]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
2004-07-28 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
756fe439 3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
34e8f22d
RE
39
40#include "arm-tdep.h"
26216b98 41#include "gdb/sim-arm.h"
34e8f22d 42
082fc60d
RE
43#include "elf-bfd.h"
44#include "coff/internal.h"
97e03143 45#include "elf/arm.h"
c906108c 46
26216b98
AC
47#include "gdb_assert.h"
48
6529d2dd
AC
49static int arm_debug;
50
2a451106
KB
51/* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
3bb04bdd
AC
72#ifdef SIGCONTEXT_REGISTER_ADDRESS
73#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75#endif
76#else
77#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
79#endif
80
082fc60d
RE
81/* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 83 is used for this purpose.
082fc60d
RE
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
87
88#define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92#define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
afd7eef0
RE
95/* The list of available "set arm ..." and "show arm ..." commands. */
96static struct cmd_list_element *setarmcmdlist = NULL;
97static struct cmd_list_element *showarmcmdlist = NULL;
98
fd50bc42
RE
99/* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101static const char *fp_model_strings[] =
102{
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108};
109
110/* A variable that can be configured by the user. */
111static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112static const char *current_fp_model = "auto";
113
94c30b78 114/* Number of different reg name sets (options). */
afd7eef0 115static int num_disassembly_options;
bc90b915
FN
116
117/* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
94c30b78 120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 121
94c30b78 122/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 123static char * arm_register_name_strings[] =
da59e081
JM
124{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 130 "fps", "cpsr" }; /* 24 25 */
966fbf70 131static char **arm_register_names = arm_register_name_strings;
ed9a39eb 132
afd7eef0
RE
133/* Valid register name styles. */
134static const char **valid_disassembly_styles;
ed9a39eb 135
afd7eef0
RE
136/* Disassembly style to use. Default to "std" register names. */
137static const char *disassembly_style;
94c30b78 138/* Index to that option in the opcodes table. */
da3c6d4a 139static int current_option;
96baa820 140
ed9a39eb 141/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
142 style. */
143static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 144 struct cmd_list_element *);
afd7eef0 145static void set_disassembly_style (void);
ed9a39eb 146
b508a996
RE
147static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
ed9a39eb 151
9b8d791a 152struct arm_prologue_cache
c3b4394c 153{
eb5492fa
DJ
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
c3b4394c
RE
164 int framesize;
165 int frameoffset;
eb5492fa
DJ
166
167 /* The register used to hold the frame pointer for this frame. */
c3b4394c 168 int framereg;
eb5492fa
DJ
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
c3b4394c 172};
ed9a39eb 173
bc90b915
FN
174/* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176#define IS_THUMB_ADDR(addr) ((addr) & 1)
177#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
94c30b78 180/* Set to true if the 32-bit mode is in use. */
c906108c
SS
181
182int arm_apcs_32 = 1;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
c906108c
SS
189
190static int target_is_thumb;
191
ed9a39eb
JM
192/* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
e4a2df64 194 arm_pc_is_thumb. */
c906108c
SS
195
196static int caller_is_thumb;
197
ed9a39eb
JM
198/* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
c906108c 200
34e8f22d 201int
2a451106 202arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 203{
c5aa993b 204 struct minimal_symbol *sym;
c906108c 205
ed9a39eb 206 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
ed9a39eb 210 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
c5aa993b 214 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
215 }
216 else
ed9a39eb
JM
217 {
218 return 0;
219 }
c906108c
SS
220}
221
ed9a39eb
JM
222/* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
c906108c 224
34e8f22d 225int
2a451106 226arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 227{
c5aa993b 228 CORE_ADDR sp = read_sp ();
c906108c 229
dfcd3bfb
JM
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 236 code regions as part of the stack (true for most practical purposes). */
30a4a8e0 237 if (deprecated_pc_in_call_dummy (memaddr))
c906108c
SS
238 return caller_is_thumb;
239 else
240 return 0;
241}
242
181c1381 243/* Remove useless bits from addresses in a running program. */
34e8f22d 244static CORE_ADDR
ed9a39eb 245arm_addr_bits_remove (CORE_ADDR val)
c906108c 246{
a3a2ee65
JT
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 249 else
a3a2ee65 250 return (val & 0x03fffffc);
c906108c
SS
251}
252
181c1381
RE
253/* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
34e8f22d 255static CORE_ADDR
181c1381
RE
256arm_smash_text_address (CORE_ADDR val)
257{
258 return val & ~1;
259}
260
34e8f22d
RE
261/* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266static CORE_ADDR
ed9a39eb 267arm_saved_pc_after_call (struct frame_info *frame)
c906108c 268{
34e8f22d 269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
270}
271
0defa245
RE
272/* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
148754e5 276static int
ed9a39eb 277arm_frameless_function_invocation (struct frame_info *fi)
392a587b 278{
392a587b 279 CORE_ADDR func_start, after_prologue;
96baa820 280 int frameless;
ed9a39eb 281
0defa245
RE
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
782263ab 294 func_start = (get_frame_func (fi) + DEPRECATED_FUNCTION_START_OFFSET);
7be570e7 295 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 296
96baa820 297 /* There are some frameless functions whose first two instructions
ed9a39eb 298 follow the standard APCS form, in which case after_prologue will
94c30b78 299 be func_start + 8. */
ed9a39eb 300
96baa820 301 frameless = (after_prologue < func_start + 12);
392a587b
JM
302 return frameless;
303}
304
c906108c 305/* A typical Thumb prologue looks like this:
c5aa993b
JM
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
c906108c 309 Sometimes the latter instruction may be replaced by:
da59e081
JM
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 331 */
c906108c
SS
332
333static CORE_ADDR
c7885828 334thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
335{
336 CORE_ADDR current_pc;
da3c6d4a
MS
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
94c30b78
MS
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 346 current_pc += 2)
c906108c
SS
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
94c30b78 350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 351 {
94c30b78 352 findmask |= 1; /* push found */
da59e081 353 }
da3c6d4a
MS
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
da59e081 356 {
94c30b78 357 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
358 continue;
359 else
94c30b78 360 findmask |= 4; /* add/sub sp found */
da59e081
JM
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
94c30b78 364 findmask |= 2; /* setting of r7 found */
da59e081
JM
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
94c30b78 368 findmask |= 2; /* setting of r7 found */
da59e081 369 }
3d74b771
FF
370 else if (findmask == (4+2+1))
371 {
da3c6d4a
MS
372 /* We have found one of each type of prologue instruction */
373 break;
3d74b771 374 }
da59e081 375 else
94c30b78 376 /* Something in the prolog that we don't care about or some
da3c6d4a 377 instruction from outside the prolog scheduled here for
94c30b78 378 optimization. */
da3c6d4a 379 continue;
c906108c
SS
380 }
381
382 return current_pc;
383}
384
da3c6d4a
MS
385/* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
34e8f22d
RE
387
388 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 389 prologue:
c906108c 390
c5aa993b
JM
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 399
34e8f22d 400static CORE_ADDR
ed9a39eb 401arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
402{
403 unsigned long inst;
404 CORE_ADDR skip_pc;
b8d5e71d 405 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 406 char *func_name;
c906108c
SS
407 struct symtab_and_line sal;
408
848cfffb 409 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 410 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
411 return pc;
412
96baa820 413 /* See what the symbol table says. */
ed9a39eb 414
50f6fb4b 415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 416 {
50f6fb4b
CV
417 struct symbol *sym;
418
419 /* Found a function. */
176620f1 420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
94c30b78 423 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
c906108c
SS
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
c7885828 432 return thumb_skip_prologue (pc, func_end);
c906108c
SS
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 435 by disassembling the instructions. */
c906108c 436
b8d5e71d
MS
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
c906108c 440
b8d5e71d 441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 442 {
f43845b3 443 inst = read_memory_integer (skip_pc, 4);
f43845b3 444
b8d5e71d
MS
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
c906108c 448
28cd8767
JG
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
b8d5e71d
MS
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
c906108c 458
b8d5e71d
MS
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
c906108c 461
b8d5e71d
MS
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
11d3b27d 464
b8d5e71d
MS
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
f43845b3 468
b8d5e71d
MS
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
f43845b3 496 }
c906108c 497
b8d5e71d 498 return skip_pc; /* End of prologue */
c906108c 499}
94c30b78 500
c5aa993b 501/* *INDENT-OFF* */
c906108c
SS
502/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
c906108c 508
da59e081
JM
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
c906108c
SS
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
517 12 bytes. The frame register is R7.
