]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: Convert language la_value_print_inner field to a method
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
de93309a
SM
491/* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494#define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
f27cf670 497/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 499 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 500
de93309a 501static void *
f27cf670 502grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 503{
d2e4a39e
AS
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
4c4b4cd2 508 *size = min_size;
f27cf670 509 vect = xrealloc (vect, *size * element_size);
d2e4a39e 510 }
f27cf670 511 return vect;
14f9c5c9
AS
512}
513
514/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 515 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
516
517static int
ebf56fd3 518field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
519{
520 int len = strlen (target);
5b4ee69b 521
d2e4a39e 522 return
4c4b4cd2
PH
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
61012eef 525 || (startswith (field_name + len, "___")
76a01679
JB
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
14f9c5c9
AS
528}
529
530
872c8b51
JB
531/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
538
539int
540ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542{
543 int fieldno;
872c8b51
JB
544 struct type *struct_type = check_typedef ((struct type *) type);
545
1f704f76 546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
548 return fieldno;
549
550 if (!maybe_missing)
323e0a4a 551 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 552 field_name, struct_type->name ());
4c4b4cd2
PH
553
554 return -1;
555}
556
557/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
558
559int
d2e4a39e 560ada_name_prefix_len (const char *name)
14f9c5c9
AS
561{
562 if (name == NULL)
563 return 0;
d2e4a39e 564 else
14f9c5c9 565 {
d2e4a39e 566 const char *p = strstr (name, "___");
5b4ee69b 567
14f9c5c9 568 if (p == NULL)
4c4b4cd2 569 return strlen (name);
14f9c5c9 570 else
4c4b4cd2 571 return p - name;
14f9c5c9
AS
572 }
573}
574
4c4b4cd2
PH
575/* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
14f9c5c9 578static int
d2e4a39e 579is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
580{
581 int len1, len2;
5b4ee69b 582
14f9c5c9
AS
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
4c4b4cd2 587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
588}
589
4c4b4cd2
PH
590/* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
14f9c5c9 592
d2e4a39e 593static struct value *
4c4b4cd2 594coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 595{
61ee279c 596 type = ada_check_typedef (type);
df407dfe 597 if (value_type (val) == type)
4c4b4cd2 598 return val;
d2e4a39e 599 else
14f9c5c9 600 {
4c4b4cd2
PH
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
c1b5a1a6 605 ada_ensure_varsize_limit (type);
4c4b4cd2 606
41e8491f
JK
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
9a0dc9e3 613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 614 }
74bcbdf3 615 set_value_component_location (result, val);
9bbda503
AC
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
14f9c5c9
AS
620 return result;
621 }
622}
623
fc1a4b47
AC
624static const gdb_byte *
625cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
626{
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631}
632
633static CORE_ADDR
ebf56fd3 634cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
635{
636 if (address == 0)
637 return 0;
d2e4a39e 638 else
14f9c5c9
AS
639 return address + offset;
640}
641
4c4b4cd2
PH
642/* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
a2249542 646
77109804
AC
647/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
a0b31db1 649static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 650
14f9c5c9 651static void
a2249542 652lim_warning (const char *format, ...)
14f9c5c9 653{
a2249542 654 va_list args;
a2249542 655
5b4ee69b 656 va_start (args, format);
4c4b4cd2
PH
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
a2249542
MK
659 vwarning (format, args);
660
661 va_end (args);
4c4b4cd2
PH
662}
663
714e53ab
PH
664/* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
c1b5a1a6
JB
668void
669ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
670{
671 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 672 error (_("object size is larger than varsize-limit"));
714e53ab
PH
673}
674
0963b4bd 675/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 676static LONGEST
c3e5cd34 677max_of_size (int size)
4c4b4cd2 678{
76a01679 679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 680
76a01679 681 return top_bit | (top_bit - 1);
4c4b4cd2
PH
682}
683
0963b4bd 684/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 685static LONGEST
c3e5cd34 686min_of_size (int size)
4c4b4cd2 687{
c3e5cd34 688 return -max_of_size (size) - 1;
4c4b4cd2
PH
689}
690
0963b4bd 691/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 692static ULONGEST
c3e5cd34 693umax_of_size (int size)
4c4b4cd2 694{
76a01679 695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 696
76a01679 697 return top_bit | (top_bit - 1);
4c4b4cd2
PH
698}
699
0963b4bd 700/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
701static LONGEST
702max_of_type (struct type *t)
4c4b4cd2 703{
c3e5cd34
PH
704 if (TYPE_UNSIGNED (t))
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708}
709
0963b4bd 710/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
711static LONGEST
712min_of_type (struct type *t)
713{
714 if (TYPE_UNSIGNED (t))
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
718}
719
720/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
721LONGEST
722ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 723{
b249d2c2 724 type = resolve_dynamic_type (type, {}, 0);
78134374 725 switch (type->code ())
4c4b4cd2
PH
726 {
727 case TYPE_CODE_RANGE:
690cc4eb 728 return TYPE_HIGH_BOUND (type);
4c4b4cd2 729 case TYPE_CODE_ENUM:
1f704f76 730 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
731 case TYPE_CODE_BOOL:
732 return 1;
733 case TYPE_CODE_CHAR:
76a01679 734 case TYPE_CODE_INT:
690cc4eb 735 return max_of_type (type);
4c4b4cd2 736 default:
43bbcdc2 737 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
738 }
739}
740
14e75d8e 741/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
742LONGEST
743ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 744{
b249d2c2 745 type = resolve_dynamic_type (type, {}, 0);
78134374 746 switch (type->code ())
4c4b4cd2
PH
747 {
748 case TYPE_CODE_RANGE:
690cc4eb 749 return TYPE_LOW_BOUND (type);
4c4b4cd2 750 case TYPE_CODE_ENUM:
14e75d8e 751 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
752 case TYPE_CODE_BOOL:
753 return 0;
754 case TYPE_CODE_CHAR:
76a01679 755 case TYPE_CODE_INT:
690cc4eb 756 return min_of_type (type);
4c4b4cd2 757 default:
43bbcdc2 758 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
759 }
760}
761
762/* The identity on non-range types. For range types, the underlying
76a01679 763 non-range scalar type. */
4c4b4cd2
PH
764
765static struct type *
18af8284 766get_base_type (struct type *type)
4c4b4cd2 767{
78134374 768 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 769 {
76a01679
JB
770 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
771 return type;
4c4b4cd2
PH
772 type = TYPE_TARGET_TYPE (type);
773 }
774 return type;
14f9c5c9 775}
41246937
JB
776
777/* Return a decoded version of the given VALUE. This means returning
778 a value whose type is obtained by applying all the GNAT-specific
85102364 779 encodings, making the resulting type a static but standard description
41246937
JB
780 of the initial type. */
781
782struct value *
783ada_get_decoded_value (struct value *value)
784{
785 struct type *type = ada_check_typedef (value_type (value));
786
787 if (ada_is_array_descriptor_type (type)
788 || (ada_is_constrained_packed_array_type (type)
78134374 789 && type->code () != TYPE_CODE_PTR))
41246937 790 {
78134374 791 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
792 value = ada_coerce_to_simple_array_ptr (value);
793 else
794 value = ada_coerce_to_simple_array (value);
795 }
796 else
797 value = ada_to_fixed_value (value);
798
799 return value;
800}
801
802/* Same as ada_get_decoded_value, but with the given TYPE.
803 Because there is no associated actual value for this type,
804 the resulting type might be a best-effort approximation in
805 the case of dynamic types. */
806
807struct type *
808ada_get_decoded_type (struct type *type)
809{
810 type = to_static_fixed_type (type);
811 if (ada_is_constrained_packed_array_type (type))
812 type = ada_coerce_to_simple_array_type (type);
813 return type;
814}
815
4c4b4cd2 816\f
76a01679 817
4c4b4cd2 818 /* Language Selection */
14f9c5c9
AS
819
820/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 821 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 822
de93309a 823static enum language
ccefe4c4 824ada_update_initial_language (enum language lang)
14f9c5c9 825{
cafb3438 826 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 827 return language_ada;
14f9c5c9
AS
828
829 return lang;
830}
96d887e8
PH
831
832/* If the main procedure is written in Ada, then return its name.
833 The result is good until the next call. Return NULL if the main
834 procedure doesn't appear to be in Ada. */
835
836char *
837ada_main_name (void)
838{
3b7344d5 839 struct bound_minimal_symbol msym;
e83e4e24 840 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 841
96d887e8
PH
842 /* For Ada, the name of the main procedure is stored in a specific
843 string constant, generated by the binder. Look for that symbol,
844 extract its address, and then read that string. If we didn't find
845 that string, then most probably the main procedure is not written
846 in Ada. */
847 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
848
3b7344d5 849 if (msym.minsym != NULL)
96d887e8 850 {
66920317 851 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 852 if (main_program_name_addr == 0)
323e0a4a 853 error (_("Invalid address for Ada main program name."));
96d887e8 854
66920317 855 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 856 return main_program_name.get ();
96d887e8
PH
857 }
858
859 /* The main procedure doesn't seem to be in Ada. */
860 return NULL;
861}
14f9c5c9 862\f
4c4b4cd2 863 /* Symbols */
d2e4a39e 864
4c4b4cd2
PH
865/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
866 of NULLs. */
14f9c5c9 867
d2e4a39e
AS
868const struct ada_opname_map ada_opname_table[] = {
869 {"Oadd", "\"+\"", BINOP_ADD},
870 {"Osubtract", "\"-\"", BINOP_SUB},
871 {"Omultiply", "\"*\"", BINOP_MUL},
872 {"Odivide", "\"/\"", BINOP_DIV},
873 {"Omod", "\"mod\"", BINOP_MOD},
874 {"Orem", "\"rem\"", BINOP_REM},
875 {"Oexpon", "\"**\"", BINOP_EXP},
876 {"Olt", "\"<\"", BINOP_LESS},
877 {"Ole", "\"<=\"", BINOP_LEQ},
878 {"Ogt", "\">\"", BINOP_GTR},
879 {"Oge", "\">=\"", BINOP_GEQ},
880 {"Oeq", "\"=\"", BINOP_EQUAL},
881 {"One", "\"/=\"", BINOP_NOTEQUAL},
882 {"Oand", "\"and\"", BINOP_BITWISE_AND},
883 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
884 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
885 {"Oconcat", "\"&\"", BINOP_CONCAT},
886 {"Oabs", "\"abs\"", UNOP_ABS},
887 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
888 {"Oadd", "\"+\"", UNOP_PLUS},
889 {"Osubtract", "\"-\"", UNOP_NEG},
890 {NULL, NULL}
14f9c5c9
AS
891};
892
b5ec771e
PA
893/* The "encoded" form of DECODED, according to GNAT conventions. The
894 result is valid until the next call to ada_encode. If
895 THROW_ERRORS, throw an error if invalid operator name is found.
896 Otherwise, return NULL in that case. */
4c4b4cd2 897
b5ec771e
PA
898static char *
899ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 900{
4c4b4cd2
PH
901 static char *encoding_buffer = NULL;
902 static size_t encoding_buffer_size = 0;
d2e4a39e 903 const char *p;
14f9c5c9 904 int k;
d2e4a39e 905
4c4b4cd2 906 if (decoded == NULL)
14f9c5c9
AS
907 return NULL;
908
4c4b4cd2
PH
909 GROW_VECT (encoding_buffer, encoding_buffer_size,
910 2 * strlen (decoded) + 10);
14f9c5c9
AS
911
912 k = 0;
4c4b4cd2 913 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 914 {
cdc7bb92 915 if (*p == '.')
4c4b4cd2
PH
916 {
917 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
918 k += 2;
919 }
14f9c5c9 920 else if (*p == '"')
4c4b4cd2
PH
921 {
922 const struct ada_opname_map *mapping;
923
924 for (mapping = ada_opname_table;
1265e4aa 925 mapping->encoded != NULL
61012eef 926 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
927 ;
928 if (mapping->encoded == NULL)
b5ec771e
PA
929 {
930 if (throw_errors)
931 error (_("invalid Ada operator name: %s"), p);
932 else
933 return NULL;
934 }
4c4b4cd2
PH
935 strcpy (encoding_buffer + k, mapping->encoded);
936 k += strlen (mapping->encoded);
937 break;
938 }
d2e4a39e 939 else
4c4b4cd2
PH
940 {
941 encoding_buffer[k] = *p;
942 k += 1;
943 }
14f9c5c9
AS
944 }
945
4c4b4cd2
PH
946 encoding_buffer[k] = '\0';
947 return encoding_buffer;
14f9c5c9
AS
948}
949
b5ec771e
PA
950/* The "encoded" form of DECODED, according to GNAT conventions.
951 The result is valid until the next call to ada_encode. */
952
953char *
954ada_encode (const char *decoded)
955{
956 return ada_encode_1 (decoded, true);
957}
958
14f9c5c9 959/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
960 quotes, unfolded, but with the quotes stripped away. Result good
961 to next call. */
962
de93309a 963static char *
e0802d59 964ada_fold_name (gdb::string_view name)
14f9c5c9 965{
d2e4a39e 966 static char *fold_buffer = NULL;
14f9c5c9
AS
967 static size_t fold_buffer_size = 0;
968
e0802d59 969 int len = name.size ();
d2e4a39e 970 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
971
972 if (name[0] == '\'')
973 {
e0802d59 974 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 975 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
976 }
977 else
978 {
979 int i;
5b4ee69b 980
14f9c5c9 981 for (i = 0; i <= len; i += 1)
4c4b4cd2 982 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
983 }
984
985 return fold_buffer;
986}
987
529cad9c
PH
988/* Return nonzero if C is either a digit or a lowercase alphabet character. */
989
990static int
991is_lower_alphanum (const char c)
992{
993 return (isdigit (c) || (isalpha (c) && islower (c)));
994}
995
c90092fe
JB
996/* ENCODED is the linkage name of a symbol and LEN contains its length.
997 This function saves in LEN the length of that same symbol name but
998 without either of these suffixes:
29480c32
JB
999 . .{DIGIT}+
1000 . ${DIGIT}+
1001 . ___{DIGIT}+
1002 . __{DIGIT}+.
c90092fe 1003
29480c32
JB
1004 These are suffixes introduced by the compiler for entities such as
1005 nested subprogram for instance, in order to avoid name clashes.
1006 They do not serve any purpose for the debugger. */
1007
1008static void
1009ada_remove_trailing_digits (const char *encoded, int *len)
1010{
1011 if (*len > 1 && isdigit (encoded[*len - 1]))
1012 {
1013 int i = *len - 2;
5b4ee69b 1014
29480c32
JB
1015 while (i > 0 && isdigit (encoded[i]))
1016 i--;
1017 if (i >= 0 && encoded[i] == '.')
1018 *len = i;
1019 else if (i >= 0 && encoded[i] == '$')
1020 *len = i;
61012eef 1021 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1022 *len = i - 2;
61012eef 1023 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1024 *len = i - 1;
1025 }
1026}
1027
1028/* Remove the suffix introduced by the compiler for protected object
1029 subprograms. */
1030
1031static void
1032ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1033{
1034 /* Remove trailing N. */
1035
1036 /* Protected entry subprograms are broken into two
1037 separate subprograms: The first one is unprotected, and has
1038 a 'N' suffix; the second is the protected version, and has
0963b4bd 1039 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1040 the protection. Since the P subprograms are internally generated,
1041 we leave these names undecoded, giving the user a clue that this
1042 entity is internal. */
1043
1044 if (*len > 1
1045 && encoded[*len - 1] == 'N'
1046 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1047 *len = *len - 1;
1048}
1049
1050/* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1052 replaced by ENCODED. */
14f9c5c9 1053
f945dedf 1054std::string
4c4b4cd2 1055ada_decode (const char *encoded)
14f9c5c9
AS
1056{
1057 int i, j;
1058 int len0;
d2e4a39e 1059 const char *p;
14f9c5c9 1060 int at_start_name;
f945dedf 1061 std::string decoded;
d2e4a39e 1062
0d81f350
JG
1063 /* With function descriptors on PPC64, the value of a symbol named
1064 ".FN", if it exists, is the entry point of the function "FN". */
1065 if (encoded[0] == '.')
1066 encoded += 1;
1067
29480c32
JB
1068 /* The name of the Ada main procedure starts with "_ada_".
1069 This prefix is not part of the decoded name, so skip this part
1070 if we see this prefix. */
61012eef 1071 if (startswith (encoded, "_ada_"))
4c4b4cd2 1072 encoded += 5;
14f9c5c9 1073
29480c32
JB
1074 /* If the name starts with '_', then it is not a properly encoded
1075 name, so do not attempt to decode it. Similarly, if the name
1076 starts with '<', the name should not be decoded. */
4c4b4cd2 1077 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1078 goto Suppress;
1079
4c4b4cd2 1080 len0 = strlen (encoded);
4c4b4cd2 1081
29480c32
JB
1082 ada_remove_trailing_digits (encoded, &len0);
1083 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1084
4c4b4cd2
PH
1085 /* Remove the ___X.* suffix if present. Do not forget to verify that
1086 the suffix is located before the current "end" of ENCODED. We want
1087 to avoid re-matching parts of ENCODED that have previously been
1088 marked as discarded (by decrementing LEN0). */
1089 p = strstr (encoded, "___");
1090 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1091 {
1092 if (p[3] == 'X')
4c4b4cd2 1093 len0 = p - encoded;
14f9c5c9 1094 else
4c4b4cd2 1095 goto Suppress;
14f9c5c9 1096 }
4c4b4cd2 1097
29480c32
JB
1098 /* Remove any trailing TKB suffix. It tells us that this symbol
1099 is for the body of a task, but that information does not actually
1100 appear in the decoded name. */
1101
61012eef 1102 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1103 len0 -= 3;
76a01679 1104
a10967fa
JB
1105 /* Remove any trailing TB suffix. The TB suffix is slightly different
1106 from the TKB suffix because it is used for non-anonymous task
1107 bodies. */
1108
61012eef 1109 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1110 len0 -= 2;
1111
29480c32
JB
1112 /* Remove trailing "B" suffixes. */
1113 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1114
61012eef 1115 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1116 len0 -= 1;
1117
4c4b4cd2 1118 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1119
f945dedf 1120 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1121
29480c32
JB
1122 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1123
4c4b4cd2 1124 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1125 {
4c4b4cd2
PH
1126 i = len0 - 2;
1127 while ((i >= 0 && isdigit (encoded[i]))
1128 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1129 i -= 1;
1130 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1131 len0 = i - 1;
1132 else if (encoded[i] == '$')
1133 len0 = i;
d2e4a39e 1134 }
14f9c5c9 1135
29480c32
JB
1136 /* The first few characters that are not alphabetic are not part
1137 of any encoding we use, so we can copy them over verbatim. */
1138
4c4b4cd2
PH
1139 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1140 decoded[j] = encoded[i];
14f9c5c9
AS
1141
1142 at_start_name = 1;
1143 while (i < len0)
1144 {
29480c32 1145 /* Is this a symbol function? */
4c4b4cd2
PH
1146 if (at_start_name && encoded[i] == 'O')
1147 {
1148 int k;
5b4ee69b 1149
4c4b4cd2
PH
1150 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1151 {
1152 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1153 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1154 op_len - 1) == 0)
1155 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1156 {
f945dedf 1157 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1158 at_start_name = 0;
1159 i += op_len;
1160 j += strlen (ada_opname_table[k].decoded);
1161 break;
1162 }
1163 }
1164 if (ada_opname_table[k].encoded != NULL)
1165 continue;
1166 }
14f9c5c9
AS
1167 at_start_name = 0;
1168
529cad9c
PH
1169 /* Replace "TK__" with "__", which will eventually be translated
1170 into "." (just below). */
1171
61012eef 1172 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1173 i += 2;
529cad9c 1174
29480c32
JB
1175 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1176 be translated into "." (just below). These are internal names
1177 generated for anonymous blocks inside which our symbol is nested. */
1178
1179 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1180 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1181 && isdigit (encoded [i+4]))
1182 {
1183 int k = i + 5;
1184
1185 while (k < len0 && isdigit (encoded[k]))
1186 k++; /* Skip any extra digit. */
1187
1188 /* Double-check that the "__B_{DIGITS}+" sequence we found
1189 is indeed followed by "__". */
1190 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1191 i = k;
1192 }
1193
529cad9c
PH
1194 /* Remove _E{DIGITS}+[sb] */
1195
1196 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1197 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1198 one implements the actual entry code, and has a suffix following
1199 the convention above; the second one implements the barrier and
1200 uses the same convention as above, except that the 'E' is replaced
1201 by a 'B'.
1202
1203 Just as above, we do not decode the name of barrier functions
1204 to give the user a clue that the code he is debugging has been
1205 internally generated. */
1206
1207 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1208 && isdigit (encoded[i+2]))
1209 {
1210 int k = i + 3;
1211
1212 while (k < len0 && isdigit (encoded[k]))
1213 k++;
1214
1215 if (k < len0
1216 && (encoded[k] == 'b' || encoded[k] == 's'))
1217 {
1218 k++;
1219 /* Just as an extra precaution, make sure that if this
1220 suffix is followed by anything else, it is a '_'.
1221 Otherwise, we matched this sequence by accident. */
1222 if (k == len0
1223 || (k < len0 && encoded[k] == '_'))
1224 i = k;
1225 }
1226 }
1227
1228 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1229 the GNAT front-end in protected object subprograms. */
1230
1231 if (i < len0 + 3
1232 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1233 {
1234 /* Backtrack a bit up until we reach either the begining of
1235 the encoded name, or "__". Make sure that we only find
1236 digits or lowercase characters. */
1237 const char *ptr = encoded + i - 1;
1238
1239 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1240 ptr--;
1241 if (ptr < encoded
1242 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1243 i++;
1244 }
1245
4c4b4cd2
PH
1246 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1247 {
29480c32
JB
1248 /* This is a X[bn]* sequence not separated from the previous
1249 part of the name with a non-alpha-numeric character (in other
1250 words, immediately following an alpha-numeric character), then
1251 verify that it is placed at the end of the encoded name. If
1252 not, then the encoding is not valid and we should abort the
1253 decoding. Otherwise, just skip it, it is used in body-nested
1254 package names. */
4c4b4cd2
PH
1255 do
1256 i += 1;
1257 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1258 if (i < len0)
1259 goto Suppress;
1260 }
cdc7bb92 1261 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1262 {
29480c32 1263 /* Replace '__' by '.'. */
4c4b4cd2
PH
1264 decoded[j] = '.';
1265 at_start_name = 1;
1266 i += 2;
1267 j += 1;
1268 }
14f9c5c9 1269 else
4c4b4cd2 1270 {
29480c32
JB
1271 /* It's a character part of the decoded name, so just copy it
1272 over. */
4c4b4cd2
PH
1273 decoded[j] = encoded[i];
1274 i += 1;
1275 j += 1;
1276 }
14f9c5c9 1277 }
f945dedf 1278 decoded.resize (j);
14f9c5c9 1279
29480c32
JB
1280 /* Decoded names should never contain any uppercase character.
1281 Double-check this, and abort the decoding if we find one. */
1282
f945dedf 1283 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1284 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1285 goto Suppress;
1286
f945dedf 1287 return decoded;
14f9c5c9
AS
1288
1289Suppress:
4c4b4cd2 1290 if (encoded[0] == '<')
f945dedf 1291 decoded = encoded;
14f9c5c9 1292 else
f945dedf 1293 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1294 return decoded;
1295
1296}
1297
1298/* Table for keeping permanent unique copies of decoded names. Once
1299 allocated, names in this table are never released. While this is a
1300 storage leak, it should not be significant unless there are massive
1301 changes in the set of decoded names in successive versions of a
1302 symbol table loaded during a single session. */
1303static struct htab *decoded_names_store;
1304
1305/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1306 in the language-specific part of GSYMBOL, if it has not been
1307 previously computed. Tries to save the decoded name in the same
1308 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1309 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1310 GSYMBOL).
4c4b4cd2
PH
1311 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1312 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1313 when a decoded name is cached in it. */
4c4b4cd2 1314
45e6c716 1315const char *
f85f34ed 1316ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1317{
f85f34ed
TT
1318 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1319 const char **resultp =
615b3f62 1320 &gsymbol->language_specific.demangled_name;
5b4ee69b 1321
f85f34ed 1322 if (!gsymbol->ada_mangled)
4c4b4cd2 1323 {
4d4eaa30 1324 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1325 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1326
f85f34ed 1327 gsymbol->ada_mangled = 1;
5b4ee69b 1328
f85f34ed 1329 if (obstack != NULL)
f945dedf 1330 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1331 else
76a01679 1332 {
f85f34ed
TT
1333 /* Sometimes, we can't find a corresponding objfile, in
1334 which case, we put the result on the heap. Since we only
1335 decode when needed, we hope this usually does not cause a
1336 significant memory leak (FIXME). */
1337
76a01679 1338 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1339 decoded.c_str (), INSERT);
5b4ee69b 1340
76a01679 1341 if (*slot == NULL)
f945dedf 1342 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1343 *resultp = *slot;
1344 }
4c4b4cd2 1345 }
14f9c5c9 1346
4c4b4cd2
PH
1347 return *resultp;
1348}
76a01679 1349
2c0b251b 1350static char *
76a01679 1351ada_la_decode (const char *encoded, int options)
4c4b4cd2 1352{
f945dedf 1353 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1354}
1355
14f9c5c9 1356\f
d2e4a39e 1357
4c4b4cd2 1358 /* Arrays */
14f9c5c9 1359
28c85d6c
JB
1360/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1361 generated by the GNAT compiler to describe the index type used
1362 for each dimension of an array, check whether it follows the latest
1363 known encoding. If not, fix it up to conform to the latest encoding.
1364 Otherwise, do nothing. This function also does nothing if
1365 INDEX_DESC_TYPE is NULL.
1366
85102364 1367 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1368 Initially, the information would be provided through the name of each
1369 field of the structure type only, while the type of these fields was
1370 described as unspecified and irrelevant. The debugger was then expected
1371 to perform a global type lookup using the name of that field in order
1372 to get access to the full index type description. Because these global
1373 lookups can be very expensive, the encoding was later enhanced to make
1374 the global lookup unnecessary by defining the field type as being
1375 the full index type description.
1376
1377 The purpose of this routine is to allow us to support older versions
1378 of the compiler by detecting the use of the older encoding, and by
1379 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1380 we essentially replace each field's meaningless type by the associated
1381 index subtype). */
1382
1383void
1384ada_fixup_array_indexes_type (struct type *index_desc_type)
1385{
1386 int i;
1387
1388 if (index_desc_type == NULL)
1389 return;
1f704f76 1390 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1391
1392 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1393 to check one field only, no need to check them all). If not, return
1394 now.
1395
1396 If our INDEX_DESC_TYPE was generated using the older encoding,
1397 the field type should be a meaningless integer type whose name
1398 is not equal to the field name. */
940da03e
SM
1399 if (index_desc_type->field (0).type ()->name () != NULL
1400 && strcmp (index_desc_type->field (0).type ()->name (),
28c85d6c
JB
1401 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1402 return;
1403
1404 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1405 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1406 {
0d5cff50 1407 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1408 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1409
1410 if (raw_type)
5d14b6e5 1411 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1412 }
1413}
1414
4c4b4cd2
PH
1415/* The desc_* routines return primitive portions of array descriptors
1416 (fat pointers). */
14f9c5c9
AS
1417
1418/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1419 level of indirection, if needed. */
1420
d2e4a39e
AS
1421static struct type *
1422desc_base_type (struct type *type)
14f9c5c9
AS
1423{
1424 if (type == NULL)
1425 return NULL;
61ee279c 1426 type = ada_check_typedef (type);
78134374 1427 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1428 type = ada_typedef_target_type (type);
1429
1265e4aa 1430 if (type != NULL
78134374
SM
1431 && (type->code () == TYPE_CODE_PTR
1432 || type->code () == TYPE_CODE_REF))
61ee279c 1433 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1434 else
1435 return type;
1436}
1437
4c4b4cd2
PH
1438/* True iff TYPE indicates a "thin" array pointer type. */
1439
14f9c5c9 1440static int
d2e4a39e 1441is_thin_pntr (struct type *type)
14f9c5c9 1442{
d2e4a39e 1443 return
14f9c5c9
AS
1444 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1445 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1446}
1447
4c4b4cd2
PH
1448/* The descriptor type for thin pointer type TYPE. */
1449
d2e4a39e
AS
1450static struct type *
1451thin_descriptor_type (struct type *type)
14f9c5c9 1452{
d2e4a39e 1453 struct type *base_type = desc_base_type (type);
5b4ee69b 1454
14f9c5c9
AS
1455 if (base_type == NULL)
1456 return NULL;
1457 if (is_suffix (ada_type_name (base_type), "___XVE"))
1458 return base_type;
d2e4a39e 1459 else
14f9c5c9 1460 {
d2e4a39e 1461 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1462
14f9c5c9 1463 if (alt_type == NULL)
4c4b4cd2 1464 return base_type;
14f9c5c9 1465 else
4c4b4cd2 1466 return alt_type;
14f9c5c9
AS
1467 }
1468}
1469
4c4b4cd2
PH
1470/* A pointer to the array data for thin-pointer value VAL. */
1471
d2e4a39e
AS
1472static struct value *
1473thin_data_pntr (struct value *val)
14f9c5c9 1474{
828292f2 1475 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1476 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1477
556bdfd4
UW
1478 data_type = lookup_pointer_type (data_type);
1479
78134374 1480 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1481 return value_cast (data_type, value_copy (val));
d2e4a39e 1482 else
42ae5230 1483 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1484}
1485
4c4b4cd2
PH
1486/* True iff TYPE indicates a "thick" array pointer type. */
1487
14f9c5c9 1488static int
d2e4a39e 1489is_thick_pntr (struct type *type)
14f9c5c9
AS
1490{
1491 type = desc_base_type (type);
78134374 1492 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1493 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1494}
1495
4c4b4cd2
PH
1496/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1497 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1498
d2e4a39e
AS
1499static struct type *
1500desc_bounds_type (struct type *type)
14f9c5c9 1501{
d2e4a39e 1502 struct type *r;
14f9c5c9
AS
1503
1504 type = desc_base_type (type);
1505
1506 if (type == NULL)
1507 return NULL;
1508 else if (is_thin_pntr (type))
1509 {
1510 type = thin_descriptor_type (type);
1511 if (type == NULL)
4c4b4cd2 1512 return NULL;
14f9c5c9
AS
1513 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1514 if (r != NULL)
61ee279c 1515 return ada_check_typedef (r);
14f9c5c9 1516 }
78134374 1517 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1518 {
1519 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1520 if (r != NULL)
61ee279c 1521 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1522 }
1523 return NULL;
1524}
1525
1526/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1527 one, a pointer to its bounds data. Otherwise NULL. */
1528
d2e4a39e
AS
1529static struct value *
1530desc_bounds (struct value *arr)
14f9c5c9 1531{
df407dfe 1532 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1533
d2e4a39e 1534 if (is_thin_pntr (type))
14f9c5c9 1535 {
d2e4a39e 1536 struct type *bounds_type =
4c4b4cd2 1537 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1538 LONGEST addr;
1539
4cdfadb1 1540 if (bounds_type == NULL)
323e0a4a 1541 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1542
1543 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1544 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1545 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1546 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1547 addr = value_as_long (arr);
d2e4a39e 1548 else
42ae5230 1549 addr = value_address (arr);
14f9c5c9 1550
d2e4a39e 1551 return
4c4b4cd2
PH
1552 value_from_longest (lookup_pointer_type (bounds_type),
1553 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1554 }
1555
1556 else if (is_thick_pntr (type))
05e522ef
JB
1557 {
1558 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1559 _("Bad GNAT array descriptor"));
1560 struct type *p_bounds_type = value_type (p_bounds);
1561
1562 if (p_bounds_type
78134374 1563 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1564 {
1565 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1566
1567 if (TYPE_STUB (target_type))
1568 p_bounds = value_cast (lookup_pointer_type
1569 (ada_check_typedef (target_type)),
1570 p_bounds);
1571 }
1572 else
1573 error (_("Bad GNAT array descriptor"));
1574
1575 return p_bounds;
1576 }
14f9c5c9
AS
1577 else
1578 return NULL;
1579}
1580
4c4b4cd2
PH
1581/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1582 position of the field containing the address of the bounds data. */
1583
14f9c5c9 1584static int
d2e4a39e 1585fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1586{
1587 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1588}
1589
1590/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1591 size of the field containing the address of the bounds data. */
1592
14f9c5c9 1593static int
d2e4a39e 1594fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1595{
1596 type = desc_base_type (type);
1597
d2e4a39e 1598 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1599 return TYPE_FIELD_BITSIZE (type, 1);
1600 else
940da03e 1601 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1602}
1603
4c4b4cd2 1604/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1605 pointer to one, the type of its array data (a array-with-no-bounds type);
1606 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1607 data. */
4c4b4cd2 1608
d2e4a39e 1609static struct type *
556bdfd4 1610desc_data_target_type (struct type *type)
14f9c5c9
AS
1611{
1612 type = desc_base_type (type);
1613
4c4b4cd2 1614 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1615 if (is_thin_pntr (type))
940da03e 1616 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1617 else if (is_thick_pntr (type))
556bdfd4
UW
1618 {
1619 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1620
1621 if (data_type
78134374 1622 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1623 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1624 }
1625
1626 return NULL;
14f9c5c9
AS
1627}
1628
1629/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1630 its array data. */
4c4b4cd2 1631
d2e4a39e
AS
1632static struct value *
1633desc_data (struct value *arr)
14f9c5c9 1634{
df407dfe 1635 struct type *type = value_type (arr);
5b4ee69b 1636
14f9c5c9
AS
1637 if (is_thin_pntr (type))
1638 return thin_data_pntr (arr);
1639 else if (is_thick_pntr (type))
d2e4a39e 1640 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1641 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1642 else
1643 return NULL;
1644}
1645
1646
1647/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1648 position of the field containing the address of the data. */
1649
14f9c5c9 1650static int
d2e4a39e 1651fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1652{
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1654}
1655
1656/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1657 size of the field containing the address of the data. */
1658
14f9c5c9 1659static int
d2e4a39e 1660fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1661{
1662 type = desc_base_type (type);
1663
1664 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1665 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1666 else
940da03e 1667 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1668}
1669
4c4b4cd2 1670/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1671 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1672 bound, if WHICH is 1. The first bound is I=1. */
1673
d2e4a39e
AS
1674static struct value *
1675desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1676{
250106a7
TT
1677 char bound_name[20];
1678 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1679 which ? 'U' : 'L', i - 1);
1680 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1681 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1682}
1683
1684/* If BOUNDS is an array-bounds structure type, return the bit position
1685 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1686 bound, if WHICH is 1. The first bound is I=1. */
1687
14f9c5c9 1688static int
d2e4a39e 1689desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1690{
d2e4a39e 1691 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1692}
1693
1694/* If BOUNDS is an array-bounds structure type, return the bit field size
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
76a01679 1698static int
d2e4a39e 1699desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1700{
1701 type = desc_base_type (type);
1702
d2e4a39e
AS
1703 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1704 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1705 else
940da03e 1706 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1707}
1708
1709/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1710 Ith bound (numbering from 1). Otherwise, NULL. */
1711
d2e4a39e
AS
1712static struct type *
1713desc_index_type (struct type *type, int i)
14f9c5c9
AS
1714{
1715 type = desc_base_type (type);
1716
78134374 1717 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1718 {
1719 char bound_name[20];
1720 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1721 return lookup_struct_elt_type (type, bound_name, 1);
1722 }
d2e4a39e 1723 else
14f9c5c9
AS
1724 return NULL;
1725}
1726
4c4b4cd2
PH
1727/* The number of index positions in the array-bounds type TYPE.
1728 Return 0 if TYPE is NULL. */
1729
14f9c5c9 1730static int
d2e4a39e 1731desc_arity (struct type *type)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (type != NULL)
1f704f76 1736 return type->num_fields () / 2;
14f9c5c9
AS
1737 return 0;
1738}
1739
4c4b4cd2
PH
1740/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1741 an array descriptor type (representing an unconstrained array
1742 type). */
1743
76a01679
JB
1744static int
1745ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1746{
1747 if (type == NULL)
1748 return 0;
61ee279c 1749 type = ada_check_typedef (type);
78134374 1750 return (type->code () == TYPE_CODE_ARRAY
76a01679 1751 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1752}
1753
52ce6436 1754/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1755 * to one. */
52ce6436 1756
2c0b251b 1757static int
52ce6436
PH
1758ada_is_array_type (struct type *type)
1759{
78134374
SM
1760 while (type != NULL
1761 && (type->code () == TYPE_CODE_PTR
1762 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1763 type = TYPE_TARGET_TYPE (type);
1764 return ada_is_direct_array_type (type);
1765}
1766
4c4b4cd2 1767/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1768
14f9c5c9 1769int
4c4b4cd2 1770ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1771{
1772 if (type == NULL)
1773 return 0;
61ee279c 1774 type = ada_check_typedef (type);
78134374
SM
1775 return (type->code () == TYPE_CODE_ARRAY
1776 || (type->code () == TYPE_CODE_PTR
1777 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1778 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1779}
1780
4c4b4cd2
PH
1781/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1785{
556bdfd4 1786 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1787
1788 if (type == NULL)
1789 return 0;
61ee279c 1790 type = ada_check_typedef (type);
556bdfd4 1791 return (data_type != NULL
78134374 1792 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1793 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1794}
1795
1796/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1797 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1798 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1799 is still needed. */
1800
14f9c5c9 1801int
ebf56fd3 1802ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1803{
d2e4a39e 1804 return
14f9c5c9 1805 type != NULL
78134374 1806 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1807 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1808 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1809 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1810}
1811
1812
4c4b4cd2 1813/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1814 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1815 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1816 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1817 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1818 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1819 a descriptor. */
de93309a
SM
1820
1821static struct type *
d2e4a39e 1822ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1823{
ad82864c
JB
1824 if (ada_is_constrained_packed_array_type (value_type (arr)))
1825 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1826
df407dfe
AC
1827 if (!ada_is_array_descriptor_type (value_type (arr)))
1828 return value_type (arr);
d2e4a39e
AS
1829
1830 if (!bounds)
ad82864c
JB
1831 {
1832 struct type *array_type =
1833 ada_check_typedef (desc_data_target_type (value_type (arr)));
1834
1835 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1836 TYPE_FIELD_BITSIZE (array_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838
1839 return array_type;
1840 }
14f9c5c9
AS
1841 else
1842 {
d2e4a39e 1843 struct type *elt_type;
14f9c5c9 1844 int arity;
d2e4a39e 1845 struct value *descriptor;
14f9c5c9 1846
df407dfe
AC
1847 elt_type = ada_array_element_type (value_type (arr), -1);
1848 arity = ada_array_arity (value_type (arr));
14f9c5c9 1849
d2e4a39e 1850 if (elt_type == NULL || arity == 0)
df407dfe 1851 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1852
1853 descriptor = desc_bounds (arr);
d2e4a39e 1854 if (value_as_long (descriptor) == 0)
4c4b4cd2 1855 return NULL;
d2e4a39e 1856 while (arity > 0)
4c4b4cd2 1857 {
e9bb382b
UW
1858 struct type *range_type = alloc_type_copy (value_type (arr));
1859 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1860 struct value *low = desc_one_bound (descriptor, arity, 0);
1861 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1862
5b4ee69b 1863 arity -= 1;
0c9c3474
SA
1864 create_static_range_type (range_type, value_type (low),
1865 longest_to_int (value_as_long (low)),
1866 longest_to_int (value_as_long (high)));
4c4b4cd2 1867 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1868
1869 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1870 {
1871 /* We need to store the element packed bitsize, as well as
1872 recompute the array size, because it was previously
1873 computed based on the unpacked element size. */
1874 LONGEST lo = value_as_long (low);
1875 LONGEST hi = value_as_long (high);
1876
1877 TYPE_FIELD_BITSIZE (elt_type, 0) =
1878 decode_packed_array_bitsize (value_type (arr));
1879 /* If the array has no element, then the size is already
1880 zero, and does not need to be recomputed. */
1881 if (lo < hi)
1882 {
1883 int array_bitsize =
1884 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1885
1886 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1887 }
1888 }
4c4b4cd2 1889 }
14f9c5c9
AS
1890
1891 return lookup_pointer_type (elt_type);
1892 }
1893}
1894
1895/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1896 Otherwise, returns either a standard GDB array with bounds set
1897 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1898 GDB array. Returns NULL if ARR is a null fat pointer. */
1899
d2e4a39e
AS
1900struct value *
1901ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1902{
df407dfe 1903 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1904 {
d2e4a39e 1905 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1906
14f9c5c9 1907 if (arrType == NULL)
4c4b4cd2 1908 return NULL;
14f9c5c9
AS
1909 return value_cast (arrType, value_copy (desc_data (arr)));
1910 }
ad82864c
JB
1911 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1912 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1913 else
1914 return arr;
1915}
1916
1917/* If ARR does not represent an array, returns ARR unchanged.
1918 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1919 be ARR itself if it already is in the proper form). */
1920
720d1a40 1921struct value *
d2e4a39e 1922ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1923{
df407dfe 1924 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1925 {
d2e4a39e 1926 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1927
14f9c5c9 1928 if (arrVal == NULL)
323e0a4a 1929 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1930 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1931 return value_ind (arrVal);
1932 }
ad82864c
JB
1933 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1934 return decode_constrained_packed_array (arr);
d2e4a39e 1935 else
14f9c5c9
AS
1936 return arr;
1937}
1938
1939/* If TYPE represents a GNAT array type, return it translated to an
1940 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1941 packing). For other types, is the identity. */
1942
d2e4a39e
AS
1943struct type *
1944ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1945{
ad82864c
JB
1946 if (ada_is_constrained_packed_array_type (type))
1947 return decode_constrained_packed_array_type (type);
17280b9f
UW
1948
1949 if (ada_is_array_descriptor_type (type))
556bdfd4 1950 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1951
1952 return type;
14f9c5c9
AS
1953}
1954
4c4b4cd2
PH
1955/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1956
ad82864c
JB
1957static int
1958ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1959{
1960 if (type == NULL)
1961 return 0;
4c4b4cd2 1962 type = desc_base_type (type);
61ee279c 1963 type = ada_check_typedef (type);
d2e4a39e 1964 return
14f9c5c9
AS
1965 ada_type_name (type) != NULL
1966 && strstr (ada_type_name (type), "___XP") != NULL;
1967}
1968
ad82864c
JB
1969/* Non-zero iff TYPE represents a standard GNAT constrained
1970 packed-array type. */
1971
1972int
1973ada_is_constrained_packed_array_type (struct type *type)
1974{
1975 return ada_is_packed_array_type (type)
1976 && !ada_is_array_descriptor_type (type);
1977}
1978
1979/* Non-zero iff TYPE represents an array descriptor for a
1980 unconstrained packed-array type. */
1981
1982static int
1983ada_is_unconstrained_packed_array_type (struct type *type)
1984{
1985 return ada_is_packed_array_type (type)
1986 && ada_is_array_descriptor_type (type);
1987}
1988
1989/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1991
1992static long
1993decode_packed_array_bitsize (struct type *type)
1994{
0d5cff50
DE
1995 const char *raw_name;
1996 const char *tail;
ad82864c
JB
1997 long bits;
1998
720d1a40
JB
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
78134374 2002 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2003 type = ada_typedef_target_type (type);
2004
2005 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2006 if (!raw_name)
2007 raw_name = ada_type_name (desc_base_type (type));
2008
2009 if (!raw_name)
2010 return 0;
2011
2012 tail = strstr (raw_name, "___XP");
720d1a40 2013 gdb_assert (tail != NULL);
ad82864c
JB
2014
2015 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2016 {
2017 lim_warning
2018 (_("could not understand bit size information on packed array"));
2019 return 0;
2020 }
2021
2022 return bits;
2023}
2024
14f9c5c9
AS
2025/* Given that TYPE is a standard GDB array type with all bounds filled
2026 in, and that the element size of its ultimate scalar constituents
2027 (that is, either its elements, or, if it is an array of arrays, its
2028 elements' elements, etc.) is *ELT_BITS, return an identical type,
2029 but with the bit sizes of its elements (and those of any
2030 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2031 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2032 in bits.
2033
2034 Note that, for arrays whose index type has an XA encoding where
2035 a bound references a record discriminant, getting that discriminant,
2036 and therefore the actual value of that bound, is not possible
2037 because none of the given parameters gives us access to the record.
2038 This function assumes that it is OK in the context where it is being
2039 used to return an array whose bounds are still dynamic and where
2040 the length is arbitrary. */
4c4b4cd2 2041
d2e4a39e 2042static struct type *
ad82864c 2043constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2044{
d2e4a39e
AS
2045 struct type *new_elt_type;
2046 struct type *new_type;
99b1c762
JB
2047 struct type *index_type_desc;
2048 struct type *index_type;
14f9c5c9
AS
2049 LONGEST low_bound, high_bound;
2050
61ee279c 2051 type = ada_check_typedef (type);
78134374 2052 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2053 return type;
2054
99b1c762
JB
2055 index_type_desc = ada_find_parallel_type (type, "___XA");
2056 if (index_type_desc)
940da03e 2057 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2058 NULL);
2059 else
3d967001 2060 index_type = type->index_type ();
99b1c762 2061
e9bb382b 2062 new_type = alloc_type_copy (type);
ad82864c
JB
2063 new_elt_type =
2064 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2065 elt_bits);
99b1c762 2066 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2067 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2068 new_type->set_name (ada_type_name (type));
14f9c5c9 2069
78134374 2070 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2071 && is_dynamic_type (check_typedef (index_type)))
2072 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2076 else
14f9c5c9
AS
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2079 TYPE_LENGTH (new_type) =
4c4b4cd2 2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2081 }
2082
876cecd0 2083 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2084 return new_type;
2085}
2086
ad82864c
JB
2087/* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2089
d2e4a39e 2090static struct type *
ad82864c 2091decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2092{
0d5cff50 2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2094 char *name;
0d5cff50 2095 const char *tail;
d2e4a39e 2096 struct type *shadow_type;
14f9c5c9 2097 long bits;
14f9c5c9 2098
727e3d2e
JB
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2107 type = desc_base_type (type);
2108
14f9c5c9
AS
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
b4ba55a1
JB
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
14f9c5c9 2115 {
323e0a4a 2116 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2117 return NULL;
2118 }
f168693b 2119 shadow_type = check_typedef (shadow_type);
14f9c5c9 2120
78134374 2121 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2122 {
0963b4bd
MS
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
14f9c5c9
AS
2125 return NULL;
2126 }
d2e4a39e 2127
ad82864c
JB
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2130}
2131
ad82864c
JB
2132/* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
4c4b4cd2 2136 type length is set appropriately. */
14f9c5c9 2137
d2e4a39e 2138static struct value *
ad82864c 2139decode_constrained_packed_array (struct value *arr)
14f9c5c9 2140{
4c4b4cd2 2141 struct type *type;
14f9c5c9 2142
11aa919a
PMR
2143 /* If our value is a pointer, then dereference it. Likewise if
2144 the value is a reference. Make sure that this operation does not
2145 cause the target type to be fixed, as this would indirectly cause
2146 this array to be decoded. The rest of the routine assumes that
2147 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2148 and "value_ind" routines to perform the dereferencing, as opposed
2149 to using "ada_coerce_ref" or "ada_value_ind". */
2150 arr = coerce_ref (arr);
78134374 2151 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2152 arr = value_ind (arr);
4c4b4cd2 2153
ad82864c 2154 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2155 if (type == NULL)
2156 {
323e0a4a 2157 error (_("can't unpack array"));
14f9c5c9
AS
2158 return NULL;
2159 }
61ee279c 2160
d5a22e77 2161 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2162 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
df407dfe 2171 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
df407dfe 2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
4c4b4cd2 2186 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2187}
2188
2189
2190/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2191 given in IND. ARR must be a simple array. */
14f9c5c9 2192
d2e4a39e
AS
2193static struct value *
2194value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2195{
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
d2e4a39e
AS
2199 struct type *elt_type;
2200 struct value *v;
14f9c5c9
AS
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
df407dfe 2204 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2205 for (i = 0; i < arity; i += 1)
14f9c5c9 2206 {
78134374 2207 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
0963b4bd
MS
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
14f9c5c9 2212 else
4c4b4cd2 2213 {
3d967001 2214 struct type *range_type = elt_type->index_type ();
4c4b4cd2
PH
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
323e0a4a 2220 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2221 lowerbound = upperbound = 0;
2222 }
2223
3cb382c9 2224 idx = pos_atr (ind[i]);
4c4b4cd2 2225 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
4c4b4cd2
PH
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2231 }
14f9c5c9
AS
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2237 bits, elt_type);
14f9c5c9
AS
2238 return v;
2239}
2240
4c4b4cd2 2241/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2242
2243static int
d2e4a39e 2244has_negatives (struct type *type)
14f9c5c9 2245{
78134374 2246 switch (type->code ())
d2e4a39e
AS
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
4e962e74 2253 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2254 }
14f9c5c9 2255}
d2e4a39e 2256
f93fca70 2257/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2258 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2259 the unpacked buffer.
14f9c5c9 2260
5b639dea
JB
2261 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2262 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2263
f93fca70
JB
2264 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2265 zero otherwise.
14f9c5c9 2266
f93fca70 2267 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2268
f93fca70
JB
2269 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2270
2271static void
2272ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2273 gdb_byte *unpacked, int unpacked_len,
2274 int is_big_endian, int is_signed_type,
2275 int is_scalar)
2276{
a1c95e6b
JB
2277 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2278 int src_idx; /* Index into the source area */
2279 int src_bytes_left; /* Number of source bytes left to process. */
2280 int srcBitsLeft; /* Number of source bits left to move */
2281 int unusedLS; /* Number of bits in next significant
2282 byte of source that are unused */
2283
a1c95e6b
JB
2284 int unpacked_idx; /* Index into the unpacked buffer */
2285 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2286
4c4b4cd2 2287 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2288 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2289 unsigned char sign;
a1c95e6b 2290
4c4b4cd2
PH
2291 /* Transmit bytes from least to most significant; delta is the direction
2292 the indices move. */
f93fca70 2293 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2294
5b639dea
JB
2295 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2296 bits from SRC. .*/
2297 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2298 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2299 bit_size, unpacked_len);
2300
14f9c5c9 2301 srcBitsLeft = bit_size;
086ca51f 2302 src_bytes_left = src_len;
f93fca70 2303 unpacked_bytes_left = unpacked_len;
14f9c5c9 2304 sign = 0;
f93fca70
JB
2305
2306 if (is_big_endian)
14f9c5c9 2307 {
086ca51f 2308 src_idx = src_len - 1;
f93fca70
JB
2309 if (is_signed_type
2310 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2311 sign = ~0;
d2e4a39e
AS
2312
2313 unusedLS =
4c4b4cd2
PH
2314 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2315 % HOST_CHAR_BIT;
14f9c5c9 2316
f93fca70
JB
2317 if (is_scalar)
2318 {
2319 accumSize = 0;
2320 unpacked_idx = unpacked_len - 1;
2321 }
2322 else
2323 {
4c4b4cd2
PH
2324 /* Non-scalar values must be aligned at a byte boundary... */
2325 accumSize =
2326 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2327 /* ... And are placed at the beginning (most-significant) bytes
2328 of the target. */
086ca51f
JB
2329 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2330 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2331 }
14f9c5c9 2332 }
d2e4a39e 2333 else
14f9c5c9
AS
2334 {
2335 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2336
086ca51f 2337 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2338 unusedLS = bit_offset;
2339 accumSize = 0;
2340
f93fca70 2341 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2342 sign = ~0;
14f9c5c9 2343 }
d2e4a39e 2344
14f9c5c9 2345 accum = 0;
086ca51f 2346 while (src_bytes_left > 0)
14f9c5c9
AS
2347 {
2348 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2349 part of the value. */
d2e4a39e 2350 unsigned int unusedMSMask =
4c4b4cd2
PH
2351 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2352 1;
2353 /* Sign-extend bits for this byte. */
14f9c5c9 2354 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2355
d2e4a39e 2356 accum |=
086ca51f 2357 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2358 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2359 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2360 {
db297a65 2361 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2364 unpacked_bytes_left -= 1;
2365 unpacked_idx += delta;
4c4b4cd2 2366 }
14f9c5c9
AS
2367 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2368 unusedLS = 0;
086ca51f
JB
2369 src_bytes_left -= 1;
2370 src_idx += delta;
14f9c5c9 2371 }
086ca51f 2372 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2373 {
2374 accum |= sign << accumSize;
db297a65 2375 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2376 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2377 if (accumSize < 0)
2378 accumSize = 0;
14f9c5c9 2379 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2380 unpacked_bytes_left -= 1;
2381 unpacked_idx += delta;
14f9c5c9 2382 }
f93fca70
JB
2383}
2384
2385/* Create a new value of type TYPE from the contents of OBJ starting
2386 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2387 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2388 assigning through the result will set the field fetched from.
2389 VALADDR is ignored unless OBJ is NULL, in which case,
2390 VALADDR+OFFSET must address the start of storage containing the
2391 packed value. The value returned in this case is never an lval.
2392 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2393
2394struct value *
2395ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2396 long offset, int bit_offset, int bit_size,
2397 struct type *type)
2398{
2399 struct value *v;
bfb1c796 2400 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2401 gdb_byte *unpacked;
220475ed 2402 const int is_scalar = is_scalar_type (type);
d5a22e77 2403 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2404 gdb::byte_vector staging;
f93fca70
JB
2405
2406 type = ada_check_typedef (type);
2407
d0a9e810 2408 if (obj == NULL)
bfb1c796 2409 src = valaddr + offset;
d0a9e810 2410 else
bfb1c796 2411 src = value_contents (obj) + offset;
d0a9e810
JB
2412
2413 if (is_dynamic_type (type))
2414 {
2415 /* The length of TYPE might by dynamic, so we need to resolve
2416 TYPE in order to know its actual size, which we then use
2417 to create the contents buffer of the value we return.
