]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/go32-nat.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
CommitLineData
e49d4fa6 1/* Native debugging support for Intel x86 running DJGPP.
1d506c26 2 Copyright (C) 1997-2024 Free Software Foundation, Inc.
e49d4fa6
SS
3 Written by Robert Hoehne.
4
c5aa993b 5 This file is part of GDB.
e49d4fa6 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
e49d4fa6 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
e49d4fa6 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
e49d4fa6 19
699275c9
EZ
20/* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
0baeab03 84
e49d4fa6
SS
85#include <fcntl.h>
86
df7e5265 87#include "x86-nat.h"
e49d4fa6 88#include "inferior.h"
45741a9c 89#include "infrun.h"
444c3224 90#include "gdbthread.h"
268a13a5 91#include "gdbsupport/gdb_wait.h"
e49d4fa6
SS
92#include "gdbcore.h"
93#include "command.h"
5b9707eb 94#include "cli/cli-cmds.h"
e49d4fa6 95#include "floatformat.h"
0baae8db 96#include "buildsym-legacy.h"
e750d25e 97#include "i387-tdep.h"
e1195560 98#include "i386-tdep.h"
df7e5265 99#include "nat/x86-cpuid.h"
4d277981 100#include "value.h"
4e052eda 101#include "regcache.h"
eaae3919 102#include "top.h"
529480d0 103#include "cli/cli-utils.h"
c1a7b7c6 104#include "inf-child.h"
e49d4fa6 105
10ba702d 106#include <ctype.h>
c2c6d25f 107#include <unistd.h>
10ba702d 108#include <sys/utsname.h>
53a5351d 109#include <io.h>
10ba702d 110#include <dos.h>
53a5351d 111#include <dpmi.h>
10ba702d 112#include <go32.h>
9f20bf26 113#include <sys/farptr.h>
e49d4fa6
SS
114#include <debug/v2load.h>
115#include <debug/dbgcom.h>
53a5351d
JM
116#if __DJGPP_MINOR__ > 2
117#include <debug/redir.h>
118#endif
e49d4fa6 119
10085bb5
EZ
120#include <langinfo.h>
121
b83266a0 122#if __DJGPP_MINOR__ < 3
0963b4bd
MS
123/* This code will be provided from DJGPP 2.03 on. Until then I code it
124 here. */
c5aa993b
JM
125typedef struct
126 {
127 unsigned short sig0;
128 unsigned short sig1;
129 unsigned short sig2;
130 unsigned short sig3;
131 unsigned short exponent:15;
132 unsigned short sign:1;
133 }
134NPXREG;
135
136typedef struct
137 {
138 unsigned int control;
139 unsigned int status;
140 unsigned int tag;
141 unsigned int eip;
142 unsigned int cs;
143 unsigned int dataptr;
144 unsigned int datasel;
145 NPXREG reg[8];
146 }
147NPX;
b83266a0
SS
148
149static NPX npx;
150
0963b4bd
MS
151static void save_npx (void); /* Save the FPU of the debugged program. */
152static void load_npx (void); /* Restore the FPU of the debugged program. */
b83266a0
SS
153
154/* ------------------------------------------------------------------------- */
155/* Store the contents of the NPX in the global variable `npx'. */
156
157static void
158save_npx (void)
159{
1f5dc670
EZ
160 asm ("inb $0xa0, %%al \n\
161 testb $0x20, %%al \n\
162 jz 1f \n\
82cc5033
EZ
163 xorb %%al, %%al \n\
164 outb %%al, $0xf0 \n\
1f5dc670 165 movb $0x20, %%al \n\
82cc5033
EZ
166 outb %%al, $0xa0 \n\
167 outb %%al, $0x20 \n\
1f5dc670 1681: \n\
82cc5033 169 fnsave %0 \n\
c5aa993b
JM
170 fwait "
171: "=m" (npx)
172: /* No input */
173: "%eax");
b83266a0 174}
c5aa993b 175
c5aa993b
JM
176
177
b83266a0
SS
178/* ------------------------------------------------------------------------- */
179/* Reload the contents of the NPX from the global variable `npx'. */
180
181static void
182load_npx (void)
183{
ba8629a9 184 asm ("frstor %0":"=m" (npx));
b83266a0 185}
53a5351d
JM
186/* ------------------------------------------------------------------------- */
187/* Stubs for the missing redirection functions. */
188typedef struct {
189 char *command;
190 int redirected;
191} cmdline_t;
192
4d277981 193void
ba8629a9
EZ
194redir_cmdline_delete (cmdline_t *ptr)
195{
196 ptr->redirected = 0;
197}
4d277981
EZ
198
199int
200redir_cmdline_parse (const char *args, cmdline_t *ptr)
53a5351d
JM
201{
202 return -1;
203}
ba8629a9 204
4d277981
EZ
205int
206redir_to_child (cmdline_t *ptr)
53a5351d
JM
207{
208 return 1;
209}
ba8629a9 210
4d277981
EZ
211int
212redir_to_debugger (cmdline_t *ptr)
53a5351d
JM
213{
214 return 1;
215}
ba8629a9 216
4d277981 217int
ba8629a9
EZ
218redir_debug_init (cmdline_t *ptr)
219{
220 return 0;
221}
b83266a0
SS
222#endif /* __DJGPP_MINOR < 3 */
223
53a5351d
JM
224typedef enum { wp_insert, wp_remove, wp_count } wp_op;
225
226/* This holds the current reference counts for each debug register. */
227static int dr_ref_count[4];
228
e49d4fa6
SS
229#define SOME_PID 42
230
e49d4fa6 231static int prog_has_started = 0;
b83266a0 232
53a5351d 233#define r_ofs(x) (offsetof(TSS,x))
e49d4fa6
SS
234
235static struct
236{
53a5351d
JM
237 size_t tss_ofs;
238 size_t size;
e49d4fa6
SS
239}
240regno_mapping[] =
241{
0fff5247
EZ
242 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
243 {r_ofs (tss_ecx), 4},
244 {r_ofs (tss_edx), 4},
245 {r_ofs (tss_ebx), 4},
246 {r_ofs (tss_esp), 4},
247 {r_ofs (tss_ebp), 4},
248 {r_ofs (tss_esi), 4},
249 {r_ofs (tss_edi), 4},
250 {r_ofs (tss_eip), 4},
251 {r_ofs (tss_eflags), 4},
252 {r_ofs (tss_cs), 2},
253 {r_ofs (tss_ss), 2},
254 {r_ofs (tss_ds), 2},
255 {r_ofs (tss_es), 2},
256 {r_ofs (tss_fs), 2},
257 {r_ofs (tss_gs), 2},
258 {0, 10}, /* 8 FP registers, from npx.reg[] */
259 {1, 10},
260 {2, 10},
261 {3, 10},
262 {4, 10},
263 {5, 10},
264 {6, 10},
265 {7, 10},
53a5351d 266 /* The order of the next 7 registers must be consistent
0fff5247
EZ
267 with their numbering in config/i386/tm-i386.h, which see. */
268 {0, 2}, /* control word, from npx */
269 {4, 2}, /* status word, from npx */
270 {8, 2}, /* tag word, from npx */
271 {16, 2}, /* last FP exception CS from npx */
272 {12, 4}, /* last FP exception EIP from npx */
273 {24, 2}, /* last FP exception operand selector from npx */
274 {20, 4}, /* last FP exception operand offset from npx */
275 {18, 2} /* last FP opcode from npx */
e49d4fa6
SS
276};
277
278static struct
279 {
280 int go32_sig;
2ea28649 281 enum gdb_signal gdb_sig;
e49d4fa6
SS
282 }
283sig_map[] =
284{
a493e3e2
PA
285 {0, GDB_SIGNAL_FPE},
286 {1, GDB_SIGNAL_TRAP},
53a5351d
JM
287 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
288 but I think SIGBUS is better, since the NMI is usually activated
289 as a result of a memory parity check failure. */
a493e3e2
PA
290 {2, GDB_SIGNAL_BUS},
291 {3, GDB_SIGNAL_TRAP},
292 {4, GDB_SIGNAL_FPE},
293 {5, GDB_SIGNAL_SEGV},
294 {6, GDB_SIGNAL_ILL},
295 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
296 {8, GDB_SIGNAL_SEGV},
297 {9, GDB_SIGNAL_SEGV},
298 {10, GDB_SIGNAL_BUS},
299 {11, GDB_SIGNAL_SEGV},
300 {12, GDB_SIGNAL_SEGV},
301 {13, GDB_SIGNAL_SEGV},
302 {14, GDB_SIGNAL_SEGV},
303 {16, GDB_SIGNAL_FPE},
304 {17, GDB_SIGNAL_BUS},
305 {31, GDB_SIGNAL_ILL},
306 {0x1b, GDB_SIGNAL_INT},
307 {0x75, GDB_SIGNAL_FPE},
308 {0x78, GDB_SIGNAL_ALRM},
309 {0x79, GDB_SIGNAL_INT},
310 {0x7a, GDB_SIGNAL_QUIT},
311 {-1, GDB_SIGNAL_LAST}
e49d4fa6
SS
312};
313
53a5351d 314static struct {
2ea28649 315 enum gdb_signal gdb_sig;
53a5351d
JM
316 int djgpp_excepno;
317} excepn_map[] = {
a493e3e2
PA
318 {GDB_SIGNAL_0, -1},
319 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
320 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
321 {GDB_SIGNAL_SEGV, 13}, /* GPF */
322 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
53a5351d
JM
323 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
324 details. */
a493e3e2
PA
325 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
326 {GDB_SIGNAL_FPE, 0x75},
327 {GDB_SIGNAL_INT, 0x79},
328 {GDB_SIGNAL_QUIT, 0x7a},
329 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
330 {GDB_SIGNAL_PROF, 0x78},
331 {GDB_SIGNAL_LAST, -1}
53a5351d
JM
332};
333
f6ac5f3d
PA
334/* The go32 target. */
335
336struct go32_nat_target final : public x86_nat_target<inf_child_target>
337{
338 void attach (const char *, int) override;
339
340 void resume (ptid_t, int, enum gdb_signal) override;
341
b60cea74 342 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
f6ac5f3d
PA
343
344 void fetch_registers (struct regcache *, int) override;
345 void store_registers (struct regcache *, int) override;
346
347 enum target_xfer_status xfer_partial (enum target_object object,
348 const char *annex,
349 gdb_byte *readbuf,
350 const gdb_byte *writebuf,
351 ULONGEST offset, ULONGEST len,
352 ULONGEST *xfered_len) override;
353
354 void files_info () override;
355
356 void terminal_init () override;
357
358 void terminal_inferior () override;
359
360 void terminal_ours_for_output () override;
