]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/go32-nat.c
Fix an illegal memory access when parsing an ELF file containing corrupt symbol versi...
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
CommitLineData
e49d4fa6 1/* Native debugging support for Intel x86 running DJGPP.
4a94e368 2 Copyright (C) 1997-2022 Free Software Foundation, Inc.
e49d4fa6
SS
3 Written by Robert Hoehne.
4
c5aa993b 5 This file is part of GDB.
e49d4fa6 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
e49d4fa6 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
e49d4fa6 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
e49d4fa6 19
699275c9
EZ
20/* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
0baeab03
PA
84#include "defs.h"
85
e49d4fa6
SS
86#include <fcntl.h>
87
df7e5265 88#include "x86-nat.h"
e49d4fa6 89#include "inferior.h"
45741a9c 90#include "infrun.h"
444c3224 91#include "gdbthread.h"
268a13a5 92#include "gdbsupport/gdb_wait.h"
e49d4fa6
SS
93#include "gdbcore.h"
94#include "command.h"
d8c852a1 95#include "gdbcmd.h"
e49d4fa6 96#include "floatformat.h"
0baae8db 97#include "buildsym-legacy.h"
e750d25e 98#include "i387-tdep.h"
e1195560 99#include "i386-tdep.h"
df7e5265 100#include "nat/x86-cpuid.h"
4d277981 101#include "value.h"
4e052eda 102#include "regcache.h"
eaae3919 103#include "top.h"
529480d0 104#include "cli/cli-utils.h"
c1a7b7c6 105#include "inf-child.h"
e49d4fa6 106
10ba702d 107#include <ctype.h>
c2c6d25f 108#include <unistd.h>
10ba702d 109#include <sys/utsname.h>
53a5351d 110#include <io.h>
10ba702d 111#include <dos.h>
53a5351d 112#include <dpmi.h>
10ba702d 113#include <go32.h>
9f20bf26 114#include <sys/farptr.h>
e49d4fa6
SS
115#include <debug/v2load.h>
116#include <debug/dbgcom.h>
53a5351d
JM
117#if __DJGPP_MINOR__ > 2
118#include <debug/redir.h>
119#endif
e49d4fa6 120
10085bb5
EZ
121#include <langinfo.h>
122
b83266a0 123#if __DJGPP_MINOR__ < 3
0963b4bd
MS
124/* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
c5aa993b
JM
126typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135NPXREG;
136
137typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148NPX;
b83266a0
SS
149
150static NPX npx;
151
0963b4bd
MS
152static void save_npx (void); /* Save the FPU of the debugged program. */
153static void load_npx (void); /* Restore the FPU of the debugged program. */
b83266a0
SS
154
155/* ------------------------------------------------------------------------- */
156/* Store the contents of the NPX in the global variable `npx'. */
c5aa993b 157/* *INDENT-OFF* */
b83266a0
SS
158
159static void
160save_npx (void)
161{
1f5dc670
EZ
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
82cc5033
EZ
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
1f5dc670 167 movb $0x20, %%al \n\
82cc5033
EZ
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
1f5dc670 1701: \n\
82cc5033 171 fnsave %0 \n\
c5aa993b
JM
172 fwait "
173: "=m" (npx)
174: /* No input */
175: "%eax");
b83266a0 176}
c5aa993b
JM
177
178/* *INDENT-ON* */
179
180
b83266a0
SS
181/* ------------------------------------------------------------------------- */
182/* Reload the contents of the NPX from the global variable `npx'. */
183
184static void
185load_npx (void)
186{
ba8629a9 187 asm ("frstor %0":"=m" (npx));
b83266a0 188}
53a5351d
JM
189/* ------------------------------------------------------------------------- */
190/* Stubs for the missing redirection functions. */
191typedef struct {
192 char *command;
193 int redirected;
194} cmdline_t;
195
4d277981 196void
ba8629a9
EZ
197redir_cmdline_delete (cmdline_t *ptr)
198{
199 ptr->redirected = 0;
200}
4d277981
EZ
201
202int
203redir_cmdline_parse (const char *args, cmdline_t *ptr)
53a5351d
JM
204{
205 return -1;
206}
ba8629a9 207
4d277981
EZ
208int
209redir_to_child (cmdline_t *ptr)
53a5351d
JM
210{
211 return 1;
212}
ba8629a9 213
4d277981
EZ
214int
215redir_to_debugger (cmdline_t *ptr)
53a5351d
JM
216{
217 return 1;
218}
ba8629a9 219
4d277981 220int
ba8629a9
EZ
221redir_debug_init (cmdline_t *ptr)
222{
223 return 0;
224}
b83266a0
SS
225#endif /* __DJGPP_MINOR < 3 */
226
53a5351d
JM
227typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229/* This holds the current reference counts for each debug register. */
230static int dr_ref_count[4];
231
e49d4fa6
SS
232#define SOME_PID 42
233
e49d4fa6 234static int prog_has_started = 0;
b83266a0 235
53a5351d 236#define r_ofs(x) (offsetof(TSS,x))
e49d4fa6
SS
237
238static struct
239{
53a5351d
JM
240 size_t tss_ofs;
241 size_t size;
e49d4fa6
SS
242}
243regno_mapping[] =
244{
0fff5247
EZ
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
255 {r_ofs (tss_cs), 2},
256 {r_ofs (tss_ss), 2},
257 {r_ofs (tss_ds), 2},
258 {r_ofs (tss_es), 2},
259 {r_ofs (tss_fs), 2},
260 {r_ofs (tss_gs), 2},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
262 {1, 10},
263 {2, 10},
264 {3, 10},
265 {4, 10},
266 {5, 10},
267 {6, 10},
268 {7, 10},
53a5351d 269 /* The order of the next 7 registers must be consistent
0fff5247
EZ
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
e49d4fa6
SS
279};
280
281static struct
282 {
283 int go32_sig;
2ea28649 284 enum gdb_signal gdb_sig;
e49d4fa6
SS
285 }
286sig_map[] =
287{
a493e3e2
PA
288 {0, GDB_SIGNAL_FPE},
289 {1, GDB_SIGNAL_TRAP},
53a5351d
JM
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
a493e3e2
PA
293 {2, GDB_SIGNAL_BUS},
294 {3, GDB_SIGNAL_TRAP},
295 {4, GDB_SIGNAL_FPE},
296 {5, GDB_SIGNAL_SEGV},
297 {6, GDB_SIGNAL_ILL},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
e49d4fa6
SS
315};
316
53a5351d 317static struct {
2ea28649 318 enum gdb_signal gdb_sig;
53a5351d
JM
319 int djgpp_excepno;
320} excepn_map[] = {
a493e3e2
PA
321 {GDB_SIGNAL_0, -1},
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
53a5351d
JM
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327 details. */
a493e3e2
PA
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
53a5351d
JM
335};
336
f6ac5f3d
PA
337/* The go32 target. */
338
339struct go32_nat_target final : public x86_nat_target<inf_child_target>
340{
341 void attach (const char *, int) override;
342
343 void resume (ptid_t, int, enum gdb_signal) override;
344
b60cea74 345 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
f6ac5f3d
PA
346
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
349
350 enum target_xfer_status xfer_partial (enum target_object object,
351 const char *annex,
352 gdb_byte *readbuf,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
356
357 void files_info () override;
358
359 void terminal_init () override;
360
361 void terminal_inferior () override;
362
363 void terminal_ours_for_output () override;
364
365 void terminal_ours () override;
366
367 void terminal_info (const char *, int) override;
368
369 void pass_ctrlc () override;
370
371 void kill () override;
372
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
375
376 void mourn_inferior () override;
377
57810aa7 378 bool thread_alive (ptid_t ptid) override;
f6ac5f3d 379
a068643d 380 std::string pid_to_str (ptid_t) override;
f6ac5f3d
PA
381};
382
383static go32_nat_target the_go32_nat_target;
384
385void
386go32_nat_target::attach (const char *args, int from_tty)
e49d4fa6 387{
8a3fe4f8 388 error (_("\
53a5351d 389You cannot attach to a running program on this platform.\n\
8a3fe4f8 390Use the `run' command to run DJGPP programs."));
e49d4fa6
SS
391}
392
e49d4fa6 393static int resume_is_step;
53a5351d 394static int resume_signal = -1;
e49d4fa6 395
f6ac5f3d
PA
396void
397go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
c5aa993b 398{
53a5351d
JM
399 int i;
400
c5aa993b 401 resume_is_step = step;
53a5351d 402
a493e3e2 403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
01add95b
SM
404 {
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
408 {
409 resume_signal = excepn_map[i].djgpp_excepno;
410 break;
411 }
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
415 }
c5aa993b 416}
e49d4fa6 417
53a5351d
JM
418static char child_cwd[FILENAME_MAX];
419
f6ac5f3d
PA
420ptid_t
421go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
b60cea74 422 target_wait_flags options)
e49d4fa6
SS
423{
424 int i;
53a5351d 425 unsigned char saved_opcode;
0fff5247 426 unsigned long INT3_addr = 0;
53a5351d 427 int stepping_over_INT = 0;
e49d4fa6 428
0963b4bd 429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
e49d4fa6 430 if (resume_is_step)
