]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
d9fcf2fb 2 Copyright 1986, 1987, 1989-1996, 1999-2000 Free Software Foundation, Inc.
c906108c
SS
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "bfd.h"
27#include "inferior.h"
28#include "value.h"
29
30/* For argument passing to the inferior */
31#include "symtab.h"
32
33#ifdef USG
34#include <sys/types.h>
35#endif
36
37#include <dl.h>
38#include <sys/param.h>
39#include <signal.h>
40
41#include <sys/ptrace.h>
42#include <machine/save_state.h>
43
44#ifdef COFF_ENCAPSULATE
45#include "a.out.encap.h"
46#else
47#endif
48
c5aa993b 49/*#include <sys/user.h> After a.out.h */
c906108c
SS
50#include <sys/file.h>
51#include "gdb_stat.h"
03f2053f 52#include "gdb_wait.h"
c906108c
SS
53
54#include "gdbcore.h"
55#include "gdbcmd.h"
56#include "target.h"
57#include "symfile.h"
58#include "objfiles.h"
59
c906108c
SS
60/* To support detection of the pseudo-initial frame
61 that threads have. */
62#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
63#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 64
a14ed312 65static int extract_5_load (unsigned int);
c906108c 66
a14ed312 67static unsigned extract_5R_store (unsigned int);
c906108c 68
a14ed312 69static unsigned extract_5r_store (unsigned int);
c906108c 70
a14ed312
KB
71static void find_dummy_frame_regs (struct frame_info *,
72 struct frame_saved_regs *);
c906108c 73
a14ed312 74static int find_proc_framesize (CORE_ADDR);
c906108c 75
a14ed312 76static int find_return_regnum (CORE_ADDR);
c906108c 77
a14ed312 78struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 79
a14ed312 80static int extract_17 (unsigned int);
c906108c 81
a14ed312 82static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 83
a14ed312 84static int extract_21 (unsigned);
c906108c 85
a14ed312 86static unsigned deposit_14 (int, unsigned int);
c906108c 87
a14ed312 88static int extract_14 (unsigned);
c906108c 89
a14ed312 90static void unwind_command (char *, int);
c906108c 91
a14ed312 92static int low_sign_extend (unsigned int, unsigned int);
c906108c 93
a14ed312 94static int sign_extend (unsigned int, unsigned int);
c906108c 95
a14ed312 96static int restore_pc_queue (struct frame_saved_regs *);
c906108c 97
a14ed312 98static int hppa_alignof (struct type *);
c906108c
SS
99
100/* To support multi-threading and stepping. */
a14ed312 101int hppa_prepare_to_proceed ();
c906108c 102
a14ed312 103static int prologue_inst_adjust_sp (unsigned long);
c906108c 104
a14ed312 105static int is_branch (unsigned long);
c906108c 106
a14ed312 107static int inst_saves_gr (unsigned long);
c906108c 108
a14ed312 109static int inst_saves_fr (unsigned long);
c906108c 110
a14ed312 111static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 112
a14ed312 113static int pc_in_linker_stub (CORE_ADDR);
c906108c 114
a14ed312 115static int compare_unwind_entries (const void *, const void *);
c906108c 116
a14ed312 117static void read_unwind_info (struct objfile *);
c906108c 118
a14ed312
KB
119static void internalize_unwinds (struct objfile *,
120 struct unwind_table_entry *,
121 asection *, unsigned int,
122 unsigned int, CORE_ADDR);
123static void pa_print_registers (char *, int, int);
d9fcf2fb 124static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
125static void pa_register_look_aside (char *, int, long *);
126static void pa_print_fp_reg (int);
d9fcf2fb 127static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 128static void record_text_segment_lowaddr (bfd *, asection *, void *);
c906108c 129
c5aa993b
JM
130typedef struct
131 {
132 struct minimal_symbol *msym;
133 CORE_ADDR solib_handle;
a0b3c4fd 134 CORE_ADDR return_val;
c5aa993b
JM
135 }
136args_for_find_stub;
c906108c 137
a0b3c4fd 138static int cover_find_stub_with_shl_get (PTR);
c906108c 139
c5aa993b 140static int is_pa_2 = 0; /* False */
c906108c 141
c5aa993b 142/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
143extern int hp_som_som_object_present;
144
145/* In breakpoint.c */
146extern int exception_catchpoints_are_fragile;
147
148/* This is defined in valops.c. */
a14ed312 149extern value_ptr find_function_in_inferior (char *);
c906108c
SS
150
151/* Should call_function allocate stack space for a struct return? */
152int
fba45db2 153hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 154{
104c1213 155 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 156}
c906108c 157\f
c5aa993b 158
c906108c
SS
159/* Routines to extract various sized constants out of hppa
160 instructions. */
161
162/* This assumes that no garbage lies outside of the lower bits of
163 value. */
164
165static int
fba45db2 166sign_extend (unsigned val, unsigned bits)
c906108c 167{
c5aa993b 168 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
169}
170
171/* For many immediate values the sign bit is the low bit! */
172
173static int
fba45db2 174low_sign_extend (unsigned val, unsigned bits)
c906108c 175{
c5aa993b 176 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
177}
178
179/* extract the immediate field from a ld{bhw}s instruction */
180
c906108c 181static int
fba45db2 182extract_5_load (unsigned word)
c906108c
SS
183{
184 return low_sign_extend (word >> 16 & MASK_5, 5);
185}
186
c906108c
SS
187/* extract the immediate field from a break instruction */
188
189static unsigned
fba45db2 190extract_5r_store (unsigned word)
c906108c
SS
191{
192 return (word & MASK_5);
193}
194
195/* extract the immediate field from a {sr}sm instruction */
196
197static unsigned
fba45db2 198extract_5R_store (unsigned word)
c906108c
SS
199{
200 return (word >> 16 & MASK_5);
201}
202
c906108c
SS
203/* extract a 14 bit immediate field */
204
205static int
fba45db2 206extract_14 (unsigned word)
c906108c
SS
207{
208 return low_sign_extend (word & MASK_14, 14);
209}
210
211/* deposit a 14 bit constant in a word */
212
213static unsigned
fba45db2 214deposit_14 (int opnd, unsigned word)
c906108c
SS
215{
216 unsigned sign = (opnd < 0 ? 1 : 0);
217
c5aa993b 218 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
219}
220
221/* extract a 21 bit constant */
222
223static int
fba45db2 224extract_21 (unsigned word)
c906108c
SS
225{
226 int val;
227
228 word &= MASK_21;
229 word <<= 11;
230 val = GET_FIELD (word, 20, 20);
231 val <<= 11;
232 val |= GET_FIELD (word, 9, 19);
233 val <<= 2;
234 val |= GET_FIELD (word, 5, 6);
235 val <<= 5;
236 val |= GET_FIELD (word, 0, 4);
237 val <<= 2;
238 val |= GET_FIELD (word, 7, 8);
239 return sign_extend (val, 21) << 11;
240}
241
242/* deposit a 21 bit constant in a word. Although 21 bit constants are
243 usually the top 21 bits of a 32 bit constant, we assume that only
244 the low 21 bits of opnd are relevant */
245
246static unsigned
fba45db2 247deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
248{
249 unsigned val = 0;
250
251 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
252 val <<= 2;
253 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
254 val <<= 2;
255 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
256 val <<= 11;
257 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
258 val <<= 1;
259 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
260 return word | val;
261}
262
c906108c
SS
263/* extract a 17 bit constant from branch instructions, returning the
264 19 bit signed value. */
265
266static int
fba45db2 267extract_17 (unsigned word)
c906108c
SS
268{
269 return sign_extend (GET_FIELD (word, 19, 28) |
270 GET_FIELD (word, 29, 29) << 10 |
271 GET_FIELD (word, 11, 15) << 11 |
272 (word & 0x1) << 16, 17) << 2;
273}
274\f
275
276/* Compare the start address for two unwind entries returning 1 if
277 the first address is larger than the second, -1 if the second is
278 larger than the first, and zero if they are equal. */
279
280static int
fba45db2 281compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
282{
283 const struct unwind_table_entry *a = arg1;
284 const struct unwind_table_entry *b = arg2;
285
286 if (a->region_start > b->region_start)
287 return 1;
288 else if (a->region_start < b->region_start)
289 return -1;
290 else
291 return 0;
292}
293
53a5351d
JM
294static CORE_ADDR low_text_segment_address;
295
296static void
297record_text_segment_lowaddr (abfd, section, ignored)
298 bfd *abfd ATTRIBUTE_UNUSED;
299 asection *section;
300 PTR ignored ATTRIBUTE_UNUSED;
301{
302 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
303 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
304 && section->vma < low_text_segment_address)
305 low_text_segment_address = section->vma;
306}
307
c906108c 308static void
fba45db2
KB
309internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
310 asection *section, unsigned int entries, unsigned int size,
311 CORE_ADDR text_offset)
c906108c
SS
312{
313 /* We will read the unwind entries into temporary memory, then
314 fill in the actual unwind table. */
315 if (size > 0)
316 {
317 unsigned long tmp;
318 unsigned i;
319 char *buf = alloca (size);
320
53a5351d
JM
321 low_text_segment_address = -1;
322
323 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
324 be segment relative offsets instead of absolute addresses.
325
326 Note that when loading a shared library (text_offset != 0) the
327 unwinds are already relative to the text_offset that will be
328 passed in. */
329 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
330 {
331 bfd_map_over_sections (objfile->obfd,
332 record_text_segment_lowaddr, (PTR) NULL);
333
334 /* ?!? Mask off some low bits. Should this instead subtract
335 out the lowest section's filepos or something like that?
336 This looks very hokey to me. */
337 low_text_segment_address &= ~0xfff;
338 text_offset += low_text_segment_address;
339 }
340
c906108c
SS
341 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
342
343 /* Now internalize the information being careful to handle host/target
c5aa993b 344 endian issues. */
c906108c
SS
345 for (i = 0; i < entries; i++)
346 {
347 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 348 (bfd_byte *) buf);
c906108c
SS
349 table[i].region_start += text_offset;
350 buf += 4;
c5aa993b 351 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
352 table[i].region_end += text_offset;
353 buf += 4;
c5aa993b 354 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
355 buf += 4;
356 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
357 table[i].Millicode = (tmp >> 30) & 0x1;
358 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
359 table[i].Region_description = (tmp >> 27) & 0x3;
360 table[i].reserved1 = (tmp >> 26) & 0x1;
361 table[i].Entry_SR = (tmp >> 25) & 0x1;
362 table[i].Entry_FR = (tmp >> 21) & 0xf;
363 table[i].Entry_GR = (tmp >> 16) & 0x1f;
364 table[i].Args_stored = (tmp >> 15) & 0x1;
365 table[i].Variable_Frame = (tmp >> 14) & 0x1;
366 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
367 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
368 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
369 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
370 table[i].Ada_Region = (tmp >> 9) & 0x1;
371 table[i].cxx_info = (tmp >> 8) & 0x1;
372 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
373 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
374 table[i].reserved2 = (tmp >> 5) & 0x1;
375 table[i].Save_SP = (tmp >> 4) & 0x1;
376 table[i].Save_RP = (tmp >> 3) & 0x1;
377 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
378 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
379 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 380 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
381 buf += 4;
382 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
383 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
384 table[i].Large_frame = (tmp >> 29) & 0x1;
385 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
386 table[i].reserved4 = (tmp >> 27) & 0x1;
387 table[i].Total_frame_size = tmp & 0x7ffffff;
388
c5aa993b 389 /* Stub unwinds are handled elsewhere. */
c906108c
SS
390 table[i].stub_unwind.stub_type = 0;
391 table[i].stub_unwind.padding = 0;
392 }
393 }
394}
395
396/* Read in the backtrace information stored in the `$UNWIND_START$' section of
397 the object file. This info is used mainly by find_unwind_entry() to find
398 out the stack frame size and frame pointer used by procedures. We put
399 everything on the psymbol obstack in the objfile so that it automatically
400 gets freed when the objfile is destroyed. */
401
402static void
fba45db2 403read_unwind_info (struct objfile *objfile)
c906108c 404{
d4f3574e
SS
405 asection *unwind_sec, *stub_unwind_sec;
406 unsigned unwind_size, stub_unwind_size, total_size;
407 unsigned index, unwind_entries;
c906108c
SS
408 unsigned stub_entries, total_entries;
409 CORE_ADDR text_offset;
410 struct obj_unwind_info *ui;
411 obj_private_data_t *obj_private;
412
413 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
414 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
415 sizeof (struct obj_unwind_info));
c906108c
SS
416
417 ui->table = NULL;
418 ui->cache = NULL;
419 ui->last = -1;
420
d4f3574e
SS
421 /* For reasons unknown the HP PA64 tools generate multiple unwinder
422 sections in a single executable. So we just iterate over every
423 section in the BFD looking for unwinder sections intead of trying
424 to do a lookup with bfd_get_section_by_name.
c906108c 425
d4f3574e
SS
426 First determine the total size of the unwind tables so that we
427 can allocate memory in a nice big hunk. */
428 total_entries = 0;
429 for (unwind_sec = objfile->obfd->sections;
430 unwind_sec;
431 unwind_sec = unwind_sec->next)
c906108c 432 {
d4f3574e
SS
433 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
434 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
435 {
436 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
437 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 438
d4f3574e
SS
439 total_entries += unwind_entries;
440 }
c906108c
SS
441 }
442
d4f3574e
SS
443 /* Now compute the size of the stub unwinds. Note the ELF tools do not
444 use stub unwinds at the curren time. */
445 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
446
c906108c
SS
447 if (stub_unwind_sec)
448 {
449 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
450 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
451 }
452 else
453 {
454 stub_unwind_size = 0;
455 stub_entries = 0;
456 }
457
458 /* Compute total number of unwind entries and their total size. */
d4f3574e 459 total_entries += stub_entries;
c906108c
SS
460 total_size = total_entries * sizeof (struct unwind_table_entry);
461
462 /* Allocate memory for the unwind table. */
463 ui->table = (struct unwind_table_entry *)
464 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 465 ui->last = total_entries - 1;
c906108c 466
d4f3574e
SS
467 /* Now read in each unwind section and internalize the standard unwind
468 entries. */
c906108c 469 index = 0;
d4f3574e
SS
470 for (unwind_sec = objfile->obfd->sections;
471 unwind_sec;
472 unwind_sec = unwind_sec->next)
473 {
474 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
475 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
476 {
477 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
478 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
479
480 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
481 unwind_entries, unwind_size, text_offset);
482 index += unwind_entries;
483 }
484 }
485
486 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
487 if (stub_unwind_size > 0)
488 {
489 unsigned int i;
490 char *buf = alloca (stub_unwind_size);
491
492 /* Read in the stub unwind entries. */
493 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
494 0, stub_unwind_size);
495
496 /* Now convert them into regular unwind entries. */
497 for (i = 0; i < stub_entries; i++, index++)
498 {
499 /* Clear out the next unwind entry. */
500 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
501
502 /* Convert offset & size into region_start and region_end.
503 Stuff away the stub type into "reserved" fields. */
504 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
505 (bfd_byte *) buf);
506 ui->table[index].region_start += text_offset;
507 buf += 4;
508 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 509 (bfd_byte *) buf);
c906108c
SS
510 buf += 2;
511 ui->table[index].region_end
c5aa993b
JM
512 = ui->table[index].region_start + 4 *
513 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
514 buf += 2;
515 }
516
517 }
518
519 /* Unwind table needs to be kept sorted. */
520 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
521 compare_unwind_entries);
522
523 /* Keep a pointer to the unwind information. */
c5aa993b 524 if (objfile->obj_private == NULL)
c906108c
SS
525 {
526 obj_private = (obj_private_data_t *)
c5aa993b
JM
527 obstack_alloc (&objfile->psymbol_obstack,
528 sizeof (obj_private_data_t));
c906108c 529 obj_private->unwind_info = NULL;
c5aa993b 530 obj_private->so_info = NULL;
53a5351d 531 obj_private->dp = 0;
c5aa993b 532
c906108c
SS
533 objfile->obj_private = (PTR) obj_private;
534 }
c5aa993b 535 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
536 obj_private->unwind_info = ui;
537}
538
539/* Lookup the unwind (stack backtrace) info for the given PC. We search all
540 of the objfiles seeking the unwind table entry for this PC. Each objfile
541 contains a sorted list of struct unwind_table_entry. Since we do a binary
542 search of the unwind tables, we depend upon them to be sorted. */
543
544struct unwind_table_entry *
fba45db2 545find_unwind_entry (CORE_ADDR pc)
c906108c
SS
546{
547 int first, middle, last;
548 struct objfile *objfile;
549
550 /* A function at address 0? Not in HP-UX! */
551 if (pc == (CORE_ADDR) 0)
552 return NULL;
553
554 ALL_OBJFILES (objfile)
c5aa993b
JM
555 {
556 struct obj_unwind_info *ui;
557 ui = NULL;
558 if (objfile->obj_private)
559 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 560
c5aa993b
JM
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 if (objfile->obj_private == NULL)
104c1213 565 error ("Internal error reading unwind information.");
c5aa993b
JM
566 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
567 }
c906108c 568
c5aa993b 569 /* First, check the cache */
c906108c 570
c5aa993b
JM
571 if (ui->cache
572 && pc >= ui->cache->region_start
573 && pc <= ui->cache->region_end)
574 return ui->cache;
c906108c 575
c5aa993b 576 /* Not in the cache, do a binary search */
c906108c 577
c5aa993b
JM
578 first = 0;
579 last = ui->last;
c906108c 580
c5aa993b
JM
581 while (first <= last)
582 {
583 middle = (first + last) / 2;
584 if (pc >= ui->table[middle].region_start
585 && pc <= ui->table[middle].region_end)
586 {
587 ui->cache = &ui->table[middle];
588 return &ui->table[middle];
589 }
c906108c 590
c5aa993b
JM
591 if (pc < ui->table[middle].region_start)
592 last = middle - 1;
593 else
594 first = middle + 1;
595 }
596 } /* ALL_OBJFILES() */
c906108c
SS
597 return NULL;
598}
599
600/* Return the adjustment necessary to make for addresses on the stack
601 as presented by hpread.c.
602
603 This is necessary because of the stack direction on the PA and the
604 bizarre way in which someone (?) decided they wanted to handle
605 frame pointerless code in GDB. */
606int
fba45db2 607hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
608{
609 struct unwind_table_entry *u;
610
611 u = find_unwind_entry (func_addr);
612 if (!u)
613 return 0;
614 else
615 return u->Total_frame_size << 3;
616}
617
618/* Called to determine if PC is in an interrupt handler of some
619 kind. */
620
621static int
fba45db2 622pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
623{
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
626
627 u = find_unwind_entry (pc);
628 if (!u)
629 return 0;
630
631 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
632 its frame isn't a pure interrupt frame. Deal with this. */
633 msym_us = lookup_minimal_symbol_by_pc (pc);
634
635 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
636}
637
638/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
639 appears that PC is in a linker stub.
