39e 6802 if (str[k] == 'm')
14f9c5c9
AS
6803 {
6804 if (R != NULL)
4c4b4cd2 6805 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6806 k += 1;
6807 }
6808 else if (R != NULL)
6809 *R = (LONGEST) RU;
6810
4c4b4cd2 6811 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6812 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6813 number representable as a LONGEST (although either would probably work
6814 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6815 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6816
6817 if (new_k != NULL)
6818 *new_k = k;
6819 return 1;
6820}
6821
4c4b4cd2
PH
6822/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6823 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6824 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6825
d2e4a39e 6826int
ebf56fd3 6827ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6828{
d2e4a39e 6829 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6830 int p;
6831
6832 p = 0;
6833 while (1)
6834 {
d2e4a39e 6835 switch (name[p])
4c4b4cd2
PH
6836 {
6837 case '\0':
6838 return 0;
6839 case 'S':
6840 {
6841 LONGEST W;
5b4ee69b 6842
4c4b4cd2
PH
6843 if (!ada_scan_number (name, p + 1, &W, &p))
6844 return 0;
6845 if (val == W)
6846 return 1;
6847 break;
6848 }
6849 case 'R':
6850 {
6851 LONGEST L, U;
5b4ee69b 6852
4c4b4cd2
PH
6853 if (!ada_scan_number (name, p + 1, &L, &p)
6854 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6855 return 0;
6856 if (val >= L && val <= U)
6857 return 1;
6858 break;
6859 }
6860 case 'O':
6861 return 1;
6862 default:
6863 return 0;
6864 }
6865 }
6866}
6867
0963b4bd 6868/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6869
6870/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6871 ARG_TYPE, extract and return the value of one of its (non-static)
6872 fields. FIELDNO says which field. Differs from value_primitive_field
6873 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6874
4c4b4cd2 6875static struct value *
d2e4a39e 6876ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6877 struct type *arg_type)
14f9c5c9 6878{
14f9c5c9
AS
6879 struct type *type;
6880
61ee279c 6881 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6882 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6883
4c4b4cd2 6884 /* Handle packed fields. */
14f9c5c9
AS
6885
6886 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6887 {
6888 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6889 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6890
0fd88904 6891 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6892 offset + bit_pos / 8,
6893 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6894 }
6895 else
6896 return value_primitive_field (arg1, offset, fieldno, arg_type);
6897}
6898
52ce6436
PH
6899/* Find field with name NAME in object of type TYPE. If found,
6900 set the following for each argument that is non-null:
6901 - *FIELD_TYPE_P to the field's type;
6902 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6903 an object of that type;
6904 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6905 - *BIT_SIZE_P to its size in bits if the field is packed, and
6906 0 otherwise;
6907 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6908 fields up to but not including the desired field, or by the total
6909 number of fields if not found. A NULL value of NAME never
6910 matches; the function just counts visible fields in this case.
6911
0963b4bd 6912 Returns 1 if found, 0 otherwise. */
52ce6436 6913
4c4b4cd2 6914static int
0d5cff50 6915find_struct_field (const char *name, struct type *type, int offset,
76a01679 6916 struct type **field_type_p,
52ce6436
PH
6917 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6918 int *index_p)
4c4b4cd2
PH
6919{
6920 int i;
6921
61ee279c 6922 type = ada_check_typedef (type);
76a01679 6923
52ce6436
PH
6924 if (field_type_p != NULL)
6925 *field_type_p = NULL;
6926 if (byte_offset_p != NULL)
d5d6fca5 6927 *byte_offset_p = 0;
52ce6436
PH
6928 if (bit_offset_p != NULL)
6929 *bit_offset_p = 0;
6930 if (bit_size_p != NULL)
6931 *bit_size_p = 0;
6932
6933 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6934 {
6935 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6936 int fld_offset = offset + bit_pos / 8;
0d5cff50 6937 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6938
4c4b4cd2
PH
6939 if (t_field_name == NULL)
6940 continue;
6941
52ce6436 6942 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6943 {
6944 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6945
52ce6436
PH
6946 if (field_type_p != NULL)
6947 *field_type_p = TYPE_FIELD_TYPE (type, i);
6948 if (byte_offset_p != NULL)
6949 *byte_offset_p = fld_offset;
6950 if (bit_offset_p != NULL)
6951 *bit_offset_p = bit_pos % 8;
6952 if (bit_size_p != NULL)
6953 *bit_size_p = bit_size;
76a01679
JB
6954 return 1;
6955 }
4c4b4cd2
PH
6956 else if (ada_is_wrapper_field (type, i))
6957 {
52ce6436
PH
6958 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6959 field_type_p, byte_offset_p, bit_offset_p,
6960 bit_size_p, index_p))
76a01679
JB
6961 return 1;
6962 }
4c4b4cd2
PH
6963 else if (ada_is_variant_part (type, i))
6964 {
52ce6436
PH
6965 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6966 fixed type?? */
4c4b4cd2 6967 int j;
52ce6436
PH
6968 struct type *field_type
6969 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6970
52ce6436 6971 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6972 {
76a01679
JB
6973 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6974 fld_offset
6975 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6976 field_type_p, byte_offset_p,
52ce6436 6977 bit_offset_p, bit_size_p, index_p))
76a01679 6978 return 1;
4c4b4cd2
PH
6979 }
6980 }
52ce6436
PH
6981 else if (index_p != NULL)
6982 *index_p += 1;
4c4b4cd2
PH
6983 }
6984 return 0;
6985}
6986
0963b4bd 6987/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6988
52ce6436
PH
6989static int
6990num_visible_fields (struct type *type)
6991{
6992 int n;
5b4ee69b 6993
52ce6436
PH
6994 n = 0;
6995 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6996 return n;
6997}
14f9c5c9 6998
4c4b4cd2 6999/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7000 and search in it assuming it has (class) type TYPE.
7001 If found, return value, else return NULL.
7002
4c4b4cd2 7003 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7004
4c4b4cd2 7005static struct value *
d2e4a39e 7006ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7007 struct type *type)
14f9c5c9
AS
7008{
7009 int i;
14f9c5c9 7010
5b4ee69b 7011 type = ada_check_typedef (type);
52ce6436 7012 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7013 {
0d5cff50 7014 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7015
7016 if (t_field_name == NULL)
4c4b4cd2 7017 continue;
14f9c5c9
AS
7018
7019 else if (field_name_match (t_field_name, name))
4c4b4cd2 7020 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7021
7022 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7023 {
0963b4bd 7024 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7025 ada_search_struct_field (name, arg,
7026 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7027 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7028
4c4b4cd2
PH
7029 if (v != NULL)
7030 return v;
7031 }
14f9c5c9
AS
7032
7033 else if (ada_is_variant_part (type, i))
4c4b4cd2 7034 {
0963b4bd 7035 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7036 int j;
5b4ee69b
MS
7037 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7038 i));
4c4b4cd2
PH
7039 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7040
52ce6436 7041 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7042 {
0963b4bd
MS
7043 struct value *v = ada_search_struct_field /* Force line
7044 break. */
06d5cf63
JB
7045 (name, arg,
7046 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7047 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7048
4c4b4cd2
PH
7049 if (v != NULL)
7050 return v;
7051 }
7052 }
14f9c5c9
AS
7053 }
7054 return NULL;
7055}
d2e4a39e 7056
52ce6436
PH
7057static struct value *ada_index_struct_field_1 (int *, struct value *,
7058 int, struct type *);
7059
7060
7061/* Return field #INDEX in ARG, where the index is that returned by
7062 * find_struct_field through its INDEX_P argument. Adjust the address
7063 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7064 * If found, return value, else return NULL. */
52ce6436
PH
7065
7066static struct value *
7067ada_index_struct_field (int index, struct value *arg, int offset,
7068 struct type *type)
7069{
7070 return ada_index_struct_field_1 (&index, arg, offset, type);
7071}
7072
7073
7074/* Auxiliary function for ada_index_struct_field. Like
7075 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7076 * *INDEX_P. */
52ce6436
PH
7077
7078static struct value *
7079ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7080 struct type *type)
7081{
7082 int i;
7083 type = ada_check_typedef (type);
7084
7085 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7086 {
7087 if (TYPE_FIELD_NAME (type, i) == NULL)
7088 continue;
7089 else if (ada_is_wrapper_field (type, i))
7090 {
0963b4bd 7091 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7092 ada_index_struct_field_1 (index_p, arg,
7093 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7094 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7095
52ce6436
PH
7096 if (v != NULL)
7097 return v;
7098 }
7099
7100 else if (ada_is_variant_part (type, i))
7101 {
7102 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7103 find_struct_field. */
52ce6436
PH
7104 error (_("Cannot assign this kind of variant record"));
7105 }
7106 else if (*index_p == 0)
7107 return ada_value_primitive_field (arg, offset, i, type);
7108 else
7109 *index_p -= 1;
7110 }
7111 return NULL;
7112}
7113
4c4b4cd2
PH
7114/* Given ARG, a value of type (pointer or reference to a)*
7115 structure/union, extract the component named NAME from the ultimate
7116 target structure/union and return it as a value with its
f5938064 7117 appropriate type.
14f9c5c9 7118
4c4b4cd2
PH
7119 The routine searches for NAME among all members of the structure itself
7120 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7121 (e.g., '_parent').
7122
03ee6b2e
PH
7123 If NO_ERR, then simply return NULL in case of error, rather than
7124 calling error. */
14f9c5c9 7125
d2e4a39e 7126struct value *
03ee6b2e 7127ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7128{
4c4b4cd2 7129 struct type *t, *t1;
d2e4a39e 7130 struct value *v;
14f9c5c9 7131
4c4b4cd2 7132 v = NULL;
df407dfe 7133 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7134 if (TYPE_CODE (t) == TYPE_CODE_REF)
7135 {
7136 t1 = TYPE_TARGET_TYPE (t);
7137 if (t1 == NULL)
03ee6b2e 7138 goto BadValue;
61ee279c 7139 t1 = ada_check_typedef (t1);
4c4b4cd2 7140 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7141 {
994b9211 7142 arg = coerce_ref (arg);
76a01679
JB
7143 t = t1;
7144 }
4c4b4cd2 7145 }
14f9c5c9 7146
4c4b4cd2
PH
7147 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7148 {
7149 t1 = TYPE_TARGET_TYPE (t);
7150 if (t1 == NULL)
03ee6b2e 7151 goto BadValue;
61ee279c 7152 t1 = ada_check_typedef (t1);
4c4b4cd2 7153 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7154 {
7155 arg = value_ind (arg);
7156 t = t1;
7157 }
4c4b4cd2 7158 else
76a01679 7159 break;
4c4b4cd2 7160 }
14f9c5c9 7161
4c4b4cd2 7162 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7163 goto BadValue;
14f9c5c9 7164
4c4b4cd2
PH
7165 if (t1 == t)
7166 v = ada_search_struct_field (name, arg, 0, t);
7167 else
7168 {
7169 int bit_offset, bit_size, byte_offset;
7170 struct type *field_type;
7171 CORE_ADDR address;
7172
76a01679 7173 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7174 address = value_address (ada_value_ind (arg));
4c4b4cd2 7175 else
b50d69b5 7176 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7177
1ed6ede0 7178 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7179 if (find_struct_field (name, t1, 0,
7180 &field_type, &byte_offset, &bit_offset,
52ce6436 7181 &bit_size, NULL))
76a01679
JB
7182 {
7183 if (bit_size != 0)
7184 {
714e53ab
PH
7185 if (TYPE_CODE (t) == TYPE_CODE_REF)
7186 arg = ada_coerce_ref (arg);
7187 else
7188 arg = ada_value_ind (arg);
76a01679
JB
7189 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7190 bit_offset, bit_size,
7191 field_type);
7192 }
7193 else
f5938064 7194 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7195 }
7196 }
7197
03ee6b2e
PH
7198 if (v != NULL || no_err)
7199 return v;
7200 else
323e0a4a 7201 error (_("There is no member named %s."), name);
14f9c5c9 7202
03ee6b2e
PH
7203 BadValue:
7204 if (no_err)
7205 return NULL;
7206 else
0963b4bd
MS
7207 error (_("Attempt to extract a component of "
7208 "a value that is not a record."));
14f9c5c9
AS
7209}
7210
7211/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7212 If DISPP is non-null, add its byte displacement from the beginning of a
7213 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7214 work for packed fields).
7215
7216 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7217 followed by "___".
14f9c5c9 7218
0963b4bd 7219 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7220 be a (pointer or reference)+ to a struct or union, and the
7221 ultimate target type will be searched.
14f9c5c9
AS
7222
7223 Looks recursively into variant clauses and parent types.
7224
4c4b4cd2
PH
7225 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7226 TYPE is not a type of the right kind. */
14f9c5c9 7227
4c4b4cd2 7228static struct type *
76a01679
JB
7229ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7230 int noerr, int *dispp)
14f9c5c9
AS
7231{
7232 int i;
7233
7234 if (name == NULL)
7235 goto BadName;
7236
76a01679 7237 if (refok && type != NULL)
4c4b4cd2
PH
7238 while (1)
7239 {
61ee279c 7240 type = ada_check_typedef (type);
76a01679
JB
7241 if (TYPE_CODE (type) != TYPE_CODE_PTR
7242 && TYPE_CODE (type) != TYPE_CODE_REF)
7243 break;
7244 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7245 }
14f9c5c9 7246
76a01679 7247 if (type == NULL
1265e4aa
JB
7248 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7249 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7250 {
4c4b4cd2 7251 if (noerr)
76a01679 7252 return NULL;
4c4b4cd2 7253 else
76a01679
JB
7254 {
7255 target_terminal_ours ();
7256 gdb_flush (gdb_stdout);
323e0a4a
AC
7257 if (type == NULL)
7258 error (_("Type (null) is not a structure or union type"));
7259 else
7260 {
7261 /* XXX: type_sprint */
7262 fprintf_unfiltered (gdb_stderr, _("Type "));
7263 type_print (type, "", gdb_stderr, -1);
7264 error (_(" is not a structure or union type"));
7265 }
76a01679 7266 }
14f9c5c9
AS
7267 }
7268
7269 type = to_static_fixed_type (type);
7270
7271 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7272 {
0d5cff50 7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7274 struct type *t;
7275 int disp;
d2e4a39e 7276
14f9c5c9 7277 if (t_field_name == NULL)
4c4b4cd2 7278 continue;
14f9c5c9
AS
7279
7280 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7281 {
7282 if (dispp != NULL)
7283 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7284 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7285 }
14f9c5c9
AS
7286
7287 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7288 {
7289 disp = 0;
7290 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7291 0, 1, &disp);
7292 if (t != NULL)
7293 {
7294 if (dispp != NULL)
7295 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7296 return t;
7297 }
7298 }
14f9c5c9
AS
7299
7300 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7301 {
7302 int j;
5b4ee69b
MS
7303 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7304 i));
4c4b4cd2
PH
7305
7306 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7307 {
b1f33ddd
JB
7308 /* FIXME pnh 2008/01/26: We check for a field that is
7309 NOT wrapped in a struct, since the compiler sometimes
7310 generates these for unchecked variant types. Revisit
0963b4bd 7311 if the compiler changes this practice. */
0d5cff50 7312 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7313 disp = 0;
b1f33ddd
JB
7314 if (v_field_name != NULL
7315 && field_name_match (v_field_name, name))
7316 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7317 else
0963b4bd
MS
7318 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7319 j),
b1f33ddd
JB
7320 name, 0, 1, &disp);
7321
4c4b4cd2
PH
7322 if (t != NULL)
7323 {
7324 if (dispp != NULL)
7325 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7326 return t;
7327 }
7328 }
7329 }
14f9c5c9
AS
7330
7331 }
7332
7333BadName:
d2e4a39e 7334 if (!noerr)
14f9c5c9
AS
7335 {
7336 target_terminal_ours ();
7337 gdb_flush (gdb_stdout);
323e0a4a
AC
7338 if (name == NULL)
7339 {
7340 /* XXX: type_sprint */
7341 fprintf_unfiltered (gdb_stderr, _("Type "));
7342 type_print (type, "", gdb_stderr, -1);
7343 error (_(" has no component named <null>"));
7344 }
7345 else
7346 {
7347 /* XXX: type_sprint */
7348 fprintf_unfiltered (gdb_stderr, _("Type "));
7349 type_print (type, "", gdb_stderr, -1);
7350 error (_(" has no component named %s"), name);
7351 }
14f9c5c9
AS
7352 }
7353
7354 return NULL;
7355}
7356
b1f33ddd
JB
7357/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7358 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7359 represents an unchecked union (that is, the variant part of a
0963b4bd 7360 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7361
7362static int
7363is_unchecked_variant (struct type *var_type, struct type *outer_type)
7364{
7365 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7366
b1f33ddd
JB
7367 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7368 == NULL);
7369}
7370
7371
14f9c5c9
AS
7372/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7373 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7374 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7375 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7376
d2e4a39e 7377int
ebf56fd3 7378ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7379 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7380{
7381 int others_clause;
7382 int i;
d2e4a39e 7383 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7384 struct value *outer;
7385 struct value *discrim;
14f9c5c9
AS
7386 LONGEST discrim_val;
7387
012370f6
TT
7388 /* Using plain value_from_contents_and_address here causes problems
7389 because we will end up trying to resolve a type that is currently
7390 being constructed. */
7391 outer = value_from_contents_and_address_unresolved (outer_type,
7392 outer_valaddr, 0);
0c281816
JB
7393 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7394 if (discrim == NULL)
14f9c5c9 7395 return -1;
0c281816 7396 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7397
7398 others_clause = -1;
7399 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7400 {
7401 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7402 others_clause = i;
14f9c5c9 7403 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7404 return i;
14f9c5c9
AS
7405 }
7406
7407 return others_clause;
7408}
d2e4a39e 7409\f
14f9c5c9
AS
7410
7411
4c4b4cd2 7412 /* Dynamic-Sized Records */
14f9c5c9
AS
7413
7414/* Strategy: The type ostensibly attached to a value with dynamic size
7415 (i.e., a size that is not statically recorded in the debugging
7416 data) does not accurately reflect the size or layout of the value.
7417 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7418 conventional types that are constructed on the fly. */
14f9c5c9
AS
7419
7420/* There is a subtle and tricky problem here. In general, we cannot
7421 determine the size of dynamic records without its data. However,
7422 the 'struct value' data structure, which GDB uses to represent
7423 quantities in the inferior process (the target), requires the size
7424 of the type at the time of its allocation in order to reserve space
7425 for GDB's internal copy of the data. That's why the
7426 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7427 rather than struct value*s.
14f9c5c9
AS
7428
7429 However, GDB's internal history variables ($1, $2, etc.) are
7430 struct value*s containing internal copies of the data that are not, in
7431 general, the same as the data at their corresponding addresses in
7432 the target. Fortunately, the types we give to these values are all
7433 conventional, fixed-size types (as per the strategy described
7434 above), so that we don't usually have to perform the
7435 'to_fixed_xxx_type' conversions to look at their values.
7436 Unfortunately, there is one exception: if one of the internal
7437 history variables is an array whose elements are unconstrained
7438 records, then we will need to create distinct fixed types for each
7439 element selected. */
7440
7441/* The upshot of all of this is that many routines take a (type, host
7442 address, target address) triple as arguments to represent a value.
7443 The host address, if non-null, is supposed to contain an internal
7444 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7445 target at the target address. */
14f9c5c9
AS
7446
7447/* Assuming that VAL0 represents a pointer value, the result of
7448 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7449 dynamic-sized types. */
14f9c5c9 7450
d2e4a39e
AS
7451struct value *
7452ada_value_ind (struct value *val0)
14f9c5c9 7453{
c48db5ca 7454 struct value *val = value_ind (val0);
5b4ee69b 7455
b50d69b5
JG
7456 if (ada_is_tagged_type (value_type (val), 0))
7457 val = ada_tag_value_at_base_address (val);
7458
4c4b4cd2 7459 return ada_to_fixed_value (val);
14f9c5c9
AS
7460}
7461
7462/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7463 qualifiers on VAL0. */
7464
d2e4a39e
AS
7465static struct value *
7466ada_coerce_ref (struct value *val0)
7467{
df407dfe 7468 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7469 {
7470 struct value *val = val0;
5b4ee69b 7471
994b9211 7472 val = coerce_ref (val);
b50d69b5
JG
7473
7474 if (ada_is_tagged_type (value_type (val), 0))
7475 val = ada_tag_value_at_base_address (val);
7476
4c4b4cd2 7477 return ada_to_fixed_value (val);
d2e4a39e
AS
7478 }
7479 else
14f9c5c9
AS
7480 return val0;
7481}
7482
7483/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7484 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7485
7486static unsigned int
ebf56fd3 7487align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7488{
7489 return (off + alignment - 1) & ~(alignment - 1);
7490}
7491
4c4b4cd2 7492/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7493
7494static unsigned int
ebf56fd3 7495field_alignment (struct type *type, int f)
14f9c5c9 7496{
d2e4a39e 7497 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7498 int len;
14f9c5c9
AS
7499 int align_offset;
7500
64a1bf19
JB
7501 /* The field name should never be null, unless the debugging information
7502 is somehow malformed. In this case, we assume the field does not
7503 require any alignment. */
7504 if (name == NULL)
7505 return 1;
7506
7507 len = strlen (name);
7508
4c4b4cd2
PH
7509 if (!isdigit (name[len - 1]))
7510 return 1;
14f9c5c9 7511
d2e4a39e 7512 if (isdigit (name[len - 2]))
14f9c5c9
AS
7513 align_offset = len - 2;
7514 else
7515 align_offset = len - 1;
7516
4c4b4cd2 7517 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7518 return TARGET_CHAR_BIT;
7519
4c4b4cd2
PH
7520 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7521}
7522
852dff6c 7523/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7524
852dff6c
JB
7525static struct symbol *
7526ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7527{
7528 struct symbol *sym;
7529
7530 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
b50c8614
KS
7531 if (sym != NULL
7532 && (SYMBOL_DOMAIN (sym) != VAR_DOMAIN
7533 || SYMBOL_CLASS (sym) == LOC_TYPEDEF))
4c4b4cd2
PH
7534 return sym;
7535
b50c8614 7536 return NULL;
14f9c5c9
AS
7537}
7538
dddfab26
UW
7539/* Find a type named NAME. Ignores ambiguity. This routine will look
7540 solely for types defined by debug info, it will not search the GDB
7541 primitive types. */
4c4b4cd2 7542
852dff6c 7543static struct type *
ebf56fd3 7544ada_find_any_type (const char *name)
14f9c5c9 7545{
852dff6c 7546 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7547
14f9c5c9 7548 if (sym != NULL)
dddfab26 7549 return SYMBOL_TYPE (sym);
14f9c5c9 7550
dddfab26 7551 return NULL;
14f9c5c9
AS
7552}
7553
739593e0
JB
7554/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7555 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7556 symbol, in which case it is returned. Otherwise, this looks for
7557 symbols whose name is that of NAME_SYM suffixed with "___XR".
7558 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7559
7560struct symbol *
270140bd 7561ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7562{
739593e0 7563 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7564 struct symbol *sym;
7565
739593e0
JB
7566 if (strstr (name, "___XR") != NULL)
7567 return name_sym;
7568
aeb5907d
JB
7569 sym = find_old_style_renaming_symbol (name, block);
7570
7571 if (sym != NULL)
7572 return sym;
7573
0963b4bd 7574 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7575 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7576 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7577 return sym;
7578 else
7579 return NULL;
7580}
7581
7582static struct symbol *
270140bd 7583find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7584{
7f0df278 7585 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7586 char *rename;
7587
7588 if (function_sym != NULL)
7589 {
7590 /* If the symbol is defined inside a function, NAME is not fully
7591 qualified. This means we need to prepend the function name
7592 as well as adding the ``___XR'' suffix to build the name of
7593 the associated renaming symbol. */
0d5cff50 7594 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7595 /* Function names sometimes contain suffixes used
7596 for instance to qualify nested subprograms. When building
7597 the XR type name, we need to make sure that this suffix is
7598 not included. So do not include any suffix in the function
7599 name length below. */
69fadcdf 7600 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7601 const int rename_len = function_name_len + 2 /* "__" */
7602 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7603
529cad9c 7604 /* Strip the suffix if necessary. */
69fadcdf
JB
7605 ada_remove_trailing_digits (function_name, &function_name_len);
7606 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7607 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7608
4c4b4cd2
PH
7609 /* Library-level functions are a special case, as GNAT adds
7610 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7611 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7612 have this prefix, so we need to skip this prefix if present. */
7613 if (function_name_len > 5 /* "_ada_" */
7614 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7615 {
7616 function_name += 5;
7617 function_name_len -= 5;
7618 }
4c4b4cd2
PH
7619
7620 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7621 strncpy (rename, function_name, function_name_len);
7622 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7623 "__%s___XR", name);
4c4b4cd2
PH
7624 }
7625 else
7626 {
7627 const int rename_len = strlen (name) + 6;
5b4ee69b 7628
4c4b4cd2 7629 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7630 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7631 }
7632
852dff6c 7633 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7634}
7635
14f9c5c9 7636/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7637 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7638 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7639 otherwise return 0. */
7640
14f9c5c9 7641int
d2e4a39e 7642ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7643{
7644 if (type1 == NULL)
7645 return 1;
7646 else if (type0 == NULL)
7647 return 0;
7648 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7649 return 1;
7650 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7651 return 0;
4c4b4cd2
PH
7652 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7653 return 1;
ad82864c 7654 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7655 return 1;
4c4b4cd2
PH
7656 else if (ada_is_array_descriptor_type (type0)
7657 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7658 return 1;
aeb5907d
JB
7659 else
7660 {
7661 const char *type0_name = type_name_no_tag (type0);
7662 const char *type1_name = type_name_no_tag (type1);
7663
7664 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7665 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7666 return 1;
7667 }
14f9c5c9
AS
7668 return 0;
7669}
7670
7671/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7672 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7673
0d5cff50 7674const char *
d2e4a39e 7675ada_type_name (struct type *type)
14f9c5c9 7676{
d2e4a39e 7677 if (type == NULL)
14f9c5c9
AS
7678 return NULL;
7679 else if (TYPE_NAME (type) != NULL)
7680 return TYPE_NAME (type);
7681 else
7682 return TYPE_TAG_NAME (type);
7683}
7684
b4ba55a1
JB
7685/* Search the list of "descriptive" types associated to TYPE for a type
7686 whose name is NAME. */
7687
7688static struct type *
7689find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7690{
7691 struct type *result;
7692
c6044dd1
JB
7693 if (ada_ignore_descriptive_types_p)
7694 return NULL;
7695
b4ba55a1
JB
7696 /* If there no descriptive-type info, then there is no parallel type
7697 to be found. */
7698 if (!HAVE_GNAT_AUX_INFO (type))
7699 return NULL;
7700
7701 result = TYPE_DESCRIPTIVE_TYPE (type);
7702 while (result != NULL)
7703 {
0d5cff50 7704 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7705
7706 if (result_name == NULL)
7707 {
7708 warning (_("unexpected null name on descriptive type"));
7709 return NULL;
7710 }
7711
7712 /* If the names match, stop. */
7713 if (strcmp (result_name, name) == 0)
7714 break;
7715
7716 /* Otherwise, look at the next item on the list, if any. */
7717 if (HAVE_GNAT_AUX_INFO (result))
7718 result = TYPE_DESCRIPTIVE_TYPE (result);
7719 else
7720 result = NULL;
7721 }
7722
7723 /* If we didn't find a match, see whether this is a packed array. With
7724 older compilers, the descriptive type information is either absent or
7725 irrelevant when it comes to packed arrays so the above lookup fails.