2418 The difficulty is that the data containing our object is
2419 packed, and therefore maybe not at a byte boundary. So, what
2420 we do, is unpack the data into a byte-aligned buffer, and then
2421 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2422 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2423 staging.resize (staging_len);
d0a9e810
JB
2424
2425 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2426 staging.data (), staging.size (),
d0a9e810
JB
2427 is_big_endian, has_negatives (type),
2428 is_scalar);
b249d2c2 2429 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2430 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2431 {
2432 /* This happens when the length of the object is dynamic,
2433 and is actually smaller than the space reserved for it.
2434 For instance, in an array of variant records, the bit_size
2435 we're given is the array stride, which is constant and
2436 normally equal to the maximum size of its element.
2437 But, in reality, each element only actually spans a portion
2438 of that stride. */
2439 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2440 }
d0a9e810
JB
2441 }
2442
f93fca70
JB
2443 if (obj == NULL)
2444 {
2445 v = allocate_value (type);
bfb1c796 2446 src = valaddr + offset;
f93fca70
JB
2447 }
2448 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2449 {
0cafa88c 2450 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2451 gdb_byte *buf;
0cafa88c 2452
f93fca70 2453 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2454 buf = (gdb_byte *) alloca (src_len);
2455 read_memory (value_address (v), buf, src_len);
2456 src = buf;
f93fca70
JB
2457 }
2458 else
2459 {
2460 v = allocate_value (type);
bfb1c796 2461 src = value_contents (obj) + offset;
f93fca70
JB
2462 }
2463
2464 if (obj != NULL)
2465 {
2466 long new_offset = offset;
2467
2468 set_value_component_location (v, obj);
2469 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2470 set_value_bitsize (v, bit_size);
2471 if (value_bitpos (v) >= HOST_CHAR_BIT)
2472 {
2473 ++new_offset;
2474 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2475 }
2476 set_value_offset (v, new_offset);
2477
2478 /* Also set the parent value. This is needed when trying to
2479 assign a new value (in inferior memory). */
2480 set_value_parent (v, obj);
2481 }
2482 else
2483 set_value_bitsize (v, bit_size);
bfb1c796 2484 unpacked = value_contents_writeable (v);
f93fca70
JB
2485
2486 if (bit_size == 0)
2487 {
2488 memset (unpacked, 0, TYPE_LENGTH (type));
2489 return v;
2490 }
2491
d5722aa2 2492 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2493 {
d0a9e810
JB
2494 /* Small short-cut: If we've unpacked the data into a buffer
2495 of the same size as TYPE's length, then we can reuse that,
2496 instead of doing the unpacking again. */
d5722aa2 2497 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2498 }
d0a9e810
JB
2499 else
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
2501 unpacked, TYPE_LENGTH (type),
2502 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2503
14f9c5c9
AS
2504 return v;
2505}
d2e4a39e 2506
14f9c5c9
AS
2507/* Store the contents of FROMVAL into the location of TOVAL.
2508 Return a new value with the location of TOVAL and contents of
2509 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2510 floating-point or non-scalar types. */
14f9c5c9 2511
d2e4a39e
AS
2512static struct value *
2513ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2514{
df407dfe
AC
2515 struct type *type = value_type (toval);
2516 int bits = value_bitsize (toval);
14f9c5c9 2517
52ce6436
PH
2518 toval = ada_coerce_ref (toval);
2519 fromval = ada_coerce_ref (fromval);
2520
2521 if (ada_is_direct_array_type (value_type (toval)))
2522 toval = ada_coerce_to_simple_array (toval);
2523 if (ada_is_direct_array_type (value_type (fromval)))
2524 fromval = ada_coerce_to_simple_array (fromval);
2525
88e3b34b 2526 if (!deprecated_value_modifiable (toval))
323e0a4a 2527 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2528
d2e4a39e 2529 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2530 && bits > 0
78134374
SM
2531 && (type->code () == TYPE_CODE_FLT
2532 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2533 {
df407dfe
AC
2534 int len = (value_bitpos (toval)
2535 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2536 int from_size;
224c3ddb 2537 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2538 struct value *val;
42ae5230 2539 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2540
78134374 2541 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2542 fromval = value_cast (type, fromval);
14f9c5c9 2543
52ce6436 2544 read_memory (to_addr, buffer, len);
aced2898
PH
2545 from_size = value_bitsize (fromval);
2546 if (from_size == 0)
2547 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2548
d5a22e77 2549 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2550 ULONGEST from_offset = 0;
2551 if (is_big_endian && is_scalar_type (value_type (fromval)))
2552 from_offset = from_size - bits;
2553 copy_bitwise (buffer, value_bitpos (toval),
2554 value_contents (fromval), from_offset,
2555 bits, is_big_endian);
972daa01 2556 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2557
14f9c5c9 2558 val = value_copy (toval);
0fd88904 2559 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2560 TYPE_LENGTH (type));
04624583 2561 deprecated_set_value_type (val, type);
d2e4a39e 2562
14f9c5c9
AS
2563 return val;
2564 }
2565
2566 return value_assign (toval, fromval);
2567}
2568
2569
7c512744
JB
2570/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2571 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2572 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2573 COMPONENT, and not the inferior's memory. The current contents
2574 of COMPONENT are ignored.
2575
2576 Although not part of the initial design, this function also works
2577 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2578 had a null address, and COMPONENT had an address which is equal to
2579 its offset inside CONTAINER. */
2580
52ce6436
PH
2581static void
2582value_assign_to_component (struct value *container, struct value *component,
2583 struct value *val)
2584{
2585 LONGEST offset_in_container =
42ae5230 2586 (LONGEST) (value_address (component) - value_address (container));
7c512744 2587 int bit_offset_in_container =
52ce6436
PH
2588 value_bitpos (component) - value_bitpos (container);
2589 int bits;
7c512744 2590
52ce6436
PH
2591 val = value_cast (value_type (component), val);
2592
2593 if (value_bitsize (component) == 0)
2594 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2595 else
2596 bits = value_bitsize (component);
2597
d5a22e77 2598 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2599 {
2600 int src_offset;
2601
2602 if (is_scalar_type (check_typedef (value_type (component))))
2603 src_offset
2604 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2605 else
2606 src_offset = 0;
a99bc3d2
JB
2607 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2608 value_bitpos (container) + bit_offset_in_container,
2609 value_contents (val), src_offset, bits, 1);
2a62dfa9 2610 }
52ce6436 2611 else
a99bc3d2
JB
2612 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2613 value_bitpos (container) + bit_offset_in_container,
2614 value_contents (val), 0, bits, 0);
7c512744
JB
2615}
2616
736ade86
XR
2617/* Determine if TYPE is an access to an unconstrained array. */
2618
d91e9ea8 2619bool
736ade86
XR
2620ada_is_access_to_unconstrained_array (struct type *type)
2621{
78134374 2622 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2623 && is_thick_pntr (ada_typedef_target_type (type)));
2624}
2625
4c4b4cd2
PH
2626/* The value of the element of array ARR at the ARITY indices given in IND.
2627 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2628 thereto. */
2629
d2e4a39e
AS
2630struct value *
2631ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2632{
2633 int k;
d2e4a39e
AS
2634 struct value *elt;
2635 struct type *elt_type;
14f9c5c9
AS
2636
2637 elt = ada_coerce_to_simple_array (arr);
2638
df407dfe 2639 elt_type = ada_check_typedef (value_type (elt));
78134374 2640 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2641 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2642 return value_subscript_packed (elt, arity, ind);
2643
2644 for (k = 0; k < arity; k += 1)
2645 {
b9c50e9a
XR
2646 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2647
78134374 2648 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2649 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2650
2497b498 2651 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2652
2653 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2654 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2655 {
2656 /* The element is a typedef to an unconstrained array,
2657 except that the value_subscript call stripped the
2658 typedef layer. The typedef layer is GNAT's way to
2659 specify that the element is, at the source level, an
2660 access to the unconstrained array, rather than the
2661 unconstrained array. So, we need to restore that
2662 typedef layer, which we can do by forcing the element's
2663 type back to its original type. Otherwise, the returned
2664 value is going to be printed as the array, rather
2665 than as an access. Another symptom of the same issue
2666 would be that an expression trying to dereference the
2667 element would also be improperly rejected. */
2668 deprecated_set_value_type (elt, saved_elt_type);
2669 }
2670
2671 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2672 }
b9c50e9a 2673
14f9c5c9
AS
2674 return elt;
2675}
2676
deede10c
JB
2677/* Assuming ARR is a pointer to a GDB array, the value of the element
2678 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2679 Does not read the entire array into memory.
2680
2681 Note: Unlike what one would expect, this function is used instead of
2682 ada_value_subscript for basically all non-packed array types. The reason
2683 for this is that a side effect of doing our own pointer arithmetics instead
2684 of relying on value_subscript is that there is no implicit typedef peeling.
2685 This is important for arrays of array accesses, where it allows us to
2686 preserve the fact that the array's element is an array access, where the
2687 access part os encoded in a typedef layer. */
14f9c5c9 2688
2c0b251b 2689static struct value *
deede10c 2690ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2691{
2692 int k;
919e6dbe 2693 struct value *array_ind = ada_value_ind (arr);
deede10c 2694 struct type *type
919e6dbe
PMR
2695 = check_typedef (value_enclosing_type (array_ind));
2696
78134374 2697 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2698 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2699 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2700
2701 for (k = 0; k < arity; k += 1)
2702 {
2703 LONGEST lwb, upb;
14f9c5c9 2704
78134374 2705 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2706 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2707 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2708 value_copy (arr));
3d967001 2709 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2710 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2711 type = TYPE_TARGET_TYPE (type);
2712 }
2713
2714 return value_ind (arr);
2715}
2716
0b5d8877 2717/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2718 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2719 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2720 this array is LOW, as per Ada rules. */
0b5d8877 2721static struct value *
f5938064
JG
2722ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2723 int low, int high)
0b5d8877 2724{
b0dd7688 2725 struct type *type0 = ada_check_typedef (type);
3d967001 2726 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2727 struct type *index_type
aa715135 2728 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2729 struct type *slice_type = create_array_type_with_stride
2730 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2731 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2732 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2733 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2734 LONGEST base_low_pos, low_pos;
2735 CORE_ADDR base;
2736
2737 if (!discrete_position (base_index_type, low, &low_pos)
2738 || !discrete_position (base_index_type, base_low, &base_low_pos))
2739 {
2740 warning (_("unable to get positions in slice, use bounds instead"));
2741 low_pos = low;
2742 base_low_pos = base_low;
2743 }
5b4ee69b 2744
aa715135
JG
2745 base = value_as_address (array_ptr)
2746 + ((low_pos - base_low_pos)
2747 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2748 return value_at_lazy (slice_type, base);
0b5d8877
PH
2749}
2750
2751
2752static struct value *
2753ada_value_slice (struct value *array, int low, int high)
2754{
b0dd7688 2755 struct type *type = ada_check_typedef (value_type (array));
3d967001 2756 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2757 struct type *index_type
3d967001 2758 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2761 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2762 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2763 LONGEST low_pos, high_pos;
5b4ee69b 2764
aa715135
JG
2765 if (!discrete_position (base_index_type, low, &low_pos)
2766 || !discrete_position (base_index_type, high, &high_pos))
2767 {
2768 warning (_("unable to get positions in slice, use bounds instead"));
2769 low_pos = low;
2770 high_pos = high;
2771 }
2772
2773 return value_cast (slice_type,
2774 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2775}
2776
14f9c5c9
AS
2777/* If type is a record type in the form of a standard GNAT array
2778 descriptor, returns the number of dimensions for type. If arr is a
2779 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2780 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2781
2782int
d2e4a39e 2783ada_array_arity (struct type *type)
14f9c5c9
AS
2784{
2785 int arity;
2786
2787 if (type == NULL)
2788 return 0;
2789
2790 type = desc_base_type (type);
2791
2792 arity = 0;
78134374 2793 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2794 return desc_arity (desc_bounds_type (type));
d2e4a39e 2795 else
78134374 2796 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2797 {
4c4b4cd2 2798 arity += 1;
61ee279c 2799 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2800 }
d2e4a39e 2801
14f9c5c9
AS
2802 return arity;
2803}
2804
2805/* If TYPE is a record type in the form of a standard GNAT array
2806 descriptor or a simple array type, returns the element type for
2807 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2808 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2809
d2e4a39e
AS
2810struct type *
2811ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2812{
2813 type = desc_base_type (type);
2814
78134374 2815 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2816 {
2817 int k;
d2e4a39e 2818 struct type *p_array_type;
14f9c5c9 2819
556bdfd4 2820 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2821
2822 k = ada_array_arity (type);
2823 if (k == 0)
4c4b4cd2 2824 return NULL;
d2e4a39e 2825
4c4b4cd2 2826 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2827 if (nindices >= 0 && k > nindices)
4c4b4cd2 2828 k = nindices;
d2e4a39e 2829 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2830 {
61ee279c 2831 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2832 k -= 1;
2833 }
14f9c5c9
AS
2834 return p_array_type;
2835 }
78134374 2836 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2837 {
78134374 2838 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2839 {
2840 type = TYPE_TARGET_TYPE (type);
2841 nindices -= 1;
2842 }
14f9c5c9
AS
2843 return type;
2844 }
2845
2846 return NULL;
2847}
2848
4c4b4cd2 2849/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2850 Does not examine memory. Throws an error if N is invalid or TYPE
2851 is not an array type. NAME is the name of the Ada attribute being
2852 evaluated ('range, 'first, 'last, or 'length); it is used in building
2853 the error message. */
14f9c5c9 2854
1eea4ebd
UW
2855static struct type *
2856ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2857{
4c4b4cd2
PH
2858 struct type *result_type;
2859
14f9c5c9
AS
2860 type = desc_base_type (type);
2861
1eea4ebd
UW
2862 if (n < 0 || n > ada_array_arity (type))
2863 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2864
4c4b4cd2 2865 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2866 {
2867 int i;
2868
2869 for (i = 1; i < n; i += 1)
4c4b4cd2 2870 type = TYPE_TARGET_TYPE (type);
3d967001 2871 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2
PH
2872 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2873 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2874 perhaps stabsread.c would make more sense. */
78134374 2875 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2876 result_type = NULL;
14f9c5c9 2877 }
d2e4a39e 2878 else
1eea4ebd
UW
2879 {
2880 result_type = desc_index_type (desc_bounds_type (type), n);
2881 if (result_type == NULL)
2882 error (_("attempt to take bound of something that is not an array"));
2883 }
2884
2885 return result_type;
14f9c5c9
AS
2886}
2887
2888/* Given that arr is an array type, returns the lower bound of the
2889 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2890 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2891 array-descriptor type. It works for other arrays with bounds supplied
2892 by run-time quantities other than discriminants. */
14f9c5c9 2893
abb68b3e 2894static LONGEST
fb5e3d5c 2895ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2896{
8a48ac95 2897 struct type *type, *index_type_desc, *index_type;
1ce677a4 2898 int i;
262452ec
JK
2899
2900 gdb_assert (which == 0 || which == 1);
14f9c5c9 2901
ad82864c
JB
2902 if (ada_is_constrained_packed_array_type (arr_type))
2903 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2904
4c4b4cd2 2905 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2906 return (LONGEST) - which;
14f9c5c9 2907
78134374 2908 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2909 type = TYPE_TARGET_TYPE (arr_type);
2910 else
2911 type = arr_type;
2912
bafffb51
JB
2913 if (TYPE_FIXED_INSTANCE (type))
2914 {
2915 /* The array has already been fixed, so we do not need to
2916 check the parallel ___XA type again. That encoding has
2917 already been applied, so ignore it now. */
2918 index_type_desc = NULL;
2919 }
2920 else
2921 {
2922 index_type_desc = ada_find_parallel_type (type, "___XA");
2923 ada_fixup_array_indexes_type (index_type_desc);
2924 }
2925
262452ec 2926 if (index_type_desc != NULL)
940da03e 2927 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2928 NULL);
262452ec 2929 else
8a48ac95
JB
2930 {
2931 struct type *elt_type = check_typedef (type);
2932
2933 for (i = 1; i < n; i++)
2934 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2935
3d967001 2936 index_type = elt_type->index_type ();
8a48ac95 2937 }
262452ec 2938
43bbcdc2
PH
2939 return
2940 (LONGEST) (which == 0
2941 ? ada_discrete_type_low_bound (index_type)
2942 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2943}
2944
2945/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2946 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2947 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2948 supplied by run-time quantities other than discriminants. */
14f9c5c9 2949
1eea4ebd 2950static LONGEST
4dc81987 2951ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2952{
eb479039
JB
2953 struct type *arr_type;
2954
78134374 2955 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2956 arr = value_ind (arr);
2957 arr_type = value_enclosing_type (arr);
14f9c5c9 2958
ad82864c
JB
2959 if (ada_is_constrained_packed_array_type (arr_type))
2960 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2961 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2962 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2963 else
1eea4ebd 2964 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2965}
2966
2967/* Given that arr is an array value, returns the length of the
2968 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2969 supplied by run-time quantities other than discriminants.
2970 Does not work for arrays indexed by enumeration types with representation
2971 clauses at the moment. */
14f9c5c9 2972
1eea4ebd 2973static LONGEST
d2e4a39e 2974ada_array_length (struct value *arr, int n)
14f9c5c9 2975{
aa715135
JG
2976 struct type *arr_type, *index_type;
2977 int low, high;
eb479039 2978
78134374 2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
14f9c5c9 2982
ad82864c
JB
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2985
4c4b4cd2 2986 if (ada_is_simple_array_type (arr_type))
aa715135
JG
2987 {
2988 low = ada_array_bound_from_type (arr_type, n, 0);
2989 high = ada_array_bound_from_type (arr_type, n, 1);
2990 }
14f9c5c9 2991 else
aa715135
JG
2992 {
2993 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
2994 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
2995 }
2996
f168693b 2997 arr_type = check_typedef (arr_type);
7150d33c 2998 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
2999 if (index_type != NULL)
3000 {
3001 struct type *base_type;
78134374 3002 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3003 base_type = TYPE_TARGET_TYPE (index_type);
3004 else
3005 base_type = index_type;
3006
3007 low = pos_atr (value_from_longest (base_type, low));
3008 high = pos_atr (value_from_longest (base_type, high));
3009 }
3010 return high - low + 1;
4c4b4cd2
PH
3011}
3012
bff8c71f
TT
3013/* An array whose type is that of ARR_TYPE (an array type), with
3014 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3015 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3016
3017static struct value *
bff8c71f 3018empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3019{
b0dd7688 3020 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3021 struct type *index_type
3022 = create_static_range_type
3d967001 3023 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3024 high < low ? low - 1 : high);
b0dd7688 3025 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3026
0b5d8877 3027 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3028}
14f9c5c9 3029\f
d2e4a39e 3030
4c4b4cd2 3031 /* Name resolution */
14f9c5c9 3032
4c4b4cd2
PH
3033/* The "decoded" name for the user-definable Ada operator corresponding
3034 to OP. */
14f9c5c9 3035
d2e4a39e 3036static const char *
4c4b4cd2 3037ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3038{
3039 int i;
3040
4c4b4cd2 3041 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3042 {
3043 if (ada_opname_table[i].op == op)
4c4b4cd2 3044 return ada_opname_table[i].decoded;
14f9c5c9 3045 }
323e0a4a 3046 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3047}
3048
de93309a
SM
3049/* Returns true (non-zero) iff decoded name N0 should appear before N1
3050 in a listing of choices during disambiguation (see sort_choices, below).
3051 The idea is that overloadings of a subprogram name from the
3052 same package should sort in their source order. We settle for ordering
3053 such symbols by their trailing number (__N or $N). */
14f9c5c9 3054
de93309a
SM
3055static int
3056encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3057{
de93309a
SM
3058 if (N1 == NULL)
3059 return 0;
3060 else if (N0 == NULL)
3061 return 1;
3062 else
3063 {
3064 int k0, k1;
30b15541 3065
de93309a
SM
3066 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3067 ;
3068 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3069 ;
3070 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3071 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3072 {
3073 int n0, n1;
30b15541 3074
de93309a
SM
3075 n0 = k0;
3076 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3077 n0 -= 1;
3078 n1 = k1;
3079 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3080 n1 -= 1;
3081 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3082 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3083 }
3084 return (strcmp (N0, N1) < 0);
3085 }
14f9c5c9
AS
3086}
3087
de93309a
SM
3088/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3089 encoded names. */
14f9c5c9 3090
de93309a
SM
3091static void
3092sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3093{
14f9c5c9 3094 int i;
14f9c5c9 3095
de93309a 3096 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3097 {
de93309a
SM
3098 struct block_symbol sym = syms[i];
3099 int j;
3100
3101 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3102 {
987012b8
CB
3103 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3104 sym.symbol->linkage_name ()))
de93309a
SM
3105 break;
3106 syms[j + 1] = syms[j];
4c4b4cd2 3107 }
de93309a
SM
3108 syms[j + 1] = sym;
3109 }
3110}
14f9c5c9 3111
de93309a
SM
3112/* Whether GDB should display formals and return types for functions in the
3113 overloads selection menu. */
3114static bool print_signatures = true;
4c4b4cd2 3115
de93309a
SM
3116/* Print the signature for SYM on STREAM according to the FLAGS options. For
3117 all but functions, the signature is just the name of the symbol. For
3118 functions, this is the name of the function, the list of types for formals
3119 and the return type (if any). */
4c4b4cd2 3120
de93309a
SM
3121static void
3122ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3123 const struct type_print_options *flags)
3124{
3125 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3126
987012b8 3127 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3128 if (!print_signatures
3129 || type == NULL
78134374 3130 || type->code () != TYPE_CODE_FUNC)
de93309a 3131 return;
4c4b4cd2 3132
1f704f76 3133 if (type->num_fields () > 0)
de93309a
SM
3134 {
3135 int i;
14f9c5c9 3136
de93309a 3137 fprintf_filtered (stream, " (");
1f704f76 3138 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3139 {
3140 if (i > 0)
3141 fprintf_filtered (stream, "; ");
940da03e 3142 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3143 flags);
3144 }
3145 fprintf_filtered (stream, ")");
3146 }
3147 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3148 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3149 {
3150 fprintf_filtered (stream, " return ");
3151 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3152 }
3153}
14f9c5c9 3154
de93309a
SM
3155/* Read and validate a set of numeric choices from the user in the
3156 range 0 .. N_CHOICES-1. Place the results in increasing
3157 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3158
de93309a
SM
3159 The user types choices as a sequence of numbers on one line
3160 separated by blanks, encoding them as follows:
14f9c5c9 3161
de93309a
SM
3162 + A choice of 0 means to cancel the selection, throwing an error.
3163 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3164 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3165
de93309a 3166 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3167
de93309a
SM
3168 ANNOTATION_SUFFIX, if present, is used to annotate the input
3169 prompts (for use with the -f switch). */
14f9c5c9 3170
de93309a
SM
3171static int
3172get_selections (int *choices, int n_choices, int max_results,
3173 int is_all_choice, const char *annotation_suffix)
3174{
992a7040 3175 const char *args;
de93309a
SM
3176 const char *prompt;
3177 int n_chosen;
3178 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3179
de93309a
SM
3180 prompt = getenv ("PS2");
3181 if (prompt == NULL)
3182 prompt = "> ";
4c4b4cd2 3183
de93309a 3184 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3185
de93309a
SM
3186 if (args == NULL)
3187 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3188
de93309a 3189 n_chosen = 0;
4c4b4cd2 3190
de93309a
SM
3191 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3192 order, as given in args. Choices are validated. */
3193 while (1)
14f9c5c9 3194 {
de93309a
SM
3195 char *args2;
3196 int choice, j;
76a01679 3197
de93309a
SM
3198 args = skip_spaces (args);
3199 if (*args == '\0' && n_chosen == 0)
3200 error_no_arg (_("one or more choice numbers"));
3201 else if (*args == '\0')
3202 break;
76a01679 3203
de93309a
SM
3204 choice = strtol (args, &args2, 10);
3205 if (args == args2 || choice < 0
3206 || choice > n_choices + first_choice - 1)
3207 error (_("Argument must be choice number"));
3208 args = args2;
76a01679 3209
de93309a
SM
3210 if (choice == 0)
3211 error (_("cancelled"));
76a01679 3212
de93309a
SM
3213 if (choice < first_choice)
3214 {
3215 n_chosen = n_choices;
3216 for (j = 0; j < n_choices; j += 1)
3217 choices[j] = j;
3218 break;
76a01679 3219 }
de93309a 3220 choice -= first_choice;
76a01679 3221
de93309a 3222 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3223 {
76a01679 3224 }
4c4b4cd2 3225
de93309a 3226 if (j < 0 || choice != choices[j])
4c4b4cd2 3227 {
de93309a 3228 int k;
4c4b4cd2 3229
de93309a
SM
3230 for (k = n_chosen - 1; k > j; k -= 1)
3231 choices[k + 1] = choices[k];
3232 choices[j + 1] = choice;
3233 n_chosen += 1;
4c4b4cd2 3234 }
14f9c5c9
AS
3235 }
3236
de93309a
SM
3237 if (n_chosen > max_results)
3238 error (_("Select no more than %d of the above"), max_results);
3239
3240 return n_chosen;
14f9c5c9
AS
3241}
3242
de93309a
SM
3243/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3244 by asking the user (if necessary), returning the number selected,
3245 and setting the first elements of SYMS items. Error if no symbols
3246 selected. */
3247
3248/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3249 to be re-integrated one of these days. */
14f9c5c9
AS
3250
3251static int
de93309a 3252user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3253{
de93309a
SM
3254 int i;
3255 int *chosen = XALLOCAVEC (int , nsyms);
3256 int n_chosen;
3257 int first_choice = (max_results == 1) ? 1 : 2;
3258 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3259
de93309a
SM
3260 if (max_results < 1)
3261 error (_("Request to select 0 symbols!"));
3262 if (nsyms <= 1)
3263 return nsyms;
14f9c5c9 3264
de93309a
SM
3265 if (select_mode == multiple_symbols_cancel)
3266 error (_("\
3267canceled because the command is ambiguous\n\
3268See set/show multiple-symbol."));
14f9c5c9 3269
de93309a
SM
3270 /* If select_mode is "all", then return all possible symbols.
3271 Only do that if more than one symbol can be selected, of course.
3272 Otherwise, display the menu as usual. */
3273 if (select_mode == multiple_symbols_all && max_results > 1)
3274 return nsyms;
14f9c5c9 3275
de93309a
SM
3276 printf_filtered (_("[0] cancel\n"));
3277 if (max_results > 1)
3278 printf_filtered (_("[1] all\n"));
14f9c5c9 3279
de93309a 3280 sort_choices (syms, nsyms);
14f9c5c9 3281
de93309a
SM
3282 for (i = 0; i < nsyms; i += 1)
3283 {
3284 if (syms[i].symbol == NULL)
3285 continue;
14f9c5c9 3286
de93309a
SM
3287 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3288 {
3289 struct symtab_and_line sal =
3290 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3291
de93309a
SM
3292 printf_filtered ("[%d] ", i + first_choice);
3293 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3294 &type_print_raw_options);
3295 if (sal.symtab == NULL)
3296 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3297 metadata_style.style ().ptr (), nullptr, sal.line);
3298 else
3299 printf_filtered
3300 (_(" at %ps:%d\n"),
3301 styled_string (file_name_style.style (),
3302 symtab_to_filename_for_display (sal.symtab)),
3303 sal.line);
3304 continue;
3305 }
76a01679
JB
3306 else
3307 {
de93309a
SM
3308 int is_enumeral =
3309 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3310 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3311 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3312 struct symtab *symtab = NULL;
4c4b4cd2 3313
de93309a
SM
3314 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3315 symtab = symbol_symtab (syms[i].symbol);
3316
3317 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3318 {
3319 printf_filtered ("[%d] ", i + first_choice);
3320 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3321 &type_print_raw_options);
3322 printf_filtered (_(" at %s:%d\n"),
3323 symtab_to_filename_for_display (symtab),
3324 SYMBOL_LINE (syms[i].symbol));
3325 }
3326 else if (is_enumeral
7d93a1e0 3327 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3328 {
3329 printf_filtered (("[%d] "), i + first_choice);
3330 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3331 gdb_stdout, -1, 0, &type_print_raw_options);
3332 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3333 syms[i].symbol->print_name ());
de93309a
SM
3334 }
3335 else
3336 {
3337 printf_filtered ("[%d] ", i + first_choice);
3338 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3339 &type_print_raw_options);
3340
3341 if (symtab != NULL)
3342 printf_filtered (is_enumeral
3343 ? _(" in %s (enumeral)\n")
3344 : _(" at %s:?\n"),
3345 symtab_to_filename_for_display (symtab));
3346 else
3347 printf_filtered (is_enumeral
3348 ? _(" (enumeral)\n")
3349 : _(" at ?\n"));
3350 }
76a01679 3351 }
14f9c5c9 3352 }
14f9c5c9 3353
de93309a
SM
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
14f9c5c9 3356
de93309a
SM
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
14f9c5c9 3359
de93309a
SM
3360 return n_chosen;
3361}
14f9c5c9 3362
de93309a
SM
3363/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3364 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3365 undefined namespace) and converts operators that are
3366 user-defined into appropriate function calls. If CONTEXT_TYPE is
3367 non-null, it provides a preferred result type [at the moment, only
3368 type void has any effect---causing procedures to be preferred over
3369 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3370 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3371
de93309a
SM
3372static void
3373resolve (expression_up *expp, int void_context_p, int parse_completion,
3374 innermost_block_tracker *tracker)
3375{
3376 struct type *context_type = NULL;
3377 int pc = 0;
14f9c5c9 3378
de93309a
SM
3379 if (void_context_p)
3380 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3381
de93309a
SM
3382 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3383}
4c4b4cd2 3384
de93309a
SM
3385/* Resolve the operator of the subexpression beginning at
3386 position *POS of *EXPP. "Resolving" consists of replacing
3387 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3388 with their resolutions, replacing built-in operators with
3389 function calls to user-defined operators, where appropriate, and,
3390 when DEPROCEDURE_P is non-zero, converting function-valued variables
3391 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3392 are as in ada_resolve, above. */
14f9c5c9 3393
de93309a
SM
3394static struct value *
3395resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3396 struct type *context_type, int parse_completion,
3397 innermost_block_tracker *tracker)
14f9c5c9 3398{
de93309a
SM
3399 int pc = *pos;
3400 int i;
3401 struct expression *exp; /* Convenience: == *expp. */
3402 enum exp_opcode op = (*expp)->elts[pc].opcode;
3403 struct value **argvec; /* Vector of operand types (alloca'ed). */
3404 int nargs; /* Number of operands. */
3405 int oplen;
14f9c5c9 3406
de93309a
SM
3407 argvec = NULL;
3408 nargs = 0;
3409 exp = expp->get ();
4c4b4cd2 3410
de93309a
SM
3411 /* Pass one: resolve operands, saving their types and updating *pos,
3412 if needed. */
3413 switch (op)
3414 {
3415 case OP_FUNCALL:
3416 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3417 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3418 *pos += 7;
3419 else
3420 {
3421 *pos += 3;
3422 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3423 }
de93309a
SM
3424 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3425 break;
14f9c5c9 3426
de93309a
SM
3427 case UNOP_ADDR:
3428 *pos += 1;
3429 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3430 break;
3431
3432 case UNOP_QUAL:
3433 *pos += 3;
3434 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3435 parse_completion, tracker);
3436 break;
3437
3438 case OP_ATR_MODULUS:
3439 case OP_ATR_SIZE:
3440 case OP_ATR_TAG:
3441 case OP_ATR_FIRST:
3442 case OP_ATR_LAST:
3443 case OP_ATR_LENGTH:
3444 case OP_ATR_POS:
3445 case OP_ATR_VAL:
3446 case OP_ATR_MIN:
3447 case OP_ATR_MAX:
3448 case TERNOP_IN_RANGE:
3449 case BINOP_IN_BOUNDS:
3450 case UNOP_IN_RANGE:
3451 case OP_AGGREGATE:
3452 case OP_OTHERS:
3453 case OP_CHOICES:
3454 case OP_POSITIONAL:
3455 case OP_DISCRETE_RANGE:
3456 case OP_NAME:
3457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3458 *pos += oplen;
3459 break;
3460
3461 case BINOP_ASSIGN:
3462 {
3463 struct value *arg1;
3464
3465 *pos += 1;
3466 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3467 if (arg1 == NULL)
3468 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3469 else
3470 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3471 tracker);
3472 break;
3473 }
3474
3475 case UNOP_CAST:
3476 *pos += 3;
3477 nargs = 1;
3478 break;
3479
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_EXP:
3487 case BINOP_CONCAT:
3488 case BINOP_LOGICAL_AND:
3489 case BINOP_LOGICAL_OR:
3490 case BINOP_BITWISE_AND:
3491 case BINOP_BITWISE_IOR:
3492 case BINOP_BITWISE_XOR:
3493
3494 case BINOP_EQUAL:
3495 case BINOP_NOTEQUAL:
3496 case BINOP_LESS:
3497 case BINOP_GTR:
3498 case BINOP_LEQ:
3499 case BINOP_GEQ:
3500
3501 case BINOP_REPEAT:
3502 case BINOP_SUBSCRIPT:
3503 case BINOP_COMMA:
3504 *pos += 1;
3505 nargs = 2;
3506 break;
3507
3508 case UNOP_NEG:
3509 case UNOP_PLUS:
3510 case UNOP_LOGICAL_NOT:
3511 case UNOP_ABS:
3512 case UNOP_IND:
3513 *pos += 1;
3514 nargs = 1;
3515 break;
3516
3517 case OP_LONG:
3518 case OP_FLOAT:
3519 case OP_VAR_VALUE:
3520 case OP_VAR_MSYM_VALUE:
3521 *pos += 4;
3522 break;
3523
3524 case OP_TYPE:
3525 case OP_BOOL:
3526 case OP_LAST:
3527 case OP_INTERNALVAR:
3528 *pos += 3;
3529 break;
3530
3531 case UNOP_MEMVAL:
3532 *pos += 3;
3533 nargs = 1;
3534 break;
3535
3536 case OP_REGISTER:
3537 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3538 break;
3539
3540 case STRUCTOP_STRUCT:
3541 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3542 nargs = 1;
3543 break;
3544
3545 case TERNOP_SLICE:
3546 *pos += 1;
3547 nargs = 3;
3548 break;
3549
3550 case OP_STRING:
3551 break;
3552
3553 default:
3554 error (_("Unexpected operator during name resolution"));
14f9c5c9 3555 }
14f9c5c9 3556
de93309a
SM
3557 argvec = XALLOCAVEC (struct value *, nargs + 1);
3558 for (i = 0; i < nargs; i += 1)
3559 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3560 tracker);
3561 argvec[i] = NULL;
3562 exp = expp->get ();
4c4b4cd2 3563
de93309a
SM
3564 /* Pass two: perform any resolution on principal operator. */
3565 switch (op)
14f9c5c9 3566 {
de93309a
SM
3567 default:
3568 break;
5b4ee69b 3569
de93309a
SM
3570 case OP_VAR_VALUE:
3571 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3572 {
de93309a
SM
3573 std::vector<struct block_symbol> candidates;
3574 int n_candidates;
5b4ee69b 3575
de93309a 3576 n_candidates =
987012b8 3577 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3578 exp->elts[pc + 1].block, VAR_DOMAIN,
3579 &candidates);
d2e4a39e 3580
de93309a
SM
3581 if (n_candidates > 1)
3582 {
3583 /* Types tend to get re-introduced locally, so if there
3584 are any local symbols that are not types, first filter
3585 out all types. */
3586 int j;
3587 for (j = 0; j < n_candidates; j += 1)
3588 switch (SYMBOL_CLASS (candidates[j].symbol))
3589 {
3590 case LOC_REGISTER:
3591 case LOC_ARG:
3592 case LOC_REF_ARG:
3593 case LOC_REGPARM_ADDR:
3594 case LOC_LOCAL:
3595 case LOC_COMPUTED:
3596 goto FoundNonType;
3597 default:
3598 break;
3599 }
3600 FoundNonType:
3601 if (j < n_candidates)
3602 {
3603 j = 0;
3604 while (j < n_candidates)
3605 {
3606 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3607 {
3608 candidates[j] = candidates[n_candidates - 1];
3609 n_candidates -= 1;
3610 }
3611 else
3612 j += 1;
3613 }
3614 }
3615 }
4c4b4cd2 3616
de93309a
SM
3617 if (n_candidates == 0)
3618 error (_("No definition found for %s"),
987012b8 3619 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3620 else if (n_candidates == 1)
3621 i = 0;
3622 else if (deprocedure_p
3623 && !is_nonfunction (candidates.data (), n_candidates))
3624 {
3625 i = ada_resolve_function
3626 (candidates.data (), n_candidates, NULL, 0,
987012b8 3627 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3628 context_type, parse_completion);
3629 if (i < 0)
3630 error (_("Could not find a match for %s"),
987012b8 3631 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3632 }
3633 else
3634 {
3635 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3636 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3637 user_select_syms (candidates.data (), n_candidates, 1);
3638 i = 0;
3639 }
5b4ee69b 3640
de93309a
SM
3641 exp->elts[pc + 1].block = candidates[i].block;
3642 exp->elts[pc + 2].symbol = candidates[i].symbol;
3643 tracker->update (candidates[i]);
3644 }
14f9c5c9 3645
de93309a 3646 if (deprocedure_p
78134374 3647 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3648 == TYPE_CODE_FUNC))
4c4b4cd2 3649 {
de93309a
SM
3650 replace_operator_with_call (expp, pc, 0, 4,
3651 exp->elts[pc + 2].symbol,
3652 exp->elts[pc + 1].block);
3653 exp = expp->get ();
4c4b4cd2 3654 }
de93309a
SM
3655 break;
3656
3657 case OP_FUNCALL:
3658 {
3659 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3660 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3661 {
3662 std::vector<struct block_symbol> candidates;
3663 int n_candidates;
3664
3665 n_candidates =
987012b8 3666 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3667 exp->elts[pc + 4].block, VAR_DOMAIN,
3668 &candidates);
14f9c5c9 3669
de93309a
SM
3670 if (n_candidates == 1)
3671 i = 0;
3672 else
3673 {
3674 i = ada_resolve_function
3675 (candidates.data (), n_candidates,
3676 argvec, nargs,
987012b8 3677 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3678 context_type, parse_completion);
3679 if (i < 0)
3680 error (_("Could not find a match for %s"),
987012b8 3681 exp->elts[pc + 5].symbol->print_name ());
de93309a 3682 }
d72413e6 3683
de93309a
SM
3684 exp->elts[pc + 4].block = candidates[i].block;
3685 exp->elts[pc + 5].symbol = candidates[i].symbol;
3686 tracker->update (candidates[i]);
3687 }
3688 }
3689 break;
3690 case BINOP_ADD:
3691 case BINOP_SUB:
3692 case BINOP_MUL:
3693 case BINOP_DIV:
3694 case BINOP_REM:
3695 case BINOP_MOD:
3696 case BINOP_CONCAT:
3697 case BINOP_BITWISE_AND:
3698 case BINOP_BITWISE_IOR:
3699 case BINOP_BITWISE_XOR:
3700 case BINOP_EQUAL:
3701 case BINOP_NOTEQUAL:
3702 case BINOP_LESS:
3703 case BINOP_GTR:
3704 case BINOP_LEQ:
3705 case BINOP_GEQ:
3706 case BINOP_EXP:
3707 case UNOP_NEG:
3708 case UNOP_PLUS:
3709 case UNOP_LOGICAL_NOT:
3710 case UNOP_ABS:
3711 if (possible_user_operator_p (op, argvec))
3712 {
3713 std::vector<struct block_symbol> candidates;
3714 int n_candidates;
d72413e6 3715
de93309a
SM
3716 n_candidates =
3717 ada_lookup_symbol_list (ada_decoded_op_name (op),
3718 NULL, VAR_DOMAIN,
3719 &candidates);
d72413e6 3720
de93309a
SM
3721 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3722 nargs, ada_decoded_op_name (op), NULL,
3723 parse_completion);
3724 if (i < 0)
3725 break;
d72413e6 3726
de93309a
SM
3727 replace_operator_with_call (expp, pc, nargs, 1,
3728 candidates[i].symbol,
3729 candidates[i].block);
3730 exp = expp->get ();
3731 }
3732 break;
d72413e6 3733
de93309a
SM
3734 case OP_TYPE:
3735 case OP_REGISTER:
3736 return NULL;
d72413e6 3737 }
d72413e6 3738
de93309a
SM
3739 *pos = pc;
3740 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3741 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3742 exp->elts[pc + 1].objfile,
3743 exp->elts[pc + 2].msymbol);
3744 else
3745 return evaluate_subexp_type (exp, pos);
3746}
14f9c5c9 3747
de93309a
SM
3748/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3749 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3750 a non-pointer. */
3751/* The term "match" here is rather loose. The match is heuristic and
3752 liberal. */
14f9c5c9 3753
de93309a
SM
3754static int
3755ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3756{
de93309a
SM
3757 ftype = ada_check_typedef (ftype);
3758 atype = ada_check_typedef (atype);
14f9c5c9 3759
78134374 3760 if (ftype->code () == TYPE_CODE_REF)
de93309a 3761 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3762 if (atype->code () == TYPE_CODE_REF)
de93309a 3763 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3764
78134374 3765 switch (ftype->code ())
14f9c5c9 3766 {
de93309a 3767 default:
78134374 3768 return ftype->code () == atype->code ();
de93309a 3769 case TYPE_CODE_PTR:
78134374 3770 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3771 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3772 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3773 else
de93309a
SM
3774 return (may_deref
3775 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_ENUM:
3778 case TYPE_CODE_RANGE:
78134374 3779 switch (atype->code ())
4c4b4cd2 3780 {
de93309a
SM
3781 case TYPE_CODE_INT:
3782 case TYPE_CODE_ENUM:
3783 case TYPE_CODE_RANGE:
3784 return 1;
3785 default:
3786 return 0;
4c4b4cd2 3787 }
d2e4a39e 3788
de93309a 3789 case TYPE_CODE_ARRAY:
78134374 3790 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3791 || ada_is_array_descriptor_type (atype));
14f9c5c9 3792
de93309a
SM
3793 case TYPE_CODE_STRUCT:
3794 if (ada_is_array_descriptor_type (ftype))
78134374 3795 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3796 || ada_is_array_descriptor_type (atype));
3797 else
78134374 3798 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3799 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3800
de93309a
SM
3801 case TYPE_CODE_UNION:
3802 case TYPE_CODE_FLT:
78134374 3803 return (atype->code () == ftype->code ());
de93309a 3804 }
14f9c5c9
AS
3805}
3806
de93309a
SM
3807/* Return non-zero if the formals of FUNC "sufficiently match" the
3808 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3809 may also be an enumeral, in which case it is treated as a 0-
3810 argument function. */
14f9c5c9 3811
de93309a
SM
3812static int
3813ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3814{
3815 int i;
3816 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3817
de93309a 3818 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3819 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3820 return (n_actuals == 0);
78134374 3821 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3822 return 0;
14f9c5c9 3823
1f704f76 3824 if (func_type->num_fields () != n_actuals)
de93309a 3825 return 0;
14f9c5c9 3826
de93309a
SM
3827 for (i = 0; i < n_actuals; i += 1)
3828 {
3829 if (actuals[i] == NULL)
3830 return 0;
3831 else
3832 {
940da03e 3833 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
de93309a 3834 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3835
de93309a
SM
3836 if (!ada_type_match (ftype, atype, 1))
3837 return 0;
3838 }
3839 }
3840 return 1;
3841}
d2e4a39e 3842
de93309a
SM
3843/* False iff function type FUNC_TYPE definitely does not produce a value
3844 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3845 FUNC_TYPE is not a valid function type with a non-null return type
3846 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3847
de93309a
SM
3848static int
3849return_match (struct type *func_type, struct type *context_type)
3850{
3851 struct type *return_type;
d2e4a39e 3852
de93309a
SM
3853 if (func_type == NULL)
3854 return 1;
14f9c5c9 3855
78134374 3856 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3857 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3858 else
3859 return_type = get_base_type (func_type);
3860 if (return_type == NULL)
3861 return 1;
76a01679 3862
de93309a 3863 context_type = get_base_type (context_type);
14f9c5c9 3864
78134374 3865 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3866 return context_type == NULL || return_type == context_type;
3867 else if (context_type == NULL)
78134374 3868 return return_type->code () != TYPE_CODE_VOID;
de93309a 3869 else
78134374 3870 return return_type->code () == context_type->code ();
de93309a 3871}
14f9c5c9 3872
14f9c5c9 3873
de93309a
SM
3874/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3875 function (if any) that matches the types of the NARGS arguments in
3876 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3877 that returns that type, then eliminate matches that don't. If
3878 CONTEXT_TYPE is void and there is at least one match that does not
3879 return void, eliminate all matches that do.
14f9c5c9 3880
de93309a
SM
3881 Asks the user if there is more than one match remaining. Returns -1
3882 if there is no such symbol or none is selected. NAME is used
3883 solely for messages. May re-arrange and modify SYMS in
3884 the process; the index returned is for the modified vector. */
14f9c5c9 3885
de93309a
SM
3886static int
3887ada_resolve_function (struct block_symbol syms[],
3888 int nsyms, struct value **args, int nargs,
3889 const char *name, struct type *context_type,
3890 int parse_completion)
3891{
3892 int fallback;
3893 int k;
3894 int m; /* Number of hits */
14f9c5c9 3895
de93309a
SM
3896 m = 0;
3897 /* In the first pass of the loop, we only accept functions matching
3898 context_type. If none are found, we add a second pass of the loop
3899 where every function is accepted. */
3900 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3901 {
3902 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3903 {
de93309a 3904 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3905
de93309a
SM
3906 if (ada_args_match (syms[k].symbol, args, nargs)
3907 && (fallback || return_match (type, context_type)))
3908 {
3909 syms[m] = syms[k];
3910 m += 1;
3911 }
4c4b4cd2 3912 }
14f9c5c9
AS
3913 }
3914
de93309a
SM
3915 /* If we got multiple matches, ask the user which one to use. Don't do this
3916 interactive thing during completion, though, as the purpose of the
3917 completion is providing a list of all possible matches. Prompting the
3918 user to filter it down would be completely unexpected in this case. */
3919 if (m == 0)
3920 return -1;
3921 else if (m > 1 && !parse_completion)
3922 {
3923 printf_filtered (_("Multiple matches for %s\n"), name);
3924 user_select_syms (syms, m, 1);
3925 return 0;
3926 }
3927 return 0;
14f9c5c9
AS
3928}
3929
4c4b4cd2
PH
3930/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3931 on the function identified by SYM and BLOCK, and taking NARGS
3932 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3933
3934static void
e9d9f57e 3935replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 3936 int oplen, struct symbol *sym,
270140bd 3937 const struct block *block)
14f9c5c9
AS
3938{
3939 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3940 symbol, -oplen for operator being replaced). */
d2e4a39e 3941 struct expression *newexp = (struct expression *)
8c1a34e7 3942 xzalloc (sizeof (struct expression)
4c4b4cd2 3943 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3944 struct expression *exp = expp->get ();
14f9c5c9
AS
3945
3946 newexp->nelts = exp->nelts + 7 - oplen;
3947 newexp->language_defn = exp->language_defn;
3489610d 3948 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3949 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3950 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3951 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3952
3953 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3954 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3955
3956 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3957 newexp->elts[pc + 4].block = block;
3958 newexp->elts[pc + 5].symbol = sym;
3959
e9d9f57e 3960 expp->reset (newexp);
d2e4a39e 3961}
14f9c5c9
AS
3962
3963/* Type-class predicates */
3964
4c4b4cd2
PH
3965/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3966 or FLOAT). */
14f9c5c9
AS
3967
3968static int
d2e4a39e 3969numeric_type_p (struct type *type)
14f9c5c9
AS
3970{
3971 if (type == NULL)
3972 return 0;
d2e4a39e
AS
3973 else
3974 {
78134374 3975 switch (type->code ())
4c4b4cd2
PH
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_FLT:
3979 return 1;
3980 case TYPE_CODE_RANGE:
3981 return (type == TYPE_TARGET_TYPE (type)
3982 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3983 default:
3984 return 0;
3985 }
d2e4a39e 3986 }
14f9c5c9
AS
3987}
3988
4c4b4cd2 3989/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3990
3991static int
d2e4a39e 3992integer_type_p (struct type *type)
14f9c5c9
AS
3993{
3994 if (type == NULL)
3995 return 0;
d2e4a39e
AS
3996 else
3997 {
78134374 3998 switch (type->code ())
4c4b4cd2
PH
3999 {
4000 case TYPE_CODE_INT:
4001 return 1;
4002 case TYPE_CODE_RANGE:
4003 return (type == TYPE_TARGET_TYPE (type)
4004 || integer_type_p (TYPE_TARGET_TYPE (type)));
4005 default:
4006 return 0;
4007 }
d2e4a39e 4008 }
14f9c5c9
AS
4009}
4010
4c4b4cd2 4011/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4012
4013static int
d2e4a39e 4014scalar_type_p (struct type *type)
14f9c5c9
AS
4015{
4016 if (type == NULL)
4017 return 0;
d2e4a39e
AS
4018 else
4019 {
78134374 4020 switch (type->code ())
4c4b4cd2
PH
4021 {
4022 case TYPE_CODE_INT:
4023 case TYPE_CODE_RANGE:
4024 case TYPE_CODE_ENUM:
4025 case TYPE_CODE_FLT:
4026 return 1;
4027 default:
4028 return 0;
4029 }
d2e4a39e 4030 }
14f9c5c9
AS
4031}
4032
4c4b4cd2 4033/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4034
4035static int
d2e4a39e 4036discrete_type_p (struct type *type)
14f9c5c9
AS
4037{
4038 if (type == NULL)
4039 return 0;
d2e4a39e
AS
4040 else
4041 {
78134374 4042 switch (type->code ())
4c4b4cd2
PH
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_RANGE:
4046 case TYPE_CODE_ENUM:
872f0337 4047 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4048 return 1;
4049 default:
4050 return 0;
4051 }
d2e4a39e 4052 }
14f9c5c9
AS
4053}
4054
4c4b4cd2
PH
4055/* Returns non-zero if OP with operands in the vector ARGS could be
4056 a user-defined function. Errs on the side of pre-defined operators
4057 (i.e., result 0). */
14f9c5c9
AS
4058
4059static int
d2e4a39e 4060possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4061{
76a01679 4062 struct type *type0 =
df407dfe 4063 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4064 struct type *type1 =
df407dfe 4065 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4066
4c4b4cd2
PH
4067 if (type0 == NULL)
4068 return 0;
4069
14f9c5c9
AS
4070 switch (op)
4071 {
4072 default:
4073 return 0;
4074
4075 case BINOP_ADD:
4076 case BINOP_SUB:
4077 case BINOP_MUL:
4078 case BINOP_DIV:
d2e4a39e 4079 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4080
4081 case BINOP_REM:
4082 case BINOP_MOD:
4083 case BINOP_BITWISE_AND:
4084 case BINOP_BITWISE_IOR:
4085 case BINOP_BITWISE_XOR:
d2e4a39e 4086 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4087
4088 case BINOP_EQUAL:
4089 case BINOP_NOTEQUAL:
4090 case BINOP_LESS:
4091 case BINOP_GTR:
4092 case BINOP_LEQ:
4093 case BINOP_GEQ:
d2e4a39e 4094 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4095
4096 case BINOP_CONCAT:
ee90b9ab 4097 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4098
4099 case BINOP_EXP:
d2e4a39e 4100 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4101
4102 case UNOP_NEG:
4103 case UNOP_PLUS:
4104 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4105 case UNOP_ABS:
4106 return (!numeric_type_p (type0));
14f9c5c9
AS
4107
4108 }
4109}
4110\f
4c4b4cd2 4111 /* Renaming */
14f9c5c9 4112
aeb5907d
JB
4113/* NOTES:
4114
4115 1. In the following, we assume that a renaming type's name may
4116 have an ___XD suffix. It would be nice if this went away at some
4117 point.
4118 2. We handle both the (old) purely type-based representation of
4119 renamings and the (new) variable-based encoding. At some point,
4120 it is devoutly to be hoped that the former goes away
4121 (FIXME: hilfinger-2007-07-09).
4122 3. Subprogram renamings are not implemented, although the XRS
4123 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4124
4125/* If SYM encodes a renaming,
4126
4127 <renaming> renames <renamed entity>,
4128
4129 sets *LEN to the length of the renamed entity's name,
4130 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4131 the string describing the subcomponent selected from the renamed
0963b4bd 4132 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4133 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4134 are undefined). Otherwise, returns a value indicating the category
4135 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4136 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4137 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4138 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4139 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4140 may be NULL, in which case they are not assigned.