640
641 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
642
643static int
fba45db2 644pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
645{
646 int found_magic_instruction = 0;
647 int i;
648 char buf[4];
649
650 /* If unable to read memory, assume pc is not in a linker stub. */
651 if (target_read_memory (pc, buf, 4) != 0)
652 return 0;
653
654 /* We are looking for something like
655
656 ; $$dyncall jams RP into this special spot in the frame (RP')
657 ; before calling the "call stub"
658 ldw -18(sp),rp
659
660 ldsid (rp),r1 ; Get space associated with RP into r1
661 mtsp r1,sp ; Move it into space register 0
662 be,n 0(sr0),rp) ; back to your regularly scheduled program */
663
664 /* Maximum known linker stub size is 4 instructions. Search forward
665 from the given PC, then backward. */
666 for (i = 0; i < 4; i++)
667 {
668 /* If we hit something with an unwind, stop searching this direction. */
669
670 if (find_unwind_entry (pc + i * 4) != 0)
671 break;
672
673 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 674 return from a cross-space function call. */
c906108c
SS
675 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
676 {
677 found_magic_instruction = 1;
678 break;
679 }
680 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 681 here. */
c906108c
SS
682 }
683
684 if (found_magic_instruction != 0)
685 return 1;
686
687 /* Now look backward. */
688 for (i = 0; i < 4; i++)
689 {
690 /* If we hit something with an unwind, stop searching this direction. */
691
692 if (find_unwind_entry (pc - i * 4) != 0)
693 break;
694
695 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 696 return from a cross-space function call. */
c906108c
SS
697 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
698 {
699 found_magic_instruction = 1;
700 break;
701 }
702 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 703 here. */
c906108c
SS
704 }
705 return found_magic_instruction;
706}
707
708static int
fba45db2 709find_return_regnum (CORE_ADDR pc)
c906108c
SS
710{
711 struct unwind_table_entry *u;
712
713 u = find_unwind_entry (pc);
714
715 if (!u)
716 return RP_REGNUM;
717
718 if (u->Millicode)
719 return 31;
720
721 return RP_REGNUM;
722}
723
724/* Return size of frame, or -1 if we should use a frame pointer. */
725static int
fba45db2 726find_proc_framesize (CORE_ADDR pc)
c906108c
SS
727{
728 struct unwind_table_entry *u;
729 struct minimal_symbol *msym_us;
730
731 /* This may indicate a bug in our callers... */
c5aa993b 732 if (pc == (CORE_ADDR) 0)
c906108c 733 return -1;
c5aa993b 734
c906108c
SS
735 u = find_unwind_entry (pc);
736
737 if (!u)
738 {
739 if (pc_in_linker_stub (pc))
740 /* Linker stubs have a zero size frame. */
741 return 0;
742 else
743 return -1;
744 }
745
746 msym_us = lookup_minimal_symbol_by_pc (pc);
747
748 /* If Save_SP is set, and we're not in an interrupt or signal caller,
749 then we have a frame pointer. Use it. */
750 if (u->Save_SP && !pc_in_interrupt_handler (pc)
751 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
752 return -1;
753
754 return u->Total_frame_size << 3;
755}
756
757/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 758static int rp_saved (CORE_ADDR);
c906108c
SS
759
760static int
fba45db2 761rp_saved (CORE_ADDR pc)
c906108c
SS
762{
763 struct unwind_table_entry *u;
764
765 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
766 if (pc == (CORE_ADDR) 0)
767 return 0;
768
769 u = find_unwind_entry (pc);
770
771 if (!u)
772 {
773 if (pc_in_linker_stub (pc))
774 /* This is the so-called RP'. */
775 return -24;
776 else
777 return 0;
778 }
779
780 if (u->Save_RP)
53a5351d 781 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
782 else if (u->stub_unwind.stub_type != 0)
783 {
784 switch (u->stub_unwind.stub_type)
785 {
786 case EXPORT:
787 case IMPORT:
788 return -24;
789 case PARAMETER_RELOCATION:
790 return -8;
791 default:
792 return 0;
793 }
794 }
795 else
796 return 0;
797}
798\f
799int
fba45db2 800frameless_function_invocation (struct frame_info *frame)
c906108c
SS
801{
802 struct unwind_table_entry *u;
803
804 u = find_unwind_entry (frame->pc);
805
806 if (u == 0)
807 return 0;
808
809 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
810}
811
812CORE_ADDR
fba45db2 813saved_pc_after_call (struct frame_info *frame)
c906108c
SS
814{
815 int ret_regnum;
816 CORE_ADDR pc;
817 struct unwind_table_entry *u;
818
819 ret_regnum = find_return_regnum (get_frame_pc (frame));
820 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 821
c906108c
SS
822 /* If PC is in a linker stub, then we need to dig the address
823 the stub will return to out of the stack. */
824 u = find_unwind_entry (pc);
825 if (u && u->stub_unwind.stub_type != 0)
826 return FRAME_SAVED_PC (frame);
827 else
828 return pc;
829}
830\f
831CORE_ADDR
fba45db2 832hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
833{
834 CORE_ADDR pc = get_frame_pc (frame);
835 struct unwind_table_entry *u;
836 CORE_ADDR old_pc;
c5aa993b
JM
837 int spun_around_loop = 0;
838 int rp_offset = 0;
c906108c
SS
839
840 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
841 at the base of the frame in an interrupt handler. Registers within
842 are saved in the exact same order as GDB numbers registers. How
843 convienent. */
844 if (pc_in_interrupt_handler (pc))
53a5351d
JM
845 return read_memory_integer (frame->frame + PC_REGNUM * 4,
846 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 847
104c1213
JM
848 if ((frame->pc >= frame->frame
849 && frame->pc <= (frame->frame
850 /* A call dummy is sized in words, but it is
851 actually a series of instructions. Account
852 for that scaling factor. */
853 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
854 * CALL_DUMMY_LENGTH)
855 /* Similarly we have to account for 64bit
856 wide register saves. */
857 + (32 * REGISTER_SIZE)
858 /* We always consider FP regs 8 bytes long. */
859 + (NUM_REGS - FP0_REGNUM) * 8
860 /* Similarly we have to account for 64bit
861 wide register saves. */
862 + (6 * REGISTER_SIZE))))
863 {
864 return read_memory_integer ((frame->frame
865 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
866 TARGET_PTR_BIT / 8) & ~0x3;
867 }
868
c906108c
SS
869#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
870 /* Deal with signal handler caller frames too. */
871 if (frame->signal_handler_caller)
872 {
873 CORE_ADDR rp;
874 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
875 return rp & ~0x3;
876 }
877#endif
878
879 if (frameless_function_invocation (frame))
880 {
881 int ret_regnum;
882
883 ret_regnum = find_return_regnum (pc);
884
885 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
886 handler caller, then we need to look in the saved
887 register area to get the return pointer (the values
888 in the registers may not correspond to anything useful). */
889 if (frame->next
c906108c
SS
890 && (frame->next->signal_handler_caller
891 || pc_in_interrupt_handler (frame->next->pc)))
892 {
893 struct frame_saved_regs saved_regs;
894
895 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
896 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
897 TARGET_PTR_BIT / 8) & 0x2)
c906108c 898 {
53a5351d
JM
899 pc = read_memory_integer (saved_regs.regs[31],
900 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
901
902 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
903 with a return pointer in %rp and the kernel call with
904 a return pointer in %r31. We return the %rp variant
905 if %r31 is the same as frame->pc. */
c906108c 906 if (pc == frame->pc)
53a5351d
JM
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
908 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
909 }
910 else
53a5351d
JM
911 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
912 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
913 }
914 else
915 pc = read_register (ret_regnum) & ~0x3;
916 }
917 else
918 {
919 spun_around_loop = 0;
c5aa993b 920 old_pc = pc;
c906108c 921
c5aa993b 922 restart:
c906108c
SS
923 rp_offset = rp_saved (pc);
924
925 /* Similar to code in frameless function case. If the next
c5aa993b
JM
926 frame is a signal or interrupt handler, then dig the right
927 information out of the saved register info. */
c906108c
SS
928 if (rp_offset == 0
929 && frame->next
930 && (frame->next->signal_handler_caller
931 || pc_in_interrupt_handler (frame->next->pc)))
932 {
933 struct frame_saved_regs saved_regs;
934
935 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
936 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
937 TARGET_PTR_BIT / 8) & 0x2)
c906108c 938 {
53a5351d
JM
939 pc = read_memory_integer (saved_regs.regs[31],
940 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
941
942 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
943 with a return pointer in %rp and the kernel call with
944 a return pointer in %r31. We return the %rp variant
945 if %r31 is the same as frame->pc. */
c906108c 946 if (pc == frame->pc)
53a5351d
JM
947 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
948 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
949 }
950 else
53a5351d
JM
951 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
952 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
953 }
954 else if (rp_offset == 0)
c5aa993b
JM
955 {
956 old_pc = pc;
957 pc = read_register (RP_REGNUM) & ~0x3;
958 }
c906108c 959 else
c5aa993b
JM
960 {
961 old_pc = pc;
53a5351d
JM
962 pc = read_memory_integer (frame->frame + rp_offset,
963 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 964 }
c906108c
SS
965 }
966
967 /* If PC is inside a linker stub, then dig out the address the stub
968 will return to.
969
970 Don't do this for long branch stubs. Why? For some unknown reason
971 _start is marked as a long branch stub in hpux10. */
972 u = find_unwind_entry (pc);
973 if (u && u->stub_unwind.stub_type != 0
974 && u->stub_unwind.stub_type != LONG_BRANCH)
975 {
976 unsigned int insn;
977
978 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
979 then the call chain will eventually point us into the stub for
980 _sigreturn. Unlike most cases, we'll be pointed to the branch
981 to the real sigreturn rather than the code after the real branch!.
c906108c 982
c5aa993b
JM
983 Else, try to dig the address the stub will return to in the normal
984 fashion. */
c906108c
SS
985 insn = read_memory_integer (pc, 4);
986 if ((insn & 0xfc00e000) == 0xe8000000)
987 return (pc + extract_17 (insn) + 8) & ~0x3;
988 else
989 {
c5aa993b
JM
990 if (old_pc == pc)
991 spun_around_loop++;
992
993 if (spun_around_loop > 1)
994 {
995 /* We're just about to go around the loop again with
996 no more hope of success. Die. */
997 error ("Unable to find return pc for this frame");
998 }
999 else
1000 goto restart;
c906108c
SS
1001 }
1002 }
1003
1004 return pc;
1005}
1006\f
1007/* We need to correct the PC and the FP for the outermost frame when we are
1008 in a system call. */
1009
1010void
fba45db2 1011init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1012{
1013 int flags;
1014 int framesize;
1015
1016 if (frame->next && !fromleaf)
1017 return;
1018
1019 /* If the next frame represents a frameless function invocation
1020 then we have to do some adjustments that are normally done by
1021 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1022 if (fromleaf)
1023 {
1024 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1025 in the current frame structure (it isn't set yet). */
c906108c
SS
1026 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1027
1028 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1029 use it, else subtract the size of this frame from the current
1030 frame. (we always want frame->frame to point at the lowest address
1031 in the frame). */
c906108c
SS
1032 if (framesize == -1)
1033 frame->frame = TARGET_READ_FP ();
1034 else
1035 frame->frame -= framesize;
1036 return;
1037 }
1038
1039 flags = read_register (FLAGS_REGNUM);
c5aa993b 1040 if (flags & 2) /* In system call? */
c906108c
SS
1041 frame->pc = read_register (31) & ~0x3;
1042
1043 /* The outermost frame is always derived from PC-framesize
1044
1045 One might think frameless innermost frames should have
1046 a frame->frame that is the same as the parent's frame->frame.
1047 That is wrong; frame->frame in that case should be the *high*
1048 address of the parent's frame. It's complicated as hell to
1049 explain, but the parent *always* creates some stack space for
1050 the child. So the child actually does have a frame of some
1051 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1052 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1053 if (framesize == -1)
1054 frame->frame = TARGET_READ_FP ();
1055 else
1056 frame->frame = read_register (SP_REGNUM) - framesize;
1057}
1058\f
1059/* Given a GDB frame, determine the address of the calling function's frame.
1060 This will be used to create a new GDB frame struct, and then
1061 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1062
1063 This may involve searching through prologues for several functions
1064 at boundaries where GCC calls HP C code, or where code which has
1065 a frame pointer calls code without a frame pointer. */
1066
1067CORE_ADDR
fba45db2 1068frame_chain (struct frame_info *frame)
c906108c
SS
1069{
1070 int my_framesize, caller_framesize;
1071 struct unwind_table_entry *u;
1072 CORE_ADDR frame_base;
1073 struct frame_info *tmp_frame;
1074
c2c6d25f
JM
1075 /* A frame in the current frame list, or zero. */
1076 struct frame_info *saved_regs_frame = 0;
1077 /* Where the registers were saved in saved_regs_frame.
1078 If saved_regs_frame is zero, this is garbage. */
1079 struct frame_saved_regs saved_regs;
1080
c5aa993b 1081 CORE_ADDR caller_pc;
c906108c
SS
1082
1083 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1084 struct symbol *frame_symbol;
1085 char *frame_symbol_name;
c906108c
SS
1086
1087 /* If this is a threaded application, and we see the
1088 routine "__pthread_exit", treat it as the stack root
1089 for this thread. */
c5aa993b
JM
1090 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1091 frame_symbol = find_pc_function (frame->pc);
c906108c 1092
c5aa993b 1093 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1094 {
c5aa993b
JM
1095 /* The test above for "no user function name" would defend
1096 against the slim likelihood that a user might define a
1097 routine named "__pthread_exit" and then try to debug it.
1098
1099 If it weren't commented out, and you tried to debug the
1100 pthread library itself, you'd get errors.
1101
1102 So for today, we don't make that check. */
1103 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1104 if (frame_symbol_name != 0)
1105 {
1106 if (0 == strncmp (frame_symbol_name,
1107 THREAD_INITIAL_FRAME_SYMBOL,
1108 THREAD_INITIAL_FRAME_SYM_LEN))
1109 {
1110 /* Pretend we've reached the bottom of the stack. */
1111 return (CORE_ADDR) 0;
1112 }
1113 }
1114 } /* End of hacky code for threads. */
1115
c906108c
SS
1116 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1117 are easy; at *sp we have a full save state strucutre which we can
1118 pull the old stack pointer from. Also see frame_saved_pc for
1119 code to dig a saved PC out of the save state structure. */
1120 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1121 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1122 TARGET_PTR_BIT / 8);
c906108c
SS
1123#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1124 else if (frame->signal_handler_caller)
1125 {
1126 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1127 }
1128#endif
1129 else
1130 frame_base = frame->frame;
1131
1132 /* Get frame sizes for the current frame and the frame of the
1133 caller. */
1134 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1135 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1136
1137 /* If we can't determine the caller's PC, then it's not likely we can
1138 really determine anything meaningful about its frame. We'll consider
1139 this to be stack bottom. */
1140 if (caller_pc == (CORE_ADDR) 0)
1141 return (CORE_ADDR) 0;
1142
c5aa993b 1143 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1144
1145 /* If caller does not have a frame pointer, then its frame
1146 can be found at current_frame - caller_framesize. */
1147 if (caller_framesize != -1)
1148 {
1149 return frame_base - caller_framesize;
1150 }
1151 /* Both caller and callee have frame pointers and are GCC compiled
1152 (SAVE_SP bit in unwind descriptor is on for both functions.
1153 The previous frame pointer is found at the top of the current frame. */
1154 if (caller_framesize == -1 && my_framesize == -1)
1155 {
53a5351d 1156 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1157 }
1158 /* Caller has a frame pointer, but callee does not. This is a little
1159 more difficult as GCC and HP C lay out locals and callee register save
1160 areas very differently.
1161
1162 The previous frame pointer could be in a register, or in one of
1163 several areas on the stack.
1164
1165 Walk from the current frame to the innermost frame examining
1166 unwind descriptors to determine if %r3 ever gets saved into the
1167 stack. If so return whatever value got saved into the stack.
1168 If it was never saved in the stack, then the value in %r3 is still
1169 valid, so use it.
1170
1171 We use information from unwind descriptors to determine if %r3
1172 is saved into the stack (Entry_GR field has this information). */
1173
c2c6d25f 1174 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
c906108c
SS
1175 {
1176 u = find_unwind_entry (tmp_frame->pc);
1177
1178 if (!u)
1179 {
1180 /* We could find this information by examining prologues. I don't
1181 think anyone has actually written any tools (not even "strip")
1182 which leave them out of an executable, so maybe this is a moot
1183 point. */
c5aa993b
JM
1184 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1185 code that doesn't have unwind entries. For example, stepping into
1186 the dynamic linker will give you a PC that has none. Thus, I've
1187 disabled this warning. */
c906108c
SS
1188#if 0
1189 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1190#endif
1191 return (CORE_ADDR) 0;
1192 }
1193
c2c6d25f 1194 if (u->Save_SP
c906108c
SS
1195 || tmp_frame->signal_handler_caller
1196 || pc_in_interrupt_handler (tmp_frame->pc))
1197 break;
c2c6d25f
JM
1198
1199 /* Entry_GR specifies the number of callee-saved general registers
1200 saved in the stack. It starts at %r3, so %r3 would be 1. */
1201 if (u->Entry_GR >= 1)
1202 {
1203 /* The unwind entry claims that r3 is saved here. However,
1204 in optimized code, GCC often doesn't actually save r3.
1205 We'll discover this if we look at the prologue. */
1206 get_frame_saved_regs (tmp_frame, &saved_regs);
1207 saved_regs_frame = tmp_frame;
1208
1209 /* If we have an address for r3, that's good. */
1210 if (saved_regs.regs[FP_REGNUM])
1211 break;
1212 }
c906108c
SS
1213 }
1214
1215 if (tmp_frame)
1216 {
1217 /* We may have walked down the chain into a function with a frame
c5aa993b 1218 pointer. */
c906108c
SS
1219 if (u->Save_SP
1220 && !tmp_frame->signal_handler_caller
1221 && !pc_in_interrupt_handler (tmp_frame->pc))
1222 {
53a5351d 1223 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1224 }
1225 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1226 else
c906108c 1227 {
c906108c
SS
1228 /* Sick.