7726 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7727 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7728 return ada_find_any_type (name);
7729
7730 return result;
7731}
7732
7733/* Find a parallel type to TYPE with the specified NAME, using the
7734 descriptive type taken from the debugging information, if available,
7735 and otherwise using the (slower) name-based method. */
7736
7737static struct type *
7738ada_find_parallel_type_with_name (struct type *type, const char *name)
7739{
7740 struct type *result = NULL;
7741
7742 if (HAVE_GNAT_AUX_INFO (type))
7743 result = find_parallel_type_by_descriptive_type (type, name);
7744 else
7745 result = ada_find_any_type (name);
7746
7747 return result;
7748}
7749
7750/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7751 SUFFIX to the name of TYPE. */
14f9c5c9 7752
d2e4a39e 7753struct type *
ebf56fd3 7754ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7755{
0d5cff50
DE
7756 char *name;
7757 const char *typename = ada_type_name (type);
14f9c5c9 7758 int len;
d2e4a39e 7759
14f9c5c9
AS
7760 if (typename == NULL)
7761 return NULL;
7762
7763 len = strlen (typename);
7764
b4ba55a1 7765 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7766
7767 strcpy (name, typename);
7768 strcpy (name + len, suffix);
7769
b4ba55a1 7770 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7771}
7772
14f9c5c9 7773/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7774 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7775
d2e4a39e
AS
7776static struct type *
7777dynamic_template_type (struct type *type)
14f9c5c9 7778{
61ee279c 7779 type = ada_check_typedef (type);
14f9c5c9
AS
7780
7781 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7782 || ada_type_name (type) == NULL)
14f9c5c9 7783 return NULL;
d2e4a39e 7784 else
14f9c5c9
AS
7785 {
7786 int len = strlen (ada_type_name (type));
5b4ee69b 7787
4c4b4cd2
PH
7788 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7789 return type;
14f9c5c9 7790 else
4c4b4cd2 7791 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7792 }
7793}
7794
7795/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7796 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7797
d2e4a39e
AS
7798static int
7799is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7800{
7801 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7802
d2e4a39e 7803 return name != NULL
14f9c5c9
AS
7804 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7805 && strstr (name, "___XVL") != NULL;
7806}
7807
4c4b4cd2
PH
7808/* The index of the variant field of TYPE, or -1 if TYPE does not
7809 represent a variant record type. */
14f9c5c9 7810
d2e4a39e 7811static int
4c4b4cd2 7812variant_field_index (struct type *type)
14f9c5c9
AS
7813{
7814 int f;
7815
4c4b4cd2
PH
7816 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7817 return -1;
7818
7819 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7820 {
7821 if (ada_is_variant_part (type, f))
7822 return f;
7823 }
7824 return -1;
14f9c5c9
AS
7825}
7826
4c4b4cd2
PH
7827/* A record type with no fields. */
7828
d2e4a39e 7829static struct type *
e9bb382b 7830empty_record (struct type *template)
14f9c5c9 7831{
e9bb382b 7832 struct type *type = alloc_type_copy (template);
5b4ee69b 7833
14f9c5c9
AS
7834 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7835 TYPE_NFIELDS (type) = 0;
7836 TYPE_FIELDS (type) = NULL;
b1f33ddd 7837 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7838 TYPE_NAME (type) = "<empty>";
7839 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7840 TYPE_LENGTH (type) = 0;
7841 return type;
7842}
7843
7844/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7845 the value of type TYPE at VALADDR or ADDRESS (see comments at
7846 the beginning of this section) VAL according to GNAT conventions.
7847 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7848 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7849 an outer-level type (i.e., as opposed to a branch of a variant.) A
7850 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7851 of the variant.
14f9c5c9 7852
4c4b4cd2
PH
7853 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7854 length are not statically known are discarded. As a consequence,
7855 VALADDR, ADDRESS and DVAL0 are ignored.
7856
7857 NOTE: Limitations: For now, we assume that dynamic fields and
7858 variants occupy whole numbers of bytes. However, they need not be
7859 byte-aligned. */
7860
7861struct type *
10a2c479 7862ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7863 const gdb_byte *valaddr,
4c4b4cd2
PH
7864 CORE_ADDR address, struct value *dval0,
7865 int keep_dynamic_fields)
14f9c5c9 7866{
d2e4a39e
AS
7867 struct value *mark = value_mark ();
7868 struct value *dval;
7869 struct type *rtype;
14f9c5c9 7870 int nfields, bit_len;
4c4b4cd2 7871 int variant_field;
14f9c5c9 7872 long off;
d94e4f4f 7873 int fld_bit_len;
14f9c5c9
AS
7874 int f;
7875
4c4b4cd2
PH
7876 /* Compute the number of fields in this record type that are going
7877 to be processed: unless keep_dynamic_fields, this includes only
7878 fields whose position and length are static will be processed. */
7879 if (keep_dynamic_fields)
7880 nfields = TYPE_NFIELDS (type);
7881 else
7882 {
7883 nfields = 0;
76a01679 7884 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7885 && !ada_is_variant_part (type, nfields)
7886 && !is_dynamic_field (type, nfields))
7887 nfields++;
7888 }
7889
e9bb382b 7890 rtype = alloc_type_copy (type);
14f9c5c9
AS
7891 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7892 INIT_CPLUS_SPECIFIC (rtype);
7893 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7894 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7895 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7896 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7897 TYPE_NAME (rtype) = ada_type_name (type);
7898 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7899 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7900
d2e4a39e
AS
7901 off = 0;
7902 bit_len = 0;
4c4b4cd2
PH
7903 variant_field = -1;
7904
14f9c5c9
AS
7905 for (f = 0; f < nfields; f += 1)
7906 {
6c038f32
PH
7907 off = align_value (off, field_alignment (type, f))
7908 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7909 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7910 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7911
d2e4a39e 7912 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7913 {
7914 variant_field = f;
d94e4f4f 7915 fld_bit_len = 0;
4c4b4cd2 7916 }
14f9c5c9 7917 else if (is_dynamic_field (type, f))
4c4b4cd2 7918 {
284614f0
JB
7919 const gdb_byte *field_valaddr = valaddr;
7920 CORE_ADDR field_address = address;
7921 struct type *field_type =
7922 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7923
4c4b4cd2 7924 if (dval0 == NULL)
b5304971
JG
7925 {
7926 /* rtype's length is computed based on the run-time
7927 value of discriminants. If the discriminants are not
7928 initialized, the type size may be completely bogus and
0963b4bd 7929 GDB may fail to allocate a value for it. So check the
b5304971
JG
7930 size first before creating the value. */
7931 check_size (rtype);
012370f6
TT
7932 /* Using plain value_from_contents_and_address here
7933 causes problems because we will end up trying to
7934 resolve a type that is currently being
7935 constructed. */
7936 dval = value_from_contents_and_address_unresolved (rtype,
7937 valaddr,
7938 address);
9f1f738a 7939 rtype = value_type (dval);
b5304971 7940 }
4c4b4cd2
PH
7941 else
7942 dval = dval0;
7943
284614f0
JB
7944 /* If the type referenced by this field is an aligner type, we need
7945 to unwrap that aligner type, because its size might not be set.
7946 Keeping the aligner type would cause us to compute the wrong
7947 size for this field, impacting the offset of the all the fields
7948 that follow this one. */
7949 if (ada_is_aligner_type (field_type))
7950 {
7951 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7952
7953 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7954 field_address = cond_offset_target (field_address, field_offset);
7955 field_type = ada_aligned_type (field_type);
7956 }
7957
7958 field_valaddr = cond_offset_host (field_valaddr,
7959 off / TARGET_CHAR_BIT);
7960 field_address = cond_offset_target (field_address,
7961 off / TARGET_CHAR_BIT);
7962
7963 /* Get the fixed type of the field. Note that, in this case,
7964 we do not want to get the real type out of the tag: if
7965 the current field is the parent part of a tagged record,
7966 we will get the tag of the object. Clearly wrong: the real
7967 type of the parent is not the real type of the child. We
7968 would end up in an infinite loop. */
7969 field_type = ada_get_base_type (field_type);
7970 field_type = ada_to_fixed_type (field_type, field_valaddr,
7971 field_address, dval, 0);
27f2a97b
JB
7972 /* If the field size is already larger than the maximum
7973 object size, then the record itself will necessarily
7974 be larger than the maximum object size. We need to make
7975 this check now, because the size might be so ridiculously
7976 large (due to an uninitialized variable in the inferior)
7977 that it would cause an overflow when adding it to the
7978 record size. */
7979 check_size (field_type);
284614f0
JB
7980
7981 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7982 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7983 /* The multiplication can potentially overflow. But because
7984 the field length has been size-checked just above, and
7985 assuming that the maximum size is a reasonable value,
7986 an overflow should not happen in practice. So rather than
7987 adding overflow recovery code to this already complex code,
7988 we just assume that it's not going to happen. */
d94e4f4f 7989 fld_bit_len =
4c4b4cd2
PH
7990 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7991 }
14f9c5c9 7992 else
4c4b4cd2 7993 {
5ded5331
JB
7994 /* Note: If this field's type is a typedef, it is important
7995 to preserve the typedef layer.
7996
7997 Otherwise, we might be transforming a typedef to a fat
7998 pointer (encoding a pointer to an unconstrained array),
7999 into a basic fat pointer (encoding an unconstrained
8000 array). As both types are implemented using the same
8001 structure, the typedef is the only clue which allows us
8002 to distinguish between the two options. Stripping it
8003 would prevent us from printing this field appropriately. */
8004 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8005 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8006 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8007 fld_bit_len =
4c4b4cd2
PH
8008 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8009 else
5ded5331
JB
8010 {
8011 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8012
8013 /* We need to be careful of typedefs when computing
8014 the length of our field. If this is a typedef,
8015 get the length of the target type, not the length
8016 of the typedef. */
8017 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8018 field_type = ada_typedef_target_type (field_type);
8019
8020 fld_bit_len =
8021 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8022 }
4c4b4cd2 8023 }
14f9c5c9 8024 if (off + fld_bit_len > bit_len)
4c4b4cd2 8025 bit_len = off + fld_bit_len;
d94e4f4f 8026 off += fld_bit_len;
4c4b4cd2
PH
8027 TYPE_LENGTH (rtype) =
8028 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8029 }
4c4b4cd2
PH
8030
8031 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8032 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8033 the record. This can happen in the presence of representation
8034 clauses. */
8035 if (variant_field >= 0)
8036 {
8037 struct type *branch_type;
8038
8039 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8040
8041 if (dval0 == NULL)
9f1f738a 8042 {
012370f6
TT
8043 /* Using plain value_from_contents_and_address here causes
8044 problems because we will end up trying to resolve a type
8045 that is currently being constructed. */
8046 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8047 address);
9f1f738a
SA
8048 rtype = value_type (dval);
8049 }
4c4b4cd2
PH
8050 else
8051 dval = dval0;
8052
8053 branch_type =
8054 to_fixed_variant_branch_type
8055 (TYPE_FIELD_TYPE (type, variant_field),
8056 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8057 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8058 if (branch_type == NULL)
8059 {
8060 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8061 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8062 TYPE_NFIELDS (rtype) -= 1;
8063 }
8064 else
8065 {
8066 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8067 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8068 fld_bit_len =
8069 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8070 TARGET_CHAR_BIT;
8071 if (off + fld_bit_len > bit_len)
8072 bit_len = off + fld_bit_len;
8073 TYPE_LENGTH (rtype) =
8074 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8075 }
8076 }
8077
714e53ab
PH
8078 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8079 should contain the alignment of that record, which should be a strictly
8080 positive value. If null or negative, then something is wrong, most
8081 probably in the debug info. In that case, we don't round up the size
0963b4bd 8082 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8083 the current RTYPE length might be good enough for our purposes. */
8084 if (TYPE_LENGTH (type) <= 0)
8085 {
323e0a4a
AC
8086 if (TYPE_NAME (rtype))
8087 warning (_("Invalid type size for `%s' detected: %d."),
8088 TYPE_NAME (rtype), TYPE_LENGTH (type));
8089 else
8090 warning (_("Invalid type size for <unnamed> detected: %d."),
8091 TYPE_LENGTH (type));
714e53ab
PH
8092 }
8093 else
8094 {
8095 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8096 TYPE_LENGTH (type));
8097 }
14f9c5c9
AS
8098
8099 value_free_to_mark (mark);
d2e4a39e 8100 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8101 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8102 return rtype;
8103}
8104
4c4b4cd2
PH
8105/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8106 of 1. */
14f9c5c9 8107
d2e4a39e 8108static struct type *
fc1a4b47 8109template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8110 CORE_ADDR address, struct value *dval0)
8111{
8112 return ada_template_to_fixed_record_type_1 (type, valaddr,
8113 address, dval0, 1);
8114}
8115
8116/* An ordinary record type in which ___XVL-convention fields and
8117 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8118 static approximations, containing all possible fields. Uses
8119 no runtime values. Useless for use in values, but that's OK,
8120 since the results are used only for type determinations. Works on both
8121 structs and unions. Representation note: to save space, we memorize
8122 the result of this function in the TYPE_TARGET_TYPE of the
8123 template type. */
8124
8125static struct type *
8126template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8127{
8128 struct type *type;
8129 int nfields;
8130 int f;
8131
4c4b4cd2
PH
8132 if (TYPE_TARGET_TYPE (type0) != NULL)
8133 return TYPE_TARGET_TYPE (type0);
8134
8135 nfields = TYPE_NFIELDS (type0);
8136 type = type0;
14f9c5c9
AS
8137
8138 for (f = 0; f < nfields; f += 1)
8139 {
61ee279c 8140 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8141 struct type *new_type;
14f9c5c9 8142
4c4b4cd2
PH
8143 if (is_dynamic_field (type0, f))
8144 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8145 else
f192137b 8146 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8147 if (type == type0 && new_type != field_type)
8148 {
e9bb382b 8149 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8150 TYPE_CODE (type) = TYPE_CODE (type0);
8151 INIT_CPLUS_SPECIFIC (type);
8152 TYPE_NFIELDS (type) = nfields;
8153 TYPE_FIELDS (type) = (struct field *)
8154 TYPE_ALLOC (type, nfields * sizeof (struct field));
8155 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8156 sizeof (struct field) * nfields);
8157 TYPE_NAME (type) = ada_type_name (type0);
8158 TYPE_TAG_NAME (type) = NULL;
876cecd0 8159 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8160 TYPE_LENGTH (type) = 0;
8161 }
8162 TYPE_FIELD_TYPE (type, f) = new_type;
8163 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8164 }
14f9c5c9
AS
8165 return type;
8166}
8167
4c4b4cd2 8168/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8169 whose address in memory is ADDRESS, returns a revision of TYPE,
8170 which should be a non-dynamic-sized record, in which the variant
8171 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8172 for discriminant values in DVAL0, which can be NULL if the record
8173 contains the necessary discriminant values. */
8174
d2e4a39e 8175static struct type *
fc1a4b47 8176to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8177 CORE_ADDR address, struct value *dval0)
14f9c5c9 8178{
d2e4a39e 8179 struct value *mark = value_mark ();
4c4b4cd2 8180 struct value *dval;
d2e4a39e 8181 struct type *rtype;
14f9c5c9
AS
8182 struct type *branch_type;
8183 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8184 int variant_field = variant_field_index (type);
14f9c5c9 8185
4c4b4cd2 8186 if (variant_field == -1)
14f9c5c9
AS
8187 return type;
8188
4c4b4cd2 8189 if (dval0 == NULL)
9f1f738a
SA
8190 {
8191 dval = value_from_contents_and_address (type, valaddr, address);
8192 type = value_type (dval);
8193 }
4c4b4cd2
PH
8194 else
8195 dval = dval0;
8196
e9bb382b 8197 rtype = alloc_type_copy (type);
14f9c5c9 8198 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8199 INIT_CPLUS_SPECIFIC (rtype);
8200 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8201 TYPE_FIELDS (rtype) =
8202 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8203 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8204 sizeof (struct field) * nfields);
14f9c5c9
AS
8205 TYPE_NAME (rtype) = ada_type_name (type);
8206 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8207 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8208 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8209
4c4b4cd2
PH
8210 branch_type = to_fixed_variant_branch_type
8211 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8212 cond_offset_host (valaddr,
4c4b4cd2
PH
8213 TYPE_FIELD_BITPOS (type, variant_field)
8214 / TARGET_CHAR_BIT),
d2e4a39e 8215 cond_offset_target (address,
4c4b4cd2
PH
8216 TYPE_FIELD_BITPOS (type, variant_field)
8217 / TARGET_CHAR_BIT), dval);
d2e4a39e 8218 if (branch_type == NULL)
14f9c5c9 8219 {
4c4b4cd2 8220 int f;
5b4ee69b 8221
4c4b4cd2
PH
8222 for (f = variant_field + 1; f < nfields; f += 1)
8223 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8224 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8225 }
8226 else
8227 {
4c4b4cd2
PH
8228 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8229 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8230 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8231 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8232 }
4c4b4cd2 8233 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8234
4c4b4cd2 8235 value_free_to_mark (mark);
14f9c5c9
AS
8236 return rtype;
8237}
8238
8239/* An ordinary record type (with fixed-length fields) that describes
8240 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8241 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8242 should be in DVAL, a record value; it may be NULL if the object
8243 at ADDR itself contains any necessary discriminant values.
8244 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8245 values from the record are needed. Except in the case that DVAL,
8246 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8247 unchecked) is replaced by a particular branch of the variant.
8248
8249 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8250 is questionable and may be removed. It can arise during the
8251 processing of an unconstrained-array-of-record type where all the
8252 variant branches have exactly the same size. This is because in
8253 such cases, the compiler does not bother to use the XVS convention
8254 when encoding the record. I am currently dubious of this
8255 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8256
d2e4a39e 8257static struct type *
fc1a4b47 8258to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8259 CORE_ADDR address, struct value *dval)
14f9c5c9 8260{
d2e4a39e 8261 struct type *templ_type;
14f9c5c9 8262
876cecd0 8263 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8264 return type0;
8265
d2e4a39e 8266 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8267
8268 if (templ_type != NULL)
8269 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8270 else if (variant_field_index (type0) >= 0)
8271 {
8272 if (dval == NULL && valaddr == NULL && address == 0)
8273 return type0;
8274 return to_record_with_fixed_variant_part (type0, valaddr, address,
8275 dval);
8276 }
14f9c5c9
AS
8277 else
8278 {
876cecd0 8279 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8280 return type0;
8281 }
8282
8283}
8284
8285/* An ordinary record type (with fixed-length fields) that describes
8286 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8287 union type. Any necessary discriminants' values should be in DVAL,
8288 a record value. That is, this routine selects the appropriate
8289 branch of the union at ADDR according to the discriminant value
b1f33ddd 8290 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8291 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8292
d2e4a39e 8293static struct type *
fc1a4b47 8294to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8295 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8296{
8297 int which;
d2e4a39e
AS
8298 struct type *templ_type;
8299 struct type *var_type;
14f9c5c9
AS
8300
8301 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8302 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8303 else
14f9c5c9
AS
8304 var_type = var_type0;
8305
8306 templ_type = ada_find_parallel_type (var_type, "___XVU");
8307
8308 if (templ_type != NULL)
8309 var_type = templ_type;
8310
b1f33ddd
JB
8311 if (is_unchecked_variant (var_type, value_type (dval)))
8312 return var_type0;
d2e4a39e
AS
8313 which =
8314 ada_which_variant_applies (var_type,
0fd88904 8315 value_type (dval), value_contents (dval));
14f9c5c9
AS
8316
8317 if (which < 0)
e9bb382b 8318 return empty_record (var_type);
14f9c5c9 8319 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8320 return to_fixed_record_type
d2e4a39e
AS
8321 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8322 valaddr, address, dval);
4c4b4cd2 8323 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8324 return
8325 to_fixed_record_type
8326 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8327 else
8328 return TYPE_FIELD_TYPE (var_type, which);
8329}
8330
8331/* Assuming that TYPE0 is an array type describing the type of a value
8332 at ADDR, and that DVAL describes a record containing any
8333 discriminants used in TYPE0, returns a type for the value that
8334 contains no dynamic components (that is, no components whose sizes
8335 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8336 true, gives an error message if the resulting type's size is over
4c4b4cd2 8337 varsize_limit. */
14f9c5c9 8338
d2e4a39e
AS
8339static struct type *
8340to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8341 int ignore_too_big)
14f9c5c9 8342{
d2e4a39e
AS
8343 struct type *index_type_desc;
8344 struct type *result;
ad82864c 8345 int constrained_packed_array_p;
14f9c5c9 8346
b0dd7688 8347 type0 = ada_check_typedef (type0);
284614f0 8348 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8349 return type0;
14f9c5c9 8350
ad82864c
JB
8351 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8352 if (constrained_packed_array_p)
8353 type0 = decode_constrained_packed_array_type (type0);
284614f0 8354
14f9c5c9 8355 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8356 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8357 if (index_type_desc == NULL)
8358 {
61ee279c 8359 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8360
14f9c5c9 8361 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8362 depend on the contents of the array in properly constructed
8363 debugging data. */
529cad9c
PH
8364 /* Create a fixed version of the array element type.
8365 We're not providing the address of an element here,
e1d5a0d2 8366 and thus the actual object value cannot be inspected to do
529cad9c
PH
8367 the conversion. This should not be a problem, since arrays of
8368 unconstrained objects are not allowed. In particular, all
8369 the elements of an array of a tagged type should all be of
8370 the same type specified in the debugging info. No need to
8371 consult the object tag. */
1ed6ede0 8372 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8373
284614f0
JB
8374 /* Make sure we always create a new array type when dealing with
8375 packed array types, since we're going to fix-up the array
8376 type length and element bitsize a little further down. */
ad82864c 8377 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8378 result = type0;
14f9c5c9 8379 else
e9bb382b 8380 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8381 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8382 }
8383 else
8384 {
8385 int i;
8386 struct type *elt_type0;
8387
8388 elt_type0 = type0;
8389 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8390 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8391
8392 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8393 depend on the contents of the array in properly constructed
8394 debugging data. */
529cad9c
PH
8395 /* Create a fixed version of the array element type.
8396 We're not providing the address of an element here,
e1d5a0d2 8397 and thus the actual object value cannot be inspected to do
529cad9c
PH
8398 the conversion. This should not be a problem, since arrays of
8399 unconstrained objects are not allowed. In particular, all
8400 the elements of an array of a tagged type should all be of
8401 the same type specified in the debugging info. No need to
8402 consult the object tag. */
1ed6ede0
JB
8403 result =
8404 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8405
8406 elt_type0 = type0;
14f9c5c9 8407 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8408 {
8409 struct type *range_type =
28c85d6c 8410 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8411
e9bb382b 8412 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8413 result, range_type);
1ce677a4 8414 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8415 }
d2e4a39e 8416 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8417 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8418 }
8419
2e6fda7d
JB
8420 /* We want to preserve the type name. This can be useful when
8421 trying to get the type name of a value that has already been
8422 printed (for instance, if the user did "print VAR; whatis $". */
8423 TYPE_NAME (result) = TYPE_NAME (type0);
8424
ad82864c 8425 if (constrained_packed_array_p)
284614f0
JB
8426 {
8427 /* So far, the resulting type has been created as if the original
8428 type was a regular (non-packed) array type. As a result, the
8429 bitsize of the array elements needs to be set again, and the array
8430 length needs to be recomputed based on that bitsize. */
8431 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8432 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8433
8434 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8435 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8436 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8437 TYPE_LENGTH (result)++;
8438 }
8439
876cecd0 8440 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8441 return result;
d2e4a39e 8442}
14f9c5c9
AS
8443
8444
8445/* A standard type (containing no dynamically sized components)
8446 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8447 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8448 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8449 ADDRESS or in VALADDR contains these discriminants.
8450
1ed6ede0
JB
8451 If CHECK_TAG is not null, in the case of tagged types, this function
8452 attempts to locate the object's tag and use it to compute the actual
8453 type. However, when ADDRESS is null, we cannot use it to determine the
8454 location of the tag, and therefore compute the tagged type's actual type.
8455 So we return the tagged type without consulting the tag. */
529cad9c 8456
f192137b
JB
8457static struct type *
8458ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8459 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8460{
61ee279c 8461 type = ada_check_typedef (type);
d2e4a39e
AS
8462 switch (TYPE_CODE (type))
8463 {
8464 default:
14f9c5c9 8465 return type;
d2e4a39e 8466 case TYPE_CODE_STRUCT:
4c4b4cd2 8467 {
76a01679 8468 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8469 struct type *fixed_record_type =
8470 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8471
529cad9c
PH
8472 /* If STATIC_TYPE is a tagged type and we know the object's address,
8473 then we can determine its tag, and compute the object's actual
0963b4bd 8474 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8475 type (the parent part of the record may have dynamic fields
8476 and the way the location of _tag is expressed may depend on
8477 them). */
529cad9c 8478
1ed6ede0 8479 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8480 {
b50d69b5
JG
8481 struct value *tag =
8482 value_tag_from_contents_and_address
8483 (fixed_record_type,
8484 valaddr,
8485 address);
8486 struct type *real_type = type_from_tag (tag);
8487 struct value *obj =
8488 value_from_contents_and_address (fixed_record_type,
8489 valaddr,
8490 address);
9f1f738a 8491 fixed_record_type = value_type (obj);
76a01679 8492 if (real_type != NULL)
b50d69b5
JG
8493 return to_fixed_record_type
8494 (real_type, NULL,
8495 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8496 }
4af88198
JB
8497
8498 /* Check to see if there is a parallel ___XVZ variable.
8499 If there is, then it provides the actual size of our type. */
8500 else if (ada_type_name (fixed_record_type) != NULL)
8501 {
0d5cff50 8502 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8503 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8504 int xvz_found = 0;
8505 LONGEST size;
8506
88c15c34 8507 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8508 size = get_int_var_value (xvz_name, &xvz_found);
8509 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8510 {
8511 fixed_record_type = copy_type (fixed_record_type);
8512 TYPE_LENGTH (fixed_record_type) = size;
8513
8514 /* The FIXED_RECORD_TYPE may have be a stub. We have
8515 observed this when the debugging info is STABS, and
8516 apparently it is something that is hard to fix.
8517
8518 In practice, we don't need the actual type definition
8519 at all, because the presence of the XVZ variable allows us
8520 to assume that there must be a XVS type as well, which we
8521 should be able to use later, when we need the actual type
8522 definition.
8523
8524 In the meantime, pretend that the "fixed" type we are
8525 returning is NOT a stub, because this can cause trouble
8526 when using this type to create new types targeting it.
8527 Indeed, the associated creation routines often check
8528 whether the target type is a stub and will try to replace
0963b4bd 8529 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8530 might cause the new type to have the wrong size too.
