]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb/dwarf: fix call to dwarf2_queue_guard in dw2_do_instantiate_symtab
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
dda83cd7 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
dda83cd7 122 struct type *, int,
699bd4cf 123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
dda83cd7 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1 147static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 148 const char *);
b4ba55a1 149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
dda83cd7 154 CORE_ADDR, struct value *);
4c4b4cd2
PH
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
ad82864c 173static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 174
d2e4a39e 175static struct value *value_subscript_packed (struct value *, int,
dda83cd7 176 struct value **);
14f9c5c9 177
4c4b4cd2 178static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 179 struct type *);
14f9c5c9 180
d2e4a39e 181static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 182
d2e4a39e 183static int equiv_types (struct type *, struct type *);
14f9c5c9 184
d2e4a39e 185static int is_name_suffix (const char *);
14f9c5c9 186
59c8a30b 187static int advance_wild_match (const char **, const char *, char);
73589123 188
b5ec771e 189static bool wild_match (const char *name, const char *patn);
14f9c5c9 190
d2e4a39e 191static struct value *ada_coerce_ref (struct value *);
14f9c5c9 192
4c4b4cd2
PH
193static LONGEST pos_atr (struct value *);
194
3cb382c9 195static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 196
53a47a3e
TT
197static struct value *val_atr (struct type *, LONGEST);
198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2 201static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 205 struct type *);
4c4b4cd2 206
0d5cff50 207static int find_struct_field (const char *, struct type *, int,
dda83cd7 208 struct type **, int *, int *, int *, int *);
4c4b4cd2 209
d12307c1 210static int ada_resolve_function (struct block_symbol *, int,
dda83cd7
SM
211 struct value **, int, const char *,
212 struct type *, int);
4c4b4cd2 213
4c4b4cd2
PH
214static int ada_is_direct_array_type (struct type *);
215
52ce6436
PH
216static struct value *ada_index_struct_field (int, struct value *, int,
217 struct type *);
218
219static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
220 struct expression *,
221 int *, enum noside);
52ce6436
PH
222
223static void aggregate_assign_from_choices (struct value *, struct value *,
224 struct expression *,
225 int *, LONGEST *, int *,
226 int, LONGEST, LONGEST);
227
228static void aggregate_assign_positional (struct value *, struct value *,
229 struct expression *,
230 int *, LONGEST *, int *, int,
231 LONGEST, LONGEST);
232
233
234static void aggregate_assign_others (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int, LONGEST, LONGEST);
237
238
239static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
240
241
242static struct value *ada_evaluate_subexp (struct type *, struct expression *,
243 int *, enum noside);
244
245static void ada_forward_operator_length (struct expression *, int, int *,
246 int *);
852dff6c
JB
247
248static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
249
250static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
251 (const lookup_name_info &lookup_name);
252
4c4b4cd2
PH
253\f
254
ee01b665
JB
255/* The result of a symbol lookup to be stored in our symbol cache. */
256
257struct cache_entry
258{
259 /* The name used to perform the lookup. */
260 const char *name;
261 /* The namespace used during the lookup. */
fe978cb0 262 domain_enum domain;
ee01b665
JB
263 /* The symbol returned by the lookup, or NULL if no matching symbol
264 was found. */
265 struct symbol *sym;
266 /* The block where the symbol was found, or NULL if no matching
267 symbol was found. */
268 const struct block *block;
269 /* A pointer to the next entry with the same hash. */
270 struct cache_entry *next;
271};
272
273/* The Ada symbol cache, used to store the result of Ada-mode symbol
274 lookups in the course of executing the user's commands.
275
276 The cache is implemented using a simple, fixed-sized hash.
277 The size is fixed on the grounds that there are not likely to be
278 all that many symbols looked up during any given session, regardless
279 of the size of the symbol table. If we decide to go to a resizable
280 table, let's just use the stuff from libiberty instead. */
281
282#define HASH_SIZE 1009
283
284struct ada_symbol_cache
285{
286 /* An obstack used to store the entries in our cache. */
287 struct obstack cache_space;
288
289 /* The root of the hash table used to implement our symbol cache. */
290 struct cache_entry *root[HASH_SIZE];
291};
292
293static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 294
4c4b4cd2 295/* Maximum-sized dynamic type. */
14f9c5c9
AS
296static unsigned int varsize_limit;
297
67cb5b2d 298static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
299#ifdef VMS
300 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
301#else
14f9c5c9 302 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 303#endif
14f9c5c9 304
4c4b4cd2 305/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 306static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 307 = "__gnat_ada_main_program_name";
14f9c5c9 308
4c4b4cd2
PH
309/* Limit on the number of warnings to raise per expression evaluation. */
310static int warning_limit = 2;
311
312/* Number of warning messages issued; reset to 0 by cleanups after
313 expression evaluation. */
314static int warnings_issued = 0;
315
27087b7f 316static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
317 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318};
319
27087b7f 320static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
321 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322};
323
c6044dd1
JB
324/* Maintenance-related settings for this module. */
325
326static struct cmd_list_element *maint_set_ada_cmdlist;
327static struct cmd_list_element *maint_show_ada_cmdlist;
328
c6044dd1
JB
329/* The "maintenance ada set/show ignore-descriptive-type" value. */
330
491144b5 331static bool ada_ignore_descriptive_types_p = false;
c6044dd1 332
e802dbe0
JB
333 /* Inferior-specific data. */
334
335/* Per-inferior data for this module. */
336
337struct ada_inferior_data
338{
339 /* The ada__tags__type_specific_data type, which is used when decoding
340 tagged types. With older versions of GNAT, this type was directly
341 accessible through a component ("tsd") in the object tag. But this
342 is no longer the case, so we cache it for each inferior. */
f37b313d 343 struct type *tsd_type = nullptr;
3eecfa55
JB
344
345 /* The exception_support_info data. This data is used to determine
346 how to implement support for Ada exception catchpoints in a given
347 inferior. */
f37b313d 348 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
349};
350
351/* Our key to this module's inferior data. */
f37b313d 352static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
353
354/* Return our inferior data for the given inferior (INF).
355
356 This function always returns a valid pointer to an allocated
357 ada_inferior_data structure. If INF's inferior data has not
358 been previously set, this functions creates a new one with all
359 fields set to zero, sets INF's inferior to it, and then returns
360 a pointer to that newly allocated ada_inferior_data. */
361
362static struct ada_inferior_data *
363get_ada_inferior_data (struct inferior *inf)
364{
365 struct ada_inferior_data *data;
366
f37b313d 367 data = ada_inferior_data.get (inf);
e802dbe0 368 if (data == NULL)
f37b313d 369 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
370
371 return data;
372}
373
374/* Perform all necessary cleanups regarding our module's inferior data
375 that is required after the inferior INF just exited. */
376
377static void
378ada_inferior_exit (struct inferior *inf)
379{
f37b313d 380 ada_inferior_data.clear (inf);
e802dbe0
JB
381}
382
ee01b665
JB
383
384 /* program-space-specific data. */
385
386/* This module's per-program-space data. */
387struct ada_pspace_data
388{
f37b313d
TT
389 ~ada_pspace_data ()
390 {
391 if (sym_cache != NULL)
392 ada_free_symbol_cache (sym_cache);
393 }
394
ee01b665 395 /* The Ada symbol cache. */
f37b313d 396 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
397};
398
399/* Key to our per-program-space data. */
f37b313d 400static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
401
402/* Return this module's data for the given program space (PSPACE).
403 If not is found, add a zero'ed one now.
404
405 This function always returns a valid object. */
406
407static struct ada_pspace_data *
408get_ada_pspace_data (struct program_space *pspace)
409{
410 struct ada_pspace_data *data;
411
f37b313d 412 data = ada_pspace_data_handle.get (pspace);
ee01b665 413 if (data == NULL)
f37b313d 414 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
415
416 return data;
417}
418
dda83cd7 419 /* Utilities */
4c4b4cd2 420
720d1a40 421/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 422 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
423
424 Normally, we really expect a typedef type to only have 1 typedef layer.
425 In other words, we really expect the target type of a typedef type to be
426 a non-typedef type. This is particularly true for Ada units, because
427 the language does not have a typedef vs not-typedef distinction.
428 In that respect, the Ada compiler has been trying to eliminate as many
429 typedef definitions in the debugging information, since they generally
430 do not bring any extra information (we still use typedef under certain
431 circumstances related mostly to the GNAT encoding).
432
433 Unfortunately, we have seen situations where the debugging information
434 generated by the compiler leads to such multiple typedef layers. For
435 instance, consider the following example with stabs:
436
437 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
438 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
439
440 This is an error in the debugging information which causes type
441 pck__float_array___XUP to be defined twice, and the second time,
442 it is defined as a typedef of a typedef.
443
444 This is on the fringe of legality as far as debugging information is
445 concerned, and certainly unexpected. But it is easy to handle these
446 situations correctly, so we can afford to be lenient in this case. */
447
448static struct type *
449ada_typedef_target_type (struct type *type)
450{
78134374 451 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
452 type = TYPE_TARGET_TYPE (type);
453 return type;
454}
455
41d27058
JB
456/* Given DECODED_NAME a string holding a symbol name in its
457 decoded form (ie using the Ada dotted notation), returns
458 its unqualified name. */
459
460static const char *
461ada_unqualified_name (const char *decoded_name)
462{
2b0f535a
JB
463 const char *result;
464
465 /* If the decoded name starts with '<', it means that the encoded
466 name does not follow standard naming conventions, and thus that
467 it is not your typical Ada symbol name. Trying to unqualify it
468 is therefore pointless and possibly erroneous. */
469 if (decoded_name[0] == '<')
470 return decoded_name;
471
472 result = strrchr (decoded_name, '.');
41d27058
JB
473 if (result != NULL)
474 result++; /* Skip the dot... */
475 else
476 result = decoded_name;
477
478 return result;
479}
480
39e7af3e 481/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 482
39e7af3e 483static std::string
41d27058
JB
484add_angle_brackets (const char *str)
485{
39e7af3e 486 return string_printf ("<%s>", str);
41d27058 487}
96d887e8 488
de93309a
SM
489/* Assuming V points to an array of S objects, make sure that it contains at
490 least M objects, updating V and S as necessary. */
491
492#define GROW_VECT(v, s, m) \
493 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
494
f27cf670 495/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 496 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 497 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 498
de93309a 499static void *
f27cf670 500grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 501{
d2e4a39e
AS
502 if (*size < min_size)
503 {
504 *size *= 2;
505 if (*size < min_size)
dda83cd7 506 *size = min_size;
f27cf670 507 vect = xrealloc (vect, *size * element_size);
d2e4a39e 508 }
f27cf670 509 return vect;
14f9c5c9
AS
510}
511
512/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 513 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
514
515static int
ebf56fd3 516field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
517{
518 int len = strlen (target);
5b4ee69b 519
d2e4a39e 520 return
4c4b4cd2
PH
521 (strncmp (field_name, target, len) == 0
522 && (field_name[len] == '\0'
dda83cd7
SM
523 || (startswith (field_name + len, "___")
524 && strcmp (field_name + strlen (field_name) - 6,
525 "___XVN") != 0)));
14f9c5c9
AS
526}
527
528
872c8b51
JB
529/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
530 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
531 and return its index. This function also handles fields whose name
532 have ___ suffixes because the compiler sometimes alters their name
533 by adding such a suffix to represent fields with certain constraints.
534 If the field could not be found, return a negative number if
535 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
536
537int
538ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 539 int maybe_missing)
4c4b4cd2
PH
540{
541 int fieldno;
872c8b51
JB
542 struct type *struct_type = check_typedef ((struct type *) type);
543
1f704f76 544 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 545 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
546 return fieldno;
547
548 if (!maybe_missing)
323e0a4a 549 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 550 field_name, struct_type->name ());
4c4b4cd2
PH
551
552 return -1;
553}
554
555/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
556
557int
d2e4a39e 558ada_name_prefix_len (const char *name)
14f9c5c9
AS
559{
560 if (name == NULL)
561 return 0;
d2e4a39e 562 else
14f9c5c9 563 {
d2e4a39e 564 const char *p = strstr (name, "___");
5b4ee69b 565
14f9c5c9 566 if (p == NULL)
dda83cd7 567 return strlen (name);
14f9c5c9 568 else
dda83cd7 569 return p - name;
14f9c5c9
AS
570 }
571}
572
4c4b4cd2
PH
573/* Return non-zero if SUFFIX is a suffix of STR.
574 Return zero if STR is null. */
575
14f9c5c9 576static int
d2e4a39e 577is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
578{
579 int len1, len2;
5b4ee69b 580
14f9c5c9
AS
581 if (str == NULL)
582 return 0;
583 len1 = strlen (str);
584 len2 = strlen (suffix);
4c4b4cd2 585 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
586}
587
4c4b4cd2
PH
588/* The contents of value VAL, treated as a value of type TYPE. The
589 result is an lval in memory if VAL is. */
14f9c5c9 590
d2e4a39e 591static struct value *
4c4b4cd2 592coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 593{
61ee279c 594 type = ada_check_typedef (type);
df407dfe 595 if (value_type (val) == type)
4c4b4cd2 596 return val;
d2e4a39e 597 else
14f9c5c9 598 {
4c4b4cd2
PH
599 struct value *result;
600
601 /* Make sure that the object size is not unreasonable before
dda83cd7 602 trying to allocate some memory for it. */
c1b5a1a6 603 ada_ensure_varsize_limit (type);
4c4b4cd2 604
41e8491f 605 if (value_lazy (val)
dda83cd7 606 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
41e8491f
JK
607 result = allocate_value_lazy (type);
608 else
609 {
610 result = allocate_value (type);
9a0dc9e3 611 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 612 }
74bcbdf3 613 set_value_component_location (result, val);
9bbda503
AC
614 set_value_bitsize (result, value_bitsize (val));
615 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
616 if (VALUE_LVAL (result) == lval_memory)
617 set_value_address (result, value_address (val));
14f9c5c9
AS
618 return result;
619 }
620}
621
fc1a4b47
AC
622static const gdb_byte *
623cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
624{
625 if (valaddr == NULL)
626 return NULL;
627 else
628 return valaddr + offset;
629}
630
631static CORE_ADDR
ebf56fd3 632cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
633{
634 if (address == 0)
635 return 0;
d2e4a39e 636 else
14f9c5c9
AS
637 return address + offset;
638}
639
4c4b4cd2
PH
640/* Issue a warning (as for the definition of warning in utils.c, but
641 with exactly one argument rather than ...), unless the limit on the
642 number of warnings has passed during the evaluation of the current
643 expression. */
a2249542 644
77109804
AC
645/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
646 provided by "complaint". */
a0b31db1 647static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 648
14f9c5c9 649static void
a2249542 650lim_warning (const char *format, ...)
14f9c5c9 651{
a2249542 652 va_list args;
a2249542 653
5b4ee69b 654 va_start (args, format);
4c4b4cd2
PH
655 warnings_issued += 1;
656 if (warnings_issued <= warning_limit)
a2249542
MK
657 vwarning (format, args);
658
659 va_end (args);
4c4b4cd2
PH
660}
661
714e53ab
PH
662/* Issue an error if the size of an object of type T is unreasonable,
663 i.e. if it would be a bad idea to allocate a value of this type in
664 GDB. */
665
c1b5a1a6
JB
666void
667ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
668{
669 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 670 error (_("object size is larger than varsize-limit"));
714e53ab
PH
671}
672
0963b4bd 673/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 674static LONGEST
c3e5cd34 675max_of_size (int size)
4c4b4cd2 676{
76a01679 677 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 678
76a01679 679 return top_bit | (top_bit - 1);
4c4b4cd2
PH
680}
681
0963b4bd 682/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 683static LONGEST
c3e5cd34 684min_of_size (int size)
4c4b4cd2 685{
c3e5cd34 686 return -max_of_size (size) - 1;
4c4b4cd2
PH
687}
688
0963b4bd 689/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 690static ULONGEST
c3e5cd34 691umax_of_size (int size)
4c4b4cd2 692{
76a01679 693 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 694
76a01679 695 return top_bit | (top_bit - 1);
4c4b4cd2
PH
696}
697
0963b4bd 698/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
699static LONGEST
700max_of_type (struct type *t)
4c4b4cd2 701{
c6d940a9 702 if (t->is_unsigned ())
c3e5cd34
PH
703 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
704 else
705 return max_of_size (TYPE_LENGTH (t));
706}
707
0963b4bd 708/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
709static LONGEST
710min_of_type (struct type *t)
711{
c6d940a9 712 if (t->is_unsigned ())
c3e5cd34
PH
713 return 0;
714 else
715 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
716}
717
718/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
719LONGEST
720ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 721{
b249d2c2 722 type = resolve_dynamic_type (type, {}, 0);
78134374 723 switch (type->code ())
4c4b4cd2
PH
724 {
725 case TYPE_CODE_RANGE:
d1fd641e
SM
726 {
727 const dynamic_prop &high = type->bounds ()->high;
728
729 if (high.kind () == PROP_CONST)
730 return high.const_val ();
731 else
732 {
733 gdb_assert (high.kind () == PROP_UNDEFINED);
734
735 /* This happens when trying to evaluate a type's dynamic bound
736 without a live target. There is nothing relevant for us to
737 return here, so return 0. */
738 return 0;
739 }
740 }
4c4b4cd2 741 case TYPE_CODE_ENUM:
1f704f76 742 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
743 case TYPE_CODE_BOOL:
744 return 1;
745 case TYPE_CODE_CHAR:
76a01679 746 case TYPE_CODE_INT:
690cc4eb 747 return max_of_type (type);
4c4b4cd2 748 default:
43bbcdc2 749 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
750 }
751}
752
14e75d8e 753/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
754LONGEST
755ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 756{
b249d2c2 757 type = resolve_dynamic_type (type, {}, 0);
78134374 758 switch (type->code ())
4c4b4cd2
PH
759 {
760 case TYPE_CODE_RANGE:
d1fd641e
SM
761 {
762 const dynamic_prop &low = type->bounds ()->low;
763
764 if (low.kind () == PROP_CONST)
765 return low.const_val ();
766 else
767 {
768 gdb_assert (low.kind () == PROP_UNDEFINED);
769
770 /* This happens when trying to evaluate a type's dynamic bound
771 without a live target. There is nothing relevant for us to
772 return here, so return 0. */
773 return 0;
774 }
775 }
4c4b4cd2 776 case TYPE_CODE_ENUM:
14e75d8e 777 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
778 case TYPE_CODE_BOOL:
779 return 0;
780 case TYPE_CODE_CHAR:
76a01679 781 case TYPE_CODE_INT:
690cc4eb 782 return min_of_type (type);
4c4b4cd2 783 default:
43bbcdc2 784 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
785 }
786}
787
788/* The identity on non-range types. For range types, the underlying
76a01679 789 non-range scalar type. */
4c4b4cd2
PH
790
791static struct type *
18af8284 792get_base_type (struct type *type)
4c4b4cd2 793{
78134374 794 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 795 {
76a01679 796 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 797 return type;
4c4b4cd2
PH
798 type = TYPE_TARGET_TYPE (type);
799 }
800 return type;
14f9c5c9 801}
41246937
JB
802
803/* Return a decoded version of the given VALUE. This means returning
804 a value whose type is obtained by applying all the GNAT-specific
85102364 805 encodings, making the resulting type a static but standard description
41246937
JB
806 of the initial type. */
807
808struct value *
809ada_get_decoded_value (struct value *value)
810{
811 struct type *type = ada_check_typedef (value_type (value));
812
813 if (ada_is_array_descriptor_type (type)
814 || (ada_is_constrained_packed_array_type (type)
dda83cd7 815 && type->code () != TYPE_CODE_PTR))
41246937 816 {
78134374 817 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 818 value = ada_coerce_to_simple_array_ptr (value);
41246937 819 else
dda83cd7 820 value = ada_coerce_to_simple_array (value);
41246937
JB
821 }
822 else
823 value = ada_to_fixed_value (value);
824
825 return value;
826}
827
828/* Same as ada_get_decoded_value, but with the given TYPE.
829 Because there is no associated actual value for this type,
830 the resulting type might be a best-effort approximation in
831 the case of dynamic types. */
832
833struct type *
834ada_get_decoded_type (struct type *type)
835{
836 type = to_static_fixed_type (type);
837 if (ada_is_constrained_packed_array_type (type))
838 type = ada_coerce_to_simple_array_type (type);
839 return type;
840}
841
4c4b4cd2 842\f
76a01679 843
dda83cd7 844 /* Language Selection */
14f9c5c9
AS
845
846/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 847 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 848
de93309a 849static enum language
ccefe4c4 850ada_update_initial_language (enum language lang)
14f9c5c9 851{
cafb3438 852 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 853 return language_ada;
14f9c5c9
AS
854
855 return lang;
856}
96d887e8
PH
857
858/* If the main procedure is written in Ada, then return its name.
859 The result is good until the next call. Return NULL if the main
860 procedure doesn't appear to be in Ada. */
861
862char *
863ada_main_name (void)
864{
3b7344d5 865 struct bound_minimal_symbol msym;
e83e4e24 866 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 867
96d887e8
PH
868 /* For Ada, the name of the main procedure is stored in a specific
869 string constant, generated by the binder. Look for that symbol,
870 extract its address, and then read that string. If we didn't find
871 that string, then most probably the main procedure is not written
872 in Ada. */
873 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
874
3b7344d5 875 if (msym.minsym != NULL)
96d887e8 876 {
66920317 877 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 878 if (main_program_name_addr == 0)
dda83cd7 879 error (_("Invalid address for Ada main program name."));
96d887e8 880
66920317 881 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 882 return main_program_name.get ();
96d887e8
PH
883 }
884
885 /* The main procedure doesn't seem to be in Ada. */
886 return NULL;
887}
14f9c5c9 888\f
dda83cd7 889 /* Symbols */
d2e4a39e 890
4c4b4cd2
PH
891/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
892 of NULLs. */
14f9c5c9 893
d2e4a39e
AS
894const struct ada_opname_map ada_opname_table[] = {
895 {"Oadd", "\"+\"", BINOP_ADD},
896 {"Osubtract", "\"-\"", BINOP_SUB},
897 {"Omultiply", "\"*\"", BINOP_MUL},
898 {"Odivide", "\"/\"", BINOP_DIV},
899 {"Omod", "\"mod\"", BINOP_MOD},
900 {"Orem", "\"rem\"", BINOP_REM},
901 {"Oexpon", "\"**\"", BINOP_EXP},
902 {"Olt", "\"<\"", BINOP_LESS},
903 {"Ole", "\"<=\"", BINOP_LEQ},
904 {"Ogt", "\">\"", BINOP_GTR},
905 {"Oge", "\">=\"", BINOP_GEQ},
906 {"Oeq", "\"=\"", BINOP_EQUAL},
907 {"One", "\"/=\"", BINOP_NOTEQUAL},
908 {"Oand", "\"and\"", BINOP_BITWISE_AND},
909 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
910 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
911 {"Oconcat", "\"&\"", BINOP_CONCAT},
912 {"Oabs", "\"abs\"", UNOP_ABS},
913 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
914 {"Oadd", "\"+\"", UNOP_PLUS},
915 {"Osubtract", "\"-\"", UNOP_NEG},
916 {NULL, NULL}
14f9c5c9
AS
917};
918
5c4258f4 919/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 920 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 921 Otherwise, return the empty string in that case. */
4c4b4cd2 922
5c4258f4 923static std::string
b5ec771e 924ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 925{
4c4b4cd2 926 if (decoded == NULL)
5c4258f4 927 return {};
14f9c5c9 928
5c4258f4
TT
929 std::string encoding_buffer;
930 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 931 {
cdc7bb92 932 if (*p == '.')
5c4258f4 933 encoding_buffer.append ("__");
14f9c5c9 934 else if (*p == '"')
dda83cd7
SM
935 {
936 const struct ada_opname_map *mapping;
937
938 for (mapping = ada_opname_table;
939 mapping->encoded != NULL
940 && !startswith (p, mapping->decoded); mapping += 1)
941 ;
942 if (mapping->encoded == NULL)
b5ec771e
PA
943 {
944 if (throw_errors)
945 error (_("invalid Ada operator name: %s"), p);
946 else
5c4258f4 947 return {};
b5ec771e 948 }
5c4258f4 949 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
950 break;
951 }
d2e4a39e 952 else
5c4258f4 953 encoding_buffer.push_back (*p);
14f9c5c9
AS
954 }
955
4c4b4cd2 956 return encoding_buffer;
14f9c5c9
AS
957}
958
5c4258f4 959/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 960
5c4258f4 961std::string
b5ec771e
PA
962ada_encode (const char *decoded)
963{
964 return ada_encode_1 (decoded, true);
965}
966
14f9c5c9 967/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
968 quotes, unfolded, but with the quotes stripped away. Result good
969 to next call. */
970
de93309a 971static char *
e0802d59 972ada_fold_name (gdb::string_view name)
14f9c5c9 973{
d2e4a39e 974 static char *fold_buffer = NULL;
14f9c5c9
AS
975 static size_t fold_buffer_size = 0;
976
e0802d59 977 int len = name.size ();
d2e4a39e 978 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
979
980 if (name[0] == '\'')
981 {
e0802d59 982 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 983 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
984 }
985 else
986 {
987 int i;
5b4ee69b 988
14f9c5c9 989 for (i = 0; i <= len; i += 1)
dda83cd7 990 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
991 }
992
993 return fold_buffer;
994}
995
529cad9c
PH
996/* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998static int
999is_lower_alphanum (const char c)
1000{
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002}
1003
c90092fe
JB
1004/* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
29480c32
JB
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
c90092fe 1011
29480c32
JB
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016static void
1017ada_remove_trailing_digits (const char *encoded, int *len)
1018{
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
5b4ee69b 1022
29480c32 1023 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1024 i--;
29480c32 1025 if (i >= 0 && encoded[i] == '.')
dda83cd7 1026 *len = i;
29480c32 1027 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1028 *len = i;
61012eef 1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1030 *len = i - 2;
61012eef 1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1032 *len = i - 1;
29480c32
JB
1033 }
1034}
1035
1036/* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039static void
1040ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041{
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
0963b4bd 1047 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056}
1057
1058/* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1060 replaced by ENCODED. */
14f9c5c9 1061
f945dedf 1062std::string
4c4b4cd2 1063ada_decode (const char *encoded)
14f9c5c9
AS
1064{
1065 int i, j;
1066 int len0;
d2e4a39e 1067 const char *p;
14f9c5c9 1068 int at_start_name;
f945dedf 1069 std::string decoded;
d2e4a39e 1070
0d81f350
JG
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
29480c32
JB
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
61012eef 1079 if (startswith (encoded, "_ada_"))
4c4b4cd2 1080 encoded += 5;
14f9c5c9 1081
29480c32
JB
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
4c4b4cd2 1085 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1086 goto Suppress;
1087
4c4b4cd2 1088 len0 = strlen (encoded);
4c4b4cd2 1089
29480c32
JB
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1092
4c4b4cd2
PH
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1099 {
1100 if (p[3] == 'X')
dda83cd7 1101 len0 = p - encoded;
14f9c5c9 1102 else
dda83cd7 1103 goto Suppress;
14f9c5c9 1104 }
4c4b4cd2 1105
29480c32
JB
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
61012eef 1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1111 len0 -= 3;
76a01679 1112
a10967fa
JB
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
61012eef 1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1118 len0 -= 2;
1119
29480c32
JB
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
61012eef 1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1124 len0 -= 1;
1125
4c4b4cd2 1126 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1127
f945dedf 1128 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1129
29480c32
JB
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
4c4b4cd2 1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1133 {
4c4b4cd2
PH
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
4c4b4cd2 1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1139 len0 = i - 1;
4c4b4cd2 1140 else if (encoded[i] == '$')
dda83cd7 1141 len0 = i;
d2e4a39e 1142 }
14f9c5c9 1143
29480c32
JB
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
4c4b4cd2
PH
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
14f9c5c9
AS
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
29480c32 1153 /* Is this a symbol function? */
4c4b4cd2 1154 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
14f9c5c9
AS
1175 at_start_name = 0;
1176
529cad9c 1177 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1178 into "." (just below). */
529cad9c 1179
61012eef 1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1181 i += 2;
529cad9c 1182
29480c32 1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
29480c32 1201
529cad9c
PH
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
529cad9c 1210
dda83cd7
SM
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
529cad9c
PH
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
529cad9c
PH
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1237 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1238
1239 if (i < len0 + 3
dda83cd7
SM
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
529cad9c 1253
4c4b4cd2 1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
cdc7bb92 1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
14f9c5c9 1277 else
dda83cd7
SM
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
14f9c5c9 1285 }
f945dedf 1286 decoded.resize (j);
14f9c5c9 1287
29480c32
JB
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
f945dedf 1291 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1292 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1293 goto Suppress;
1294
f945dedf 1295 return decoded;
14f9c5c9
AS
1296
1297Suppress:
4c4b4cd2 1298 if (encoded[0] == '<')
f945dedf 1299 decoded = encoded;
14f9c5c9 1300 else
f945dedf 1301 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1302 return decoded;
1303
1304}
1305
1306/* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311static struct htab *decoded_names_store;
1312
1313/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1318 GSYMBOL).
4c4b4cd2
PH
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1321 when a decoded name is cached in it. */
4c4b4cd2 1322
45e6c716 1323const char *
f85f34ed 1324ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1325{
f85f34ed
TT
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
615b3f62 1328 &gsymbol->language_specific.demangled_name;
5b4ee69b 1329
f85f34ed 1330 if (!gsymbol->ada_mangled)
4c4b4cd2 1331 {
4d4eaa30 1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1333 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1334
f85f34ed 1335 gsymbol->ada_mangled = 1;
5b4ee69b 1336
f85f34ed 1337 if (obstack != NULL)
f945dedf 1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1339 else
dda83cd7 1340 {
f85f34ed
TT
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
dda83cd7
SM
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
5b4ee69b 1348
dda83cd7
SM
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
4c4b4cd2 1353 }
14f9c5c9 1354
4c4b4cd2
PH
1355 return *resultp;
1356}
76a01679 1357
2c0b251b 1358static char *
76a01679 1359ada_la_decode (const char *encoded, int options)
4c4b4cd2 1360{
f945dedf 1361 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1362}
1363
14f9c5c9 1364\f
d2e4a39e 1365
dda83cd7 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
85102364 1375 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1f704f76 1398 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
940da03e
SM
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1413 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
5d14b6e5 1419 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1420 }
1421}
1422
4c4b4cd2
PH
1423/* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
14f9c5c9
AS
1425
1426/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1427 level of indirection, if needed. */
1428
d2e4a39e
AS
1429static struct type *
1430desc_base_type (struct type *type)
14f9c5c9
AS
1431{
1432 if (type == NULL)
1433 return NULL;
61ee279c 1434 type = ada_check_typedef (type);
78134374 1435 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1436 type = ada_typedef_target_type (type);
1437
1265e4aa 1438 if (type != NULL
78134374 1439 && (type->code () == TYPE_CODE_PTR
dda83cd7 1440 || type->code () == TYPE_CODE_REF))
61ee279c 1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1442 else
1443 return type;
1444}
1445
4c4b4cd2
PH
1446/* True iff TYPE indicates a "thin" array pointer type. */
1447
14f9c5c9 1448static int
d2e4a39e 1449is_thin_pntr (struct type *type)
14f9c5c9 1450{
d2e4a39e 1451 return
14f9c5c9
AS
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454}
1455
4c4b4cd2
PH
1456/* The descriptor type for thin pointer type TYPE. */
1457
d2e4a39e
AS
1458static struct type *
1459thin_descriptor_type (struct type *type)
14f9c5c9 1460{
d2e4a39e 1461 struct type *base_type = desc_base_type (type);
5b4ee69b 1462
14f9c5c9
AS
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
d2e4a39e 1467 else
14f9c5c9 1468 {
d2e4a39e 1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1470
14f9c5c9 1471 if (alt_type == NULL)
dda83cd7 1472 return base_type;
14f9c5c9 1473 else
dda83cd7 1474 return alt_type;
14f9c5c9
AS
1475 }
1476}
1477
4c4b4cd2
PH
1478/* A pointer to the array data for thin-pointer value VAL. */
1479
d2e4a39e
AS
1480static struct value *
1481thin_data_pntr (struct value *val)
14f9c5c9 1482{
828292f2 1483 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1485
556bdfd4
UW
1486 data_type = lookup_pointer_type (data_type);
1487
78134374 1488 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1489 return value_cast (data_type, value_copy (val));
d2e4a39e 1490 else
42ae5230 1491 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1492}
1493
4c4b4cd2
PH
1494/* True iff TYPE indicates a "thick" array pointer type. */
1495
14f9c5c9 1496static int
d2e4a39e 1497is_thick_pntr (struct type *type)
14f9c5c9
AS
1498{
1499 type = desc_base_type (type);
78134374 1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1502}
1503
4c4b4cd2
PH
1504/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1506
d2e4a39e
AS
1507static struct type *
1508desc_bounds_type (struct type *type)
14f9c5c9 1509{
d2e4a39e 1510 struct type *r;
14f9c5c9
AS
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
dda83cd7 1520 return NULL;
14f9c5c9
AS
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
dda83cd7 1523 return ada_check_typedef (r);
14f9c5c9 1524 }
78134374 1525 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
dda83cd7 1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1530 }
1531 return NULL;
1532}
1533
1534/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
d2e4a39e
AS
1537static struct value *
1538desc_bounds (struct value *arr)
14f9c5c9 1539{
df407dfe 1540 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1541
d2e4a39e 1542 if (is_thin_pntr (type))
14f9c5c9 1543 {
d2e4a39e 1544 struct type *bounds_type =
dda83cd7 1545 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1546 LONGEST addr;
1547
4cdfadb1 1548 if (bounds_type == NULL)
dda83cd7 1549 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1550
1551 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1554 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1555 addr = value_as_long (arr);
d2e4a39e 1556 else
dda83cd7 1557 addr = value_address (arr);
14f9c5c9 1558
d2e4a39e 1559 return
dda83cd7
SM
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1562 }
1563
1564 else if (is_thick_pntr (type))
05e522ef
JB
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
78134374 1571 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
e46d3488 1575 if (target_type->is_stub ())
05e522ef
JB
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
14f9c5c9
AS
1585 else
1586 return NULL;
1587}
1588
4c4b4cd2
PH
1589/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
14f9c5c9 1592static int
d2e4a39e 1593fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1594{
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596}
1597
1598/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1599 size of the field containing the address of the bounds data. */
1600
14f9c5c9 1601static int
d2e4a39e 1602fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1603{
1604 type = desc_base_type (type);
1605
d2e4a39e 1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
940da03e 1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1610}
1611
4c4b4cd2 1612/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
4c4b4cd2 1616
d2e4a39e 1617static struct type *
556bdfd4 1618desc_data_target_type (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621
4c4b4cd2 1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1623 if (is_thin_pntr (type))
940da03e 1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1625 else if (is_thick_pntr (type))
556bdfd4
UW
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
78134374 1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1632 }
1633
1634 return NULL;
14f9c5c9
AS
1635}
1636
1637/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
4c4b4cd2 1639
d2e4a39e
AS
1640static struct value *
1641desc_data (struct value *arr)
14f9c5c9 1642{
df407dfe 1643 struct type *type = value_type (arr);
5b4ee69b 1644
14f9c5c9
AS
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
d2e4a39e 1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
dda83cd7 1649 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1650 else
1651 return NULL;
1652}
1653
1654
1655/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1656 position of the field containing the address of the data. */
1657
14f9c5c9 1658static int
d2e4a39e 1659fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1660{
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662}
1663
1664/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1665 size of the field containing the address of the data. */
1666
14f9c5c9 1667static int
d2e4a39e 1668fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1669{
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1674 else
940da03e 1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1676}
1677
4c4b4cd2 1678/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
d2e4a39e
AS
1682static struct value *
1683desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1684{
250106a7
TT
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
dda83cd7 1689 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1690}
1691
1692/* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
14f9c5c9 1696static int
d2e4a39e 1697desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
76a01679 1706static int
d2e4a39e 1707desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1708{
1709 type = desc_base_type (type);
1710
d2e4a39e
AS
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
940da03e 1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1715}
1716
1717/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
d2e4a39e
AS
1720static struct type *
1721desc_index_type (struct type *type, int i)
14f9c5c9
AS
1722{
1723 type = desc_base_type (type);
1724
78134374 1725 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
d2e4a39e 1731 else
14f9c5c9
AS
1732 return NULL;
1733}
1734
4c4b4cd2
PH
1735/* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
14f9c5c9 1738static int
d2e4a39e 1739desc_arity (struct type *type)
14f9c5c9
AS
1740{
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1f704f76 1744 return type->num_fields () / 2;
14f9c5c9
AS
1745 return 0;
1746}
1747
4c4b4cd2
PH
1748/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
76a01679
JB
1752static int
1753ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1754{
1755 if (type == NULL)
1756 return 0;
61ee279c 1757 type = ada_check_typedef (type);
78134374 1758 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1759 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1760}
1761
52ce6436 1762/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1763 * to one. */
52ce6436 1764
2c0b251b 1765static int
52ce6436
PH
1766ada_is_array_type (struct type *type)
1767{
78134374
SM
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773}
1774
4c4b4cd2 1775/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1776
14f9c5c9 1777int
4c4b4cd2 1778ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1779{
1780 if (type == NULL)
1781 return 0;
61ee279c 1782 type = ada_check_typedef (type);
78134374
SM
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1787}
1788
4c4b4cd2
PH
1789/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
14f9c5c9 1791int
4c4b4cd2 1792ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1793{
556bdfd4 1794 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1795
1796 if (type == NULL)
1797 return 0;
61ee279c 1798 type = ada_check_typedef (type);
556bdfd4 1799 return (data_type != NULL
78134374 1800 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1801 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1802}
1803
1804/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1805 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1806 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1807 is still needed. */
1808
14f9c5c9 1809int
ebf56fd3 1810ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1811{
d2e4a39e 1812 return
14f9c5c9 1813 type != NULL
78134374 1814 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1817 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1818}
1819
1820
4c4b4cd2 1821/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1822 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1824 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1827 a descriptor. */
de93309a
SM
1828
1829static struct type *
d2e4a39e 1830ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1831{
ad82864c
JB
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1834
df407dfe
AC
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
d2e4a39e
AS
1837
1838 if (!bounds)
ad82864c
JB
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
14f9c5c9
AS
1849 else
1850 {
d2e4a39e 1851 struct type *elt_type;
14f9c5c9 1852 int arity;
d2e4a39e 1853 struct value *descriptor;
14f9c5c9 1854
df407dfe
AC
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
14f9c5c9 1857
d2e4a39e 1858 if (elt_type == NULL || arity == 0)
dda83cd7 1859 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1860
1861 descriptor = desc_bounds (arr);
d2e4a39e 1862 if (value_as_long (descriptor) == 0)
dda83cd7 1863 return NULL;
d2e4a39e 1864 while (arity > 0)
dda83cd7
SM
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
dda83cd7 1875 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1878 {
1879 /* We need to store the element packed bitsize, as well as
dda83cd7 1880 recompute the array size, because it was previously
e67ad678
JB
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
dda83cd7 1888 zero, and does not need to be recomputed. */
e67ad678
JB
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
dda83cd7 1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
dda83cd7 1897 }
14f9c5c9
AS
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901}
1902
1903/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
d2e4a39e
AS
1908struct value *
1909ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1910{
df407dfe 1911 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1912 {
d2e4a39e 1913 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1914
14f9c5c9 1915 if (arrType == NULL)
dda83cd7 1916 return NULL;
14f9c5c9
AS
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
ad82864c
JB
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1921 else
1922 return arr;
1923}
1924
1925/* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1927 be ARR itself if it already is in the proper form). */
1928
720d1a40 1929struct value *
d2e4a39e 1930ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1931{
df407dfe 1932 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1933 {
d2e4a39e 1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1935
14f9c5c9 1936 if (arrVal == NULL)
dda83cd7 1937 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1939 return value_ind (arrVal);
1940 }
ad82864c
JB
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
d2e4a39e 1943 else
14f9c5c9
AS
1944 return arr;
1945}
1946
1947/* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1949 packing). For other types, is the identity. */
1950
d2e4a39e
AS
1951struct type *
1952ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1953{
ad82864c
JB
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
17280b9f
UW
1956
1957 if (ada_is_array_descriptor_type (type))
556bdfd4 1958 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1959
1960 return type;
14f9c5c9
AS
1961}
1962
4c4b4cd2
PH
1963/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
ad82864c 1965static int
57567375 1966ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1967{
1968 if (type == NULL)
1969 return 0;
4c4b4cd2 1970 type = desc_base_type (type);
61ee279c 1971 type = ada_check_typedef (type);
d2e4a39e 1972 return
14f9c5c9
AS
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975}
1976
ad82864c
JB
1977/* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980int
1981ada_is_constrained_packed_array_type (struct type *type)
1982{
57567375 1983 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1984 && !ada_is_array_descriptor_type (type);
1985}
1986
1987/* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990static int
1991ada_is_unconstrained_packed_array_type (struct type *type)
1992{
57567375
TT
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
ad82864c
JB
2013}
2014
c9a28cbe
TT
2015/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018static bool
2019ada_is_any_packed_array_type (struct type *type)
2020{
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024}
2025
ad82864c
JB
2026/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029static long
2030decode_packed_array_bitsize (struct type *type)
2031{
0d5cff50
DE
2032 const char *raw_name;
2033 const char *tail;
ad82864c
JB
2034 long bits;
2035
720d1a40
JB
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
78134374 2039 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
57567375
TT
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
ad82864c
JB
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068}
2069
14f9c5c9
AS
2070/* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
4c4b4cd2 2086
d2e4a39e 2087static struct type *
ad82864c 2088constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2089{
d2e4a39e
AS
2090 struct type *new_elt_type;
2091 struct type *new_type;
99b1c762
JB
2092 struct type *index_type_desc;
2093 struct type *index_type;
14f9c5c9
AS
2094 LONGEST low_bound, high_bound;
2095
61ee279c 2096 type = ada_check_typedef (type);
78134374 2097 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2098 return type;
2099
99b1c762
JB
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
940da03e 2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2103 NULL);
2104 else
3d967001 2105 index_type = type->index_type ();
99b1c762 2106
e9bb382b 2107 new_type = alloc_type_copy (type);
ad82864c
JB
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
99b1c762 2111 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2113 new_type->set_name (ada_type_name (type));
14f9c5c9 2114
78134374 2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2121 else
14f9c5c9
AS
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2124 TYPE_LENGTH (new_type) =
dda83cd7 2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2126 }
2127
9cdd0d12 2128 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2129 return new_type;
2130}
2131
ad82864c
JB
2132/* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2134
d2e4a39e 2135static struct type *
ad82864c 2136decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2137{
0d5cff50 2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2139 char *name;
0d5cff50 2140 const char *tail;
d2e4a39e 2141 struct type *shadow_type;
14f9c5c9 2142 long bits;
14f9c5c9 2143
727e3d2e
JB
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2152 type = desc_base_type (type);
2153
14f9c5c9
AS
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
b4ba55a1
JB
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
14f9c5c9 2160 {
323e0a4a 2161 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2162 return NULL;
2163 }
f168693b 2164 shadow_type = check_typedef (shadow_type);
14f9c5c9 2165
78134374 2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2167 {
0963b4bd
MS
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
14f9c5c9
AS
2170 return NULL;
2171 }
d2e4a39e 2172
ad82864c
JB
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2175}
2176
a7400e44
TT
2177/* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181static LONGEST
2182recursively_update_array_bitsize (struct type *type)
2183{
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204}
2205
ad82864c
JB
2206/* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
4c4b4cd2 2210 type length is set appropriately. */
14f9c5c9 2211
d2e4a39e 2212static struct value *
ad82864c 2213decode_constrained_packed_array (struct value *arr)
14f9c5c9 2214{
4c4b4cd2 2215 struct type *type;
14f9c5c9 2216
11aa919a
PMR
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
78134374 2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2226 arr = value_ind (arr);
4c4b4cd2 2227
ad82864c 2228 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2229 if (type == NULL)
2230 {
323e0a4a 2231 error (_("can't unpack array"));
14f9c5c9
AS
2232 return NULL;
2233 }
61ee279c 2234
a7400e44
TT
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
d5a22e77 2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2248 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
df407dfe 2257 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
df407dfe 2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
4c4b4cd2 2272 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2273}
2274
2275
2276/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2277 given in IND. ARR must be a simple array. */
14f9c5c9 2278
d2e4a39e
AS
2279static struct value *
2280value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2281{
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
d2e4a39e
AS
2285 struct type *elt_type;
2286 struct value *v;
14f9c5c9
AS
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
df407dfe 2290 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2291 for (i = 0; i < arity; i += 1)
14f9c5c9 2292 {
78134374 2293 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
0963b4bd 2297 "something other than a packed array"));
14f9c5c9 2298 else
dda83cd7
SM
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2313 (long) idx);
dda83cd7
SM
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
14f9c5c9
AS
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2323 bits, elt_type);
14f9c5c9
AS
2324 return v;
2325}
2326
4c4b4cd2 2327/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2328
2329static int
d2e4a39e 2330has_negatives (struct type *type)
14f9c5c9 2331{
78134374 2332 switch (type->code ())
d2e4a39e
AS
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
c6d940a9 2337 return !type->is_unsigned ();
d2e4a39e 2338 case TYPE_CODE_RANGE:
5537ddd0 2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2340 }
14f9c5c9 2341}
d2e4a39e 2342
f93fca70 2343/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2345 the unpacked buffer.
14f9c5c9 2346
5b639dea
JB
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
f93fca70
JB
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
14f9c5c9 2352
f93fca70 2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2354
f93fca70
JB
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357static void
2358ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362{
a1c95e6b
JB
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
dda83cd7 2368 byte of source that are unused */
a1c95e6b 2369
a1c95e6b
JB
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
4c4b4cd2 2373 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2374 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2375 unsigned char sign;
a1c95e6b 2376
4c4b4cd2
PH
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
f93fca70 2379 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2380
5b639dea
JB
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
14f9c5c9 2387 srcBitsLeft = bit_size;
086ca51f 2388 src_bytes_left = src_len;
f93fca70 2389 unpacked_bytes_left = unpacked_len;
14f9c5c9 2390 sign = 0;
f93fca70
JB
2391
2392 if (is_big_endian)
14f9c5c9 2393 {
086ca51f 2394 src_idx = src_len - 1;
f93fca70
JB
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2397 sign = ~0;
d2e4a39e
AS
2398
2399 unusedLS =
dda83cd7
SM
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
14f9c5c9 2402
f93fca70
JB
2403 if (is_scalar)
2404 {
dda83cd7
SM
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2407 }
2408 else
2409 {
dda83cd7
SM
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2417 }
14f9c5c9 2418 }
d2e4a39e 2419 else
14f9c5c9
AS
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
086ca51f 2423 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
f93fca70 2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2428 sign = ~0;
14f9c5c9 2429 }
d2e4a39e 2430
14f9c5c9 2431 accum = 0;
086ca51f 2432 while (src_bytes_left > 0)
14f9c5c9
AS
2433 {
2434 /* Mask for removing bits of the next source byte that are not
dda83cd7 2435 part of the value. */
d2e4a39e 2436 unsigned int unusedMSMask =
dda83cd7
SM
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
4c4b4cd2 2439 /* Sign-extend bits for this byte. */
14f9c5c9 2440 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2441
d2e4a39e 2442 accum |=
dda83cd7 2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2444 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2445 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
14f9c5c9
AS
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
086ca51f
JB
2455 src_bytes_left -= 1;
2456 src_idx += delta;
14f9c5c9 2457 }
086ca51f 2458 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2459 {
2460 accum |= sign << accumSize;
db297a65 2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2462 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2463 if (accumSize < 0)
2464 accumSize = 0;
14f9c5c9 2465 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
14f9c5c9 2468 }
f93fca70
JB
2469}
2470
2471/* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480struct value *
2481ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
dda83cd7 2483 struct type *type)
f93fca70
JB
2484{
2485 struct value *v;
bfb1c796 2486 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2487 gdb_byte *unpacked;
220475ed 2488 const int is_scalar = is_scalar_type (type);
d5a22e77 2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2490 gdb::byte_vector staging;
f93fca70
JB
2491
2492 type = ada_check_typedef (type);
2493
d0a9e810 2494 if (obj == NULL)
bfb1c796 2495 src = valaddr + offset;
d0a9e810 2496 else
bfb1c796 2497 src = value_contents (obj) + offset;
d0a9e810
JB
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
d0a9e810
JB
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2512 staging.data (), staging.size (),
d0a9e810
JB
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
b249d2c2 2515 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
d0a9e810
JB
2527 }
2528
f93fca70
JB
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
bfb1c796 2532 src = valaddr + offset;
f93fca70
JB
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
0cafa88c 2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2537 gdb_byte *buf;
0cafa88c 2538
f93fca70 2539 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
f93fca70
JB
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
bfb1c796 2547 src = value_contents (obj) + offset;
f93fca70
JB
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2558 {
f93fca70 2559 ++new_offset;
dda83cd7
SM
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
f93fca70
JB
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
bfb1c796 2570 unpacked = value_contents_writeable (v);
f93fca70
JB
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
d5722aa2 2578 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2579 {
d0a9e810
JB
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
d5722aa2 2583 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2584 }
d0a9e810
JB
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2589
14f9c5c9
AS
2590 return v;
2591}
d2e4a39e 2592
14f9c5c9
AS
2593/* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2596 floating-point or non-scalar types. */
14f9c5c9 2597
d2e4a39e
AS
2598static struct value *
2599ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2600{
df407dfe
AC
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
14f9c5c9 2603
52ce6436
PH
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
88e3b34b 2612 if (!deprecated_value_modifiable (toval))
323e0a4a 2613 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2614
d2e4a39e 2615 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2616 && bits > 0
78134374 2617 && (type->code () == TYPE_CODE_FLT
dda83cd7 2618 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2619 {
df407dfe
AC
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2622 int from_size;
224c3ddb 2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2624 struct value *val;
42ae5230 2625 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2626
78134374 2627 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2628 fromval = value_cast (type, fromval);
14f9c5c9 2629
52ce6436 2630 read_memory (to_addr, buffer, len);
aced2898
PH
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2634
d5a22e77 2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
972daa01 2642 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2643
14f9c5c9 2644 val = value_copy (toval);
0fd88904 2645 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2646 TYPE_LENGTH (type));
04624583 2647 deprecated_set_value_type (val, type);
d2e4a39e 2648
14f9c5c9
AS
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653}
2654
2655
7c512744
JB
2656/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
52ce6436
PH
2667static void
2668value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670{
2671 LONGEST offset_in_container =
42ae5230 2672 (LONGEST) (value_address (component) - value_address (container));
7c512744 2673 int bit_offset_in_container =
52ce6436
PH
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
7c512744 2676
52ce6436
PH
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
d5a22e77 2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2689 src_offset
2a62dfa9
JB
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
a99bc3d2
JB
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2a62dfa9 2696 }
52ce6436 2697 else
a99bc3d2
JB
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
7c512744
JB
2701}
2702
736ade86
XR
2703/* Determine if TYPE is an access to an unconstrained array. */
2704
d91e9ea8 2705bool
736ade86
XR
2706ada_is_access_to_unconstrained_array (struct type *type)
2707{
78134374 2708 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710}
2711
4c4b4cd2
PH
2712/* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2714 thereto. */
2715
d2e4a39e
AS
2716struct value *
2717ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2718{
2719 int k;
d2e4a39e
AS
2720 struct value *elt;
2721 struct type *elt_type;
14f9c5c9
AS
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
df407dfe 2725 elt_type = ada_check_typedef (value_type (elt));
78134374 2726 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
b9c50e9a
XR
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
78134374 2734 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2735 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2736
2497b498 2737 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2758 }
b9c50e9a 2759
14f9c5c9
AS
2760 return elt;
2761}
2762
deede10c
JB
2763/* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
14f9c5c9 2774
2c0b251b 2775static struct value *
deede10c 2776ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2777{
2778 int k;
919e6dbe 2779 struct value *array_ind = ada_value_ind (arr);
deede10c 2780 struct type *type
919e6dbe
PMR
2781 = check_typedef (value_enclosing_type (array_ind));
2782
78134374 2783 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
14f9c5c9 2790
78134374 2791 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2792 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2794 value_copy (arr));
3d967001 2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801}
2802
0b5d8877 2803/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
0b5d8877 2807static struct value *
f5938064 2808ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2809 int low, int high)
0b5d8877 2810{
b0dd7688 2811 struct type *type0 = ada_check_typedef (type);
3d967001 2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2813 struct type *index_type
aa715135 2814 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2818 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2820 LONGEST base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 if (!discrete_position (base_index_type, low, &low_pos)
2824 || !discrete_position (base_index_type, base_low, &base_low_pos))
2825 {
2826 warning (_("unable to get positions in slice, use bounds instead"));
2827 low_pos = low;
2828 base_low_pos = base_low;
2829 }
5b4ee69b 2830
7ff5b937
TT
2831 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2832 if (stride == 0)
2833 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2834
2835 base = value_as_address (array_ptr) + (low_pos - base_low_pos) * stride;
f5938064 2836 return value_at_lazy (slice_type, base);
0b5d8877
PH
2837}
2838
2839
2840static struct value *
2841ada_value_slice (struct value *array, int low, int high)
2842{
b0dd7688 2843 struct type *type = ada_check_typedef (value_type (array));
3d967001 2844 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2845 struct type *index_type
3d967001 2846 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2847 struct type *slice_type = create_array_type_with_stride
2848 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2849 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2850 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2851 LONGEST low_pos, high_pos;
5b4ee69b 2852
aa715135
JG
2853 if (!discrete_position (base_index_type, low, &low_pos)
2854 || !discrete_position (base_index_type, high, &high_pos))
2855 {
2856 warning (_("unable to get positions in slice, use bounds instead"));
2857 low_pos = low;
2858 high_pos = high;
2859 }
2860
2861 return value_cast (slice_type,
2862 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2863}
2864
14f9c5c9
AS
2865/* If type is a record type in the form of a standard GNAT array
2866 descriptor, returns the number of dimensions for type. If arr is a
2867 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2868 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2869
2870int
d2e4a39e 2871ada_array_arity (struct type *type)
14f9c5c9
AS
2872{
2873 int arity;
2874
2875 if (type == NULL)
2876 return 0;
2877
2878 type = desc_base_type (type);
2879
2880 arity = 0;
78134374 2881 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2882 return desc_arity (desc_bounds_type (type));
d2e4a39e 2883 else
78134374 2884 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2885 {
dda83cd7
SM
2886 arity += 1;
2887 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2888 }
d2e4a39e 2889
14f9c5c9
AS
2890 return arity;
2891}
2892
2893/* If TYPE is a record type in the form of a standard GNAT array
2894 descriptor or a simple array type, returns the element type for
2895 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2896 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2897
d2e4a39e
AS
2898struct type *
2899ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2900{
2901 type = desc_base_type (type);
2902
78134374 2903 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2904 {
2905 int k;
d2e4a39e 2906 struct type *p_array_type;
14f9c5c9 2907
556bdfd4 2908 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2909
2910 k = ada_array_arity (type);
2911 if (k == 0)
dda83cd7 2912 return NULL;
d2e4a39e 2913
4c4b4cd2 2914 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2915 if (nindices >= 0 && k > nindices)
dda83cd7 2916 k = nindices;
d2e4a39e 2917 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2918 {
2919 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2920 k -= 1;
2921 }
14f9c5c9
AS
2922 return p_array_type;
2923 }
78134374 2924 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2925 {
78134374 2926 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2927 {
2928 type = TYPE_TARGET_TYPE (type);
2929 nindices -= 1;
2930 }
14f9c5c9
AS
2931 return type;
2932 }
2933
2934 return NULL;
2935}
2936
4c4b4cd2 2937/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2938 Does not examine memory. Throws an error if N is invalid or TYPE
2939 is not an array type. NAME is the name of the Ada attribute being
2940 evaluated ('range, 'first, 'last, or 'length); it is used in building
2941 the error message. */
14f9c5c9 2942
1eea4ebd
UW
2943static struct type *
2944ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2945{
4c4b4cd2
PH
2946 struct type *result_type;
2947
14f9c5c9
AS
2948 type = desc_base_type (type);
2949
1eea4ebd
UW
2950 if (n < 0 || n > ada_array_arity (type))
2951 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2952
4c4b4cd2 2953 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2954 {
2955 int i;
2956
2957 for (i = 1; i < n; i += 1)
dda83cd7 2958 type = TYPE_TARGET_TYPE (type);
3d967001 2959 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2 2960 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2961 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2962 perhaps stabsread.c would make more sense. */
78134374 2963 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2964 result_type = NULL;
14f9c5c9 2965 }
d2e4a39e 2966 else
1eea4ebd
UW
2967 {
2968 result_type = desc_index_type (desc_bounds_type (type), n);
2969 if (result_type == NULL)
2970 error (_("attempt to take bound of something that is not an array"));
2971 }
2972
2973 return result_type;
14f9c5c9
AS
2974}
2975
2976/* Given that arr is an array type, returns the lower bound of the
2977 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2978 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2979 array-descriptor type. It works for other arrays with bounds supplied
2980 by run-time quantities other than discriminants. */
14f9c5c9 2981
abb68b3e 2982static LONGEST
fb5e3d5c 2983ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2984{
8a48ac95 2985 struct type *type, *index_type_desc, *index_type;
1ce677a4 2986 int i;
262452ec
JK
2987
2988 gdb_assert (which == 0 || which == 1);
14f9c5c9 2989
ad82864c
JB
2990 if (ada_is_constrained_packed_array_type (arr_type))
2991 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2992
4c4b4cd2 2993 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2994 return (LONGEST) - which;
14f9c5c9 2995
78134374 2996 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2997 type = TYPE_TARGET_TYPE (arr_type);
2998 else
2999 type = arr_type;
3000
22c4c60c 3001 if (type->is_fixed_instance ())
bafffb51
JB
3002 {
3003 /* The array has already been fixed, so we do not need to
3004 check the parallel ___XA type again. That encoding has
3005 already been applied, so ignore it now. */
3006 index_type_desc = NULL;
3007 }
3008 else
3009 {
3010 index_type_desc = ada_find_parallel_type (type, "___XA");
3011 ada_fixup_array_indexes_type (index_type_desc);
3012 }
3013
262452ec 3014 if (index_type_desc != NULL)
940da03e 3015 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3016 NULL);
262452ec 3017 else
8a48ac95
JB
3018 {
3019 struct type *elt_type = check_typedef (type);
3020
3021 for (i = 1; i < n; i++)
3022 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3023
3d967001 3024 index_type = elt_type->index_type ();
8a48ac95 3025 }
262452ec 3026
43bbcdc2
PH
3027 return
3028 (LONGEST) (which == 0
dda83cd7
SM
3029 ? ada_discrete_type_low_bound (index_type)
3030 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3031}
3032
3033/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3034 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3035 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3036 supplied by run-time quantities other than discriminants. */
14f9c5c9 3037
1eea4ebd 3038static LONGEST
4dc81987 3039ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3040{
eb479039
JB
3041 struct type *arr_type;
3042
78134374 3043 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3044 arr = value_ind (arr);
3045 arr_type = value_enclosing_type (arr);
14f9c5c9 3046
ad82864c
JB
3047 if (ada_is_constrained_packed_array_type (arr_type))
3048 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3049 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3050 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3051 else
1eea4ebd 3052 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3053}
3054
3055/* Given that arr is an array value, returns the length of the
3056 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3057 supplied by run-time quantities other than discriminants.