361
362 void terminal_ours () override;
363
364 void terminal_info (const char *, int) override;
365
366 void pass_ctrlc () override;
367
368 void kill () override;
369
370 void create_inferior (const char *, const std::string &,
371 char **, int) override;
372
373 void mourn_inferior () override;
374
57810aa7 375 bool thread_alive (ptid_t ptid) override;
f6ac5f3d 376
a068643d 377 std::string pid_to_str (ptid_t) override;
f6ac5f3d
PA
378};
379
380static go32_nat_target the_go32_nat_target;
381
382void
383go32_nat_target::attach (const char *args, int from_tty)
e49d4fa6 384{
8a3fe4f8 385 error (_("\
53a5351d 386You cannot attach to a running program on this platform.\n\
8a3fe4f8 387Use the `run' command to run DJGPP programs."));
e49d4fa6
SS
388}
389
e49d4fa6 390static int resume_is_step;
53a5351d 391static int resume_signal = -1;
e49d4fa6 392
f6ac5f3d
PA
393void
394go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
c5aa993b 395{
53a5351d
JM
396 int i;
397
c5aa993b 398 resume_is_step = step;
53a5351d 399
a493e3e2 400 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
01add95b
SM
401 {
402 for (i = 0, resume_signal = -1;
403 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
404 if (excepn_map[i].gdb_sig == siggnal)
405 {
406 resume_signal = excepn_map[i].djgpp_excepno;
407 break;
408 }
409 if (resume_signal == -1)
410 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
411 gdb_signal_to_name (siggnal));
412 }
c5aa993b 413}
e49d4fa6 414
53a5351d
JM
415static char child_cwd[FILENAME_MAX];
416
f6ac5f3d
PA
417ptid_t
418go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
b60cea74 419 target_wait_flags options)
e49d4fa6
SS
420{
421 int i;
53a5351d 422 unsigned char saved_opcode;
0fff5247 423 unsigned long INT3_addr = 0;
53a5351d 424 int stepping_over_INT = 0;
e49d4fa6 425
0963b4bd 426 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
e49d4fa6 427 if (resume_is_step)
53a5351d
JM
428 {
429 /* If the next instruction is INT xx or INTO, we need to handle
430 them specially. Intel manuals say that these instructions
431 reset the single-step flag (a.k.a. TF). However, it seems
432 that, at least in the DPMI environment, and at least when
433 stepping over the DPMI interrupt 31h, the problem is having
434 TF set at all when INT 31h is executed: the debuggee either
435 crashes (and takes the system with it) or is killed by a
436 SIGTRAP.
437
438 So we need to emulate single-step mode: we put an INT3 opcode
439 right after the INT xx instruction, let the debuggee run
440 until it hits INT3 and stops, then restore the original
441 instruction which we overwrote with the INT3 opcode, and back
442 up the debuggee's EIP to that instruction. */
443 read_child (a_tss.tss_eip, &saved_opcode, 1);
444 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
445 {
446 unsigned char INT3_opcode = 0xCC;
447
448 INT3_addr
449 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
450 stepping_over_INT = 1;
451 read_child (INT3_addr, &saved_opcode, 1);
452 write_child (INT3_addr, &INT3_opcode, 1);
453 }
454 else
455 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
456 }
457
458 /* The special value FFFFh in tss_trap indicates to run_child that
459 tss_irqn holds a signal to be delivered to the debuggee. */
460 if (resume_signal <= -1)
461 {
462 a_tss.tss_trap = 0;
463 a_tss.tss_irqn = 0xff;
464 }
e49d4fa6 465 else
53a5351d 466 {
0963b4bd 467 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
53a5351d
JM
468 a_tss.tss_irqn = resume_signal;
469 }
470
471 /* The child might change working directory behind our back. The
472 GDB users won't like the side effects of that when they work with
473 relative file names, and GDB might be confused by its current
474 directory not being in sync with the truth. So we always make a
475 point of changing back to where GDB thinks is its cwd, when we
476 return control to the debugger, but restore child's cwd before we
477 run it. */
3a45aed8
EZ
478 /* Initialize child_cwd, before the first call to run_child and not
479 in the initialization, so the child get also the changed directory
0963b4bd 480 set with the gdb-command "cd ..." */
3a45aed8
EZ
481 if (!*child_cwd)
482 /* Initialize child's cwd with the current one. */
483 getcwd (child_cwd, sizeof (child_cwd));
4d277981 484
53a5351d 485 chdir (child_cwd);
e49d4fa6 486
b83266a0 487#if __DJGPP_MINOR__ < 3
53a5351d 488 load_npx ();
b83266a0 489#endif
e49d4fa6 490 run_child ();
b83266a0 491#if __DJGPP_MINOR__ < 3
53a5351d 492 save_npx ();
b83266a0 493#endif
e49d4fa6 494
53a5351d
JM
495 /* Did we step over an INT xx instruction? */
496 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
497 {
498 /* Restore the original opcode. */
0963b4bd 499 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
53a5351d
JM
500 write_child (a_tss.tss_eip, &saved_opcode, 1);
501 /* Simulate a TRAP exception. */
502 a_tss.tss_irqn = 1;
503 a_tss.tss_eflags |= 0x0100;
504 }
505
506 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
ff8577f6
SDJ
507 if (current_directory != NULL)
508 chdir (current_directory);
53a5351d 509
e49d4fa6 510 if (a_tss.tss_irqn == 0x21)
183be222 511 status->set_exited (a_tss.tss_eax & 0xff);
e49d4fa6
SS
512 else
513 {
183be222 514 status->set_stopped (GDB_SIGNAL_UNKNOWN);
e49d4fa6
SS
515 for (i = 0; sig_map[i].go32_sig != -1; i++)
516 {
517 if (a_tss.tss_irqn == sig_map[i].go32_sig)
518 {
53a5351d 519#if __DJGPP_MINOR__ < 3
183be222
SM
520 status->set_stopped (sig_map[i].gdb_sig);
521 if (status->sig () != GDB_SIGNAL_TRAP)
522 status->set_signalled (status->sig ());
53a5351d 523#else
183be222 524 status->set_stopped (sig_map[i].gdb_sig);
53a5351d 525#endif
e49d4fa6
SS
526 break;
527 }
528 }
529 }
f2907e49 530 return ptid_t (SOME_PID);
e49d4fa6
SS
531}
532
533static void
56be3814 534fetch_register (struct regcache *regcache, int regno)
e49d4fa6 535{
ac7936df 536 struct gdbarch *gdbarch = regcache->arch ();
9d0b3624 537 if (regno < gdbarch_fp0_regnum (gdbarch))
73e1c03f
SM
538 regcache->raw_supply (regno,
539 (char *) &a_tss + regno_mapping[regno].tss_ofs);
0963b4bd
MS
540 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
541 regno))
56be3814 542 i387_supply_fsave (regcache, regno, &npx);
89dea5aa 543 else
f34652de 544 internal_error (_("Invalid register no. %d in fetch_register."), regno);
89dea5aa 545}
e49d4fa6 546
f6ac5f3d
PA
547void
548go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
89dea5aa
EZ
549{
550 if (regno >= 0)
56be3814 551 fetch_register (regcache, regno);
89dea5aa 552 else
e49d4fa6 553 {
7067c689 554 for (regno = 0;
ac7936df 555 regno < gdbarch_fp0_regnum (regcache->arch ());
7067c689 556 regno++)
56be3814
UW
557 fetch_register (regcache, regno);
558 i387_supply_fsave (regcache, -1, &npx);
e49d4fa6
SS
559 }
560}
561
562static void
56be3814 563store_register (const struct regcache *regcache, int regno)
e49d4fa6 564{
ac7936df 565 struct gdbarch *gdbarch = regcache->arch ();
9d0b3624 566 if (regno < gdbarch_fp0_regnum (gdbarch))
34a79281
SM
567 regcache->raw_collect (regno,
568 (char *) &a_tss + regno_mapping[regno].tss_ofs);
0963b4bd
MS
569 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
570 regno))
56be3814 571 i387_collect_fsave (regcache, regno, &npx);
e49d4fa6 572 else
f34652de 573 internal_error (_("Invalid register no. %d in store_register."), regno);
e49d4fa6
SS
574}
575
f6ac5f3d
PA
576void
577go32_nat_target::store_registers (struct regcache *regcache, int regno)
e49d4fa6 578{
0fff5247 579 unsigned r;
e49d4fa6
SS
580
581 if (regno >= 0)
56be3814 582 store_register (regcache, regno);
e49d4fa6
SS
583 else
584 {
ac7936df 585 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
56be3814
UW
586 store_register (regcache, r);
587 i387_collect_fsave (regcache, -1, &npx);
e49d4fa6
SS
588 }
589}
590
bd265cd0
PA
591/* Const-correct version of DJGPP's write_child, which unfortunately
592 takes a non-const buffer pointer. */
593
e49d4fa6 594static int
bd265cd0 595my_write_child (unsigned child_addr, const void *buf, unsigned len)
e49d4fa6 596{
bd265cd0
PA
597 static void *buffer = NULL;
598 static unsigned buffer_len = 0;
599 int res;
600
601 if (buffer_len < len)
e49d4fa6 602 {
bd265cd0
PA
603 buffer = xrealloc (buffer, len);
604 buffer_len = len;
e49d4fa6 605 }
bd265cd0
PA
606
607 memcpy (buffer, buf, len);
608 res = write_child (child_addr, buffer, len);
609 return res;
610}
611
612/* Helper for go32_xfer_partial that handles memory transfers.