8531 Consider the case of an array, for instance, where the size
8532 of the array is computed from the number of elements in
8533 our array multiplied by the size of its element. */
8534 TYPE_STUB (fixed_record_type) = 0;
8535 }
8536 }
1ed6ede0 8537 return fixed_record_type;
4c4b4cd2 8538 }
d2e4a39e 8539 case TYPE_CODE_ARRAY:
4c4b4cd2 8540 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8541 case TYPE_CODE_UNION:
8542 if (dval == NULL)
4c4b4cd2 8543 return type;
d2e4a39e 8544 else
4c4b4cd2 8545 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8546 }
14f9c5c9
AS
8547}
8548
f192137b
JB
8549/* The same as ada_to_fixed_type_1, except that it preserves the type
8550 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8551
8552 The typedef layer needs be preserved in order to differentiate between
8553 arrays and array pointers when both types are implemented using the same
8554 fat pointer. In the array pointer case, the pointer is encoded as
8555 a typedef of the pointer type. For instance, considering:
8556
8557 type String_Access is access String;
8558 S1 : String_Access := null;
8559
8560 To the debugger, S1 is defined as a typedef of type String. But
8561 to the user, it is a pointer. So if the user tries to print S1,
8562 we should not dereference the array, but print the array address
8563 instead.
8564
8565 If we didn't preserve the typedef layer, we would lose the fact that
8566 the type is to be presented as a pointer (needs de-reference before
8567 being printed). And we would also use the source-level type name. */
f192137b
JB
8568
8569struct type *
8570ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8571 CORE_ADDR address, struct value *dval, int check_tag)
8572
8573{
8574 struct type *fixed_type =
8575 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8576
96dbd2c1
JB
8577 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8578 then preserve the typedef layer.
8579
8580 Implementation note: We can only check the main-type portion of
8581 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8582 from TYPE now returns a type that has the same instance flags
8583 as TYPE. For instance, if TYPE is a "typedef const", and its
8584 target type is a "struct", then the typedef elimination will return
8585 a "const" version of the target type. See check_typedef for more
8586 details about how the typedef layer elimination is done.
8587
8588 brobecker/2010-11-19: It seems to me that the only case where it is
8589 useful to preserve the typedef layer is when dealing with fat pointers.
8590 Perhaps, we could add a check for that and preserve the typedef layer
8591 only in that situation. But this seems unecessary so far, probably
8592 because we call check_typedef/ada_check_typedef pretty much everywhere.
8593 */
f192137b 8594 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8595 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8596 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8597 return type;
8598
8599 return fixed_type;
8600}
8601
14f9c5c9 8602/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8603 TYPE0, but based on no runtime data. */
14f9c5c9 8604
d2e4a39e
AS
8605static struct type *
8606to_static_fixed_type (struct type *type0)
14f9c5c9 8607{
d2e4a39e 8608 struct type *type;
14f9c5c9
AS
8609
8610 if (type0 == NULL)
8611 return NULL;
8612
876cecd0 8613 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8614 return type0;
8615
61ee279c 8616 type0 = ada_check_typedef (type0);
d2e4a39e 8617
14f9c5c9
AS
8618 switch (TYPE_CODE (type0))
8619 {
8620 default:
8621 return type0;
8622 case TYPE_CODE_STRUCT:
8623 type = dynamic_template_type (type0);
d2e4a39e 8624 if (type != NULL)
4c4b4cd2
PH
8625 return template_to_static_fixed_type (type);
8626 else
8627 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8628 case TYPE_CODE_UNION:
8629 type = ada_find_parallel_type (type0, "___XVU");
8630 if (type != NULL)
4c4b4cd2
PH
8631 return template_to_static_fixed_type (type);
8632 else
8633 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8634 }
8635}
8636
4c4b4cd2
PH
8637/* A static approximation of TYPE with all type wrappers removed. */
8638
d2e4a39e
AS
8639static struct type *
8640static_unwrap_type (struct type *type)
14f9c5c9
AS
8641{
8642 if (ada_is_aligner_type (type))
8643 {
61ee279c 8644 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8645 if (ada_type_name (type1) == NULL)
4c4b4cd2 8646 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8647
8648 return static_unwrap_type (type1);
8649 }
d2e4a39e 8650 else
14f9c5c9 8651 {
d2e4a39e 8652 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8653
d2e4a39e 8654 if (raw_real_type == type)
4c4b4cd2 8655 return type;
14f9c5c9 8656 else
4c4b4cd2 8657 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8658 }
8659}
8660
8661/* In some cases, incomplete and private types require
4c4b4cd2 8662 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8663 type Foo;
8664 type FooP is access Foo;
8665 V: FooP;
8666 type Foo is array ...;
4c4b4cd2 8667 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8668 cross-references to such types, we instead substitute for FooP a
8669 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8670 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8671
8672/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8673 exists, otherwise TYPE. */
8674
d2e4a39e 8675struct type *
61ee279c 8676ada_check_typedef (struct type *type)
14f9c5c9 8677{
727e3d2e
JB
8678 if (type == NULL)
8679 return NULL;
8680
720d1a40
JB
8681 /* If our type is a typedef type of a fat pointer, then we're done.
8682 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8683 what allows us to distinguish between fat pointers that represent
8684 array types, and fat pointers that represent array access types
8685 (in both cases, the compiler implements them as fat pointers). */
8686 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8687 && is_thick_pntr (ada_typedef_target_type (type)))
8688 return type;
8689
14f9c5c9
AS
8690 CHECK_TYPEDEF (type);
8691 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8692 || !TYPE_STUB (type)
14f9c5c9
AS
8693 || TYPE_TAG_NAME (type) == NULL)
8694 return type;
d2e4a39e 8695 else
14f9c5c9 8696 {
0d5cff50 8697 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8698 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8699
05e522ef
JB
8700 if (type1 == NULL)
8701 return type;
8702
8703 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8704 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8705 types, only for the typedef-to-array types). If that's the case,
8706 strip the typedef layer. */
8707 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8708 type1 = ada_check_typedef (type1);
8709
8710 return type1;
14f9c5c9
AS
8711 }
8712}
8713
8714/* A value representing the data at VALADDR/ADDRESS as described by
8715 type TYPE0, but with a standard (static-sized) type that correctly
8716 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8717 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8718 creation of struct values]. */
14f9c5c9 8719
4c4b4cd2
PH
8720static struct value *
8721ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8722 struct value *val0)
14f9c5c9 8723{
1ed6ede0 8724 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8725
14f9c5c9
AS
8726 if (type == type0 && val0 != NULL)
8727 return val0;
d2e4a39e 8728 else
4c4b4cd2
PH
8729 return value_from_contents_and_address (type, 0, address);
8730}
8731
8732/* A value representing VAL, but with a standard (static-sized) type
8733 that correctly describes it. Does not necessarily create a new
8734 value. */
8735
0c3acc09 8736struct value *
4c4b4cd2
PH
8737ada_to_fixed_value (struct value *val)
8738{
c48db5ca
JB
8739 val = unwrap_value (val);
8740 val = ada_to_fixed_value_create (value_type (val),
8741 value_address (val),
8742 val);
8743 return val;
14f9c5c9 8744}
d2e4a39e 8745\f
14f9c5c9 8746
14f9c5c9
AS
8747/* Attributes */
8748
4c4b4cd2
PH
8749/* Table mapping attribute numbers to names.
8750 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8751
d2e4a39e 8752static const char *attribute_names[] = {
14f9c5c9
AS
8753 "<?>",
8754
d2e4a39e 8755 "first",
14f9c5c9
AS
8756 "last",
8757 "length",
8758 "image",
14f9c5c9
AS
8759 "max",
8760 "min",
4c4b4cd2
PH
8761 "modulus",
8762 "pos",
8763 "size",
8764 "tag",
14f9c5c9 8765 "val",
14f9c5c9
AS
8766 0
8767};
8768
d2e4a39e 8769const char *
4c4b4cd2 8770ada_attribute_name (enum exp_opcode n)
14f9c5c9 8771{
4c4b4cd2
PH
8772 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8773 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8774 else
8775 return attribute_names[0];
8776}
8777
4c4b4cd2 8778/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8779
4c4b4cd2
PH
8780static LONGEST
8781pos_atr (struct value *arg)
14f9c5c9 8782{
24209737
PH
8783 struct value *val = coerce_ref (arg);
8784 struct type *type = value_type (val);
14f9c5c9 8785
d2e4a39e 8786 if (!discrete_type_p (type))
323e0a4a 8787 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8788
8789 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8790 {
8791 int i;
24209737 8792 LONGEST v = value_as_long (val);
14f9c5c9 8793
d2e4a39e 8794 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8795 {
14e75d8e 8796 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8797 return i;
8798 }
323e0a4a 8799 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8800 }
8801 else
24209737 8802 return value_as_long (val);
4c4b4cd2
PH
8803}
8804
8805static struct value *
3cb382c9 8806value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8807{
3cb382c9 8808 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8809}
8810
4c4b4cd2 8811/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8812
d2e4a39e
AS
8813static struct value *
8814value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8815{
d2e4a39e 8816 if (!discrete_type_p (type))
323e0a4a 8817 error (_("'VAL only defined on discrete types"));
df407dfe 8818 if (!integer_type_p (value_type (arg)))
323e0a4a 8819 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8820
8821 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8822 {
8823 long pos = value_as_long (arg);
5b4ee69b 8824
14f9c5c9 8825 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8826 error (_("argument to 'VAL out of range"));
14e75d8e 8827 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8828 }
8829 else
8830 return value_from_longest (type, value_as_long (arg));
8831}
14f9c5c9 8832\f
d2e4a39e 8833
4c4b4cd2 8834 /* Evaluation */
14f9c5c9 8835
4c4b4cd2
PH
8836/* True if TYPE appears to be an Ada character type.
8837 [At the moment, this is true only for Character and Wide_Character;
8838 It is a heuristic test that could stand improvement]. */
14f9c5c9 8839
d2e4a39e
AS
8840int
8841ada_is_character_type (struct type *type)
14f9c5c9 8842{
7b9f71f2
JB
8843 const char *name;
8844
8845 /* If the type code says it's a character, then assume it really is,
8846 and don't check any further. */
8847 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8848 return 1;
8849
8850 /* Otherwise, assume it's a character type iff it is a discrete type
8851 with a known character type name. */
8852 name = ada_type_name (type);
8853 return (name != NULL
8854 && (TYPE_CODE (type) == TYPE_CODE_INT
8855 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8856 && (strcmp (name, "character") == 0
8857 || strcmp (name, "wide_character") == 0
5a517ebd 8858 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8859 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8860}
8861
4c4b4cd2 8862/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8863
8864int
ebf56fd3 8865ada_is_string_type (struct type *type)
14f9c5c9 8866{
61ee279c 8867 type = ada_check_typedef (type);
d2e4a39e 8868 if (type != NULL
14f9c5c9 8869 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8870 && (ada_is_simple_array_type (type)
8871 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8872 && ada_array_arity (type) == 1)
8873 {
8874 struct type *elttype = ada_array_element_type (type, 1);
8875
8876 return ada_is_character_type (elttype);
8877 }
d2e4a39e 8878 else
14f9c5c9
AS
8879 return 0;
8880}
8881
5bf03f13
JB
8882/* The compiler sometimes provides a parallel XVS type for a given
8883 PAD type. Normally, it is safe to follow the PAD type directly,
8884 but older versions of the compiler have a bug that causes the offset
8885 of its "F" field to be wrong. Following that field in that case
8886 would lead to incorrect results, but this can be worked around
8887 by ignoring the PAD type and using the associated XVS type instead.
8888
8889 Set to True if the debugger should trust the contents of PAD types.
8890 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8891static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8892
8893/* True if TYPE is a struct type introduced by the compiler to force the
8894 alignment of a value. Such types have a single field with a
4c4b4cd2 8895 distinctive name. */
14f9c5c9
AS
8896
8897int
ebf56fd3 8898ada_is_aligner_type (struct type *type)
14f9c5c9 8899{
61ee279c 8900 type = ada_check_typedef (type);
714e53ab 8901
5bf03f13 8902 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8903 return 0;
8904
14f9c5c9 8905 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8906 && TYPE_NFIELDS (type) == 1
8907 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8908}
8909
8910/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8911 the parallel type. */
14f9c5c9 8912
d2e4a39e
AS
8913struct type *
8914ada_get_base_type (struct type *raw_type)
14f9c5c9 8915{
d2e4a39e
AS
8916 struct type *real_type_namer;
8917 struct type *raw_real_type;
14f9c5c9
AS
8918
8919 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8920 return raw_type;
8921
284614f0
JB
8922 if (ada_is_aligner_type (raw_type))
8923 /* The encoding specifies that we should always use the aligner type.
8924 So, even if this aligner type has an associated XVS type, we should
8925 simply ignore it.
8926
8927 According to the compiler gurus, an XVS type parallel to an aligner
8928 type may exist because of a stabs limitation. In stabs, aligner
8929 types are empty because the field has a variable-sized type, and
8930 thus cannot actually be used as an aligner type. As a result,
8931 we need the associated parallel XVS type to decode the type.
8932 Since the policy in the compiler is to not change the internal
8933 representation based on the debugging info format, we sometimes
8934 end up having a redundant XVS type parallel to the aligner type. */
8935 return raw_type;
8936
14f9c5c9 8937 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8938 if (real_type_namer == NULL
14f9c5c9
AS
8939 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8940 || TYPE_NFIELDS (real_type_namer) != 1)
8941 return raw_type;
8942
f80d3ff2
JB
8943 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8944 {
8945 /* This is an older encoding form where the base type needs to be
8946 looked up by name. We prefer the newer enconding because it is
8947 more efficient. */
8948 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8949 if (raw_real_type == NULL)
8950 return raw_type;
8951 else
8952 return raw_real_type;
8953 }
8954
8955 /* The field in our XVS type is a reference to the base type. */
8956 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8957}
14f9c5c9 8958
4c4b4cd2 8959/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8960
d2e4a39e
AS
8961struct type *
8962ada_aligned_type (struct type *type)
14f9c5c9
AS
8963{
8964 if (ada_is_aligner_type (type))
8965 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8966 else
8967 return ada_get_base_type (type);
8968}
8969
8970
8971/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8972 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8973
fc1a4b47
AC
8974const gdb_byte *
8975ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8976{
d2e4a39e 8977 if (ada_is_aligner_type (type))
14f9c5c9 8978 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8979 valaddr +
8980 TYPE_FIELD_BITPOS (type,
8981 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8982 else
8983 return valaddr;
8984}
8985
4c4b4cd2
PH
8986
8987
14f9c5c9 8988/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8989 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8990const char *
8991ada_enum_name (const char *name)
14f9c5c9 8992{
4c4b4cd2
PH
8993 static char *result;
8994 static size_t result_len = 0;
d2e4a39e 8995 char *tmp;
14f9c5c9 8996
4c4b4cd2
PH
8997 /* First, unqualify the enumeration name:
8998 1. Search for the last '.' character. If we find one, then skip
177b42fe 8999 all the preceding characters, the unqualified name starts
76a01679 9000 right after that dot.
4c4b4cd2 9001 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9002 translates dots into "__". Search forward for double underscores,
9003 but stop searching when we hit an overloading suffix, which is
9004 of the form "__" followed by digits. */
4c4b4cd2 9005
c3e5cd34
PH
9006 tmp = strrchr (name, '.');
9007 if (tmp != NULL)
4c4b4cd2
PH
9008 name = tmp + 1;
9009 else
14f9c5c9 9010 {
4c4b4cd2
PH
9011 while ((tmp = strstr (name, "__")) != NULL)
9012 {
9013 if (isdigit (tmp[2]))
9014 break;
9015 else
9016 name = tmp + 2;
9017 }
14f9c5c9
AS
9018 }
9019
9020 if (name[0] == 'Q')
9021 {
14f9c5c9 9022 int v;
5b4ee69b 9023
14f9c5c9 9024 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9025 {
9026 if (sscanf (name + 2, "%x", &v) != 1)
9027 return name;
9028 }
14f9c5c9 9029 else
4c4b4cd2 9030 return name;
14f9c5c9 9031
4c4b4cd2 9032 GROW_VECT (result, result_len, 16);
14f9c5c9 9033 if (isascii (v) && isprint (v))
88c15c34 9034 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9035 else if (name[1] == 'U')
88c15c34 9036 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9037 else
88c15c34 9038 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9039
9040 return result;
9041 }
d2e4a39e 9042 else
4c4b4cd2 9043 {
c3e5cd34
PH
9044 tmp = strstr (name, "__");
9045 if (tmp == NULL)
9046 tmp = strstr (name, "$");
9047 if (tmp != NULL)
4c4b4cd2
PH
9048 {
9049 GROW_VECT (result, result_len, tmp - name + 1);
9050 strncpy (result, name, tmp - name);
9051 result[tmp - name] = '\0';
9052 return result;
9053 }
9054
9055 return name;
9056 }
14f9c5c9
AS
9057}
9058
14f9c5c9
AS
9059/* Evaluate the subexpression of EXP starting at *POS as for
9060 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9061 expression. */
14f9c5c9 9062
d2e4a39e
AS
9063static struct value *
9064evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9065{
4b27a620 9066 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9067}
9068
9069/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9070 value it wraps. */
14f9c5c9 9071
d2e4a39e
AS
9072static struct value *
9073unwrap_value (struct value *val)
14f9c5c9 9074{
df407dfe 9075 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9076
14f9c5c9
AS
9077 if (ada_is_aligner_type (type))
9078 {
de4d072f 9079 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9080 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9081
14f9c5c9 9082 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9083 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9084
9085 return unwrap_value (v);
9086 }
d2e4a39e 9087 else
14f9c5c9 9088 {
d2e4a39e 9089 struct type *raw_real_type =
61ee279c 9090 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9091
5bf03f13
JB
9092 /* If there is no parallel XVS or XVE type, then the value is
9093 already unwrapped. Return it without further modification. */
9094 if ((type == raw_real_type)
9095 && ada_find_parallel_type (type, "___XVE") == NULL)
9096 return val;
14f9c5c9 9097
d2e4a39e 9098 return
4c4b4cd2
PH
9099 coerce_unspec_val_to_type
9100 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9101 value_address (val),
1ed6ede0 9102 NULL, 1));
14f9c5c9
AS
9103 }
9104}
d2e4a39e
AS
9105
9106static struct value *
9107cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9108{
9109 LONGEST val;
9110
df407dfe 9111 if (type == value_type (arg))
14f9c5c9 9112 return arg;
df407dfe 9113 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9114 val = ada_float_to_fixed (type,
df407dfe 9115 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9116 value_as_long (arg)));
d2e4a39e 9117 else
14f9c5c9 9118 {
a53b7a21 9119 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9120
14f9c5c9
AS
9121 val = ada_float_to_fixed (type, argd);
9122 }
9123
9124 return value_from_longest (type, val);
9125}
9126
d2e4a39e 9127static struct value *
a53b7a21 9128cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9129{
df407dfe 9130 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9131 value_as_long (arg));
5b4ee69b 9132
a53b7a21 9133 return value_from_double (type, val);
14f9c5c9
AS
9134}
9135
d99dcf51
JB
9136/* Given two array types T1 and T2, return nonzero iff both arrays
9137 contain the same number of elements. */
9138
9139static int
9140ada_same_array_size_p (struct type *t1, struct type *t2)
9141{
9142 LONGEST lo1, hi1, lo2, hi2;
9143
9144 /* Get the array bounds in order to verify that the size of
9145 the two arrays match. */
9146 if (!get_array_bounds (t1, &lo1, &hi1)
9147 || !get_array_bounds (t2, &lo2, &hi2))
9148 error (_("unable to determine array bounds"));
9149
9150 /* To make things easier for size comparison, normalize a bit
9151 the case of empty arrays by making sure that the difference
9152 between upper bound and lower bound is always -1. */
9153 if (lo1 > hi1)
9154 hi1 = lo1 - 1;
9155 if (lo2 > hi2)
9156 hi2 = lo2 - 1;
9157
9158 return (hi1 - lo1 == hi2 - lo2);
9159}
9160
9161/* Assuming that VAL is an array of integrals, and TYPE represents
9162 an array with the same number of elements, but with wider integral
9163 elements, return an array "casted" to TYPE. In practice, this
9164 means that the returned array is built by casting each element
9165 of the original array into TYPE's (wider) element type. */
9166
9167static struct value *
9168ada_promote_array_of_integrals (struct type *type, struct value *val)
9169{
9170 struct type *elt_type = TYPE_TARGET_TYPE (type);
9171 LONGEST lo, hi;
9172 struct value *res;
9173 LONGEST i;
9174
9175 /* Verify that both val and type are arrays of scalars, and
9176 that the size of val's elements is smaller than the size
9177 of type's element. */
9178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9179 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9180 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9181 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9182 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9183 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9184
9185 if (!get_array_bounds (type, &lo, &hi))
9186 error (_("unable to determine array bounds"));
9187
9188 res = allocate_value (type);
9189
9190 /* Promote each array element. */
9191 for (i = 0; i < hi - lo + 1; i++)
9192 {
9193 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9194
9195 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9196 value_contents_all (elt), TYPE_LENGTH (elt_type));
9197 }
9198
9199 return res;
9200}
9201
4c4b4cd2
PH
9202/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9203 return the converted value. */
9204
d2e4a39e
AS
9205static struct value *
9206coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9207{
df407dfe 9208 struct type *type2 = value_type (val);
5b4ee69b 9209
14f9c5c9
AS
9210 if (type == type2)
9211 return val;
9212
61ee279c
PH
9213 type2 = ada_check_typedef (type2);
9214 type = ada_check_typedef (type);
14f9c5c9 9215
d2e4a39e
AS
9216 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9217 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9218 {
9219 val = ada_value_ind (val);
df407dfe 9220 type2 = value_type (val);
14f9c5c9
AS
9221 }
9222
d2e4a39e 9223 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9224 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9225 {
d99dcf51
JB
9226 if (!ada_same_array_size_p (type, type2))
9227 error (_("cannot assign arrays of different length"));
9228
9229 if (is_integral_type (TYPE_TARGET_TYPE (type))
9230 && is_integral_type (TYPE_TARGET_TYPE (type2))
9231 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9232 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9233 {
9234 /* Allow implicit promotion of the array elements to
9235 a wider type. */
9236 return ada_promote_array_of_integrals (type, val);
9237 }
9238
9239 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9240 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9241 error (_("Incompatible types in assignment"));
04624583 9242 deprecated_set_value_type (val, type);
14f9c5c9 9243 }
d2e4a39e 9244 return val;
14f9c5c9
AS
9245}
9246
4c4b4cd2
PH
9247static struct value *
9248ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9249{
9250 struct value *val;
9251 struct type *type1, *type2;
9252 LONGEST v, v1, v2;
9253
994b9211
AC
9254 arg1 = coerce_ref (arg1);
9255 arg2 = coerce_ref (arg2);
18af8284
JB
9256 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9257 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9258
76a01679
JB
9259 if (TYPE_CODE (type1) != TYPE_CODE_INT
9260 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9261 return value_binop (arg1, arg2, op);
9262
76a01679 9263 switch (op)
4c4b4cd2
PH
9264 {
9265 case BINOP_MOD:
9266 case BINOP_DIV:
9267 case BINOP_REM:
9268 break;
9269 default:
9270 return value_binop (arg1, arg2, op);
9271 }
9272
9273 v2 = value_as_long (arg2);
9274 if (v2 == 0)
323e0a4a 9275 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9276
9277 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9278 return value_binop (arg1, arg2, op);
9279
9280 v1 = value_as_long (arg1);
9281 switch (op)
9282 {
9283 case BINOP_DIV:
9284 v = v1 / v2;
76a01679
JB
9285 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9286 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9287 break;
9288 case BINOP_REM:
9289 v = v1 % v2;
76a01679
JB
9290 if (v * v1 < 0)
9291 v -= v2;
4c4b4cd2
PH
9292 break;
9293 default:
9294 /* Should not reach this point. */
9295 v = 0;
9296 }
9297
9298 val = allocate_value (type1);
990a07ab 9299 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9300 TYPE_LENGTH (value_type (val)),
9301 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9302 return val;
9303}
9304
9305static int
9306ada_value_equal (struct value *arg1, struct value *arg2)
9307{
df407dfe
AC
9308 if (ada_is_direct_array_type (value_type (arg1))
9309 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9310 {
f58b38bf
JB
9311 /* Automatically dereference any array reference before
9312 we attempt to perform the comparison. */
9313 arg1 = ada_coerce_ref (arg1);
9314 arg2 = ada_coerce_ref (arg2);
9315
4c4b4cd2
PH
9316 arg1 = ada_coerce_to_simple_array (arg1);
9317 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9318 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9319 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9320 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9321 /* FIXME: The following works only for types whose
76a01679
JB
9322 representations use all bits (no padding or undefined bits)
9323 and do not have user-defined equality. */
9324 return
df407dfe 9325 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9326 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9327 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9328 }
9329 return value_equal (arg1, arg2);
9330}
9331
52ce6436
PH
9332/* Total number of component associations in the aggregate starting at
9333 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9334 OP_AGGREGATE. */
52ce6436
PH
9335
9336static int
9337num_component_specs (struct expression *exp, int pc)
9338{
9339 int n, m, i;
5b4ee69b 9340
52ce6436
PH
9341 m = exp->elts[pc + 1].longconst;
9342 pc += 3;
9343 n = 0;
9344 for (i = 0; i < m; i += 1)
9345 {
9346 switch (exp->elts[pc].opcode)
9347 {
9348 default:
9349 n += 1;
9350 break;
9351 case OP_CHOICES:
9352 n += exp->elts[pc + 1].longconst;
9353 break;
9354 }
9355 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9356 }
9357 return n;
9358}
9359
9360/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9361 component of LHS (a simple array or a record), updating *POS past
9362 the expression, assuming that LHS is contained in CONTAINER. Does
9363 not modify the inferior's memory, nor does it modify LHS (unless
9364 LHS == CONTAINER). */
9365
9366static void
9367assign_component (struct value *container, struct value *lhs, LONGEST index,
9368 struct expression *exp, int *pos)
9369{
9370 struct value *mark = value_mark ();
9371 struct value *elt;
5b4ee69b 9372
52ce6436
PH
9373 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9374 {
22601c15
UW
9375 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9376 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9377
52ce6436
PH
9378 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9379 }
9380 else
9381 {
9382 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9383 elt = ada_to_fixed_value (elt);
52ce6436
PH
9384 }
9385
9386 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9387 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9388 else
9389 value_assign_to_component (container, elt,
9390 ada_evaluate_subexp (NULL, exp, pos,
9391 EVAL_NORMAL));
9392
9393 value_free_to_mark (mark);
9394}
9395
9396/* Assuming that LHS represents an lvalue having a record or array
9397 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9398 of that aggregate's value to LHS, advancing *POS past the
9399 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9400 lvalue containing LHS (possibly LHS itself). Does not modify
9401 the inferior's memory, nor does it modify the contents of
0963b4bd 9402 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9403
9404static struct value *
9405assign_aggregate (struct value *container,
9406 struct value *lhs, struct expression *exp,
9407 int *pos, enum noside noside)
9408{
9409 struct type *lhs_type;
9410 int n = exp->elts[*pos+1].longconst;
9411 LONGEST low_index, high_index;
9412 int num_specs;
9413 LONGEST *indices;
9414 int max_indices, num_indices;
52ce6436 9415 int i;
52ce6436
PH
9416
9417 *pos += 3;
9418 if (noside != EVAL_NORMAL)
9419 {
52ce6436
PH
9420 for (i = 0; i < n; i += 1)
9421 ada_evaluate_subexp (NULL, exp, pos, noside);
9422 return container;
9423 }
9424
9425 container = ada_coerce_ref (container);
9426 if (ada_is_direct_array_type (value_type (container)))
9427 container = ada_coerce_to_simple_array (container);
9428 lhs = ada_coerce_ref (lhs);
9429 if (!deprecated_value_modifiable (lhs))
9430 error (_("Left operand of assignment is not a modifiable lvalue."));
9431
9432 lhs_type = value_type (lhs);
9433 if (ada_is_direct_array_type (lhs_type))
9434 {
9435 lhs = ada_coerce_to_simple_array (lhs);
9436 lhs_type = value_type (lhs);
9437 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9438 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9439 }
9440 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9441 {
9442 low_index = 0;
9443 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9444 }
9445 else
9446 error (_("Left-hand side must be array or record."));
9447
9448 num_specs = num_component_specs (exp, *pos - 3);
9449 max_indices = 4 * num_specs + 4;
9450 indices = alloca (max_indices * sizeof (indices[0]));
9451 indices[0] = indices[1] = low_index - 1;
9452 indices[2] = indices[3] = high_index + 1;
9453 num_indices = 4;
9454
9455 for (i = 0; i < n; i += 1)
9456 {
9457 switch (exp->elts[*pos].opcode)
9458 {
1fbf5ada
JB
9459 case OP_CHOICES:
9460 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9461 &num_indices, max_indices,
9462 low_index, high_index);
9463 break;
9464 case OP_POSITIONAL:
9465 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9466 &num_indices, max_indices,
9467 low_index, high_index);
1fbf5ada
JB
9468 break;
9469 case OP_OTHERS:
9470 if (i != n-1)
9471 error (_("Misplaced 'others' clause"));
9472 aggregate_assign_others (container, lhs, exp, pos, indices,
9473 num_indices, low_index, high_index);
9474 break;
9475 default:
9476 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9477 }
9478 }
9479
9480 return container;
9481}
9482
9483/* Assign into the component of LHS indexed by the OP_POSITIONAL
9484 construct at *POS, updating *POS past the construct, given that
9485 the positions are relative to lower bound LOW, where HIGH is the
9486 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9487 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9488 assign_aggregate. */
52ce6436
PH
9489static void
9490aggregate_assign_positional (struct value *container,
9491 struct value *lhs, struct expression *exp,
9492 int *pos, LONGEST *indices, int *num_indices,
9493 int max_indices, LONGEST low, LONGEST high)
9494{
9495 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9496
9497 if (ind - 1 == high)
e1d5a0d2 9498 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9499 if (ind <= high)
9500 {
9501 add_component_interval (ind, ind, indices, num_indices, max_indices);
9502 *pos += 3;
9503 assign_component (container, lhs, ind, exp, pos);
9504 }
9505 else
9506 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9507}
9508
9509/* Assign into the components of LHS indexed by the OP_CHOICES
9510 construct at *POS, updating *POS past the construct, given that
9511 the allowable indices are LOW..HIGH. Record the indices assigned
9512 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9513 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9514static void
9515aggregate_assign_from_choices (struct value *container,
9516 struct value *lhs, struct expression *exp,
9517 int *pos, LONGEST *indices, int *num_indices,
9518 int max_indices, LONGEST low, LONGEST high)
9519{
9520 int j;
9521 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9522 int choice_pos, expr_pc;
9523 int is_array = ada_is_direct_array_type (value_type (lhs));
9524
9525 choice_pos = *pos += 3;
9526
9527 for (j = 0; j < n_choices; j += 1)
9528 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9529 expr_pc = *pos;
9530 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9531
9532 for (j = 0; j < n_choices; j += 1)
9533 {
9534 LONGEST lower, upper;
9535 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9536
52ce6436
PH
9537 if (op == OP_DISCRETE_RANGE)
9538 {
9539 choice_pos += 1;
9540 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9541 EVAL_NORMAL));
9542 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9543 EVAL_NORMAL));
9544 }
9545 else if (is_array)
9546 {
9547 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9548 EVAL_NORMAL));
9549 upper = lower;
9550 }
9551 else
9552 {
9553 int ind;
0d5cff50 9554 const char *name;
5b4ee69b 9555
52ce6436
PH
9556 switch (op)
9557 {
9558 case OP_NAME:
9559 name = &exp->elts[choice_pos + 2].string;
9560 break;
9561 case OP_VAR_VALUE:
9562 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9563 break;
9564 default:
9565 error (_("Invalid record component association."));
9566 }
9567 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9568 ind = 0;
9569 if (! find_struct_field (name, value_type (lhs), 0,
9570 NULL, NULL, NULL, NULL, &ind))
9571 error (_("Unknown component name: %s."), name);
9572 lower = upper = ind;
9573 }
9574
9575 if (lower <= upper && (lower < low || upper > high))
9576 error (_("Index in component association out of bounds."));
9577
9578 add_component_interval (lower, upper, indices, num_indices,
9579 max_indices);
9580 while (lower <= upper)
9581 {
9582 int pos1;
5b4ee69b 9583
52ce6436
PH
9584 pos1 = expr_pc;
9585 assign_component (container, lhs, lower, exp, &pos1);
9586 lower += 1;
9587 }
9588 }
9589}
9590
9591/* Assign the value of the expression in the OP_OTHERS construct in
9592 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9593 have not been previously assigned. The index intervals already assigned
9594 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9595 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9596static void
9597aggregate_assign_others (struct value *container,
9598 struct value *lhs, struct expression *exp,
9599 int *pos, LONGEST *indices, int num_indices,
9600 LONGEST low, LONGEST high)
9601{
9602 int i;
5ce64950 9603 int expr_pc = *pos + 1;
52ce6436
PH
9604
9605 for (i = 0; i < num_indices - 2; i += 2)
9606 {
9607 LONGEST ind;
5b4ee69b 9608
52ce6436
PH
9609 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9610 {
5ce64950 9611 int localpos;
5b4ee69b 9612
5ce64950
MS
9613 localpos = expr_pc;
9614 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9615 }
9616 }
9617 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9618}
9619
9620/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9621 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9622 modifying *SIZE as needed. It is an error if *SIZE exceeds
9623 MAX_SIZE. The resulting intervals do not overlap. */
9624static void
9625add_component_interval (LONGEST low, LONGEST high,
9626 LONGEST* indices, int *size, int max_size)
9627{
9628 int i, j;
5b4ee69b 9629
52ce6436
PH
9630 for (i = 0; i < *size; i += 2) {
9631 if (high >= indices[i] && low <= indices[i + 1])
9632 {
9633 int kh;
5b4ee69b 9634
52ce6436
PH
9635 for (kh = i + 2; kh < *size; kh += 2)
9636 if (high < indices[kh])
9637 break;
9638 if (low < indices[i])
9639 indices[i] = low;
9640 indices[i + 1] = indices[kh - 1];
9641 if (high > indices[i + 1])
9642 indices[i + 1] = high;
9643 memcpy (indices + i + 2, indices + kh, *size - kh);
9644 *size -= kh - i - 2;
9645 return;
9646 }
9647 else if (high < indices[i])
9648 break;
9649 }
9650
9651 if (*size == max_size)
9652 error (_("Internal error: miscounted aggregate components."));
9653 *size += 2;
9654 for (j = *size-1; j >= i+2; j -= 1)
9655 indices[j] = indices[j - 2];
9656 indices[i] = low;
9657 indices[i + 1] = high;
9658}
9659
6e48bd2c
JB
9660/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9661 is different. */
9662
9663static struct value *
9664ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9665{
9666 if (type == ada_check_typedef (value_type (arg2)))
9667 return arg2;
9668
9669 if (ada_is_fixed_point_type (type))
9670 return (cast_to_fixed (type, arg2));
9671
9672 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9673 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9674
9675 return value_cast (type, arg2);
9676}
9677
284614f0
JB
9678/* Evaluating Ada expressions, and printing their result.