3058 Does not work for arrays indexed by enumeration types with representation
3059 clauses at the moment. */
14f9c5c9 3060
1eea4ebd 3061static LONGEST
d2e4a39e 3062ada_array_length (struct value *arr, int n)
14f9c5c9 3063{
aa715135
JG
3064 struct type *arr_type, *index_type;
3065 int low, high;
eb479039 3066
78134374 3067 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3068 arr = value_ind (arr);
3069 arr_type = value_enclosing_type (arr);
14f9c5c9 3070
ad82864c
JB
3071 if (ada_is_constrained_packed_array_type (arr_type))
3072 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3073
4c4b4cd2 3074 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3075 {
3076 low = ada_array_bound_from_type (arr_type, n, 0);
3077 high = ada_array_bound_from_type (arr_type, n, 1);
3078 }
14f9c5c9 3079 else
aa715135
JG
3080 {
3081 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3082 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3083 }
3084
f168693b 3085 arr_type = check_typedef (arr_type);
7150d33c 3086 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3087 if (index_type != NULL)
3088 {
3089 struct type *base_type;
78134374 3090 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3091 base_type = TYPE_TARGET_TYPE (index_type);
3092 else
3093 base_type = index_type;
3094
3095 low = pos_atr (value_from_longest (base_type, low));
3096 high = pos_atr (value_from_longest (base_type, high));
3097 }
3098 return high - low + 1;
4c4b4cd2
PH
3099}
3100
bff8c71f
TT
3101/* An array whose type is that of ARR_TYPE (an array type), with
3102 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3103 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3104
3105static struct value *
bff8c71f 3106empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3107{
b0dd7688 3108 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3109 struct type *index_type
3110 = create_static_range_type
dda83cd7 3111 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3112 high < low ? low - 1 : high);
b0dd7688 3113 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3114
0b5d8877 3115 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3116}
14f9c5c9 3117\f
d2e4a39e 3118
dda83cd7 3119 /* Name resolution */
14f9c5c9 3120
4c4b4cd2
PH
3121/* The "decoded" name for the user-definable Ada operator corresponding
3122 to OP. */
14f9c5c9 3123
d2e4a39e 3124static const char *
4c4b4cd2 3125ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3126{
3127 int i;
3128
4c4b4cd2 3129 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3130 {
3131 if (ada_opname_table[i].op == op)
dda83cd7 3132 return ada_opname_table[i].decoded;
14f9c5c9 3133 }
323e0a4a 3134 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3135}
3136
de93309a
SM
3137/* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
14f9c5c9 3142
de93309a
SM
3143static int
3144encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3145{
de93309a
SM
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
30b15541 3153
de93309a 3154 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3155 ;
de93309a 3156 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3157 ;
de93309a 3158 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3159 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3160 {
3161 int n0, n1;
3162
3163 n0 = k0;
3164 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 n0 -= 1;
3166 n1 = k1;
3167 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3168 n1 -= 1;
3169 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3170 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3171 }
de93309a
SM
3172 return (strcmp (N0, N1) < 0);
3173 }
14f9c5c9
AS
3174}
3175
de93309a
SM
3176/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3177 encoded names. */
14f9c5c9 3178
de93309a
SM
3179static void
3180sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3181{
14f9c5c9 3182 int i;
14f9c5c9 3183
de93309a 3184 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3185 {
de93309a
SM
3186 struct block_symbol sym = syms[i];
3187 int j;
3188
3189 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3190 {
3191 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3192 sym.symbol->linkage_name ()))
3193 break;
3194 syms[j + 1] = syms[j];
3195 }
de93309a
SM
3196 syms[j + 1] = sym;
3197 }
3198}
14f9c5c9 3199
de93309a
SM
3200/* Whether GDB should display formals and return types for functions in the
3201 overloads selection menu. */
3202static bool print_signatures = true;
4c4b4cd2 3203
de93309a
SM
3204/* Print the signature for SYM on STREAM according to the FLAGS options. For
3205 all but functions, the signature is just the name of the symbol. For
3206 functions, this is the name of the function, the list of types for formals
3207 and the return type (if any). */
4c4b4cd2 3208
de93309a
SM
3209static void
3210ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3211 const struct type_print_options *flags)
3212{
3213 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3214
987012b8 3215 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3216 if (!print_signatures
3217 || type == NULL
78134374 3218 || type->code () != TYPE_CODE_FUNC)
de93309a 3219 return;
4c4b4cd2 3220
1f704f76 3221 if (type->num_fields () > 0)
de93309a
SM
3222 {
3223 int i;
14f9c5c9 3224
de93309a 3225 fprintf_filtered (stream, " (");
1f704f76 3226 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3227 {
3228 if (i > 0)
3229 fprintf_filtered (stream, "; ");
940da03e 3230 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3231 flags);
3232 }
3233 fprintf_filtered (stream, ")");
3234 }
3235 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3236 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3237 {
3238 fprintf_filtered (stream, " return ");
3239 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3240 }
3241}
14f9c5c9 3242
de93309a
SM
3243/* Read and validate a set of numeric choices from the user in the
3244 range 0 .. N_CHOICES-1. Place the results in increasing
3245 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3246
de93309a
SM
3247 The user types choices as a sequence of numbers on one line
3248 separated by blanks, encoding them as follows:
14f9c5c9 3249
de93309a
SM
3250 + A choice of 0 means to cancel the selection, throwing an error.
3251 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3252 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3253
de93309a 3254 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3255
de93309a
SM
3256 ANNOTATION_SUFFIX, if present, is used to annotate the input
3257 prompts (for use with the -f switch). */
14f9c5c9 3258
de93309a
SM
3259static int
3260get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3261 int is_all_choice, const char *annotation_suffix)
de93309a 3262{
992a7040 3263 const char *args;
de93309a
SM
3264 const char *prompt;
3265 int n_chosen;
3266 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3267
de93309a
SM
3268 prompt = getenv ("PS2");
3269 if (prompt == NULL)
3270 prompt = "> ";
4c4b4cd2 3271
de93309a 3272 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3273
de93309a
SM
3274 if (args == NULL)
3275 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3276
de93309a 3277 n_chosen = 0;
4c4b4cd2 3278
de93309a
SM
3279 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3280 order, as given in args. Choices are validated. */
3281 while (1)
14f9c5c9 3282 {
de93309a
SM
3283 char *args2;
3284 int choice, j;
76a01679 3285
de93309a
SM
3286 args = skip_spaces (args);
3287 if (*args == '\0' && n_chosen == 0)
dda83cd7 3288 error_no_arg (_("one or more choice numbers"));
de93309a 3289 else if (*args == '\0')
dda83cd7 3290 break;
76a01679 3291
de93309a
SM
3292 choice = strtol (args, &args2, 10);
3293 if (args == args2 || choice < 0
dda83cd7
SM
3294 || choice > n_choices + first_choice - 1)
3295 error (_("Argument must be choice number"));
de93309a 3296 args = args2;
76a01679 3297
de93309a 3298 if (choice == 0)
dda83cd7 3299 error (_("cancelled"));
76a01679 3300
de93309a 3301 if (choice < first_choice)
dda83cd7
SM
3302 {
3303 n_chosen = n_choices;
3304 for (j = 0; j < n_choices; j += 1)
3305 choices[j] = j;
3306 break;
3307 }
de93309a 3308 choice -= first_choice;
76a01679 3309
de93309a 3310 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3311 {
3312 }
4c4b4cd2 3313
de93309a 3314 if (j < 0 || choice != choices[j])
dda83cd7
SM
3315 {
3316 int k;
4c4b4cd2 3317
dda83cd7
SM
3318 for (k = n_chosen - 1; k > j; k -= 1)
3319 choices[k + 1] = choices[k];
3320 choices[j + 1] = choice;
3321 n_chosen += 1;
3322 }
14f9c5c9
AS
3323 }
3324
de93309a
SM
3325 if (n_chosen > max_results)
3326 error (_("Select no more than %d of the above"), max_results);
3327
3328 return n_chosen;
14f9c5c9
AS
3329}
3330
de93309a
SM
3331/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3332 by asking the user (if necessary), returning the number selected,
3333 and setting the first elements of SYMS items. Error if no symbols
3334 selected. */
3335
3336/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3337 to be re-integrated one of these days. */
14f9c5c9
AS
3338
3339static int
de93309a 3340user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3341{
de93309a
SM
3342 int i;
3343 int *chosen = XALLOCAVEC (int , nsyms);
3344 int n_chosen;
3345 int first_choice = (max_results == 1) ? 1 : 2;
3346 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3347
de93309a
SM
3348 if (max_results < 1)
3349 error (_("Request to select 0 symbols!"));
3350 if (nsyms <= 1)
3351 return nsyms;
14f9c5c9 3352
de93309a
SM
3353 if (select_mode == multiple_symbols_cancel)
3354 error (_("\
3355canceled because the command is ambiguous\n\
3356See set/show multiple-symbol."));
14f9c5c9 3357
de93309a
SM
3358 /* If select_mode is "all", then return all possible symbols.
3359 Only do that if more than one symbol can be selected, of course.
3360 Otherwise, display the menu as usual. */
3361 if (select_mode == multiple_symbols_all && max_results > 1)
3362 return nsyms;
14f9c5c9 3363
de93309a
SM
3364 printf_filtered (_("[0] cancel\n"));
3365 if (max_results > 1)
3366 printf_filtered (_("[1] all\n"));
14f9c5c9 3367
de93309a 3368 sort_choices (syms, nsyms);
14f9c5c9 3369
de93309a
SM
3370 for (i = 0; i < nsyms; i += 1)
3371 {
3372 if (syms[i].symbol == NULL)
dda83cd7 3373 continue;
14f9c5c9 3374
de93309a 3375 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3376 {
3377 struct symtab_and_line sal =
3378 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3379
de93309a
SM
3380 printf_filtered ("[%d] ", i + first_choice);
3381 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3382 &type_print_raw_options);
3383 if (sal.symtab == NULL)
3384 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3385 metadata_style.style ().ptr (), nullptr, sal.line);
3386 else
3387 printf_filtered
3388 (_(" at %ps:%d\n"),
3389 styled_string (file_name_style.style (),
3390 symtab_to_filename_for_display (sal.symtab)),
3391 sal.line);
dda83cd7
SM
3392 continue;
3393 }
76a01679 3394 else
dda83cd7
SM
3395 {
3396 int is_enumeral =
3397 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3398 && SYMBOL_TYPE (syms[i].symbol) != NULL
3399 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3400 struct symtab *symtab = NULL;
4c4b4cd2 3401
de93309a
SM
3402 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3403 symtab = symbol_symtab (syms[i].symbol);
3404
dda83cd7 3405 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3406 {
3407 printf_filtered ("[%d] ", i + first_choice);
3408 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3409 &type_print_raw_options);
3410 printf_filtered (_(" at %s:%d\n"),
3411 symtab_to_filename_for_display (symtab),
3412 SYMBOL_LINE (syms[i].symbol));
3413 }
dda83cd7
SM
3414 else if (is_enumeral
3415 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3416 {
3417 printf_filtered (("[%d] "), i + first_choice);
3418 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3419 gdb_stdout, -1, 0, &type_print_raw_options);
3420 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3421 syms[i].symbol->print_name ());
dda83cd7 3422 }
de93309a
SM
3423 else
3424 {
3425 printf_filtered ("[%d] ", i + first_choice);
3426 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3427 &type_print_raw_options);
3428
3429 if (symtab != NULL)
3430 printf_filtered (is_enumeral
3431 ? _(" in %s (enumeral)\n")
3432 : _(" at %s:?\n"),
3433 symtab_to_filename_for_display (symtab));
3434 else
3435 printf_filtered (is_enumeral
3436 ? _(" (enumeral)\n")
3437 : _(" at ?\n"));
3438 }
dda83cd7 3439 }
14f9c5c9 3440 }
14f9c5c9 3441
de93309a 3442 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3443 "overload-choice");
14f9c5c9 3444
de93309a
SM
3445 for (i = 0; i < n_chosen; i += 1)
3446 syms[i] = syms[chosen[i]];
14f9c5c9 3447
de93309a
SM
3448 return n_chosen;
3449}
14f9c5c9 3450
de93309a
SM
3451/* Resolve the operator of the subexpression beginning at
3452 position *POS of *EXPP. "Resolving" consists of replacing
3453 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3454 with their resolutions, replacing built-in operators with
3455 function calls to user-defined operators, where appropriate, and,
3456 when DEPROCEDURE_P is non-zero, converting function-valued variables
3457 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3458 are as in ada_resolve, above. */
14f9c5c9 3459
de93309a
SM
3460static struct value *
3461resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
dda83cd7 3462 struct type *context_type, int parse_completion,
de93309a 3463 innermost_block_tracker *tracker)
14f9c5c9 3464{
de93309a
SM
3465 int pc = *pos;
3466 int i;
3467 struct expression *exp; /* Convenience: == *expp. */
3468 enum exp_opcode op = (*expp)->elts[pc].opcode;
3469 struct value **argvec; /* Vector of operand types (alloca'ed). */
3470 int nargs; /* Number of operands. */
3471 int oplen;
14f9c5c9 3472
de93309a
SM
3473 argvec = NULL;
3474 nargs = 0;
3475 exp = expp->get ();
4c4b4cd2 3476
de93309a
SM
3477 /* Pass one: resolve operands, saving their types and updating *pos,
3478 if needed. */
3479 switch (op)
3480 {
3481 case OP_FUNCALL:
3482 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
dda83cd7
SM
3483 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3484 *pos += 7;
de93309a 3485 else
dda83cd7
SM
3486 {
3487 *pos += 3;
3488 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3489 }
de93309a
SM
3490 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3491 break;
14f9c5c9 3492
de93309a
SM
3493 case UNOP_ADDR:
3494 *pos += 1;
3495 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3496 break;
3497
3498 case UNOP_QUAL:
3499 *pos += 3;
3500 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3501 parse_completion, tracker);
3502 break;
3503
3504 case OP_ATR_MODULUS:
3505 case OP_ATR_SIZE:
3506 case OP_ATR_TAG:
3507 case OP_ATR_FIRST:
3508 case OP_ATR_LAST:
3509 case OP_ATR_LENGTH:
3510 case OP_ATR_POS:
3511 case OP_ATR_VAL:
3512 case OP_ATR_MIN:
3513 case OP_ATR_MAX:
3514 case TERNOP_IN_RANGE:
3515 case BINOP_IN_BOUNDS:
3516 case UNOP_IN_RANGE:
3517 case OP_AGGREGATE:
3518 case OP_OTHERS:
3519 case OP_CHOICES:
3520 case OP_POSITIONAL:
3521 case OP_DISCRETE_RANGE:
3522 case OP_NAME:
3523 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3524 *pos += oplen;
3525 break;
3526
3527 case BINOP_ASSIGN:
3528 {
dda83cd7
SM
3529 struct value *arg1;
3530
3531 *pos += 1;
3532 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3533 if (arg1 == NULL)
3534 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3535 else
3536 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
de93309a 3537 tracker);
dda83cd7 3538 break;
de93309a
SM
3539 }
3540
3541 case UNOP_CAST:
3542 *pos += 3;
3543 nargs = 1;
3544 break;
3545
3546 case BINOP_ADD:
3547 case BINOP_SUB:
3548 case BINOP_MUL:
3549 case BINOP_DIV:
3550 case BINOP_REM:
3551 case BINOP_MOD:
3552 case BINOP_EXP:
3553 case BINOP_CONCAT:
3554 case BINOP_LOGICAL_AND:
3555 case BINOP_LOGICAL_OR:
3556 case BINOP_BITWISE_AND:
3557 case BINOP_BITWISE_IOR:
3558 case BINOP_BITWISE_XOR:
3559
3560 case BINOP_EQUAL:
3561 case BINOP_NOTEQUAL:
3562 case BINOP_LESS:
3563 case BINOP_GTR:
3564 case BINOP_LEQ:
3565 case BINOP_GEQ:
3566
3567 case BINOP_REPEAT:
3568 case BINOP_SUBSCRIPT:
3569 case BINOP_COMMA:
3570 *pos += 1;
3571 nargs = 2;
3572 break;
3573
3574 case UNOP_NEG:
3575 case UNOP_PLUS:
3576 case UNOP_LOGICAL_NOT:
3577 case UNOP_ABS:
3578 case UNOP_IND:
3579 *pos += 1;
3580 nargs = 1;
3581 break;
3582
3583 case OP_LONG:
3584 case OP_FLOAT:
3585 case OP_VAR_VALUE:
3586 case OP_VAR_MSYM_VALUE:
3587 *pos += 4;
3588 break;
3589
3590 case OP_TYPE:
3591 case OP_BOOL:
3592 case OP_LAST:
3593 case OP_INTERNALVAR:
3594 *pos += 3;
3595 break;
3596
3597 case UNOP_MEMVAL:
3598 *pos += 3;
3599 nargs = 1;
3600 break;
3601
3602 case OP_REGISTER:
3603 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3604 break;
3605
3606 case STRUCTOP_STRUCT:
3607 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3608 nargs = 1;
3609 break;
3610
3611 case TERNOP_SLICE:
3612 *pos += 1;
3613 nargs = 3;
3614 break;
3615
3616 case OP_STRING:
3617 break;
3618
3619 default:
3620 error (_("Unexpected operator during name resolution"));
14f9c5c9 3621 }
14f9c5c9 3622
de93309a
SM
3623 argvec = XALLOCAVEC (struct value *, nargs + 1);
3624 for (i = 0; i < nargs; i += 1)
3625 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3626 tracker);
3627 argvec[i] = NULL;
3628 exp = expp->get ();
4c4b4cd2 3629
de93309a
SM
3630 /* Pass two: perform any resolution on principal operator. */
3631 switch (op)
14f9c5c9 3632 {
de93309a
SM
3633 default:
3634 break;
5b4ee69b 3635
de93309a
SM
3636 case OP_VAR_VALUE:
3637 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
3638 {
3639 std::vector<struct block_symbol> candidates;
3640 int n_candidates;
3641
3642 n_candidates =
3643 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3644 exp->elts[pc + 1].block, VAR_DOMAIN,
3645 &candidates);
3646
3647 if (n_candidates > 1)
3648 {
3649 /* Types tend to get re-introduced locally, so if there
3650 are any local symbols that are not types, first filter
3651 out all types. */
3652 int j;
3653 for (j = 0; j < n_candidates; j += 1)
3654 switch (SYMBOL_CLASS (candidates[j].symbol))
3655 {
3656 case LOC_REGISTER:
3657 case LOC_ARG:
3658 case LOC_REF_ARG:
3659 case LOC_REGPARM_ADDR:
3660 case LOC_LOCAL:
3661 case LOC_COMPUTED:
3662 goto FoundNonType;
3663 default:
3664 break;
3665 }
3666 FoundNonType:
3667 if (j < n_candidates)
3668 {
3669 j = 0;
3670 while (j < n_candidates)
3671 {
3672 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3673 {
3674 candidates[j] = candidates[n_candidates - 1];
3675 n_candidates -= 1;
3676 }
3677 else
3678 j += 1;
3679 }
3680 }
3681 }
3682
3683 if (n_candidates == 0)
3684 error (_("No definition found for %s"),
3685 exp->elts[pc + 2].symbol->print_name ());
3686 else if (n_candidates == 1)
3687 i = 0;
3688 else if (deprocedure_p
3689 && !is_nonfunction (candidates.data (), n_candidates))
3690 {
3691 i = ada_resolve_function
3692 (candidates.data (), n_candidates, NULL, 0,
3693 exp->elts[pc + 2].symbol->linkage_name (),
3694 context_type, parse_completion);
3695 if (i < 0)
3696 error (_("Could not find a match for %s"),
3697 exp->elts[pc + 2].symbol->print_name ());
3698 }
3699 else
3700 {
3701 printf_filtered (_("Multiple matches for %s\n"),
3702 exp->elts[pc + 2].symbol->print_name ());
3703 user_select_syms (candidates.data (), n_candidates, 1);
3704 i = 0;
3705 }
3706
3707 exp->elts[pc + 1].block = candidates[i].block;
3708 exp->elts[pc + 2].symbol = candidates[i].symbol;
de93309a 3709 tracker->update (candidates[i]);
dda83cd7 3710 }
14f9c5c9 3711
de93309a 3712 if (deprocedure_p
dda83cd7
SM
3713 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3714 == TYPE_CODE_FUNC))
3715 {
3716 replace_operator_with_call (expp, pc, 0, 4,
3717 exp->elts[pc + 2].symbol,
3718 exp->elts[pc + 1].block);
3719 exp = expp->get ();
3720 }
de93309a
SM
3721 break;
3722
3723 case OP_FUNCALL:
3724 {
dda83cd7
SM
3725 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3726 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3727 {
de93309a 3728 std::vector<struct block_symbol> candidates;
dda83cd7
SM
3729 int n_candidates;
3730
3731 n_candidates =
3732 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3733 exp->elts[pc + 4].block, VAR_DOMAIN,
3734 &candidates);
3735
3736 if (n_candidates == 1)
3737 i = 0;
3738 else
3739 {
3740 i = ada_resolve_function
3741 (candidates.data (), n_candidates,
3742 argvec, nargs,
3743 exp->elts[pc + 5].symbol->linkage_name (),
3744 context_type, parse_completion);
3745 if (i < 0)
3746 error (_("Could not find a match for %s"),
3747 exp->elts[pc + 5].symbol->print_name ());
3748 }
3749
3750 exp->elts[pc + 4].block = candidates[i].block;
3751 exp->elts[pc + 5].symbol = candidates[i].symbol;
de93309a 3752 tracker->update (candidates[i]);
dda83cd7 3753 }
de93309a
SM
3754 }
3755 break;
3756 case BINOP_ADD:
3757 case BINOP_SUB:
3758 case BINOP_MUL:
3759 case BINOP_DIV:
3760 case BINOP_REM:
3761 case BINOP_MOD:
3762 case BINOP_CONCAT:
3763 case BINOP_BITWISE_AND:
3764 case BINOP_BITWISE_IOR:
3765 case BINOP_BITWISE_XOR:
3766 case BINOP_EQUAL:
3767 case BINOP_NOTEQUAL:
3768 case BINOP_LESS:
3769 case BINOP_GTR:
3770 case BINOP_LEQ:
3771 case BINOP_GEQ:
3772 case BINOP_EXP:
3773 case UNOP_NEG:
3774 case UNOP_PLUS:
3775 case UNOP_LOGICAL_NOT:
3776 case UNOP_ABS:
3777 if (possible_user_operator_p (op, argvec))
dda83cd7 3778 {
de93309a 3779 std::vector<struct block_symbol> candidates;
dda83cd7 3780 int n_candidates;
d72413e6 3781
dda83cd7
SM
3782 n_candidates =
3783 ada_lookup_symbol_list (ada_decoded_op_name (op),
de93309a 3784 NULL, VAR_DOMAIN,
dda83cd7 3785 &candidates);
d72413e6 3786
dda83cd7 3787 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
de93309a
SM
3788 nargs, ada_decoded_op_name (op), NULL,
3789 parse_completion);
dda83cd7
SM
3790 if (i < 0)
3791 break;
d72413e6 3792
de93309a
SM
3793 replace_operator_with_call (expp, pc, nargs, 1,
3794 candidates[i].symbol,
3795 candidates[i].block);
dda83cd7
SM
3796 exp = expp->get ();
3797 }
de93309a 3798 break;
d72413e6 3799
de93309a
SM
3800 case OP_TYPE:
3801 case OP_REGISTER:
3802 return NULL;
d72413e6 3803 }
d72413e6 3804
de93309a
SM
3805 *pos = pc;
3806 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3807 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3808 exp->elts[pc + 1].objfile,
3809 exp->elts[pc + 2].msymbol);
3810 else
3811 return evaluate_subexp_type (exp, pos);
3812}
14f9c5c9 3813
de93309a
SM
3814/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3815 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3816 a non-pointer. */
3817/* The term "match" here is rather loose. The match is heuristic and
3818 liberal. */
14f9c5c9 3819
de93309a
SM
3820static int
3821ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3822{
de93309a
SM
3823 ftype = ada_check_typedef (ftype);
3824 atype = ada_check_typedef (atype);
14f9c5c9 3825
78134374 3826 if (ftype->code () == TYPE_CODE_REF)
de93309a 3827 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3828 if (atype->code () == TYPE_CODE_REF)
de93309a 3829 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3830
78134374 3831 switch (ftype->code ())
14f9c5c9 3832 {
de93309a 3833 default:
78134374 3834 return ftype->code () == atype->code ();
de93309a 3835 case TYPE_CODE_PTR:
78134374 3836 if (atype->code () == TYPE_CODE_PTR)
dda83cd7
SM
3837 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3838 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3839 else
dda83cd7
SM
3840 return (may_deref
3841 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
de93309a
SM
3842 case TYPE_CODE_INT:
3843 case TYPE_CODE_ENUM:
3844 case TYPE_CODE_RANGE:
78134374 3845 switch (atype->code ())
dda83cd7
SM
3846 {
3847 case TYPE_CODE_INT:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_RANGE:
3850 return 1;
3851 default:
3852 return 0;
3853 }
d2e4a39e 3854
de93309a 3855 case TYPE_CODE_ARRAY:
78134374 3856 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3857 || ada_is_array_descriptor_type (atype));
14f9c5c9 3858
de93309a
SM
3859 case TYPE_CODE_STRUCT:
3860 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3861 return (atype->code () == TYPE_CODE_ARRAY
3862 || ada_is_array_descriptor_type (atype));
de93309a 3863 else
dda83cd7
SM
3864 return (atype->code () == TYPE_CODE_STRUCT
3865 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3866
de93309a
SM
3867 case TYPE_CODE_UNION:
3868 case TYPE_CODE_FLT:
78134374 3869 return (atype->code () == ftype->code ());
de93309a 3870 }
14f9c5c9
AS
3871}
3872
de93309a
SM
3873/* Return non-zero if the formals of FUNC "sufficiently match" the
3874 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3875 may also be an enumeral, in which case it is treated as a 0-
3876 argument function. */
14f9c5c9 3877
de93309a
SM
3878static int
3879ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3880{
3881 int i;
3882 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3883
de93309a 3884 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3885 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3886 return (n_actuals == 0);
78134374 3887 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3888 return 0;
14f9c5c9 3889
1f704f76 3890 if (func_type->num_fields () != n_actuals)
de93309a 3891 return 0;
14f9c5c9 3892
de93309a
SM
3893 for (i = 0; i < n_actuals; i += 1)
3894 {
3895 if (actuals[i] == NULL)
dda83cd7 3896 return 0;
de93309a 3897 else
dda83cd7
SM
3898 {
3899 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3900 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3901
dda83cd7
SM
3902 if (!ada_type_match (ftype, atype, 1))
3903 return 0;
3904 }
de93309a
SM
3905 }
3906 return 1;
3907}
d2e4a39e 3908
de93309a
SM
3909/* False iff function type FUNC_TYPE definitely does not produce a value
3910 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3911 FUNC_TYPE is not a valid function type with a non-null return type
3912 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3913
de93309a
SM
3914static int
3915return_match (struct type *func_type, struct type *context_type)
3916{
3917 struct type *return_type;
d2e4a39e 3918
de93309a
SM
3919 if (func_type == NULL)
3920 return 1;
14f9c5c9 3921
78134374 3922 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3923 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3924 else
3925 return_type = get_base_type (func_type);
3926 if (return_type == NULL)
3927 return 1;
76a01679 3928
de93309a 3929 context_type = get_base_type (context_type);
14f9c5c9 3930
78134374 3931 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3932 return context_type == NULL || return_type == context_type;
3933 else if (context_type == NULL)
78134374 3934 return return_type->code () != TYPE_CODE_VOID;
de93309a 3935 else
78134374 3936 return return_type->code () == context_type->code ();
de93309a 3937}
14f9c5c9 3938
14f9c5c9 3939
de93309a
SM
3940/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3941 function (if any) that matches the types of the NARGS arguments in
3942 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3943 that returns that type, then eliminate matches that don't. If
3944 CONTEXT_TYPE is void and there is at least one match that does not
3945 return void, eliminate all matches that do.
14f9c5c9 3946
de93309a
SM
3947 Asks the user if there is more than one match remaining. Returns -1
3948 if there is no such symbol or none is selected. NAME is used
3949 solely for messages. May re-arrange and modify SYMS in
3950 the process; the index returned is for the modified vector. */
14f9c5c9 3951
de93309a
SM
3952static int
3953ada_resolve_function (struct block_symbol syms[],
dda83cd7
SM
3954 int nsyms, struct value **args, int nargs,
3955 const char *name, struct type *context_type,
de93309a
SM
3956 int parse_completion)
3957{
3958 int fallback;
3959 int k;
3960 int m; /* Number of hits */
14f9c5c9 3961
de93309a
SM
3962 m = 0;
3963 /* In the first pass of the loop, we only accept functions matching
3964 context_type. If none are found, we add a second pass of the loop
3965 where every function is accepted. */
3966 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3967 {
3968 for (k = 0; k < nsyms; k += 1)
dda83cd7
SM
3969 {
3970 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3971
dda83cd7
SM
3972 if (ada_args_match (syms[k].symbol, args, nargs)
3973 && (fallback || return_match (type, context_type)))
3974 {
3975 syms[m] = syms[k];
3976 m += 1;
3977 }
3978 }
14f9c5c9
AS
3979 }
3980
de93309a
SM
3981 /* If we got multiple matches, ask the user which one to use. Don't do this
3982 interactive thing during completion, though, as the purpose of the
3983 completion is providing a list of all possible matches. Prompting the
3984 user to filter it down would be completely unexpected in this case. */
3985 if (m == 0)
3986 return -1;
3987 else if (m > 1 && !parse_completion)
3988 {
3989 printf_filtered (_("Multiple matches for %s\n"), name);
3990 user_select_syms (syms, m, 1);
3991 return 0;
3992 }
3993 return 0;
14f9c5c9
AS
3994}
3995
4c4b4cd2
PH
3996/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3997 on the function identified by SYM and BLOCK, and taking NARGS
3998 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3999
4000static void
e9d9f57e 4001replace_operator_with_call (expression_up *expp, int pc, int nargs,
dda83cd7
SM
4002 int oplen, struct symbol *sym,
4003 const struct block *block)
14f9c5c9
AS
4004{
4005 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4006 symbol, -oplen for operator being replaced). */
d2e4a39e 4007 struct expression *newexp = (struct expression *)
8c1a34e7 4008 xzalloc (sizeof (struct expression)
dda83cd7 4009 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4010 struct expression *exp = expp->get ();
14f9c5c9
AS
4011
4012 newexp->nelts = exp->nelts + 7 - oplen;
4013 newexp->language_defn = exp->language_defn;
3489610d 4014 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4015 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4016 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
dda83cd7 4017 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4018
4019 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4020 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4021
4022 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4023 newexp->elts[pc + 4].block = block;
4024 newexp->elts[pc + 5].symbol = sym;
4025
e9d9f57e 4026 expp->reset (newexp);
d2e4a39e 4027}
14f9c5c9
AS
4028
4029/* Type-class predicates */
4030
4c4b4cd2
PH
4031/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4032 or FLOAT). */
14f9c5c9
AS
4033
4034static int
d2e4a39e 4035numeric_type_p (struct type *type)
14f9c5c9
AS
4036{
4037 if (type == NULL)
4038 return 0;
d2e4a39e
AS
4039 else
4040 {
78134374 4041 switch (type->code ())
dda83cd7
SM
4042 {
4043 case TYPE_CODE_INT:
4044 case TYPE_CODE_FLT:
4045 return 1;
4046 case TYPE_CODE_RANGE:
4047 return (type == TYPE_TARGET_TYPE (type)
4048 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4049 default:
4050 return 0;
4051 }
d2e4a39e 4052 }
14f9c5c9
AS
4053}
4054
4c4b4cd2 4055/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4056
4057static int
d2e4a39e 4058integer_type_p (struct type *type)
14f9c5c9
AS
4059{
4060 if (type == NULL)
4061 return 0;
d2e4a39e
AS
4062 else
4063 {
78134374 4064 switch (type->code ())
dda83cd7
SM
4065 {
4066 case TYPE_CODE_INT:
4067 return 1;
4068 case TYPE_CODE_RANGE:
4069 return (type == TYPE_TARGET_TYPE (type)
4070 || integer_type_p (TYPE_TARGET_TYPE (type)));
4071 default:
4072 return 0;
4073 }
d2e4a39e 4074 }
14f9c5c9
AS
4075}
4076
4c4b4cd2 4077/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4078
4079static int
d2e4a39e 4080scalar_type_p (struct type *type)
14f9c5c9
AS
4081{
4082 if (type == NULL)
4083 return 0;
d2e4a39e
AS
4084 else
4085 {
78134374 4086 switch (type->code ())
dda83cd7
SM
4087 {
4088 case TYPE_CODE_INT:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_ENUM:
4091 case TYPE_CODE_FLT:
4092 return 1;
4093 default:
4094 return 0;
4095 }
d2e4a39e 4096 }
14f9c5c9
AS
4097}
4098
4c4b4cd2 4099/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4100
4101static int
d2e4a39e 4102discrete_type_p (struct type *type)
14f9c5c9
AS
4103{
4104 if (type == NULL)
4105 return 0;
d2e4a39e
AS
4106 else
4107 {
78134374 4108 switch (type->code ())
dda83cd7
SM
4109 {
4110 case TYPE_CODE_INT:
4111 case TYPE_CODE_RANGE:
4112 case TYPE_CODE_ENUM:
4113 case TYPE_CODE_BOOL:
4114 return 1;
4115 default:
4116 return 0;
4117 }
d2e4a39e 4118 }
14f9c5c9
AS
4119}
4120
4c4b4cd2
PH
4121/* Returns non-zero if OP with operands in the vector ARGS could be
4122 a user-defined function. Errs on the side of pre-defined operators
4123 (i.e., result 0). */
14f9c5c9
AS
4124
4125static int
d2e4a39e 4126possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4127{
76a01679 4128 struct type *type0 =
df407dfe 4129 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4130 struct type *type1 =
df407dfe 4131 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4132
4c4b4cd2
PH
4133 if (type0 == NULL)
4134 return 0;
4135
14f9c5c9
AS
4136 switch (op)
4137 {
4138 default:
4139 return 0;
4140
4141 case BINOP_ADD:
4142 case BINOP_SUB:
4143 case BINOP_MUL:
4144 case BINOP_DIV:
d2e4a39e 4145 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4146
4147 case BINOP_REM:
4148 case BINOP_MOD:
4149 case BINOP_BITWISE_AND:
4150 case BINOP_BITWISE_IOR:
4151 case BINOP_BITWISE_XOR:
d2e4a39e 4152 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4153
4154 case BINOP_EQUAL:
4155 case BINOP_NOTEQUAL:
4156 case BINOP_LESS:
4157 case BINOP_GTR:
4158 case BINOP_LEQ:
4159 case BINOP_GEQ:
d2e4a39e 4160 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4161
4162 case BINOP_CONCAT:
ee90b9ab 4163 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4164
4165 case BINOP_EXP:
d2e4a39e 4166 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4167
4168 case UNOP_NEG:
4169 case UNOP_PLUS:
4170 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4171 case UNOP_ABS:
4172 return (!numeric_type_p (type0));
14f9c5c9
AS
4173
4174 }
4175}
4176\f
dda83cd7 4177 /* Renaming */
14f9c5c9 4178
aeb5907d
JB
4179/* NOTES:
4180
4181 1. In the following, we assume that a renaming type's name may
4182 have an ___XD suffix. It would be nice if this went away at some
4183 point.
4184 2. We handle both the (old) purely type-based representation of
4185 renamings and the (new) variable-based encoding. At some point,
4186 it is devoutly to be hoped that the former goes away
4187 (FIXME: hilfinger-2007-07-09).
4188 3. Subprogram renamings are not implemented, although the XRS
4189 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4190
4191/* If SYM encodes a renaming,
4192
4193 <renaming> renames <renamed entity>,
4194
4195 sets *LEN to the length of the renamed entity's name,
4196 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4197 the string describing the subcomponent selected from the renamed
0963b4bd 4198 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4199 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4200 are undefined). Otherwise, returns a value indicating the category
4201 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4202 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4203 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4204 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4205 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4206 may be NULL, in which case they are not assigned.
4207
4208 [Currently, however, GCC does not generate subprogram renamings.] */
4209
4210enum ada_renaming_category
4211ada_parse_renaming (struct symbol *sym,
4212 const char **renamed_entity, int *len,
4213 const char **renaming_expr)
4214{
4215 enum ada_renaming_category kind;
4216 const char *info;
4217 const char *suffix;
4218
4219 if (sym == NULL)
4220 return ADA_NOT_RENAMING;
4221 switch (SYMBOL_CLASS (sym))
14f9c5c9 4222 {
aeb5907d
JB
4223 default:
4224 return ADA_NOT_RENAMING;
aeb5907d
JB
4225 case LOC_LOCAL:
4226 case LOC_STATIC:
4227 case LOC_COMPUTED:
4228 case LOC_OPTIMIZED_OUT:
987012b8 4229 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4230 if (info == NULL)
4231 return ADA_NOT_RENAMING;
4232 switch (info[5])
4233 {
4234 case '_':
4235 kind = ADA_OBJECT_RENAMING;
4236 info += 6;
4237 break;
4238 case 'E':
4239 kind = ADA_EXCEPTION_RENAMING;
4240 info += 7;
4241 break;
4242 case 'P':
4243 kind = ADA_PACKAGE_RENAMING;
4244 info += 7;
4245 break;
4246 case 'S':
4247 kind = ADA_SUBPROGRAM_RENAMING;
4248 info += 7;
4249 break;
4250 default:
4251 return ADA_NOT_RENAMING;
4252 }
14f9c5c9 4253 }
4c4b4cd2 4254
de93309a
SM
4255 if (renamed_entity != NULL)
4256 *renamed_entity = info;
4257 suffix = strstr (info, "___XE");
4258 if (suffix == NULL || suffix == info)
4259 return ADA_NOT_RENAMING;
4260 if (len != NULL)
4261 *len = strlen (info) - strlen (suffix);
4262 suffix += 5;
4263 if (renaming_expr != NULL)
4264 *renaming_expr = suffix;
4265 return kind;
4266}
4267
4268/* Compute the value of the given RENAMING_SYM, which is expected to
4269 be a symbol encoding a renaming expression. BLOCK is the block
4270 used to evaluate the renaming. */
4271
4272static struct value *
4273ada_read_renaming_var_value (struct symbol *renaming_sym,
4274 const struct block *block)
4275{
4276 const char *sym_name;
4277
987012b8 4278 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4279 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4280 return evaluate_expression (expr.get ());
4281}
4282\f
4283
dda83cd7 4284 /* Evaluation: Function Calls */
de93309a
SM
4285
4286/* Return an lvalue containing the value VAL. This is the identity on
4287 lvalues, and otherwise has the side-effect of allocating memory
4288 in the inferior where a copy of the value contents is copied. */
4289
4290static struct value *
4291ensure_lval (struct value *val)
4292{
4293 if (VALUE_LVAL (val) == not_lval
4294 || VALUE_LVAL (val) == lval_internalvar)
4295 {
4296 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4297 const CORE_ADDR addr =
dda83cd7 4298 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4299
4300 VALUE_LVAL (val) = lval_memory;
4301 set_value_address (val, addr);
4302 write_memory (addr, value_contents (val), len);
4303 }
4304
4305 return val;
4306}
4307
4308/* Given ARG, a value of type (pointer or reference to a)*
4309 structure/union, extract the component named NAME from the ultimate
4310 target structure/union and return it as a value with its
4311 appropriate type.
4312
4313 The routine searches for NAME among all members of the structure itself
4314 and (recursively) among all members of any wrapper members
4315 (e.g., '_parent').
4316
4317 If NO_ERR, then simply return NULL in case of error, rather than
4318 calling error. */
4319
4320static struct value *
4321ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4322{
4323 struct type *t, *t1;
4324 struct value *v;
4325 int check_tag;
4326
4327 v = NULL;
4328 t1 = t = ada_check_typedef (value_type (arg));
78134374 4329 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4330 {
4331 t1 = TYPE_TARGET_TYPE (t);
4332 if (t1 == NULL)
4333 goto BadValue;
4334 t1 = ada_check_typedef (t1);
78134374 4335 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4336 {
4337 arg = coerce_ref (arg);
4338 t = t1;
4339 }
de93309a
SM
4340 }
4341
78134374 4342 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4343 {
4344 t1 = TYPE_TARGET_TYPE (t);
4345 if (t1 == NULL)
4346 goto BadValue;
4347 t1 = ada_check_typedef (t1);
78134374 4348 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4349 {
4350 arg = value_ind (arg);
4351 t = t1;
4352 }
de93309a 4353 else
dda83cd7 4354 break;
de93309a 4355 }
aeb5907d 4356
78134374 4357 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4358 goto BadValue;
52ce6436 4359
de93309a
SM
4360 if (t1 == t)
4361 v = ada_search_struct_field (name, arg, 0, t);
4362 else
4363 {
4364 int bit_offset, bit_size, byte_offset;
4365 struct type *field_type;
4366 CORE_ADDR address;
a5ee536b 4367
78134374 4368 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4369 address = value_address (ada_value_ind (arg));
4370 else
4371 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4372
de93309a 4373 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4374 the case where the type is a reference to a tagged type, but
4375 we have to be careful to exclude pointers to tagged types.
4376 The latter should be shown as usual (as a pointer), whereas
4377 a reference should mostly be transparent to the user. */
14f9c5c9 4378
de93309a 4379 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4380 || (t1->code () == TYPE_CODE_REF
4381 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4382 {
4383 /* We first try to find the searched field in the current type.
de93309a 4384 If not found then let's look in the fixed type. */
14f9c5c9 4385
dda83cd7
SM
4386 if (!find_struct_field (name, t1, 0,
4387 &field_type, &byte_offset, &bit_offset,
4388 &bit_size, NULL))
de93309a
SM
4389 check_tag = 1;
4390 else
4391 check_tag = 0;
dda83cd7 4392 }
de93309a
SM
4393 else
4394 check_tag = 0;
c3e5cd34 4395
de93309a
SM
4396 /* Convert to fixed type in all cases, so that we have proper
4397 offsets to each field in unconstrained record types. */
4398 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4399 address, NULL, check_tag);
4400
24aa1b02
TT
4401 /* Resolve the dynamic type as well. */
4402 arg = value_from_contents_and_address (t1, nullptr, address);
4403 t1 = value_type (arg);
4404
de93309a 4405 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4406 &field_type, &byte_offset, &bit_offset,
4407 &bit_size, NULL))
4408 {
4409 if (bit_size != 0)
4410 {
4411 if (t->code () == TYPE_CODE_REF)
4412 arg = ada_coerce_ref (arg);
4413 else
4414 arg = ada_value_ind (arg);
4415 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4416 bit_offset, bit_size,
4417 field_type);
4418 }
4419 else
4420 v = value_at_lazy (field_type, address + byte_offset);
4421 }
c3e5cd34 4422 }
14f9c5c9 4423
de93309a
SM
4424 if (v != NULL || no_err)
4425 return v;
4426 else
4427 error (_("There is no member named %s."), name);
4428
4429 BadValue:
4430 if (no_err)
4431 return NULL;
4432 else
4433 error (_("Attempt to extract a component of "
4434 "a value that is not a record."));
14f9c5c9
AS
4435}
4436
4437/* Return the value ACTUAL, converted to be an appropriate value for a
4438 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4439 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4440 values not residing in memory, updating it as needed. */
14f9c5c9 4441
a93c0eb6 4442struct value *
40bc484c 4443ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4444{
df407dfe 4445 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4446 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4447 struct type *formal_target =
78134374 4448 formal_type->code () == TYPE_CODE_PTR
61ee279c 4449 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4450 struct type *actual_target =
78134374 4451 actual_type->code () == TYPE_CODE_PTR
61ee279c 4452 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4453
4c4b4cd2 4454 if (ada_is_array_descriptor_type (formal_target)
78134374 4455 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4456 return make_array_descriptor (formal_type, actual);
78134374
SM
4457 else if (formal_type->code () == TYPE_CODE_PTR
4458 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4459 {
a84a8a0d 4460 struct value *result;
5b4ee69b 4461
78134374 4462 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4463 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4464 result = desc_data (actual);
78134374 4465 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4466 {
4467 if (VALUE_LVAL (actual) != lval_memory)
4468 {
4469 struct value *val;
4470
4471 actual_type = ada_check_typedef (value_type (actual));
4472 val = allocate_value (actual_type);
4473 memcpy ((char *) value_contents_raw (val),
4474 (char *) value_contents (actual),
4475 TYPE_LENGTH (actual_type));
4476 actual = ensure_lval (val);
4477 }
4478 result = value_addr (actual);
4479 }
a84a8a0d
JB
4480 else
4481 return actual;
b1af9e97 4482 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4483 }
78134374 4484 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4485 return ada_value_ind (actual);
8344af1e
JB
4486 else if (ada_is_aligner_type (formal_type))
4487 {
4488 /* We need to turn this parameter into an aligner type
4489 as well. */
4490 struct value *aligner = allocate_value (formal_type);
4491 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4492
4493 value_assign_to_component (aligner, component, actual);
4494 return aligner;
4495 }
14f9c5c9
AS
4496
4497 return actual;
4498}
4499
438c98a1
JB
4500/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4501 type TYPE. This is usually an inefficient no-op except on some targets
4502 (such as AVR) where the representation of a pointer and an address
4503 differs. */
4504
4505static CORE_ADDR
4506value_pointer (struct value *value, struct type *type)
4507{
4508 struct gdbarch *gdbarch = get_type_arch (type);
4509 unsigned len = TYPE_LENGTH (type);
224c3ddb 4510 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4511 CORE_ADDR addr;
4512
4513 addr = value_address (value);
4514 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4515 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4516 return addr;
4517}
4518
14f9c5c9 4519
4c4b4cd2
PH
4520/* Push a descriptor of type TYPE for array value ARR on the stack at
4521 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4522 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4523 to-descriptor type rather than a descriptor type), a struct value *
4524 representing a pointer to this descriptor. */
14f9c5c9 4525
d2e4a39e 4526static struct value *
40bc484c 4527make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4528{
d2e4a39e
AS
4529 struct type *bounds_type = desc_bounds_type (type);
4530 struct type *desc_type = desc_base_type (type);
4531 struct value *descriptor = allocate_value (desc_type);
4532 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4533 int i;
d2e4a39e 4534
0963b4bd
MS
4535 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4536 i > 0; i -= 1)
14f9c5c9 4537 {
19f220c3
JK
4538 modify_field (value_type (bounds), value_contents_writeable (bounds),
4539 ada_array_bound (arr, i, 0),
4540 desc_bound_bitpos (bounds_type, i, 0),
4541 desc_bound_bitsize (bounds_type, i, 0));
4542 modify_field (value_type (bounds), value_contents_writeable (bounds),
4543 ada_array_bound (arr, i, 1),
4544 desc_bound_bitpos (bounds_type, i, 1),
4545 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4546 }
d2e4a39e 4547
40bc484c 4548 bounds = ensure_lval (bounds);
d2e4a39e 4549
19f220c3
JK
4550 modify_field (value_type (descriptor),
4551 value_contents_writeable (descriptor),
4552 value_pointer (ensure_lval (arr),
940da03e 4553 desc_type->field (0).type ()),
19f220c3
JK
4554 fat_pntr_data_bitpos (desc_type),
4555 fat_pntr_data_bitsize (desc_type));
4556
4557 modify_field (value_type (descriptor),
4558 value_contents_writeable (descriptor),
4559 value_pointer (bounds,
940da03e 4560 desc_type->field (1).type ()),
19f220c3
JK
4561 fat_pntr_bounds_bitpos (desc_type),
4562 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4563
40bc484c 4564 descriptor = ensure_lval (descriptor);
14f9c5c9 4565
78134374 4566 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4567 return value_addr (descriptor);
4568 else
4569 return descriptor;
4570}
14f9c5c9 4571\f
dda83cd7 4572 /* Symbol Cache Module */
3d9434b5 4573
3d9434b5 4574/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4575 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4576 on the type of entity being printed, the cache can make it as much
4577 as an order of magnitude faster than without it.