1229
1230 For optimization purposes many kernels don't have the
1231 callee saved registers into the save_state structure upon
1232 entry into the kernel for a syscall; the optimization
1233 is usually turned off if the process is being traced so
1234 that the debugger can get full register state for the
1235 process.
c5aa993b 1236
c906108c
SS
1237 This scheme works well except for two cases:
1238
c5aa993b
JM
1239 * Attaching to a process when the process is in the
1240 kernel performing a system call (debugger can't get
1241 full register state for the inferior process since
1242 the process wasn't being traced when it entered the
1243 system call).
c906108c 1244
c5aa993b
JM
1245 * Register state is not complete if the system call
1246 causes the process to core dump.
c906108c
SS
1247
1248
1249 The following heinous code is an attempt to deal with
1250 the lack of register state in a core dump. It will
1251 fail miserably if the function which performs the
1252 system call has a variable sized stack frame. */
1253
c2c6d25f
JM
1254 if (tmp_frame != saved_regs_frame)
1255 get_frame_saved_regs (tmp_frame, &saved_regs);
c906108c
SS
1256
1257 /* Abominable hack. */
1258 if (current_target.to_has_execution == 0
1259 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1260 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1261 TARGET_PTR_BIT / 8)
c906108c
SS
1262 & 0x2))
1263 || (saved_regs.regs[FLAGS_REGNUM] == 0
1264 && read_register (FLAGS_REGNUM) & 0x2)))
1265 {
1266 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1267 if (!u)
1268 {
53a5351d
JM
1269 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1270 TARGET_PTR_BIT / 8);
c906108c
SS
1271 }
1272 else
1273 {
1274 return frame_base - (u->Total_frame_size << 3);
1275 }
1276 }
c5aa993b 1277
53a5351d
JM
1278 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1279 TARGET_PTR_BIT / 8);
c906108c
SS
1280 }
1281 }
1282 else
1283 {
c906108c
SS
1284 /* Get the innermost frame. */
1285 tmp_frame = frame;
1286 while (tmp_frame->next != NULL)
1287 tmp_frame = tmp_frame->next;
1288
c2c6d25f
JM
1289 if (tmp_frame != saved_regs_frame)
1290 get_frame_saved_regs (tmp_frame, &saved_regs);
1291
c906108c
SS
1292 /* Abominable hack. See above. */
1293 if (current_target.to_has_execution == 0
1294 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1295 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1296 TARGET_PTR_BIT / 8)
c906108c
SS
1297 & 0x2))
1298 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1299 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1300 {
1301 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1302 if (!u)
1303 {
53a5351d
JM
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1305 TARGET_PTR_BIT / 8);
c906108c 1306 }
c5aa993b
JM
1307 else
1308 {
1309 return frame_base - (u->Total_frame_size << 3);
1310 }
c906108c 1311 }
c5aa993b 1312
c906108c 1313 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1314 holds the value of the previous frame pointer). */
c906108c
SS
1315 return TARGET_READ_FP ();
1316 }
1317}
c906108c 1318\f
c5aa993b 1319
c906108c
SS
1320/* To see if a frame chain is valid, see if the caller looks like it
1321 was compiled with gcc. */
1322
1323int
fba45db2 1324hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1325{
1326 struct minimal_symbol *msym_us;
1327 struct minimal_symbol *msym_start;
1328 struct unwind_table_entry *u, *next_u = NULL;
1329 struct frame_info *next;
1330
1331 if (!chain)
1332 return 0;
1333
1334 u = find_unwind_entry (thisframe->pc);
1335
1336 if (u == NULL)
1337 return 1;
1338
1339 /* We can't just check that the same of msym_us is "_start", because
1340 someone idiotically decided that they were going to make a Ltext_end
1341 symbol with the same address. This Ltext_end symbol is totally
1342 indistinguishable (as nearly as I can tell) from the symbol for a function
1343 which is (legitimately, since it is in the user's namespace)
1344 named Ltext_end, so we can't just ignore it. */
1345 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1346 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1347 if (msym_us
1348 && msym_start
1349 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1350 return 0;
1351
1352 /* Grrrr. Some new idiot decided that they don't want _start for the
1353 PRO configurations; $START$ calls main directly.... Deal with it. */
1354 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1355 if (msym_us
1356 && msym_start
1357 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1358 return 0;
1359
1360 next = get_next_frame (thisframe);
1361 if (next)
1362 next_u = find_unwind_entry (next->pc);
1363
1364 /* If this frame does not save SP, has no stack, isn't a stub,
1365 and doesn't "call" an interrupt routine or signal handler caller,
1366 then its not valid. */
1367 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1368 || (thisframe->next && thisframe->next->signal_handler_caller)
1369 || (next_u && next_u->HP_UX_interrupt_marker))
1370 return 1;
1371
1372 if (pc_in_linker_stub (thisframe->pc))
1373 return 1;
1374
1375 return 0;
1376}
1377
1378/*
1379 These functions deal with saving and restoring register state
1380 around a function call in the inferior. They keep the stack
1381 double-word aligned; eventually, on an hp700, the stack will have
1382 to be aligned to a 64-byte boundary. */
1383
1384void
fba45db2 1385push_dummy_frame (struct inferior_status *inf_status)
c906108c
SS
1386{
1387 CORE_ADDR sp, pc, pcspace;
1388 register int regnum;
53a5351d 1389 CORE_ADDR int_buffer;
c906108c
SS
1390 double freg_buffer;
1391
1392 /* Oh, what a hack. If we're trying to perform an inferior call
1393 while the inferior is asleep, we have to make sure to clear
1394 the "in system call" bit in the flag register (the call will
1395 start after the syscall returns, so we're no longer in the system
1396 call!) This state is kept in "inf_status", change it there.
1397
1398 We also need a number of horrid hacks to deal with lossage in the
1399 PC queue registers (apparently they're not valid when the in syscall
1400 bit is set). */
1401 pc = target_read_pc (inferior_pid);
1402 int_buffer = read_register (FLAGS_REGNUM);
1403 if (int_buffer & 0x2)
1404 {
1405 unsigned int sid;
1406 int_buffer &= ~0x2;
7a292a7a
SS
1407 write_inferior_status_register (inf_status, 0, int_buffer);
1408 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1409 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1410 sid = (pc >> 30) & 0x3;
1411 if (sid == 0)
1412 pcspace = read_register (SR4_REGNUM);
1413 else
1414 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1415 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1416 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1417 }
1418 else
1419 pcspace = read_register (PCSQ_HEAD_REGNUM);
1420
1421 /* Space for "arguments"; the RP goes in here. */
1422 sp = read_register (SP_REGNUM) + 48;
1423 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1424
1425 /* The 32bit and 64bit ABIs save the return pointer into different
1426 stack slots. */
1427 if (REGISTER_SIZE == 8)
1428 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1429 else
1430 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1431
1432 int_buffer = TARGET_READ_FP ();
53a5351d 1433 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1434
1435 write_register (FP_REGNUM, sp);
1436
53a5351d 1437 sp += 2 * REGISTER_SIZE;
c906108c
SS
1438
1439 for (regnum = 1; regnum < 32; regnum++)
1440 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1441 sp = push_word (sp, read_register (regnum));
1442
53a5351d
JM
1443 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1444 if (REGISTER_SIZE != 8)
1445 sp += 4;
c906108c
SS
1446
1447 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1448 {
c5aa993b
JM
1449 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1450 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1451 }
1452 sp = push_word (sp, read_register (IPSW_REGNUM));
1453 sp = push_word (sp, read_register (SAR_REGNUM));
1454 sp = push_word (sp, pc);
1455 sp = push_word (sp, pcspace);
1456 sp = push_word (sp, pc + 4);
1457 sp = push_word (sp, pcspace);
1458 write_register (SP_REGNUM, sp);
1459}
1460
1461static void
fba45db2
KB
1462find_dummy_frame_regs (struct frame_info *frame,
1463 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
1464{
1465 CORE_ADDR fp = frame->frame;
1466 int i;
1467
53a5351d
JM
1468 /* The 32bit and 64bit ABIs save RP into different locations. */
1469 if (REGISTER_SIZE == 8)
1470 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1471 else
1472 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1473
c906108c 1474 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1475
53a5351d
JM
1476 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1477
1478 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1479 {
1480 if (i != FP_REGNUM)
1481 {
1482 frame_saved_regs->regs[i] = fp;
53a5351d 1483 fp += REGISTER_SIZE;
c906108c
SS
1484 }
1485 }
1486
53a5351d
JM
1487 /* This is not necessary or desirable for the 64bit ABI. */
1488 if (REGISTER_SIZE != 8)
1489 fp += 4;
1490
c906108c
SS
1491 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1492 frame_saved_regs->regs[i] = fp;
1493
1494 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1495 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1496 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1499 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1500}
1501
1502void
fba45db2 1503hppa_pop_frame (void)
c906108c
SS
1504{
1505 register struct frame_info *frame = get_current_frame ();
1506 register CORE_ADDR fp, npc, target_pc;
1507 register int regnum;
1508 struct frame_saved_regs fsr;
1509 double freg_buffer;
1510
1511 fp = FRAME_FP (frame);
1512 get_frame_saved_regs (frame, &fsr);
1513
1514#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1515 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1516 restore_pc_queue (&fsr);
1517#endif
1518
1519 for (regnum = 31; regnum > 0; regnum--)
1520 if (fsr.regs[regnum])
53a5351d
JM
1521 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1522 REGISTER_SIZE));
c906108c 1523
c5aa993b 1524 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1525 if (fsr.regs[regnum])
1526 {
c5aa993b
JM
1527 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1528 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
c906108c
SS
1529 }
1530
1531 if (fsr.regs[IPSW_REGNUM])
1532 write_register (IPSW_REGNUM,
53a5351d
JM
1533 read_memory_integer (fsr.regs[IPSW_REGNUM],
1534 REGISTER_SIZE));
c906108c
SS
1535
1536 if (fsr.regs[SAR_REGNUM])
1537 write_register (SAR_REGNUM,
53a5351d
JM
1538 read_memory_integer (fsr.regs[SAR_REGNUM],
1539 REGISTER_SIZE));
c906108c
SS
1540
1541 /* If the PC was explicitly saved, then just restore it. */
1542 if (fsr.regs[PCOQ_TAIL_REGNUM])
1543 {
53a5351d
JM
1544 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1545 REGISTER_SIZE);
c906108c
SS
1546 write_register (PCOQ_TAIL_REGNUM, npc);
1547 }
1548 /* Else use the value in %rp to set the new PC. */
c5aa993b 1549 else
c906108c
SS
1550 {
1551 npc = read_register (RP_REGNUM);
1552 write_pc (npc);
1553 }
1554
53a5351d 1555 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1556
c5aa993b 1557 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1558 write_register (SP_REGNUM, fp - 48);
1559 else
1560 write_register (SP_REGNUM, fp);
1561
1562 /* The PC we just restored may be inside a return trampoline. If so
1563 we want to restart the inferior and run it through the trampoline.
1564
1565 Do this by setting a momentary breakpoint at the location the
1566 trampoline returns to.
1567
1568 Don't skip through the trampoline if we're popping a dummy frame. */
1569 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1570 if (target_pc && !fsr.regs[IPSW_REGNUM])
1571 {
1572 struct symtab_and_line sal;
1573 struct breakpoint *breakpoint;
1574 struct cleanup *old_chain;
1575
1576 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1577 for "return_command" will print the frame we returned to. */
c906108c
SS
1578 sal = find_pc_line (target_pc, 0);
1579 sal.pc = target_pc;
1580 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1581 breakpoint->silent = 1;
1582
1583 /* So we can clean things up. */
4d6140d9 1584 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1585
1586 /* Start up the inferior. */
1587 clear_proceed_status ();
1588 proceed_to_finish = 1;
2acceee2 1589 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1590
1591 /* Perform our cleanups. */
1592 do_cleanups (old_chain);
1593 }
1594 flush_cached_frames ();
1595}
1596
1597/* After returning to a dummy on the stack, restore the instruction
1598 queue space registers. */
1599
1600static int
fba45db2 1601restore_pc_queue (struct frame_saved_regs *fsr)
c906108c
SS
1602{
1603 CORE_ADDR pc = read_pc ();
53a5351d
JM
1604 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1605 TARGET_PTR_BIT / 8);
c906108c
SS
1606 struct target_waitstatus w;
1607 int insn_count;
1608
1609 /* Advance past break instruction in the call dummy. */
1610 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1611 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1612
1613 /* HPUX doesn't let us set the space registers or the space
1614 registers of the PC queue through ptrace. Boo, hiss.
1615 Conveniently, the call dummy has this sequence of instructions
1616 after the break:
c5aa993b
JM
1617 mtsp r21, sr0
1618 ble,n 0(sr0, r22)
1619
c906108c
SS
1620 So, load up the registers and single step until we are in the
1621 right place. */
1622
53a5351d
JM
1623 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1624 REGISTER_SIZE));
c906108c
SS
1625 write_register (22, new_pc);
1626
1627 for (insn_count = 0; insn_count < 3; insn_count++)
1628 {
1629 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1630 merge this into wait_for_inferior (as a special kind of
1631 watchpoint? By setting a breakpoint at the end? Is there
1632 any other choice? Is there *any* way to do this stuff with
1633 ptrace() or some equivalent?). */
c906108c
SS
1634 resume (1, 0);
1635 target_wait (inferior_pid, &w);
1636
1637 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1638 {
1639 stop_signal = w.value.sig;
1640 terminal_ours_for_output ();
1641 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1642 target_signal_to_name (stop_signal),
1643 target_signal_to_string (stop_signal));
c5aa993b
JM
1644 gdb_flush (gdb_stdout);
1645 return 0;
1646 }
c906108c
SS
1647 }
1648 target_terminal_ours ();
1649 target_fetch_registers (-1);
1650 return 1;
1651}
1652
c2c6d25f
JM
1653
1654#ifdef PA20W_CALLING_CONVENTIONS
1655
53a5351d
JM
1656/* This function pushes a stack frame with arguments as part of the
1657 inferior function calling mechanism.
c906108c 1658
c2c6d25f
JM
1659 This is the version for the PA64, in which later arguments appear
1660 at higher addresses. (The stack always grows towards higher
1661 addresses.)
c906108c 1662
53a5351d
JM
1663 We simply allocate the appropriate amount of stack space and put
1664 arguments into their proper slots. The call dummy code will copy
1665 arguments into registers as needed by the ABI.
c906108c 1666
c2c6d25f
JM
1667 This ABI also requires that the caller provide an argument pointer
1668 to the callee, so we do that too. */
53a5351d 1669
c906108c 1670CORE_ADDR
fba45db2
KB
1671hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1672 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1673{
1674 /* array of arguments' offsets */
c5aa993b 1675 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1676
1677 /* array of arguments' lengths: real lengths in bytes, not aligned to
1678 word size */
c5aa993b 1679 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1680
53a5351d
JM
1681 /* The value of SP as it was passed into this function after
1682 aligning. */
1683 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1684
53a5351d
JM
1685 /* The number of stack bytes occupied by the current argument. */
1686 int bytes_reserved;
1687
1688 /* The total number of bytes reserved for the arguments. */
1689 int cum_bytes_reserved = 0;
c906108c 1690
53a5351d
JM
1691 /* Similarly, but aligned. */
1692 int cum_bytes_aligned = 0;
1693 int i;
c5aa993b 1694
53a5351d 1695 /* Iterate over each argument provided by the user. */
c906108c
SS
1696 for (i = 0; i < nargs; i++)
1697 {
c2c6d25f
JM
1698 struct type *arg_type = VALUE_TYPE (args[i]);
1699
1700 /* Integral scalar values smaller than a register are padded on
1701 the left. We do this by promoting them to full-width,
1702 although the ABI says to pad them with garbage. */
1703 if (is_integral_type (arg_type)
1704 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1705 {
1706 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1707 ? builtin_type_unsigned_long
1708 : builtin_type_long),
1709 args[i]);
1710 arg_type = VALUE_TYPE (args[i]);
1711 }
1712
1713 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1714
53a5351d
JM
1715 /* Align the size of the argument to the word size for this
1716 target. */
1717 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1718
53a5351d
JM
1719 offset[i] = cum_bytes_reserved;
1720
c2c6d25f
JM
1721 /* Aggregates larger than eight bytes (the only types larger
1722 than eight bytes we have) are aligned on a 16-byte boundary,
1723 possibly padded on the right with garbage. This may leave an
1724 empty word on the stack, and thus an unused register, as per
1725 the ABI. */
1726 if (bytes_reserved > 8)
1727 {
1728 /* Round up the offset to a multiple of two slots. */
1729 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1730 & -(2*REGISTER_SIZE));
c906108c 1731
c2c6d25f
JM
1732 /* Note the space we've wasted, if any. */
1733 bytes_reserved += new_offset - offset[i];
1734 offset[i] = new_offset;
1735 }
53a5351d 1736
c2c6d25f
JM
1737 cum_bytes_reserved += bytes_reserved;
1738 }
1739
1740 /* CUM_BYTES_RESERVED already accounts for all the arguments
1741 passed by the user. However, the ABIs mandate minimum stack space
1742 allocations for outgoing arguments.
1743
1744 The ABIs also mandate minimum stack alignments which we must
1745 preserve. */
1746 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1747 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1748
1749 /* Now write each of the args at the proper offset down the stack. */
1750 for (i = 0; i < nargs; i++)
1751 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1752
1753 /* If a structure has to be returned, set up register 28 to hold its
1754 address */
1755 if (struct_return)
1756 write_register (28, struct_addr);
1757
1758 /* For the PA64 we must pass a pointer to the outgoing argument list.
1759 The ABI mandates that the pointer should point to the first byte of
1760 storage beyond the register flushback area.
1761
1762 However, the call dummy expects the outgoing argument pointer to
1763 be passed in register %r4. */
1764 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1765
1766 /* ?!? This needs further work. We need to set up the global data
1767 pointer for this procedure. This assumes the same global pointer
1768 for every procedure. The call dummy expects the dp value to
1769 be passed in register %r6. */
1770 write_register (6, read_register (27));
1771
1772 /* The stack will have 64 bytes of additional space for a frame marker. */
1773 return sp + 64;
1774}
1775
1776#else
1777
1778/* This function pushes a stack frame with arguments as part of the
1779 inferior function calling mechanism.
1780
1781 This is the version of the function for the 32-bit PA machines, in
1782 which later arguments appear at lower addresses. (The stack always
1783 grows towards higher addresses.)
1784
1785 We simply allocate the appropriate amount of stack space and put
1786 arguments into their proper slots. The call dummy code will copy
1787 arguments into registers as needed by the ABI. */
1788
1789CORE_ADDR
fba45db2
KB
1790hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1791 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1792{
1793 /* array of arguments' offsets */
1794 int *offset = (int *) alloca (nargs * sizeof (int));
1795
1796 /* array of arguments' lengths: real lengths in bytes, not aligned to
1797 word size */
1798 int *lengths = (int *) alloca (nargs * sizeof (int));
1799
1800 /* The number of stack bytes occupied by the current argument. */
1801 int bytes_reserved;
1802
1803 /* The total number of bytes reserved for the arguments. */
1804 int cum_bytes_reserved = 0;
1805
1806 /* Similarly, but aligned. */
1807 int cum_bytes_aligned = 0;
1808 int i;
1809
1810 /* Iterate over each argument provided by the user. */
1811 for (i = 0; i < nargs; i++)
1812 {
1813 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1814
1815 /* Align the size of the argument to the word size for this
1816 target. */
1817 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1818
1819 offset[i] = cum_bytes_reserved + lengths[i];
1820
1821 /* If the argument is a double word argument, then it needs to be
1822 double word aligned. */
53a5351d 1823 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1824 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1825 {
1826 int new_offset = 0;
53a5351d
JM
1827 /* BYTES_RESERVED is already aligned to the word, so we put
1828 the argument at one word more down the stack.