9679 ------------------------------------------------------
9680
21649b50
JB
9681 1. Introduction:
9682 ----------------
9683
284614f0
JB
9684 We usually evaluate an Ada expression in order to print its value.
9685 We also evaluate an expression in order to print its type, which
9686 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9687 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9688 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9689 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9690 similar.
9691
9692 Evaluating expressions is a little more complicated for Ada entities
9693 than it is for entities in languages such as C. The main reason for
9694 this is that Ada provides types whose definition might be dynamic.
9695 One example of such types is variant records. Or another example
9696 would be an array whose bounds can only be known at run time.
9697
9698 The following description is a general guide as to what should be
9699 done (and what should NOT be done) in order to evaluate an expression
9700 involving such types, and when. This does not cover how the semantic
9701 information is encoded by GNAT as this is covered separatly. For the
9702 document used as the reference for the GNAT encoding, see exp_dbug.ads
9703 in the GNAT sources.
9704
9705 Ideally, we should embed each part of this description next to its
9706 associated code. Unfortunately, the amount of code is so vast right
9707 now that it's hard to see whether the code handling a particular
9708 situation might be duplicated or not. One day, when the code is
9709 cleaned up, this guide might become redundant with the comments
9710 inserted in the code, and we might want to remove it.
9711
21649b50
JB
9712 2. ``Fixing'' an Entity, the Simple Case:
9713 -----------------------------------------
9714
284614f0
JB
9715 When evaluating Ada expressions, the tricky issue is that they may
9716 reference entities whose type contents and size are not statically
9717 known. Consider for instance a variant record:
9718
9719 type Rec (Empty : Boolean := True) is record
9720 case Empty is
9721 when True => null;
9722 when False => Value : Integer;
9723 end case;
9724 end record;
9725 Yes : Rec := (Empty => False, Value => 1);
9726 No : Rec := (empty => True);
9727
9728 The size and contents of that record depends on the value of the
9729 descriminant (Rec.Empty). At this point, neither the debugging
9730 information nor the associated type structure in GDB are able to
9731 express such dynamic types. So what the debugger does is to create
9732 "fixed" versions of the type that applies to the specific object.
9733 We also informally refer to this opperation as "fixing" an object,
9734 which means creating its associated fixed type.
9735
9736 Example: when printing the value of variable "Yes" above, its fixed
9737 type would look like this:
9738
9739 type Rec is record
9740 Empty : Boolean;
9741 Value : Integer;
9742 end record;
9743
9744 On the other hand, if we printed the value of "No", its fixed type
9745 would become:
9746
9747 type Rec is record
9748 Empty : Boolean;
9749 end record;
9750
9751 Things become a little more complicated when trying to fix an entity
9752 with a dynamic type that directly contains another dynamic type,
9753 such as an array of variant records, for instance. There are
9754 two possible cases: Arrays, and records.
9755
21649b50
JB
9756 3. ``Fixing'' Arrays:
9757 ---------------------
9758
9759 The type structure in GDB describes an array in terms of its bounds,
9760 and the type of its elements. By design, all elements in the array
9761 have the same type and we cannot represent an array of variant elements
9762 using the current type structure in GDB. When fixing an array,
9763 we cannot fix the array element, as we would potentially need one
9764 fixed type per element of the array. As a result, the best we can do
9765 when fixing an array is to produce an array whose bounds and size
9766 are correct (allowing us to read it from memory), but without having
9767 touched its element type. Fixing each element will be done later,
9768 when (if) necessary.
9769
9770 Arrays are a little simpler to handle than records, because the same
9771 amount of memory is allocated for each element of the array, even if
1b536f04 9772 the amount of space actually used by each element differs from element
21649b50 9773 to element. Consider for instance the following array of type Rec:
284614f0
JB
9774
9775 type Rec_Array is array (1 .. 2) of Rec;
9776
1b536f04
JB
9777 The actual amount of memory occupied by each element might be different
9778 from element to element, depending on the value of their discriminant.
21649b50 9779 But the amount of space reserved for each element in the array remains
1b536f04 9780 fixed regardless. So we simply need to compute that size using
21649b50
JB
9781 the debugging information available, from which we can then determine
9782 the array size (we multiply the number of elements of the array by
9783 the size of each element).
9784
9785 The simplest case is when we have an array of a constrained element
9786 type. For instance, consider the following type declarations:
9787
9788 type Bounded_String (Max_Size : Integer) is
9789 Length : Integer;
9790 Buffer : String (1 .. Max_Size);
9791 end record;
9792 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9793
9794 In this case, the compiler describes the array as an array of
9795 variable-size elements (identified by its XVS suffix) for which
9796 the size can be read in the parallel XVZ variable.
9797
9798 In the case of an array of an unconstrained element type, the compiler
9799 wraps the array element inside a private PAD type. This type should not
9800 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9801 that we also use the adjective "aligner" in our code to designate
9802 these wrapper types.
9803
1b536f04 9804 In some cases, the size allocated for each element is statically
21649b50
JB
9805 known. In that case, the PAD type already has the correct size,
9806 and the array element should remain unfixed.
9807
9808 But there are cases when this size is not statically known.
9809 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9810
9811 type Dynamic is array (1 .. Five) of Integer;
9812 type Wrapper (Has_Length : Boolean := False) is record
9813 Data : Dynamic;
9814 case Has_Length is
9815 when True => Length : Integer;
9816 when False => null;
9817 end case;
9818 end record;
9819 type Wrapper_Array is array (1 .. 2) of Wrapper;
9820
9821 Hello : Wrapper_Array := (others => (Has_Length => True,
9822 Data => (others => 17),
9823 Length => 1));
9824
9825
9826 The debugging info would describe variable Hello as being an
9827 array of a PAD type. The size of that PAD type is not statically
9828 known, but can be determined using a parallel XVZ variable.
9829 In that case, a copy of the PAD type with the correct size should
9830 be used for the fixed array.
9831
21649b50
JB
9832 3. ``Fixing'' record type objects:
9833 ----------------------------------
9834
9835 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9836 record types. In this case, in order to compute the associated
9837 fixed type, we need to determine the size and offset of each of
9838 its components. This, in turn, requires us to compute the fixed
9839 type of each of these components.
9840
9841 Consider for instance the example:
9842
9843 type Bounded_String (Max_Size : Natural) is record
9844 Str : String (1 .. Max_Size);
9845 Length : Natural;
9846 end record;
9847 My_String : Bounded_String (Max_Size => 10);
9848
9849 In that case, the position of field "Length" depends on the size
9850 of field Str, which itself depends on the value of the Max_Size
21649b50 9851 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9852 we need to fix the type of field Str. Therefore, fixing a variant
9853 record requires us to fix each of its components.
9854
9855 However, if a component does not have a dynamic size, the component
9856 should not be fixed. In particular, fields that use a PAD type
9857 should not fixed. Here is an example where this might happen
9858 (assuming type Rec above):
9859
9860 type Container (Big : Boolean) is record
9861 First : Rec;
9862 After : Integer;
9863 case Big is
9864 when True => Another : Integer;
9865 when False => null;
9866 end case;
9867 end record;
9868 My_Container : Container := (Big => False,
9869 First => (Empty => True),
9870 After => 42);
9871
9872 In that example, the compiler creates a PAD type for component First,
9873 whose size is constant, and then positions the component After just
9874 right after it. The offset of component After is therefore constant
9875 in this case.
9876
9877 The debugger computes the position of each field based on an algorithm
9878 that uses, among other things, the actual position and size of the field
21649b50
JB
9879 preceding it. Let's now imagine that the user is trying to print
9880 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9881 end up computing the offset of field After based on the size of the
9882 fixed version of field First. And since in our example First has
9883 only one actual field, the size of the fixed type is actually smaller
9884 than the amount of space allocated to that field, and thus we would
9885 compute the wrong offset of field After.
9886
21649b50
JB
9887 To make things more complicated, we need to watch out for dynamic
9888 components of variant records (identified by the ___XVL suffix in
9889 the component name). Even if the target type is a PAD type, the size
9890 of that type might not be statically known. So the PAD type needs
9891 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9892 we might end up with the wrong size for our component. This can be
9893 observed with the following type declarations:
284614f0
JB
9894
9895 type Octal is new Integer range 0 .. 7;
9896 type Octal_Array is array (Positive range <>) of Octal;
9897 pragma Pack (Octal_Array);
9898
9899 type Octal_Buffer (Size : Positive) is record
9900 Buffer : Octal_Array (1 .. Size);
9901 Length : Integer;
9902 end record;
9903
9904 In that case, Buffer is a PAD type whose size is unset and needs
9905 to be computed by fixing the unwrapped type.
9906
21649b50
JB
9907 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9908 ----------------------------------------------------------
9909
9910 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9911 thus far, be actually fixed?
9912
9913 The answer is: Only when referencing that element. For instance
9914 when selecting one component of a record, this specific component
9915 should be fixed at that point in time. Or when printing the value
9916 of a record, each component should be fixed before its value gets
9917 printed. Similarly for arrays, the element of the array should be
9918 fixed when printing each element of the array, or when extracting
9919 one element out of that array. On the other hand, fixing should
9920 not be performed on the elements when taking a slice of an array!
9921
9922 Note that one of the side-effects of miscomputing the offset and
9923 size of each field is that we end up also miscomputing the size
9924 of the containing type. This can have adverse results when computing
9925 the value of an entity. GDB fetches the value of an entity based
9926 on the size of its type, and thus a wrong size causes GDB to fetch
9927 the wrong amount of memory. In the case where the computed size is
9928 too small, GDB fetches too little data to print the value of our
9929 entiry. Results in this case as unpredicatble, as we usually read
9930 past the buffer containing the data =:-o. */
9931
9932/* Implement the evaluate_exp routine in the exp_descriptor structure
9933 for the Ada language. */
9934
52ce6436 9935static struct value *
ebf56fd3 9936ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9937 int *pos, enum noside noside)
14f9c5c9
AS
9938{
9939 enum exp_opcode op;
b5385fc0 9940 int tem;
14f9c5c9 9941 int pc;
5ec18f2b 9942 int preeval_pos;
14f9c5c9
AS
9943 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9944 struct type *type;
52ce6436 9945 int nargs, oplen;
d2e4a39e 9946 struct value **argvec;
14f9c5c9 9947
d2e4a39e
AS
9948 pc = *pos;
9949 *pos += 1;
14f9c5c9
AS
9950 op = exp->elts[pc].opcode;
9951
d2e4a39e 9952 switch (op)
14f9c5c9
AS
9953 {
9954 default:
9955 *pos -= 1;
6e48bd2c 9956 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9957
9958 if (noside == EVAL_NORMAL)
9959 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9960
9961 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9962 then we need to perform the conversion manually, because
9963 evaluate_subexp_standard doesn't do it. This conversion is
9964 necessary in Ada because the different kinds of float/fixed
9965 types in Ada have different representations.
9966
9967 Similarly, we need to perform the conversion from OP_LONG
9968 ourselves. */
9969 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9970 arg1 = ada_value_cast (expect_type, arg1, noside);
9971
9972 return arg1;
4c4b4cd2
PH
9973
9974 case OP_STRING:
9975 {
76a01679 9976 struct value *result;
5b4ee69b 9977
76a01679
JB
9978 *pos -= 1;
9979 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9980 /* The result type will have code OP_STRING, bashed there from
9981 OP_ARRAY. Bash it back. */
df407dfe
AC
9982 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9983 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9984 return result;
4c4b4cd2 9985 }
14f9c5c9
AS
9986
9987 case UNOP_CAST:
9988 (*pos) += 2;
9989 type = exp->elts[pc + 1].type;
9990 arg1 = evaluate_subexp (type, exp, pos, noside);
9991 if (noside == EVAL_SKIP)
4c4b4cd2 9992 goto nosideret;
6e48bd2c 9993 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9994 return arg1;
9995
4c4b4cd2
PH
9996 case UNOP_QUAL:
9997 (*pos) += 2;
9998 type = exp->elts[pc + 1].type;
9999 return ada_evaluate_subexp (type, exp, pos, noside);
10000
14f9c5c9
AS
10001 case BINOP_ASSIGN:
10002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10003 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10004 {
10005 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10006 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10007 return arg1;
10008 return ada_value_assign (arg1, arg1);
10009 }
003f3813
JB
10010 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10011 except if the lhs of our assignment is a convenience variable.
10012 In the case of assigning to a convenience variable, the lhs
10013 should be exactly the result of the evaluation of the rhs. */
10014 type = value_type (arg1);
10015 if (VALUE_LVAL (arg1) == lval_internalvar)
10016 type = NULL;
10017 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10018 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10019 return arg1;
df407dfe
AC
10020 if (ada_is_fixed_point_type (value_type (arg1)))
10021 arg2 = cast_to_fixed (value_type (arg1), arg2);
10022 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10023 error
323e0a4a 10024 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10025 else
df407dfe 10026 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10027 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10028
10029 case BINOP_ADD:
10030 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10031 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10032 if (noside == EVAL_SKIP)
4c4b4cd2 10033 goto nosideret;
2ac8a782
JB
10034 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10035 return (value_from_longest
10036 (value_type (arg1),
10037 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10038 if ((ada_is_fixed_point_type (value_type (arg1))
10039 || ada_is_fixed_point_type (value_type (arg2)))
10040 && value_type (arg1) != value_type (arg2))
323e0a4a 10041 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10042 /* Do the addition, and cast the result to the type of the first
10043 argument. We cannot cast the result to a reference type, so if
10044 ARG1 is a reference type, find its underlying type. */
10045 type = value_type (arg1);
10046 while (TYPE_CODE (type) == TYPE_CODE_REF)
10047 type = TYPE_TARGET_TYPE (type);
f44316fa 10048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10049 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10050
10051 case BINOP_SUB:
10052 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10053 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10054 if (noside == EVAL_SKIP)
4c4b4cd2 10055 goto nosideret;
2ac8a782
JB
10056 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10057 return (value_from_longest
10058 (value_type (arg1),
10059 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10060 if ((ada_is_fixed_point_type (value_type (arg1))
10061 || ada_is_fixed_point_type (value_type (arg2)))
10062 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10063 error (_("Operands of fixed-point subtraction "
10064 "must have the same type"));
b7789565
JB
10065 /* Do the substraction, and cast the result to the type of the first
10066 argument. We cannot cast the result to a reference type, so if
10067 ARG1 is a reference type, find its underlying type. */
10068 type = value_type (arg1);
10069 while (TYPE_CODE (type) == TYPE_CODE_REF)
10070 type = TYPE_TARGET_TYPE (type);
f44316fa 10071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10072 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10073
10074 case BINOP_MUL:
10075 case BINOP_DIV:
e1578042
JB
10076 case BINOP_REM:
10077 case BINOP_MOD:
14f9c5c9
AS
10078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10079 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10080 if (noside == EVAL_SKIP)
4c4b4cd2 10081 goto nosideret;
e1578042 10082 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10083 {
10084 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10085 return value_zero (value_type (arg1), not_lval);
10086 }
14f9c5c9 10087 else
4c4b4cd2 10088 {
a53b7a21 10089 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10090 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10091 arg1 = cast_from_fixed (type, arg1);
df407dfe 10092 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10093 arg2 = cast_from_fixed (type, arg2);
f44316fa 10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10095 return ada_value_binop (arg1, arg2, op);
10096 }
10097
4c4b4cd2
PH
10098 case BINOP_EQUAL:
10099 case BINOP_NOTEQUAL:
14f9c5c9 10100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10101 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10102 if (noside == EVAL_SKIP)
76a01679 10103 goto nosideret;
4c4b4cd2 10104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10105 tem = 0;
4c4b4cd2 10106 else
f44316fa
UW
10107 {
10108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10109 tem = ada_value_equal (arg1, arg2);
10110 }
4c4b4cd2 10111 if (op == BINOP_NOTEQUAL)
76a01679 10112 tem = !tem;
fbb06eb1
UW
10113 type = language_bool_type (exp->language_defn, exp->gdbarch);
10114 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10115
10116 case UNOP_NEG:
10117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
df407dfe
AC
10120 else if (ada_is_fixed_point_type (value_type (arg1)))
10121 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10122 else
f44316fa
UW
10123 {
10124 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10125 return value_neg (arg1);
10126 }
4c4b4cd2 10127
2330c6c6
JB
10128 case BINOP_LOGICAL_AND:
10129 case BINOP_LOGICAL_OR:
10130 case UNOP_LOGICAL_NOT:
000d5124
JB
10131 {
10132 struct value *val;
10133
10134 *pos -= 1;
10135 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10136 type = language_bool_type (exp->language_defn, exp->gdbarch);
10137 return value_cast (type, val);
000d5124 10138 }
2330c6c6
JB
10139
10140 case BINOP_BITWISE_AND:
10141 case BINOP_BITWISE_IOR:
10142 case BINOP_BITWISE_XOR:
000d5124
JB
10143 {
10144 struct value *val;
10145
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10147 *pos = pc;
10148 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10149
10150 return value_cast (value_type (arg1), val);
10151 }
2330c6c6 10152
14f9c5c9
AS
10153 case OP_VAR_VALUE:
10154 *pos -= 1;
6799def4 10155
14f9c5c9 10156 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10157 {
10158 *pos += 4;
10159 goto nosideret;
10160 }
10161 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10162 /* Only encountered when an unresolved symbol occurs in a
10163 context other than a function call, in which case, it is
52ce6436 10164 invalid. */
323e0a4a 10165 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 10167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10168 {
0c1f74cf 10169 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10170 /* Check to see if this is a tagged type. We also need to handle
10171 the case where the type is a reference to a tagged type, but
10172 we have to be careful to exclude pointers to tagged types.
10173 The latter should be shown as usual (as a pointer), whereas
10174 a reference should mostly be transparent to the user. */
10175 if (ada_is_tagged_type (type, 0)
023db19c 10176 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10177 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
10178 {
10179 /* Tagged types are a little special in the fact that the real
10180 type is dynamic and can only be determined by inspecting the
10181 object's tag. This means that we need to get the object's
10182 value first (EVAL_NORMAL) and then extract the actual object
10183 type from its tag.
10184
10185 Note that we cannot skip the final step where we extract
10186 the object type from its tag, because the EVAL_NORMAL phase
10187 results in dynamic components being resolved into fixed ones.
10188 This can cause problems when trying to print the type
10189 description of tagged types whose parent has a dynamic size:
10190 We use the type name of the "_parent" component in order
10191 to print the name of the ancestor type in the type description.
10192 If that component had a dynamic size, the resolution into
10193 a fixed type would result in the loss of that type name,
10194 thus preventing us from printing the name of the ancestor
10195 type in the type description. */
10196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
10197
10198 if (TYPE_CODE (type) != TYPE_CODE_REF)
10199 {
10200 struct type *actual_type;
10201
10202 actual_type = type_from_tag (ada_value_tag (arg1));
10203 if (actual_type == NULL)
10204 /* If, for some reason, we were unable to determine
10205 the actual type from the tag, then use the static
10206 approximation that we just computed as a fallback.