4578
4579 The descriptive type DWARF extension has significantly reduced
4580 the need for this cache, at least when DWARF is being used. However,
4581 even in this case, some expensive name-based symbol searches are still
4582 sometimes necessary - to find an XVZ variable, mostly. */
4583
ee01b665 4584/* Initialize the contents of SYM_CACHE. */
3d9434b5 4585
ee01b665
JB
4586static void
4587ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4588{
4589 obstack_init (&sym_cache->cache_space);
4590 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4591}
3d9434b5 4592
ee01b665
JB
4593/* Free the memory used by SYM_CACHE. */
4594
4595static void
4596ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4597{
ee01b665
JB
4598 obstack_free (&sym_cache->cache_space, NULL);
4599 xfree (sym_cache);
4600}
3d9434b5 4601
ee01b665
JB
4602/* Return the symbol cache associated to the given program space PSPACE.
4603 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4604
ee01b665
JB
4605static struct ada_symbol_cache *
4606ada_get_symbol_cache (struct program_space *pspace)
4607{
4608 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4609
66c168ae 4610 if (pspace_data->sym_cache == NULL)
ee01b665 4611 {
66c168ae
JB
4612 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4613 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4614 }
4615
66c168ae 4616 return pspace_data->sym_cache;
ee01b665 4617}
3d9434b5
JB
4618
4619/* Clear all entries from the symbol cache. */
4620
4621static void
4622ada_clear_symbol_cache (void)
4623{
ee01b665
JB
4624 struct ada_symbol_cache *sym_cache
4625 = ada_get_symbol_cache (current_program_space);
4626
4627 obstack_free (&sym_cache->cache_space, NULL);
4628 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4629}
4630
fe978cb0 4631/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4632 Return it if found, or NULL otherwise. */
4633
4634static struct cache_entry **
fe978cb0 4635find_entry (const char *name, domain_enum domain)
3d9434b5 4636{
ee01b665
JB
4637 struct ada_symbol_cache *sym_cache
4638 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4639 int h = msymbol_hash (name) % HASH_SIZE;
4640 struct cache_entry **e;
4641
ee01b665 4642 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4643 {
fe978cb0 4644 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4645 return e;
3d9434b5
JB
4646 }
4647 return NULL;
4648}
4649
fe978cb0 4650/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4651 Return 1 if found, 0 otherwise.
4652
4653 If an entry was found and SYM is not NULL, set *SYM to the entry's
4654 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4655
96d887e8 4656static int
fe978cb0 4657lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4658 struct symbol **sym, const struct block **block)
96d887e8 4659{
fe978cb0 4660 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4661
4662 if (e == NULL)
4663 return 0;
4664 if (sym != NULL)
4665 *sym = (*e)->sym;
4666 if (block != NULL)
4667 *block = (*e)->block;
4668 return 1;
96d887e8
PH
4669}
4670
3d9434b5 4671/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4672 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4673
96d887e8 4674static void
fe978cb0 4675cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4676 const struct block *block)
96d887e8 4677{
ee01b665
JB
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
3d9434b5 4680 int h;
3d9434b5
JB
4681 struct cache_entry *e;
4682
1994afbf
DE
4683 /* Symbols for builtin types don't have a block.
4684 For now don't cache such symbols. */
4685 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4686 return;
4687
3d9434b5
JB
4688 /* If the symbol is a local symbol, then do not cache it, as a search
4689 for that symbol depends on the context. To determine whether
4690 the symbol is local or not, we check the block where we found it
4691 against the global and static blocks of its associated symtab. */
4692 if (sym
08be3fe3 4693 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4694 GLOBAL_BLOCK) != block
08be3fe3 4695 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4696 STATIC_BLOCK) != block)
3d9434b5
JB
4697 return;
4698
4699 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4700 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4701 e->next = sym_cache->root[h];
4702 sym_cache->root[h] = e;
2ef5453b 4703 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4704 e->sym = sym;
fe978cb0 4705 e->domain = domain;
3d9434b5 4706 e->block = block;
96d887e8 4707}
4c4b4cd2 4708\f
dda83cd7 4709 /* Symbol Lookup */
4c4b4cd2 4710
b5ec771e
PA
4711/* Return the symbol name match type that should be used used when
4712 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4713
4714 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4715 for Ada lookups. */
c0431670 4716
b5ec771e
PA
4717static symbol_name_match_type
4718name_match_type_from_name (const char *lookup_name)
c0431670 4719{
b5ec771e
PA
4720 return (strstr (lookup_name, "__") == NULL
4721 ? symbol_name_match_type::WILD
4722 : symbol_name_match_type::FULL);
c0431670
JB
4723}
4724
4c4b4cd2
PH
4725/* Return the result of a standard (literal, C-like) lookup of NAME in
4726 given DOMAIN, visible from lexical block BLOCK. */
4727
4728static struct symbol *
4729standard_lookup (const char *name, const struct block *block,
dda83cd7 4730 domain_enum domain)
4c4b4cd2 4731{
acbd605d 4732 /* Initialize it just to avoid a GCC false warning. */
6640a367 4733 struct block_symbol sym = {};
4c4b4cd2 4734
d12307c1
PMR
4735 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4736 return sym.symbol;
a2cd4f14 4737 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4738 cache_symbol (name, domain, sym.symbol, sym.block);
4739 return sym.symbol;
4c4b4cd2
PH
4740}
4741
4742
4743/* Non-zero iff there is at least one non-function/non-enumeral symbol
4744 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4745 since they contend in overloading in the same way. */
4746static int
d12307c1 4747is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4748{
4749 int i;
4750
4751 for (i = 0; i < n; i += 1)
78134374 4752 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
dda83cd7
SM
4753 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4754 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4755 return 1;
4756
4757 return 0;
4758}
4759
4760/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4761 struct types. Otherwise, they may not. */
14f9c5c9
AS
4762
4763static int
d2e4a39e 4764equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4765{
d2e4a39e 4766 if (type0 == type1)
14f9c5c9 4767 return 1;
d2e4a39e 4768 if (type0 == NULL || type1 == NULL
78134374 4769 || type0->code () != type1->code ())
14f9c5c9 4770 return 0;
78134374
SM
4771 if ((type0->code () == TYPE_CODE_STRUCT
4772 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4773 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4774 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4775 return 1;
d2e4a39e 4776
14f9c5c9
AS
4777 return 0;
4778}
4779
4780/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4781 no more defined than that of SYM1. */
14f9c5c9
AS
4782
4783static int
d2e4a39e 4784lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4785{
4786 if (sym0 == sym1)
4787 return 1;
176620f1 4788 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4789 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4790 return 0;
4791
d2e4a39e 4792 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4793 {
4794 case LOC_UNDEF:
4795 return 1;
4796 case LOC_TYPEDEF:
4797 {
dda83cd7
SM
4798 struct type *type0 = SYMBOL_TYPE (sym0);
4799 struct type *type1 = SYMBOL_TYPE (sym1);
4800 const char *name0 = sym0->linkage_name ();
4801 const char *name1 = sym1->linkage_name ();
4802 int len0 = strlen (name0);
4803
4804 return
4805 type0->code () == type1->code ()
4806 && (equiv_types (type0, type1)
4807 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4808 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4809 }
4810 case LOC_CONST:
4811 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4812 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4813
4814 case LOC_STATIC:
4815 {
dda83cd7
SM
4816 const char *name0 = sym0->linkage_name ();
4817 const char *name1 = sym1->linkage_name ();
4818 return (strcmp (name0, name1) == 0
4819 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4820 }
4821
d2e4a39e
AS
4822 default:
4823 return 0;
14f9c5c9
AS
4824 }
4825}
4826
d12307c1 4827/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4828 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4829
4830static void
76a01679 4831add_defn_to_vec (struct obstack *obstackp,
dda83cd7
SM
4832 struct symbol *sym,
4833 const struct block *block)
14f9c5c9
AS
4834{
4835 int i;
d12307c1 4836 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4837
529cad9c
PH
4838 /* Do not try to complete stub types, as the debugger is probably
4839 already scanning all symbols matching a certain name at the
4840 time when this function is called. Trying to replace the stub
4841 type by its associated full type will cause us to restart a scan
4842 which may lead to an infinite recursion. Instead, the client
4843 collecting the matching symbols will end up collecting several
4844 matches, with at least one of them complete. It can then filter
4845 out the stub ones if needed. */
4846
4c4b4cd2
PH
4847 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4848 {
d12307c1 4849 if (lesseq_defined_than (sym, prevDefns[i].symbol))
dda83cd7 4850 return;
d12307c1 4851 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
dda83cd7
SM
4852 {
4853 prevDefns[i].symbol = sym;
4854 prevDefns[i].block = block;
4855 return;
4856 }
4c4b4cd2
PH
4857 }
4858
4859 {
d12307c1 4860 struct block_symbol info;
4c4b4cd2 4861
d12307c1 4862 info.symbol = sym;
4c4b4cd2 4863 info.block = block;
d12307c1 4864 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4865 }
4866}
4867
d12307c1
PMR
4868/* Number of block_symbol structures currently collected in current vector in
4869 OBSTACKP. */
4c4b4cd2 4870
76a01679
JB
4871static int
4872num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4873{
d12307c1 4874 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4875}
4876
d12307c1
PMR
4877/* Vector of block_symbol structures currently collected in current vector in
4878 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4879
d12307c1 4880static struct block_symbol *
4c4b4cd2
PH
4881defns_collected (struct obstack *obstackp, int finish)
4882{
4883 if (finish)
224c3ddb 4884 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4885 else
d12307c1 4886 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4887}
4888
7c7b6655
TT
4889/* Return a bound minimal symbol matching NAME according to Ada
4890 decoding rules. Returns an invalid symbol if there is no such
4891 minimal symbol. Names prefixed with "standard__" are handled
4892 specially: "standard__" is first stripped off, and only static and
4893 global symbols are searched. */
4c4b4cd2 4894
7c7b6655 4895struct bound_minimal_symbol
96d887e8 4896ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4897{
7c7b6655 4898 struct bound_minimal_symbol result;
4c4b4cd2 4899
7c7b6655
TT
4900 memset (&result, 0, sizeof (result));
4901
b5ec771e
PA
4902 symbol_name_match_type match_type = name_match_type_from_name (name);
4903 lookup_name_info lookup_name (name, match_type);
4904
4905 symbol_name_matcher_ftype *match_name
4906 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4907
2030c079 4908 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4909 {
7932255d 4910 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4911 {
c9d95fa3 4912 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4913 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4914 {
4915 result.minsym = msymbol;
4916 result.objfile = objfile;
4917 break;
4918 }
4919 }
4920 }
4c4b4cd2 4921
7c7b6655 4922 return result;
96d887e8 4923}
4c4b4cd2 4924
96d887e8
PH
4925/* For all subprograms that statically enclose the subprogram of the
4926 selected frame, add symbols matching identifier NAME in DOMAIN
4927 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4928 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4929 with a wildcard prefix. */
4c4b4cd2 4930
96d887e8
PH
4931static void
4932add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4933 const lookup_name_info &lookup_name,
4934 domain_enum domain)
96d887e8 4935{
96d887e8 4936}
14f9c5c9 4937
96d887e8
PH
4938/* True if TYPE is definitely an artificial type supplied to a symbol
4939 for which no debugging information was given in the symbol file. */
14f9c5c9 4940
96d887e8
PH
4941static int
4942is_nondebugging_type (struct type *type)
4943{
0d5cff50 4944 const char *name = ada_type_name (type);
5b4ee69b 4945
96d887e8
PH
4946 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4947}
4c4b4cd2 4948
8f17729f
JB
4949/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4950 that are deemed "identical" for practical purposes.
4951
4952 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4953 types and that their number of enumerals is identical (in other
1f704f76 4954 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4955
4956static int
4957ada_identical_enum_types_p (struct type *type1, struct type *type2)
4958{
4959 int i;
4960
4961 /* The heuristic we use here is fairly conservative. We consider
4962 that 2 enumerate types are identical if they have the same
4963 number of enumerals and that all enumerals have the same
4964 underlying value and name. */
4965
4966 /* All enums in the type should have an identical underlying value. */
1f704f76 4967 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4968 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4969 return 0;
4970
4971 /* All enumerals should also have the same name (modulo any numerical
4972 suffix). */
1f704f76 4973 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4974 {
0d5cff50
DE
4975 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4976 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4977 int len_1 = strlen (name_1);
4978 int len_2 = strlen (name_2);
4979
4980 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4981 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4982 if (len_1 != len_2
dda83cd7 4983 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4984 TYPE_FIELD_NAME (type2, i),
4985 len_1) != 0)
4986 return 0;
4987 }
4988
4989 return 1;
4990}
4991
4992/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4993 that are deemed "identical" for practical purposes. Sometimes,
4994 enumerals are not strictly identical, but their types are so similar
4995 that they can be considered identical.
4996
4997 For instance, consider the following code:
4998
4999 type Color is (Black, Red, Green, Blue, White);
5000 type RGB_Color is new Color range Red .. Blue;
5001
5002 Type RGB_Color is a subrange of an implicit type which is a copy
5003 of type Color. If we call that implicit type RGB_ColorB ("B" is
5004 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5005 As a result, when an expression references any of the enumeral
5006 by name (Eg. "print green"), the expression is technically
5007 ambiguous and the user should be asked to disambiguate. But
5008 doing so would only hinder the user, since it wouldn't matter
5009 what choice he makes, the outcome would always be the same.
5010 So, for practical purposes, we consider them as the same. */
5011
5012static int
54d343a2 5013symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5014{
5015 int i;
5016
5017 /* Before performing a thorough comparison check of each type,
5018 we perform a series of inexpensive checks. We expect that these
5019 checks will quickly fail in the vast majority of cases, and thus
5020 help prevent the unnecessary use of a more expensive comparison.
5021 Said comparison also expects us to make some of these checks
5022 (see ada_identical_enum_types_p). */
5023
5024 /* Quick check: All symbols should have an enum type. */
54d343a2 5025 for (i = 0; i < syms.size (); i++)
78134374 5026 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5027 return 0;
5028
5029 /* Quick check: They should all have the same value. */
54d343a2 5030 for (i = 1; i < syms.size (); i++)
d12307c1 5031 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5032 return 0;
5033
5034 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5035 for (i = 1; i < syms.size (); i++)
1f704f76 5036 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 5037 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
5038 return 0;
5039
5040 /* All the sanity checks passed, so we might have a set of
5041 identical enumeration types. Perform a more complete
5042 comparison of the type of each symbol. */
54d343a2 5043 for (i = 1; i < syms.size (); i++)
d12307c1 5044 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 5045 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5046 return 0;
5047
5048 return 1;
5049}
5050
54d343a2 5051/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5052 duplicate other symbols in the list (The only case I know of where
5053 this happens is when object files containing stabs-in-ecoff are
5054 linked with files containing ordinary ecoff debugging symbols (or no
5055 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5056 Returns the number of items in the modified list. */
4c4b4cd2 5057
96d887e8 5058static int
54d343a2 5059remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5060{
5061 int i, j;
4c4b4cd2 5062
8f17729f
JB
5063 /* We should never be called with less than 2 symbols, as there
5064 cannot be any extra symbol in that case. But it's easy to
5065 handle, since we have nothing to do in that case. */
54d343a2
TT
5066 if (syms->size () < 2)
5067 return syms->size ();
8f17729f 5068
96d887e8 5069 i = 0;
54d343a2 5070 while (i < syms->size ())
96d887e8 5071 {
a35ddb44 5072 int remove_p = 0;
339c13b6
JB
5073
5074 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5075 the get rid of the stub. */
339c13b6 5076
e46d3488 5077 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
5078 && (*syms)[i].symbol->linkage_name () != NULL)
5079 {
5080 for (j = 0; j < syms->size (); j++)
5081 {
5082 if (j != i
5083 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5084 && (*syms)[j].symbol->linkage_name () != NULL
5085 && strcmp ((*syms)[i].symbol->linkage_name (),
5086 (*syms)[j].symbol->linkage_name ()) == 0)
5087 remove_p = 1;
5088 }
5089 }
339c13b6
JB
5090
5091 /* Two symbols with the same name, same class and same address
dda83cd7 5092 should be identical. */
339c13b6 5093
987012b8 5094 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
5095 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5096 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5097 {
5098 for (j = 0; j < syms->size (); j += 1)
5099 {
5100 if (i != j
5101 && (*syms)[j].symbol->linkage_name () != NULL
5102 && strcmp ((*syms)[i].symbol->linkage_name (),
5103 (*syms)[j].symbol->linkage_name ()) == 0
5104 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 5105 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
5106 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5107 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5108 remove_p = 1;
5109 }
5110 }
339c13b6 5111
a35ddb44 5112 if (remove_p)
54d343a2 5113 syms->erase (syms->begin () + i);
1b788fb6
TT
5114 else
5115 i += 1;
14f9c5c9 5116 }
8f17729f
JB
5117
5118 /* If all the remaining symbols are identical enumerals, then
5119 just keep the first one and discard the rest.
5120
5121 Unlike what we did previously, we do not discard any entry
5122 unless they are ALL identical. This is because the symbol
5123 comparison is not a strict comparison, but rather a practical
5124 comparison. If all symbols are considered identical, then
5125 we can just go ahead and use the first one and discard the rest.
5126 But if we cannot reduce the list to a single element, we have
5127 to ask the user to disambiguate anyways. And if we have to
5128 present a multiple-choice menu, it's less confusing if the list
5129 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5130 if (symbols_are_identical_enums (*syms))
5131 syms->resize (1);
8f17729f 5132
54d343a2 5133 return syms->size ();
14f9c5c9
AS
5134}
5135
96d887e8
PH
5136/* Given a type that corresponds to a renaming entity, use the type name
5137 to extract the scope (package name or function name, fully qualified,
5138 and following the GNAT encoding convention) where this renaming has been
49d83361 5139 defined. */
4c4b4cd2 5140
49d83361 5141static std::string
96d887e8 5142xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5143{
96d887e8 5144 /* The renaming types adhere to the following convention:
0963b4bd 5145 <scope>__<rename>___<XR extension>.
96d887e8
PH
5146 So, to extract the scope, we search for the "___XR" extension,
5147 and then backtrack until we find the first "__". */
76a01679 5148
7d93a1e0 5149 const char *name = renaming_type->name ();
108d56a4
SM
5150 const char *suffix = strstr (name, "___XR");
5151 const char *last;
14f9c5c9 5152
96d887e8
PH
5153 /* Now, backtrack a bit until we find the first "__". Start looking
5154 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5155
96d887e8
PH
5156 for (last = suffix - 3; last > name; last--)
5157 if (last[0] == '_' && last[1] == '_')
5158 break;
76a01679 5159
96d887e8 5160 /* Make a copy of scope and return it. */
49d83361 5161 return std::string (name, last);
4c4b4cd2
PH
5162}
5163
96d887e8 5164/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5165
96d887e8
PH
5166static int
5167is_package_name (const char *name)
4c4b4cd2 5168{
96d887e8
PH
5169 /* Here, We take advantage of the fact that no symbols are generated
5170 for packages, while symbols are generated for each function.
5171 So the condition for NAME represent a package becomes equivalent
5172 to NAME not existing in our list of symbols. There is only one
5173 small complication with library-level functions (see below). */
4c4b4cd2 5174
96d887e8
PH
5175 /* If it is a function that has not been defined at library level,
5176 then we should be able to look it up in the symbols. */
5177 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5178 return 0;
14f9c5c9 5179
96d887e8
PH
5180 /* Library-level function names start with "_ada_". See if function
5181 "_ada_" followed by NAME can be found. */
14f9c5c9 5182
96d887e8 5183 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5184 functions names cannot contain "__" in them. */
96d887e8
PH
5185 if (strstr (name, "__") != NULL)
5186 return 0;
4c4b4cd2 5187
528e1572 5188 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5189
528e1572 5190 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5191}
14f9c5c9 5192
96d887e8 5193/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5194 not visible from FUNCTION_NAME. */
14f9c5c9 5195
96d887e8 5196static int
0d5cff50 5197old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5198{
aeb5907d
JB
5199 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5200 return 0;
5201
49d83361 5202 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5203
96d887e8 5204 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5205 if (is_package_name (scope.c_str ()))
5206 return 0;
14f9c5c9 5207
96d887e8
PH
5208 /* Check that the rename is in the current function scope by checking
5209 that its name starts with SCOPE. */
76a01679 5210
96d887e8
PH
5211 /* If the function name starts with "_ada_", it means that it is
5212 a library-level function. Strip this prefix before doing the
5213 comparison, as the encoding for the renaming does not contain
5214 this prefix. */
61012eef 5215 if (startswith (function_name, "_ada_"))
96d887e8 5216 function_name += 5;
f26caa11 5217
49d83361 5218 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5219}
5220
aeb5907d
JB
5221/* Remove entries from SYMS that corresponds to a renaming entity that
5222 is not visible from the function associated with CURRENT_BLOCK or
5223 that is superfluous due to the presence of more specific renaming
5224 information. Places surviving symbols in the initial entries of
5225 SYMS and returns the number of surviving symbols.
96d887e8
PH
5226
5227 Rationale:
aeb5907d
JB
5228 First, in cases where an object renaming is implemented as a
5229 reference variable, GNAT may produce both the actual reference
5230 variable and the renaming encoding. In this case, we discard the
5231 latter.
5232
5233 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5234 entity. Unfortunately, STABS currently does not support the definition
5235 of types that are local to a given lexical block, so all renamings types
5236 are emitted at library level. As a consequence, if an application
5237 contains two renaming entities using the same name, and a user tries to
5238 print the value of one of these entities, the result of the ada symbol
5239 lookup will also contain the wrong renaming type.
f26caa11 5240
96d887e8
PH
5241 This function partially covers for this limitation by attempting to
5242 remove from the SYMS list renaming symbols that should be visible
5243 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5244 method with the current information available. The implementation
5245 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5246
5247 - When the user tries to print a rename in a function while there
dda83cd7
SM
5248 is another rename entity defined in a package: Normally, the
5249 rename in the function has precedence over the rename in the
5250 package, so the latter should be removed from the list. This is
5251 currently not the case.
5252
96d887e8 5253 - This function will incorrectly remove valid renames if
dda83cd7
SM
5254 the CURRENT_BLOCK corresponds to a function which symbol name
5255 has been changed by an "Export" pragma. As a consequence,
5256 the user will be unable to print such rename entities. */
4c4b4cd2 5257
14f9c5c9 5258static int
54d343a2
TT
5259remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5260 const struct block *current_block)
4c4b4cd2
PH
5261{
5262 struct symbol *current_function;
0d5cff50 5263 const char *current_function_name;
4c4b4cd2 5264 int i;
aeb5907d
JB
5265 int is_new_style_renaming;
5266
5267 /* If there is both a renaming foo___XR... encoded as a variable and
5268 a simple variable foo in the same block, discard the latter.
0963b4bd 5269 First, zero out such symbols, then compress. */
aeb5907d 5270 is_new_style_renaming = 0;
54d343a2 5271 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5272 {
54d343a2
TT
5273 struct symbol *sym = (*syms)[i].symbol;
5274 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5275 const char *name;
5276 const char *suffix;
5277
5278 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5279 continue;
987012b8 5280 name = sym->linkage_name ();
aeb5907d
JB
5281 suffix = strstr (name, "___XR");
5282
5283 if (suffix != NULL)
5284 {
5285 int name_len = suffix - name;
5286 int j;
5b4ee69b 5287
aeb5907d 5288 is_new_style_renaming = 1;
54d343a2
TT
5289 for (j = 0; j < syms->size (); j += 1)
5290 if (i != j && (*syms)[j].symbol != NULL
987012b8 5291 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5292 name_len) == 0
54d343a2
TT
5293 && block == (*syms)[j].block)
5294 (*syms)[j].symbol = NULL;
aeb5907d
JB
5295 }
5296 }
5297 if (is_new_style_renaming)
5298 {
5299 int j, k;
5300
54d343a2
TT
5301 for (j = k = 0; j < syms->size (); j += 1)
5302 if ((*syms)[j].symbol != NULL)
aeb5907d 5303 {
54d343a2 5304 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5305 k += 1;
5306 }
5307 return k;
5308 }
4c4b4cd2
PH
5309
5310 /* Extract the function name associated to CURRENT_BLOCK.
5311 Abort if unable to do so. */
76a01679 5312
4c4b4cd2 5313 if (current_block == NULL)
54d343a2 5314 return syms->size ();
76a01679 5315
7f0df278 5316 current_function = block_linkage_function (current_block);
4c4b4cd2 5317 if (current_function == NULL)
54d343a2 5318 return syms->size ();
4c4b4cd2 5319
987012b8 5320 current_function_name = current_function->linkage_name ();
4c4b4cd2 5321 if (current_function_name == NULL)
54d343a2 5322 return syms->size ();
4c4b4cd2
PH
5323
5324 /* Check each of the symbols, and remove it from the list if it is
5325 a type corresponding to a renaming that is out of the scope of
5326 the current block. */
5327
5328 i = 0;
54d343a2 5329 while (i < syms->size ())
4c4b4cd2 5330 {
54d343a2 5331 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5332 == ADA_OBJECT_RENAMING
5333 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5334 current_function_name))
5335 syms->erase (syms->begin () + i);
4c4b4cd2 5336 else
dda83cd7 5337 i += 1;
4c4b4cd2
PH
5338 }
5339
54d343a2 5340 return syms->size ();
4c4b4cd2
PH
5341}
5342
339c13b6
JB
5343/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5344 whose name and domain match NAME and DOMAIN respectively.
5345 If no match was found, then extend the search to "enclosing"
5346 routines (in other words, if we're inside a nested function,
5347 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5348 If WILD_MATCH_P is nonzero, perform the naming matching in
5349 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5350
5351 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5352
5353static void
b5ec771e
PA
5354ada_add_local_symbols (struct obstack *obstackp,
5355 const lookup_name_info &lookup_name,
5356 const struct block *block, domain_enum domain)
339c13b6
JB
5357{
5358 int block_depth = 0;
5359
5360 while (block != NULL)
5361 {
5362 block_depth += 1;
b5ec771e 5363 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
dda83cd7
SM
5367 num_defns_collected (obstackp)))
5368 return;
339c13b6
JB
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5376 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5377}
5378
ccefe4c4 5379/* An object of this type is used as the user_data argument when
40658b94 5380 calling the map_matching_symbols method. */
ccefe4c4 5381
40658b94 5382struct match_data
ccefe4c4 5383{
40658b94 5384 struct objfile *objfile;
ccefe4c4 5385 struct obstack *obstackp;
40658b94
PH
5386 struct symbol *arg_sym;
5387 int found_sym;
ccefe4c4
TT
5388};
5389
199b4314
TT
5390/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5391 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
ccefe4c4 5398
199b4314
TT
5399static bool
5400aux_add_nonlocal_symbols (struct block_symbol *bsym,
5401 struct match_data *data)
ccefe4c4 5402{
199b4314
TT
5403 const struct block *block = bsym->block;
5404 struct symbol *sym = bsym->symbol;
5405
40658b94
PH
5406 if (sym == NULL)
5407 {
5408 if (!data->found_sym && data->arg_sym != NULL)
5409 add_defn_to_vec (data->obstackp,
5410 fixup_symbol_section (data->arg_sym, data->objfile),
5411 block);
5412 data->found_sym = 0;
5413 data->arg_sym = NULL;
5414 }
5415 else
5416 {
5417 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5418 return true;
40658b94
PH
5419 else if (SYMBOL_IS_ARGUMENT (sym))
5420 data->arg_sym = sym;
5421 else
5422 {
5423 data->found_sym = 1;
5424 add_defn_to_vec (data->obstackp,
5425 fixup_symbol_section (sym, data->objfile),
5426 block);
5427 }
5428 }
199b4314 5429 return true;
40658b94
PH
5430}
5431
b5ec771e
PA
5432/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5433 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5434 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5435
5436static int
5437ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
b5ec771e
PA
5439 const lookup_name_info &lookup_name,
5440 domain_enum domain)
22cee43f
PMR
5441{
5442 struct using_direct *renaming;
5443 int defns_mark = num_defns_collected (obstackp);
5444
b5ec771e
PA
5445 symbol_name_matcher_ftype *name_match
5446 = ada_get_symbol_name_matcher (lookup_name);
5447
22cee43f
PMR
5448 for (renaming = block_using (block);
5449 renaming != NULL;
5450 renaming = renaming->next)
5451 {
5452 const char *r_name;
22cee43f
PMR
5453
5454 /* Avoid infinite recursions: skip this renaming if we are actually
5455 already traversing it.
5456
5457 Currently, symbol lookup in Ada don't use the namespace machinery from
5458 C++/Fortran support: skip namespace imports that use them. */
5459 if (renaming->searched
5460 || (renaming->import_src != NULL
5461 && renaming->import_src[0] != '\0')
5462 || (renaming->import_dest != NULL
5463 && renaming->import_dest[0] != '\0'))
5464 continue;
5465 renaming->searched = 1;
5466
5467 /* TODO: here, we perform another name-based symbol lookup, which can
5468 pull its own multiple overloads. In theory, we should be able to do
5469 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5470 not a simple name. But in order to do this, we would need to enhance
5471 the DWARF reader to associate a symbol to this renaming, instead of a
5472 name. So, for now, we do something simpler: re-use the C++/Fortran
5473 namespace machinery. */
5474 r_name = (renaming->alias != NULL
5475 ? renaming->alias
5476 : renaming->declaration);
b5ec771e
PA
5477 if (name_match (r_name, lookup_name, NULL))
5478 {
5479 lookup_name_info decl_lookup_name (renaming->declaration,
5480 lookup_name.match_type ());
5481 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5482 1, NULL);
5483 }
22cee43f
PMR
5484 renaming->searched = 0;
5485 }
5486 return num_defns_collected (obstackp) != defns_mark;
5487}
5488
db230ce3
JB
5489/* Implements compare_names, but only applying the comparision using
5490 the given CASING. */
5b4ee69b 5491
40658b94 5492static int
db230ce3
JB
5493compare_names_with_case (const char *string1, const char *string2,
5494 enum case_sensitivity casing)
40658b94
PH
5495{
5496 while (*string1 != '\0' && *string2 != '\0')
5497 {
db230ce3
JB
5498 char c1, c2;
5499
40658b94
PH
5500 if (isspace (*string1) || isspace (*string2))
5501 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5502
5503 if (casing == case_sensitive_off)
5504 {
5505 c1 = tolower (*string1);
5506 c2 = tolower (*string2);
5507 }
5508 else
5509 {
5510 c1 = *string1;
5511 c2 = *string2;
5512 }
5513 if (c1 != c2)
40658b94 5514 break;
db230ce3 5515
40658b94
PH
5516 string1 += 1;
5517 string2 += 1;
5518 }
db230ce3 5519
40658b94
PH
5520 switch (*string1)
5521 {
5522 case '(':
5523 return strcmp_iw_ordered (string1, string2);
5524 case '_':
5525 if (*string2 == '\0')
5526 {
052874e8 5527 if (is_name_suffix (string1))
40658b94
PH
5528 return 0;
5529 else
1a1d5513 5530 return 1;
40658b94 5531 }
dbb8534f 5532 /* FALLTHROUGH */
40658b94
PH
5533 default:
5534 if (*string2 == '(')
5535 return strcmp_iw_ordered (string1, string2);
5536 else
db230ce3
JB
5537 {
5538 if (casing == case_sensitive_off)
5539 return tolower (*string1) - tolower (*string2);
5540 else
5541 return *string1 - *string2;
5542 }
40658b94 5543 }
ccefe4c4
TT
5544}
5545
db230ce3
JB
5546/* Compare STRING1 to STRING2, with results as for strcmp.
5547 Compatible with strcmp_iw_ordered in that...
5548
5549 strcmp_iw_ordered (STRING1, STRING2) <= 0
5550
5551 ... implies...
5552
5553 compare_names (STRING1, STRING2) <= 0
5554
5555 (they may differ as to what symbols compare equal). */
5556
5557static int
5558compare_names (const char *string1, const char *string2)
5559{
5560 int result;
5561
5562 /* Similar to what strcmp_iw_ordered does, we need to perform
5563 a case-insensitive comparison first, and only resort to
5564 a second, case-sensitive, comparison if the first one was
5565 not sufficient to differentiate the two strings. */
5566
5567 result = compare_names_with_case (string1, string2, case_sensitive_off);
5568 if (result == 0)
5569 result = compare_names_with_case (string1, string2, case_sensitive_on);
5570
5571 return result;
5572}
5573
b5ec771e
PA
5574/* Convenience function to get at the Ada encoded lookup name for
5575 LOOKUP_NAME, as a C string. */
5576
5577static const char *
5578ada_lookup_name (const lookup_name_info &lookup_name)
5579{
5580 return lookup_name.ada ().lookup_name ().c_str ();
5581}
5582
339c13b6 5583/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5584 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5585 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5586 symbols otherwise. */
339c13b6
JB
5587
5588static void
b5ec771e
PA
5589add_nonlocal_symbols (struct obstack *obstackp,
5590 const lookup_name_info &lookup_name,
5591 domain_enum domain, int global)
339c13b6 5592{
40658b94 5593 struct match_data data;
339c13b6 5594
6475f2fe 5595 memset (&data, 0, sizeof data);
ccefe4c4 5596 data.obstackp = obstackp;
339c13b6 5597
b5ec771e
PA
5598 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5599
199b4314
TT
5600 auto callback = [&] (struct block_symbol *bsym)
5601 {
5602 return aux_add_nonlocal_symbols (bsym, &data);
5603 };
5604
2030c079 5605 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5606 {
5607 data.objfile = objfile;
5608
b054970d
TT
5609 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5610 domain, global, callback,
5611 (is_wild_match
5612 ? NULL : compare_names));
22cee43f 5613
b669c953 5614 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5615 {
5616 const struct block *global_block
5617 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5618
b5ec771e
PA
5619 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5620 domain))
22cee43f
PMR
5621 data.found_sym = 1;
5622 }
40658b94
PH
5623 }
5624
5625 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5626 {
b5ec771e 5627 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5628 std::string bracket_name = std::string ("<_ada_") + name + '>';
5629 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5630
2030c079 5631 for (objfile *objfile : current_program_space->objfiles ())
dda83cd7 5632 {
40658b94 5633 data.objfile = objfile;
b054970d 5634 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5635 domain, global, callback,
b5ec771e 5636 compare_names);
40658b94
PH
5637 }
5638 }
339c13b6
JB
5639}
5640
b5ec771e
PA
5641/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5642 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5643 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5644
22cee43f
PMR
5645 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5646 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5647 is the one match returned (no other matches in that or
d9680e73 5648 enclosing blocks is returned). If there are any matches in or
22cee43f 5649 surrounding BLOCK, then these alone are returned.
4eeaa230 5650
b5ec771e
PA
5651 Names prefixed with "standard__" are handled specially:
5652 "standard__" is first stripped off (by the lookup_name
5653 constructor), and only static and global symbols are searched.
14f9c5c9 5654
22cee43f
PMR
5655 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5656 to lookup global symbols. */
5657
5658static void
5659ada_add_all_symbols (struct obstack *obstackp,
5660 const struct block *block,
b5ec771e 5661 const lookup_name_info &lookup_name,
22cee43f
PMR
5662 domain_enum domain,
5663 int full_search,
5664 int *made_global_lookup_p)
14f9c5c9
AS
5665{
5666 struct symbol *sym;
14f9c5c9 5667
22cee43f
PMR
5668 if (made_global_lookup_p)
5669 *made_global_lookup_p = 0;
339c13b6
JB
5670
5671 /* Special case: If the user specifies a symbol name inside package
5672 Standard, do a non-wild matching of the symbol name without
5673 the "standard__" prefix. This was primarily introduced in order
5674 to allow the user to specifically access the standard exceptions
5675 using, for instance, Standard.Constraint_Error when Constraint_Error
5676 is ambiguous (due to the user defining its own Constraint_Error
5677 entity inside its program). */
b5ec771e
PA
5678 if (lookup_name.ada ().standard_p ())
5679 block = NULL;
4c4b4cd2 5680
339c13b6 5681 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5682
4eeaa230
DE
5683 if (block != NULL)
5684 {
5685 if (full_search)
b5ec771e 5686 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5687 else
5688 {
5689 /* In the !full_search case we're are being called by
4009ee92 5690 iterate_over_symbols, and we don't want to search
4eeaa230 5691 superblocks. */
b5ec771e 5692 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5693 }
22cee43f
PMR
5694 if (num_defns_collected (obstackp) > 0 || !full_search)
5695 return;
4eeaa230 5696 }
d2e4a39e 5697
339c13b6
JB
5698 /* No non-global symbols found. Check our cache to see if we have
5699 already performed this search before. If we have, then return
5700 the same result. */
5701
b5ec771e
PA
5702 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5703 domain, &sym, &block))
4c4b4cd2
PH
5704 {
5705 if (sym != NULL)
b5ec771e 5706 add_defn_to_vec (obstackp, sym, block);
22cee43f 5707 return;
4c4b4cd2 5708 }
14f9c5c9 5709
22cee43f
PMR
5710 if (made_global_lookup_p)
5711 *made_global_lookup_p = 1;
b1eedac9 5712
339c13b6
JB
5713 /* Search symbols from all global blocks. */
5714
b5ec771e 5715 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5716
4c4b4cd2 5717 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5718 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5719
22cee43f 5720 if (num_defns_collected (obstackp) == 0)
b5ec771e 5721 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5722}
5723
b5ec771e
PA
5724/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5725 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5726 matches.
54d343a2
TT
5727 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5728 found and the blocks and symbol tables (if any) in which they were
5729 found.
22cee43f
PMR
5730
5731 When full_search is non-zero, any non-function/non-enumeral
5732 symbol match within the nest of blocks whose innermost member is BLOCK,
5733 is the one match returned (no other matches in that or
5734 enclosing blocks is returned). If there are any matches in or
5735 surrounding BLOCK, then these alone are returned.
5736
5737 Names prefixed with "standard__" are handled specially: "standard__"
5738 is first stripped off, and only static and global symbols are searched. */
5739
5740static int
b5ec771e
PA
5741ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5742 const struct block *block,
22cee43f 5743 domain_enum domain,
54d343a2 5744 std::vector<struct block_symbol> *results,
22cee43f
PMR
5745 int full_search)
5746{
22cee43f
PMR
5747 int syms_from_global_search;
5748 int ndefns;
ec6a20c2 5749 auto_obstack obstack;
22cee43f 5750
ec6a20c2 5751 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5752 domain, full_search, &syms_from_global_search);
14f9c5c9 5753
ec6a20c2
JB
5754 ndefns = num_defns_collected (&obstack);
5755
54d343a2
TT
5756 struct block_symbol *base = defns_collected (&obstack, 1);
5757 for (int i = 0; i < ndefns; ++i)
5758 results->push_back (base[i]);
4c4b4cd2 5759
54d343a2 5760 ndefns = remove_extra_symbols (results);
4c4b4cd2 5761
b1eedac9 5762 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5763 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5764
b1eedac9 5765 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5766 cache_symbol (ada_lookup_name (lookup_name), domain,
5767 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5768
54d343a2 5769 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5770
14f9c5c9
AS
5771 return ndefns;
5772}
5773
b5ec771e 5774/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5775 in global scopes, returning the number of matches, and filling *RESULTS
5776 with (SYM,BLOCK) tuples.
ec6a20c2 5777
4eeaa230
DE
5778 See ada_lookup_symbol_list_worker for further details. */
5779
5780int
b5ec771e 5781ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5782 domain_enum domain,
5783 std::vector<struct block_symbol> *results)
4eeaa230 5784{
b5ec771e
PA
5785 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5786 lookup_name_info lookup_name (name, name_match_type);
5787
5788 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5789}
5790
4e5c77fe
JB
5791/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5792 to 1, but choosing the first symbol found if there are multiple
5793 choices.
5794
5e2336be
JB
5795 The result is stored in *INFO, which must be non-NULL.
5796 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5797
5798void
5799ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5800 domain_enum domain,
d12307c1 5801 struct block_symbol *info)
14f9c5c9 5802{
b5ec771e
PA
5803 /* Since we already have an encoded name, wrap it in '<>' to force a
5804 verbatim match. Otherwise, if the name happens to not look like
5805 an encoded name (because it doesn't include a "__"),
5806 ada_lookup_name_info would re-encode/fold it again, and that
5807 would e.g., incorrectly lowercase object renaming names like
5808 "R28b" -> "r28b". */
5809 std::string verbatim = std::string ("<") + name + '>';
5810
5e2336be 5811 gdb_assert (info != NULL);
65392b3e 5812 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5813}
aeb5907d
JB
5814
5815/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5816 scope and in global scopes, or NULL if none. NAME is folded and
5817 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5818 choosing the first symbol if there are multiple choices. */
4e5c77fe 5819
d12307c1 5820struct block_symbol
aeb5907d 5821ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5822 domain_enum domain)
aeb5907d 5823{
54d343a2 5824 std::vector<struct block_symbol> candidates;
f98fc17b 5825 int n_candidates;
f98fc17b
PA
5826
5827 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5828
5829 if (n_candidates == 0)
54d343a2 5830 return {};
f98fc17b
PA
5831
5832 block_symbol info = candidates[0];
5833 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5834 return info;
4c4b4cd2 5835}
14f9c5c9 5836
14f9c5c9 5837
4c4b4cd2
PH
5838/* True iff STR is a possible encoded suffix of a normal Ada name
5839 that is to be ignored for matching purposes. Suffixes of parallel
5840 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5841 are given by any of the regular expressions:
4c4b4cd2 5842
babe1480
JB
5843 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5844 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5845 TKB [subprogram suffix for task bodies]
babe1480 5846 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5847 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5848
5849 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5850 match is performed. This sequence is used to differentiate homonyms,
5851 is an optional part of a valid name suffix. */
4c4b4cd2 5852
14f9c5c9 5853static int
d2e4a39e 5854is_name_suffix (const char *str)
14f9c5c9
AS
5855{
5856 int k;
4c4b4cd2
PH
5857 const char *matching;
5858 const int len = strlen (str);
5859
babe1480
JB
5860 /* Skip optional leading __[0-9]+. */
5861
4c4b4cd2
PH
5862 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5863 {
babe1480
JB
5864 str += 3;
5865 while (isdigit (str[0]))
dda83cd7 5866 str += 1;
4c4b4cd2 5867 }
babe1480
JB
5868
5869 /* [.$][0-9]+ */
4c4b4cd2 5870
babe1480 5871 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5872 {
babe1480 5873 matching = str + 1;
4c4b4cd2 5874 while (isdigit (matching[0]))
dda83cd7 5875 matching += 1;
4c4b4cd2 5876 if (matching[0] == '\0')
dda83cd7 5877 return 1;
4c4b4cd2
PH
5878 }
5879
5880 /* ___[0-9]+ */
babe1480 5881
4c4b4cd2
PH
5882 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5883 {
5884 matching = str + 3;
5885 while (isdigit (matching[0]))
dda83cd7 5886 matching += 1;
4c4b4cd2 5887 if (matching[0] == '\0')
dda83cd7 5888 return 1;
4c4b4cd2
PH
5889 }
5890
9ac7f98e
JB
5891 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5892
5893 if (strcmp (str, "TKB") == 0)
5894 return 1;
5895
529cad9c
PH
5896#if 0
5897 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5898 with a N at the end. Unfortunately, the compiler uses the same
5899 convention for other internal types it creates. So treating
529cad9c 5900 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5901 some regressions. For instance, consider the case of an enumerated
5902 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5903 name ends with N.
5904 Having a single character like this as a suffix carrying some
0963b4bd 5905 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5906 to be something like "_N" instead. In the meantime, do not do
5907 the following check. */
5908 /* Protected Object Subprograms */
5909 if (len == 1 && str [0] == 'N')
5910 return 1;
5911#endif
5912
5913 /* _E[0-9]+[bs]$ */
5914 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5915 {
5916 matching = str + 3;
5917 while (isdigit (matching[0]))
dda83cd7 5918 matching += 1;
529cad9c 5919 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5920 && matching [1] == '\0')
5921 return 1;
529cad9c
PH
5922 }
5923
4c4b4cd2
PH
5924 /* ??? We should not modify STR directly, as we are doing below. This
5925 is fine in this case, but may become problematic later if we find
5926 that this alternative did not work, and want to try matching
5927 another one from the begining of STR. Since we modified it, we
5928 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5929 if (str[0] == 'X')
5930 {
5931 str += 1;
d2e4a39e 5932 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5933 {
5934 if (str[0] != 'n' && str[0] != 'b')
5935 return 0;
5936 str += 1;
5937 }
14f9c5c9 5938 }
babe1480 5939
14f9c5c9
AS
5940 if (str[0] == '\000')
5941 return 1;
babe1480 5942
d2e4a39e 5943 if (str[0] == '_')
14f9c5c9
AS
5944 {
5945 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5946 return 0;
d2e4a39e 5947 if (str[2] == '_')
dda83cd7
SM
5948 {
5949 if (strcmp (str + 3, "JM") == 0)
5950 return 1;
5951 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5952 the LJM suffix in favor of the JM one. But we will
5953 still accept LJM as a valid suffix for a reasonable
5954 amount of time, just to allow ourselves to debug programs
5955 compiled using an older version of GNAT. */
5956 if (strcmp (str + 3, "LJM") == 0)
5957 return 1;
5958 if (str[3] != 'X')
5959 return 0;
5960 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5961 || str[4] == 'U' || str[4] == 'P')
5962 return 1;
5963 if (str[4] == 'R' && str[5] != 'T')
5964 return 1;
5965 return 0;
5966 }
4c4b4cd2 5967 if (!isdigit (str[2]))
dda83cd7 5968 return 0;
4c4b4cd2 5969 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5970 if (!isdigit (str[k]) && str[k] != '_')
5971 return 0;
14f9c5c9
AS
5972 return 1;
5973 }
4c4b4cd2 5974 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5975 {
4c4b4cd2 5976 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5977 if (!isdigit (str[k]) && str[k] != '_')
5978 return 0;
14f9c5c9
AS
5979 return 1;
5980 }
5981 return 0;
5982}
d2e4a39e 5983
aeb5907d
JB
5984/* Return non-zero if the string starting at NAME and ending before
5985 NAME_END contains no capital letters. */
529cad9c
PH
5986
5987static int
5988is_valid_name_for_wild_match (const char *name0)
5989{
f945dedf 5990 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5991 int i;
5992
5823c3ef
JB
5993 /* If the decoded name starts with an angle bracket, it means that
5994 NAME0 does not follow the GNAT encoding format. It should then
5995 not be allowed as a possible wild match. */
5996 if (decoded_name[0] == '<')
5997 return 0;
5998
529cad9c
PH
5999 for (i=0; decoded_name[i] != '\0'; i++)
6000 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6001 return 0;
6002
6003 return 1;
6004}
6005
59c8a30b
JB
6006/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6007 character which could start a simple name. Assumes that *NAMEP points
6008 somewhere inside the string beginning at NAME0. */
4c4b4cd2 6009
14f9c5c9 6010static int
59c8a30b 6011advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 6012{
73589123 6013 const char *name = *namep;
5b4ee69b 6014
5823c3ef 6015 while (1)
14f9c5c9 6016 {
59c8a30b 6017 char t0, t1;
73589123
PH
6018
6019 t0 = *name;
6020 if (t0 == '_')
6021 {
6022 t1 = name[1];
6023 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6024 {
6025 name += 1;
61012eef 6026 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6027 break;
6028 else
6029 name += 1;
6030 }
aa27d0b3
JB
6031 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6032 || name[2] == target0))
73589123
PH
6033 {
6034 name += 2;
6035 break;
6036 }
6037 else
6038 return 0;
6039 }
6040 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6041 name += 1;
6042 else
5823c3ef 6043 return 0;
73589123
PH
6044 }
6045
6046 *namep = name;
6047 return 1;
6048}
6049
b5ec771e
PA
6050/* Return true iff NAME encodes a name of the form prefix.PATN.
6051 Ignores any informational suffixes of NAME (i.e., for which
6052 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6053 simple name. */
73589123 6054
b5ec771e 6055static bool
73589123
PH
6056wild_match (const char *name, const char *patn)
6057{
22e048c9 6058 const char *p;
73589123
PH
6059 const char *name0 = name;
6060
6061 while (1)
6062 {
6063 const char *match = name;
6064
6065 if (*name == *patn)
6066 {
6067 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6068 if (*p != *name)
6069 break;
6070 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6071 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6072
6073 if (name[-1] == '_')
6074 name -= 1;
6075 }
6076 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6077 return false;
96d887e8 6078 }
96d887e8
PH
6079}
6080
b5ec771e
PA
6081/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6082 any trailing suffixes that encode debugging information or leading
6083 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6084 information that is ignored). */
40658b94 6085
b5ec771e 6086static bool
c4d840bd
PH
6087full_match (const char *sym_name, const char *search_name)
6088{
b5ec771e
PA
6089 size_t search_name_len = strlen (search_name);
6090
6091 if (strncmp (sym_name, search_name, search_name_len) == 0
6092 && is_name_suffix (sym_name + search_name_len))
6093 return true;
6094
6095 if (startswith (sym_name, "_ada_")
6096 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6097 && is_name_suffix (sym_name + search_name_len + 5))
6098 return true;
c4d840bd 6099
b5ec771e
PA
6100 return false;
6101}
c4d840bd 6102
b5ec771e
PA
6103/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6104 *defn_symbols, updating the list of symbols in OBSTACKP (if
6105 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6106
6107static void
6108ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6109 const struct block *block,
6110 const lookup_name_info &lookup_name,
6111 domain_enum domain, struct objfile *objfile)
96d887e8 6112{
8157b174 6113 struct block_iterator iter;
96d887e8
PH
6114 /* A matching argument symbol, if any. */
6115 struct symbol *arg_sym;
6116 /* Set true when we find a matching non-argument symbol. */
6117 int found_sym;
6118 struct symbol *sym;
6119
6120 arg_sym = NULL;
6121 found_sym = 0;
b5ec771e
PA
6122 for (sym = block_iter_match_first (block, lookup_name, &iter);
6123 sym != NULL;
6124 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6125 {
c1b5c1eb 6126 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6127 {
6128 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6129 {
6130 if (SYMBOL_IS_ARGUMENT (sym))
6131 arg_sym = sym;
6132 else
6133 {
6134 found_sym = 1;
6135 add_defn_to_vec (obstackp,
6136 fixup_symbol_section (sym, objfile),
6137 block);
6138 }
6139 }
6140 }
96d887e8
PH
6141 }
6142
22cee43f
PMR
6143 /* Handle renamings. */
6144
b5ec771e 6145 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6146 found_sym = 1;
6147
96d887e8
PH
6148 if (!found_sym && arg_sym != NULL)
6149 {
76a01679 6150 add_defn_to_vec (obstackp,
dda83cd7
SM
6151 fixup_symbol_section (arg_sym, objfile),
6152 block);
96d887e8
PH
6153 }
6154
b5ec771e 6155 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6156 {
6157 arg_sym = NULL;
6158 found_sym = 0;
b5ec771e
PA
6159 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6160 const char *name = ada_lookup_name.c_str ();
6161 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6162
6163 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6164 {
dda83cd7
SM
6165 if (symbol_matches_domain (sym->language (),
6166 SYMBOL_DOMAIN (sym), domain))
6167 {
6168 int cmp;
6169
6170 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6171 if (cmp == 0)
6172 {
6173 cmp = !startswith (sym->linkage_name (), "_ada_");
6174 if (cmp == 0)
6175 cmp = strncmp (name, sym->linkage_name () + 5,
6176 name_len);
6177 }
6178
6179 if (cmp == 0
6180 && is_name_suffix (sym->linkage_name () + name_len + 5))
6181 {
2a2d4dc3
AS
6182 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6183 {
6184 if (SYMBOL_IS_ARGUMENT (sym))
6185 arg_sym = sym;
6186 else
6187 {
6188 found_sym = 1;
6189 add_defn_to_vec (obstackp,
6190 fixup_symbol_section (sym, objfile),
6191 block);
6192 }
6193 }
dda83cd7
SM
6194 }
6195 }
76a01679 6196 }
96d887e8
PH
6197
6198 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6199 They aren't parameters, right? */
96d887e8 6200 if (!found_sym && arg_sym != NULL)
dda83cd7
SM
6201 {
6202 add_defn_to_vec (obstackp,
6203 fixup_symbol_section (arg_sym, objfile),
6204 block);
6205 }
96d887e8
PH
6206 }
6207}
6208\f
41d27058 6209
dda83cd7 6210 /* Symbol Completion */
41d27058 6211
b5ec771e 6212/* See symtab.h. */
41d27058 6213
b5ec771e
PA
6214bool
6215ada_lookup_name_info::matches
6216 (const char *sym_name,
6217 symbol_name_match_type match_type,
a207cff2 6218 completion_match_result *comp_match_res) const
41d27058 6219{
b5ec771e
PA
6220 bool match = false;
6221 const char *text = m_encoded_name.c_str ();
6222 size_t text_len = m_encoded_name.size ();
41d27058
JB
6223
6224 /* First, test against the fully qualified name of the symbol. */
6225
6226 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6227 match = true;
41d27058 6228
f945dedf 6229 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6230 if (match && !m_encoded_p)
41d27058
JB
6231 {
6232 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6233 that iff we are doing a verbatim match, the decoded version
6234 of the symbol name starts with '<'. Otherwise, this symbol name
6235 is not a suitable completion. */
41d27058 6236
f945dedf 6237 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6238 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6239 }
6240
b5ec771e 6241 if (match && !m_verbatim_p)
41d27058
JB
6242 {
6243 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6244 be done is to verify that the potentially matching symbol name
6245 does not include capital letters, because the ada-mode would
6246 not be able to understand these symbol names without the
6247 angle bracket notation. */
41d27058
JB
6248 const char *tmp;
6249
6250 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6251 if (*tmp != '\0')
b5ec771e 6252 match = false;
41d27058
JB
6253 }
6254
6255 /* Second: Try wild matching... */
6256
b5ec771e 6257 if (!match && m_wild_match_p)
41d27058
JB
6258 {
6259 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6260 may represent an unqualified symbol name. We therefore must
6261 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6262 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6263
6264 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6265 match = true;
41d27058
JB
6266 }
6267
b5ec771e 6268 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6269
6270 if (!match)
b5ec771e 6271 return false;
41d27058 6272
a207cff2 6273 if (comp_match_res != NULL)
b5ec771e 6274 {
a207cff2 6275 std::string &match_str = comp_match_res->match.storage ();
41d27058 6276
b5ec771e 6277 if (!m_encoded_p)
a207cff2 6278 match_str = ada_decode (sym_name);
b5ec771e
PA
6279 else
6280 {
6281 if (m_verbatim_p)
6282 match_str = add_angle_brackets (sym_name);
6283 else
6284 match_str = sym_name;
41d27058 6285
b5ec771e 6286 }
a207cff2
PA
6287
6288 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6289 }
6290
b5ec771e 6291 return true;
41d27058
JB
6292}
6293
dda83cd7 6294 /* Field Access */
96d887e8 6295
73fb9985
JB
6296/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6297 for tagged types. */
6298
6299static int
6300ada_is_dispatch_table_ptr_type (struct type *type)
6301{
0d5cff50 6302 const char *name;
73fb9985 6303
78134374 6304 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6305 return 0;
6306
7d93a1e0 6307 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6308 if (name == NULL)
6309 return 0;
6310
6311 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6312}
6313
ac4a2da4
JG
6314/* Return non-zero if TYPE is an interface tag. */
6315
6316static int
6317ada_is_interface_tag (struct type *type)
6318{
7d93a1e0 6319 const char *name = type->name ();
ac4a2da4
JG
6320
6321 if (name == NULL)
6322 return 0;
6323
6324 return (strcmp (name, "ada__tags__interface_tag") == 0);
6325}
6326
963a6417
PH
6327/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6328 to be invisible to users. */
96d887e8 6329
963a6417
PH
6330int
6331ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6332{
1f704f76 6333 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6334 return 1;
ffde82bf 6335
73fb9985
JB
6336 /* Check the name of that field. */
6337 {
6338 const char *name = TYPE_FIELD_NAME (type, field_num);
6339
6340 /* Anonymous field names should not be printed.