518
da3c6d4a
MS
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
c5aa993b
JM
521/* *INDENT-ON* */
522
c906108c 523static void
eb5492fa 524thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
525{
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
94c30b78 529 /* Which register has been copied to register n? */
da3c6d4a
MS
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
c5aa993b 537 int i;
c906108c 538
eb5492fa 539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
94c30b78 543 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 544 prologue_end = prev_pc;
c906108c 545 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 546 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
547 }
548 else
da3c6d4a
MS
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
c906108c 552
eb5492fa 553 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
da59e081
JM
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
c906108c 563
9b8d791a 564 cache->framesize = 0;
da59e081
JM
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
c906108c
SS
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
c5aa993b 575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 576 {
da59e081 577 int mask;
94c30b78 578 findmask |= 1; /* push found */
c906108c
SS
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
da59e081 581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 582
b8d5e71d 583 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 585 if (mask & (1 << regno))
c5aa993b 586 {
9b8d791a 587 cache->framesize += 4;
eb5492fa 588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
c906108c
SS
591 }
592 }
da3c6d4a
MS
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
c906108c 595 {
b8d5e71d 596 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
597 continue;
598 else
94c30b78 599 findmask |= 4; /* add/sub sp found */
da59e081 600
94c30b78
MS
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 603 {
9b8d791a 604 cache->frameoffset += offset;
da59e081
JM
605 offset = -offset;
606 }
9b8d791a 607 cache->framesize -= offset;
c906108c
SS
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
94c30b78 611 findmask |= 2; /* setting of r7 found */
9b8d791a 612 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 613 /* get scaled offset */
9b8d791a 614 cache->frameoffset = (insn & 0xff) << 2;
c906108c 615 }
da59e081 616 else if (insn == 0x466f) /* mov r7, sp */
c906108c 617 {
94c30b78 618 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
34e8f22d 621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
da3c6d4a 625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
628 }
629 else
da3c6d4a
MS
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
c906108c
SS
634 }
635}
636
ed9a39eb 637/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
c906108c
SS
642 This information is stored in the "extra" fields of the frame_info.
643
96baa820
JM
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
ed9a39eb
JM
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
96baa820 651
c906108c 652 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
c906108c 660 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
ed9a39eb 667
96baa820
JM
668 A variable argument function call will look like:
669
ed9a39eb
JM
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
96baa820 675 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
96baa820
JM
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
ed9a39eb
JM
701
702 */
c906108c
SS
703
704static void
eb5492fa 705arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 706{
28cd8767 707 int regno, sp_offset, fp_offset, ip_offset;
c906108c 708 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 710
c906108c 711 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
c906108c
SS
715
716 /* Check for Thumb prologue. */
eb5492fa 717 if (arm_pc_is_thumb (prev_pc))
c906108c 718 {
eb5492fa 719 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 726 {
2a451106
KB
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
eb5492fa 733 prologue_end = prev_pc;
2a451106
KB
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
94c30b78 757 the scheduler. */
2a451106
KB
758
759 if (prologue_end > prologue_start + 64)
760 {
94c30b78 761 prologue_end = prologue_start + 64; /* See above. */
2a451106 762 }
c906108c
SS
763 }
764 else
765 {
eb5492fa
DJ
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 780 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 781 }
c906108c
SS
782 }
783
eb5492fa
DJ
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
c906108c 787 /* Now search the prologue looking for instructions that set up the
96baa820 788 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 789
96baa820
JM
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 793 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 798 if we don't see this as the first insn, we will stop.
c906108c 799
f43845b3
MS
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 802
f43845b3
MS
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
b8d5e71d 806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 807
28cd8767 808 sp_offset = fp_offset = ip_offset = 0;
f43845b3 809
94c30b78
MS
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
f43845b3 812 current_pc += 4)
96baa820 813 {
d4473757
KB
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
94c30b78 816 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 817 {
28cd8767
JG
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
f43845b3
MS
835 continue;
836 }
94c30b78 837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 838 {
e28a332c
JG
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
c906108c 847 {
d4473757 848 int mask = insn & 0xffff;
ed9a39eb 849
94c30b78 850 /* Calculate offsets of saved registers. */
34e8f22d 851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
eb5492fa 855 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
856 }
857 }
b8d5e71d
MS
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
d4473757
KB
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
94c30b78
MS
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 876 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 877 fp_offset = -imm + ip_offset;
9b8d791a 878 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
94c30b78
MS
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
34e8f22d 890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 891 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
94c30b78 898 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 899 {
d4473757
KB
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
96baa820 904 }
d4473757 905 else
96baa820 906 {
d4473757
KB
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
96baa820 911 }
d4473757 912
34e8f22d 913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
916 {
917 sp_offset -= 12;
eb5492fa 918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 919 }
c906108c 920 }
d4473757 921 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 922 break; /* Condition not true, exit early */
b8d5e71d 923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 924 break; /* Don't scan past a block load */
d4473757
KB
925 else
926 /* The optimizer might shove anything into the prologue,
94c30b78 927 so we just skip what we don't recognize. */
d4473757 928 continue;
c906108c
SS
929 }
930
94c30b78
MS
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
d4473757 937 else
9b8d791a 938 cache->frameoffset = 0;
c906108c
SS
939}
940
eb5492fa
DJ
941static struct arm_prologue_cache *
942arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 943{
eb5492fa
DJ
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
c5aa993b 947
eb5492fa
DJ
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 950
eb5492fa 951 arm_scan_prologue (next_frame, cache);
848cfffb 952
eb5492fa
DJ
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
c906108c 956
eb5492fa 957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 958
eb5492fa
DJ
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 962 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
c906108c
SS
966}
967
eb5492fa
DJ
968/* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
c906108c 970
148754e5 971static void
eb5492fa
DJ
972arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
c906108c 975{
eb5492fa
DJ
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
f079148d 979
eb5492fa
DJ
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
2a451106 983
eb5492fa 984 func = frame_func_unwind (next_frame);
2a451106 985
eb5492fa
DJ
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
9e815ec2 988 if (func <= LOWEST_PC)
eb5492fa 989 return;
5a203e44 990
eb5492fa
DJ
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
24de872b 994
eb5492fa 995 id = frame_id_build (cache->prev_sp, func);
eb5492fa 996 *this_id = id;
c906108c
SS
997}
998
eb5492fa
DJ
999static void
1000arm_prologue_prev_register (struct frame_info *next_frame,
1001 void **this_cache,
1002 int prev_regnum,
1003 int *optimized,
1004 enum lval_type *lvalp,
1005 CORE_ADDR *addrp,
1006 int *realnump,
1007 void *valuep)
24de872b
DJ
1008{
1009 struct arm_prologue_cache *cache;
1010
eb5492fa
DJ
1011 if (*this_cache == NULL)
1012 *this_cache = arm_make_prologue_cache (next_frame);
1013 cache = *this_cache;
24de872b 1014
eb5492fa
DJ
1015 /* If we are asked to unwind the PC, then we need to return the LR
1016 instead. The saved value of PC points into this frame's
1017 prologue, not the next frame's resume location. */
1018 if (prev_regnum == ARM_PC_REGNUM)
1019 prev_regnum = ARM_LR_REGNUM;
24de872b 1020
eb5492fa
DJ
1021 /* SP is generally not saved to the stack, but this frame is
1022 identified by NEXT_FRAME's stack pointer at the time of the call.
1023 The value was already reconstructed into PREV_SP. */
1024 if (prev_regnum == ARM_SP_REGNUM)
1025 {
1026 *lvalp = not_lval;
1027 if (valuep)
1028 store_unsigned_integer (valuep, 4, cache->prev_sp);
1029 return;
1030 }
1031
1032 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1033 optimized, lvalp, addrp, realnump, valuep);
1034}
1035
1036struct frame_unwind arm_prologue_unwind = {
1037 NORMAL_FRAME,
1038 arm_prologue_this_id,
1039 arm_prologue_prev_register
1040};
1041
1042static const struct frame_unwind *
1043arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1044{
1045 return &arm_prologue_unwind;
24de872b
DJ
1046}
1047
1048static CORE_ADDR
eb5492fa 1049arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1050{
1051 struct arm_prologue_cache *cache;
1052
eb5492fa
DJ
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1058}
1059
eb5492fa
DJ
1060struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065};
1066
1067static struct arm_prologue_cache *
1068arm_make_sigtramp_cache (struct frame_info *next_frame)
24de872b
DJ
1069{
1070 struct arm_prologue_cache *cache;
eb5492fa
DJ
1071 int reg;
1072
1073 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
24de872b 1074
eb5492fa 1075 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
24de872b 1076
eb5492fa 1077 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
24de872b 1078
eb5492fa
DJ
1079 for (reg = 0; reg < NUM_REGS; reg++)
1080 cache->saved_regs[reg].addr
1081 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1082 frame_pc_unwind (next_frame), reg);
24de872b 1083
eb5492fa
DJ
1084 /* FIXME: What about thumb mode? */
1085 cache->framereg = ARM_SP_REGNUM;
1086 cache->prev_sp
1087 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
7a5ea0d4 1088 register_size (current_gdbarch, cache->framereg));
eb5492fa
DJ
1089
1090 return cache;
24de872b 1091}
c906108c 1092
eb5492fa
DJ
1093static void
1094arm_sigtramp_this_id (struct frame_info *next_frame,
1095 void **this_cache,