613 Arguments are like target_xfer_partial. */
614
615static enum target_xfer_status
616go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
617 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
618{
619 int res;
620
621 if (writebuf != NULL)
622 res = my_write_child (memaddr, writebuf, len);
e49d4fa6 623 else
bd265cd0
PA
624 res = read_child (memaddr, readbuf, len);
625
99cee7b7
EZ
626 /* read_child and write_child return zero on success, non-zero on
627 failure. */
628 if (res != 0)
bd265cd0
PA
629 return TARGET_XFER_E_IO;
630
99cee7b7 631 *xfered_len = len;
bd265cd0
PA
632 return TARGET_XFER_OK;
633}
634
635/* Target to_xfer_partial implementation. */
636
f6ac5f3d
PA
637enum target_xfer_status
638go32_nat_target::xfer_partial (enum target_object object,
639 const char *annex, gdb_byte *readbuf,
640 const gdb_byte *writebuf, ULONGEST offset,
641 ULONGEST len,
642 ULONGEST *xfered_len)
bd265cd0
PA
643{
644 switch (object)
e49d4fa6 645 {
bd265cd0
PA
646 case TARGET_OBJECT_MEMORY:
647 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
648
649 default:
4360561f
TT
650 return this->beneath ()->xfer_partial (object, annex,
651 readbuf, writebuf, offset, len,
652 xfered_len);
e49d4fa6
SS
653 }
654}
655
0963b4bd 656static cmdline_t child_cmd; /* Parsed child's command line kept here. */
53a5351d 657
f6ac5f3d
PA
658void
659go32_nat_target::files_info ()
e49d4fa6 660{
6cb06a8c 661 gdb_printf ("You are running a DJGPP V2 program.\n");
e49d4fa6
SS
662}
663
f6ac5f3d
PA
664void
665go32_nat_target::kill_inferior ()
e49d4fa6 666{
f6ac5f3d 667 mourn_inferior ();
e49d4fa6
SS
668}
669
f6ac5f3d
PA
670void
671go32_nat_target::create_inferior (const char *exec_file,
672 const std::string &allargs,
673 char **env, int from_tty)
e49d4fa6 674{
4d277981 675 extern char **environ;
e49d4fa6
SS
676 jmp_buf start_state;
677 char *cmdline;
678 char **env_save = environ;
150985e3 679 size_t cmdlen;
6c95b8df 680 struct inferior *inf;
b1ec390e 681 int result;
7c5ded6a 682 const char *args = allargs.c_str ();
e49d4fa6 683
0fff5247
EZ
684 /* If no exec file handed to us, get it from the exec-file command -- with
685 a good, common error message if none is specified. */
686 if (exec_file == 0)
687 exec_file = get_exec_file (1);
688
53a5351d
JM
689 resume_signal = -1;
690 resume_is_step = 0;
3a45aed8
EZ
691
692 /* Initialize child's cwd as empty to be initialized when starting
693 the child. */
694 *child_cwd = 0;
695
53a5351d
JM
696 /* Init command line storage. */
697 if (redir_debug_init (&child_cmd) == -1)
f34652de 698 internal_error (_("Cannot allocate redirection storage: "
0963b4bd 699 "not enough memory.\n"));
53a5351d
JM
700
701 /* Parse the command line and create redirections. */
702 if (strpbrk (args, "<>"))
703 {
704 if (redir_cmdline_parse (args, &child_cmd) == 0)
705 args = child_cmd.command;
706 else
8a3fe4f8 707 error (_("Syntax error in command line."));
53a5351d
JM
708 }
709 else
c2d11a7d 710 child_cmd.command = xstrdup (args);
e49d4fa6 711
150985e3
EZ
712 cmdlen = strlen (args);
713 /* v2loadimage passes command lines via DOS memory, so it cannot
714 possibly handle commands longer than 1MB. */
715 if (cmdlen > 1024*1024)
8a3fe4f8 716 error (_("Command line too long."));
150985e3 717
f515a1d6 718 cmdline = (char *) xmalloc (cmdlen + 4);
e49d4fa6 719 strcpy (cmdline + 1, args);
150985e3
EZ
720 /* If the command-line length fits into DOS 126-char limits, use the
721 DOS command tail format; otherwise, tell v2loadimage to pass it
722 through a buffer in conventional memory. */
723 if (cmdlen < 127)
724 {
725 cmdline[0] = strlen (args);
726 cmdline[cmdlen + 1] = 13;
727 }
728 else
0963b4bd 729 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
e49d4fa6
SS
730
731 environ = env;
732
b1ec390e
GB
733 result = v2loadimage (exec_file, cmdline, start_state);
734
e49d4fa6 735 environ = env_save;
12a498f3 736 xfree (cmdline);
e49d4fa6 737
b1ec390e 738 if (result != 0)
1ada499f 739 error (_("Load failed for image %s"), exec_file);
b1ec390e 740
e49d4fa6 741 edi_init (start_state);
53a5351d
JM
742#if __DJGPP_MINOR__ < 3
743 save_npx ();
744#endif
e49d4fa6 745
6c95b8df 746 inf = current_inferior ();
20176d8f 747 inferior_appeared (inf, SOME_PID);
7f9f62ba 748
c8fbd44a 749 if (!inf->target_is_pushed (this))
02980c56 750 inf->push_target (this);
444c3224 751
1ee1a363
PA
752 thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
753 switch_to_thread (thr);
444c3224 754
88056fbb 755 clear_proceed_status (0);
e49d4fa6 756 insert_breakpoints ();
b83266a0 757 prog_has_started = 1;
e49d4fa6
SS
758}
759
f6ac5f3d
PA
760void
761go32_nat_target::mourn_inferior ()
e49d4fa6 762{
67ce33d7
PA
763 redir_cmdline_delete (&child_cmd);
764 resume_signal = -1;
765 resume_is_step = 0;
766
767 cleanup_client ();
768
53a5351d
JM
769 /* We need to make sure all the breakpoint enable bits in the DR7
770 register are reset when the inferior exits. Otherwise, if they
771 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
772 failure to set more watchpoints, and other calamities. It would
773 be nice if GDB itself would take care to remove all breakpoints
774 at all times, but it doesn't, probably under an assumption that
775 the OS cleans up when the debuggee exits. */
df7e5265 776 x86_cleanup_dregs ();
67ce33d7 777
67ce33d7
PA
778 prog_has_started = 0;
779
e49d4fa6 780 generic_mourn_inferior ();
f6ac5f3d 781 maybe_unpush_target ();
e49d4fa6
SS
782}
783
e49d4fa6
SS
784/* Hardware watchpoint support. */
785
e49d4fa6 786#define D_REGS edi.dr
e24d4c64
EZ
787#define CONTROL D_REGS[7]
788#define STATUS D_REGS[6]
53a5351d 789
e24d4c64
EZ
790/* Pass the address ADDR to the inferior in the I'th debug register.
791 Here we just store the address in D_REGS, the watchpoint will be
792 actually set up when go32_wait runs the debuggee. */
9bb9e8ad 793static void
e24d4c64 794go32_set_dr (int i, CORE_ADDR addr)
e49d4fa6 795{
4d277981 796 if (i < 0 || i > 3)
f34652de 797 internal_error (_("Invalid register %d in go32_set_dr.\n"), i);
e24d4c64 798 D_REGS[i] = addr;
e49d4fa6
SS
799}
800
e24d4c64
EZ
801/* Pass the value VAL to the inferior in the DR7 debug control
802 register. Here we just store the address in D_REGS, the watchpoint
803 will be actually set up when go32_wait runs the debuggee. */
9bb9e8ad
PM
804static void
805go32_set_dr7 (unsigned long val)
53a5351d 806{
e24d4c64 807 CONTROL = val;
53a5351d
JM
808}
809
e24d4c64
EZ
810/* Get the value of the DR6 debug status register from the inferior.
811 Here we just return the value stored in D_REGS, as we've got it
812 from the last go32_wait call. */
9bb9e8ad 813static unsigned long
e24d4c64 814go32_get_dr6 (void)
e49d4fa6 815{
e24d4c64 816 return STATUS;
e49d4fa6
SS
817}
818
7b50312a
PA
819/* Get the value of the DR7 debug status register from the inferior.