4141
4142 [Currently, however, GCC does not generate subprogram renamings.] */
4143
4144enum ada_renaming_category
4145ada_parse_renaming (struct symbol *sym,
4146 const char **renamed_entity, int *len,
4147 const char **renaming_expr)
4148{
4149 enum ada_renaming_category kind;
4150 const char *info;
4151 const char *suffix;
4152
4153 if (sym == NULL)
4154 return ADA_NOT_RENAMING;
4155 switch (SYMBOL_CLASS (sym))
14f9c5c9 4156 {
aeb5907d
JB
4157 default:
4158 return ADA_NOT_RENAMING;
aeb5907d
JB
4159 case LOC_LOCAL:
4160 case LOC_STATIC:
4161 case LOC_COMPUTED:
4162 case LOC_OPTIMIZED_OUT:
987012b8 4163 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4164 if (info == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (info[5])
4167 {
4168 case '_':
4169 kind = ADA_OBJECT_RENAMING;
4170 info += 6;
4171 break;
4172 case 'E':
4173 kind = ADA_EXCEPTION_RENAMING;
4174 info += 7;
4175 break;
4176 case 'P':
4177 kind = ADA_PACKAGE_RENAMING;
4178 info += 7;
4179 break;
4180 case 'S':
4181 kind = ADA_SUBPROGRAM_RENAMING;
4182 info += 7;
4183 break;
4184 default:
4185 return ADA_NOT_RENAMING;
4186 }
14f9c5c9 4187 }
4c4b4cd2 4188
de93309a
SM
4189 if (renamed_entity != NULL)
4190 *renamed_entity = info;
4191 suffix = strstr (info, "___XE");
4192 if (suffix == NULL || suffix == info)
4193 return ADA_NOT_RENAMING;
4194 if (len != NULL)
4195 *len = strlen (info) - strlen (suffix);
4196 suffix += 5;
4197 if (renaming_expr != NULL)
4198 *renaming_expr = suffix;
4199 return kind;
4200}
4201
4202/* Compute the value of the given RENAMING_SYM, which is expected to
4203 be a symbol encoding a renaming expression. BLOCK is the block
4204 used to evaluate the renaming. */
4205
4206static struct value *
4207ada_read_renaming_var_value (struct symbol *renaming_sym,
4208 const struct block *block)
4209{
4210 const char *sym_name;
4211
987012b8 4212 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4213 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4214 return evaluate_expression (expr.get ());
4215}
4216\f
4217
4218 /* Evaluation: Function Calls */
4219
4220/* Return an lvalue containing the value VAL. This is the identity on
4221 lvalues, and otherwise has the side-effect of allocating memory
4222 in the inferior where a copy of the value contents is copied. */
4223
4224static struct value *
4225ensure_lval (struct value *val)
4226{
4227 if (VALUE_LVAL (val) == not_lval
4228 || VALUE_LVAL (val) == lval_internalvar)
4229 {
4230 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4231 const CORE_ADDR addr =
4232 value_as_long (value_allocate_space_in_inferior (len));
4233
4234 VALUE_LVAL (val) = lval_memory;
4235 set_value_address (val, addr);
4236 write_memory (addr, value_contents (val), len);
4237 }
4238
4239 return val;
4240}
4241
4242/* Given ARG, a value of type (pointer or reference to a)*
4243 structure/union, extract the component named NAME from the ultimate
4244 target structure/union and return it as a value with its
4245 appropriate type.
4246
4247 The routine searches for NAME among all members of the structure itself
4248 and (recursively) among all members of any wrapper members
4249 (e.g., '_parent').
4250
4251 If NO_ERR, then simply return NULL in case of error, rather than
4252 calling error. */
4253
4254static struct value *
4255ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4256{
4257 struct type *t, *t1;
4258 struct value *v;
4259 int check_tag;
4260
4261 v = NULL;
4262 t1 = t = ada_check_typedef (value_type (arg));
78134374 4263 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4264 {
4265 t1 = TYPE_TARGET_TYPE (t);
4266 if (t1 == NULL)
4267 goto BadValue;
4268 t1 = ada_check_typedef (t1);
78134374 4269 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4270 {
4271 arg = coerce_ref (arg);
4272 t = t1;
4273 }
4274 }
4275
78134374 4276 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4277 {
4278 t1 = TYPE_TARGET_TYPE (t);
4279 if (t1 == NULL)
4280 goto BadValue;
4281 t1 = ada_check_typedef (t1);
78134374 4282 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4283 {
4284 arg = value_ind (arg);
4285 t = t1;
4286 }
4287 else
4288 break;
4289 }
aeb5907d 4290
78134374 4291 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4292 goto BadValue;
52ce6436 4293
de93309a
SM
4294 if (t1 == t)
4295 v = ada_search_struct_field (name, arg, 0, t);
4296 else
4297 {
4298 int bit_offset, bit_size, byte_offset;
4299 struct type *field_type;
4300 CORE_ADDR address;
a5ee536b 4301
78134374 4302 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4303 address = value_address (ada_value_ind (arg));
4304 else
4305 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4306
de93309a
SM
4307 /* Check to see if this is a tagged type. We also need to handle
4308 the case where the type is a reference to a tagged type, but
4309 we have to be careful to exclude pointers to tagged types.
4310 The latter should be shown as usual (as a pointer), whereas
4311 a reference should mostly be transparent to the user. */
14f9c5c9 4312
de93309a 4313 if (ada_is_tagged_type (t1, 0)
78134374 4314 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4315 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4316 {
4317 /* We first try to find the searched field in the current type.
4318 If not found then let's look in the fixed type. */
14f9c5c9 4319
de93309a
SM
4320 if (!find_struct_field (name, t1, 0,
4321 &field_type, &byte_offset, &bit_offset,
4322 &bit_size, NULL))
4323 check_tag = 1;
4324 else
4325 check_tag = 0;
4326 }
4327 else
4328 check_tag = 0;
c3e5cd34 4329
de93309a
SM
4330 /* Convert to fixed type in all cases, so that we have proper
4331 offsets to each field in unconstrained record types. */
4332 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4333 address, NULL, check_tag);
4334
4335 if (find_struct_field (name, t1, 0,
4336 &field_type, &byte_offset, &bit_offset,
4337 &bit_size, NULL))
4338 {
4339 if (bit_size != 0)
4340 {
78134374 4341 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4342 arg = ada_coerce_ref (arg);
4343 else
4344 arg = ada_value_ind (arg);
4345 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4346 bit_offset, bit_size,
4347 field_type);
4348 }
4349 else
4350 v = value_at_lazy (field_type, address + byte_offset);
4351 }
c3e5cd34 4352 }
14f9c5c9 4353
de93309a
SM
4354 if (v != NULL || no_err)
4355 return v;
4356 else
4357 error (_("There is no member named %s."), name);
4358
4359 BadValue:
4360 if (no_err)
4361 return NULL;
4362 else
4363 error (_("Attempt to extract a component of "
4364 "a value that is not a record."));
14f9c5c9
AS
4365}
4366
4367/* Return the value ACTUAL, converted to be an appropriate value for a
4368 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4369 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4370 values not residing in memory, updating it as needed. */
14f9c5c9 4371
a93c0eb6 4372struct value *
40bc484c 4373ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4374{
df407dfe 4375 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4376 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4377 struct type *formal_target =
78134374 4378 formal_type->code () == TYPE_CODE_PTR
61ee279c 4379 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4380 struct type *actual_target =
78134374 4381 actual_type->code () == TYPE_CODE_PTR
61ee279c 4382 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4383
4c4b4cd2 4384 if (ada_is_array_descriptor_type (formal_target)
78134374 4385 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4386 return make_array_descriptor (formal_type, actual);
78134374
SM
4387 else if (formal_type->code () == TYPE_CODE_PTR
4388 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4389 {
a84a8a0d 4390 struct value *result;
5b4ee69b 4391
78134374 4392 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4393 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4394 result = desc_data (actual);
78134374 4395 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4396 {
4397 if (VALUE_LVAL (actual) != lval_memory)
4398 {
4399 struct value *val;
5b4ee69b 4400
df407dfe 4401 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4402 val = allocate_value (actual_type);
990a07ab 4403 memcpy ((char *) value_contents_raw (val),
0fd88904 4404 (char *) value_contents (actual),
4c4b4cd2 4405 TYPE_LENGTH (actual_type));
40bc484c 4406 actual = ensure_lval (val);
4c4b4cd2 4407 }
a84a8a0d 4408 result = value_addr (actual);
4c4b4cd2 4409 }
a84a8a0d
JB
4410 else
4411 return actual;
b1af9e97 4412 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4413 }
78134374 4414 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4415 return ada_value_ind (actual);
8344af1e
JB
4416 else if (ada_is_aligner_type (formal_type))
4417 {
4418 /* We need to turn this parameter into an aligner type
4419 as well. */
4420 struct value *aligner = allocate_value (formal_type);
4421 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4422
4423 value_assign_to_component (aligner, component, actual);
4424 return aligner;
4425 }
14f9c5c9
AS
4426
4427 return actual;
4428}
4429
438c98a1
JB
4430/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4431 type TYPE. This is usually an inefficient no-op except on some targets
4432 (such as AVR) where the representation of a pointer and an address
4433 differs. */
4434
4435static CORE_ADDR
4436value_pointer (struct value *value, struct type *type)
4437{
4438 struct gdbarch *gdbarch = get_type_arch (type);
4439 unsigned len = TYPE_LENGTH (type);
224c3ddb 4440 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4441 CORE_ADDR addr;
4442
4443 addr = value_address (value);
4444 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4445 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4446 return addr;
4447}
4448
14f9c5c9 4449
4c4b4cd2
PH
4450/* Push a descriptor of type TYPE for array value ARR on the stack at
4451 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4452 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4453 to-descriptor type rather than a descriptor type), a struct value *
4454 representing a pointer to this descriptor. */
14f9c5c9 4455
d2e4a39e 4456static struct value *
40bc484c 4457make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4458{
d2e4a39e
AS
4459 struct type *bounds_type = desc_bounds_type (type);
4460 struct type *desc_type = desc_base_type (type);
4461 struct value *descriptor = allocate_value (desc_type);
4462 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4463 int i;
d2e4a39e 4464
0963b4bd
MS
4465 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4466 i > 0; i -= 1)
14f9c5c9 4467 {
19f220c3
JK
4468 modify_field (value_type (bounds), value_contents_writeable (bounds),
4469 ada_array_bound (arr, i, 0),
4470 desc_bound_bitpos (bounds_type, i, 0),
4471 desc_bound_bitsize (bounds_type, i, 0));
4472 modify_field (value_type (bounds), value_contents_writeable (bounds),
4473 ada_array_bound (arr, i, 1),
4474 desc_bound_bitpos (bounds_type, i, 1),
4475 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4476 }
d2e4a39e 4477
40bc484c 4478 bounds = ensure_lval (bounds);
d2e4a39e 4479
19f220c3
JK
4480 modify_field (value_type (descriptor),
4481 value_contents_writeable (descriptor),
4482 value_pointer (ensure_lval (arr),
940da03e 4483 desc_type->field (0).type ()),
19f220c3
JK
4484 fat_pntr_data_bitpos (desc_type),
4485 fat_pntr_data_bitsize (desc_type));
4486
4487 modify_field (value_type (descriptor),
4488 value_contents_writeable (descriptor),
4489 value_pointer (bounds,
940da03e 4490 desc_type->field (1).type ()),
19f220c3
JK
4491 fat_pntr_bounds_bitpos (desc_type),
4492 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4493
40bc484c 4494 descriptor = ensure_lval (descriptor);
14f9c5c9 4495
78134374 4496 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4497 return value_addr (descriptor);
4498 else
4499 return descriptor;
4500}
14f9c5c9 4501\f
3d9434b5
JB
4502 /* Symbol Cache Module */
4503
3d9434b5 4504/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4505 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4506 on the type of entity being printed, the cache can make it as much
4507 as an order of magnitude faster than without it.
4508
4509 The descriptive type DWARF extension has significantly reduced
4510 the need for this cache, at least when DWARF is being used. However,
4511 even in this case, some expensive name-based symbol searches are still
4512 sometimes necessary - to find an XVZ variable, mostly. */
4513
ee01b665 4514/* Initialize the contents of SYM_CACHE. */
3d9434b5 4515
ee01b665
JB
4516static void
4517ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4518{
4519 obstack_init (&sym_cache->cache_space);
4520 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4521}
3d9434b5 4522
ee01b665
JB
4523/* Free the memory used by SYM_CACHE. */
4524
4525static void
4526ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4527{
ee01b665
JB
4528 obstack_free (&sym_cache->cache_space, NULL);
4529 xfree (sym_cache);
4530}
3d9434b5 4531
ee01b665
JB
4532/* Return the symbol cache associated to the given program space PSPACE.
4533 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4534
ee01b665
JB
4535static struct ada_symbol_cache *
4536ada_get_symbol_cache (struct program_space *pspace)
4537{
4538 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4539
66c168ae 4540 if (pspace_data->sym_cache == NULL)
ee01b665 4541 {
66c168ae
JB
4542 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4543 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4544 }
4545
66c168ae 4546 return pspace_data->sym_cache;
ee01b665 4547}
3d9434b5
JB
4548
4549/* Clear all entries from the symbol cache. */
4550
4551static void
4552ada_clear_symbol_cache (void)
4553{
ee01b665
JB
4554 struct ada_symbol_cache *sym_cache
4555 = ada_get_symbol_cache (current_program_space);
4556
4557 obstack_free (&sym_cache->cache_space, NULL);
4558 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4559}
4560
fe978cb0 4561/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4562 Return it if found, or NULL otherwise. */
4563
4564static struct cache_entry **
fe978cb0 4565find_entry (const char *name, domain_enum domain)
3d9434b5 4566{
ee01b665
JB
4567 struct ada_symbol_cache *sym_cache
4568 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4569 int h = msymbol_hash (name) % HASH_SIZE;
4570 struct cache_entry **e;
4571
ee01b665 4572 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4573 {
fe978cb0 4574 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4575 return e;
4576 }
4577 return NULL;
4578}
4579
fe978cb0 4580/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4581 Return 1 if found, 0 otherwise.
4582
4583 If an entry was found and SYM is not NULL, set *SYM to the entry's
4584 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4585
96d887e8 4586static int
fe978cb0 4587lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4588 struct symbol **sym, const struct block **block)
96d887e8 4589{
fe978cb0 4590 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4591
4592 if (e == NULL)
4593 return 0;
4594 if (sym != NULL)
4595 *sym = (*e)->sym;
4596 if (block != NULL)
4597 *block = (*e)->block;
4598 return 1;
96d887e8
PH
4599}
4600
3d9434b5 4601/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4602 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4603
96d887e8 4604static void
fe978cb0 4605cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4606 const struct block *block)
96d887e8 4607{
ee01b665
JB
4608 struct ada_symbol_cache *sym_cache
4609 = ada_get_symbol_cache (current_program_space);
3d9434b5 4610 int h;
3d9434b5
JB
4611 struct cache_entry *e;
4612
1994afbf
DE
4613 /* Symbols for builtin types don't have a block.
4614 For now don't cache such symbols. */
4615 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4616 return;
4617
3d9434b5
JB
4618 /* If the symbol is a local symbol, then do not cache it, as a search
4619 for that symbol depends on the context. To determine whether
4620 the symbol is local or not, we check the block where we found it
4621 against the global and static blocks of its associated symtab. */
4622 if (sym
08be3fe3 4623 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4624 GLOBAL_BLOCK) != block
08be3fe3 4625 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4626 STATIC_BLOCK) != block)
3d9434b5
JB
4627 return;
4628
4629 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4630 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4631 e->next = sym_cache->root[h];
4632 sym_cache->root[h] = e;
2ef5453b 4633 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4634 e->sym = sym;
fe978cb0 4635 e->domain = domain;
3d9434b5 4636 e->block = block;
96d887e8 4637}
4c4b4cd2
PH
4638\f
4639 /* Symbol Lookup */
4640
b5ec771e
PA
4641/* Return the symbol name match type that should be used used when
4642 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4643
4644 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4645 for Ada lookups. */
c0431670 4646
b5ec771e
PA
4647static symbol_name_match_type
4648name_match_type_from_name (const char *lookup_name)
c0431670 4649{
b5ec771e
PA
4650 return (strstr (lookup_name, "__") == NULL
4651 ? symbol_name_match_type::WILD
4652 : symbol_name_match_type::FULL);
c0431670
JB
4653}
4654
4c4b4cd2
PH
4655/* Return the result of a standard (literal, C-like) lookup of NAME in
4656 given DOMAIN, visible from lexical block BLOCK. */
4657
4658static struct symbol *
4659standard_lookup (const char *name, const struct block *block,
4660 domain_enum domain)
4661{
acbd605d 4662 /* Initialize it just to avoid a GCC false warning. */
6640a367 4663 struct block_symbol sym = {};
4c4b4cd2 4664
d12307c1
PMR
4665 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4666 return sym.symbol;
a2cd4f14 4667 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4668 cache_symbol (name, domain, sym.symbol, sym.block);
4669 return sym.symbol;
4c4b4cd2
PH
4670}
4671
4672
4673/* Non-zero iff there is at least one non-function/non-enumeral symbol
4674 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4675 since they contend in overloading in the same way. */
4676static int
d12307c1 4677is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4678{
4679 int i;
4680
4681 for (i = 0; i < n; i += 1)
78134374
SM
4682 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4683 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4684 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4685 return 1;
4686
4687 return 0;
4688}
4689
4690/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4691 struct types. Otherwise, they may not. */
14f9c5c9
AS
4692
4693static int
d2e4a39e 4694equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4695{
d2e4a39e 4696 if (type0 == type1)
14f9c5c9 4697 return 1;
d2e4a39e 4698 if (type0 == NULL || type1 == NULL
78134374 4699 || type0->code () != type1->code ())
14f9c5c9 4700 return 0;
78134374
SM
4701 if ((type0->code () == TYPE_CODE_STRUCT
4702 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4703 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4704 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4705 return 1;
d2e4a39e 4706
14f9c5c9
AS
4707 return 0;
4708}
4709
4710/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4711 no more defined than that of SYM1. */
14f9c5c9
AS
4712
4713static int
d2e4a39e 4714lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4715{
4716 if (sym0 == sym1)
4717 return 1;
176620f1 4718 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4719 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4720 return 0;
4721
d2e4a39e 4722 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4723 {
4724 case LOC_UNDEF:
4725 return 1;
4726 case LOC_TYPEDEF:
4727 {
4c4b4cd2
PH
4728 struct type *type0 = SYMBOL_TYPE (sym0);
4729 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4730 const char *name0 = sym0->linkage_name ();
4731 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4732 int len0 = strlen (name0);
5b4ee69b 4733
4c4b4cd2 4734 return
78134374 4735 type0->code () == type1->code ()
4c4b4cd2
PH
4736 && (equiv_types (type0, type1)
4737 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4738 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4739 }
4740 case LOC_CONST:
4741 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4742 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4743
4744 case LOC_STATIC:
4745 {
987012b8
CB
4746 const char *name0 = sym0->linkage_name ();
4747 const char *name1 = sym1->linkage_name ();
4b610737
TT
4748 return (strcmp (name0, name1) == 0
4749 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4750 }
4751
d2e4a39e
AS
4752 default:
4753 return 0;
14f9c5c9
AS
4754 }
4755}
4756
d12307c1 4757/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4758 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4759
4760static void
76a01679
JB
4761add_defn_to_vec (struct obstack *obstackp,
4762 struct symbol *sym,
f0c5f9b2 4763 const struct block *block)
14f9c5c9
AS
4764{
4765 int i;
d12307c1 4766 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4767
529cad9c
PH
4768 /* Do not try to complete stub types, as the debugger is probably
4769 already scanning all symbols matching a certain name at the
4770 time when this function is called. Trying to replace the stub
4771 type by its associated full type will cause us to restart a scan
4772 which may lead to an infinite recursion. Instead, the client
4773 collecting the matching symbols will end up collecting several
4774 matches, with at least one of them complete. It can then filter
4775 out the stub ones if needed. */
4776
4c4b4cd2
PH
4777 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4778 {
d12307c1 4779 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4780 return;
d12307c1 4781 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4782 {
d12307c1 4783 prevDefns[i].symbol = sym;
4c4b4cd2 4784 prevDefns[i].block = block;
4c4b4cd2 4785 return;
76a01679 4786 }
4c4b4cd2
PH
4787 }
4788
4789 {
d12307c1 4790 struct block_symbol info;
4c4b4cd2 4791
d12307c1 4792 info.symbol = sym;
4c4b4cd2 4793 info.block = block;
d12307c1 4794 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4795 }
4796}
4797
d12307c1
PMR
4798/* Number of block_symbol structures currently collected in current vector in
4799 OBSTACKP. */
4c4b4cd2 4800
76a01679
JB
4801static int
4802num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4803{
d12307c1 4804 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4805}
4806
d12307c1
PMR
4807/* Vector of block_symbol structures currently collected in current vector in
4808 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4809
d12307c1 4810static struct block_symbol *
4c4b4cd2
PH
4811defns_collected (struct obstack *obstackp, int finish)
4812{
4813 if (finish)
224c3ddb 4814 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4815 else
d12307c1 4816 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4817}
4818
7c7b6655
TT
4819/* Return a bound minimal symbol matching NAME according to Ada
4820 decoding rules. Returns an invalid symbol if there is no such
4821 minimal symbol. Names prefixed with "standard__" are handled
4822 specially: "standard__" is first stripped off, and only static and
4823 global symbols are searched. */
4c4b4cd2 4824
7c7b6655 4825struct bound_minimal_symbol
96d887e8 4826ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4827{
7c7b6655 4828 struct bound_minimal_symbol result;
4c4b4cd2 4829
7c7b6655
TT
4830 memset (&result, 0, sizeof (result));
4831
b5ec771e
PA
4832 symbol_name_match_type match_type = name_match_type_from_name (name);
4833 lookup_name_info lookup_name (name, match_type);
4834
4835 symbol_name_matcher_ftype *match_name
4836 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4837
2030c079 4838 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4839 {
7932255d 4840 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4841 {
c9d95fa3 4842 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4843 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4844 {
4845 result.minsym = msymbol;
4846 result.objfile = objfile;
4847 break;
4848 }
4849 }
4850 }
4c4b4cd2 4851
7c7b6655 4852 return result;
96d887e8 4853}
4c4b4cd2 4854
96d887e8
PH
4855/* For all subprograms that statically enclose the subprogram of the
4856 selected frame, add symbols matching identifier NAME in DOMAIN
4857 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4858 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4859 with a wildcard prefix. */
4c4b4cd2 4860
96d887e8
PH
4861static void
4862add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4863 const lookup_name_info &lookup_name,
4864 domain_enum domain)
96d887e8 4865{
96d887e8 4866}
14f9c5c9 4867
96d887e8
PH
4868/* True if TYPE is definitely an artificial type supplied to a symbol
4869 for which no debugging information was given in the symbol file. */
14f9c5c9 4870
96d887e8
PH
4871static int
4872is_nondebugging_type (struct type *type)
4873{
0d5cff50 4874 const char *name = ada_type_name (type);
5b4ee69b 4875
96d887e8
PH
4876 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4877}
4c4b4cd2 4878
8f17729f
JB
4879/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4880 that are deemed "identical" for practical purposes.
4881
4882 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4883 types and that their number of enumerals is identical (in other
1f704f76 4884 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4885
4886static int
4887ada_identical_enum_types_p (struct type *type1, struct type *type2)
4888{
4889 int i;
4890
4891 /* The heuristic we use here is fairly conservative. We consider
4892 that 2 enumerate types are identical if they have the same
4893 number of enumerals and that all enumerals have the same
4894 underlying value and name. */
4895
4896 /* All enums in the type should have an identical underlying value. */
1f704f76 4897 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4898 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4899 return 0;
4900
4901 /* All enumerals should also have the same name (modulo any numerical
4902 suffix). */
1f704f76 4903 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4904 {
0d5cff50
DE
4905 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4906 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4907 int len_1 = strlen (name_1);
4908 int len_2 = strlen (name_2);
4909
4910 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4911 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4912 if (len_1 != len_2
4913 || strncmp (TYPE_FIELD_NAME (type1, i),
4914 TYPE_FIELD_NAME (type2, i),
4915 len_1) != 0)
4916 return 0;
4917 }
4918
4919 return 1;
4920}
4921
4922/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4923 that are deemed "identical" for practical purposes. Sometimes,
4924 enumerals are not strictly identical, but their types are so similar
4925 that they can be considered identical.
4926
4927 For instance, consider the following code:
4928
4929 type Color is (Black, Red, Green, Blue, White);
4930 type RGB_Color is new Color range Red .. Blue;
4931
4932 Type RGB_Color is a subrange of an implicit type which is a copy
4933 of type Color. If we call that implicit type RGB_ColorB ("B" is
4934 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4935 As a result, when an expression references any of the enumeral
4936 by name (Eg. "print green"), the expression is technically
4937 ambiguous and the user should be asked to disambiguate. But
4938 doing so would only hinder the user, since it wouldn't matter
4939 what choice he makes, the outcome would always be the same.
4940 So, for practical purposes, we consider them as the same. */
4941
4942static int
54d343a2 4943symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4944{
4945 int i;
4946
4947 /* Before performing a thorough comparison check of each type,
4948 we perform a series of inexpensive checks. We expect that these
4949 checks will quickly fail in the vast majority of cases, and thus
4950 help prevent the unnecessary use of a more expensive comparison.
4951 Said comparison also expects us to make some of these checks
4952 (see ada_identical_enum_types_p). */
4953
4954 /* Quick check: All symbols should have an enum type. */
54d343a2 4955 for (i = 0; i < syms.size (); i++)
78134374 4956 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4957 return 0;
4958
4959 /* Quick check: They should all have the same value. */
54d343a2 4960 for (i = 1; i < syms.size (); i++)
d12307c1 4961 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4962 return 0;
4963
4964 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4965 for (i = 1; i < syms.size (); i++)
1f704f76
SM
4966 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4967 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4968 return 0;
4969
4970 /* All the sanity checks passed, so we might have a set of
4971 identical enumeration types. Perform a more complete
4972 comparison of the type of each symbol. */
54d343a2 4973 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4974 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4975 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4976 return 0;
4977
4978 return 1;
4979}
4980
54d343a2 4981/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4982 duplicate other symbols in the list (The only case I know of where
4983 this happens is when object files containing stabs-in-ecoff are
4984 linked with files containing ordinary ecoff debugging symbols (or no
4985 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4986 Returns the number of items in the modified list. */
4c4b4cd2 4987
96d887e8 4988static int
54d343a2 4989remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4990{
4991 int i, j;
4c4b4cd2 4992
8f17729f
JB
4993 /* We should never be called with less than 2 symbols, as there
4994 cannot be any extra symbol in that case. But it's easy to
4995 handle, since we have nothing to do in that case. */
54d343a2
TT
4996 if (syms->size () < 2)
4997 return syms->size ();
8f17729f 4998
96d887e8 4999 i = 0;
54d343a2 5000 while (i < syms->size ())
96d887e8 5001 {
a35ddb44 5002 int remove_p = 0;
339c13b6
JB
5003
5004 /* If two symbols have the same name and one of them is a stub type,
5005 the get rid of the stub. */
5006
54d343a2 5007 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5008 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5009 {
54d343a2 5010 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5011 {
5012 if (j != i
54d343a2 5013 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5014 && (*syms)[j].symbol->linkage_name () != NULL
5015 && strcmp ((*syms)[i].symbol->linkage_name (),
5016 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5017 remove_p = 1;
339c13b6
JB
5018 }
5019 }
5020
5021 /* Two symbols with the same name, same class and same address
5022 should be identical. */
5023
987012b8 5024 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5025 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5026 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5027 {
54d343a2 5028 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5029 {
5030 if (i != j
987012b8
CB
5031 && (*syms)[j].symbol->linkage_name () != NULL
5032 && strcmp ((*syms)[i].symbol->linkage_name (),
5033 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5034 && SYMBOL_CLASS ((*syms)[i].symbol)
5035 == SYMBOL_CLASS ((*syms)[j].symbol)
5036 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5037 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5038 remove_p = 1;
4c4b4cd2 5039 }
4c4b4cd2 5040 }
339c13b6 5041
a35ddb44 5042 if (remove_p)
54d343a2 5043 syms->erase (syms->begin () + i);
339c13b6 5044
96d887e8 5045 i += 1;
14f9c5c9 5046 }
8f17729f
JB
5047
5048 /* If all the remaining symbols are identical enumerals, then
5049 just keep the first one and discard the rest.
5050
5051 Unlike what we did previously, we do not discard any entry
5052 unless they are ALL identical. This is because the symbol
5053 comparison is not a strict comparison, but rather a practical
5054 comparison. If all symbols are considered identical, then
5055 we can just go ahead and use the first one and discard the rest.
5056 But if we cannot reduce the list to a single element, we have
5057 to ask the user to disambiguate anyways. And if we have to
5058 present a multiple-choice menu, it's less confusing if the list
5059 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5060 if (symbols_are_identical_enums (*syms))
5061 syms->resize (1);
8f17729f 5062
54d343a2 5063 return syms->size ();
14f9c5c9
AS
5064}
5065
96d887e8
PH
5066/* Given a type that corresponds to a renaming entity, use the type name
5067 to extract the scope (package name or function name, fully qualified,
5068 and following the GNAT encoding convention) where this renaming has been
49d83361 5069 defined. */
4c4b4cd2 5070
49d83361 5071static std::string
96d887e8 5072xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5073{
96d887e8 5074 /* The renaming types adhere to the following convention:
0963b4bd 5075 <scope>__<rename>___<XR extension>.
96d887e8
PH
5076 So, to extract the scope, we search for the "___XR" extension,
5077 and then backtrack until we find the first "__". */
76a01679 5078
7d93a1e0 5079 const char *name = renaming_type->name ();
108d56a4
SM
5080 const char *suffix = strstr (name, "___XR");
5081 const char *last;
14f9c5c9 5082
96d887e8
PH
5083 /* Now, backtrack a bit until we find the first "__". Start looking
5084 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5085
96d887e8
PH
5086 for (last = suffix - 3; last > name; last--)
5087 if (last[0] == '_' && last[1] == '_')
5088 break;
76a01679 5089
96d887e8 5090 /* Make a copy of scope and return it. */
49d83361 5091 return std::string (name, last);
4c4b4cd2
PH
5092}
5093
96d887e8 5094/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5095
96d887e8
PH
5096static int
5097is_package_name (const char *name)
4c4b4cd2 5098{
96d887e8
PH
5099 /* Here, We take advantage of the fact that no symbols are generated
5100 for packages, while symbols are generated for each function.
5101 So the condition for NAME represent a package becomes equivalent
5102 to NAME not existing in our list of symbols. There is only one
5103 small complication with library-level functions (see below). */
4c4b4cd2 5104
96d887e8
PH
5105 /* If it is a function that has not been defined at library level,
5106 then we should be able to look it up in the symbols. */
5107 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5108 return 0;
14f9c5c9 5109
96d887e8
PH
5110 /* Library-level function names start with "_ada_". See if function
5111 "_ada_" followed by NAME can be found. */
14f9c5c9 5112
96d887e8 5113 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5114 functions names cannot contain "__" in them. */
96d887e8
PH
5115 if (strstr (name, "__") != NULL)
5116 return 0;
4c4b4cd2 5117
528e1572 5118 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5119
528e1572 5120 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5121}
14f9c5c9 5122
96d887e8 5123/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5124 not visible from FUNCTION_NAME. */
14f9c5c9 5125
96d887e8 5126static int
0d5cff50 5127old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5128{
aeb5907d
JB
5129 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5130 return 0;
5131
49d83361 5132 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5133
96d887e8 5134 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5135 if (is_package_name (scope.c_str ()))
5136 return 0;
14f9c5c9 5137
96d887e8
PH
5138 /* Check that the rename is in the current function scope by checking
5139 that its name starts with SCOPE. */
76a01679 5140
96d887e8
PH
5141 /* If the function name starts with "_ada_", it means that it is
5142 a library-level function. Strip this prefix before doing the
5143 comparison, as the encoding for the renaming does not contain
5144 this prefix. */
61012eef 5145 if (startswith (function_name, "_ada_"))
96d887e8 5146 function_name += 5;
f26caa11 5147
49d83361 5148 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5149}
5150
aeb5907d
JB
5151/* Remove entries from SYMS that corresponds to a renaming entity that
5152 is not visible from the function associated with CURRENT_BLOCK or
5153 that is superfluous due to the presence of more specific renaming
5154 information. Places surviving symbols in the initial entries of
5155 SYMS and returns the number of surviving symbols.
96d887e8
PH
5156
5157 Rationale:
aeb5907d
JB
5158 First, in cases where an object renaming is implemented as a
5159 reference variable, GNAT may produce both the actual reference
5160 variable and the renaming encoding. In this case, we discard the
5161 latter.
5162
5163 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5164 entity. Unfortunately, STABS currently does not support the definition
5165 of types that are local to a given lexical block, so all renamings types
5166 are emitted at library level. As a consequence, if an application
5167 contains two renaming entities using the same name, and a user tries to
5168 print the value of one of these entities, the result of the ada symbol
5169 lookup will also contain the wrong renaming type.
f26caa11 5170
96d887e8
PH
5171 This function partially covers for this limitation by attempting to
5172 remove from the SYMS list renaming symbols that should be visible
5173 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5174 method with the current information available. The implementation
5175 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5176
5177 - When the user tries to print a rename in a function while there
5178 is another rename entity defined in a package: Normally, the
5179 rename in the function has precedence over the rename in the
5180 package, so the latter should be removed from the list. This is
5181 currently not the case.
5182
5183 - This function will incorrectly remove valid renames if
5184 the CURRENT_BLOCK corresponds to a function which symbol name
5185 has been changed by an "Export" pragma. As a consequence,
5186 the user will be unable to print such rename entities. */
4c4b4cd2 5187
14f9c5c9 5188static int
54d343a2
TT
5189remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5190 const struct block *current_block)
4c4b4cd2
PH
5191{
5192 struct symbol *current_function;
0d5cff50 5193 const char *current_function_name;
4c4b4cd2 5194 int i;
aeb5907d
JB
5195 int is_new_style_renaming;
5196
5197 /* If there is both a renaming foo___XR... encoded as a variable and
5198 a simple variable foo in the same block, discard the latter.
0963b4bd 5199 First, zero out such symbols, then compress. */
aeb5907d 5200 is_new_style_renaming = 0;
54d343a2 5201 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5202 {
54d343a2
TT
5203 struct symbol *sym = (*syms)[i].symbol;
5204 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5205 const char *name;
5206 const char *suffix;
5207
5208 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5209 continue;
987012b8 5210 name = sym->linkage_name ();
aeb5907d
JB
5211 suffix = strstr (name, "___XR");
5212
5213 if (suffix != NULL)
5214 {
5215 int name_len = suffix - name;
5216 int j;
5b4ee69b 5217
aeb5907d 5218 is_new_style_renaming = 1;
54d343a2
TT
5219 for (j = 0; j < syms->size (); j += 1)
5220 if (i != j && (*syms)[j].symbol != NULL
987012b8 5221 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5222 name_len) == 0
54d343a2
TT
5223 && block == (*syms)[j].block)
5224 (*syms)[j].symbol = NULL;
aeb5907d
JB
5225 }
5226 }
5227 if (is_new_style_renaming)
5228 {
5229 int j, k;
5230
54d343a2
TT
5231 for (j = k = 0; j < syms->size (); j += 1)
5232 if ((*syms)[j].symbol != NULL)
aeb5907d 5233 {
54d343a2 5234 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5235 k += 1;
5236 }
5237 return k;
5238 }
4c4b4cd2
PH
5239
5240 /* Extract the function name associated to CURRENT_BLOCK.
5241 Abort if unable to do so. */
76a01679 5242
4c4b4cd2 5243 if (current_block == NULL)
54d343a2 5244 return syms->size ();
76a01679 5245
7f0df278 5246 current_function = block_linkage_function (current_block);
4c4b4cd2 5247 if (current_function == NULL)
54d343a2 5248 return syms->size ();
4c4b4cd2 5249
987012b8 5250 current_function_name = current_function->linkage_name ();
4c4b4cd2 5251 if (current_function_name == NULL)
54d343a2 5252 return syms->size ();
4c4b4cd2
PH
5253
5254 /* Check each of the symbols, and remove it from the list if it is
5255 a type corresponding to a renaming that is out of the scope of
5256 the current block. */
5257
5258 i = 0;
54d343a2 5259 while (i < syms->size ())
4c4b4cd2 5260 {
54d343a2 5261 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5262 == ADA_OBJECT_RENAMING
54d343a2
TT
5263 && old_renaming_is_invisible ((*syms)[i].symbol,
5264 current_function_name))
5265 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5266 else
5267 i += 1;
5268 }
5269
54d343a2 5270 return syms->size ();
4c4b4cd2
PH
5271}
5272
339c13b6
JB
5273/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5274 whose name and domain match NAME and DOMAIN respectively.
5275 If no match was found, then extend the search to "enclosing"
5276 routines (in other words, if we're inside a nested function,
5277 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5278 If WILD_MATCH_P is nonzero, perform the naming matching in
5279 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5280
5281 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5282
5283static void
b5ec771e
PA
5284ada_add_local_symbols (struct obstack *obstackp,
5285 const lookup_name_info &lookup_name,
5286 const struct block *block, domain_enum domain)
339c13b6
JB
5287{
5288 int block_depth = 0;
5289
5290 while (block != NULL)
5291 {
5292 block_depth += 1;
b5ec771e 5293 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5294
5295 /* If we found a non-function match, assume that's the one. */
5296 if (is_nonfunction (defns_collected (obstackp, 0),
5297 num_defns_collected (obstackp)))
5298 return;
5299
5300 block = BLOCK_SUPERBLOCK (block);
5301 }
5302
5303 /* If no luck so far, try to find NAME as a local symbol in some lexically
5304 enclosing subprogram. */
5305 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5306 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5307}
5308
ccefe4c4 5309/* An object of this type is used as the user_data argument when
40658b94 5310 calling the map_matching_symbols method. */
ccefe4c4 5311
40658b94 5312struct match_data
ccefe4c4 5313{
40658b94 5314 struct objfile *objfile;
ccefe4c4 5315 struct obstack *obstackp;
40658b94
PH
5316 struct symbol *arg_sym;
5317 int found_sym;
ccefe4c4
TT
5318};
5319
199b4314
TT
5320/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5321 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5322 containing the obstack that collects the symbol list, the file that SYM
5323 must come from, a flag indicating whether a non-argument symbol has
5324 been found in the current block, and the last argument symbol
5325 passed in SYM within the current block (if any). When SYM is null,
5326 marking the end of a block, the argument symbol is added if no
5327 other has been found. */
ccefe4c4 5328
199b4314
TT
5329static bool
5330aux_add_nonlocal_symbols (struct block_symbol *bsym,
5331 struct match_data *data)
ccefe4c4 5332{
199b4314
TT
5333 const struct block *block = bsym->block;
5334 struct symbol *sym = bsym->symbol;
5335
40658b94
PH
5336 if (sym == NULL)
5337 {
5338 if (!data->found_sym && data->arg_sym != NULL)
5339 add_defn_to_vec (data->obstackp,
5340 fixup_symbol_section (data->arg_sym, data->objfile),
5341 block);
5342 data->found_sym = 0;
5343 data->arg_sym = NULL;
5344 }
5345 else
5346 {
5347 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5348 return true;
40658b94
PH
5349 else if (SYMBOL_IS_ARGUMENT (sym))
5350 data->arg_sym = sym;
5351 else
5352 {
5353 data->found_sym = 1;
5354 add_defn_to_vec (data->obstackp,
5355 fixup_symbol_section (sym, data->objfile),
5356 block);
5357 }
5358 }
199b4314 5359 return true;
40658b94
PH
5360}
5361
b5ec771e
PA
5362/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5363 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5364 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5365
5366static int
5367ada_add_block_renamings (struct obstack *obstackp,
5368 const struct block *block,
b5ec771e
PA
5369 const lookup_name_info &lookup_name,
5370 domain_enum domain)
22cee43f
PMR
5371{
5372 struct using_direct *renaming;
5373 int defns_mark = num_defns_collected (obstackp);
5374
b5ec771e
PA
5375 symbol_name_matcher_ftype *name_match
5376 = ada_get_symbol_name_matcher (lookup_name);
5377
22cee43f
PMR
5378 for (renaming = block_using (block);
5379 renaming != NULL;
5380 renaming = renaming->next)
5381 {
5382 const char *r_name;
22cee43f
PMR
5383
5384 /* Avoid infinite recursions: skip this renaming if we are actually
5385 already traversing it.
5386
5387 Currently, symbol lookup in Ada don't use the namespace machinery from
5388 C++/Fortran support: skip namespace imports that use them. */
5389 if (renaming->searched
5390 || (renaming->import_src != NULL
5391 && renaming->import_src[0] != '\0')
5392 || (renaming->import_dest != NULL
5393 && renaming->import_dest[0] != '\0'))
5394 continue;
5395 renaming->searched = 1;
5396
5397 /* TODO: here, we perform another name-based symbol lookup, which can
5398 pull its own multiple overloads. In theory, we should be able to do
5399 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5400 not a simple name. But in order to do this, we would need to enhance
5401 the DWARF reader to associate a symbol to this renaming, instead of a
5402 name. So, for now, we do something simpler: re-use the C++/Fortran
5403 namespace machinery. */
5404 r_name = (renaming->alias != NULL
5405 ? renaming->alias
5406 : renaming->declaration);
b5ec771e
PA
5407 if (name_match (r_name, lookup_name, NULL))
5408 {
5409 lookup_name_info decl_lookup_name (renaming->declaration,
5410 lookup_name.match_type ());
5411 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5412 1, NULL);
5413 }
22cee43f
PMR
5414 renaming->searched = 0;
5415 }
5416 return num_defns_collected (obstackp) != defns_mark;
5417}
5418
db230ce3
JB
5419/* Implements compare_names, but only applying the comparision using
5420 the given CASING. */
5b4ee69b 5421
40658b94 5422static int
db230ce3
JB
5423compare_names_with_case (const char *string1, const char *string2,
5424 enum case_sensitivity casing)
40658b94
PH
5425{
5426 while (*string1 != '\0' && *string2 != '\0')
5427 {
db230ce3
JB
5428 char c1, c2;
5429
40658b94
PH
5430 if (isspace (*string1) || isspace (*string2))
5431 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5432
5433 if (casing == case_sensitive_off)
5434 {
5435 c1 = tolower (*string1);
5436 c2 = tolower (*string2);
5437 }
5438 else
5439 {
5440 c1 = *string1;
5441 c2 = *string2;
5442 }
5443 if (c1 != c2)
40658b94 5444 break;
db230ce3 5445
40658b94
PH
5446 string1 += 1;
5447 string2 += 1;
5448 }
db230ce3 5449
40658b94
PH
5450 switch (*string1)
5451 {
5452 case '(':
5453 return strcmp_iw_ordered (string1, string2);
5454 case '_':
5455 if (*string2 == '\0')
5456 {
052874e8 5457 if (is_name_suffix (string1))
40658b94
PH
5458 return 0;
5459 else
1a1d5513 5460 return 1;
40658b94 5461 }
dbb8534f 5462 /* FALLTHROUGH */
40658b94
PH
5463 default:
5464 if (*string2 == '(')
5465 return strcmp_iw_ordered (string1, string2);
5466 else
db230ce3
JB
5467 {
5468 if (casing == case_sensitive_off)
5469 return tolower (*string1) - tolower (*string2);
5470 else
5471 return *string1 - *string2;
5472 }
40658b94 5473 }
ccefe4c4
TT
5474}
5475
db230ce3
JB
5476/* Compare STRING1 to STRING2, with results as for strcmp.
5477 Compatible with strcmp_iw_ordered in that...
5478
5479 strcmp_iw_ordered (STRING1, STRING2) <= 0
5480
5481 ... implies...
5482
5483 compare_names (STRING1, STRING2) <= 0
5484
5485 (they may differ as to what symbols compare equal). */
5486
5487static int
5488compare_names (const char *string1, const char *string2)
5489{
5490 int result;
5491
5492 /* Similar to what strcmp_iw_ordered does, we need to perform
5493 a case-insensitive comparison first, and only resort to
5494 a second, case-sensitive, comparison if the first one was
5495 not sufficient to differentiate the two strings. */
5496
5497 result = compare_names_with_case (string1, string2, case_sensitive_off);
5498 if (result == 0)
5499 result = compare_names_with_case (string1, string2, case_sensitive_on);
5500
5501 return result;
5502}
5503
b5ec771e
PA
5504/* Convenience function to get at the Ada encoded lookup name for
5505 LOOKUP_NAME, as a C string. */
5506
5507static const char *
5508ada_lookup_name (const lookup_name_info &lookup_name)
5509{
5510 return lookup_name.ada ().lookup_name ().c_str ();
5511}
5512
339c13b6 5513/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5514 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5515 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5516 symbols otherwise. */
339c13b6
JB
5517
5518static void
b5ec771e
PA
5519add_nonlocal_symbols (struct obstack *obstackp,
5520 const lookup_name_info &lookup_name,
5521 domain_enum domain, int global)
339c13b6 5522{
40658b94 5523 struct match_data data;
339c13b6 5524
6475f2fe 5525 memset (&data, 0, sizeof data);
ccefe4c4 5526 data.obstackp = obstackp;
339c13b6 5527
b5ec771e
PA
5528 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5529
199b4314
TT
5530 auto callback = [&] (struct block_symbol *bsym)
5531 {
5532 return aux_add_nonlocal_symbols (bsym, &data);
5533 };
5534
2030c079 5535 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5536 {
5537 data.objfile = objfile;
5538
b054970d
TT
5539 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5540 domain, global, callback,
5541 (is_wild_match
5542 ? NULL : compare_names));
22cee43f 5543
b669c953 5544 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5545 {
5546 const struct block *global_block
5547 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5548
b5ec771e
PA
5549 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5550 domain))
22cee43f
PMR
5551 data.found_sym = 1;
5552 }
40658b94
PH
5553 }
5554
5555 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5556 {
b5ec771e 5557 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5558 std::string bracket_name = std::string ("<_ada_") + name + '>';
5559 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5560
2030c079 5561 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5562 {
40658b94 5563 data.objfile = objfile;
b054970d 5564 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5565 domain, global, callback,
b5ec771e 5566 compare_names);
40658b94
PH
5567 }
5568 }
339c13b6
JB
5569}
5570
b5ec771e
PA
5571/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5572 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5573 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5574
22cee43f
PMR
5575 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5576 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5577 is the one match returned (no other matches in that or
d9680e73 5578 enclosing blocks is returned). If there are any matches in or
22cee43f 5579 surrounding BLOCK, then these alone are returned.
4eeaa230 5580
b5ec771e
PA
5581 Names prefixed with "standard__" are handled specially:
5582 "standard__" is first stripped off (by the lookup_name
5583 constructor), and only static and global symbols are searched.
14f9c5c9 5584
22cee43f
PMR
5585 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5586 to lookup global symbols. */
5587
5588static void
5589ada_add_all_symbols (struct obstack *obstackp,
5590 const struct block *block,
b5ec771e 5591 const lookup_name_info &lookup_name,
22cee43f
PMR
5592 domain_enum domain,
5593 int full_search,
5594 int *made_global_lookup_p)
14f9c5c9
AS
5595{
5596 struct symbol *sym;
14f9c5c9 5597
22cee43f
PMR
5598 if (made_global_lookup_p)
5599 *made_global_lookup_p = 0;
339c13b6
JB
5600
5601 /* Special case: If the user specifies a symbol name inside package
5602 Standard, do a non-wild matching of the symbol name without
5603 the "standard__" prefix. This was primarily introduced in order
5604 to allow the user to specifically access the standard exceptions
5605 using, for instance, Standard.Constraint_Error when Constraint_Error
5606 is ambiguous (due to the user defining its own Constraint_Error
5607 entity inside its program). */
b5ec771e
PA
5608 if (lookup_name.ada ().standard_p ())
5609 block = NULL;
4c4b4cd2 5610
339c13b6 5611 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5612
4eeaa230
DE
5613 if (block != NULL)
5614 {
5615 if (full_search)
b5ec771e 5616 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5617 else
5618 {
5619 /* In the !full_search case we're are being called by
4009ee92 5620 iterate_over_symbols, and we don't want to search
4eeaa230 5621 superblocks. */
b5ec771e 5622 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5623 }
22cee43f
PMR
5624 if (num_defns_collected (obstackp) > 0 || !full_search)
5625 return;
4eeaa230 5626 }
d2e4a39e 5627
339c13b6
JB
5628 /* No non-global symbols found. Check our cache to see if we have
5629 already performed this search before. If we have, then return
5630 the same result. */
5631
b5ec771e
PA
5632 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5633 domain, &sym, &block))
4c4b4cd2
PH
5634 {
5635 if (sym != NULL)
b5ec771e 5636 add_defn_to_vec (obstackp, sym, block);
22cee43f 5637 return;
4c4b4cd2 5638 }
14f9c5c9 5639
22cee43f
PMR
5640 if (made_global_lookup_p)
5641 *made_global_lookup_p = 1;
b1eedac9 5642
339c13b6
JB
5643 /* Search symbols from all global blocks. */
5644
b5ec771e 5645 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5646
4c4b4cd2 5647 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5648 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5649
22cee43f 5650 if (num_defns_collected (obstackp) == 0)
b5ec771e 5651 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5652}
5653
b5ec771e
PA
5654/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5655 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5656 matches.
54d343a2
TT
5657 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5658 found and the blocks and symbol tables (if any) in which they were
5659 found.
22cee43f
PMR
5660
5661 When full_search is non-zero, any non-function/non-enumeral
5662 symbol match within the nest of blocks whose innermost member is BLOCK,
5663 is the one match returned (no other matches in that or
5664 enclosing blocks is returned). If there are any matches in or
5665 surrounding BLOCK, then these alone are returned.
5666
5667 Names prefixed with "standard__" are handled specially: "standard__"
5668 is first stripped off, and only static and global symbols are searched. */
5669
5670static int
b5ec771e
PA
5671ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5672 const struct block *block,
22cee43f 5673 domain_enum domain,
54d343a2 5674 std::vector<struct block_symbol> *results,
22cee43f
PMR
5675 int full_search)
5676{
22cee43f
PMR
5677 int syms_from_global_search;
5678 int ndefns;
ec6a20c2 5679 auto_obstack obstack;
22cee43f 5680
ec6a20c2 5681 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5682 domain, full_search, &syms_from_global_search);
14f9c5c9 5683
ec6a20c2
JB
5684 ndefns = num_defns_collected (&obstack);
5685
54d343a2
TT
5686 struct block_symbol *base = defns_collected (&obstack, 1);
5687 for (int i = 0; i < ndefns; ++i)
5688 results->push_back (base[i]);
4c4b4cd2 5689
54d343a2 5690 ndefns = remove_extra_symbols (results);
4c4b4cd2 5691
b1eedac9 5692 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5693 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5694
b1eedac9 5695 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5696 cache_symbol (ada_lookup_name (lookup_name), domain,
5697 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5698
54d343a2 5699 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5700
14f9c5c9
AS
5701 return ndefns;
5702}
5703
b5ec771e 5704/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5705 in global scopes, returning the number of matches, and filling *RESULTS
5706 with (SYM,BLOCK) tuples.
ec6a20c2 5707
4eeaa230
DE
5708 See ada_lookup_symbol_list_worker for further details. */
5709
5710int
b5ec771e 5711ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5712 domain_enum domain,
5713 std::vector<struct block_symbol> *results)
4eeaa230 5714{
b5ec771e
PA
5715 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5716 lookup_name_info lookup_name (name, name_match_type);
5717
5718 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5719}
5720
4e5c77fe
JB
5721/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5722 to 1, but choosing the first symbol found if there are multiple
5723 choices.
5724
5e2336be
JB
5725 The result is stored in *INFO, which must be non-NULL.
5726 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5727
5728void
5729ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5730 domain_enum domain,
d12307c1 5731 struct block_symbol *info)
14f9c5c9 5732{
b5ec771e
PA
5733 /* Since we already have an encoded name, wrap it in '<>' to force a
5734 verbatim match. Otherwise, if the name happens to not look like
5735 an encoded name (because it doesn't include a "__"),
5736 ada_lookup_name_info would re-encode/fold it again, and that
5737 would e.g., incorrectly lowercase object renaming names like
5738 "R28b" -> "r28b". */
5739 std::string verbatim = std::string ("<") + name + '>';
5740
5e2336be 5741 gdb_assert (info != NULL);
65392b3e 5742 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5743}
aeb5907d
JB
5744
5745/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5746 scope and in global scopes, or NULL if none. NAME is folded and
5747 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5748 choosing the first symbol if there are multiple choices. */
4e5c77fe 5749
d12307c1 5750struct block_symbol
aeb5907d 5751ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5752 domain_enum domain)
aeb5907d 5753{
54d343a2 5754 std::vector<struct block_symbol> candidates;
f98fc17b 5755 int n_candidates;
f98fc17b
PA
5756
5757 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5758
5759 if (n_candidates == 0)
54d343a2 5760 return {};
f98fc17b
PA
5761
5762 block_symbol info = candidates[0];
5763 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5764 return info;
4c4b4cd2 5765}
14f9c5c9 5766
d12307c1 5767static struct block_symbol
f606139a
DE
5768ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5769 const char *name,
76a01679 5770 const struct block *block,
21b556f4 5771 const domain_enum domain)
4c4b4cd2 5772{
d12307c1 5773 struct block_symbol sym;
04dccad0 5774
65392b3e 5775 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5776 if (sym.symbol != NULL)
04dccad0
JB
5777 return sym;
5778
5779 /* If we haven't found a match at this point, try the primitive
5780 types. In other languages, this search is performed before
5781 searching for global symbols in order to short-circuit that
5782 global-symbol search if it happens that the name corresponds
5783 to a primitive type. But we cannot do the same in Ada, because
5784 it is perfectly legitimate for a program to declare a type which
5785 has the same name as a standard type. If looking up a type in
5786 that situation, we have traditionally ignored the primitive type
5787 in favor of user-defined types. This is why, unlike most other
5788 languages, we search the primitive types this late and only after
5789 having searched the global symbols without success. */
5790
5791 if (domain == VAR_DOMAIN)
5792 {
5793 struct gdbarch *gdbarch;
5794
5795 if (block == NULL)
5796 gdbarch = target_gdbarch ();
5797 else
5798 gdbarch = block_gdbarch (block);
d12307c1
PMR
5799 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5800 if (sym.symbol != NULL)
04dccad0
JB
5801 return sym;
5802 }
5803
6640a367 5804 return {};
14f9c5c9
AS
5805}
5806
5807
4c4b4cd2
PH
5808/* True iff STR is a possible encoded suffix of a normal Ada name
5809 that is to be ignored for matching purposes. Suffixes of parallel
5810 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5811 are given by any of the regular expressions:
4c4b4cd2 5812
babe1480
JB
5813 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5814 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5815 TKB [subprogram suffix for task bodies]
babe1480 5816 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5817 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5818
5819 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5820 match is performed. This sequence is used to differentiate homonyms,
5821 is an optional part of a valid name suffix. */
4c4b4cd2 5822
14f9c5c9 5823static int
d2e4a39e 5824is_name_suffix (const char *str)
14f9c5c9
AS
5825{
5826 int k;
4c4b4cd2
PH
5827 const char *matching;
5828 const int len = strlen (str);
5829
babe1480
JB
5830 /* Skip optional leading __[0-9]+. */
5831
4c4b4cd2
PH
5832 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5833 {
babe1480
JB
5834 str += 3;
5835 while (isdigit (str[0]))
5836 str += 1;
4c4b4cd2 5837 }
babe1480
JB
5838
5839 /* [.$][0-9]+ */
4c4b4cd2 5840
babe1480 5841 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5842 {
babe1480 5843 matching = str + 1;
4c4b4cd2
PH
5844 while (isdigit (matching[0]))
5845 matching += 1;
5846 if (matching[0] == '\0')
5847 return 1;
5848 }
5849
5850 /* ___[0-9]+ */
babe1480 5851
4c4b4cd2
PH
5852 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5853 {
5854 matching = str + 3;
5855 while (isdigit (matching[0]))
5856 matching += 1;
5857 if (matching[0] == '\0')
5858 return 1;
5859 }
5860
9ac7f98e
JB
5861 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5862
5863 if (strcmp (str, "TKB") == 0)
5864 return 1;
5865
529cad9c
PH
5866#if 0
5867 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5868 with a N at the end. Unfortunately, the compiler uses the same
5869 convention for other internal types it creates. So treating
529cad9c 5870 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5871 some regressions. For instance, consider the case of an enumerated
5872 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5873 name ends with N.