1096 struct frame_id *this_id)
1097{
1098 struct arm_prologue_cache *cache;
c906108c 1099
eb5492fa
DJ
1100 if (*this_cache == NULL)
1101 *this_cache = arm_make_sigtramp_cache (next_frame);
1102 cache = *this_cache;
c906108c 1103
eb5492fa
DJ
1104 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1105 the sigtramp frame; the PC should be the beginning of the trampoline. */
1106 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1107}
1108
1109static void
1110arm_sigtramp_prev_register (struct frame_info *next_frame,
1111 void **this_cache,
1112 int prev_regnum,
1113 int *optimized,
1114 enum lval_type *lvalp,
1115 CORE_ADDR *addrp,
1116 int *realnump,
1117 void *valuep)
c906108c 1118{
eb5492fa 1119 struct arm_prologue_cache *cache;
848cfffb 1120
eb5492fa
DJ
1121 if (*this_cache == NULL)
1122 *this_cache = arm_make_sigtramp_cache (next_frame);
1123 cache = *this_cache;
1124
1125 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1126 optimized, lvalp, addrp, realnump, valuep);
c906108c
SS
1127}
1128
eb5492fa
DJ
1129struct frame_unwind arm_sigtramp_unwind = {
1130 SIGTRAMP_FRAME,
1131 arm_sigtramp_this_id,
1132 arm_sigtramp_prev_register
1133};
c906108c 1134
eb5492fa
DJ
1135static const struct frame_unwind *
1136arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
c906108c 1137{
eb5492fa 1138 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
0b281939 1139 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
eb5492fa
DJ
1140 return &arm_sigtramp_unwind;
1141
1142 return NULL;
c906108c
SS
1143}
1144
eb5492fa
DJ
1145/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1146 dummy frame. The frame ID's base needs to match the TOS value
1147 saved by save_dummy_frame_tos() and returned from
1148 arm_push_dummy_call, and the PC needs to match the dummy frame's
1149 breakpoint. */
c906108c 1150
eb5492fa
DJ
1151static struct frame_id
1152arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1153{
eb5492fa
DJ
1154 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1155 frame_pc_unwind (next_frame));
1156}
c3b4394c 1157
eb5492fa
DJ
1158/* Given THIS_FRAME, find the previous frame's resume PC (which will
1159 be used to construct the previous frame's ID, after looking up the
1160 containing function). */
c3b4394c 1161
eb5492fa
DJ
1162static CORE_ADDR
1163arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1164{
1165 CORE_ADDR pc;
1166 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1167 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1168}
1169
1170static CORE_ADDR
1171arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1172{
1173 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1174}
1175
2dd604e7
RE
1176/* When arguments must be pushed onto the stack, they go on in reverse
1177 order. The code below implements a FILO (stack) to do this. */
1178
1179struct stack_item
1180{
1181 int len;
1182 struct stack_item *prev;
1183 void *data;
1184};
1185
1186static struct stack_item *
1187push_stack_item (struct stack_item *prev, void *contents, int len)
1188{
1189 struct stack_item *si;
1190 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1191 si->data = xmalloc (len);
2dd604e7
RE
1192 si->len = len;
1193 si->prev = prev;
1194 memcpy (si->data, contents, len);
1195 return si;
1196}
1197
1198static struct stack_item *
1199pop_stack_item (struct stack_item *si)
1200{
1201 struct stack_item *dead = si;
1202 si = si->prev;
1203 xfree (dead->data);
1204 xfree (dead);
1205 return si;
1206}
1207
1208/* We currently only support passing parameters in integer registers. This
1209 conforms with GCC's default model. Several other variants exist and
1210 we should probably support some of them based on the selected ABI. */
1211
1212static CORE_ADDR
7d9b040b 1213arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1214 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1215 struct value **args, CORE_ADDR sp, int struct_return,
1216 CORE_ADDR struct_addr)
2dd604e7
RE
1217{
1218 int argnum;
1219 int argreg;
1220 int nstack;
1221 struct stack_item *si = NULL;
1222
6a65450a
AC
1223 /* Set the return address. For the ARM, the return breakpoint is
1224 always at BP_ADDR. */
2dd604e7 1225 /* XXX Fix for Thumb. */
6a65450a 1226 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1227
1228 /* Walk through the list of args and determine how large a temporary
1229 stack is required. Need to take care here as structs may be
1230 passed on the stack, and we have to to push them. */
1231 nstack = 0;
1232
1233 argreg = ARM_A1_REGNUM;
1234 nstack = 0;
1235
1236 /* Some platforms require a double-word aligned stack. Make sure sp
1237 is correctly aligned before we start. We always do this even if
1238 it isn't really needed -- it can never hurt things. */
b1e29e33 1239 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1240
1241 /* The struct_return pointer occupies the first parameter
1242 passing register. */
1243 if (struct_return)
1244 {
1245 if (arm_debug)
1246 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1247 REGISTER_NAME (argreg), paddr (struct_addr));
1248 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1249 argreg++;
1250 }
1251
1252 for (argnum = 0; argnum < nargs; argnum++)
1253 {
1254 int len;
1255 struct type *arg_type;
1256 struct type *target_type;
1257 enum type_code typecode;
1258 char *val;
1259
1260 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1261 len = TYPE_LENGTH (arg_type);
1262 target_type = TYPE_TARGET_TYPE (arg_type);
1263 typecode = TYPE_CODE (arg_type);
1264 val = VALUE_CONTENTS (args[argnum]);
1265
1266 /* If the argument is a pointer to a function, and it is a
1267 Thumb function, create a LOCAL copy of the value and set
1268 the THUMB bit in it. */
1269 if (TYPE_CODE_PTR == typecode
1270 && target_type != NULL
1271 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1272 {
7c0b4a20 1273 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1274 if (arm_pc_is_thumb (regval))
1275 {
1276 val = alloca (len);
fbd9dcd3 1277 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1278 }
1279 }
1280
1281 /* Copy the argument to general registers or the stack in
1282 register-sized pieces. Large arguments are split between
1283 registers and stack. */
1284 while (len > 0)
1285 {
b1e29e33 1286 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1287
1288 if (argreg <= ARM_LAST_ARG_REGNUM)
1289 {
1290 /* The argument is being passed in a general purpose
1291 register. */
7c0b4a20 1292 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1293 if (arm_debug)
1294 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1295 argnum, REGISTER_NAME (argreg),
b1e29e33 1296 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1297 regcache_cooked_write_unsigned (regcache, argreg, regval);
1298 argreg++;
1299 }
1300 else
1301 {
1302 /* Push the arguments onto the stack. */
1303 if (arm_debug)
1304 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1305 argnum, nstack);
b1e29e33
AC
1306 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1307 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1308 }
1309
1310 len -= partial_len;
1311 val += partial_len;
1312 }
1313 }
1314 /* If we have an odd number of words to push, then decrement the stack
1315 by one word now, so first stack argument will be dword aligned. */
1316 if (nstack & 4)
1317 sp -= 4;
1318
1319 while (si)
1320 {
1321 sp -= si->len;
1322 write_memory (sp, si->data, si->len);
1323 si = pop_stack_item (si);
1324 }
1325
1326 /* Finally, update teh SP register. */
1327 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1328
1329 return sp;
1330}
1331
c906108c 1332static void
ed9a39eb 1333print_fpu_flags (int flags)
c906108c 1334{
c5aa993b
JM
1335 if (flags & (1 << 0))
1336 fputs ("IVO ", stdout);
1337 if (flags & (1 << 1))
1338 fputs ("DVZ ", stdout);
1339 if (flags & (1 << 2))
1340 fputs ("OFL ", stdout);
1341 if (flags & (1 << 3))
1342 fputs ("UFL ", stdout);
1343 if (flags & (1 << 4))
1344 fputs ("INX ", stdout);
1345 putchar ('\n');
c906108c
SS
1346}
1347
5e74b15c
RE
1348/* Print interesting information about the floating point processor
1349 (if present) or emulator. */
34e8f22d 1350static void
d855c300 1351arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1352 struct frame_info *frame, const char *args)
c906108c 1353{
52f0bd74 1354 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1355 int type;
1356
1357 type = (status >> 24) & 127;
1358 printf ("%s FPU type %d\n",
ed9a39eb 1359 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1360 type);
1361 fputs ("mask: ", stdout);
1362 print_fpu_flags (status >> 16);
1363 fputs ("flags: ", stdout);
1364 print_fpu_flags (status);
c906108c
SS
1365}
1366
34e8f22d
RE
1367/* Return the GDB type object for the "standard" data type of data in
1368 register N. */
1369
1370static struct type *
7a5ea0d4 1371arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1372{
34e8f22d 1373 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1374 {
d7449b42 1375 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1376 return builtin_type_arm_ext_big;
1377 else
1378 return builtin_type_arm_ext_littlebyte_bigword;
1379 }
1380 else
1381 return builtin_type_int32;
1382}
1383
34e8f22d
RE
1384/* Index within `registers' of the first byte of the space for
1385 register N. */
1386
1387static int
1388arm_register_byte (int regnum)
1389{
1390 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1391 return regnum * INT_REGISTER_SIZE;
34e8f22d 1392 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1393 return (NUM_GREGS * INT_REGISTER_SIZE
1394 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1395 else
7a5ea0d4
DJ
1396 return (NUM_GREGS * INT_REGISTER_SIZE
1397 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1398 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1399}
1400
26216b98
AC
1401/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1402static int
1403arm_register_sim_regno (int regnum)
1404{
1405 int reg = regnum;
1406 gdb_assert (reg >= 0 && reg < NUM_REGS);
1407
1408 if (reg < NUM_GREGS)
1409 return SIM_ARM_R0_REGNUM + reg;
1410 reg -= NUM_GREGS;
1411
1412 if (reg < NUM_FREGS)
1413 return SIM_ARM_FP0_REGNUM + reg;
1414 reg -= NUM_FREGS;
1415
1416 if (reg < NUM_SREGS)
1417 return SIM_ARM_FPS_REGNUM + reg;
1418 reg -= NUM_SREGS;
1419
1420 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1421}
34e8f22d 1422
a37b3cc0
AC
1423/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1424 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1425 It is thought that this is is the floating-point register format on
1426 little-endian systems. */
c906108c 1427
ed9a39eb 1428static void
b508a996
RE
1429convert_from_extended (const struct floatformat *fmt, const void *ptr,
1430 void *dbl)
c906108c 1431{
a37b3cc0 1432 DOUBLEST d;
d7449b42 1433 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1434 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1435 else
1436 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1437 ptr, &d);
b508a996 1438 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1439}
1440
34e8f22d 1441static void
b508a996 1442convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1443{
a37b3cc0 1444 DOUBLEST d;
b508a996 1445 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1446 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1447 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1448 else
1449 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1450 &d, dbl);
c906108c 1451}
ed9a39eb 1452
c906108c 1453static int
ed9a39eb 1454condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1455{
1456 if (cond == INST_AL || cond == INST_NV)
1457 return 1;
1458
1459 switch (cond)
1460 {
1461 case INST_EQ:
1462 return ((status_reg & FLAG_Z) != 0);
1463 case INST_NE:
1464 return ((status_reg & FLAG_Z) == 0);
1465 case INST_CS:
1466 return ((status_reg & FLAG_C) != 0);
1467 case INST_CC:
1468 return ((status_reg & FLAG_C) == 0);
1469 case INST_MI:
1470 return ((status_reg & FLAG_N) != 0);
1471 case INST_PL:
1472 return ((status_reg & FLAG_N) == 0);
1473 case INST_VS:
1474 return ((status_reg & FLAG_V) != 0);
1475 case INST_VC:
1476 return ((status_reg & FLAG_V) == 0);
1477 case INST_HI:
1478 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1479 case INST_LS:
1480 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1481 case INST_GE:
1482 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1483 case INST_LT:
1484 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1485 case INST_GT:
1486 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1487 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1488 case INST_LE:
1489 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1490 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1491 }
1492 return 1;
1493}
1494
9512d7fd 1495/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1496#define submask(x) ((1L << ((x) + 1)) - 1)
1497#define bit(obj,st) (((obj) >> (st)) & 1)
1498#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1499#define sbits(obj,st,fn) \
1500 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1501#define BranchDest(addr,instr) \
1502 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1503#define ARM_PC_32 1
1504
1505static unsigned long
ed9a39eb
JM
1506shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1507 unsigned long status_reg)
c906108c
SS
1508{
1509 unsigned long res, shift;
1510 int rm = bits (inst, 0, 3);
1511 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1512
1513 if (bit (inst, 4))
c906108c
SS
1514 {
1515 int rs = bits (inst, 8, 11);
1516 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1517 }
1518 else
1519 shift = bits (inst, 7, 11);
c5aa993b
JM
1520
1521 res = (rm == 15
c906108c 1522 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1523 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1524 : read_register (rm));
1525
1526 switch (shifttype)
1527 {
c5aa993b 1528 case 0: /* LSL */
c906108c
SS
1529 res = shift >= 32 ? 0 : res << shift;
1530 break;
c5aa993b
JM
1531
1532 case 1: /* LSR */
c906108c
SS
1533 res = shift >= 32 ? 0 : res >> shift;
1534 break;
1535
c5aa993b
JM
1536 case 2: /* ASR */
1537 if (shift >= 32)
1538 shift = 31;
c906108c
SS
1539 res = ((res & 0x80000000L)
1540 ? ~((~res) >> shift) : res >> shift);
1541 break;
1542
c5aa993b 1543 case 3: /* ROR/RRX */
c906108c
SS
1544 shift &= 31;
1545 if (shift == 0)
1546 res = (res >> 1) | (carry ? 0x80000000L : 0);
1547 else
c5aa993b 1548 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1549 break;
1550 }
1551
1552 return res & 0xffffffff;
1553}
1554
c906108c
SS
1555/* Return number of 1-bits in VAL. */
1556
1557static int
ed9a39eb 1558bitcount (unsigned long val)
c906108c
SS
1559{
1560 int nbits;
1561 for (nbits = 0; val != 0; nbits++)
c5aa993b 1562 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1563 return nbits;
1564}
1565
34e8f22d 1566CORE_ADDR
ed9a39eb 1567thumb_get_next_pc (CORE_ADDR pc)
c906108c 1568{
c5aa993b 1569 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1570 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1571 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1572 unsigned long offset;
1573
1574 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1575 {
1576 CORE_ADDR sp;
1577
1578 /* Fetch the saved PC from the stack. It's stored above
1579 all of the other registers. */
b1e29e33 1580 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1581 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1582 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1583 nextpc = ADDR_BITS_REMOVE (nextpc);
1584 if (nextpc == pc)
1585 error ("Infinite loop detected");
1586 }
1587 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1588 {
34e8f22d 1589 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1590 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1591 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1592 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1593 }
1594 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1595 {
1596 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1597 }
aa17d93e 1598 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1599 {
1600 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1601 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1602 nextpc = pc_val + offset;
aa17d93e
DJ
1603 /* For BLX make sure to clear the low bits. */
1604 if (bits (inst2, 11, 12) == 1)
1605 nextpc = nextpc & 0xfffffffc;
c906108c 1606 }
aa17d93e 1607 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1608 {
1609 if (bits (inst1, 3, 6) == 0x0f)
1610 nextpc = pc_val;
1611 else
1612 nextpc = read_register (bits (inst1, 3, 6));
1613
1614 nextpc = ADDR_BITS_REMOVE (nextpc);
1615 if (nextpc == pc)
1616 error ("Infinite loop detected");
1617 }
c906108c
SS
1618
1619 return nextpc;
1620}
1621
34e8f22d 1622CORE_ADDR
ed9a39eb 1623arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1624{
1625 unsigned long pc_val;
1626 unsigned long this_instr;
1627 unsigned long status;
1628 CORE_ADDR nextpc;
1629
1630 if (arm_pc_is_thumb (pc))
1631 return thumb_get_next_pc (pc);
1632
1633 pc_val = (unsigned long) pc;
1634 this_instr = read_memory_integer (pc, 4);
34e8f22d 1635 status = read_register (ARM_PS_REGNUM);
c5aa993b 1636 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1637
1638 if (condition_true (bits (this_instr, 28, 31), status))
1639 {
1640 switch (bits (this_instr, 24, 27))
1641 {
c5aa993b 1642 case 0x0:
94c30b78 1643 case 0x1: /* data processing */
c5aa993b
JM
1644 case 0x2:
1645 case 0x3:
c906108c
SS
1646 {
1647 unsigned long operand1, operand2, result = 0;
1648 unsigned long rn;
1649 int c;
c5aa993b 1650
c906108c
SS
1651 if (bits (this_instr, 12, 15) != 15)
1652 break;
1653
1654 if (bits (this_instr, 22, 25) == 0
c5aa993b 1655 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1656 error ("Illegal update to pc in instruction");
1657
9498281f
DJ
1658 /* BX <reg>, BLX <reg> */
1659 if (bits (this_instr, 4, 28) == 0x12fff1
1660 || bits (this_instr, 4, 28) == 0x12fff3)
1661 {
1662 rn = bits (this_instr, 0, 3);
1663 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1664 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1665
1666 if (nextpc == pc)
1667 error ("Infinite loop detected");
1668
1669 return nextpc;
1670 }
1671
c906108c
SS
1672 /* Multiply into PC */
1673 c = (status & FLAG_C) ? 1 : 0;
1674 rn = bits (this_instr, 16, 19);
1675 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1676
c906108c
SS
1677 if (bit (this_instr, 25))
1678 {
1679 unsigned long immval = bits (this_instr, 0, 7);
1680 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1681 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1682 & 0xffffffff;
c906108c 1683 }
c5aa993b 1684 else /* operand 2 is a shifted register */
c906108c 1685 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1686
c906108c
SS
1687 switch (bits (this_instr, 21, 24))
1688 {
c5aa993b 1689 case 0x0: /*and */
c906108c
SS
1690 result = operand1 & operand2;
1691 break;
1692
c5aa993b 1693 case 0x1: /*eor */
c906108c
SS
1694 result = operand1 ^ operand2;
1695 break;
1696
c5aa993b 1697 case 0x2: /*sub */
c906108c
SS
1698 result = operand1 - operand2;
1699 break;
1700
c5aa993b 1701 case 0x3: /*rsb */
c906108c
SS
1702 result = operand2 - operand1;
1703 break;
1704
c5aa993b 1705 case 0x4: /*add */
c906108c
SS
1706 result = operand1 + operand2;
1707 break;
1708
c5aa993b 1709 case 0x5: /*adc */
c906108c
SS
1710 result = operand1 + operand2 + c;
1711 break;
1712
c5aa993b 1713 case 0x6: /*sbc */
c906108c
SS
1714 result = operand1 - operand2 + c;
1715 break;
1716
c5aa993b 1717 case 0x7: /*rsc */
c906108c
SS
1718 result = operand2 - operand1 + c;
1719 break;
1720
c5aa993b
JM
1721 case 0x8:
1722 case 0x9:
1723 case 0xa:
1724 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1725 result = (unsigned long) nextpc;
1726 break;
1727
c5aa993b 1728 case 0xc: /*orr */
c906108c
SS
1729 result = operand1 | operand2;
1730 break;
1731
c5aa993b 1732 case 0xd: /*mov */
c906108c
SS
1733 /* Always step into a function. */
1734 result = operand2;
c5aa993b 1735 break;
c906108c 1736
c5aa993b 1737 case 0xe: /*bic */
c906108c
SS
1738 result = operand1 & ~operand2;
1739 break;
1740
c5aa993b 1741 case 0xf: /*mvn */
c906108c
SS
1742 result = ~operand2;
1743 break;
1744 }
1745 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1746
1747 if (nextpc == pc)
1748 error ("Infinite loop detected");
1749 break;
1750 }
c5aa993b
JM
1751
1752 case 0x4:
1753 case 0x5: /* data transfer */
1754 case 0x6:
1755 case 0x7:
c906108c
SS
1756 if (bit (this_instr, 20))
1757 {
1758 /* load */
1759 if (bits (this_instr, 12, 15) == 15)
1760 {
1761 /* rd == pc */
c5aa993b 1762 unsigned long rn;
c906108c 1763 unsigned long base;
c5aa993b 1764
c906108c
SS
1765 if (bit (this_instr, 22))
1766 error ("Illegal update to pc in instruction");
1767
1768 /* byte write to PC */
1769 rn = bits (this_instr, 16, 19);
1770 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1771 if (bit (this_instr, 24))
1772 {
1773 /* pre-indexed */
1774 int c = (status & FLAG_C) ? 1 : 0;
1775 unsigned long offset =
c5aa993b 1776 (bit (this_instr, 25)
ed9a39eb 1777 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1778 : bits (this_instr, 0, 11));
c906108c
SS
1779
1780 if (bit (this_instr, 23))
1781 base += offset;
1782 else
1783 base -= offset;
1784 }
c5aa993b 1785 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1786 4);
c5aa993b 1787
c906108c
SS
1788 nextpc = ADDR_BITS_REMOVE (nextpc);
1789
1790 if (nextpc == pc)
1791 error ("Infinite loop detected");
1792 }
1793 }
1794 break;
c5aa993b
JM
1795
1796 case 0x8:
1797 case 0x9: /* block transfer */
c906108c
SS
1798 if (bit (this_instr, 20))
1799 {
1800 /* LDM */
1801 if (bit (this_instr, 15))
1802 {
1803 /* loading pc */
1804 int offset = 0;
1805
1806 if (bit (this_instr, 23))
1807 {
1808 /* up */
1809 unsigned long reglist = bits (this_instr, 0, 14);
1810 offset = bitcount (reglist) * 4;
c5aa993b 1811 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1812 offset += 4;
1813 }
1814 else if (bit (this_instr, 24))
1815 offset = -4;
c5aa993b 1816
c906108c 1817 {
c5aa993b
JM
1818 unsigned long rn_val =
1819 read_register (bits (this_instr, 16, 19));
c906108c
SS
1820 nextpc =
1821 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1822 + offset),
c906108c
SS
1823 4);
1824 }
1825 nextpc = ADDR_BITS_REMOVE (nextpc);
1826 if (nextpc == pc)
1827 error ("Infinite loop detected");
1828 }
1829 }
1830 break;
c5aa993b
JM
1831
1832 case 0xb: /* branch & link */
1833 case 0xa: /* branch */
c906108c
SS
1834 {
1835 nextpc = BranchDest (pc, this_instr);
1836
9498281f
DJ
1837 /* BLX */
1838 if (bits (this_instr, 28, 31) == INST_NV)
1839 nextpc |= bit (this_instr, 24) << 1;
1840
c906108c
SS
1841 nextpc = ADDR_BITS_REMOVE (nextpc);
1842 if (nextpc == pc)
1843 error ("Infinite loop detected");
1844 break;
1845 }
c5aa993b
JM
1846
1847 case 0xc:
1848 case 0xd:
1849 case 0xe: /* coproc ops */
1850 case 0xf: /* SWI */
c906108c
SS
1851 break;
1852
1853 default:
97e03143 1854 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1855 return (pc);
1856 }
1857 }
1858
1859 return nextpc;
1860}
1861
9512d7fd
FN
1862/* single_step() is called just before we want to resume the inferior,
1863 if we want to single-step it but there is no hardware or kernel
1864 single-step support. We find the target of the coming instruction
1865 and breakpoint it.