820 Here we just return the value stored in D_REGS, as we've got it
821 from the last go32_wait call. */
822
823static unsigned long
824go32_get_dr7 (void)
825{
826 return CONTROL;
827}
828
829/* Get the value of the DR debug register I from the inferior. Here
830 we just return the value stored in D_REGS, as we've got it from the
831 last go32_wait call. */
832
833static CORE_ADDR
834go32_get_dr (int i)
835{
836 if (i < 0 || i > 3)
f34652de 837 internal_error (_("Invalid register %d in go32_get_dr.\n"), i);
7b50312a
PA
838 return D_REGS[i];
839}
840
53a5351d
JM
841/* Put the device open on handle FD into either raw or cooked
842 mode, return 1 if it was in raw mode, zero otherwise. */
843
844static int
845device_mode (int fd, int raw_p)
846{
847 int oldmode, newmode;
848 __dpmi_regs regs;
849
850 regs.x.ax = 0x4400;
851 regs.x.bx = fd;
852 __dpmi_int (0x21, &regs);
853 if (regs.x.flags & 1)
854 return -1;
855 newmode = oldmode = regs.x.dx;
856
857 if (raw_p)
858 newmode |= 0x20;
859 else
860 newmode &= ~0x20;
861
0963b4bd 862 if (oldmode & 0x80) /* Only for character dev. */
01add95b
SM
863 {
864 regs.x.ax = 0x4401;
865 regs.x.bx = fd;
866 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
867 __dpmi_int (0x21, &regs);
868 if (regs.x.flags & 1)
869 return -1;
870 }
53a5351d
JM
871 return (oldmode & 0x20) == 0x20;
872}
873
874
875static int inf_mode_valid = 0;
876static int inf_terminal_mode;
877
878/* This semaphore is needed because, amazingly enough, GDB calls
879 target.to_terminal_ours more than once after the inferior stops.
880 But we need the information from the first call only, since the
881 second call will always see GDB's own cooked terminal. */
882static int terminal_is_ours = 1;
883
f6ac5f3d
PA
884void
885go32_nat_target::terminal_init ()
cce74817 886{
0963b4bd 887 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
53a5351d 888 terminal_is_ours = 1;
cce74817
JM
889}
890
f6ac5f3d
PA
891void
892go32_nat_target::terminal_info (const char *args, int from_tty)
cce74817 893{
6cb06a8c
TT
894 gdb_printf ("Inferior's terminal is in %s mode.\n",
895 !inf_mode_valid
896 ? "default" : inf_terminal_mode ? "raw" : "cooked");
53a5351d
JM
897
898#if __DJGPP_MINOR__ > 2
899 if (child_cmd.redirection)
c5aa993b 900 {
01add95b
SM
901 int i;
902
903 for (i = 0; i < DBG_HANDLES; i++)
904 {
905 if (child_cmd.redirection[i]->file_name)
6cb06a8c
TT
906 gdb_printf ("\tFile handle %d is redirected to `%s'.\n",
907 i, child_cmd.redirection[i]->file_name);
01add95b 908 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
6cb06a8c 909 gdb_printf
01add95b
SM
910 ("\tFile handle %d appears to be closed by inferior.\n", i);
911 /* Mask off the raw/cooked bit when comparing device info words. */
912 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
913 != (_get_dev_info (i) & 0xdf))
6cb06a8c 914 gdb_printf
01add95b
SM
915 ("\tFile handle %d appears to be redirected by inferior.\n", i);
916 }
c5aa993b 917 }
53a5351d
JM
918#endif
919}
920
f6ac5f3d
PA
921void
922go32_nat_target::terminal_inferior ()
53a5351d
JM
923{
924 /* Redirect standard handles as child wants them. */
925 errno = 0;
926 if (redir_to_child (&child_cmd) == -1)
01add95b
SM
927 {
928 redir_to_debugger (&child_cmd);
929 error (_("Cannot redirect standard handles for program: %s."),
930 safe_strerror (errno));
931 }
0963b4bd
MS
932 /* Set the console device of the inferior to whatever mode
933 (raw or cooked) we found it last time. */
53a5351d 934 if (terminal_is_ours)
01add95b
SM
935 {
936 if (inf_mode_valid)
937 device_mode (0, inf_terminal_mode);
938 terminal_is_ours = 0;
939 }
cce74817
JM
940}
941
f6ac5f3d
PA
942void
943go32_nat_target::terminal_ours ()
cce74817 944{
53a5351d 945 /* Switch to cooked mode on the gdb terminal and save the inferior
0963b4bd 946 terminal mode to be restored when it is resumed. */
53a5351d 947 if (!terminal_is_ours)
53a5351d 948 {
01add95b
SM
949 inf_terminal_mode = device_mode (0, 0);
950 if (inf_terminal_mode != -1)
951 inf_mode_valid = 1;
952 else
953 /* If device_mode returned -1, we don't know what happens with
954 handle 0 anymore, so make the info invalid. */
955 inf_mode_valid = 0;
956 terminal_is_ours = 1;
957
958 /* Restore debugger's standard handles. */
959 errno = 0;
960 if (redir_to_debugger (&child_cmd) == -1)
961 {
962 redir_to_child (&child_cmd);
963 error (_("Cannot redirect standard handles for debugger: %s."),
964 safe_strerror (errno));
965 }
53a5351d 966 }
cce74817
JM
967}
968
f6ac5f3d
PA
969void
970go32_nat_target::pass_ctrlc ()
e671cd59
PA
971{
972}
973
57810aa7 974bool
f6ac5f3d 975go32_nat_target::thread_alive (ptid_t ptid)
444c3224 976{
d7e15655 977 return ptid != null_ptid;
444c3224
PA
978}
979
a068643d 980std::string
f6ac5f3d 981go32_nat_target::pid_to_str (ptid_t ptid)
444c3224 982{
89c9c2ec 983 return normal_pid_to_str (ptid);
444c3224
PA
984}
985
10085bb5
EZ
986/* Return the current DOS codepage number. */
987static int
988dos_codepage (void)
989{
990 __dpmi_regs regs;
991
992 regs.x.ax = 0x6601;
993 __dpmi_int (0x21, &regs);
994 if (!(regs.x.flags & 1))
995 return regs.x.bx & 0xffff;
996 else
997 return 437; /* default */
998}
999
1000/* Limited emulation of `nl_langinfo', for charset.c. */
1001char *
1002nl_langinfo (nl_item item)
1003{
1004 char *retval;
1005
1006 switch (item)
1007 {
1008 case CODESET:
1009 {
1010 /* 8 is enough for SHORT_MAX + "CP" + null. */
1011 char buf[8];
1012 int blen = sizeof (buf);
1013 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1014
0963b4bd 1015 if (needed > blen) /* Should never happen. */
10085bb5
EZ
1016 buf[0] = 0;
1017 retval = xstrdup (buf);
1018 }
1019 break;
1020 default:
1021 retval = xstrdup ("");
1022 break;
1023 }
1024 return retval;
1025}
1026
10ba702d
EZ
1027unsigned short windows_major, windows_minor;
1028
1029/* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1030static void
1031go32_get_windows_version(void)
1032{
1033 __dpmi_regs r;
1034
1035 r.x.ax = 0x1600;
1036 __dpmi_int(0x2f, &r);
1037 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1038 && (r.h.al > 3 || r.h.ah > 0))
1039 {
1040 windows_major = r.h.al;
1041 windows_minor = r.h.ah;
1042 }
1043 else
1044 windows_major = 0xff; /* meaning no Windows */
1045}
1046
1047/* A subroutine of go32_sysinfo to display memory info. */
1048static void
1049print_mem (unsigned long datum, const char *header, int in_pages_p)
1050{
1051 if (datum != 0xffffffffUL)
1052 {
1053 if (in_pages_p)
1054 datum <<= 12;
0426ad51 1055 gdb_puts (header);
10ba702d
EZ
1056 if (datum > 1024)
1057 {
6cb06a8c 1058 gdb_printf ("%lu KB", datum >> 10);
10ba702d 1059 if (datum > 1024 * 1024)
6cb06a8c 1060 gdb_printf (" (%lu MB)", datum >> 20);
10ba702d
EZ
1061 }
1062 else
6cb06a8c 1063 gdb_printf ("%lu Bytes", datum);
0426ad51 1064 gdb_puts ("\n");
10ba702d
EZ
1065 }
1066}
1067
1068/* Display assorted information about the underlying OS. */
1069static void
5fed81ff 1070go32_sysinfo (const char *arg, int from_tty)
10ba702d 1071{
d647eed6
EZ
1072 static const char test_pattern[] =
1073 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1074 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1075 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
10ba702d
EZ
1076 struct utsname u;
1077 char cpuid_vendor[13];
1078 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1079 unsigned true_dos_version = _get_dos_version (1);
1080 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1081 int dpmi_flags;
1082 char dpmi_vendor_info[129];
d647eed6 1083 int dpmi_vendor_available;
10ba702d
EZ
1084 __dpmi_version_ret dpmi_version_data;
1085 long eflags;
1086 __dpmi_free_mem_info mem_info;
1087 __dpmi_regs regs;
1088
1089 cpuid_vendor[0] = '\0';
1090 if (uname (&u))
1091 strcpy (u.machine, "Unknown x86");
1092 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1093 {
1094 /* CPUID with EAX = 0 returns the Vendor ID. */
4d157a3d 1095#if 0
df7e5265 1096 /* Ideally we would use x86_cpuid(), but it needs someone to run
dda83cd7
SM
1097 native tests first to make sure things actually work. They should.