5874 Having a single character like this as a suffix carrying some
0963b4bd 5875 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5876 to be something like "_N" instead. In the meantime, do not do
5877 the following check. */
5878 /* Protected Object Subprograms */
5879 if (len == 1 && str [0] == 'N')
5880 return 1;
5881#endif
5882
5883 /* _E[0-9]+[bs]$ */
5884 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5885 {
5886 matching = str + 3;
5887 while (isdigit (matching[0]))
5888 matching += 1;
5889 if ((matching[0] == 'b' || matching[0] == 's')
5890 && matching [1] == '\0')
5891 return 1;
5892 }
5893
4c4b4cd2
PH
5894 /* ??? We should not modify STR directly, as we are doing below. This
5895 is fine in this case, but may become problematic later if we find
5896 that this alternative did not work, and want to try matching
5897 another one from the begining of STR. Since we modified it, we
5898 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5899 if (str[0] == 'X')
5900 {
5901 str += 1;
d2e4a39e 5902 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5903 {
5904 if (str[0] != 'n' && str[0] != 'b')
5905 return 0;
5906 str += 1;
5907 }
14f9c5c9 5908 }
babe1480 5909
14f9c5c9
AS
5910 if (str[0] == '\000')
5911 return 1;
babe1480 5912
d2e4a39e 5913 if (str[0] == '_')
14f9c5c9
AS
5914 {
5915 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5916 return 0;
d2e4a39e 5917 if (str[2] == '_')
4c4b4cd2 5918 {
61ee279c
PH
5919 if (strcmp (str + 3, "JM") == 0)
5920 return 1;
5921 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5922 the LJM suffix in favor of the JM one. But we will
5923 still accept LJM as a valid suffix for a reasonable
5924 amount of time, just to allow ourselves to debug programs
5925 compiled using an older version of GNAT. */
4c4b4cd2
PH
5926 if (strcmp (str + 3, "LJM") == 0)
5927 return 1;
5928 if (str[3] != 'X')
5929 return 0;
1265e4aa
JB
5930 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5931 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5932 return 1;
5933 if (str[4] == 'R' && str[5] != 'T')
5934 return 1;
5935 return 0;
5936 }
5937 if (!isdigit (str[2]))
5938 return 0;
5939 for (k = 3; str[k] != '\0'; k += 1)
5940 if (!isdigit (str[k]) && str[k] != '_')
5941 return 0;
14f9c5c9
AS
5942 return 1;
5943 }
4c4b4cd2 5944 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5945 {
4c4b4cd2
PH
5946 for (k = 2; str[k] != '\0'; k += 1)
5947 if (!isdigit (str[k]) && str[k] != '_')
5948 return 0;
14f9c5c9
AS
5949 return 1;
5950 }
5951 return 0;
5952}
d2e4a39e 5953
aeb5907d
JB
5954/* Return non-zero if the string starting at NAME and ending before
5955 NAME_END contains no capital letters. */
529cad9c
PH
5956
5957static int
5958is_valid_name_for_wild_match (const char *name0)
5959{
f945dedf 5960 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5961 int i;
5962
5823c3ef
JB
5963 /* If the decoded name starts with an angle bracket, it means that
5964 NAME0 does not follow the GNAT encoding format. It should then
5965 not be allowed as a possible wild match. */
5966 if (decoded_name[0] == '<')
5967 return 0;
5968
529cad9c
PH
5969 for (i=0; decoded_name[i] != '\0'; i++)
5970 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5971 return 0;
5972
5973 return 1;
5974}
5975
73589123
PH
5976/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5977 that could start a simple name. Assumes that *NAMEP points into
5978 the string beginning at NAME0. */
4c4b4cd2 5979
14f9c5c9 5980static int
73589123 5981advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5982{
73589123 5983 const char *name = *namep;
5b4ee69b 5984
5823c3ef 5985 while (1)
14f9c5c9 5986 {
aa27d0b3 5987 int t0, t1;
73589123
PH
5988
5989 t0 = *name;
5990 if (t0 == '_')
5991 {
5992 t1 = name[1];
5993 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5994 {
5995 name += 1;
61012eef 5996 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5997 break;
5998 else
5999 name += 1;
6000 }
aa27d0b3
JB
6001 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6002 || name[2] == target0))
73589123
PH
6003 {
6004 name += 2;
6005 break;
6006 }
6007 else
6008 return 0;
6009 }
6010 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6011 name += 1;
6012 else
5823c3ef 6013 return 0;
73589123
PH
6014 }
6015
6016 *namep = name;
6017 return 1;
6018}
6019
b5ec771e
PA
6020/* Return true iff NAME encodes a name of the form prefix.PATN.
6021 Ignores any informational suffixes of NAME (i.e., for which
6022 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6023 simple name. */
73589123 6024
b5ec771e 6025static bool
73589123
PH
6026wild_match (const char *name, const char *patn)
6027{
22e048c9 6028 const char *p;
73589123
PH
6029 const char *name0 = name;
6030
6031 while (1)
6032 {
6033 const char *match = name;
6034
6035 if (*name == *patn)
6036 {
6037 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6038 if (*p != *name)
6039 break;
6040 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6041 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6042
6043 if (name[-1] == '_')
6044 name -= 1;
6045 }
6046 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6047 return false;
96d887e8 6048 }
96d887e8
PH
6049}
6050
b5ec771e
PA
6051/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6052 any trailing suffixes that encode debugging information or leading
6053 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6054 information that is ignored). */
40658b94 6055
b5ec771e 6056static bool
c4d840bd
PH
6057full_match (const char *sym_name, const char *search_name)
6058{
b5ec771e
PA
6059 size_t search_name_len = strlen (search_name);
6060
6061 if (strncmp (sym_name, search_name, search_name_len) == 0
6062 && is_name_suffix (sym_name + search_name_len))
6063 return true;
6064
6065 if (startswith (sym_name, "_ada_")
6066 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6067 && is_name_suffix (sym_name + search_name_len + 5))
6068 return true;
c4d840bd 6069
b5ec771e
PA
6070 return false;
6071}
c4d840bd 6072
b5ec771e
PA
6073/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6074 *defn_symbols, updating the list of symbols in OBSTACKP (if
6075 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6076
6077static void
6078ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6079 const struct block *block,
6080 const lookup_name_info &lookup_name,
6081 domain_enum domain, struct objfile *objfile)
96d887e8 6082{
8157b174 6083 struct block_iterator iter;
96d887e8
PH
6084 /* A matching argument symbol, if any. */
6085 struct symbol *arg_sym;
6086 /* Set true when we find a matching non-argument symbol. */
6087 int found_sym;
6088 struct symbol *sym;
6089
6090 arg_sym = NULL;
6091 found_sym = 0;
b5ec771e
PA
6092 for (sym = block_iter_match_first (block, lookup_name, &iter);
6093 sym != NULL;
6094 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6095 {
c1b5c1eb 6096 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6097 {
6098 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6099 {
6100 if (SYMBOL_IS_ARGUMENT (sym))
6101 arg_sym = sym;
6102 else
6103 {
6104 found_sym = 1;
6105 add_defn_to_vec (obstackp,
6106 fixup_symbol_section (sym, objfile),
6107 block);
6108 }
6109 }
6110 }
96d887e8
PH
6111 }
6112
22cee43f
PMR
6113 /* Handle renamings. */
6114
b5ec771e 6115 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6116 found_sym = 1;
6117
96d887e8
PH
6118 if (!found_sym && arg_sym != NULL)
6119 {
76a01679
JB
6120 add_defn_to_vec (obstackp,
6121 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6122 block);
96d887e8
PH
6123 }
6124
b5ec771e 6125 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6126 {
6127 arg_sym = NULL;
6128 found_sym = 0;
b5ec771e
PA
6129 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6130 const char *name = ada_lookup_name.c_str ();
6131 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6132
6133 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6134 {
c1b5c1eb 6135 if (symbol_matches_domain (sym->language (),
4186eb54 6136 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6137 {
6138 int cmp;
6139
987012b8 6140 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6141 if (cmp == 0)
6142 {
987012b8 6143 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6144 if (cmp == 0)
987012b8 6145 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6146 name_len);
6147 }
6148
6149 if (cmp == 0
987012b8 6150 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6151 {
2a2d4dc3
AS
6152 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6153 {
6154 if (SYMBOL_IS_ARGUMENT (sym))
6155 arg_sym = sym;
6156 else
6157 {
6158 found_sym = 1;
6159 add_defn_to_vec (obstackp,
6160 fixup_symbol_section (sym, objfile),
6161 block);
6162 }
6163 }
76a01679
JB
6164 }
6165 }
76a01679 6166 }
96d887e8
PH
6167
6168 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6169 They aren't parameters, right? */
6170 if (!found_sym && arg_sym != NULL)
6171 {
6172 add_defn_to_vec (obstackp,
76a01679 6173 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6174 block);
96d887e8
PH
6175 }
6176 }
6177}
6178\f
41d27058
JB
6179
6180 /* Symbol Completion */
6181
b5ec771e 6182/* See symtab.h. */
41d27058 6183
b5ec771e
PA
6184bool
6185ada_lookup_name_info::matches
6186 (const char *sym_name,
6187 symbol_name_match_type match_type,
a207cff2 6188 completion_match_result *comp_match_res) const
41d27058 6189{
b5ec771e
PA
6190 bool match = false;
6191 const char *text = m_encoded_name.c_str ();
6192 size_t text_len = m_encoded_name.size ();
41d27058
JB
6193
6194 /* First, test against the fully qualified name of the symbol. */
6195
6196 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6197 match = true;
41d27058 6198
f945dedf 6199 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6200 if (match && !m_encoded_p)
41d27058
JB
6201 {
6202 /* One needed check before declaring a positive match is to verify
6203 that iff we are doing a verbatim match, the decoded version
6204 of the symbol name starts with '<'. Otherwise, this symbol name
6205 is not a suitable completion. */
41d27058 6206
f945dedf 6207 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6208 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6209 }
6210
b5ec771e 6211 if (match && !m_verbatim_p)
41d27058
JB
6212 {
6213 /* When doing non-verbatim match, another check that needs to
6214 be done is to verify that the potentially matching symbol name
6215 does not include capital letters, because the ada-mode would
6216 not be able to understand these symbol names without the
6217 angle bracket notation. */
6218 const char *tmp;
6219
6220 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6221 if (*tmp != '\0')
b5ec771e 6222 match = false;
41d27058
JB
6223 }
6224
6225 /* Second: Try wild matching... */
6226
b5ec771e 6227 if (!match && m_wild_match_p)
41d27058
JB
6228 {
6229 /* Since we are doing wild matching, this means that TEXT
6230 may represent an unqualified symbol name. We therefore must
6231 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6232 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6233
6234 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6235 match = true;
41d27058
JB
6236 }
6237
b5ec771e 6238 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6239
6240 if (!match)
b5ec771e 6241 return false;
41d27058 6242
a207cff2 6243 if (comp_match_res != NULL)
b5ec771e 6244 {
a207cff2 6245 std::string &match_str = comp_match_res->match.storage ();
41d27058 6246
b5ec771e 6247 if (!m_encoded_p)
a207cff2 6248 match_str = ada_decode (sym_name);
b5ec771e
PA
6249 else
6250 {
6251 if (m_verbatim_p)
6252 match_str = add_angle_brackets (sym_name);
6253 else
6254 match_str = sym_name;
41d27058 6255
b5ec771e 6256 }
a207cff2
PA
6257
6258 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6259 }
6260
b5ec771e 6261 return true;
41d27058
JB
6262}
6263
963a6417 6264 /* Field Access */
96d887e8 6265
73fb9985
JB
6266/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6267 for tagged types. */
6268
6269static int
6270ada_is_dispatch_table_ptr_type (struct type *type)
6271{
0d5cff50 6272 const char *name;
73fb9985 6273
78134374 6274 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6275 return 0;
6276
7d93a1e0 6277 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6278 if (name == NULL)
6279 return 0;
6280
6281 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6282}
6283
ac4a2da4
JG
6284/* Return non-zero if TYPE is an interface tag. */
6285
6286static int
6287ada_is_interface_tag (struct type *type)
6288{
7d93a1e0 6289 const char *name = type->name ();
ac4a2da4
JG
6290
6291 if (name == NULL)
6292 return 0;
6293
6294 return (strcmp (name, "ada__tags__interface_tag") == 0);
6295}
6296
963a6417
PH
6297/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6298 to be invisible to users. */
96d887e8 6299
963a6417
PH
6300int
6301ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6302{
1f704f76 6303 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6304 return 1;
ffde82bf 6305
73fb9985
JB
6306 /* Check the name of that field. */
6307 {
6308 const char *name = TYPE_FIELD_NAME (type, field_num);
6309
6310 /* Anonymous field names should not be printed.
6311 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6312 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6313 if (name == NULL)
6314 return 1;
6315
ffde82bf
JB
6316 /* Normally, fields whose name start with an underscore ("_")
6317 are fields that have been internally generated by the compiler,
6318 and thus should not be printed. The "_parent" field is special,
6319 however: This is a field internally generated by the compiler
6320 for tagged types, and it contains the components inherited from
6321 the parent type. This field should not be printed as is, but
6322 should not be ignored either. */
61012eef 6323 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6324 return 1;
6325 }
6326
ac4a2da4
JG
6327 /* If this is the dispatch table of a tagged type or an interface tag,
6328 then ignore. */
73fb9985 6329 if (ada_is_tagged_type (type, 1)
940da03e
SM
6330 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6331 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6332 return 1;
6333
6334 /* Not a special field, so it should not be ignored. */
6335 return 0;
963a6417 6336}
96d887e8 6337
963a6417 6338/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6339 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6340
963a6417
PH
6341int
6342ada_is_tagged_type (struct type *type, int refok)
6343{
988f6b3d 6344 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6345}
96d887e8 6346
963a6417 6347/* True iff TYPE represents the type of X'Tag */
96d887e8 6348
963a6417
PH
6349int
6350ada_is_tag_type (struct type *type)
6351{
460efde1
JB
6352 type = ada_check_typedef (type);
6353
78134374 6354 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6355 return 0;
6356 else
96d887e8 6357 {
963a6417 6358 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6359
963a6417
PH
6360 return (name != NULL
6361 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6362 }
96d887e8
PH
6363}
6364
963a6417 6365/* The type of the tag on VAL. */
76a01679 6366
de93309a 6367static struct type *
963a6417 6368ada_tag_type (struct value *val)
96d887e8 6369{
988f6b3d 6370 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6371}
96d887e8 6372
b50d69b5
JG
6373/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6374 retired at Ada 05). */
6375
6376static int
6377is_ada95_tag (struct value *tag)
6378{
6379 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6380}
6381
963a6417 6382/* The value of the tag on VAL. */
96d887e8 6383
de93309a 6384static struct value *
963a6417
PH
6385ada_value_tag (struct value *val)
6386{
03ee6b2e 6387 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6388}
6389
963a6417
PH
6390/* The value of the tag on the object of type TYPE whose contents are
6391 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6392 ADDRESS. */
96d887e8 6393
963a6417 6394static struct value *
10a2c479 6395value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6396 const gdb_byte *valaddr,
963a6417 6397 CORE_ADDR address)
96d887e8 6398{
b5385fc0 6399 int tag_byte_offset;
963a6417 6400 struct type *tag_type;
5b4ee69b 6401
963a6417 6402 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6403 NULL, NULL, NULL))
96d887e8 6404 {
fc1a4b47 6405 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6406 ? NULL
6407 : valaddr + tag_byte_offset);
963a6417 6408 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6409
963a6417 6410 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6411 }
963a6417
PH
6412 return NULL;
6413}
96d887e8 6414
963a6417
PH
6415static struct type *
6416type_from_tag (struct value *tag)
6417{
f5272a3b 6418 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6419
963a6417 6420 if (type_name != NULL)
f5272a3b 6421 return ada_find_any_type (ada_encode (type_name.get ()));
963a6417
PH
6422 return NULL;
6423}
96d887e8 6424
b50d69b5
JG
6425/* Given a value OBJ of a tagged type, return a value of this
6426 type at the base address of the object. The base address, as
6427 defined in Ada.Tags, it is the address of the primary tag of
6428 the object, and therefore where the field values of its full
6429 view can be fetched. */
6430
6431struct value *
6432ada_tag_value_at_base_address (struct value *obj)
6433{
b50d69b5
JG
6434 struct value *val;
6435 LONGEST offset_to_top = 0;
6436 struct type *ptr_type, *obj_type;
6437 struct value *tag;
6438 CORE_ADDR base_address;
6439
6440 obj_type = value_type (obj);
6441
6442 /* It is the responsability of the caller to deref pointers. */
6443
78134374 6444 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6445 return obj;
6446
6447 tag = ada_value_tag (obj);
6448 if (!tag)
6449 return obj;
6450
6451 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6452
6453 if (is_ada95_tag (tag))
6454 return obj;
6455
08f49010
XR
6456 ptr_type = language_lookup_primitive_type
6457 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6458 ptr_type = lookup_pointer_type (ptr_type);
6459 val = value_cast (ptr_type, tag);
6460 if (!val)
6461 return obj;
6462
6463 /* It is perfectly possible that an exception be raised while
6464 trying to determine the base address, just like for the tag;
6465 see ada_tag_name for more details. We do not print the error
6466 message for the same reason. */
6467
a70b8144 6468 try
b50d69b5
JG
6469 {
6470 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6471 }
6472
230d2906 6473 catch (const gdb_exception_error &e)
492d29ea
PA
6474 {
6475 return obj;
6476 }
b50d69b5
JG
6477
6478 /* If offset is null, nothing to do. */
6479
6480 if (offset_to_top == 0)
6481 return obj;
6482
6483 /* -1 is a special case in Ada.Tags; however, what should be done
6484 is not quite clear from the documentation. So do nothing for
6485 now. */
6486
6487 if (offset_to_top == -1)
6488 return obj;
6489
08f49010
XR
6490 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6491 from the base address. This was however incompatible with
6492 C++ dispatch table: C++ uses a *negative* value to *add*
6493 to the base address. Ada's convention has therefore been
6494 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6495 use the same convention. Here, we support both cases by
6496 checking the sign of OFFSET_TO_TOP. */
6497
6498 if (offset_to_top > 0)
6499 offset_to_top = -offset_to_top;
6500
6501 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6502 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6503
6504 /* Make sure that we have a proper tag at the new address.
6505 Otherwise, offset_to_top is bogus (which can happen when
6506 the object is not initialized yet). */
6507
6508 if (!tag)
6509 return obj;
6510
6511 obj_type = type_from_tag (tag);
6512
6513 if (!obj_type)
6514 return obj;
6515
6516 return value_from_contents_and_address (obj_type, NULL, base_address);
6517}
6518
1b611343
JB
6519/* Return the "ada__tags__type_specific_data" type. */
6520
6521static struct type *
6522ada_get_tsd_type (struct inferior *inf)
963a6417 6523{
1b611343 6524 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6525
1b611343
JB
6526 if (data->tsd_type == 0)
6527 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6528 return data->tsd_type;
6529}
529cad9c 6530
1b611343
JB
6531/* Return the TSD (type-specific data) associated to the given TAG.
6532 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6533
1b611343 6534 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6535
1b611343
JB
6536static struct value *
6537ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6538{
4c4b4cd2 6539 struct value *val;
1b611343 6540 struct type *type;
5b4ee69b 6541
1b611343
JB
6542 /* First option: The TSD is simply stored as a field of our TAG.
6543 Only older versions of GNAT would use this format, but we have
6544 to test it first, because there are no visible markers for
6545 the current approach except the absence of that field. */
529cad9c 6546
1b611343
JB
6547 val = ada_value_struct_elt (tag, "tsd", 1);
6548 if (val)
6549 return val;
e802dbe0 6550
1b611343
JB
6551 /* Try the second representation for the dispatch table (in which
6552 there is no explicit 'tsd' field in the referent of the tag pointer,
6553 and instead the tsd pointer is stored just before the dispatch
6554 table. */
e802dbe0 6555
1b611343
JB
6556 type = ada_get_tsd_type (current_inferior());
6557 if (type == NULL)
6558 return NULL;
6559 type = lookup_pointer_type (lookup_pointer_type (type));
6560 val = value_cast (type, tag);
6561 if (val == NULL)
6562 return NULL;
6563 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6564}
6565
1b611343
JB
6566/* Given the TSD of a tag (type-specific data), return a string
6567 containing the name of the associated type.
6568
f5272a3b 6569 May return NULL if we are unable to determine the tag name. */
1b611343 6570
f5272a3b 6571static gdb::unique_xmalloc_ptr<char>
1b611343 6572ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6573{
529cad9c 6574 char *p;
1b611343 6575 struct value *val;
529cad9c 6576
1b611343 6577 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6578 if (val == NULL)
1b611343 6579 return NULL;
66920317
TT
6580 gdb::unique_xmalloc_ptr<char> buffer
6581 = target_read_string (value_as_address (val), INT_MAX);
6582 if (buffer == nullptr)
f5272a3b
TT
6583 return nullptr;
6584
6585 for (p = buffer.get (); *p != '\0'; ++p)
6586 {
6587 if (isalpha (*p))
6588 *p = tolower (*p);
6589 }
6590
6591 return buffer;
4c4b4cd2
PH
6592}
6593
6594/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6595 a C string.
6596
6597 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6598 determine the name of that tag. */
4c4b4cd2 6599
f5272a3b 6600gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6601ada_tag_name (struct value *tag)
6602{
f5272a3b 6603 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6604
df407dfe 6605 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6606 return NULL;
1b611343
JB
6607
6608 /* It is perfectly possible that an exception be raised while trying
6609 to determine the TAG's name, even under normal circumstances:
6610 The associated variable may be uninitialized or corrupted, for
6611 instance. We do not let any exception propagate past this point.
6612 instead we return NULL.
6613
6614 We also do not print the error message either (which often is very
6615 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6616 the caller print a more meaningful message if necessary. */
a70b8144 6617 try
1b611343
JB
6618 {
6619 struct value *tsd = ada_get_tsd_from_tag (tag);
6620
6621 if (tsd != NULL)
6622 name = ada_tag_name_from_tsd (tsd);
6623 }
230d2906 6624 catch (const gdb_exception_error &e)
492d29ea
PA
6625 {
6626 }
1b611343
JB
6627
6628 return name;
4c4b4cd2
PH
6629}
6630
6631/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6632
d2e4a39e 6633struct type *
ebf56fd3 6634ada_parent_type (struct type *type)
14f9c5c9
AS
6635{
6636 int i;
6637
61ee279c 6638 type = ada_check_typedef (type);
14f9c5c9 6639
78134374 6640 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6641 return NULL;
6642
1f704f76 6643 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6644 if (ada_is_parent_field (type, i))
0c1f74cf 6645 {
940da03e 6646 struct type *parent_type = type->field (i).type ();
0c1f74cf
JB
6647
6648 /* If the _parent field is a pointer, then dereference it. */
78134374 6649 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6650 parent_type = TYPE_TARGET_TYPE (parent_type);
6651 /* If there is a parallel XVS type, get the actual base type. */
6652 parent_type = ada_get_base_type (parent_type);
6653
6654 return ada_check_typedef (parent_type);
6655 }
14f9c5c9
AS
6656
6657 return NULL;
6658}
6659
4c4b4cd2
PH
6660/* True iff field number FIELD_NUM of structure type TYPE contains the
6661 parent-type (inherited) fields of a derived type. Assumes TYPE is
6662 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6663
6664int
ebf56fd3 6665ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6666{
61ee279c 6667 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6668
4c4b4cd2 6669 return (name != NULL
61012eef
GB
6670 && (startswith (name, "PARENT")
6671 || startswith (name, "_parent")));
14f9c5c9
AS
6672}
6673
4c4b4cd2 6674/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6675 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6676 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6677 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6678 structures. */
14f9c5c9
AS
6679
6680int
ebf56fd3 6681ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6682{
d2e4a39e 6683 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6684
dddc0e16
JB
6685 if (name != NULL && strcmp (name, "RETVAL") == 0)
6686 {
6687 /* This happens in functions with "out" or "in out" parameters
6688 which are passed by copy. For such functions, GNAT describes
6689 the function's return type as being a struct where the return
6690 value is in a field called RETVAL, and where the other "out"
6691 or "in out" parameters are fields of that struct. This is not
6692 a wrapper. */
6693 return 0;
6694 }
6695
d2e4a39e 6696 return (name != NULL
61012eef 6697 && (startswith (name, "PARENT")
4c4b4cd2 6698 || strcmp (name, "REP") == 0
61012eef 6699 || startswith (name, "_parent")
4c4b4cd2 6700 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6701}
6702
4c4b4cd2
PH
6703/* True iff field number FIELD_NUM of structure or union type TYPE
6704 is a variant wrapper. Assumes TYPE is a structure type with at least
6705 FIELD_NUM+1 fields. */
14f9c5c9
AS
6706
6707int
ebf56fd3 6708ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6709{
8ecb59f8
TT
6710 /* Only Ada types are eligible. */
6711 if (!ADA_TYPE_P (type))
6712 return 0;
6713
940da03e 6714 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6715
78134374
SM
6716 return (field_type->code () == TYPE_CODE_UNION
6717 || (is_dynamic_field (type, field_num)
6718 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6719 == TYPE_CODE_UNION)));
14f9c5c9
AS
6720}
6721
6722/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6723 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6724 returns the type of the controlling discriminant for the variant.
6725 May return NULL if the type could not be found. */
14f9c5c9 6726
d2e4a39e 6727struct type *
ebf56fd3 6728ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6729{
a121b7c1 6730 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6731
988f6b3d 6732 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6733}
6734
4c4b4cd2 6735/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6736 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6737 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6738
de93309a 6739static int
ebf56fd3 6740ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6741{
d2e4a39e 6742 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6743
14f9c5c9
AS
6744 return (name != NULL && name[0] == 'O');
6745}
6746
6747/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6748 returns the name of the discriminant controlling the variant.
6749 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6750
a121b7c1 6751const char *
ebf56fd3 6752ada_variant_discrim_name (struct type *type0)
14f9c5c9 6753{
d2e4a39e 6754 static char *result = NULL;
14f9c5c9 6755 static size_t result_len = 0;
d2e4a39e
AS
6756 struct type *type;
6757 const char *name;
6758 const char *discrim_end;
6759 const char *discrim_start;
14f9c5c9 6760
78134374 6761 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6762 type = TYPE_TARGET_TYPE (type0);
6763 else
6764 type = type0;
6765
6766 name = ada_type_name (type);
6767
6768 if (name == NULL || name[0] == '\000')
6769 return "";
6770
6771 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6772 discrim_end -= 1)
6773 {
61012eef 6774 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6775 break;
14f9c5c9
AS
6776 }
6777 if (discrim_end == name)
6778 return "";
6779
d2e4a39e 6780 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6781 discrim_start -= 1)
6782 {
d2e4a39e 6783 if (discrim_start == name + 1)
4c4b4cd2 6784 return "";
76a01679 6785 if ((discrim_start > name + 3
61012eef 6786 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6787 || discrim_start[-1] == '.')
6788 break;
14f9c5c9
AS
6789 }
6790
6791 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6792 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6793 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6794 return result;
6795}
6796
4c4b4cd2
PH
6797/* Scan STR for a subtype-encoded number, beginning at position K.
6798 Put the position of the character just past the number scanned in
6799 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6800 Return 1 if there was a valid number at the given position, and 0
6801 otherwise. A "subtype-encoded" number consists of the absolute value
6802 in decimal, followed by the letter 'm' to indicate a negative number.
6803 Assumes 0m does not occur. */
14f9c5c9
AS
6804
6805int
d2e4a39e 6806ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6807{
6808 ULONGEST RU;
6809
d2e4a39e 6810 if (!isdigit (str[k]))
14f9c5c9
AS
6811 return 0;
6812
4c4b4cd2 6813 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6814 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6815 LONGEST. */
14f9c5c9
AS
6816 RU = 0;
6817 while (isdigit (str[k]))
6818 {
d2e4a39e 6819 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6820 k += 1;
6821 }
6822
d2e4a39e 6823 if (str[k] == 'm')
14f9c5c9
AS
6824 {
6825 if (R != NULL)
4c4b4cd2 6826 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6827 k += 1;
6828 }
6829 else if (R != NULL)
6830 *R = (LONGEST) RU;
6831
4c4b4cd2 6832 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6833 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6834 number representable as a LONGEST (although either would probably work
6835 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6836 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6837
6838 if (new_k != NULL)
6839 *new_k = k;
6840 return 1;
6841}
6842
4c4b4cd2
PH
6843/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6844 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6845 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6846
de93309a 6847static int
ebf56fd3 6848ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6849{
d2e4a39e 6850 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6851 int p;
6852
6853 p = 0;
6854 while (1)
6855 {
d2e4a39e 6856 switch (name[p])
4c4b4cd2
PH
6857 {
6858 case '\0':
6859 return 0;
6860 case 'S':
6861 {
6862 LONGEST W;
5b4ee69b 6863
4c4b4cd2
PH
6864 if (!ada_scan_number (name, p + 1, &W, &p))
6865 return 0;
6866 if (val == W)
6867 return 1;
6868 break;
6869 }
6870 case 'R':
6871 {
6872 LONGEST L, U;
5b4ee69b 6873
4c4b4cd2
PH
6874 if (!ada_scan_number (name, p + 1, &L, &p)
6875 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6876 return 0;
6877 if (val >= L && val <= U)
6878 return 1;
6879 break;
6880 }
6881 case 'O':
6882 return 1;
6883 default:
6884 return 0;
6885 }
6886 }
6887}
6888
0963b4bd 6889/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6890
6891/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6892 ARG_TYPE, extract and return the value of one of its (non-static)
6893 fields. FIELDNO says which field. Differs from value_primitive_field
6894 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6895
5eb68a39 6896struct value *
d2e4a39e 6897ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6898 struct type *arg_type)
14f9c5c9 6899{
14f9c5c9
AS
6900 struct type *type;
6901
61ee279c 6902 arg_type = ada_check_typedef (arg_type);
940da03e 6903 type = arg_type->field (fieldno).type ();
14f9c5c9 6904
4504bbde
TT
6905 /* Handle packed fields. It might be that the field is not packed
6906 relative to its containing structure, but the structure itself is
6907 packed; in this case we must take the bit-field path. */
6908 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6909 {
6910 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6911 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6912
0fd88904 6913 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6914 offset + bit_pos / 8,
6915 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6916 }
6917 else
6918 return value_primitive_field (arg1, offset, fieldno, arg_type);
6919}
6920
52ce6436
PH
6921/* Find field with name NAME in object of type TYPE. If found,
6922 set the following for each argument that is non-null:
6923 - *FIELD_TYPE_P to the field's type;
6924 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6925 an object of that type;
6926 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6927 - *BIT_SIZE_P to its size in bits if the field is packed, and
6928 0 otherwise;
6929 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6930 fields up to but not including the desired field, or by the total
6931 number of fields if not found. A NULL value of NAME never
6932 matches; the function just counts visible fields in this case.
6933
828d5846
XR
6934 Notice that we need to handle when a tagged record hierarchy
6935 has some components with the same name, like in this scenario:
6936
6937 type Top_T is tagged record
6938 N : Integer := 1;
6939 U : Integer := 974;
6940 A : Integer := 48;
6941 end record;
6942
6943 type Middle_T is new Top.Top_T with record
6944 N : Character := 'a';
6945 C : Integer := 3;
6946 end record;
6947
6948 type Bottom_T is new Middle.Middle_T with record
6949 N : Float := 4.0;
6950 C : Character := '5';
6951 X : Integer := 6;
6952 A : Character := 'J';
6953 end record;
6954
6955 Let's say we now have a variable declared and initialized as follow:
6956
6957 TC : Top_A := new Bottom_T;
6958
6959 And then we use this variable to call this function
6960
6961 procedure Assign (Obj: in out Top_T; TV : Integer);
6962
6963 as follow:
6964
6965 Assign (Top_T (B), 12);
6966
6967 Now, we're in the debugger, and we're inside that procedure
6968 then and we want to print the value of obj.c:
6969
6970 Usually, the tagged record or one of the parent type owns the
6971 component to print and there's no issue but in this particular
6972 case, what does it mean to ask for Obj.C? Since the actual
6973 type for object is type Bottom_T, it could mean two things: type
6974 component C from the Middle_T view, but also component C from
6975 Bottom_T. So in that "undefined" case, when the component is
6976 not found in the non-resolved type (which includes all the
6977 components of the parent type), then resolve it and see if we
6978 get better luck once expanded.
6979
6980 In the case of homonyms in the derived tagged type, we don't
6981 guaranty anything, and pick the one that's easiest for us
6982 to program.
6983
0963b4bd 6984 Returns 1 if found, 0 otherwise. */
52ce6436 6985
4c4b4cd2 6986static int
0d5cff50 6987find_struct_field (const char *name, struct type *type, int offset,
76a01679 6988 struct type **field_type_p,
52ce6436
PH
6989 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6990 int *index_p)
4c4b4cd2
PH
6991{
6992 int i;
828d5846 6993 int parent_offset = -1;
4c4b4cd2 6994
61ee279c 6995 type = ada_check_typedef (type);
76a01679 6996
52ce6436
PH
6997 if (field_type_p != NULL)
6998 *field_type_p = NULL;
6999 if (byte_offset_p != NULL)
d5d6fca5 7000 *byte_offset_p = 0;
52ce6436
PH
7001 if (bit_offset_p != NULL)
7002 *bit_offset_p = 0;
7003 if (bit_size_p != NULL)
7004 *bit_size_p = 0;
7005
1f704f76 7006 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7007 {
7008 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7009 int fld_offset = offset + bit_pos / 8;
0d5cff50 7010 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7011
4c4b4cd2
PH
7012 if (t_field_name == NULL)
7013 continue;
7014
828d5846
XR
7015 else if (ada_is_parent_field (type, i))
7016 {
7017 /* This is a field pointing us to the parent type of a tagged
7018 type. As hinted in this function's documentation, we give
7019 preference to fields in the current record first, so what
7020 we do here is just record the index of this field before
7021 we skip it. If it turns out we couldn't find our field
7022 in the current record, then we'll get back to it and search
7023 inside it whether the field might exist in the parent. */
7024
7025 parent_offset = i;
7026 continue;
7027 }
7028
52ce6436 7029 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7030 {
7031 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7032
52ce6436 7033 if (field_type_p != NULL)
940da03e 7034 *field_type_p = type->field (i).type ();
52ce6436
PH
7035 if (byte_offset_p != NULL)
7036 *byte_offset_p = fld_offset;
7037 if (bit_offset_p != NULL)
7038 *bit_offset_p = bit_pos % 8;
7039 if (bit_size_p != NULL)
7040 *bit_size_p = bit_size;
76a01679
JB
7041 return 1;
7042 }
4c4b4cd2
PH
7043 else if (ada_is_wrapper_field (type, i))
7044 {
940da03e 7045 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7046 field_type_p, byte_offset_p, bit_offset_p,
7047 bit_size_p, index_p))
76a01679
JB
7048 return 1;
7049 }
4c4b4cd2
PH
7050 else if (ada_is_variant_part (type, i))
7051 {
52ce6436
PH
7052 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7053 fixed type?? */
4c4b4cd2 7054 int j;
52ce6436 7055 struct type *field_type
940da03e 7056 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7057
1f704f76 7058 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7059 {
940da03e 7060 if (find_struct_field (name, field_type->field (j).type (),
76a01679
JB
7061 fld_offset
7062 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7063 field_type_p, byte_offset_p,
52ce6436 7064 bit_offset_p, bit_size_p, index_p))
76a01679 7065 return 1;
4c4b4cd2
PH
7066 }
7067 }
52ce6436
PH
7068 else if (index_p != NULL)
7069 *index_p += 1;
4c4b4cd2 7070 }
828d5846
XR
7071
7072 /* Field not found so far. If this is a tagged type which
7073 has a parent, try finding that field in the parent now. */
7074
7075 if (parent_offset != -1)
7076 {
7077 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7078 int fld_offset = offset + bit_pos / 8;
7079
940da03e 7080 if (find_struct_field (name, type->field (parent_offset).type (),
828d5846
XR
7081 fld_offset, field_type_p, byte_offset_p,
7082 bit_offset_p, bit_size_p, index_p))
7083 return 1;
7084 }
7085
4c4b4cd2
PH
7086 return 0;
7087}
7088
0963b4bd 7089/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7090
52ce6436
PH
7091static int
7092num_visible_fields (struct type *type)
7093{
7094 int n;
5b4ee69b 7095
52ce6436
PH
7096 n = 0;
7097 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7098 return n;
7099}
14f9c5c9 7100
4c4b4cd2 7101/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7102 and search in it assuming it has (class) type TYPE.
7103 If found, return value, else return NULL.
7104
828d5846
XR
7105 Searches recursively through wrapper fields (e.g., '_parent').
7106
7107 In the case of homonyms in the tagged types, please refer to the
7108 long explanation in find_struct_field's function documentation. */
14f9c5c9 7109
4c4b4cd2 7110static struct value *
108d56a4 7111ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7112 struct type *type)
14f9c5c9
AS
7113{
7114 int i;
828d5846 7115 int parent_offset = -1;
14f9c5c9 7116
5b4ee69b 7117 type = ada_check_typedef (type);
1f704f76 7118 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7119 {
0d5cff50 7120 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7121
7122 if (t_field_name == NULL)
4c4b4cd2 7123 continue;
14f9c5c9 7124
828d5846
XR
7125 else if (ada_is_parent_field (type, i))
7126 {
7127 /* This is a field pointing us to the parent type of a tagged
7128 type. As hinted in this function's documentation, we give
7129 preference to fields in the current record first, so what
7130 we do here is just record the index of this field before
7131 we skip it. If it turns out we couldn't find our field
7132 in the current record, then we'll get back to it and search
7133 inside it whether the field might exist in the parent. */
7134
7135 parent_offset = i;
7136 continue;
7137 }
7138
14f9c5c9 7139 else if (field_name_match (t_field_name, name))
4c4b4cd2 7140 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7141
7142 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7143 {
0963b4bd 7144 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7145 ada_search_struct_field (name, arg,
7146 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7147 type->field (i).type ());
5b4ee69b 7148
4c4b4cd2
PH
7149 if (v != NULL)
7150 return v;
7151 }
14f9c5c9
AS
7152
7153 else if (ada_is_variant_part (type, i))
4c4b4cd2 7154 {
0963b4bd 7155 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7156 int j;
940da03e 7157 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2
PH
7158 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7159
1f704f76 7160 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7161 {
0963b4bd
MS
7162 struct value *v = ada_search_struct_field /* Force line
7163 break. */
06d5cf63
JB
7164 (name, arg,
7165 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
940da03e 7166 field_type->field (j).type ());
5b4ee69b 7167
4c4b4cd2
PH
7168 if (v != NULL)
7169 return v;
7170 }
7171 }
14f9c5c9 7172 }
828d5846
XR
7173
7174 /* Field not found so far. If this is a tagged type which
7175 has a parent, try finding that field in the parent now. */
7176
7177 if (parent_offset != -1)
7178 {
7179 struct value *v = ada_search_struct_field (
7180 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7181 type->field (parent_offset).type ());
828d5846
XR
7182
7183 if (v != NULL)
7184 return v;
7185 }
7186
14f9c5c9
AS
7187 return NULL;
7188}
d2e4a39e 7189
52ce6436
PH
7190static struct value *ada_index_struct_field_1 (int *, struct value *,
7191 int, struct type *);
7192
7193
7194/* Return field #INDEX in ARG, where the index is that returned by
7195 * find_struct_field through its INDEX_P argument. Adjust the address
7196 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7197 * If found, return value, else return NULL. */
52ce6436
PH
7198
7199static struct value *
7200ada_index_struct_field (int index, struct value *arg, int offset,
7201 struct type *type)
7202{
7203 return ada_index_struct_field_1 (&index, arg, offset, type);
7204}
7205
7206
7207/* Auxiliary function for ada_index_struct_field. Like
7208 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7209 * *INDEX_P. */
52ce6436
PH
7210
7211static struct value *
7212ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7213 struct type *type)
7214{
7215 int i;
7216 type = ada_check_typedef (type);
7217
1f704f76 7218 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7219 {
7220 if (TYPE_FIELD_NAME (type, i) == NULL)
7221 continue;
7222 else if (ada_is_wrapper_field (type, i))
7223 {
0963b4bd 7224 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7225 ada_index_struct_field_1 (index_p, arg,
7226 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7227 type->field (i).type ());
5b4ee69b 7228
52ce6436
PH
7229 if (v != NULL)
7230 return v;
7231 }
7232
7233 else if (ada_is_variant_part (type, i))
7234 {
7235 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7236 find_struct_field. */
52ce6436
PH
7237 error (_("Cannot assign this kind of variant record"));
7238 }
7239 else if (*index_p == 0)
7240 return ada_value_primitive_field (arg, offset, i, type);
7241 else
7242 *index_p -= 1;
7243 }
7244 return NULL;
7245}
7246
3b4de39c 7247/* Return a string representation of type TYPE. */
99bbb428 7248
3b4de39c 7249static std::string
99bbb428
PA
7250type_as_string (struct type *type)
7251{
d7e74731 7252 string_file tmp_stream;
99bbb428 7253
d7e74731 7254 type_print (type, "", &tmp_stream, -1);
99bbb428 7255
d7e74731 7256 return std::move (tmp_stream.string ());
99bbb428
PA
7257}
7258
14f9c5c9 7259/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7260 If DISPP is non-null, add its byte displacement from the beginning of a
7261 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7262 work for packed fields).
7263
7264 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7265 followed by "___".
14f9c5c9 7266
0963b4bd 7267 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7268 be a (pointer or reference)+ to a struct or union, and the
7269 ultimate target type will be searched.
14f9c5c9
AS
7270
7271 Looks recursively into variant clauses and parent types.
7272
828d5846
XR
7273 In the case of homonyms in the tagged types, please refer to the
7274 long explanation in find_struct_field's function documentation.
7275
4c4b4cd2
PH
7276 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7277 TYPE is not a type of the right kind. */
14f9c5c9 7278
4c4b4cd2 7279static struct type *
a121b7c1 7280ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7281 int noerr)
14f9c5c9
AS
7282{
7283 int i;
828d5846 7284 int parent_offset = -1;
14f9c5c9
AS
7285
7286 if (name == NULL)
7287 goto BadName;
7288
76a01679 7289 if (refok && type != NULL)
4c4b4cd2
PH
7290 while (1)
7291 {
61ee279c 7292 type = ada_check_typedef (type);
78134374 7293 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7294 break;
7295 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7296 }
14f9c5c9 7297
76a01679 7298 if (type == NULL
78134374
SM
7299 || (type->code () != TYPE_CODE_STRUCT
7300 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7301 {
4c4b4cd2 7302 if (noerr)
76a01679 7303 return NULL;
99bbb428 7304
3b4de39c
PA
7305 error (_("Type %s is not a structure or union type"),
7306 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7307 }
7308
7309 type = to_static_fixed_type (type);
7310
1f704f76 7311 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7312 {
0d5cff50 7313 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7314 struct type *t;
d2e4a39e 7315
14f9c5c9 7316 if (t_field_name == NULL)
4c4b4cd2 7317 continue;
14f9c5c9 7318
828d5846
XR
7319 else if (ada_is_parent_field (type, i))
7320 {
7321 /* This is a field pointing us to the parent type of a tagged
7322 type. As hinted in this function's documentation, we give
7323 preference to fields in the current record first, so what
7324 we do here is just record the index of this field before
7325 we skip it. If it turns out we couldn't find our field
7326 in the current record, then we'll get back to it and search
7327 inside it whether the field might exist in the parent. */
7328
7329 parent_offset = i;
7330 continue;
7331 }
7332
14f9c5c9 7333 else if (field_name_match (t_field_name, name))
940da03e 7334 return type->field (i).type ();
14f9c5c9
AS
7335
7336 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7337 {
940da03e 7338 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
988f6b3d 7339 0, 1);
4c4b4cd2 7340 if (t != NULL)
988f6b3d 7341 return t;
4c4b4cd2 7342 }
14f9c5c9
AS
7343
7344 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7345 {
7346 int j;
940da03e 7347 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7348
1f704f76 7349 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7350 {
b1f33ddd
JB
7351 /* FIXME pnh 2008/01/26: We check for a field that is
7352 NOT wrapped in a struct, since the compiler sometimes
7353 generates these for unchecked variant types. Revisit
0963b4bd 7354 if the compiler changes this practice. */
0d5cff50 7355 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7356
b1f33ddd
JB
7357 if (v_field_name != NULL
7358 && field_name_match (v_field_name, name))
940da03e 7359 t = field_type->field (j).type ();
b1f33ddd 7360 else
940da03e 7361 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7362 name, 0, 1);
b1f33ddd 7363
4c4b4cd2 7364 if (t != NULL)
988f6b3d 7365 return t;
4c4b4cd2
PH
7366 }
7367 }
14f9c5c9
AS
7368
7369 }
7370
828d5846
XR
7371 /* Field not found so far. If this is a tagged type which
7372 has a parent, try finding that field in the parent now. */
7373
7374 if (parent_offset != -1)
7375 {
7376 struct type *t;
7377
940da03e 7378 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
828d5846
XR
7379 name, 0, 1);
7380 if (t != NULL)
7381 return t;
7382 }
7383
14f9c5c9 7384BadName:
d2e4a39e 7385 if (!noerr)
14f9c5c9 7386 {
2b2798cc 7387 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7388
7389 error (_("Type %s has no component named %s"),
3b4de39c 7390 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7391 }
7392
7393 return NULL;
7394}
7395
b1f33ddd
JB
7396/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7397 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7398 represents an unchecked union (that is, the variant part of a
0963b4bd 7399 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7400
7401static int
7402is_unchecked_variant (struct type *var_type, struct type *outer_type)
7403{
a121b7c1 7404 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7405
988f6b3d 7406 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7407}
7408
7409
14f9c5c9 7410/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7411 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7412 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7413
d2e4a39e 7414int
d8af9068 7415ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7416{
7417 int others_clause;
7418 int i;
a121b7c1 7419 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7420 struct value *discrim;
14f9c5c9
AS
7421 LONGEST discrim_val;
7422
012370f6
TT
7423 /* Using plain value_from_contents_and_address here causes problems
7424 because we will end up trying to resolve a type that is currently
7425 being constructed. */
0c281816
JB
7426 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7427 if (discrim == NULL)
14f9c5c9 7428 return -1;
0c281816 7429 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7430
7431 others_clause = -1;
1f704f76 7432 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7433 {
7434 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7435 others_clause = i;
14f9c5c9 7436 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7437 return i;
14f9c5c9
AS
7438 }
7439
7440 return others_clause;
7441}
d2e4a39e 7442\f
14f9c5c9
AS
7443
7444
4c4b4cd2 7445 /* Dynamic-Sized Records */
14f9c5c9
AS
7446
7447/* Strategy: The type ostensibly attached to a value with dynamic size
7448 (i.e., a size that is not statically recorded in the debugging
7449 data) does not accurately reflect the size or layout of the value.
7450 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7451 conventional types that are constructed on the fly. */
14f9c5c9
AS
7452
7453/* There is a subtle and tricky problem here. In general, we cannot
7454 determine the size of dynamic records without its data. However,
7455 the 'struct value' data structure, which GDB uses to represent
7456 quantities in the inferior process (the target), requires the size
7457 of the type at the time of its allocation in order to reserve space
7458 for GDB's internal copy of the data. That's why the
7459 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7460 rather than struct value*s.
14f9c5c9
AS
7461
7462 However, GDB's internal history variables ($1, $2, etc.) are
7463 struct value*s containing internal copies of the data that are not, in
7464 general, the same as the data at their corresponding addresses in
7465 the target. Fortunately, the types we give to these values are all
7466 conventional, fixed-size types (as per the strategy described
7467 above), so that we don't usually have to perform the
7468 'to_fixed_xxx_type' conversions to look at their values.
7469 Unfortunately, there is one exception: if one of the internal
7470 history variables is an array whose elements are unconstrained
7471 records, then we will need to create distinct fixed types for each
7472 element selected. */
7473
7474/* The upshot of all of this is that many routines take a (type, host
7475 address, target address) triple as arguments to represent a value.
7476 The host address, if non-null, is supposed to contain an internal
7477 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7478 target at the target address. */
14f9c5c9
AS
7479
7480/* Assuming that VAL0 represents a pointer value, the result of
7481 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7482 dynamic-sized types. */
14f9c5c9 7483
d2e4a39e
AS
7484struct value *
7485ada_value_ind (struct value *val0)
14f9c5c9 7486{
c48db5ca 7487 struct value *val = value_ind (val0);
5b4ee69b 7488
b50d69b5
JG
7489 if (ada_is_tagged_type (value_type (val), 0))
7490 val = ada_tag_value_at_base_address (val);
7491
4c4b4cd2 7492 return ada_to_fixed_value (val);
14f9c5c9
AS
7493}
7494
7495/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7496 qualifiers on VAL0. */
7497
d2e4a39e
AS
7498static struct value *
7499ada_coerce_ref (struct value *val0)
7500{
78134374 7501 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7502 {
7503 struct value *val = val0;
5b4ee69b 7504
994b9211 7505 val = coerce_ref (val);
b50d69b5
JG
7506
7507 if (ada_is_tagged_type (value_type (val), 0))
7508 val = ada_tag_value_at_base_address (val);
7509
4c4b4cd2 7510 return ada_to_fixed_value (val);
d2e4a39e
AS
7511 }
7512 else
14f9c5c9
AS
7513 return val0;
7514}
7515
4c4b4cd2 7516/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7517
7518static unsigned int
ebf56fd3 7519field_alignment (struct type *type, int f)
14f9c5c9 7520{
d2e4a39e 7521 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7522 int len;
14f9c5c9
AS
7523 int align_offset;
7524
64a1bf19
JB
7525 /* The field name should never be null, unless the debugging information
7526 is somehow malformed. In this case, we assume the field does not
7527 require any alignment. */
7528 if (name == NULL)
7529 return 1;
7530
7531 len = strlen (name);
7532
4c4b4cd2
PH
7533 if (!isdigit (name[len - 1]))
7534 return 1;
14f9c5c9 7535
d2e4a39e 7536 if (isdigit (name[len - 2]))
14f9c5c9
AS
7537 align_offset = len - 2;
7538 else
7539 align_offset = len - 1;
7540
61012eef 7541 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7542 return TARGET_CHAR_BIT;
7543
4c4b4cd2
PH
7544 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7545}
7546
852dff6c 7547/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7548
852dff6c
JB
7549static struct symbol *
7550ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7551{
7552 struct symbol *sym;
7553
7554 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7555 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7556 return sym;
7557
4186eb54
KS
7558 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7559 return sym;
14f9c5c9
AS
7560}
7561
dddfab26
UW
7562/* Find a type named NAME. Ignores ambiguity. This routine will look
7563 solely for types defined by debug info, it will not search the GDB
7564 primitive types. */
4c4b4cd2 7565
852dff6c 7566static struct type *
ebf56fd3 7567ada_find_any_type (const char *name)
14f9c5c9 7568{
852dff6c 7569 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7570
14f9c5c9 7571 if (sym != NULL)
dddfab26 7572 return SYMBOL_TYPE (sym);
14f9c5c9 7573
dddfab26 7574 return NULL;
14f9c5c9
AS
7575}
7576
739593e0
JB
7577/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7578 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7579 symbol, in which case it is returned. Otherwise, this looks for
7580 symbols whose name is that of NAME_SYM suffixed with "___XR".