1829
1830 This will leave one empty word on the stack, and one unused
1831 register as mandated by the ABI. */
1832 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1833 & -(2 * REGISTER_SIZE));
1834
1835 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1836 {
53a5351d
JM
1837 bytes_reserved += REGISTER_SIZE;
1838 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1839 }
1840 }
c906108c
SS
1841
1842 cum_bytes_reserved += bytes_reserved;
1843
1844 }
1845
c2c6d25f
JM
1846 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1847 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1848 allocations for outgoing arguments.
1849
c2c6d25f 1850 The ABI also mandates minimum stack alignments which we must
53a5351d 1851 preserve. */
c906108c 1852 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1853 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1854
1855 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1856 ?!? We need to promote values to a full register instead of skipping
1857 words in the stack. */
c906108c
SS
1858 for (i = 0; i < nargs; i++)
1859 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1860
53a5351d
JM
1861 /* If a structure has to be returned, set up register 28 to hold its
1862 address */
c906108c
SS
1863 if (struct_return)
1864 write_register (28, struct_addr);
1865
53a5351d 1866 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1867 return sp + 32;
1868}
1869
c2c6d25f 1870#endif
c906108c
SS
1871
1872/* elz: this function returns a value which is built looking at the given address.
1873 It is called from call_function_by_hand, in case we need to return a
1874 value which is larger than 64 bits, and it is stored in the stack rather than
1875 in the registers r28 and r29 or fr4.
1876 This function does the same stuff as value_being_returned in values.c, but
1877 gets the value from the stack rather than from the buffer where all the
1878 registers were saved when the function called completed. */
1879value_ptr
fba45db2 1880hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c
SS
1881{
1882 register value_ptr val;
1883
1884 val = allocate_value (valtype);
1885 CHECK_TYPEDEF (valtype);
c5aa993b 1886 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1887
1888 return val;
1889}
1890
1891
1892
1893/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1894 This function calls shl_findsym, indirectly through a
1895 call to __d_shl_get. __d_shl_get is in end.c, which is always
1896 linked in by the hp compilers/linkers.
1897 The call to shl_findsym cannot be made directly because it needs
1898 to be active in target address space.
1899 inputs: - minimal symbol pointer for the function we want to look up
1900 - address in target space of the descriptor for the library
1901 where we want to look the symbol up.
1902 This address is retrieved using the
1903 som_solib_get_solib_by_pc function (somsolib.c).
1904 output: - real address in the library of the function.
1905 note: the handle can be null, in which case shl_findsym will look for
1906 the symbol in all the loaded shared libraries.
1907 files to look at if you need reference on this stuff:
1908 dld.c, dld_shl_findsym.c
1909 end.c
1910 man entry for shl_findsym */
c906108c
SS
1911
1912CORE_ADDR
fba45db2 1913find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1914{
c5aa993b
JM
1915 struct symbol *get_sym, *symbol2;
1916 struct minimal_symbol *buff_minsym, *msymbol;
1917 struct type *ftype;
1918 value_ptr *args;
1919 value_ptr funcval, val;
1920
1921 int x, namelen, err_value, tmp = -1;
1922 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1923 CORE_ADDR stub_addr;
1924
1925
1926 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1927 funcval = find_function_in_inferior ("__d_shl_get");
1928 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1929 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1930 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1931 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1932 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1933 namelen = strlen (SYMBOL_NAME (function));
1934 value_return_addr = endo_buff_addr + namelen;
1935 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1936
1937 /* do alignment */
1938 if ((x = value_return_addr % 64) != 0)
1939 value_return_addr = value_return_addr + 64 - x;
1940
1941 errno_return_addr = value_return_addr + 64;
1942
1943
1944 /* set up stuff needed by __d_shl_get in buffer in end.o */
1945
1946 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1947
1948 target_write_memory (value_return_addr, (char *) &tmp, 4);
1949
1950 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1951
1952 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1953 (char *) &handle, 4);
1954
1955 /* now prepare the arguments for the call */
1956
1957 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
1958 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1959 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 1960 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
1961 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1962 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
1963
1964 /* now call the function */
1965
1966 val = call_function_by_hand (funcval, 6, args);
1967
1968 /* now get the results */
1969
1970 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1971
1972 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1973 if (stub_addr <= 0)
104c1213 1974 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
1975
1976 return (stub_addr);
c906108c
SS
1977}
1978
c5aa993b 1979/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd
JM
1980static int
1981cover_find_stub_with_shl_get (PTR args_untyped)
c906108c 1982{
a0b3c4fd
JM
1983 args_for_find_stub *args = args_untyped;
1984 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1985 return 0;
c906108c
SS
1986}
1987
c906108c
SS
1988/* Insert the specified number of args and function address
1989 into a call sequence of the above form stored at DUMMYNAME.
1990
1991 On the hppa we need to call the stack dummy through $$dyncall.
1992 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1993 real_pc, which is the location where gdb should start up the
cce74817
JM
1994 inferior to do the function call.
1995
1996 This has to work across several versions of hpux, bsd, osf1. It has to
1997 work regardless of what compiler was used to build the inferior program.
1998 It should work regardless of whether or not end.o is available. It has
1999 to work even if gdb can not call into the dynamic loader in the inferior
2000 to query it for symbol names and addresses.
2001
2002 Yes, all those cases should work. Luckily code exists to handle most
2003 of them. The complexity is in selecting exactly what scheme should
2004 be used to perform the inferior call.
2005
2006 At the current time this routine is known not to handle cases where
2007 the program was linked with HP's compiler without including end.o.
2008
2009 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2010
2011CORE_ADDR
fba45db2
KB
2012hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2013 value_ptr *args, struct type *type, int gcc_p)
c906108c
SS
2014{
2015 CORE_ADDR dyncall_addr;
2016 struct minimal_symbol *msymbol;
2017 struct minimal_symbol *trampoline;
2018 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2019 struct unwind_table_entry *u = NULL;
2020 CORE_ADDR new_stub = 0;
2021 CORE_ADDR solib_handle = 0;
2022
2023 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2024 passed an import stub, not a PLABEL. It is also necessary to set %r19
2025 (the PIC register) before performing the call.
c906108c 2026
cce74817
JM
2027 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2028 are calling the target directly. When using __d_plt_call we want to
2029 use a PLABEL instead of an import stub. */
2030 int using_gcc_plt_call = 1;
2031
53a5351d
JM
2032#ifdef GDB_TARGET_IS_HPPA_20W
2033 /* We currently use completely different code for the PA2.0W inferior
2034 function call sequences. This needs to be cleaned up. */
2035 {
2036 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2037 struct target_waitstatus w;
2038 int inst1, inst2;
2039 char buf[4];
2040 int status;
2041 struct objfile *objfile;
2042
2043 /* We can not modify the PC space queues directly, so we start
2044 up the inferior and execute a couple instructions to set the
2045 space queues so that they point to the call dummy in the stack. */
2046 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2047 sr5 = read_register (SR5_REGNUM);
2048 if (1)
2049 {
2050 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2051 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2052 if (target_read_memory (pcoqh, buf, 4) != 0)
2053 error ("Couldn't modify space queue\n");
2054 inst1 = extract_unsigned_integer (buf, 4);
2055
2056 if (target_read_memory (pcoqt, buf, 4) != 0)
2057 error ("Couldn't modify space queue\n");
2058 inst2 = extract_unsigned_integer (buf, 4);
2059
2060 /* BVE (r1) */
2061 *((int *) buf) = 0xe820d000;
2062 if (target_write_memory (pcoqh, buf, 4) != 0)
2063 error ("Couldn't modify space queue\n");
2064
2065 /* NOP */
2066 *((int *) buf) = 0x08000240;
2067 if (target_write_memory (pcoqt, buf, 4) != 0)
2068 {
2069 *((int *) buf) = inst1;
2070 target_write_memory (pcoqh, buf, 4);
2071 error ("Couldn't modify space queue\n");
2072 }
2073
2074 write_register (1, pc);
2075
2076 /* Single step twice, the BVE instruction will set the space queue
2077 such that it points to the PC value written immediately above
2078 (ie the call dummy). */
2079 resume (1, 0);
2080 target_wait (inferior_pid, &w);
2081 resume (1, 0);
2082 target_wait (inferior_pid, &w);
2083
2084 /* Restore the two instructions at the old PC locations. */
2085 *((int *) buf) = inst1;
2086 target_write_memory (pcoqh, buf, 4);
2087 *((int *) buf) = inst2;
2088 target_write_memory (pcoqt, buf, 4);
2089 }
2090
2091 /* The call dummy wants the ultimate destination address initially
2092 in register %r5. */
2093 write_register (5, fun);
2094
2095 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2096 own (it could be a shared library for example). */
53a5351d
JM
2097 ALL_OBJFILES (objfile)
2098 {
2099 struct obj_section *s;
2100 obj_private_data_t *obj_private;
2101
2102 /* See if FUN is in any section within this shared library. */
2103 for (s = objfile->sections; s < objfile->sections_end; s++)
2104 if (s->addr <= fun && fun < s->endaddr)
2105 break;
2106
2107 if (s >= objfile->sections_end)
2108 continue;
2109
2110 obj_private = (obj_private_data_t *) objfile->obj_private;
2111
2112 /* The DP value may be different for each objfile. But within an
2113 objfile each function uses the same dp value. Thus we do not need
2114 to grope around the opd section looking for dp values.
2115
2116 ?!? This is not strictly correct since we may be in a shared library
2117 and want to call back into the main program. To make that case
2118 work correctly we need to set obj_private->dp for the main program's
2119 objfile, then remove this conditional. */
2120 if (obj_private->dp)
2121 write_register (27, obj_private->dp);
2122 break;
2123 }
2124 return pc;
2125 }
2126#endif
2127
2128#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2129 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2130 __gcc_plt_call works for any number of arguments. */
c906108c 2131 trampoline = NULL;
cce74817
JM
2132 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2133 using_gcc_plt_call = 0;
2134
c906108c
SS
2135 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2136 if (msymbol == NULL)
cce74817 2137 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2138
2139 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2140
2141 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2142 its real address and the value of its GOT/DP if we plan to
2143 call the routine via gcc_plt_call. */
2144 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2145 {
2146 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2147 at *(fun+4). Note the call dummy is *NOT* allowed to
2148 trash %r19 before calling the target function. */
53a5351d
JM
2149 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2150 REGISTER_SIZE));
c906108c
SS
2151
2152 /* Now get the real address for the function we are calling, it's
c5aa993b 2153 at *fun. */
53a5351d
JM
2154 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2155 TARGET_PTR_BIT / 8);
c906108c
SS
2156 }
2157 else
2158 {
2159
2160#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2161 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2162 a PLABEL. When using gcc's PLT call routine we must call an import
2163 stub rather than the export stub or real function for lazy binding
2164 to work correctly
cce74817 2165
c5aa993b
JM
2166 /* If we are using the gcc PLT call routine, then we need to
2167 get the import stub for the target function. */
cce74817 2168 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2169 {
2170 struct objfile *objfile;
2171 struct minimal_symbol *funsymbol, *stub_symbol;
2172 CORE_ADDR newfun = 0;
2173
2174 funsymbol = lookup_minimal_symbol_by_pc (fun);
2175 if (!funsymbol)
4ce44c66 2176 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2177
2178 /* Search all the object files for an import symbol with the
2179 right name. */
2180 ALL_OBJFILES (objfile)
c5aa993b
JM
2181 {
2182 stub_symbol
2183 = lookup_minimal_symbol_solib_trampoline
2184 (SYMBOL_NAME (funsymbol), NULL, objfile);
2185
2186 if (!stub_symbol)
2187 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2188 NULL, objfile);
2189
2190 /* Found a symbol with the right name. */
2191 if (stub_symbol)
2192 {
2193 struct unwind_table_entry *u;
2194 /* It must be a shared library trampoline. */
2195 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2196 continue;
2197
2198 /* It must also be an import stub. */
2199 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2200 if (u == NULL
2201 || (u->stub_unwind.stub_type != IMPORT
2202#ifdef GDB_NATIVE_HPUX_11
2203 /* Sigh. The hpux 10.20 dynamic linker will blow
2204 chunks if we perform a call to an unbound function
2205 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2206 linker will blow chunks if we do not call the
2207 unbound function via the IMPORT_SHLIB stub.
2208
2209 We currently have no way to select bevahior on just
2210 the target. However, we only support HPUX/SOM in
2211 native mode. So we conditinalize on a native
2212 #ifdef. Ugly. Ugly. Ugly */
2213 && u->stub_unwind.stub_type != IMPORT_SHLIB
2214#endif
2215 ))
c5aa993b
JM
2216 continue;
2217
2218 /* OK. Looks like the correct import stub. */
2219 newfun = SYMBOL_VALUE (stub_symbol);
2220 fun = newfun;
6426a772
JM
2221
2222 /* If we found an IMPORT stub, then we want to stop
2223 searching now. If we found an IMPORT_SHLIB, we want
2224 to continue the search in the hopes that we will find
2225 an IMPORT stub. */
2226 if (u->stub_unwind.stub_type == IMPORT)
2227 break;
c5aa993b
JM
2228 }
2229 }
cce74817
JM
2230
2231 /* Ouch. We did not find an import stub. Make an attempt to
2232 do the right thing instead of just croaking. Most of the
2233 time this will actually work. */
c906108c
SS
2234 if (newfun == 0)
2235 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2236
2237 u = find_unwind_entry (fun);
c5aa993b 2238 if (u
cce74817
JM
2239 && (u->stub_unwind.stub_type == IMPORT
2240 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2241 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2242
2243 /* If we found the import stub in the shared library, then we have
2244 to set %r19 before we call the stub. */
2245 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2246 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2247 }
c906108c
SS
2248#endif
2249 }
2250
cce74817
JM
2251 /* If we are calling into another load module then have sr4export call the
2252 magic __d_plt_call routine which is linked in from end.o.
c906108c 2253
cce74817
JM
2254 You can't use _sr4export to make the call as the value in sp-24 will get
2255 fried and you end up returning to the wrong location. You can't call the
2256 target as the code to bind the PLT entry to a function can't return to a
2257 stack address.
2258
2259 Also, query the dynamic linker in the inferior to provide a suitable
2260 PLABEL for the target function. */
c5aa993b 2261 if (!using_gcc_plt_call)
c906108c
SS
2262 {
2263 CORE_ADDR new_fun;
2264
cce74817 2265 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2266 handle we can query the shared library for a PLABEL. */
cce74817 2267 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2268
cce74817 2269 if (solib_handle)
c906108c 2270 {
cce74817 2271 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2272
cce74817
JM
2273 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2274
2275 if (trampoline == NULL)
2276 {
2277 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2278 }
2279
2280 /* This is where sr4export will jump to. */
2281 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2282
2283 /* If the function is in a shared library, then call __d_shl_get to
2284 get a PLABEL for the target function. */
2285 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2286
c5aa993b 2287 if (new_stub == 0)
cce74817 2288 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2289
2290 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2291 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2292 (struct objfile *) NULL);
c906108c 2293
cce74817
JM
2294 if (msymbol == NULL)
2295 error ("Can't find an address for __shlib_funcptr");
2296 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2297 (char *) &new_stub, 4);
c906108c
SS
2298
2299 /* We want sr4export to call __d_plt_call, so we claim it is
2300 the final target. Clear trampoline. */
cce74817
JM
2301 fun = new_fun;
2302 trampoline = NULL;
c906108c
SS
2303 }
2304 }
2305
2306 /* Store upper 21 bits of function address into ldil. fun will either be
2307 the final target (most cases) or __d_plt_call when calling into a shared
2308 library and __gcc_plt_call is not available. */
2309 store_unsigned_integer
2310 (&dummy[FUNC_LDIL_OFFSET],
2311 INSTRUCTION_SIZE,
2312 deposit_21 (fun >> 11,
2313 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2314 INSTRUCTION_SIZE)));
2315
2316 /* Store lower 11 bits of function address into ldo */
2317 store_unsigned_integer
2318 (&dummy[FUNC_LDO_OFFSET],
2319 INSTRUCTION_SIZE,
2320 deposit_14 (fun & MASK_11,
2321 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2322 INSTRUCTION_SIZE)));
2323#ifdef SR4EXPORT_LDIL_OFFSET
2324
2325 {
2326 CORE_ADDR trampoline_addr;
2327
2328 /* We may still need sr4export's address too. */
2329
2330 if (trampoline == NULL)
2331 {
2332 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2333 if (msymbol == NULL)
cce74817 2334 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2335
2336 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2337 }
2338 else
2339 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2340
2341
2342 /* Store upper 21 bits of trampoline's address into ldil */
2343 store_unsigned_integer
2344 (&dummy[SR4EXPORT_LDIL_OFFSET],
2345 INSTRUCTION_SIZE,
2346 deposit_21 (trampoline_addr >> 11,
2347 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2348 INSTRUCTION_SIZE)));
2349
2350 /* Store lower 11 bits of trampoline's address into ldo */
2351 store_unsigned_integer
2352 (&dummy[SR4EXPORT_LDO_OFFSET],
2353 INSTRUCTION_SIZE,
2354 deposit_14 (trampoline_addr & MASK_11,
2355 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2356 INSTRUCTION_SIZE)));
2357 }
2358#endif
2359
2360 write_register (22, pc);
2361
2362 /* If we are in a syscall, then we should call the stack dummy
2363 directly. $$dyncall is not needed as the kernel sets up the
2364 space id registers properly based on the value in %r31. In
2365 fact calling $$dyncall will not work because the value in %r22
2366 will be clobbered on the syscall exit path.
2367
2368 Similarly if the current PC is in a shared library. Note however,
2369 this scheme won't work if the shared library isn't mapped into
2370 the same space as the stack. */
2371 if (flags & 2)
2372 return pc;
2373#ifndef GDB_TARGET_IS_PA_ELF
2374 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2375 return pc;
2376#endif
2377 else
2378 return dyncall_addr;
53a5351d 2379#endif
c906108c
SS
2380}
2381
2382
2383
2384
2385/* If the pid is in a syscall, then the FP register is not readable.