6341 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6342 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6343 if (name == NULL)
6344 return 1;
6345
ffde82bf
JB
6346 /* Normally, fields whose name start with an underscore ("_")
6347 are fields that have been internally generated by the compiler,
6348 and thus should not be printed. The "_parent" field is special,
6349 however: This is a field internally generated by the compiler
6350 for tagged types, and it contains the components inherited from
6351 the parent type. This field should not be printed as is, but
6352 should not be ignored either. */
61012eef 6353 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6354 return 1;
6355 }
6356
ac4a2da4
JG
6357 /* If this is the dispatch table of a tagged type or an interface tag,
6358 then ignore. */
73fb9985 6359 if (ada_is_tagged_type (type, 1)
940da03e
SM
6360 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6361 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6362 return 1;
6363
6364 /* Not a special field, so it should not be ignored. */
6365 return 0;
963a6417 6366}
96d887e8 6367
963a6417 6368/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6369 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6370
963a6417
PH
6371int
6372ada_is_tagged_type (struct type *type, int refok)
6373{
988f6b3d 6374 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6375}
96d887e8 6376
963a6417 6377/* True iff TYPE represents the type of X'Tag */
96d887e8 6378
963a6417
PH
6379int
6380ada_is_tag_type (struct type *type)
6381{
460efde1
JB
6382 type = ada_check_typedef (type);
6383
78134374 6384 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6385 return 0;
6386 else
96d887e8 6387 {
963a6417 6388 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6389
963a6417 6390 return (name != NULL
dda83cd7 6391 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6392 }
96d887e8
PH
6393}
6394
963a6417 6395/* The type of the tag on VAL. */
76a01679 6396
de93309a 6397static struct type *
963a6417 6398ada_tag_type (struct value *val)
96d887e8 6399{
988f6b3d 6400 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6401}
96d887e8 6402
b50d69b5
JG
6403/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6404 retired at Ada 05). */
6405
6406static int
6407is_ada95_tag (struct value *tag)
6408{
6409 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6410}
6411
963a6417 6412/* The value of the tag on VAL. */
96d887e8 6413
de93309a 6414static struct value *
963a6417
PH
6415ada_value_tag (struct value *val)
6416{
03ee6b2e 6417 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6418}
6419
963a6417
PH
6420/* The value of the tag on the object of type TYPE whose contents are
6421 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6422 ADDRESS. */
96d887e8 6423
963a6417 6424static struct value *
10a2c479 6425value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6426 const gdb_byte *valaddr,
dda83cd7 6427 CORE_ADDR address)
96d887e8 6428{
b5385fc0 6429 int tag_byte_offset;
963a6417 6430 struct type *tag_type;
5b4ee69b 6431
963a6417 6432 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6433 NULL, NULL, NULL))
96d887e8 6434 {
fc1a4b47 6435 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6436 ? NULL
6437 : valaddr + tag_byte_offset);
963a6417 6438 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6439
963a6417 6440 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6441 }
963a6417
PH
6442 return NULL;
6443}
96d887e8 6444
963a6417
PH
6445static struct type *
6446type_from_tag (struct value *tag)
6447{
f5272a3b 6448 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6449
963a6417 6450 if (type_name != NULL)
5c4258f4 6451 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6452 return NULL;
6453}
96d887e8 6454
b50d69b5
JG
6455/* Given a value OBJ of a tagged type, return a value of this
6456 type at the base address of the object. The base address, as
6457 defined in Ada.Tags, it is the address of the primary tag of
6458 the object, and therefore where the field values of its full
6459 view can be fetched. */
6460
6461struct value *
6462ada_tag_value_at_base_address (struct value *obj)
6463{
b50d69b5
JG
6464 struct value *val;
6465 LONGEST offset_to_top = 0;
6466 struct type *ptr_type, *obj_type;
6467 struct value *tag;
6468 CORE_ADDR base_address;
6469
6470 obj_type = value_type (obj);
6471
6472 /* It is the responsability of the caller to deref pointers. */
6473
78134374 6474 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6475 return obj;
6476
6477 tag = ada_value_tag (obj);
6478 if (!tag)
6479 return obj;
6480
6481 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6482
6483 if (is_ada95_tag (tag))
6484 return obj;
6485
08f49010
XR
6486 ptr_type = language_lookup_primitive_type
6487 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6488 ptr_type = lookup_pointer_type (ptr_type);
6489 val = value_cast (ptr_type, tag);
6490 if (!val)
6491 return obj;
6492
6493 /* It is perfectly possible that an exception be raised while
6494 trying to determine the base address, just like for the tag;
6495 see ada_tag_name for more details. We do not print the error
6496 message for the same reason. */
6497
a70b8144 6498 try
b50d69b5
JG
6499 {
6500 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6501 }
6502
230d2906 6503 catch (const gdb_exception_error &e)
492d29ea
PA
6504 {
6505 return obj;
6506 }
b50d69b5
JG
6507
6508 /* If offset is null, nothing to do. */
6509
6510 if (offset_to_top == 0)
6511 return obj;
6512
6513 /* -1 is a special case in Ada.Tags; however, what should be done
6514 is not quite clear from the documentation. So do nothing for
6515 now. */
6516
6517 if (offset_to_top == -1)
6518 return obj;
6519
08f49010
XR
6520 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6521 from the base address. This was however incompatible with
6522 C++ dispatch table: C++ uses a *negative* value to *add*
6523 to the base address. Ada's convention has therefore been
6524 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6525 use the same convention. Here, we support both cases by
6526 checking the sign of OFFSET_TO_TOP. */
6527
6528 if (offset_to_top > 0)
6529 offset_to_top = -offset_to_top;
6530
6531 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6532 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6533
6534 /* Make sure that we have a proper tag at the new address.
6535 Otherwise, offset_to_top is bogus (which can happen when
6536 the object is not initialized yet). */
6537
6538 if (!tag)
6539 return obj;
6540
6541 obj_type = type_from_tag (tag);
6542
6543 if (!obj_type)
6544 return obj;
6545
6546 return value_from_contents_and_address (obj_type, NULL, base_address);
6547}
6548
1b611343
JB
6549/* Return the "ada__tags__type_specific_data" type. */
6550
6551static struct type *
6552ada_get_tsd_type (struct inferior *inf)
963a6417 6553{
1b611343 6554 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6555
1b611343
JB
6556 if (data->tsd_type == 0)
6557 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6558 return data->tsd_type;
6559}
529cad9c 6560
1b611343
JB
6561/* Return the TSD (type-specific data) associated to the given TAG.
6562 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6563
1b611343 6564 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6565
1b611343
JB
6566static struct value *
6567ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6568{
4c4b4cd2 6569 struct value *val;
1b611343 6570 struct type *type;
5b4ee69b 6571
1b611343
JB
6572 /* First option: The TSD is simply stored as a field of our TAG.
6573 Only older versions of GNAT would use this format, but we have
6574 to test it first, because there are no visible markers for
6575 the current approach except the absence of that field. */
529cad9c 6576
1b611343
JB
6577 val = ada_value_struct_elt (tag, "tsd", 1);
6578 if (val)
6579 return val;
e802dbe0 6580
1b611343
JB
6581 /* Try the second representation for the dispatch table (in which
6582 there is no explicit 'tsd' field in the referent of the tag pointer,
6583 and instead the tsd pointer is stored just before the dispatch
6584 table. */
e802dbe0 6585
1b611343
JB
6586 type = ada_get_tsd_type (current_inferior());
6587 if (type == NULL)
6588 return NULL;
6589 type = lookup_pointer_type (lookup_pointer_type (type));
6590 val = value_cast (type, tag);
6591 if (val == NULL)
6592 return NULL;
6593 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6594}
6595
1b611343
JB
6596/* Given the TSD of a tag (type-specific data), return a string
6597 containing the name of the associated type.
6598
f5272a3b 6599 May return NULL if we are unable to determine the tag name. */
1b611343 6600
f5272a3b 6601static gdb::unique_xmalloc_ptr<char>
1b611343 6602ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6603{
529cad9c 6604 char *p;
1b611343 6605 struct value *val;
529cad9c 6606
1b611343 6607 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6608 if (val == NULL)
1b611343 6609 return NULL;
66920317
TT
6610 gdb::unique_xmalloc_ptr<char> buffer
6611 = target_read_string (value_as_address (val), INT_MAX);
6612 if (buffer == nullptr)
f5272a3b
TT
6613 return nullptr;
6614
6615 for (p = buffer.get (); *p != '\0'; ++p)
6616 {
6617 if (isalpha (*p))
6618 *p = tolower (*p);
6619 }
6620
6621 return buffer;
4c4b4cd2
PH
6622}
6623
6624/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6625 a C string.
6626
6627 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6628 determine the name of that tag. */
4c4b4cd2 6629
f5272a3b 6630gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6631ada_tag_name (struct value *tag)
6632{
f5272a3b 6633 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6634
df407dfe 6635 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6636 return NULL;
1b611343
JB
6637
6638 /* It is perfectly possible that an exception be raised while trying
6639 to determine the TAG's name, even under normal circumstances:
6640 The associated variable may be uninitialized or corrupted, for
6641 instance. We do not let any exception propagate past this point.
6642 instead we return NULL.
6643
6644 We also do not print the error message either (which often is very
6645 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6646 the caller print a more meaningful message if necessary. */
a70b8144 6647 try
1b611343
JB
6648 {
6649 struct value *tsd = ada_get_tsd_from_tag (tag);
6650
6651 if (tsd != NULL)
6652 name = ada_tag_name_from_tsd (tsd);
6653 }
230d2906 6654 catch (const gdb_exception_error &e)
492d29ea
PA
6655 {
6656 }
1b611343
JB
6657
6658 return name;
4c4b4cd2
PH
6659}
6660
6661/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6662
d2e4a39e 6663struct type *
ebf56fd3 6664ada_parent_type (struct type *type)
14f9c5c9
AS
6665{
6666 int i;
6667
61ee279c 6668 type = ada_check_typedef (type);
14f9c5c9 6669
78134374 6670 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6671 return NULL;
6672
1f704f76 6673 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6674 if (ada_is_parent_field (type, i))
0c1f74cf 6675 {
dda83cd7 6676 struct type *parent_type = type->field (i).type ();
0c1f74cf 6677
dda83cd7
SM
6678 /* If the _parent field is a pointer, then dereference it. */
6679 if (parent_type->code () == TYPE_CODE_PTR)
6680 parent_type = TYPE_TARGET_TYPE (parent_type);
6681 /* If there is a parallel XVS type, get the actual base type. */
6682 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6683
dda83cd7 6684 return ada_check_typedef (parent_type);
0c1f74cf 6685 }
14f9c5c9
AS
6686
6687 return NULL;
6688}
6689
4c4b4cd2
PH
6690/* True iff field number FIELD_NUM of structure type TYPE contains the
6691 parent-type (inherited) fields of a derived type. Assumes TYPE is
6692 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6693
6694int
ebf56fd3 6695ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6696{
61ee279c 6697 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6698
4c4b4cd2 6699 return (name != NULL
dda83cd7
SM
6700 && (startswith (name, "PARENT")
6701 || startswith (name, "_parent")));
14f9c5c9
AS
6702}
6703
4c4b4cd2 6704/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6705 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6706 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6707 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6708 structures. */
14f9c5c9
AS
6709
6710int
ebf56fd3 6711ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6712{
d2e4a39e 6713 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6714
dddc0e16
JB
6715 if (name != NULL && strcmp (name, "RETVAL") == 0)
6716 {
6717 /* This happens in functions with "out" or "in out" parameters
6718 which are passed by copy. For such functions, GNAT describes
6719 the function's return type as being a struct where the return
6720 value is in a field called RETVAL, and where the other "out"
6721 or "in out" parameters are fields of that struct. This is not
6722 a wrapper. */
6723 return 0;
6724 }
6725
d2e4a39e 6726 return (name != NULL
dda83cd7
SM
6727 && (startswith (name, "PARENT")
6728 || strcmp (name, "REP") == 0
6729 || startswith (name, "_parent")
6730 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6731}
6732
4c4b4cd2
PH
6733/* True iff field number FIELD_NUM of structure or union type TYPE
6734 is a variant wrapper. Assumes TYPE is a structure type with at least
6735 FIELD_NUM+1 fields. */
14f9c5c9
AS
6736
6737int
ebf56fd3 6738ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6739{
8ecb59f8
TT
6740 /* Only Ada types are eligible. */
6741 if (!ADA_TYPE_P (type))
6742 return 0;
6743
940da03e 6744 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6745
78134374
SM
6746 return (field_type->code () == TYPE_CODE_UNION
6747 || (is_dynamic_field (type, field_num)
6748 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6749 == TYPE_CODE_UNION)));
14f9c5c9
AS
6750}
6751
6752/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6753 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6754 returns the type of the controlling discriminant for the variant.
6755 May return NULL if the type could not be found. */
14f9c5c9 6756
d2e4a39e 6757struct type *
ebf56fd3 6758ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6759{
a121b7c1 6760 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6761
988f6b3d 6762 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6763}
6764
4c4b4cd2 6765/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6766 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6767 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6768
de93309a 6769static int
ebf56fd3 6770ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6771{
d2e4a39e 6772 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6773
14f9c5c9
AS
6774 return (name != NULL && name[0] == 'O');
6775}
6776
6777/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6778 returns the name of the discriminant controlling the variant.
6779 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6780
a121b7c1 6781const char *
ebf56fd3 6782ada_variant_discrim_name (struct type *type0)
14f9c5c9 6783{
d2e4a39e 6784 static char *result = NULL;
14f9c5c9 6785 static size_t result_len = 0;
d2e4a39e
AS
6786 struct type *type;
6787 const char *name;
6788 const char *discrim_end;
6789 const char *discrim_start;
14f9c5c9 6790
78134374 6791 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6792 type = TYPE_TARGET_TYPE (type0);
6793 else
6794 type = type0;
6795
6796 name = ada_type_name (type);
6797
6798 if (name == NULL || name[0] == '\000')
6799 return "";
6800
6801 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6802 discrim_end -= 1)
6803 {
61012eef 6804 if (startswith (discrim_end, "___XVN"))
dda83cd7 6805 break;
14f9c5c9
AS
6806 }
6807 if (discrim_end == name)
6808 return "";
6809
d2e4a39e 6810 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6811 discrim_start -= 1)
6812 {
d2e4a39e 6813 if (discrim_start == name + 1)
dda83cd7 6814 return "";
76a01679 6815 if ((discrim_start > name + 3
dda83cd7
SM
6816 && startswith (discrim_start - 3, "___"))
6817 || discrim_start[-1] == '.')
6818 break;
14f9c5c9
AS
6819 }
6820
6821 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6822 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6823 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6824 return result;
6825}
6826
4c4b4cd2
PH
6827/* Scan STR for a subtype-encoded number, beginning at position K.
6828 Put the position of the character just past the number scanned in
6829 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6830 Return 1 if there was a valid number at the given position, and 0
6831 otherwise. A "subtype-encoded" number consists of the absolute value
6832 in decimal, followed by the letter 'm' to indicate a negative number.
6833 Assumes 0m does not occur. */
14f9c5c9
AS
6834
6835int
d2e4a39e 6836ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6837{
6838 ULONGEST RU;
6839
d2e4a39e 6840 if (!isdigit (str[k]))
14f9c5c9
AS
6841 return 0;
6842
4c4b4cd2 6843 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6844 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6845 LONGEST. */
14f9c5c9
AS
6846 RU = 0;
6847 while (isdigit (str[k]))
6848 {
d2e4a39e 6849 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6850 k += 1;
6851 }
6852
d2e4a39e 6853 if (str[k] == 'm')
14f9c5c9
AS
6854 {
6855 if (R != NULL)
dda83cd7 6856 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6857 k += 1;
6858 }
6859 else if (R != NULL)
6860 *R = (LONGEST) RU;
6861
4c4b4cd2 6862 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6863 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6864 number representable as a LONGEST (although either would probably work
6865 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6866 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6867
6868 if (new_k != NULL)
6869 *new_k = k;
6870 return 1;
6871}
6872
4c4b4cd2
PH
6873/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6874 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6875 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6876
de93309a 6877static int
ebf56fd3 6878ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6879{
d2e4a39e 6880 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6881 int p;
6882
6883 p = 0;
6884 while (1)
6885 {
d2e4a39e 6886 switch (name[p])
dda83cd7
SM
6887 {
6888 case '\0':
6889 return 0;
6890 case 'S':
6891 {
6892 LONGEST W;
6893
6894 if (!ada_scan_number (name, p + 1, &W, &p))
6895 return 0;
6896 if (val == W)
6897 return 1;
6898 break;
6899 }
6900 case 'R':
6901 {
6902 LONGEST L, U;
6903
6904 if (!ada_scan_number (name, p + 1, &L, &p)
6905 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6906 return 0;
6907 if (val >= L && val <= U)
6908 return 1;
6909 break;
6910 }
6911 case 'O':
6912 return 1;
6913 default:
6914 return 0;
6915 }
4c4b4cd2
PH
6916 }
6917}
6918
0963b4bd 6919/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6920
6921/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6922 ARG_TYPE, extract and return the value of one of its (non-static)
6923 fields. FIELDNO says which field. Differs from value_primitive_field
6924 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6925
5eb68a39 6926struct value *
d2e4a39e 6927ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6928 struct type *arg_type)
14f9c5c9 6929{
14f9c5c9
AS
6930 struct type *type;
6931
61ee279c 6932 arg_type = ada_check_typedef (arg_type);
940da03e 6933 type = arg_type->field (fieldno).type ();
14f9c5c9 6934
4504bbde
TT
6935 /* Handle packed fields. It might be that the field is not packed
6936 relative to its containing structure, but the structure itself is
6937 packed; in this case we must take the bit-field path. */
6938 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6939 {
6940 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6941 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6942
0fd88904 6943 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6944 offset + bit_pos / 8,
6945 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6946 }
6947 else
6948 return value_primitive_field (arg1, offset, fieldno, arg_type);
6949}
6950
52ce6436
PH
6951/* Find field with name NAME in object of type TYPE. If found,
6952 set the following for each argument that is non-null:
6953 - *FIELD_TYPE_P to the field's type;
6954 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6955 an object of that type;
6956 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6957 - *BIT_SIZE_P to its size in bits if the field is packed, and
6958 0 otherwise;
6959 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6960 fields up to but not including the desired field, or by the total
6961 number of fields if not found. A NULL value of NAME never
6962 matches; the function just counts visible fields in this case.
6963
828d5846
XR
6964 Notice that we need to handle when a tagged record hierarchy
6965 has some components with the same name, like in this scenario:
6966
6967 type Top_T is tagged record
dda83cd7
SM
6968 N : Integer := 1;
6969 U : Integer := 974;
6970 A : Integer := 48;
828d5846
XR
6971 end record;
6972
6973 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6974 N : Character := 'a';
6975 C : Integer := 3;
828d5846
XR
6976 end record;
6977
6978 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6979 N : Float := 4.0;
6980 C : Character := '5';
6981 X : Integer := 6;
6982 A : Character := 'J';
828d5846
XR
6983 end record;
6984
6985 Let's say we now have a variable declared and initialized as follow:
6986
6987 TC : Top_A := new Bottom_T;
6988
6989 And then we use this variable to call this function
6990
6991 procedure Assign (Obj: in out Top_T; TV : Integer);
6992
6993 as follow:
6994
6995 Assign (Top_T (B), 12);
6996
6997 Now, we're in the debugger, and we're inside that procedure
6998 then and we want to print the value of obj.c:
6999
7000 Usually, the tagged record or one of the parent type owns the
7001 component to print and there's no issue but in this particular
7002 case, what does it mean to ask for Obj.C? Since the actual
7003 type for object is type Bottom_T, it could mean two things: type
7004 component C from the Middle_T view, but also component C from
7005 Bottom_T. So in that "undefined" case, when the component is
7006 not found in the non-resolved type (which includes all the
7007 components of the parent type), then resolve it and see if we
7008 get better luck once expanded.
7009
7010 In the case of homonyms in the derived tagged type, we don't
7011 guaranty anything, and pick the one that's easiest for us
7012 to program.
7013
0963b4bd 7014 Returns 1 if found, 0 otherwise. */
52ce6436 7015
4c4b4cd2 7016static int
0d5cff50 7017find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7018 struct type **field_type_p,
7019 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7020 int *index_p)
4c4b4cd2
PH
7021{
7022 int i;
828d5846 7023 int parent_offset = -1;
4c4b4cd2 7024
61ee279c 7025 type = ada_check_typedef (type);
76a01679 7026
52ce6436
PH
7027 if (field_type_p != NULL)
7028 *field_type_p = NULL;
7029 if (byte_offset_p != NULL)
d5d6fca5 7030 *byte_offset_p = 0;
52ce6436
PH
7031 if (bit_offset_p != NULL)
7032 *bit_offset_p = 0;
7033 if (bit_size_p != NULL)
7034 *bit_size_p = 0;
7035
1f704f76 7036 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7037 {
7038 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7039 int fld_offset = offset + bit_pos / 8;
0d5cff50 7040 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7041
4c4b4cd2 7042 if (t_field_name == NULL)
dda83cd7 7043 continue;
4c4b4cd2 7044
828d5846 7045 else if (ada_is_parent_field (type, i))
dda83cd7 7046 {
828d5846
XR
7047 /* This is a field pointing us to the parent type of a tagged
7048 type. As hinted in this function's documentation, we give
7049 preference to fields in the current record first, so what
7050 we do here is just record the index of this field before
7051 we skip it. If it turns out we couldn't find our field
7052 in the current record, then we'll get back to it and search
7053 inside it whether the field might exist in the parent. */
7054
dda83cd7
SM
7055 parent_offset = i;
7056 continue;
7057 }
828d5846 7058
52ce6436 7059 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7060 {
7061 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7062
52ce6436 7063 if (field_type_p != NULL)
940da03e 7064 *field_type_p = type->field (i).type ();
52ce6436
PH
7065 if (byte_offset_p != NULL)
7066 *byte_offset_p = fld_offset;
7067 if (bit_offset_p != NULL)
7068 *bit_offset_p = bit_pos % 8;
7069 if (bit_size_p != NULL)
7070 *bit_size_p = bit_size;
dda83cd7
SM
7071 return 1;
7072 }
4c4b4cd2 7073 else if (ada_is_wrapper_field (type, i))
dda83cd7 7074 {
940da03e 7075 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7076 field_type_p, byte_offset_p, bit_offset_p,
7077 bit_size_p, index_p))
dda83cd7
SM
7078 return 1;
7079 }
4c4b4cd2 7080 else if (ada_is_variant_part (type, i))
dda83cd7 7081 {
52ce6436
PH
7082 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7083 fixed type?? */
dda83cd7
SM
7084 int j;
7085 struct type *field_type
940da03e 7086 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7087
dda83cd7
SM
7088 for (j = 0; j < field_type->num_fields (); j += 1)
7089 {
7090 if (find_struct_field (name, field_type->field (j).type (),
7091 fld_offset
7092 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7093 field_type_p, byte_offset_p,
7094 bit_offset_p, bit_size_p, index_p))
7095 return 1;
7096 }
7097 }
52ce6436
PH
7098 else if (index_p != NULL)
7099 *index_p += 1;
4c4b4cd2 7100 }
828d5846
XR
7101
7102 /* Field not found so far. If this is a tagged type which
7103 has a parent, try finding that field in the parent now. */
7104
7105 if (parent_offset != -1)
7106 {
7107 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7108 int fld_offset = offset + bit_pos / 8;
7109
940da03e 7110 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7111 fld_offset, field_type_p, byte_offset_p,
7112 bit_offset_p, bit_size_p, index_p))
7113 return 1;
828d5846
XR
7114 }
7115
4c4b4cd2
PH
7116 return 0;
7117}
7118
0963b4bd 7119/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7120
52ce6436
PH
7121static int
7122num_visible_fields (struct type *type)
7123{
7124 int n;
5b4ee69b 7125
52ce6436
PH
7126 n = 0;
7127 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7128 return n;
7129}
14f9c5c9 7130
4c4b4cd2 7131/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7132 and search in it assuming it has (class) type TYPE.
7133 If found, return value, else return NULL.
7134
828d5846
XR
7135 Searches recursively through wrapper fields (e.g., '_parent').
7136
7137 In the case of homonyms in the tagged types, please refer to the
7138 long explanation in find_struct_field's function documentation. */
14f9c5c9 7139
4c4b4cd2 7140static struct value *
108d56a4 7141ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7142 struct type *type)
14f9c5c9
AS
7143{
7144 int i;
828d5846 7145 int parent_offset = -1;
14f9c5c9 7146
5b4ee69b 7147 type = ada_check_typedef (type);
1f704f76 7148 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7149 {
0d5cff50 7150 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7151
7152 if (t_field_name == NULL)
dda83cd7 7153 continue;
14f9c5c9 7154
828d5846 7155 else if (ada_is_parent_field (type, i))
dda83cd7 7156 {
828d5846
XR
7157 /* This is a field pointing us to the parent type of a tagged
7158 type. As hinted in this function's documentation, we give
7159 preference to fields in the current record first, so what
7160 we do here is just record the index of this field before
7161 we skip it. If it turns out we couldn't find our field
7162 in the current record, then we'll get back to it and search
7163 inside it whether the field might exist in the parent. */
7164
dda83cd7
SM
7165 parent_offset = i;
7166 continue;
7167 }
828d5846 7168
14f9c5c9 7169 else if (field_name_match (t_field_name, name))
dda83cd7 7170 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7171
7172 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7173 {
7174 struct value *v = /* Do not let indent join lines here. */
7175 ada_search_struct_field (name, arg,
7176 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7177 type->field (i).type ());
5b4ee69b 7178
dda83cd7
SM
7179 if (v != NULL)
7180 return v;
7181 }
14f9c5c9
AS
7182
7183 else if (ada_is_variant_part (type, i))
dda83cd7 7184 {
0963b4bd 7185 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7186 int j;
7187 struct type *field_type = ada_check_typedef (type->field (i).type ());
7188 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 7189
dda83cd7
SM
7190 for (j = 0; j < field_type->num_fields (); j += 1)
7191 {
7192 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7193 break. */
dda83cd7
SM
7194 (name, arg,
7195 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7196 field_type->field (j).type ());
5b4ee69b 7197
dda83cd7
SM
7198 if (v != NULL)
7199 return v;
7200 }
7201 }
14f9c5c9 7202 }
828d5846
XR
7203
7204 /* Field not found so far. If this is a tagged type which
7205 has a parent, try finding that field in the parent now. */
7206
7207 if (parent_offset != -1)
7208 {
7209 struct value *v = ada_search_struct_field (
7210 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7211 type->field (parent_offset).type ());
828d5846
XR
7212
7213 if (v != NULL)
dda83cd7 7214 return v;
828d5846
XR
7215 }
7216
14f9c5c9
AS
7217 return NULL;
7218}
d2e4a39e 7219
52ce6436
PH
7220static struct value *ada_index_struct_field_1 (int *, struct value *,
7221 int, struct type *);
7222
7223
7224/* Return field #INDEX in ARG, where the index is that returned by
7225 * find_struct_field through its INDEX_P argument. Adjust the address
7226 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7227 * If found, return value, else return NULL. */
52ce6436
PH
7228
7229static struct value *
7230ada_index_struct_field (int index, struct value *arg, int offset,
7231 struct type *type)
7232{
7233 return ada_index_struct_field_1 (&index, arg, offset, type);
7234}
7235
7236
7237/* Auxiliary function for ada_index_struct_field. Like
7238 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7239 * *INDEX_P. */
52ce6436
PH
7240
7241static struct value *
7242ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7243 struct type *type)
7244{
7245 int i;
7246 type = ada_check_typedef (type);
7247
1f704f76 7248 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7249 {
7250 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 7251 continue;
52ce6436 7252 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7253 {
7254 struct value *v = /* Do not let indent join lines here. */
7255 ada_index_struct_field_1 (index_p, arg,
52ce6436 7256 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7257 type->field (i).type ());
5b4ee69b 7258
dda83cd7
SM
7259 if (v != NULL)
7260 return v;
7261 }
52ce6436
PH
7262
7263 else if (ada_is_variant_part (type, i))
dda83cd7 7264 {
52ce6436 7265 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7266 find_struct_field. */
52ce6436 7267 error (_("Cannot assign this kind of variant record"));
dda83cd7 7268 }
52ce6436 7269 else if (*index_p == 0)
dda83cd7 7270 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7271 else
7272 *index_p -= 1;
7273 }
7274 return NULL;
7275}
7276
3b4de39c 7277/* Return a string representation of type TYPE. */
99bbb428 7278
3b4de39c 7279static std::string
99bbb428
PA
7280type_as_string (struct type *type)
7281{
d7e74731 7282 string_file tmp_stream;
99bbb428 7283
d7e74731 7284 type_print (type, "", &tmp_stream, -1);
99bbb428 7285
d7e74731 7286 return std::move (tmp_stream.string ());
99bbb428
PA
7287}
7288
14f9c5c9 7289/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7290 If DISPP is non-null, add its byte displacement from the beginning of a
7291 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7292 work for packed fields).
7293
7294 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7295 followed by "___".
14f9c5c9 7296
0963b4bd 7297 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7298 be a (pointer or reference)+ to a struct or union, and the
7299 ultimate target type will be searched.
14f9c5c9
AS
7300
7301 Looks recursively into variant clauses and parent types.
7302
828d5846
XR
7303 In the case of homonyms in the tagged types, please refer to the
7304 long explanation in find_struct_field's function documentation.
7305
4c4b4cd2
PH
7306 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7307 TYPE is not a type of the right kind. */
14f9c5c9 7308
4c4b4cd2 7309static struct type *
a121b7c1 7310ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7311 int noerr)
14f9c5c9
AS
7312{
7313 int i;
828d5846 7314 int parent_offset = -1;
14f9c5c9
AS
7315
7316 if (name == NULL)
7317 goto BadName;
7318
76a01679 7319 if (refok && type != NULL)
4c4b4cd2
PH
7320 while (1)
7321 {
dda83cd7
SM
7322 type = ada_check_typedef (type);
7323 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7324 break;
7325 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7326 }
14f9c5c9 7327
76a01679 7328 if (type == NULL
78134374
SM
7329 || (type->code () != TYPE_CODE_STRUCT
7330 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7331 {
4c4b4cd2 7332 if (noerr)
dda83cd7 7333 return NULL;
99bbb428 7334
3b4de39c
PA
7335 error (_("Type %s is not a structure or union type"),
7336 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7337 }
7338
7339 type = to_static_fixed_type (type);
7340
1f704f76 7341 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7342 {
0d5cff50 7343 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7344 struct type *t;
d2e4a39e 7345
14f9c5c9 7346 if (t_field_name == NULL)
dda83cd7 7347 continue;
14f9c5c9 7348
828d5846 7349 else if (ada_is_parent_field (type, i))
dda83cd7 7350 {
828d5846
XR
7351 /* This is a field pointing us to the parent type of a tagged
7352 type. As hinted in this function's documentation, we give
7353 preference to fields in the current record first, so what
7354 we do here is just record the index of this field before
7355 we skip it. If it turns out we couldn't find our field
7356 in the current record, then we'll get back to it and search
7357 inside it whether the field might exist in the parent. */
7358
dda83cd7
SM
7359 parent_offset = i;
7360 continue;
7361 }
828d5846 7362
14f9c5c9 7363 else if (field_name_match (t_field_name, name))
940da03e 7364 return type->field (i).type ();
14f9c5c9
AS
7365
7366 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7367 {
7368 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7369 0, 1);
7370 if (t != NULL)
988f6b3d 7371 return t;
dda83cd7 7372 }
14f9c5c9
AS
7373
7374 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7375 {
7376 int j;
7377 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7378
dda83cd7
SM
7379 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7380 {
b1f33ddd 7381 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7382 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7383 generates these for unchecked variant types. Revisit
dda83cd7 7384 if the compiler changes this practice. */
0d5cff50 7385 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7386
b1f33ddd
JB
7387 if (v_field_name != NULL
7388 && field_name_match (v_field_name, name))
940da03e 7389 t = field_type->field (j).type ();
b1f33ddd 7390 else
940da03e 7391 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7392 name, 0, 1);
b1f33ddd 7393
dda83cd7 7394 if (t != NULL)
988f6b3d 7395 return t;
dda83cd7
SM
7396 }
7397 }
14f9c5c9
AS
7398
7399 }
7400
828d5846
XR
7401 /* Field not found so far. If this is a tagged type which
7402 has a parent, try finding that field in the parent now. */
7403
7404 if (parent_offset != -1)
7405 {
dda83cd7 7406 struct type *t;
828d5846 7407
dda83cd7
SM
7408 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7409 name, 0, 1);
7410 if (t != NULL)
828d5846
XR
7411 return t;
7412 }
7413
14f9c5c9 7414BadName:
d2e4a39e 7415 if (!noerr)
14f9c5c9 7416 {
2b2798cc 7417 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7418
7419 error (_("Type %s has no component named %s"),
3b4de39c 7420 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7421 }
7422
7423 return NULL;
7424}
7425
b1f33ddd
JB
7426/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7427 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7428 represents an unchecked union (that is, the variant part of a
0963b4bd 7429 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7430
7431static int
7432is_unchecked_variant (struct type *var_type, struct type *outer_type)
7433{
a121b7c1 7434 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7435
988f6b3d 7436 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7437}
7438
7439
14f9c5c9 7440/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7441 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7442 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7443
d2e4a39e 7444int
d8af9068 7445ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7446{
7447 int others_clause;
7448 int i;
a121b7c1 7449 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7450 struct value *discrim;
14f9c5c9
AS
7451 LONGEST discrim_val;
7452
012370f6
TT
7453 /* Using plain value_from_contents_and_address here causes problems
7454 because we will end up trying to resolve a type that is currently
7455 being constructed. */
0c281816
JB
7456 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7457 if (discrim == NULL)
14f9c5c9 7458 return -1;
0c281816 7459 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7460
7461 others_clause = -1;
1f704f76 7462 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7463 {
7464 if (ada_is_others_clause (var_type, i))
dda83cd7 7465 others_clause = i;
14f9c5c9 7466 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7467 return i;
14f9c5c9
AS
7468 }
7469
7470 return others_clause;
7471}
d2e4a39e 7472\f
14f9c5c9
AS
7473
7474
dda83cd7 7475 /* Dynamic-Sized Records */
14f9c5c9
AS
7476
7477/* Strategy: The type ostensibly attached to a value with dynamic size
7478 (i.e., a size that is not statically recorded in the debugging
7479 data) does not accurately reflect the size or layout of the value.
7480 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7481 conventional types that are constructed on the fly. */
14f9c5c9
AS
7482
7483/* There is a subtle and tricky problem here. In general, we cannot
7484 determine the size of dynamic records without its data. However,
7485 the 'struct value' data structure, which GDB uses to represent
7486 quantities in the inferior process (the target), requires the size
7487 of the type at the time of its allocation in order to reserve space
7488 for GDB's internal copy of the data. That's why the
7489 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7490 rather than struct value*s.
14f9c5c9
AS
7491
7492 However, GDB's internal history variables ($1, $2, etc.) are
7493 struct value*s containing internal copies of the data that are not, in
7494 general, the same as the data at their corresponding addresses in
7495 the target. Fortunately, the types we give to these values are all
7496 conventional, fixed-size types (as per the strategy described
7497 above), so that we don't usually have to perform the
7498 'to_fixed_xxx_type' conversions to look at their values.
7499 Unfortunately, there is one exception: if one of the internal
7500 history variables is an array whose elements are unconstrained
7501 records, then we will need to create distinct fixed types for each
7502 element selected. */
7503
7504/* The upshot of all of this is that many routines take a (type, host
7505 address, target address) triple as arguments to represent a value.
7506 The host address, if non-null, is supposed to contain an internal
7507 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7508 target at the target address. */
14f9c5c9
AS
7509
7510/* Assuming that VAL0 represents a pointer value, the result of
7511 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7512 dynamic-sized types. */
14f9c5c9 7513
d2e4a39e
AS
7514struct value *
7515ada_value_ind (struct value *val0)
14f9c5c9 7516{
c48db5ca 7517 struct value *val = value_ind (val0);
5b4ee69b 7518
b50d69b5
JG
7519 if (ada_is_tagged_type (value_type (val), 0))
7520 val = ada_tag_value_at_base_address (val);
7521
4c4b4cd2 7522 return ada_to_fixed_value (val);
14f9c5c9
AS
7523}
7524
7525/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7526 qualifiers on VAL0. */
7527
d2e4a39e
AS
7528static struct value *
7529ada_coerce_ref (struct value *val0)
7530{
78134374 7531 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7532 {
7533 struct value *val = val0;
5b4ee69b 7534
994b9211 7535 val = coerce_ref (val);
b50d69b5
JG
7536
7537 if (ada_is_tagged_type (value_type (val), 0))
7538 val = ada_tag_value_at_base_address (val);
7539
4c4b4cd2 7540 return ada_to_fixed_value (val);
d2e4a39e
AS
7541 }
7542 else
14f9c5c9
AS
7543 return val0;
7544}
7545
4c4b4cd2 7546/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7547
7548static unsigned int
ebf56fd3 7549field_alignment (struct type *type, int f)
14f9c5c9 7550{
d2e4a39e 7551 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7552 int len;
14f9c5c9
AS
7553 int align_offset;
7554
64a1bf19
JB
7555 /* The field name should never be null, unless the debugging information
7556 is somehow malformed. In this case, we assume the field does not
7557 require any alignment. */
7558 if (name == NULL)
7559 return 1;
7560
7561 len = strlen (name);
7562
4c4b4cd2
PH
7563 if (!isdigit (name[len - 1]))
7564 return 1;
14f9c5c9 7565
d2e4a39e 7566 if (isdigit (name[len - 2]))
14f9c5c9
AS
7567 align_offset = len - 2;
7568 else
7569 align_offset = len - 1;
7570
61012eef 7571 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7572 return TARGET_CHAR_BIT;
7573
4c4b4cd2
PH
7574 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7575}
7576
852dff6c 7577/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7578
852dff6c
JB
7579static struct symbol *
7580ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7581{
7582 struct symbol *sym;
7583
7584 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7585 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7586 return sym;
7587
4186eb54
KS
7588 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7589 return sym;
14f9c5c9
AS
7590}
7591
dddfab26
UW
7592/* Find a type named NAME. Ignores ambiguity. This routine will look
7593 solely for types defined by debug info, it will not search the GDB
7594 primitive types. */
4c4b4cd2 7595
852dff6c 7596static struct type *
ebf56fd3 7597ada_find_any_type (const char *name)
14f9c5c9 7598{
852dff6c 7599 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7600
14f9c5c9 7601 if (sym != NULL)
dddfab26 7602 return SYMBOL_TYPE (sym);
14f9c5c9 7603
dddfab26 7604 return NULL;
14f9c5c9
AS
7605}
7606
739593e0
JB
7607/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7608 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7609 symbol, in which case it is returned. Otherwise, this looks for
7610 symbols whose name is that of NAME_SYM suffixed with "___XR".
7611 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7612
c0e70c62
TT
7613static bool
7614ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7615{
987012b8 7616 const char *name = name_sym->linkage_name ();
c0e70c62 7617 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7618}
7619
14f9c5c9 7620/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7621 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7622 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7623 otherwise return 0. */
7624
14f9c5c9 7625int
d2e4a39e 7626ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7627{
7628 if (type1 == NULL)
7629 return 1;
7630 else if (type0 == NULL)
7631 return 0;
78134374 7632 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7633 return 1;
78134374 7634 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7635 return 0;
7d93a1e0 7636 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7637 return 1;
ad82864c 7638 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7639 return 1;
4c4b4cd2 7640 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7641 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7642 return 1;
aeb5907d
JB
7643 else
7644 {
7d93a1e0
SM
7645 const char *type0_name = type0->name ();
7646 const char *type1_name = type1->name ();
aeb5907d
JB
7647
7648 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7649 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7650 return 1;
7651 }
14f9c5c9
AS
7652 return 0;
7653}
7654
e86ca25f
TT
7655/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7656 null. */
4c4b4cd2 7657
0d5cff50 7658const char *
d2e4a39e 7659ada_type_name (struct type *type)
14f9c5c9 7660{
d2e4a39e 7661 if (type == NULL)
14f9c5c9 7662 return NULL;
7d93a1e0 7663 return type->name ();
14f9c5c9
AS
7664}
7665
b4ba55a1
JB
7666/* Search the list of "descriptive" types associated to TYPE for a type
7667 whose name is NAME. */
7668
7669static struct type *
7670find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7671{
931e5bc3 7672 struct type *result, *tmp;
b4ba55a1 7673
c6044dd1
JB
7674 if (ada_ignore_descriptive_types_p)
7675 return NULL;
7676
b4ba55a1
JB
7677 /* If there no descriptive-type info, then there is no parallel type
7678 to be found. */
7679 if (!HAVE_GNAT_AUX_INFO (type))
7680 return NULL;
7681
7682 result = TYPE_DESCRIPTIVE_TYPE (type);
7683 while (result != NULL)
7684 {
0d5cff50 7685 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7686
7687 if (result_name == NULL)
dda83cd7
SM
7688 {
7689 warning (_("unexpected null name on descriptive type"));
7690 return NULL;
7691 }
b4ba55a1
JB
7692
7693 /* If the names match, stop. */
7694 if (strcmp (result_name, name) == 0)
7695 break;
7696
7697 /* Otherwise, look at the next item on the list, if any. */
7698 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7699 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7700 else
7701 tmp = NULL;
7702
7703 /* If not found either, try after having resolved the typedef. */
7704 if (tmp != NULL)
7705 result = tmp;
b4ba55a1 7706 else
931e5bc3 7707 {
f168693b 7708 result = check_typedef (result);
931e5bc3
JG
7709 if (HAVE_GNAT_AUX_INFO (result))
7710 result = TYPE_DESCRIPTIVE_TYPE (result);
7711 else
7712 result = NULL;
7713 }
b4ba55a1
JB
7714 }
7715
7716 /* If we didn't find a match, see whether this is a packed array. With
7717 older compilers, the descriptive type information is either absent or
7718 irrelevant when it comes to packed arrays so the above lookup fails.
7719 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7720 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7721 return ada_find_any_type (name);
7722
7723 return result;
7724}
7725
7726/* Find a parallel type to TYPE with the specified NAME, using the
7727 descriptive type taken from the debugging information, if available,
7728 and otherwise using the (slower) name-based method. */
7729
7730static struct type *
7731ada_find_parallel_type_with_name (struct type *type, const char *name)
7732{
7733 struct type *result = NULL;
7734
7735 if (HAVE_GNAT_AUX_INFO (type))
7736 result = find_parallel_type_by_descriptive_type (type, name);
7737 else
7738 result = ada_find_any_type (name);
7739
7740 return result;
7741}
7742
7743/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7744 SUFFIX to the name of TYPE. */
14f9c5c9 7745
d2e4a39e 7746struct type *
ebf56fd3 7747ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7748{
0d5cff50 7749 char *name;
fe978cb0 7750 const char *type_name = ada_type_name (type);
14f9c5c9 7751 int len;
d2e4a39e 7752
fe978cb0 7753 if (type_name == NULL)
14f9c5c9
AS
7754 return NULL;
7755
fe978cb0 7756 len = strlen (type_name);
14f9c5c9 7757
b4ba55a1 7758 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7759
fe978cb0 7760 strcpy (name, type_name);
14f9c5c9
AS
7761 strcpy (name + len, suffix);
7762
b4ba55a1 7763 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7764}
7765
14f9c5c9 7766/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7767 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7768
d2e4a39e
AS
7769static struct type *
7770dynamic_template_type (struct type *type)
14f9c5c9 7771{
61ee279c 7772 type = ada_check_typedef (type);
14f9c5c9 7773
78134374 7774 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7775 || ada_type_name (type) == NULL)
14f9c5c9 7776 return NULL;
d2e4a39e 7777 else
14f9c5c9
AS
7778 {
7779 int len = strlen (ada_type_name (type));
5b4ee69b 7780
4c4b4cd2 7781 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7782 return type;
14f9c5c9 7783 else
dda83cd7 7784 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7785 }
7786}
7787
7788/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7789 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7790
d2e4a39e
AS
7791static int
7792is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7793{
7794 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7795
d2e4a39e 7796 return name != NULL
940da03e 7797 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7798 && strstr (name, "___XVL") != NULL;
7799}
7800
4c4b4cd2
PH
7801/* The index of the variant field of TYPE, or -1 if TYPE does not
7802 represent a variant record type. */
14f9c5c9 7803
d2e4a39e 7804static int
4c4b4cd2 7805variant_field_index (struct type *type)
14f9c5c9
AS
7806{
7807 int f;
7808
78134374 7809 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7810 return -1;
7811
1f704f76 7812 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7813 {
7814 if (ada_is_variant_part (type, f))
dda83cd7 7815 return f;
4c4b4cd2
PH
7816 }
7817 return -1;
14f9c5c9
AS
7818}
7819
4c4b4cd2
PH
7820/* A record type with no fields. */
7821
d2e4a39e 7822static struct type *
fe978cb0 7823empty_record (struct type *templ)
14f9c5c9 7824{
fe978cb0 7825 struct type *type = alloc_type_copy (templ);
5b4ee69b 7826
67607e24 7827 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7828 INIT_NONE_SPECIFIC (type);
d0e39ea2 7829 type->set_name ("<empty>");
14f9c5c9
AS
7830 TYPE_LENGTH (type) = 0;
7831 return type;
7832}
7833
7834/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7835 the value of type TYPE at VALADDR or ADDRESS (see comments at
7836 the beginning of this section) VAL according to GNAT conventions.
7837 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7838 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7839 an outer-level type (i.e., as opposed to a branch of a variant.) A
7840 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7841 of the variant.
14f9c5c9 7842
4c4b4cd2
PH
7843 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7844 length are not statically known are discarded. As a consequence,
7845 VALADDR, ADDRESS and DVAL0 are ignored.
7846
7847 NOTE: Limitations: For now, we assume that dynamic fields and
7848 variants occupy whole numbers of bytes. However, they need not be
7849 byte-aligned. */
7850
7851struct type *
10a2c479 7852ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7853 const gdb_byte *valaddr,
dda83cd7
SM
7854 CORE_ADDR address, struct value *dval0,
7855 int keep_dynamic_fields)
14f9c5c9 7856{
d2e4a39e
AS
7857 struct value *mark = value_mark ();
7858 struct value *dval;
7859 struct type *rtype;
14f9c5c9 7860 int nfields, bit_len;
4c4b4cd2 7861 int variant_field;
14f9c5c9 7862 long off;
d94e4f4f 7863 int fld_bit_len;
14f9c5c9
AS
7864 int f;
7865
4c4b4cd2
PH
7866 /* Compute the number of fields in this record type that are going
7867 to be processed: unless keep_dynamic_fields, this includes only
7868 fields whose position and length are static will be processed. */
7869 if (keep_dynamic_fields)
1f704f76 7870 nfields = type->num_fields ();
4c4b4cd2
PH
7871 else
7872 {
7873 nfields = 0;
1f704f76 7874 while (nfields < type->num_fields ()
dda83cd7
SM
7875 && !ada_is_variant_part (type, nfields)
7876 && !is_dynamic_field (type, nfields))
7877 nfields++;
4c4b4cd2
PH
7878 }
7879
e9bb382b 7880 rtype = alloc_type_copy (type);
67607e24 7881 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7882 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7883 rtype->set_num_fields (nfields);
3cabb6b0
SM
7884 rtype->set_fields
7885 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7886 rtype->set_name (ada_type_name (type));
9cdd0d12 7887 rtype->set_is_fixed_instance (true);
14f9c5c9 7888
d2e4a39e
AS
7889 off = 0;
7890 bit_len = 0;
4c4b4cd2
PH
7891 variant_field = -1;
7892
14f9c5c9
AS
7893 for (f = 0; f < nfields; f += 1)
7894 {
a89febbd 7895 off = align_up (off, field_alignment (type, f))
6c038f32 7896 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7897 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7898 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7899
d2e4a39e 7900 if (ada_is_variant_part (type, f))
dda83cd7
SM
7901 {
7902 variant_field = f;
7903 fld_bit_len = 0;
7904 }
14f9c5c9 7905 else if (is_dynamic_field (type, f))
dda83cd7 7906 {
284614f0
JB
7907 const gdb_byte *field_valaddr = valaddr;
7908 CORE_ADDR field_address = address;
7909 struct type *field_type =
940da03e 7910 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7911
dda83cd7 7912 if (dval0 == NULL)
b5304971
JG
7913 {
7914 /* rtype's length is computed based on the run-time
7915 value of discriminants. If the discriminants are not
7916 initialized, the type size may be completely bogus and
0963b4bd 7917 GDB may fail to allocate a value for it. So check the
b5304971 7918 size first before creating the value. */
c1b5a1a6 7919 ada_ensure_varsize_limit (rtype);
012370f6
TT
7920 /* Using plain value_from_contents_and_address here
7921 causes problems because we will end up trying to
7922 resolve a type that is currently being
7923 constructed. */
7924 dval = value_from_contents_and_address_unresolved (rtype,
7925 valaddr,
7926 address);
9f1f738a 7927 rtype = value_type (dval);
b5304971 7928 }
dda83cd7
SM
7929 else
7930 dval = dval0;
4c4b4cd2 7931
284614f0
JB
7932 /* If the type referenced by this field is an aligner type, we need
7933 to unwrap that aligner type, because its size might not be set.
7934 Keeping the aligner type would cause us to compute the wrong
7935 size for this field, impacting the offset of the all the fields
7936 that follow this one. */
7937 if (ada_is_aligner_type (field_type))
7938 {
7939 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7940
7941 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7942 field_address = cond_offset_target (field_address, field_offset);
7943 field_type = ada_aligned_type (field_type);
7944 }
7945
7946 field_valaddr = cond_offset_host (field_valaddr,
7947 off / TARGET_CHAR_BIT);
7948 field_address = cond_offset_target (field_address,
7949 off / TARGET_CHAR_BIT);
7950
7951 /* Get the fixed type of the field. Note that, in this case,
7952 we do not want to get the real type out of the tag: if
7953 the current field is the parent part of a tagged record,
7954 we will get the tag of the object. Clearly wrong: the real
7955 type of the parent is not the real type of the child. We
7956 would end up in an infinite loop. */
7957 field_type = ada_get_base_type (field_type);
7958 field_type = ada_to_fixed_type (field_type, field_valaddr,
7959 field_address, dval, 0);
27f2a97b
JB
7960 /* If the field size is already larger than the maximum
7961 object size, then the record itself will necessarily
7962 be larger than the maximum object size. We need to make
7963 this check now, because the size might be so ridiculously
7964 large (due to an uninitialized variable in the inferior)
7965 that it would cause an overflow when adding it to the
7966 record size. */
c1b5a1a6 7967 ada_ensure_varsize_limit (field_type);
284614f0 7968
5d14b6e5 7969 rtype->field (f).set_type (field_type);
dda83cd7 7970 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7971 /* The multiplication can potentially overflow. But because
7972 the field length has been size-checked just above, and
7973 assuming that the maximum size is a reasonable value,
7974 an overflow should not happen in practice. So rather than
7975 adding overflow recovery code to this already complex code,
7976 we just assume that it's not going to happen. */
dda83cd7
SM
7977 fld_bit_len =
7978 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7979 }
14f9c5c9 7980 else
dda83cd7 7981 {
5ded5331
JB
7982 /* Note: If this field's type is a typedef, it is important
7983 to preserve the typedef layer.