7581 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7582
c0e70c62
TT
7583static bool
7584ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7585{
987012b8 7586 const char *name = name_sym->linkage_name ();
c0e70c62 7587 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7588}
7589
14f9c5c9 7590/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7591 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7592 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7593 otherwise return 0. */
7594
14f9c5c9 7595int
d2e4a39e 7596ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7597{
7598 if (type1 == NULL)
7599 return 1;
7600 else if (type0 == NULL)
7601 return 0;
78134374 7602 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7603 return 1;
78134374 7604 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7605 return 0;
7d93a1e0 7606 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7607 return 1;
ad82864c 7608 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7609 return 1;
4c4b4cd2
PH
7610 else if (ada_is_array_descriptor_type (type0)
7611 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7612 return 1;
aeb5907d
JB
7613 else
7614 {
7d93a1e0
SM
7615 const char *type0_name = type0->name ();
7616 const char *type1_name = type1->name ();
aeb5907d
JB
7617
7618 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7619 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7620 return 1;
7621 }
14f9c5c9
AS
7622 return 0;
7623}
7624
e86ca25f
TT
7625/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7626 null. */
4c4b4cd2 7627
0d5cff50 7628const char *
d2e4a39e 7629ada_type_name (struct type *type)
14f9c5c9 7630{
d2e4a39e 7631 if (type == NULL)
14f9c5c9 7632 return NULL;
7d93a1e0 7633 return type->name ();
14f9c5c9
AS
7634}
7635
b4ba55a1
JB
7636/* Search the list of "descriptive" types associated to TYPE for a type
7637 whose name is NAME. */
7638
7639static struct type *
7640find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7641{
931e5bc3 7642 struct type *result, *tmp;
b4ba55a1 7643
c6044dd1
JB
7644 if (ada_ignore_descriptive_types_p)
7645 return NULL;
7646
b4ba55a1
JB
7647 /* If there no descriptive-type info, then there is no parallel type
7648 to be found. */
7649 if (!HAVE_GNAT_AUX_INFO (type))
7650 return NULL;
7651
7652 result = TYPE_DESCRIPTIVE_TYPE (type);
7653 while (result != NULL)
7654 {
0d5cff50 7655 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7656
7657 if (result_name == NULL)
7658 {
7659 warning (_("unexpected null name on descriptive type"));
7660 return NULL;
7661 }
7662
7663 /* If the names match, stop. */
7664 if (strcmp (result_name, name) == 0)
7665 break;
7666
7667 /* Otherwise, look at the next item on the list, if any. */
7668 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7669 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7670 else
7671 tmp = NULL;
7672
7673 /* If not found either, try after having resolved the typedef. */
7674 if (tmp != NULL)
7675 result = tmp;
b4ba55a1 7676 else
931e5bc3 7677 {
f168693b 7678 result = check_typedef (result);
931e5bc3
JG
7679 if (HAVE_GNAT_AUX_INFO (result))
7680 result = TYPE_DESCRIPTIVE_TYPE (result);
7681 else
7682 result = NULL;
7683 }
b4ba55a1
JB
7684 }
7685
7686 /* If we didn't find a match, see whether this is a packed array. With
7687 older compilers, the descriptive type information is either absent or
7688 irrelevant when it comes to packed arrays so the above lookup fails.
7689 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7690 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7691 return ada_find_any_type (name);
7692
7693 return result;
7694}
7695
7696/* Find a parallel type to TYPE with the specified NAME, using the
7697 descriptive type taken from the debugging information, if available,
7698 and otherwise using the (slower) name-based method. */
7699
7700static struct type *
7701ada_find_parallel_type_with_name (struct type *type, const char *name)
7702{
7703 struct type *result = NULL;
7704
7705 if (HAVE_GNAT_AUX_INFO (type))
7706 result = find_parallel_type_by_descriptive_type (type, name);
7707 else
7708 result = ada_find_any_type (name);
7709
7710 return result;
7711}
7712
7713/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7714 SUFFIX to the name of TYPE. */
14f9c5c9 7715
d2e4a39e 7716struct type *
ebf56fd3 7717ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7718{
0d5cff50 7719 char *name;
fe978cb0 7720 const char *type_name = ada_type_name (type);
14f9c5c9 7721 int len;
d2e4a39e 7722
fe978cb0 7723 if (type_name == NULL)
14f9c5c9
AS
7724 return NULL;
7725
fe978cb0 7726 len = strlen (type_name);
14f9c5c9 7727
b4ba55a1 7728 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7729
fe978cb0 7730 strcpy (name, type_name);
14f9c5c9
AS
7731 strcpy (name + len, suffix);
7732
b4ba55a1 7733 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7734}
7735
14f9c5c9 7736/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7737 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7738
d2e4a39e
AS
7739static struct type *
7740dynamic_template_type (struct type *type)
14f9c5c9 7741{
61ee279c 7742 type = ada_check_typedef (type);
14f9c5c9 7743
78134374 7744 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7745 || ada_type_name (type) == NULL)
14f9c5c9 7746 return NULL;
d2e4a39e 7747 else
14f9c5c9
AS
7748 {
7749 int len = strlen (ada_type_name (type));
5b4ee69b 7750
4c4b4cd2
PH
7751 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7752 return type;
14f9c5c9 7753 else
4c4b4cd2 7754 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7755 }
7756}
7757
7758/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7759 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7760
d2e4a39e
AS
7761static int
7762is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7763{
7764 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7765
d2e4a39e 7766 return name != NULL
940da03e 7767 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7768 && strstr (name, "___XVL") != NULL;
7769}
7770
4c4b4cd2
PH
7771/* The index of the variant field of TYPE, or -1 if TYPE does not
7772 represent a variant record type. */
14f9c5c9 7773
d2e4a39e 7774static int
4c4b4cd2 7775variant_field_index (struct type *type)
14f9c5c9
AS
7776{
7777 int f;
7778
78134374 7779 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7780 return -1;
7781
1f704f76 7782 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7783 {
7784 if (ada_is_variant_part (type, f))
7785 return f;
7786 }
7787 return -1;
14f9c5c9
AS
7788}
7789
4c4b4cd2
PH
7790/* A record type with no fields. */
7791
d2e4a39e 7792static struct type *
fe978cb0 7793empty_record (struct type *templ)
14f9c5c9 7794{
fe978cb0 7795 struct type *type = alloc_type_copy (templ);
5b4ee69b 7796
67607e24 7797 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7798 INIT_NONE_SPECIFIC (type);
d0e39ea2 7799 type->set_name ("<empty>");
14f9c5c9
AS
7800 TYPE_LENGTH (type) = 0;
7801 return type;
7802}
7803
7804/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7805 the value of type TYPE at VALADDR or ADDRESS (see comments at
7806 the beginning of this section) VAL according to GNAT conventions.
7807 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7808 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7809 an outer-level type (i.e., as opposed to a branch of a variant.) A
7810 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7811 of the variant.
14f9c5c9 7812
4c4b4cd2
PH
7813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7814 length are not statically known are discarded. As a consequence,
7815 VALADDR, ADDRESS and DVAL0 are ignored.
7816
7817 NOTE: Limitations: For now, we assume that dynamic fields and
7818 variants occupy whole numbers of bytes. However, they need not be
7819 byte-aligned. */
7820
7821struct type *
10a2c479 7822ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7823 const gdb_byte *valaddr,
4c4b4cd2
PH
7824 CORE_ADDR address, struct value *dval0,
7825 int keep_dynamic_fields)
14f9c5c9 7826{
d2e4a39e
AS
7827 struct value *mark = value_mark ();
7828 struct value *dval;
7829 struct type *rtype;
14f9c5c9 7830 int nfields, bit_len;
4c4b4cd2 7831 int variant_field;
14f9c5c9 7832 long off;
d94e4f4f 7833 int fld_bit_len;
14f9c5c9
AS
7834 int f;
7835
4c4b4cd2
PH
7836 /* Compute the number of fields in this record type that are going
7837 to be processed: unless keep_dynamic_fields, this includes only
7838 fields whose position and length are static will be processed. */
7839 if (keep_dynamic_fields)
1f704f76 7840 nfields = type->num_fields ();
4c4b4cd2
PH
7841 else
7842 {
7843 nfields = 0;
1f704f76 7844 while (nfields < type->num_fields ()
4c4b4cd2
PH
7845 && !ada_is_variant_part (type, nfields)
7846 && !is_dynamic_field (type, nfields))
7847 nfields++;
7848 }
7849
e9bb382b 7850 rtype = alloc_type_copy (type);
67607e24 7851 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7852 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7853 rtype->set_num_fields (nfields);
3cabb6b0
SM
7854 rtype->set_fields
7855 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7856 rtype->set_name (ada_type_name (type));
876cecd0 7857 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7858
d2e4a39e
AS
7859 off = 0;
7860 bit_len = 0;
4c4b4cd2
PH
7861 variant_field = -1;
7862
14f9c5c9
AS
7863 for (f = 0; f < nfields; f += 1)
7864 {
a89febbd 7865 off = align_up (off, field_alignment (type, f))
6c038f32 7866 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7867 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7868 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7869
d2e4a39e 7870 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7871 {
7872 variant_field = f;
d94e4f4f 7873 fld_bit_len = 0;
4c4b4cd2 7874 }
14f9c5c9 7875 else if (is_dynamic_field (type, f))
4c4b4cd2 7876 {
284614f0
JB
7877 const gdb_byte *field_valaddr = valaddr;
7878 CORE_ADDR field_address = address;
7879 struct type *field_type =
940da03e 7880 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7881
4c4b4cd2 7882 if (dval0 == NULL)
b5304971
JG
7883 {
7884 /* rtype's length is computed based on the run-time
7885 value of discriminants. If the discriminants are not
7886 initialized, the type size may be completely bogus and
0963b4bd 7887 GDB may fail to allocate a value for it. So check the
b5304971 7888 size first before creating the value. */
c1b5a1a6 7889 ada_ensure_varsize_limit (rtype);
012370f6
TT
7890 /* Using plain value_from_contents_and_address here
7891 causes problems because we will end up trying to
7892 resolve a type that is currently being
7893 constructed. */
7894 dval = value_from_contents_and_address_unresolved (rtype,
7895 valaddr,
7896 address);
9f1f738a 7897 rtype = value_type (dval);
b5304971 7898 }
4c4b4cd2
PH
7899 else
7900 dval = dval0;
7901
284614f0
JB
7902 /* If the type referenced by this field is an aligner type, we need
7903 to unwrap that aligner type, because its size might not be set.
7904 Keeping the aligner type would cause us to compute the wrong
7905 size for this field, impacting the offset of the all the fields
7906 that follow this one. */
7907 if (ada_is_aligner_type (field_type))
7908 {
7909 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7910
7911 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7912 field_address = cond_offset_target (field_address, field_offset);
7913 field_type = ada_aligned_type (field_type);
7914 }
7915
7916 field_valaddr = cond_offset_host (field_valaddr,
7917 off / TARGET_CHAR_BIT);
7918 field_address = cond_offset_target (field_address,
7919 off / TARGET_CHAR_BIT);
7920
7921 /* Get the fixed type of the field. Note that, in this case,
7922 we do not want to get the real type out of the tag: if
7923 the current field is the parent part of a tagged record,
7924 we will get the tag of the object. Clearly wrong: the real
7925 type of the parent is not the real type of the child. We
7926 would end up in an infinite loop. */
7927 field_type = ada_get_base_type (field_type);
7928 field_type = ada_to_fixed_type (field_type, field_valaddr,
7929 field_address, dval, 0);
27f2a97b
JB
7930 /* If the field size is already larger than the maximum
7931 object size, then the record itself will necessarily
7932 be larger than the maximum object size. We need to make
7933 this check now, because the size might be so ridiculously
7934 large (due to an uninitialized variable in the inferior)
7935 that it would cause an overflow when adding it to the
7936 record size. */
c1b5a1a6 7937 ada_ensure_varsize_limit (field_type);
284614f0 7938
5d14b6e5 7939 rtype->field (f).set_type (field_type);
4c4b4cd2 7940 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7941 /* The multiplication can potentially overflow. But because
7942 the field length has been size-checked just above, and
7943 assuming that the maximum size is a reasonable value,
7944 an overflow should not happen in practice. So rather than
7945 adding overflow recovery code to this already complex code,
7946 we just assume that it's not going to happen. */
d94e4f4f 7947 fld_bit_len =
940da03e 7948 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
4c4b4cd2 7949 }
14f9c5c9 7950 else
4c4b4cd2 7951 {
5ded5331
JB
7952 /* Note: If this field's type is a typedef, it is important
7953 to preserve the typedef layer.
7954
7955 Otherwise, we might be transforming a typedef to a fat
7956 pointer (encoding a pointer to an unconstrained array),
7957 into a basic fat pointer (encoding an unconstrained
7958 array). As both types are implemented using the same
7959 structure, the typedef is the only clue which allows us
7960 to distinguish between the two options. Stripping it
7961 would prevent us from printing this field appropriately. */
940da03e 7962 rtype->field (f).set_type (type->field (f).type ());
4c4b4cd2
PH
7963 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7964 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7965 fld_bit_len =
4c4b4cd2
PH
7966 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7967 else
5ded5331 7968 {
940da03e 7969 struct type *field_type = type->field (f).type ();
5ded5331
JB
7970
7971 /* We need to be careful of typedefs when computing
7972 the length of our field. If this is a typedef,
7973 get the length of the target type, not the length
7974 of the typedef. */
78134374 7975 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7976 field_type = ada_typedef_target_type (field_type);
7977
7978 fld_bit_len =
7979 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7980 }
4c4b4cd2 7981 }
14f9c5c9 7982 if (off + fld_bit_len > bit_len)
4c4b4cd2 7983 bit_len = off + fld_bit_len;
d94e4f4f 7984 off += fld_bit_len;
4c4b4cd2 7985 TYPE_LENGTH (rtype) =
a89febbd 7986 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7987 }
4c4b4cd2
PH
7988
7989 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7990 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7991 the record. This can happen in the presence of representation
7992 clauses. */
7993 if (variant_field >= 0)
7994 {
7995 struct type *branch_type;
7996
7997 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7998
7999 if (dval0 == NULL)
9f1f738a 8000 {
012370f6
TT
8001 /* Using plain value_from_contents_and_address here causes
8002 problems because we will end up trying to resolve a type
8003 that is currently being constructed. */
8004 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8005 address);
9f1f738a
SA
8006 rtype = value_type (dval);
8007 }
4c4b4cd2
PH
8008 else
8009 dval = dval0;
8010
8011 branch_type =
8012 to_fixed_variant_branch_type
940da03e 8013 (type->field (variant_field).type (),
4c4b4cd2
PH
8014 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8015 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8016 if (branch_type == NULL)
8017 {
1f704f76 8018 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 8019 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8020 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
8021 }
8022 else
8023 {
5d14b6e5 8024 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8025 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8026 fld_bit_len =
940da03e 8027 TYPE_LENGTH (rtype->field (variant_field).type ()) *
4c4b4cd2
PH
8028 TARGET_CHAR_BIT;
8029 if (off + fld_bit_len > bit_len)
8030 bit_len = off + fld_bit_len;
8031 TYPE_LENGTH (rtype) =
a89febbd 8032 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8033 }
8034 }
8035
714e53ab
PH
8036 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8037 should contain the alignment of that record, which should be a strictly
8038 positive value. If null or negative, then something is wrong, most
8039 probably in the debug info. In that case, we don't round up the size
0963b4bd 8040 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8041 the current RTYPE length might be good enough for our purposes. */
8042 if (TYPE_LENGTH (type) <= 0)
8043 {
7d93a1e0 8044 if (rtype->name ())
cc1defb1 8045 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8046 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8047 else
cc1defb1
KS
8048 warning (_("Invalid type size for <unnamed> detected: %s."),
8049 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8050 }
8051 else
8052 {
a89febbd
TT
8053 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8054 TYPE_LENGTH (type));
714e53ab 8055 }
14f9c5c9
AS
8056
8057 value_free_to_mark (mark);
d2e4a39e 8058 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8059 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8060 return rtype;
8061}
8062
4c4b4cd2
PH
8063/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8064 of 1. */
14f9c5c9 8065
d2e4a39e 8066static struct type *
fc1a4b47 8067template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8068 CORE_ADDR address, struct value *dval0)
8069{
8070 return ada_template_to_fixed_record_type_1 (type, valaddr,
8071 address, dval0, 1);
8072}
8073
8074/* An ordinary record type in which ___XVL-convention fields and
8075 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8076 static approximations, containing all possible fields. Uses
8077 no runtime values. Useless for use in values, but that's OK,
8078 since the results are used only for type determinations. Works on both
8079 structs and unions. Representation note: to save space, we memorize
8080 the result of this function in the TYPE_TARGET_TYPE of the
8081 template type. */
8082
8083static struct type *
8084template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8085{
8086 struct type *type;
8087 int nfields;
8088 int f;
8089
9e195661
PMR
8090 /* No need no do anything if the input type is already fixed. */
8091 if (TYPE_FIXED_INSTANCE (type0))
8092 return type0;
8093
8094 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8095 if (TYPE_TARGET_TYPE (type0) != NULL)
8096 return TYPE_TARGET_TYPE (type0);
8097
9e195661 8098 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8099 type = type0;
1f704f76 8100 nfields = type0->num_fields ();
9e195661
PMR
8101
8102 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8103 recompute all over next time. */
8104 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8105
8106 for (f = 0; f < nfields; f += 1)
8107 {
940da03e 8108 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8109 struct type *new_type;
14f9c5c9 8110
4c4b4cd2 8111 if (is_dynamic_field (type0, f))
460efde1
JB
8112 {
8113 field_type = ada_check_typedef (field_type);
8114 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8115 }
14f9c5c9 8116 else
f192137b 8117 new_type = static_unwrap_type (field_type);
9e195661
PMR
8118
8119 if (new_type != field_type)
8120 {
8121 /* Clone TYPE0 only the first time we get a new field type. */
8122 if (type == type0)
8123 {
8124 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8125 type->set_code (type0->code ());
8ecb59f8 8126 INIT_NONE_SPECIFIC (type);
5e33d5f4 8127 type->set_num_fields (nfields);
3cabb6b0
SM
8128
8129 field *fields =
8130 ((struct field *)
8131 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8132 memcpy (fields, type0->fields (),
9e195661 8133 sizeof (struct field) * nfields);
3cabb6b0
SM
8134 type->set_fields (fields);
8135
d0e39ea2 8136 type->set_name (ada_type_name (type0));
9e195661
PMR
8137 TYPE_FIXED_INSTANCE (type) = 1;
8138 TYPE_LENGTH (type) = 0;
8139 }
5d14b6e5 8140 type->field (f).set_type (new_type);
9e195661
PMR
8141 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8142 }
14f9c5c9 8143 }
9e195661 8144
14f9c5c9
AS
8145 return type;
8146}
8147
4c4b4cd2 8148/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8149 whose address in memory is ADDRESS, returns a revision of TYPE,
8150 which should be a non-dynamic-sized record, in which the variant
8151 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8152 for discriminant values in DVAL0, which can be NULL if the record
8153 contains the necessary discriminant values. */
8154
d2e4a39e 8155static struct type *
fc1a4b47 8156to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8157 CORE_ADDR address, struct value *dval0)
14f9c5c9 8158{
d2e4a39e 8159 struct value *mark = value_mark ();
4c4b4cd2 8160 struct value *dval;
d2e4a39e 8161 struct type *rtype;
14f9c5c9 8162 struct type *branch_type;
1f704f76 8163 int nfields = type->num_fields ();
4c4b4cd2 8164 int variant_field = variant_field_index (type);
14f9c5c9 8165
4c4b4cd2 8166 if (variant_field == -1)
14f9c5c9
AS
8167 return type;
8168
4c4b4cd2 8169 if (dval0 == NULL)
9f1f738a
SA
8170 {
8171 dval = value_from_contents_and_address (type, valaddr, address);
8172 type = value_type (dval);
8173 }
4c4b4cd2
PH
8174 else
8175 dval = dval0;
8176
e9bb382b 8177 rtype = alloc_type_copy (type);
67607e24 8178 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8179 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8180 rtype->set_num_fields (nfields);
3cabb6b0
SM
8181
8182 field *fields =
d2e4a39e 8183 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8184 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8185 rtype->set_fields (fields);
8186
d0e39ea2 8187 rtype->set_name (ada_type_name (type));
876cecd0 8188 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8189 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8190
4c4b4cd2 8191 branch_type = to_fixed_variant_branch_type
940da03e 8192 (type->field (variant_field).type (),
d2e4a39e 8193 cond_offset_host (valaddr,
4c4b4cd2
PH
8194 TYPE_FIELD_BITPOS (type, variant_field)
8195 / TARGET_CHAR_BIT),
d2e4a39e 8196 cond_offset_target (address,
4c4b4cd2
PH
8197 TYPE_FIELD_BITPOS (type, variant_field)
8198 / TARGET_CHAR_BIT), dval);
d2e4a39e 8199 if (branch_type == NULL)
14f9c5c9 8200 {
4c4b4cd2 8201 int f;
5b4ee69b 8202
4c4b4cd2 8203 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8204 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8205 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8206 }
8207 else
8208 {
5d14b6e5 8209 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8210 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8211 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8212 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8213 }
940da03e 8214 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8215
4c4b4cd2 8216 value_free_to_mark (mark);
14f9c5c9
AS
8217 return rtype;
8218}
8219
8220/* An ordinary record type (with fixed-length fields) that describes
8221 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8222 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8223 should be in DVAL, a record value; it may be NULL if the object
8224 at ADDR itself contains any necessary discriminant values.
8225 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8226 values from the record are needed. Except in the case that DVAL,
8227 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8228 unchecked) is replaced by a particular branch of the variant.
8229
8230 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8231 is questionable and may be removed. It can arise during the
8232 processing of an unconstrained-array-of-record type where all the
8233 variant branches have exactly the same size. This is because in
8234 such cases, the compiler does not bother to use the XVS convention
8235 when encoding the record. I am currently dubious of this
8236 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8237
d2e4a39e 8238static struct type *
fc1a4b47 8239to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8240 CORE_ADDR address, struct value *dval)
14f9c5c9 8241{
d2e4a39e 8242 struct type *templ_type;
14f9c5c9 8243
876cecd0 8244 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8245 return type0;
8246
d2e4a39e 8247 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8248
8249 if (templ_type != NULL)
8250 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8251 else if (variant_field_index (type0) >= 0)
8252 {
8253 if (dval == NULL && valaddr == NULL && address == 0)
8254 return type0;
8255 return to_record_with_fixed_variant_part (type0, valaddr, address,
8256 dval);
8257 }
14f9c5c9
AS
8258 else
8259 {
876cecd0 8260 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8261 return type0;
8262 }
8263
8264}
8265
8266/* An ordinary record type (with fixed-length fields) that describes
8267 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8268 union type. Any necessary discriminants' values should be in DVAL,
8269 a record value. That is, this routine selects the appropriate
8270 branch of the union at ADDR according to the discriminant value
b1f33ddd 8271 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8272 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8273
d2e4a39e 8274static struct type *
fc1a4b47 8275to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8276 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8277{
8278 int which;
d2e4a39e
AS
8279 struct type *templ_type;
8280 struct type *var_type;
14f9c5c9 8281
78134374 8282 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8283 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8284 else
14f9c5c9
AS
8285 var_type = var_type0;
8286
8287 templ_type = ada_find_parallel_type (var_type, "___XVU");
8288
8289 if (templ_type != NULL)
8290 var_type = templ_type;
8291
b1f33ddd
JB
8292 if (is_unchecked_variant (var_type, value_type (dval)))
8293 return var_type0;
d8af9068 8294 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8295
8296 if (which < 0)
e9bb382b 8297 return empty_record (var_type);
14f9c5c9 8298 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8299 return to_fixed_record_type
940da03e 8300 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8301 valaddr, address, dval);
940da03e 8302 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8303 return
8304 to_fixed_record_type
940da03e 8305 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8306 else
940da03e 8307 return var_type->field (which).type ();
14f9c5c9
AS
8308}
8309
8908fca5
JB
8310/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8311 ENCODING_TYPE, a type following the GNAT conventions for discrete
8312 type encodings, only carries redundant information. */
8313
8314static int
8315ada_is_redundant_range_encoding (struct type *range_type,
8316 struct type *encoding_type)
8317{
108d56a4 8318 const char *bounds_str;
8908fca5
JB
8319 int n;
8320 LONGEST lo, hi;
8321
78134374 8322 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8323
78134374
SM
8324 if (get_base_type (range_type)->code ()
8325 != get_base_type (encoding_type)->code ())
005e2509
JB
8326 {
8327 /* The compiler probably used a simple base type to describe
8328 the range type instead of the range's actual base type,
8329 expecting us to get the real base type from the encoding
8330 anyway. In this situation, the encoding cannot be ignored
8331 as redundant. */
8332 return 0;
8333 }
8334
8908fca5
JB
8335 if (is_dynamic_type (range_type))
8336 return 0;
8337
7d93a1e0 8338 if (encoding_type->name () == NULL)
8908fca5
JB
8339 return 0;
8340
7d93a1e0 8341 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8342 if (bounds_str == NULL)
8343 return 0;
8344
8345 n = 8; /* Skip "___XDLU_". */
8346 if (!ada_scan_number (bounds_str, n, &lo, &n))
8347 return 0;
8348 if (TYPE_LOW_BOUND (range_type) != lo)
8349 return 0;
8350
8351 n += 2; /* Skip the "__" separator between the two bounds. */
8352 if (!ada_scan_number (bounds_str, n, &hi, &n))
8353 return 0;
8354 if (TYPE_HIGH_BOUND (range_type) != hi)
8355 return 0;
8356
8357 return 1;
8358}
8359
8360/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8361 a type following the GNAT encoding for describing array type
8362 indices, only carries redundant information. */
8363
8364static int
8365ada_is_redundant_index_type_desc (struct type *array_type,
8366 struct type *desc_type)
8367{
8368 struct type *this_layer = check_typedef (array_type);
8369 int i;
8370
1f704f76 8371 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8372 {
3d967001 8373 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8374 desc_type->field (i).type ()))
8908fca5
JB
8375 return 0;
8376 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8377 }
8378
8379 return 1;
8380}
8381
14f9c5c9
AS
8382/* Assuming that TYPE0 is an array type describing the type of a value
8383 at ADDR, and that DVAL describes a record containing any
8384 discriminants used in TYPE0, returns a type for the value that
8385 contains no dynamic components (that is, no components whose sizes
8386 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8387 true, gives an error message if the resulting type's size is over
4c4b4cd2 8388 varsize_limit. */
14f9c5c9 8389
d2e4a39e
AS
8390static struct type *
8391to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8392 int ignore_too_big)
14f9c5c9 8393{
d2e4a39e
AS
8394 struct type *index_type_desc;
8395 struct type *result;
ad82864c 8396 int constrained_packed_array_p;
931e5bc3 8397 static const char *xa_suffix = "___XA";
14f9c5c9 8398
b0dd7688 8399 type0 = ada_check_typedef (type0);
284614f0 8400 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8401 return type0;
14f9c5c9 8402
ad82864c
JB
8403 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8404 if (constrained_packed_array_p)
8405 type0 = decode_constrained_packed_array_type (type0);
284614f0 8406
931e5bc3
JG
8407 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8408
8409 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8410 encoding suffixed with 'P' may still be generated. If so,
8411 it should be used to find the XA type. */
8412
8413 if (index_type_desc == NULL)
8414 {
1da0522e 8415 const char *type_name = ada_type_name (type0);
931e5bc3 8416
1da0522e 8417 if (type_name != NULL)
931e5bc3 8418 {
1da0522e 8419 const int len = strlen (type_name);
931e5bc3
JG
8420 char *name = (char *) alloca (len + strlen (xa_suffix));
8421
1da0522e 8422 if (type_name[len - 1] == 'P')
931e5bc3 8423 {
1da0522e 8424 strcpy (name, type_name);
931e5bc3
JG
8425 strcpy (name + len - 1, xa_suffix);
8426 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8427 }
8428 }
8429 }
8430
28c85d6c 8431 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8432 if (index_type_desc != NULL
8433 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8434 {
8435 /* Ignore this ___XA parallel type, as it does not bring any
8436 useful information. This allows us to avoid creating fixed
8437 versions of the array's index types, which would be identical
8438 to the original ones. This, in turn, can also help avoid
8439 the creation of fixed versions of the array itself. */
8440 index_type_desc = NULL;
8441 }
8442
14f9c5c9
AS
8443 if (index_type_desc == NULL)
8444 {
61ee279c 8445 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8446
14f9c5c9 8447 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8448 depend on the contents of the array in properly constructed
8449 debugging data. */
529cad9c
PH
8450 /* Create a fixed version of the array element type.
8451 We're not providing the address of an element here,
e1d5a0d2 8452 and thus the actual object value cannot be inspected to do
529cad9c
PH
8453 the conversion. This should not be a problem, since arrays of
8454 unconstrained objects are not allowed. In particular, all
8455 the elements of an array of a tagged type should all be of
8456 the same type specified in the debugging info. No need to
8457 consult the object tag. */
1ed6ede0 8458 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8459
284614f0
JB
8460 /* Make sure we always create a new array type when dealing with
8461 packed array types, since we're going to fix-up the array
8462 type length and element bitsize a little further down. */
ad82864c 8463 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8464 result = type0;
14f9c5c9 8465 else
e9bb382b 8466 result = create_array_type (alloc_type_copy (type0),
3d967001 8467 elt_type, type0->index_type ());
14f9c5c9
AS
8468 }
8469 else
8470 {
8471 int i;
8472 struct type *elt_type0;
8473
8474 elt_type0 = type0;
1f704f76 8475 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8476 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8477
8478 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8479 depend on the contents of the array in properly constructed
8480 debugging data. */
529cad9c
PH
8481 /* Create a fixed version of the array element type.
8482 We're not providing the address of an element here,
e1d5a0d2 8483 and thus the actual object value cannot be inspected to do
529cad9c
PH
8484 the conversion. This should not be a problem, since arrays of
8485 unconstrained objects are not allowed. In particular, all
8486 the elements of an array of a tagged type should all be of
8487 the same type specified in the debugging info. No need to
8488 consult the object tag. */
1ed6ede0
JB
8489 result =
8490 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8491
8492 elt_type0 = type0;
1f704f76 8493 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8494 {
8495 struct type *range_type =
940da03e 8496 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8497
e9bb382b 8498 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8499 result, range_type);
1ce677a4 8500 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8501 }
d2e4a39e 8502 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8503 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8504 }
8505
2e6fda7d
JB
8506 /* We want to preserve the type name. This can be useful when
8507 trying to get the type name of a value that has already been
8508 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8509 result->set_name (type0->name ());
2e6fda7d 8510
ad82864c 8511 if (constrained_packed_array_p)
284614f0
JB
8512 {
8513 /* So far, the resulting type has been created as if the original
8514 type was a regular (non-packed) array type. As a result, the
8515 bitsize of the array elements needs to be set again, and the array
8516 length needs to be recomputed based on that bitsize. */
8517 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8518 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8519
8520 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8521 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8522 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8523 TYPE_LENGTH (result)++;
8524 }
8525
876cecd0 8526 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8527 return result;
d2e4a39e 8528}
14f9c5c9
AS
8529
8530
8531/* A standard type (containing no dynamically sized components)
8532 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8533 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8534 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8535 ADDRESS or in VALADDR contains these discriminants.
8536
1ed6ede0
JB
8537 If CHECK_TAG is not null, in the case of tagged types, this function
8538 attempts to locate the object's tag and use it to compute the actual
8539 type. However, when ADDRESS is null, we cannot use it to determine the
8540 location of the tag, and therefore compute the tagged type's actual type.
8541 So we return the tagged type without consulting the tag. */
529cad9c 8542
f192137b
JB
8543static struct type *
8544ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8545 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8546{
61ee279c 8547 type = ada_check_typedef (type);
8ecb59f8
TT
8548
8549 /* Only un-fixed types need to be handled here. */
8550 if (!HAVE_GNAT_AUX_INFO (type))
8551 return type;
8552
78134374 8553 switch (type->code ())
d2e4a39e
AS
8554 {
8555 default:
14f9c5c9 8556 return type;
d2e4a39e 8557 case TYPE_CODE_STRUCT:
4c4b4cd2 8558 {
76a01679 8559 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8560 struct type *fixed_record_type =
8561 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8562
529cad9c
PH
8563 /* If STATIC_TYPE is a tagged type and we know the object's address,
8564 then we can determine its tag, and compute the object's actual
0963b4bd 8565 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8566 type (the parent part of the record may have dynamic fields
8567 and the way the location of _tag is expressed may depend on
8568 them). */
529cad9c 8569
1ed6ede0 8570 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8571 {
b50d69b5
JG
8572 struct value *tag =
8573 value_tag_from_contents_and_address
8574 (fixed_record_type,
8575 valaddr,
8576 address);
8577 struct type *real_type = type_from_tag (tag);
8578 struct value *obj =
8579 value_from_contents_and_address (fixed_record_type,
8580 valaddr,
8581 address);
9f1f738a 8582 fixed_record_type = value_type (obj);
76a01679 8583 if (real_type != NULL)
b50d69b5
JG
8584 return to_fixed_record_type
8585 (real_type, NULL,
8586 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8587 }
4af88198
JB
8588
8589 /* Check to see if there is a parallel ___XVZ variable.
8590 If there is, then it provides the actual size of our type. */
8591 else if (ada_type_name (fixed_record_type) != NULL)
8592 {
0d5cff50 8593 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8594 char *xvz_name
8595 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8596 bool xvz_found = false;
4af88198
JB
8597 LONGEST size;
8598
88c15c34 8599 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8600 try
eccab96d
JB
8601 {
8602 xvz_found = get_int_var_value (xvz_name, size);
8603 }
230d2906 8604 catch (const gdb_exception_error &except)
eccab96d
JB
8605 {
8606 /* We found the variable, but somehow failed to read
8607 its value. Rethrow the same error, but with a little
8608 bit more information, to help the user understand
8609 what went wrong (Eg: the variable might have been
8610 optimized out). */
8611 throw_error (except.error,
8612 _("unable to read value of %s (%s)"),
3d6e9d23 8613 xvz_name, except.what ());
eccab96d 8614 }
eccab96d
JB
8615
8616 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8617 {
8618 fixed_record_type = copy_type (fixed_record_type);
8619 TYPE_LENGTH (fixed_record_type) = size;
8620
8621 /* The FIXED_RECORD_TYPE may have be a stub. We have
8622 observed this when the debugging info is STABS, and
8623 apparently it is something that is hard to fix.
8624
8625 In practice, we don't need the actual type definition
8626 at all, because the presence of the XVZ variable allows us
8627 to assume that there must be a XVS type as well, which we
8628 should be able to use later, when we need the actual type
8629 definition.
8630
8631 In the meantime, pretend that the "fixed" type we are
8632 returning is NOT a stub, because this can cause trouble
8633 when using this type to create new types targeting it.
8634 Indeed, the associated creation routines often check
8635 whether the target type is a stub and will try to replace
0963b4bd 8636 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8637 might cause the new type to have the wrong size too.
8638 Consider the case of an array, for instance, where the size
8639 of the array is computed from the number of elements in
8640 our array multiplied by the size of its element. */
8641 TYPE_STUB (fixed_record_type) = 0;
8642 }
8643 }
1ed6ede0 8644 return fixed_record_type;
4c4b4cd2 8645 }
d2e4a39e 8646 case TYPE_CODE_ARRAY:
4c4b4cd2 8647 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8648 case TYPE_CODE_UNION:
8649 if (dval == NULL)
4c4b4cd2 8650 return type;
d2e4a39e 8651 else
4c4b4cd2 8652 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8653 }
14f9c5c9
AS
8654}
8655
f192137b
JB
8656/* The same as ada_to_fixed_type_1, except that it preserves the type
8657 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8658
8659 The typedef layer needs be preserved in order to differentiate between
8660 arrays and array pointers when both types are implemented using the same
8661 fat pointer. In the array pointer case, the pointer is encoded as
8662 a typedef of the pointer type. For instance, considering:
8663
8664 type String_Access is access String;
8665 S1 : String_Access := null;
8666
8667 To the debugger, S1 is defined as a typedef of type String. But
8668 to the user, it is a pointer. So if the user tries to print S1,
8669 we should not dereference the array, but print the array address
8670 instead.
8671
8672 If we didn't preserve the typedef layer, we would lose the fact that
8673 the type is to be presented as a pointer (needs de-reference before
8674 being printed). And we would also use the source-level type name. */
f192137b
JB
8675
8676struct type *
8677ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8678 CORE_ADDR address, struct value *dval, int check_tag)
8679
8680{
8681 struct type *fixed_type =
8682 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8683
96dbd2c1
JB
8684 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8685 then preserve the typedef layer.
8686
8687 Implementation note: We can only check the main-type portion of
8688 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8689 from TYPE now returns a type that has the same instance flags
8690 as TYPE. For instance, if TYPE is a "typedef const", and its
8691 target type is a "struct", then the typedef elimination will return
8692 a "const" version of the target type. See check_typedef for more
8693 details about how the typedef layer elimination is done.
8694
8695 brobecker/2010-11-19: It seems to me that the only case where it is
8696 useful to preserve the typedef layer is when dealing with fat pointers.
8697 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8698 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8699 because we call check_typedef/ada_check_typedef pretty much everywhere.
8700 */
78134374 8701 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8702 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8703 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8704 return type;
8705
8706 return fixed_type;
8707}
8708
14f9c5c9 8709/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8710 TYPE0, but based on no runtime data. */
14f9c5c9 8711
d2e4a39e
AS
8712static struct type *
8713to_static_fixed_type (struct type *type0)
14f9c5c9 8714{
d2e4a39e 8715 struct type *type;
14f9c5c9
AS
8716
8717 if (type0 == NULL)
8718 return NULL;
8719
876cecd0 8720 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8721 return type0;
8722
61ee279c 8723 type0 = ada_check_typedef (type0);
d2e4a39e 8724
78134374 8725 switch (type0->code ())
14f9c5c9
AS
8726 {
8727 default:
8728 return type0;
8729 case TYPE_CODE_STRUCT:
8730 type = dynamic_template_type (type0);
d2e4a39e 8731 if (type != NULL)
4c4b4cd2
PH
8732 return template_to_static_fixed_type (type);
8733 else
8734 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8735 case TYPE_CODE_UNION:
8736 type = ada_find_parallel_type (type0, "___XVU");
8737 if (type != NULL)
4c4b4cd2
PH
8738 return template_to_static_fixed_type (type);
8739 else
8740 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8741 }
8742}
8743
4c4b4cd2
PH
8744/* A static approximation of TYPE with all type wrappers removed. */
8745
d2e4a39e
AS
8746static struct type *
8747static_unwrap_type (struct type *type)
14f9c5c9
AS
8748{
8749 if (ada_is_aligner_type (type))
8750 {
940da03e 8751 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8752 if (ada_type_name (type1) == NULL)
d0e39ea2 8753 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8754
8755 return static_unwrap_type (type1);
8756 }
d2e4a39e 8757 else
14f9c5c9 8758 {
d2e4a39e 8759 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8760
d2e4a39e 8761 if (raw_real_type == type)
4c4b4cd2 8762 return type;
14f9c5c9 8763 else
4c4b4cd2 8764 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8765 }
8766}
8767
8768/* In some cases, incomplete and private types require
4c4b4cd2 8769 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8770 type Foo;
8771 type FooP is access Foo;
8772 V: FooP;
8773 type Foo is array ...;
4c4b4cd2 8774 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8775 cross-references to such types, we instead substitute for FooP a
8776 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8777 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8778
8779/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8780 exists, otherwise TYPE. */
8781
d2e4a39e 8782struct type *
61ee279c 8783ada_check_typedef (struct type *type)
14f9c5c9 8784{
727e3d2e
JB
8785 if (type == NULL)
8786 return NULL;
8787
736ade86
XR
8788 /* If our type is an access to an unconstrained array, which is encoded
8789 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8790 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8791 what allows us to distinguish between fat pointers that represent
8792 array types, and fat pointers that represent array access types
8793 (in both cases, the compiler implements them as fat pointers). */
736ade86 8794 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8795 return type;
8796
f168693b 8797 type = check_typedef (type);
78134374 8798 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 8799 || !TYPE_STUB (type)
7d93a1e0 8800 || type->name () == NULL)
14f9c5c9 8801 return type;
d2e4a39e 8802 else
14f9c5c9 8803 {
7d93a1e0 8804 const char *name = type->name ();
d2e4a39e 8805 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8806
05e522ef
JB
8807 if (type1 == NULL)
8808 return type;
8809
8810 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8811 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8812 types, only for the typedef-to-array types). If that's the case,
8813 strip the typedef layer. */
78134374 8814 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8815 type1 = ada_check_typedef (type1);
8816
8817 return type1;
14f9c5c9
AS
8818 }
8819}
8820
8821/* A value representing the data at VALADDR/ADDRESS as described by
8822 type TYPE0, but with a standard (static-sized) type that correctly
8823 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8824 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8825 creation of struct values]. */
14f9c5c9 8826
4c4b4cd2
PH
8827static struct value *
8828ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8829 struct value *val0)
14f9c5c9 8830{
1ed6ede0 8831 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8832
14f9c5c9
AS
8833 if (type == type0 && val0 != NULL)
8834 return val0;
cc0e770c
JB
8835
8836 if (VALUE_LVAL (val0) != lval_memory)
8837 {
8838 /* Our value does not live in memory; it could be a convenience
8839 variable, for instance. Create a not_lval value using val0's
8840 contents. */
8841 return value_from_contents (type, value_contents (val0));
8842 }
8843
8844 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8845}
8846
8847/* A value representing VAL, but with a standard (static-sized) type
8848 that correctly describes it. Does not necessarily create a new
8849 value. */
8850
0c3acc09 8851struct value *
4c4b4cd2
PH
8852ada_to_fixed_value (struct value *val)
8853{
c48db5ca 8854 val = unwrap_value (val);
d8ce9127 8855 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8856 return val;
14f9c5c9 8857}
d2e4a39e 8858\f
14f9c5c9 8859
14f9c5c9
AS
8860/* Attributes */
8861
4c4b4cd2
PH
8862/* Table mapping attribute numbers to names.
8863 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8864
d2e4a39e 8865static const char *attribute_names[] = {
14f9c5c9
AS
8866 "<?>",
8867
d2e4a39e 8868 "first",
14f9c5c9
AS
8869 "last",
8870 "length",
8871 "image",
14f9c5c9
AS
8872 "max",
8873 "min",
4c4b4cd2
PH
8874 "modulus",
8875 "pos",
8876 "size",
8877 "tag",
14f9c5c9 8878 "val",
14f9c5c9
AS
8879 0
8880};
8881
de93309a 8882static const char *
4c4b4cd2 8883ada_attribute_name (enum exp_opcode n)
14f9c5c9 8884{
4c4b4cd2
PH
8885 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8886 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8887 else
8888 return attribute_names[0];
8889}
8890
4c4b4cd2 8891/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8892
4c4b4cd2
PH
8893static LONGEST
8894pos_atr (struct value *arg)
14f9c5c9 8895{
24209737
PH
8896 struct value *val = coerce_ref (arg);
8897 struct type *type = value_type (val);
aa715135 8898 LONGEST result;
14f9c5c9 8899
d2e4a39e 8900 if (!discrete_type_p (type))
323e0a4a 8901 error (_("'POS only defined on discrete types"));
14f9c5c9 8902
aa715135
JG
8903 if (!discrete_position (type, value_as_long (val), &result))
8904 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8905
aa715135 8906 return result;
4c4b4cd2
PH
8907}
8908
8909static struct value *
3cb382c9 8910value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8911{
3cb382c9 8912 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8913}
8914
4c4b4cd2 8915/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8916
d2e4a39e 8917static struct value *
53a47a3e 8918val_atr (struct type *type, LONGEST val)
14f9c5c9 8919{
53a47a3e 8920 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8921 if (type->code () == TYPE_CODE_RANGE)
8922 type = TYPE_TARGET_TYPE (type);
78134374 8923 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8924 {
53a47a3e 8925 if (val < 0 || val >= type->num_fields ())
323e0a4a 8926 error (_("argument to 'VAL out of range"));
53a47a3e 8927 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8928 }
53a47a3e
TT
8929 return value_from_longest (type, val);
8930}
8931
8932static struct value *
8933value_val_atr (struct type *type, struct value *arg)
8934{
8935 if (!discrete_type_p (type))
8936 error (_("'VAL only defined on discrete types"));
8937 if (!integer_type_p (value_type (arg)))
8938 error (_("'VAL requires integral argument"));
8939
8940 return val_atr (type, value_as_long (arg));
14f9c5c9 8941}
14f9c5c9 8942\f
d2e4a39e 8943
4c4b4cd2 8944 /* Evaluation */
14f9c5c9 8945
4c4b4cd2
PH
8946/* True if TYPE appears to be an Ada character type.
8947 [At the moment, this is true only for Character and Wide_Character;
8948 It is a heuristic test that could stand improvement]. */
14f9c5c9 8949
fc913e53 8950bool
d2e4a39e 8951ada_is_character_type (struct type *type)
14f9c5c9 8952{
7b9f71f2
JB
8953 const char *name;
8954
8955 /* If the type code says it's a character, then assume it really is,
8956 and don't check any further. */
78134374 8957 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8958 return true;
7b9f71f2
JB
8959
8960 /* Otherwise, assume it's a character type iff it is a discrete type
8961 with a known character type name. */
8962 name = ada_type_name (type);
8963 return (name != NULL
78134374
SM
8964 && (type->code () == TYPE_CODE_INT
8965 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
8966 && (strcmp (name, "character") == 0
8967 || strcmp (name, "wide_character") == 0
5a517ebd 8968 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8969 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8970}
8971
4c4b4cd2 8972/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8973
fc913e53 8974bool
ebf56fd3 8975ada_is_string_type (struct type *type)
14f9c5c9 8976{
61ee279c 8977 type = ada_check_typedef (type);
d2e4a39e 8978 if (type != NULL
78134374 8979 && type->code () != TYPE_CODE_PTR
76a01679
JB
8980 && (ada_is_simple_array_type (type)
8981 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8982 && ada_array_arity (type) == 1)
8983 {
8984 struct type *elttype = ada_array_element_type (type, 1);
8985
8986 return ada_is_character_type (elttype);
8987 }
d2e4a39e 8988 else
fc913e53 8989 return false;
14f9c5c9
AS
8990}
8991
5bf03f13
JB
8992/* The compiler sometimes provides a parallel XVS type for a given
8993 PAD type. Normally, it is safe to follow the PAD type directly,
8994 but older versions of the compiler have a bug that causes the offset
8995 of its "F" field to be wrong. Following that field in that case
8996 would lead to incorrect results, but this can be worked around
8997 by ignoring the PAD type and using the associated XVS type instead.
8998
8999 Set to True if the debugger should trust the contents of PAD types.
9000 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9001static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9002
9003/* True if TYPE is a struct type introduced by the compiler to force the
9004 alignment of a value. Such types have a single field with a
4c4b4cd2 9005 distinctive name. */
14f9c5c9
AS
9006
9007int
ebf56fd3 9008ada_is_aligner_type (struct type *type)
14f9c5c9 9009{
61ee279c 9010 type = ada_check_typedef (type);
714e53ab 9011
5bf03f13 9012 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9013 return 0;
9014
78134374 9015 return (type->code () == TYPE_CODE_STRUCT
1f704f76 9016 && type->num_fields () == 1
4c4b4cd2 9017 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9018}
9019
9020/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9021 the parallel type. */
14f9c5c9 9022
d2e4a39e
AS
9023struct type *
9024ada_get_base_type (struct type *raw_type)
14f9c5c9 9025{
d2e4a39e
AS
9026 struct type *real_type_namer;
9027 struct type *raw_real_type;
14f9c5c9 9028
78134374 9029 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9030 return raw_type;
9031
284614f0
JB
9032 if (ada_is_aligner_type (raw_type))
9033 /* The encoding specifies that we should always use the aligner type.
9034 So, even if this aligner type has an associated XVS type, we should
9035 simply ignore it.
9036
9037 According to the compiler gurus, an XVS type parallel to an aligner
9038 type may exist because of a stabs limitation. In stabs, aligner
9039 types are empty because the field has a variable-sized type, and
9040 thus cannot actually be used as an aligner type. As a result,
9041 we need the associated parallel XVS type to decode the type.
9042 Since the policy in the compiler is to not change the internal
9043 representation based on the debugging info format, we sometimes
9044 end up having a redundant XVS type parallel to the aligner type. */
9045 return raw_type;
9046
14f9c5c9 9047 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9048 if (real_type_namer == NULL
78134374 9049 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9050 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9051 return raw_type;
9052
940da03e 9053 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9054 {
9055 /* This is an older encoding form where the base type needs to be
85102364 9056 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9057 more efficient. */
9058 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9059 if (raw_real_type == NULL)
9060 return raw_type;
9061 else
9062 return raw_real_type;
9063 }
9064
9065 /* The field in our XVS type is a reference to the base type. */
940da03e 9066 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9067}
14f9c5c9 9068
4c4b4cd2 9069/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9070
d2e4a39e
AS
9071struct type *
9072ada_aligned_type (struct type *type)
14f9c5c9
AS
9073{
9074 if (ada_is_aligner_type (type))
940da03e 9075 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9076 else
9077 return ada_get_base_type (type);
9078}
9079
9080
9081/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9082 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9083
fc1a4b47
AC
9084const gdb_byte *
9085ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9086{
d2e4a39e 9087 if (ada_is_aligner_type (type))
940da03e 9088 return ada_aligned_value_addr (type->field (0).type (),
4c4b4cd2
PH
9089 valaddr +
9090 TYPE_FIELD_BITPOS (type,
9091 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9092 else
9093 return valaddr;
9094}
9095
4c4b4cd2
PH
9096
9097
14f9c5c9 9098/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9099 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9100const char *
9101ada_enum_name (const char *name)
14f9c5c9 9102{
4c4b4cd2
PH
9103 static char *result;
9104 static size_t result_len = 0;
e6a959d6 9105 const char *tmp;
14f9c5c9 9106
4c4b4cd2
PH
9107 /* First, unqualify the enumeration name:
9108 1. Search for the last '.' character. If we find one, then skip
177b42fe 9109 all the preceding characters, the unqualified name starts
76a01679 9110 right after that dot.