2386 We'll return zero in that case, rather than attempting to read it
2387 and cause a warning. */
2388CORE_ADDR
fba45db2 2389target_read_fp (int pid)
c906108c
SS
2390{
2391 int flags = read_register (FLAGS_REGNUM);
2392
c5aa993b
JM
2393 if (flags & 2)
2394 {
2395 return (CORE_ADDR) 0;
2396 }
c906108c
SS
2397
2398 /* This is the only site that may directly read_register () the FP
2399 register. All others must use TARGET_READ_FP (). */
2400 return read_register (FP_REGNUM);
2401}
2402
2403
2404/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2405 bits. */
2406
2407CORE_ADDR
fba45db2 2408target_read_pc (int pid)
c906108c
SS
2409{
2410 int flags = read_register_pid (FLAGS_REGNUM, pid);
2411
2412 /* The following test does not belong here. It is OS-specific, and belongs
2413 in native code. */
2414 /* Test SS_INSYSCALL */
2415 if (flags & 2)
2416 return read_register_pid (31, pid) & ~0x3;
2417
2418 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2419}
2420
2421/* Write out the PC. If currently in a syscall, then also write the new
2422 PC value into %r31. */
2423
2424void
fba45db2 2425target_write_pc (CORE_ADDR v, int pid)
c906108c
SS
2426{
2427 int flags = read_register_pid (FLAGS_REGNUM, pid);
2428
2429 /* The following test does not belong here. It is OS-specific, and belongs
2430 in native code. */
2431 /* If in a syscall, then set %r31. Also make sure to get the
2432 privilege bits set correctly. */
2433 /* Test SS_INSYSCALL */
2434 if (flags & 2)
2435 write_register_pid (31, v | 0x3, pid);
2436
2437 write_register_pid (PC_REGNUM, v, pid);
2438 write_register_pid (NPC_REGNUM, v + 4, pid);
2439}
2440
2441/* return the alignment of a type in bytes. Structures have the maximum
2442 alignment required by their fields. */
2443
2444static int
fba45db2 2445hppa_alignof (struct type *type)
c906108c
SS
2446{
2447 int max_align, align, i;
2448 CHECK_TYPEDEF (type);
2449 switch (TYPE_CODE (type))
2450 {
2451 case TYPE_CODE_PTR:
2452 case TYPE_CODE_INT:
2453 case TYPE_CODE_FLT:
2454 return TYPE_LENGTH (type);
2455 case TYPE_CODE_ARRAY:
2456 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2457 case TYPE_CODE_STRUCT:
2458 case TYPE_CODE_UNION:
2459 max_align = 1;
2460 for (i = 0; i < TYPE_NFIELDS (type); i++)
2461 {
2462 /* Bit fields have no real alignment. */
2463 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2464 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2465 {
2466 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2467 max_align = max (max_align, align);
2468 }
2469 }
2470 return max_align;
2471 default:
2472 return 4;
2473 }
2474}
2475
2476/* Print the register regnum, or all registers if regnum is -1 */
2477
2478void
fba45db2 2479pa_do_registers_info (int regnum, int fpregs)
c906108c 2480{
c5aa993b 2481 char raw_regs[REGISTER_BYTES];
c906108c
SS
2482 int i;
2483
2484 /* Make a copy of gdb's save area (may cause actual
2485 reads from the target). */
2486 for (i = 0; i < NUM_REGS; i++)
2487 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2488
2489 if (regnum == -1)
2490 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2491 else if (regnum < FP4_REGNUM)
2492 {
2493 long reg_val[2];
2494
2495 /* Why is the value not passed through "extract_signed_integer"
2496 as in "pa_print_registers" below? */
2497 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2498
2499 if (!is_pa_2)
2500 {
2501 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2502 }
c906108c 2503 else
c5aa993b
JM
2504 {
2505 /* Fancy % formats to prevent leading zeros. */
2506 if (reg_val[0] == 0)
2507 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2508 else
2509 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2510 reg_val[0], reg_val[1]);
2511 }
c906108c 2512 }
c906108c 2513 else
c5aa993b
JM
2514 /* Note that real floating point values only start at
2515 FP4_REGNUM. FP0 and up are just status and error
2516 registers, which have integral (bit) values. */
c906108c
SS
2517 pa_print_fp_reg (regnum);
2518}
2519
2520/********** new function ********************/
2521void
fba45db2
KB
2522pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2523 enum precision_type precision)
c906108c 2524{
c5aa993b 2525 char raw_regs[REGISTER_BYTES];
c906108c
SS
2526 int i;
2527
2528 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2529 reads from the target). */
c906108c
SS
2530 for (i = 0; i < NUM_REGS; i++)
2531 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2532
2533 if (regnum == -1)
2534 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2535
c5aa993b
JM
2536 else if (regnum < FP4_REGNUM)
2537 {
2538 long reg_val[2];
2539
2540 /* Why is the value not passed through "extract_signed_integer"
2541 as in "pa_print_registers" below? */
2542 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2543
c5aa993b
JM
2544 if (!is_pa_2)
2545 {
2546 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2547 }
c906108c 2548 else
c5aa993b
JM
2549 {
2550 /* Fancy % formats to prevent leading zeros. */
2551 if (reg_val[0] == 0)
2552 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2553 reg_val[1]);
2554 else
2555 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2556 reg_val[0], reg_val[1]);
2557 }
c906108c 2558 }
c906108c 2559 else
c5aa993b
JM
2560 /* Note that real floating point values only start at
2561 FP4_REGNUM. FP0 and up are just status and error
2562 registers, which have integral (bit) values. */
c906108c
SS
2563 pa_strcat_fp_reg (regnum, stream, precision);
2564}
2565
2566/* If this is a PA2.0 machine, fetch the real 64-bit register
2567 value. Otherwise use the info from gdb's saved register area.
2568
2569 Note that reg_val is really expected to be an array of longs,
2570 with two elements. */
2571static void
fba45db2 2572pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2573{
c5aa993b 2574 static int know_which = 0; /* False */
c906108c 2575
c5aa993b 2576 int regaddr;
c906108c
SS
2577 unsigned int offset;
2578 register int i;
c5aa993b
JM
2579 int start;
2580
2581
c906108c
SS
2582 char buf[MAX_REGISTER_RAW_SIZE];
2583 long long reg_val;
2584
c5aa993b
JM
2585 if (!know_which)
2586 {
2587 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2588 {
2589 is_pa_2 = (1 == 1);
2590 }
2591
2592 know_which = 1; /* True */
2593 }
c906108c
SS
2594
2595 raw_val[0] = 0;
2596 raw_val[1] = 0;
2597
c5aa993b
JM
2598 if (!is_pa_2)
2599 {
2600 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2601 return;
c5aa993b 2602 }
c906108c
SS
2603
2604 /* Code below copied from hppah-nat.c, with fixes for wide
2605 registers, using different area of save_state, etc. */
2606 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2607 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2608 {
c906108c 2609 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2610 offset = U_REGS_OFFSET;
2611 regaddr = register_addr (regnum, offset);
2612 start = 1;
2613 }
2614 else
2615 {
c906108c
SS
2616 /* Use wide regs area, and calculate registers as 8 bytes wide.
2617
2618 We'd like to do this, but current version of "C" doesn't
2619 permit "offsetof":
2620
c5aa993b 2621 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2622
2623 Note that to avoid "C" doing typed pointer arithmetic, we
2624 have to cast away the type in our offset calculation:
2625 otherwise we get an offset of 1! */
2626
7a292a7a 2627 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2628 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2629 so to avoid compile-time warnings, we only compile this for
2630 PA 2.0 processors. This control path should only be followed
2631 if we're debugging a PA 2.0 processor, so this should not cause
2632 problems. */
2633
c906108c
SS
2634 /* #if the following code out so that this file can still be
2635 compiled on older HPUX boxes (< 10.20) which don't have
2636 this structure/structure member. */
2637#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2638 save_state_t temp;
2639
2640 offset = ((int) &temp.ss_wide) - ((int) &temp);
2641 regaddr = offset + regnum * 8;
c5aa993b 2642 start = 0;
c906108c 2643#endif
c5aa993b
JM
2644 }
2645
2646 for (i = start; i < 2; i++)
c906108c
SS
2647 {
2648 errno = 0;
2649 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
c5aa993b 2650 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2651 if (errno != 0)
2652 {
2653 /* Warning, not error, in case we are attached; sometimes the
2654 kernel doesn't let us at the registers. */
2655 char *err = safe_strerror (errno);
2656 char *msg = alloca (strlen (err) + 128);
2657 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2658 warning (msg);
2659 goto error_exit;
2660 }
2661
2662 regaddr += sizeof (long);
2663 }
c5aa993b 2664
c906108c 2665 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2666 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2667
2668error_exit:
2669 ;
2670}
2671
2672/* "Info all-reg" command */
c5aa993b 2673
c906108c 2674static void
fba45db2 2675pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2676{
c5aa993b 2677 int i, j;
adf40b2e
JM
2678 /* Alas, we are compiled so that "long long" is 32 bits */
2679 long raw_val[2];
c906108c 2680 long long_val;
a0b3c4fd 2681 int rows = 48, columns = 2;
c906108c 2682
adf40b2e 2683 for (i = 0; i < rows; i++)
c906108c 2684 {
adf40b2e 2685 for (j = 0; j < columns; j++)
c906108c 2686 {
adf40b2e
JM
2687 /* We display registers in column-major order. */
2688 int regnum = i + j * rows;
2689
c5aa993b
JM
2690 /* Q: Why is the value passed through "extract_signed_integer",
2691 while above, in "pa_do_registers_info" it isn't?
2692 A: ? */
adf40b2e 2693 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2694
2695 /* Even fancier % formats to prevent leading zeros
2696 and still maintain the output in columns. */
2697 if (!is_pa_2)
2698 {
2699 /* Being big-endian, on this machine the low bits
2700 (the ones we want to look at) are in the second longword. */
2701 long_val = extract_signed_integer (&raw_val[1], 4);
a0b3c4fd 2702 printf_filtered ("%10.10s: %8x ",
adf40b2e 2703 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2704 }
2705 else
2706 {
2707 /* raw_val = extract_signed_integer(&raw_val, 8); */
2708 if (raw_val[0] == 0)
a0b3c4fd 2709 printf_filtered ("%10.10s: %8x ",
adf40b2e 2710 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2711 else
a0b3c4fd
JM
2712 printf_filtered ("%10.10s: %8x%8.8x ",
2713 REGISTER_NAME (regnum),
c5aa993b
JM
2714 raw_val[0], raw_val[1]);
2715 }
c906108c
SS
2716 }
2717 printf_unfiltered ("\n");
2718 }
c5aa993b 2719
c906108c 2720 if (fpregs)
c5aa993b 2721 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2722 pa_print_fp_reg (i);
2723}
2724
c5aa993b 2725/************* new function ******************/
c906108c 2726static void
fba45db2
KB
2727pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2728 struct ui_file *stream)
c906108c 2729{
c5aa993b
JM
2730 int i, j;
2731 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2732 long long_val;
2733 enum precision_type precision;
2734
2735 precision = unspecified_precision;
2736
2737 for (i = 0; i < 18; i++)
2738 {
2739 for (j = 0; j < 4; j++)
2740 {
c5aa993b
JM
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2743 A: ? */
2744 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2745
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2748 if (!is_pa_2)
2749 {
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
2753 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2754 }
2755 else
2756 {
2757 /* raw_val = extract_signed_integer(&raw_val, 8); */
2758 if (raw_val[0] == 0)
2759 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2760 raw_val[1]);
2761 else
2762 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2763 raw_val[0], raw_val[1]);
2764 }
c906108c
SS
2765 }
2766 fprintf_unfiltered (stream, "\n");
2767 }
c5aa993b 2768
c906108c 2769 if (fpregs)
c5aa993b 2770 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2771 pa_strcat_fp_reg (i, stream, precision);
2772}
2773
2774static void
fba45db2 2775pa_print_fp_reg (int i)
c906108c
SS
2776{
2777 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2778 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2779
2780 /* Get 32bits of data. */
2781 read_relative_register_raw_bytes (i, raw_buffer);
2782
2783 /* Put it in the buffer. No conversions are ever necessary. */
2784 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2785
2786 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2787 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2788 fputs_filtered ("(single precision) ", gdb_stdout);
2789
2790 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2791 1, 0, Val_pretty_default);
2792 printf_filtered ("\n");
2793
2794 /* If "i" is even, then this register can also be a double-precision
2795 FP register. Dump it out as such. */
2796 if ((i % 2) == 0)
2797 {
2798 /* Get the data in raw format for the 2nd half. */
2799 read_relative_register_raw_bytes (i + 1, raw_buffer);
2800
2801 /* Copy it into the appropriate part of the virtual buffer. */
2802 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2803 REGISTER_RAW_SIZE (i));
2804
2805 /* Dump it as a double. */
2806 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2807 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2808 fputs_filtered ("(double precision) ", gdb_stdout);
2809
2810 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2811 1, 0, Val_pretty_default);
2812 printf_filtered ("\n");
2813 }
2814}
2815
2816/*************** new function ***********************/
2817static void
fba45db2 2818pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c
SS
2819{
2820 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2821 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2822
2823 fputs_filtered (REGISTER_NAME (i), stream);
2824 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2825
2826 /* Get 32bits of data. */
2827 read_relative_register_raw_bytes (i, raw_buffer);
2828
2829 /* Put it in the buffer. No conversions are ever necessary. */
2830 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2831
2832 if (precision == double_precision && (i % 2) == 0)
2833 {
2834
c5aa993b
JM
2835 char raw_buf[MAX_REGISTER_RAW_SIZE];
2836
2837 /* Get the data in raw format for the 2nd half. */
2838 read_relative_register_raw_bytes (i + 1, raw_buf);
2839
2840 /* Copy it into the appropriate part of the virtual buffer. */
2841 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2842
c5aa993b
JM
2843 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2844 1, 0, Val_pretty_default);
c906108c
SS
2845
2846 }
c5aa993b
JM
2847 else
2848 {
2849 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2850 1, 0, Val_pretty_default);
2851 }
c906108c
SS
2852
2853}
2854
2855/* Return one if PC is in the call path of a trampoline, else return zero.
2856
2857 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2858 just shared library trampolines (import, export). */
2859
2860int
fba45db2 2861in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2862{
2863 struct minimal_symbol *minsym;
2864 struct unwind_table_entry *u;
2865 static CORE_ADDR dyncall = 0;
2866 static CORE_ADDR sr4export = 0;
2867
c2c6d25f
JM
2868#ifdef GDB_TARGET_IS_HPPA_20W
2869 /* PA64 has a completely different stub/trampoline scheme. Is it
2870 better? Maybe. It's certainly harder to determine with any
2871 certainty that we are in a stub because we can not refer to the
2872 unwinders to help.
2873
2874 The heuristic is simple. Try to lookup the current PC value in th
2875 minimal symbol table. If that fails, then assume we are not in a
2876 stub and return.
2877
2878 Then see if the PC value falls within the section bounds for the
2879 section containing the minimal symbol we found in the first
2880 step. If it does, then assume we are not in a stub and return.
2881
2882 Finally peek at the instructions to see if they look like a stub. */
2883 {
2884 struct minimal_symbol *minsym;
2885 asection *sec;
2886 CORE_ADDR addr;
2887 int insn, i;
2888
2889 minsym = lookup_minimal_symbol_by_pc (pc);
2890 if (! minsym)
2891 return 0;
2892
2893 sec = SYMBOL_BFD_SECTION (minsym);
2894
2895 if (sec->vma <= pc
2896 && sec->vma + sec->_cooked_size < pc)
2897 return 0;
2898
2899 /* We might be in a stub. Peek at the instructions. Stubs are 3
2900 instructions long. */
2901 insn = read_memory_integer (pc, 4);
2902
2903 /* Find out where we we think we are within the stub. */
2904 if ((insn & 0xffffc00e) == 0x53610000)
2905 addr = pc;
2906 else if ((insn & 0xffffffff) == 0xe820d000)
2907 addr = pc - 4;
2908 else if ((insn & 0xffffc00e) == 0x537b0000)
2909 addr = pc - 8;
2910 else
2911 return 0;
2912
2913 /* Now verify each insn in the range looks like a stub instruction. */
2914 insn = read_memory_integer (addr, 4);
2915 if ((insn & 0xffffc00e) != 0x53610000)
2916 return 0;
2917
2918 /* Now verify each insn in the range looks like a stub instruction. */
2919 insn = read_memory_integer (addr + 4, 4);
2920 if ((insn & 0xffffffff) != 0xe820d000)
2921 return 0;
2922
2923 /* Now verify each insn in the range looks like a stub instruction. */
2924 insn = read_memory_integer (addr + 8, 4);
2925 if ((insn & 0xffffc00e) != 0x537b0000)
2926 return 0;
2927
2928 /* Looks like a stub. */
2929 return 1;
2930 }
2931#endif
2932
2933 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2934 new exec file */
c906108c
SS
2935
2936 /* First see if PC is in one of the two C-library trampolines. */
2937 if (!dyncall)
2938 {
2939 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2940 if (minsym)
2941 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2942 else
2943 dyncall = -1;
2944 }
2945
2946 if (!sr4export)
2947 {
2948 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2949 if (minsym)
2950 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2951 else
2952 sr4export = -1;
2953 }
2954
2955 if (pc == dyncall || pc == sr4export)
2956 return 1;
2957
104c1213
JM
2958 minsym = lookup_minimal_symbol_by_pc (pc);
2959 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2960 return 1;
2961
c906108c
SS
2962 /* Get the unwind descriptor corresponding to PC, return zero
2963 if no unwind was found. */
2964 u = find_unwind_entry (pc);
2965 if (!u)
2966 return 0;
2967
2968 /* If this isn't a linker stub, then return now. */
2969 if (u->stub_unwind.stub_type == 0)
2970 return 0;
2971
2972 /* By definition a long-branch stub is a call stub. */
2973 if (u->stub_unwind.stub_type == LONG_BRANCH)
2974 return 1;
2975
2976 /* The call and return path execute the same instructions within
2977 an IMPORT stub! So an IMPORT stub is both a call and return
2978 trampoline. */
2979 if (u->stub_unwind.stub_type == IMPORT)
2980 return 1;
2981
2982 /* Parameter relocation stubs always have a call path and may have a
2983 return path. */
2984 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2985 || u->stub_unwind.stub_type == EXPORT)
2986 {
2987 CORE_ADDR addr;
2988
2989 /* Search forward from the current PC until we hit a branch
c5aa993b 2990 or the end of the stub. */
c906108c
SS
2991 for (addr = pc; addr <= u->region_end; addr += 4)
2992 {
2993 unsigned long insn;
2994
2995 insn = read_memory_integer (addr, 4);
2996
2997 /* Does it look like a bl? If so then it's the call path, if
2998 we find a bv or be first, then we're on the return path. */
2999 if ((insn & 0xfc00e000) == 0xe8000000)
3000 return 1;
3001 else if ((insn & 0xfc00e001) == 0xe800c000
3002 || (insn & 0xfc000000) == 0xe0000000)
3003 return 0;
3004 }
3005
3006 /* Should never happen. */
104c1213
JM
3007 warning ("Unable to find branch in parameter relocation stub.\n");
3008 return 0;
c906108c
SS
3009 }
3010
3011 /* Unknown stub type. For now, just return zero. */
104c1213 3012 return 0;
c906108c
SS
3013}
3014
3015/* Return one if PC is in the return path of a trampoline, else return zero.