53a5351d
JM
431 {
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
439 SIGTRAP.
440
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448 {
449 unsigned char INT3_opcode = 0xCC;
450
451 INT3_addr
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
456 }
457 else
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459 }
460
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
464 {
465 a_tss.tss_trap = 0;
466 a_tss.tss_irqn = 0xff;
467 }
e49d4fa6 468 else
53a5351d 469 {
0963b4bd 470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
53a5351d
JM
471 a_tss.tss_irqn = resume_signal;
472 }
473
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
480 run it. */
3a45aed8
EZ
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
0963b4bd 483 set with the gdb-command "cd ..." */
3a45aed8
EZ
484 if (!*child_cwd)
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
4d277981 487
53a5351d 488 chdir (child_cwd);
e49d4fa6 489
b83266a0 490#if __DJGPP_MINOR__ < 3
53a5351d 491 load_npx ();
b83266a0 492#endif
e49d4fa6 493 run_child ();
b83266a0 494#if __DJGPP_MINOR__ < 3
53a5351d 495 save_npx ();
b83266a0 496#endif
e49d4fa6 497
53a5351d
JM
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500 {
501 /* Restore the original opcode. */
0963b4bd 502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
53a5351d
JM
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
505 a_tss.tss_irqn = 1;
506 a_tss.tss_eflags |= 0x0100;
507 }
508
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
ff8577f6
SDJ
510 if (current_directory != NULL)
511 chdir (current_directory);
53a5351d 512
e49d4fa6 513 if (a_tss.tss_irqn == 0x21)
183be222 514 status->set_exited (a_tss.tss_eax & 0xff);
e49d4fa6
SS
515 else
516 {
183be222 517 status->set_stopped (GDB_SIGNAL_UNKNOWN);
e49d4fa6
SS
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
53a5351d 522#if __DJGPP_MINOR__ < 3
183be222
SM
523 status->set_stopped (sig_map[i].gdb_sig);
524 if (status->sig () != GDB_SIGNAL_TRAP)
525 status->set_signalled (status->sig ());
53a5351d 526#else
183be222 527 status->set_stopped (sig_map[i].gdb_sig);
53a5351d 528#endif
e49d4fa6
SS
529 break;
530 }
531 }
532 }
f2907e49 533 return ptid_t (SOME_PID);
e49d4fa6
SS
534}
535
536static void
56be3814 537fetch_register (struct regcache *regcache, int regno)
e49d4fa6 538{
ac7936df 539 struct gdbarch *gdbarch = regcache->arch ();
9d0b3624 540 if (regno < gdbarch_fp0_regnum (gdbarch))
73e1c03f
SM
541 regcache->raw_supply (regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
0963b4bd
MS
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
544 regno))
56be3814 545 i387_supply_fsave (regcache, regno, &npx);
89dea5aa
EZ
546 else
547 internal_error (__FILE__, __LINE__,
e2e0b3e5 548 _("Invalid register no. %d in fetch_register."), regno);
89dea5aa 549}
e49d4fa6 550
f6ac5f3d
PA
551void
552go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
89dea5aa
EZ
553{
554 if (regno >= 0)
56be3814 555 fetch_register (regcache, regno);
89dea5aa 556 else
e49d4fa6 557 {
7067c689 558 for (regno = 0;
ac7936df 559 regno < gdbarch_fp0_regnum (regcache->arch ());
7067c689 560 regno++)
56be3814
UW
561 fetch_register (regcache, regno);
562 i387_supply_fsave (regcache, -1, &npx);
e49d4fa6
SS
563 }
564}
565
566static void
56be3814 567store_register (const struct regcache *regcache, int regno)
e49d4fa6 568{
ac7936df 569 struct gdbarch *gdbarch = regcache->arch ();
9d0b3624 570 if (regno < gdbarch_fp0_regnum (gdbarch))
34a79281
SM
571 regcache->raw_collect (regno,
572 (char *) &a_tss + regno_mapping[regno].tss_ofs);
0963b4bd
MS
573 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
574 regno))
56be3814 575 i387_collect_fsave (regcache, regno, &npx);
e49d4fa6 576 else
8e65ff28 577 internal_error (__FILE__, __LINE__,
e2e0b3e5 578 _("Invalid register no. %d in store_register."), regno);
e49d4fa6
SS
579}
580
f6ac5f3d
PA
581void
582go32_nat_target::store_registers (struct regcache *regcache, int regno)
e49d4fa6 583{
0fff5247 584 unsigned r;
e49d4fa6
SS
585
586 if (regno >= 0)
56be3814 587 store_register (regcache, regno);
e49d4fa6
SS
588 else
589 {
ac7936df 590 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
56be3814
UW
591 store_register (regcache, r);
592 i387_collect_fsave (regcache, -1, &npx);
e49d4fa6
SS
593 }
594}
595
bd265cd0
PA
596/* Const-correct version of DJGPP's write_child, which unfortunately
597 takes a non-const buffer pointer. */
598
e49d4fa6 599static int
bd265cd0 600my_write_child (unsigned child_addr, const void *buf, unsigned len)
e49d4fa6 601{
bd265cd0
PA
602 static void *buffer = NULL;
603 static unsigned buffer_len = 0;
604 int res;
605
606 if (buffer_len < len)
e49d4fa6 607 {
bd265cd0
PA
608 buffer = xrealloc (buffer, len);
609 buffer_len = len;
e49d4fa6 610 }
bd265cd0
PA
611
612 memcpy (buffer, buf, len);
613 res = write_child (child_addr, buffer, len);
614 return res;
615}
616
617/* Helper for go32_xfer_partial that handles memory transfers.
618 Arguments are like target_xfer_partial. */
619
620static enum target_xfer_status
621go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
622 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
623{
624 int res;
625
626 if (writebuf != NULL)
627 res = my_write_child (memaddr, writebuf, len);
e49d4fa6 628 else
bd265cd0
PA
629 res = read_child (memaddr, readbuf, len);
630
99cee7b7
EZ
631 /* read_child and write_child return zero on success, non-zero on
632 failure. */
633 if (res != 0)
bd265cd0
PA
634 return TARGET_XFER_E_IO;
635
99cee7b7 636 *xfered_len = len;
bd265cd0
PA
637 return TARGET_XFER_OK;
638}
639
640/* Target to_xfer_partial implementation. */
641
f6ac5f3d
PA
642enum target_xfer_status
643go32_nat_target::xfer_partial (enum target_object object,
644 const char *annex, gdb_byte *readbuf,
645 const gdb_byte *writebuf, ULONGEST offset,
646 ULONGEST len,
647 ULONGEST *xfered_len)
bd265cd0
PA
648{
649 switch (object)
e49d4fa6 650 {
bd265cd0
PA
651 case TARGET_OBJECT_MEMORY:
652 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
653
654 default:
4360561f
TT
655 return this->beneath ()->xfer_partial (object, annex,
656 readbuf, writebuf, offset, len,
657 xfered_len);
e49d4fa6
SS
658 }
659}
660
0963b4bd 661static cmdline_t child_cmd; /* Parsed child's command line kept here. */
53a5351d 662
f6ac5f3d
PA
663void
664go32_nat_target::files_info ()
e49d4fa6 665{
6cb06a8c 666 gdb_printf ("You are running a DJGPP V2 program.\n");
e49d4fa6
SS
667}
668
f6ac5f3d
PA
669void
670go32_nat_target::kill_inferior ()
e49d4fa6 671{
f6ac5f3d 672 mourn_inferior ();
e49d4fa6
SS
673}
674
f6ac5f3d
PA
675void
676go32_nat_target::create_inferior (const char *exec_file,
677 const std::string &allargs,