1866
94c30b78
MS
1867 single_step() is also called just after the inferior stops. If we
1868 had set up a simulated single-step, we undo our damage. */
9512d7fd 1869
34e8f22d
RE
1870static void
1871arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1872{
b8d5e71d 1873 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1874 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1875
1876 if (insert_bpt)
1877 {
34e8f22d 1878 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1879 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1880 }
1881 else
80fcf3f0 1882 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1883}
9512d7fd 1884
c906108c
SS
1885#include "bfd-in2.h"
1886#include "libcoff.h"
1887
1888static int
ed9a39eb 1889gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1890{
1891 if (arm_pc_is_thumb (memaddr))
1892 {
c5aa993b
JM
1893 static asymbol *asym;
1894 static combined_entry_type ce;
1895 static struct coff_symbol_struct csym;
27cddce2 1896 static struct bfd fake_bfd;
c5aa993b 1897 static bfd_target fake_target;
c906108c
SS
1898
1899 if (csym.native == NULL)
1900 {
da3c6d4a
MS
1901 /* Create a fake symbol vector containing a Thumb symbol.
1902 This is solely so that the code in print_insn_little_arm()
1903 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1904 the presence of a Thumb symbol and switch to decoding
1905 Thumb instructions. */
c5aa993b
JM
1906
1907 fake_target.flavour = bfd_target_coff_flavour;
1908 fake_bfd.xvec = &fake_target;
c906108c 1909 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1910 csym.native = &ce;
1911 csym.symbol.the_bfd = &fake_bfd;
1912 csym.symbol.name = "fake";
1913 asym = (asymbol *) & csym;
c906108c 1914 }
c5aa993b 1915
c906108c 1916 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1917 info->symbols = &asym;
c906108c
SS
1918 }
1919 else
1920 info->symbols = NULL;
c5aa993b 1921
d7449b42 1922 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1923 return print_insn_big_arm (memaddr, info);
1924 else
1925 return print_insn_little_arm (memaddr, info);
1926}
1927
66e810cd
RE
1928/* The following define instruction sequences that will cause ARM
1929 cpu's to take an undefined instruction trap. These are used to
1930 signal a breakpoint to GDB.
1931
1932 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1933 modes. A different instruction is required for each mode. The ARM
1934 cpu's can also be big or little endian. Thus four different
1935 instructions are needed to support all cases.
1936
1937 Note: ARMv4 defines several new instructions that will take the
1938 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1939 not in fact add the new instructions. The new undefined
1940 instructions in ARMv4 are all instructions that had no defined
1941 behaviour in earlier chips. There is no guarantee that they will
1942 raise an exception, but may be treated as NOP's. In practice, it
1943 may only safe to rely on instructions matching:
1944
1945 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1946 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1947 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1948
1949 Even this may only true if the condition predicate is true. The
1950 following use a condition predicate of ALWAYS so it is always TRUE.
1951
1952 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1953 and NetBSD all use a software interrupt rather than an undefined
1954 instruction to force a trap. This can be handled by by the
1955 abi-specific code during establishment of the gdbarch vector. */
1956
1957
d7b486e7
RE
1958/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1959 override these definitions. */
66e810cd
RE
1960#ifndef ARM_LE_BREAKPOINT
1961#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1962#endif
1963#ifndef ARM_BE_BREAKPOINT
1964#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1965#endif
1966#ifndef THUMB_LE_BREAKPOINT
1967#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1968#endif
1969#ifndef THUMB_BE_BREAKPOINT
1970#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1971#endif
1972
1973static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1974static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1975static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1976static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1977
34e8f22d
RE
1978/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1979 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1980 breakpoint should be used. It returns a pointer to a string of
1981 bytes that encode a breakpoint instruction, stores the length of
1982 the string to *lenptr, and adjusts the program counter (if
1983 necessary) to point to the actual memory location where the
c906108c
SS
1984 breakpoint should be inserted. */
1985
34e8f22d
RE
1986/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1987 breakpoints and storing their handles instread of what was in
1988 memory. It is nice that this is the same size as a handle -
94c30b78 1989 otherwise remote-rdp will have to change. */
34e8f22d 1990
ab89facf 1991static const unsigned char *
ed9a39eb 1992arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1993{
66e810cd
RE
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1995
c906108c
SS
1996 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1997 {
66e810cd
RE
1998 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1999 *lenptr = tdep->thumb_breakpoint_size;
2000 return tdep->thumb_breakpoint;
c906108c
SS
2001 }
2002 else
2003 {
66e810cd
RE
2004 *lenptr = tdep->arm_breakpoint_size;
2005 return tdep->arm_breakpoint;
c906108c
SS
2006 }
2007}
ed9a39eb
JM
2008
2009/* Extract from an array REGBUF containing the (raw) register state a
2010 function return value of type TYPE, and copy that, in virtual
2011 format, into VALBUF. */
2012
34e8f22d 2013static void
ed9a39eb 2014arm_extract_return_value (struct type *type,
b508a996
RE
2015 struct regcache *regs,
2016 void *dst)
ed9a39eb 2017{
b508a996
RE
2018 bfd_byte *valbuf = dst;
2019
ed9a39eb 2020 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2021 {
fd50bc42 2022 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2023 {
2024 case ARM_FLOAT_FPA:
b508a996
RE
2025 {
2026 /* The value is in register F0 in internal format. We need to
2027 extract the raw value and then convert it to the desired
2028 internal type. */
7a5ea0d4 2029 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2030
2031 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2032 convert_from_extended (floatformat_from_type (type), tmpbuf,
2033 valbuf);
2034 }
08216dd7
RE
2035 break;
2036
fd50bc42 2037 case ARM_FLOAT_SOFT_FPA:
08216dd7 2038 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2039 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2040 if (TYPE_LENGTH (type) > 4)
2041 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2042 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2043 break;
2044
2045 default:
2046 internal_error
2047 (__FILE__, __LINE__,
2048 "arm_extract_return_value: Floating point model not supported");
2049 break;
2050 }
2051 }
b508a996
RE
2052 else if (TYPE_CODE (type) == TYPE_CODE_INT
2053 || TYPE_CODE (type) == TYPE_CODE_CHAR
2054 || TYPE_CODE (type) == TYPE_CODE_BOOL
2055 || TYPE_CODE (type) == TYPE_CODE_PTR
2056 || TYPE_CODE (type) == TYPE_CODE_REF
2057 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2058 {
2059 /* If the the type is a plain integer, then the access is
2060 straight-forward. Otherwise we have to play around a bit more. */
2061 int len = TYPE_LENGTH (type);
2062 int regno = ARM_A1_REGNUM;
2063 ULONGEST tmp;
2064
2065 while (len > 0)
2066 {
2067 /* By using store_unsigned_integer we avoid having to do
2068 anything special for small big-endian values. */
2069 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2070 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2071 (len > INT_REGISTER_SIZE
2072 ? INT_REGISTER_SIZE : len),
b508a996 2073 tmp);
7a5ea0d4
DJ
2074 len -= INT_REGISTER_SIZE;
2075 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2076 }
2077 }
ed9a39eb 2078 else
b508a996
RE
2079 {
2080 /* For a structure or union the behaviour is as if the value had
2081 been stored to word-aligned memory and then loaded into
2082 registers with 32-bit load instruction(s). */
2083 int len = TYPE_LENGTH (type);
2084 int regno = ARM_A1_REGNUM;
7a5ea0d4 2085 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2086
2087 while (len > 0)
2088 {
2089 regcache_cooked_read (regs, regno++, tmpbuf);
2090 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2091 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2092 len -= INT_REGISTER_SIZE;
2093 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2094 }
2095 }
34e8f22d
RE
2096}
2097
67255d04
RE
2098/* Extract from an array REGBUF containing the (raw) register state
2099 the address in which a function should return its structure value. */
2100
2101static CORE_ADDR
95f95911 2102arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2103{
95f95911
MS
2104 ULONGEST ret;
2105
2106 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2107 return ret;
67255d04
RE
2108}
2109
2110/* Will a function return an aggregate type in memory or in a
2111 register? Return 0 if an aggregate type can be returned in a
2112 register, 1 if it must be returned in memory. */
2113
2114static int
2115arm_use_struct_convention (int gcc_p, struct type *type)
2116{
2117 int nRc;
52f0bd74 2118 enum type_code code;
67255d04 2119
44e1a9eb
DJ
2120 CHECK_TYPEDEF (type);
2121
67255d04
RE
2122 /* In the ARM ABI, "integer" like aggregate types are returned in
2123 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2124 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2125 offset of each addressable subfield must be zero. Note that bit
2126 fields are not addressable, and all addressable subfields of
2127 unions always start at offset zero.