3016
3017 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3018 just shared library trampolines (import, export). */
3019
3020int
fba45db2 3021in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3022{
3023 struct unwind_table_entry *u;
3024
3025 /* Get the unwind descriptor corresponding to PC, return zero
3026 if no unwind was found. */
3027 u = find_unwind_entry (pc);
3028 if (!u)
3029 return 0;
3030
3031 /* If this isn't a linker stub or it's just a long branch stub, then
3032 return zero. */
3033 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3034 return 0;
3035
3036 /* The call and return path execute the same instructions within
3037 an IMPORT stub! So an IMPORT stub is both a call and return
3038 trampoline. */
3039 if (u->stub_unwind.stub_type == IMPORT)
3040 return 1;
3041
3042 /* Parameter relocation stubs always have a call path and may have a
3043 return path. */
3044 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3045 || u->stub_unwind.stub_type == EXPORT)
3046 {
3047 CORE_ADDR addr;
3048
3049 /* Search forward from the current PC until we hit a branch
c5aa993b 3050 or the end of the stub. */
c906108c
SS
3051 for (addr = pc; addr <= u->region_end; addr += 4)
3052 {
3053 unsigned long insn;
3054
3055 insn = read_memory_integer (addr, 4);
3056
3057 /* Does it look like a bl? If so then it's the call path, if
3058 we find a bv or be first, then we're on the return path. */
3059 if ((insn & 0xfc00e000) == 0xe8000000)
3060 return 0;
3061 else if ((insn & 0xfc00e001) == 0xe800c000
3062 || (insn & 0xfc000000) == 0xe0000000)
3063 return 1;
3064 }
3065
3066 /* Should never happen. */
104c1213
JM
3067 warning ("Unable to find branch in parameter relocation stub.\n");
3068 return 0;
c906108c
SS
3069 }
3070
3071 /* Unknown stub type. For now, just return zero. */
104c1213 3072 return 0;
c906108c
SS
3073
3074}
3075
3076/* Figure out if PC is in a trampoline, and if so find out where
3077 the trampoline will jump to. If not in a trampoline, return zero.
3078
3079 Simple code examination probably is not a good idea since the code
3080 sequences in trampolines can also appear in user code.
3081
3082 We use unwinds and information from the minimal symbol table to
3083 determine when we're in a trampoline. This won't work for ELF
3084 (yet) since it doesn't create stub unwind entries. Whether or
3085 not ELF will create stub unwinds or normal unwinds for linker
3086 stubs is still being debated.
3087
3088 This should handle simple calls through dyncall or sr4export,
3089 long calls, argument relocation stubs, and dyncall/sr4export
3090 calling an argument relocation stub. It even handles some stubs
3091 used in dynamic executables. */
3092
c906108c 3093CORE_ADDR
fba45db2 3094skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c
SS
3095{
3096 long orig_pc = pc;
3097 long prev_inst, curr_inst, loc;
3098 static CORE_ADDR dyncall = 0;
3099 static CORE_ADDR dyncall_external = 0;
3100 static CORE_ADDR sr4export = 0;
3101 struct minimal_symbol *msym;
3102 struct unwind_table_entry *u;
3103
c2c6d25f
JM
3104 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3105 new exec file */
c906108c
SS
3106
3107 if (!dyncall)
3108 {
3109 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3110 if (msym)
3111 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3112 else
3113 dyncall = -1;
3114 }
3115
3116 if (!dyncall_external)
3117 {
3118 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3119 if (msym)
3120 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3121 else
3122 dyncall_external = -1;
3123 }
3124
3125 if (!sr4export)
3126 {
3127 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3128 if (msym)
3129 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3130 else
3131 sr4export = -1;
3132 }
3133
3134 /* Addresses passed to dyncall may *NOT* be the actual address
3135 of the function. So we may have to do something special. */
3136 if (pc == dyncall)
3137 {
3138 pc = (CORE_ADDR) read_register (22);
3139
3140 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3141 the PLT entry for this function, not the address of the function
3142 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3143 if (pc & 0x2)
53a5351d 3144 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3145 }
3146 if (pc == dyncall_external)
3147 {
3148 pc = (CORE_ADDR) read_register (22);
53a5351d 3149 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3150 }
3151 else if (pc == sr4export)
3152 pc = (CORE_ADDR) (read_register (22));
3153
3154 /* Get the unwind descriptor corresponding to PC, return zero
3155 if no unwind was found. */
3156 u = find_unwind_entry (pc);
3157 if (!u)
3158 return 0;
3159
3160 /* If this isn't a linker stub, then return now. */
3161 /* elz: attention here! (FIXME) because of a compiler/linker
3162 error, some stubs which should have a non zero stub_unwind.stub_type
3163 have unfortunately a value of zero. So this function would return here
3164 as if we were not in a trampoline. To fix this, we go look at the partial
3165 symbol information, which reports this guy as a stub.
3166 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3167 partial symbol information is also wrong sometimes. This is because
3168 when it is entered (somread.c::som_symtab_read()) it can happen that
3169 if the type of the symbol (from the som) is Entry, and the symbol is
3170 in a shared library, then it can also be a trampoline. This would
3171 be OK, except that I believe the way they decide if we are ina shared library
3172 does not work. SOOOO..., even if we have a regular function w/o trampolines
3173 its minimal symbol can be assigned type mst_solib_trampoline.
3174 Also, if we find that the symbol is a real stub, then we fix the unwind
3175 descriptor, and define the stub type to be EXPORT.
c5aa993b 3176 Hopefully this is correct most of the times. */
c906108c 3177 if (u->stub_unwind.stub_type == 0)
c5aa993b 3178 {
c906108c
SS
3179
3180/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3181 we can delete all the code which appears between the lines */
3182/*--------------------------------------------------------------------------*/
c5aa993b 3183 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3184
c5aa993b
JM
3185 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3186 return orig_pc == pc ? 0 : pc & ~0x3;
3187
3188 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3189 {
3190 struct objfile *objfile;
3191 struct minimal_symbol *msymbol;
3192 int function_found = 0;
3193
3194 /* go look if there is another minimal symbol with the same name as
3195 this one, but with type mst_text. This would happen if the msym
3196 is an actual trampoline, in which case there would be another
3197 symbol with the same name corresponding to the real function */
3198
3199 ALL_MSYMBOLS (objfile, msymbol)
3200 {
3201 if (MSYMBOL_TYPE (msymbol) == mst_text
3202 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3203 {
3204 function_found = 1;
3205 break;
3206 }
3207 }
3208
3209 if (function_found)
3210 /* the type of msym is correct (mst_solib_trampoline), but
3211 the unwind info is wrong, so set it to the correct value */
3212 u->stub_unwind.stub_type = EXPORT;
3213 else
3214 /* the stub type info in the unwind is correct (this is not a
3215 trampoline), but the msym type information is wrong, it
3216 should be mst_text. So we need to fix the msym, and also
3217 get out of this function */
3218 {
3219 MSYMBOL_TYPE (msym) = mst_text;
3220 return orig_pc == pc ? 0 : pc & ~0x3;
3221 }
3222 }
c906108c 3223
c906108c 3224/*--------------------------------------------------------------------------*/
c5aa993b 3225 }
c906108c
SS
3226
3227 /* It's a stub. Search for a branch and figure out where it goes.
3228 Note we have to handle multi insn branch sequences like ldil;ble.
3229 Most (all?) other branches can be determined by examining the contents
3230 of certain registers and the stack. */
3231
3232 loc = pc;
3233 curr_inst = 0;
3234 prev_inst = 0;
3235 while (1)
3236 {
3237 /* Make sure we haven't walked outside the range of this stub. */
3238 if (u != find_unwind_entry (loc))
3239 {
3240 warning ("Unable to find branch in linker stub");
3241 return orig_pc == pc ? 0 : pc & ~0x3;
3242 }
3243
3244 prev_inst = curr_inst;
3245 curr_inst = read_memory_integer (loc, 4);
3246
3247 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3248 branch from the stub to the actual function. */
c906108c
SS
3249 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3250 {
3251 /* Yup. See if the previous instruction loaded
3252 a value into %r1. If so compute and return the jump address. */
3253 if ((prev_inst & 0xffe00000) == 0x20200000)
3254 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3255 else
3256 {
3257 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3258 return orig_pc == pc ? 0 : pc & ~0x3;
3259 }
3260 }
3261
3262 /* Does it look like a be 0(sr0,%r21)? OR
3263 Does it look like a be, n 0(sr0,%r21)? OR
3264 Does it look like a bve (r21)? (this is on PA2.0)
3265 Does it look like a bve, n(r21)? (this is also on PA2.0)
3266 That's the branch from an
c5aa993b 3267 import stub to an export stub.
c906108c 3268
c5aa993b
JM
3269 It is impossible to determine the target of the branch via
3270 simple examination of instructions and/or data (consider
3271 that the address in the plabel may be the address of the
3272 bind-on-reference routine in the dynamic loader).
c906108c 3273
c5aa993b 3274 So we have try an alternative approach.
c906108c 3275
c5aa993b
JM
3276 Get the name of the symbol at our current location; it should
3277 be a stub symbol with the same name as the symbol in the
3278 shared library.
c906108c 3279
c5aa993b
JM
3280 Then lookup a minimal symbol with the same name; we should
3281 get the minimal symbol for the target routine in the shared
3282 library as those take precedence of import/export stubs. */
c906108c 3283 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3284 (curr_inst == 0xe2a00002) ||
3285 (curr_inst == 0xeaa0d000) ||
3286 (curr_inst == 0xeaa0d002))
c906108c
SS
3287 {
3288 struct minimal_symbol *stubsym, *libsym;
3289
3290 stubsym = lookup_minimal_symbol_by_pc (loc);
3291 if (stubsym == NULL)
3292 {
3293 warning ("Unable to find symbol for 0x%x", loc);
3294 return orig_pc == pc ? 0 : pc & ~0x3;
3295 }
3296
3297 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3298 if (libsym == NULL)
3299 {
3300 warning ("Unable to find library symbol for %s\n",
3301 SYMBOL_NAME (stubsym));
3302 return orig_pc == pc ? 0 : pc & ~0x3;
3303 }
3304
3305 return SYMBOL_VALUE (libsym);
3306 }
3307
3308 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3309 branch from the stub to the actual function. */
3310 /*elz */
c906108c
SS
3311 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3312 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3313 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3314 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3315
3316 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3317 current stack pointer being the same as the stack
3318 pointer in the stub itself! This is a branch on from the
3319 stub back to the original caller. */
3320 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3321 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3322 {
3323 /* Yup. See if the previous instruction loaded
3324 rp from sp - 8. */
3325 if (prev_inst == 0x4bc23ff1)
3326 return (read_memory_integer
3327 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3328 else
3329 {
3330 warning ("Unable to find restore of %%rp before bv (%%rp).");
3331 return orig_pc == pc ? 0 : pc & ~0x3;
3332 }
3333 }
3334
3335 /* elz: added this case to capture the new instruction
3336 at the end of the return part of an export stub used by
3337 the PA2.0: BVE, n (rp) */
3338 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3339 {
c5aa993b 3340 return (read_memory_integer
53a5351d 3341 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3342 }
3343
3344 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3345 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3346 else if (curr_inst == 0xe0400002)
3347 {
3348 /* The value we jump to is sitting in sp - 24. But that's
3349 loaded several instructions before the be instruction.
3350 I guess we could check for the previous instruction being
3351 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3352 return (read_memory_integer
53a5351d 3353 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3354 }
3355
3356 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3357 Keep looking. */
c906108c
SS
3358 loc += 4;
3359 }
3360}
3361
3362
3363/* For the given instruction (INST), return any adjustment it makes
3364 to the stack pointer or zero for no adjustment.
3365
3366 This only handles instructions commonly found in prologues. */
3367
3368static int
fba45db2 3369prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3370{
3371 /* This must persist across calls. */
3372 static int save_high21;
3373
3374 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3375 if ((inst & 0xffffc000) == 0x37de0000)
3376 return extract_14 (inst);
3377
3378 /* stwm X,D(sp) */
3379 if ((inst & 0xffe00000) == 0x6fc00000)
3380 return extract_14 (inst);
3381
104c1213
JM
3382 /* std,ma X,D(sp) */
3383 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3384 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3385
c906108c
SS
3386 /* addil high21,%r1; ldo low11,(%r1),%r30)
3387 save high bits in save_high21 for later use. */
3388 if ((inst & 0xffe00000) == 0x28200000)
3389 {
3390 save_high21 = extract_21 (inst);
3391 return 0;
3392 }
3393
3394 if ((inst & 0xffff0000) == 0x343e0000)
3395 return save_high21 + extract_14 (inst);
3396
3397 /* fstws as used by the HP compilers. */
3398 if ((inst & 0xffffffe0) == 0x2fd01220)
3399 return extract_5_load (inst);
3400
3401 /* No adjustment. */
3402 return 0;
3403}
3404
3405/* Return nonzero if INST is a branch of some kind, else return zero. */
3406
3407static int
fba45db2 3408is_branch (unsigned long inst)
c906108c
SS
3409{
3410 switch (inst >> 26)
3411 {
3412 case 0x20:
3413 case 0x21:
3414 case 0x22:
3415 case 0x23:
7be570e7 3416 case 0x27:
c906108c
SS
3417 case 0x28:
3418 case 0x29:
3419 case 0x2a:
3420 case 0x2b:
7be570e7 3421 case 0x2f:
c906108c
SS
3422 case 0x30:
3423 case 0x31:
3424 case 0x32:
3425 case 0x33:
3426 case 0x38:
3427 case 0x39:
3428 case 0x3a:
7be570e7 3429 case 0x3b:
c906108c
SS
3430 return 1;
3431
3432 default:
3433 return 0;
3434 }
3435}
3436
3437/* Return the register number for a GR which is saved by INST or
3438 zero it INST does not save a GR. */
3439
3440static int
fba45db2 3441inst_saves_gr (unsigned long inst)
c906108c
SS
3442{
3443 /* Does it look like a stw? */
7be570e7
JM
3444 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3445 || (inst >> 26) == 0x1f
3446 || ((inst >> 26) == 0x1f
3447 && ((inst >> 6) == 0xa)))
3448 return extract_5R_store (inst);
3449
3450 /* Does it look like a std? */
3451 if ((inst >> 26) == 0x1c
3452 || ((inst >> 26) == 0x03
3453 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3454 return extract_5R_store (inst);
3455
3456 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3457 if ((inst >> 26) == 0x1b)
3458 return extract_5R_store (inst);
3459
3460 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3461 too. */
7be570e7
JM
3462 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3463 || ((inst >> 26) == 0x3
3464 && (((inst >> 6) & 0xf) == 0x8
3465 || (inst >> 6) & 0xf) == 0x9))
c906108c 3466 return extract_5R_store (inst);
c5aa993b 3467
c906108c
SS
3468 return 0;
3469}
3470
3471/* Return the register number for a FR which is saved by INST or
3472 zero it INST does not save a FR.
3473
3474 Note we only care about full 64bit register stores (that's the only
3475 kind of stores the prologue will use).
3476
3477 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3478
3479static int
fba45db2 3480inst_saves_fr (unsigned long inst)
c906108c 3481{
7be570e7 3482 /* is this an FSTD ? */
c906108c
SS
3483 if ((inst & 0xfc00dfc0) == 0x2c001200)
3484 return extract_5r_store (inst);
7be570e7
JM
3485 if ((inst & 0xfc000002) == 0x70000002)
3486 return extract_5R_store (inst);
3487 /* is this an FSTW ? */
c906108c
SS
3488 if ((inst & 0xfc00df80) == 0x24001200)
3489 return extract_5r_store (inst);
7be570e7
JM
3490 if ((inst & 0xfc000002) == 0x7c000000)
3491 return extract_5R_store (inst);
c906108c
SS
3492 return 0;
3493}
3494
3495/* Advance PC across any function entry prologue instructions
3496 to reach some "real" code.
3497
3498 Use information in the unwind table to determine what exactly should
3499 be in the prologue. */
3500
3501
3502CORE_ADDR
fba45db2 3503skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3504{
3505 char buf[4];
3506 CORE_ADDR orig_pc = pc;
3507 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3508 unsigned long args_stored, status, i, restart_gr, restart_fr;
3509 struct unwind_table_entry *u;
3510
3511 restart_gr = 0;
3512 restart_fr = 0;
3513
3514restart:
3515 u = find_unwind_entry (pc);
3516 if (!u)
3517 return pc;
3518
c5aa993b 3519 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3520 if ((pc & ~0x3) != u->region_start)
3521 return pc;
3522
3523 /* This is how much of a frame adjustment we need to account for. */
3524 stack_remaining = u->Total_frame_size << 3;
3525
3526 /* Magic register saves we want to know about. */
3527 save_rp = u->Save_RP;
3528 save_sp = u->Save_SP;
3529
3530 /* An indication that args may be stored into the stack. Unfortunately
3531 the HPUX compilers tend to set this in cases where no args were
3532 stored too!. */
3533 args_stored = 1;
3534
3535 /* Turn the Entry_GR field into a bitmask. */
3536 save_gr = 0;
3537 for (i = 3; i < u->Entry_GR + 3; i++)
3538 {
3539 /* Frame pointer gets saved into a special location. */
3540 if (u->Save_SP && i == FP_REGNUM)
3541 continue;
3542
3543 save_gr |= (1 << i);
3544 }
3545 save_gr &= ~restart_gr;
3546
3547 /* Turn the Entry_FR field into a bitmask too. */
3548 save_fr = 0;
3549 for (i = 12; i < u->Entry_FR + 12; i++)
3550 save_fr |= (1 << i);
3551 save_fr &= ~restart_fr;
3552
3553 /* Loop until we find everything of interest or hit a branch.
3554
3555 For unoptimized GCC code and for any HP CC code this will never ever
3556 examine any user instructions.
3557
3558 For optimzied GCC code we're faced with problems. GCC will schedule
3559 its prologue and make prologue instructions available for delay slot
3560 filling. The end result is user code gets mixed in with the prologue
3561 and a prologue instruction may be in the delay slot of the first branch
3562 or call.