10207 This can happen if the debugging information is
10208 incomplete, for instance. */
10209 actual_type = type;
10210 return value_zero (actual_type, not_lval);
10211 }
10212 else
10213 {
10214 /* In the case of a ref, ada_coerce_ref takes care
10215 of determining the actual type. But the evaluation
10216 should return a ref as it should be valid to ask
10217 for its address; so rebuild a ref after coerce. */
10218 arg1 = ada_coerce_ref (arg1);
10219 return value_ref (arg1);
10220 }
0c1f74cf
JB
10221 }
10222
4c4b4cd2 10223 *pos += 4;
52865325 10224 return value_zero (to_static_fixed_type (type), not_lval);
4c4b4cd2 10225 }
d2e4a39e 10226 else
4c4b4cd2 10227 {
284614f0 10228 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
10229 return ada_to_fixed_value (arg1);
10230 }
10231
10232 case OP_FUNCALL:
10233 (*pos) += 2;
10234
10235 /* Allocate arg vector, including space for the function to be
10236 called in argvec[0] and a terminating NULL. */
10237 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10238 argvec =
10239 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10240
10241 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10242 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10243 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10244 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10245 else
10246 {
10247 for (tem = 0; tem <= nargs; tem += 1)
10248 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10249 argvec[tem] = 0;
10250
10251 if (noside == EVAL_SKIP)
10252 goto nosideret;
10253 }
10254
ad82864c
JB
10255 if (ada_is_constrained_packed_array_type
10256 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10257 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10258 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10259 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10260 /* This is a packed array that has already been fixed, and
10261 therefore already coerced to a simple array. Nothing further
10262 to do. */
10263 ;
df407dfe
AC
10264 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10265 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10266 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10267 argvec[0] = value_addr (argvec[0]);
10268
df407dfe 10269 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10270
10271 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10272 them. So, if this is an array typedef (encoding use for array
10273 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10274 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10275 type = ada_typedef_target_type (type);
10276
4c4b4cd2
PH
10277 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10278 {
61ee279c 10279 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10280 {
10281 case TYPE_CODE_FUNC:
61ee279c 10282 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10283 break;
10284 case TYPE_CODE_ARRAY:
10285 break;
10286 case TYPE_CODE_STRUCT:
10287 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10288 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10289 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10290 break;
10291 default:
323e0a4a 10292 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10293 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10294 break;
10295 }
10296 }
10297
10298 switch (TYPE_CODE (type))
10299 {
10300 case TYPE_CODE_FUNC:
10301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10302 {
10303 struct type *rtype = TYPE_TARGET_TYPE (type);
10304
10305 if (TYPE_GNU_IFUNC (type))
10306 return allocate_value (TYPE_TARGET_TYPE (rtype));
10307 return allocate_value (rtype);
10308 }
4c4b4cd2 10309 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10310 case TYPE_CODE_INTERNAL_FUNCTION:
10311 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10312 /* We don't know anything about what the internal
10313 function might return, but we have to return
10314 something. */
10315 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10316 not_lval);
10317 else
10318 return call_internal_function (exp->gdbarch, exp->language_defn,
10319 argvec[0], nargs, argvec + 1);
10320
4c4b4cd2
PH
10321 case TYPE_CODE_STRUCT:
10322 {
10323 int arity;
10324
4c4b4cd2
PH
10325 arity = ada_array_arity (type);
10326 type = ada_array_element_type (type, nargs);
10327 if (type == NULL)
323e0a4a 10328 error (_("cannot subscript or call a record"));
4c4b4cd2 10329 if (arity != nargs)
323e0a4a 10330 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10331 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10332 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10333 return
10334 unwrap_value (ada_value_subscript
10335 (argvec[0], nargs, argvec + 1));
10336 }
10337 case TYPE_CODE_ARRAY:
10338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339 {
10340 type = ada_array_element_type (type, nargs);
10341 if (type == NULL)
323e0a4a 10342 error (_("element type of array unknown"));
4c4b4cd2 10343 else
0a07e705 10344 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10345 }
10346 return
10347 unwrap_value (ada_value_subscript
10348 (ada_coerce_to_simple_array (argvec[0]),
10349 nargs, argvec + 1));
10350 case TYPE_CODE_PTR: /* Pointer to array */
10351 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10353 {
10354 type = ada_array_element_type (type, nargs);
10355 if (type == NULL)
323e0a4a 10356 error (_("element type of array unknown"));
4c4b4cd2 10357 else
0a07e705 10358 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10359 }
10360 return
10361 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10362 nargs, argvec + 1));
10363
10364 default:
e1d5a0d2
PH
10365 error (_("Attempt to index or call something other than an "
10366 "array or function"));
4c4b4cd2
PH
10367 }
10368
10369 case TERNOP_SLICE:
10370 {
10371 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 struct value *low_bound_val =
10373 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10374 struct value *high_bound_val =
10375 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 LONGEST low_bound;
10377 LONGEST high_bound;
5b4ee69b 10378
994b9211
AC
10379 low_bound_val = coerce_ref (low_bound_val);
10380 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10381 low_bound = pos_atr (low_bound_val);
10382 high_bound = pos_atr (high_bound_val);
963a6417 10383
4c4b4cd2
PH
10384 if (noside == EVAL_SKIP)
10385 goto nosideret;
10386
4c4b4cd2
PH
10387 /* If this is a reference to an aligner type, then remove all
10388 the aligners. */
df407dfe
AC
10389 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10390 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10391 TYPE_TARGET_TYPE (value_type (array)) =
10392 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10393
ad82864c 10394 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10395 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10396
10397 /* If this is a reference to an array or an array lvalue,
10398 convert to a pointer. */
df407dfe
AC
10399 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10400 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10401 && VALUE_LVAL (array) == lval_memory))
10402 array = value_addr (array);
10403
1265e4aa 10404 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10405 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10406 (value_type (array))))
0b5d8877 10407 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10408
10409 array = ada_coerce_to_simple_array_ptr (array);
10410
714e53ab
PH
10411 /* If we have more than one level of pointer indirection,
10412 dereference the value until we get only one level. */
df407dfe
AC
10413 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10414 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10415 == TYPE_CODE_PTR))
10416 array = value_ind (array);
10417
10418 /* Make sure we really do have an array type before going further,
10419 to avoid a SEGV when trying to get the index type or the target
10420 type later down the road if the debug info generated by
10421 the compiler is incorrect or incomplete. */
df407dfe 10422 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10423 error (_("cannot take slice of non-array"));
714e53ab 10424
828292f2
JB
10425 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10426 == TYPE_CODE_PTR)
4c4b4cd2 10427 {
828292f2
JB
10428 struct type *type0 = ada_check_typedef (value_type (array));
10429
0b5d8877 10430 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10431 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10432 else
10433 {
10434 struct type *arr_type0 =
828292f2 10435 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10436
f5938064
JG
10437 return ada_value_slice_from_ptr (array, arr_type0,
10438 longest_to_int (low_bound),
10439 longest_to_int (high_bound));
4c4b4cd2
PH
10440 }
10441 }
10442 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10443 return array;
10444 else if (high_bound < low_bound)
df407dfe 10445 return empty_array (value_type (array), low_bound);
4c4b4cd2 10446 else
529cad9c
PH
10447 return ada_value_slice (array, longest_to_int (low_bound),
10448 longest_to_int (high_bound));
4c4b4cd2 10449 }
14f9c5c9 10450
4c4b4cd2
PH
10451 case UNOP_IN_RANGE:
10452 (*pos) += 2;
10453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10454 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10455
14f9c5c9 10456 if (noside == EVAL_SKIP)
4c4b4cd2 10457 goto nosideret;
14f9c5c9 10458
4c4b4cd2
PH
10459 switch (TYPE_CODE (type))
10460 {
10461 default:
e1d5a0d2
PH
10462 lim_warning (_("Membership test incompletely implemented; "
10463 "always returns true"));
fbb06eb1
UW
10464 type = language_bool_type (exp->language_defn, exp->gdbarch);
10465 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10466
10467 case TYPE_CODE_RANGE:
030b4912
UW
10468 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10469 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10470 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10471 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10472 type = language_bool_type (exp->language_defn, exp->gdbarch);
10473 return
10474 value_from_longest (type,
4c4b4cd2
PH
10475 (value_less (arg1, arg3)
10476 || value_equal (arg1, arg3))
10477 && (value_less (arg2, arg1)
10478 || value_equal (arg2, arg1)));
10479 }
10480
10481 case BINOP_IN_BOUNDS:
14f9c5c9 10482 (*pos) += 2;
4c4b4cd2
PH
10483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10484 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10485
4c4b4cd2
PH
10486 if (noside == EVAL_SKIP)
10487 goto nosideret;
14f9c5c9 10488
4c4b4cd2 10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10490 {
10491 type = language_bool_type (exp->language_defn, exp->gdbarch);
10492 return value_zero (type, not_lval);
10493 }
14f9c5c9 10494
4c4b4cd2 10495 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10496
1eea4ebd
UW
10497 type = ada_index_type (value_type (arg2), tem, "range");
10498 if (!type)
10499 type = value_type (arg1);
14f9c5c9 10500
1eea4ebd
UW
10501 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10502 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10503
f44316fa
UW
10504 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10505 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10506 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10507 return
fbb06eb1 10508 value_from_longest (type,
4c4b4cd2
PH
10509 (value_less (arg1, arg3)
10510 || value_equal (arg1, arg3))
10511 && (value_less (arg2, arg1)
10512 || value_equal (arg2, arg1)));
10513
10514 case TERNOP_IN_RANGE:
10515 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10516 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10517 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10518
10519 if (noside == EVAL_SKIP)
10520 goto nosideret;
10521
f44316fa
UW
10522 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10523 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10524 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10525 return
fbb06eb1 10526 value_from_longest (type,
4c4b4cd2
PH
10527 (value_less (arg1, arg3)
10528 || value_equal (arg1, arg3))
10529 && (value_less (arg2, arg1)
10530 || value_equal (arg2, arg1)));
10531
10532 case OP_ATR_FIRST:
10533 case OP_ATR_LAST:
10534 case OP_ATR_LENGTH:
10535 {
76a01679 10536 struct type *type_arg;
5b4ee69b 10537
76a01679
JB
10538 if (exp->elts[*pos].opcode == OP_TYPE)
10539 {
10540 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10541 arg1 = NULL;
5bc23cb3 10542 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10543 }
10544 else
10545 {
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 type_arg = NULL;
10548 }
10549
10550 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10551 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10552 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10553 *pos += 4;
10554
10555 if (noside == EVAL_SKIP)
10556 goto nosideret;
10557
10558 if (type_arg == NULL)
10559 {
10560 arg1 = ada_coerce_ref (arg1);
10561
ad82864c 10562 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10563 arg1 = ada_coerce_to_simple_array (arg1);
10564
aa4fb036 10565 if (op == OP_ATR_LENGTH)
1eea4ebd 10566 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10567 else
10568 {
10569 type = ada_index_type (value_type (arg1), tem,
10570 ada_attribute_name (op));
10571 if (type == NULL)
10572 type = builtin_type (exp->gdbarch)->builtin_int;
10573 }
76a01679
JB
10574
10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10576 return allocate_value (type);
76a01679
JB
10577
10578 switch (op)
10579 {
10580 default: /* Should never happen. */
323e0a4a 10581 error (_("unexpected attribute encountered"));
76a01679 10582 case OP_ATR_FIRST:
1eea4ebd
UW
10583 return value_from_longest
10584 (type, ada_array_bound (arg1, tem, 0));
76a01679 10585 case OP_ATR_LAST:
1eea4ebd
UW
10586 return value_from_longest
10587 (type, ada_array_bound (arg1, tem, 1));
76a01679 10588 case OP_ATR_LENGTH:
1eea4ebd
UW
10589 return value_from_longest
10590 (type, ada_array_length (arg1, tem));
76a01679
JB
10591 }
10592 }
10593 else if (discrete_type_p (type_arg))
10594 {
10595 struct type *range_type;
0d5cff50 10596 const char *name = ada_type_name (type_arg);
5b4ee69b 10597
76a01679
JB
10598 range_type = NULL;
10599 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10600 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10601 if (range_type == NULL)
10602 range_type = type_arg;
10603 switch (op)
10604 {
10605 default:
323e0a4a 10606 error (_("unexpected attribute encountered"));
76a01679 10607 case OP_ATR_FIRST:
690cc4eb 10608 return value_from_longest
43bbcdc2 10609 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10610 case OP_ATR_LAST:
690cc4eb 10611 return value_from_longest
43bbcdc2 10612 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10613 case OP_ATR_LENGTH:
323e0a4a 10614 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10615 }
10616 }
10617 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10618 error (_("unimplemented type attribute"));
76a01679
JB
10619 else
10620 {
10621 LONGEST low, high;
10622
ad82864c
JB
10623 if (ada_is_constrained_packed_array_type (type_arg))
10624 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10625
aa4fb036 10626 if (op == OP_ATR_LENGTH)
1eea4ebd 10627 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10628 else
10629 {
10630 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10631 if (type == NULL)
10632 type = builtin_type (exp->gdbarch)->builtin_int;
10633 }
1eea4ebd 10634
76a01679
JB
10635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10636 return allocate_value (type);
10637
10638 switch (op)
10639 {
10640 default:
323e0a4a 10641 error (_("unexpected attribute encountered"));
76a01679 10642 case OP_ATR_FIRST:
1eea4ebd 10643 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10644 return value_from_longest (type, low);
10645 case OP_ATR_LAST:
1eea4ebd 10646 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10647 return value_from_longest (type, high);
10648 case OP_ATR_LENGTH:
1eea4ebd
UW
10649 low = ada_array_bound_from_type (type_arg, tem, 0);
10650 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10651 return value_from_longest (type, high - low + 1);
10652 }
10653 }
14f9c5c9
AS
10654 }
10655
4c4b4cd2
PH
10656 case OP_ATR_TAG:
10657 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10658 if (noside == EVAL_SKIP)
76a01679 10659 goto nosideret;
4c4b4cd2
PH
10660
10661 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10662 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10663
10664 return ada_value_tag (arg1);
10665
10666 case OP_ATR_MIN:
10667 case OP_ATR_MAX:
10668 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10669 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10670 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10671 if (noside == EVAL_SKIP)
76a01679 10672 goto nosideret;
d2e4a39e 10673 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10674 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10675 else
f44316fa
UW
10676 {
10677 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10678 return value_binop (arg1, arg2,
10679 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10680 }
14f9c5c9 10681
4c4b4cd2
PH
10682 case OP_ATR_MODULUS:
10683 {
31dedfee 10684 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10685
5b4ee69b 10686 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10687 if (noside == EVAL_SKIP)
10688 goto nosideret;
4c4b4cd2 10689
76a01679 10690 if (!ada_is_modular_type (type_arg))
323e0a4a 10691 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10692
76a01679
JB
10693 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10694 ada_modulus (type_arg));
4c4b4cd2
PH
10695 }
10696
10697
10698 case OP_ATR_POS:
10699 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10700 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10701 if (noside == EVAL_SKIP)
76a01679 10702 goto nosideret;
3cb382c9
UW
10703 type = builtin_type (exp->gdbarch)->builtin_int;
10704 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10705 return value_zero (type, not_lval);
14f9c5c9 10706 else
3cb382c9 10707 return value_pos_atr (type, arg1);
14f9c5c9 10708
4c4b4cd2
PH
10709 case OP_ATR_SIZE:
10710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10711 type = value_type (arg1);
10712
10713 /* If the argument is a reference, then dereference its type, since
10714 the user is really asking for the size of the actual object,
10715 not the size of the pointer. */
10716 if (TYPE_CODE (type) == TYPE_CODE_REF)
10717 type = TYPE_TARGET_TYPE (type);
10718
4c4b4cd2 10719 if (noside == EVAL_SKIP)
76a01679 10720 goto nosideret;
4c4b4cd2 10721 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10722 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10723 else
22601c15 10724 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10725 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10726
10727 case OP_ATR_VAL:
10728 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10730 type = exp->elts[pc + 2].type;
14f9c5c9 10731 if (noside == EVAL_SKIP)
76a01679 10732 goto nosideret;
4c4b4cd2 10733 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10734 return value_zero (type, not_lval);
4c4b4cd2 10735 else
76a01679 10736 return value_val_atr (type, arg1);
4c4b4cd2
PH
10737
10738 case BINOP_EXP:
10739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
10743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10744 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10745 else
f44316fa
UW
10746 {
10747 /* For integer exponentiation operations,
10748 only promote the first argument. */
10749 if (is_integral_type (value_type (arg2)))
10750 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10751 else
10752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10753
10754 return value_binop (arg1, arg2, op);
10755 }
4c4b4cd2
PH
10756
10757 case UNOP_PLUS:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 if (noside == EVAL_SKIP)
10760 goto nosideret;
10761 else
10762 return arg1;
10763
10764 case UNOP_ABS:
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 if (noside == EVAL_SKIP)
10767 goto nosideret;
f44316fa 10768 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10769 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10770 return value_neg (arg1);
14f9c5c9 10771 else
4c4b4cd2 10772 return arg1;
14f9c5c9
AS
10773
10774 case UNOP_IND:
5ec18f2b 10775 preeval_pos = *pos;
6b0d7253 10776 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10777 if (noside == EVAL_SKIP)
4c4b4cd2 10778 goto nosideret;
df407dfe 10779 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10781 {
10782 if (ada_is_array_descriptor_type (type))
10783 /* GDB allows dereferencing GNAT array descriptors. */
10784 {
10785 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10786
4c4b4cd2 10787 if (arrType == NULL)
323e0a4a 10788 error (_("Attempt to dereference null array pointer."));
00a4c844 10789 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10790 }
10791 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10792 || TYPE_CODE (type) == TYPE_CODE_REF
10793 /* In C you can dereference an array to get the 1st elt. */
10794 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10795 {
5ec18f2b
JG
10796 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10797 only be determined by inspecting the object's tag.
10798 This means that we need to evaluate completely the
10799 expression in order to get its type. */
10800
023db19c
JB
10801 if ((TYPE_CODE (type) == TYPE_CODE_REF
10802 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10803 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10804 {
10805 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10806 EVAL_NORMAL);
10807 type = value_type (ada_value_ind (arg1));
10808 }
10809 else
10810 {
10811 type = to_static_fixed_type
10812 (ada_aligned_type
10813 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10814 }
10815 check_size (type);
714e53ab
PH
10816 return value_zero (type, lval_memory);
10817 }
4c4b4cd2 10818 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10819 {
10820 /* GDB allows dereferencing an int. */
10821 if (expect_type == NULL)
10822 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10823 lval_memory);
10824 else
10825 {
10826 expect_type =
10827 to_static_fixed_type (ada_aligned_type (expect_type));
10828 return value_zero (expect_type, lval_memory);
10829 }
10830 }
4c4b4cd2 10831 else
323e0a4a 10832 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10833 }
0963b4bd 10834 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10835 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10836
96967637
JB
10837 if (TYPE_CODE (type) == TYPE_CODE_INT)
10838 /* GDB allows dereferencing an int. If we were given
10839 the expect_type, then use that as the target type.
10840 Otherwise, assume that the target type is an int. */
10841 {
10842 if (expect_type != NULL)
10843 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10844 arg1));
10845 else
10846 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10847 (CORE_ADDR) value_as_address (arg1));
10848 }
6b0d7253 10849
4c4b4cd2
PH
10850 if (ada_is_array_descriptor_type (type))
10851 /* GDB allows dereferencing GNAT array descriptors. */
10852 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10853 else
4c4b4cd2 10854 return ada_value_ind (arg1);
14f9c5c9
AS
10855
10856 case STRUCTOP_STRUCT:
10857 tem = longest_to_int (exp->elts[pc + 1].longconst);
10858 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10859 preeval_pos = *pos;
14f9c5c9
AS
10860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 if (noside == EVAL_SKIP)
4c4b4cd2 10862 goto nosideret;
14f9c5c9 10863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10864 {
df407dfe 10865 struct type *type1 = value_type (arg1);
5b4ee69b 10866
76a01679
JB
10867 if (ada_is_tagged_type (type1, 1))
10868 {
10869 type = ada_lookup_struct_elt_type (type1,
10870 &exp->elts[pc + 2].string,
10871 1, 1, NULL);
5ec18f2b
JG
10872
10873 /* If the field is not found, check if it exists in the
10874 extension of this object's type. This means that we
10875 need to evaluate completely the expression. */
10876
76a01679 10877 if (type == NULL)
5ec18f2b
JG
10878 {
10879 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10880 EVAL_NORMAL);
10881 arg1 = ada_value_struct_elt (arg1,
10882 &exp->elts[pc + 2].string,
10883 0);
10884 arg1 = unwrap_value (arg1);
10885 type = value_type (ada_to_fixed_value (arg1));
10886 }
76a01679
JB
10887 }
10888 else
10889 type =
10890 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10891 0, NULL);
10892
10893 return value_zero (ada_aligned_type (type), lval_memory);
10894 }
14f9c5c9 10895 else
284614f0
JB
10896 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10897 arg1 = unwrap_value (arg1);
10898 return ada_to_fixed_value (arg1);
10899
14f9c5c9 10900 case OP_TYPE:
4c4b4cd2
PH
10901 /* The value is not supposed to be used. This is here to make it
10902 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10903 (*pos) += 2;
10904 if (noside == EVAL_SKIP)
4c4b4cd2 10905 goto nosideret;
14f9c5c9 10906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10907 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10908 else
323e0a4a 10909 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10910
10911 case OP_AGGREGATE:
10912 case OP_CHOICES:
10913 case OP_OTHERS:
10914 case OP_DISCRETE_RANGE:
10915 case OP_POSITIONAL:
10916 case OP_NAME:
10917 if (noside == EVAL_NORMAL)
10918 switch (op)
10919 {
10920 case OP_NAME:
10921 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10922 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10923 case OP_AGGREGATE:
10924 error (_("Aggregates only allowed on the right of an assignment"));
10925 default:
0963b4bd
MS
10926 internal_error (__FILE__, __LINE__,
10927 _("aggregate apparently mangled"));
52ce6436
PH
10928 }
10929
10930 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10931 *pos += oplen - 1;
10932 for (tem = 0; tem < nargs; tem += 1)
10933 ada_evaluate_subexp (NULL, exp, pos, noside);
10934 goto nosideret;
14f9c5c9
AS
10935 }
10936
10937nosideret:
22601c15 10938 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10939}
14f9c5c9 10940\f
d2e4a39e 10941
4c4b4cd2 10942 /* Fixed point */
14f9c5c9
AS
10943
10944/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10945 type name that encodes the 'small and 'delta information.
4c4b4cd2 10946 Otherwise, return NULL. */
14f9c5c9 10947
d2e4a39e 10948static const char *
ebf56fd3 10949fixed_type_info (struct type *type)
14f9c5c9 10950{
d2e4a39e 10951 const char *name = ada_type_name (type);
14f9c5c9
AS
10952 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10953
d2e4a39e
AS
10954 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10955 {
14f9c5c9 10956 const char *tail = strstr (name, "___XF_");
5b4ee69b 10957
14f9c5c9 10958 if (tail == NULL)
4c4b4cd2 10959 return NULL;
d2e4a39e 10960 else
4c4b4cd2 10961 return tail + 5;
14f9c5c9
AS
10962 }
10963 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10964 return fixed_type_info (TYPE_TARGET_TYPE (type));
10965 else
10966 return NULL;
10967}
10968
4c4b4cd2 10969/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10970
10971int
ebf56fd3 10972ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10973{
10974 return fixed_type_info (type) != NULL;
10975}
10976
4c4b4cd2
PH
10977/* Return non-zero iff TYPE represents a System.Address type. */
10978
10979int
10980ada_is_system_address_type (struct type *type)
10981{
10982 return (TYPE_NAME (type)
10983 && strcmp (TYPE_NAME (type), "system__address") == 0);
10984}
10985
14f9c5c9
AS
10986/* Assuming that TYPE is the representation of an Ada fixed-point
10987 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10988 delta cannot be determined. */
14f9c5c9
AS
10989
10990DOUBLEST
ebf56fd3 10991ada_delta (struct type *type)
14f9c5c9
AS
10992{
10993 const char *encoding = fixed_type_info (type);
facc390f 10994 DOUBLEST num, den;
14f9c5c9 10995
facc390f
JB
10996 /* Strictly speaking, num and den are encoded as integer. However,
10997 they may not fit into a long, and they will have to be converted
10998 to DOUBLEST anyway. So scan them as DOUBLEST. */
10999 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11000 &num, &den) < 2)
14f9c5c9 11001 return -1.0;
d2e4a39e 11002 else
facc390f 11003 return num / den;
14f9c5c9
AS
11004}
11005
11006/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11007 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11008
11009static DOUBLEST
ebf56fd3 11010scaling_factor (struct type *type)
14f9c5c9
AS
11011{
11012 const char *encoding = fixed_type_info (type);
facc390f 11013 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11014 int n;
d2e4a39e 11015
facc390f
JB
11016 /* Strictly speaking, num's and den's are encoded as integer. However,
11017 they may not fit into a long, and they will have to be converted
11018 to DOUBLEST anyway. So scan them as DOUBLEST. */
11019 n = sscanf (encoding,
11020 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11021 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11022 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11023
11024 if (n < 2)
11025 return 1.0;
11026 else if (n == 4)
facc390f 11027 return num1 / den1;
d2e4a39e 11028 else
facc390f 11029 return num0 / den0;
14f9c5c9
AS
11030}
11031
11032
11033/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11034 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11035
11036DOUBLEST
ebf56fd3 11037ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11038{
d2e4a39e 11039 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11040}
11041
4c4b4cd2
PH
11042/* The representation of a fixed-point value of type TYPE
11043 corresponding to the value X. */
14f9c5c9
AS
11044
11045LONGEST
ebf56fd3 11046ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11047{
11048 return (LONGEST) (x / scaling_factor (type) + 0.5);
11049}
11050
14f9c5c9 11051\f
d2e4a39e 11052
4c4b4cd2 11053 /* Range types */
14f9c5c9
AS
11054
11055/* Scan STR beginning at position K for a discriminant name, and
11056 return the value of that discriminant field of DVAL in *PX. If
11057 PNEW_K is not null, put the position of the character beyond the
11058 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11059 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11060
11061static int
07d8f827 11062scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11063 int *pnew_k)
14f9c5c9
AS
11064{
11065 static char *bound_buffer = NULL;
11066 static size_t bound_buffer_len = 0;
11067 char *bound;
11068 char *pend;
d2e4a39e 11069 struct value *bound_val;
14f9c5c9
AS
11070
11071 if (dval == NULL || str == NULL || str[k] == '\0')
11072 return 0;
11073
d2e4a39e 11074 pend = strstr (str + k, "__");
14f9c5c9
AS
11075 if (pend == NULL)
11076 {
d2e4a39e 11077 bound = str + k;
14f9c5c9
AS
11078 k += strlen (bound);
11079 }
d2e4a39e 11080 else
14f9c5c9 11081 {
d2e4a39e 11082 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11083 bound = bound_buffer;
d2e4a39e
AS
11084 strncpy (bound_buffer, str + k, pend - (str + k));
11085 bound[pend - (str + k)] = '\0';
11086 k = pend - str;
14f9c5c9 11087 }
d2e4a39e 11088
df407dfe 11089 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11090 if (bound_val == NULL)
11091 return 0;
11092
11093 *px = value_as_long (bound_val);
11094 if (pnew_k != NULL)
11095 *pnew_k = k;
11096 return 1;
11097}
11098
11099/* Value of variable named NAME in the current environment. If
11100 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11101 otherwise causes an error with message ERR_MSG. */
11102
d2e4a39e
AS
11103static struct value *
11104get_var_value (char *name, char *err_msg)
14f9c5c9 11105{
4c4b4cd2 11106 struct ada_symbol_info *syms;
14f9c5c9
AS
11107 int nsyms;
11108
4c4b4cd2 11109 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11110 &syms);
14f9c5c9
AS
11111
11112 if (nsyms != 1)
11113 {
11114 if (err_msg == NULL)
4c4b4cd2 11115 return 0;
14f9c5c9 11116 else
8a3fe4f8 11117 error (("%s"), err_msg);
14f9c5c9
AS
11118 }
11119
4c4b4cd2 11120 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11121}
d2e4a39e 11122
14f9c5c9 11123/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11124 no such variable found, returns 0, and sets *FLAG to 0. If
11125 successful, sets *FLAG to 1. */
11126
14f9c5c9 11127LONGEST
4c4b4cd2 11128get_int_var_value (char *name, int *flag)
14f9c5c9 11129{
4c4b4cd2 11130 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11131
14f9c5c9
AS
11132 if (var_val == 0)
11133 {
11134 if (flag != NULL)
4c4b4cd2 11135 *flag = 0;
14f9c5c9
AS
11136 return 0;
11137 }
11138 else
11139 {
11140 if (flag != NULL)
4c4b4cd2 11141 *flag = 1;
14f9c5c9
AS
11142 return value_as_long (var_val);
11143 }
11144}
d2e4a39e 11145
14f9c5c9
AS
11146
11147/* Return a range type whose base type is that of the range type named
11148 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11149 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11150 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11151 corresponding range type from debug information; fall back to using it
11152 if symbol lookup fails. If a new type must be created, allocate it
11153 like ORIG_TYPE was. The bounds information, in general, is encoded
11154 in NAME, the base type given in the named range type. */
14f9c5c9 11155
d2e4a39e 11156static struct type *
28c85d6c 11157to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11158{
0d5cff50 11159 const char *name;
14f9c5c9 11160 struct type *base_type;
d2e4a39e 11161 char *subtype_info;
14f9c5c9 11162
28c85d6c
JB
11163 gdb_assert (raw_type != NULL);
11164 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11165
1ce677a4 11166 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11167 base_type = TYPE_TARGET_TYPE (raw_type);
11168 else
11169 base_type = raw_type;
11170
28c85d6c 11171 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11172 subtype_info = strstr (name, "___XD");
11173 if (subtype_info == NULL)
690cc4eb 11174 {
43bbcdc2
PH
11175 LONGEST L = ada_discrete_type_low_bound (raw_type);
11176 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11177
690cc4eb
PH
11178 if (L < INT_MIN || U > INT_MAX)
11179 return raw_type;
11180 else
0c9c3474
SA
11181 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11182 L, U);
690cc4eb 11183 }
14f9c5c9
AS
11184 else
11185 {
11186 static char *name_buf = NULL;
11187 static size_t name_len = 0;
11188 int prefix_len = subtype_info - name;
11189 LONGEST L, U;
11190 struct type *type;
11191 char *bounds_str;
11192 int n;
11193
11194 GROW_VECT (name_buf, name_len, prefix_len + 5);
11195 strncpy (name_buf, name, prefix_len);
11196 name_buf[prefix_len] = '\0';
11197
11198 subtype_info += 5;
11199 bounds_str = strchr (subtype_info, '_');
11200 n = 1;
11201
d2e4a39e 11202 if (*subtype_info == 'L')
4c4b4cd2
PH
11203 {
11204 if (!ada_scan_number (bounds_str, n, &L, &n)
11205 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11206 return raw_type;
11207 if (bounds_str[n] == '_')
11208 n += 2;
0963b4bd 11209 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11210 n += 1;
11211 subtype_info += 1;
11212 }
d2e4a39e 11213 else
4c4b4cd2
PH
11214 {
11215 int ok;
5b4ee69b 11216
4c4b4cd2
PH
11217 strcpy (name_buf + prefix_len, "___L");
11218 L = get_int_var_value (name_buf, &ok);
11219 if (!ok)
11220 {
323e0a4a 11221 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11222 L = 1;
11223 }
11224 }
14f9c5c9 11225
d2e4a39e 11226 if (*subtype_info == 'U')
4c4b4cd2
PH
11227 {
11228 if (!ada_scan_number (bounds_str, n, &U, &n)
11229 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11230 return raw_type;
11231 }
d2e4a39e 11232 else
4c4b4cd2
PH
11233 {
11234 int ok;
5b4ee69b 11235
4c4b4cd2
PH
11236 strcpy (name_buf + prefix_len, "___U");
11237 U = get_int_var_value (name_buf, &ok);
11238 if (!ok)
11239 {
323e0a4a 11240 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11241 U = L;
11242 }
11243 }
14f9c5c9 11244
0c9c3474
SA
11245 type = create_static_range_type (alloc_type_copy (raw_type),
11246 base_type, L, U);
d2e4a39e 11247 TYPE_NAME (type) = name;
14f9c5c9
AS
11248 return type;
11249 }
11250}
11251
4c4b4cd2
PH
11252/* True iff NAME is the name of a range type. */
11253
14f9c5c9 11254int
d2e4a39e 11255ada_is_range_type_name (const char *name)
14f9c5c9
AS
11256{
11257 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11258}
14f9c5c9 11259\f
d2e4a39e 11260
4c4b4cd2
PH
11261 /* Modular types */
11262
11263/* True iff TYPE is an Ada modular type. */
14f9c5c9 11264
14f9c5c9 11265int
d2e4a39e 11266ada_is_modular_type (struct type *type)
14f9c5c9 11267{
18af8284 11268 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11269
11270 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11271 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11272 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11273}
11274
4c4b4cd2
PH
11275/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11276
61ee279c 11277ULONGEST
0056e4d5 11278ada_modulus (struct type *type)
14f9c5c9 11279{
43bbcdc2 11280 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11281}
d2e4a39e 11282\f
f7f9143b
JB
11283
11284/* Ada exception catchpoint support:
11285 ---------------------------------
11286
11287 We support 3 kinds of exception catchpoints:
11288 . catchpoints on Ada exceptions
11289 . catchpoints on unhandled Ada exceptions
11290 . catchpoints on failed assertions
11291
11292 Exceptions raised during failed assertions, or unhandled exceptions
11293 could perfectly be caught with the general catchpoint on Ada exceptions.