4c4b4cd2 9111 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9112 translates dots into "__". Search forward for double underscores,
9113 but stop searching when we hit an overloading suffix, which is
9114 of the form "__" followed by digits. */
4c4b4cd2 9115
c3e5cd34
PH
9116 tmp = strrchr (name, '.');
9117 if (tmp != NULL)
4c4b4cd2
PH
9118 name = tmp + 1;
9119 else
14f9c5c9 9120 {
4c4b4cd2
PH
9121 while ((tmp = strstr (name, "__")) != NULL)
9122 {
9123 if (isdigit (tmp[2]))
9124 break;
9125 else
9126 name = tmp + 2;
9127 }
14f9c5c9
AS
9128 }
9129
9130 if (name[0] == 'Q')
9131 {
14f9c5c9 9132 int v;
5b4ee69b 9133
14f9c5c9 9134 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9135 {
9136 if (sscanf (name + 2, "%x", &v) != 1)
9137 return name;
9138 }
272560b5
TT
9139 else if (((name[1] >= '0' && name[1] <= '9')
9140 || (name[1] >= 'a' && name[1] <= 'z'))
9141 && name[2] == '\0')
9142 {
9143 GROW_VECT (result, result_len, 4);
9144 xsnprintf (result, result_len, "'%c'", name[1]);
9145 return result;
9146 }
14f9c5c9 9147 else
4c4b4cd2 9148 return name;
14f9c5c9 9149
4c4b4cd2 9150 GROW_VECT (result, result_len, 16);
14f9c5c9 9151 if (isascii (v) && isprint (v))
88c15c34 9152 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9153 else if (name[1] == 'U')
88c15c34 9154 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9155 else
88c15c34 9156 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9157
9158 return result;
9159 }
d2e4a39e 9160 else
4c4b4cd2 9161 {
c3e5cd34
PH
9162 tmp = strstr (name, "__");
9163 if (tmp == NULL)
9164 tmp = strstr (name, "$");
9165 if (tmp != NULL)
4c4b4cd2
PH
9166 {
9167 GROW_VECT (result, result_len, tmp - name + 1);
9168 strncpy (result, name, tmp - name);
9169 result[tmp - name] = '\0';
9170 return result;
9171 }
9172
9173 return name;
9174 }
14f9c5c9
AS
9175}
9176
14f9c5c9
AS
9177/* Evaluate the subexpression of EXP starting at *POS as for
9178 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9179 expression. */
14f9c5c9 9180
d2e4a39e
AS
9181static struct value *
9182evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9183{
4b27a620 9184 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9185}
9186
9187/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9188 value it wraps. */
14f9c5c9 9189
d2e4a39e
AS
9190static struct value *
9191unwrap_value (struct value *val)
14f9c5c9 9192{
df407dfe 9193 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9194
14f9c5c9
AS
9195 if (ada_is_aligner_type (type))
9196 {
de4d072f 9197 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9198 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9199
14f9c5c9 9200 if (ada_type_name (val_type) == NULL)
d0e39ea2 9201 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9202
9203 return unwrap_value (v);
9204 }
d2e4a39e 9205 else
14f9c5c9 9206 {
d2e4a39e 9207 struct type *raw_real_type =
61ee279c 9208 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9209
5bf03f13
JB
9210 /* If there is no parallel XVS or XVE type, then the value is
9211 already unwrapped. Return it without further modification. */
9212 if ((type == raw_real_type)
9213 && ada_find_parallel_type (type, "___XVE") == NULL)
9214 return val;
14f9c5c9 9215
d2e4a39e 9216 return
4c4b4cd2
PH
9217 coerce_unspec_val_to_type
9218 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9219 value_address (val),
1ed6ede0 9220 NULL, 1));
14f9c5c9
AS
9221 }
9222}
d2e4a39e
AS
9223
9224static struct value *
50eff16b 9225cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9226{
50eff16b
UW
9227 struct value *scale = ada_scaling_factor (value_type (arg));
9228 arg = value_cast (value_type (scale), arg);
14f9c5c9 9229
50eff16b
UW
9230 arg = value_binop (arg, scale, BINOP_MUL);
9231 return value_cast (type, arg);
14f9c5c9
AS
9232}
9233
d2e4a39e 9234static struct value *
50eff16b 9235cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9236{
50eff16b
UW
9237 if (type == value_type (arg))
9238 return arg;
5b4ee69b 9239
50eff16b 9240 struct value *scale = ada_scaling_factor (type);
b2188a06 9241 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9242 arg = cast_from_fixed (value_type (scale), arg);
9243 else
9244 arg = value_cast (value_type (scale), arg);
9245
9246 arg = value_binop (arg, scale, BINOP_DIV);
9247 return value_cast (type, arg);
14f9c5c9
AS
9248}
9249
d99dcf51
JB
9250/* Given two array types T1 and T2, return nonzero iff both arrays
9251 contain the same number of elements. */
9252
9253static int
9254ada_same_array_size_p (struct type *t1, struct type *t2)
9255{
9256 LONGEST lo1, hi1, lo2, hi2;
9257
9258 /* Get the array bounds in order to verify that the size of
9259 the two arrays match. */
9260 if (!get_array_bounds (t1, &lo1, &hi1)
9261 || !get_array_bounds (t2, &lo2, &hi2))
9262 error (_("unable to determine array bounds"));
9263
9264 /* To make things easier for size comparison, normalize a bit
9265 the case of empty arrays by making sure that the difference
9266 between upper bound and lower bound is always -1. */
9267 if (lo1 > hi1)
9268 hi1 = lo1 - 1;
9269 if (lo2 > hi2)
9270 hi2 = lo2 - 1;
9271
9272 return (hi1 - lo1 == hi2 - lo2);
9273}
9274
9275/* Assuming that VAL is an array of integrals, and TYPE represents
9276 an array with the same number of elements, but with wider integral
9277 elements, return an array "casted" to TYPE. In practice, this
9278 means that the returned array is built by casting each element
9279 of the original array into TYPE's (wider) element type. */
9280
9281static struct value *
9282ada_promote_array_of_integrals (struct type *type, struct value *val)
9283{
9284 struct type *elt_type = TYPE_TARGET_TYPE (type);
9285 LONGEST lo, hi;
9286 struct value *res;
9287 LONGEST i;
9288
9289 /* Verify that both val and type are arrays of scalars, and
9290 that the size of val's elements is smaller than the size
9291 of type's element. */
78134374 9292 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9293 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9294 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9295 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9296 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9297 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9298
9299 if (!get_array_bounds (type, &lo, &hi))
9300 error (_("unable to determine array bounds"));
9301
9302 res = allocate_value (type);
9303
9304 /* Promote each array element. */
9305 for (i = 0; i < hi - lo + 1; i++)
9306 {
9307 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9308
9309 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9310 value_contents_all (elt), TYPE_LENGTH (elt_type));
9311 }
9312
9313 return res;
9314}
9315
4c4b4cd2
PH
9316/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9317 return the converted value. */
9318
d2e4a39e
AS
9319static struct value *
9320coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9321{
df407dfe 9322 struct type *type2 = value_type (val);
5b4ee69b 9323
14f9c5c9
AS
9324 if (type == type2)
9325 return val;
9326
61ee279c
PH
9327 type2 = ada_check_typedef (type2);
9328 type = ada_check_typedef (type);
14f9c5c9 9329
78134374
SM
9330 if (type2->code () == TYPE_CODE_PTR
9331 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9332 {
9333 val = ada_value_ind (val);
df407dfe 9334 type2 = value_type (val);
14f9c5c9
AS
9335 }
9336
78134374
SM
9337 if (type2->code () == TYPE_CODE_ARRAY
9338 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9339 {
d99dcf51
JB
9340 if (!ada_same_array_size_p (type, type2))
9341 error (_("cannot assign arrays of different length"));
9342
9343 if (is_integral_type (TYPE_TARGET_TYPE (type))
9344 && is_integral_type (TYPE_TARGET_TYPE (type2))
9345 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9346 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9347 {
9348 /* Allow implicit promotion of the array elements to
9349 a wider type. */
9350 return ada_promote_array_of_integrals (type, val);
9351 }
9352
9353 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9354 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9355 error (_("Incompatible types in assignment"));
04624583 9356 deprecated_set_value_type (val, type);
14f9c5c9 9357 }
d2e4a39e 9358 return val;
14f9c5c9
AS
9359}
9360
4c4b4cd2
PH
9361static struct value *
9362ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9363{
9364 struct value *val;
9365 struct type *type1, *type2;
9366 LONGEST v, v1, v2;
9367
994b9211
AC
9368 arg1 = coerce_ref (arg1);
9369 arg2 = coerce_ref (arg2);
18af8284
JB
9370 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9371 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9372
78134374
SM
9373 if (type1->code () != TYPE_CODE_INT
9374 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9375 return value_binop (arg1, arg2, op);
9376
76a01679 9377 switch (op)
4c4b4cd2
PH
9378 {
9379 case BINOP_MOD:
9380 case BINOP_DIV:
9381 case BINOP_REM:
9382 break;
9383 default:
9384 return value_binop (arg1, arg2, op);
9385 }
9386
9387 v2 = value_as_long (arg2);
9388 if (v2 == 0)
323e0a4a 9389 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9390
9391 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9392 return value_binop (arg1, arg2, op);
9393
9394 v1 = value_as_long (arg1);
9395 switch (op)
9396 {
9397 case BINOP_DIV:
9398 v = v1 / v2;
76a01679
JB
9399 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9400 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9401 break;
9402 case BINOP_REM:
9403 v = v1 % v2;
76a01679
JB
9404 if (v * v1 < 0)
9405 v -= v2;
4c4b4cd2
PH
9406 break;
9407 default:
9408 /* Should not reach this point. */
9409 v = 0;
9410 }
9411
9412 val = allocate_value (type1);
990a07ab 9413 store_unsigned_integer (value_contents_raw (val),
e17a4113 9414 TYPE_LENGTH (value_type (val)),
34877895 9415 type_byte_order (type1), v);
4c4b4cd2
PH
9416 return val;
9417}
9418
9419static int
9420ada_value_equal (struct value *arg1, struct value *arg2)
9421{
df407dfe
AC
9422 if (ada_is_direct_array_type (value_type (arg1))
9423 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9424 {
79e8fcaa
JB
9425 struct type *arg1_type, *arg2_type;
9426
f58b38bf
JB
9427 /* Automatically dereference any array reference before
9428 we attempt to perform the comparison. */
9429 arg1 = ada_coerce_ref (arg1);
9430 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9431
4c4b4cd2
PH
9432 arg1 = ada_coerce_to_simple_array (arg1);
9433 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9434
9435 arg1_type = ada_check_typedef (value_type (arg1));
9436 arg2_type = ada_check_typedef (value_type (arg2));
9437
78134374
SM
9438 if (arg1_type->code () != TYPE_CODE_ARRAY
9439 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9440 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9441 /* FIXME: The following works only for types whose
76a01679
JB
9442 representations use all bits (no padding or undefined bits)
9443 and do not have user-defined equality. */
79e8fcaa
JB
9444 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9445 && memcmp (value_contents (arg1), value_contents (arg2),
9446 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9447 }
9448 return value_equal (arg1, arg2);
9449}
9450
52ce6436
PH
9451/* Total number of component associations in the aggregate starting at
9452 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9453 OP_AGGREGATE. */
52ce6436
PH
9454
9455static int
9456num_component_specs (struct expression *exp, int pc)
9457{
9458 int n, m, i;
5b4ee69b 9459
52ce6436
PH
9460 m = exp->elts[pc + 1].longconst;
9461 pc += 3;
9462 n = 0;
9463 for (i = 0; i < m; i += 1)
9464 {
9465 switch (exp->elts[pc].opcode)
9466 {
9467 default:
9468 n += 1;
9469 break;
9470 case OP_CHOICES:
9471 n += exp->elts[pc + 1].longconst;
9472 break;
9473 }
9474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9475 }
9476 return n;
9477}
9478
9479/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9480 component of LHS (a simple array or a record), updating *POS past
9481 the expression, assuming that LHS is contained in CONTAINER. Does
9482 not modify the inferior's memory, nor does it modify LHS (unless
9483 LHS == CONTAINER). */
9484
9485static void
9486assign_component (struct value *container, struct value *lhs, LONGEST index,
9487 struct expression *exp, int *pos)
9488{
9489 struct value *mark = value_mark ();
9490 struct value *elt;
0e2da9f0 9491 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9492
78134374 9493 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9494 {
22601c15
UW
9495 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9496 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9497
52ce6436
PH
9498 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9499 }
9500 else
9501 {
9502 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9503 elt = ada_to_fixed_value (elt);
52ce6436
PH
9504 }
9505
9506 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9507 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9508 else
9509 value_assign_to_component (container, elt,
9510 ada_evaluate_subexp (NULL, exp, pos,
9511 EVAL_NORMAL));
9512
9513 value_free_to_mark (mark);
9514}
9515
9516/* Assuming that LHS represents an lvalue having a record or array
9517 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9518 of that aggregate's value to LHS, advancing *POS past the
9519 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9520 lvalue containing LHS (possibly LHS itself). Does not modify
9521 the inferior's memory, nor does it modify the contents of
0963b4bd 9522 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9523
9524static struct value *
9525assign_aggregate (struct value *container,
9526 struct value *lhs, struct expression *exp,
9527 int *pos, enum noside noside)
9528{
9529 struct type *lhs_type;
9530 int n = exp->elts[*pos+1].longconst;
9531 LONGEST low_index, high_index;
9532 int num_specs;
9533 LONGEST *indices;
9534 int max_indices, num_indices;
52ce6436 9535 int i;
52ce6436
PH
9536
9537 *pos += 3;
9538 if (noside != EVAL_NORMAL)
9539 {
52ce6436
PH
9540 for (i = 0; i < n; i += 1)
9541 ada_evaluate_subexp (NULL, exp, pos, noside);
9542 return container;
9543 }
9544
9545 container = ada_coerce_ref (container);
9546 if (ada_is_direct_array_type (value_type (container)))
9547 container = ada_coerce_to_simple_array (container);
9548 lhs = ada_coerce_ref (lhs);
9549 if (!deprecated_value_modifiable (lhs))
9550 error (_("Left operand of assignment is not a modifiable lvalue."));
9551
0e2da9f0 9552 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9553 if (ada_is_direct_array_type (lhs_type))
9554 {
9555 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9556 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9557 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9558 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9559 }
78134374 9560 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9561 {
9562 low_index = 0;
9563 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9564 }
9565 else
9566 error (_("Left-hand side must be array or record."));
9567
9568 num_specs = num_component_specs (exp, *pos - 3);
9569 max_indices = 4 * num_specs + 4;
8d749320 9570 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9571 indices[0] = indices[1] = low_index - 1;
9572 indices[2] = indices[3] = high_index + 1;
9573 num_indices = 4;
9574
9575 for (i = 0; i < n; i += 1)
9576 {
9577 switch (exp->elts[*pos].opcode)
9578 {
1fbf5ada
JB
9579 case OP_CHOICES:
9580 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9581 &num_indices, max_indices,
9582 low_index, high_index);
9583 break;
9584 case OP_POSITIONAL:
9585 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9586 &num_indices, max_indices,
9587 low_index, high_index);
1fbf5ada
JB
9588 break;
9589 case OP_OTHERS:
9590 if (i != n-1)
9591 error (_("Misplaced 'others' clause"));
9592 aggregate_assign_others (container, lhs, exp, pos, indices,
9593 num_indices, low_index, high_index);
9594 break;
9595 default:
9596 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9597 }
9598 }
9599
9600 return container;
9601}
9602
9603/* Assign into the component of LHS indexed by the OP_POSITIONAL
9604 construct at *POS, updating *POS past the construct, given that
9605 the positions are relative to lower bound LOW, where HIGH is the
9606 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9607 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9608 assign_aggregate. */
52ce6436
PH
9609static void
9610aggregate_assign_positional (struct value *container,
9611 struct value *lhs, struct expression *exp,
9612 int *pos, LONGEST *indices, int *num_indices,
9613 int max_indices, LONGEST low, LONGEST high)
9614{
9615 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9616
9617 if (ind - 1 == high)
e1d5a0d2 9618 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9619 if (ind <= high)
9620 {
9621 add_component_interval (ind, ind, indices, num_indices, max_indices);
9622 *pos += 3;
9623 assign_component (container, lhs, ind, exp, pos);
9624 }
9625 else
9626 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9627}
9628
9629/* Assign into the components of LHS indexed by the OP_CHOICES
9630 construct at *POS, updating *POS past the construct, given that
9631 the allowable indices are LOW..HIGH. Record the indices assigned
9632 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9633 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9634static void
9635aggregate_assign_from_choices (struct value *container,
9636 struct value *lhs, struct expression *exp,
9637 int *pos, LONGEST *indices, int *num_indices,
9638 int max_indices, LONGEST low, LONGEST high)
9639{
9640 int j;
9641 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9642 int choice_pos, expr_pc;
9643 int is_array = ada_is_direct_array_type (value_type (lhs));
9644
9645 choice_pos = *pos += 3;
9646
9647 for (j = 0; j < n_choices; j += 1)
9648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9649 expr_pc = *pos;
9650 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9651
9652 for (j = 0; j < n_choices; j += 1)
9653 {
9654 LONGEST lower, upper;
9655 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9656
52ce6436
PH
9657 if (op == OP_DISCRETE_RANGE)
9658 {
9659 choice_pos += 1;
9660 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9661 EVAL_NORMAL));
9662 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664 }
9665 else if (is_array)
9666 {
9667 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9668 EVAL_NORMAL));
9669 upper = lower;
9670 }
9671 else
9672 {
9673 int ind;
0d5cff50 9674 const char *name;
5b4ee69b 9675
52ce6436
PH
9676 switch (op)
9677 {
9678 case OP_NAME:
9679 name = &exp->elts[choice_pos + 2].string;
9680 break;
9681 case OP_VAR_VALUE:
987012b8 9682 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9683 break;
9684 default:
9685 error (_("Invalid record component association."));
9686 }
9687 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9688 ind = 0;
9689 if (! find_struct_field (name, value_type (lhs), 0,
9690 NULL, NULL, NULL, NULL, &ind))
9691 error (_("Unknown component name: %s."), name);
9692 lower = upper = ind;
9693 }
9694
9695 if (lower <= upper && (lower < low || upper > high))
9696 error (_("Index in component association out of bounds."));
9697
9698 add_component_interval (lower, upper, indices, num_indices,
9699 max_indices);
9700 while (lower <= upper)
9701 {
9702 int pos1;
5b4ee69b 9703
52ce6436
PH
9704 pos1 = expr_pc;
9705 assign_component (container, lhs, lower, exp, &pos1);
9706 lower += 1;
9707 }
9708 }
9709}
9710
9711/* Assign the value of the expression in the OP_OTHERS construct in
9712 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9713 have not been previously assigned. The index intervals already assigned
9714 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9715 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9716static void
9717aggregate_assign_others (struct value *container,
9718 struct value *lhs, struct expression *exp,
9719 int *pos, LONGEST *indices, int num_indices,
9720 LONGEST low, LONGEST high)
9721{
9722 int i;
5ce64950 9723 int expr_pc = *pos + 1;
52ce6436
PH
9724
9725 for (i = 0; i < num_indices - 2; i += 2)
9726 {
9727 LONGEST ind;
5b4ee69b 9728
52ce6436
PH
9729 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9730 {
5ce64950 9731 int localpos;
5b4ee69b 9732
5ce64950
MS
9733 localpos = expr_pc;
9734 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9735 }
9736 }
9737 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9738}
9739
9740/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9741 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9742 modifying *SIZE as needed. It is an error if *SIZE exceeds
9743 MAX_SIZE. The resulting intervals do not overlap. */
9744static void
9745add_component_interval (LONGEST low, LONGEST high,
9746 LONGEST* indices, int *size, int max_size)
9747{
9748 int i, j;
5b4ee69b 9749
52ce6436
PH
9750 for (i = 0; i < *size; i += 2) {
9751 if (high >= indices[i] && low <= indices[i + 1])
9752 {
9753 int kh;
5b4ee69b 9754
52ce6436
PH
9755 for (kh = i + 2; kh < *size; kh += 2)
9756 if (high < indices[kh])
9757 break;
9758 if (low < indices[i])
9759 indices[i] = low;
9760 indices[i + 1] = indices[kh - 1];
9761 if (high > indices[i + 1])
9762 indices[i + 1] = high;
9763 memcpy (indices + i + 2, indices + kh, *size - kh);
9764 *size -= kh - i - 2;
9765 return;
9766 }
9767 else if (high < indices[i])
9768 break;
9769 }
9770
9771 if (*size == max_size)
9772 error (_("Internal error: miscounted aggregate components."));
9773 *size += 2;
9774 for (j = *size-1; j >= i+2; j -= 1)
9775 indices[j] = indices[j - 2];
9776 indices[i] = low;
9777 indices[i + 1] = high;
9778}
9779
6e48bd2c
JB
9780/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9781 is different. */
9782
9783static struct value *
b7e22850 9784ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9785{
9786 if (type == ada_check_typedef (value_type (arg2)))
9787 return arg2;
9788
b2188a06 9789 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 9790 return cast_to_fixed (type, arg2);
6e48bd2c 9791
b2188a06 9792 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 9793 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9794
9795 return value_cast (type, arg2);
9796}
9797
284614f0
JB
9798/* Evaluating Ada expressions, and printing their result.
9799 ------------------------------------------------------
9800
21649b50
JB
9801 1. Introduction:
9802 ----------------
9803
284614f0
JB
9804 We usually evaluate an Ada expression in order to print its value.
9805 We also evaluate an expression in order to print its type, which
9806 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9807 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9808 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9809 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9810 similar.
9811
9812 Evaluating expressions is a little more complicated for Ada entities
9813 than it is for entities in languages such as C. The main reason for
9814 this is that Ada provides types whose definition might be dynamic.
9815 One example of such types is variant records. Or another example
9816 would be an array whose bounds can only be known at run time.
9817
9818 The following description is a general guide as to what should be
9819 done (and what should NOT be done) in order to evaluate an expression
9820 involving such types, and when. This does not cover how the semantic
9821 information is encoded by GNAT as this is covered separatly. For the
9822 document used as the reference for the GNAT encoding, see exp_dbug.ads
9823 in the GNAT sources.
9824
9825 Ideally, we should embed each part of this description next to its
9826 associated code. Unfortunately, the amount of code is so vast right
9827 now that it's hard to see whether the code handling a particular
9828 situation might be duplicated or not. One day, when the code is
9829 cleaned up, this guide might become redundant with the comments
9830 inserted in the code, and we might want to remove it.
9831
21649b50
JB
9832 2. ``Fixing'' an Entity, the Simple Case:
9833 -----------------------------------------
9834
284614f0
JB
9835 When evaluating Ada expressions, the tricky issue is that they may
9836 reference entities whose type contents and size are not statically
9837 known. Consider for instance a variant record:
9838
9839 type Rec (Empty : Boolean := True) is record
9840 case Empty is
9841 when True => null;
9842 when False => Value : Integer;
9843 end case;
9844 end record;
9845 Yes : Rec := (Empty => False, Value => 1);
9846 No : Rec := (empty => True);
9847
9848 The size and contents of that record depends on the value of the
9849 descriminant (Rec.Empty). At this point, neither the debugging
9850 information nor the associated type structure in GDB are able to
9851 express such dynamic types. So what the debugger does is to create
9852 "fixed" versions of the type that applies to the specific object.
30baf67b 9853 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9854 which means creating its associated fixed type.
9855
9856 Example: when printing the value of variable "Yes" above, its fixed
9857 type would look like this:
9858
9859 type Rec is record
9860 Empty : Boolean;
9861 Value : Integer;
9862 end record;
9863
9864 On the other hand, if we printed the value of "No", its fixed type
9865 would become:
9866
9867 type Rec is record
9868 Empty : Boolean;
9869 end record;
9870
9871 Things become a little more complicated when trying to fix an entity
9872 with a dynamic type that directly contains another dynamic type,
9873 such as an array of variant records, for instance. There are
9874 two possible cases: Arrays, and records.
9875
21649b50
JB
9876 3. ``Fixing'' Arrays:
9877 ---------------------
9878
9879 The type structure in GDB describes an array in terms of its bounds,
9880 and the type of its elements. By design, all elements in the array
9881 have the same type and we cannot represent an array of variant elements
9882 using the current type structure in GDB. When fixing an array,
9883 we cannot fix the array element, as we would potentially need one
9884 fixed type per element of the array. As a result, the best we can do
9885 when fixing an array is to produce an array whose bounds and size
9886 are correct (allowing us to read it from memory), but without having
9887 touched its element type. Fixing each element will be done later,
9888 when (if) necessary.
9889
9890 Arrays are a little simpler to handle than records, because the same
9891 amount of memory is allocated for each element of the array, even if
1b536f04 9892 the amount of space actually used by each element differs from element
21649b50 9893 to element. Consider for instance the following array of type Rec:
284614f0
JB
9894
9895 type Rec_Array is array (1 .. 2) of Rec;
9896
1b536f04
JB
9897 The actual amount of memory occupied by each element might be different
9898 from element to element, depending on the value of their discriminant.
21649b50 9899 But the amount of space reserved for each element in the array remains
1b536f04 9900 fixed regardless. So we simply need to compute that size using
21649b50
JB
9901 the debugging information available, from which we can then determine
9902 the array size (we multiply the number of elements of the array by
9903 the size of each element).
9904
9905 The simplest case is when we have an array of a constrained element
9906 type. For instance, consider the following type declarations:
9907
9908 type Bounded_String (Max_Size : Integer) is
9909 Length : Integer;
9910 Buffer : String (1 .. Max_Size);
9911 end record;
9912 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9913
9914 In this case, the compiler describes the array as an array of
9915 variable-size elements (identified by its XVS suffix) for which
9916 the size can be read in the parallel XVZ variable.
9917
9918 In the case of an array of an unconstrained element type, the compiler
9919 wraps the array element inside a private PAD type. This type should not
9920 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9921 that we also use the adjective "aligner" in our code to designate
9922 these wrapper types.
9923
1b536f04 9924 In some cases, the size allocated for each element is statically
21649b50
JB
9925 known. In that case, the PAD type already has the correct size,
9926 and the array element should remain unfixed.
9927
9928 But there are cases when this size is not statically known.
9929 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9930
9931 type Dynamic is array (1 .. Five) of Integer;
9932 type Wrapper (Has_Length : Boolean := False) is record
9933 Data : Dynamic;
9934 case Has_Length is
9935 when True => Length : Integer;
9936 when False => null;
9937 end case;
9938 end record;
9939 type Wrapper_Array is array (1 .. 2) of Wrapper;
9940
9941 Hello : Wrapper_Array := (others => (Has_Length => True,
9942 Data => (others => 17),
9943 Length => 1));
9944
9945
9946 The debugging info would describe variable Hello as being an
9947 array of a PAD type. The size of that PAD type is not statically
9948 known, but can be determined using a parallel XVZ variable.
9949 In that case, a copy of the PAD type with the correct size should
9950 be used for the fixed array.
9951
21649b50
JB
9952 3. ``Fixing'' record type objects:
9953 ----------------------------------
9954
9955 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9956 record types. In this case, in order to compute the associated
9957 fixed type, we need to determine the size and offset of each of
9958 its components. This, in turn, requires us to compute the fixed
9959 type of each of these components.
9960
9961 Consider for instance the example:
9962
9963 type Bounded_String (Max_Size : Natural) is record
9964 Str : String (1 .. Max_Size);
9965 Length : Natural;
9966 end record;
9967 My_String : Bounded_String (Max_Size => 10);
9968
9969 In that case, the position of field "Length" depends on the size
9970 of field Str, which itself depends on the value of the Max_Size
21649b50 9971 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9972 we need to fix the type of field Str. Therefore, fixing a variant
9973 record requires us to fix each of its components.
9974
9975 However, if a component does not have a dynamic size, the component
9976 should not be fixed. In particular, fields that use a PAD type
9977 should not fixed. Here is an example where this might happen
9978 (assuming type Rec above):
9979
9980 type Container (Big : Boolean) is record
9981 First : Rec;
9982 After : Integer;
9983 case Big is
9984 when True => Another : Integer;
9985 when False => null;
9986 end case;
9987 end record;
9988 My_Container : Container := (Big => False,
9989 First => (Empty => True),
9990 After => 42);
9991
9992 In that example, the compiler creates a PAD type for component First,
9993 whose size is constant, and then positions the component After just
9994 right after it. The offset of component After is therefore constant
9995 in this case.
9996
9997 The debugger computes the position of each field based on an algorithm
9998 that uses, among other things, the actual position and size of the field
21649b50
JB
9999 preceding it. Let's now imagine that the user is trying to print
10000 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10001 end up computing the offset of field After based on the size of the
10002 fixed version of field First. And since in our example First has
10003 only one actual field, the size of the fixed type is actually smaller
10004 than the amount of space allocated to that field, and thus we would
10005 compute the wrong offset of field After.
10006
21649b50
JB
10007 To make things more complicated, we need to watch out for dynamic
10008 components of variant records (identified by the ___XVL suffix in
10009 the component name). Even if the target type is a PAD type, the size
10010 of that type might not be statically known. So the PAD type needs
10011 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10012 we might end up with the wrong size for our component. This can be
10013 observed with the following type declarations:
284614f0
JB
10014
10015 type Octal is new Integer range 0 .. 7;
10016 type Octal_Array is array (Positive range <>) of Octal;
10017 pragma Pack (Octal_Array);
10018
10019 type Octal_Buffer (Size : Positive) is record
10020 Buffer : Octal_Array (1 .. Size);
10021 Length : Integer;
10022 end record;
10023
10024 In that case, Buffer is a PAD type whose size is unset and needs
10025 to be computed by fixing the unwrapped type.
10026
21649b50
JB
10027 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10028 ----------------------------------------------------------
10029
10030 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10031 thus far, be actually fixed?
10032
10033 The answer is: Only when referencing that element. For instance
10034 when selecting one component of a record, this specific component
10035 should be fixed at that point in time. Or when printing the value
10036 of a record, each component should be fixed before its value gets
10037 printed. Similarly for arrays, the element of the array should be
10038 fixed when printing each element of the array, or when extracting
10039 one element out of that array. On the other hand, fixing should
10040 not be performed on the elements when taking a slice of an array!
10041
31432a67 10042 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10043 size of each field is that we end up also miscomputing the size
10044 of the containing type. This can have adverse results when computing
10045 the value of an entity. GDB fetches the value of an entity based
10046 on the size of its type, and thus a wrong size causes GDB to fetch
10047 the wrong amount of memory. In the case where the computed size is
10048 too small, GDB fetches too little data to print the value of our
31432a67 10049 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10050 past the buffer containing the data =:-o. */
10051
ced9779b
JB
10052/* Evaluate a subexpression of EXP, at index *POS, and return a value
10053 for that subexpression cast to TO_TYPE. Advance *POS over the
10054 subexpression. */
10055
10056static value *
10057ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10058 enum noside noside, struct type *to_type)
10059{
10060 int pc = *pos;
10061
10062 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10063 || exp->elts[pc].opcode == OP_VAR_VALUE)
10064 {
10065 (*pos) += 4;
10066
10067 value *val;
10068 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10069 {
10070 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10071 return value_zero (to_type, not_lval);
10072
10073 val = evaluate_var_msym_value (noside,
10074 exp->elts[pc + 1].objfile,
10075 exp->elts[pc + 2].msymbol);
10076 }
10077 else
10078 val = evaluate_var_value (noside,
10079 exp->elts[pc + 1].block,
10080 exp->elts[pc + 2].symbol);
10081
10082 if (noside == EVAL_SKIP)
10083 return eval_skip_value (exp);
10084
10085 val = ada_value_cast (to_type, val);
10086
10087 /* Follow the Ada language semantics that do not allow taking
10088 an address of the result of a cast (view conversion in Ada). */
10089 if (VALUE_LVAL (val) == lval_memory)
10090 {
10091 if (value_lazy (val))
10092 value_fetch_lazy (val);
10093 VALUE_LVAL (val) = not_lval;
10094 }
10095 return val;
10096 }
10097
10098 value *val = evaluate_subexp (to_type, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 return eval_skip_value (exp);
10101 return ada_value_cast (to_type, val);
10102}
10103
284614f0
JB
10104/* Implement the evaluate_exp routine in the exp_descriptor structure
10105 for the Ada language. */
10106
52ce6436 10107static struct value *
ebf56fd3 10108ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10109 int *pos, enum noside noside)
14f9c5c9
AS
10110{
10111 enum exp_opcode op;
b5385fc0 10112 int tem;
14f9c5c9 10113 int pc;
5ec18f2b 10114 int preeval_pos;
14f9c5c9
AS
10115 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10116 struct type *type;
52ce6436 10117 int nargs, oplen;
d2e4a39e 10118 struct value **argvec;
14f9c5c9 10119
d2e4a39e
AS
10120 pc = *pos;
10121 *pos += 1;
14f9c5c9
AS
10122 op = exp->elts[pc].opcode;
10123
d2e4a39e 10124 switch (op)
14f9c5c9
AS
10125 {
10126 default:
10127 *pos -= 1;
6e48bd2c 10128 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10129
10130 if (noside == EVAL_NORMAL)
10131 arg1 = unwrap_value (arg1);
6e48bd2c 10132
edd079d9 10133 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10134 then we need to perform the conversion manually, because
10135 evaluate_subexp_standard doesn't do it. This conversion is
10136 necessary in Ada because the different kinds of float/fixed
10137 types in Ada have different representations.
10138
10139 Similarly, we need to perform the conversion from OP_LONG
10140 ourselves. */
edd079d9 10141 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10142 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10143
10144 return arg1;
4c4b4cd2
PH
10145
10146 case OP_STRING:
10147 {
76a01679 10148 struct value *result;
5b4ee69b 10149
76a01679
JB
10150 *pos -= 1;
10151 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10152 /* The result type will have code OP_STRING, bashed there from
10153 OP_ARRAY. Bash it back. */
78134374 10154 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10155 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10156 return result;
4c4b4cd2 10157 }
14f9c5c9
AS
10158
10159 case UNOP_CAST:
10160 (*pos) += 2;
10161 type = exp->elts[pc + 1].type;
ced9779b 10162 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10163
4c4b4cd2
PH
10164 case UNOP_QUAL:
10165 (*pos) += 2;
10166 type = exp->elts[pc + 1].type;
10167 return ada_evaluate_subexp (type, exp, pos, noside);
10168
14f9c5c9
AS
10169 case BINOP_ASSIGN:
10170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10171 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10172 {
10173 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10174 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return arg1;
10176 return ada_value_assign (arg1, arg1);
10177 }
003f3813
JB
10178 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10179 except if the lhs of our assignment is a convenience variable.
10180 In the case of assigning to a convenience variable, the lhs
10181 should be exactly the result of the evaluation of the rhs. */
10182 type = value_type (arg1);
10183 if (VALUE_LVAL (arg1) == lval_internalvar)
10184 type = NULL;
10185 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10186 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10187 return arg1;
f411722c
TT
10188 if (VALUE_LVAL (arg1) == lval_internalvar)
10189 {
10190 /* Nothing. */
10191 }
b2188a06 10192 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10193 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10194 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10195 error
323e0a4a 10196 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10197 else
df407dfe 10198 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10199 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10200
10201 case BINOP_ADD:
10202 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10203 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10204 if (noside == EVAL_SKIP)
4c4b4cd2 10205 goto nosideret;
78134374 10206 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10207 return (value_from_longest
10208 (value_type (arg1),
10209 value_as_long (arg1) + value_as_long (arg2)));
78134374 10210 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10211 return (value_from_longest
10212 (value_type (arg2),
10213 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10214 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10215 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10216 && value_type (arg1) != value_type (arg2))
323e0a4a 10217 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10218 /* Do the addition, and cast the result to the type of the first
10219 argument. We cannot cast the result to a reference type, so if
10220 ARG1 is a reference type, find its underlying type. */
10221 type = value_type (arg1);
78134374 10222 while (type->code () == TYPE_CODE_REF)
b7789565 10223 type = TYPE_TARGET_TYPE (type);
f44316fa 10224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10225 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10226
10227 case BINOP_SUB:
10228 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10229 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10230 if (noside == EVAL_SKIP)
4c4b4cd2 10231 goto nosideret;
78134374 10232 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10233 return (value_from_longest
10234 (value_type (arg1),
10235 value_as_long (arg1) - value_as_long (arg2)));
78134374 10236 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10237 return (value_from_longest
10238 (value_type (arg2),
10239 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10240 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10241 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10242 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10243 error (_("Operands of fixed-point subtraction "
10244 "must have the same type"));
b7789565
JB
10245 /* Do the substraction, and cast the result to the type of the first
10246 argument. We cannot cast the result to a reference type, so if
10247 ARG1 is a reference type, find its underlying type. */
10248 type = value_type (arg1);
78134374 10249 while (type->code () == TYPE_CODE_REF)
b7789565 10250 type = TYPE_TARGET_TYPE (type);
f44316fa 10251 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10252 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10253
10254 case BINOP_MUL:
10255 case BINOP_DIV:
e1578042
JB
10256 case BINOP_REM:
10257 case BINOP_MOD:
14f9c5c9
AS
10258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10259 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10260 if (noside == EVAL_SKIP)
4c4b4cd2 10261 goto nosideret;
e1578042 10262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10263 {
10264 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10265 return value_zero (value_type (arg1), not_lval);
10266 }
14f9c5c9 10267 else
4c4b4cd2 10268 {
a53b7a21 10269 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10270 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10271 arg1 = cast_from_fixed (type, arg1);
b2188a06 10272 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10273 arg2 = cast_from_fixed (type, arg2);
f44316fa 10274 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10275 return ada_value_binop (arg1, arg2, op);
10276 }
10277
4c4b4cd2
PH
10278 case BINOP_EQUAL:
10279 case BINOP_NOTEQUAL:
14f9c5c9 10280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10281 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10282 if (noside == EVAL_SKIP)
76a01679 10283 goto nosideret;
4c4b4cd2 10284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10285 tem = 0;
4c4b4cd2 10286 else
f44316fa
UW
10287 {
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 tem = ada_value_equal (arg1, arg2);
10290 }
4c4b4cd2 10291 if (op == BINOP_NOTEQUAL)
76a01679 10292 tem = !tem;
fbb06eb1
UW
10293 type = language_bool_type (exp->language_defn, exp->gdbarch);
10294 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10295
10296 case UNOP_NEG:
10297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10298 if (noside == EVAL_SKIP)
10299 goto nosideret;
b2188a06 10300 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10301 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10302 else
f44316fa
UW
10303 {
10304 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10305 return value_neg (arg1);
10306 }
4c4b4cd2 10307
2330c6c6
JB
10308 case BINOP_LOGICAL_AND:
10309 case BINOP_LOGICAL_OR:
10310 case UNOP_LOGICAL_NOT:
000d5124
JB
10311 {
10312 struct value *val;
10313
10314 *pos -= 1;
10315 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10316 type = language_bool_type (exp->language_defn, exp->gdbarch);
10317 return value_cast (type, val);
000d5124 10318 }
2330c6c6
JB
10319
10320 case BINOP_BITWISE_AND:
10321 case BINOP_BITWISE_IOR:
10322 case BINOP_BITWISE_XOR:
000d5124
JB
10323 {
10324 struct value *val;
10325
10326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10327 *pos = pc;
10328 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10329
10330 return value_cast (value_type (arg1), val);
10331 }
2330c6c6 10332
14f9c5c9
AS
10333 case OP_VAR_VALUE:
10334 *pos -= 1;
6799def4 10335
14f9c5c9 10336 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10337 {
10338 *pos += 4;
10339 goto nosideret;
10340 }
da5c522f
JB
10341
10342 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10343 /* Only encountered when an unresolved symbol occurs in a
10344 context other than a function call, in which case, it is
52ce6436 10345 invalid. */
323e0a4a 10346 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10347 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10348
10349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10350 {
0c1f74cf 10351 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10352 /* Check to see if this is a tagged type. We also need to handle
10353 the case where the type is a reference to a tagged type, but
10354 we have to be careful to exclude pointers to tagged types.
10355 The latter should be shown as usual (as a pointer), whereas
10356 a reference should mostly be transparent to the user. */
10357 if (ada_is_tagged_type (type, 0)
78134374 10358 || (type->code () == TYPE_CODE_REF
31dbc1c5 10359 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10360 {
10361 /* Tagged types are a little special in the fact that the real
10362 type is dynamic and can only be determined by inspecting the
10363 object's tag. This means that we need to get the object's
10364 value first (EVAL_NORMAL) and then extract the actual object
10365 type from its tag.
10366
10367 Note that we cannot skip the final step where we extract
10368 the object type from its tag, because the EVAL_NORMAL phase
10369 results in dynamic components being resolved into fixed ones.
10370 This can cause problems when trying to print the type
10371 description of tagged types whose parent has a dynamic size:
10372 We use the type name of the "_parent" component in order
10373 to print the name of the ancestor type in the type description.
10374 If that component had a dynamic size, the resolution into
10375 a fixed type would result in the loss of that type name,
10376 thus preventing us from printing the name of the ancestor
10377 type in the type description. */
10378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10379
78134374 10380 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10381 {
10382 struct type *actual_type;
10383
10384 actual_type = type_from_tag (ada_value_tag (arg1));
10385 if (actual_type == NULL)
10386 /* If, for some reason, we were unable to determine
10387 the actual type from the tag, then use the static
10388 approximation that we just computed as a fallback.
10389 This can happen if the debugging information is
10390 incomplete, for instance. */
10391 actual_type = type;
10392 return value_zero (actual_type, not_lval);
10393 }
10394 else
10395 {
10396 /* In the case of a ref, ada_coerce_ref takes care
10397 of determining the actual type. But the evaluation
10398 should return a ref as it should be valid to ask
10399 for its address; so rebuild a ref after coerce. */
10400 arg1 = ada_coerce_ref (arg1);
a65cfae5 10401 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10402 }
10403 }
0c1f74cf 10404
84754697
JB
10405 /* Records and unions for which GNAT encodings have been
10406 generated need to be statically fixed as well.
10407 Otherwise, non-static fixing produces a type where
10408 all dynamic properties are removed, which prevents "ptype"
10409 from being able to completely describe the type.
10410 For instance, a case statement in a variant record would be
10411 replaced by the relevant components based on the actual
10412 value of the discriminants. */
78134374 10413 if ((type->code () == TYPE_CODE_STRUCT
84754697 10414 && dynamic_template_type (type) != NULL)
78134374 10415 || (type->code () == TYPE_CODE_UNION
84754697
JB
10416 && ada_find_parallel_type (type, "___XVU") != NULL))
10417 {
10418 *pos += 4;
10419 return value_zero (to_static_fixed_type (type), not_lval);
10420 }
4c4b4cd2 10421 }
da5c522f
JB
10422
10423 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10424 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10425
10426 case OP_FUNCALL:
10427 (*pos) += 2;
10428
10429 /* Allocate arg vector, including space for the function to be
10430 called in argvec[0] and a terminating NULL. */
10431 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10432 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10433
10434 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10435 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10436 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10437 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10438 else
10439 {
10440 for (tem = 0; tem <= nargs; tem += 1)
10441 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10442 argvec[tem] = 0;
10443
10444 if (noside == EVAL_SKIP)
10445 goto nosideret;
10446 }
10447
ad82864c
JB
10448 if (ada_is_constrained_packed_array_type
10449 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10450 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10451 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10452 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10453 /* This is a packed array that has already been fixed, and
10454 therefore already coerced to a simple array. Nothing further
10455 to do. */
10456 ;
78134374 10457 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10458 {
10459 /* Make sure we dereference references so that all the code below
10460 feels like it's really handling the referenced value. Wrapping
10461 types (for alignment) may be there, so make sure we strip them as
10462 well. */
10463 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10464 }
78134374 10465 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10466 && VALUE_LVAL (argvec[0]) == lval_memory)
10467 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10468
df407dfe 10469 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10470
10471 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10472 them. So, if this is an array typedef (encoding use for array
10473 access types encoded as fat pointers), strip it now. */
78134374 10474 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10475 type = ada_typedef_target_type (type);
10476
78134374 10477 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10478 {
78134374 10479 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10480 {
10481 case TYPE_CODE_FUNC:
61ee279c 10482 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10483 break;
10484 case TYPE_CODE_ARRAY:
10485 break;
10486 case TYPE_CODE_STRUCT:
10487 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10488 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10489 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10490 break;
10491 default:
323e0a4a 10492 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10493 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10494 break;
10495 }
10496 }
10497
78134374 10498 switch (type->code ())
4c4b4cd2
PH
10499 {
10500 case TYPE_CODE_FUNC:
10501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10502 {
7022349d
PA
10503 if (TYPE_TARGET_TYPE (type) == NULL)
10504 error_call_unknown_return_type (NULL);
10505 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10506 }
e71585ff
PA
10507 return call_function_by_hand (argvec[0], NULL,
10508 gdb::make_array_view (argvec + 1,
10509 nargs));
c8ea1972
PH
10510 case TYPE_CODE_INTERNAL_FUNCTION:
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 /* We don't know anything about what the internal
10513 function might return, but we have to return
10514 something. */
10515 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10516 not_lval);
10517 else
10518 return call_internal_function (exp->gdbarch, exp->language_defn,
10519 argvec[0], nargs, argvec + 1);
10520
4c4b4cd2
PH
10521 case TYPE_CODE_STRUCT:
10522 {
10523 int arity;
10524
4c4b4cd2
PH
10525 arity = ada_array_arity (type);
10526 type = ada_array_element_type (type, nargs);
10527 if (type == NULL)
323e0a4a 10528 error (_("cannot subscript or call a record"));
4c4b4cd2 10529 if (arity != nargs)
323e0a4a 10530 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10532 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10533 return
10534 unwrap_value (ada_value_subscript
10535 (argvec[0], nargs, argvec + 1));
10536 }
10537 case TYPE_CODE_ARRAY:
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 {
10540 type = ada_array_element_type (type, nargs);
10541 if (type == NULL)
323e0a4a 10542 error (_("element type of array unknown"));
4c4b4cd2 10543 else
0a07e705 10544 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10545 }
10546 return
10547 unwrap_value (ada_value_subscript
10548 (ada_coerce_to_simple_array (argvec[0]),
10549 nargs, argvec + 1));
10550 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10552 {
deede10c 10553 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10554 type = ada_array_element_type (type, nargs);
10555 if (type == NULL)
323e0a4a 10556 error (_("element type of array unknown"));
4c4b4cd2 10557 else
0a07e705 10558 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10559 }
10560 return
deede10c
JB
10561 unwrap_value (ada_value_ptr_subscript (argvec[0],
10562 nargs, argvec + 1));
4c4b4cd2
PH
10563
10564 default:
e1d5a0d2
PH
10565 error (_("Attempt to index or call something other than an "
10566 "array or function"));
4c4b4cd2
PH
10567 }
10568
10569 case TERNOP_SLICE:
10570 {
10571 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10572 struct value *low_bound_val =
10573 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10574 struct value *high_bound_val =
10575 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10576 LONGEST low_bound;
10577 LONGEST high_bound;
5b4ee69b 10578
994b9211
AC
10579 low_bound_val = coerce_ref (low_bound_val);
10580 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10581 low_bound = value_as_long (low_bound_val);
10582 high_bound = value_as_long (high_bound_val);
963a6417 10583
4c4b4cd2
PH
10584 if (noside == EVAL_SKIP)
10585 goto nosideret;
10586
4c4b4cd2
PH
10587 /* If this is a reference to an aligner type, then remove all
10588 the aligners. */
78134374 10589 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10590 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10591 TYPE_TARGET_TYPE (value_type (array)) =
10592 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10593
ad82864c 10594 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10595 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10596
10597 /* If this is a reference to an array or an array lvalue,
10598 convert to a pointer. */
78134374
SM
10599 if (value_type (array)->code () == TYPE_CODE_REF
10600 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10601 && VALUE_LVAL (array) == lval_memory))
10602 array = value_addr (array);
10603
1265e4aa 10604 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10605 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10606 (value_type (array))))
bff8c71f
TT
10607 return empty_array (ada_type_of_array (array, 0), low_bound,
10608 high_bound);
4c4b4cd2
PH
10609
10610 array = ada_coerce_to_simple_array_ptr (array);
10611
714e53ab
PH
10612 /* If we have more than one level of pointer indirection,
10613 dereference the value until we get only one level. */
78134374
SM
10614 while (value_type (array)->code () == TYPE_CODE_PTR
10615 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10616 == TYPE_CODE_PTR))
10617 array = value_ind (array);
10618
10619 /* Make sure we really do have an array type before going further,
10620 to avoid a SEGV when trying to get the index type or the target
10621 type later down the road if the debug info generated by
10622 the compiler is incorrect or incomplete. */
df407dfe 10623 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10624 error (_("cannot take slice of non-array"));
714e53ab 10625
78134374 10626 if (ada_check_typedef (value_type (array))->code ()
828292f2 10627 == TYPE_CODE_PTR)
4c4b4cd2 10628 {
828292f2
JB
10629 struct type *type0 = ada_check_typedef (value_type (array));
10630
0b5d8877 10631 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10632 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10633 else
10634 {
10635 struct type *arr_type0 =
828292f2 10636 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10637
f5938064
JG
10638 return ada_value_slice_from_ptr (array, arr_type0,
10639 longest_to_int (low_bound),
10640 longest_to_int (high_bound));
4c4b4cd2
PH
10641 }
10642 }
10643 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10644 return array;
10645 else if (high_bound < low_bound)
bff8c71f 10646 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10647 else
529cad9c
PH
10648 return ada_value_slice (array, longest_to_int (low_bound),
10649 longest_to_int (high_bound));
4c4b4cd2 10650 }
14f9c5c9 10651
4c4b4cd2
PH
10652 case UNOP_IN_RANGE:
10653 (*pos) += 2;
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10655 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10656
14f9c5c9 10657 if (noside == EVAL_SKIP)
4c4b4cd2 10658 goto nosideret;
14f9c5c9 10659
78134374 10660 switch (type->code ())
4c4b4cd2
PH
10661 {
10662 default:
e1d5a0d2
PH
10663 lim_warning (_("Membership test incompletely implemented; "
10664 "always returns true"));
fbb06eb1
UW
10665 type = language_bool_type (exp->language_defn, exp->gdbarch);
10666 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10667
10668 case TYPE_CODE_RANGE:
030b4912
UW
10669 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10670 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10671 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10672 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10673 type = language_bool_type (exp->language_defn, exp->gdbarch);
10674 return
10675 value_from_longest (type,
4c4b4cd2
PH
10676 (value_less (arg1, arg3)
10677 || value_equal (arg1, arg3))
10678 && (value_less (arg2, arg1)
10679 || value_equal (arg2, arg1)));
10680 }
10681
10682 case BINOP_IN_BOUNDS:
14f9c5c9 10683 (*pos) += 2;
4c4b4cd2
PH
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10685 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10686
4c4b4cd2
PH
10687 if (noside == EVAL_SKIP)
10688 goto nosideret;
14f9c5c9 10689
4c4b4cd2 10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10691 {
10692 type = language_bool_type (exp->language_defn, exp->gdbarch);
10693 return value_zero (type, not_lval);
10694 }
14f9c5c9 10695
4c4b4cd2 10696 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10697
1eea4ebd
UW
10698 type = ada_index_type (value_type (arg2), tem, "range");
10699 if (!type)
10700 type = value_type (arg1);
14f9c5c9 10701
1eea4ebd
UW
10702 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10703 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10704
f44316fa
UW
10705 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10707 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10708 return
fbb06eb1 10709 value_from_longest (type,
4c4b4cd2
PH
10710 (value_less (arg1, arg3)
10711 || value_equal (arg1, arg3))
10712 && (value_less (arg2, arg1)
10713 || value_equal (arg2, arg1)));
10714
10715 case TERNOP_IN_RANGE:
10716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10717 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10719
10720 if (noside == EVAL_SKIP)
10721 goto nosideret;
10722
f44316fa
UW
10723 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10726 return
fbb06eb1 10727 value_from_longest (type,
4c4b4cd2
PH
10728 (value_less (arg1, arg3)
10729 || value_equal (arg1, arg3))
10730 && (value_less (arg2, arg1)
10731 || value_equal (arg2, arg1)));
10732
10733 case OP_ATR_FIRST:
10734 case OP_ATR_LAST:
10735 case OP_ATR_LENGTH:
10736 {
76a01679 10737 struct type *type_arg;
5b4ee69b 10738
76a01679
JB
10739 if (exp->elts[*pos].opcode == OP_TYPE)
10740 {
10741 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10742 arg1 = NULL;
5bc23cb3 10743 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10744 }
10745 else
10746 {
10747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10748 type_arg = NULL;
10749 }
10750
10751 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10752 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10753 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10754 *pos += 4;
10755
10756 if (noside == EVAL_SKIP)
10757 goto nosideret;
680e1bee
TT
10758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10759 {
10760 if (type_arg == NULL)
10761 type_arg = value_type (arg1);
76a01679 10762
680e1bee
TT
10763 if (ada_is_constrained_packed_array_type (type_arg))
10764 type_arg = decode_constrained_packed_array_type (type_arg);
10765
10766 if (!discrete_type_p (type_arg))
10767 {
10768 switch (op)
10769 {
10770 default: /* Should never happen. */
10771 error (_("unexpected attribute encountered"));
10772 case OP_ATR_FIRST:
10773 case OP_ATR_LAST:
10774 type_arg = ada_index_type (type_arg, tem,
10775 ada_attribute_name (op));
10776 break;
10777 case OP_ATR_LENGTH:
10778 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10779 break;
10780 }
10781 }
10782
10783 return value_zero (type_arg, not_lval);
10784 }
10785 else if (type_arg == NULL)
76a01679
JB
10786 {
10787 arg1 = ada_coerce_ref (arg1);
10788
ad82864c 10789 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10790 arg1 = ada_coerce_to_simple_array (arg1);
10791
aa4fb036 10792 if (op == OP_ATR_LENGTH)
1eea4ebd 10793 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10794 else
10795 {
10796 type = ada_index_type (value_type (arg1), tem,
10797 ada_attribute_name (op));
10798 if (type == NULL)
10799 type = builtin_type (exp->gdbarch)->builtin_int;
10800 }
76a01679 10801
76a01679
JB
10802 switch (op)
10803 {
10804 default: /* Should never happen. */
323e0a4a 10805 error (_("unexpected attribute encountered"));
76a01679 10806 case OP_ATR_FIRST:
1eea4ebd
UW
10807 return value_from_longest
10808 (type, ada_array_bound (arg1, tem, 0));
76a01679 10809 case OP_ATR_LAST:
1eea4ebd
UW
10810 return value_from_longest
10811 (type, ada_array_bound (arg1, tem, 1));
76a01679 10812 case OP_ATR_LENGTH:
1eea4ebd
UW
10813 return value_from_longest
10814 (type, ada_array_length (arg1, tem));
76a01679
JB
10815 }
10816 }
10817 else if (discrete_type_p (type_arg))
10818 {
10819 struct type *range_type;
0d5cff50 10820 const char *name = ada_type_name (type_arg);
5b4ee69b 10821
76a01679 10822 range_type = NULL;
78134374 10823 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 10824 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10825 if (range_type == NULL)
10826 range_type = type_arg;
10827 switch (op)
10828 {
10829 default:
323e0a4a 10830 error (_("unexpected attribute encountered"));
76a01679 10831 case OP_ATR_FIRST:
690cc4eb 10832 return value_from_longest
43bbcdc2 10833 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10834 case OP_ATR_LAST:
690cc4eb 10835 return value_from_longest
43bbcdc2 10836 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10837 case OP_ATR_LENGTH:
323e0a4a 10838 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10839 }
10840 }
78134374 10841 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 10842 error (_("unimplemented type attribute"));
76a01679
JB
10843 else
10844 {
10845 LONGEST low, high;
10846
ad82864c
JB
10847 if (ada_is_constrained_packed_array_type (type_arg))
10848 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10849
aa4fb036 10850 if (op == OP_ATR_LENGTH)
1eea4ebd 10851 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10852 else
10853 {
10854 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10855 if (type == NULL)
10856 type = builtin_type (exp->gdbarch)->builtin_int;
10857 }
1eea4ebd 10858
76a01679
JB
10859 switch (op)
10860 {
10861 default:
323e0a4a 10862 error (_("unexpected attribute encountered"));
76a01679 10863 case OP_ATR_FIRST:
1eea4ebd 10864 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10865 return value_from_longest (type, low);
10866 case OP_ATR_LAST:
1eea4ebd 10867 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10868 return value_from_longest (type, high);
10869 case OP_ATR_LENGTH:
1eea4ebd
UW
10870 low = ada_array_bound_from_type (type_arg, tem, 0);
10871 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10872 return value_from_longest (type, high - low + 1);
10873 }
10874 }
14f9c5c9
AS
10875 }
10876
4c4b4cd2
PH
10877 case OP_ATR_TAG:
10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 if (noside == EVAL_SKIP)
76a01679 10880 goto nosideret;
4c4b4cd2
PH
10881
10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10883 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10884
10885 return ada_value_tag (arg1);
10886
10887 case OP_ATR_MIN:
10888 case OP_ATR_MAX:
10889 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10891 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 if (noside == EVAL_SKIP)
76a01679 10893 goto nosideret;
d2e4a39e 10894 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10895 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10896 else
f44316fa
UW
10897 {
10898 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10899 return value_binop (arg1, arg2,
10900 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10901 }
14f9c5c9 10902
4c4b4cd2
PH
10903 case OP_ATR_MODULUS:
10904 {
31dedfee 10905 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10906
5b4ee69b 10907 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10908 if (noside == EVAL_SKIP)
10909 goto nosideret;
4c4b4cd2 10910
76a01679 10911 if (!ada_is_modular_type (type_arg))
323e0a4a 10912 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10913
76a01679
JB
10914 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10915 ada_modulus (type_arg));
4c4b4cd2
PH
10916 }
10917
10918
10919 case OP_ATR_POS:
10920 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 if (noside == EVAL_SKIP)
76a01679 10923 goto nosideret;
3cb382c9
UW
10924 type = builtin_type (exp->gdbarch)->builtin_int;
10925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 return value_zero (type, not_lval);
14f9c5c9 10927 else
3cb382c9 10928 return value_pos_atr (type, arg1);
14f9c5c9 10929
4c4b4cd2
PH
10930 case OP_ATR_SIZE:
10931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10932 type = value_type (arg1);
10933
10934 /* If the argument is a reference, then dereference its type, since
10935 the user is really asking for the size of the actual object,
10936 not the size of the pointer. */
78134374 10937 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
10938 type = TYPE_TARGET_TYPE (type);
10939
4c4b4cd2 10940 if (noside == EVAL_SKIP)
76a01679 10941 goto nosideret;
4c4b4cd2 10942 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10943 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10944 else
22601c15 10945 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10946 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10947
10948 case OP_ATR_VAL:
10949 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10951 type = exp->elts[pc + 2].type;
14f9c5c9 10952 if (noside == EVAL_SKIP)
76a01679 10953 goto nosideret;
4c4b4cd2 10954 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10955 return value_zero (type, not_lval);
4c4b4cd2 10956 else
76a01679 10957 return value_val_atr (type, arg1);
4c4b4cd2
PH
10958
10959 case BINOP_EXP:
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10962 if (noside == EVAL_SKIP)
10963 goto nosideret;
10964 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10965 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10966 else
f44316fa
UW
10967 {
10968 /* For integer exponentiation operations,
10969 only promote the first argument. */
10970 if (is_integral_type (value_type (arg2)))
10971 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10972 else
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10974
10975 return value_binop (arg1, arg2, op);
10976 }
4c4b4cd2
PH
10977
10978 case UNOP_PLUS:
10979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982 else
10983 return arg1;
10984
10985 case UNOP_ABS:
10986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10987 if (noside == EVAL_SKIP)
10988 goto nosideret;
f44316fa 10989 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10990 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10991 return value_neg (arg1);
14f9c5c9 10992 else
4c4b4cd2 10993 return arg1;
14f9c5c9
AS
10994
10995 case UNOP_IND:
5ec18f2b 10996 preeval_pos = *pos;
6b0d7253 10997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10998 if (noside == EVAL_SKIP)
4c4b4cd2 10999 goto nosideret;
df407dfe 11000 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11002 {
11003 if (ada_is_array_descriptor_type (type))
11004 /* GDB allows dereferencing GNAT array descriptors. */
11005 {
11006 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11007
4c4b4cd2 11008 if (arrType == NULL)
323e0a4a 11009 error (_("Attempt to dereference null array pointer."));
00a4c844 11010 return value_at_lazy (arrType, 0);
4c4b4cd2 11011 }
78134374
SM
11012 else if (type->code () == TYPE_CODE_PTR
11013 || type->code () == TYPE_CODE_REF
4c4b4cd2 11014 /* In C you can dereference an array to get the 1st elt. */
78134374 11015 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11016 {
5ec18f2b
JG
11017 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11018 only be determined by inspecting the object's tag.