1098 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
4d157a3d
MF
1099 unsigned int eax, ebx, ecx, edx;
1100
df7e5265 1101 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
4d157a3d
MF
1102 {
1103 cpuid_max = eax;
1104 memcpy (&vendor[0], &ebx, 4);
1105 memcpy (&vendor[4], &ecx, 4);
1106 memcpy (&vendor[8], &edx, 4);
1107 cpuid_vendor[12] = '\0';
1108 }
1109#else
10ba702d
EZ
1110 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1111 "xorl %%ecx, %%ecx;"
1112 "xorl %%edx, %%edx;"
1113 "movl $0, %%eax;"
1114 "cpuid;"
1115 "movl %%ebx, %0;"
1116 "movl %%edx, %1;"
1117 "movl %%ecx, %2;"
1118 "movl %%eax, %3;"
1119 : "=m" (cpuid_vendor[0]),
1120 "=m" (cpuid_vendor[4]),
1121 "=m" (cpuid_vendor[8]),
1122 "=m" (cpuid_max)
1123 :
1124 : "%eax", "%ebx", "%ecx", "%edx");
1125 cpuid_vendor[12] = '\0';
4d157a3d 1126#endif
10ba702d
EZ
1127 }
1128
6cb06a8c 1129 gdb_printf ("CPU Type.......................%s", u.machine);
10ba702d 1130 if (cpuid_vendor[0])
6cb06a8c 1131 gdb_printf (" (%s)", cpuid_vendor);
0426ad51 1132 gdb_puts ("\n");
10ba702d
EZ
1133
1134 /* CPUID with EAX = 1 returns processor signature and features. */
1135 if (cpuid_max >= 1)
1136 {
a121b7c1 1137 static const char *brand_name[] = {
10ba702d
EZ
1138 "",
1139 " Celeron",
1140 " III",
1141 " III Xeon",
1142 "", "", "", "",
1143 " 4"
1144 };
1145 char cpu_string[80];
1146 char cpu_brand[20];
1147 unsigned brand_idx;
1148 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1149 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
3960cb7a 1150 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
10ba702d
EZ
1151 unsigned cpu_family, cpu_model;
1152
4d157a3d
MF
1153#if 0
1154 /* See comment above about cpuid usage. */
df7e5265 1155 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
4d157a3d 1156#else
10ba702d
EZ
1157 __asm__ __volatile__ ("movl $1, %%eax;"
1158 "cpuid;"
1159 : "=a" (cpuid_eax),
1160 "=b" (cpuid_ebx),
1161 "=d" (cpuid_edx)
1162 :
1163 : "%ecx");
4d157a3d 1164#endif
10ba702d
EZ
1165 brand_idx = cpuid_ebx & 0xff;
1166 cpu_family = (cpuid_eax >> 8) & 0xf;
1167 cpu_model = (cpuid_eax >> 4) & 0xf;
1168 cpu_brand[0] = '\0';
1169 if (intel_p)
1170 {
1171 if (brand_idx > 0
1172 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1173 && *brand_name[brand_idx])
1174 strcpy (cpu_brand, brand_name[brand_idx]);
1175 else if (cpu_family == 5)
1176 {
1177 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1178 strcpy (cpu_brand, " MMX");
1179 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1180 strcpy (cpu_brand, " OverDrive");
1181 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1182 strcpy (cpu_brand, " Dual");
1183 }
1184 else if (cpu_family == 6 && cpu_model < 8)
1185 {
1186 switch (cpu_model)
1187 {
1188 case 1:
1189 strcpy (cpu_brand, " Pro");
1190 break;
1191 case 3:
1192 strcpy (cpu_brand, " II");
1193 break;
1194 case 5:
1195 strcpy (cpu_brand, " II Xeon");
1196 break;
1197 case 6:
1198 strcpy (cpu_brand, " Celeron");
1199 break;
1200 case 7:
1201 strcpy (cpu_brand, " III");
1202 break;
1203 }
1204 }
1205 }
1206 else if (amd_p)
1207 {
1208 switch (cpu_family)
1209 {
1210 case 4:
1211 strcpy (cpu_brand, "486/5x86");
1212 break;
1213 case 5:
1214 switch (cpu_model)
1215 {
1216 case 0:
1217 case 1:
1218 case 2:
1219 case 3:
1220 strcpy (cpu_brand, "-K5");
1221 break;
1222 case 6:
1223 case 7:
1224 strcpy (cpu_brand, "-K6");
1225 break;
1226 case 8:
1227 strcpy (cpu_brand, "-K6-2");
1228 break;
1229 case 9:
1230 strcpy (cpu_brand, "-K6-III");
1231 break;
1232 }
1233 break;
1234 case 6:
1235 switch (cpu_model)
1236 {
1237 case 1:
1238 case 2:
1239 case 4:
1240 strcpy (cpu_brand, " Athlon");
1241 break;
1242 case 3:
1243 strcpy (cpu_brand, " Duron");
1244 break;
1245 }
1246 break;
1247 }
1248 }
8c042590 1249 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
dda83cd7
SM
1250 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1251 cpu_brand, cpu_model, cpuid_eax & 0xf);
6cb06a8c 1252 gdb_printf ("%*s%s\n", 31, "", cpu_string);
10ba702d
EZ
1253 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1254 || ((cpuid_edx & 1) == 0)
3960cb7a 1255 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
10ba702d 1256 {
0426ad51 1257 gdb_puts ("CPU Features...................");
10ba702d
EZ
1258 /* We only list features which might be useful in the DPMI
1259 environment. */
1260 if ((cpuid_edx & 1) == 0)
0426ad51 1261 gdb_puts ("No FPU "); /* It's unusual to not have an FPU. */
10ba702d 1262 if ((cpuid_edx & (1 << 1)) != 0)
0426ad51 1263 gdb_puts ("VME ");
10ba702d 1264 if ((cpuid_edx & (1 << 2)) != 0)
0426ad51 1265 gdb_puts ("DE ");
10ba702d 1266 if ((cpuid_edx & (1 << 4)) != 0)
0426ad51 1267 gdb_puts ("TSC ");
10ba702d 1268 if ((cpuid_edx & (1 << 23)) != 0)
0426ad51 1269 gdb_puts ("MMX ");
10ba702d 1270 if ((cpuid_edx & (1 << 25)) != 0)
0426ad51 1271 gdb_puts ("SSE ");
10ba702d 1272 if ((cpuid_edx & (1 << 26)) != 0)
0426ad51 1273 gdb_puts ("SSE2 ");
3960cb7a 1274 if (amd_p || hygon_p)
10ba702d
EZ
1275 {
1276 if ((cpuid_edx & (1 << 31)) != 0)
0426ad51 1277 gdb_puts ("3DNow! ");
10ba702d 1278 if ((cpuid_edx & (1 << 30)) != 0)
0426ad51 1279 gdb_puts ("3DNow!Ext");
10ba702d 1280 }
0426ad51 1281 gdb_puts ("\n");
10ba702d
EZ
1282 }
1283 }
0426ad51 1284 gdb_puts ("\n");
6cb06a8c
TT
1285 gdb_printf ("DOS Version....................%s %s.%s",
1286 _os_flavor, u.release, u.version);
10ba702d 1287 if (true_dos_version != advertized_dos_version)
6cb06a8c 1288 gdb_printf (" (disguised as v%d.%d)", _osmajor, _osminor);
0426ad51 1289 gdb_puts ("\n");
10ba702d
EZ
1290 if (!windows_major)
1291 go32_get_windows_version ();
1292 if (windows_major != 0xff)
1293 {
1294 const char *windows_flavor;
1295
6cb06a8c
TT
1296 gdb_printf ("Windows Version................%d.%02d (Windows ",
1297 windows_major, windows_minor);
10ba702d
EZ
1298 switch (windows_major)
1299 {
1300 case 3:
1301 windows_flavor = "3.X";
1302 break;
1303 case 4:
1304 switch (windows_minor)
1305 {
1306 case 0:
1307 windows_flavor = "95, 95A, or 95B";
1308 break;
1309 case 3:
1310 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1311 break;
1312 case 10:
1313 windows_flavor = "98 or 98 SE";
1314 break;
1315 case 90:
1316 windows_flavor = "ME";
1317 break;
1318 default:
1319 windows_flavor = "9X";
1320 break;
1321 }
1322 break;
1323 default:
1324 windows_flavor = "??";
1325 break;
1326 }
6cb06a8c 1327 gdb_printf ("%s)\n", windows_flavor);
10ba702d
EZ
1328 }
1329 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
6cb06a8c
TT
1330 gdb_printf ("Windows Version................"
1331 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
0426ad51 1332 gdb_puts ("\n");
d647eed6
EZ
1333 /* On some versions of Windows, __dpmi_get_capabilities returns
1334 zero, but the buffer is not filled with info, so we fill the
1335 buffer with a known pattern and test for it afterwards. */
1336 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1337 dpmi_vendor_available =
1338 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1339 if (dpmi_vendor_available == 0
1340 && memcmp (dpmi_vendor_info, test_pattern,
1341 sizeof(dpmi_vendor_info)) != 0)
10ba702d
EZ
1342 {
1343 /* The DPMI spec says the vendor string should be ASCIIZ, but
1344 I don't trust the vendors to follow that... */
1345 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1346 dpmi_vendor_info[128] = '\0';
6cb06a8c
TT
1347 gdb_printf ("DPMI Host......................"
1348 "%s v%d.%d (capabilities: %#x)\n",
1349 &dpmi_vendor_info[2],
1350 (unsigned)dpmi_vendor_info[0],
1351 (unsigned)dpmi_vendor_info[1],
1352 ((unsigned)dpmi_flags & 0x7f));
10ba702d 1353 }
d647eed6 1354 else
6cb06a8c 1355 gdb_printf ("DPMI Host......................(Info not available)\n");
10ba702d 1356 __dpmi_get_version (&dpmi_version_data);
6cb06a8c
TT
1357 gdb_printf ("DPMI Version...................%d.%02d\n",
1358 dpmi_version_data.major, dpmi_version_data.minor);
1359 gdb_printf ("DPMI Info......................"
1360 "%s-bit DPMI, with%s Virtual Memory support\n",
1361 (dpmi_version_data.flags & 1) ? "32" : "16",
1362 (dpmi_version_data.flags & 4) ? "" : "out");
1363 gdb_printf ("%*sInterrupts reflected to %s mode\n", 31, "",
1364 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1365 gdb_printf ("%*sProcessor type: i%d86\n", 31, "",
1366 dpmi_version_data.cpu);
1367 gdb_printf ("%*sPIC base interrupt: Master: %#x Slave: %#x\n", 31, "",
1368 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
10ba702d
EZ
1369
1370 /* a_tss is only initialized when the debuggee is first run. */
1371 if (prog_has_started)
1372 {
1373 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
6cb06a8c
TT
1374 gdb_printf ("Protection....................."