67255d04
RE
2128
2129 This function is based on the behaviour of GCC 2.95.1.
2130 See: gcc/arm.c: arm_return_in_memory() for details.
2131
2132 Note: All versions of GCC before GCC 2.95.2 do not set up the
2133 parameters correctly for a function returning the following
2134 structure: struct { float f;}; This should be returned in memory,
2135 not a register. Richard Earnshaw sent me a patch, but I do not
2136 know of any way to detect if a function like the above has been
2137 compiled with the correct calling convention. */
2138
2139 /* All aggregate types that won't fit in a register must be returned
2140 in memory. */
b1e29e33 2141 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2142 {
2143 return 1;
2144 }
2145
2146 /* The only aggregate types that can be returned in a register are
2147 structs and unions. Arrays must be returned in memory. */
2148 code = TYPE_CODE (type);
2149 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2150 {
2151 return 1;
2152 }
2153
2154 /* Assume all other aggregate types can be returned in a register.
2155 Run a check for structures, unions and arrays. */
2156 nRc = 0;
2157
2158 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2159 {
2160 int i;
2161 /* Need to check if this struct/union is "integer" like. For
2162 this to be true, its size must be less than or equal to
b1e29e33
AC
2163 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2164 subfield must be zero. Note that bit fields are not
2165 addressable, and unions always start at offset zero. If any
2166 of the subfields is a floating point type, the struct/union
2167 cannot be an integer type. */
67255d04
RE
2168
2169 /* For each field in the object, check:
2170 1) Is it FP? --> yes, nRc = 1;
2171 2) Is it addressable (bitpos != 0) and
2172 not packed (bitsize == 0)?
2173 --> yes, nRc = 1
2174 */
2175
2176 for (i = 0; i < TYPE_NFIELDS (type); i++)
2177 {
2178 enum type_code field_type_code;
44e1a9eb 2179 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2180
2181 /* Is it a floating point type field? */
2182 if (field_type_code == TYPE_CODE_FLT)
2183 {
2184 nRc = 1;
2185 break;
2186 }
2187
2188 /* If bitpos != 0, then we have to care about it. */
2189 if (TYPE_FIELD_BITPOS (type, i) != 0)
2190 {
2191 /* Bitfields are not addressable. If the field bitsize is
2192 zero, then the field is not packed. Hence it cannot be
2193 a bitfield or any other packed type. */
2194 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2195 {
2196 nRc = 1;
2197 break;
2198 }
2199 }
2200 }
2201 }
2202
2203 return nRc;
2204}
2205
34e8f22d
RE
2206/* Write into appropriate registers a function return value of type
2207 TYPE, given in virtual format. */
2208
2209static void
b508a996
RE
2210arm_store_return_value (struct type *type, struct regcache *regs,
2211 const void *src)
34e8f22d 2212{
b508a996
RE
2213 const bfd_byte *valbuf = src;
2214
34e8f22d
RE
2215 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2216 {
7a5ea0d4 2217 char buf[MAX_REGISTER_SIZE];
34e8f22d 2218
fd50bc42 2219 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2220 {
2221 case ARM_FLOAT_FPA:
2222
b508a996
RE
2223 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2224 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2225 break;
2226
fd50bc42 2227 case ARM_FLOAT_SOFT_FPA:
08216dd7 2228 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2229 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2230 if (TYPE_LENGTH (type) > 4)
2231 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2232 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2233 break;
2234
2235 default:
2236 internal_error
2237 (__FILE__, __LINE__,
2238 "arm_store_return_value: Floating point model not supported");
2239 break;
2240 }
34e8f22d 2241 }
b508a996
RE
2242 else if (TYPE_CODE (type) == TYPE_CODE_INT
2243 || TYPE_CODE (type) == TYPE_CODE_CHAR
2244 || TYPE_CODE (type) == TYPE_CODE_BOOL
2245 || TYPE_CODE (type) == TYPE_CODE_PTR
2246 || TYPE_CODE (type) == TYPE_CODE_REF
2247 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2248 {
2249 if (TYPE_LENGTH (type) <= 4)
2250 {
2251 /* Values of one word or less are zero/sign-extended and
2252 returned in r0. */
7a5ea0d4 2253 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2254 LONGEST val = unpack_long (type, valbuf);
2255
7a5ea0d4 2256 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2257 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2258 }
2259 else
2260 {
2261 /* Integral values greater than one word are stored in consecutive
2262 registers starting with r0. This will always be a multiple of
2263 the regiser size. */
2264 int len = TYPE_LENGTH (type);
2265 int regno = ARM_A1_REGNUM;
2266
2267 while (len > 0)
2268 {
2269 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2270 len -= INT_REGISTER_SIZE;
2271 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2272 }
2273 }
2274 }
34e8f22d 2275 else
b508a996
RE
2276 {
2277 /* For a structure or union the behaviour is as if the value had
2278 been stored to word-aligned memory and then loaded into
2279 registers with 32-bit load instruction(s). */
2280 int len = TYPE_LENGTH (type);
2281 int regno = ARM_A1_REGNUM;
7a5ea0d4 2282 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2283
2284 while (len > 0)
2285 {
2286 memcpy (tmpbuf, valbuf,
7a5ea0d4 2287 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2288 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2289 len -= INT_REGISTER_SIZE;
2290 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2291 }
2292 }
34e8f22d
RE
2293}
2294
9df628e0
RE
2295static int
2296arm_get_longjmp_target (CORE_ADDR *pc)
2297{
2298 CORE_ADDR jb_addr;
7a5ea0d4 2299 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2300 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2301
2302 jb_addr = read_register (ARM_A1_REGNUM);
2303
2304 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2305 INT_REGISTER_SIZE))
9df628e0
RE
2306 return 0;
2307
7a5ea0d4 2308 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2309 return 1;
2310}
2311
ed9a39eb 2312/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2313
2314int
ed9a39eb 2315arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2316{
2317 CORE_ADDR start_addr;
2318
ed9a39eb
JM
2319 /* Find the starting address of the function containing the PC. If
2320 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2321 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2322 &start_addr, NULL))
c906108c
SS
2323 return 0;
2324
2325 return strncmp (name, "_call_via_r", 11) == 0;
2326}
2327
ed9a39eb
JM
2328/* If PC is in a Thumb call or return stub, return the address of the
2329 target PC, which is in a register. The thunk functions are called
2330 _called_via_xx, where x is the register name. The possible names
2331 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2332
2333CORE_ADDR
ed9a39eb 2334arm_skip_stub (CORE_ADDR pc)
c906108c 2335{
c5aa993b 2336 char *name;
c906108c
SS
2337 CORE_ADDR start_addr;
2338
2339 /* Find the starting address and name of the function containing the PC. */
2340 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2341 return 0;
2342
2343 /* Call thunks always start with "_call_via_". */
2344 if (strncmp (name, "_call_via_", 10) == 0)
2345 {
ed9a39eb
JM
2346 /* Use the name suffix to determine which register contains the
2347 target PC. */
c5aa993b
JM
2348 static char *table[15] =
2349 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2350 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2351 };
c906108c
SS
2352 int regno;
2353
2354 for (regno = 0; regno <= 14; regno++)
2355 if (strcmp (&name[10], table[regno]) == 0)
2356 return read_register (regno);
2357 }
ed9a39eb 2358
c5aa993b 2359 return 0; /* not a stub */
c906108c
SS
2360}
2361
afd7eef0
RE
2362static void
2363set_arm_command (char *args, int from_tty)
2364{
2365 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2366 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2367}
2368
2369static void
2370show_arm_command (char *args, int from_tty)
2371{
26304000 2372 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2373}
2374
fd50bc42
RE
2375enum arm_float_model