11294 However, we can easily differentiate these two special cases, and having
11295 the option to distinguish these two cases from the rest can be useful
11296 to zero-in on certain situations.
11297
11298 Exception catchpoints are a specialized form of breakpoint,
11299 since they rely on inserting breakpoints inside known routines
11300 of the GNAT runtime. The implementation therefore uses a standard
11301 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11302 of breakpoint_ops.
11303
0259addd
JB
11304 Support in the runtime for exception catchpoints have been changed
11305 a few times already, and these changes affect the implementation
11306 of these catchpoints. In order to be able to support several
11307 variants of the runtime, we use a sniffer that will determine
28010a5d 11308 the runtime variant used by the program being debugged. */
f7f9143b 11309
82eacd52
JB
11310/* Ada's standard exceptions.
11311
11312 The Ada 83 standard also defined Numeric_Error. But there so many
11313 situations where it was unclear from the Ada 83 Reference Manual
11314 (RM) whether Constraint_Error or Numeric_Error should be raised,
11315 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11316 Interpretation saying that anytime the RM says that Numeric_Error
11317 should be raised, the implementation may raise Constraint_Error.
11318 Ada 95 went one step further and pretty much removed Numeric_Error
11319 from the list of standard exceptions (it made it a renaming of
11320 Constraint_Error, to help preserve compatibility when compiling
11321 an Ada83 compiler). As such, we do not include Numeric_Error from
11322 this list of standard exceptions. */
3d0b0fa3
JB
11323
11324static char *standard_exc[] = {
11325 "constraint_error",
11326 "program_error",
11327 "storage_error",
11328 "tasking_error"
11329};
11330
0259addd
JB
11331typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11332
11333/* A structure that describes how to support exception catchpoints
11334 for a given executable. */
11335
11336struct exception_support_info
11337{
11338 /* The name of the symbol to break on in order to insert
11339 a catchpoint on exceptions. */
11340 const char *catch_exception_sym;
11341
11342 /* The name of the symbol to break on in order to insert
11343 a catchpoint on unhandled exceptions. */
11344 const char *catch_exception_unhandled_sym;
11345
11346 /* The name of the symbol to break on in order to insert
11347 a catchpoint on failed assertions. */
11348 const char *catch_assert_sym;
11349
11350 /* Assuming that the inferior just triggered an unhandled exception
11351 catchpoint, this function is responsible for returning the address
11352 in inferior memory where the name of that exception is stored.
11353 Return zero if the address could not be computed. */
11354 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11355};
11356
11357static CORE_ADDR ada_unhandled_exception_name_addr (void);
11358static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11359
11360/* The following exception support info structure describes how to
11361 implement exception catchpoints with the latest version of the
11362 Ada runtime (as of 2007-03-06). */
11363
11364static const struct exception_support_info default_exception_support_info =
11365{
11366 "__gnat_debug_raise_exception", /* catch_exception_sym */
11367 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11368 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11369 ada_unhandled_exception_name_addr
11370};
11371
11372/* The following exception support info structure describes how to
11373 implement exception catchpoints with a slightly older version
11374 of the Ada runtime. */
11375
11376static const struct exception_support_info exception_support_info_fallback =
11377{
11378 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11379 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11380 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11381 ada_unhandled_exception_name_addr_from_raise
11382};
11383
f17011e0
JB
11384/* Return nonzero if we can detect the exception support routines
11385 described in EINFO.
11386
11387 This function errors out if an abnormal situation is detected
11388 (for instance, if we find the exception support routines, but
11389 that support is found to be incomplete). */
11390
11391static int
11392ada_has_this_exception_support (const struct exception_support_info *einfo)
11393{
11394 struct symbol *sym;
11395
11396 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11397 that should be compiled with debugging information. As a result, we
11398 expect to find that symbol in the symtabs. */
11399
11400 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11401 if (sym == NULL)
a6af7abe
JB
11402 {
11403 /* Perhaps we did not find our symbol because the Ada runtime was
11404 compiled without debugging info, or simply stripped of it.
11405 It happens on some GNU/Linux distributions for instance, where
11406 users have to install a separate debug package in order to get
11407 the runtime's debugging info. In that situation, let the user
11408 know why we cannot insert an Ada exception catchpoint.
11409
11410 Note: Just for the purpose of inserting our Ada exception
11411 catchpoint, we could rely purely on the associated minimal symbol.
11412 But we would be operating in degraded mode anyway, since we are
11413 still lacking the debugging info needed later on to extract
11414 the name of the exception being raised (this name is printed in
11415 the catchpoint message, and is also used when trying to catch
11416 a specific exception). We do not handle this case for now. */
3b7344d5 11417 struct bound_minimal_symbol msym
1c8e84b0
JB
11418 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11419
3b7344d5 11420 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11421 error (_("Your Ada runtime appears to be missing some debugging "
11422 "information.\nCannot insert Ada exception catchpoint "
11423 "in this configuration."));
11424
11425 return 0;
11426 }
f17011e0
JB
11427
11428 /* Make sure that the symbol we found corresponds to a function. */
11429
11430 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11431 error (_("Symbol \"%s\" is not a function (class = %d)"),
11432 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11433
11434 return 1;
11435}
11436
0259addd
JB
11437/* Inspect the Ada runtime and determine which exception info structure
11438 should be used to provide support for exception catchpoints.
11439
3eecfa55
JB
11440 This function will always set the per-inferior exception_info,
11441 or raise an error. */
0259addd
JB
11442
11443static void
11444ada_exception_support_info_sniffer (void)
11445{
3eecfa55 11446 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11447
11448 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11449 if (data->exception_info != NULL)
0259addd
JB
11450 return;
11451
11452 /* Check the latest (default) exception support info. */
f17011e0 11453 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11454 {
3eecfa55 11455 data->exception_info = &default_exception_support_info;
0259addd
JB
11456 return;
11457 }
11458
11459 /* Try our fallback exception suport info. */
f17011e0 11460 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11461 {
3eecfa55 11462 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11463 return;
11464 }
11465
11466 /* Sometimes, it is normal for us to not be able to find the routine
11467 we are looking for. This happens when the program is linked with
11468 the shared version of the GNAT runtime, and the program has not been
11469 started yet. Inform the user of these two possible causes if
11470 applicable. */
11471
ccefe4c4 11472 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11473 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11474
11475 /* If the symbol does not exist, then check that the program is
11476 already started, to make sure that shared libraries have been
11477 loaded. If it is not started, this may mean that the symbol is
11478 in a shared library. */
11479
11480 if (ptid_get_pid (inferior_ptid) == 0)
11481 error (_("Unable to insert catchpoint. Try to start the program first."));
11482
11483 /* At this point, we know that we are debugging an Ada program and
11484 that the inferior has been started, but we still are not able to
0963b4bd 11485 find the run-time symbols. That can mean that we are in
0259addd
JB
11486 configurable run time mode, or that a-except as been optimized
11487 out by the linker... In any case, at this point it is not worth
11488 supporting this feature. */
11489
7dda8cff 11490 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11491}
11492
f7f9143b
JB
11493/* True iff FRAME is very likely to be that of a function that is
11494 part of the runtime system. This is all very heuristic, but is
11495 intended to be used as advice as to what frames are uninteresting
11496 to most users. */
11497
11498static int
11499is_known_support_routine (struct frame_info *frame)
11500{
4ed6b5be 11501 struct symtab_and_line sal;
55b87a52 11502 char *func_name;
692465f1 11503 enum language func_lang;
f7f9143b 11504 int i;
f35a17b5 11505 const char *fullname;
f7f9143b 11506
4ed6b5be
JB
11507 /* If this code does not have any debugging information (no symtab),
11508 This cannot be any user code. */
f7f9143b 11509
4ed6b5be 11510 find_frame_sal (frame, &sal);
f7f9143b
JB
11511 if (sal.symtab == NULL)
11512 return 1;
11513
4ed6b5be
JB
11514 /* If there is a symtab, but the associated source file cannot be
11515 located, then assume this is not user code: Selecting a frame
11516 for which we cannot display the code would not be very helpful
11517 for the user. This should also take care of case such as VxWorks
11518 where the kernel has some debugging info provided for a few units. */
f7f9143b 11519
f35a17b5
JK
11520 fullname = symtab_to_fullname (sal.symtab);
11521 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11522 return 1;
11523
4ed6b5be
JB
11524 /* Check the unit filename againt the Ada runtime file naming.
11525 We also check the name of the objfile against the name of some
11526 known system libraries that sometimes come with debugging info
11527 too. */
11528
f7f9143b
JB
11529 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11530 {
11531 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11532 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11533 return 1;
4ed6b5be 11534 if (sal.symtab->objfile != NULL
4262abfb 11535 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11536 return 1;
f7f9143b
JB
11537 }
11538
4ed6b5be 11539 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11540
e9e07ba6 11541 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11542 if (func_name == NULL)
11543 return 1;
11544
11545 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11546 {
11547 re_comp (known_auxiliary_function_name_patterns[i]);
11548 if (re_exec (func_name))
55b87a52
KS
11549 {
11550 xfree (func_name);
11551 return 1;
11552 }
f7f9143b
JB
11553 }
11554
55b87a52 11555 xfree (func_name);
f7f9143b
JB
11556 return 0;
11557}
11558
11559/* Find the first frame that contains debugging information and that is not
11560 part of the Ada run-time, starting from FI and moving upward. */
11561
0ef643c8 11562void
f7f9143b
JB
11563ada_find_printable_frame (struct frame_info *fi)
11564{
11565 for (; fi != NULL; fi = get_prev_frame (fi))
11566 {
11567 if (!is_known_support_routine (fi))
11568 {
11569 select_frame (fi);
11570 break;
11571 }
11572 }
11573
11574}
11575
11576/* Assuming that the inferior just triggered an unhandled exception
11577 catchpoint, return the address in inferior memory where the name
11578 of the exception is stored.
11579
11580 Return zero if the address could not be computed. */
11581
11582static CORE_ADDR
11583ada_unhandled_exception_name_addr (void)
0259addd
JB
11584{
11585 return parse_and_eval_address ("e.full_name");
11586}
11587
11588/* Same as ada_unhandled_exception_name_addr, except that this function
11589 should be used when the inferior uses an older version of the runtime,
11590 where the exception name needs to be extracted from a specific frame
11591 several frames up in the callstack. */
11592
11593static CORE_ADDR
11594ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11595{
11596 int frame_level;
11597 struct frame_info *fi;
3eecfa55 11598 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11599 struct cleanup *old_chain;
f7f9143b
JB
11600
11601 /* To determine the name of this exception, we need to select
11602 the frame corresponding to RAISE_SYM_NAME. This frame is
11603 at least 3 levels up, so we simply skip the first 3 frames
11604 without checking the name of their associated function. */
11605 fi = get_current_frame ();
11606 for (frame_level = 0; frame_level < 3; frame_level += 1)
11607 if (fi != NULL)
11608 fi = get_prev_frame (fi);
11609
55b87a52 11610 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11611 while (fi != NULL)
11612 {
55b87a52 11613 char *func_name;
692465f1
JB
11614 enum language func_lang;
11615
e9e07ba6 11616 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11617 if (func_name != NULL)
11618 {
11619 make_cleanup (xfree, func_name);
11620
11621 if (strcmp (func_name,
11622 data->exception_info->catch_exception_sym) == 0)
11623 break; /* We found the frame we were looking for... */
11624 fi = get_prev_frame (fi);
11625 }
f7f9143b 11626 }
55b87a52 11627 do_cleanups (old_chain);
f7f9143b
JB
11628
11629 if (fi == NULL)
11630 return 0;
11631
11632 select_frame (fi);
11633 return parse_and_eval_address ("id.full_name");
11634}
11635
11636/* Assuming the inferior just triggered an Ada exception catchpoint
11637 (of any type), return the address in inferior memory where the name
11638 of the exception is stored, if applicable.
11639
11640 Return zero if the address could not be computed, or if not relevant. */
11641
11642static CORE_ADDR
761269c8 11643ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11644 struct breakpoint *b)
11645{
3eecfa55
JB
11646 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11647
f7f9143b
JB
11648 switch (ex)
11649 {
761269c8 11650 case ada_catch_exception:
f7f9143b
JB
11651 return (parse_and_eval_address ("e.full_name"));
11652 break;
11653
761269c8 11654 case ada_catch_exception_unhandled:
3eecfa55 11655 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11656 break;
11657
761269c8 11658 case ada_catch_assert:
f7f9143b
JB
11659 return 0; /* Exception name is not relevant in this case. */
11660 break;
11661
11662 default:
11663 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11664 break;
11665 }
11666
11667 return 0; /* Should never be reached. */
11668}
11669
11670/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11671 any error that ada_exception_name_addr_1 might cause to be thrown.
11672 When an error is intercepted, a warning with the error message is printed,
11673 and zero is returned. */
11674
11675static CORE_ADDR
761269c8 11676ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11677 struct breakpoint *b)
11678{
bfd189b1 11679 volatile struct gdb_exception e;
f7f9143b
JB
11680 CORE_ADDR result = 0;
11681
11682 TRY_CATCH (e, RETURN_MASK_ERROR)
11683 {
11684 result = ada_exception_name_addr_1 (ex, b);
11685 }
11686
11687 if (e.reason < 0)
11688 {
11689 warning (_("failed to get exception name: %s"), e.message);
11690 return 0;
11691 }
11692
11693 return result;
11694}
11695
28010a5d
PA
11696static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11697
11698/* Ada catchpoints.
11699
11700 In the case of catchpoints on Ada exceptions, the catchpoint will
11701 stop the target on every exception the program throws. When a user
11702 specifies the name of a specific exception, we translate this
11703 request into a condition expression (in text form), and then parse
11704 it into an expression stored in each of the catchpoint's locations.
11705 We then use this condition to check whether the exception that was
11706 raised is the one the user is interested in. If not, then the
11707 target is resumed again. We store the name of the requested
11708 exception, in order to be able to re-set the condition expression
11709 when symbols change. */
11710
11711/* An instance of this type is used to represent an Ada catchpoint
11712 breakpoint location. It includes a "struct bp_location" as a kind
11713 of base class; users downcast to "struct bp_location *" when
11714 needed. */
11715
11716struct ada_catchpoint_location
11717{
11718 /* The base class. */
11719 struct bp_location base;
11720
11721 /* The condition that checks whether the exception that was raised
11722 is the specific exception the user specified on catchpoint
11723 creation. */
11724 struct expression *excep_cond_expr;
11725};
11726
11727/* Implement the DTOR method in the bp_location_ops structure for all
11728 Ada exception catchpoint kinds. */
11729
11730static void
11731ada_catchpoint_location_dtor (struct bp_location *bl)
11732{
11733 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11734
11735 xfree (al->excep_cond_expr);
11736}
11737
11738/* The vtable to be used in Ada catchpoint locations. */
11739
11740static const struct bp_location_ops ada_catchpoint_location_ops =
11741{
11742 ada_catchpoint_location_dtor
11743};
11744
11745/* An instance of this type is used to represent an Ada catchpoint.
11746 It includes a "struct breakpoint" as a kind of base class; users
11747 downcast to "struct breakpoint *" when needed. */
11748
11749struct ada_catchpoint
11750{
11751 /* The base class. */
11752 struct breakpoint base;
11753
11754 /* The name of the specific exception the user specified. */
11755 char *excep_string;
11756};
11757
11758/* Parse the exception condition string in the context of each of the
11759 catchpoint's locations, and store them for later evaluation. */
11760
11761static void
11762create_excep_cond_exprs (struct ada_catchpoint *c)
11763{
11764 struct cleanup *old_chain;
11765 struct bp_location *bl;
11766 char *cond_string;
11767
11768 /* Nothing to do if there's no specific exception to catch. */
11769 if (c->excep_string == NULL)
11770 return;
11771
11772 /* Same if there are no locations... */
11773 if (c->base.loc == NULL)
11774 return;
11775
11776 /* Compute the condition expression in text form, from the specific
11777 expection we want to catch. */
11778 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11779 old_chain = make_cleanup (xfree, cond_string);
11780
11781 /* Iterate over all the catchpoint's locations, and parse an
11782 expression for each. */
11783 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11784 {
11785 struct ada_catchpoint_location *ada_loc
11786 = (struct ada_catchpoint_location *) bl;
11787 struct expression *exp = NULL;
11788
11789 if (!bl->shlib_disabled)
11790 {
11791 volatile struct gdb_exception e;
bbc13ae3 11792 const char *s;
28010a5d
PA
11793
11794 s = cond_string;
11795 TRY_CATCH (e, RETURN_MASK_ERROR)
11796 {
1bb9788d
TT
11797 exp = parse_exp_1 (&s, bl->address,
11798 block_for_pc (bl->address), 0);
28010a5d
PA
11799 }
11800 if (e.reason < 0)
849f2b52
JB
11801 {
11802 warning (_("failed to reevaluate internal exception condition "
11803 "for catchpoint %d: %s"),
11804 c->base.number, e.message);
11805 /* There is a bug in GCC on sparc-solaris when building with
11806 optimization which causes EXP to change unexpectedly
11807 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11808 The problem should be fixed starting with GCC 4.9.
11809 In the meantime, work around it by forcing EXP back
11810 to NULL. */
11811 exp = NULL;
11812 }
28010a5d
PA
11813 }
11814
11815 ada_loc->excep_cond_expr = exp;
11816 }
11817
11818 do_cleanups (old_chain);
11819}
11820
11821/* Implement the DTOR method in the breakpoint_ops structure for all
11822 exception catchpoint kinds. */
11823
11824static void
761269c8 11825dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11826{
11827 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11828
11829 xfree (c->excep_string);
348d480f 11830
2060206e 11831 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11832}
11833
11834/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11835 structure for all exception catchpoint kinds. */
11836
11837static struct bp_location *
761269c8 11838allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11839 struct breakpoint *self)
11840{
11841 struct ada_catchpoint_location *loc;
11842
11843 loc = XNEW (struct ada_catchpoint_location);
11844 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11845 loc->excep_cond_expr = NULL;
11846 return &loc->base;
11847}
11848
11849/* Implement the RE_SET method in the breakpoint_ops structure for all
11850 exception catchpoint kinds. */
11851
11852static void
761269c8 11853re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11854{
11855 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11856
11857 /* Call the base class's method. This updates the catchpoint's
11858 locations. */
2060206e 11859 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11860
11861 /* Reparse the exception conditional expressions. One for each
11862 location. */
11863 create_excep_cond_exprs (c);
11864}
11865
11866/* Returns true if we should stop for this breakpoint hit. If the
11867 user specified a specific exception, we only want to cause a stop
11868 if the program thrown that exception. */
11869
11870static int
11871should_stop_exception (const struct bp_location *bl)
11872{
11873 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11874 const struct ada_catchpoint_location *ada_loc
11875 = (const struct ada_catchpoint_location *) bl;
11876 volatile struct gdb_exception ex;
11877 int stop;
11878
11879 /* With no specific exception, should always stop. */
11880 if (c->excep_string == NULL)
11881 return 1;
11882
11883 if (ada_loc->excep_cond_expr == NULL)
11884 {
11885 /* We will have a NULL expression if back when we were creating
11886 the expressions, this location's had failed to parse. */
11887 return 1;
11888 }
11889
11890 stop = 1;
11891 TRY_CATCH (ex, RETURN_MASK_ALL)
11892 {
11893 struct value *mark;
11894
11895 mark = value_mark ();
11896 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11897 value_free_to_mark (mark);
11898 }
11899 if (ex.reason < 0)
11900 exception_fprintf (gdb_stderr, ex,
11901 _("Error in testing exception condition:\n"));
11902 return stop;
11903}
11904
11905/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11906 for all exception catchpoint kinds. */
11907
11908static void
761269c8 11909check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11910{
11911 bs->stop = should_stop_exception (bs->bp_location_at);
11912}
11913
f7f9143b
JB
11914/* Implement the PRINT_IT method in the breakpoint_ops structure
11915 for all exception catchpoint kinds. */
11916
11917static enum print_stop_action
761269c8 11918print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11919{
79a45e25 11920 struct ui_out *uiout = current_uiout;
348d480f
PA
11921 struct breakpoint *b = bs->breakpoint_at;
11922
956a9fb9 11923 annotate_catchpoint (b->number);
f7f9143b 11924
956a9fb9 11925 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11926 {
956a9fb9
JB
11927 ui_out_field_string (uiout, "reason",
11928 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11929 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11930 }
11931
00eb2c4a
JB
11932 ui_out_text (uiout,
11933 b->disposition == disp_del ? "\nTemporary catchpoint "
11934 : "\nCatchpoint ");
956a9fb9
JB
11935 ui_out_field_int (uiout, "bkptno", b->number);
11936 ui_out_text (uiout, ", ");
f7f9143b 11937
f7f9143b
JB
11938 switch (ex)
11939 {
761269c8
JB
11940 case ada_catch_exception:
11941 case ada_catch_exception_unhandled:
956a9fb9
JB
11942 {
11943 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11944 char exception_name[256];
11945
11946 if (addr != 0)
11947 {
c714b426
PA
11948 read_memory (addr, (gdb_byte *) exception_name,
11949 sizeof (exception_name) - 1);
956a9fb9
JB
11950 exception_name [sizeof (exception_name) - 1] = '\0';
11951 }
11952 else
11953 {
11954 /* For some reason, we were unable to read the exception
11955 name. This could happen if the Runtime was compiled
11956 without debugging info, for instance. In that case,
11957 just replace the exception name by the generic string
11958 "exception" - it will read as "an exception" in the
11959 notification we are about to print. */
967cff16 11960 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11961 }
11962 /* In the case of unhandled exception breakpoints, we print
11963 the exception name as "unhandled EXCEPTION_NAME", to make
11964 it clearer to the user which kind of catchpoint just got
11965 hit. We used ui_out_text to make sure that this extra
11966 info does not pollute the exception name in the MI case. */
761269c8 11967 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11968 ui_out_text (uiout, "unhandled ");
11969 ui_out_field_string (uiout, "exception-name", exception_name);
11970 }
11971 break;
761269c8 11972 case ada_catch_assert:
956a9fb9
JB
11973 /* In this case, the name of the exception is not really
11974 important. Just print "failed assertion" to make it clearer
11975 that his program just hit an assertion-failure catchpoint.