1375 "Ring %d (in %s), with%s I/O protection\n",
1376 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1377 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
10ba702d 1378 }
0426ad51 1379 gdb_puts ("\n");
10ba702d
EZ
1380 __dpmi_get_free_memory_information (&mem_info);
1381 print_mem (mem_info.total_number_of_physical_pages,
1382 "DPMI Total Physical Memory.....", 1);
1383 print_mem (mem_info.total_number_of_free_pages,
1384 "DPMI Free Physical Memory......", 1);
1385 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1386 "DPMI Swap Space................", 1);
1387 print_mem (mem_info.linear_address_space_size_in_pages,
1388 "DPMI Total Linear Address Size.", 1);
1389 print_mem (mem_info.free_linear_address_space_in_pages,
1390 "DPMI Free Linear Address Size..", 1);
1391 print_mem (mem_info.largest_available_free_block_in_bytes,
1392 "DPMI Largest Free Memory Block.", 0);
1393
1394 regs.h.ah = 0x48;
1395 regs.x.bx = 0xffff;
1396 __dpmi_int (0x21, &regs);
1397 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1398 regs.x.ax = 0x5800;
1399 __dpmi_int (0x21, &regs);
1400 if ((regs.x.flags & 1) == 0)
1401 {
1402 static const char *dos_hilo[] = {
1403 "Low", "", "", "", "High", "", "", "", "High, then Low"
1404 };
1405 static const char *dos_fit[] = {
1406 "First", "Best", "Last"
1407 };
1408 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1409 int fit_idx = regs.x.ax & 0x0f;
1410
1411 if (hilo_idx > 8)
1412 hilo_idx = 0;
1413 if (fit_idx > 2)
1414 fit_idx = 0;
6cb06a8c
TT
1415 gdb_printf ("DOS Memory Allocation..........%s memory, %s fit\n",
1416 dos_hilo[hilo_idx], dos_fit[fit_idx]);
10ba702d
EZ
1417 regs.x.ax = 0x5802;
1418 __dpmi_int (0x21, &regs);
1419 if ((regs.x.flags & 1) != 0)
1420 regs.h.al = 0;
6cb06a8c
TT
1421 gdb_printf ("%*sUMBs %sin DOS memory chain\n", 31, "",
1422 regs.h.al == 0 ? "not " : "");
10ba702d
EZ
1423 }
1424}
1425
1426struct seg_descr {
9d0b3624
PA
1427 unsigned short limit0;
1428 unsigned short base0;
1429 unsigned char base1;
1430 unsigned stype:5;
1431 unsigned dpl:2;
1432 unsigned present:1;
1433 unsigned limit1:4;
1434 unsigned available:1;
1435 unsigned dummy:1;
1436 unsigned bit32:1;
1437 unsigned page_granular:1;
1438 unsigned char base2;
1439} __attribute__ ((packed));
10ba702d
EZ
1440
1441struct gate_descr {
9d0b3624
PA
1442 unsigned short offset0;
1443 unsigned short selector;
1444 unsigned param_count:5;
1445 unsigned dummy:3;
1446 unsigned stype:5;
1447 unsigned dpl:2;
1448 unsigned present:1;
1449 unsigned short offset1;
1450} __attribute__ ((packed));
10ba702d
EZ
1451
1452/* Read LEN bytes starting at logical address ADDR, and put the result
1453 into DEST. Return 1 if success, zero if not. */
1454static int
1455read_memory_region (unsigned long addr, void *dest, size_t len)
1456{
1457 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
9f20bf26 1458 int retval = 1;
10ba702d
EZ
1459
1460 /* For the low memory, we can simply use _dos_ds. */
1461 if (addr <= dos_ds_limit - len)
1462 dosmemget (addr, len, dest);
1463 else
1464 {
1465 /* For memory above 1MB we need to set up a special segment to
1466 be able to access that memory. */
1467 int sel = __dpmi_allocate_ldt_descriptors (1);
1468
9f20bf26
EZ
1469 if (sel <= 0)
1470 retval = 0;
1471 else
1472 {
1473 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1474 size_t segment_limit = len - 1;
1475
1476 /* Make sure the crucial bits in the descriptor access
1477 rights are set correctly. Some DPMI providers might barf
1478 if we set the segment limit to something that is not an
1479 integral multiple of 4KB pages if the granularity bit is
1480 not set to byte-granular, even though the DPMI spec says
1481 it's the host's responsibility to set that bit correctly. */
1482 if (len > 1024 * 1024)
1483 {
1484 access_rights |= 0x8000;
1485 /* Page-granular segments should have the low 12 bits of
1486 the limit set. */
1487 segment_limit |= 0xfff;
1488 }
1489 else
1490 access_rights &= ~0x8000;
1491
1492 if (__dpmi_set_segment_base_address (sel, addr) != -1
1493 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
2033c18a
EZ
1494 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1495 /* W2K silently fails to set the segment limit, leaving
1496 it at zero; this test avoids the resulting crash. */
1497 && __dpmi_get_segment_limit (sel) >= segment_limit)
9f20bf26
EZ
1498 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1499 else
1500 retval = 0;
1501
1502 __dpmi_free_ldt_descriptor (sel);
1503 }
10ba702d 1504 }
9f20bf26 1505 return retval;
10ba702d
EZ
1506}
1507
1508/* Get a segment descriptor stored at index IDX in the descriptor
1509 table whose base address is TABLE_BASE. Return the descriptor
1510 type, or -1 if failure. */
1511static int
1512get_descriptor (unsigned long table_base, int idx, void *descr)
1513{
1514 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1515
1516 if (read_memory_region (addr, descr, 8))
1517 return (int)((struct seg_descr *)descr)->stype;
1518 return -1;
1519}
1520
1521struct dtr_reg {
1522 unsigned short limit __attribute__((packed));
1523 unsigned long base __attribute__((packed));
1524};
1525
1526/* Display a segment descriptor stored at index IDX in a descriptor
1527 table whose type is TYPE and whose base address is BASE_ADDR. If
1528 FORCE is non-zero, display even invalid descriptors. */
1529static void
1530display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1531{
1532 struct seg_descr descr;
1533 struct gate_descr gate;
1534
1535 /* Get the descriptor from the table. */
1536 if (idx == 0 && type == 0)
0426ad51 1537 gdb_puts ("0x000: null descriptor\n");
10ba702d
EZ
1538 else if (get_descriptor (base_addr, idx, &descr) != -1)
1539 {
1540 /* For each type of descriptor table, this has a bit set if the
1541 corresponding type of selectors is valid in that table. */
1542 static unsigned allowed_descriptors[] = {
1543 0xffffdafeL, /* GDT */
1544 0x0000c0e0L, /* IDT */
1545 0xffffdafaL /* LDT */
1546 };
1547
1548 /* If the program hasn't started yet, assume the debuggee will
1549 have the same CPL as the debugger. */
1550 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1551 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1552
1553 if (descr.present
1554 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1555 {
6cb06a8c
TT
1556 gdb_printf ("0x%03x: ",
1557 type == 1
1558 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
10ba702d
EZ
1559 if (descr.page_granular)
1560 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1561 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1562 || descr.stype == 9 || descr.stype == 11
1563 || (descr.stype >= 16 && descr.stype < 32))
6cb06a8c
TT
1564 gdb_printf ("base=0x%02x%02x%04x limit=0x%08lx",
1565 descr.base2, descr.base1, descr.base0, limit);
10ba702d
EZ
1566
1567 switch (descr.stype)
1568 {
1569 case 1:
1570 case 3:
6cb06a8c
TT
1571 gdb_printf (" 16-bit TSS (task %sactive)",
1572 descr.stype == 3 ? "" : "in");
10ba702d
EZ
1573 break;
1574 case 2:
0426ad51 1575 gdb_puts (" LDT");
10ba702d
EZ
1576 break;
1577 case 4:
1578 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1579 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1580 gate.selector, gate.offset1, gate.offset0);
1581 gdb_printf (" 16-bit Call Gate (params=%d)",
1582 gate.param_count);
10ba702d
EZ
1583 break;
1584 case 5:
6cb06a8c
TT
1585 gdb_printf ("TSS selector=0x%04x", descr.base0);
1586 gdb_printf ("%*sTask Gate", 16, "");
10ba702d
EZ
1587 break;
1588 case 6:
1589 case 7:
1590 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1591 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1592 gate.selector, gate.offset1, gate.offset0);
1593 gdb_printf (" 16-bit %s Gate",
1594 descr.stype == 6 ? "Interrupt" : "Trap");
10ba702d
EZ
1595 break;
1596 case 9:
1597 case 11:
6cb06a8c
TT
1598 gdb_printf (" 32-bit TSS (task %sactive)",
1599 descr.stype == 3 ? "" : "in");
10ba702d
EZ
1600 break;
1601 case 12:
1602 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1603 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1604 gate.selector, gate.offset1, gate.offset0);
1605 gdb_printf (" 32-bit Call Gate (params=%d)",
1606 gate.param_count);
10ba702d
EZ
1607 break;
1608 case 14:
1609 case 15:
1610 memcpy (&gate, &descr, sizeof gate);
6cb06a8c
TT
1611 gdb_printf ("selector=0x%04x offs=0x%04x%04x",