678 char **env, int from_tty)
e49d4fa6 679{
4d277981 680 extern char **environ;
e49d4fa6
SS
681 jmp_buf start_state;
682 char *cmdline;
683 char **env_save = environ;
150985e3 684 size_t cmdlen;
6c95b8df 685 struct inferior *inf;
b1ec390e 686 int result;
7c5ded6a 687 const char *args = allargs.c_str ();
e49d4fa6 688
0fff5247
EZ
689 /* If no exec file handed to us, get it from the exec-file command -- with
690 a good, common error message if none is specified. */
691 if (exec_file == 0)
692 exec_file = get_exec_file (1);
693
53a5351d
JM
694 resume_signal = -1;
695 resume_is_step = 0;
3a45aed8
EZ
696
697 /* Initialize child's cwd as empty to be initialized when starting
698 the child. */
699 *child_cwd = 0;
700
53a5351d
JM
701 /* Init command line storage. */
702 if (redir_debug_init (&child_cmd) == -1)
8e65ff28 703 internal_error (__FILE__, __LINE__,
0963b4bd
MS
704 _("Cannot allocate redirection storage: "
705 "not enough memory.\n"));
53a5351d
JM
706
707 /* Parse the command line and create redirections. */
708 if (strpbrk (args, "<>"))
709 {
710 if (redir_cmdline_parse (args, &child_cmd) == 0)
711 args = child_cmd.command;
712 else
8a3fe4f8 713 error (_("Syntax error in command line."));
53a5351d
JM
714 }
715 else
c2d11a7d 716 child_cmd.command = xstrdup (args);
e49d4fa6 717
150985e3
EZ
718 cmdlen = strlen (args);
719 /* v2loadimage passes command lines via DOS memory, so it cannot
720 possibly handle commands longer than 1MB. */
721 if (cmdlen > 1024*1024)
8a3fe4f8 722 error (_("Command line too long."));
150985e3 723
f515a1d6 724 cmdline = (char *) xmalloc (cmdlen + 4);
e49d4fa6 725 strcpy (cmdline + 1, args);
150985e3
EZ
726 /* If the command-line length fits into DOS 126-char limits, use the
727 DOS command tail format; otherwise, tell v2loadimage to pass it
728 through a buffer in conventional memory. */
729 if (cmdlen < 127)
730 {
731 cmdline[0] = strlen (args);
732 cmdline[cmdlen + 1] = 13;
733 }
734 else
0963b4bd 735 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
e49d4fa6
SS
736
737 environ = env;
738
b1ec390e
GB
739 result = v2loadimage (exec_file, cmdline, start_state);
740
e49d4fa6 741 environ = env_save;
12a498f3 742 xfree (cmdline);
e49d4fa6 743
b1ec390e 744 if (result != 0)
1ada499f 745 error (_("Load failed for image %s"), exec_file);
b1ec390e 746
e49d4fa6 747 edi_init (start_state);
53a5351d
JM
748#if __DJGPP_MINOR__ < 3
749 save_npx ();
750#endif
e49d4fa6 751
6c95b8df 752 inf = current_inferior ();
20176d8f 753 inferior_appeared (inf, SOME_PID);
7f9f62ba 754
c8fbd44a 755 if (!inf->target_is_pushed (this))
02980c56 756 inf->push_target (this);
444c3224 757
1ee1a363
PA
758 thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
759 switch_to_thread (thr);
444c3224 760
88056fbb 761 clear_proceed_status (0);
e49d4fa6 762 insert_breakpoints ();
b83266a0 763 prog_has_started = 1;
e49d4fa6
SS
764}
765
f6ac5f3d
PA
766void
767go32_nat_target::mourn_inferior ()
e49d4fa6 768{
67ce33d7
PA
769 redir_cmdline_delete (&child_cmd);
770 resume_signal = -1;
771 resume_is_step = 0;
772
773 cleanup_client ();
774
53a5351d
JM
775 /* We need to make sure all the breakpoint enable bits in the DR7
776 register are reset when the inferior exits. Otherwise, if they
777 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
778 failure to set more watchpoints, and other calamities. It would
779 be nice if GDB itself would take care to remove all breakpoints
780 at all times, but it doesn't, probably under an assumption that
781 the OS cleans up when the debuggee exits. */
df7e5265 782 x86_cleanup_dregs ();
67ce33d7 783
67ce33d7
PA
784 prog_has_started = 0;
785
e49d4fa6 786 generic_mourn_inferior ();
f6ac5f3d 787 maybe_unpush_target ();
e49d4fa6
SS
788}
789
e49d4fa6
SS
790/* Hardware watchpoint support. */
791
e49d4fa6 792#define D_REGS edi.dr
e24d4c64
EZ
793#define CONTROL D_REGS[7]
794#define STATUS D_REGS[6]
53a5351d 795
e24d4c64
EZ
796/* Pass the address ADDR to the inferior in the I'th debug register.
797 Here we just store the address in D_REGS, the watchpoint will be
798 actually set up when go32_wait runs the debuggee. */
9bb9e8ad 799static void
e24d4c64 800go32_set_dr (int i, CORE_ADDR addr)
e49d4fa6 801{
4d277981
EZ
802 if (i < 0 || i > 3)
803 internal_error (__FILE__, __LINE__,
e2e0b3e5 804 _("Invalid register %d in go32_set_dr.\n"), i);
e24d4c64 805 D_REGS[i] = addr;
e49d4fa6
SS
806}
807
e24d4c64
EZ
808/* Pass the value VAL to the inferior in the DR7 debug control
809 register. Here we just store the address in D_REGS, the watchpoint
810 will be actually set up when go32_wait runs the debuggee. */
9bb9e8ad
PM
811static void
812go32_set_dr7 (unsigned long val)
53a5351d 813{
e24d4c64 814 CONTROL = val;
53a5351d
JM
815}
816
e24d4c64
EZ
817/* Get the value of the DR6 debug status register from the inferior.
818 Here we just return the value stored in D_REGS, as we've got it
819 from the last go32_wait call. */
9bb9e8ad 820static unsigned long
e24d4c64 821go32_get_dr6 (void)
e49d4fa6 822{
e24d4c64 823 return STATUS;
e49d4fa6
SS
824}
825
7b50312a
PA
826/* Get the value of the DR7 debug status register from the inferior.
827 Here we just return the value stored in D_REGS, as we've got it
828 from the last go32_wait call. */
829
830static unsigned long
831go32_get_dr7 (void)
832{
833 return CONTROL;
834}
835
836/* Get the value of the DR debug register I from the inferior. Here
837 we just return the value stored in D_REGS, as we've got it from the
838 last go32_wait call. */
839
840static CORE_ADDR
841go32_get_dr (int i)
842{
843 if (i < 0 || i > 3)
844 internal_error (__FILE__, __LINE__,
845 _("Invalid register %d in go32_get_dr.\n"), i);
846 return D_REGS[i];
847}
848
53a5351d
JM
849/* Put the device open on handle FD into either raw or cooked
850 mode, return 1 if it was in raw mode, zero otherwise. */
851
852static int
853device_mode (int fd, int raw_p)
854{
855 int oldmode, newmode;
856 __dpmi_regs regs;
857
858 regs.x.ax = 0x4400;
859 regs.x.bx = fd;
860 __dpmi_int (0x21, &regs);
861 if (regs.x.flags & 1)
862 return -1;
863 newmode = oldmode = regs.x.dx;
864
865 if (raw_p)
866 newmode |= 0x20;
867 else
868 newmode &= ~0x20;
869
0963b4bd 870 if (oldmode & 0x80) /* Only for character dev. */
01add95b
SM
871 {
872 regs.x.ax = 0x4401;
873 regs.x.bx = fd;
874 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
875 __dpmi_int (0x21, &regs);
876 if (regs.x.flags & 1)
877 return -1;
878 }
53a5351d
JM
879 return (oldmode & 0x20) == 0x20;
880}
881
882
883static int inf_mode_valid = 0;
884static int inf_terminal_mode;
885
886/* This semaphore is needed because, amazingly enough, GDB calls
887 target.to_terminal_ours more than once after the inferior stops.