11976 We used ui_out_text because this info does not belong in
11977 the MI output. */
11978 ui_out_text (uiout, "failed assertion");
11979 break;
f7f9143b 11980 }
956a9fb9
JB
11981 ui_out_text (uiout, " at ");
11982 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11983
11984 return PRINT_SRC_AND_LOC;
11985}
11986
11987/* Implement the PRINT_ONE method in the breakpoint_ops structure
11988 for all exception catchpoint kinds. */
11989
11990static void
761269c8 11991print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11992 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11993{
79a45e25 11994 struct ui_out *uiout = current_uiout;
28010a5d 11995 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11996 struct value_print_options opts;
11997
11998 get_user_print_options (&opts);
11999 if (opts.addressprint)
f7f9143b
JB
12000 {
12001 annotate_field (4);
5af949e3 12002 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12003 }
12004
12005 annotate_field (5);
a6d9a66e 12006 *last_loc = b->loc;
f7f9143b
JB
12007 switch (ex)
12008 {
761269c8 12009 case ada_catch_exception:
28010a5d 12010 if (c->excep_string != NULL)
f7f9143b 12011 {
28010a5d
PA
12012 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12013
f7f9143b
JB
12014 ui_out_field_string (uiout, "what", msg);
12015 xfree (msg);
12016 }
12017 else
12018 ui_out_field_string (uiout, "what", "all Ada exceptions");
12019
12020 break;
12021
761269c8 12022 case ada_catch_exception_unhandled:
f7f9143b
JB
12023 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12024 break;
12025
761269c8 12026 case ada_catch_assert:
f7f9143b
JB
12027 ui_out_field_string (uiout, "what", "failed Ada assertions");
12028 break;
12029
12030 default:
12031 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12032 break;
12033 }
12034}
12035
12036/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12037 for all exception catchpoint kinds. */
12038
12039static void
761269c8 12040print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12041 struct breakpoint *b)
12042{
28010a5d 12043 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12044 struct ui_out *uiout = current_uiout;
28010a5d 12045
00eb2c4a
JB
12046 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12047 : _("Catchpoint "));
12048 ui_out_field_int (uiout, "bkptno", b->number);
12049 ui_out_text (uiout, ": ");
12050
f7f9143b
JB
12051 switch (ex)
12052 {
761269c8 12053 case ada_catch_exception:
28010a5d 12054 if (c->excep_string != NULL)
00eb2c4a
JB
12055 {
12056 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12057 struct cleanup *old_chain = make_cleanup (xfree, info);
12058
12059 ui_out_text (uiout, info);
12060 do_cleanups (old_chain);
12061 }
f7f9143b 12062 else
00eb2c4a 12063 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12064 break;
12065
761269c8 12066 case ada_catch_exception_unhandled:
00eb2c4a 12067 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12068 break;
12069
761269c8 12070 case ada_catch_assert:
00eb2c4a 12071 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12072 break;
12073
12074 default:
12075 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12076 break;
12077 }
12078}
12079
6149aea9
PA
12080/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12081 for all exception catchpoint kinds. */
12082
12083static void
761269c8 12084print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12085 struct breakpoint *b, struct ui_file *fp)
12086{
28010a5d
PA
12087 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12088
6149aea9
PA
12089 switch (ex)
12090 {
761269c8 12091 case ada_catch_exception:
6149aea9 12092 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12093 if (c->excep_string != NULL)
12094 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12095 break;
12096
761269c8 12097 case ada_catch_exception_unhandled:
78076abc 12098 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12099 break;
12100
761269c8 12101 case ada_catch_assert:
6149aea9
PA
12102 fprintf_filtered (fp, "catch assert");
12103 break;
12104
12105 default:
12106 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12107 }
d9b3f62e 12108 print_recreate_thread (b, fp);
6149aea9
PA
12109}
12110
f7f9143b
JB
12111/* Virtual table for "catch exception" breakpoints. */
12112
28010a5d
PA
12113static void
12114dtor_catch_exception (struct breakpoint *b)
12115{
761269c8 12116 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12117}
12118
12119static struct bp_location *
12120allocate_location_catch_exception (struct breakpoint *self)
12121{
761269c8 12122 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12123}
12124
12125static void
12126re_set_catch_exception (struct breakpoint *b)
12127{
761269c8 12128 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12129}
12130
12131static void
12132check_status_catch_exception (bpstat bs)
12133{
761269c8 12134 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12135}
12136
f7f9143b 12137static enum print_stop_action
348d480f 12138print_it_catch_exception (bpstat bs)
f7f9143b 12139{
761269c8 12140 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12141}
12142
12143static void
a6d9a66e 12144print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12145{
761269c8 12146 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12147}
12148
12149static void
12150print_mention_catch_exception (struct breakpoint *b)
12151{
761269c8 12152 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12153}
12154
6149aea9
PA
12155static void
12156print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12157{
761269c8 12158 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12159}
12160
2060206e 12161static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12162
12163/* Virtual table for "catch exception unhandled" breakpoints. */
12164
28010a5d
PA
12165static void
12166dtor_catch_exception_unhandled (struct breakpoint *b)
12167{
761269c8 12168 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12169}
12170
12171static struct bp_location *
12172allocate_location_catch_exception_unhandled (struct breakpoint *self)
12173{
761269c8 12174 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12175}
12176
12177static void
12178re_set_catch_exception_unhandled (struct breakpoint *b)
12179{
761269c8 12180 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12181}
12182
12183static void
12184check_status_catch_exception_unhandled (bpstat bs)
12185{
761269c8 12186 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12187}
12188
f7f9143b 12189static enum print_stop_action
348d480f 12190print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12191{
761269c8 12192 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12193}
12194
12195static void
a6d9a66e
UW
12196print_one_catch_exception_unhandled (struct breakpoint *b,
12197 struct bp_location **last_loc)
f7f9143b 12198{
761269c8 12199 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12200}
12201
12202static void
12203print_mention_catch_exception_unhandled (struct breakpoint *b)
12204{
761269c8 12205 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12206}
12207
6149aea9
PA
12208static void
12209print_recreate_catch_exception_unhandled (struct breakpoint *b,
12210 struct ui_file *fp)
12211{
761269c8 12212 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12213}
12214
2060206e 12215static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12216
12217/* Virtual table for "catch assert" breakpoints. */
12218
28010a5d
PA
12219static void
12220dtor_catch_assert (struct breakpoint *b)
12221{
761269c8 12222 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12223}
12224
12225static struct bp_location *
12226allocate_location_catch_assert (struct breakpoint *self)
12227{
761269c8 12228 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12229}
12230
12231static void
12232re_set_catch_assert (struct breakpoint *b)
12233{
761269c8 12234 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12235}
12236
12237static void
12238check_status_catch_assert (bpstat bs)
12239{
761269c8 12240 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12241}
12242
f7f9143b 12243static enum print_stop_action
348d480f 12244print_it_catch_assert (bpstat bs)
f7f9143b 12245{
761269c8 12246 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12247}
12248
12249static void
a6d9a66e 12250print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12251{
761269c8 12252 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12253}
12254
12255static void
12256print_mention_catch_assert (struct breakpoint *b)
12257{
761269c8 12258 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12259}
12260
6149aea9
PA
12261static void
12262print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12263{
761269c8 12264 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12265}
12266
2060206e 12267static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12268
f7f9143b
JB
12269/* Return a newly allocated copy of the first space-separated token
12270 in ARGSP, and then adjust ARGSP to point immediately after that
12271 token.
12272
12273 Return NULL if ARGPS does not contain any more tokens. */
12274
12275static char *
12276ada_get_next_arg (char **argsp)
12277{
12278 char *args = *argsp;
12279 char *end;
12280 char *result;
12281
0fcd72ba 12282 args = skip_spaces (args);
f7f9143b
JB
12283 if (args[0] == '\0')
12284 return NULL; /* No more arguments. */
12285
12286 /* Find the end of the current argument. */
12287
0fcd72ba 12288 end = skip_to_space (args);
f7f9143b
JB
12289
12290 /* Adjust ARGSP to point to the start of the next argument. */
12291
12292 *argsp = end;
12293
12294 /* Make a copy of the current argument and return it. */
12295
12296 result = xmalloc (end - args + 1);
12297 strncpy (result, args, end - args);
12298 result[end - args] = '\0';
12299
12300 return result;
12301}
12302
12303/* Split the arguments specified in a "catch exception" command.
12304 Set EX to the appropriate catchpoint type.
28010a5d 12305 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12306 specified by the user.
12307 If a condition is found at the end of the arguments, the condition
12308 expression is stored in COND_STRING (memory must be deallocated
12309 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12310
12311static void
12312catch_ada_exception_command_split (char *args,
761269c8 12313 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12314 char **excep_string,
12315 char **cond_string)
f7f9143b
JB
12316{
12317 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12318 char *exception_name;
5845583d 12319 char *cond = NULL;
f7f9143b
JB
12320
12321 exception_name = ada_get_next_arg (&args);
5845583d
JB
12322 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12323 {
12324 /* This is not an exception name; this is the start of a condition
12325 expression for a catchpoint on all exceptions. So, "un-get"
12326 this token, and set exception_name to NULL. */
12327 xfree (exception_name);
12328 exception_name = NULL;
12329 args -= 2;
12330 }
f7f9143b
JB
12331 make_cleanup (xfree, exception_name);
12332
5845583d 12333 /* Check to see if we have a condition. */
f7f9143b 12334
0fcd72ba 12335 args = skip_spaces (args);
5845583d
JB
12336 if (strncmp (args, "if", 2) == 0
12337 && (isspace (args[2]) || args[2] == '\0'))
12338 {
12339 args += 2;
12340 args = skip_spaces (args);
12341
12342 if (args[0] == '\0')
12343 error (_("Condition missing after `if' keyword"));
12344 cond = xstrdup (args);
12345 make_cleanup (xfree, cond);
12346
12347 args += strlen (args);
12348 }
12349
12350 /* Check that we do not have any more arguments. Anything else
12351 is unexpected. */
f7f9143b
JB
12352
12353 if (args[0] != '\0')
12354 error (_("Junk at end of expression"));
12355
12356 discard_cleanups (old_chain);
12357
12358 if (exception_name == NULL)
12359 {
12360 /* Catch all exceptions. */
761269c8 12361 *ex = ada_catch_exception;
28010a5d 12362 *excep_string = NULL;
f7f9143b
JB
12363 }
12364 else if (strcmp (exception_name, "unhandled") == 0)
12365 {
12366 /* Catch unhandled exceptions. */
761269c8 12367 *ex = ada_catch_exception_unhandled;
28010a5d 12368 *excep_string = NULL;
f7f9143b
JB
12369 }
12370 else
12371 {
12372 /* Catch a specific exception. */
761269c8 12373 *ex = ada_catch_exception;
28010a5d 12374 *excep_string = exception_name;
f7f9143b 12375 }
5845583d 12376 *cond_string = cond;
f7f9143b
JB
12377}
12378
12379/* Return the name of the symbol on which we should break in order to
12380 implement a catchpoint of the EX kind. */
12381
12382static const char *
761269c8 12383ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12384{
3eecfa55
JB
12385 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12386
12387 gdb_assert (data->exception_info != NULL);
0259addd 12388
f7f9143b
JB
12389 switch (ex)
12390 {
761269c8 12391 case ada_catch_exception:
3eecfa55 12392 return (data->exception_info->catch_exception_sym);
f7f9143b 12393 break;
761269c8 12394 case ada_catch_exception_unhandled:
3eecfa55 12395 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12396 break;
761269c8 12397 case ada_catch_assert:
3eecfa55 12398 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12399 break;
12400 default:
12401 internal_error (__FILE__, __LINE__,
12402 _("unexpected catchpoint kind (%d)"), ex);
12403 }
12404}
12405
12406/* Return the breakpoint ops "virtual table" used for catchpoints
12407 of the EX kind. */
12408
c0a91b2b 12409static const struct breakpoint_ops *
761269c8 12410ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12411{
12412 switch (ex)
12413 {
761269c8 12414 case ada_catch_exception:
f7f9143b
JB
12415 return (&catch_exception_breakpoint_ops);
12416 break;
761269c8 12417 case ada_catch_exception_unhandled:
f7f9143b
JB
12418 return (&catch_exception_unhandled_breakpoint_ops);
12419 break;
761269c8 12420 case ada_catch_assert:
f7f9143b
JB
12421 return (&catch_assert_breakpoint_ops);
12422 break;
12423 default:
12424 internal_error (__FILE__, __LINE__,
12425 _("unexpected catchpoint kind (%d)"), ex);
12426 }
12427}
12428
12429/* Return the condition that will be used to match the current exception
12430 being raised with the exception that the user wants to catch. This
12431 assumes that this condition is used when the inferior just triggered
12432 an exception catchpoint.
12433
12434 The string returned is a newly allocated string that needs to be
12435 deallocated later. */
12436
12437static char *
28010a5d 12438ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12439{
3d0b0fa3
JB
12440 int i;
12441
0963b4bd 12442 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12443 runtime units that have been compiled without debugging info; if
28010a5d 12444 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12445 exception (e.g. "constraint_error") then, during the evaluation
12446 of the condition expression, the symbol lookup on this name would
0963b4bd 12447 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12448 may then be set only on user-defined exceptions which have the
12449 same not-fully-qualified name (e.g. my_package.constraint_error).
12450
12451 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12452 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12453 exception constraint_error" is rewritten into "catch exception
12454 standard.constraint_error".
12455
12456 If an exception named contraint_error is defined in another package of
12457 the inferior program, then the only way to specify this exception as a
12458 breakpoint condition is to use its fully-qualified named:
12459 e.g. my_package.constraint_error. */
12460
12461 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12462 {
28010a5d 12463 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12464 {
12465 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12466 excep_string);
3d0b0fa3
JB
12467 }
12468 }
28010a5d 12469 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12470}
12471
12472/* Return the symtab_and_line that should be used to insert an exception
12473 catchpoint of the TYPE kind.
12474
28010a5d
PA
12475 EXCEP_STRING should contain the name of a specific exception that
12476 the catchpoint should catch, or NULL otherwise.
f7f9143b 12477
28010a5d
PA
12478 ADDR_STRING returns the name of the function where the real
12479 breakpoint that implements the catchpoints is set, depending on the
12480 type of catchpoint we need to create. */
f7f9143b
JB
12481
12482static struct symtab_and_line
761269c8 12483ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12484 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12485{
12486 const char *sym_name;
12487 struct symbol *sym;
f7f9143b 12488
0259addd
JB
12489 /* First, find out which exception support info to use. */
12490 ada_exception_support_info_sniffer ();
12491
12492 /* Then lookup the function on which we will break in order to catch
f7f9143b 12493 the Ada exceptions requested by the user. */
f7f9143b
JB
12494 sym_name = ada_exception_sym_name (ex);
12495 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12496
f17011e0
JB
12497 /* We can assume that SYM is not NULL at this stage. If the symbol
12498 did not exist, ada_exception_support_info_sniffer would have
12499 raised an exception.
f7f9143b 12500
f17011e0
JB
12501 Also, ada_exception_support_info_sniffer should have already
12502 verified that SYM is a function symbol. */
12503 gdb_assert (sym != NULL);
12504 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12505
12506 /* Set ADDR_STRING. */
f7f9143b
JB
12507 *addr_string = xstrdup (sym_name);
12508
f7f9143b 12509 /* Set OPS. */
4b9eee8c 12510 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12511
f17011e0 12512 return find_function_start_sal (sym, 1);
f7f9143b
JB
12513}
12514
b4a5b78b 12515/* Create an Ada exception catchpoint.
f7f9143b 12516
b4a5b78b 12517 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12518
2df4d1d5
JB
12519 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12520 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12521 of the exception to which this catchpoint applies. When not NULL,
12522 the string must be allocated on the heap, and its deallocation
12523 is no longer the responsibility of the caller.
12524
12525 COND_STRING, if not NULL, is the catchpoint condition. This string
12526 must be allocated on the heap, and its deallocation is no longer
12527 the responsibility of the caller.
f7f9143b 12528
b4a5b78b
JB
12529 TEMPFLAG, if nonzero, means that the underlying breakpoint
12530 should be temporary.
28010a5d 12531
b4a5b78b 12532 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12533
349774ef 12534void
28010a5d 12535create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12536 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12537 char *excep_string,
5845583d 12538 char *cond_string,
28010a5d 12539 int tempflag,
349774ef 12540 int disabled,
28010a5d
PA
12541 int from_tty)
12542{
12543 struct ada_catchpoint *c;
b4a5b78b
JB
12544 char *addr_string = NULL;
12545 const struct breakpoint_ops *ops = NULL;
12546 struct symtab_and_line sal
12547 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12548
12549 c = XNEW (struct ada_catchpoint);
12550 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12551 ops, tempflag, disabled, from_tty);
28010a5d
PA
12552 c->excep_string = excep_string;
12553 create_excep_cond_exprs (c);
5845583d
JB
12554 if (cond_string != NULL)
12555 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12556 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12557}
12558
9ac4176b
PA
12559/* Implement the "catch exception" command. */
12560
12561static void
12562catch_ada_exception_command (char *arg, int from_tty,
12563 struct cmd_list_element *command)
12564{
12565 struct gdbarch *gdbarch = get_current_arch ();
12566 int tempflag;
761269c8 12567 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12568 char *excep_string = NULL;
5845583d 12569 char *cond_string = NULL;
9ac4176b
PA
12570
12571 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12572
12573 if (!arg)
12574 arg = "";
b4a5b78b
JB
12575 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12576 &cond_string);
12577 create_ada_exception_catchpoint (gdbarch, ex_kind,
12578 excep_string, cond_string,
349774ef
JB
12579 tempflag, 1 /* enabled */,
12580 from_tty);
9ac4176b
PA
12581}
12582
b4a5b78b 12583/* Split the arguments specified in a "catch assert" command.
5845583d 12584
b4a5b78b
JB
12585 ARGS contains the command's arguments (or the empty string if
12586 no arguments were passed).
5845583d
JB
12587
12588 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12589 (the memory needs to be deallocated after use). */
5845583d 12590
b4a5b78b
JB
12591static void
12592catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12593{
5845583d 12594 args = skip_spaces (args);
f7f9143b 12595
5845583d
JB
12596 /* Check whether a condition was provided. */
12597 if (strncmp (args, "if", 2) == 0
12598 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12599 {
5845583d 12600 args += 2;
0fcd72ba 12601 args = skip_spaces (args);
5845583d
JB
12602 if (args[0] == '\0')
12603 error (_("condition missing after `if' keyword"));
12604 *cond_string = xstrdup (args);
f7f9143b
JB
12605 }
12606
5845583d
JB
12607 /* Otherwise, there should be no other argument at the end of
12608 the command. */
12609 else if (args[0] != '\0')
12610 error (_("Junk at end of arguments."));
f7f9143b
JB
12611}
12612
9ac4176b
PA
12613/* Implement the "catch assert" command. */
12614
12615static void
12616catch_assert_command (char *arg, int from_tty,
12617 struct cmd_list_element *command)
12618{
12619 struct gdbarch *gdbarch = get_current_arch ();
12620 int tempflag;
5845583d 12621 char *cond_string = NULL;
9ac4176b
PA
12622
12623 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12624
12625 if (!arg)
12626 arg = "";
b4a5b78b 12627 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12628 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12629 NULL, cond_string,
349774ef
JB
12630 tempflag, 1 /* enabled */,
12631 from_tty);
9ac4176b 12632}
778865d3
JB
12633
12634/* Return non-zero if the symbol SYM is an Ada exception object. */
12635
12636static int
12637ada_is_exception_sym (struct symbol *sym)
12638{
12639 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12640
12641 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12642 && SYMBOL_CLASS (sym) != LOC_BLOCK
12643 && SYMBOL_CLASS (sym) != LOC_CONST
12644 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12645 && type_name != NULL && strcmp (type_name, "exception") == 0);
12646}
12647
12648/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12649 Ada exception object. This matches all exceptions except the ones
12650 defined by the Ada language. */
12651
12652static int
12653ada_is_non_standard_exception_sym (struct symbol *sym)
12654{
12655 int i;
12656
12657 if (!ada_is_exception_sym (sym))
12658 return 0;
12659
12660 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12661 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12662 return 0; /* A standard exception. */
12663
12664 /* Numeric_Error is also a standard exception, so exclude it.
12665 See the STANDARD_EXC description for more details as to why
12666 this exception is not listed in that array. */
12667 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12668 return 0;
12669
12670 return 1;
12671}
12672
12673/* A helper function for qsort, comparing two struct ada_exc_info
12674 objects.
12675
12676 The comparison is determined first by exception name, and then
12677 by exception address. */
12678
12679static int
12680compare_ada_exception_info (const void *a, const void *b)
12681{
12682 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12683 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12684 int result;
12685
12686 result = strcmp (exc_a->name, exc_b->name);
12687 if (result != 0)
12688 return result;
12689
12690 if (exc_a->addr < exc_b->addr)
12691 return -1;
12692 if (exc_a->addr > exc_b->addr)
12693 return 1;
12694
12695 return 0;
12696}
12697
12698/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12699 routine, but keeping the first SKIP elements untouched.
12700
12701 All duplicates are also removed. */
12702
12703static void
12704sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12705 int skip)
12706{
12707 struct ada_exc_info *to_sort
12708 = VEC_address (ada_exc_info, *exceptions) + skip;
12709 int to_sort_len
12710 = VEC_length (ada_exc_info, *exceptions) - skip;
12711 int i, j;
12712
12713 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12714 compare_ada_exception_info);
12715
12716 for (i = 1, j = 1; i < to_sort_len; i++)
12717 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12718 to_sort[j++] = to_sort[i];
12719 to_sort_len = j;
12720 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12721}
12722
12723/* A function intended as the "name_matcher" callback in the struct
12724 quick_symbol_functions' expand_symtabs_matching method.
12725
12726 SEARCH_NAME is the symbol's search name.
12727
12728 If USER_DATA is not NULL, it is a pointer to a regext_t object
12729 used to match the symbol (by natural name). Otherwise, when USER_DATA
12730 is null, no filtering is performed, and all symbols are a positive
12731 match. */
12732
12733static int
12734ada_exc_search_name_matches (const char *search_name, void *user_data)
12735{
12736 regex_t *preg = user_data;
12737
12738 if (preg == NULL)
12739 return 1;
12740
12741 /* In Ada, the symbol "search name" is a linkage name, whereas
12742 the regular expression used to do the matching refers to
12743 the natural name. So match against the decoded name. */
12744 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12745}
12746
12747/* Add all exceptions defined by the Ada standard whose name match
12748 a regular expression.
12749
12750 If PREG is not NULL, then this regexp_t object is used to
12751 perform the symbol name matching. Otherwise, no name-based
12752 filtering is performed.
12753
12754 EXCEPTIONS is a vector of exceptions to which matching exceptions
12755 gets pushed. */
12756
12757static void
12758ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12759{
12760 int i;
12761
12762 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12763 {
12764 if (preg == NULL
12765 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12766 {
12767 struct bound_minimal_symbol msymbol
12768 = ada_lookup_simple_minsym (standard_exc[i]);
12769
12770 if (msymbol.minsym != NULL)
12771 {
12772 struct ada_exc_info info
77e371c0 12773 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12774
12775 VEC_safe_push (ada_exc_info, *exceptions, &info);
12776 }
12777 }
12778 }
12779}
12780
12781/* Add all Ada exceptions defined locally and accessible from the given
12782 FRAME.
12783
12784 If PREG is not NULL, then this regexp_t object is used to
12785 perform the symbol name matching. Otherwise, no name-based
12786 filtering is performed.
12787
12788 EXCEPTIONS is a vector of exceptions to which matching exceptions
12789 gets pushed. */
12790
12791static void
12792ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12793 VEC(ada_exc_info) **exceptions)
12794{
12795 struct block *block = get_frame_block (frame, 0);
12796
12797 while (block != 0)
12798 {
12799 struct block_iterator iter;
12800 struct symbol *sym;
12801
12802 ALL_BLOCK_SYMBOLS (block, iter, sym)
12803 {
12804 switch (SYMBOL_CLASS (sym))
12805 {
12806 case LOC_TYPEDEF:
12807 case LOC_BLOCK:
12808 case LOC_CONST:
12809 break;
12810 default:
12811 if (ada_is_exception_sym (sym))
12812 {
12813 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12814 SYMBOL_VALUE_ADDRESS (sym)};
12815
12816 VEC_safe_push (ada_exc_info, *exceptions, &info);
12817 }
12818 }
12819 }
12820 if (BLOCK_FUNCTION (block) != NULL)
12821 break;
12822 block = BLOCK_SUPERBLOCK (block);
12823 }
12824}
12825
12826/* Add all exceptions defined globally whose name name match
12827 a regular expression, excluding standard exceptions.
12828
12829 The reason we exclude standard exceptions is that they need
12830 to be handled separately: Standard exceptions are defined inside
12831 a runtime unit which is normally not compiled with debugging info,
12832 and thus usually do not show up in our symbol search. However,
12833 if the unit was in fact built with debugging info, we need to
12834 exclude them because they would duplicate the entry we found
12835 during the special loop that specifically searches for those
12836 standard exceptions.
12837
12838 If PREG is not NULL, then this regexp_t object is used to
12839 perform the symbol name matching. Otherwise, no name-based
12840 filtering is performed.
12841
12842 EXCEPTIONS is a vector of exceptions to which matching exceptions
12843 gets pushed. */
12844
12845static void
12846ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12847{
12848 struct objfile *objfile;
12849 struct symtab *s;
12850
bb4142cf
DE
12851 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12852 VARIABLES_DOMAIN, preg);
778865d3
JB
12853
12854 ALL_PRIMARY_SYMTABS (objfile, s)
12855 {
12856 struct blockvector *bv = BLOCKVECTOR (s);
12857 int i;
12858
12859 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12860 {
12861 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12862 struct block_iterator iter;
12863 struct symbol *sym;
12864
12865 ALL_BLOCK_SYMBOLS (b, iter, sym)
12866 if (ada_is_non_standard_exception_sym (sym)
12867 && (preg == NULL
12868 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12869 0, NULL, 0) == 0))
12870 {
12871 struct ada_exc_info info
12872 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12873
12874 VEC_safe_push (ada_exc_info, *exceptions, &info);
12875 }
12876 }
12877 }
12878}
12879
12880/* Implements ada_exceptions_list with the regular expression passed
12881 as a regex_t, rather than a string.
