]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989-1996, 1999-2000 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "value.h"
29
30 /* For argument passing to the inferior */
31 #include "symtab.h"
32
33 #ifdef USG
34 #include <sys/types.h>
35 #endif
36
37 #include <dl.h>
38 #include <sys/param.h>
39 #include <signal.h>
40
41 #include <sys/ptrace.h>
42 #include <machine/save_state.h>
43
44 #ifdef COFF_ENCAPSULATE
45 #include "a.out.encap.h"
46 #else
47 #endif
48
49 /*#include <sys/user.h> After a.out.h */
50 #include <sys/file.h>
51 #include "gdb_stat.h"
52 #include "gdb_wait.h"
53
54 #include "gdbcore.h"
55 #include "gdbcmd.h"
56 #include "target.h"
57 #include "symfile.h"
58 #include "objfiles.h"
59
60 /* To support detection of the pseudo-initial frame
61 that threads have. */
62 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
63 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
64
65 static int extract_5_load (unsigned int);
66
67 static unsigned extract_5R_store (unsigned int);
68
69 static unsigned extract_5r_store (unsigned int);
70
71 static void find_dummy_frame_regs (struct frame_info *,
72 struct frame_saved_regs *);
73
74 static int find_proc_framesize (CORE_ADDR);
75
76 static int find_return_regnum (CORE_ADDR);
77
78 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
79
80 static int extract_17 (unsigned int);
81
82 static unsigned deposit_21 (unsigned int, unsigned int);
83
84 static int extract_21 (unsigned);
85
86 static unsigned deposit_14 (int, unsigned int);
87
88 static int extract_14 (unsigned);
89
90 static void unwind_command (char *, int);
91
92 static int low_sign_extend (unsigned int, unsigned int);
93
94 static int sign_extend (unsigned int, unsigned int);
95
96 static int restore_pc_queue (struct frame_saved_regs *);
97
98 static int hppa_alignof (struct type *);
99
100 /* To support multi-threading and stepping. */
101 int hppa_prepare_to_proceed ();
102
103 static int prologue_inst_adjust_sp (unsigned long);
104
105 static int is_branch (unsigned long);
106
107 static int inst_saves_gr (unsigned long);
108
109 static int inst_saves_fr (unsigned long);
110
111 static int pc_in_interrupt_handler (CORE_ADDR);
112
113 static int pc_in_linker_stub (CORE_ADDR);
114
115 static int compare_unwind_entries (const void *, const void *);
116
117 static void read_unwind_info (struct objfile *);
118
119 static void internalize_unwinds (struct objfile *,
120 struct unwind_table_entry *,
121 asection *, unsigned int,
122 unsigned int, CORE_ADDR);
123 static void pa_print_registers (char *, int, int);
124 static void pa_strcat_registers (char *, int, int, struct ui_file *);
125 static void pa_register_look_aside (char *, int, long *);
126 static void pa_print_fp_reg (int);
127 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
128 static void record_text_segment_lowaddr (bfd *, asection *, void *);
129
130 typedef struct
131 {
132 struct minimal_symbol *msym;
133 CORE_ADDR solib_handle;
134 CORE_ADDR return_val;
135 }
136 args_for_find_stub;
137
138 static int cover_find_stub_with_shl_get (PTR);
139
140 static int is_pa_2 = 0; /* False */
141
142 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
143 extern int hp_som_som_object_present;
144
145 /* In breakpoint.c */
146 extern int exception_catchpoints_are_fragile;
147
148 /* This is defined in valops.c. */
149 extern value_ptr find_function_in_inferior (char *);
150
151 /* Should call_function allocate stack space for a struct return? */
152 int
153 hppa_use_struct_convention (int gcc_p, struct type *type)
154 {
155 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
156 }
157 \f
158
159 /* Routines to extract various sized constants out of hppa
160 instructions. */
161
162 /* This assumes that no garbage lies outside of the lower bits of
163 value. */
164
165 static int
166 sign_extend (unsigned val, unsigned bits)
167 {
168 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
169 }
170