888 But we need the information from the first call only, since the
889 second call will always see GDB's own cooked terminal. */
890static int terminal_is_ours = 1;
891
f6ac5f3d
PA
892void
893go32_nat_target::terminal_init ()
cce74817 894{
0963b4bd 895 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
53a5351d 896 terminal_is_ours = 1;
cce74817
JM
897}
898
f6ac5f3d
PA
899void
900go32_nat_target::terminal_info (const char *args, int from_tty)
cce74817 901{
6cb06a8c
TT
902 gdb_printf ("Inferior's terminal is in %s mode.\n",
903 !inf_mode_valid
904 ? "default" : inf_terminal_mode ? "raw" : "cooked");
53a5351d
JM
905
906#if __DJGPP_MINOR__ > 2
907 if (child_cmd.redirection)
c5aa993b 908 {
01add95b
SM
909 int i;
910
911 for (i = 0; i < DBG_HANDLES; i++)
912 {
913 if (child_cmd.redirection[i]->file_name)
6cb06a8c
TT
914 gdb_printf ("\tFile handle %d is redirected to `%s'.\n",
915 i, child_cmd.redirection[i]->file_name);
01add95b 916 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
6cb06a8c 917 gdb_printf
01add95b
SM
918 ("\tFile handle %d appears to be closed by inferior.\n", i);
919 /* Mask off the raw/cooked bit when comparing device info words. */
920 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
921 != (_get_dev_info (i) & 0xdf))
6cb06a8c 922 gdb_printf
01add95b
SM
923 ("\tFile handle %d appears to be redirected by inferior.\n", i);
924 }
c5aa993b 925 }
53a5351d
JM
926#endif
927}
928
f6ac5f3d
PA
929void
930go32_nat_target::terminal_inferior ()
53a5351d
JM
931{
932 /* Redirect standard handles as child wants them. */
933 errno = 0;
934 if (redir_to_child (&child_cmd) == -1)
01add95b
SM
935 {
936 redir_to_debugger (&child_cmd);
937 error (_("Cannot redirect standard handles for program: %s."),
938 safe_strerror (errno));
939 }
0963b4bd
MS
940 /* Set the console device of the inferior to whatever mode
941 (raw or cooked) we found it last time. */
53a5351d 942 if (terminal_is_ours)
01add95b
SM
943 {
944 if (inf_mode_valid)
945 device_mode (0, inf_terminal_mode);
946 terminal_is_ours = 0;
947 }
cce74817
JM
948}
949
f6ac5f3d
PA
950void
951go32_nat_target::terminal_ours ()
cce74817 952{
53a5351d 953 /* Switch to cooked mode on the gdb terminal and save the inferior
0963b4bd 954 terminal mode to be restored when it is resumed. */
53a5351d 955 if (!terminal_is_ours)
53a5351d 956 {
01add95b
SM
957 inf_terminal_mode = device_mode (0, 0);
958 if (inf_terminal_mode != -1)
959 inf_mode_valid = 1;
960 else
961 /* If device_mode returned -1, we don't know what happens with
962 handle 0 anymore, so make the info invalid. */
963 inf_mode_valid = 0;
964 terminal_is_ours = 1;
965
966 /* Restore debugger's standard handles. */
967 errno = 0;
968 if (redir_to_debugger (&child_cmd) == -1)
969 {
970 redir_to_child (&child_cmd);
971 error (_("Cannot redirect standard handles for debugger: %s."),
972 safe_strerror (errno));
973 }
53a5351d 974 }
cce74817
JM
975}
976
f6ac5f3d
PA
977void
978go32_nat_target::pass_ctrlc ()
e671cd59
PA
979{
980}
981
57810aa7 982bool
f6ac5f3d 983go32_nat_target::thread_alive (ptid_t ptid)
444c3224 984{
d7e15655 985 return ptid != null_ptid;
444c3224
PA
986}
987
a068643d 988std::string
f6ac5f3d 989go32_nat_target::pid_to_str (ptid_t ptid)
444c3224 990{
89c9c2ec 991 return normal_pid_to_str (ptid);
444c3224
PA
992}
993
10085bb5
EZ
994/* Return the current DOS codepage number. */
995static int
996dos_codepage (void)
997{
998 __dpmi_regs regs;
999
1000 regs.x.ax = 0x6601;
1001 __dpmi_int (0x21, &regs);
1002 if (!(regs.x.flags & 1))
1003 return regs.x.bx & 0xffff;
1004 else
1005 return 437; /* default */
1006}
1007
1008/* Limited emulation of `nl_langinfo', for charset.c. */
1009char *
1010nl_langinfo (nl_item item)
1011{
1012 char *retval;
1013
1014 switch (item)
1015 {
1016 case CODESET:
1017 {
1018 /* 8 is enough for SHORT_MAX + "CP" + null. */
1019 char buf[8];
1020 int blen = sizeof (buf);
1021 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1022
0963b4bd 1023 if (needed > blen) /* Should never happen. */
10085bb5
EZ
1024 buf[0] = 0;
1025 retval = xstrdup (buf);
1026 }
1027 break;
1028 default:
1029 retval = xstrdup ("");
1030 break;
1031 }
1032 return retval;
1033}
1034
10ba702d
EZ
1035unsigned short windows_major, windows_minor;
1036
1037/* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1038static void
1039go32_get_windows_version(void)
1040{
1041 __dpmi_regs r;
1042
1043 r.x.ax = 0x1600;
1044 __dpmi_int(0x2f, &r);
1045 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1046 && (r.h.al > 3 || r.h.ah > 0))
1047 {
1048 windows_major = r.h.al;
1049 windows_minor = r.h.ah;
1050 }
1051 else
1052 windows_major = 0xff; /* meaning no Windows */
1053}
1054
1055/* A subroutine of go32_sysinfo to display memory info. */
1056static void
1057print_mem (unsigned long datum, const char *header, int in_pages_p)
1058{
1059 if (datum != 0xffffffffUL)
1060 {
1061 if (in_pages_p)
1062 datum <<= 12;
0426ad51 1063 gdb_puts (header);
10ba702d
EZ
1064 if (datum > 1024)
1065 {
6cb06a8c 1066 gdb_printf ("%lu KB", datum >> 10);
10ba702d 1067 if (datum > 1024 * 1024)
6cb06a8c 1068 gdb_printf (" (%lu MB)", datum >> 20);
10ba702d
EZ
1069 }
1070 else
6cb06a8c 1071 gdb_printf ("%lu Bytes", datum);
0426ad51 1072 gdb_puts ("\n");
10ba702d
EZ
1073 }
1074}
1075
1076/* Display assorted information about the underlying OS. */
1077static void
5fed81ff 1078go32_sysinfo (const char *arg, int from_tty)
10ba702d 1079{
d647eed6
EZ
1080 static const char test_pattern[] =
1081 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1082 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1083 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
10ba702d
EZ
1084 struct utsname u;
1085 char cpuid_vendor[13];
1086 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1087 unsigned true_dos_version = _get_dos_version (1);
1088 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1089 int dpmi_flags;
1090 char dpmi_vendor_info[129];
d647eed6 1091 int dpmi_vendor_available;
10ba702d
EZ
1092 __dpmi_version_ret dpmi_version_data;
1093 long eflags;
1094 __dpmi_free_mem_info mem_info;
1095 __dpmi_regs regs;
1096
1097 cpuid_vendor[0] = '\0';
1098 if (uname (&u))
1099 strcpy (u.machine, "Unknown x86");
1100 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1101 {
1102 /* CPUID with EAX = 0 returns the Vendor ID. */
4d157a3d 1103#if 0
df7e5265 1104 /* Ideally we would use x86_cpuid(), but it needs someone to run
dda83cd7
SM
1105 native tests first to make sure things actually work. They should.
1106 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
4d157a3d
MF
1107 unsigned int eax, ebx, ecx, edx;
1108
df7e5265 1109 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
4d157a3d
MF
1110 {
1111 cpuid_max = eax;
1112 memcpy (&vendor[0], &ebx, 4);
1113 memcpy (&vendor[4], &ecx, 4);
1114 memcpy (&vendor[8], &edx, 4);
1115 cpuid_vendor[12] = '\0';
1116 }
1117#else
10ba702d
EZ
1118 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1119 "xorl %%ecx, %%ecx;"
1120 "xorl %%edx, %%edx;"
1121 "movl $0, %%eax;"
1122 "cpuid;"
1123 "movl %%ebx, %0;"
1124 "movl %%edx, %1;"
1125 "movl %%ecx, %2;"
1126 "movl %%eax, %3;"
1127 : "=m" (cpuid_vendor[0]),
1128 "=m" (cpuid_vendor[4]),
1129 "=m" (cpuid_vendor[8]),
1130 "=m" (cpuid_max)
1131 :
1132 : "%eax", "%ebx", "%ecx", "%edx");
1133 cpuid_vendor[12] = '\0';
4d157a3d 1134#endif
10ba702d
EZ
1135 }
1136
6cb06a8c 1137 gdb_printf ("CPU Type.......................%s", u.machine);
10ba702d 1138 if (cpuid_vendor[0])
6cb06a8c 1139 gdb_printf (" (%s)", cpuid_vendor);
0426ad51 1140 gdb_puts ("\n");
10ba702d
EZ
1141