7984
7985 Otherwise, we might be transforming a typedef to a fat
7986 pointer (encoding a pointer to an unconstrained array),
7987 into a basic fat pointer (encoding an unconstrained
7988 array). As both types are implemented using the same
7989 structure, the typedef is the only clue which allows us
7990 to distinguish between the two options. Stripping it
7991 would prevent us from printing this field appropriately. */
dda83cd7
SM
7992 rtype->field (f).set_type (type->field (f).type ());
7993 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7994 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7995 fld_bit_len =
7996 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7997 else
5ded5331 7998 {
940da03e 7999 struct type *field_type = type->field (f).type ();
5ded5331
JB
8000
8001 /* We need to be careful of typedefs when computing
8002 the length of our field. If this is a typedef,
8003 get the length of the target type, not the length
8004 of the typedef. */
78134374 8005 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8006 field_type = ada_typedef_target_type (field_type);
8007
dda83cd7
SM
8008 fld_bit_len =
8009 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 8010 }
dda83cd7 8011 }
14f9c5c9 8012 if (off + fld_bit_len > bit_len)
dda83cd7 8013 bit_len = off + fld_bit_len;
d94e4f4f 8014 off += fld_bit_len;
4c4b4cd2 8015 TYPE_LENGTH (rtype) =
dda83cd7 8016 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8017 }
4c4b4cd2
PH
8018
8019 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8020 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8021 the record. This can happen in the presence of representation
8022 clauses. */
8023 if (variant_field >= 0)
8024 {
8025 struct type *branch_type;
8026
8027 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8028
8029 if (dval0 == NULL)
9f1f738a 8030 {
012370f6
TT
8031 /* Using plain value_from_contents_and_address here causes
8032 problems because we will end up trying to resolve a type
8033 that is currently being constructed. */
8034 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8035 address);
9f1f738a
SA
8036 rtype = value_type (dval);
8037 }
4c4b4cd2 8038 else
dda83cd7 8039 dval = dval0;
4c4b4cd2
PH
8040
8041 branch_type =
dda83cd7
SM
8042 to_fixed_variant_branch_type
8043 (type->field (variant_field).type (),
8044 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8045 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8046 if (branch_type == NULL)
dda83cd7
SM
8047 {
8048 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8049 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8050 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8051 }
4c4b4cd2 8052 else
dda83cd7
SM
8053 {
8054 rtype->field (variant_field).set_type (branch_type);
8055 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8056 fld_bit_len =
8057 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8058 TARGET_CHAR_BIT;
8059 if (off + fld_bit_len > bit_len)
8060 bit_len = off + fld_bit_len;
8061 TYPE_LENGTH (rtype) =
8062 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8063 }
4c4b4cd2
PH
8064 }
8065
714e53ab
PH
8066 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8067 should contain the alignment of that record, which should be a strictly
8068 positive value. If null or negative, then something is wrong, most
8069 probably in the debug info. In that case, we don't round up the size
0963b4bd 8070 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8071 the current RTYPE length might be good enough for our purposes. */
8072 if (TYPE_LENGTH (type) <= 0)
8073 {
7d93a1e0 8074 if (rtype->name ())
cc1defb1 8075 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8076 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8077 else
cc1defb1
KS
8078 warning (_("Invalid type size for <unnamed> detected: %s."),
8079 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8080 }
8081 else
8082 {
a89febbd
TT
8083 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8084 TYPE_LENGTH (type));
714e53ab 8085 }
14f9c5c9
AS
8086
8087 value_free_to_mark (mark);
d2e4a39e 8088 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8089 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8090 return rtype;
8091}
8092
4c4b4cd2
PH
8093/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8094 of 1. */
14f9c5c9 8095
d2e4a39e 8096static struct type *
fc1a4b47 8097template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8098 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8099{
8100 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8101 address, dval0, 1);
4c4b4cd2
PH
8102}
8103
8104/* An ordinary record type in which ___XVL-convention fields and
8105 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8106 static approximations, containing all possible fields. Uses
8107 no runtime values. Useless for use in values, but that's OK,
8108 since the results are used only for type determinations. Works on both
8109 structs and unions. Representation note: to save space, we memorize
8110 the result of this function in the TYPE_TARGET_TYPE of the
8111 template type. */
8112
8113static struct type *
8114template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8115{
8116 struct type *type;
8117 int nfields;
8118 int f;
8119
9e195661 8120 /* No need no do anything if the input type is already fixed. */
22c4c60c 8121 if (type0->is_fixed_instance ())
9e195661
PMR
8122 return type0;
8123
8124 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8125 if (TYPE_TARGET_TYPE (type0) != NULL)
8126 return TYPE_TARGET_TYPE (type0);
8127
9e195661 8128 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8129 type = type0;
1f704f76 8130 nfields = type0->num_fields ();
9e195661
PMR
8131
8132 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8133 recompute all over next time. */
8134 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8135
8136 for (f = 0; f < nfields; f += 1)
8137 {
940da03e 8138 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8139 struct type *new_type;
14f9c5c9 8140
4c4b4cd2 8141 if (is_dynamic_field (type0, f))
460efde1
JB
8142 {
8143 field_type = ada_check_typedef (field_type);
dda83cd7 8144 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 8145 }
14f9c5c9 8146 else
dda83cd7 8147 new_type = static_unwrap_type (field_type);
9e195661
PMR
8148
8149 if (new_type != field_type)
8150 {
8151 /* Clone TYPE0 only the first time we get a new field type. */
8152 if (type == type0)
8153 {
8154 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8155 type->set_code (type0->code ());
8ecb59f8 8156 INIT_NONE_SPECIFIC (type);
5e33d5f4 8157 type->set_num_fields (nfields);
3cabb6b0
SM
8158
8159 field *fields =
8160 ((struct field *)
8161 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8162 memcpy (fields, type0->fields (),
9e195661 8163 sizeof (struct field) * nfields);
3cabb6b0
SM
8164 type->set_fields (fields);
8165
d0e39ea2 8166 type->set_name (ada_type_name (type0));
9cdd0d12 8167 type->set_is_fixed_instance (true);
9e195661
PMR
8168 TYPE_LENGTH (type) = 0;
8169 }
5d14b6e5 8170 type->field (f).set_type (new_type);
9e195661
PMR
8171 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8172 }
14f9c5c9 8173 }
9e195661 8174
14f9c5c9
AS
8175 return type;
8176}
8177
4c4b4cd2 8178/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8179 whose address in memory is ADDRESS, returns a revision of TYPE,
8180 which should be a non-dynamic-sized record, in which the variant
8181 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8182 for discriminant values in DVAL0, which can be NULL if the record
8183 contains the necessary discriminant values. */
8184
d2e4a39e 8185static struct type *
fc1a4b47 8186to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8187 CORE_ADDR address, struct value *dval0)
14f9c5c9 8188{
d2e4a39e 8189 struct value *mark = value_mark ();
4c4b4cd2 8190 struct value *dval;
d2e4a39e 8191 struct type *rtype;
14f9c5c9 8192 struct type *branch_type;
1f704f76 8193 int nfields = type->num_fields ();
4c4b4cd2 8194 int variant_field = variant_field_index (type);
14f9c5c9 8195
4c4b4cd2 8196 if (variant_field == -1)
14f9c5c9
AS
8197 return type;
8198
4c4b4cd2 8199 if (dval0 == NULL)
9f1f738a
SA
8200 {
8201 dval = value_from_contents_and_address (type, valaddr, address);
8202 type = value_type (dval);
8203 }
4c4b4cd2
PH
8204 else
8205 dval = dval0;
8206
e9bb382b 8207 rtype = alloc_type_copy (type);
67607e24 8208 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8209 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8210 rtype->set_num_fields (nfields);
3cabb6b0
SM
8211
8212 field *fields =
d2e4a39e 8213 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8214 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8215 rtype->set_fields (fields);
8216
d0e39ea2 8217 rtype->set_name (ada_type_name (type));
9cdd0d12 8218 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
8219 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8220
4c4b4cd2 8221 branch_type = to_fixed_variant_branch_type
940da03e 8222 (type->field (variant_field).type (),
d2e4a39e 8223 cond_offset_host (valaddr,
dda83cd7
SM
8224 TYPE_FIELD_BITPOS (type, variant_field)
8225 / TARGET_CHAR_BIT),
d2e4a39e 8226 cond_offset_target (address,
dda83cd7
SM
8227 TYPE_FIELD_BITPOS (type, variant_field)
8228 / TARGET_CHAR_BIT), dval);
d2e4a39e 8229 if (branch_type == NULL)
14f9c5c9 8230 {
4c4b4cd2 8231 int f;
5b4ee69b 8232
4c4b4cd2 8233 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8234 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8235 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8236 }
8237 else
8238 {
5d14b6e5 8239 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8240 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8241 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8242 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8243 }
940da03e 8244 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8245
4c4b4cd2 8246 value_free_to_mark (mark);
14f9c5c9
AS
8247 return rtype;
8248}
8249
8250/* An ordinary record type (with fixed-length fields) that describes
8251 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8252 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8253 should be in DVAL, a record value; it may be NULL if the object
8254 at ADDR itself contains any necessary discriminant values.
8255 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8256 values from the record are needed. Except in the case that DVAL,
8257 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8258 unchecked) is replaced by a particular branch of the variant.
8259
8260 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8261 is questionable and may be removed. It can arise during the
8262 processing of an unconstrained-array-of-record type where all the
8263 variant branches have exactly the same size. This is because in
8264 such cases, the compiler does not bother to use the XVS convention
8265 when encoding the record. I am currently dubious of this
8266 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8267
d2e4a39e 8268static struct type *
fc1a4b47 8269to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8270 CORE_ADDR address, struct value *dval)
14f9c5c9 8271{
d2e4a39e 8272 struct type *templ_type;
14f9c5c9 8273
22c4c60c 8274 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8275 return type0;
8276
d2e4a39e 8277 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8278
8279 if (templ_type != NULL)
8280 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8281 else if (variant_field_index (type0) >= 0)
8282 {
8283 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8284 return type0;
4c4b4cd2 8285 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8286 dval);
4c4b4cd2 8287 }
14f9c5c9
AS
8288 else
8289 {
9cdd0d12 8290 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8291 return type0;
8292 }
8293
8294}
8295
8296/* An ordinary record type (with fixed-length fields) that describes
8297 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8298 union type. Any necessary discriminants' values should be in DVAL,
8299 a record value. That is, this routine selects the appropriate
8300 branch of the union at ADDR according to the discriminant value
b1f33ddd 8301 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8302 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8303
d2e4a39e 8304static struct type *
fc1a4b47 8305to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8306 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8307{
8308 int which;
d2e4a39e
AS
8309 struct type *templ_type;
8310 struct type *var_type;
14f9c5c9 8311
78134374 8312 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8313 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8314 else
14f9c5c9
AS
8315 var_type = var_type0;
8316
8317 templ_type = ada_find_parallel_type (var_type, "___XVU");
8318
8319 if (templ_type != NULL)
8320 var_type = templ_type;
8321
b1f33ddd
JB
8322 if (is_unchecked_variant (var_type, value_type (dval)))
8323 return var_type0;
d8af9068 8324 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8325
8326 if (which < 0)
e9bb382b 8327 return empty_record (var_type);
14f9c5c9 8328 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8329 return to_fixed_record_type
940da03e 8330 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8331 valaddr, address, dval);
940da03e 8332 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8333 return
8334 to_fixed_record_type
940da03e 8335 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8336 else
940da03e 8337 return var_type->field (which).type ();
14f9c5c9
AS
8338}
8339
8908fca5
JB
8340/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8341 ENCODING_TYPE, a type following the GNAT conventions for discrete
8342 type encodings, only carries redundant information. */
8343
8344static int
8345ada_is_redundant_range_encoding (struct type *range_type,
8346 struct type *encoding_type)
8347{
108d56a4 8348 const char *bounds_str;
8908fca5
JB
8349 int n;
8350 LONGEST lo, hi;
8351
78134374 8352 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8353
78134374
SM
8354 if (get_base_type (range_type)->code ()
8355 != get_base_type (encoding_type)->code ())
005e2509
JB
8356 {
8357 /* The compiler probably used a simple base type to describe
8358 the range type instead of the range's actual base type,
8359 expecting us to get the real base type from the encoding
8360 anyway. In this situation, the encoding cannot be ignored
8361 as redundant. */
8362 return 0;
8363 }
8364
8908fca5
JB
8365 if (is_dynamic_type (range_type))
8366 return 0;
8367
7d93a1e0 8368 if (encoding_type->name () == NULL)
8908fca5
JB
8369 return 0;
8370
7d93a1e0 8371 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8372 if (bounds_str == NULL)
8373 return 0;
8374
8375 n = 8; /* Skip "___XDLU_". */
8376 if (!ada_scan_number (bounds_str, n, &lo, &n))
8377 return 0;
5537ddd0 8378 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8379 return 0;
8380
8381 n += 2; /* Skip the "__" separator between the two bounds. */
8382 if (!ada_scan_number (bounds_str, n, &hi, &n))
8383 return 0;
5537ddd0 8384 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8385 return 0;
8386
8387 return 1;
8388}
8389
8390/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8391 a type following the GNAT encoding for describing array type
8392 indices, only carries redundant information. */
8393
8394static int
8395ada_is_redundant_index_type_desc (struct type *array_type,
8396 struct type *desc_type)
8397{
8398 struct type *this_layer = check_typedef (array_type);
8399 int i;
8400
1f704f76 8401 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8402 {
3d967001 8403 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8404 desc_type->field (i).type ()))
8908fca5
JB
8405 return 0;
8406 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8407 }
8408
8409 return 1;
8410}
8411
14f9c5c9
AS
8412/* Assuming that TYPE0 is an array type describing the type of a value
8413 at ADDR, and that DVAL describes a record containing any
8414 discriminants used in TYPE0, returns a type for the value that
8415 contains no dynamic components (that is, no components whose sizes
8416 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8417 true, gives an error message if the resulting type's size is over
4c4b4cd2 8418 varsize_limit. */
14f9c5c9 8419
d2e4a39e
AS
8420static struct type *
8421to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8422 int ignore_too_big)
14f9c5c9 8423{
d2e4a39e
AS
8424 struct type *index_type_desc;
8425 struct type *result;
ad82864c 8426 int constrained_packed_array_p;
931e5bc3 8427 static const char *xa_suffix = "___XA";
14f9c5c9 8428
b0dd7688 8429 type0 = ada_check_typedef (type0);
22c4c60c 8430 if (type0->is_fixed_instance ())
4c4b4cd2 8431 return type0;
14f9c5c9 8432
ad82864c
JB
8433 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8434 if (constrained_packed_array_p)
75fd6a26
TT
8435 {
8436 type0 = decode_constrained_packed_array_type (type0);
8437 if (type0 == nullptr)
8438 error (_("could not decode constrained packed array type"));
8439 }
284614f0 8440
931e5bc3
JG
8441 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8442
8443 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8444 encoding suffixed with 'P' may still be generated. If so,
8445 it should be used to find the XA type. */
8446
8447 if (index_type_desc == NULL)
8448 {
1da0522e 8449 const char *type_name = ada_type_name (type0);
931e5bc3 8450
1da0522e 8451 if (type_name != NULL)
931e5bc3 8452 {
1da0522e 8453 const int len = strlen (type_name);
931e5bc3
JG
8454 char *name = (char *) alloca (len + strlen (xa_suffix));
8455
1da0522e 8456 if (type_name[len - 1] == 'P')
931e5bc3 8457 {
1da0522e 8458 strcpy (name, type_name);
931e5bc3
JG
8459 strcpy (name + len - 1, xa_suffix);
8460 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8461 }
8462 }
8463 }
8464
28c85d6c 8465 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8466 if (index_type_desc != NULL
8467 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8468 {
8469 /* Ignore this ___XA parallel type, as it does not bring any
8470 useful information. This allows us to avoid creating fixed
8471 versions of the array's index types, which would be identical
8472 to the original ones. This, in turn, can also help avoid
8473 the creation of fixed versions of the array itself. */
8474 index_type_desc = NULL;
8475 }
8476
14f9c5c9
AS
8477 if (index_type_desc == NULL)
8478 {
61ee279c 8479 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8480
14f9c5c9 8481 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8482 depend on the contents of the array in properly constructed
8483 debugging data. */
529cad9c 8484 /* Create a fixed version of the array element type.
dda83cd7
SM
8485 We're not providing the address of an element here,
8486 and thus the actual object value cannot be inspected to do
8487 the conversion. This should not be a problem, since arrays of
8488 unconstrained objects are not allowed. In particular, all
8489 the elements of an array of a tagged type should all be of
8490 the same type specified in the debugging info. No need to
8491 consult the object tag. */
1ed6ede0 8492 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8493
284614f0
JB
8494 /* Make sure we always create a new array type when dealing with
8495 packed array types, since we're going to fix-up the array
8496 type length and element bitsize a little further down. */
ad82864c 8497 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8498 result = type0;
14f9c5c9 8499 else
dda83cd7
SM
8500 result = create_array_type (alloc_type_copy (type0),
8501 elt_type, type0->index_type ());
14f9c5c9
AS
8502 }
8503 else
8504 {
8505 int i;
8506 struct type *elt_type0;
8507
8508 elt_type0 = type0;
1f704f76 8509 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8510 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8511
8512 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8513 depend on the contents of the array in properly constructed
8514 debugging data. */
529cad9c 8515 /* Create a fixed version of the array element type.
dda83cd7
SM
8516 We're not providing the address of an element here,
8517 and thus the actual object value cannot be inspected to do
8518 the conversion. This should not be a problem, since arrays of
8519 unconstrained objects are not allowed. In particular, all
8520 the elements of an array of a tagged type should all be of
8521 the same type specified in the debugging info. No need to
8522 consult the object tag. */
1ed6ede0 8523 result =
dda83cd7 8524 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8525
8526 elt_type0 = type0;
1f704f76 8527 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8528 {
8529 struct type *range_type =
8530 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8531
dda83cd7
SM
8532 result = create_array_type (alloc_type_copy (elt_type0),
8533 result, range_type);
1ce677a4 8534 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8535 }
d2e4a39e 8536 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8537 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8538 }
8539
2e6fda7d
JB
8540 /* We want to preserve the type name. This can be useful when
8541 trying to get the type name of a value that has already been
8542 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8543 result->set_name (type0->name ());
2e6fda7d 8544
ad82864c 8545 if (constrained_packed_array_p)
284614f0
JB
8546 {
8547 /* So far, the resulting type has been created as if the original
8548 type was a regular (non-packed) array type. As a result, the
8549 bitsize of the array elements needs to be set again, and the array
8550 length needs to be recomputed based on that bitsize. */
8551 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8552 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8553
8554 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8555 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8556 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8557 TYPE_LENGTH (result)++;
284614f0
JB
8558 }
8559
9cdd0d12 8560 result->set_is_fixed_instance (true);
14f9c5c9 8561 return result;
d2e4a39e 8562}
14f9c5c9
AS
8563
8564
8565/* A standard type (containing no dynamically sized components)
8566 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8567 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8568 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8569 ADDRESS or in VALADDR contains these discriminants.
8570
1ed6ede0
JB
8571 If CHECK_TAG is not null, in the case of tagged types, this function
8572 attempts to locate the object's tag and use it to compute the actual
8573 type. However, when ADDRESS is null, we cannot use it to determine the
8574 location of the tag, and therefore compute the tagged type's actual type.
8575 So we return the tagged type without consulting the tag. */
529cad9c 8576
f192137b
JB
8577static struct type *
8578ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8579 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8580{
61ee279c 8581 type = ada_check_typedef (type);
8ecb59f8
TT
8582
8583 /* Only un-fixed types need to be handled here. */
8584 if (!HAVE_GNAT_AUX_INFO (type))
8585 return type;
8586
78134374 8587 switch (type->code ())
d2e4a39e
AS
8588 {
8589 default:
14f9c5c9 8590 return type;
d2e4a39e 8591 case TYPE_CODE_STRUCT:
4c4b4cd2 8592 {
dda83cd7
SM
8593 struct type *static_type = to_static_fixed_type (type);
8594 struct type *fixed_record_type =
8595 to_fixed_record_type (type, valaddr, address, NULL);
8596
8597 /* If STATIC_TYPE is a tagged type and we know the object's address,
8598 then we can determine its tag, and compute the object's actual
8599 type from there. Note that we have to use the fixed record
8600 type (the parent part of the record may have dynamic fields
8601 and the way the location of _tag is expressed may depend on
8602 them). */
8603
8604 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8605 {
b50d69b5
JG
8606 struct value *tag =
8607 value_tag_from_contents_and_address
8608 (fixed_record_type,
8609 valaddr,
8610 address);
8611 struct type *real_type = type_from_tag (tag);
8612 struct value *obj =
8613 value_from_contents_and_address (fixed_record_type,
8614 valaddr,
8615 address);
dda83cd7
SM
8616 fixed_record_type = value_type (obj);
8617 if (real_type != NULL)
8618 return to_fixed_record_type
b50d69b5
JG
8619 (real_type, NULL,
8620 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8621 }
8622
8623 /* Check to see if there is a parallel ___XVZ variable.
8624 If there is, then it provides the actual size of our type. */
8625 else if (ada_type_name (fixed_record_type) != NULL)
8626 {
8627 const char *name = ada_type_name (fixed_record_type);
8628 char *xvz_name
224c3ddb 8629 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8630 bool xvz_found = false;
dda83cd7 8631 LONGEST size;
4af88198 8632
dda83cd7 8633 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8634 try
eccab96d
JB
8635 {
8636 xvz_found = get_int_var_value (xvz_name, size);
8637 }
230d2906 8638 catch (const gdb_exception_error &except)
eccab96d
JB
8639 {
8640 /* We found the variable, but somehow failed to read
8641 its value. Rethrow the same error, but with a little
8642 bit more information, to help the user understand
8643 what went wrong (Eg: the variable might have been
8644 optimized out). */
8645 throw_error (except.error,
8646 _("unable to read value of %s (%s)"),
3d6e9d23 8647 xvz_name, except.what ());
eccab96d 8648 }
eccab96d 8649
dda83cd7
SM
8650 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8651 {
8652 fixed_record_type = copy_type (fixed_record_type);
8653 TYPE_LENGTH (fixed_record_type) = size;
8654
8655 /* The FIXED_RECORD_TYPE may have be a stub. We have
8656 observed this when the debugging info is STABS, and
8657 apparently it is something that is hard to fix.
8658
8659 In practice, we don't need the actual type definition
8660 at all, because the presence of the XVZ variable allows us
8661 to assume that there must be a XVS type as well, which we
8662 should be able to use later, when we need the actual type
8663 definition.
8664
8665 In the meantime, pretend that the "fixed" type we are
8666 returning is NOT a stub, because this can cause trouble
8667 when using this type to create new types targeting it.
8668 Indeed, the associated creation routines often check
8669 whether the target type is a stub and will try to replace
8670 it, thus using a type with the wrong size. This, in turn,
8671 might cause the new type to have the wrong size too.
8672 Consider the case of an array, for instance, where the size
8673 of the array is computed from the number of elements in
8674 our array multiplied by the size of its element. */
b4b73759 8675 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8676 }
8677 }
8678 return fixed_record_type;
4c4b4cd2 8679 }
d2e4a39e 8680 case TYPE_CODE_ARRAY:
4c4b4cd2 8681 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8682 case TYPE_CODE_UNION:
8683 if (dval == NULL)
dda83cd7 8684 return type;
d2e4a39e 8685 else
dda83cd7 8686 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8687 }
14f9c5c9
AS
8688}
8689
f192137b
JB
8690/* The same as ada_to_fixed_type_1, except that it preserves the type
8691 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8692
8693 The typedef layer needs be preserved in order to differentiate between
8694 arrays and array pointers when both types are implemented using the same
8695 fat pointer. In the array pointer case, the pointer is encoded as
8696 a typedef of the pointer type. For instance, considering:
8697
8698 type String_Access is access String;
8699 S1 : String_Access := null;
8700
8701 To the debugger, S1 is defined as a typedef of type String. But
8702 to the user, it is a pointer. So if the user tries to print S1,
8703 we should not dereference the array, but print the array address
8704 instead.
8705
8706 If we didn't preserve the typedef layer, we would lose the fact that
8707 the type is to be presented as a pointer (needs de-reference before
8708 being printed). And we would also use the source-level type name. */
f192137b
JB
8709
8710struct type *
8711ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8712 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8713
8714{
8715 struct type *fixed_type =
8716 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8717
96dbd2c1
JB
8718 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8719 then preserve the typedef layer.
8720
8721 Implementation note: We can only check the main-type portion of
8722 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8723 from TYPE now returns a type that has the same instance flags
8724 as TYPE. For instance, if TYPE is a "typedef const", and its
8725 target type is a "struct", then the typedef elimination will return
8726 a "const" version of the target type. See check_typedef for more
8727 details about how the typedef layer elimination is done.
8728
8729 brobecker/2010-11-19: It seems to me that the only case where it is
8730 useful to preserve the typedef layer is when dealing with fat pointers.
8731 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8732 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8733 because we call check_typedef/ada_check_typedef pretty much everywhere.
8734 */
78134374 8735 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8736 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8737 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8738 return type;
8739
8740 return fixed_type;
8741}
8742
14f9c5c9 8743/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8744 TYPE0, but based on no runtime data. */
14f9c5c9 8745
d2e4a39e
AS
8746static struct type *
8747to_static_fixed_type (struct type *type0)
14f9c5c9 8748{
d2e4a39e 8749 struct type *type;
14f9c5c9
AS
8750
8751 if (type0 == NULL)
8752 return NULL;
8753
22c4c60c 8754 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8755 return type0;
8756
61ee279c 8757 type0 = ada_check_typedef (type0);
d2e4a39e 8758
78134374 8759 switch (type0->code ())
14f9c5c9
AS
8760 {
8761 default:
8762 return type0;
8763 case TYPE_CODE_STRUCT:
8764 type = dynamic_template_type (type0);
d2e4a39e 8765 if (type != NULL)
dda83cd7 8766 return template_to_static_fixed_type (type);
4c4b4cd2 8767 else
dda83cd7 8768 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8769 case TYPE_CODE_UNION:
8770 type = ada_find_parallel_type (type0, "___XVU");
8771 if (type != NULL)
dda83cd7 8772 return template_to_static_fixed_type (type);
4c4b4cd2 8773 else
dda83cd7 8774 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8775 }
8776}
8777
4c4b4cd2
PH
8778/* A static approximation of TYPE with all type wrappers removed. */
8779
d2e4a39e
AS
8780static struct type *
8781static_unwrap_type (struct type *type)
14f9c5c9
AS
8782{
8783 if (ada_is_aligner_type (type))
8784 {
940da03e 8785 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8786 if (ada_type_name (type1) == NULL)
d0e39ea2 8787 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8788
8789 return static_unwrap_type (type1);
8790 }
d2e4a39e 8791 else
14f9c5c9 8792 {
d2e4a39e 8793 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8794
d2e4a39e 8795 if (raw_real_type == type)
dda83cd7 8796 return type;
14f9c5c9 8797 else
dda83cd7 8798 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8799 }
8800}
8801
8802/* In some cases, incomplete and private types require
4c4b4cd2 8803 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8804 type Foo;
8805 type FooP is access Foo;
8806 V: FooP;
8807 type Foo is array ...;
4c4b4cd2 8808 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8809 cross-references to such types, we instead substitute for FooP a
8810 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8811 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8812
8813/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8814 exists, otherwise TYPE. */
8815
d2e4a39e 8816struct type *
61ee279c 8817ada_check_typedef (struct type *type)
14f9c5c9 8818{
727e3d2e
JB
8819 if (type == NULL)
8820 return NULL;
8821
736ade86
XR
8822 /* If our type is an access to an unconstrained array, which is encoded
8823 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8824 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8825 what allows us to distinguish between fat pointers that represent
8826 array types, and fat pointers that represent array access types
8827 (in both cases, the compiler implements them as fat pointers). */
736ade86 8828 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8829 return type;
8830
f168693b 8831 type = check_typedef (type);
78134374 8832 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8833 || !type->is_stub ()
7d93a1e0 8834 || type->name () == NULL)
14f9c5c9 8835 return type;
d2e4a39e 8836 else
14f9c5c9 8837 {
7d93a1e0 8838 const char *name = type->name ();
d2e4a39e 8839 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8840
05e522ef 8841 if (type1 == NULL)
dda83cd7 8842 return type;
05e522ef
JB
8843
8844 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8845 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8846 types, only for the typedef-to-array types). If that's the case,
8847 strip the typedef layer. */
78134374 8848 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8849 type1 = ada_check_typedef (type1);
8850
8851 return type1;
14f9c5c9
AS
8852 }
8853}
8854
8855/* A value representing the data at VALADDR/ADDRESS as described by
8856 type TYPE0, but with a standard (static-sized) type that correctly
8857 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8858 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8859 creation of struct values]. */
14f9c5c9 8860
4c4b4cd2
PH
8861static struct value *
8862ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8863 struct value *val0)
14f9c5c9 8864{
1ed6ede0 8865 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8866
14f9c5c9
AS
8867 if (type == type0 && val0 != NULL)
8868 return val0;
cc0e770c
JB
8869
8870 if (VALUE_LVAL (val0) != lval_memory)
8871 {
8872 /* Our value does not live in memory; it could be a convenience
8873 variable, for instance. Create a not_lval value using val0's
8874 contents. */
8875 return value_from_contents (type, value_contents (val0));
8876 }
8877
8878 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8879}
8880
8881/* A value representing VAL, but with a standard (static-sized) type
8882 that correctly describes it. Does not necessarily create a new
8883 value. */
8884
0c3acc09 8885struct value *
4c4b4cd2
PH
8886ada_to_fixed_value (struct value *val)
8887{
c48db5ca 8888 val = unwrap_value (val);
d8ce9127 8889 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8890 return val;
14f9c5c9 8891}
d2e4a39e 8892\f
14f9c5c9 8893
14f9c5c9
AS
8894/* Attributes */
8895
4c4b4cd2
PH
8896/* Table mapping attribute numbers to names.
8897 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8898
27087b7f 8899static const char * const attribute_names[] = {
14f9c5c9
AS
8900 "<?>",
8901
d2e4a39e 8902 "first",
14f9c5c9
AS
8903 "last",
8904 "length",
8905 "image",
14f9c5c9
AS
8906 "max",
8907 "min",
4c4b4cd2
PH
8908 "modulus",
8909 "pos",
8910 "size",
8911 "tag",
14f9c5c9 8912 "val",
14f9c5c9
AS
8913 0
8914};
8915
de93309a 8916static const char *
4c4b4cd2 8917ada_attribute_name (enum exp_opcode n)
14f9c5c9 8918{
4c4b4cd2
PH
8919 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8920 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8921 else
8922 return attribute_names[0];
8923}
8924
4c4b4cd2 8925/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8926
4c4b4cd2
PH
8927static LONGEST
8928pos_atr (struct value *arg)
14f9c5c9 8929{
24209737
PH
8930 struct value *val = coerce_ref (arg);
8931 struct type *type = value_type (val);
aa715135 8932 LONGEST result;
14f9c5c9 8933
d2e4a39e 8934 if (!discrete_type_p (type))
323e0a4a 8935 error (_("'POS only defined on discrete types"));
14f9c5c9 8936
aa715135
JG
8937 if (!discrete_position (type, value_as_long (val), &result))
8938 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8939
aa715135 8940 return result;
4c4b4cd2
PH
8941}
8942
8943static struct value *
3cb382c9 8944value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8945{
3cb382c9 8946 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8947}
8948
4c4b4cd2 8949/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8950
d2e4a39e 8951static struct value *
53a47a3e 8952val_atr (struct type *type, LONGEST val)
14f9c5c9 8953{
53a47a3e 8954 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8955 if (type->code () == TYPE_CODE_RANGE)
8956 type = TYPE_TARGET_TYPE (type);
78134374 8957 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8958 {
53a47a3e 8959 if (val < 0 || val >= type->num_fields ())
dda83cd7 8960 error (_("argument to 'VAL out of range"));
53a47a3e 8961 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8962 }
53a47a3e
TT
8963 return value_from_longest (type, val);
8964}
8965
8966static struct value *
8967value_val_atr (struct type *type, struct value *arg)
8968{
8969 if (!discrete_type_p (type))
8970 error (_("'VAL only defined on discrete types"));
8971 if (!integer_type_p (value_type (arg)))
8972 error (_("'VAL requires integral argument"));
8973
8974 return val_atr (type, value_as_long (arg));
14f9c5c9 8975}
14f9c5c9 8976\f
d2e4a39e 8977
dda83cd7 8978 /* Evaluation */
14f9c5c9 8979
4c4b4cd2
PH
8980/* True if TYPE appears to be an Ada character type.
8981 [At the moment, this is true only for Character and Wide_Character;
8982 It is a heuristic test that could stand improvement]. */
14f9c5c9 8983
fc913e53 8984bool
d2e4a39e 8985ada_is_character_type (struct type *type)
14f9c5c9 8986{
7b9f71f2
JB
8987 const char *name;
8988
8989 /* If the type code says it's a character, then assume it really is,
8990 and don't check any further. */
78134374 8991 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8992 return true;
7b9f71f2
JB
8993
8994 /* Otherwise, assume it's a character type iff it is a discrete type
8995 with a known character type name. */
8996 name = ada_type_name (type);
8997 return (name != NULL
dda83cd7
SM
8998 && (type->code () == TYPE_CODE_INT
8999 || type->code () == TYPE_CODE_RANGE)
9000 && (strcmp (name, "character") == 0
9001 || strcmp (name, "wide_character") == 0
9002 || strcmp (name, "wide_wide_character") == 0
9003 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9004}
9005
4c4b4cd2 9006/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9007
fc913e53 9008bool
ebf56fd3 9009ada_is_string_type (struct type *type)
14f9c5c9 9010{
61ee279c 9011 type = ada_check_typedef (type);
d2e4a39e 9012 if (type != NULL
78134374 9013 && type->code () != TYPE_CODE_PTR
76a01679 9014 && (ada_is_simple_array_type (type)
dda83cd7 9015 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9016 && ada_array_arity (type) == 1)
9017 {
9018 struct type *elttype = ada_array_element_type (type, 1);
9019
9020 return ada_is_character_type (elttype);
9021 }
d2e4a39e 9022 else
fc913e53 9023 return false;
14f9c5c9
AS
9024}
9025
5bf03f13
JB
9026/* The compiler sometimes provides a parallel XVS type for a given
9027 PAD type. Normally, it is safe to follow the PAD type directly,
9028 but older versions of the compiler have a bug that causes the offset
9029 of its "F" field to be wrong. Following that field in that case
9030 would lead to incorrect results, but this can be worked around
9031 by ignoring the PAD type and using the associated XVS type instead.
9032
9033 Set to True if the debugger should trust the contents of PAD types.
9034 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9035static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9036
9037/* True if TYPE is a struct type introduced by the compiler to force the
9038 alignment of a value. Such types have a single field with a
4c4b4cd2 9039 distinctive name. */
14f9c5c9
AS
9040
9041int
ebf56fd3 9042ada_is_aligner_type (struct type *type)
14f9c5c9 9043{
61ee279c 9044 type = ada_check_typedef (type);
714e53ab 9045
5bf03f13 9046 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9047 return 0;
9048
78134374 9049 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
9050 && type->num_fields () == 1
9051 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9052}
9053
9054/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9055 the parallel type. */
14f9c5c9 9056
d2e4a39e
AS
9057struct type *
9058ada_get_base_type (struct type *raw_type)
14f9c5c9 9059{
d2e4a39e
AS
9060 struct type *real_type_namer;
9061 struct type *raw_real_type;
14f9c5c9 9062
78134374 9063 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9064 return raw_type;
9065
284614f0
JB
9066 if (ada_is_aligner_type (raw_type))
9067 /* The encoding specifies that we should always use the aligner type.
9068 So, even if this aligner type has an associated XVS type, we should
9069 simply ignore it.
9070
9071 According to the compiler gurus, an XVS type parallel to an aligner
9072 type may exist because of a stabs limitation. In stabs, aligner
9073 types are empty because the field has a variable-sized type, and
9074 thus cannot actually be used as an aligner type. As a result,
9075 we need the associated parallel XVS type to decode the type.
9076 Since the policy in the compiler is to not change the internal
9077 representation based on the debugging info format, we sometimes
9078 end up having a redundant XVS type parallel to the aligner type. */
9079 return raw_type;
9080
14f9c5c9 9081 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9082 if (real_type_namer == NULL
78134374 9083 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9084 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9085 return raw_type;
9086
940da03e 9087 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9088 {
9089 /* This is an older encoding form where the base type needs to be
85102364 9090 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9091 more efficient. */
9092 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9093 if (raw_real_type == NULL)
9094 return raw_type;
9095 else
9096 return raw_real_type;
9097 }
9098
9099 /* The field in our XVS type is a reference to the base type. */
940da03e 9100 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9101}
14f9c5c9 9102
4c4b4cd2 9103/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9104
d2e4a39e
AS
9105struct type *
9106ada_aligned_type (struct type *type)
14f9c5c9
AS
9107{
9108 if (ada_is_aligner_type (type))
940da03e 9109 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9110 else
9111 return ada_get_base_type (type);
9112}
9113
9114
9115/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9116 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9117
fc1a4b47
AC
9118const gdb_byte *
9119ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9120{
d2e4a39e 9121 if (ada_is_aligner_type (type))
940da03e 9122 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
9123 valaddr +
9124 TYPE_FIELD_BITPOS (type,
9125 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9126 else
9127 return valaddr;
9128}
9129
4c4b4cd2
PH
9130
9131
14f9c5c9 9132/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9133 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9134const char *
9135ada_enum_name (const char *name)
14f9c5c9 9136{
4c4b4cd2
PH
9137 static char *result;
9138 static size_t result_len = 0;
e6a959d6 9139 const char *tmp;
14f9c5c9 9140
4c4b4cd2
PH
9141 /* First, unqualify the enumeration name:
9142 1. Search for the last '.' character. If we find one, then skip
177b42fe 9143 all the preceding characters, the unqualified name starts
76a01679 9144 right after that dot.
4c4b4cd2 9145 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9146 translates dots into "__". Search forward for double underscores,
9147 but stop searching when we hit an overloading suffix, which is
9148 of the form "__" followed by digits. */
4c4b4cd2 9149
c3e5cd34
PH
9150 tmp = strrchr (name, '.');
9151 if (tmp != NULL)
4c4b4cd2
PH
9152 name = tmp + 1;
9153 else
14f9c5c9 9154 {
4c4b4cd2 9155 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9156 {
9157 if (isdigit (tmp[2]))
9158 break;
9159 else
9160 name = tmp + 2;
9161 }
14f9c5c9
AS
9162 }
9163
9164 if (name[0] == 'Q')
9165 {
14f9c5c9 9166 int v;
5b4ee69b 9167
14f9c5c9 9168 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
9169 {
9170 if (sscanf (name + 2, "%x", &v) != 1)
9171 return name;
9172 }
272560b5
TT
9173 else if (((name[1] >= '0' && name[1] <= '9')
9174 || (name[1] >= 'a' && name[1] <= 'z'))
9175 && name[2] == '\0')
9176 {
9177 GROW_VECT (result, result_len, 4);
9178 xsnprintf (result, result_len, "'%c'", name[1]);
9179 return result;
9180 }
14f9c5c9 9181 else
dda83cd7 9182 return name;
14f9c5c9 9183
4c4b4cd2 9184 GROW_VECT (result, result_len, 16);
14f9c5c9 9185 if (isascii (v) && isprint (v))
dda83cd7 9186 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9187 else if (name[1] == 'U')
dda83cd7 9188 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9189 else
dda83cd7 9190 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9191
9192 return result;
9193 }
d2e4a39e 9194 else
4c4b4cd2 9195 {
c3e5cd34
PH
9196 tmp = strstr (name, "__");
9197 if (tmp == NULL)
9198 tmp = strstr (name, "$");
9199 if (tmp != NULL)
dda83cd7
SM
9200 {
9201 GROW_VECT (result, result_len, tmp - name + 1);
9202 strncpy (result, name, tmp - name);
9203 result[tmp - name] = '\0';
9204 return result;
9205 }
4c4b4cd2
PH
9206
9207 return name;
9208 }
14f9c5c9
AS
9209}
9210
14f9c5c9
AS
9211/* Evaluate the subexpression of EXP starting at *POS as for
9212 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9213 expression. */
14f9c5c9 9214
d2e4a39e
AS
9215static struct value *
9216evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9217{
fe1fe7ea 9218 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9219}
9220
9221/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9222 value it wraps. */
14f9c5c9 9223
d2e4a39e
AS
9224static struct value *
9225unwrap_value (struct value *val)
14f9c5c9 9226{
df407dfe 9227 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9228
14f9c5c9
AS
9229 if (ada_is_aligner_type (type))
9230 {
de4d072f 9231 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9232 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9233
14f9c5c9 9234 if (ada_type_name (val_type) == NULL)
d0e39ea2 9235 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9236
9237 return unwrap_value (v);
9238 }
d2e4a39e 9239 else
14f9c5c9 9240 {
d2e4a39e 9241 struct type *raw_real_type =
dda83cd7 9242 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9243
5bf03f13
JB
9244 /* If there is no parallel XVS or XVE type, then the value is
9245 already unwrapped. Return it without further modification. */
9246 if ((type == raw_real_type)
9247 && ada_find_parallel_type (type, "___XVE") == NULL)
9248 return val;
14f9c5c9 9249
d2e4a39e 9250 return
dda83cd7
SM
9251 coerce_unspec_val_to_type
9252 (val, ada_to_fixed_type (raw_real_type, 0,
9253 value_address (val),
9254 NULL, 1));
14f9c5c9
AS
9255 }
9256}
d2e4a39e
AS
9257
9258static struct value *
75f24e86 9259cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9260{
db99d0d0
JB
9261 struct value *scale
9262 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
50eff16b 9263 arg = value_cast (value_type (scale), arg);
14f9c5c9 9264
50eff16b
UW
9265 arg = value_binop (arg, scale, BINOP_MUL);
9266 return value_cast (type, arg);
14f9c5c9
AS
9267}
9268
d2e4a39e 9269static struct value *
75f24e86 9270cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9271{
50eff16b
UW
9272 if (type == value_type (arg))
9273 return arg;
5b4ee69b 9274
75f24e86 9275 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
b2188a06 9276 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
75f24e86 9277 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
50eff16b
UW
9278 else
9279 arg = value_cast (value_type (scale), arg);
9280
9281 arg = value_binop (arg, scale, BINOP_DIV);
9282 return value_cast (type, arg);
14f9c5c9
AS
9283}
9284
d99dcf51
JB
9285/* Given two array types T1 and T2, return nonzero iff both arrays
9286 contain the same number of elements. */
9287
9288static int
9289ada_same_array_size_p (struct type *t1, struct type *t2)
9290{
9291 LONGEST lo1, hi1, lo2, hi2;
9292
9293 /* Get the array bounds in order to verify that the size of
9294 the two arrays match. */
9295 if (!get_array_bounds (t1, &lo1, &hi1)
9296 || !get_array_bounds (t2, &lo2, &hi2))
9297 error (_("unable to determine array bounds"));
9298
9299 /* To make things easier for size comparison, normalize a bit
9300 the case of empty arrays by making sure that the difference
9301 between upper bound and lower bound is always -1. */
9302 if (lo1 > hi1)
9303 hi1 = lo1 - 1;
9304 if (lo2 > hi2)
9305 hi2 = lo2 - 1;
9306
9307 return (hi1 - lo1 == hi2 - lo2);
9308}
9309
9310/* Assuming that VAL is an array of integrals, and TYPE represents
9311 an array with the same number of elements, but with wider integral
9312 elements, return an array "casted" to TYPE. In practice, this
9313 means that the returned array is built by casting each element
9314 of the original array into TYPE's (wider) element type. */
9315
9316static struct value *
9317ada_promote_array_of_integrals (struct type *type, struct value *val)
9318{
9319 struct type *elt_type = TYPE_TARGET_TYPE (type);
9320 LONGEST lo, hi;
9321 struct value *res;
9322 LONGEST i;
9323
9324 /* Verify that both val and type are arrays of scalars, and
9325 that the size of val's elements is smaller than the size
9326 of type's element. */
78134374 9327 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9328 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9329 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9330 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9331 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9332 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9333
9334 if (!get_array_bounds (type, &lo, &hi))
9335 error (_("unable to determine array bounds"));
9336
9337 res = allocate_value (type);
9338
9339 /* Promote each array element. */
9340 for (i = 0; i < hi - lo + 1; i++)
9341 {
9342 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9343
9344 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9345 value_contents_all (elt), TYPE_LENGTH (elt_type));
9346 }
9347
9348 return res;
9349}
9350
4c4b4cd2
PH
9351/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9352 return the converted value. */
9353
d2e4a39e
AS
9354static struct value *
9355coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9356{
df407dfe 9357 struct type *type2 = value_type (val);
5b4ee69b 9358
14f9c5c9
AS
9359 if (type == type2)
9360 return val;
9361
61ee279c
PH
9362 type2 = ada_check_typedef (type2);
9363 type = ada_check_typedef (type);
14f9c5c9 9364
78134374
SM
9365 if (type2->code () == TYPE_CODE_PTR
9366 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9367 {
9368 val = ada_value_ind (val);
df407dfe 9369 type2 = value_type (val);
14f9c5c9
AS
9370 }
9371
78134374
SM
9372 if (type2->code () == TYPE_CODE_ARRAY
9373 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9374 {
d99dcf51
JB
9375 if (!ada_same_array_size_p (type, type2))
9376 error (_("cannot assign arrays of different length"));
9377
9378 if (is_integral_type (TYPE_TARGET_TYPE (type))
9379 && is_integral_type (TYPE_TARGET_TYPE (type2))
9380 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9381 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9382 {
9383 /* Allow implicit promotion of the array elements to
9384 a wider type. */
9385 return ada_promote_array_of_integrals (type, val);
9386 }
9387
9388 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
9389 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9390 error (_("Incompatible types in assignment"));
04624583 9391 deprecated_set_value_type (val, type);
14f9c5c9 9392 }
d2e4a39e 9393 return val;
14f9c5c9
AS
9394}
9395
4c4b4cd2
PH
9396static struct value *
9397ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9398{
9399 struct value *val;
9400 struct type *type1, *type2;
9401 LONGEST v, v1, v2;
9402
994b9211
AC
9403 arg1 = coerce_ref (arg1);
9404 arg2 = coerce_ref (arg2);
18af8284
JB
9405 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9406 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9407
78134374
SM
9408 if (type1->code () != TYPE_CODE_INT
9409 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9410 return value_binop (arg1, arg2, op);
9411
76a01679 9412 switch (op)
4c4b4cd2
PH
9413 {
9414 case BINOP_MOD:
9415 case BINOP_DIV:
9416 case BINOP_REM:
9417 break;
9418 default:
9419 return value_binop (arg1, arg2, op);
9420 }
9421
9422 v2 = value_as_long (arg2);
9423 if (v2 == 0)
323e0a4a 9424 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2 9425
c6d940a9 9426 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9427 return value_binop (arg1, arg2, op);
9428
9429 v1 = value_as_long (arg1);
9430 switch (op)
9431 {
9432 case BINOP_DIV:
9433 v = v1 / v2;
76a01679 9434 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9435 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9436 break;
9437 case BINOP_REM:
9438 v = v1 % v2;
76a01679 9439 if (v * v1 < 0)
dda83cd7 9440 v -= v2;
4c4b4cd2
PH
9441 break;
9442 default:
9443 /* Should not reach this point. */
9444 v = 0;
9445 }
9446
9447 val = allocate_value (type1);
990a07ab 9448 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9449 TYPE_LENGTH (value_type (val)),
34877895 9450 type_byte_order (type1), v);
4c4b4cd2
PH
9451 return val;
9452}
9453
9454static int
9455ada_value_equal (struct value *arg1, struct value *arg2)
9456{
df407dfe
AC
9457 if (ada_is_direct_array_type (value_type (arg1))
9458 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9459 {
79e8fcaa
JB
9460 struct type *arg1_type, *arg2_type;
9461
f58b38bf 9462 /* Automatically dereference any array reference before
dda83cd7 9463 we attempt to perform the comparison. */
f58b38bf
JB
9464 arg1 = ada_coerce_ref (arg1);
9465 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9466
4c4b4cd2
PH
9467 arg1 = ada_coerce_to_simple_array (arg1);
9468 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9469
9470 arg1_type = ada_check_typedef (value_type (arg1));
9471 arg2_type = ada_check_typedef (value_type (arg2));
9472
78134374 9473 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9474 || arg2_type->code () != TYPE_CODE_ARRAY)
9475 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9476 /* FIXME: The following works only for types whose
dda83cd7
SM
9477 representations use all bits (no padding or undefined bits)
9478 and do not have user-defined equality. */
79e8fcaa
JB
9479 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9480 && memcmp (value_contents (arg1), value_contents (arg2),
9481 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9482 }
9483 return value_equal (arg1, arg2);
9484}
9485
52ce6436
PH
9486/* Total number of component associations in the aggregate starting at
9487 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9488 OP_AGGREGATE. */
52ce6436
PH
9489
9490static int
9491num_component_specs (struct expression *exp, int pc)
9492{
9493 int n, m, i;
5b4ee69b 9494
52ce6436
PH
9495 m = exp->elts[pc + 1].longconst;
9496 pc += 3;
9497 n = 0;
9498 for (i = 0; i < m; i += 1)
9499 {
9500 switch (exp->elts[pc].opcode)
9501 {
9502 default:
9503 n += 1;
9504 break;
9505 case OP_CHOICES:
9506 n += exp->elts[pc + 1].longconst;
9507 break;
9508 }
9509 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9510 }
9511 return n;
9512}
9513
9514/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9515 component of LHS (a simple array or a record), updating *POS past
9516 the expression, assuming that LHS is contained in CONTAINER. Does
9517 not modify the inferior's memory, nor does it modify LHS (unless
9518 LHS == CONTAINER). */
9519
9520static void
9521assign_component (struct value *container, struct value *lhs, LONGEST index,
9522 struct expression *exp, int *pos)
9523{
9524 struct value *mark = value_mark ();
9525 struct value *elt;
0e2da9f0 9526 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9527
78134374 9528 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9529 {
22601c15
UW
9530 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9531 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9532
52ce6436
PH
9533 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9534 }
9535 else
9536 {
9537 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9538 elt = ada_to_fixed_value (elt);
52ce6436
PH
9539 }
9540
9541 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9542 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9543 else
9544 value_assign_to_component (container, elt,
9545 ada_evaluate_subexp (NULL, exp, pos,
9546 EVAL_NORMAL));
9547
9548 value_free_to_mark (mark);
9549}
9550
9551/* Assuming that LHS represents an lvalue having a record or array
9552 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9553 of that aggregate's value to LHS, advancing *POS past the
9554 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9555 lvalue containing LHS (possibly LHS itself). Does not modify
9556 the inferior's memory, nor does it modify the contents of
0963b4bd 9557 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9558
9559static struct value *
9560assign_aggregate (struct value *container,
9561 struct value *lhs, struct expression *exp,
9562 int *pos, enum noside noside)
9563{
9564 struct type *lhs_type;
9565 int n = exp->elts[*pos+1].longconst;
9566 LONGEST low_index, high_index;
9567 int num_specs;
9568 LONGEST *indices;
9569 int max_indices, num_indices;
52ce6436 9570 int i;
52ce6436
PH
9571
9572 *pos += 3;
9573 if (noside != EVAL_NORMAL)
9574 {
52ce6436
PH
9575 for (i = 0; i < n; i += 1)
9576 ada_evaluate_subexp (NULL, exp, pos, noside);
9577 return container;
9578 }
9579
9580 container = ada_coerce_ref (container);
9581 if (ada_is_direct_array_type (value_type (container)))
9582 container = ada_coerce_to_simple_array (container);
9583 lhs = ada_coerce_ref (lhs);
9584 if (!deprecated_value_modifiable (lhs))
9585 error (_("Left operand of assignment is not a modifiable lvalue."));
9586
0e2da9f0 9587 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9588 if (ada_is_direct_array_type (lhs_type))
9589 {
9590 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9591 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9592 low_index = lhs_type->bounds ()->low.const_val ();
9593 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9594 }
78134374 9595 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9596 {
9597 low_index = 0;
9598 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9599 }
9600 else
9601 error (_("Left-hand side must be array or record."));
9602
9603 num_specs = num_component_specs (exp, *pos - 3);
9604 max_indices = 4 * num_specs + 4;
8d749320 9605 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9606 indices[0] = indices[1] = low_index - 1;
9607 indices[2] = indices[3] = high_index + 1;
9608 num_indices = 4;
9609
9610 for (i = 0; i < n; i += 1)
9611 {
9612 switch (exp->elts[*pos].opcode)
9613 {
1fbf5ada
JB
9614 case OP_CHOICES:
9615 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9616 &num_indices, max_indices,
9617 low_index, high_index);
9618 break;
9619 case OP_POSITIONAL:
9620 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9621 &num_indices, max_indices,
9622 low_index, high_index);
1fbf5ada
JB
9623 break;
9624 case OP_OTHERS:
9625 if (i != n-1)
9626 error (_("Misplaced 'others' clause"));
9627 aggregate_assign_others (container, lhs, exp, pos, indices,
9628 num_indices, low_index, high_index);
9629 break;
9630 default:
9631 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9632 }
9633 }
9634
9635 return container;
9636}
9637
9638/* Assign into the component of LHS indexed by the OP_POSITIONAL
9639 construct at *POS, updating *POS past the construct, given that
9640 the positions are relative to lower bound LOW, where HIGH is the
9641 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9642 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9643 assign_aggregate. */
52ce6436
PH
9644static void
9645aggregate_assign_positional (struct value *container,
9646 struct value *lhs, struct expression *exp,
9647 int *pos, LONGEST *indices, int *num_indices,
9648 int max_indices, LONGEST low, LONGEST high)
9649{
9650 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9651
9652 if (ind - 1 == high)
e1d5a0d2 9653 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9654 if (ind <= high)
9655 {
9656 add_component_interval (ind, ind, indices, num_indices, max_indices);
9657 *pos += 3;
9658 assign_component (container, lhs, ind, exp, pos);
9659 }
9660 else
9661 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9662}
9663
9664/* Assign into the components of LHS indexed by the OP_CHOICES
9665 construct at *POS, updating *POS past the construct, given that
9666 the allowable indices are LOW..HIGH. Record the indices assigned
9667 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9668 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9669static void
9670aggregate_assign_from_choices (struct value *container,
9671 struct value *lhs, struct expression *exp,
9672 int *pos, LONGEST *indices, int *num_indices,
9673 int max_indices, LONGEST low, LONGEST high)
9674{
9675 int j;
9676 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9677 int choice_pos, expr_pc;
9678 int is_array = ada_is_direct_array_type (value_type (lhs));
9679
9680 choice_pos = *pos += 3;
9681
9682 for (j = 0; j < n_choices; j += 1)
9683 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9684 expr_pc = *pos;
9685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9686
9687 for (j = 0; j < n_choices; j += 1)
9688 {
9689 LONGEST lower, upper;
9690 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9691
52ce6436
PH
9692 if (op == OP_DISCRETE_RANGE)
9693 {
9694 choice_pos += 1;
9695 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9696 EVAL_NORMAL));
9697 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9698 EVAL_NORMAL));
9699 }
9700 else if (is_array)
9701 {
9702 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9703 EVAL_NORMAL));
9704 upper = lower;
9705 }
9706 else
9707 {
9708 int ind;
0d5cff50 9709 const char *name;
5b4ee69b 9710
52ce6436
PH
9711 switch (op)
9712 {
9713 case OP_NAME:
9714 name = &exp->elts[choice_pos + 2].string;
9715 break;
9716 case OP_VAR_VALUE:
987012b8 9717 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9718 break;
9719 default:
9720 error (_("Invalid record component association."));
9721 }
9722 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9723 ind = 0;
9724 if (! find_struct_field (name, value_type (lhs), 0,
9725 NULL, NULL, NULL, NULL, &ind))
9726 error (_("Unknown component name: %s."), name);
9727 lower = upper = ind;
9728 }
9729
9730 if (lower <= upper && (lower < low || upper > high))
9731 error (_("Index in component association out of bounds."));
9732
9733 add_component_interval (lower, upper, indices, num_indices,
9734 max_indices);
9735 while (lower <= upper)
9736 {
9737 int pos1;
5b4ee69b 9738
52ce6436
PH
9739 pos1 = expr_pc;
9740 assign_component (container, lhs, lower, exp, &pos1);
9741 lower += 1;
9742 }
9743 }
9744}
9745
9746/* Assign the value of the expression in the OP_OTHERS construct in
9747 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9748 have not been previously assigned. The index intervals already assigned
9749 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9750 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9751static void
9752aggregate_assign_others (struct value *container,
9753 struct value *lhs, struct expression *exp,
9754 int *pos, LONGEST *indices, int num_indices,
9755 LONGEST low, LONGEST high)
9756{
9757 int i;
5ce64950 9758 int expr_pc = *pos + 1;
52ce6436
PH
9759
9760 for (i = 0; i < num_indices - 2; i += 2)
9761 {
9762 LONGEST ind;
5b4ee69b 9763
52ce6436
PH
9764 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9765 {
5ce64950 9766 int localpos;
5b4ee69b 9767
5ce64950
MS
9768 localpos = expr_pc;
9769 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9770 }
9771 }
9772 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9773}
9774
9775/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9776 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9777 modifying *SIZE as needed. It is an error if *SIZE exceeds
9778 MAX_SIZE. The resulting intervals do not overlap. */
9779static void
9780add_component_interval (LONGEST low, LONGEST high,
9781 LONGEST* indices, int *size, int max_size)
9782{
9783 int i, j;
5b4ee69b 9784
52ce6436
PH
9785 for (i = 0; i < *size; i += 2) {
9786 if (high >= indices[i] && low <= indices[i + 1])
9787 {
9788 int kh;
5b4ee69b 9789
52ce6436
PH
9790 for (kh = i + 2; kh < *size; kh += 2)
9791 if (high < indices[kh])
9792 break;
9793 if (low < indices[i])
9794 indices[i] = low;
9795 indices[i + 1] = indices[kh - 1];
9796 if (high > indices[i + 1])
9797 indices[i + 1] = high;
9798 memcpy (indices + i + 2, indices + kh, *size - kh);
9799 *size -= kh - i - 2;
9800 return;
9801 }
9802 else if (high < indices[i])
9803 break;
9804 }
9805
9806 if (*size == max_size)
9807 error (_("Internal error: miscounted aggregate components."));
9808 *size += 2;
9809 for (j = *size-1; j >= i+2; j -= 1)
9810 indices[j] = indices[j - 2];
9811 indices[i] = low;
9812 indices[i + 1] = high;
9813}
9814
6e48bd2c
JB
9815/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9816 is different. */
9817
9818static struct value *
b7e22850 9819ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9820{
9821 if (type == ada_check_typedef (value_type (arg2)))
9822 return arg2;
9823
b2188a06 9824 if (ada_is_gnat_encoded_fixed_point_type (type))
75f24e86 9825 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c 9826
b2188a06 9827 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
75f24e86 9828 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c
JB
9829
9830 return value_cast (type, arg2);
9831}
9832
284614f0
JB
9833/* Evaluating Ada expressions, and printing their result.