1612 gate.selector, gate.offset1, gate.offset0);
1613 gdb_printf (" 32-bit %s Gate",
1614 descr.stype == 14 ? "Interrupt" : "Trap");
10ba702d
EZ
1615 break;
1616 case 16: /* data segments */
1617 case 17:
1618 case 18:
1619 case 19:
1620 case 20:
1621 case 21:
1622 case 22:
1623 case 23:
6cb06a8c
TT
1624 gdb_printf (" %s-bit Data (%s Exp-%s%s)",
1625 descr.bit32 ? "32" : "16",
1626 descr.stype & 2
1627 ? "Read/Write," : "Read-Only, ",
1628 descr.stype & 4 ? "down" : "up",
1629 descr.stype & 1 ? "" : ", N.Acc");
10ba702d
EZ
1630 break;
1631 case 24: /* code segments */
1632 case 25:
1633 case 26:
1634 case 27:
1635 case 28:
1636 case 29:
1637 case 30:
1638 case 31:
6cb06a8c
TT
1639 gdb_printf (" %s-bit Code (%s, %sConf%s)",
1640 descr.bit32 ? "32" : "16",
1641 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1642 descr.stype & 4 ? "" : "N.",
1643 descr.stype & 1 ? "" : ", N.Acc");
10ba702d
EZ
1644 break;
1645 default:
6cb06a8c 1646 gdb_printf ("Unknown type 0x%02x", descr.stype);
10ba702d
EZ
1647 break;
1648 }
0426ad51 1649 gdb_puts ("\n");
10ba702d
EZ
1650 }
1651 else if (force)
1652 {
6cb06a8c
TT
1653 gdb_printf ("0x%03x: ",
1654 type == 1
1655 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
10ba702d 1656 if (!descr.present)
0426ad51 1657 gdb_puts ("Segment not present\n");
10ba702d 1658 else
6cb06a8c
TT
1659 gdb_printf ("Segment type 0x%02x is invalid in this table\n",
1660 descr.stype);
10ba702d
EZ
1661 }
1662 }
1663 else if (force)
6cb06a8c 1664 gdb_printf ("0x%03x: Cannot read this descriptor\n", idx);
10ba702d
EZ
1665}
1666
1667static void
5fed81ff 1668go32_sldt (const char *arg, int from_tty)
10ba702d
EZ
1669{
1670 struct dtr_reg gdtr;
1671 unsigned short ldtr = 0;
1672 int ldt_idx;
1673 struct seg_descr ldt_descr;
1674 long ldt_entry = -1L;
1675 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1676
1677 if (arg && *arg)
1678 {
529480d0 1679 arg = skip_spaces (arg);
10ba702d
EZ
1680
1681 if (*arg)
1682 {
1683 ldt_entry = parse_and_eval_long (arg);
1684 if (ldt_entry < 0
1685 || (ldt_entry & 4) == 0
1686 || (ldt_entry & 3) != (cpl & 3))
8a3fe4f8 1687 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
10ba702d
EZ
1688 }
1689 }
1690
1691 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1692 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1693 ldt_idx = ldtr / 8;
1694 if (ldt_idx == 0)
0426ad51 1695 gdb_puts ("There is no LDT.\n");
10ba702d
EZ
1696 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1697 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
6cb06a8c
TT
1698 gdb_printf ("LDT is present (at %#x), but unreadable by GDB.\n",
1699 ldt_descr.base0
1700 | (ldt_descr.base1 << 16)
1701 | (ldt_descr.base2 << 24));
10ba702d
EZ
1702 else
1703 {
1704 unsigned base =
1705 ldt_descr.base0
1706 | (ldt_descr.base1 << 16)
1707 | (ldt_descr.base2 << 24);
1708 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1709 int max_entry;
1710
1711 if (ldt_descr.page_granular)
1712 /* Page-granular segments must have the low 12 bits of their
1713 limit set. */
1714 limit = (limit << 12) | 0xfff;
1715 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1716 64KB. */
1717 if (limit > 0xffff)
1718 limit = 0xffff;
1719
1720 max_entry = (limit + 1) / 8;
1721
1722 if (ldt_entry >= 0)
1723 {
1724 if (ldt_entry > limit)
8a3fe4f8 1725 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1726 (unsigned long)ldt_entry, limit);
10ba702d
EZ
1727
1728 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1729 }
1730 else
1731 {
1732 int i;
1733
1734 for (i = 0; i < max_entry; i++)
1735 display_descriptor (ldt_descr.stype, base, i, 0);
1736 }
1737 }
1738}
1739
1740static void
5fed81ff 1741go32_sgdt (const char *arg, int from_tty)
10ba702d
EZ
1742{
1743 struct dtr_reg gdtr;
1744 long gdt_entry = -1L;
1745 int max_entry;
1746
1747 if (arg && *arg)
1748 {
529480d0 1749 arg = skip_spaces (arg);
10ba702d
EZ
1750
1751 if (*arg)
1752 {
1753 gdt_entry = parse_and_eval_long (arg);
1754 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
0963b4bd
MS
1755 error (_("Invalid GDT entry 0x%03lx: "
1756 "not an integral multiple of 8."),
ccbc3e6f 1757 (unsigned long)gdt_entry);
10ba702d
EZ
1758 }
1759 }
1760
1761 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1762 max_entry = (gdtr.limit + 1) / 8;
1763
1764 if (gdt_entry >= 0)
1765 {
1766 if (gdt_entry > gdtr.limit)
8a3fe4f8 1767 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1768 (unsigned long)gdt_entry, gdtr.limit);
10ba702d
EZ
1769
1770 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1771 }
1772 else
1773 {
1774 int i;
1775
1776 for (i = 0; i < max_entry; i++)
1777 display_descriptor (0, gdtr.base, i, 0);
1778 }
1779}
1780
1781static void
5fed81ff 1782go32_sidt (const char *arg, int from_tty)
10ba702d
EZ
1783{
1784 struct dtr_reg idtr;
1785 long idt_entry = -1L;
1786 int max_entry;
1787
1788 if (arg && *arg)
1789 {
529480d0 1790 arg = skip_spaces (arg);
10ba702d
EZ
1791
1792 if (*arg)
1793 {
1794 idt_entry = parse_and_eval_long (arg);
1795 if (idt_entry < 0)
8a3fe4f8 1796 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
10ba702d
EZ
1797 }
1798 }
1799
1800 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1801 max_entry = (idtr.limit + 1) / 8;
0963b4bd 1802 if (max_entry > 0x100) /* No more than 256 entries. */
10ba702d
EZ
1803 max_entry = 0x100;
1804
1805 if (idt_entry >= 0)
1806 {
1807 if (idt_entry > idtr.limit)
8a3fe4f8 1808 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
ccbc3e6f 1809 (unsigned long)idt_entry, idtr.limit);
10ba702d
EZ
1810
1811 display_descriptor (1, idtr.base, idt_entry, 1);
1812 }
1813 else
1814 {
1815 int i;
1816
1817 for (i = 0; i < max_entry; i++)
1818 display_descriptor (1, idtr.base, i, 0);
1819 }
1820}
1821
9f20bf26
EZ
1822/* Cached linear address of the base of the page directory. For
1823 now, available only under CWSDPMI. Code based on ideas and
1824 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1825static unsigned long pdbr;
1826
1827static unsigned long
1828get_cr3 (void)
1829{
1830 unsigned offset;
1831 unsigned taskreg;
1832 unsigned long taskbase, cr3;
1833 struct dtr_reg gdtr;
1834
1835 if (pdbr > 0 && pdbr <= 0xfffff)
1836 return pdbr;
1837
1838 /* Get the linear address of GDT and the Task Register. */
1839 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1840 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1841
1842 /* Task Register is a segment selector for the TSS of the current
1843 task. Therefore, it can be used as an index into the GDT to get
1844 at the segment descriptor for the TSS. To get the index, reset
1845 the low 3 bits of the selector (which give the CPL). Add 2 to the
1846 offset to point to the 3 low bytes of the base address. */
1847 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1848
1849
1850 /* CWSDPMI's task base is always under the 1MB mark. */
1851 if (offset > 0xfffff)
1852 return 0;
1853
1854 _farsetsel (_dos_ds);
1855 taskbase = _farnspeekl (offset) & 0xffffffU;
1856 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1857 if (taskbase > 0xfffff)
1858 return 0;
1859
1860 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1861 offset 1Ch in the TSS. */
1862 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1863 if (cr3 > 0xfffff)
1864 {
85102364 1865#if 0 /* Not fully supported yet. */
9f20bf26
EZ
1866 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1867 the first Page Table right below the Page Directory. Thus,
1868 the first Page Table's entry for its own address and the Page
1869 Directory entry for that Page Table will hold the same
1870 physical address. The loop below searches the entire UMB
85102364 1871 range of addresses for such an occurrence. */
9f20bf26
EZ
1872 unsigned long addr, pte_idx;
1873
1874 for (addr = 0xb0000, pte_idx = 0xb0;
1875 pte_idx < 0xff;
1876 addr += 0x1000, pte_idx++)
1877 {
1878 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1879 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1880 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1881 {
1882 cr3 = addr + 0x1000;
1883 break;
1884 }
1885 }
a3b9cbb3 1886#endif
9f20bf26
EZ
1887
1888 if (cr3 > 0xfffff)
1889 cr3 = 0;
1890 }
1891
1892 return cr3;
1893}
1894
1895/* Return the N'th Page Directory entry. */
1896static unsigned long
1897get_pde (int n)
1898{
1899 unsigned long pde = 0;
1900