1142 /* CPUID with EAX = 1 returns processor signature and features. */
1143 if (cpuid_max >= 1)
1144 {
a121b7c1 1145 static const char *brand_name[] = {
10ba702d
EZ
1146 "",
1147 " Celeron",
1148 " III",
1149 " III Xeon",
1150 "", "", "", "",
1151 " 4"
1152 };
1153 char cpu_string[80];
1154 char cpu_brand[20];
1155 unsigned brand_idx;
1156 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1157 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
3960cb7a 1158 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
10ba702d
EZ
1159 unsigned cpu_family, cpu_model;
1160
4d157a3d
MF
1161#if 0
1162 /* See comment above about cpuid usage. */
df7e5265 1163 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
4d157a3d 1164#else
10ba702d
EZ
1165 __asm__ __volatile__ ("movl $1, %%eax;"
1166 "cpuid;"
1167 : "=a" (cpuid_eax),
1168 "=b" (cpuid_ebx),
1169 "=d" (cpuid_edx)
1170 :
1171 : "%ecx");
4d157a3d 1172#endif
10ba702d
EZ
1173 brand_idx = cpuid_ebx & 0xff;
1174 cpu_family = (cpuid_eax >> 8) & 0xf;
1175 cpu_model = (cpuid_eax >> 4) & 0xf;
1176 cpu_brand[0] = '\0';
1177 if (intel_p)
1178 {
1179 if (brand_idx > 0
1180 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1181 && *brand_name[brand_idx])
1182 strcpy (cpu_brand, brand_name[brand_idx]);
1183 else if (cpu_family == 5)
1184 {
1185 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1186 strcpy (cpu_brand, " MMX");
1187 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1188 strcpy (cpu_brand, " OverDrive");
1189 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1190 strcpy (cpu_brand, " Dual");
1191 }
1192 else if (cpu_family == 6 && cpu_model < 8)
1193 {
1194 switch (cpu_model)
1195 {
1196 case 1:
1197 strcpy (cpu_brand, " Pro");
1198 break;
1199 case 3:
1200 strcpy (cpu_brand, " II");
1201 break;
1202 case 5:
1203 strcpy (cpu_brand, " II Xeon");
1204 break;
1205 case 6:
1206 strcpy (cpu_brand, " Celeron");
1207 break;
1208 case 7:
1209 strcpy (cpu_brand, " III");
1210 break;
1211 }
1212 }
1213 }
1214 else if (amd_p)
1215 {
1216 switch (cpu_family)
1217 {
1218 case 4:
1219 strcpy (cpu_brand, "486/5x86");
1220 break;
1221 case 5:
1222 switch (cpu_model)
1223 {
1224 case 0:
1225 case 1:
1226 case 2:
1227 case 3:
1228 strcpy (cpu_brand, "-K5");
1229 break;
1230 case 6:
1231 case 7:
1232 strcpy (cpu_brand, "-K6");
1233 break;
1234 case 8:
1235 strcpy (cpu_brand, "-K6-2");
1236 break;
1237 case 9:
1238 strcpy (cpu_brand, "-K6-III");
1239 break;
1240 }
1241 break;
1242 case 6:
1243 switch (cpu_model)
1244 {
1245 case 1:
1246 case 2:
1247 case 4:
1248 strcpy (cpu_brand, " Athlon");
1249 break;
1250 case 3:
1251 strcpy (cpu_brand, " Duron");
1252 break;
1253 }
1254 break;
1255 }
1256 }
8c042590 1257 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
dda83cd7
SM
1258 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1259 cpu_brand, cpu_model, cpuid_eax & 0xf);
6cb06a8c 1260 gdb_printf ("%*s%s\n", 31, "", cpu_string);
10ba702d
EZ
1261 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1262 || ((cpuid_edx & 1) == 0)
3960cb7a 1263 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
10ba702d 1264 {
0426ad51 1265 gdb_puts ("CPU Features...................");
10ba702d
EZ
1266 /* We only list features which might be useful in the DPMI
1267 environment. */
1268 if ((cpuid_edx & 1) == 0)
0426ad51 1269 gdb_puts ("No FPU "); /* It's unusual to not have an FPU. */
10ba702d 1270 if ((cpuid_edx & (1 << 1)) != 0)
0426ad51 1271 gdb_puts ("VME ");
10ba702d 1272 if ((cpuid_edx & (1 << 2)) != 0)
0426ad51 1273 gdb_puts ("DE ");
10ba702d 1274 if ((cpuid_edx & (1 << 4)) != 0)
0426ad51 1275 gdb_puts ("TSC ");
10ba702d 1276 if ((cpuid_edx & (1 << 23)) != 0)
0426ad51 1277 gdb_puts ("MMX ");
10ba702d 1278 if ((cpuid_edx & (1 << 25)) != 0)
0426ad51 1279 gdb_puts ("SSE ");
10ba702d 1280 if ((cpuid_edx & (1 << 26)) != 0)
0426ad51 1281 gdb_puts ("SSE2 ");
3960cb7a 1282 if (amd_p || hygon_p)
10ba702d
EZ
1283 {
1284 if ((cpuid_edx & (1 << 31)) != 0)
0426ad51 1285 gdb_puts ("3DNow! ");
10ba702d 1286 if ((cpuid_edx & (1 << 30)) != 0)
0426ad51 1287 gdb_puts ("3DNow!Ext");
10ba702d 1288 }
0426ad51 1289 gdb_puts ("\n");
10ba702d
EZ
1290 }
1291 }
0426ad51 1292 gdb_puts ("\n");
6cb06a8c
TT
1293 gdb_printf ("DOS Version....................%s %s.%s",
1294 _os_flavor, u.release, u.version);
10ba702d 1295 if (true_dos_version != advertized_dos_version)
6cb06a8c 1296 gdb_printf (" (disguised as v%d.%d)", _osmajor, _osminor);
0426ad51 1297 gdb_puts ("\n");
10ba702d
EZ
1298 if (!windows_major)
1299 go32_get_windows_version ();
1300 if (windows_major != 0xff)
1301 {
1302 const char *windows_flavor;
1303
6cb06a8c
TT
1304 gdb_printf ("Windows Version................%d.%02d (Windows ",
1305 windows_major, windows_minor);
10ba702d
EZ
1306 switch (windows_major)
1307 {
1308 case 3:
1309 windows_flavor = "3.X";
1310 break;
1311 case 4:
1312 switch (windows_minor)
1313 {
1314 case 0:
1315 windows_flavor = "95, 95A, or 95B";
1316 break;
1317 case 3:
1318 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1319 break;
1320 case 10:
1321 windows_flavor = "98 or 98 SE";
1322 break;
1323 case 90:
1324 windows_flavor = "ME";
1325 break;
1326 default:
1327 windows_flavor = "9X";
1328 break;
1329 }
1330 break;
1331 default:
1332 windows_flavor = "??";
1333 break;
1334 }
6cb06a8c 1335 gdb_printf ("%s)\n", windows_flavor);
10ba702d
EZ
1336 }
1337 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
6cb06a8c
TT
1338 gdb_printf ("Windows Version................"
1339 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
0426ad51 1340 gdb_puts ("\n");
d647eed6
EZ
1341 /* On some versions of Windows, __dpmi_get_capabilities returns
1342 zero, but the buffer is not filled with info, so we fill the
1343 buffer with a known pattern and test for it afterwards. */
1344 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1345 dpmi_vendor_available =
1346 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1347 if (dpmi_vendor_available == 0
1348 && memcmp (dpmi_vendor_info, test_pattern,
1349 sizeof(dpmi_vendor_info)) != 0)
10ba702d
EZ
1350 {
1351 /* The DPMI spec says the vendor string should be ASCIIZ, but
1352 I don't trust the vendors to follow that... */
1353 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1354 dpmi_vendor_info[128] = '\0';
6cb06a8c
TT
1355 gdb_printf ("DPMI Host......................"
1356 "%s v%d.%d (capabilities: %#x)\n",
1357 &dpmi_vendor_info[2],
1358 (unsigned)dpmi_vendor_info[0],
1359 (unsigned)dpmi_vendor_info[1],
1360 ((unsigned)dpmi_flags & 0x7f));
10ba702d 1361 }
d647eed6 1362 else
6cb06a8c 1363 gdb_printf ("DPMI Host......................(Info not available)\n");
10ba702d 1364 __dpmi_get_version (&dpmi_version_data);
6cb06a8c
TT
1365 gdb_printf ("DPMI Version...................%d.%02d\n",
1366 dpmi_version_data.major, dpmi_version_data.minor);
1367 gdb_printf ("DPMI Info......................"
1368 "%s-bit DPMI, with%s Virtual Memory support\n",
1369 (dpmi_version_data.flags & 1) ? "32" : "16",
1370 (dpmi_version_data.flags & 4) ? "" : "out");
1371 gdb_printf ("%*sInterrupts reflected to %s mode\n", 31, "",
1372 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1373 gdb_printf ("%*sProcessor type: i%d86\n", 31, "",
1374 dpmi_version_data.cpu);
1375 gdb_printf ("%*sPIC base interrupt: Master: %#x Slave: %#x\n", 31, "",
1376 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
10ba702d
EZ
1377
1378 /* a_tss is only initialized when the debuggee is first run. */
1379 if (prog_has_started)
1380 {
1381 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
6cb06a8c
TT
1382 gdb_printf ("Protection....................."