9834 ------------------------------------------------------
9835
21649b50
JB
9836 1. Introduction:
9837 ----------------
9838
284614f0
JB
9839 We usually evaluate an Ada expression in order to print its value.
9840 We also evaluate an expression in order to print its type, which
9841 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9842 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9843 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9844 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9845 similar.
9846
9847 Evaluating expressions is a little more complicated for Ada entities
9848 than it is for entities in languages such as C. The main reason for
9849 this is that Ada provides types whose definition might be dynamic.
9850 One example of such types is variant records. Or another example
9851 would be an array whose bounds can only be known at run time.
9852
9853 The following description is a general guide as to what should be
9854 done (and what should NOT be done) in order to evaluate an expression
9855 involving such types, and when. This does not cover how the semantic
9856 information is encoded by GNAT as this is covered separatly. For the
9857 document used as the reference for the GNAT encoding, see exp_dbug.ads
9858 in the GNAT sources.
9859
9860 Ideally, we should embed each part of this description next to its
9861 associated code. Unfortunately, the amount of code is so vast right
9862 now that it's hard to see whether the code handling a particular
9863 situation might be duplicated or not. One day, when the code is
9864 cleaned up, this guide might become redundant with the comments
9865 inserted in the code, and we might want to remove it.
9866
21649b50
JB
9867 2. ``Fixing'' an Entity, the Simple Case:
9868 -----------------------------------------
9869
284614f0
JB
9870 When evaluating Ada expressions, the tricky issue is that they may
9871 reference entities whose type contents and size are not statically
9872 known. Consider for instance a variant record:
9873
9874 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9875 case Empty is
9876 when True => null;
9877 when False => Value : Integer;
9878 end case;
284614f0
JB
9879 end record;
9880 Yes : Rec := (Empty => False, Value => 1);
9881 No : Rec := (empty => True);
9882
9883 The size and contents of that record depends on the value of the
9884 descriminant (Rec.Empty). At this point, neither the debugging
9885 information nor the associated type structure in GDB are able to
9886 express such dynamic types. So what the debugger does is to create
9887 "fixed" versions of the type that applies to the specific object.
30baf67b 9888 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9889 which means creating its associated fixed type.
9890
9891 Example: when printing the value of variable "Yes" above, its fixed
9892 type would look like this:
9893
9894 type Rec is record
dda83cd7
SM
9895 Empty : Boolean;
9896 Value : Integer;
284614f0
JB
9897 end record;
9898
9899 On the other hand, if we printed the value of "No", its fixed type
9900 would become:
9901
9902 type Rec is record
dda83cd7 9903 Empty : Boolean;
284614f0
JB
9904 end record;
9905
9906 Things become a little more complicated when trying to fix an entity
9907 with a dynamic type that directly contains another dynamic type,
9908 such as an array of variant records, for instance. There are
9909 two possible cases: Arrays, and records.
9910
21649b50
JB
9911 3. ``Fixing'' Arrays:
9912 ---------------------
9913
9914 The type structure in GDB describes an array in terms of its bounds,
9915 and the type of its elements. By design, all elements in the array
9916 have the same type and we cannot represent an array of variant elements
9917 using the current type structure in GDB. When fixing an array,
9918 we cannot fix the array element, as we would potentially need one
9919 fixed type per element of the array. As a result, the best we can do
9920 when fixing an array is to produce an array whose bounds and size
9921 are correct (allowing us to read it from memory), but without having
9922 touched its element type. Fixing each element will be done later,
9923 when (if) necessary.
9924
9925 Arrays are a little simpler to handle than records, because the same
9926 amount of memory is allocated for each element of the array, even if
1b536f04 9927 the amount of space actually used by each element differs from element
21649b50 9928 to element. Consider for instance the following array of type Rec:
284614f0
JB
9929
9930 type Rec_Array is array (1 .. 2) of Rec;
9931
1b536f04
JB
9932 The actual amount of memory occupied by each element might be different
9933 from element to element, depending on the value of their discriminant.
21649b50 9934 But the amount of space reserved for each element in the array remains
1b536f04 9935 fixed regardless. So we simply need to compute that size using
21649b50
JB
9936 the debugging information available, from which we can then determine
9937 the array size (we multiply the number of elements of the array by
9938 the size of each element).
9939
9940 The simplest case is when we have an array of a constrained element
9941 type. For instance, consider the following type declarations:
9942
dda83cd7
SM
9943 type Bounded_String (Max_Size : Integer) is
9944 Length : Integer;
9945 Buffer : String (1 .. Max_Size);
9946 end record;
9947 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9948
9949 In this case, the compiler describes the array as an array of
9950 variable-size elements (identified by its XVS suffix) for which
9951 the size can be read in the parallel XVZ variable.
9952
9953 In the case of an array of an unconstrained element type, the compiler
9954 wraps the array element inside a private PAD type. This type should not
9955 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9956 that we also use the adjective "aligner" in our code to designate
9957 these wrapper types.
9958
1b536f04 9959 In some cases, the size allocated for each element is statically
21649b50
JB
9960 known. In that case, the PAD type already has the correct size,
9961 and the array element should remain unfixed.
9962
9963 But there are cases when this size is not statically known.
9964 For instance, assuming that "Five" is an integer variable:
284614f0 9965
dda83cd7
SM
9966 type Dynamic is array (1 .. Five) of Integer;
9967 type Wrapper (Has_Length : Boolean := False) is record
9968 Data : Dynamic;
9969 case Has_Length is
9970 when True => Length : Integer;
9971 when False => null;
9972 end case;
9973 end record;
9974 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9975
dda83cd7
SM
9976 Hello : Wrapper_Array := (others => (Has_Length => True,
9977 Data => (others => 17),
9978 Length => 1));
284614f0
JB
9979
9980
9981 The debugging info would describe variable Hello as being an
9982 array of a PAD type. The size of that PAD type is not statically
9983 known, but can be determined using a parallel XVZ variable.
9984 In that case, a copy of the PAD type with the correct size should
9985 be used for the fixed array.
9986
21649b50
JB
9987 3. ``Fixing'' record type objects:
9988 ----------------------------------
9989
9990 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9991 record types. In this case, in order to compute the associated
9992 fixed type, we need to determine the size and offset of each of
9993 its components. This, in turn, requires us to compute the fixed
9994 type of each of these components.
9995
9996 Consider for instance the example:
9997
dda83cd7
SM
9998 type Bounded_String (Max_Size : Natural) is record
9999 Str : String (1 .. Max_Size);
10000 Length : Natural;
10001 end record;
10002 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
10003
10004 In that case, the position of field "Length" depends on the size
10005 of field Str, which itself depends on the value of the Max_Size
21649b50 10006 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10007 we need to fix the type of field Str. Therefore, fixing a variant
10008 record requires us to fix each of its components.
10009
10010 However, if a component does not have a dynamic size, the component
10011 should not be fixed. In particular, fields that use a PAD type
10012 should not fixed. Here is an example where this might happen
10013 (assuming type Rec above):
10014
10015 type Container (Big : Boolean) is record
dda83cd7
SM
10016 First : Rec;
10017 After : Integer;
10018 case Big is
10019 when True => Another : Integer;
10020 when False => null;
10021 end case;
284614f0
JB
10022 end record;
10023 My_Container : Container := (Big => False,
dda83cd7
SM
10024 First => (Empty => True),
10025 After => 42);
284614f0
JB
10026
10027 In that example, the compiler creates a PAD type for component First,
10028 whose size is constant, and then positions the component After just
10029 right after it. The offset of component After is therefore constant
10030 in this case.
10031
10032 The debugger computes the position of each field based on an algorithm
10033 that uses, among other things, the actual position and size of the field
21649b50
JB
10034 preceding it. Let's now imagine that the user is trying to print
10035 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10036 end up computing the offset of field After based on the size of the
10037 fixed version of field First. And since in our example First has
10038 only one actual field, the size of the fixed type is actually smaller
10039 than the amount of space allocated to that field, and thus we would
10040 compute the wrong offset of field After.
10041
21649b50
JB
10042 To make things more complicated, we need to watch out for dynamic
10043 components of variant records (identified by the ___XVL suffix in
10044 the component name). Even if the target type is a PAD type, the size
10045 of that type might not be statically known. So the PAD type needs
10046 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10047 we might end up with the wrong size for our component. This can be
10048 observed with the following type declarations:
284614f0 10049
dda83cd7
SM
10050 type Octal is new Integer range 0 .. 7;
10051 type Octal_Array is array (Positive range <>) of Octal;
10052 pragma Pack (Octal_Array);
284614f0 10053
dda83cd7
SM
10054 type Octal_Buffer (Size : Positive) is record
10055 Buffer : Octal_Array (1 .. Size);
10056 Length : Integer;
10057 end record;
284614f0
JB
10058
10059 In that case, Buffer is a PAD type whose size is unset and needs
10060 to be computed by fixing the unwrapped type.
10061
21649b50
JB
10062 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10063 ----------------------------------------------------------
10064
10065 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10066 thus far, be actually fixed?
10067
10068 The answer is: Only when referencing that element. For instance
10069 when selecting one component of a record, this specific component
10070 should be fixed at that point in time. Or when printing the value
10071 of a record, each component should be fixed before its value gets
10072 printed. Similarly for arrays, the element of the array should be
10073 fixed when printing each element of the array, or when extracting
10074 one element out of that array. On the other hand, fixing should
10075 not be performed on the elements when taking a slice of an array!
10076
31432a67 10077 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10078 size of each field is that we end up also miscomputing the size
10079 of the containing type. This can have adverse results when computing
10080 the value of an entity. GDB fetches the value of an entity based
10081 on the size of its type, and thus a wrong size causes GDB to fetch
10082 the wrong amount of memory. In the case where the computed size is
10083 too small, GDB fetches too little data to print the value of our
31432a67 10084 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10085 past the buffer containing the data =:-o. */
10086
ced9779b
JB
10087/* Evaluate a subexpression of EXP, at index *POS, and return a value
10088 for that subexpression cast to TO_TYPE. Advance *POS over the
10089 subexpression. */
10090
10091static value *
10092ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10093 enum noside noside, struct type *to_type)
10094{
10095 int pc = *pos;
10096
10097 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10098 || exp->elts[pc].opcode == OP_VAR_VALUE)
10099 {
10100 (*pos) += 4;
10101
10102 value *val;
10103 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
dda83cd7
SM
10104 {
10105 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10106 return value_zero (to_type, not_lval);
10107
10108 val = evaluate_var_msym_value (noside,
10109 exp->elts[pc + 1].objfile,
10110 exp->elts[pc + 2].msymbol);
10111 }
ced9779b 10112 else
dda83cd7
SM
10113 val = evaluate_var_value (noside,
10114 exp->elts[pc + 1].block,
10115 exp->elts[pc + 2].symbol);
ced9779b
JB
10116
10117 if (noside == EVAL_SKIP)
dda83cd7 10118 return eval_skip_value (exp);
ced9779b
JB
10119
10120 val = ada_value_cast (to_type, val);
10121
10122 /* Follow the Ada language semantics that do not allow taking
10123 an address of the result of a cast (view conversion in Ada). */
10124 if (VALUE_LVAL (val) == lval_memory)
dda83cd7
SM
10125 {
10126 if (value_lazy (val))
10127 value_fetch_lazy (val);
10128 VALUE_LVAL (val) = not_lval;
10129 }
ced9779b
JB
10130 return val;
10131 }
10132
10133 value *val = evaluate_subexp (to_type, exp, pos, noside);
10134 if (noside == EVAL_SKIP)
10135 return eval_skip_value (exp);
10136 return ada_value_cast (to_type, val);
10137}
10138
284614f0
JB
10139/* Implement the evaluate_exp routine in the exp_descriptor structure
10140 for the Ada language. */
10141
52ce6436 10142static struct value *
ebf56fd3 10143ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
dda83cd7 10144 int *pos, enum noside noside)
14f9c5c9
AS
10145{
10146 enum exp_opcode op;
b5385fc0 10147 int tem;
14f9c5c9 10148 int pc;
5ec18f2b 10149 int preeval_pos;
14f9c5c9
AS
10150 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10151 struct type *type;
52ce6436 10152 int nargs, oplen;
d2e4a39e 10153 struct value **argvec;
14f9c5c9 10154
d2e4a39e
AS
10155 pc = *pos;
10156 *pos += 1;
14f9c5c9
AS
10157 op = exp->elts[pc].opcode;
10158
d2e4a39e 10159 switch (op)
14f9c5c9
AS
10160 {
10161 default:
10162 *pos -= 1;
6e48bd2c 10163 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10164
10165 if (noside == EVAL_NORMAL)
10166 arg1 = unwrap_value (arg1);
6e48bd2c 10167
edd079d9 10168 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
dda83cd7
SM
10169 then we need to perform the conversion manually, because
10170 evaluate_subexp_standard doesn't do it. This conversion is
10171 necessary in Ada because the different kinds of float/fixed
10172 types in Ada have different representations.
6e48bd2c 10173
dda83cd7
SM
10174 Similarly, we need to perform the conversion from OP_LONG
10175 ourselves. */
edd079d9 10176 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
dda83cd7 10177 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10178
10179 return arg1;
4c4b4cd2
PH
10180
10181 case OP_STRING:
10182 {
dda83cd7
SM
10183 struct value *result;
10184
10185 *pos -= 1;
10186 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10187 /* The result type will have code OP_STRING, bashed there from
10188 OP_ARRAY. Bash it back. */
10189 if (value_type (result)->code () == TYPE_CODE_STRING)
10190 value_type (result)->set_code (TYPE_CODE_ARRAY);
10191 return result;
4c4b4cd2 10192 }
14f9c5c9
AS
10193
10194 case UNOP_CAST:
10195 (*pos) += 2;
10196 type = exp->elts[pc + 1].type;
ced9779b 10197 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10198
4c4b4cd2
PH
10199 case UNOP_QUAL:
10200 (*pos) += 2;
10201 type = exp->elts[pc + 1].type;
10202 return ada_evaluate_subexp (type, exp, pos, noside);
10203
14f9c5c9 10204 case BINOP_ASSIGN:
fe1fe7ea 10205 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
52ce6436
PH
10206 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10207 {
10208 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10209 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10210 return arg1;
10211 return ada_value_assign (arg1, arg1);
10212 }
003f3813 10213 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
dda83cd7
SM
10214 except if the lhs of our assignment is a convenience variable.
10215 In the case of assigning to a convenience variable, the lhs
10216 should be exactly the result of the evaluation of the rhs. */
003f3813
JB
10217 type = value_type (arg1);
10218 if (VALUE_LVAL (arg1) == lval_internalvar)
dda83cd7 10219 type = NULL;
003f3813 10220 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10221 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10222 return arg1;
f411722c
TT
10223 if (VALUE_LVAL (arg1) == lval_internalvar)
10224 {
10225 /* Nothing. */
10226 }
b2188a06 10227 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10228 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
b2188a06 10229 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
dda83cd7
SM
10230 error
10231 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10232 else
dda83cd7 10233 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10234 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10235
10236 case BINOP_ADD:
10237 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10238 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10239 if (noside == EVAL_SKIP)
dda83cd7 10240 goto nosideret;
78134374 10241 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10242 return (value_from_longest
10243 (value_type (arg1),
10244 value_as_long (arg1) + value_as_long (arg2)));
78134374 10245 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10246 return (value_from_longest
10247 (value_type (arg2),
10248 value_as_long (arg1) + value_as_long (arg2)));
b2188a06 10249 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10250 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10251 && value_type (arg1) != value_type (arg2))
10252 error (_("Operands of fixed-point addition must have the same type"));
b7789565 10253 /* Do the addition, and cast the result to the type of the first
dda83cd7
SM
10254 argument. We cannot cast the result to a reference type, so if
10255 ARG1 is a reference type, find its underlying type. */
b7789565 10256 type = value_type (arg1);
78134374 10257 while (type->code () == TYPE_CODE_REF)
dda83cd7 10258 type = TYPE_TARGET_TYPE (type);
f44316fa 10259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10260 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10261
10262 case BINOP_SUB:
10263 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10264 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10265 if (noside == EVAL_SKIP)
dda83cd7 10266 goto nosideret;
78134374 10267 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10268 return (value_from_longest
10269 (value_type (arg1),
10270 value_as_long (arg1) - value_as_long (arg2)));
78134374 10271 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10272 return (value_from_longest
10273 (value_type (arg2),
10274 value_as_long (arg1) - value_as_long (arg2)));
b2188a06 10275 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10276 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10277 && value_type (arg1) != value_type (arg2))
10278 error (_("Operands of fixed-point subtraction "
0963b4bd 10279 "must have the same type"));
b7789565 10280 /* Do the substraction, and cast the result to the type of the first
dda83cd7
SM
10281 argument. We cannot cast the result to a reference type, so if
10282 ARG1 is a reference type, find its underlying type. */
b7789565 10283 type = value_type (arg1);
78134374 10284 while (type->code () == TYPE_CODE_REF)
dda83cd7 10285 type = TYPE_TARGET_TYPE (type);
f44316fa 10286 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10287 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10288
10289 case BINOP_MUL:
10290 case BINOP_DIV:
e1578042
JB
10291 case BINOP_REM:
10292 case BINOP_MOD:
fe1fe7ea
SM
10293 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10294 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10295 if (noside == EVAL_SKIP)
dda83cd7 10296 goto nosideret;
e1578042 10297 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10298 {
10299 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10300 return value_zero (value_type (arg1), not_lval);
10301 }
14f9c5c9 10302 else
dda83cd7
SM
10303 {
10304 type = builtin_type (exp->gdbarch)->builtin_double;
10305 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10306 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10307 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10308 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10309 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10310 return ada_value_binop (arg1, arg2, op);
10311 }
4c4b4cd2 10312
4c4b4cd2
PH
10313 case BINOP_EQUAL:
10314 case BINOP_NOTEQUAL:
fe1fe7ea 10315 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
df407dfe 10316 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10317 if (noside == EVAL_SKIP)
dda83cd7 10318 goto nosideret;
4c4b4cd2 10319 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10320 tem = 0;
4c4b4cd2 10321 else
f44316fa
UW
10322 {
10323 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10324 tem = ada_value_equal (arg1, arg2);
10325 }
4c4b4cd2 10326 if (op == BINOP_NOTEQUAL)
dda83cd7 10327 tem = !tem;
fbb06eb1
UW
10328 type = language_bool_type (exp->language_defn, exp->gdbarch);
10329 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10330
10331 case UNOP_NEG:
fe1fe7ea 10332 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10333 if (noside == EVAL_SKIP)
dda83cd7 10334 goto nosideret;
b2188a06 10335 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10336 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10337 else
f44316fa
UW
10338 {
10339 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10340 return value_neg (arg1);
10341 }
4c4b4cd2 10342
2330c6c6
JB
10343 case BINOP_LOGICAL_AND:
10344 case BINOP_LOGICAL_OR:
10345 case UNOP_LOGICAL_NOT:
000d5124 10346 {
dda83cd7 10347 struct value *val;
000d5124 10348
dda83cd7
SM
10349 *pos -= 1;
10350 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1 10351 type = language_bool_type (exp->language_defn, exp->gdbarch);
dda83cd7 10352 return value_cast (type, val);
000d5124 10353 }
2330c6c6
JB
10354
10355 case BINOP_BITWISE_AND:
10356 case BINOP_BITWISE_IOR:
10357 case BINOP_BITWISE_XOR:
000d5124 10358 {
dda83cd7 10359 struct value *val;
000d5124 10360
fe1fe7ea
SM
10361 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10362 *pos = pc;
dda83cd7 10363 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
000d5124 10364
dda83cd7 10365 return value_cast (value_type (arg1), val);
000d5124 10366 }
2330c6c6 10367
14f9c5c9
AS
10368 case OP_VAR_VALUE:
10369 *pos -= 1;
6799def4 10370
14f9c5c9 10371 if (noside == EVAL_SKIP)
dda83cd7
SM
10372 {
10373 *pos += 4;
10374 goto nosideret;
10375 }
da5c522f
JB
10376
10377 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
10378 /* Only encountered when an unresolved symbol occurs in a
10379 context other than a function call, in which case, it is
10380 invalid. */
10381 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10382 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10383
10384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10385 {
10386 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10387 /* Check to see if this is a tagged type. We also need to handle
10388 the case where the type is a reference to a tagged type, but
10389 we have to be careful to exclude pointers to tagged types.
10390 The latter should be shown as usual (as a pointer), whereas
10391 a reference should mostly be transparent to the user. */
10392 if (ada_is_tagged_type (type, 0)
10393 || (type->code () == TYPE_CODE_REF
10394 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10395 {
10396 /* Tagged types are a little special in the fact that the real
10397 type is dynamic and can only be determined by inspecting the
10398 object's tag. This means that we need to get the object's
10399 value first (EVAL_NORMAL) and then extract the actual object
10400 type from its tag.
10401
10402 Note that we cannot skip the final step where we extract
10403 the object type from its tag, because the EVAL_NORMAL phase
10404 results in dynamic components being resolved into fixed ones.
10405 This can cause problems when trying to print the type
10406 description of tagged types whose parent has a dynamic size:
10407 We use the type name of the "_parent" component in order
10408 to print the name of the ancestor type in the type description.
10409 If that component had a dynamic size, the resolution into
10410 a fixed type would result in the loss of that type name,
10411 thus preventing us from printing the name of the ancestor
10412 type in the type description. */
fe1fe7ea 10413 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
0d72a7c3 10414
78134374 10415 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10416 {
10417 struct type *actual_type;
10418
10419 actual_type = type_from_tag (ada_value_tag (arg1));
10420 if (actual_type == NULL)
10421 /* If, for some reason, we were unable to determine
10422 the actual type from the tag, then use the static
10423 approximation that we just computed as a fallback.
10424 This can happen if the debugging information is
10425 incomplete, for instance. */
10426 actual_type = type;
10427 return value_zero (actual_type, not_lval);
10428 }
10429 else
10430 {
10431 /* In the case of a ref, ada_coerce_ref takes care
10432 of determining the actual type. But the evaluation
10433 should return a ref as it should be valid to ask
10434 for its address; so rebuild a ref after coerce. */
10435 arg1 = ada_coerce_ref (arg1);
a65cfae5 10436 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10437 }
10438 }
0c1f74cf 10439
84754697
JB
10440 /* Records and unions for which GNAT encodings have been
10441 generated need to be statically fixed as well.
10442 Otherwise, non-static fixing produces a type where
10443 all dynamic properties are removed, which prevents "ptype"
10444 from being able to completely describe the type.
10445 For instance, a case statement in a variant record would be
10446 replaced by the relevant components based on the actual
10447 value of the discriminants. */
78134374 10448 if ((type->code () == TYPE_CODE_STRUCT
84754697 10449 && dynamic_template_type (type) != NULL)
78134374 10450 || (type->code () == TYPE_CODE_UNION
84754697
JB
10451 && ada_find_parallel_type (type, "___XVU") != NULL))
10452 {
10453 *pos += 4;
10454 return value_zero (to_static_fixed_type (type), not_lval);
10455 }
dda83cd7 10456 }
da5c522f
JB
10457
10458 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10460
10461 case OP_FUNCALL:
10462 (*pos) += 2;
10463
10464 /* Allocate arg vector, including space for the function to be
dda83cd7 10465 called in argvec[0] and a terminating NULL. */
4c4b4cd2 10466 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10467 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10468
10469 if (exp->elts[*pos].opcode == OP_VAR_VALUE
dda83cd7
SM
10470 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10471 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10472 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2 10473 else
dda83cd7
SM
10474 {
10475 for (tem = 0; tem <= nargs; tem += 1)
fe1fe7ea
SM
10476 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10477 argvec[tem] = 0;
4c4b4cd2 10478
dda83cd7
SM
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
10481 }
4c4b4cd2 10482
ad82864c
JB
10483 if (ada_is_constrained_packed_array_type
10484 (desc_base_type (value_type (argvec[0]))))
dda83cd7 10485 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10486 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
dda83cd7
SM
10487 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10488 /* This is a packed array that has already been fixed, and
284614f0
JB
10489 therefore already coerced to a simple array. Nothing further
10490 to do. */
dda83cd7 10491 ;
78134374 10492 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10493 {
10494 /* Make sure we dereference references so that all the code below
10495 feels like it's really handling the referenced value. Wrapping
10496 types (for alignment) may be there, so make sure we strip them as
10497 well. */
10498 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10499 }
78134374 10500 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10501 && VALUE_LVAL (argvec[0]) == lval_memory)
10502 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10503
df407dfe 10504 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10505
10506 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10507 them. So, if this is an array typedef (encoding use for array
10508 access types encoded as fat pointers), strip it now. */
78134374 10509 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10510 type = ada_typedef_target_type (type);
10511
78134374 10512 if (type->code () == TYPE_CODE_PTR)
dda83cd7
SM
10513 {
10514 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10515 {
10516 case TYPE_CODE_FUNC:
10517 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10518 break;
10519 case TYPE_CODE_ARRAY:
10520 break;
10521 case TYPE_CODE_STRUCT:
10522 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10523 argvec[0] = ada_value_ind (argvec[0]);
10524 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10525 break;
10526 default:
10527 error (_("cannot subscript or call something of type `%s'"),
10528 ada_type_name (value_type (argvec[0])));
10529 break;
10530 }
10531 }
4c4b4cd2 10532
78134374 10533 switch (type->code ())
dda83cd7
SM
10534 {
10535 case TYPE_CODE_FUNC:
10536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10537 {
7022349d
PA
10538 if (TYPE_TARGET_TYPE (type) == NULL)
10539 error_call_unknown_return_type (NULL);
10540 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10541 }
e71585ff
PA
10542 return call_function_by_hand (argvec[0], NULL,
10543 gdb::make_array_view (argvec + 1,
10544 nargs));
c8ea1972
PH
10545 case TYPE_CODE_INTERNAL_FUNCTION:
10546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10547 /* We don't know anything about what the internal
10548 function might return, but we have to return
10549 something. */
10550 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10551 not_lval);
10552 else
10553 return call_internal_function (exp->gdbarch, exp->language_defn,
10554 argvec[0], nargs, argvec + 1);
10555
dda83cd7
SM
10556 case TYPE_CODE_STRUCT:
10557 {
10558 int arity;
10559
10560 arity = ada_array_arity (type);
10561 type = ada_array_element_type (type, nargs);
10562 if (type == NULL)
10563 error (_("cannot subscript or call a record"));
10564 if (arity != nargs)
10565 error (_("wrong number of subscripts; expecting %d"), arity);
10566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10567 return value_zero (ada_aligned_type (type), lval_memory);
10568 return
10569 unwrap_value (ada_value_subscript
10570 (argvec[0], nargs, argvec + 1));
10571 }
10572 case TYPE_CODE_ARRAY:
10573 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10574 {
10575 type = ada_array_element_type (type, nargs);
10576 if (type == NULL)
10577 error (_("element type of array unknown"));
10578 else
10579 return value_zero (ada_aligned_type (type), lval_memory);
10580 }
10581 return
10582 unwrap_value (ada_value_subscript
10583 (ada_coerce_to_simple_array (argvec[0]),
10584 nargs, argvec + 1));
10585 case TYPE_CODE_PTR: /* Pointer to array */
10586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10587 {
deede10c 10588 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
dda83cd7
SM
10589 type = ada_array_element_type (type, nargs);
10590 if (type == NULL)
10591 error (_("element type of array unknown"));
10592 else
10593 return value_zero (ada_aligned_type (type), lval_memory);
10594 }
10595 return
10596 unwrap_value (ada_value_ptr_subscript (argvec[0],
deede10c 10597 nargs, argvec + 1));
4c4b4cd2 10598
dda83cd7
SM
10599 default:
10600 error (_("Attempt to index or call something other than an "
e1d5a0d2 10601 "array or function"));
dda83cd7 10602 }
4c4b4cd2
PH
10603
10604 case TERNOP_SLICE:
10605 {
fe1fe7ea
SM
10606 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10607 struct value *low_bound_val
10608 = evaluate_subexp (nullptr, exp, pos, noside);
10609 struct value *high_bound_val
10610 = evaluate_subexp (nullptr, exp, pos, noside);
10611 LONGEST low_bound;
dda83cd7
SM
10612 LONGEST high_bound;
10613
10614 low_bound_val = coerce_ref (low_bound_val);
10615 high_bound_val = coerce_ref (high_bound_val);
10616 low_bound = value_as_long (low_bound_val);
10617 high_bound = value_as_long (high_bound_val);
10618
10619 if (noside == EVAL_SKIP)
10620 goto nosideret;
10621
10622 /* If this is a reference to an aligner type, then remove all
10623 the aligners. */
10624 if (value_type (array)->code () == TYPE_CODE_REF
10625 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10626 TYPE_TARGET_TYPE (value_type (array)) =
10627 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10628
c9a28cbe 10629 if (ada_is_any_packed_array_type (value_type (array)))
dda83cd7
SM
10630 error (_("cannot slice a packed array"));
10631
10632 /* If this is a reference to an array or an array lvalue,
10633 convert to a pointer. */
10634 if (value_type (array)->code () == TYPE_CODE_REF
10635 || (value_type (array)->code () == TYPE_CODE_ARRAY
10636 && VALUE_LVAL (array) == lval_memory))
10637 array = value_addr (array);
10638
10639 if (noside == EVAL_AVOID_SIDE_EFFECTS
10640 && ada_is_array_descriptor_type (ada_check_typedef
10641 (value_type (array))))
10642 return empty_array (ada_type_of_array (array, 0), low_bound,
bff8c71f 10643 high_bound);
4c4b4cd2 10644
dda83cd7
SM
10645 array = ada_coerce_to_simple_array_ptr (array);
10646
10647 /* If we have more than one level of pointer indirection,
10648 dereference the value until we get only one level. */
10649 while (value_type (array)->code () == TYPE_CODE_PTR
10650 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10651 == TYPE_CODE_PTR))
10652 array = value_ind (array);
10653
10654 /* Make sure we really do have an array type before going further,
10655 to avoid a SEGV when trying to get the index type or the target
10656 type later down the road if the debug info generated by
10657 the compiler is incorrect or incomplete. */
10658 if (!ada_is_simple_array_type (value_type (array)))
10659 error (_("cannot take slice of non-array"));
10660
10661 if (ada_check_typedef (value_type (array))->code ()
10662 == TYPE_CODE_PTR)
10663 {
10664 struct type *type0 = ada_check_typedef (value_type (array));
10665
10666 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10667 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10668 else
10669 {
10670 struct type *arr_type0 =
10671 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10672
10673 return ada_value_slice_from_ptr (array, arr_type0,
10674 longest_to_int (low_bound),
10675 longest_to_int (high_bound));
10676 }
10677 }
10678 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10679 return array;
10680 else if (high_bound < low_bound)
10681 return empty_array (value_type (array), low_bound, high_bound);
10682 else
10683 return ada_value_slice (array, longest_to_int (low_bound),
529cad9c 10684 longest_to_int (high_bound));
4c4b4cd2 10685 }
14f9c5c9 10686
4c4b4cd2
PH
10687 case UNOP_IN_RANGE:
10688 (*pos) += 2;
fe1fe7ea 10689 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8008e265 10690 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10691
14f9c5c9 10692 if (noside == EVAL_SKIP)
dda83cd7 10693 goto nosideret;
14f9c5c9 10694
78134374 10695 switch (type->code ())
dda83cd7
SM
10696 {
10697 default:
10698 lim_warning (_("Membership test incompletely implemented; "
e1d5a0d2 10699 "always returns true"));
fbb06eb1
UW
10700 type = language_bool_type (exp->language_defn, exp->gdbarch);
10701 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2 10702
dda83cd7 10703 case TYPE_CODE_RANGE:
5537ddd0
SM
10704 arg2 = value_from_longest (type,
10705 type->bounds ()->low.const_val ());
10706 arg3 = value_from_longest (type,
10707 type->bounds ()->high.const_val ());
f44316fa
UW
10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10710 type = language_bool_type (exp->language_defn, exp->gdbarch);
10711 return
10712 value_from_longest (type,
dda83cd7
SM
10713 (value_less (arg1, arg3)
10714 || value_equal (arg1, arg3))
10715 && (value_less (arg2, arg1)
10716 || value_equal (arg2, arg1)));
10717 }
4c4b4cd2
PH
10718
10719 case BINOP_IN_BOUNDS:
14f9c5c9 10720 (*pos) += 2;
fe1fe7ea
SM
10721 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10722 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10723
4c4b4cd2 10724 if (noside == EVAL_SKIP)
dda83cd7 10725 goto nosideret;
14f9c5c9 10726
4c4b4cd2 10727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10728 {
10729 type = language_bool_type (exp->language_defn, exp->gdbarch);
10730 return value_zero (type, not_lval);
10731 }
14f9c5c9 10732
4c4b4cd2 10733 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10734
1eea4ebd
UW
10735 type = ada_index_type (value_type (arg2), tem, "range");
10736 if (!type)
10737 type = value_type (arg1);
14f9c5c9 10738
1eea4ebd
UW
10739 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10740 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10741
f44316fa
UW
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10744 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10745 return
dda83cd7
SM
10746 value_from_longest (type,
10747 (value_less (arg1, arg3)
10748 || value_equal (arg1, arg3))
10749 && (value_less (arg2, arg1)
10750 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10751
10752 case TERNOP_IN_RANGE:
fe1fe7ea
SM
10753 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10754 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10755 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2
PH
10756
10757 if (noside == EVAL_SKIP)
dda83cd7 10758 goto nosideret;
4c4b4cd2 10759
f44316fa
UW
10760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10761 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10762 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10763 return
dda83cd7
SM
10764 value_from_longest (type,
10765 (value_less (arg1, arg3)
10766 || value_equal (arg1, arg3))
10767 && (value_less (arg2, arg1)
10768 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10769
10770 case OP_ATR_FIRST:
10771 case OP_ATR_LAST:
10772 case OP_ATR_LENGTH:
10773 {
dda83cd7 10774 struct type *type_arg;
5b4ee69b 10775
dda83cd7
SM
10776 if (exp->elts[*pos].opcode == OP_TYPE)
10777 {
fe1fe7ea
SM
10778 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10779 arg1 = NULL;
dda83cd7
SM
10780 type_arg = check_typedef (exp->elts[pc + 2].type);
10781 }
10782 else
10783 {
fe1fe7ea
SM
10784 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10785 type_arg = NULL;
dda83cd7 10786 }
76a01679 10787
dda83cd7
SM
10788 if (exp->elts[*pos].opcode != OP_LONG)
10789 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10790 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10791 *pos += 4;
76a01679 10792
dda83cd7
SM
10793 if (noside == EVAL_SKIP)
10794 goto nosideret;
680e1bee
TT
10795 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 {
10797 if (type_arg == NULL)
10798 type_arg = value_type (arg1);
76a01679 10799
dda83cd7 10800 if (ada_is_constrained_packed_array_type (type_arg))
680e1bee
TT
10801 type_arg = decode_constrained_packed_array_type (type_arg);
10802
10803 if (!discrete_type_p (type_arg))
10804 {
10805 switch (op)
10806 {
10807 default: /* Should never happen. */
10808 error (_("unexpected attribute encountered"));
10809 case OP_ATR_FIRST:
10810 case OP_ATR_LAST:
10811 type_arg = ada_index_type (type_arg, tem,
10812 ada_attribute_name (op));
10813 break;
10814 case OP_ATR_LENGTH:
10815 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10816 break;
10817 }
10818 }
10819
10820 return value_zero (type_arg, not_lval);
10821 }
dda83cd7
SM
10822 else if (type_arg == NULL)
10823 {
10824 arg1 = ada_coerce_ref (arg1);
76a01679 10825
dda83cd7
SM
10826 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10827 arg1 = ada_coerce_to_simple_array (arg1);
76a01679 10828
dda83cd7 10829 if (op == OP_ATR_LENGTH)
1eea4ebd 10830 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10831 else
10832 {
10833 type = ada_index_type (value_type (arg1), tem,
10834 ada_attribute_name (op));
10835 if (type == NULL)
10836 type = builtin_type (exp->gdbarch)->builtin_int;
10837 }
76a01679 10838
dda83cd7
SM
10839 switch (op)
10840 {
10841 default: /* Should never happen. */
10842 error (_("unexpected attribute encountered"));
10843 case OP_ATR_FIRST:
10844 return value_from_longest
1eea4ebd 10845 (type, ada_array_bound (arg1, tem, 0));
dda83cd7
SM
10846 case OP_ATR_LAST:
10847 return value_from_longest
1eea4ebd 10848 (type, ada_array_bound (arg1, tem, 1));
dda83cd7
SM
10849 case OP_ATR_LENGTH:
10850 return value_from_longest
1eea4ebd 10851 (type, ada_array_length (arg1, tem));
dda83cd7
SM
10852 }
10853 }
10854 else if (discrete_type_p (type_arg))
10855 {
10856 struct type *range_type;
10857 const char *name = ada_type_name (type_arg);
10858
10859 range_type = NULL;
10860 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10861 range_type = to_fixed_range_type (type_arg, NULL);
10862 if (range_type == NULL)
10863 range_type = type_arg;
10864 switch (op)
10865 {
10866 default:
10867 error (_("unexpected attribute encountered"));
10868 case OP_ATR_FIRST:
690cc4eb 10869 return value_from_longest
43bbcdc2 10870 (range_type, ada_discrete_type_low_bound (range_type));
dda83cd7
SM
10871 case OP_ATR_LAST:
10872 return value_from_longest
43bbcdc2 10873 (range_type, ada_discrete_type_high_bound (range_type));
dda83cd7
SM
10874 case OP_ATR_LENGTH:
10875 error (_("the 'length attribute applies only to array types"));
10876 }
10877 }
10878 else if (type_arg->code () == TYPE_CODE_FLT)
10879 error (_("unimplemented type attribute"));
10880 else
10881 {
10882 LONGEST low, high;
10883
10884 if (ada_is_constrained_packed_array_type (type_arg))
10885 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10886
aa4fb036 10887 if (op == OP_ATR_LENGTH)
1eea4ebd 10888 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10889 else
10890 {
10891 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10892 if (type == NULL)
10893 type = builtin_type (exp->gdbarch)->builtin_int;
10894 }
1eea4ebd 10895
dda83cd7
SM
10896 switch (op)
10897 {
10898 default:
10899 error (_("unexpected attribute encountered"));
10900 case OP_ATR_FIRST:
10901 low = ada_array_bound_from_type (type_arg, tem, 0);
10902 return value_from_longest (type, low);
10903 case OP_ATR_LAST:
10904 high = ada_array_bound_from_type (type_arg, tem, 1);
10905 return value_from_longest (type, high);
10906 case OP_ATR_LENGTH:
10907 low = ada_array_bound_from_type (type_arg, tem, 0);
10908 high = ada_array_bound_from_type (type_arg, tem, 1);
10909 return value_from_longest (type, high - low + 1);
10910 }
10911 }
14f9c5c9
AS
10912 }
10913
4c4b4cd2 10914 case OP_ATR_TAG:
fe1fe7ea 10915 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10916 if (noside == EVAL_SKIP)
dda83cd7 10917 goto nosideret;
4c4b4cd2
PH
10918
10919 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10920 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10921
10922 return ada_value_tag (arg1);
10923
10924 case OP_ATR_MIN:
10925 case OP_ATR_MAX:
fe1fe7ea
SM
10926 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10927 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10928 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10929 if (noside == EVAL_SKIP)
dda83cd7 10930 goto nosideret;
d2e4a39e 10931 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10932 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10933 else
f44316fa
UW
10934 {
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10936 return value_binop (arg1, arg2,
10937 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10938 }
14f9c5c9 10939
4c4b4cd2
PH
10940 case OP_ATR_MODULUS:
10941 {
dda83cd7 10942 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10943
fe1fe7ea
SM
10944 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10945 if (noside == EVAL_SKIP)
dda83cd7 10946 goto nosideret;
4c4b4cd2 10947
dda83cd7
SM
10948 if (!ada_is_modular_type (type_arg))
10949 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10950
dda83cd7
SM
10951 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10952 ada_modulus (type_arg));
4c4b4cd2
PH
10953 }
10954
10955
10956 case OP_ATR_POS:
fe1fe7ea
SM
10957 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10958 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10959 if (noside == EVAL_SKIP)
dda83cd7 10960 goto nosideret;
3cb382c9
UW
10961 type = builtin_type (exp->gdbarch)->builtin_int;
10962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10963 return value_zero (type, not_lval);
14f9c5c9 10964 else
3cb382c9 10965 return value_pos_atr (type, arg1);
14f9c5c9 10966
4c4b4cd2 10967 case OP_ATR_SIZE:
fe1fe7ea 10968 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8c1c099f
JB
10969 type = value_type (arg1);
10970
10971 /* If the argument is a reference, then dereference its type, since
dda83cd7
SM
10972 the user is really asking for the size of the actual object,
10973 not the size of the pointer. */
78134374 10974 if (type->code () == TYPE_CODE_REF)
dda83cd7 10975 type = TYPE_TARGET_TYPE (type);
8c1c099f 10976
4c4b4cd2 10977 if (noside == EVAL_SKIP)
dda83cd7 10978 goto nosideret;
4c4b4cd2 10979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10980 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10981 else
dda83cd7
SM
10982 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10983 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10984
10985 case OP_ATR_VAL:
fe1fe7ea
SM
10986 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10987 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10988 type = exp->elts[pc + 2].type;
14f9c5c9 10989 if (noside == EVAL_SKIP)
dda83cd7 10990 goto nosideret;
4c4b4cd2 10991 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10992 return value_zero (type, not_lval);
4c4b4cd2 10993 else
dda83cd7 10994 return value_val_atr (type, arg1);
4c4b4cd2
PH
10995
10996 case BINOP_EXP:
fe1fe7ea
SM
10997 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10998 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10999 if (noside == EVAL_SKIP)
dda83cd7 11000 goto nosideret;
4c4b4cd2 11001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11002 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11003 else
f44316fa
UW
11004 {
11005 /* For integer exponentiation operations,
11006 only promote the first argument. */
11007 if (is_integral_type (value_type (arg2)))
11008 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11009 else
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011
11012 return value_binop (arg1, arg2, op);
11013 }
4c4b4cd2
PH
11014
11015 case UNOP_PLUS:
fe1fe7ea 11016 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11017 if (noside == EVAL_SKIP)
dda83cd7 11018 goto nosideret;
4c4b4cd2 11019 else
dda83cd7 11020 return arg1;
4c4b4cd2
PH
11021
11022 case UNOP_ABS:
fe1fe7ea 11023 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11024 if (noside == EVAL_SKIP)
dda83cd7 11025 goto nosideret;
f44316fa 11026 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11027 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
dda83cd7 11028 return value_neg (arg1);
14f9c5c9 11029 else
dda83cd7 11030 return arg1;
14f9c5c9
AS
11031
11032 case UNOP_IND:
5ec18f2b 11033 preeval_pos = *pos;
fe1fe7ea 11034 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11035 if (noside == EVAL_SKIP)
dda83cd7 11036 goto nosideret;
df407dfe 11037 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11039 {
11040 if (ada_is_array_descriptor_type (type))
11041 /* GDB allows dereferencing GNAT array descriptors. */
11042 {
11043 struct type *arrType = ada_type_of_array (arg1, 0);
11044
11045 if (arrType == NULL)
11046 error (_("Attempt to dereference null array pointer."));
11047 return value_at_lazy (arrType, 0);
11048 }
11049 else if (type->code () == TYPE_CODE_PTR
11050 || type->code () == TYPE_CODE_REF
11051 /* In C you can dereference an array to get the 1st elt. */
11052 || type->code () == TYPE_CODE_ARRAY)
11053 {
11054 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11055 only be determined by inspecting the object's tag.
11056 This means that we need to evaluate completely the
11057 expression in order to get its type. */
5ec18f2b 11058
78134374
SM
11059 if ((type->code () == TYPE_CODE_REF
11060 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11061 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11062 {
fe1fe7ea
SM
11063 arg1
11064 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11065 type = value_type (ada_value_ind (arg1));
11066 }
11067 else
11068 {
11069 type = to_static_fixed_type
11070 (ada_aligned_type
11071 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11072 }
c1b5a1a6 11073 ada_ensure_varsize_limit (type);
dda83cd7
SM
11074 return value_zero (type, lval_memory);
11075 }
11076 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11077 {
11078 /* GDB allows dereferencing an int. */
11079 if (expect_type == NULL)
11080 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11081 lval_memory);
11082 else
11083 {
11084 expect_type =
11085 to_static_fixed_type (ada_aligned_type (expect_type));
11086 return value_zero (expect_type, lval_memory);
11087 }
11088 }
dda83cd7
SM
11089 else
11090 error (_("Attempt to take contents of a non-pointer value."));
11091 }
0963b4bd 11092 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11093 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11094
78134374 11095 if (type->code () == TYPE_CODE_INT)
dda83cd7
SM
11096 /* GDB allows dereferencing an int. If we were given
11097 the expect_type, then use that as the target type.
11098 Otherwise, assume that the target type is an int. */
11099 {
11100 if (expect_type != NULL)
96967637
JB
11101 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11102 arg1));
11103 else
11104 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11105 (CORE_ADDR) value_as_address (arg1));
dda83cd7 11106 }
6b0d7253 11107
4c4b4cd2 11108 if (ada_is_array_descriptor_type (type))
dda83cd7
SM
11109 /* GDB allows dereferencing GNAT array descriptors. */
11110 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11111 else
dda83cd7 11112 return ada_value_ind (arg1);
14f9c5c9
AS
11113
11114 case STRUCTOP_STRUCT:
11115 tem = longest_to_int (exp->elts[pc + 1].longconst);
11116 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11117 preeval_pos = *pos;
fe1fe7ea 11118 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11119 if (noside == EVAL_SKIP)
dda83cd7 11120 goto nosideret;
14f9c5c9 11121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11122 {
11123 struct type *type1 = value_type (arg1);
5b4ee69b 11124
dda83cd7
SM
11125 if (ada_is_tagged_type (type1, 1))
11126 {
11127 type = ada_lookup_struct_elt_type (type1,
11128 &exp->elts[pc + 2].string,
11129 1, 1);
5ec18f2b
JG
11130
11131 /* If the field is not found, check if it exists in the
11132 extension of this object's type. This means that we
11133 need to evaluate completely the expression. */
11134
dda83cd7 11135 if (type == NULL)
5ec18f2b 11136 {
fe1fe7ea
SM
11137 arg1
11138 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11139 arg1 = ada_value_struct_elt (arg1,
11140 &exp->elts[pc + 2].string,
11141 0);
11142 arg1 = unwrap_value (arg1);
11143 type = value_type (ada_to_fixed_value (arg1));
11144 }
dda83cd7
SM
11145 }
11146 else
11147 type =
11148 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11149 0);
11150
11151 return value_zero (ada_aligned_type (type), lval_memory);
11152 }
14f9c5c9 11153 else
a579cd9a
MW
11154 {
11155 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11156 arg1 = unwrap_value (arg1);
11157 return ada_to_fixed_value (arg1);
11158 }
284614f0 11159
14f9c5c9 11160 case OP_TYPE:
4c4b4cd2 11161 /* The value is not supposed to be used. This is here to make it
dda83cd7 11162 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11163 (*pos) += 2;
11164 if (noside == EVAL_SKIP)
dda83cd7 11165 goto nosideret;
14f9c5c9 11166 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11167 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11168 else
dda83cd7 11169 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11170
11171 case OP_AGGREGATE:
11172 case OP_CHOICES:
11173 case OP_OTHERS:
11174 case OP_DISCRETE_RANGE:
11175 case OP_POSITIONAL:
11176 case OP_NAME:
11177 if (noside == EVAL_NORMAL)
11178 switch (op)
11179 {
11180 case OP_NAME:
11181 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11182 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11183 case OP_AGGREGATE:
11184 error (_("Aggregates only allowed on the right of an assignment"));
11185 default:
0963b4bd
MS
11186 internal_error (__FILE__, __LINE__,
11187 _("aggregate apparently mangled"));
52ce6436
PH
11188 }
11189
11190 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11191 *pos += oplen - 1;
11192 for (tem = 0; tem < nargs; tem += 1)
11193 ada_evaluate_subexp (NULL, exp, pos, noside);
11194 goto nosideret;
14f9c5c9
AS
11195 }
11196
11197nosideret:
ced9779b 11198 return eval_skip_value (exp);
14f9c5c9 11199}
14f9c5c9 11200\f
d2e4a39e 11201
dda83cd7 11202 /* Fixed point */
14f9c5c9
AS
11203
11204/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11205 type name that encodes the 'small and 'delta information.