3563
3564 Some unexpected things are expected with debugging optimized code, so
3565 we allow this routine to walk past user instructions in optimized
3566 GCC code. */
3567 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3568 || args_stored)
3569 {
3570 unsigned int reg_num;
3571 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3572 unsigned long old_save_rp, old_save_sp, next_inst;
3573
3574 /* Save copies of all the triggers so we can compare them later
c5aa993b 3575 (only for HPC). */
c906108c
SS
3576 old_save_gr = save_gr;
3577 old_save_fr = save_fr;
3578 old_save_rp = save_rp;
3579 old_save_sp = save_sp;
3580 old_stack_remaining = stack_remaining;
3581
3582 status = target_read_memory (pc, buf, 4);
3583 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3584
c906108c
SS
3585 /* Yow! */
3586 if (status != 0)
3587 return pc;
3588
3589 /* Note the interesting effects of this instruction. */
3590 stack_remaining -= prologue_inst_adjust_sp (inst);
3591
7be570e7
JM
3592 /* There are limited ways to store the return pointer into the
3593 stack. */
3594 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3595 save_rp = 0;
3596
104c1213 3597 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3598 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3599 if ((inst & 0xffffc000) == 0x6fc10000
3600 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3601 save_sp = 0;
3602
6426a772
JM
3603 /* Are we loading some register with an offset from the argument
3604 pointer? */
3605 if ((inst & 0xffe00000) == 0x37a00000
3606 || (inst & 0xffffffe0) == 0x081d0240)
3607 {
3608 pc += 4;
3609 continue;
3610 }
3611
c906108c
SS
3612 /* Account for general and floating-point register saves. */
3613 reg_num = inst_saves_gr (inst);
3614 save_gr &= ~(1 << reg_num);
3615
3616 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3617 Unfortunately args_stored only tells us that some arguments
3618 where stored into the stack. Not how many or what kind!
c906108c 3619
c5aa993b
JM
3620 This is a kludge as on the HP compiler sets this bit and it
3621 never does prologue scheduling. So once we see one, skip past
3622 all of them. We have similar code for the fp arg stores below.
c906108c 3623
c5aa993b
JM
3624 FIXME. Can still die if we have a mix of GR and FR argument
3625 stores! */
6426a772 3626 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3627 {
6426a772 3628 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3629 {
3630 pc += 4;
3631 status = target_read_memory (pc, buf, 4);
3632 inst = extract_unsigned_integer (buf, 4);
3633 if (status != 0)
3634 return pc;
3635 reg_num = inst_saves_gr (inst);
3636 }
3637 args_stored = 0;
3638 continue;
3639 }
3640
3641 reg_num = inst_saves_fr (inst);
3642 save_fr &= ~(1 << reg_num);
3643
3644 status = target_read_memory (pc + 4, buf, 4);
3645 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3646
c906108c
SS
3647 /* Yow! */
3648 if (status != 0)
3649 return pc;
3650
3651 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3652 save. */
c906108c
SS
3653 if ((inst & 0xfc000000) == 0x34000000
3654 && inst_saves_fr (next_inst) >= 4
6426a772 3655 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3656 {
3657 /* So we drop into the code below in a reasonable state. */
3658 reg_num = inst_saves_fr (next_inst);
3659 pc -= 4;
3660 }
3661
3662 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3663 This is a kludge as on the HP compiler sets this bit and it
3664 never does prologue scheduling. So once we see one, skip past
3665 all of them. */
6426a772 3666 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3667 {
6426a772 3668 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3669 {
3670 pc += 8;
3671 status = target_read_memory (pc, buf, 4);
3672 inst = extract_unsigned_integer (buf, 4);
3673 if (status != 0)
3674 return pc;
3675 if ((inst & 0xfc000000) != 0x34000000)
3676 break;
3677 status = target_read_memory (pc + 4, buf, 4);
3678 next_inst = extract_unsigned_integer (buf, 4);
3679 if (status != 0)
3680 return pc;
3681 reg_num = inst_saves_fr (next_inst);
3682 }
3683 args_stored = 0;
3684 continue;
3685 }
3686
3687 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3688 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3689 if (is_branch (inst))
3690 break;
3691
3692 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3693 arguments were stored into the stack (boo hiss). This could
3694 cause this code to then skip a bunch of user insns (up to the
3695 first branch).
3696
3697 To combat this we try to identify when args_stored was bogusly
3698 set and clear it. We only do this when args_stored is nonzero,
3699 all other resources are accounted for, and nothing changed on
3700 this pass. */
c906108c 3701 if (args_stored
c5aa993b 3702 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3703 && old_save_gr == save_gr && old_save_fr == save_fr
3704 && old_save_rp == save_rp && old_save_sp == save_sp
3705 && old_stack_remaining == stack_remaining)
3706 break;
c5aa993b 3707
c906108c
SS
3708 /* Bump the PC. */
3709 pc += 4;
3710 }
3711
3712 /* We've got a tenative location for the end of the prologue. However
3713 because of limitations in the unwind descriptor mechanism we may
3714 have went too far into user code looking for the save of a register
3715 that does not exist. So, if there registers we expected to be saved
3716 but never were, mask them out and restart.
3717
3718 This should only happen in optimized code, and should be very rare. */
c5aa993b 3719 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3720 {
3721 pc = orig_pc;
3722 restart_gr = save_gr;
3723 restart_fr = save_fr;
3724 goto restart;
3725 }
3726
3727 return pc;
3728}
3729
3730
7be570e7
JM
3731/* Return the address of the PC after the last prologue instruction if
3732 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3733
3734static CORE_ADDR
fba45db2 3735after_prologue (CORE_ADDR pc)
c906108c
SS
3736{
3737 struct symtab_and_line sal;
3738 CORE_ADDR func_addr, func_end;
3739 struct symbol *f;
3740
7be570e7
JM
3741 /* If we can not find the symbol in the partial symbol table, then
3742 there is no hope we can determine the function's start address
3743 with this code. */
c906108c 3744 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3745 return 0;
c906108c 3746
7be570e7 3747 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3748 sal = find_pc_line (func_addr, 0);
3749
7be570e7
JM
3750 /* There are only two cases to consider. First, the end of the source line
3751 is within the function bounds. In that case we return the end of the
3752 source line. Second is the end of the source line extends beyond the
3753 bounds of the current function. We need to use the slow code to
3754 examine instructions in that case.
c906108c 3755
7be570e7
JM
3756 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3757 the wrong thing to do. In fact, it should be entirely possible for this
3758 function to always return zero since the slow instruction scanning code
3759 is supposed to *always* work. If it does not, then it is a bug. */
3760 if (sal.end < func_end)
3761 return sal.end;
c5aa993b 3762 else
7be570e7 3763 return 0;
c906108c
SS
3764}
3765
3766/* To skip prologues, I use this predicate. Returns either PC itself
3767 if the code at PC does not look like a function prologue; otherwise
3768 returns an address that (if we're lucky) follows the prologue. If
3769 LENIENT, then we must skip everything which is involved in setting
3770 up the frame (it's OK to skip more, just so long as we don't skip
3771 anything which might clobber the registers which are being saved.
3772 Currently we must not skip more on the alpha, but we might the lenient
3773 stuff some day. */
3774
3775CORE_ADDR
fba45db2 3776hppa_skip_prologue (CORE_ADDR pc)
c906108c 3777{
c5aa993b
JM
3778 unsigned long inst;
3779 int offset;
3780 CORE_ADDR post_prologue_pc;
3781 char buf[4];
c906108c 3782
c5aa993b
JM
3783 /* See if we can determine the end of the prologue via the symbol table.
3784 If so, then return either PC, or the PC after the prologue, whichever
3785 is greater. */
c906108c 3786
c5aa993b 3787 post_prologue_pc = after_prologue (pc);
c906108c 3788
7be570e7
JM
3789 /* If after_prologue returned a useful address, then use it. Else
3790 fall back on the instruction skipping code.
3791
3792 Some folks have claimed this causes problems because the breakpoint
3793 may be the first instruction of the prologue. If that happens, then
3794 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3795 if (post_prologue_pc != 0)
3796 return max (pc, post_prologue_pc);
c5aa993b
JM
3797 else
3798 return (skip_prologue_hard_way (pc));
c906108c
SS
3799}
3800
3801/* Put here the code to store, into a struct frame_saved_regs,
3802 the addresses of the saved registers of frame described by FRAME_INFO.
3803 This includes special registers such as pc and fp saved in special
3804 ways in the stack frame. sp is even more special:
3805 the address we return for it IS the sp for the next frame. */
3806
3807void
fba45db2
KB
3808hppa_frame_find_saved_regs (struct frame_info *frame_info,
3809 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
3810{
3811 CORE_ADDR pc;
3812 struct unwind_table_entry *u;
3813 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3814 int status, i, reg;
3815 char buf[4];
3816 int fp_loc = -1;
d4f3574e 3817 int final_iteration;
c906108c
SS
3818
3819 /* Zero out everything. */
3820 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3821
3822 /* Call dummy frames always look the same, so there's no need to
3823 examine the dummy code to determine locations of saved registers;
3824 instead, let find_dummy_frame_regs fill in the correct offsets
3825 for the saved registers. */
3826 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3827 && frame_info->pc <= (frame_info->frame
3828 /* A call dummy is sized in words, but it is
3829 actually a series of instructions. Account
3830 for that scaling factor. */
3831 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3832 * CALL_DUMMY_LENGTH)
3833 /* Similarly we have to account for 64bit
3834 wide register saves. */
3835 + (32 * REGISTER_SIZE)
3836 /* We always consider FP regs 8 bytes long. */
3837 + (NUM_REGS - FP0_REGNUM) * 8
3838 /* Similarly we have to account for 64bit
3839 wide register saves. */
3840 + (6 * REGISTER_SIZE))))
c906108c
SS
3841 find_dummy_frame_regs (frame_info, frame_saved_regs);
3842
3843 /* Interrupt handlers are special too. They lay out the register
3844 state in the exact same order as the register numbers in GDB. */
3845 if (pc_in_interrupt_handler (frame_info->pc))
3846 {
3847 for (i = 0; i < NUM_REGS; i++)
3848 {
3849 /* SP is a little special. */
3850 if (i == SP_REGNUM)
3851 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3852 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3853 TARGET_PTR_BIT / 8);
c906108c
SS
3854 else
3855 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3856 }
3857 return;
3858 }
3859
3860#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3861 /* Handle signal handler callers. */
3862 if (frame_info->signal_handler_caller)
3863 {
3864 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3865 return;
3866 }
3867#endif
3868
3869 /* Get the starting address of the function referred to by the PC
3870 saved in frame. */
3871 pc = get_pc_function_start (frame_info->pc);
3872
3873 /* Yow! */
3874 u = find_unwind_entry (pc);
3875 if (!u)
3876 return;
3877
3878 /* This is how much of a frame adjustment we need to account for. */
3879 stack_remaining = u->Total_frame_size << 3;
3880
3881 /* Magic register saves we want to know about. */
3882 save_rp = u->Save_RP;
3883 save_sp = u->Save_SP;
3884
3885 /* Turn the Entry_GR field into a bitmask. */
3886 save_gr = 0;
3887 for (i = 3; i < u->Entry_GR + 3; i++)
3888 {
3889 /* Frame pointer gets saved into a special location. */
3890 if (u->Save_SP && i == FP_REGNUM)
3891 continue;
3892
3893 save_gr |= (1 << i);
3894 }
3895
3896 /* Turn the Entry_FR field into a bitmask too. */
3897 save_fr = 0;
3898 for (i = 12; i < u->Entry_FR + 12; i++)
3899 save_fr |= (1 << i);
3900
3901 /* The frame always represents the value of %sp at entry to the
3902 current function (and is thus equivalent to the "saved" stack
3903 pointer. */
3904 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3905
3906 /* Loop until we find everything of interest or hit a branch.
3907
3908 For unoptimized GCC code and for any HP CC code this will never ever
3909 examine any user instructions.
3910
7be570e7 3911 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3912 its prologue and make prologue instructions available for delay slot
3913 filling. The end result is user code gets mixed in with the prologue
3914 and a prologue instruction may be in the delay slot of the first branch
3915 or call.
3916
3917 Some unexpected things are expected with debugging optimized code, so
3918 we allow this routine to walk past user instructions in optimized
3919 GCC code. */
d4f3574e
SS
3920 final_iteration = 0;
3921 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3922 && pc <= frame_info->pc)
c906108c
SS
3923 {
3924 status = target_read_memory (pc, buf, 4);
3925 inst = extract_unsigned_integer (buf, 4);
3926
3927 /* Yow! */
3928 if (status != 0)
3929 return;
3930
3931 /* Note the interesting effects of this instruction. */
3932 stack_remaining -= prologue_inst_adjust_sp (inst);
3933
104c1213
JM
3934 /* There are limited ways to store the return pointer into the
3935 stack. */
c2c6d25f 3936 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3937 {
3938 save_rp = 0;
3939 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3940 }
c2c6d25f
JM
3941 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3942 {
3943 save_rp = 0;
3944 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3945 }
c906108c 3946
104c1213
JM
3947 /* Note if we saved SP into the stack. This also happens to indicate
3948 the location of the saved frame pointer. */
c2c6d25f
JM
3949 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3950 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213
JM
3951 {
3952 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3953 save_sp = 0;
3954 }
c906108c
SS
3955
3956 /* Account for general and floating-point register saves. */
3957 reg = inst_saves_gr (inst);
3958 if (reg >= 3 && reg <= 18
3959 && (!u->Save_SP || reg != FP_REGNUM))
3960 {
3961 save_gr &= ~(1 << reg);
3962
3963 /* stwm with a positive displacement is a *post modify*. */
3964 if ((inst >> 26) == 0x1b
3965 && extract_14 (inst) >= 0)
3966 frame_saved_regs->regs[reg] = frame_info->frame;
104c1213
JM
3967 /* A std has explicit post_modify forms. */
3968 else if ((inst & 0xfc00000c0) == 0x70000008)
3969 frame_saved_regs->regs[reg] = frame_info->frame;
c906108c
SS
3970 else
3971 {
104c1213
JM
3972 CORE_ADDR offset;
3973
3974 if ((inst >> 26) == 0x1c)
d4f3574e 3975 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
3976 else if ((inst >> 26) == 0x03)
3977 offset = low_sign_extend (inst & 0x1f, 5);
3978 else
3979 offset = extract_14 (inst);
3980
c906108c
SS
3981 /* Handle code with and without frame pointers. */
3982 if (u->Save_SP)
3983 frame_saved_regs->regs[reg]
104c1213 3984 = frame_info->frame + offset;
c906108c
SS
3985 else
3986 frame_saved_regs->regs[reg]
104c1213
JM
3987 = (frame_info->frame + (u->Total_frame_size << 3)
3988 + offset);
c906108c
SS
3989 }
3990 }
3991
3992
3993 /* GCC handles callee saved FP regs a little differently.
3994
c5aa993b
JM
3995 It emits an instruction to put the value of the start of
3996 the FP store area into %r1. It then uses fstds,ma with
3997 a basereg of %r1 for the stores.
c906108c 3998
c5aa993b
JM
3999 HP CC emits them at the current stack pointer modifying
4000 the stack pointer as it stores each register. */
c906108c
SS
4001
4002 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4003 if ((inst & 0xffffc000) == 0x34610000
4004 || (inst & 0xffffc000) == 0x37c10000)
4005 fp_loc = extract_14 (inst);
c5aa993b 4006
c906108c
SS
4007 reg = inst_saves_fr (inst);
4008 if (reg >= 12 && reg <= 21)
4009 {
4010 /* Note +4 braindamage below is necessary because the FP status
4011 registers are internally 8 registers rather than the expected
4012 4 registers. */
4013 save_fr &= ~(1 << reg);
4014 if (fp_loc == -1)
4015 {
4016 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4017 we've set enough state that the GCC and HPCC code are
4018 both handled in the same manner. */
c906108c
SS
4019 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4020 fp_loc = 8;
4021 }
4022 else
4023 {
4024 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4025 = frame_info->frame + fp_loc;
4026 fp_loc += 8;
4027 }
4028 }
4029
d4f3574e
SS
4030 /* Quit if we hit any kind of branch the previous iteration.
4031 if (final_iteration)
c906108c
SS
4032 break;
4033
d4f3574e
SS
4034 /* We want to look precisely one instruction beyond the branch
4035 if we have not found everything yet. */
4036 if (is_branch (inst))
4037 final_iteration = 1;
4038
c906108c
SS
4039 /* Bump the PC. */
4040 pc += 4;
4041 }
4042}
4043
4044
4045/* Exception handling support for the HP-UX ANSI C++ compiler.
4046 The compiler (aCC) provides a callback for exception events;
4047 GDB can set a breakpoint on this callback and find out what
4048 exception event has occurred. */
4049
4050/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4051static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4052/* The name of the function to be used to set the hook value */
4053static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4054/* The name of the callback function in end.o */
c906108c 4055static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4056/* Name of function in end.o on which a break is set (called by above) */
4057static char HP_ACC_EH_break[] = "__d_eh_break";
4058/* Name of flag (in end.o) that enables catching throws */
4059static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4060/* Name of flag (in end.o) that enables catching catching */
4061static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4062/* The enum used by aCC */
4063typedef enum
4064 {
4065 __EH_NOTIFY_THROW,
4066 __EH_NOTIFY_CATCH
4067 }
4068__eh_notification;
c906108c
SS
4069
4070/* Is exception-handling support available with this executable? */
4071static int hp_cxx_exception_support = 0;
4072/* Has the initialize function been run? */
4073int hp_cxx_exception_support_initialized = 0;
4074/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4075extern int exception_support_initialized;
4076/* Address of __eh_notify_hook */
a0b3c4fd 4077static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4078/* Address of __d_eh_notify_callback */
a0b3c4fd 4079static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4080/* Address of __d_eh_break */
a0b3c4fd 4081static CORE_ADDR eh_break_addr = 0;
c906108c 4082/* Address of __d_eh_catch_catch */
a0b3c4fd 4083static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4084/* Address of __d_eh_catch_throw */
a0b3c4fd 4085static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4086/* Sal for __d_eh_break */
a0b3c4fd 4087static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4088
4089/* Code in end.c expects __d_pid to be set in the inferior,
4090 otherwise __d_eh_notify_callback doesn't bother to call
4091 __d_eh_break! So we poke the pid into this symbol
4092 ourselves.