1383 "Ring %d (in %s), with%s I/O protection\n",
1384 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1385 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
10ba702d 1386 }
0426ad51 1387 gdb_puts ("\n");
10ba702d
EZ
1388 __dpmi_get_free_memory_information (&mem_info);
1389 print_mem (mem_info.total_number_of_physical_pages,
1390 "DPMI Total Physical Memory.....", 1);
1391 print_mem (mem_info.total_number_of_free_pages,
1392 "DPMI Free Physical Memory......", 1);
1393 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1394 "DPMI Swap Space................", 1);
1395 print_mem (mem_info.linear_address_space_size_in_pages,
1396 "DPMI Total Linear Address Size.", 1);
1397 print_mem (mem_info.free_linear_address_space_in_pages,
1398 "DPMI Free Linear Address Size..", 1);
1399 print_mem (mem_info.largest_available_free_block_in_bytes,
1400 "DPMI Largest Free Memory Block.", 0);
1401
1402 regs.h.ah = 0x48;
1403 regs.x.bx = 0xffff;
1404 __dpmi_int (0x21, &regs);
1405 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1406 regs.x.ax = 0x5800;
1407 __dpmi_int (0x21, &regs);
1408 if ((regs.x.flags & 1) == 0)
1409 {
1410 static const char *dos_hilo[] = {
1411 "Low", "", "", "", "High", "", "", "", "High, then Low"
1412 };
1413 static const char *dos_fit[] = {
1414 "First", "Best", "Last"
1415 };
1416 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1417 int fit_idx = regs.x.ax & 0x0f;
1418
1419 if (hilo_idx > 8)
1420 hilo_idx = 0;
1421 if (fit_idx > 2)
1422 fit_idx = 0;
6cb06a8c
TT
1423 gdb_printf ("DOS Memory Allocation..........%s memory, %s fit\n",
1424 dos_hilo[hilo_idx], dos_fit[fit_idx]);
10ba702d
EZ
1425 regs.x.ax = 0x5802;
1426 __dpmi_int (0x21, &regs);
1427 if ((regs.x.flags & 1) != 0)
1428 regs.h.al = 0;
6cb06a8c
TT
1429 gdb_printf ("%*sUMBs %sin DOS memory chain\n", 31, "",
1430 regs.h.al == 0 ? "not " : "");
10ba702d
EZ
1431 }
1432}
1433
1434struct seg_descr {
9d0b3624
PA
1435 unsigned short limit0;
1436 unsigned short base0;
1437 unsigned char base1;
1438 unsigned stype:5;
1439 unsigned dpl:2;
1440 unsigned present:1;
1441 unsigned limit1:4;
1442 unsigned available:1;
1443 unsigned dummy:1;
1444 unsigned bit32:1;
1445 unsigned page_granular:1;
1446 unsigned char base2;
1447} __attribute__ ((packed));
10ba702d
EZ
1448
1449struct gate_descr {
9d0b3624
PA
1450 unsigned short offset0;
1451 unsigned short selector;
1452 unsigned param_count:5;
1453 unsigned dummy:3;
1454 unsigned stype:5;
1455 unsigned dpl:2;
1456 unsigned present:1;
1457 unsigned short offset1;
1458} __attribute__ ((packed));
10ba702d
EZ
1459
1460/* Read LEN bytes starting at logical address ADDR, and put the result
1461 into DEST. Return 1 if success, zero if not. */
1462static int
1463read_memory_region (unsigned long addr, void *dest, size_t len)
1464{
1465 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
9f20bf26 1466 int retval = 1;
10ba702d
EZ
1467
1468 /* For the low memory, we can simply use _dos_ds. */
1469 if (addr <= dos_ds_limit - len)
1470 dosmemget (addr, len, dest);
1471 else
1472 {
1473 /* For memory above 1MB we need to set up a special segment to
1474 be able to access that memory. */
1475 int sel = __dpmi_allocate_ldt_descriptors (1);
1476
9f20bf26
EZ
1477 if (sel <= 0)
1478 retval = 0;
1479 else
1480 {
1481 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1482 size_t segment_limit = len - 1;
1483
1484 /* Make sure the crucial bits in the descriptor access
1485 rights are set correctly. Some DPMI providers might barf
1486 if we set the segment limit to something that is not an
1487 integral multiple of 4KB pages if the granularity bit is
1488 not set to byte-granular, even though the DPMI spec says
1489 it's the host's responsibility to set that bit correctly. */
1490 if (len > 1024 * 1024)
1491 {
1492 access_rights |= 0x8000;
1493 /* Page-granular segments should have the low 12 bits of
1494 the limit set. */
1495 segment_limit |= 0xfff;
1496 }
1497 else
1498 access_rights &= ~0x8000;
1499
1500 if (__dpmi_set_segment_base_address (sel, addr) != -1
1501 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
2033c18a
EZ
1502 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1503 /* W2K silently fails to set the segment limit, leaving
1504 it at zero; this test avoids the resulting crash. */
1505 && __dpmi_get_segment_limit (sel) >= segment_limit)
9f20bf26
EZ
1506 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1507 else
1508 retval = 0;
1509
1510 __dpmi_free_ldt_descriptor (sel);
1511 }
10ba702d 1512 }
9f20bf26 1513 return retval;
10ba702d
EZ
1514}
1515
1516/* Get a segment descriptor stored at index IDX in the descriptor
1517 table whose base address is TABLE_BASE. Return the descriptor
1518 type, or -1 if failure. */
1519static int
1520get_descriptor (unsigned long table_base, int idx, void *descr)
1521{
1522 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1523
1524 if (read_memory_region (addr, descr, 8))
1525 return (int)((struct seg_descr *)descr)->stype;
1526 return -1;
1527}
1528
1529struct dtr_reg {
1530 unsigned short limit __attribute__((packed));
1531 unsigned long base __attribute__((packed));
1532};
1533
1534/* Display a segment descriptor stored at index IDX in a descriptor
1535 table whose type is TYPE and whose base address is BASE_ADDR. If
1536 FORCE is non-zero, display even invalid descriptors. */
1537static void
1538display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1539{
1540 struct seg_descr descr;
1541 struct gate_descr gate;
1542
1543 /* Get the descriptor from the table. */
1544 if (idx == 0 && type == 0)
0426ad51 1545 gdb_puts ("0x000: null descriptor\n");
10ba702d
EZ
1546 else if (get_descriptor (base_addr, idx, &descr) != -1)
1547 {
1548 /* For each type of descriptor table, this has a bit set if the
1549 corresponding type of selectors is valid in that table. */
1550 static unsigned allowed_descriptors[] = {
1551 0xffffdafeL, /* GDT */
1552 0x0000c0e0L, /* IDT */
1553 0xffffdafaL /* LDT */
1554 };
1555
1556 /* If the program hasn't started yet, assume the debuggee will
1557 have the same CPL as the debugger. */
1558 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1559 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1560
1561 if (descr.present
1562 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1563 {
6cb06a8c
TT
1564 gdb_printf ("0x%03x: ",
1565 type == 1
1566 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
10ba702d
EZ
1567 if (descr.page_granular)
1568 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1569 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1570 || descr.stype == 9 || descr.stype == 11
1571 || (descr.stype >= 16 && descr.stype < 32))
6cb06a8c
TT
1572 gdb_printf ("base=0x%02x%02x%04x limit=0x%08lx",
1573 descr.base2, descr.base1, descr.base0, limit);
10ba702d
EZ
1574
1575 switch (descr.stype)
1576 {
1577 case 1:
1578 case 3:
6cb06a8c
TT
1579 gdb_printf (" 16-bit TSS (task %sactive)",
1580 descr.stype == 3 ? "" : "in");
10ba702d
EZ
1581 break;
1582 case 2:
0426ad51 1583 gdb_puts (" LDT");
10ba702d
EZ
1584 break;
1585 case 4:
1586 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1587 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1588 gate.selector, gate.offset1, gate.offset0);
1589 gdb_printf (" 16-bit Call Gate (params=%d)",
1590 gate.param_count);
10ba702d
EZ
1591 break;
1592 case 5:
6cb06a8c
TT
1593 gdb_printf ("TSS selector=0x%04x", descr.base0);
1594 gdb_printf ("%*sTask Gate", 16, "");
10ba702d
EZ
1595 break;
1596 case 6:
1597 case 7:
1598 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1599 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1600 gate.selector, gate.offset1, gate.offset0);
1601 gdb_printf (" 16-bit %s Gate",
1602 descr.stype == 6 ? "Interrupt" : "Trap");
10ba702d
EZ
1603 break;
1604 case 9:
1605 case 11:
6cb06a8c
TT
1606 gdb_printf (" 32-bit TSS (task %sactive)",
1607 descr.stype == 3 ? "" : "in");
10ba702d
EZ
1608 break;
1609 case 12:
1610 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1611 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1612 gate.selector, gate.offset1, gate.offset0);
1613 gdb_printf (" 32-bit Call Gate (params=%d)",
1614 gate.param_count);
10ba702d
EZ
1615 break;
1616 case 14:
1617 case 15:
1618 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1619 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1620 gate.selector, gate.offset1, gate.offset0);