2376arm_get_fp_model (struct gdbarch *gdbarch)
2377{
2378 if (arm_fp_model == ARM_FLOAT_AUTO)
2379 return gdbarch_tdep (gdbarch)->fp_model;
2380
2381 return arm_fp_model;
2382}
2383
2384static void
2385arm_set_fp (struct gdbarch *gdbarch)
2386{
2387 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2388
2389 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2390 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2391 {
2392 set_gdbarch_double_format (gdbarch,
2393 &floatformat_ieee_double_littlebyte_bigword);
2394 set_gdbarch_long_double_format
2395 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2396 }
2397 else
2398 {
2399 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2400 set_gdbarch_long_double_format (gdbarch,
2401 &floatformat_ieee_double_little);
2402 }
2403}
2404
2405static void
2406set_fp_model_sfunc (char *args, int from_tty,
2407 struct cmd_list_element *c)
2408{
2409 enum arm_float_model fp_model;
2410
2411 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2412 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2413 {
2414 arm_fp_model = fp_model;
2415 break;
2416 }
2417
2418 if (fp_model == ARM_FLOAT_LAST)
2419 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2420 current_fp_model);
2421
2422 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2423 arm_set_fp (current_gdbarch);
2424}
2425
2426static void
2427show_fp_model (char *args, int from_tty,
2428 struct cmd_list_element *c)
2429{
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2431
2432 if (arm_fp_model == ARM_FLOAT_AUTO
2433 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2434 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2435 fp_model_strings[tdep->fp_model]);
2436}
2437
afd7eef0
RE
2438/* If the user changes the register disassembly style used for info
2439 register and other commands, we have to also switch the style used
2440 in opcodes for disassembly output. This function is run in the "set
2441 arm disassembly" command, and does that. */
bc90b915
FN
2442
2443static void
afd7eef0 2444set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2445 struct cmd_list_element *c)
2446{
afd7eef0 2447 set_disassembly_style ();
bc90b915
FN
2448}
2449\f
966fbf70 2450/* Return the ARM register name corresponding to register I. */
a208b0cb 2451static const char *
34e8f22d 2452arm_register_name (int i)
966fbf70
RE
2453{
2454 return arm_register_names[i];
2455}
2456
bc90b915 2457static void
afd7eef0 2458set_disassembly_style (void)
bc90b915
FN
2459{
2460 const char *setname, *setdesc, **regnames;
2461 int numregs, j;
2462
afd7eef0 2463 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2464 int current = 0;
2465 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2466 while ((disassembly_style != setname)
2467 && (current < num_disassembly_options))
bc90b915
FN
2468 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2469 current_option = current;
2470
94c30b78 2471 /* Fill our copy. */
bc90b915
FN
2472 for (j = 0; j < numregs; j++)
2473 arm_register_names[j] = (char *) regnames[j];
2474
94c30b78 2475 /* Adjust case. */
34e8f22d 2476 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2477 {
34e8f22d
RE
2478 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2479 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2480 }
2481 else
2482 {
34e8f22d
RE
2483 arm_register_names[ARM_FPS_REGNUM] = "fps";
2484 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2485 }
2486
94c30b78 2487 /* Synchronize the disassembler. */
bc90b915
FN
2488 set_arm_regname_option (current);
2489}
2490
afd7eef0
RE
2491/* arm_othernames implements the "othernames" command. This is deprecated
2492 by the "set arm disassembly" command. */
bc90b915
FN
2493
2494static void
2495arm_othernames (char *names, int n)
2496{
94c30b78 2497 /* Circle through the various flavors. */
afd7eef0 2498 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2499
afd7eef0
RE
2500 disassembly_style = valid_disassembly_styles[current_option];
2501 set_disassembly_style ();
bc90b915
FN
2502}
2503
082fc60d
RE
2504/* Test whether the coff symbol specific value corresponds to a Thumb
2505 function. */
2506
2507static int
2508coff_sym_is_thumb (int val)
2509{
2510 return (val == C_THUMBEXT ||
2511 val == C_THUMBSTAT ||
2512 val == C_THUMBEXTFUNC ||
2513 val == C_THUMBSTATFUNC ||
2514 val == C_THUMBLABEL);
2515}
2516
2517/* arm_coff_make_msymbol_special()
2518 arm_elf_make_msymbol_special()
2519
2520 These functions test whether the COFF or ELF symbol corresponds to
2521 an address in thumb code, and set a "special" bit in a minimal
2522 symbol to indicate that it does. */
2523
34e8f22d 2524static void
082fc60d
RE
2525arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2526{
2527 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2528 STT_ARM_TFUNC). */
2529 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2530 == STT_LOPROC)
2531 MSYMBOL_SET_SPECIAL (msym);
2532}
2533
34e8f22d 2534static void
082fc60d
RE
2535arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2536{
2537 if (coff_sym_is_thumb (val))
2538 MSYMBOL_SET_SPECIAL (msym);
2539}
2540
756fe439
DJ
2541static void
2542arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2543{
2544 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2545
2546 /* If necessary, set the T bit. */
2547 if (arm_apcs_32)
2548 {
2549 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2550 if (arm_pc_is_thumb (pc))
2551 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2552 else
2553 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2554 }
2555}
97e03143 2556\f
70f80edf
JT
2557static enum gdb_osabi
2558arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2559{
70f80edf
JT
2560 unsigned int elfosabi, eflags;
2561 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2562
70f80edf 2563 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2564
70f80edf 2565 switch (elfosabi)
97e03143 2566 {
70f80edf
JT
2567 case ELFOSABI_NONE:
2568 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2569 file are conforming to the base specification for that machine
2570 (there are no OS-specific extensions). In order to determine the
2571 real OS in use we must look for OS notes that have been added. */
2572 bfd_map_over_sections (abfd,
2573 generic_elf_osabi_sniff_abi_tag_sections,
2574 &osabi);
2575 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2576 {
70f80edf
JT
2577 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2578 field for more information. */
2579 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2580 switch (eflags)
97e03143 2581 {
70f80edf
JT
2582 case EF_ARM_EABI_VER1:
2583 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2584 break;
2585
70f80edf
JT
2586 case EF_ARM_EABI_VER2:
2587 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2588 break;
2589
70f80edf
JT
2590 case EF_ARM_EABI_UNKNOWN:
2591 /* Assume GNU tools. */
2592 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2593 break;
2594
70f80edf
JT
2595 default:
2596 internal_error (__FILE__, __LINE__,
2597 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2598 "version 0x%x", eflags);
97e03143
RE
2599 }
2600 }
70f80edf 2601 break;
97e03143 2602
70f80edf
JT
2603 case ELFOSABI_ARM:
2604 /* GNU tools use this value. Check note sections in this case,
2605 as well. */
97e03143 2606 bfd_map_over_sections (abfd,
70f80edf
JT
2607 generic_elf_osabi_sniff_abi_tag_sections,
2608 &osabi);
2609 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2610 {
70f80edf
JT
2611 /* Assume APCS ABI. */
2612 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2613 }
2614 break;
2615
97e03143 2616 case ELFOSABI_FREEBSD:
70f80edf
JT
2617 osabi = GDB_OSABI_FREEBSD_ELF;
2618 break;
97e03143 2619
70f80edf
JT
2620 case ELFOSABI_NETBSD:
2621 osabi = GDB_OSABI_NETBSD_ELF;
2622 break;
97e03143 2623
70f80edf
JT
2624 case ELFOSABI_LINUX:
2625 osabi = GDB_OSABI_LINUX;
2626 break;
97e03143
RE
2627 }
2628
70f80edf 2629 return osabi;
97e03143
RE
2630}
2631
70f80edf 2632\f
da3c6d4a
MS
2633/* Initialize the current architecture based on INFO. If possible,
2634 re-use an architecture from ARCHES, which is a list of
2635 architectures already created during this debugging session.