1901 if (pdbr && n >= 0 && n < 1024)
1902 {
1903 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1904 }
1905 return pde;
1906}
1907
1908/* Return the N'th entry of the Page Table whose Page Directory entry
1909 is PDE. */
1910static unsigned long
1911get_pte (unsigned long pde, int n)
1912{
1913 unsigned long pte = 0;
1914
1915 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1916 page tables, for now. */
1917 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1918 {
0963b4bd 1919 pde &= ~0xfff; /* Clear non-address bits. */
9f20bf26
EZ
1920 pte = _farpeekl (_dos_ds, pde + 4*n);
1921 }
1922 return pte;
1923}
1924
1925/* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1926 says this is a Page Directory entry. If FORCE is non-zero, display
1927 the entry even if its Present flag is off. OFF is the offset of the
1928 address from the page's base address. */
1929static void
1930display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1931{
1932 if ((entry & 1) != 0)
1933 {
6cb06a8c 1934 gdb_printf ("Base=0x%05lx000", entry >> 12);
9f20bf26 1935 if ((entry & 0x100) && !is_dir)
0426ad51 1936 gdb_puts (" Global");
9f20bf26 1937 if ((entry & 0x40) && !is_dir)
0426ad51 1938 gdb_puts (" Dirty");
6cb06a8c
TT
1939 gdb_printf (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1940 gdb_printf (" %sCached", (entry & 0x10) ? "" : "Not-");
1941 gdb_printf (" Write-%s", (entry & 8) ? "Thru" : "Back");
1942 gdb_printf (" %s", (entry & 4) ? "Usr" : "Sup");
1943 gdb_printf (" Read-%s", (entry & 2) ? "Write" : "Only");
9f20bf26 1944 if (off)
6cb06a8c 1945 gdb_printf (" +0x%x", off);
0426ad51 1946 gdb_puts ("\n");
9f20bf26
EZ
1947 }
1948 else if (force)
6cb06a8c
TT
1949 gdb_printf ("Page%s not present or not supported; value=0x%lx.\n",
1950 is_dir ? " Table" : "", entry >> 1);
9f20bf26
EZ
1951}
1952
1953static void
5fed81ff 1954go32_pde (const char *arg, int from_tty)
9f20bf26
EZ
1955{
1956 long pde_idx = -1, i;
1957
1958 if (arg && *arg)
1959 {
529480d0 1960 arg = skip_spaces (arg);
9f20bf26
EZ
1961
1962 if (*arg)
1963 {
1964 pde_idx = parse_and_eval_long (arg);
1965 if (pde_idx < 0 || pde_idx >= 1024)
8a3fe4f8 1966 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
9f20bf26
EZ
1967 }
1968 }
1969
1970 pdbr = get_cr3 ();
1971 if (!pdbr)
0426ad51
TT
1972 gdb_puts ("Access to Page Directories is "
1973 "not supported on this system.\n");
9f20bf26
EZ
1974 else if (pde_idx >= 0)
1975 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1976 else
1977 for (i = 0; i < 1024; i++)
1978 display_ptable_entry (get_pde (i), 1, 0, 0);
1979}
1980
1981/* A helper function to display entries in a Page Table pointed to by
1982 the N'th entry in the Page Directory. If FORCE is non-zero, say
1983 something even if the Page Table is not accessible. */
1984static void
1985display_page_table (long n, int force)
1986{
1987 unsigned long pde = get_pde (n);
1988
1989 if ((pde & 1) != 0)
1990 {
1991 int i;
1992
6cb06a8c
TT
1993 gdb_printf ("Page Table pointed to by "
1994 "Page Directory entry 0x%lx:\n", n);
9f20bf26
EZ
1995 for (i = 0; i < 1024; i++)
1996 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
0426ad51 1997 gdb_puts ("\n");
9f20bf26
EZ
1998 }
1999 else if (force)
6cb06a8c 2000 gdb_printf ("Page Table not present; value=0x%lx.\n", pde >> 1);
9f20bf26
EZ
2001}
2002
2003static void
5fed81ff 2004go32_pte (const char *arg, int from_tty)
9f20bf26 2005{
ccbc3e6f 2006 long pde_idx = -1L, i;
9f20bf26
EZ
2007
2008 if (arg && *arg)
2009 {
529480d0 2010 arg = skip_spaces (arg);
9f20bf26
EZ
2011
2012 if (*arg)
2013 {
2014 pde_idx = parse_and_eval_long (arg);
2015 if (pde_idx < 0 || pde_idx >= 1024)
8a3fe4f8 2016 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
9f20bf26
EZ
2017 }
2018 }
2019
2020 pdbr = get_cr3 ();
2021 if (!pdbr)
0426ad51 2022 gdb_puts ("Access to Page Tables is not supported on this system.\n");
9f20bf26
EZ
2023 else if (pde_idx >= 0)
2024 display_page_table (pde_idx, 1);
2025 else
2026 for (i = 0; i < 1024; i++)
2027 display_page_table (i, 0);
2028}
2029
2030static void
5fed81ff 2031go32_pte_for_address (const char *arg, int from_tty)
9f20bf26
EZ
2032{
2033 CORE_ADDR addr = 0, i;
2034
2035 if (arg && *arg)
2036 {
529480d0 2037 arg = skip_spaces (arg);
9f20bf26
EZ
2038
2039 if (*arg)
2040 addr = parse_and_eval_address (arg);
2041 }
2042 if (!addr)
e2e0b3e5 2043 error_no_arg (_("linear address"));
9f20bf26
EZ
2044
2045 pdbr = get_cr3 ();
2046 if (!pdbr)
0426ad51 2047 gdb_puts ("Access to Page Tables is not supported on this system.\n");
9f20bf26
EZ
2048 else
2049 {
2050 int pde_idx = (addr >> 22) & 0x3ff;
2051 int pte_idx = (addr >> 12) & 0x3ff;
2052 unsigned offs = addr & 0xfff;
2053
6cb06a8c
TT
2054 gdb_printf ("Page Table entry for address %s:\n",
2055 hex_string(addr));
9f20bf26
EZ
2056 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2057 }
2058}
2059
d8c852a1
EZ
2060static struct cmd_list_element *info_dos_cmdlist = NULL;
2061
6c265988 2062void _initialize_go32_nat ();
e49d4fa6 2063void
6c265988 2064_initialize_go32_nat ()
e49d4fa6 2065{
df7e5265
GB
2066 x86_dr_low.set_control = go32_set_dr7;
2067 x86_dr_low.set_addr = go32_set_dr;
2068 x86_dr_low.get_status = go32_get_dr6;
2069 x86_dr_low.get_control = go32_get_dr7;
2070 x86_dr_low.get_addr = go32_get_dr;
2071 x86_set_debug_register_length (4);
c1a7b7c6 2072
d9f719f1 2073 add_inf_child_target (&the_go32_nat_target);
c1a7b7c6
PA
2074
2075 /* Initialize child's cwd as empty to be initialized when starting
2076 the child. */
2077 *child_cwd = 0;
2078
2079 /* Initialize child's command line storage. */
2080 if (redir_debug_init (&child_cmd) == -1)
f34652de 2081 internal_error (_("Cannot allocate redirection storage: "
c1a7b7c6
PA
2082 "not enough memory.\n"));
2083
2084 /* We are always processing GCC-compiled programs. */
2085 processing_gcc_compilation = 2;
10ba702d 2086
0743fc83 2087 add_basic_prefix_cmd ("dos", class_info, _("\
1bedd215 2088Print information specific to DJGPP (aka MS-DOS) debugging."),
2f822da5 2089 &info_dos_cmdlist, 0, &infolist);
d8c852a1 2090
1a966eab
AC
2091 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2092Display information about the target system, including CPU, OS, DPMI, etc."),
d8c852a1 2093 &info_dos_cmdlist);
1a966eab
AC
2094 add_cmd ("ldt", class_info, go32_sldt, _("\
2095Display entries in the LDT (Local Descriptor Table).\n\
2096Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2097 &info_dos_cmdlist);
1a966eab
AC
2098 add_cmd ("gdt", class_info, go32_sgdt, _("\
2099Display entries in the GDT (Global Descriptor Table).\n\
2100Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2101 &info_dos_cmdlist);
1a966eab
AC
2102 add_cmd ("idt", class_info, go32_sidt, _("\
2103Display entries in the IDT (Interrupt Descriptor Table).\n\
2104Entry number (an expression) as an argument means display only that entry."),
d8c852a1 2105 &info_dos_cmdlist);
1a966eab
AC
2106 add_cmd ("pde", class_info, go32_pde, _("\
2107Display entries in the Page Directory.\n\
2108Entry number (an expression) as an argument means display only that entry."),
9f20bf26 2109 &info_dos_cmdlist);
1a966eab
AC
2110 add_cmd ("pte", class_info, go32_pte, _("\
2111Display entries in Page Tables.\n\
2112Entry number (an expression) as an argument means display only entries\n\
2113from the Page Table pointed to by the specified Page Directory entry."),
9f20bf26 2114 &info_dos_cmdlist);
1a966eab
AC
2115 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2116Display a Page Table entry for a linear address.\n\
2117The address argument must be a linear address, after adding to\n\
2118it the base address of the appropriate segment.\n\
2119The base address of variables and functions in the debuggee's data\n\
2120or code segment is stored in the variable __djgpp_base_address,\n\
2121so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2122For other segments, look up their base address in the output of\n\
2123the `info dos ldt' command."),
9f20bf26 2124 &info_dos_cmdlist);
e49d4fa6 2125}
53a5351d
JM
2126
2127pid_t
2128tcgetpgrp (int fd)
2129{
2130 if (isatty (fd))
2131 return SOME_PID;
2132 errno = ENOTTY;
2133 return -1;
2134}
2135
2136int
2137tcsetpgrp (int fd, pid_t pgid)
2138{
2139 if (isatty (fd) && pgid == SOME_PID)
2140 return 0;
2141 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2142 return -1;
2143}