1621 gdb_printf (" 32-bit %s Gate",
1622 descr.stype == 14 ? "Interrupt" : "Trap");
10ba702d
EZ
1623 break;
1624 case 16: /* data segments */
1625 case 17:
1626 case 18:
1627 case 19:
1628 case 20:
1629 case 21:
1630 case 22:
1631 case 23:
6cb06a8c
TT
1632 gdb_printf (" %s-bit Data (%s Exp-%s%s)",
1633 descr.bit32 ? "32" : "16",
1634 descr.stype & 2
1635 ? "Read/Write," : "Read-Only, ",
1636 descr.stype & 4 ? "down" : "up",
1637 descr.stype & 1 ? "" : ", N.Acc");
10ba702d
EZ
1638 break;
1639 case 24: /* code segments */
1640 case 25:
1641 case 26:
1642 case 27:
1643 case 28:
1644 case 29:
1645 case 30:
1646 case 31:
6cb06a8c
TT
1647 gdb_printf (" %s-bit Code (%s, %sConf%s)",
1648 descr.bit32 ? "32" : "16",
1649 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1650 descr.stype & 4 ? "" : "N.",
1651 descr.stype & 1 ? "" : ", N.Acc");
10ba702d
EZ
1652 break;
1653 default:
6cb06a8c 1654 gdb_printf ("Unknown type 0x%02x", descr.stype);
10ba702d
EZ
1655 break;
1656 }
0426ad51 1657 gdb_puts ("\n");
10ba702d
EZ
1658 }
1659 else if (force)
1660 {
6cb06a8c
TT
1661 gdb_printf ("0x%03x: ",
1662 type == 1
1663 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
10ba702d 1664 if (!descr.present)
0426ad51 1665 gdb_puts ("Segment not present\n");
10ba702d 1666 else
6cb06a8c
TT
1667 gdb_printf ("Segment type 0x%02x is invalid in this table\n",
1668 descr.stype);
10ba702d
EZ
1669 }
1670 }
1671 else if (force)
6cb06a8c 1672 gdb_printf ("0x%03x: Cannot read this descriptor\n", idx);
10ba702d
EZ
1673}
1674
1675static void
5fed81ff 1676go32_sldt (const char *arg, int from_tty)
10ba702d
EZ
1677{
1678 struct dtr_reg gdtr;
1679 unsigned short ldtr = 0;
1680 int ldt_idx;
1681 struct seg_descr ldt_descr;
1682 long ldt_entry = -1L;
1683 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1684
1685 if (arg && *arg)
1686 {
529480d0 1687 arg = skip_spaces (arg);
10ba702d
EZ
1688
1689 if (*arg)
1690 {
1691 ldt_entry = parse_and_eval_long (arg);
1692 if (ldt_entry < 0
1693 || (ldt_entry & 4) == 0
1694 || (ldt_entry & 3) != (cpl & 3))
8a3fe4f8 1695 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
10ba702d
EZ
1696 }
1697 }
1698
1699 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1700 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1701 ldt_idx = ldtr / 8;
1702 if (ldt_idx == 0)
0426ad51 1703 gdb_puts ("There is no LDT.\n");
10ba702d
EZ
1704 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1705 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
6cb06a8c
TT
1706 gdb_printf ("LDT is present (at %#x), but unreadable by GDB.\n",
1707 ldt_descr.base0
1708 | (ldt_descr.base1 << 16)
1709 | (ldt_descr.base2 << 24));
10ba702d
EZ
1710 else
1711 {
1712 unsigned base =
1713 ldt_descr.base0
1714 | (ldt_descr.base1 << 16)
1715 | (ldt_descr.base2 << 24);
1716 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1717 int max_entry;
1718
1719 if (ldt_descr.page_granular)
1720 /* Page-granular segments must have the low 12 bits of their
1721 limit set. */
1722 limit = (limit << 12) | 0xfff;
1723 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1724 64KB. */
1725 if (limit > 0xffff)
1726 limit = 0xffff;
1727
1728 max_entry = (limit + 1) / 8;
1729
1730 if (ldt_entry >= 0)
1731 {
1732 if (ldt_entry > limit)
8a3fe4f8 1733 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1734 (unsigned long)ldt_entry, limit);
10ba702d
EZ
1735
1736 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1737 }
1738 else
1739 {
1740 int i;
1741
1742 for (i = 0; i < max_entry; i++)
1743 display_descriptor (ldt_descr.stype, base, i, 0);
1744 }
1745 }
1746}
1747
1748static void
5fed81ff 1749go32_sgdt (const char *arg, int from_tty)
10ba702d
EZ
1750{
1751 struct dtr_reg gdtr;
1752 long gdt_entry = -1L;
1753 int max_entry;
1754
1755 if (arg && *arg)
1756 {
529480d0 1757 arg = skip_spaces (arg);
10ba702d
EZ
1758
1759 if (*arg)
1760 {
1761 gdt_entry = parse_and_eval_long (arg);
1762 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
0963b4bd
MS
1763 error (_("Invalid GDT entry 0x%03lx: "
1764 "not an integral multiple of 8."),
ccbc3e6f 1765 (unsigned long)gdt_entry);
10ba702d
EZ
1766 }
1767 }
1768
1769 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1770 max_entry = (gdtr.limit + 1) / 8;
1771
1772 if (gdt_entry >= 0)
1773 {
1774 if (gdt_entry > gdtr.limit)
8a3fe4f8 1775 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1776 (unsigned long)gdt_entry, gdtr.limit);
10ba702d
EZ
1777
1778 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1779 }
1780 else
1781 {
1782 int i;
1783
1784 for (i = 0; i < max_entry; i++)
1785 display_descriptor (0, gdtr.base, i, 0);
1786 }
1787}
1788
1789static void
5fed81ff 1790go32_sidt (const char *arg, int from_tty)
10ba702d
EZ
1791{
1792 struct dtr_reg idtr;
1793 long idt_entry = -1L;
1794 int max_entry;
1795
1796 if (arg && *arg)
1797 {
529480d0 1798 arg = skip_spaces (arg);
10ba702d
EZ
1799
1800 if (*arg)
1801 {
1802 idt_entry = parse_and_eval_long (arg);
1803 if (idt_entry < 0)
8a3fe4f8 1804 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
10ba702d
EZ
1805 }
1806 }
1807
1808 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1809 max_entry = (idtr.limit + 1) / 8;
0963b4bd 1810 if (max_entry > 0x100) /* No more than 256 entries. */
10ba702d
EZ
1811 max_entry = 0x100;
1812
1813 if (idt_entry >= 0)
1814 {
1815 if (idt_entry > idtr.limit)
8a3fe4f8 1816 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1817 (unsigned long)idt_entry, idtr.limit);
10ba702d
EZ
1818
1819 display_descriptor (1, idtr.base, idt_entry, 1);
1820 }
1821 else
1822 {
1823 int i;
1824
1825 for (i = 0; i < max_entry; i++)
1826 display_descriptor (1, idtr.base, i, 0);
1827 }
1828}
1829
9f20bf26
EZ
1830/* Cached linear address of the base of the page directory. For
1831 now, available only under CWSDPMI. Code based on ideas and
1832 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1833static unsigned long pdbr;
1834
1835static unsigned long
1836get_cr3 (void)
1837{
1838 unsigned offset;
1839 unsigned taskreg;
1840 unsigned long taskbase, cr3;
1841 struct dtr_reg gdtr;
1842
1843 if (pdbr > 0 && pdbr <= 0xfffff)
1844 return pdbr;
1845
1846 /* Get the linear address of GDT and the Task Register. */
1847 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1848 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1849
1850 /* Task Register is a segment selector for the TSS of the current
1851 task. Therefore, it can be used as an index into the GDT to get
1852 at the segment descriptor for the TSS. To get the index, reset
1853 the low 3 bits of the selector (which give the CPL). Add 2 to the
1854 offset to point to the 3 low bytes of the base address. */
1855 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1856
1857
1858 /* CWSDPMI's task base is always under the 1MB mark. */
1859 if (offset > 0xfffff)
1860 return 0;
1861
1862 _farsetsel (_dos_ds);
1863 taskbase = _farnspeekl (offset) & 0xffffffU;
1864 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1865 if (taskbase > 0xfffff)
1866 return 0;
1867
1868 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1869 offset 1Ch in the TSS. */
1870 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1871 if (cr3 > 0xfffff)
1872 {
85102364 1873#if 0 /* Not fully supported yet. */
9f20bf26
EZ
1874 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1875 the first Page Table right below the Page Directory. Thus,
1876 the first Page Table's entry for its own address and the Page
1877 Directory entry for that Page Table will hold the same
1878 physical address. The loop below searches the entire UMB
85102364 1879 range of addresses for such an occurrence. */
9f20bf26
EZ
1880 unsigned long addr, pte_idx;
1881
1882 for (addr = 0xb0000, pte_idx = 0xb0;
1883 pte_idx < 0xff;
1884 addr += 0x1000, pte_idx++)
1885 {
1886 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1887 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1888 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1889 {
1890 cr3 = addr + 0x1000;
1891 break;
1892 }
1893 }
a3b9cbb3 1894#endif
9f20bf26
EZ
1895
1896 if (cr3 > 0xfffff)
1897 cr3 = 0;
1898 }
1899
1900 return cr3;
1901}
1902
1903/* Return the N'th Page Directory entry. */
1904static unsigned long
1905get_pde (int n)
1906{
1907 unsigned long pde = 0;