11019 This means that we need to evaluate completely the
11020 expression in order to get its type. */
11021
78134374
SM
11022 if ((type->code () == TYPE_CODE_REF
11023 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11024 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11025 {
11026 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11027 EVAL_NORMAL);
11028 type = value_type (ada_value_ind (arg1));
11029 }
11030 else
11031 {
11032 type = to_static_fixed_type
11033 (ada_aligned_type
11034 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11035 }
c1b5a1a6 11036 ada_ensure_varsize_limit (type);
714e53ab
PH
11037 return value_zero (type, lval_memory);
11038 }
78134374 11039 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11040 {
11041 /* GDB allows dereferencing an int. */
11042 if (expect_type == NULL)
11043 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11044 lval_memory);
11045 else
11046 {
11047 expect_type =
11048 to_static_fixed_type (ada_aligned_type (expect_type));
11049 return value_zero (expect_type, lval_memory);
11050 }
11051 }
4c4b4cd2 11052 else
323e0a4a 11053 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11054 }
0963b4bd 11055 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11056 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11057
78134374 11058 if (type->code () == TYPE_CODE_INT)
96967637
JB
11059 /* GDB allows dereferencing an int. If we were given
11060 the expect_type, then use that as the target type.
11061 Otherwise, assume that the target type is an int. */
11062 {
11063 if (expect_type != NULL)
11064 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11065 arg1));
11066 else
11067 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11068 (CORE_ADDR) value_as_address (arg1));
11069 }
6b0d7253 11070
4c4b4cd2
PH
11071 if (ada_is_array_descriptor_type (type))
11072 /* GDB allows dereferencing GNAT array descriptors. */
11073 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11074 else
4c4b4cd2 11075 return ada_value_ind (arg1);
14f9c5c9
AS
11076
11077 case STRUCTOP_STRUCT:
11078 tem = longest_to_int (exp->elts[pc + 1].longconst);
11079 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11080 preeval_pos = *pos;
14f9c5c9
AS
11081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11082 if (noside == EVAL_SKIP)
4c4b4cd2 11083 goto nosideret;
14f9c5c9 11084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11085 {
df407dfe 11086 struct type *type1 = value_type (arg1);
5b4ee69b 11087
76a01679
JB
11088 if (ada_is_tagged_type (type1, 1))
11089 {
11090 type = ada_lookup_struct_elt_type (type1,
11091 &exp->elts[pc + 2].string,
988f6b3d 11092 1, 1);
5ec18f2b
JG
11093
11094 /* If the field is not found, check if it exists in the
11095 extension of this object's type. This means that we
11096 need to evaluate completely the expression. */
11097
76a01679 11098 if (type == NULL)
5ec18f2b
JG
11099 {
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11101 EVAL_NORMAL);
11102 arg1 = ada_value_struct_elt (arg1,
11103 &exp->elts[pc + 2].string,
11104 0);
11105 arg1 = unwrap_value (arg1);
11106 type = value_type (ada_to_fixed_value (arg1));
11107 }
76a01679
JB
11108 }
11109 else
11110 type =
11111 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11112 0);
76a01679
JB
11113
11114 return value_zero (ada_aligned_type (type), lval_memory);
11115 }
14f9c5c9 11116 else
a579cd9a
MW
11117 {
11118 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11119 arg1 = unwrap_value (arg1);
11120 return ada_to_fixed_value (arg1);
11121 }
284614f0 11122
14f9c5c9 11123 case OP_TYPE:
4c4b4cd2
PH
11124 /* The value is not supposed to be used. This is here to make it
11125 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11126 (*pos) += 2;
11127 if (noside == EVAL_SKIP)
4c4b4cd2 11128 goto nosideret;
14f9c5c9 11129 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11130 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11131 else
323e0a4a 11132 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11133
11134 case OP_AGGREGATE:
11135 case OP_CHOICES:
11136 case OP_OTHERS:
11137 case OP_DISCRETE_RANGE:
11138 case OP_POSITIONAL:
11139 case OP_NAME:
11140 if (noside == EVAL_NORMAL)
11141 switch (op)
11142 {
11143 case OP_NAME:
11144 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11145 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11146 case OP_AGGREGATE:
11147 error (_("Aggregates only allowed on the right of an assignment"));
11148 default:
0963b4bd
MS
11149 internal_error (__FILE__, __LINE__,
11150 _("aggregate apparently mangled"));
52ce6436
PH
11151 }
11152
11153 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11154 *pos += oplen - 1;
11155 for (tem = 0; tem < nargs; tem += 1)
11156 ada_evaluate_subexp (NULL, exp, pos, noside);
11157 goto nosideret;
14f9c5c9
AS
11158 }
11159
11160nosideret:
ced9779b 11161 return eval_skip_value (exp);
14f9c5c9 11162}
14f9c5c9 11163\f
d2e4a39e 11164
4c4b4cd2 11165 /* Fixed point */
14f9c5c9
AS
11166
11167/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11168 type name that encodes the 'small and 'delta information.
4c4b4cd2 11169 Otherwise, return NULL. */
14f9c5c9 11170
d2e4a39e 11171static const char *
b2188a06 11172gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11173{
d2e4a39e 11174 const char *name = ada_type_name (type);
78134374 11175 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11176
d2e4a39e
AS
11177 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11178 {
14f9c5c9 11179 const char *tail = strstr (name, "___XF_");
5b4ee69b 11180
14f9c5c9 11181 if (tail == NULL)
4c4b4cd2 11182 return NULL;
d2e4a39e 11183 else
4c4b4cd2 11184 return tail + 5;
14f9c5c9
AS
11185 }
11186 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11187 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11188 else
11189 return NULL;
11190}
11191
4c4b4cd2 11192/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11193
11194int
b2188a06 11195ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11196{
b2188a06 11197 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11198}
11199
4c4b4cd2
PH
11200/* Return non-zero iff TYPE represents a System.Address type. */
11201
11202int
11203ada_is_system_address_type (struct type *type)
11204{
7d93a1e0 11205 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11206}
11207
14f9c5c9 11208/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11209 type, return the target floating-point type to be used to represent
11210 of this type during internal computation. */
11211
11212static struct type *
11213ada_scaling_type (struct type *type)
11214{
11215 return builtin_type (get_type_arch (type))->builtin_long_double;
11216}
11217
11218/* Assuming that TYPE is the representation of an Ada fixed-point
11219 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11220 delta cannot be determined. */
14f9c5c9 11221
50eff16b 11222struct value *
b2188a06 11223gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11224{
b2188a06 11225 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11226 struct type *scale_type = ada_scaling_type (type);
11227
11228 long long num, den;
11229
11230 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11231 return nullptr;
d2e4a39e 11232 else
50eff16b
UW
11233 return value_binop (value_from_longest (scale_type, num),
11234 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11235}
11236
b2188a06
JB
11237/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11238 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11239
50eff16b
UW
11240struct value *
11241ada_scaling_factor (struct type *type)
14f9c5c9 11242{
b2188a06 11243 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11244 struct type *scale_type = ada_scaling_type (type);
11245
11246 long long num0, den0, num1, den1;
14f9c5c9 11247 int n;
d2e4a39e 11248
50eff16b 11249 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11250 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11251
11252 if (n < 2)
50eff16b 11253 return value_from_longest (scale_type, 1);
14f9c5c9 11254 else if (n == 4)
50eff16b
UW
11255 return value_binop (value_from_longest (scale_type, num1),
11256 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11257 else
50eff16b
UW
11258 return value_binop (value_from_longest (scale_type, num0),
11259 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11260}
11261
14f9c5c9 11262\f
d2e4a39e 11263
4c4b4cd2 11264 /* Range types */
14f9c5c9
AS
11265
11266/* Scan STR beginning at position K for a discriminant name, and
11267 return the value of that discriminant field of DVAL in *PX. If
11268 PNEW_K is not null, put the position of the character beyond the
11269 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11270 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11271
11272static int
108d56a4 11273scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11274 int *pnew_k)
14f9c5c9
AS
11275{
11276 static char *bound_buffer = NULL;
11277 static size_t bound_buffer_len = 0;
5da1a4d3 11278 const char *pstart, *pend, *bound;
d2e4a39e 11279 struct value *bound_val;
14f9c5c9
AS
11280
11281 if (dval == NULL || str == NULL || str[k] == '\0')
11282 return 0;
11283
5da1a4d3
SM
11284 pstart = str + k;
11285 pend = strstr (pstart, "__");
14f9c5c9
AS
11286 if (pend == NULL)
11287 {
5da1a4d3 11288 bound = pstart;
14f9c5c9
AS
11289 k += strlen (bound);
11290 }
d2e4a39e 11291 else
14f9c5c9 11292 {
5da1a4d3
SM
11293 int len = pend - pstart;
11294
11295 /* Strip __ and beyond. */
11296 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11297 strncpy (bound_buffer, pstart, len);
11298 bound_buffer[len] = '\0';
11299
14f9c5c9 11300 bound = bound_buffer;
d2e4a39e 11301 k = pend - str;
14f9c5c9 11302 }
d2e4a39e 11303
df407dfe 11304 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11305 if (bound_val == NULL)
11306 return 0;
11307
11308 *px = value_as_long (bound_val);
11309 if (pnew_k != NULL)
11310 *pnew_k = k;
11311 return 1;
11312}
11313
11314/* Value of variable named NAME in the current environment. If
11315 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11316 otherwise causes an error with message ERR_MSG. */
11317
d2e4a39e 11318static struct value *
edb0c9cb 11319get_var_value (const char *name, const char *err_msg)
14f9c5c9 11320{
b5ec771e 11321 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11322
54d343a2 11323 std::vector<struct block_symbol> syms;
b5ec771e
PA
11324 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11325 get_selected_block (0),
11326 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11327
11328 if (nsyms != 1)
11329 {
11330 if (err_msg == NULL)
4c4b4cd2 11331 return 0;
14f9c5c9 11332 else
8a3fe4f8 11333 error (("%s"), err_msg);
14f9c5c9
AS
11334 }
11335
54d343a2 11336 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11337}
d2e4a39e 11338
edb0c9cb
PA
11339/* Value of integer variable named NAME in the current environment.
11340 If no such variable is found, returns false. Otherwise, sets VALUE
11341 to the variable's value and returns true. */
4c4b4cd2 11342
edb0c9cb
PA
11343bool
11344get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11345{
4c4b4cd2 11346 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11347
14f9c5c9 11348 if (var_val == 0)
edb0c9cb
PA
11349 return false;
11350
11351 value = value_as_long (var_val);
11352 return true;
14f9c5c9 11353}
d2e4a39e 11354
14f9c5c9
AS
11355
11356/* Return a range type whose base type is that of the range type named
11357 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11358 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11359 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11360 corresponding range type from debug information; fall back to using it
11361 if symbol lookup fails. If a new type must be created, allocate it
11362 like ORIG_TYPE was. The bounds information, in general, is encoded
11363 in NAME, the base type given in the named range type. */
14f9c5c9 11364
d2e4a39e 11365static struct type *
28c85d6c 11366to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11367{
0d5cff50 11368 const char *name;
14f9c5c9 11369 struct type *base_type;
108d56a4 11370 const char *subtype_info;
14f9c5c9 11371
28c85d6c 11372 gdb_assert (raw_type != NULL);
7d93a1e0 11373 gdb_assert (raw_type->name () != NULL);
dddfab26 11374
78134374 11375 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11376 base_type = TYPE_TARGET_TYPE (raw_type);
11377 else
11378 base_type = raw_type;
11379
7d93a1e0 11380 name = raw_type->name ();
14f9c5c9
AS
11381 subtype_info = strstr (name, "___XD");
11382 if (subtype_info == NULL)
690cc4eb 11383 {
43bbcdc2
PH
11384 LONGEST L = ada_discrete_type_low_bound (raw_type);
11385 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11386
690cc4eb
PH
11387 if (L < INT_MIN || U > INT_MAX)
11388 return raw_type;
11389 else
0c9c3474
SA
11390 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11391 L, U);
690cc4eb 11392 }
14f9c5c9
AS
11393 else
11394 {
11395 static char *name_buf = NULL;
11396 static size_t name_len = 0;
11397 int prefix_len = subtype_info - name;
11398 LONGEST L, U;
11399 struct type *type;
108d56a4 11400 const char *bounds_str;
14f9c5c9
AS
11401 int n;
11402
11403 GROW_VECT (name_buf, name_len, prefix_len + 5);
11404 strncpy (name_buf, name, prefix_len);
11405 name_buf[prefix_len] = '\0';
11406
11407 subtype_info += 5;
11408 bounds_str = strchr (subtype_info, '_');
11409 n = 1;
11410
d2e4a39e 11411 if (*subtype_info == 'L')
4c4b4cd2
PH
11412 {
11413 if (!ada_scan_number (bounds_str, n, &L, &n)
11414 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11415 return raw_type;
11416 if (bounds_str[n] == '_')
11417 n += 2;
0963b4bd 11418 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11419 n += 1;
11420 subtype_info += 1;
11421 }
d2e4a39e 11422 else
4c4b4cd2 11423 {
4c4b4cd2 11424 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11425 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11426 {
323e0a4a 11427 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11428 L = 1;
11429 }
11430 }
14f9c5c9 11431
d2e4a39e 11432 if (*subtype_info == 'U')
4c4b4cd2
PH
11433 {
11434 if (!ada_scan_number (bounds_str, n, &U, &n)
11435 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11436 return raw_type;
11437 }
d2e4a39e 11438 else
4c4b4cd2 11439 {
4c4b4cd2 11440 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11441 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11442 {
323e0a4a 11443 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11444 U = L;
11445 }
11446 }
14f9c5c9 11447
0c9c3474
SA
11448 type = create_static_range_type (alloc_type_copy (raw_type),
11449 base_type, L, U);
f5a91472
JB
11450 /* create_static_range_type alters the resulting type's length
11451 to match the size of the base_type, which is not what we want.
11452 Set it back to the original range type's length. */
11453 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11454 type->set_name (name);
14f9c5c9
AS
11455 return type;
11456 }
11457}
11458
4c4b4cd2
PH
11459/* True iff NAME is the name of a range type. */
11460
14f9c5c9 11461int
d2e4a39e 11462ada_is_range_type_name (const char *name)
14f9c5c9
AS
11463{
11464 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11465}
14f9c5c9 11466\f
d2e4a39e 11467
4c4b4cd2
PH
11468 /* Modular types */
11469
11470/* True iff TYPE is an Ada modular type. */
14f9c5c9 11471
14f9c5c9 11472int
d2e4a39e 11473ada_is_modular_type (struct type *type)
14f9c5c9 11474{
18af8284 11475 struct type *subranged_type = get_base_type (type);
14f9c5c9 11476
78134374
SM
11477 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11478 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11479 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11480}
11481
4c4b4cd2
PH
11482/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11483
61ee279c 11484ULONGEST
0056e4d5 11485ada_modulus (struct type *type)
14f9c5c9 11486{
43bbcdc2 11487 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11488}
d2e4a39e 11489\f
f7f9143b
JB
11490
11491/* Ada exception catchpoint support:
11492 ---------------------------------
11493
11494 We support 3 kinds of exception catchpoints:
11495 . catchpoints on Ada exceptions
11496 . catchpoints on unhandled Ada exceptions
11497 . catchpoints on failed assertions
11498
11499 Exceptions raised during failed assertions, or unhandled exceptions
11500 could perfectly be caught with the general catchpoint on Ada exceptions.
11501 However, we can easily differentiate these two special cases, and having
11502 the option to distinguish these two cases from the rest can be useful
11503 to zero-in on certain situations.
11504
11505 Exception catchpoints are a specialized form of breakpoint,
11506 since they rely on inserting breakpoints inside known routines
11507 of the GNAT runtime. The implementation therefore uses a standard
11508 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11509 of breakpoint_ops.
11510
0259addd
JB
11511 Support in the runtime for exception catchpoints have been changed
11512 a few times already, and these changes affect the implementation
11513 of these catchpoints. In order to be able to support several
11514 variants of the runtime, we use a sniffer that will determine
28010a5d 11515 the runtime variant used by the program being debugged. */
f7f9143b 11516
82eacd52
JB
11517/* Ada's standard exceptions.
11518
11519 The Ada 83 standard also defined Numeric_Error. But there so many
11520 situations where it was unclear from the Ada 83 Reference Manual
11521 (RM) whether Constraint_Error or Numeric_Error should be raised,
11522 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11523 Interpretation saying that anytime the RM says that Numeric_Error
11524 should be raised, the implementation may raise Constraint_Error.
11525 Ada 95 went one step further and pretty much removed Numeric_Error
11526 from the list of standard exceptions (it made it a renaming of
11527 Constraint_Error, to help preserve compatibility when compiling
11528 an Ada83 compiler). As such, we do not include Numeric_Error from
11529 this list of standard exceptions. */
3d0b0fa3 11530
a121b7c1 11531static const char *standard_exc[] = {
3d0b0fa3
JB
11532 "constraint_error",
11533 "program_error",
11534 "storage_error",
11535 "tasking_error"
11536};
11537
0259addd
JB
11538typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11539
11540/* A structure that describes how to support exception catchpoints
11541 for a given executable. */
11542
11543struct exception_support_info
11544{
11545 /* The name of the symbol to break on in order to insert
11546 a catchpoint on exceptions. */
11547 const char *catch_exception_sym;
11548
11549 /* The name of the symbol to break on in order to insert
11550 a catchpoint on unhandled exceptions. */
11551 const char *catch_exception_unhandled_sym;
11552
11553 /* The name of the symbol to break on in order to insert
11554 a catchpoint on failed assertions. */
11555 const char *catch_assert_sym;
11556
9f757bf7
XR
11557 /* The name of the symbol to break on in order to insert
11558 a catchpoint on exception handling. */
11559 const char *catch_handlers_sym;
11560
0259addd
JB
11561 /* Assuming that the inferior just triggered an unhandled exception
11562 catchpoint, this function is responsible for returning the address
11563 in inferior memory where the name of that exception is stored.
11564 Return zero if the address could not be computed. */
11565 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11566};
11567
11568static CORE_ADDR ada_unhandled_exception_name_addr (void);
11569static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11570
11571/* The following exception support info structure describes how to
11572 implement exception catchpoints with the latest version of the
ca683e3a 11573 Ada runtime (as of 2019-08-??). */
0259addd
JB
11574
11575static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11576{
11577 "__gnat_debug_raise_exception", /* catch_exception_sym */
11578 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11579 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11580 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11581 ada_unhandled_exception_name_addr
11582};
11583
11584/* The following exception support info structure describes how to
11585 implement exception catchpoints with an earlier version of the
11586 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11587
11588static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11589{
11590 "__gnat_debug_raise_exception", /* catch_exception_sym */
11591 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11592 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11593 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11594 ada_unhandled_exception_name_addr
11595};
11596
11597/* The following exception support info structure describes how to
11598 implement exception catchpoints with a slightly older version
11599 of the Ada runtime. */
11600
11601static const struct exception_support_info exception_support_info_fallback =
11602{
11603 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11604 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11605 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11606 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11607 ada_unhandled_exception_name_addr_from_raise
11608};
11609
f17011e0
JB
11610/* Return nonzero if we can detect the exception support routines
11611 described in EINFO.
11612
11613 This function errors out if an abnormal situation is detected
11614 (for instance, if we find the exception support routines, but
11615 that support is found to be incomplete). */
11616
11617static int
11618ada_has_this_exception_support (const struct exception_support_info *einfo)
11619{
11620 struct symbol *sym;
11621
11622 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11623 that should be compiled with debugging information. As a result, we
11624 expect to find that symbol in the symtabs. */
11625
11626 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11627 if (sym == NULL)
a6af7abe
JB
11628 {
11629 /* Perhaps we did not find our symbol because the Ada runtime was
11630 compiled without debugging info, or simply stripped of it.
11631 It happens on some GNU/Linux distributions for instance, where
11632 users have to install a separate debug package in order to get
11633 the runtime's debugging info. In that situation, let the user
11634 know why we cannot insert an Ada exception catchpoint.
11635
11636 Note: Just for the purpose of inserting our Ada exception
11637 catchpoint, we could rely purely on the associated minimal symbol.
11638 But we would be operating in degraded mode anyway, since we are
11639 still lacking the debugging info needed later on to extract
11640 the name of the exception being raised (this name is printed in
11641 the catchpoint message, and is also used when trying to catch
11642 a specific exception). We do not handle this case for now. */
3b7344d5 11643 struct bound_minimal_symbol msym
1c8e84b0
JB
11644 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11645
3b7344d5 11646 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11647 error (_("Your Ada runtime appears to be missing some debugging "
11648 "information.\nCannot insert Ada exception catchpoint "
11649 "in this configuration."));
11650
11651 return 0;
11652 }
f17011e0
JB
11653
11654 /* Make sure that the symbol we found corresponds to a function. */
11655
11656 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11657 {
11658 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11659 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11660 return 0;
11661 }
11662
11663 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11664 if (sym == NULL)
11665 {
11666 struct bound_minimal_symbol msym
11667 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11668
11669 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11670 error (_("Your Ada runtime appears to be missing some debugging "
11671 "information.\nCannot insert Ada exception catchpoint "
11672 "in this configuration."));
11673
11674 return 0;
11675 }
11676
11677 /* Make sure that the symbol we found corresponds to a function. */
11678
11679 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11680 {
11681 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11682 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11683 return 0;
11684 }
f17011e0
JB
11685
11686 return 1;
11687}
11688
0259addd
JB
11689/* Inspect the Ada runtime and determine which exception info structure
11690 should be used to provide support for exception catchpoints.
11691
3eecfa55
JB
11692 This function will always set the per-inferior exception_info,
11693 or raise an error. */
0259addd
JB
11694
11695static void
11696ada_exception_support_info_sniffer (void)
11697{
3eecfa55 11698 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11699
11700 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11701 if (data->exception_info != NULL)
0259addd
JB
11702 return;
11703
11704 /* Check the latest (default) exception support info. */
f17011e0 11705 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11706 {
3eecfa55 11707 data->exception_info = &default_exception_support_info;
0259addd
JB
11708 return;
11709 }
11710
ca683e3a
AO
11711 /* Try the v0 exception suport info. */
11712 if (ada_has_this_exception_support (&exception_support_info_v0))
11713 {
11714 data->exception_info = &exception_support_info_v0;
11715 return;
11716 }
11717
0259addd 11718 /* Try our fallback exception suport info. */
f17011e0 11719 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11720 {
3eecfa55 11721 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11722 return;
11723 }
11724
11725 /* Sometimes, it is normal for us to not be able to find the routine
11726 we are looking for. This happens when the program is linked with
11727 the shared version of the GNAT runtime, and the program has not been
11728 started yet. Inform the user of these two possible causes if
11729 applicable. */
11730
ccefe4c4 11731 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11732 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11733
11734 /* If the symbol does not exist, then check that the program is
11735 already started, to make sure that shared libraries have been
11736 loaded. If it is not started, this may mean that the symbol is
11737 in a shared library. */
11738
e99b03dc 11739 if (inferior_ptid.pid () == 0)
0259addd
JB
11740 error (_("Unable to insert catchpoint. Try to start the program first."));
11741
11742 /* At this point, we know that we are debugging an Ada program and
11743 that the inferior has been started, but we still are not able to
0963b4bd 11744 find the run-time symbols. That can mean that we are in
0259addd
JB
11745 configurable run time mode, or that a-except as been optimized
11746 out by the linker... In any case, at this point it is not worth
11747 supporting this feature. */
11748
7dda8cff 11749 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11750}
11751
f7f9143b
JB
11752/* True iff FRAME is very likely to be that of a function that is
11753 part of the runtime system. This is all very heuristic, but is
11754 intended to be used as advice as to what frames are uninteresting
11755 to most users. */
11756
11757static int
11758is_known_support_routine (struct frame_info *frame)
11759{
692465f1 11760 enum language func_lang;
f7f9143b 11761 int i;
f35a17b5 11762 const char *fullname;
f7f9143b 11763
4ed6b5be
JB
11764 /* If this code does not have any debugging information (no symtab),
11765 This cannot be any user code. */
f7f9143b 11766
51abb421 11767 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11768 if (sal.symtab == NULL)
11769 return 1;
11770
4ed6b5be
JB
11771 /* If there is a symtab, but the associated source file cannot be
11772 located, then assume this is not user code: Selecting a frame
11773 for which we cannot display the code would not be very helpful
11774 for the user. This should also take care of case such as VxWorks
11775 where the kernel has some debugging info provided for a few units. */
f7f9143b 11776
f35a17b5
JK
11777 fullname = symtab_to_fullname (sal.symtab);
11778 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11779 return 1;
11780
85102364 11781 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11782 We also check the name of the objfile against the name of some
11783 known system libraries that sometimes come with debugging info
11784 too. */
11785
f7f9143b
JB
11786 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11787 {
11788 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11789 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11790 return 1;
eb822aa6
DE
11791 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11792 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11793 return 1;
f7f9143b
JB
11794 }
11795
4ed6b5be 11796 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11797
c6dc63a1
TT
11798 gdb::unique_xmalloc_ptr<char> func_name
11799 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11800 if (func_name == NULL)
11801 return 1;
11802
11803 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11804 {
11805 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11806 if (re_exec (func_name.get ()))
11807 return 1;
f7f9143b
JB
11808 }
11809
11810 return 0;
11811}
11812
11813/* Find the first frame that contains debugging information and that is not
11814 part of the Ada run-time, starting from FI and moving upward. */
11815
0ef643c8 11816void
f7f9143b
JB
11817ada_find_printable_frame (struct frame_info *fi)
11818{
11819 for (; fi != NULL; fi = get_prev_frame (fi))
11820 {
11821 if (!is_known_support_routine (fi))
11822 {
11823 select_frame (fi);
11824 break;
11825 }
11826 }
11827
11828}
11829
11830/* Assuming that the inferior just triggered an unhandled exception
11831 catchpoint, return the address in inferior memory where the name
11832 of the exception is stored.
11833
11834 Return zero if the address could not be computed. */
11835
11836static CORE_ADDR
11837ada_unhandled_exception_name_addr (void)
0259addd
JB
11838{
11839 return parse_and_eval_address ("e.full_name");
11840}
11841
11842/* Same as ada_unhandled_exception_name_addr, except that this function
11843 should be used when the inferior uses an older version of the runtime,
11844 where the exception name needs to be extracted from a specific frame
11845 several frames up in the callstack. */
11846
11847static CORE_ADDR
11848ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11849{
11850 int frame_level;
11851 struct frame_info *fi;
3eecfa55 11852 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11853
11854 /* To determine the name of this exception, we need to select
11855 the frame corresponding to RAISE_SYM_NAME. This frame is
11856 at least 3 levels up, so we simply skip the first 3 frames
11857 without checking the name of their associated function. */
11858 fi = get_current_frame ();
11859 for (frame_level = 0; frame_level < 3; frame_level += 1)
11860 if (fi != NULL)
11861 fi = get_prev_frame (fi);
11862
11863 while (fi != NULL)
11864 {
692465f1
JB
11865 enum language func_lang;
11866
c6dc63a1
TT
11867 gdb::unique_xmalloc_ptr<char> func_name
11868 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11869 if (func_name != NULL)
11870 {
c6dc63a1 11871 if (strcmp (func_name.get (),
55b87a52
KS
11872 data->exception_info->catch_exception_sym) == 0)
11873 break; /* We found the frame we were looking for... */
55b87a52 11874 }
fb44b1a7 11875 fi = get_prev_frame (fi);
f7f9143b
JB
11876 }
11877
11878 if (fi == NULL)
11879 return 0;
11880
11881 select_frame (fi);
11882 return parse_and_eval_address ("id.full_name");
11883}
11884
11885/* Assuming the inferior just triggered an Ada exception catchpoint
11886 (of any type), return the address in inferior memory where the name
11887 of the exception is stored, if applicable.
11888
45db7c09
PA
11889 Assumes the selected frame is the current frame.
11890
f7f9143b
JB
11891 Return zero if the address could not be computed, or if not relevant. */
11892
11893static CORE_ADDR
761269c8 11894ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11895 struct breakpoint *b)
11896{
3eecfa55
JB
11897 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11898
f7f9143b
JB
11899 switch (ex)
11900 {
761269c8 11901 case ada_catch_exception:
f7f9143b
JB
11902 return (parse_and_eval_address ("e.full_name"));
11903 break;
11904
761269c8 11905 case ada_catch_exception_unhandled:
3eecfa55 11906 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 11907 break;
9f757bf7
XR
11908
11909 case ada_catch_handlers:
11910 return 0; /* The runtimes does not provide access to the exception
11911 name. */
11912 break;
11913
761269c8 11914 case ada_catch_assert:
f7f9143b
JB
11915 return 0; /* Exception name is not relevant in this case. */
11916 break;
11917
11918 default:
11919 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11920 break;
11921 }
11922
11923 return 0; /* Should never be reached. */
11924}
11925
e547c119
JB
11926/* Assuming the inferior is stopped at an exception catchpoint,
11927 return the message which was associated to the exception, if
11928 available. Return NULL if the message could not be retrieved.
11929
e547c119
JB
11930 Note: The exception message can be associated to an exception
11931 either through the use of the Raise_Exception function, or
11932 more simply (Ada 2005 and later), via:
11933
11934 raise Exception_Name with "exception message";
11935
11936 */
11937
6f46ac85 11938static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11939ada_exception_message_1 (void)
11940{
11941 struct value *e_msg_val;
e547c119 11942 int e_msg_len;
e547c119
JB
11943
11944 /* For runtimes that support this feature, the exception message
11945 is passed as an unbounded string argument called "message". */
11946 e_msg_val = parse_and_eval ("message");
11947 if (e_msg_val == NULL)
11948 return NULL; /* Exception message not supported. */
11949
11950 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11951 gdb_assert (e_msg_val != NULL);
11952 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11953
11954 /* If the message string is empty, then treat it as if there was
11955 no exception message. */
11956 if (e_msg_len <= 0)
11957 return NULL;
11958
66920317 11959 return target_read_string (value_address (e_msg_val), INT_MAX);
e547c119
JB
11960}
11961
11962/* Same as ada_exception_message_1, except that all exceptions are
11963 contained here (returning NULL instead). */
11964
6f46ac85 11965static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11966ada_exception_message (void)
11967{
6f46ac85 11968 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11969
a70b8144 11970 try
e547c119
JB
11971 {
11972 e_msg = ada_exception_message_1 ();
11973 }
230d2906 11974 catch (const gdb_exception_error &e)
e547c119 11975 {
6f46ac85 11976 e_msg.reset (nullptr);
e547c119 11977 }
e547c119
JB
11978
11979 return e_msg;
11980}
11981
f7f9143b
JB
11982/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11983 any error that ada_exception_name_addr_1 might cause to be thrown.
11984 When an error is intercepted, a warning with the error message is printed,
11985 and zero is returned. */
11986
11987static CORE_ADDR
761269c8 11988ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11989 struct breakpoint *b)
11990{
f7f9143b
JB
11991 CORE_ADDR result = 0;
11992
a70b8144 11993 try
f7f9143b
JB
11994 {
11995 result = ada_exception_name_addr_1 (ex, b);
11996 }
11997
230d2906 11998 catch (const gdb_exception_error &e)
f7f9143b 11999 {
3d6e9d23 12000 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12001 return 0;
12002 }
12003
12004 return result;
12005}
12006
cb7de75e 12007static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12008 (const char *excep_string,
12009 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12010
12011/* Ada catchpoints.
12012
12013 In the case of catchpoints on Ada exceptions, the catchpoint will
12014 stop the target on every exception the program throws. When a user
12015 specifies the name of a specific exception, we translate this
12016 request into a condition expression (in text form), and then parse
12017 it into an expression stored in each of the catchpoint's locations.
12018 We then use this condition to check whether the exception that was
12019 raised is the one the user is interested in. If not, then the
12020 target is resumed again. We store the name of the requested
12021 exception, in order to be able to re-set the condition expression
12022 when symbols change. */
12023
12024/* An instance of this type is used to represent an Ada catchpoint
5625a286 12025 breakpoint location. */
28010a5d 12026
5625a286 12027class ada_catchpoint_location : public bp_location
28010a5d 12028{
5625a286 12029public:
5f486660 12030 ada_catchpoint_location (breakpoint *owner)
f06f1252 12031 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12032 {}
28010a5d
PA
12033
12034 /* The condition that checks whether the exception that was raised
12035 is the specific exception the user specified on catchpoint
12036 creation. */
4d01a485 12037 expression_up excep_cond_expr;
28010a5d
PA
12038};
12039
c1fc2657 12040/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12041
c1fc2657 12042struct ada_catchpoint : public breakpoint
28010a5d 12043{
37f6a7f4
TT
12044 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12045 : m_kind (kind)
12046 {
12047 }
12048
28010a5d 12049 /* The name of the specific exception the user specified. */
bc18fbb5 12050 std::string excep_string;
37f6a7f4
TT
12051
12052 /* What kind of catchpoint this is. */
12053 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12054};
12055
12056/* Parse the exception condition string in the context of each of the
12057 catchpoint's locations, and store them for later evaluation. */
12058
12059static void
9f757bf7
XR
12060create_excep_cond_exprs (struct ada_catchpoint *c,
12061 enum ada_exception_catchpoint_kind ex)
28010a5d 12062{
fccf9de1
TT
12063 struct bp_location *bl;
12064
28010a5d 12065 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12066 if (c->excep_string.empty ())
28010a5d
PA
12067 return;
12068
12069 /* Same if there are no locations... */
c1fc2657 12070 if (c->loc == NULL)
28010a5d
PA
12071 return;
12072
fccf9de1
TT
12073 /* Compute the condition expression in text form, from the specific
12074 expection we want to catch. */
12075 std::string cond_string
12076 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12077
fccf9de1
TT
12078 /* Iterate over all the catchpoint's locations, and parse an
12079 expression for each. */
12080 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12081 {
12082 struct ada_catchpoint_location *ada_loc
fccf9de1 12083 = (struct ada_catchpoint_location *) bl;
4d01a485 12084 expression_up exp;
28010a5d 12085
fccf9de1 12086 if (!bl->shlib_disabled)
28010a5d 12087 {
bbc13ae3 12088 const char *s;
28010a5d 12089
cb7de75e 12090 s = cond_string.c_str ();
a70b8144 12091 try
28010a5d 12092 {
fccf9de1
TT
12093 exp = parse_exp_1 (&s, bl->address,
12094 block_for_pc (bl->address),
036e657b 12095 0);
28010a5d 12096 }
230d2906 12097 catch (const gdb_exception_error &e)
849f2b52
JB
12098 {
12099 warning (_("failed to reevaluate internal exception condition "
12100 "for catchpoint %d: %s"),
3d6e9d23 12101 c->number, e.what ());
849f2b52 12102 }
28010a5d
PA
12103 }
12104
b22e99fd 12105 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12106 }
28010a5d
PA
12107}
12108
28010a5d
PA
12109/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12110 structure for all exception catchpoint kinds. */
12111
12112static struct bp_location *
37f6a7f4 12113allocate_location_exception (struct breakpoint *self)
28010a5d 12114{
5f486660 12115 return new ada_catchpoint_location (self);
28010a5d
PA
12116}
12117
12118/* Implement the RE_SET method in the breakpoint_ops structure for all
12119 exception catchpoint kinds. */
12120
12121static void
37f6a7f4 12122re_set_exception (struct breakpoint *b)
28010a5d
PA
12123{
12124 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12125
12126 /* Call the base class's method. This updates the catchpoint's
12127 locations. */
2060206e 12128 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12129
12130 /* Reparse the exception conditional expressions. One for each
12131 location. */
37f6a7f4 12132 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12133}
12134
12135/* Returns true if we should stop for this breakpoint hit. If the
12136 user specified a specific exception, we only want to cause a stop
12137 if the program thrown that exception. */
12138
12139static int
12140should_stop_exception (const struct bp_location *bl)
12141{
12142 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12143 const struct ada_catchpoint_location *ada_loc
12144 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12145 int stop;
12146
37f6a7f4
TT
12147 struct internalvar *var = lookup_internalvar ("_ada_exception");
12148 if (c->m_kind == ada_catch_assert)
12149 clear_internalvar (var);
12150 else
12151 {
12152 try
12153 {
12154 const char *expr;
12155
12156 if (c->m_kind == ada_catch_handlers)
12157 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12158 ".all.occurrence.id");
12159 else
12160 expr = "e";
12161
12162 struct value *exc = parse_and_eval (expr);
12163 set_internalvar (var, exc);
12164 }
12165 catch (const gdb_exception_error &ex)
12166 {
12167 clear_internalvar (var);
12168 }
12169 }
12170
28010a5d 12171 /* With no specific exception, should always stop. */
bc18fbb5 12172 if (c->excep_string.empty ())
28010a5d
PA
12173 return 1;
12174
12175 if (ada_loc->excep_cond_expr == NULL)
12176 {
12177 /* We will have a NULL expression if back when we were creating
12178 the expressions, this location's had failed to parse. */
12179 return 1;
12180 }
12181
12182 stop = 1;
a70b8144 12183 try
28010a5d
PA
12184 {
12185 struct value *mark;
12186
12187 mark = value_mark ();
4d01a485 12188 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12189 value_free_to_mark (mark);
12190 }
230d2906 12191 catch (const gdb_exception &ex)
492d29ea
PA
12192 {
12193 exception_fprintf (gdb_stderr, ex,
12194 _("Error in testing exception condition:\n"));
12195 }
492d29ea 12196
28010a5d
PA
12197 return stop;
12198}
12199
12200/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12201 for all exception catchpoint kinds. */
12202
12203static void
37f6a7f4 12204check_status_exception (bpstat bs)
28010a5d
PA
12205{
12206 bs->stop = should_stop_exception (bs->bp_location_at);
12207}
12208
f7f9143b
JB
12209/* Implement the PRINT_IT method in the breakpoint_ops structure
12210 for all exception catchpoint kinds. */
12211
12212static enum print_stop_action
37f6a7f4 12213print_it_exception (bpstat bs)
f7f9143b 12214{
79a45e25 12215 struct ui_out *uiout = current_uiout;
348d480f
PA
12216 struct breakpoint *b = bs->breakpoint_at;
12217
956a9fb9 12218 annotate_catchpoint (b->number);
f7f9143b 12219
112e8700 12220 if (uiout->is_mi_like_p ())
f7f9143b 12221 {
112e8700 12222 uiout->field_string ("reason",
956a9fb9 12223 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12224 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12225 }
12226
112e8700
SM
12227 uiout->text (b->disposition == disp_del
12228 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12229 uiout->field_signed ("bkptno", b->number);
112e8700 12230 uiout->text (", ");
f7f9143b 12231
45db7c09
PA
12232 /* ada_exception_name_addr relies on the selected frame being the
12233 current frame. Need to do this here because this function may be
12234 called more than once when printing a stop, and below, we'll
12235 select the first frame past the Ada run-time (see
12236 ada_find_printable_frame). */
12237 select_frame (get_current_frame ());
12238
37f6a7f4
TT
12239 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12240 switch (c->m_kind)
f7f9143b 12241 {
761269c8
JB
12242 case ada_catch_exception:
12243 case ada_catch_exception_unhandled:
9f757bf7 12244 case ada_catch_handlers:
956a9fb9 12245 {
37f6a7f4 12246 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12247 char exception_name[256];
12248
12249 if (addr != 0)
12250 {
c714b426
PA
12251 read_memory (addr, (gdb_byte *) exception_name,
12252 sizeof (exception_name) - 1);
956a9fb9
JB
12253 exception_name [sizeof (exception_name) - 1] = '\0';
12254 }
12255 else
12256 {
12257 /* For some reason, we were unable to read the exception
12258 name. This could happen if the Runtime was compiled
12259 without debugging info, for instance. In that case,
12260 just replace the exception name by the generic string
12261 "exception" - it will read as "an exception" in the
12262 notification we are about to print. */
967cff16 12263 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12264 }
12265 /* In the case of unhandled exception breakpoints, we print
12266 the exception name as "unhandled EXCEPTION_NAME", to make
12267 it clearer to the user which kind of catchpoint just got
12268 hit. We used ui_out_text to make sure that this extra
12269 info does not pollute the exception name in the MI case. */
37f6a7f4 12270 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12271 uiout->text ("unhandled ");
12272 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12273 }
12274 break;
761269c8 12275 case ada_catch_assert:
956a9fb9
JB
12276 /* In this case, the name of the exception is not really
12277 important. Just print "failed assertion" to make it clearer
12278 that his program just hit an assertion-failure catchpoint.
12279 We used ui_out_text because this info does not belong in
12280 the MI output. */
112e8700 12281 uiout->text ("failed assertion");
956a9fb9 12282 break;
f7f9143b 12283 }
e547c119 12284
6f46ac85 12285 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12286 if (exception_message != NULL)
12287 {
e547c119 12288 uiout->text (" (");
6f46ac85 12289 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12290 uiout->text (")");
e547c119
JB
12291 }
12292
112e8700 12293 uiout->text (" at ");
956a9fb9 12294 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12295
12296 return PRINT_SRC_AND_LOC;
12297}
12298
12299/* Implement the PRINT_ONE method in the breakpoint_ops structure
12300 for all exception catchpoint kinds. */
12301
12302static void
37f6a7f4 12303print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12304{
79a45e25 12305 struct ui_out *uiout = current_uiout;
28010a5d 12306 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12307 struct value_print_options opts;
12308
12309 get_user_print_options (&opts);
f06f1252 12310
79a45b7d 12311 if (opts.addressprint)
f06f1252 12312 uiout->field_skip ("addr");
f7f9143b
JB
12313
12314 annotate_field (5);
37f6a7f4 12315 switch (c->m_kind)
f7f9143b 12316 {
761269c8 12317 case ada_catch_exception:
bc18fbb5 12318 if (!c->excep_string.empty ())
f7f9143b 12319 {
bc18fbb5
TT
12320 std::string msg = string_printf (_("`%s' Ada exception"),
12321 c->excep_string.c_str ());
28010a5d 12322
112e8700 12323 uiout->field_string ("what", msg);
f7f9143b
JB
12324 }
12325 else
112e8700 12326 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12327
12328 break;
12329
761269c8 12330 case ada_catch_exception_unhandled:
112e8700 12331 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12332 break;
12333
9f757bf7 12334 case ada_catch_handlers:
bc18fbb5 12335 if (!c->excep_string.empty ())
9f757bf7
XR
12336 {
12337 uiout->field_fmt ("what",
12338 _("`%s' Ada exception handlers"),
bc18fbb5 12339 c->excep_string.c_str ());
9f757bf7
XR
12340 }
12341 else
12342 uiout->field_string ("what", "all Ada exceptions handlers");
12343 break;
12344
761269c8 12345 case ada_catch_assert:
112e8700 12346 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12347 break;
12348
12349 default:
12350 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12351 break;
12352 }
12353}
12354
12355/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12356 for all exception catchpoint kinds. */
12357
12358static void
37f6a7f4 12359print_mention_exception (struct breakpoint *b)
f7f9143b 12360{
28010a5d 12361 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12362 struct ui_out *uiout = current_uiout;
28010a5d 12363
112e8700 12364 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12365 : _("Catchpoint "));
381befee 12366 uiout->field_signed ("bkptno", b->number);
112e8700 12367 uiout->text (": ");
00eb2c4a 12368
37f6a7f4 12369 switch (c->m_kind)
f7f9143b 12370 {
761269c8 12371 case ada_catch_exception:
bc18fbb5 12372 if (!c->excep_string.empty ())
00eb2c4a 12373 {
862d101a 12374 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12375 c->excep_string.c_str ());
862d101a 12376 uiout->text (info.c_str ());
00eb2c4a 12377 }
f7f9143b 12378 else
112e8700 12379 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12380 break;
12381
761269c8 12382 case ada_catch_exception_unhandled:
112e8700 12383 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12384 break;
9f757bf7
XR
12385
12386 case ada_catch_handlers:
bc18fbb5 12387 if (!c->excep_string.empty ())
9f757bf7
XR
12388 {
12389 std::string info
12390 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12391 c->excep_string.c_str ());
9f757bf7
XR
12392 uiout->text (info.c_str ());
12393 }
12394 else
12395 uiout->text (_("all Ada exceptions handlers"));
12396 break;
12397
761269c8 12398 case ada_catch_assert:
112e8700 12399 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12400 break;
12401
12402 default:
12403 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12404 break;
12405 }
12406}
12407
6149aea9
PA
12408/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12409 for all exception catchpoint kinds. */
12410
12411static void
37f6a7f4 12412print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12413{
28010a5d
PA
12414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12415
37f6a7f4 12416 switch (c->m_kind)
6149aea9 12417 {
761269c8 12418 case ada_catch_exception:
6149aea9 12419 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12420 if (!c->excep_string.empty ())
12421 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12422 break;
12423
761269c8 12424 case ada_catch_exception_unhandled:
78076abc 12425 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12426 break;
12427
9f757bf7
XR
12428 case ada_catch_handlers:
12429 fprintf_filtered (fp, "catch handlers");
12430 break;
12431
761269c8 12432 case ada_catch_assert:
6149aea9
PA
12433 fprintf_filtered (fp, "catch assert");
12434 break;
12435
12436 default:
12437 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12438 }
d9b3f62e 12439 print_recreate_thread (b, fp);
6149aea9
PA
12440}
12441
37f6a7f4 12442/* Virtual tables for various breakpoint types. */
2060206e 12443static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12444static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12445static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12446static struct breakpoint_ops catch_handlers_breakpoint_ops;
12447
f06f1252
TT
12448/* See ada-lang.h. */
12449
12450bool
12451is_ada_exception_catchpoint (breakpoint *bp)
12452{
12453 return (bp->ops == &catch_exception_breakpoint_ops
12454 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12455 || bp->ops == &catch_assert_breakpoint_ops
12456 || bp->ops == &catch_handlers_breakpoint_ops);
12457}
12458
f7f9143b
JB
12459/* Split the arguments specified in a "catch exception" command.
12460 Set EX to the appropriate catchpoint type.
28010a5d 12461 Set EXCEP_STRING to the name of the specific exception if
5845583d 12462 specified by the user.
9f757bf7
XR
12463 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12464 "catch handlers" command. False otherwise.
5845583d
JB
12465 If a condition is found at the end of the arguments, the condition
12466 expression is stored in COND_STRING (memory must be deallocated
12467 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12468
12469static void
a121b7c1 12470catch_ada_exception_command_split (const char *args,
9f757bf7 12471 bool is_catch_handlers_cmd,
761269c8 12472 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12473 std::string *excep_string,
12474 std::string *cond_string)
f7f9143b 12475{
bc18fbb5 12476 std::string exception_name;
f7f9143b 12477
bc18fbb5
TT
12478 exception_name = extract_arg (&args);
12479 if (exception_name == "if")
5845583d
JB
12480 {
12481 /* This is not an exception name; this is the start of a condition
12482 expression for a catchpoint on all exceptions. So, "un-get"
12483 this token, and set exception_name to NULL. */
bc18fbb5 12484 exception_name.clear ();
5845583d
JB
12485 args -= 2;
12486 }
f7f9143b 12487
5845583d 12488 /* Check to see if we have a condition. */
f7f9143b 12489
f1735a53 12490 args = skip_spaces (args);
61012eef 12491 if (startswith (args, "if")
5845583d
JB
12492 && (isspace (args[2]) || args[2] == '\0'))
12493 {
12494 args += 2;
f1735a53 12495 args = skip_spaces (args);
5845583d
JB
12496
12497 if (args[0] == '\0')
12498 error (_("Condition missing after `if' keyword"));
bc18fbb5 12499 *cond_string = args;
5845583d
JB
12500
12501 args += strlen (args);
12502 }
12503
12504 /* Check that we do not have any more arguments. Anything else
12505 is unexpected. */
f7f9143b
JB
12506
12507 if (args[0] != '\0')
12508 error (_("Junk at end of expression"));
12509
9f757bf7
XR
12510 if (is_catch_handlers_cmd)
12511 {
12512 /* Catch handling of exceptions. */
12513 *ex = ada_catch_handlers;
12514 *excep_string = exception_name;
12515 }
bc18fbb5 12516 else if (exception_name.empty ())
f7f9143b
JB
12517 {
12518 /* Catch all exceptions. */
761269c8 12519 *ex = ada_catch_exception;
bc18fbb5 12520 excep_string->clear ();
f7f9143b 12521 }
bc18fbb5 12522 else if (exception_name == "unhandled")
f7f9143b
JB
12523 {
12524 /* Catch unhandled exceptions. */
761269c8 12525 *ex = ada_catch_exception_unhandled;
bc18fbb5 12526 excep_string->clear ();
f7f9143b
JB
12527 }
12528 else
12529 {
12530 /* Catch a specific exception. */
761269c8 12531 *ex = ada_catch_exception;
28010a5d 12532 *excep_string = exception_name;
f7f9143b
JB
12533 }
12534}
12535
12536/* Return the name of the symbol on which we should break in order to
12537 implement a catchpoint of the EX kind. */
12538
12539static const char *
761269c8 12540ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12541{
3eecfa55
JB
12542 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12543
12544 gdb_assert (data->exception_info != NULL);
0259addd 12545
f7f9143b
JB
12546 switch (ex)
12547 {
761269c8 12548 case ada_catch_exception:
3eecfa55 12549 return (data->exception_info->catch_exception_sym);
f7f9143b 12550 break;
761269c8 12551 case ada_catch_exception_unhandled:
3eecfa55 12552 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12553 break;
761269c8 12554 case ada_catch_assert:
3eecfa55 12555 return (data->exception_info->catch_assert_sym);
f7f9143b 12556 break;
9f757bf7
XR
12557 case ada_catch_handlers:
12558 return (data->exception_info->catch_handlers_sym);
12559 break;
f7f9143b
JB
12560 default:
12561 internal_error (__FILE__, __LINE__,
12562 _("unexpected catchpoint kind (%d)"), ex);
12563 }
12564}
12565
12566/* Return the breakpoint ops "virtual table" used for catchpoints
12567 of the EX kind. */
12568
c0a91b2b 12569static const struct breakpoint_ops *
761269c8 12570ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12571{
12572 switch (ex)
12573 {
761269c8 12574 case ada_catch_exception:
f7f9143b
JB
12575 return (&catch_exception_breakpoint_ops);
12576 break;
761269c8 12577 case ada_catch_exception_unhandled:
f7f9143b
JB
12578 return (&catch_exception_unhandled_breakpoint_ops);
12579 break;
761269c8 12580 case ada_catch_assert:
f7f9143b
JB
12581 return (&catch_assert_breakpoint_ops);
12582 break;
9f757bf7
XR
12583 case ada_catch_handlers:
12584 return (&catch_handlers_breakpoint_ops);
12585 break;
f7f9143b
JB
12586 default:
12587 internal_error (__FILE__, __LINE__,
12588 _("unexpected catchpoint kind (%d)"), ex);
12589 }
12590}
12591
12592/* Return the condition that will be used to match the current exception
12593 being raised with the exception that the user wants to catch. This
12594 assumes that this condition is used when the inferior just triggered
12595 an exception catchpoint.
cb7de75e 12596 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12597
cb7de75e 12598static std::string
9f757bf7
XR
12599ada_exception_catchpoint_cond_string (const char *excep_string,
12600 enum ada_exception_catchpoint_kind ex)
f7f9143b 12601{
3d0b0fa3 12602 int i;
fccf9de1 12603 bool is_standard_exc = false;
cb7de75e 12604 std::string result;
9f757bf7
XR
12605
12606 if (ex == ada_catch_handlers)
12607 {
12608 /* For exception handlers catchpoints, the condition string does
12609 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12610 result = ("long_integer (GNAT_GCC_exception_Access"
12611 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12612 }
12613 else
fccf9de1 12614 result = "long_integer (e)";
3d0b0fa3 12615
0963b4bd 12616 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12617 runtime units that have been compiled without debugging info; if
28010a5d 12618 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12619 exception (e.g. "constraint_error") then, during the evaluation
12620 of the condition expression, the symbol lookup on this name would
0963b4bd 12621 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12622 may then be set only on user-defined exceptions which have the
12623 same not-fully-qualified name (e.g. my_package.constraint_error).
12624
12625 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12626 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12627 exception constraint_error" is rewritten into "catch exception
12628 standard.constraint_error".