12882
12883 If not NULL, PREG is used to filter out exceptions whose names
12884 do not match. Otherwise, all exceptions are listed. */
12885
12886static VEC(ada_exc_info) *
12887ada_exceptions_list_1 (regex_t *preg)
12888{
12889 VEC(ada_exc_info) *result = NULL;
12890 struct cleanup *old_chain
12891 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12892 int prev_len;
12893
12894 /* First, list the known standard exceptions. These exceptions
12895 need to be handled separately, as they are usually defined in
12896 runtime units that have been compiled without debugging info. */
12897
12898 ada_add_standard_exceptions (preg, &result);
12899
12900 /* Next, find all exceptions whose scope is local and accessible
12901 from the currently selected frame. */
12902
12903 if (has_stack_frames ())
12904 {
12905 prev_len = VEC_length (ada_exc_info, result);
12906 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12907 &result);
12908 if (VEC_length (ada_exc_info, result) > prev_len)
12909 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12910 }
12911
12912 /* Add all exceptions whose scope is global. */
12913
12914 prev_len = VEC_length (ada_exc_info, result);
12915 ada_add_global_exceptions (preg, &result);
12916 if (VEC_length (ada_exc_info, result) > prev_len)
12917 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12918
12919 discard_cleanups (old_chain);
12920 return result;
12921}
12922
12923/* Return a vector of ada_exc_info.
12924
12925 If REGEXP is NULL, all exceptions are included in the result.
12926 Otherwise, it should contain a valid regular expression,
12927 and only the exceptions whose names match that regular expression
12928 are included in the result.
12929
12930 The exceptions are sorted in the following order:
12931 - Standard exceptions (defined by the Ada language), in
12932 alphabetical order;
12933 - Exceptions only visible from the current frame, in
12934 alphabetical order;
12935 - Exceptions whose scope is global, in alphabetical order. */
12936
12937VEC(ada_exc_info) *
12938ada_exceptions_list (const char *regexp)
12939{
12940 VEC(ada_exc_info) *result = NULL;
12941 struct cleanup *old_chain = NULL;
12942 regex_t reg;
12943
12944 if (regexp != NULL)
12945 old_chain = compile_rx_or_error (&reg, regexp,
12946 _("invalid regular expression"));
12947
12948 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12949
12950 if (old_chain != NULL)
12951 do_cleanups (old_chain);
12952 return result;
12953}
12954
12955/* Implement the "info exceptions" command. */
12956
12957static void
12958info_exceptions_command (char *regexp, int from_tty)
12959{
12960 VEC(ada_exc_info) *exceptions;
12961 struct cleanup *cleanup;
12962 struct gdbarch *gdbarch = get_current_arch ();
12963 int ix;
12964 struct ada_exc_info *info;
12965
12966 exceptions = ada_exceptions_list (regexp);
12967 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12968
12969 if (regexp != NULL)
12970 printf_filtered
12971 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12972 else
12973 printf_filtered (_("All defined Ada exceptions:\n"));
12974
12975 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12976 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12977
12978 do_cleanups (cleanup);
12979}
12980
4c4b4cd2
PH
12981 /* Operators */
12982/* Information about operators given special treatment in functions
12983 below. */
12984/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12985
12986#define ADA_OPERATORS \
12987 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12988 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12989 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12990 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12991 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12992 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12993 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12994 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12995 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12996 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12997 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12998 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12999 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13000 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13001 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13002 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13003 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13004 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13005 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13006
13007static void
554794dc
SDJ
13008ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13009 int *argsp)
4c4b4cd2
PH
13010{
13011 switch (exp->elts[pc - 1].opcode)
13012 {
76a01679 13013 default:
4c4b4cd2
PH
13014 operator_length_standard (exp, pc, oplenp, argsp);
13015 break;
13016
13017#define OP_DEFN(op, len, args, binop) \
13018 case op: *oplenp = len; *argsp = args; break;
13019 ADA_OPERATORS;
13020#undef OP_DEFN
52ce6436
PH
13021
13022 case OP_AGGREGATE:
13023 *oplenp = 3;
13024 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13025 break;
13026
13027 case OP_CHOICES:
13028 *oplenp = 3;
13029 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13030 break;
4c4b4cd2
PH
13031 }
13032}
13033
c0201579
JK
13034/* Implementation of the exp_descriptor method operator_check. */
13035
13036static int
13037ada_operator_check (struct expression *exp, int pos,
13038 int (*objfile_func) (struct objfile *objfile, void *data),
13039 void *data)
13040{
13041 const union exp_element *const elts = exp->elts;
13042 struct type *type = NULL;
13043
13044 switch (elts[pos].opcode)
13045 {
13046 case UNOP_IN_RANGE:
13047 case UNOP_QUAL:
13048 type = elts[pos + 1].type;
13049 break;
13050
13051 default:
13052 return operator_check_standard (exp, pos, objfile_func, data);
13053 }
13054
13055 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13056
13057 if (type && TYPE_OBJFILE (type)
13058 && (*objfile_func) (TYPE_OBJFILE (type), data))
13059 return 1;
13060
13061 return 0;
13062}
13063
4c4b4cd2
PH
13064static char *
13065ada_op_name (enum exp_opcode opcode)
13066{
13067 switch (opcode)
13068 {
76a01679 13069 default:
4c4b4cd2 13070 return op_name_standard (opcode);
52ce6436 13071
4c4b4cd2
PH
13072#define OP_DEFN(op, len, args, binop) case op: return #op;
13073 ADA_OPERATORS;
13074#undef OP_DEFN
52ce6436
PH
13075
13076 case OP_AGGREGATE:
13077 return "OP_AGGREGATE";
13078 case OP_CHOICES:
13079 return "OP_CHOICES";
13080 case OP_NAME:
13081 return "OP_NAME";
4c4b4cd2
PH
13082 }
13083}
13084
13085/* As for operator_length, but assumes PC is pointing at the first
13086 element of the operator, and gives meaningful results only for the
52ce6436 13087 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13088
13089static void
76a01679
JB
13090ada_forward_operator_length (struct expression *exp, int pc,
13091 int *oplenp, int *argsp)
4c4b4cd2 13092{
76a01679 13093 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13094 {
13095 default:
13096 *oplenp = *argsp = 0;
13097 break;
52ce6436 13098
4c4b4cd2
PH
13099#define OP_DEFN(op, len, args, binop) \
13100 case op: *oplenp = len; *argsp = args; break;
13101 ADA_OPERATORS;
13102#undef OP_DEFN
52ce6436
PH
13103
13104 case OP_AGGREGATE:
13105 *oplenp = 3;
13106 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13107 break;
13108
13109 case OP_CHOICES:
13110 *oplenp = 3;
13111 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13112 break;
13113
13114 case OP_STRING:
13115 case OP_NAME:
13116 {
13117 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13118
52ce6436
PH
13119 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13120 *argsp = 0;
13121 break;
13122 }
4c4b4cd2
PH
13123 }
13124}
13125
13126static int
13127ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13128{
13129 enum exp_opcode op = exp->elts[elt].opcode;
13130 int oplen, nargs;
13131 int pc = elt;
13132 int i;
76a01679 13133
4c4b4cd2
PH
13134 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13135
76a01679 13136 switch (op)
4c4b4cd2 13137 {
76a01679 13138 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13139 case OP_ATR_FIRST:
13140 case OP_ATR_LAST:
13141 case OP_ATR_LENGTH:
13142 case OP_ATR_IMAGE:
13143 case OP_ATR_MAX:
13144 case OP_ATR_MIN:
13145 case OP_ATR_MODULUS:
13146 case OP_ATR_POS:
13147 case OP_ATR_SIZE:
13148 case OP_ATR_TAG:
13149 case OP_ATR_VAL:
13150 break;
13151
13152 case UNOP_IN_RANGE:
13153 case UNOP_QUAL:
323e0a4a
AC
13154 /* XXX: gdb_sprint_host_address, type_sprint */
13155 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13156 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13157 fprintf_filtered (stream, " (");
13158 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13159 fprintf_filtered (stream, ")");
13160 break;
13161 case BINOP_IN_BOUNDS:
52ce6436
PH
13162 fprintf_filtered (stream, " (%d)",
13163 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13164 break;
13165 case TERNOP_IN_RANGE:
13166 break;
13167
52ce6436
PH
13168 case OP_AGGREGATE:
13169 case OP_OTHERS:
13170 case OP_DISCRETE_RANGE:
13171 case OP_POSITIONAL:
13172 case OP_CHOICES:
13173 break;
13174
13175 case OP_NAME:
13176 case OP_STRING:
13177 {
13178 char *name = &exp->elts[elt + 2].string;
13179 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13180
52ce6436
PH
13181 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13182 break;
13183 }
13184
4c4b4cd2
PH
13185 default:
13186 return dump_subexp_body_standard (exp, stream, elt);
13187 }
13188
13189 elt += oplen;
13190 for (i = 0; i < nargs; i += 1)
13191 elt = dump_subexp (exp, stream, elt);
13192
13193 return elt;
13194}
13195
13196/* The Ada extension of print_subexp (q.v.). */
13197
76a01679
JB
13198static void
13199ada_print_subexp (struct expression *exp, int *pos,
13200 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13201{
52ce6436 13202 int oplen, nargs, i;
4c4b4cd2
PH
13203 int pc = *pos;
13204 enum exp_opcode op = exp->elts[pc].opcode;
13205
13206 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13207
52ce6436 13208 *pos += oplen;
4c4b4cd2
PH
13209 switch (op)
13210 {
13211 default:
52ce6436 13212 *pos -= oplen;
4c4b4cd2
PH
13213 print_subexp_standard (exp, pos, stream, prec);
13214 return;
13215
13216 case OP_VAR_VALUE:
4c4b4cd2
PH
13217 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13218 return;
13219
13220 case BINOP_IN_BOUNDS:
323e0a4a 13221 /* XXX: sprint_subexp */
4c4b4cd2 13222 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13223 fputs_filtered (" in ", stream);
4c4b4cd2 13224 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13225 fputs_filtered ("'range", stream);
4c4b4cd2 13226 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13227 fprintf_filtered (stream, "(%ld)",
13228 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13229 return;
13230
13231 case TERNOP_IN_RANGE:
4c4b4cd2 13232 if (prec >= PREC_EQUAL)
76a01679 13233 fputs_filtered ("(", stream);
323e0a4a 13234 /* XXX: sprint_subexp */
4c4b4cd2 13235 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13236 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13237 print_subexp (exp, pos, stream, PREC_EQUAL);
13238 fputs_filtered (" .. ", stream);
13239 print_subexp (exp, pos, stream, PREC_EQUAL);
13240 if (prec >= PREC_EQUAL)
76a01679
JB
13241 fputs_filtered (")", stream);
13242 return;
4c4b4cd2
PH
13243
13244 case OP_ATR_FIRST:
13245 case OP_ATR_LAST:
13246 case OP_ATR_LENGTH:
13247 case OP_ATR_IMAGE:
13248 case OP_ATR_MAX:
13249 case OP_ATR_MIN:
13250 case OP_ATR_MODULUS:
13251 case OP_ATR_POS:
13252 case OP_ATR_SIZE:
13253 case OP_ATR_TAG:
13254 case OP_ATR_VAL:
4c4b4cd2 13255 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13256 {
13257 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13258 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13259 &type_print_raw_options);
76a01679
JB
13260 *pos += 3;
13261 }
4c4b4cd2 13262 else
76a01679 13263 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13264 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13265 if (nargs > 1)
76a01679
JB
13266 {
13267 int tem;
5b4ee69b 13268
76a01679
JB
13269 for (tem = 1; tem < nargs; tem += 1)
13270 {
13271 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13272 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13273 }
13274 fputs_filtered (")", stream);
13275 }
4c4b4cd2 13276 return;
14f9c5c9 13277
4c4b4cd2 13278 case UNOP_QUAL:
4c4b4cd2
PH
13279 type_print (exp->elts[pc + 1].type, "", stream, 0);
13280 fputs_filtered ("'(", stream);
13281 print_subexp (exp, pos, stream, PREC_PREFIX);
13282 fputs_filtered (")", stream);
13283 return;
14f9c5c9 13284
4c4b4cd2 13285 case UNOP_IN_RANGE:
323e0a4a 13286 /* XXX: sprint_subexp */
4c4b4cd2 13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13288 fputs_filtered (" in ", stream);
79d43c61
TT
13289 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13290 &type_print_raw_options);
4c4b4cd2 13291 return;
52ce6436
PH
13292
13293 case OP_DISCRETE_RANGE:
13294 print_subexp (exp, pos, stream, PREC_SUFFIX);
13295 fputs_filtered ("..", stream);
13296 print_subexp (exp, pos, stream, PREC_SUFFIX);
13297 return;
13298
13299 case OP_OTHERS:
13300 fputs_filtered ("others => ", stream);
13301 print_subexp (exp, pos, stream, PREC_SUFFIX);
13302 return;
13303
13304 case OP_CHOICES:
13305 for (i = 0; i < nargs-1; i += 1)
13306 {
13307 if (i > 0)
13308 fputs_filtered ("|", stream);
13309 print_subexp (exp, pos, stream, PREC_SUFFIX);
13310 }
13311 fputs_filtered (" => ", stream);
13312 print_subexp (exp, pos, stream, PREC_SUFFIX);
13313 return;
13314
13315 case OP_POSITIONAL:
13316 print_subexp (exp, pos, stream, PREC_SUFFIX);
13317 return;
13318
13319 case OP_AGGREGATE:
13320 fputs_filtered ("(", stream);
13321 for (i = 0; i < nargs; i += 1)
13322 {
13323 if (i > 0)
13324 fputs_filtered (", ", stream);
13325 print_subexp (exp, pos, stream, PREC_SUFFIX);
13326 }
13327 fputs_filtered (")", stream);
13328 return;
4c4b4cd2
PH
13329 }
13330}
14f9c5c9
AS
13331
13332/* Table mapping opcodes into strings for printing operators
13333 and precedences of the operators. */
13334
d2e4a39e
AS
13335static const struct op_print ada_op_print_tab[] = {
13336 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13337 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13338 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13339 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13340 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13341 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13342 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13343 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13344 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13345 {">=", BINOP_GEQ, PREC_ORDER, 0},
13346 {">", BINOP_GTR, PREC_ORDER, 0},
13347 {"<", BINOP_LESS, PREC_ORDER, 0},
13348 {">>", BINOP_RSH, PREC_SHIFT, 0},
13349 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13350 {"+", BINOP_ADD, PREC_ADD, 0},
13351 {"-", BINOP_SUB, PREC_ADD, 0},
13352 {"&", BINOP_CONCAT, PREC_ADD, 0},
13353 {"*", BINOP_MUL, PREC_MUL, 0},
13354 {"/", BINOP_DIV, PREC_MUL, 0},
13355 {"rem", BINOP_REM, PREC_MUL, 0},
13356 {"mod", BINOP_MOD, PREC_MUL, 0},
13357 {"**", BINOP_EXP, PREC_REPEAT, 0},
13358 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13359 {"-", UNOP_NEG, PREC_PREFIX, 0},
13360 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13361 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13362 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13363 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13364 {".all", UNOP_IND, PREC_SUFFIX, 1},
13365 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13366 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13367 {NULL, 0, 0, 0}
14f9c5c9
AS
13368};
13369\f
72d5681a
PH
13370enum ada_primitive_types {
13371 ada_primitive_type_int,
13372 ada_primitive_type_long,
13373 ada_primitive_type_short,
13374 ada_primitive_type_char,
13375 ada_primitive_type_float,
13376 ada_primitive_type_double,
13377 ada_primitive_type_void,
13378 ada_primitive_type_long_long,
13379 ada_primitive_type_long_double,
13380 ada_primitive_type_natural,
13381 ada_primitive_type_positive,
13382 ada_primitive_type_system_address,
13383 nr_ada_primitive_types
13384};
6c038f32
PH
13385
13386static void
d4a9a881 13387ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13388 struct language_arch_info *lai)
13389{
d4a9a881 13390 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13391
72d5681a 13392 lai->primitive_type_vector
d4a9a881 13393 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13394 struct type *);
e9bb382b
UW
13395
13396 lai->primitive_type_vector [ada_primitive_type_int]
13397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13398 0, "integer");
13399 lai->primitive_type_vector [ada_primitive_type_long]
13400 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13401 0, "long_integer");
13402 lai->primitive_type_vector [ada_primitive_type_short]
13403 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13404 0, "short_integer");
13405 lai->string_char_type
13406 = lai->primitive_type_vector [ada_primitive_type_char]
13407 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13408 lai->primitive_type_vector [ada_primitive_type_float]
13409 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13410 "float", NULL);
13411 lai->primitive_type_vector [ada_primitive_type_double]
13412 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13413 "long_float", NULL);
13414 lai->primitive_type_vector [ada_primitive_type_long_long]
13415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13416 0, "long_long_integer");
13417 lai->primitive_type_vector [ada_primitive_type_long_double]
13418 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13419 "long_long_float", NULL);
13420 lai->primitive_type_vector [ada_primitive_type_natural]
13421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13422 0, "natural");
13423 lai->primitive_type_vector [ada_primitive_type_positive]
13424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13425 0, "positive");
13426 lai->primitive_type_vector [ada_primitive_type_void]
13427 = builtin->builtin_void;
13428
13429 lai->primitive_type_vector [ada_primitive_type_system_address]
13430 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13431 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13432 = "system__address";
fbb06eb1 13433
47e729a8 13434 lai->bool_type_symbol = NULL;
fbb06eb1 13435 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13436}
6c038f32
PH
13437\f
13438 /* Language vector */
13439
13440/* Not really used, but needed in the ada_language_defn. */
13441
13442static void
6c7a06a3 13443emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13444{
6c7a06a3 13445 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13446}
13447
13448static int
410a0ff2 13449parse (struct parser_state *ps)
6c038f32
PH
13450{
13451 warnings_issued = 0;
410a0ff2 13452 return ada_parse (ps);
6c038f32
PH
13453}
13454
13455static const struct exp_descriptor ada_exp_descriptor = {
13456 ada_print_subexp,
13457 ada_operator_length,
c0201579 13458 ada_operator_check,
6c038f32
PH
13459 ada_op_name,
13460 ada_dump_subexp_body,
13461 ada_evaluate_subexp
13462};
13463
1a119f36 13464/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13465 for Ada. */
13466
1a119f36
JB
13467static symbol_name_cmp_ftype
13468ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13469{
13470 if (should_use_wild_match (lookup_name))
13471 return wild_match;
13472 else
13473 return compare_names;
13474}
13475
a5ee536b
JB
13476/* Implement the "la_read_var_value" language_defn method for Ada. */
13477
13478static struct value *
13479ada_read_var_value (struct symbol *var, struct frame_info *frame)
13480{
13481 struct block *frame_block = NULL;
13482 struct symbol *renaming_sym = NULL;
13483
13484 /* The only case where default_read_var_value is not sufficient
13485 is when VAR is a renaming... */
13486 if (frame)
13487 frame_block = get_frame_block (frame, NULL);
13488 if (frame_block)
13489 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13490 if (renaming_sym != NULL)
13491 return ada_read_renaming_var_value (renaming_sym, frame_block);
13492
13493 /* This is a typical case where we expect the default_read_var_value
13494 function to work. */
13495 return default_read_var_value (var, frame);
13496}
13497
6c038f32
PH
13498const struct language_defn ada_language_defn = {
13499 "ada", /* Language name */
6abde28f 13500 "Ada",
6c038f32 13501 language_ada,
6c038f32 13502 range_check_off,
6c038f32
PH
13503 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13504 that's not quite what this means. */
6c038f32 13505 array_row_major,
9a044a89 13506 macro_expansion_no,
6c038f32
PH
13507 &ada_exp_descriptor,
13508 parse,
13509 ada_error,
13510 resolve,
13511 ada_printchar, /* Print a character constant */
13512 ada_printstr, /* Function to print string constant */
13513 emit_char, /* Function to print single char (not used) */
6c038f32 13514 ada_print_type, /* Print a type using appropriate syntax */
be942545 13515 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13516 ada_val_print, /* Print a value using appropriate syntax */
13517 ada_value_print, /* Print a top-level value */
a5ee536b 13518 ada_read_var_value, /* la_read_var_value */
6c038f32 13519 NULL, /* Language specific skip_trampoline */
2b2d9e11 13520 NULL, /* name_of_this */
6c038f32
PH
13521 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13522 basic_lookup_transparent_type, /* lookup_transparent_type */
13523 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13524 NULL, /* Language specific
13525 class_name_from_physname */
6c038f32
PH
13526 ada_op_print_tab, /* expression operators for printing */
13527 0, /* c-style arrays */
13528 1, /* String lower bound */
6c038f32 13529 ada_get_gdb_completer_word_break_characters,
41d27058 13530 ada_make_symbol_completion_list,
72d5681a 13531 ada_language_arch_info,
e79af960 13532 ada_print_array_index,
41f1b697 13533 default_pass_by_reference,
ae6a3a4c 13534 c_get_string,
1a119f36 13535 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13536 ada_iterate_over_symbols,
a53b64ea 13537 &ada_varobj_ops,
6c038f32
PH
13538 LANG_MAGIC
13539};
13540
2c0b251b
PA
13541/* Provide a prototype to silence -Wmissing-prototypes. */
13542extern initialize_file_ftype _initialize_ada_language;
13543
5bf03f13
JB
13544/* Command-list for the "set/show ada" prefix command. */
13545static struct cmd_list_element *set_ada_list;
13546static struct cmd_list_element *show_ada_list;
13547
13548/* Implement the "set ada" prefix command. */
13549
13550static void
13551set_ada_command (char *arg, int from_tty)
13552{
13553 printf_unfiltered (_(\
13554"\"set ada\" must be followed by the name of a setting.\n"));
13555 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13556}
13557
13558/* Implement the "show ada" prefix command. */
13559
13560static void
13561show_ada_command (char *args, int from_tty)
13562{
13563 cmd_show_list (show_ada_list, from_tty, "");
13564}
13565
2060206e
PA
13566static void
13567initialize_ada_catchpoint_ops (void)
13568{
13569 struct breakpoint_ops *ops;
13570
13571 initialize_breakpoint_ops ();
13572
13573 ops = &catch_exception_breakpoint_ops;
13574 *ops = bkpt_breakpoint_ops;
13575 ops->dtor = dtor_catch_exception;
13576 ops->allocate_location = allocate_location_catch_exception;
13577 ops->re_set = re_set_catch_exception;
13578 ops->check_status = check_status_catch_exception;
13579 ops->print_it = print_it_catch_exception;
13580 ops->print_one = print_one_catch_exception;
13581 ops->print_mention = print_mention_catch_exception;
13582 ops->print_recreate = print_recreate_catch_exception;
13583
13584 ops = &catch_exception_unhandled_breakpoint_ops;
13585 *ops = bkpt_breakpoint_ops;
13586 ops->dtor = dtor_catch_exception_unhandled;
13587 ops->allocate_location = allocate_location_catch_exception_unhandled;
13588 ops->re_set = re_set_catch_exception_unhandled;
13589 ops->check_status = check_status_catch_exception_unhandled;
13590 ops->print_it = print_it_catch_exception_unhandled;
13591 ops->print_one = print_one_catch_exception_unhandled;
13592 ops->print_mention = print_mention_catch_exception_unhandled;
13593 ops->print_recreate = print_recreate_catch_exception_unhandled;
13594
13595 ops = &catch_assert_breakpoint_ops;
13596 *ops = bkpt_breakpoint_ops;
13597 ops->dtor = dtor_catch_assert;
13598 ops->allocate_location = allocate_location_catch_assert;
13599 ops->re_set = re_set_catch_assert;
13600 ops->check_status = check_status_catch_assert;
13601 ops->print_it = print_it_catch_assert;
13602 ops->print_one = print_one_catch_assert;
13603 ops->print_mention = print_mention_catch_assert;
13604 ops->print_recreate = print_recreate_catch_assert;
13605}
13606
3d9434b5
JB
13607/* This module's 'new_objfile' observer. */
13608
13609static void
13610ada_new_objfile_observer (struct objfile *objfile)
13611{
13612 ada_clear_symbol_cache ();
13613}
13614
13615/* This module's 'free_objfile' observer. */
13616
13617static void
13618ada_free_objfile_observer (struct objfile *objfile)
13619{
13620 ada_clear_symbol_cache ();
13621}
13622
d2e4a39e 13623void
6c038f32 13624_initialize_ada_language (void)
14f9c5c9 13625{
6c038f32
PH
13626 add_language (&ada_language_defn);
13627
2060206e
PA
13628 initialize_ada_catchpoint_ops ();
13629
5bf03f13
JB
13630 add_prefix_cmd ("ada", no_class, set_ada_command,
13631 _("Prefix command for changing Ada-specfic settings"),
13632 &set_ada_list, "set ada ", 0, &setlist);
13633
13634 add_prefix_cmd ("ada", no_class, show_ada_command,
13635 _("Generic command for showing Ada-specific settings."),
13636 &show_ada_list, "show ada ", 0, &showlist);
13637
13638 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13639 &trust_pad_over_xvs, _("\
13640Enable or disable an optimization trusting PAD types over XVS types"), _("\
13641Show whether an optimization trusting PAD types over XVS types is activated"),
13642 _("\
13643This is related to the encoding used by the GNAT compiler. The debugger\n\
13644should normally trust the contents of PAD types, but certain older versions\n\
13645of GNAT have a bug that sometimes causes the information in the PAD type\n\
13646to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13647work around this bug. It is always safe to turn this option \"off\", but\n\
13648this incurs a slight performance penalty, so it is recommended to NOT change\n\
13649this option to \"off\" unless necessary."),
13650 NULL, NULL, &set_ada_list, &show_ada_list);
13651
9ac4176b
PA
13652 add_catch_command ("exception", _("\
13653Catch Ada exceptions, when raised.\n\
13654With an argument, catch only exceptions with the given name."),
13655 catch_ada_exception_command,
13656 NULL,
13657 CATCH_PERMANENT,
13658 CATCH_TEMPORARY);
13659 add_catch_command ("assert", _("\
13660Catch failed Ada assertions, when raised.\n\
13661With an argument, catch only exceptions with the given name."),
13662 catch_assert_command,
13663 NULL,
13664 CATCH_PERMANENT,
13665 CATCH_TEMPORARY);
13666
6c038f32 13667 varsize_limit = 65536;
6c038f32 13668
778865d3
JB
13669 add_info ("exceptions", info_exceptions_command,
13670 _("\
13671List all Ada exception names.\n\
13672If a regular expression is passed as an argument, only those matching\n\
13673the regular expression are listed."));
13674
c6044dd1
JB
13675 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13676 _("Set Ada maintenance-related variables."),
13677 &maint_set_ada_cmdlist, "maintenance set ada ",
13678 0/*allow-unknown*/, &maintenance_set_cmdlist);
13679
13680 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13681 _("Show Ada maintenance-related variables"),
13682 &maint_show_ada_cmdlist, "maintenance show ada ",
13683 0/*allow-unknown*/, &maintenance_show_cmdlist);
13684
13685 add_setshow_boolean_cmd
13686 ("ignore-descriptive-types", class_maintenance,
13687 &ada_ignore_descriptive_types_p,
13688 _("Set whether descriptive types generated by GNAT should be ignored."),
13689 _("Show whether descriptive types generated by GNAT should be ignored."),
13690 _("\
13691When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13692DWARF attribute."),
13693 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13694
6c038f32
PH
13695 obstack_init (&symbol_list_obstack);
13696
13697 decoded_names_store = htab_create_alloc
13698 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13699 NULL, xcalloc, xfree);
6b69afc4 13700
3d9434b5
JB
13701 /* The ada-lang observers. */
13702 observer_attach_new_objfile (ada_new_objfile_observer);
13703 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13704 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13705
13706 /* Setup various context-specific data. */
e802dbe0 13707 ada_inferior_data
8e260fc0 13708 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13709 ada_pspace_data_handle
13710 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13711}