4093 0 => success
c5aa993b 4094 1 => failure */
c906108c 4095int
fba45db2 4096setup_d_pid_in_inferior (void)
c906108c
SS
4097{
4098 CORE_ADDR anaddr;
c5aa993b
JM
4099 struct minimal_symbol *msymbol;
4100 char buf[4]; /* FIXME 32x64? */
4101
c906108c
SS
4102 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4103 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4104 if (msymbol == NULL)
4105 {
4106 warning ("Unable to find __d_pid symbol in object file.");
4107 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4108 return 1;
4109 }
4110
4111 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
c5aa993b
JM
4112 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
4113 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4114 {
4115 warning ("Unable to write __d_pid");
4116 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4117 return 1;
4118 }
4119 return 0;
4120}
4121
4122/* Initialize exception catchpoint support by looking for the
4123 necessary hooks/callbacks in end.o, etc., and set the hook value to
4124 point to the required debug function
4125
4126 Return 0 => failure
c5aa993b 4127 1 => success */
c906108c
SS
4128
4129static int
fba45db2 4130initialize_hp_cxx_exception_support (void)
c906108c
SS
4131{
4132 struct symtabs_and_lines sals;
c5aa993b
JM
4133 struct cleanup *old_chain;
4134 struct cleanup *canonical_strings_chain = NULL;
c906108c 4135 int i;
c5aa993b
JM
4136 char *addr_start;
4137 char *addr_end = NULL;
4138 char **canonical = (char **) NULL;
c906108c 4139 int thread = -1;
c5aa993b
JM
4140 struct symbol *sym = NULL;
4141 struct minimal_symbol *msym = NULL;
4142 struct objfile *objfile;
c906108c
SS
4143 asection *shlib_info;
4144
4145 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4146 recursion is a possibility because finding the hook for exception
4147 callbacks involves making a call in the inferior, which means
4148 re-inserting breakpoints which can re-invoke this code */
4149
c5aa993b
JM
4150 static int recurse = 0;
4151 if (recurse > 0)
c906108c
SS
4152 {
4153 hp_cxx_exception_support_initialized = 0;
4154 exception_support_initialized = 0;
4155 return 0;
4156 }
4157
4158 hp_cxx_exception_support = 0;
4159
4160 /* First check if we have seen any HP compiled objects; if not,
4161 it is very unlikely that HP's idiosyncratic callback mechanism
4162 for exception handling debug support will be available!
4163 This will percolate back up to breakpoint.c, where our callers
4164 will decide to try the g++ exception-handling support instead. */
4165 if (!hp_som_som_object_present)
4166 return 0;
c5aa993b 4167
c906108c
SS
4168 /* We have a SOM executable with SOM debug info; find the hooks */
4169
4170 /* First look for the notify hook provided by aCC runtime libs */
4171 /* If we find this symbol, we conclude that the executable must
4172 have HP aCC exception support built in. If this symbol is not
4173 found, even though we're a HP SOM-SOM file, we may have been
4174 built with some other compiler (not aCC). This results percolates
4175 back up to our callers in breakpoint.c which can decide to
4176 try the g++ style of exception support instead.
4177 If this symbol is found but the other symbols we require are
4178 not found, there is something weird going on, and g++ support
4179 should *not* be tried as an alternative.
c5aa993b 4180
c906108c
SS
4181 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4182 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4183
c906108c
SS
4184 /* libCsup has this hook; it'll usually be non-debuggable */
4185 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4186 if (msym)
4187 {
4188 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4189 hp_cxx_exception_support = 1;
c5aa993b 4190 }
c906108c
SS
4191 else
4192 {
4193 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4194 warning ("Executable may not have been compiled debuggable with HP aCC.");
4195 warning ("GDB will be unable to intercept exception events.");
4196 eh_notify_hook_addr = 0;
4197 hp_cxx_exception_support = 0;
4198 return 0;
4199 }
4200
c906108c 4201 /* Next look for the notify callback routine in end.o */
c5aa993b 4202 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4203 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4204 if (msym)
4205 {
4206 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4207 hp_cxx_exception_support = 1;
c5aa993b
JM
4208 }
4209 else
c906108c
SS
4210 {
4211 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4212 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4213 warning ("GDB will be unable to intercept exception events.");
4214 eh_notify_callback_addr = 0;
4215 return 0;
4216 }
4217
53a5351d 4218#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4219 /* Check whether the executable is dynamically linked or archive bound */
4220 /* With an archive-bound executable we can use the raw addresses we find
4221 for the callback function, etc. without modification. For an executable
4222 with shared libraries, we have to do more work to find the plabel, which
4223 can be the target of a call through $$dyncall from the aCC runtime support
4224 library (libCsup) which is linked shared by default by aCC. */
4225 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4226 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4227 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4228 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4229 {
4230 /* The minsym we have has the local code address, but that's not the
4231 plabel that can be used by an inter-load-module call. */
4232 /* Find solib handle for main image (which has end.o), and use that
4233 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4234 of shl_findsym()) to find the plabel. */
c906108c
SS
4235
4236 args_for_find_stub args;
4237 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4238
c906108c
SS
4239 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4240 args.msym = msym;
a0b3c4fd 4241 args.return_val = 0;
c5aa993b 4242
c906108c 4243 recurse++;
a0b3c4fd
JM
4244 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4245 RETURN_MASK_ALL);
4246 eh_notify_callback_addr = args.return_val;
c906108c 4247 recurse--;
c5aa993b 4248
c906108c 4249 exception_catchpoints_are_fragile = 1;
c5aa993b 4250
c906108c 4251 if (!eh_notify_callback_addr)
c5aa993b
JM
4252 {
4253 /* We can get here either if there is no plabel in the export list
4254 for the main image, or if something strange happened (??) */
4255 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4256 warning ("GDB will not be able to intercept exception events.");
4257 return 0;
4258 }
c906108c
SS
4259 }
4260 else
4261 exception_catchpoints_are_fragile = 0;
53a5351d 4262#endif
c906108c 4263
c906108c 4264 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4265 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4266 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4267 if (msym)
4268 {
4269 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4270 hp_cxx_exception_support = 1;
c5aa993b 4271 }
c906108c
SS
4272 else
4273 {
4274 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4275 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4276 warning ("GDB will be unable to intercept exception events.");
4277 eh_break_addr = 0;
4278 return 0;
4279 }
4280
c906108c
SS
4281 /* Next look for the catch enable flag provided in end.o */
4282 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4283 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4284 if (sym) /* sometimes present in debug info */
c906108c
SS
4285 {
4286 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4287 hp_cxx_exception_support = 1;
4288 }
c5aa993b
JM
4289 else
4290 /* otherwise look in SOM symbol dict. */
c906108c
SS
4291 {
4292 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4293 if (msym)
c5aa993b
JM
4294 {
4295 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4296 hp_cxx_exception_support = 1;
4297 }
c906108c 4298 else
c5aa993b
JM
4299 {
4300 warning ("Unable to enable interception of exception catches.");
4301 warning ("Executable may not have been compiled debuggable with HP aCC.");
4302 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4303 return 0;
4304 }
c906108c
SS
4305 }
4306
c906108c
SS
4307 /* Next look for the catch enable flag provided end.o */
4308 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4309 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4310 if (sym) /* sometimes present in debug info */
c906108c
SS
4311 {
4312 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4313 hp_cxx_exception_support = 1;
4314 }
c5aa993b
JM
4315 else
4316 /* otherwise look in SOM symbol dict. */
c906108c
SS
4317 {
4318 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4319 if (msym)
c5aa993b
JM
4320 {
4321 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4322 hp_cxx_exception_support = 1;
4323 }
c906108c 4324 else
c5aa993b
JM
4325 {
4326 warning ("Unable to enable interception of exception throws.");
4327 warning ("Executable may not have been compiled debuggable with HP aCC.");
4328 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4329 return 0;
4330 }
c906108c
SS
4331 }
4332
c5aa993b
JM
4333 /* Set the flags */
4334 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4335 hp_cxx_exception_support_initialized = 1;
4336 exception_support_initialized = 1;
4337
4338 return 1;
4339}
4340
4341/* Target operation for enabling or disabling interception of
4342 exception events.
4343 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4344 ENABLE is either 0 (disable) or 1 (enable).
4345 Return value is NULL if no support found;
4346 -1 if something went wrong,
4347 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4348 address was found. */
c906108c 4349
c5aa993b 4350struct symtab_and_line *
fba45db2 4351child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4352{
4353 char buf[4];
4354
4355 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4356 if (!initialize_hp_cxx_exception_support ())
4357 return NULL;
4358
4359 switch (hp_cxx_exception_support)
4360 {
c5aa993b
JM
4361 case 0:
4362 /* Assuming no HP support at all */
4363 return NULL;
4364 case 1:
4365 /* HP support should be present, but something went wrong */
4366 return (struct symtab_and_line *) -1; /* yuck! */
4367 /* there may be other cases in the future */
c906108c 4368 }
c5aa993b 4369
c906108c 4370 /* Set the EH hook to point to the callback routine */
c5aa993b 4371 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4372 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4373 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4374 {
4375 warning ("Could not write to target memory for exception event callback.");
4376 warning ("Interception of exception events may not work.");
c5aa993b 4377 return (struct symtab_and_line *) -1;
c906108c
SS
4378 }
4379 if (enable)
4380 {
c5aa993b 4381 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
c906108c 4382 if (inferior_pid > 0)
c5aa993b
JM
4383 {
4384 if (setup_d_pid_in_inferior ())
4385 return (struct symtab_and_line *) -1;
4386 }
c906108c 4387 else
c5aa993b 4388 {
104c1213
JM
4389 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4390 return (struct symtab_and_line *) -1;
c5aa993b 4391 }
c906108c 4392 }
c5aa993b 4393
c906108c
SS
4394 switch (kind)
4395 {
c5aa993b
JM
4396 case EX_EVENT_THROW:
4397 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4398 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4399 {
4400 warning ("Couldn't enable exception throw interception.");
4401 return (struct symtab_and_line *) -1;
4402 }
4403 break;
4404 case EX_EVENT_CATCH:
4405 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4406 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4407 {
4408 warning ("Couldn't enable exception catch interception.");
4409 return (struct symtab_and_line *) -1;
4410 }
4411 break;
104c1213
JM
4412 default:
4413 error ("Request to enable unknown or unsupported exception event.");
c906108c 4414 }
c5aa993b 4415
c906108c
SS
4416 /* Copy break address into new sal struct, malloc'ing if needed. */
4417 if (!break_callback_sal)
4418 {
4419 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4420 }
c5aa993b 4421 INIT_SAL (break_callback_sal);
c906108c
SS
4422 break_callback_sal->symtab = NULL;
4423 break_callback_sal->pc = eh_break_addr;
4424 break_callback_sal->line = 0;
4425 break_callback_sal->end = eh_break_addr;
c5aa993b 4426
c906108c
SS
4427 return break_callback_sal;
4428}
4429
c5aa993b 4430/* Record some information about the current exception event */
c906108c 4431static struct exception_event_record current_ex_event;
c5aa993b
JM
4432/* Convenience struct */
4433static struct symtab_and_line null_symtab_and_line =
4434{NULL, 0, 0, 0};
c906108c
SS
4435
4436/* Report current exception event. Returns a pointer to a record
4437 that describes the kind of the event, where it was thrown from,
4438 and where it will be caught. More information may be reported
c5aa993b 4439 in the future */
c906108c 4440struct exception_event_record *
fba45db2 4441child_get_current_exception_event (void)
c906108c 4442{
c5aa993b
JM
4443 CORE_ADDR event_kind;
4444 CORE_ADDR throw_addr;
4445 CORE_ADDR catch_addr;
c906108c
SS
4446 struct frame_info *fi, *curr_frame;
4447 int level = 1;
4448
c5aa993b 4449 curr_frame = get_current_frame ();
c906108c
SS
4450 if (!curr_frame)
4451 return (struct exception_event_record *) NULL;
4452
4453 /* Go up one frame to __d_eh_notify_callback, because at the
4454 point when this code is executed, there's garbage in the
4455 arguments of __d_eh_break. */
4456 fi = find_relative_frame (curr_frame, &level);
4457 if (level != 0)
4458 return (struct exception_event_record *) NULL;
4459
4460 select_frame (fi, -1);
4461
4462 /* Read in the arguments */
4463 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4464 1. event kind catch or throw
4465 2. the target address if known
4466 3. a flag -- not sure what this is. pai/1997-07-17 */
4467 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4468 catch_addr = read_register (ARG1_REGNUM);
4469
4470 /* Now go down to a user frame */
4471 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4472 __d_eh_notify_callback which is called by
4473 __notify_throw which is called
4474 from user code.
c906108c 4475 For a catch, __d_eh_break is called by
c5aa993b
JM
4476 __d_eh_notify_callback which is called by
4477 <stackwalking stuff> which is called by
4478 __throw__<stuff> or __rethrow_<stuff> which is called
4479 from user code. */
4480 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4481 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4482 fi = find_relative_frame (curr_frame, &level);
4483 if (level != 0)
4484 return (struct exception_event_record *) NULL;
4485
4486 select_frame (fi, -1);
4487 throw_addr = fi->pc;
4488
4489 /* Go back to original (top) frame */
4490 select_frame (curr_frame, -1);
4491
4492 current_ex_event.kind = (enum exception_event_kind) event_kind;
4493 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4494 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4495
4496 return &current_ex_event;
4497}
4498
c906108c 4499static void
fba45db2 4500unwind_command (char *exp, int from_tty)
c906108c
SS
4501{
4502 CORE_ADDR address;
4503 struct unwind_table_entry *u;
4504
4505 /* If we have an expression, evaluate it and use it as the address. */
4506
4507 if (exp != 0 && *exp != 0)
4508 address = parse_and_eval_address (exp);
4509 else
4510 return;
4511
4512 u = find_unwind_entry (address);
4513
4514 if (!u)
4515 {
4516 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4517 return;
4518 }
4519
4520 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4521
4522 printf_unfiltered ("\tregion_start = ");
4523 print_address (u->region_start, gdb_stdout);
4524
4525 printf_unfiltered ("\n\tregion_end = ");
4526 print_address (u->region_end, gdb_stdout);
4527
4528#ifdef __STDC__
4529#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4530#else
4531#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4532#endif
4533
4534 printf_unfiltered ("\n\tflags =");
4535 pif (Cannot_unwind);
4536 pif (Millicode);
4537 pif (Millicode_save_sr0);
4538 pif (Entry_SR);
4539 pif (Args_stored);
4540 pif (Variable_Frame);
4541 pif (Separate_Package_Body);
4542 pif (Frame_Extension_Millicode);
4543 pif (Stack_Overflow_Check);
4544 pif (Two_Instruction_SP_Increment);
4545 pif (Ada_Region);
4546 pif (Save_SP);
4547 pif (Save_RP);
4548 pif (Save_MRP_in_frame);
4549 pif (extn_ptr_defined);
4550 pif (Cleanup_defined);
4551 pif (MPE_XL_interrupt_marker);
4552 pif (HP_UX_interrupt_marker);
4553 pif (Large_frame);
4554
4555 putchar_unfiltered ('\n');
4556
4557#ifdef __STDC__
4558#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4559#else
4560#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4561#endif
4562
4563 pin (Region_description);
4564 pin (Entry_FR);
4565 pin (Entry_GR);
4566 pin (Total_frame_size);
4567}
c906108c
SS
4568
4569#ifdef PREPARE_TO_PROCEED
4570
4571/* If the user has switched threads, and there is a breakpoint
4572 at the old thread's pc location, then switch to that thread
4573 and return TRUE, else return FALSE and don't do a thread
4574 switch (or rather, don't seem to have done a thread switch).
4575
4576 Ptrace-based gdb will always return FALSE to the thread-switch
4577 query, and thus also to PREPARE_TO_PROCEED.
4578
4579 The important thing is whether there is a BPT instruction,
4580 not how many user breakpoints there are. So we have to worry
4581 about things like these:
4582
4583 o Non-bp stop -- NO
4584
4585 o User hits bp, no switch -- NO
4586
4587 o User hits bp, switches threads -- YES
4588
4589 o User hits bp, deletes bp, switches threads -- NO
4590
4591 o User hits bp, deletes one of two or more bps
c5aa993b 4592 at that PC, user switches threads -- YES
c906108c
SS
4593
4594 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4595 breakpoint, deleted the breakpoint and then gotten another
4596 hit on that same breakpoint on another thread which
4597 actually hit before the delete. (FIXME in breakpoint.c
4598 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4599
4600 For these reasons, we have to violate information hiding and
4601 call "breakpoint_here_p". If core gdb thinks there is a bpt
4602 here, that's what counts, as core gdb is the one which is
4603 putting the BPT instruction in and taking it out. */
4604int
fba45db2 4605hppa_prepare_to_proceed (void)
c906108c
SS
4606{
4607 pid_t old_thread;
4608 pid_t current_thread;
4609
c5aa993b 4610 old_thread = hppa_switched_threads (inferior_pid);
c906108c
SS
4611 if (old_thread != 0)
4612 {
4613 /* Switched over from "old_thread". Try to do
4614 as little work as possible, 'cause mostly
4615 we're going to switch back. */
4616 CORE_ADDR new_pc;
c5aa993b 4617 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4618
4619 /* Yuk, shouldn't use global to specify current
4620 thread. But that's how gdb does it. */
4621 current_thread = inferior_pid;
c5aa993b 4622 inferior_pid = old_thread;
c906108c 4623
c5aa993b
JM
4624 new_pc = read_pc ();
4625 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4626 && breakpoint_here_p (new_pc))
c5aa993b 4627 {
c906108c 4628 /* User hasn't deleted the BP.
c5aa993b 4629 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4630 flush_cached_frames ();
4631 registers_changed ();
4632#if 0
c5aa993b 4633 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
c906108c
SS
4634 current_thread, inferior_pid);
4635#endif
c5aa993b 4636
c906108c 4637 return 1;
c5aa993b 4638 }
c906108c
SS
4639
4640 /* Otherwise switch back to the user-chosen thread. */
4641 inferior_pid = current_thread;
c5aa993b 4642 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4643 }
4644
4645 return 0;
4646}
4647#endif /* PREPARE_TO_PROCEED */
4648
c2c6d25f 4649void
fba45db2 4650hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4651{
4652 /* To step over a breakpoint instruction on the PA takes some
4653 fiddling with the instruction address queue.
4654
4655 When we stop at a breakpoint, the IA queue front (the instruction
4656 we're executing now) points at the breakpoint instruction, and
4657 the IA queue back (the next instruction to execute) points to
4658 whatever instruction we would execute after the breakpoint, if it
4659 were an ordinary instruction. This is the case even if the
4660 breakpoint is in the delay slot of a branch instruction.
4661
4662 Clearly, to step past the breakpoint, we need to set the queue
4663 front to the back. But what do we put in the back? What
4664 instruction comes after that one? Because of the branch delay
4665 slot, the next insn is always at the back + 4. */
4666 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4667 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4668
4669 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4670 /* We can leave the tail's space the same, since there's no jump. */
4671}
4672
c906108c 4673void
fba45db2 4674_initialize_hppa_tdep (void)
c906108c
SS
4675{
4676 tm_print_insn = print_insn_hppa;
4677
c906108c
SS
4678 add_cmd ("unwind", class_maintenance, unwind_command,
4679 "Print unwind table entry at given address.",
4680 &maintenanceprintlist);
c906108c 4681}