12629
85102364 12630 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12631 the inferior program, then the only way to specify this exception as a
12632 breakpoint condition is to use its fully-qualified named:
fccf9de1 12633 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12634
12635 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12636 {
28010a5d 12637 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12638 {
fccf9de1 12639 is_standard_exc = true;
9f757bf7 12640 break;
3d0b0fa3
JB
12641 }
12642 }
9f757bf7 12643
fccf9de1
TT
12644 result += " = ";
12645
12646 if (is_standard_exc)
12647 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12648 else
12649 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12650
9f757bf7 12651 return result;
f7f9143b
JB
12652}
12653
12654/* Return the symtab_and_line that should be used to insert an exception
12655 catchpoint of the TYPE kind.
12656
28010a5d
PA
12657 ADDR_STRING returns the name of the function where the real
12658 breakpoint that implements the catchpoints is set, depending on the
12659 type of catchpoint we need to create. */
f7f9143b
JB
12660
12661static struct symtab_and_line
bc18fbb5 12662ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12663 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12664{
12665 const char *sym_name;
12666 struct symbol *sym;
f7f9143b 12667
0259addd
JB
12668 /* First, find out which exception support info to use. */
12669 ada_exception_support_info_sniffer ();
12670
12671 /* Then lookup the function on which we will break in order to catch
f7f9143b 12672 the Ada exceptions requested by the user. */
f7f9143b
JB
12673 sym_name = ada_exception_sym_name (ex);
12674 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12675
57aff202
JB
12676 if (sym == NULL)
12677 error (_("Catchpoint symbol not found: %s"), sym_name);
12678
12679 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12680 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12681
12682 /* Set ADDR_STRING. */
cc12f4a8 12683 *addr_string = sym_name;
f7f9143b 12684
f7f9143b 12685 /* Set OPS. */
4b9eee8c 12686 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12687
f17011e0 12688 return find_function_start_sal (sym, 1);
f7f9143b
JB
12689}
12690
b4a5b78b 12691/* Create an Ada exception catchpoint.
f7f9143b 12692
b4a5b78b 12693 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12694
bc18fbb5 12695 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12696 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12697 of the exception to which this catchpoint applies.
2df4d1d5 12698
bc18fbb5 12699 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12700
b4a5b78b
JB
12701 TEMPFLAG, if nonzero, means that the underlying breakpoint
12702 should be temporary.
28010a5d 12703
b4a5b78b 12704 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12705
349774ef 12706void
28010a5d 12707create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12708 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12709 const std::string &excep_string,
56ecd069 12710 const std::string &cond_string,
28010a5d 12711 int tempflag,
349774ef 12712 int disabled,
28010a5d
PA
12713 int from_tty)
12714{
cc12f4a8 12715 std::string addr_string;
b4a5b78b 12716 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12717 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12718
37f6a7f4 12719 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12720 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12721 ops, tempflag, disabled, from_tty);
28010a5d 12722 c->excep_string = excep_string;
9f757bf7 12723 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12724 if (!cond_string.empty ())
12725 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12726 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12727}
12728
9ac4176b
PA
12729/* Implement the "catch exception" command. */
12730
12731static void
eb4c3f4a 12732catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12733 struct cmd_list_element *command)
12734{
a121b7c1 12735 const char *arg = arg_entry;
9ac4176b
PA
12736 struct gdbarch *gdbarch = get_current_arch ();
12737 int tempflag;
761269c8 12738 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12739 std::string excep_string;
56ecd069 12740 std::string cond_string;
9ac4176b
PA
12741
12742 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12743
12744 if (!arg)
12745 arg = "";
9f757bf7 12746 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12747 &cond_string);
9f757bf7
XR
12748 create_ada_exception_catchpoint (gdbarch, ex_kind,
12749 excep_string, cond_string,
12750 tempflag, 1 /* enabled */,
12751 from_tty);
12752}
12753
12754/* Implement the "catch handlers" command. */
12755
12756static void
12757catch_ada_handlers_command (const char *arg_entry, int from_tty,
12758 struct cmd_list_element *command)
12759{
12760 const char *arg = arg_entry;
12761 struct gdbarch *gdbarch = get_current_arch ();
12762 int tempflag;
12763 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12764 std::string excep_string;
56ecd069 12765 std::string cond_string;
9f757bf7
XR
12766
12767 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12768
12769 if (!arg)
12770 arg = "";
12771 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12772 &cond_string);
b4a5b78b
JB
12773 create_ada_exception_catchpoint (gdbarch, ex_kind,
12774 excep_string, cond_string,
349774ef
JB
12775 tempflag, 1 /* enabled */,
12776 from_tty);
9ac4176b
PA
12777}
12778
71bed2db
TT
12779/* Completion function for the Ada "catch" commands. */
12780
12781static void
12782catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12783 const char *text, const char *word)
12784{
12785 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12786
12787 for (const ada_exc_info &info : exceptions)
12788 {
12789 if (startswith (info.name, word))
b02f78f9 12790 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12791 }
12792}
12793
b4a5b78b 12794/* Split the arguments specified in a "catch assert" command.
5845583d 12795
b4a5b78b
JB
12796 ARGS contains the command's arguments (or the empty string if
12797 no arguments were passed).
5845583d
JB
12798
12799 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12800 (the memory needs to be deallocated after use). */
5845583d 12801
b4a5b78b 12802static void
56ecd069 12803catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12804{
f1735a53 12805 args = skip_spaces (args);
f7f9143b 12806
5845583d 12807 /* Check whether a condition was provided. */
61012eef 12808 if (startswith (args, "if")
5845583d 12809 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12810 {
5845583d 12811 args += 2;
f1735a53 12812 args = skip_spaces (args);
5845583d
JB
12813 if (args[0] == '\0')
12814 error (_("condition missing after `if' keyword"));
56ecd069 12815 cond_string.assign (args);
f7f9143b
JB
12816 }
12817
5845583d
JB
12818 /* Otherwise, there should be no other argument at the end of
12819 the command. */
12820 else if (args[0] != '\0')
12821 error (_("Junk at end of arguments."));
f7f9143b
JB
12822}
12823
9ac4176b
PA
12824/* Implement the "catch assert" command. */
12825
12826static void
eb4c3f4a 12827catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12828 struct cmd_list_element *command)
12829{
a121b7c1 12830 const char *arg = arg_entry;
9ac4176b
PA
12831 struct gdbarch *gdbarch = get_current_arch ();
12832 int tempflag;
56ecd069 12833 std::string cond_string;
9ac4176b
PA
12834
12835 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12836
12837 if (!arg)
12838 arg = "";
56ecd069 12839 catch_ada_assert_command_split (arg, cond_string);
761269c8 12840 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12841 "", cond_string,
349774ef
JB
12842 tempflag, 1 /* enabled */,
12843 from_tty);
9ac4176b 12844}
778865d3
JB
12845
12846/* Return non-zero if the symbol SYM is an Ada exception object. */
12847
12848static int
12849ada_is_exception_sym (struct symbol *sym)
12850{
7d93a1e0 12851 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12852
12853 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12854 && SYMBOL_CLASS (sym) != LOC_BLOCK
12855 && SYMBOL_CLASS (sym) != LOC_CONST
12856 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12857 && type_name != NULL && strcmp (type_name, "exception") == 0);
12858}
12859
12860/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12861 Ada exception object. This matches all exceptions except the ones
12862 defined by the Ada language. */
12863
12864static int
12865ada_is_non_standard_exception_sym (struct symbol *sym)
12866{
12867 int i;
12868
12869 if (!ada_is_exception_sym (sym))
12870 return 0;
12871
12872 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12873 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12874 return 0; /* A standard exception. */
12875
12876 /* Numeric_Error is also a standard exception, so exclude it.
12877 See the STANDARD_EXC description for more details as to why
12878 this exception is not listed in that array. */
987012b8 12879 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12880 return 0;
12881
12882 return 1;
12883}
12884
ab816a27 12885/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12886 objects.
12887
12888 The comparison is determined first by exception name, and then
12889 by exception address. */
12890
ab816a27 12891bool
cc536b21 12892ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12893{
778865d3
JB
12894 int result;
12895
ab816a27
TT
12896 result = strcmp (name, other.name);
12897 if (result < 0)
12898 return true;
12899 if (result == 0 && addr < other.addr)
12900 return true;
12901 return false;
12902}
778865d3 12903
ab816a27 12904bool
cc536b21 12905ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12906{
12907 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12908}
12909
12910/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12911 routine, but keeping the first SKIP elements untouched.
12912
12913 All duplicates are also removed. */
12914
12915static void
ab816a27 12916sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12917 int skip)
12918{
ab816a27
TT
12919 std::sort (exceptions->begin () + skip, exceptions->end ());
12920 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12921 exceptions->end ());
778865d3
JB
12922}
12923
778865d3
JB
12924/* Add all exceptions defined by the Ada standard whose name match
12925 a regular expression.
12926
12927 If PREG is not NULL, then this regexp_t object is used to
12928 perform the symbol name matching. Otherwise, no name-based
12929 filtering is performed.
12930
12931 EXCEPTIONS is a vector of exceptions to which matching exceptions
12932 gets pushed. */
12933
12934static void
2d7cc5c7 12935ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12936 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12937{
12938 int i;
12939
12940 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12941 {
12942 if (preg == NULL
2d7cc5c7 12943 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12944 {
12945 struct bound_minimal_symbol msymbol
12946 = ada_lookup_simple_minsym (standard_exc[i]);
12947
12948 if (msymbol.minsym != NULL)
12949 {
12950 struct ada_exc_info info
77e371c0 12951 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12952
ab816a27 12953 exceptions->push_back (info);
778865d3
JB
12954 }
12955 }
12956 }
12957}
12958
12959/* Add all Ada exceptions defined locally and accessible from the given
12960 FRAME.
12961
12962 If PREG is not NULL, then this regexp_t object is used to
12963 perform the symbol name matching. Otherwise, no name-based
12964 filtering is performed.
12965
12966 EXCEPTIONS is a vector of exceptions to which matching exceptions
12967 gets pushed. */
12968
12969static void
2d7cc5c7
PA
12970ada_add_exceptions_from_frame (compiled_regex *preg,
12971 struct frame_info *frame,
ab816a27 12972 std::vector<ada_exc_info> *exceptions)
778865d3 12973{
3977b71f 12974 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12975
12976 while (block != 0)
12977 {
12978 struct block_iterator iter;
12979 struct symbol *sym;
12980
12981 ALL_BLOCK_SYMBOLS (block, iter, sym)
12982 {
12983 switch (SYMBOL_CLASS (sym))
12984 {
12985 case LOC_TYPEDEF:
12986 case LOC_BLOCK:
12987 case LOC_CONST:
12988 break;
12989 default:
12990 if (ada_is_exception_sym (sym))
12991 {
987012b8 12992 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12993 SYMBOL_VALUE_ADDRESS (sym)};
12994
ab816a27 12995 exceptions->push_back (info);
778865d3
JB
12996 }
12997 }
12998 }
12999 if (BLOCK_FUNCTION (block) != NULL)
13000 break;
13001 block = BLOCK_SUPERBLOCK (block);
13002 }
13003}
13004
14bc53a8
PA
13005/* Return true if NAME matches PREG or if PREG is NULL. */
13006
13007static bool
2d7cc5c7 13008name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13009{
13010 return (preg == NULL
f945dedf 13011 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13012}
13013
778865d3
JB
13014/* Add all exceptions defined globally whose name name match
13015 a regular expression, excluding standard exceptions.
13016
13017 The reason we exclude standard exceptions is that they need
13018 to be handled separately: Standard exceptions are defined inside
13019 a runtime unit which is normally not compiled with debugging info,
13020 and thus usually do not show up in our symbol search. However,
13021 if the unit was in fact built with debugging info, we need to
13022 exclude them because they would duplicate the entry we found
13023 during the special loop that specifically searches for those
13024 standard exceptions.
13025
13026 If PREG is not NULL, then this regexp_t object is used to
13027 perform the symbol name matching. Otherwise, no name-based
13028 filtering is performed.
13029
13030 EXCEPTIONS is a vector of exceptions to which matching exceptions
13031 gets pushed. */
13032
13033static void
2d7cc5c7 13034ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13035 std::vector<ada_exc_info> *exceptions)
778865d3 13036{
14bc53a8
PA
13037 /* In Ada, the symbol "search name" is a linkage name, whereas the
13038 regular expression used to do the matching refers to the natural
13039 name. So match against the decoded name. */
13040 expand_symtabs_matching (NULL,
b5ec771e 13041 lookup_name_info::match_any (),
14bc53a8
PA
13042 [&] (const char *search_name)
13043 {
f945dedf
CB
13044 std::string decoded = ada_decode (search_name);
13045 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13046 },
13047 NULL,
13048 VARIABLES_DOMAIN);
778865d3 13049
2030c079 13050 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13051 {
b669c953 13052 for (compunit_symtab *s : objfile->compunits ())
778865d3 13053 {
d8aeb77f
TT
13054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13055 int i;
778865d3 13056
d8aeb77f
TT
13057 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13058 {
582942f4 13059 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13060 struct block_iterator iter;
13061 struct symbol *sym;
778865d3 13062
d8aeb77f
TT
13063 ALL_BLOCK_SYMBOLS (b, iter, sym)
13064 if (ada_is_non_standard_exception_sym (sym)
987012b8 13065 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13066 {
13067 struct ada_exc_info info
987012b8 13068 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13069
13070 exceptions->push_back (info);
13071 }
13072 }
778865d3
JB
13073 }
13074 }
13075}
13076
13077/* Implements ada_exceptions_list with the regular expression passed
13078 as a regex_t, rather than a string.
13079
13080 If not NULL, PREG is used to filter out exceptions whose names
13081 do not match. Otherwise, all exceptions are listed. */
13082
ab816a27 13083static std::vector<ada_exc_info>
2d7cc5c7 13084ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13085{
ab816a27 13086 std::vector<ada_exc_info> result;
778865d3
JB
13087 int prev_len;
13088
13089 /* First, list the known standard exceptions. These exceptions
13090 need to be handled separately, as they are usually defined in
13091 runtime units that have been compiled without debugging info. */
13092
13093 ada_add_standard_exceptions (preg, &result);
13094
13095 /* Next, find all exceptions whose scope is local and accessible
13096 from the currently selected frame. */
13097
13098 if (has_stack_frames ())
13099 {
ab816a27 13100 prev_len = result.size ();
778865d3
JB
13101 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13102 &result);
ab816a27 13103 if (result.size () > prev_len)
778865d3
JB
13104 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13105 }
13106
13107 /* Add all exceptions whose scope is global. */
13108
ab816a27 13109 prev_len = result.size ();
778865d3 13110 ada_add_global_exceptions (preg, &result);
ab816a27 13111 if (result.size () > prev_len)
778865d3
JB
13112 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13113
778865d3
JB
13114 return result;
13115}
13116
13117/* Return a vector of ada_exc_info.
13118
13119 If REGEXP is NULL, all exceptions are included in the result.
13120 Otherwise, it should contain a valid regular expression,
13121 and only the exceptions whose names match that regular expression
13122 are included in the result.
13123
13124 The exceptions are sorted in the following order:
13125 - Standard exceptions (defined by the Ada language), in
13126 alphabetical order;
13127 - Exceptions only visible from the current frame, in
13128 alphabetical order;
13129 - Exceptions whose scope is global, in alphabetical order. */
13130
ab816a27 13131std::vector<ada_exc_info>
778865d3
JB
13132ada_exceptions_list (const char *regexp)
13133{
2d7cc5c7
PA
13134 if (regexp == NULL)
13135 return ada_exceptions_list_1 (NULL);
778865d3 13136
2d7cc5c7
PA
13137 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13138 return ada_exceptions_list_1 (&reg);
778865d3
JB
13139}
13140
13141/* Implement the "info exceptions" command. */
13142
13143static void
1d12d88f 13144info_exceptions_command (const char *regexp, int from_tty)
778865d3 13145{
778865d3 13146 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13147
ab816a27 13148 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13149
13150 if (regexp != NULL)
13151 printf_filtered
13152 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13153 else
13154 printf_filtered (_("All defined Ada exceptions:\n"));
13155
ab816a27
TT
13156 for (const ada_exc_info &info : exceptions)
13157 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13158}
13159
4c4b4cd2
PH
13160 /* Operators */
13161/* Information about operators given special treatment in functions
13162 below. */
13163/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13164
13165#define ADA_OPERATORS \
13166 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13167 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13168 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13169 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13170 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13171 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13172 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13173 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13174 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13175 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13176 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13177 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13178 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13179 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13180 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13181 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13182 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13183 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13184 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13185
13186static void
554794dc
SDJ
13187ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13188 int *argsp)
4c4b4cd2
PH
13189{
13190 switch (exp->elts[pc - 1].opcode)
13191 {
76a01679 13192 default:
4c4b4cd2
PH
13193 operator_length_standard (exp, pc, oplenp, argsp);
13194 break;
13195
13196#define OP_DEFN(op, len, args, binop) \
13197 case op: *oplenp = len; *argsp = args; break;
13198 ADA_OPERATORS;
13199#undef OP_DEFN
52ce6436
PH
13200
13201 case OP_AGGREGATE:
13202 *oplenp = 3;
13203 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13204 break;
13205
13206 case OP_CHOICES:
13207 *oplenp = 3;
13208 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13209 break;
4c4b4cd2
PH
13210 }
13211}
13212
c0201579
JK
13213/* Implementation of the exp_descriptor method operator_check. */
13214
13215static int
13216ada_operator_check (struct expression *exp, int pos,
13217 int (*objfile_func) (struct objfile *objfile, void *data),
13218 void *data)
13219{
13220 const union exp_element *const elts = exp->elts;
13221 struct type *type = NULL;
13222
13223 switch (elts[pos].opcode)
13224 {
13225 case UNOP_IN_RANGE:
13226 case UNOP_QUAL:
13227 type = elts[pos + 1].type;
13228 break;
13229
13230 default:
13231 return operator_check_standard (exp, pos, objfile_func, data);
13232 }
13233
13234 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13235
13236 if (type && TYPE_OBJFILE (type)
13237 && (*objfile_func) (TYPE_OBJFILE (type), data))
13238 return 1;
13239
13240 return 0;
13241}
13242
a121b7c1 13243static const char *
4c4b4cd2
PH
13244ada_op_name (enum exp_opcode opcode)
13245{
13246 switch (opcode)
13247 {
76a01679 13248 default:
4c4b4cd2 13249 return op_name_standard (opcode);
52ce6436 13250
4c4b4cd2
PH
13251#define OP_DEFN(op, len, args, binop) case op: return #op;
13252 ADA_OPERATORS;
13253#undef OP_DEFN
52ce6436
PH
13254
13255 case OP_AGGREGATE:
13256 return "OP_AGGREGATE";
13257 case OP_CHOICES:
13258 return "OP_CHOICES";
13259 case OP_NAME:
13260 return "OP_NAME";
4c4b4cd2
PH
13261 }
13262}
13263
13264/* As for operator_length, but assumes PC is pointing at the first
13265 element of the operator, and gives meaningful results only for the
52ce6436 13266 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13267
13268static void
76a01679
JB
13269ada_forward_operator_length (struct expression *exp, int pc,
13270 int *oplenp, int *argsp)
4c4b4cd2 13271{
76a01679 13272 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13273 {
13274 default:
13275 *oplenp = *argsp = 0;
13276 break;
52ce6436 13277
4c4b4cd2
PH
13278#define OP_DEFN(op, len, args, binop) \
13279 case op: *oplenp = len; *argsp = args; break;
13280 ADA_OPERATORS;
13281#undef OP_DEFN
52ce6436
PH
13282
13283 case OP_AGGREGATE:
13284 *oplenp = 3;
13285 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13286 break;
13287
13288 case OP_CHOICES:
13289 *oplenp = 3;
13290 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13291 break;
13292
13293 case OP_STRING:
13294 case OP_NAME:
13295 {
13296 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13297
52ce6436
PH
13298 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13299 *argsp = 0;
13300 break;
13301 }
4c4b4cd2
PH
13302 }
13303}
13304
13305static int
13306ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13307{
13308 enum exp_opcode op = exp->elts[elt].opcode;
13309 int oplen, nargs;
13310 int pc = elt;
13311 int i;
76a01679 13312
4c4b4cd2
PH
13313 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13314
76a01679 13315 switch (op)
4c4b4cd2 13316 {
76a01679 13317 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13318 case OP_ATR_FIRST:
13319 case OP_ATR_LAST:
13320 case OP_ATR_LENGTH:
13321 case OP_ATR_IMAGE:
13322 case OP_ATR_MAX:
13323 case OP_ATR_MIN:
13324 case OP_ATR_MODULUS:
13325 case OP_ATR_POS:
13326 case OP_ATR_SIZE:
13327 case OP_ATR_TAG:
13328 case OP_ATR_VAL:
13329 break;
13330
13331 case UNOP_IN_RANGE:
13332 case UNOP_QUAL:
323e0a4a
AC
13333 /* XXX: gdb_sprint_host_address, type_sprint */
13334 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13335 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13336 fprintf_filtered (stream, " (");
13337 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13338 fprintf_filtered (stream, ")");
13339 break;
13340 case BINOP_IN_BOUNDS:
52ce6436
PH
13341 fprintf_filtered (stream, " (%d)",
13342 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13343 break;
13344 case TERNOP_IN_RANGE:
13345 break;
13346
52ce6436
PH
13347 case OP_AGGREGATE:
13348 case OP_OTHERS:
13349 case OP_DISCRETE_RANGE:
13350 case OP_POSITIONAL:
13351 case OP_CHOICES:
13352 break;
13353
13354 case OP_NAME:
13355 case OP_STRING:
13356 {
13357 char *name = &exp->elts[elt + 2].string;
13358 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13359
52ce6436
PH
13360 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13361 break;
13362 }
13363
4c4b4cd2
PH
13364 default:
13365 return dump_subexp_body_standard (exp, stream, elt);
13366 }
13367
13368 elt += oplen;
13369 for (i = 0; i < nargs; i += 1)
13370 elt = dump_subexp (exp, stream, elt);
13371
13372 return elt;
13373}
13374
13375/* The Ada extension of print_subexp (q.v.). */
13376
76a01679
JB
13377static void
13378ada_print_subexp (struct expression *exp, int *pos,
13379 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13380{
52ce6436 13381 int oplen, nargs, i;
4c4b4cd2
PH
13382 int pc = *pos;
13383 enum exp_opcode op = exp->elts[pc].opcode;
13384
13385 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13386
52ce6436 13387 *pos += oplen;
4c4b4cd2
PH
13388 switch (op)
13389 {
13390 default:
52ce6436 13391 *pos -= oplen;
4c4b4cd2
PH
13392 print_subexp_standard (exp, pos, stream, prec);
13393 return;
13394
13395 case OP_VAR_VALUE:
987012b8 13396 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13397 return;
13398
13399 case BINOP_IN_BOUNDS:
323e0a4a 13400 /* XXX: sprint_subexp */
4c4b4cd2 13401 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13402 fputs_filtered (" in ", stream);
4c4b4cd2 13403 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13404 fputs_filtered ("'range", stream);
4c4b4cd2 13405 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13406 fprintf_filtered (stream, "(%ld)",
13407 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13408 return;
13409
13410 case TERNOP_IN_RANGE:
4c4b4cd2 13411 if (prec >= PREC_EQUAL)
76a01679 13412 fputs_filtered ("(", stream);
323e0a4a 13413 /* XXX: sprint_subexp */
4c4b4cd2 13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13415 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13416 print_subexp (exp, pos, stream, PREC_EQUAL);
13417 fputs_filtered (" .. ", stream);
13418 print_subexp (exp, pos, stream, PREC_EQUAL);
13419 if (prec >= PREC_EQUAL)
76a01679
JB
13420 fputs_filtered (")", stream);
13421 return;
4c4b4cd2
PH
13422
13423 case OP_ATR_FIRST:
13424 case OP_ATR_LAST:
13425 case OP_ATR_LENGTH:
13426 case OP_ATR_IMAGE:
13427 case OP_ATR_MAX:
13428 case OP_ATR_MIN:
13429 case OP_ATR_MODULUS:
13430 case OP_ATR_POS:
13431 case OP_ATR_SIZE:
13432 case OP_ATR_TAG:
13433 case OP_ATR_VAL:
4c4b4cd2 13434 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13435 {
78134374 13436 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13437 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13438 &type_print_raw_options);
76a01679
JB
13439 *pos += 3;
13440 }
4c4b4cd2 13441 else
76a01679 13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13443 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13444 if (nargs > 1)
76a01679
JB
13445 {
13446 int tem;
5b4ee69b 13447
76a01679
JB
13448 for (tem = 1; tem < nargs; tem += 1)
13449 {
13450 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13451 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13452 }
13453 fputs_filtered (")", stream);
13454 }
4c4b4cd2 13455 return;
14f9c5c9 13456
4c4b4cd2 13457 case UNOP_QUAL:
4c4b4cd2
PH
13458 type_print (exp->elts[pc + 1].type, "", stream, 0);
13459 fputs_filtered ("'(", stream);
13460 print_subexp (exp, pos, stream, PREC_PREFIX);
13461 fputs_filtered (")", stream);
13462 return;
14f9c5c9 13463
4c4b4cd2 13464 case UNOP_IN_RANGE:
323e0a4a 13465 /* XXX: sprint_subexp */
4c4b4cd2 13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13467 fputs_filtered (" in ", stream);
79d43c61
TT
13468 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13469 &type_print_raw_options);
4c4b4cd2 13470 return;
52ce6436
PH
13471
13472 case OP_DISCRETE_RANGE:
13473 print_subexp (exp, pos, stream, PREC_SUFFIX);
13474 fputs_filtered ("..", stream);
13475 print_subexp (exp, pos, stream, PREC_SUFFIX);
13476 return;
13477
13478 case OP_OTHERS:
13479 fputs_filtered ("others => ", stream);
13480 print_subexp (exp, pos, stream, PREC_SUFFIX);
13481 return;
13482
13483 case OP_CHOICES:
13484 for (i = 0; i < nargs-1; i += 1)
13485 {
13486 if (i > 0)
13487 fputs_filtered ("|", stream);
13488 print_subexp (exp, pos, stream, PREC_SUFFIX);
13489 }
13490 fputs_filtered (" => ", stream);
13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
13492 return;
13493
13494 case OP_POSITIONAL:
13495 print_subexp (exp, pos, stream, PREC_SUFFIX);
13496 return;
13497
13498 case OP_AGGREGATE:
13499 fputs_filtered ("(", stream);
13500 for (i = 0; i < nargs; i += 1)
13501 {
13502 if (i > 0)
13503 fputs_filtered (", ", stream);
13504 print_subexp (exp, pos, stream, PREC_SUFFIX);
13505 }
13506 fputs_filtered (")", stream);
13507 return;
4c4b4cd2
PH
13508 }
13509}
14f9c5c9
AS
13510
13511/* Table mapping opcodes into strings for printing operators
13512 and precedences of the operators. */
13513
d2e4a39e
AS
13514static const struct op_print ada_op_print_tab[] = {
13515 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13516 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13517 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13518 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13519 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13520 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13521 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13522 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13523 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13524 {">=", BINOP_GEQ, PREC_ORDER, 0},
13525 {">", BINOP_GTR, PREC_ORDER, 0},
13526 {"<", BINOP_LESS, PREC_ORDER, 0},
13527 {">>", BINOP_RSH, PREC_SHIFT, 0},
13528 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13529 {"+", BINOP_ADD, PREC_ADD, 0},
13530 {"-", BINOP_SUB, PREC_ADD, 0},
13531 {"&", BINOP_CONCAT, PREC_ADD, 0},
13532 {"*", BINOP_MUL, PREC_MUL, 0},
13533 {"/", BINOP_DIV, PREC_MUL, 0},
13534 {"rem", BINOP_REM, PREC_MUL, 0},
13535 {"mod", BINOP_MOD, PREC_MUL, 0},
13536 {"**", BINOP_EXP, PREC_REPEAT, 0},
13537 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13538 {"-", UNOP_NEG, PREC_PREFIX, 0},
13539 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13540 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13541 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13542 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13543 {".all", UNOP_IND, PREC_SUFFIX, 1},
13544 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13545 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13546 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13547};
13548\f
72d5681a
PH
13549enum ada_primitive_types {
13550 ada_primitive_type_int,
13551 ada_primitive_type_long,
13552 ada_primitive_type_short,
13553 ada_primitive_type_char,
13554 ada_primitive_type_float,
13555 ada_primitive_type_double,
13556 ada_primitive_type_void,
13557 ada_primitive_type_long_long,
13558 ada_primitive_type_long_double,
13559 ada_primitive_type_natural,
13560 ada_primitive_type_positive,
13561 ada_primitive_type_system_address,
08f49010 13562 ada_primitive_type_storage_offset,
72d5681a
PH
13563 nr_ada_primitive_types
13564};
6c038f32 13565
6c038f32
PH
13566\f
13567 /* Language vector */
13568
13569/* Not really used, but needed in the ada_language_defn. */
13570
13571static void
6c7a06a3 13572emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13573{
6c7a06a3 13574 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13575}
13576
13577static int
410a0ff2 13578parse (struct parser_state *ps)
6c038f32
PH
13579{
13580 warnings_issued = 0;
410a0ff2 13581 return ada_parse (ps);
6c038f32
PH
13582}
13583
13584static const struct exp_descriptor ada_exp_descriptor = {
13585 ada_print_subexp,
13586 ada_operator_length,
c0201579 13587 ada_operator_check,
6c038f32
PH
13588 ada_op_name,
13589 ada_dump_subexp_body,
13590 ada_evaluate_subexp
13591};
13592
b5ec771e
PA
13593/* symbol_name_matcher_ftype adapter for wild_match. */
13594
13595static bool
13596do_wild_match (const char *symbol_search_name,
13597 const lookup_name_info &lookup_name,
a207cff2 13598 completion_match_result *comp_match_res)
b5ec771e
PA
13599{
13600 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13601}
13602
13603/* symbol_name_matcher_ftype adapter for full_match. */
13604
13605static bool
13606do_full_match (const char *symbol_search_name,
13607 const lookup_name_info &lookup_name,
a207cff2 13608 completion_match_result *comp_match_res)
b5ec771e
PA
13609{
13610 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13611}
13612
a2cd4f14
JB
13613/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13614
13615static bool
13616do_exact_match (const char *symbol_search_name,
13617 const lookup_name_info &lookup_name,
13618 completion_match_result *comp_match_res)
13619{
13620 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13621}
13622
b5ec771e
PA
13623/* Build the Ada lookup name for LOOKUP_NAME. */
13624
13625ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13626{
e0802d59 13627 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13628
13629 if (user_name[0] == '<')
13630 {
13631 if (user_name.back () == '>')
e0802d59
TT
13632 m_encoded_name
13633 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13634 else
e0802d59
TT
13635 m_encoded_name
13636 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13637 m_encoded_p = true;
13638 m_verbatim_p = true;
13639 m_wild_match_p = false;
13640 m_standard_p = false;
13641 }
13642 else
13643 {
13644 m_verbatim_p = false;
13645
e0802d59 13646 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13647
13648 if (!m_encoded_p)
13649 {
e0802d59 13650 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13651 const char *encoded = ada_encode_1 (folded, false);
13652 if (encoded != NULL)
13653 m_encoded_name = encoded;
13654 else
e0802d59 13655 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13656 }
13657 else
e0802d59 13658 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13659
13660 /* Handle the 'package Standard' special case. See description
13661 of m_standard_p. */
13662 if (startswith (m_encoded_name.c_str (), "standard__"))
13663 {
13664 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13665 m_standard_p = true;
13666 }
13667 else
13668 m_standard_p = false;
74ccd7f5 13669
b5ec771e
PA
13670 /* If the name contains a ".", then the user is entering a fully
13671 qualified entity name, and the match must not be done in wild
13672 mode. Similarly, if the user wants to complete what looks
13673 like an encoded name, the match must not be done in wild
13674 mode. Also, in the standard__ special case always do
13675 non-wild matching. */
13676 m_wild_match_p
13677 = (lookup_name.match_type () != symbol_name_match_type::FULL
13678 && !m_encoded_p
13679 && !m_standard_p
13680 && user_name.find ('.') == std::string::npos);
13681 }
13682}
13683
13684/* symbol_name_matcher_ftype method for Ada. This only handles
13685 completion mode. */
13686
13687static bool
13688ada_symbol_name_matches (const char *symbol_search_name,
13689 const lookup_name_info &lookup_name,
a207cff2 13690 completion_match_result *comp_match_res)
74ccd7f5 13691{
b5ec771e
PA
13692 return lookup_name.ada ().matches (symbol_search_name,
13693 lookup_name.match_type (),
a207cff2 13694 comp_match_res);
b5ec771e
PA
13695}
13696
de63c46b
PA
13697/* A name matcher that matches the symbol name exactly, with
13698 strcmp. */
13699
13700static bool
13701literal_symbol_name_matcher (const char *symbol_search_name,
13702 const lookup_name_info &lookup_name,
13703 completion_match_result *comp_match_res)
13704{
e0802d59 13705 gdb::string_view name_view = lookup_name.name ();
de63c46b 13706
e0802d59
TT
13707 if (lookup_name.completion_mode ()
13708 ? (strncmp (symbol_search_name, name_view.data (),
13709 name_view.size ()) == 0)
13710 : symbol_search_name == name_view)
de63c46b
PA
13711 {
13712 if (comp_match_res != NULL)
13713 comp_match_res->set_match (symbol_search_name);
13714 return true;
13715 }
13716 else
13717 return false;
13718}
13719
c9debfb9 13720/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13721 Ada. */
13722
13723static symbol_name_matcher_ftype *
13724ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13725{
de63c46b
PA
13726 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13727 return literal_symbol_name_matcher;
13728
b5ec771e
PA
13729 if (lookup_name.completion_mode ())
13730 return ada_symbol_name_matches;
74ccd7f5 13731 else
b5ec771e
PA
13732 {
13733 if (lookup_name.ada ().wild_match_p ())
13734 return do_wild_match;
a2cd4f14
JB
13735 else if (lookup_name.ada ().verbatim_p ())
13736 return do_exact_match;
b5ec771e
PA
13737 else
13738 return do_full_match;
13739 }
74ccd7f5
JB
13740}
13741
56618e20
TT
13742static const char *ada_extensions[] =
13743{
13744 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13745};
13746
0874fd07
AB
13747/* Constant data that describes the Ada language. */
13748
13749extern const struct language_data ada_language_data =
13750{
6c038f32 13751 "ada", /* Language name */
6abde28f 13752 "Ada",
6c038f32 13753 language_ada,
6c038f32 13754 range_check_off,
6c038f32
PH
13755 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13756 that's not quite what this means. */
6c038f32 13757 array_row_major,
9a044a89 13758 macro_expansion_no,
56618e20 13759 ada_extensions,
6c038f32
PH
13760 &ada_exp_descriptor,
13761 parse,
6c038f32
PH
13762 resolve,
13763 ada_printchar, /* Print a character constant */
13764 ada_printstr, /* Function to print string constant */
13765 emit_char, /* Function to print single char (not used) */
be942545 13766 ada_print_typedef, /* Print a typedef using appropriate syntax */
2b2d9e11 13767 NULL, /* name_of_this */
59cc4834 13768 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32 13769 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
6c038f32
PH
13770 ada_op_print_tab, /* expression operators for printing */
13771 0, /* c-style arrays */
13772 1, /* String lower bound */
a53b64ea 13773 &ada_varobj_ops,
4be290b2 13774 ada_is_string_type,
721b08c6 13775 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
13776};
13777
0874fd07
AB
13778/* Class representing the Ada language. */
13779
13780class ada_language : public language_defn
13781{
13782public:
13783 ada_language ()
13784 : language_defn (language_ada, ada_language_data)
13785 { /* Nothing. */ }
5bd40f2a
AB
13786
13787 /* Print an array element index using the Ada syntax. */
13788
13789 void print_array_index (struct type *index_type,
13790 LONGEST index,
13791 struct ui_file *stream,
13792 const value_print_options *options) const override
13793 {
13794 struct value *index_value = val_atr (index_type, index);
13795
13796 LA_VALUE_PRINT (index_value, stream, options);
13797 fprintf_filtered (stream, " => ");
13798 }
15e5fd35
AB
13799
13800 /* Implement the "read_var_value" language_defn method for Ada. */
13801
13802 struct value *read_var_value (struct symbol *var,
13803 const struct block *var_block,
13804 struct frame_info *frame) const override
13805 {
13806 /* The only case where default_read_var_value is not sufficient
13807 is when VAR is a renaming... */
13808 if (frame != nullptr)
13809 {
13810 const struct block *frame_block = get_frame_block (frame, NULL);
13811 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13812 return ada_read_renaming_var_value (var, frame_block);
13813 }
13814
13815 /* This is a typical case where we expect the default_read_var_value
13816 function to work. */
13817 return language_defn::read_var_value (var, var_block, frame);
13818 }
1fb314aa
AB
13819
13820 /* See language.h. */
13821 void language_arch_info (struct gdbarch *gdbarch,
13822 struct language_arch_info *lai) const override
13823 {
13824 const struct builtin_type *builtin = builtin_type (gdbarch);
13825
13826 lai->primitive_type_vector
13827 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13828 struct type *);
13829
13830 lai->primitive_type_vector [ada_primitive_type_int]
13831 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13832 0, "integer");
13833 lai->primitive_type_vector [ada_primitive_type_long]
13834 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13835 0, "long_integer");
13836 lai->primitive_type_vector [ada_primitive_type_short]
13837 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13838 0, "short_integer");
13839 lai->string_char_type
13840 = lai->primitive_type_vector [ada_primitive_type_char]
13841 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13842 lai->primitive_type_vector [ada_primitive_type_float]
13843 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13844 "float", gdbarch_float_format (gdbarch));
13845 lai->primitive_type_vector [ada_primitive_type_double]
13846 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13847 "long_float", gdbarch_double_format (gdbarch));
13848 lai->primitive_type_vector [ada_primitive_type_long_long]
13849 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13850 0, "long_long_integer");
13851 lai->primitive_type_vector [ada_primitive_type_long_double]
13852 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13853 "long_long_float", gdbarch_long_double_format (gdbarch));
13854 lai->primitive_type_vector [ada_primitive_type_natural]
13855 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13856 0, "natural");
13857 lai->primitive_type_vector [ada_primitive_type_positive]
13858 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13859 0, "positive");
13860 lai->primitive_type_vector [ada_primitive_type_void]
13861 = builtin->builtin_void;
13862
13863 lai->primitive_type_vector [ada_primitive_type_system_address]
13864 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13865 "void"));
13866 lai->primitive_type_vector [ada_primitive_type_system_address]
13867 ->set_name ("system__address");
13868
13869 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13870 type. This is a signed integral type whose size is the same as
13871 the size of addresses. */
13872 {
13873 unsigned int addr_length = TYPE_LENGTH
13874 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13875
13876 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13877 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13878 "storage_offset");
13879 }
13880
13881 lai->bool_type_symbol = NULL;
13882 lai->bool_type_default = builtin->builtin_bool;
13883 }
4009ee92
AB
13884
13885 /* See language.h. */
13886
13887 bool iterate_over_symbols
13888 (const struct block *block, const lookup_name_info &name,
13889 domain_enum domain,
13890 gdb::function_view<symbol_found_callback_ftype> callback) const override
13891 {
13892 std::vector<struct block_symbol> results;
13893
13894 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13895 for (block_symbol &sym : results)
13896 {
13897 if (!callback (&sym))
13898 return false;
13899 }
13900
13901 return true;
13902 }
6f827019
AB
13903
13904 /* See language.h. */
13905 bool sniff_from_mangled_name (const char *mangled,
13906 char **out) const override
13907 {
13908 std::string demangled = ada_decode (mangled);
13909
13910 *out = NULL;
13911
13912 if (demangled != mangled && demangled[0] != '<')
13913 {
13914 /* Set the gsymbol language to Ada, but still return 0.
13915 Two reasons for that:
13916
13917 1. For Ada, we prefer computing the symbol's decoded name
13918 on the fly rather than pre-compute it, in order to save
13919 memory (Ada projects are typically very large).
13920
13921 2. There are some areas in the definition of the GNAT
13922 encoding where, with a bit of bad luck, we might be able
13923 to decode a non-Ada symbol, generating an incorrect
13924 demangled name (Eg: names ending with "TB" for instance
13925 are identified as task bodies and so stripped from
13926 the decoded name returned).
13927
13928 Returning true, here, but not setting *DEMANGLED, helps us get
13929 a little bit of the best of both worlds. Because we're last,
13930 we should not affect any of the other languages that were
13931 able to demangle the symbol before us; we get to correctly
13932 tag Ada symbols as such; and even if we incorrectly tagged a
13933 non-Ada symbol, which should be rare, any routing through the
13934 Ada language should be transparent (Ada tries to behave much
13935 like C/C++ with non-Ada symbols). */
13936 return true;
13937 }
13938
13939 return false;
13940 }
fbfb0a46
AB
13941
13942 /* See language.h. */
13943
0a50df5d
AB
13944 char *demangle (const char *mangled, int options) const override
13945 {
13946 return ada_la_decode (mangled, options);
13947 }
13948
13949 /* See language.h. */
13950
fbfb0a46
AB
13951 void print_type (struct type *type, const char *varstring,
13952 struct ui_file *stream, int show, int level,
13953 const struct type_print_options *flags) const override
13954 {
13955 ada_print_type (type, varstring, stream, show, level, flags);
13956 }
c9debfb9 13957
53fc67f8
AB
13958 /* See language.h. */
13959
13960 const char *word_break_characters (void) const override
13961 {
13962 return ada_completer_word_break_characters;
13963 }
13964
7e56227d
AB
13965 /* See language.h. */
13966
13967 void collect_symbol_completion_matches (completion_tracker &tracker,
13968 complete_symbol_mode mode,
13969 symbol_name_match_type name_match_type,
13970 const char *text, const char *word,
13971 enum type_code code) const override
13972 {
13973 struct symbol *sym;
13974 const struct block *b, *surrounding_static_block = 0;
13975 struct block_iterator iter;
13976
13977 gdb_assert (code == TYPE_CODE_UNDEF);
13978
13979 lookup_name_info lookup_name (text, name_match_type, true);
13980
13981 /* First, look at the partial symtab symbols. */
13982 expand_symtabs_matching (NULL,
13983 lookup_name,
13984 NULL,
13985 NULL,
13986 ALL_DOMAIN);
13987
13988 /* At this point scan through the misc symbol vectors and add each
13989 symbol you find to the list. Eventually we want to ignore
13990 anything that isn't a text symbol (everything else will be
13991 handled by the psymtab code above). */
13992
13993 for (objfile *objfile : current_program_space->objfiles ())
13994 {
13995 for (minimal_symbol *msymbol : objfile->msymbols ())
13996 {
13997 QUIT;
13998
13999 if (completion_skip_symbol (mode, msymbol))
14000 continue;
14001
14002 language symbol_language = msymbol->language ();
14003
14004 /* Ada minimal symbols won't have their language set to Ada. If
14005 we let completion_list_add_name compare using the
14006 default/C-like matcher, then when completing e.g., symbols in a
14007 package named "pck", we'd match internal Ada symbols like
14008 "pckS", which are invalid in an Ada expression, unless you wrap
14009 them in '<' '>' to request a verbatim match.
14010
14011 Unfortunately, some Ada encoded names successfully demangle as
14012 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14013 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14014 with the wrong language set. Paper over that issue here. */
14015 if (symbol_language == language_auto
14016 || symbol_language == language_cplus)
14017 symbol_language = language_ada;
14018
14019 completion_list_add_name (tracker,
14020 symbol_language,
14021 msymbol->linkage_name (),
14022 lookup_name, text, word);
14023 }
14024 }
14025
14026 /* Search upwards from currently selected frame (so that we can
14027 complete on local vars. */
14028
14029 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14030 {
14031 if (!BLOCK_SUPERBLOCK (b))
14032 surrounding_static_block = b; /* For elmin of dups */
14033
14034 ALL_BLOCK_SYMBOLS (b, iter, sym)
14035 {
14036 if (completion_skip_symbol (mode, sym))
14037 continue;
14038
14039 completion_list_add_name (tracker,
14040 sym->language (),
14041 sym->linkage_name (),
14042 lookup_name, text, word);
14043 }
14044 }
14045
14046 /* Go through the symtabs and check the externs and statics for
14047 symbols which match. */
14048
14049 for (objfile *objfile : current_program_space->objfiles ())
14050 {
14051 for (compunit_symtab *s : objfile->compunits ())
14052 {
14053 QUIT;
14054 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14055 ALL_BLOCK_SYMBOLS (b, iter, sym)
14056 {
14057 if (completion_skip_symbol (mode, sym))
14058 continue;
14059
14060 completion_list_add_name (tracker,
14061 sym->language (),
14062 sym->linkage_name (),
14063 lookup_name, text, word);
14064 }
14065 }
14066 }
14067
14068 for (objfile *objfile : current_program_space->objfiles ())
14069 {
14070 for (compunit_symtab *s : objfile->compunits ())
14071 {
14072 QUIT;
14073 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14074 /* Don't do this block twice. */
14075 if (b == surrounding_static_block)
14076 continue;
14077 ALL_BLOCK_SYMBOLS (b, iter, sym)
14078 {
14079 if (completion_skip_symbol (mode, sym))
14080 continue;
14081
14082 completion_list_add_name (tracker,
14083 sym->language (),
14084 sym->linkage_name (),
14085 lookup_name, text, word);
14086 }
14087 }
14088 }
14089 }
14090
f16a9f57
AB
14091 /* See language.h. */
14092
14093 gdb::unique_xmalloc_ptr<char> watch_location_expression
14094 (struct type *type, CORE_ADDR addr) const override
14095 {
14096 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14097 std::string name = type_to_string (type);
14098 return gdb::unique_xmalloc_ptr<char>
14099 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14100 }
14101
a1d1fa3e
AB
14102 /* See language.h. */
14103
14104 void value_print (struct value *val, struct ui_file *stream,
14105 const struct value_print_options *options) const override
14106 {
14107 return ada_value_print (val, stream, options);
14108 }
14109
ebe2334e
AB
14110 /* See language.h. */
14111
14112 void value_print_inner
14113 (struct value *val, struct ui_file *stream, int recurse,
14114 const struct value_print_options *options) const override
14115 {
14116 return ada_value_print_inner (val, stream, recurse, options);
14117 }
14118
c9debfb9
AB
14119protected:
14120 /* See language.h. */
14121
14122 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14123 (const lookup_name_info &lookup_name) const override
14124 {
14125 return ada_get_symbol_name_matcher (lookup_name);
14126 }
0874fd07
AB
14127};
14128
14129/* Single instance of the Ada language class. */
14130
14131static ada_language ada_language_defn;
14132
5bf03f13
JB
14133/* Command-list for the "set/show ada" prefix command. */
14134static struct cmd_list_element *set_ada_list;
14135static struct cmd_list_element *show_ada_list;
14136
2060206e
PA
14137static void
14138initialize_ada_catchpoint_ops (void)
14139{
14140 struct breakpoint_ops *ops;
14141
14142 initialize_breakpoint_ops ();
14143
14144 ops = &catch_exception_breakpoint_ops;
14145 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14146 ops->allocate_location = allocate_location_exception;
14147 ops->re_set = re_set_exception;
14148 ops->check_status = check_status_exception;
14149 ops->print_it = print_it_exception;
14150 ops->print_one = print_one_exception;
14151 ops->print_mention = print_mention_exception;
14152 ops->print_recreate = print_recreate_exception;
2060206e
PA
14153
14154 ops = &catch_exception_unhandled_breakpoint_ops;
14155 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14156 ops->allocate_location = allocate_location_exception;
14157 ops->re_set = re_set_exception;
14158 ops->check_status = check_status_exception;
14159 ops->print_it = print_it_exception;
14160 ops->print_one = print_one_exception;
14161 ops->print_mention = print_mention_exception;
14162 ops->print_recreate = print_recreate_exception;
2060206e
PA
14163
14164 ops = &catch_assert_breakpoint_ops;
14165 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14166 ops->allocate_location = allocate_location_exception;
14167 ops->re_set = re_set_exception;
14168 ops->check_status = check_status_exception;
14169 ops->print_it = print_it_exception;
14170 ops->print_one = print_one_exception;
14171 ops->print_mention = print_mention_exception;
14172 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14173
14174 ops = &catch_handlers_breakpoint_ops;
14175 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14176 ops->allocate_location = allocate_location_exception;
14177 ops->re_set = re_set_exception;
14178 ops->check_status = check_status_exception;
14179 ops->print_it = print_it_exception;
14180 ops->print_one = print_one_exception;
14181 ops->print_mention = print_mention_exception;
14182 ops->print_recreate = print_recreate_exception;
2060206e
PA
14183}
14184
3d9434b5
JB
14185/* This module's 'new_objfile' observer. */
14186
14187static void
14188ada_new_objfile_observer (struct objfile *objfile)
14189{
14190 ada_clear_symbol_cache ();
14191}
14192
14193/* This module's 'free_objfile' observer. */
14194
14195static void
14196ada_free_objfile_observer (struct objfile *objfile)
14197{
14198 ada_clear_symbol_cache ();
14199}
14200
6c265988 14201void _initialize_ada_language ();
d2e4a39e 14202void
6c265988 14203_initialize_ada_language ()
14f9c5c9 14204{
2060206e
PA
14205 initialize_ada_catchpoint_ops ();
14206
0743fc83
TT
14207 add_basic_prefix_cmd ("ada", no_class,
14208 _("Prefix command for changing Ada-specific settings."),
14209 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14210
0743fc83
TT
14211 add_show_prefix_cmd ("ada", no_class,
14212 _("Generic command for showing Ada-specific settings."),
14213 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14214
14215 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14216 &trust_pad_over_xvs, _("\
590042fc
PW
14217Enable or disable an optimization trusting PAD types over XVS types."), _("\
14218Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14219 _("\
14220This is related to the encoding used by the GNAT compiler. The debugger\n\
14221should normally trust the contents of PAD types, but certain older versions\n\
14222of GNAT have a bug that sometimes causes the information in the PAD type\n\
14223to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14224work around this bug. It is always safe to turn this option \"off\", but\n\
14225this incurs a slight performance penalty, so it is recommended to NOT change\n\
14226this option to \"off\" unless necessary."),
14227 NULL, NULL, &set_ada_list, &show_ada_list);
14228
d72413e6
PMR
14229 add_setshow_boolean_cmd ("print-signatures", class_vars,
14230 &print_signatures, _("\
14231Enable or disable the output of formal and return types for functions in the \
590042fc 14232overloads selection menu."), _("\
d72413e6 14233Show whether the output of formal and return types for functions in the \
590042fc 14234overloads selection menu is activated."),
d72413e6
PMR
14235 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14236
9ac4176b
PA
14237 add_catch_command ("exception", _("\
14238Catch Ada exceptions, when raised.\n\
9bf7038b 14239Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14240Without any argument, stop when any Ada exception is raised.\n\
14241If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14242being raised does not have a handler (and will therefore lead to the task's\n\
14243termination).\n\
14244Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14245raised is the same as ARG.\n\
14246CONDITION is a boolean expression that is evaluated to see whether the\n\
14247exception should cause a stop."),
9ac4176b 14248 catch_ada_exception_command,
71bed2db 14249 catch_ada_completer,
9ac4176b
PA
14250 CATCH_PERMANENT,
14251 CATCH_TEMPORARY);
9f757bf7
XR
14252
14253 add_catch_command ("handlers", _("\
14254Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14255Usage: catch handlers [ARG] [if CONDITION]\n\
14256Without any argument, stop when any Ada exception is handled.\n\
14257With an argument, catch only exceptions with the given name.\n\
14258CONDITION is a boolean expression that is evaluated to see whether the\n\
14259exception should cause a stop."),
9f757bf7 14260 catch_ada_handlers_command,
71bed2db 14261 catch_ada_completer,
9f757bf7
XR
14262 CATCH_PERMANENT,
14263 CATCH_TEMPORARY);
9ac4176b
PA
14264 add_catch_command ("assert", _("\
14265Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14266Usage: catch assert [if CONDITION]\n\
14267CONDITION is a boolean expression that is evaluated to see whether the\n\
14268exception should cause a stop."),
9ac4176b
PA
14269 catch_assert_command,
14270 NULL,
14271 CATCH_PERMANENT,
14272 CATCH_TEMPORARY);
14273
6c038f32 14274 varsize_limit = 65536;
3fcded8f
JB
14275 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14276 &varsize_limit, _("\
14277Set the maximum number of bytes allowed in a variable-size object."), _("\
14278Show the maximum number of bytes allowed in a variable-size object."), _("\
14279Attempts to access an object whose size is not a compile-time constant\n\
14280and exceeds this limit will cause an error."),
14281 NULL, NULL, &setlist, &showlist);
6c038f32 14282
778865d3
JB
14283 add_info ("exceptions", info_exceptions_command,
14284 _("\
14285List all Ada exception names.\n\
9bf7038b 14286Usage: info exceptions [REGEXP]\n\
778865d3
JB
14287If a regular expression is passed as an argument, only those matching\n\
14288the regular expression are listed."));
14289
0743fc83
TT
14290 add_basic_prefix_cmd ("ada", class_maintenance,
14291 _("Set Ada maintenance-related variables."),
14292 &maint_set_ada_cmdlist, "maintenance set ada ",
14293 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14294
0743fc83
TT
14295 add_show_prefix_cmd ("ada", class_maintenance,
14296 _("Show Ada maintenance-related variables."),
14297 &maint_show_ada_cmdlist, "maintenance show ada ",
14298 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14299
14300 add_setshow_boolean_cmd
14301 ("ignore-descriptive-types", class_maintenance,
14302 &ada_ignore_descriptive_types_p,
14303 _("Set whether descriptive types generated by GNAT should be ignored."),
14304 _("Show whether descriptive types generated by GNAT should be ignored."),
14305 _("\
14306When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14307DWARF attribute."),
14308 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14309
459a2e4c
TT
14310 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14311 NULL, xcalloc, xfree);
6b69afc4 14312
3d9434b5 14313 /* The ada-lang observers. */
76727919
TT
14314 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14315 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14316 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14317}