4c4b4cd2 11206 Otherwise, return NULL. */
14f9c5c9 11207
d2e4a39e 11208static const char *
60bd1d53 11209gnat_encoded_fixed_point_type_info (struct type *type)
14f9c5c9 11210{
d2e4a39e 11211 const char *name = ada_type_name (type);
78134374 11212 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11213
d2e4a39e
AS
11214 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11215 {
14f9c5c9 11216 const char *tail = strstr (name, "___XF_");
5b4ee69b 11217
14f9c5c9 11218 if (tail == NULL)
dda83cd7 11219 return NULL;
d2e4a39e 11220 else
dda83cd7 11221 return tail + 5;
14f9c5c9
AS
11222 }
11223 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
60bd1d53 11224 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11225 else
11226 return NULL;
11227}
11228
4c4b4cd2 11229/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11230
11231int
b2188a06 11232ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11233{
60bd1d53 11234 return gnat_encoded_fixed_point_type_info (type) != NULL;
14f9c5c9
AS
11235}
11236
4c4b4cd2
PH
11237/* Return non-zero iff TYPE represents a System.Address type. */
11238
11239int
11240ada_is_system_address_type (struct type *type)
11241{
7d93a1e0 11242 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11243}
11244
14f9c5c9 11245/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11246 type, return the target floating-point type to be used to represent
11247 of this type during internal computation. */
11248
11249static struct type *
11250ada_scaling_type (struct type *type)
11251{
11252 return builtin_type (get_type_arch (type))->builtin_long_double;
11253}
11254
11255/* Assuming that TYPE is the representation of an Ada fixed-point
11256 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11257 delta cannot be determined. */
14f9c5c9 11258
50eff16b 11259struct value *
b2188a06 11260gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11261{
60bd1d53 11262 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11263 struct type *scale_type = ada_scaling_type (type);
11264
11265 long long num, den;
11266
11267 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11268 return nullptr;
d2e4a39e 11269 else
50eff16b
UW
11270 return value_binop (value_from_longest (scale_type, num),
11271 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11272}
11273
b2188a06
JB
11274/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11275 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11276
50eff16b 11277struct value *
75f24e86 11278gnat_encoded_fixed_point_scaling_factor (struct type *type)
14f9c5c9 11279{
60bd1d53 11280 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11281 struct type *scale_type = ada_scaling_type (type);
11282
11283 long long num0, den0, num1, den1;
14f9c5c9 11284 int n;
d2e4a39e 11285
50eff16b 11286 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11287 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11288
11289 if (n < 2)
50eff16b 11290 return value_from_longest (scale_type, 1);
14f9c5c9 11291 else if (n == 4)
50eff16b
UW
11292 return value_binop (value_from_longest (scale_type, num1),
11293 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11294 else
50eff16b
UW
11295 return value_binop (value_from_longest (scale_type, num0),
11296 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11297}
11298
14f9c5c9 11299\f
d2e4a39e 11300
dda83cd7 11301 /* Range types */
14f9c5c9
AS
11302
11303/* Scan STR beginning at position K for a discriminant name, and
11304 return the value of that discriminant field of DVAL in *PX. If
11305 PNEW_K is not null, put the position of the character beyond the
11306 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11307 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11308
11309static int
108d56a4 11310scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11311 int *pnew_k)
14f9c5c9
AS
11312{
11313 static char *bound_buffer = NULL;
11314 static size_t bound_buffer_len = 0;
5da1a4d3 11315 const char *pstart, *pend, *bound;
d2e4a39e 11316 struct value *bound_val;
14f9c5c9
AS
11317
11318 if (dval == NULL || str == NULL || str[k] == '\0')
11319 return 0;
11320
5da1a4d3
SM
11321 pstart = str + k;
11322 pend = strstr (pstart, "__");
14f9c5c9
AS
11323 if (pend == NULL)
11324 {
5da1a4d3 11325 bound = pstart;
14f9c5c9
AS
11326 k += strlen (bound);
11327 }
d2e4a39e 11328 else
14f9c5c9 11329 {
5da1a4d3
SM
11330 int len = pend - pstart;
11331
11332 /* Strip __ and beyond. */
11333 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11334 strncpy (bound_buffer, pstart, len);
11335 bound_buffer[len] = '\0';
11336
14f9c5c9 11337 bound = bound_buffer;
d2e4a39e 11338 k = pend - str;
14f9c5c9 11339 }
d2e4a39e 11340
df407dfe 11341 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11342 if (bound_val == NULL)
11343 return 0;
11344
11345 *px = value_as_long (bound_val);
11346 if (pnew_k != NULL)
11347 *pnew_k = k;
11348 return 1;
11349}
11350
11351/* Value of variable named NAME in the current environment. If
11352 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11353 otherwise causes an error with message ERR_MSG. */
11354
d2e4a39e 11355static struct value *
edb0c9cb 11356get_var_value (const char *name, const char *err_msg)
14f9c5c9 11357{
b5ec771e 11358 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11359
54d343a2 11360 std::vector<struct block_symbol> syms;
b5ec771e
PA
11361 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11362 get_selected_block (0),
11363 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11364
11365 if (nsyms != 1)
11366 {
11367 if (err_msg == NULL)
dda83cd7 11368 return 0;
14f9c5c9 11369 else
dda83cd7 11370 error (("%s"), err_msg);
14f9c5c9
AS
11371 }
11372
54d343a2 11373 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11374}
d2e4a39e 11375
edb0c9cb
PA
11376/* Value of integer variable named NAME in the current environment.
11377 If no such variable is found, returns false. Otherwise, sets VALUE
11378 to the variable's value and returns true. */
4c4b4cd2 11379
edb0c9cb
PA
11380bool
11381get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11382{
4c4b4cd2 11383 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11384
14f9c5c9 11385 if (var_val == 0)
edb0c9cb
PA
11386 return false;
11387
11388 value = value_as_long (var_val);
11389 return true;
14f9c5c9 11390}
d2e4a39e 11391
14f9c5c9
AS
11392
11393/* Return a range type whose base type is that of the range type named
11394 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11395 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11396 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11397 corresponding range type from debug information; fall back to using it
11398 if symbol lookup fails. If a new type must be created, allocate it
11399 like ORIG_TYPE was. The bounds information, in general, is encoded
11400 in NAME, the base type given in the named range type. */
14f9c5c9 11401
d2e4a39e 11402static struct type *
28c85d6c 11403to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11404{
0d5cff50 11405 const char *name;
14f9c5c9 11406 struct type *base_type;
108d56a4 11407 const char *subtype_info;
14f9c5c9 11408
28c85d6c 11409 gdb_assert (raw_type != NULL);
7d93a1e0 11410 gdb_assert (raw_type->name () != NULL);
dddfab26 11411
78134374 11412 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11413 base_type = TYPE_TARGET_TYPE (raw_type);
11414 else
11415 base_type = raw_type;
11416
7d93a1e0 11417 name = raw_type->name ();
14f9c5c9
AS
11418 subtype_info = strstr (name, "___XD");
11419 if (subtype_info == NULL)
690cc4eb 11420 {
43bbcdc2
PH
11421 LONGEST L = ada_discrete_type_low_bound (raw_type);
11422 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11423
690cc4eb
PH
11424 if (L < INT_MIN || U > INT_MAX)
11425 return raw_type;
11426 else
0c9c3474
SA
11427 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11428 L, U);
690cc4eb 11429 }
14f9c5c9
AS
11430 else
11431 {
11432 static char *name_buf = NULL;
11433 static size_t name_len = 0;
11434 int prefix_len = subtype_info - name;
11435 LONGEST L, U;
11436 struct type *type;
108d56a4 11437 const char *bounds_str;
14f9c5c9
AS
11438 int n;
11439
11440 GROW_VECT (name_buf, name_len, prefix_len + 5);
11441 strncpy (name_buf, name, prefix_len);
11442 name_buf[prefix_len] = '\0';
11443
11444 subtype_info += 5;
11445 bounds_str = strchr (subtype_info, '_');
11446 n = 1;
11447
d2e4a39e 11448 if (*subtype_info == 'L')
dda83cd7
SM
11449 {
11450 if (!ada_scan_number (bounds_str, n, &L, &n)
11451 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11452 return raw_type;
11453 if (bounds_str[n] == '_')
11454 n += 2;
11455 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11456 n += 1;
11457 subtype_info += 1;
11458 }
d2e4a39e 11459 else
dda83cd7
SM
11460 {
11461 strcpy (name_buf + prefix_len, "___L");
11462 if (!get_int_var_value (name_buf, L))
11463 {
11464 lim_warning (_("Unknown lower bound, using 1."));
11465 L = 1;
11466 }
11467 }
14f9c5c9 11468
d2e4a39e 11469 if (*subtype_info == 'U')
dda83cd7
SM
11470 {
11471 if (!ada_scan_number (bounds_str, n, &U, &n)
11472 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11473 return raw_type;
11474 }
d2e4a39e 11475 else
dda83cd7
SM
11476 {
11477 strcpy (name_buf + prefix_len, "___U");
11478 if (!get_int_var_value (name_buf, U))
11479 {
11480 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11481 U = L;
11482 }
11483 }
14f9c5c9 11484
0c9c3474
SA
11485 type = create_static_range_type (alloc_type_copy (raw_type),
11486 base_type, L, U);
f5a91472 11487 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11488 to match the size of the base_type, which is not what we want.
11489 Set it back to the original range type's length. */
f5a91472 11490 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11491 type->set_name (name);
14f9c5c9
AS
11492 return type;
11493 }
11494}
11495
4c4b4cd2
PH
11496/* True iff NAME is the name of a range type. */
11497
14f9c5c9 11498int
d2e4a39e 11499ada_is_range_type_name (const char *name)
14f9c5c9
AS
11500{
11501 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11502}
14f9c5c9 11503\f
d2e4a39e 11504
dda83cd7 11505 /* Modular types */
4c4b4cd2
PH
11506
11507/* True iff TYPE is an Ada modular type. */
14f9c5c9 11508
14f9c5c9 11509int
d2e4a39e 11510ada_is_modular_type (struct type *type)
14f9c5c9 11511{
18af8284 11512 struct type *subranged_type = get_base_type (type);
14f9c5c9 11513
78134374 11514 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11515 && subranged_type->code () == TYPE_CODE_INT
11516 && subranged_type->is_unsigned ());
14f9c5c9
AS
11517}
11518
4c4b4cd2
PH
11519/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11520
61ee279c 11521ULONGEST
0056e4d5 11522ada_modulus (struct type *type)
14f9c5c9 11523{
5e500d33
SM
11524 const dynamic_prop &high = type->bounds ()->high;
11525
11526 if (high.kind () == PROP_CONST)
11527 return (ULONGEST) high.const_val () + 1;
11528
11529 /* If TYPE is unresolved, the high bound might be a location list. Return
11530 0, for lack of a better value to return. */
11531 return 0;
14f9c5c9 11532}
d2e4a39e 11533\f
f7f9143b
JB
11534
11535/* Ada exception catchpoint support:
11536 ---------------------------------
11537
11538 We support 3 kinds of exception catchpoints:
11539 . catchpoints on Ada exceptions
11540 . catchpoints on unhandled Ada exceptions
11541 . catchpoints on failed assertions
11542
11543 Exceptions raised during failed assertions, or unhandled exceptions
11544 could perfectly be caught with the general catchpoint on Ada exceptions.
11545 However, we can easily differentiate these two special cases, and having
11546 the option to distinguish these two cases from the rest can be useful
11547 to zero-in on certain situations.
11548
11549 Exception catchpoints are a specialized form of breakpoint,
11550 since they rely on inserting breakpoints inside known routines
11551 of the GNAT runtime. The implementation therefore uses a standard
11552 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11553 of breakpoint_ops.
11554
0259addd
JB
11555 Support in the runtime for exception catchpoints have been changed
11556 a few times already, and these changes affect the implementation
11557 of these catchpoints. In order to be able to support several
11558 variants of the runtime, we use a sniffer that will determine
28010a5d 11559 the runtime variant used by the program being debugged. */
f7f9143b 11560
82eacd52
JB
11561/* Ada's standard exceptions.
11562
11563 The Ada 83 standard also defined Numeric_Error. But there so many
11564 situations where it was unclear from the Ada 83 Reference Manual
11565 (RM) whether Constraint_Error or Numeric_Error should be raised,
11566 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11567 Interpretation saying that anytime the RM says that Numeric_Error
11568 should be raised, the implementation may raise Constraint_Error.
11569 Ada 95 went one step further and pretty much removed Numeric_Error
11570 from the list of standard exceptions (it made it a renaming of
11571 Constraint_Error, to help preserve compatibility when compiling
11572 an Ada83 compiler). As such, we do not include Numeric_Error from
11573 this list of standard exceptions. */
3d0b0fa3 11574
27087b7f 11575static const char * const standard_exc[] = {
3d0b0fa3
JB
11576 "constraint_error",
11577 "program_error",
11578 "storage_error",
11579 "tasking_error"
11580};
11581
0259addd
JB
11582typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11583
11584/* A structure that describes how to support exception catchpoints
11585 for a given executable. */
11586
11587struct exception_support_info
11588{
11589 /* The name of the symbol to break on in order to insert
11590 a catchpoint on exceptions. */
11591 const char *catch_exception_sym;
11592
11593 /* The name of the symbol to break on in order to insert
11594 a catchpoint on unhandled exceptions. */
11595 const char *catch_exception_unhandled_sym;
11596
11597 /* The name of the symbol to break on in order to insert
11598 a catchpoint on failed assertions. */
11599 const char *catch_assert_sym;
11600
9f757bf7
XR
11601 /* The name of the symbol to break on in order to insert
11602 a catchpoint on exception handling. */
11603 const char *catch_handlers_sym;
11604
0259addd
JB
11605 /* Assuming that the inferior just triggered an unhandled exception
11606 catchpoint, this function is responsible for returning the address
11607 in inferior memory where the name of that exception is stored.
11608 Return zero if the address could not be computed. */
11609 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11610};
11611
11612static CORE_ADDR ada_unhandled_exception_name_addr (void);
11613static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11614
11615/* The following exception support info structure describes how to
11616 implement exception catchpoints with the latest version of the
ca683e3a 11617 Ada runtime (as of 2019-08-??). */
0259addd
JB
11618
11619static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11620{
11621 "__gnat_debug_raise_exception", /* catch_exception_sym */
11622 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11623 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11624 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11625 ada_unhandled_exception_name_addr
11626};
11627
11628/* The following exception support info structure describes how to
11629 implement exception catchpoints with an earlier version of the
11630 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11631
11632static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11633{
11634 "__gnat_debug_raise_exception", /* catch_exception_sym */
11635 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11636 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11637 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11638 ada_unhandled_exception_name_addr
11639};
11640
11641/* The following exception support info structure describes how to
11642 implement exception catchpoints with a slightly older version
11643 of the Ada runtime. */
11644
11645static const struct exception_support_info exception_support_info_fallback =
11646{
11647 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11648 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11649 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11650 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11651 ada_unhandled_exception_name_addr_from_raise
11652};
11653
f17011e0
JB
11654/* Return nonzero if we can detect the exception support routines
11655 described in EINFO.
11656
11657 This function errors out if an abnormal situation is detected
11658 (for instance, if we find the exception support routines, but
11659 that support is found to be incomplete). */
11660
11661static int
11662ada_has_this_exception_support (const struct exception_support_info *einfo)
11663{
11664 struct symbol *sym;
11665
11666 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11667 that should be compiled with debugging information. As a result, we
11668 expect to find that symbol in the symtabs. */
11669
11670 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11671 if (sym == NULL)
a6af7abe
JB
11672 {
11673 /* Perhaps we did not find our symbol because the Ada runtime was
11674 compiled without debugging info, or simply stripped of it.
11675 It happens on some GNU/Linux distributions for instance, where
11676 users have to install a separate debug package in order to get
11677 the runtime's debugging info. In that situation, let the user
11678 know why we cannot insert an Ada exception catchpoint.
11679
11680 Note: Just for the purpose of inserting our Ada exception
11681 catchpoint, we could rely purely on the associated minimal symbol.
11682 But we would be operating in degraded mode anyway, since we are
11683 still lacking the debugging info needed later on to extract
11684 the name of the exception being raised (this name is printed in
11685 the catchpoint message, and is also used when trying to catch
11686 a specific exception). We do not handle this case for now. */
3b7344d5 11687 struct bound_minimal_symbol msym
1c8e84b0
JB
11688 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11689
3b7344d5 11690 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11691 error (_("Your Ada runtime appears to be missing some debugging "
11692 "information.\nCannot insert Ada exception catchpoint "
11693 "in this configuration."));
11694
11695 return 0;
11696 }
f17011e0
JB
11697
11698 /* Make sure that the symbol we found corresponds to a function. */
11699
11700 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11701 {
11702 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11703 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11704 return 0;
11705 }
11706
11707 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11708 if (sym == NULL)
11709 {
11710 struct bound_minimal_symbol msym
11711 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11712
11713 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11714 error (_("Your Ada runtime appears to be missing some debugging "
11715 "information.\nCannot insert Ada exception catchpoint "
11716 "in this configuration."));
11717
11718 return 0;
11719 }
11720
11721 /* Make sure that the symbol we found corresponds to a function. */
11722
11723 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11724 {
11725 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11726 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11727 return 0;
11728 }
f17011e0
JB
11729
11730 return 1;
11731}
11732
0259addd
JB
11733/* Inspect the Ada runtime and determine which exception info structure
11734 should be used to provide support for exception catchpoints.
11735
3eecfa55
JB
11736 This function will always set the per-inferior exception_info,
11737 or raise an error. */
0259addd
JB
11738
11739static void
11740ada_exception_support_info_sniffer (void)
11741{
3eecfa55 11742 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11743
11744 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11745 if (data->exception_info != NULL)
0259addd
JB
11746 return;
11747
11748 /* Check the latest (default) exception support info. */
f17011e0 11749 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11750 {
3eecfa55 11751 data->exception_info = &default_exception_support_info;
0259addd
JB
11752 return;
11753 }
11754
ca683e3a
AO
11755 /* Try the v0 exception suport info. */
11756 if (ada_has_this_exception_support (&exception_support_info_v0))
11757 {
11758 data->exception_info = &exception_support_info_v0;
11759 return;
11760 }
11761
0259addd 11762 /* Try our fallback exception suport info. */
f17011e0 11763 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11764 {
3eecfa55 11765 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11766 return;
11767 }
11768
11769 /* Sometimes, it is normal for us to not be able to find the routine
11770 we are looking for. This happens when the program is linked with
11771 the shared version of the GNAT runtime, and the program has not been
11772 started yet. Inform the user of these two possible causes if
11773 applicable. */
11774
ccefe4c4 11775 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11776 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11777
11778 /* If the symbol does not exist, then check that the program is
11779 already started, to make sure that shared libraries have been
11780 loaded. If it is not started, this may mean that the symbol is
11781 in a shared library. */
11782
e99b03dc 11783 if (inferior_ptid.pid () == 0)
0259addd
JB
11784 error (_("Unable to insert catchpoint. Try to start the program first."));
11785
11786 /* At this point, we know that we are debugging an Ada program and
11787 that the inferior has been started, but we still are not able to
0963b4bd 11788 find the run-time symbols. That can mean that we are in
0259addd
JB
11789 configurable run time mode, or that a-except as been optimized
11790 out by the linker... In any case, at this point it is not worth
11791 supporting this feature. */
11792
7dda8cff 11793 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11794}
11795
f7f9143b
JB
11796/* True iff FRAME is very likely to be that of a function that is
11797 part of the runtime system. This is all very heuristic, but is
11798 intended to be used as advice as to what frames are uninteresting
11799 to most users. */
11800
11801static int
11802is_known_support_routine (struct frame_info *frame)
11803{
692465f1 11804 enum language func_lang;
f7f9143b 11805 int i;
f35a17b5 11806 const char *fullname;
f7f9143b 11807
4ed6b5be
JB
11808 /* If this code does not have any debugging information (no symtab),
11809 This cannot be any user code. */
f7f9143b 11810
51abb421 11811 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11812 if (sal.symtab == NULL)
11813 return 1;
11814
4ed6b5be
JB
11815 /* If there is a symtab, but the associated source file cannot be
11816 located, then assume this is not user code: Selecting a frame
11817 for which we cannot display the code would not be very helpful
11818 for the user. This should also take care of case such as VxWorks
11819 where the kernel has some debugging info provided for a few units. */
f7f9143b 11820
f35a17b5
JK
11821 fullname = symtab_to_fullname (sal.symtab);
11822 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11823 return 1;
11824
85102364 11825 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11826 We also check the name of the objfile against the name of some
11827 known system libraries that sometimes come with debugging info
11828 too. */
11829
f7f9143b
JB
11830 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11831 {
11832 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11833 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11834 return 1;
eb822aa6 11835 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11836 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11837 return 1;
f7f9143b
JB
11838 }
11839
4ed6b5be 11840 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11841
c6dc63a1
TT
11842 gdb::unique_xmalloc_ptr<char> func_name
11843 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11844 if (func_name == NULL)
11845 return 1;
11846
11847 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11848 {
11849 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11850 if (re_exec (func_name.get ()))
11851 return 1;
f7f9143b
JB
11852 }
11853
11854 return 0;
11855}
11856
11857/* Find the first frame that contains debugging information and that is not
11858 part of the Ada run-time, starting from FI and moving upward. */
11859
0ef643c8 11860void
f7f9143b
JB
11861ada_find_printable_frame (struct frame_info *fi)
11862{
11863 for (; fi != NULL; fi = get_prev_frame (fi))
11864 {
11865 if (!is_known_support_routine (fi))
dda83cd7
SM
11866 {
11867 select_frame (fi);
11868 break;
11869 }
f7f9143b
JB
11870 }
11871
11872}
11873
11874/* Assuming that the inferior just triggered an unhandled exception
11875 catchpoint, return the address in inferior memory where the name
11876 of the exception is stored.
11877
11878 Return zero if the address could not be computed. */
11879
11880static CORE_ADDR
11881ada_unhandled_exception_name_addr (void)
0259addd
JB
11882{
11883 return parse_and_eval_address ("e.full_name");
11884}
11885
11886/* Same as ada_unhandled_exception_name_addr, except that this function
11887 should be used when the inferior uses an older version of the runtime,
11888 where the exception name needs to be extracted from a specific frame
11889 several frames up in the callstack. */
11890
11891static CORE_ADDR
11892ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11893{
11894 int frame_level;
11895 struct frame_info *fi;
3eecfa55 11896 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11897
11898 /* To determine the name of this exception, we need to select
11899 the frame corresponding to RAISE_SYM_NAME. This frame is
11900 at least 3 levels up, so we simply skip the first 3 frames
11901 without checking the name of their associated function. */
11902 fi = get_current_frame ();
11903 for (frame_level = 0; frame_level < 3; frame_level += 1)
11904 if (fi != NULL)
11905 fi = get_prev_frame (fi);
11906
11907 while (fi != NULL)
11908 {
692465f1
JB
11909 enum language func_lang;
11910
c6dc63a1
TT
11911 gdb::unique_xmalloc_ptr<char> func_name
11912 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11913 if (func_name != NULL)
11914 {
dda83cd7 11915 if (strcmp (func_name.get (),
55b87a52
KS
11916 data->exception_info->catch_exception_sym) == 0)
11917 break; /* We found the frame we were looking for... */
55b87a52 11918 }
fb44b1a7 11919 fi = get_prev_frame (fi);
f7f9143b
JB
11920 }
11921
11922 if (fi == NULL)
11923 return 0;
11924
11925 select_frame (fi);
11926 return parse_and_eval_address ("id.full_name");
11927}
11928
11929/* Assuming the inferior just triggered an Ada exception catchpoint
11930 (of any type), return the address in inferior memory where the name
11931 of the exception is stored, if applicable.
11932
45db7c09
PA
11933 Assumes the selected frame is the current frame.
11934
f7f9143b
JB
11935 Return zero if the address could not be computed, or if not relevant. */
11936
11937static CORE_ADDR
761269c8 11938ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11939 struct breakpoint *b)
f7f9143b 11940{
3eecfa55
JB
11941 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11942
f7f9143b
JB
11943 switch (ex)
11944 {
761269c8 11945 case ada_catch_exception:
dda83cd7
SM
11946 return (parse_and_eval_address ("e.full_name"));
11947 break;
f7f9143b 11948
761269c8 11949 case ada_catch_exception_unhandled:
dda83cd7
SM
11950 return data->exception_info->unhandled_exception_name_addr ();
11951 break;
9f757bf7
XR
11952
11953 case ada_catch_handlers:
dda83cd7 11954 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11955 name. */
dda83cd7 11956 break;
9f757bf7 11957
761269c8 11958 case ada_catch_assert:
dda83cd7
SM
11959 return 0; /* Exception name is not relevant in this case. */
11960 break;
f7f9143b
JB
11961
11962 default:
dda83cd7
SM
11963 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11964 break;
f7f9143b
JB
11965 }
11966
11967 return 0; /* Should never be reached. */
11968}
11969
e547c119
JB
11970/* Assuming the inferior is stopped at an exception catchpoint,
11971 return the message which was associated to the exception, if
11972 available. Return NULL if the message could not be retrieved.
11973
e547c119
JB
11974 Note: The exception message can be associated to an exception
11975 either through the use of the Raise_Exception function, or
11976 more simply (Ada 2005 and later), via:
11977
11978 raise Exception_Name with "exception message";
11979
11980 */
11981
6f46ac85 11982static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11983ada_exception_message_1 (void)
11984{
11985 struct value *e_msg_val;
e547c119 11986 int e_msg_len;
e547c119
JB
11987
11988 /* For runtimes that support this feature, the exception message
11989 is passed as an unbounded string argument called "message". */
11990 e_msg_val = parse_and_eval ("message");
11991 if (e_msg_val == NULL)
11992 return NULL; /* Exception message not supported. */
11993
11994 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11995 gdb_assert (e_msg_val != NULL);
11996 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11997
11998 /* If the message string is empty, then treat it as if there was
11999 no exception message. */
12000 if (e_msg_len <= 0)
12001 return NULL;
12002
15f3b077
TT
12003 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12004 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12005 e_msg_len);
12006 e_msg.get ()[e_msg_len] = '\0';
12007
12008 return e_msg;
e547c119
JB
12009}
12010
12011/* Same as ada_exception_message_1, except that all exceptions are
12012 contained here (returning NULL instead). */
12013
6f46ac85 12014static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12015ada_exception_message (void)
12016{
6f46ac85 12017 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12018
a70b8144 12019 try
e547c119
JB
12020 {
12021 e_msg = ada_exception_message_1 ();
12022 }
230d2906 12023 catch (const gdb_exception_error &e)
e547c119 12024 {
6f46ac85 12025 e_msg.reset (nullptr);
e547c119 12026 }
e547c119
JB
12027
12028 return e_msg;
12029}
12030
f7f9143b
JB
12031/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12032 any error that ada_exception_name_addr_1 might cause to be thrown.
12033 When an error is intercepted, a warning with the error message is printed,
12034 and zero is returned. */
12035
12036static CORE_ADDR
761269c8 12037ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 12038 struct breakpoint *b)
f7f9143b 12039{
f7f9143b
JB
12040 CORE_ADDR result = 0;
12041
a70b8144 12042 try
f7f9143b
JB
12043 {
12044 result = ada_exception_name_addr_1 (ex, b);
12045 }
12046
230d2906 12047 catch (const gdb_exception_error &e)
f7f9143b 12048 {
3d6e9d23 12049 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12050 return 0;
12051 }
12052
12053 return result;
12054}
12055
cb7de75e 12056static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12057 (const char *excep_string,
12058 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12059
12060/* Ada catchpoints.
12061
12062 In the case of catchpoints on Ada exceptions, the catchpoint will
12063 stop the target on every exception the program throws. When a user
12064 specifies the name of a specific exception, we translate this
12065 request into a condition expression (in text form), and then parse
12066 it into an expression stored in each of the catchpoint's locations.
12067 We then use this condition to check whether the exception that was
12068 raised is the one the user is interested in. If not, then the
12069 target is resumed again. We store the name of the requested
12070 exception, in order to be able to re-set the condition expression
12071 when symbols change. */
12072
12073/* An instance of this type is used to represent an Ada catchpoint
5625a286 12074 breakpoint location. */
28010a5d 12075
5625a286 12076class ada_catchpoint_location : public bp_location
28010a5d 12077{
5625a286 12078public:
5f486660 12079 ada_catchpoint_location (breakpoint *owner)
f06f1252 12080 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12081 {}
28010a5d
PA
12082
12083 /* The condition that checks whether the exception that was raised
12084 is the specific exception the user specified on catchpoint
12085 creation. */
4d01a485 12086 expression_up excep_cond_expr;
28010a5d
PA
12087};
12088
c1fc2657 12089/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12090
c1fc2657 12091struct ada_catchpoint : public breakpoint
28010a5d 12092{
37f6a7f4
TT
12093 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12094 : m_kind (kind)
12095 {
12096 }
12097
28010a5d 12098 /* The name of the specific exception the user specified. */
bc18fbb5 12099 std::string excep_string;
37f6a7f4
TT
12100
12101 /* What kind of catchpoint this is. */
12102 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12103};
12104
12105/* Parse the exception condition string in the context of each of the
12106 catchpoint's locations, and store them for later evaluation. */
12107
12108static void
9f757bf7 12109create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12110 enum ada_exception_catchpoint_kind ex)
28010a5d 12111{
fccf9de1
TT
12112 struct bp_location *bl;
12113
28010a5d 12114 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12115 if (c->excep_string.empty ())
28010a5d
PA
12116 return;
12117
12118 /* Same if there are no locations... */
c1fc2657 12119 if (c->loc == NULL)
28010a5d
PA
12120 return;
12121
fccf9de1
TT
12122 /* Compute the condition expression in text form, from the specific
12123 expection we want to catch. */
12124 std::string cond_string
12125 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12126
fccf9de1
TT
12127 /* Iterate over all the catchpoint's locations, and parse an
12128 expression for each. */
12129 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12130 {
12131 struct ada_catchpoint_location *ada_loc
fccf9de1 12132 = (struct ada_catchpoint_location *) bl;
4d01a485 12133 expression_up exp;
28010a5d 12134
fccf9de1 12135 if (!bl->shlib_disabled)
28010a5d 12136 {
bbc13ae3 12137 const char *s;
28010a5d 12138
cb7de75e 12139 s = cond_string.c_str ();
a70b8144 12140 try
28010a5d 12141 {
fccf9de1
TT
12142 exp = parse_exp_1 (&s, bl->address,
12143 block_for_pc (bl->address),
036e657b 12144 0);
28010a5d 12145 }
230d2906 12146 catch (const gdb_exception_error &e)
849f2b52
JB
12147 {
12148 warning (_("failed to reevaluate internal exception condition "
12149 "for catchpoint %d: %s"),
3d6e9d23 12150 c->number, e.what ());
849f2b52 12151 }
28010a5d
PA
12152 }
12153
b22e99fd 12154 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12155 }
28010a5d
PA
12156}
12157
28010a5d
PA
12158/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12159 structure for all exception catchpoint kinds. */
12160
12161static struct bp_location *
37f6a7f4 12162allocate_location_exception (struct breakpoint *self)
28010a5d 12163{
5f486660 12164 return new ada_catchpoint_location (self);
28010a5d
PA
12165}
12166
12167/* Implement the RE_SET method in the breakpoint_ops structure for all
12168 exception catchpoint kinds. */
12169
12170static void
37f6a7f4 12171re_set_exception (struct breakpoint *b)
28010a5d
PA
12172{
12173 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12174
12175 /* Call the base class's method. This updates the catchpoint's
12176 locations. */
2060206e 12177 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12178
12179 /* Reparse the exception conditional expressions. One for each
12180 location. */
37f6a7f4 12181 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12182}
12183
12184/* Returns true if we should stop for this breakpoint hit. If the
12185 user specified a specific exception, we only want to cause a stop
12186 if the program thrown that exception. */
12187
12188static int
12189should_stop_exception (const struct bp_location *bl)
12190{
12191 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12192 const struct ada_catchpoint_location *ada_loc
12193 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12194 int stop;
12195
37f6a7f4
TT
12196 struct internalvar *var = lookup_internalvar ("_ada_exception");
12197 if (c->m_kind == ada_catch_assert)
12198 clear_internalvar (var);
12199 else
12200 {
12201 try
12202 {
12203 const char *expr;
12204
12205 if (c->m_kind == ada_catch_handlers)
12206 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12207 ".all.occurrence.id");
12208 else
12209 expr = "e";
12210
12211 struct value *exc = parse_and_eval (expr);
12212 set_internalvar (var, exc);
12213 }
12214 catch (const gdb_exception_error &ex)
12215 {
12216 clear_internalvar (var);
12217 }
12218 }
12219
28010a5d 12220 /* With no specific exception, should always stop. */
bc18fbb5 12221 if (c->excep_string.empty ())
28010a5d
PA
12222 return 1;
12223
12224 if (ada_loc->excep_cond_expr == NULL)
12225 {
12226 /* We will have a NULL expression if back when we were creating
12227 the expressions, this location's had failed to parse. */
12228 return 1;
12229 }
12230
12231 stop = 1;
a70b8144 12232 try
28010a5d
PA
12233 {
12234 struct value *mark;
12235
12236 mark = value_mark ();
4d01a485 12237 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12238 value_free_to_mark (mark);
12239 }
230d2906 12240 catch (const gdb_exception &ex)
492d29ea
PA
12241 {
12242 exception_fprintf (gdb_stderr, ex,
12243 _("Error in testing exception condition:\n"));
12244 }
492d29ea 12245
28010a5d
PA
12246 return stop;
12247}
12248
12249/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12250 for all exception catchpoint kinds. */
12251
12252static void
37f6a7f4 12253check_status_exception (bpstat bs)
28010a5d
PA
12254{
12255 bs->stop = should_stop_exception (bs->bp_location_at);
12256}
12257
f7f9143b
JB
12258/* Implement the PRINT_IT method in the breakpoint_ops structure
12259 for all exception catchpoint kinds. */
12260
12261static enum print_stop_action
37f6a7f4 12262print_it_exception (bpstat bs)
f7f9143b 12263{
79a45e25 12264 struct ui_out *uiout = current_uiout;
348d480f
PA
12265 struct breakpoint *b = bs->breakpoint_at;
12266
956a9fb9 12267 annotate_catchpoint (b->number);
f7f9143b 12268
112e8700 12269 if (uiout->is_mi_like_p ())
f7f9143b 12270 {
112e8700 12271 uiout->field_string ("reason",
956a9fb9 12272 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12273 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12274 }
12275
112e8700
SM
12276 uiout->text (b->disposition == disp_del
12277 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12278 uiout->field_signed ("bkptno", b->number);
112e8700 12279 uiout->text (", ");
f7f9143b 12280
45db7c09
PA
12281 /* ada_exception_name_addr relies on the selected frame being the
12282 current frame. Need to do this here because this function may be
12283 called more than once when printing a stop, and below, we'll
12284 select the first frame past the Ada run-time (see
12285 ada_find_printable_frame). */
12286 select_frame (get_current_frame ());
12287
37f6a7f4
TT
12288 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12289 switch (c->m_kind)
f7f9143b 12290 {
761269c8
JB
12291 case ada_catch_exception:
12292 case ada_catch_exception_unhandled:
9f757bf7 12293 case ada_catch_handlers:
956a9fb9 12294 {
37f6a7f4 12295 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12296 char exception_name[256];
12297
12298 if (addr != 0)
12299 {
c714b426
PA
12300 read_memory (addr, (gdb_byte *) exception_name,
12301 sizeof (exception_name) - 1);
956a9fb9
JB
12302 exception_name [sizeof (exception_name) - 1] = '\0';
12303 }
12304 else
12305 {
12306 /* For some reason, we were unable to read the exception
12307 name. This could happen if the Runtime was compiled
12308 without debugging info, for instance. In that case,
12309 just replace the exception name by the generic string
12310 "exception" - it will read as "an exception" in the
12311 notification we are about to print. */
967cff16 12312 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12313 }
12314 /* In the case of unhandled exception breakpoints, we print
12315 the exception name as "unhandled EXCEPTION_NAME", to make
12316 it clearer to the user which kind of catchpoint just got
12317 hit. We used ui_out_text to make sure that this extra
12318 info does not pollute the exception name in the MI case. */
37f6a7f4 12319 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12320 uiout->text ("unhandled ");
12321 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12322 }
12323 break;
761269c8 12324 case ada_catch_assert:
956a9fb9
JB
12325 /* In this case, the name of the exception is not really
12326 important. Just print "failed assertion" to make it clearer
12327 that his program just hit an assertion-failure catchpoint.
12328 We used ui_out_text because this info does not belong in
12329 the MI output. */
112e8700 12330 uiout->text ("failed assertion");
956a9fb9 12331 break;
f7f9143b 12332 }
e547c119 12333
6f46ac85 12334 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12335 if (exception_message != NULL)
12336 {
e547c119 12337 uiout->text (" (");
6f46ac85 12338 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12339 uiout->text (")");
e547c119
JB
12340 }
12341
112e8700 12342 uiout->text (" at ");
956a9fb9 12343 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12344
12345 return PRINT_SRC_AND_LOC;
12346}
12347
12348/* Implement the PRINT_ONE method in the breakpoint_ops structure
12349 for all exception catchpoint kinds. */
12350
12351static void
37f6a7f4 12352print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12353{
79a45e25 12354 struct ui_out *uiout = current_uiout;
28010a5d 12355 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12356 struct value_print_options opts;
12357
12358 get_user_print_options (&opts);
f06f1252 12359
79a45b7d 12360 if (opts.addressprint)
f06f1252 12361 uiout->field_skip ("addr");
f7f9143b
JB
12362
12363 annotate_field (5);
37f6a7f4 12364 switch (c->m_kind)
f7f9143b 12365 {
761269c8 12366 case ada_catch_exception:
dda83cd7
SM
12367 if (!c->excep_string.empty ())
12368 {
bc18fbb5
TT
12369 std::string msg = string_printf (_("`%s' Ada exception"),
12370 c->excep_string.c_str ());
28010a5d 12371
dda83cd7
SM
12372 uiout->field_string ("what", msg);
12373 }
12374 else
12375 uiout->field_string ("what", "all Ada exceptions");
12376
12377 break;
f7f9143b 12378
761269c8 12379 case ada_catch_exception_unhandled:
dda83cd7
SM
12380 uiout->field_string ("what", "unhandled Ada exceptions");
12381 break;
f7f9143b 12382
9f757bf7 12383 case ada_catch_handlers:
dda83cd7
SM
12384 if (!c->excep_string.empty ())
12385 {
9f757bf7
XR
12386 uiout->field_fmt ("what",
12387 _("`%s' Ada exception handlers"),
bc18fbb5 12388 c->excep_string.c_str ());
dda83cd7
SM
12389 }
12390 else
9f757bf7 12391 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12392 break;
9f757bf7 12393
761269c8 12394 case ada_catch_assert:
dda83cd7
SM
12395 uiout->field_string ("what", "failed Ada assertions");
12396 break;
f7f9143b
JB
12397
12398 default:
dda83cd7
SM
12399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12400 break;
f7f9143b
JB
12401 }
12402}
12403
12404/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12405 for all exception catchpoint kinds. */
12406
12407static void
37f6a7f4 12408print_mention_exception (struct breakpoint *b)
f7f9143b 12409{
28010a5d 12410 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12411 struct ui_out *uiout = current_uiout;
28010a5d 12412
112e8700 12413 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12414 : _("Catchpoint "));
381befee 12415 uiout->field_signed ("bkptno", b->number);
112e8700 12416 uiout->text (": ");
00eb2c4a 12417
37f6a7f4 12418 switch (c->m_kind)
f7f9143b 12419 {
761269c8 12420 case ada_catch_exception:
dda83cd7 12421 if (!c->excep_string.empty ())
00eb2c4a 12422 {
862d101a 12423 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12424 c->excep_string.c_str ());
862d101a 12425 uiout->text (info.c_str ());
00eb2c4a 12426 }
dda83cd7
SM
12427 else
12428 uiout->text (_("all Ada exceptions"));
12429 break;
f7f9143b 12430
761269c8 12431 case ada_catch_exception_unhandled:
dda83cd7
SM
12432 uiout->text (_("unhandled Ada exceptions"));
12433 break;
9f757bf7
XR
12434
12435 case ada_catch_handlers:
dda83cd7 12436 if (!c->excep_string.empty ())
9f757bf7
XR
12437 {
12438 std::string info
12439 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12440 c->excep_string.c_str ());
9f757bf7
XR
12441 uiout->text (info.c_str ());
12442 }
dda83cd7
SM
12443 else
12444 uiout->text (_("all Ada exceptions handlers"));
12445 break;
9f757bf7 12446
761269c8 12447 case ada_catch_assert:
dda83cd7
SM
12448 uiout->text (_("failed Ada assertions"));
12449 break;
f7f9143b
JB
12450
12451 default:
dda83cd7
SM
12452 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12453 break;
f7f9143b
JB
12454 }
12455}
12456
6149aea9
PA
12457/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12458 for all exception catchpoint kinds. */
12459
12460static void
37f6a7f4 12461print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12462{
28010a5d
PA
12463 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12464
37f6a7f4 12465 switch (c->m_kind)
6149aea9 12466 {
761269c8 12467 case ada_catch_exception:
6149aea9 12468 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12469 if (!c->excep_string.empty ())
12470 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12471 break;
12472
761269c8 12473 case ada_catch_exception_unhandled:
78076abc 12474 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12475 break;
12476
9f757bf7
XR
12477 case ada_catch_handlers:
12478 fprintf_filtered (fp, "catch handlers");
12479 break;
12480
761269c8 12481 case ada_catch_assert:
6149aea9
PA
12482 fprintf_filtered (fp, "catch assert");
12483 break;
12484
12485 default:
12486 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12487 }
d9b3f62e 12488 print_recreate_thread (b, fp);
6149aea9
PA
12489}
12490
37f6a7f4 12491/* Virtual tables for various breakpoint types. */
2060206e 12492static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12493static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12494static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12495static struct breakpoint_ops catch_handlers_breakpoint_ops;
12496
f06f1252
TT
12497/* See ada-lang.h. */
12498
12499bool
12500is_ada_exception_catchpoint (breakpoint *bp)
12501{
12502 return (bp->ops == &catch_exception_breakpoint_ops
12503 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12504 || bp->ops == &catch_assert_breakpoint_ops
12505 || bp->ops == &catch_handlers_breakpoint_ops);
12506}
12507
f7f9143b
JB
12508/* Split the arguments specified in a "catch exception" command.
12509 Set EX to the appropriate catchpoint type.
28010a5d 12510 Set EXCEP_STRING to the name of the specific exception if
5845583d 12511 specified by the user.
9f757bf7
XR
12512 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12513 "catch handlers" command. False otherwise.
5845583d
JB
12514 If a condition is found at the end of the arguments, the condition
12515 expression is stored in COND_STRING (memory must be deallocated
12516 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12517
12518static void
a121b7c1 12519catch_ada_exception_command_split (const char *args,
9f757bf7 12520 bool is_catch_handlers_cmd,
dda83cd7 12521 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12522 std::string *excep_string,
12523 std::string *cond_string)
f7f9143b 12524{
bc18fbb5 12525 std::string exception_name;
f7f9143b 12526
bc18fbb5
TT
12527 exception_name = extract_arg (&args);
12528 if (exception_name == "if")
5845583d
JB
12529 {
12530 /* This is not an exception name; this is the start of a condition
12531 expression for a catchpoint on all exceptions. So, "un-get"
12532 this token, and set exception_name to NULL. */
bc18fbb5 12533 exception_name.clear ();
5845583d
JB
12534 args -= 2;
12535 }
f7f9143b 12536
5845583d 12537 /* Check to see if we have a condition. */
f7f9143b 12538
f1735a53 12539 args = skip_spaces (args);
61012eef 12540 if (startswith (args, "if")
5845583d
JB
12541 && (isspace (args[2]) || args[2] == '\0'))
12542 {
12543 args += 2;
f1735a53 12544 args = skip_spaces (args);
5845583d
JB
12545
12546 if (args[0] == '\0')
dda83cd7 12547 error (_("Condition missing after `if' keyword"));
bc18fbb5 12548 *cond_string = args;
5845583d
JB
12549
12550 args += strlen (args);
12551 }
12552
12553 /* Check that we do not have any more arguments. Anything else
12554 is unexpected. */
f7f9143b
JB
12555
12556 if (args[0] != '\0')
12557 error (_("Junk at end of expression"));
12558
9f757bf7
XR
12559 if (is_catch_handlers_cmd)
12560 {
12561 /* Catch handling of exceptions. */
12562 *ex = ada_catch_handlers;
12563 *excep_string = exception_name;
12564 }
bc18fbb5 12565 else if (exception_name.empty ())
f7f9143b
JB
12566 {
12567 /* Catch all exceptions. */
761269c8 12568 *ex = ada_catch_exception;
bc18fbb5 12569 excep_string->clear ();
f7f9143b 12570 }
bc18fbb5 12571 else if (exception_name == "unhandled")
f7f9143b
JB
12572 {
12573 /* Catch unhandled exceptions. */
761269c8 12574 *ex = ada_catch_exception_unhandled;
bc18fbb5 12575 excep_string->clear ();
f7f9143b
JB
12576 }
12577 else
12578 {
12579 /* Catch a specific exception. */
761269c8 12580 *ex = ada_catch_exception;
28010a5d 12581 *excep_string = exception_name;
f7f9143b
JB
12582 }
12583}
12584
12585/* Return the name of the symbol on which we should break in order to
12586 implement a catchpoint of the EX kind. */
12587
12588static const char *
761269c8 12589ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12590{
3eecfa55
JB
12591 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12592
12593 gdb_assert (data->exception_info != NULL);
0259addd 12594
f7f9143b
JB
12595 switch (ex)
12596 {
761269c8 12597 case ada_catch_exception:
dda83cd7
SM
12598 return (data->exception_info->catch_exception_sym);
12599 break;
761269c8 12600 case ada_catch_exception_unhandled:
dda83cd7
SM
12601 return (data->exception_info->catch_exception_unhandled_sym);
12602 break;
761269c8 12603 case ada_catch_assert:
dda83cd7
SM
12604 return (data->exception_info->catch_assert_sym);
12605 break;
9f757bf7 12606 case ada_catch_handlers:
dda83cd7
SM
12607 return (data->exception_info->catch_handlers_sym);
12608 break;
f7f9143b 12609 default:
dda83cd7
SM
12610 internal_error (__FILE__, __LINE__,
12611 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12612 }
12613}
12614
12615/* Return the breakpoint ops "virtual table" used for catchpoints
12616 of the EX kind. */
12617
c0a91b2b 12618static const struct breakpoint_ops *
761269c8 12619ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12620{
12621 switch (ex)
12622 {
761269c8 12623 case ada_catch_exception:
dda83cd7
SM
12624 return (&catch_exception_breakpoint_ops);
12625 break;
761269c8 12626 case ada_catch_exception_unhandled:
dda83cd7
SM
12627 return (&catch_exception_unhandled_breakpoint_ops);
12628 break;
761269c8 12629 case ada_catch_assert:
dda83cd7
SM
12630 return (&catch_assert_breakpoint_ops);
12631 break;
9f757bf7 12632 case ada_catch_handlers:
dda83cd7
SM
12633 return (&catch_handlers_breakpoint_ops);
12634 break;
f7f9143b 12635 default:
dda83cd7
SM
12636 internal_error (__FILE__, __LINE__,
12637 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12638 }
12639}
12640
12641/* Return the condition that will be used to match the current exception
12642 being raised with the exception that the user wants to catch. This
12643 assumes that this condition is used when the inferior just triggered
12644 an exception catchpoint.
cb7de75e 12645 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12646
cb7de75e 12647static std::string
9f757bf7 12648ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12649 enum ada_exception_catchpoint_kind ex)
f7f9143b 12650{
3d0b0fa3 12651 int i;
fccf9de1 12652 bool is_standard_exc = false;
cb7de75e 12653 std::string result;
9f757bf7
XR
12654
12655 if (ex == ada_catch_handlers)
12656 {
12657 /* For exception handlers catchpoints, the condition string does
dda83cd7 12658 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12659 result = ("long_integer (GNAT_GCC_exception_Access"
12660 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12661 }
12662 else
fccf9de1 12663 result = "long_integer (e)";
3d0b0fa3 12664
0963b4bd 12665 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12666 runtime units that have been compiled without debugging info; if
28010a5d 12667 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12668 exception (e.g. "constraint_error") then, during the evaluation
12669 of the condition expression, the symbol lookup on this name would
0963b4bd 12670 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12671 may then be set only on user-defined exceptions which have the
12672 same not-fully-qualified name (e.g. my_package.constraint_error).
12673
12674 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12675 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12676 exception constraint_error" is rewritten into "catch exception
12677 standard.constraint_error".
12678
85102364 12679 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12680 the inferior program, then the only way to specify this exception as a
12681 breakpoint condition is to use its fully-qualified named:
fccf9de1 12682 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12683
12684 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12685 {
28010a5d 12686 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12687 {
fccf9de1 12688 is_standard_exc = true;
9f757bf7 12689 break;
3d0b0fa3
JB
12690 }
12691 }
9f757bf7 12692
fccf9de1
TT
12693 result += " = ";
12694
12695 if (is_standard_exc)
12696 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12697 else
12698 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12699
9f757bf7 12700 return result;
f7f9143b
JB
12701}
12702
12703/* Return the symtab_and_line that should be used to insert an exception
12704 catchpoint of the TYPE kind.
12705
28010a5d
PA
12706 ADDR_STRING returns the name of the function where the real
12707 breakpoint that implements the catchpoints is set, depending on the
12708 type of catchpoint we need to create. */
f7f9143b
JB
12709
12710static struct symtab_and_line
bc18fbb5 12711ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12712 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12713{
12714 const char *sym_name;
12715 struct symbol *sym;
f7f9143b 12716
0259addd
JB
12717 /* First, find out which exception support info to use. */
12718 ada_exception_support_info_sniffer ();
12719
12720 /* Then lookup the function on which we will break in order to catch
f7f9143b 12721 the Ada exceptions requested by the user. */
f7f9143b
JB
12722 sym_name = ada_exception_sym_name (ex);
12723 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12724
57aff202
JB
12725 if (sym == NULL)
12726 error (_("Catchpoint symbol not found: %s"), sym_name);
12727
12728 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12729 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12730
12731 /* Set ADDR_STRING. */
cc12f4a8 12732 *addr_string = sym_name;
f7f9143b 12733
f7f9143b 12734 /* Set OPS. */
4b9eee8c 12735 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12736
f17011e0 12737 return find_function_start_sal (sym, 1);
f7f9143b
JB
12738}
12739
b4a5b78b 12740/* Create an Ada exception catchpoint.
f7f9143b 12741
b4a5b78b 12742 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12743
bc18fbb5 12744 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12745 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12746 of the exception to which this catchpoint applies.
2df4d1d5 12747
bc18fbb5 12748 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12749
b4a5b78b
JB
12750 TEMPFLAG, if nonzero, means that the underlying breakpoint
12751 should be temporary.
28010a5d 12752
b4a5b78b 12753 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12754
349774ef 12755void
28010a5d 12756create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12757 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12758 const std::string &excep_string,
56ecd069 12759 const std::string &cond_string,
28010a5d 12760 int tempflag,
349774ef 12761 int disabled,
28010a5d
PA
12762 int from_tty)
12763{
cc12f4a8 12764 std::string addr_string;
b4a5b78b 12765 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12766 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12767
37f6a7f4 12768 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12769 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12770 ops, tempflag, disabled, from_tty);
28010a5d 12771 c->excep_string = excep_string;
9f757bf7 12772 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12773 if (!cond_string.empty ())
733d554a 12774 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12775 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12776}
12777
9ac4176b
PA
12778/* Implement the "catch exception" command. */
12779
12780static void
eb4c3f4a 12781catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12782 struct cmd_list_element *command)
12783{
a121b7c1 12784 const char *arg = arg_entry;
9ac4176b
PA
12785 struct gdbarch *gdbarch = get_current_arch ();
12786 int tempflag;
761269c8 12787 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12788 std::string excep_string;
56ecd069 12789 std::string cond_string;
9ac4176b
PA
12790
12791 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12792
12793 if (!arg)
12794 arg = "";
9f757bf7 12795 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12796 &cond_string);
9f757bf7
XR
12797 create_ada_exception_catchpoint (gdbarch, ex_kind,
12798 excep_string, cond_string,
12799 tempflag, 1 /* enabled */,
12800 from_tty);
12801}
12802
12803/* Implement the "catch handlers" command. */
12804
12805static void
12806catch_ada_handlers_command (const char *arg_entry, int from_tty,
12807 struct cmd_list_element *command)
12808{
12809 const char *arg = arg_entry;
12810 struct gdbarch *gdbarch = get_current_arch ();
12811 int tempflag;
12812 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12813 std::string excep_string;
56ecd069 12814 std::string cond_string;
9f757bf7
XR
12815
12816 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12817
12818 if (!arg)
12819 arg = "";
12820 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12821 &cond_string);
b4a5b78b
JB
12822 create_ada_exception_catchpoint (gdbarch, ex_kind,
12823 excep_string, cond_string,
349774ef
JB
12824 tempflag, 1 /* enabled */,
12825 from_tty);
9ac4176b
PA
12826}
12827
71bed2db
TT
12828/* Completion function for the Ada "catch" commands. */
12829
12830static void
12831catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12832 const char *text, const char *word)
12833{
12834 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12835
12836 for (const ada_exc_info &info : exceptions)
12837 {
12838 if (startswith (info.name, word))
b02f78f9 12839 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12840 }
12841}
12842
b4a5b78b 12843/* Split the arguments specified in a "catch assert" command.