97e03143 2636
da3c6d4a
MS
2637 Called e.g. at program startup, when reading a core file, and when
2638 reading a binary file. */
97e03143 2639
39bbf761
RE
2640static struct gdbarch *
2641arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2642{
97e03143 2643 struct gdbarch_tdep *tdep;
39bbf761
RE
2644 struct gdbarch *gdbarch;
2645
97e03143 2646 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2647
4be87837 2648 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2649 {
4be87837 2650 switch (bfd_get_flavour (info.abfd))
97e03143 2651 {
4be87837
DJ
2652 case bfd_target_aout_flavour:
2653 /* Assume it's an old APCS-style ABI. */
2654 info.osabi = GDB_OSABI_ARM_APCS;
2655 break;
97e03143 2656
4be87837
DJ
2657 case bfd_target_coff_flavour:
2658 /* Assume it's an old APCS-style ABI. */
2659 /* XXX WinCE? */
2660 info.osabi = GDB_OSABI_ARM_APCS;
2661 break;
97e03143 2662
4be87837
DJ
2663 default:
2664 /* Leave it as "unknown". */
50ceaba5 2665 break;
97e03143
RE
2666 }
2667 }
2668
4be87837
DJ
2669 /* If there is already a candidate, use it. */
2670 arches = gdbarch_list_lookup_by_info (arches, &info);
2671 if (arches != NULL)
2672 return arches->gdbarch;
97e03143
RE
2673
2674 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2675 gdbarch = gdbarch_alloc (&info, tdep);
2676
fd50bc42
RE
2677 /* We used to default to FPA for generic ARM, but almost nobody uses that
2678 now, and we now provide a way for the user to force the model. So
2679 default to the most useful variant. */
2680 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2681
2682 /* Breakpoints. */
67255d04
RE
2683 switch (info.byte_order)
2684 {
2685 case BFD_ENDIAN_BIG:
66e810cd
RE
2686 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2687 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2688 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2689 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2690
67255d04
RE
2691 break;
2692
2693 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2694 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2695 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2696 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2697 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2698
67255d04
RE
2699 break;
2700
2701 default:
2702 internal_error (__FILE__, __LINE__,
2703 "arm_gdbarch_init: bad byte order for float format");
2704 }
2705
d7b486e7
RE
2706 /* On ARM targets char defaults to unsigned. */
2707 set_gdbarch_char_signed (gdbarch, 0);
2708
9df628e0 2709 /* This should be low enough for everything. */
97e03143 2710 tdep->lowest_pc = 0x20;
94c30b78 2711 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2712
2dd604e7 2713 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2714
756fe439
DJ
2715 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2716
148754e5 2717 /* Frame handling. */
eb5492fa
DJ
2718 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2719 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2720 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2721
19772a2c 2722 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
eb5492fa
DJ
2723
2724 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2725
34e8f22d
RE
2726 /* Address manipulation. */
2727 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2728 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2729
34e8f22d
RE
2730 /* Advance PC across function entry code. */
2731 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2732
2733 /* Get the PC when a frame might not be available. */
6913c89a 2734 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2735
2736 /* The stack grows downward. */
2737 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2738
2739 /* Breakpoint manipulation. */
2740 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2741
2742 /* Information about registers, etc. */
2743 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2744 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2745 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2746 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2747 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
b8b527c5 2748 set_gdbarch_deprecated_register_bytes (gdbarch,
7a5ea0d4
DJ
2749 (NUM_GREGS * INT_REGISTER_SIZE
2750 + NUM_FREGS * FP_REGISTER_SIZE
b8b527c5 2751 + NUM_SREGS * STATUS_REGISTER_SIZE));
34e8f22d 2752 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2753 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2754
26216b98
AC
2755 /* Internal <-> external register number maps. */
2756 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2757
34e8f22d 2758 /* Integer registers are 4 bytes. */
b1e29e33 2759 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2760 set_gdbarch_register_name (gdbarch, arm_register_name);
2761
2762 /* Returning results. */
b508a996
RE
2763 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2764 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
b5622e8d 2765 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
74055713 2766 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
34e8f22d
RE
2767
2768 /* Single stepping. */
2769 /* XXX For an RDI target we should ask the target if it can single-step. */
2770 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2771
03d48a7d
RE
2772 /* Disassembly. */
2773 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2774
34e8f22d
RE
2775 /* Minsymbol frobbing. */
2776 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2777 set_gdbarch_coff_make_msymbol_special (gdbarch,
2778 arm_coff_make_msymbol_special);
2779
97e03143 2780 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2781 gdbarch_init_osabi (info, gdbarch);
97e03143 2782
eb5492fa
DJ
2783 /* Add some default predicates. */
2784 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2785 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2786
97e03143
RE
2787 /* Now we have tuned the configuration, set a few final things,
2788 based on what the OS ABI has told us. */
2789
9df628e0
RE
2790 if (tdep->jb_pc >= 0)
2791 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2792
08216dd7
RE
2793 /* Floating point sizes and format. */
2794 switch (info.byte_order)
2795 {
2796 case BFD_ENDIAN_BIG:
2797 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2798 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2799 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2800
2801 break;
2802
2803 case BFD_ENDIAN_LITTLE:
2804 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 2805 arm_set_fp (gdbarch);
08216dd7
RE
2806 break;
2807
2808 default:
2809 internal_error (__FILE__, __LINE__,
2810 "arm_gdbarch_init: bad byte order for float format");
2811 }
2812
39bbf761
RE
2813 return gdbarch;
2814}
2815
97e03143
RE
2816static void
2817arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2818{
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2820
2821 if (tdep == NULL)
2822 return;
2823
97e03143
RE
2824 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2825 (unsigned long) tdep->lowest_pc);
2826}
2827
2828static void
2829arm_init_abi_eabi_v1 (struct gdbarch_info info,
2830 struct gdbarch *gdbarch)
2831{
2832 /* Place-holder. */
2833}
2834
2835static void
2836arm_init_abi_eabi_v2 (struct gdbarch_info info,
2837 struct gdbarch *gdbarch)
2838{
2839 /* Place-holder. */
2840}
2841
2842static void
2843arm_init_abi_apcs (struct gdbarch_info info,
2844 struct gdbarch *gdbarch)
2845{
2846 /* Place-holder. */
2847}
2848
a78f21af
AC
2849extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2850
c906108c 2851void
ed9a39eb 2852_initialize_arm_tdep (void)
c906108c 2853{
bc90b915
FN
2854 struct ui_file *stb;
2855 long length;
26304000 2856 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2857 const char *setname;
2858 const char *setdesc;
2859 const char **regnames;
bc90b915
FN
2860 int numregs, i, j;
2861 static char *helptext;
085dd6e6 2862
42cf1509 2863 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2864
70f80edf
JT
2865 /* Register an ELF OS ABI sniffer for ARM binaries. */
2866 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2867 bfd_target_elf_flavour,
2868 arm_elf_osabi_sniffer);
2869
97e03143 2870 /* Register some ABI variants for embedded systems. */
05816f70 2871 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 2872 arm_init_abi_eabi_v1);
05816f70 2873 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 2874 arm_init_abi_eabi_v2);
05816f70 2875 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 2876 arm_init_abi_apcs);
39bbf761 2877
94c30b78 2878 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2879 num_disassembly_options = get_arm_regname_num_options ();
2880
2881 /* Add root prefix command for all "set arm"/"show arm" commands. */
2882 add_prefix_cmd ("arm", no_class, set_arm_command,
2883 "Various ARM-specific commands.",
2884 &setarmcmdlist, "set arm ", 0, &setlist);
2885
2886 add_prefix_cmd ("arm", no_class, show_arm_command,
2887 "Various ARM-specific commands.",
2888 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2889
94c30b78 2890 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2891 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2892
94c30b78 2893 /* Begin creating the help text. */
bc90b915 2894 stb = mem_fileopen ();
afd7eef0
RE
2895 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2896 "The valid values are:\n");
ed9a39eb 2897
94c30b78 2898 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
2899 valid_disassembly_styles
2900 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2901 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2902 {
2903 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2904 valid_disassembly_styles[i] = setname;
bc90b915
FN
2905 fprintf_unfiltered (stb, "%s - %s\n", setname,
2906 setdesc);
94c30b78 2907 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2908 if (!strcmp (setname, "std"))
2909 {
afd7eef0 2910 disassembly_style = setname;
bc90b915
FN
2911 current_option = i;
2912 for (j = 0; j < numregs; j++)
2913 arm_register_names[j] = (char *) regnames[j];
2914 set_arm_regname_option (i);
2915 }
2916 }
94c30b78 2917 /* Mark the end of valid options. */
afd7eef0 2918 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2919
94c30b78 2920 /* Finish the creation of the help text. */
bc90b915
FN
2921 fprintf_unfiltered (stb, "The default is \"std\".");
2922 helptext = ui_file_xstrdup (stb, &length);
2923 ui_file_delete (stb);
ed9a39eb 2924
afd7eef0 2925 /* Add the deprecated disassembly-flavor command. */
26304000 2926 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
2927 valid_disassembly_styles,
2928 &disassembly_style,
bc90b915 2929 helptext,
ed9a39eb 2930 &setlist);
26304000
RE
2931 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2932 deprecate_cmd (new_set, "set arm disassembly");
cb1a6d5f 2933 deprecate_cmd (deprecated_add_show_from_set (new_set, &showlist),
afd7eef0
RE
2934 "show arm disassembly");
2935
2936 /* And now add the new interface. */
30757f90 2937 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
2938 valid_disassembly_styles, &disassembly_style,
2939 helptext, &setarmcmdlist);
2940
fd50bc42 2941 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
cb1a6d5f 2942 deprecated_add_show_from_set (new_set, &showarmcmdlist);
26304000
RE
2943
2944 add_setshow_cmd_full ("apcs32", no_class,
2945 var_boolean, (char *) &arm_apcs_32,
2946 "Set usage of ARM 32-bit mode.",
2947 "Show usage of ARM 32-bit mode.",
2948 NULL, NULL,
2949 &setlist, &showlist, &new_set, &new_show);
2950 deprecate_cmd (new_set, "set arm apcs32");
2951 deprecate_cmd (new_show, "show arm apcs32");
2952
2953 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2954 "Set usage of ARM 32-bit mode. "
2955 "When off, a 26-bit PC will be used.",
2956 "Show usage of ARM 32-bit mode. "
2957 "When off, a 26-bit PC will be used.",
2958 NULL, NULL,
2959 &setarmcmdlist, &showarmcmdlist);
c906108c 2960
fd50bc42
RE
2961 /* Add a command to allow the user to force the FPU model. */
2962 new_set = add_set_enum_cmd
2963 ("fpu", no_class, fp_model_strings, &current_fp_model,
2964 "Set the floating point type.\n"
2965 "auto - Determine the FP typefrom the OS-ABI.\n"
2966 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2967 "fpa - FPA co-processor (GCC compiled).\n"
2968 "softvfp - Software FP with pure-endian doubles.\n"
2969 "vfp - VFP co-processor.",
2970 &setarmcmdlist);
2971 set_cmd_sfunc (new_set, set_fp_model_sfunc);
cb1a6d5f
AC
2972 set_cmd_sfunc (deprecated_add_show_from_set (new_set, &showarmcmdlist),
2973 show_fp_model);
fd50bc42 2974
94c30b78 2975 /* Add the deprecated "othernames" command. */
afd7eef0
RE
2976 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2977 "Switch to the next set of register names."),
2978 "set arm disassembly");
c3b4394c 2979
6529d2dd 2980 /* Debugging flag. */
26304000
RE
2981 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2982 "Set ARM debugging. "
2983 "When on, arm-specific debugging is enabled.",
2984 "Show ARM debugging. "
2985 "When on, arm-specific debugging is enabled.",
2986 NULL, NULL,
2987 &setdebuglist, &showdebuglist);
c906108c 2988}