1908
1909 if (pdbr && n >= 0 && n < 1024)
1910 {
1911 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1912 }
1913 return pde;
1914}
1915
1916/* Return the N'th entry of the Page Table whose Page Directory entry
1917 is PDE. */
1918static unsigned long
1919get_pte (unsigned long pde, int n)
1920{
1921 unsigned long pte = 0;
1922
1923 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1924 page tables, for now. */
1925 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1926 {
0963b4bd 1927 pde &= ~0xfff; /* Clear non-address bits. */
9f20bf26
EZ
1928 pte = _farpeekl (_dos_ds, pde + 4*n);
1929 }
1930 return pte;
1931}
1932
1933/* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1934 says this is a Page Directory entry. If FORCE is non-zero, display
1935 the entry even if its Present flag is off. OFF is the offset of the
1936 address from the page's base address. */
1937static void
1938display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1939{
1940 if ((entry & 1) != 0)
1941 {
6cb06a8c 1942 gdb_printf ("Base=0x%05lx000", entry >> 12);
9f20bf26 1943 if ((entry & 0x100) && !is_dir)
0426ad51 1944 gdb_puts (" Global");
9f20bf26 1945 if ((entry & 0x40) && !is_dir)
0426ad51 1946 gdb_puts (" Dirty");
6cb06a8c
TT
1947 gdb_printf (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1948 gdb_printf (" %sCached", (entry & 0x10) ? "" : "Not-");
1949 gdb_printf (" Write-%s", (entry & 8) ? "Thru" : "Back");
1950 gdb_printf (" %s", (entry & 4) ? "Usr" : "Sup");
1951 gdb_printf (" Read-%s", (entry & 2) ? "Write" : "Only");
9f20bf26 1952 if (off)
6cb06a8c 1953 gdb_printf (" +0x%x", off);
0426ad51 1954 gdb_puts ("\n");
9f20bf26
EZ
1955 }
1956 else if (force)
6cb06a8c
TT
1957 gdb_printf ("Page%s not present or not supported; value=0x%lx.\n",
1958 is_dir ? " Table" : "", entry >> 1);
9f20bf26
EZ
1959}
1960
1961static void
5fed81ff 1962go32_pde (const char *arg, int from_tty)
9f20bf26
EZ
1963{
1964 long pde_idx = -1, i;
1965
1966 if (arg && *arg)
1967 {
529480d0 1968 arg = skip_spaces (arg);
9f20bf26
EZ
1969
1970 if (*arg)
1971 {
1972 pde_idx = parse_and_eval_long (arg);
1973 if (pde_idx < 0 || pde_idx >= 1024)
8a3fe4f8 1974 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
9f20bf26
EZ
1975 }
1976 }
1977
1978 pdbr = get_cr3 ();
1979 if (!pdbr)
0426ad51
TT
1980 gdb_puts ("Access to Page Directories is "
1981 "not supported on this system.\n");
9f20bf26
EZ
1982 else if (pde_idx >= 0)
1983 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1984 else
1985 for (i = 0; i < 1024; i++)
1986 display_ptable_entry (get_pde (i), 1, 0, 0);
1987}
1988
1989/* A helper function to display entries in a Page Table pointed to by
1990 the N'th entry in the Page Directory. If FORCE is non-zero, say
1991 something even if the Page Table is not accessible. */
1992static void
1993display_page_table (long n, int force)
1994{
1995 unsigned long pde = get_pde (n);
1996
1997 if ((pde & 1) != 0)
1998 {
1999 int i;
2000
6cb06a8c
TT
2001 gdb_printf ("Page Table pointed to by "
2002 "Page Directory entry 0x%lx:\n", n);
9f20bf26
EZ
2003 for (i = 0; i < 1024; i++)
2004 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
0426ad51 2005 gdb_puts ("\n");
9f20bf26
EZ
2006 }
2007 else if (force)
6cb06a8c 2008 gdb_printf ("Page Table not present; value=0x%lx.\n", pde >> 1);
9f20bf26
EZ
2009}
2010
2011static void
5fed81ff 2012go32_pte (const char *arg, int from_tty)
9f20bf26 2013{
ccbc3e6f 2014 long pde_idx = -1L, i;
9f20bf26
EZ
2015
2016 if (arg && *arg)
2017 {
529480d0 2018 arg = skip_spaces (arg);
9f20bf26
EZ
2019
2020 if (*arg)
2021 {
2022 pde_idx = parse_and_eval_long (arg);
2023 if (pde_idx < 0 || pde_idx >= 1024)
8a3fe4f8 2024 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
9f20bf26
EZ
2025 }
2026 }
2027
2028 pdbr = get_cr3 ();
2029 if (!pdbr)
0426ad51 2030 gdb_puts ("Access to Page Tables is not supported on this system.\n");
9f20bf26
EZ
2031 else if (pde_idx >= 0)
2032 display_page_table (pde_idx, 1);
2033 else
2034 for (i = 0; i < 1024; i++)
2035 display_page_table (i, 0);
2036}
2037
2038static void
5fed81ff 2039go32_pte_for_address (const char *arg, int from_tty)
9f20bf26
EZ
2040{
2041 CORE_ADDR addr = 0, i;
2042
2043 if (arg && *arg)
2044 {
529480d0 2045 arg = skip_spaces (arg);
9f20bf26
EZ
2046
2047 if (*arg)
2048 addr = parse_and_eval_address (arg);
2049 }
2050 if (!addr)
e2e0b3e5 2051 error_no_arg (_("linear address"));
9f20bf26
EZ
2052
2053 pdbr = get_cr3 ();
2054 if (!pdbr)
0426ad51 2055 gdb_puts ("Access to Page Tables is not supported on this system.\n");
9f20bf26
EZ
2056 else
2057 {
2058 int pde_idx = (addr >> 22) & 0x3ff;
2059 int pte_idx = (addr >> 12) & 0x3ff;
2060 unsigned offs = addr & 0xfff;
2061
6cb06a8c
TT
2062 gdb_printf ("Page Table entry for address %s:\n",
2063 hex_string(addr));
9f20bf26
EZ
2064 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2065 }
2066}
2067
d8c852a1
EZ
2068static struct cmd_list_element *info_dos_cmdlist = NULL;
2069
6c265988 2070void _initialize_go32_nat ();
e49d4fa6 2071void
6c265988 2072_initialize_go32_nat ()
e49d4fa6 2073{
df7e5265
GB
2074 x86_dr_low.set_control = go32_set_dr7;
2075 x86_dr_low.set_addr = go32_set_dr;
2076 x86_dr_low.get_status = go32_get_dr6;
2077 x86_dr_low.get_control = go32_get_dr7;
2078 x86_dr_low.get_addr = go32_get_dr;
2079 x86_set_debug_register_length (4);
c1a7b7c6 2080
d9f719f1 2081 add_inf_child_target (&the_go32_nat_target);
c1a7b7c6
PA
2082
2083 /* Initialize child's cwd as empty to be initialized when starting
2084 the child. */
2085 *child_cwd = 0;
2086
2087 /* Initialize child's command line storage. */
2088 if (redir_debug_init (&child_cmd) == -1)
2089 internal_error (__FILE__, __LINE__,
2090 _("Cannot allocate redirection storage: "
2091 "not enough memory.\n"));
2092
2093 /* We are always processing GCC-compiled programs. */
2094 processing_gcc_compilation = 2;
10ba702d 2095
0743fc83 2096 add_basic_prefix_cmd ("dos", class_info, _("\
1bedd215 2097Print information specific to DJGPP (aka MS-DOS) debugging."),
2f822da5 2098 &info_dos_cmdlist, 0, &infolist);
d8c852a1 2099
1a966eab
AC
2100 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2101Display information about the target system, including CPU, OS, DPMI, etc."),
d8c852a1 2102 &info_dos_cmdlist);
1a966eab
AC
2103 add_cmd ("ldt", class_info, go32_sldt, _("\
2104Display entries in the LDT (Local Descriptor Table).\n\
2105Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2106 &info_dos_cmdlist);
1a966eab
AC
2107 add_cmd ("gdt", class_info, go32_sgdt, _("\
2108Display entries in the GDT (Global Descriptor Table).\n\
2109Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2110 &info_dos_cmdlist);
1a966eab
AC
2111 add_cmd ("idt", class_info, go32_sidt, _("\
2112Display entries in the IDT (Interrupt Descriptor Table).\n\
2113Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2114 &info_dos_cmdlist);
1a966eab
AC
2115 add_cmd ("pde", class_info, go32_pde, _("\
2116Display entries in the Page Directory.\n\
2117Entry number (an expression) as an argument means display only that entry."),
9f20bf26 2118 &info_dos_cmdlist);
1a966eab
AC
2119 add_cmd ("pte", class_info, go32_pte, _("\
2120Display entries in Page Tables.\n\
2121Entry number (an expression) as an argument means display only entries\n\
2122from the Page Table pointed to by the specified Page Directory entry."),
9f20bf26 2123 &info_dos_cmdlist);
1a966eab
AC
2124 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2125Display a Page Table entry for a linear address.\n\
2126The address argument must be a linear address, after adding to\n\
2127it the base address of the appropriate segment.\n\
2128The base address of variables and functions in the debuggee's data\n\
2129or code segment is stored in the variable __djgpp_base_address,\n\
2130so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2131For other segments, look up their base address in the output of\n\
2132the `info dos ldt' command."),
9f20bf26 2133 &info_dos_cmdlist);
e49d4fa6 2134}
53a5351d
JM
2135
2136pid_t
2137tcgetpgrp (int fd)
2138{
2139 if (isatty (fd))
2140 return SOME_PID;
2141 errno = ENOTTY;
2142 return -1;
2143}
2144
2145int
2146tcsetpgrp (int fd, pid_t pgid)
2147{
2148 if (isatty (fd) && pgid == SOME_PID)
2149 return 0;
2150 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2151 return -1;
2152}