5845583d 12844
b4a5b78b
JB
12845 ARGS contains the command's arguments (or the empty string if
12846 no arguments were passed).
5845583d
JB
12847
12848 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12849 (the memory needs to be deallocated after use). */
5845583d 12850
b4a5b78b 12851static void
56ecd069 12852catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12853{
f1735a53 12854 args = skip_spaces (args);
f7f9143b 12855
5845583d 12856 /* Check whether a condition was provided. */
61012eef 12857 if (startswith (args, "if")
5845583d 12858 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12859 {
5845583d 12860 args += 2;
f1735a53 12861 args = skip_spaces (args);
5845583d 12862 if (args[0] == '\0')
dda83cd7 12863 error (_("condition missing after `if' keyword"));
56ecd069 12864 cond_string.assign (args);
f7f9143b
JB
12865 }
12866
5845583d
JB
12867 /* Otherwise, there should be no other argument at the end of
12868 the command. */
12869 else if (args[0] != '\0')
12870 error (_("Junk at end of arguments."));
f7f9143b
JB
12871}
12872
9ac4176b
PA
12873/* Implement the "catch assert" command. */
12874
12875static void
eb4c3f4a 12876catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12877 struct cmd_list_element *command)
12878{
a121b7c1 12879 const char *arg = arg_entry;
9ac4176b
PA
12880 struct gdbarch *gdbarch = get_current_arch ();
12881 int tempflag;
56ecd069 12882 std::string cond_string;
9ac4176b
PA
12883
12884 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12885
12886 if (!arg)
12887 arg = "";
56ecd069 12888 catch_ada_assert_command_split (arg, cond_string);
761269c8 12889 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12890 "", cond_string,
349774ef
JB
12891 tempflag, 1 /* enabled */,
12892 from_tty);
9ac4176b 12893}
778865d3
JB
12894
12895/* Return non-zero if the symbol SYM is an Ada exception object. */
12896
12897static int
12898ada_is_exception_sym (struct symbol *sym)
12899{
7d93a1e0 12900 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12901
12902 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12903 && SYMBOL_CLASS (sym) != LOC_BLOCK
12904 && SYMBOL_CLASS (sym) != LOC_CONST
12905 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12906 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12907}
12908
12909/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12910 Ada exception object. This matches all exceptions except the ones
12911 defined by the Ada language. */
12912
12913static int
12914ada_is_non_standard_exception_sym (struct symbol *sym)
12915{
12916 int i;
12917
12918 if (!ada_is_exception_sym (sym))
12919 return 0;
12920
12921 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12922 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12923 return 0; /* A standard exception. */
12924
12925 /* Numeric_Error is also a standard exception, so exclude it.
12926 See the STANDARD_EXC description for more details as to why
12927 this exception is not listed in that array. */
987012b8 12928 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12929 return 0;
12930
12931 return 1;
12932}
12933
ab816a27 12934/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12935 objects.
12936
12937 The comparison is determined first by exception name, and then
12938 by exception address. */
12939
ab816a27 12940bool
cc536b21 12941ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12942{
778865d3
JB
12943 int result;
12944
ab816a27
TT
12945 result = strcmp (name, other.name);
12946 if (result < 0)
12947 return true;
12948 if (result == 0 && addr < other.addr)
12949 return true;
12950 return false;
12951}
778865d3 12952
ab816a27 12953bool
cc536b21 12954ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12955{
12956 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12957}
12958
12959/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12960 routine, but keeping the first SKIP elements untouched.
12961
12962 All duplicates are also removed. */
12963
12964static void
ab816a27 12965sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12966 int skip)
12967{
ab816a27
TT
12968 std::sort (exceptions->begin () + skip, exceptions->end ());
12969 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12970 exceptions->end ());
778865d3
JB
12971}
12972
778865d3
JB
12973/* Add all exceptions defined by the Ada standard whose name match
12974 a regular expression.
12975
12976 If PREG is not NULL, then this regexp_t object is used to
12977 perform the symbol name matching. Otherwise, no name-based
12978 filtering is performed.
12979
12980 EXCEPTIONS is a vector of exceptions to which matching exceptions
12981 gets pushed. */
12982
12983static void
2d7cc5c7 12984ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12985 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12986{
12987 int i;
12988
12989 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12990 {
12991 if (preg == NULL
2d7cc5c7 12992 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12993 {
12994 struct bound_minimal_symbol msymbol
12995 = ada_lookup_simple_minsym (standard_exc[i]);
12996
12997 if (msymbol.minsym != NULL)
12998 {
12999 struct ada_exc_info info
77e371c0 13000 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13001
ab816a27 13002 exceptions->push_back (info);
778865d3
JB
13003 }
13004 }
13005 }
13006}
13007
13008/* Add all Ada exceptions defined locally and accessible from the given
13009 FRAME.
13010
13011 If PREG is not NULL, then this regexp_t object is used to
13012 perform the symbol name matching. Otherwise, no name-based
13013 filtering is performed.
13014
13015 EXCEPTIONS is a vector of exceptions to which matching exceptions
13016 gets pushed. */
13017
13018static void
2d7cc5c7
PA
13019ada_add_exceptions_from_frame (compiled_regex *preg,
13020 struct frame_info *frame,
ab816a27 13021 std::vector<ada_exc_info> *exceptions)
778865d3 13022{
3977b71f 13023 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13024
13025 while (block != 0)
13026 {
13027 struct block_iterator iter;
13028 struct symbol *sym;
13029
13030 ALL_BLOCK_SYMBOLS (block, iter, sym)
13031 {
13032 switch (SYMBOL_CLASS (sym))
13033 {
13034 case LOC_TYPEDEF:
13035 case LOC_BLOCK:
13036 case LOC_CONST:
13037 break;
13038 default:
13039 if (ada_is_exception_sym (sym))
13040 {
987012b8 13041 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13042 SYMBOL_VALUE_ADDRESS (sym)};
13043
ab816a27 13044 exceptions->push_back (info);
778865d3
JB
13045 }
13046 }
13047 }
13048 if (BLOCK_FUNCTION (block) != NULL)
13049 break;
13050 block = BLOCK_SUPERBLOCK (block);
13051 }
13052}
13053
14bc53a8
PA
13054/* Return true if NAME matches PREG or if PREG is NULL. */
13055
13056static bool
2d7cc5c7 13057name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13058{
13059 return (preg == NULL
f945dedf 13060 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13061}
13062
778865d3
JB
13063/* Add all exceptions defined globally whose name name match
13064 a regular expression, excluding standard exceptions.
13065
13066 The reason we exclude standard exceptions is that they need
13067 to be handled separately: Standard exceptions are defined inside
13068 a runtime unit which is normally not compiled with debugging info,
13069 and thus usually do not show up in our symbol search. However,
13070 if the unit was in fact built with debugging info, we need to
13071 exclude them because they would duplicate the entry we found
13072 during the special loop that specifically searches for those
13073 standard exceptions.
13074
13075 If PREG is not NULL, then this regexp_t object is used to
13076 perform the symbol name matching. Otherwise, no name-based
13077 filtering is performed.
13078
13079 EXCEPTIONS is a vector of exceptions to which matching exceptions
13080 gets pushed. */
13081
13082static void
2d7cc5c7 13083ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13084 std::vector<ada_exc_info> *exceptions)
778865d3 13085{
14bc53a8
PA
13086 /* In Ada, the symbol "search name" is a linkage name, whereas the
13087 regular expression used to do the matching refers to the natural
13088 name. So match against the decoded name. */
13089 expand_symtabs_matching (NULL,
b5ec771e 13090 lookup_name_info::match_any (),
14bc53a8
PA
13091 [&] (const char *search_name)
13092 {
f945dedf
CB
13093 std::string decoded = ada_decode (search_name);
13094 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13095 },
13096 NULL,
13097 VARIABLES_DOMAIN);
778865d3 13098
2030c079 13099 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13100 {
b669c953 13101 for (compunit_symtab *s : objfile->compunits ())
778865d3 13102 {
d8aeb77f
TT
13103 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13104 int i;
778865d3 13105
d8aeb77f
TT
13106 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13107 {
582942f4 13108 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13109 struct block_iterator iter;
13110 struct symbol *sym;
778865d3 13111
d8aeb77f
TT
13112 ALL_BLOCK_SYMBOLS (b, iter, sym)
13113 if (ada_is_non_standard_exception_sym (sym)
987012b8 13114 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13115 {
13116 struct ada_exc_info info
987012b8 13117 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13118
13119 exceptions->push_back (info);
13120 }
13121 }
778865d3
JB
13122 }
13123 }
13124}
13125
13126/* Implements ada_exceptions_list with the regular expression passed
13127 as a regex_t, rather than a string.
13128
13129 If not NULL, PREG is used to filter out exceptions whose names
13130 do not match. Otherwise, all exceptions are listed. */
13131
ab816a27 13132static std::vector<ada_exc_info>
2d7cc5c7 13133ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13134{
ab816a27 13135 std::vector<ada_exc_info> result;
778865d3
JB
13136 int prev_len;
13137
13138 /* First, list the known standard exceptions. These exceptions
13139 need to be handled separately, as they are usually defined in
13140 runtime units that have been compiled without debugging info. */
13141
13142 ada_add_standard_exceptions (preg, &result);
13143
13144 /* Next, find all exceptions whose scope is local and accessible
13145 from the currently selected frame. */
13146
13147 if (has_stack_frames ())
13148 {
ab816a27 13149 prev_len = result.size ();
778865d3
JB
13150 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13151 &result);
ab816a27 13152 if (result.size () > prev_len)
778865d3
JB
13153 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13154 }
13155
13156 /* Add all exceptions whose scope is global. */
13157
ab816a27 13158 prev_len = result.size ();
778865d3 13159 ada_add_global_exceptions (preg, &result);
ab816a27 13160 if (result.size () > prev_len)
778865d3
JB
13161 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13162
778865d3
JB
13163 return result;
13164}
13165
13166/* Return a vector of ada_exc_info.
13167
13168 If REGEXP is NULL, all exceptions are included in the result.
13169 Otherwise, it should contain a valid regular expression,
13170 and only the exceptions whose names match that regular expression
13171 are included in the result.
13172
13173 The exceptions are sorted in the following order:
13174 - Standard exceptions (defined by the Ada language), in
13175 alphabetical order;
13176 - Exceptions only visible from the current frame, in
13177 alphabetical order;
13178 - Exceptions whose scope is global, in alphabetical order. */
13179
ab816a27 13180std::vector<ada_exc_info>
778865d3
JB
13181ada_exceptions_list (const char *regexp)
13182{
2d7cc5c7
PA
13183 if (regexp == NULL)
13184 return ada_exceptions_list_1 (NULL);
778865d3 13185
2d7cc5c7
PA
13186 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13187 return ada_exceptions_list_1 (&reg);
778865d3
JB
13188}
13189
13190/* Implement the "info exceptions" command. */
13191
13192static void
1d12d88f 13193info_exceptions_command (const char *regexp, int from_tty)
778865d3 13194{
778865d3 13195 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13196
ab816a27 13197 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13198
13199 if (regexp != NULL)
13200 printf_filtered
13201 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13202 else
13203 printf_filtered (_("All defined Ada exceptions:\n"));
13204
ab816a27
TT
13205 for (const ada_exc_info &info : exceptions)
13206 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13207}
13208
dda83cd7 13209 /* Operators */
4c4b4cd2
PH
13210/* Information about operators given special treatment in functions
13211 below. */
13212/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13213
13214#define ADA_OPERATORS \
13215 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13216 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13217 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13218 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13219 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13220 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13221 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13222 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13223 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13224 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13225 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13226 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13227 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13228 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13229 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13230 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13231 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13232 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13233 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13234
13235static void
554794dc
SDJ
13236ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13237 int *argsp)
4c4b4cd2
PH
13238{
13239 switch (exp->elts[pc - 1].opcode)
13240 {
76a01679 13241 default:
4c4b4cd2
PH
13242 operator_length_standard (exp, pc, oplenp, argsp);
13243 break;
13244
13245#define OP_DEFN(op, len, args, binop) \
13246 case op: *oplenp = len; *argsp = args; break;
13247 ADA_OPERATORS;
13248#undef OP_DEFN
52ce6436
PH
13249
13250 case OP_AGGREGATE:
13251 *oplenp = 3;
13252 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13253 break;
13254
13255 case OP_CHOICES:
13256 *oplenp = 3;
13257 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13258 break;
4c4b4cd2
PH
13259 }
13260}
13261
c0201579
JK
13262/* Implementation of the exp_descriptor method operator_check. */
13263
13264static int
13265ada_operator_check (struct expression *exp, int pos,
13266 int (*objfile_func) (struct objfile *objfile, void *data),
13267 void *data)
13268{
13269 const union exp_element *const elts = exp->elts;
13270 struct type *type = NULL;
13271
13272 switch (elts[pos].opcode)
13273 {
13274 case UNOP_IN_RANGE:
13275 case UNOP_QUAL:
13276 type = elts[pos + 1].type;
13277 break;
13278
13279 default:
13280 return operator_check_standard (exp, pos, objfile_func, data);
13281 }
13282
13283 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13284
13285 if (type && TYPE_OBJFILE (type)
13286 && (*objfile_func) (TYPE_OBJFILE (type), data))
13287 return 1;
13288
13289 return 0;
13290}
13291
a121b7c1 13292static const char *
4c4b4cd2
PH
13293ada_op_name (enum exp_opcode opcode)
13294{
13295 switch (opcode)
13296 {
76a01679 13297 default:
4c4b4cd2 13298 return op_name_standard (opcode);
52ce6436 13299
4c4b4cd2
PH
13300#define OP_DEFN(op, len, args, binop) case op: return #op;
13301 ADA_OPERATORS;
13302#undef OP_DEFN
52ce6436
PH
13303
13304 case OP_AGGREGATE:
13305 return "OP_AGGREGATE";
13306 case OP_CHOICES:
13307 return "OP_CHOICES";
13308 case OP_NAME:
13309 return "OP_NAME";
4c4b4cd2
PH
13310 }
13311}
13312
13313/* As for operator_length, but assumes PC is pointing at the first
13314 element of the operator, and gives meaningful results only for the
52ce6436 13315 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13316
13317static void
76a01679 13318ada_forward_operator_length (struct expression *exp, int pc,
dda83cd7 13319 int *oplenp, int *argsp)
4c4b4cd2 13320{
76a01679 13321 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13322 {
13323 default:
13324 *oplenp = *argsp = 0;
13325 break;
52ce6436 13326
4c4b4cd2
PH
13327#define OP_DEFN(op, len, args, binop) \
13328 case op: *oplenp = len; *argsp = args; break;
13329 ADA_OPERATORS;
13330#undef OP_DEFN
52ce6436
PH
13331
13332 case OP_AGGREGATE:
13333 *oplenp = 3;
13334 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13335 break;
13336
13337 case OP_CHOICES:
13338 *oplenp = 3;
13339 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13340 break;
13341
13342 case OP_STRING:
13343 case OP_NAME:
13344 {
13345 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13346
52ce6436
PH
13347 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13348 *argsp = 0;
13349 break;
13350 }
4c4b4cd2
PH
13351 }
13352}
13353
13354static int
13355ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13356{
13357 enum exp_opcode op = exp->elts[elt].opcode;
13358 int oplen, nargs;
13359 int pc = elt;
13360 int i;
76a01679 13361
4c4b4cd2
PH
13362 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13363
76a01679 13364 switch (op)
4c4b4cd2 13365 {
76a01679 13366 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13367 case OP_ATR_FIRST:
13368 case OP_ATR_LAST:
13369 case OP_ATR_LENGTH:
13370 case OP_ATR_IMAGE:
13371 case OP_ATR_MAX:
13372 case OP_ATR_MIN:
13373 case OP_ATR_MODULUS:
13374 case OP_ATR_POS:
13375 case OP_ATR_SIZE:
13376 case OP_ATR_TAG:
13377 case OP_ATR_VAL:
13378 break;
13379
13380 case UNOP_IN_RANGE:
13381 case UNOP_QUAL:
323e0a4a
AC
13382 /* XXX: gdb_sprint_host_address, type_sprint */
13383 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13384 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13385 fprintf_filtered (stream, " (");
13386 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13387 fprintf_filtered (stream, ")");
13388 break;
13389 case BINOP_IN_BOUNDS:
52ce6436
PH
13390 fprintf_filtered (stream, " (%d)",
13391 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13392 break;
13393 case TERNOP_IN_RANGE:
13394 break;
13395
52ce6436
PH
13396 case OP_AGGREGATE:
13397 case OP_OTHERS:
13398 case OP_DISCRETE_RANGE:
13399 case OP_POSITIONAL:
13400 case OP_CHOICES:
13401 break;
13402
13403 case OP_NAME:
13404 case OP_STRING:
13405 {
13406 char *name = &exp->elts[elt + 2].string;
13407 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13408
52ce6436
PH
13409 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13410 break;
13411 }
13412
4c4b4cd2
PH
13413 default:
13414 return dump_subexp_body_standard (exp, stream, elt);
13415 }
13416
13417 elt += oplen;
13418 for (i = 0; i < nargs; i += 1)
13419 elt = dump_subexp (exp, stream, elt);
13420
13421 return elt;
13422}
13423
13424/* The Ada extension of print_subexp (q.v.). */
13425
76a01679
JB
13426static void
13427ada_print_subexp (struct expression *exp, int *pos,
dda83cd7 13428 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13429{
52ce6436 13430 int oplen, nargs, i;
4c4b4cd2
PH
13431 int pc = *pos;
13432 enum exp_opcode op = exp->elts[pc].opcode;
13433
13434 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13435
52ce6436 13436 *pos += oplen;
4c4b4cd2
PH
13437 switch (op)
13438 {
13439 default:
52ce6436 13440 *pos -= oplen;
4c4b4cd2
PH
13441 print_subexp_standard (exp, pos, stream, prec);
13442 return;
13443
13444 case OP_VAR_VALUE:
987012b8 13445 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13446 return;
13447
13448 case BINOP_IN_BOUNDS:
323e0a4a 13449 /* XXX: sprint_subexp */
4c4b4cd2 13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13451 fputs_filtered (" in ", stream);
4c4b4cd2 13452 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13453 fputs_filtered ("'range", stream);
4c4b4cd2 13454 if (exp->elts[pc + 1].longconst > 1)
dda83cd7
SM
13455 fprintf_filtered (stream, "(%ld)",
13456 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13457 return;
13458
13459 case TERNOP_IN_RANGE:
4c4b4cd2 13460 if (prec >= PREC_EQUAL)
dda83cd7 13461 fputs_filtered ("(", stream);
323e0a4a 13462 /* XXX: sprint_subexp */
4c4b4cd2 13463 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13464 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13465 print_subexp (exp, pos, stream, PREC_EQUAL);
13466 fputs_filtered (" .. ", stream);
13467 print_subexp (exp, pos, stream, PREC_EQUAL);
13468 if (prec >= PREC_EQUAL)
dda83cd7 13469 fputs_filtered (")", stream);
76a01679 13470 return;
4c4b4cd2
PH
13471
13472 case OP_ATR_FIRST:
13473 case OP_ATR_LAST:
13474 case OP_ATR_LENGTH:
13475 case OP_ATR_IMAGE:
13476 case OP_ATR_MAX:
13477 case OP_ATR_MIN:
13478 case OP_ATR_MODULUS:
13479 case OP_ATR_POS:
13480 case OP_ATR_SIZE:
13481 case OP_ATR_TAG:
13482 case OP_ATR_VAL:
4c4b4cd2 13483 if (exp->elts[*pos].opcode == OP_TYPE)
dda83cd7
SM
13484 {
13485 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13486 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
79d43c61 13487 &type_print_raw_options);
dda83cd7
SM
13488 *pos += 3;
13489 }
4c4b4cd2 13490 else
dda83cd7 13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13492 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13493 if (nargs > 1)
dda83cd7
SM
13494 {
13495 int tem;
13496
13497 for (tem = 1; tem < nargs; tem += 1)
13498 {
13499 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13500 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13501 }
13502 fputs_filtered (")", stream);
13503 }
4c4b4cd2 13504 return;
14f9c5c9 13505
4c4b4cd2 13506 case UNOP_QUAL:
4c4b4cd2
PH
13507 type_print (exp->elts[pc + 1].type, "", stream, 0);
13508 fputs_filtered ("'(", stream);
13509 print_subexp (exp, pos, stream, PREC_PREFIX);
13510 fputs_filtered (")", stream);
13511 return;
14f9c5c9 13512
4c4b4cd2 13513 case UNOP_IN_RANGE:
323e0a4a 13514 /* XXX: sprint_subexp */
4c4b4cd2 13515 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13516 fputs_filtered (" in ", stream);
79d43c61
TT
13517 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13518 &type_print_raw_options);
4c4b4cd2 13519 return;
52ce6436
PH
13520
13521 case OP_DISCRETE_RANGE:
13522 print_subexp (exp, pos, stream, PREC_SUFFIX);
13523 fputs_filtered ("..", stream);
13524 print_subexp (exp, pos, stream, PREC_SUFFIX);
13525 return;
13526
13527 case OP_OTHERS:
13528 fputs_filtered ("others => ", stream);
13529 print_subexp (exp, pos, stream, PREC_SUFFIX);
13530 return;
13531
13532 case OP_CHOICES:
13533 for (i = 0; i < nargs-1; i += 1)
13534 {
13535 if (i > 0)
13536 fputs_filtered ("|", stream);
13537 print_subexp (exp, pos, stream, PREC_SUFFIX);
13538 }
13539 fputs_filtered (" => ", stream);
13540 print_subexp (exp, pos, stream, PREC_SUFFIX);
13541 return;
13542
13543 case OP_POSITIONAL:
13544 print_subexp (exp, pos, stream, PREC_SUFFIX);
13545 return;
13546
13547 case OP_AGGREGATE:
13548 fputs_filtered ("(", stream);
13549 for (i = 0; i < nargs; i += 1)
13550 {
13551 if (i > 0)
13552 fputs_filtered (", ", stream);
13553 print_subexp (exp, pos, stream, PREC_SUFFIX);
13554 }
13555 fputs_filtered (")", stream);
13556 return;
4c4b4cd2
PH
13557 }
13558}
14f9c5c9
AS
13559
13560/* Table mapping opcodes into strings for printing operators
13561 and precedences of the operators. */
13562
d2e4a39e
AS
13563static const struct op_print ada_op_print_tab[] = {
13564 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13565 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13566 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13567 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13568 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13569 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13570 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13571 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13572 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13573 {">=", BINOP_GEQ, PREC_ORDER, 0},
13574 {">", BINOP_GTR, PREC_ORDER, 0},
13575 {"<", BINOP_LESS, PREC_ORDER, 0},
13576 {">>", BINOP_RSH, PREC_SHIFT, 0},
13577 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13578 {"+", BINOP_ADD, PREC_ADD, 0},
13579 {"-", BINOP_SUB, PREC_ADD, 0},
13580 {"&", BINOP_CONCAT, PREC_ADD, 0},
13581 {"*", BINOP_MUL, PREC_MUL, 0},
13582 {"/", BINOP_DIV, PREC_MUL, 0},
13583 {"rem", BINOP_REM, PREC_MUL, 0},
13584 {"mod", BINOP_MOD, PREC_MUL, 0},
13585 {"**", BINOP_EXP, PREC_REPEAT, 0},
13586 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13587 {"-", UNOP_NEG, PREC_PREFIX, 0},
13588 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13589 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13590 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13591 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13592 {".all", UNOP_IND, PREC_SUFFIX, 1},
13593 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13594 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13595 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13596};
13597\f
72d5681a
PH
13598enum ada_primitive_types {
13599 ada_primitive_type_int,
13600 ada_primitive_type_long,
13601 ada_primitive_type_short,
13602 ada_primitive_type_char,
13603 ada_primitive_type_float,
13604 ada_primitive_type_double,
13605 ada_primitive_type_void,
13606 ada_primitive_type_long_long,
13607 ada_primitive_type_long_double,
13608 ada_primitive_type_natural,
13609 ada_primitive_type_positive,
13610 ada_primitive_type_system_address,
08f49010 13611 ada_primitive_type_storage_offset,
72d5681a
PH
13612 nr_ada_primitive_types
13613};
6c038f32 13614
6c038f32
PH
13615\f
13616 /* Language vector */
13617
6c038f32
PH
13618static const struct exp_descriptor ada_exp_descriptor = {
13619 ada_print_subexp,
13620 ada_operator_length,
c0201579 13621 ada_operator_check,
6c038f32
PH
13622 ada_op_name,
13623 ada_dump_subexp_body,
13624 ada_evaluate_subexp
13625};
13626
b5ec771e
PA
13627/* symbol_name_matcher_ftype adapter for wild_match. */
13628
13629static bool
13630do_wild_match (const char *symbol_search_name,
13631 const lookup_name_info &lookup_name,
a207cff2 13632 completion_match_result *comp_match_res)
b5ec771e
PA
13633{
13634 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13635}
13636
13637/* symbol_name_matcher_ftype adapter for full_match. */
13638
13639static bool
13640do_full_match (const char *symbol_search_name,
13641 const lookup_name_info &lookup_name,
a207cff2 13642 completion_match_result *comp_match_res)
b5ec771e
PA
13643{
13644 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13645}
13646
a2cd4f14
JB
13647/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13648
13649static bool
13650do_exact_match (const char *symbol_search_name,
13651 const lookup_name_info &lookup_name,
13652 completion_match_result *comp_match_res)
13653{
13654 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13655}
13656
b5ec771e
PA
13657/* Build the Ada lookup name for LOOKUP_NAME. */
13658
13659ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13660{
e0802d59 13661 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13662
13663 if (user_name[0] == '<')
13664 {
13665 if (user_name.back () == '>')
e0802d59 13666 m_encoded_name
5ac58899 13667 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13668 else
e0802d59 13669 m_encoded_name
5ac58899 13670 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13671 m_encoded_p = true;
13672 m_verbatim_p = true;
13673 m_wild_match_p = false;
13674 m_standard_p = false;
13675 }
13676 else
13677 {
13678 m_verbatim_p = false;
13679
e0802d59 13680 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13681
13682 if (!m_encoded_p)
13683 {
e0802d59 13684 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13685 m_encoded_name = ada_encode_1 (folded, false);
13686 if (m_encoded_name.empty ())
5ac58899 13687 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13688 }
13689 else
5ac58899 13690 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13691
13692 /* Handle the 'package Standard' special case. See description
13693 of m_standard_p. */
13694 if (startswith (m_encoded_name.c_str (), "standard__"))
13695 {
13696 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13697 m_standard_p = true;
13698 }
13699 else
13700 m_standard_p = false;
74ccd7f5 13701
b5ec771e
PA
13702 /* If the name contains a ".", then the user is entering a fully
13703 qualified entity name, and the match must not be done in wild
13704 mode. Similarly, if the user wants to complete what looks
13705 like an encoded name, the match must not be done in wild
13706 mode. Also, in the standard__ special case always do
13707 non-wild matching. */
13708 m_wild_match_p
13709 = (lookup_name.match_type () != symbol_name_match_type::FULL
13710 && !m_encoded_p
13711 && !m_standard_p
13712 && user_name.find ('.') == std::string::npos);
13713 }
13714}
13715
13716/* symbol_name_matcher_ftype method for Ada. This only handles
13717 completion mode. */
13718
13719static bool
13720ada_symbol_name_matches (const char *symbol_search_name,
13721 const lookup_name_info &lookup_name,
a207cff2 13722 completion_match_result *comp_match_res)
74ccd7f5 13723{
b5ec771e
PA
13724 return lookup_name.ada ().matches (symbol_search_name,
13725 lookup_name.match_type (),
a207cff2 13726 comp_match_res);
b5ec771e
PA
13727}
13728
de63c46b
PA
13729/* A name matcher that matches the symbol name exactly, with
13730 strcmp. */
13731
13732static bool
13733literal_symbol_name_matcher (const char *symbol_search_name,
13734 const lookup_name_info &lookup_name,
13735 completion_match_result *comp_match_res)
13736{
e0802d59 13737 gdb::string_view name_view = lookup_name.name ();
de63c46b 13738
e0802d59
TT
13739 if (lookup_name.completion_mode ()
13740 ? (strncmp (symbol_search_name, name_view.data (),
13741 name_view.size ()) == 0)
13742 : symbol_search_name == name_view)
de63c46b
PA
13743 {
13744 if (comp_match_res != NULL)
13745 comp_match_res->set_match (symbol_search_name);
13746 return true;
13747 }
13748 else
13749 return false;
13750}
13751
c9debfb9 13752/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13753 Ada. */
13754
13755static symbol_name_matcher_ftype *
13756ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13757{
de63c46b
PA
13758 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13759 return literal_symbol_name_matcher;
13760
b5ec771e
PA
13761 if (lookup_name.completion_mode ())
13762 return ada_symbol_name_matches;
74ccd7f5 13763 else
b5ec771e
PA
13764 {
13765 if (lookup_name.ada ().wild_match_p ())
13766 return do_wild_match;
a2cd4f14
JB
13767 else if (lookup_name.ada ().verbatim_p ())
13768 return do_exact_match;
b5ec771e
PA
13769 else
13770 return do_full_match;
13771 }
74ccd7f5
JB
13772}
13773
0874fd07
AB
13774/* Class representing the Ada language. */
13775
13776class ada_language : public language_defn
13777{
13778public:
13779 ada_language ()
0e25e767 13780 : language_defn (language_ada)
0874fd07 13781 { /* Nothing. */ }
5bd40f2a 13782
6f7664a9
AB
13783 /* See language.h. */
13784
13785 const char *name () const override
13786 { return "ada"; }
13787
13788 /* See language.h. */
13789
13790 const char *natural_name () const override
13791 { return "Ada"; }
13792
e171d6f1
AB
13793 /* See language.h. */
13794
13795 const std::vector<const char *> &filename_extensions () const override
13796 {
13797 static const std::vector<const char *> extensions
13798 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13799 return extensions;
13800 }
13801
5bd40f2a
AB
13802 /* Print an array element index using the Ada syntax. */
13803
13804 void print_array_index (struct type *index_type,
13805 LONGEST index,
13806 struct ui_file *stream,
13807 const value_print_options *options) const override
13808 {
13809 struct value *index_value = val_atr (index_type, index);
13810
00c696a6 13811 value_print (index_value, stream, options);
5bd40f2a
AB
13812 fprintf_filtered (stream, " => ");
13813 }
15e5fd35
AB
13814
13815 /* Implement the "read_var_value" language_defn method for Ada. */
13816
13817 struct value *read_var_value (struct symbol *var,
13818 const struct block *var_block,
13819 struct frame_info *frame) const override
13820 {
13821 /* The only case where default_read_var_value is not sufficient
13822 is when VAR is a renaming... */
13823 if (frame != nullptr)
13824 {
13825 const struct block *frame_block = get_frame_block (frame, NULL);
13826 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13827 return ada_read_renaming_var_value (var, frame_block);
13828 }
13829
13830 /* This is a typical case where we expect the default_read_var_value
13831 function to work. */
13832 return language_defn::read_var_value (var, var_block, frame);
13833 }
1fb314aa
AB
13834
13835 /* See language.h. */
13836 void language_arch_info (struct gdbarch *gdbarch,
13837 struct language_arch_info *lai) const override
13838 {
13839 const struct builtin_type *builtin = builtin_type (gdbarch);
13840
13841 lai->primitive_type_vector
13842 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13843 struct type *);
13844
13845 lai->primitive_type_vector [ada_primitive_type_int]
13846 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13847 0, "integer");
13848 lai->primitive_type_vector [ada_primitive_type_long]
13849 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13850 0, "long_integer");
13851 lai->primitive_type_vector [ada_primitive_type_short]
13852 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13853 0, "short_integer");
13854 lai->string_char_type
13855 = lai->primitive_type_vector [ada_primitive_type_char]
13856 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13857 lai->primitive_type_vector [ada_primitive_type_float]
13858 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13859 "float", gdbarch_float_format (gdbarch));
13860 lai->primitive_type_vector [ada_primitive_type_double]
13861 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13862 "long_float", gdbarch_double_format (gdbarch));
13863 lai->primitive_type_vector [ada_primitive_type_long_long]
13864 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13865 0, "long_long_integer");
13866 lai->primitive_type_vector [ada_primitive_type_long_double]
13867 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13868 "long_long_float", gdbarch_long_double_format (gdbarch));
13869 lai->primitive_type_vector [ada_primitive_type_natural]
13870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13871 0, "natural");
13872 lai->primitive_type_vector [ada_primitive_type_positive]
13873 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13874 0, "positive");
13875 lai->primitive_type_vector [ada_primitive_type_void]
13876 = builtin->builtin_void;
13877
13878 lai->primitive_type_vector [ada_primitive_type_system_address]
13879 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13880 "void"));
13881 lai->primitive_type_vector [ada_primitive_type_system_address]
13882 ->set_name ("system__address");
13883
13884 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13885 type. This is a signed integral type whose size is the same as
13886 the size of addresses. */
13887 {
13888 unsigned int addr_length = TYPE_LENGTH
13889 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13890
13891 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13892 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13893 "storage_offset");
13894 }
13895
13896 lai->bool_type_symbol = NULL;
13897 lai->bool_type_default = builtin->builtin_bool;
13898 }
4009ee92
AB
13899
13900 /* See language.h. */
13901
13902 bool iterate_over_symbols
13903 (const struct block *block, const lookup_name_info &name,
13904 domain_enum domain,
13905 gdb::function_view<symbol_found_callback_ftype> callback) const override
13906 {
13907 std::vector<struct block_symbol> results;
13908
13909 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13910 for (block_symbol &sym : results)
13911 {
13912 if (!callback (&sym))
13913 return false;
13914 }
13915
13916 return true;
13917 }
6f827019
AB
13918
13919 /* See language.h. */
13920 bool sniff_from_mangled_name (const char *mangled,
13921 char **out) const override
13922 {
13923 std::string demangled = ada_decode (mangled);
13924
13925 *out = NULL;
13926
13927 if (demangled != mangled && demangled[0] != '<')
13928 {
13929 /* Set the gsymbol language to Ada, but still return 0.
13930 Two reasons for that:
13931
13932 1. For Ada, we prefer computing the symbol's decoded name
13933 on the fly rather than pre-compute it, in order to save
13934 memory (Ada projects are typically very large).
13935
13936 2. There are some areas in the definition of the GNAT
13937 encoding where, with a bit of bad luck, we might be able
13938 to decode a non-Ada symbol, generating an incorrect
13939 demangled name (Eg: names ending with "TB" for instance
13940 are identified as task bodies and so stripped from
13941 the decoded name returned).
13942
13943 Returning true, here, but not setting *DEMANGLED, helps us get
13944 a little bit of the best of both worlds. Because we're last,
13945 we should not affect any of the other languages that were
13946 able to demangle the symbol before us; we get to correctly
13947 tag Ada symbols as such; and even if we incorrectly tagged a
13948 non-Ada symbol, which should be rare, any routing through the
13949 Ada language should be transparent (Ada tries to behave much
13950 like C/C++ with non-Ada symbols). */
13951 return true;
13952 }
13953
13954 return false;
13955 }
fbfb0a46
AB
13956
13957 /* See language.h. */
13958
5399db93 13959 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13960 {
13961 return ada_la_decode (mangled, options);
13962 }
13963
13964 /* See language.h. */
13965
fbfb0a46
AB
13966 void print_type (struct type *type, const char *varstring,
13967 struct ui_file *stream, int show, int level,
13968 const struct type_print_options *flags) const override
13969 {
13970 ada_print_type (type, varstring, stream, show, level, flags);
13971 }
c9debfb9 13972
53fc67f8
AB
13973 /* See language.h. */
13974
13975 const char *word_break_characters (void) const override
13976 {
13977 return ada_completer_word_break_characters;
13978 }
13979
7e56227d
AB
13980 /* See language.h. */
13981
13982 void collect_symbol_completion_matches (completion_tracker &tracker,
13983 complete_symbol_mode mode,
13984 symbol_name_match_type name_match_type,
13985 const char *text, const char *word,
13986 enum type_code code) const override
13987 {
13988 struct symbol *sym;
13989 const struct block *b, *surrounding_static_block = 0;
13990 struct block_iterator iter;
13991
13992 gdb_assert (code == TYPE_CODE_UNDEF);
13993
13994 lookup_name_info lookup_name (text, name_match_type, true);
13995
13996 /* First, look at the partial symtab symbols. */
13997 expand_symtabs_matching (NULL,
13998 lookup_name,
13999 NULL,
14000 NULL,
14001 ALL_DOMAIN);
14002
14003 /* At this point scan through the misc symbol vectors and add each
14004 symbol you find to the list. Eventually we want to ignore
14005 anything that isn't a text symbol (everything else will be
14006 handled by the psymtab code above). */
14007
14008 for (objfile *objfile : current_program_space->objfiles ())
14009 {
14010 for (minimal_symbol *msymbol : objfile->msymbols ())
14011 {
14012 QUIT;
14013
14014 if (completion_skip_symbol (mode, msymbol))
14015 continue;
14016
14017 language symbol_language = msymbol->language ();
14018
14019 /* Ada minimal symbols won't have their language set to Ada. If
14020 we let completion_list_add_name compare using the
14021 default/C-like matcher, then when completing e.g., symbols in a
14022 package named "pck", we'd match internal Ada symbols like
14023 "pckS", which are invalid in an Ada expression, unless you wrap
14024 them in '<' '>' to request a verbatim match.
14025
14026 Unfortunately, some Ada encoded names successfully demangle as
14027 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14028 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14029 with the wrong language set. Paper over that issue here. */
14030 if (symbol_language == language_auto
14031 || symbol_language == language_cplus)
14032 symbol_language = language_ada;
14033
14034 completion_list_add_name (tracker,
14035 symbol_language,
14036 msymbol->linkage_name (),
14037 lookup_name, text, word);
14038 }
14039 }
14040
14041 /* Search upwards from currently selected frame (so that we can
14042 complete on local vars. */
14043
14044 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14045 {
14046 if (!BLOCK_SUPERBLOCK (b))
14047 surrounding_static_block = b; /* For elmin of dups */
14048
14049 ALL_BLOCK_SYMBOLS (b, iter, sym)
14050 {
14051 if (completion_skip_symbol (mode, sym))
14052 continue;
14053
14054 completion_list_add_name (tracker,
14055 sym->language (),
14056 sym->linkage_name (),
14057 lookup_name, text, word);
14058 }
14059 }
14060
14061 /* Go through the symtabs and check the externs and statics for
14062 symbols which match. */
14063
14064 for (objfile *objfile : current_program_space->objfiles ())
14065 {
14066 for (compunit_symtab *s : objfile->compunits ())
14067 {
14068 QUIT;
14069 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14070 ALL_BLOCK_SYMBOLS (b, iter, sym)
14071 {
14072 if (completion_skip_symbol (mode, sym))
14073 continue;
14074
14075 completion_list_add_name (tracker,
14076 sym->language (),
14077 sym->linkage_name (),
14078 lookup_name, text, word);
14079 }
14080 }
14081 }
14082
14083 for (objfile *objfile : current_program_space->objfiles ())
14084 {
14085 for (compunit_symtab *s : objfile->compunits ())
14086 {
14087 QUIT;
14088 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14089 /* Don't do this block twice. */
14090 if (b == surrounding_static_block)
14091 continue;
14092 ALL_BLOCK_SYMBOLS (b, iter, sym)
14093 {
14094 if (completion_skip_symbol (mode, sym))
14095 continue;
14096
14097 completion_list_add_name (tracker,
14098 sym->language (),
14099 sym->linkage_name (),
14100 lookup_name, text, word);
14101 }
14102 }
14103 }
14104 }
14105
f16a9f57
AB
14106 /* See language.h. */
14107
14108 gdb::unique_xmalloc_ptr<char> watch_location_expression
14109 (struct type *type, CORE_ADDR addr) const override
14110 {
14111 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14112 std::string name = type_to_string (type);
14113 return gdb::unique_xmalloc_ptr<char>
14114 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14115 }
14116
a1d1fa3e
AB
14117 /* See language.h. */
14118
14119 void value_print (struct value *val, struct ui_file *stream,
14120 const struct value_print_options *options) const override
14121 {
14122 return ada_value_print (val, stream, options);
14123 }
14124
ebe2334e
AB
14125 /* See language.h. */
14126
14127 void value_print_inner
14128 (struct value *val, struct ui_file *stream, int recurse,
14129 const struct value_print_options *options) const override
14130 {
14131 return ada_value_print_inner (val, stream, recurse, options);
14132 }
14133
a78a19b1
AB
14134 /* See language.h. */
14135
14136 struct block_symbol lookup_symbol_nonlocal
14137 (const char *name, const struct block *block,
14138 const domain_enum domain) const override
14139 {
14140 struct block_symbol sym;
14141
14142 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14143 if (sym.symbol != NULL)
14144 return sym;
14145
14146 /* If we haven't found a match at this point, try the primitive
14147 types. In other languages, this search is performed before
14148 searching for global symbols in order to short-circuit that
14149 global-symbol search if it happens that the name corresponds
14150 to a primitive type. But we cannot do the same in Ada, because
14151 it is perfectly legitimate for a program to declare a type which
14152 has the same name as a standard type. If looking up a type in
14153 that situation, we have traditionally ignored the primitive type
14154 in favor of user-defined types. This is why, unlike most other
14155 languages, we search the primitive types this late and only after
14156 having searched the global symbols without success. */
14157
14158 if (domain == VAR_DOMAIN)
14159 {
14160 struct gdbarch *gdbarch;
14161
14162 if (block == NULL)
14163 gdbarch = target_gdbarch ();
14164 else
14165 gdbarch = block_gdbarch (block);
14166 sym.symbol
14167 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14168 if (sym.symbol != NULL)
14169 return sym;
14170 }
14171
14172 return {};
14173 }
14174
87afa652
AB
14175 /* See language.h. */
14176
14177 int parser (struct parser_state *ps) const override
14178 {
14179 warnings_issued = 0;
14180 return ada_parse (ps);
14181 }
14182
1bf9c363
AB
14183 /* See language.h.
14184
14185 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14186 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14187 namespace) and converts operators that are user-defined into
14188 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14189 a preferred result type [at the moment, only type void has any
14190 effect---causing procedures to be preferred over functions in calls].
14191 A null CONTEXT_TYPE indicates that a non-void return type is
14192 preferred. May change (expand) *EXP. */
14193
14194 void post_parser (expression_up *expp, int void_context_p, int completing,
14195 innermost_block_tracker *tracker) const override
14196 {
14197 struct type *context_type = NULL;
14198 int pc = 0;
14199
14200 if (void_context_p)
14201 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14202
14203 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14204 }
14205
ec8cec5b
AB
14206 /* See language.h. */
14207
14208 void emitchar (int ch, struct type *chtype,
14209 struct ui_file *stream, int quoter) const override
14210 {
14211 ada_emit_char (ch, chtype, stream, quoter, 1);
14212 }
14213
52b50f2c
AB
14214 /* See language.h. */
14215
14216 void printchar (int ch, struct type *chtype,
14217 struct ui_file *stream) const override
14218 {
14219 ada_printchar (ch, chtype, stream);
14220 }
14221
d711ee67
AB
14222 /* See language.h. */
14223
14224 void printstr (struct ui_file *stream, struct type *elttype,
14225 const gdb_byte *string, unsigned int length,
14226 const char *encoding, int force_ellipses,
14227 const struct value_print_options *options) const override
14228 {
14229 ada_printstr (stream, elttype, string, length, encoding,
14230 force_ellipses, options);
14231 }
14232
4ffc13fb
AB
14233 /* See language.h. */
14234
14235 void print_typedef (struct type *type, struct symbol *new_symbol,
14236 struct ui_file *stream) const override
14237 {
14238 ada_print_typedef (type, new_symbol, stream);
14239 }
14240
39e7ecca
AB
14241 /* See language.h. */
14242
14243 bool is_string_type_p (struct type *type) const override
14244 {
14245 return ada_is_string_type (type);
14246 }
14247
22e3f3ed
AB
14248 /* See language.h. */
14249
14250 const char *struct_too_deep_ellipsis () const override
14251 { return "(...)"; }
39e7ecca 14252
67bd3fd5
AB
14253 /* See language.h. */
14254
14255 bool c_style_arrays_p () const override
14256 { return false; }
14257
d3355e4d
AB
14258 /* See language.h. */
14259
14260 bool store_sym_names_in_linkage_form_p () const override
14261 { return true; }
14262
b63a3f3f
AB
14263 /* See language.h. */
14264
14265 const struct lang_varobj_ops *varobj_ops () const override
14266 { return &ada_varobj_ops; }
14267
5aba6ebe
AB
14268 /* See language.h. */
14269
14270 const struct exp_descriptor *expression_ops () const override
14271 { return &ada_exp_descriptor; }
14272
b7c6e27d
AB
14273 /* See language.h. */
14274
14275 const struct op_print *opcode_print_table () const override
14276 { return ada_op_print_tab; }
14277
c9debfb9
AB
14278protected:
14279 /* See language.h. */
14280
14281 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14282 (const lookup_name_info &lookup_name) const override
14283 {
14284 return ada_get_symbol_name_matcher (lookup_name);
14285 }
0874fd07
AB
14286};
14287
14288/* Single instance of the Ada language class. */
14289
14290static ada_language ada_language_defn;
14291
5bf03f13
JB
14292/* Command-list for the "set/show ada" prefix command. */
14293static struct cmd_list_element *set_ada_list;
14294static struct cmd_list_element *show_ada_list;
14295
2060206e
PA
14296static void
14297initialize_ada_catchpoint_ops (void)
14298{
14299 struct breakpoint_ops *ops;
14300
14301 initialize_breakpoint_ops ();
14302
14303 ops = &catch_exception_breakpoint_ops;
14304 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14305 ops->allocate_location = allocate_location_exception;
14306 ops->re_set = re_set_exception;
14307 ops->check_status = check_status_exception;
14308 ops->print_it = print_it_exception;
14309 ops->print_one = print_one_exception;
14310 ops->print_mention = print_mention_exception;
14311 ops->print_recreate = print_recreate_exception;
2060206e
PA
14312
14313 ops = &catch_exception_unhandled_breakpoint_ops;
14314 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14315 ops->allocate_location = allocate_location_exception;
14316 ops->re_set = re_set_exception;
14317 ops->check_status = check_status_exception;
14318 ops->print_it = print_it_exception;
14319 ops->print_one = print_one_exception;
14320 ops->print_mention = print_mention_exception;
14321 ops->print_recreate = print_recreate_exception;
2060206e
PA
14322
14323 ops = &catch_assert_breakpoint_ops;
14324 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14325 ops->allocate_location = allocate_location_exception;
14326 ops->re_set = re_set_exception;
14327 ops->check_status = check_status_exception;
14328 ops->print_it = print_it_exception;
14329 ops->print_one = print_one_exception;
14330 ops->print_mention = print_mention_exception;
14331 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14332
14333 ops = &catch_handlers_breakpoint_ops;
14334 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14335 ops->allocate_location = allocate_location_exception;
14336 ops->re_set = re_set_exception;
14337 ops->check_status = check_status_exception;
14338 ops->print_it = print_it_exception;
14339 ops->print_one = print_one_exception;
14340 ops->print_mention = print_mention_exception;
14341 ops->print_recreate = print_recreate_exception;
2060206e
PA
14342}
14343
3d9434b5
JB
14344/* This module's 'new_objfile' observer. */
14345
14346static void
14347ada_new_objfile_observer (struct objfile *objfile)
14348{
14349 ada_clear_symbol_cache ();
14350}
14351
14352/* This module's 'free_objfile' observer. */
14353
14354static void
14355ada_free_objfile_observer (struct objfile *objfile)
14356{
14357 ada_clear_symbol_cache ();
14358}
14359
6c265988 14360void _initialize_ada_language ();
d2e4a39e 14361void
6c265988 14362_initialize_ada_language ()
14f9c5c9 14363{
2060206e
PA
14364 initialize_ada_catchpoint_ops ();
14365
0743fc83
TT
14366 add_basic_prefix_cmd ("ada", no_class,
14367 _("Prefix command for changing Ada-specific settings."),
14368 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14369
0743fc83
TT
14370 add_show_prefix_cmd ("ada", no_class,
14371 _("Generic command for showing Ada-specific settings."),
14372 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14373
14374 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 14375 &trust_pad_over_xvs, _("\
590042fc
PW
14376Enable or disable an optimization trusting PAD types over XVS types."), _("\
14377Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 14378 _("\
5bf03f13
JB
14379This is related to the encoding used by the GNAT compiler. The debugger\n\
14380should normally trust the contents of PAD types, but certain older versions\n\
14381of GNAT have a bug that sometimes causes the information in the PAD type\n\
14382to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14383work around this bug. It is always safe to turn this option \"off\", but\n\
14384this incurs a slight performance penalty, so it is recommended to NOT change\n\
14385this option to \"off\" unless necessary."),
dda83cd7 14386 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 14387
d72413e6
PMR
14388 add_setshow_boolean_cmd ("print-signatures", class_vars,
14389 &print_signatures, _("\
14390Enable or disable the output of formal and return types for functions in the \
590042fc 14391overloads selection menu."), _("\
d72413e6 14392Show whether the output of formal and return types for functions in the \
590042fc 14393overloads selection menu is activated."),
d72413e6
PMR
14394 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14395
9ac4176b
PA
14396 add_catch_command ("exception", _("\
14397Catch Ada exceptions, when raised.\n\
9bf7038b 14398Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14399Without any argument, stop when any Ada exception is raised.\n\
14400If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14401being raised does not have a handler (and will therefore lead to the task's\n\
14402termination).\n\
14403Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14404raised is the same as ARG.\n\
14405CONDITION is a boolean expression that is evaluated to see whether the\n\
14406exception should cause a stop."),
9ac4176b 14407 catch_ada_exception_command,
71bed2db 14408 catch_ada_completer,
9ac4176b
PA
14409 CATCH_PERMANENT,
14410 CATCH_TEMPORARY);
9f757bf7
XR
14411
14412 add_catch_command ("handlers", _("\
14413Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14414Usage: catch handlers [ARG] [if CONDITION]\n\
14415Without any argument, stop when any Ada exception is handled.\n\
14416With an argument, catch only exceptions with the given name.\n\
14417CONDITION is a boolean expression that is evaluated to see whether the\n\
14418exception should cause a stop."),
9f757bf7 14419 catch_ada_handlers_command,
dda83cd7 14420 catch_ada_completer,
9f757bf7
XR
14421 CATCH_PERMANENT,
14422 CATCH_TEMPORARY);
9ac4176b
PA
14423 add_catch_command ("assert", _("\
14424Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14425Usage: catch assert [if CONDITION]\n\
14426CONDITION is a boolean expression that is evaluated to see whether the\n\
14427exception should cause a stop."),
9ac4176b 14428 catch_assert_command,
dda83cd7 14429 NULL,
9ac4176b
PA
14430 CATCH_PERMANENT,
14431 CATCH_TEMPORARY);
14432
6c038f32 14433 varsize_limit = 65536;
3fcded8f
JB
14434 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14435 &varsize_limit, _("\
14436Set the maximum number of bytes allowed in a variable-size object."), _("\
14437Show the maximum number of bytes allowed in a variable-size object."), _("\
14438Attempts to access an object whose size is not a compile-time constant\n\
14439and exceeds this limit will cause an error."),
14440 NULL, NULL, &setlist, &showlist);
6c038f32 14441
778865d3
JB
14442 add_info ("exceptions", info_exceptions_command,
14443 _("\
14444List all Ada exception names.\n\
9bf7038b 14445Usage: info exceptions [REGEXP]\n\
778865d3
JB
14446If a regular expression is passed as an argument, only those matching\n\
14447the regular expression are listed."));
14448
0743fc83
TT
14449 add_basic_prefix_cmd ("ada", class_maintenance,
14450 _("Set Ada maintenance-related variables."),
14451 &maint_set_ada_cmdlist, "maintenance set ada ",
14452 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14453
0743fc83
TT
14454 add_show_prefix_cmd ("ada", class_maintenance,
14455 _("Show Ada maintenance-related variables."),
14456 &maint_show_ada_cmdlist, "maintenance show ada ",
14457 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14458
14459 add_setshow_boolean_cmd
14460 ("ignore-descriptive-types", class_maintenance,
14461 &ada_ignore_descriptive_types_p,
14462 _("Set whether descriptive types generated by GNAT should be ignored."),
14463 _("Show whether descriptive types generated by GNAT should be ignored."),
14464 _("\
14465When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14466DWARF attribute."),
14467 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14468
459a2e4c
TT
14469 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14470 NULL, xcalloc, xfree);
6b69afc4 14471
3d9434b5 14472 /* The ada-lang observers. */
76727919
TT
14473 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14474 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14475 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14476}