171 /* For many immediate values the sign bit is the low bit! */
172
173 static int
174 low_sign_extend (unsigned val, unsigned bits)
175 {
176 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
177 }
178
179 /* extract the immediate field from a ld{bhw}s instruction */
180
181 static int
182 extract_5_load (unsigned word)
183 {
184 return low_sign_extend (word >> 16 & MASK_5, 5);
185 }
186
187 /* extract the immediate field from a break instruction */
188
189 static unsigned
190 extract_5r_store (unsigned word)
191 {
192 return (word & MASK_5);
193 }
194
195 /* extract the immediate field from a {sr}sm instruction */
196
197 static unsigned
198 extract_5R_store (unsigned word)
199 {
200 return (word >> 16 & MASK_5);
201 }
202
203 /* extract a 14 bit immediate field */
204
205 static int
206 extract_14 (unsigned word)
207 {
208 return low_sign_extend (word & MASK_14, 14);
209 }
210
211 /* deposit a 14 bit constant in a word */
212
213 static unsigned
214 deposit_14 (int opnd, unsigned word)
215 {
216 unsigned sign = (opnd < 0 ? 1 : 0);
217
218 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
219 }
220
221 /* extract a 21 bit constant */
222
223 static int
224 extract_21 (unsigned word)
225 {
226 int val;
227
228 word &= MASK_21;
229 word <<= 11;
230 val = GET_FIELD (word, 20, 20);
231 val <<= 11;
232 val |= GET_FIELD (word, 9, 19);
233 val <<= 2;
234 val |= GET_FIELD (word, 5, 6);
235 val <<= 5;
236 val |= GET_FIELD (word, 0, 4);
237 val <<= 2;
238 val |= GET_FIELD (word, 7, 8);
239 return sign_extend (val, 21) << 11;
240 }
241
242 /* deposit a 21 bit constant in a word. Although 21 bit constants are
243 usually the top 21 bits of a 32 bit constant, we assume that only
244 the low 21 bits of opnd are relevant */
245
246 static unsigned
247 deposit_21 (unsigned opnd, unsigned word)
248 {
249 unsigned val = 0;
250
251 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
252 val <<= 2;
253 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
254 val <<= 2;
255 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
256 val <<= 11;
257 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
258 val <<= 1;
259 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
260 return word | val;
261 }
262
263 /* extract a 17 bit constant from branch instructions, returning the
264 19 bit signed value. */
265
266 static int
267 extract_17 (unsigned word)
268 {
269 return sign_extend (GET_FIELD (word, 19, 28) |
270 GET_FIELD (word, 29, 29) << 10 |
271 GET_FIELD (word, 11, 15) << 11 |
272 (word & 0x1) << 16, 17) << 2;
273 }
274 \f
275
276 /* Compare the start address for two unwind entries returning 1 if
277 the first address is larger than the second, -1 if the second is
278 larger than the first, and zero if they are equal. */
279
280 static int
281 compare_unwind_entries (const void *arg1, const void *arg2)
282 {
283 const struct unwind_table_entry *a = arg1;
284 const struct unwind_table_entry *b = arg2;
285
286 if (a->region_start > b->region_start)
287 return 1;
288 else if (a->region_start < b->region_start)
289 return -1;
290 else
291 return 0;
292 }
293
294 static CORE_ADDR low_text_segment_address;
295
296 static void
297 record_text_segment_lowaddr (abfd, section, ignored)
298 bfd *abfd ATTRIBUTE_UNUSED;
299 asection *section;
300 PTR ignored ATTRIBUTE_UNUSED;
301 {
302 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
303 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
304 && section->vma < low_text_segment_address)
305 low_text_segment_address = section->vma;
306 }
307
308 static void
309 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
310 asection *section, unsigned int entries, unsigned int size,
311 CORE_ADDR text_offset)
312 {
313 /* We will read the unwind entries into temporary memory, then
314 fill in the actual unwind table. */
315 if (size > 0)
316 {
317 unsigned long tmp;
318 unsigned i;
319 char *buf = alloca (size);
320
321 low_text_segment_address = -1;
322
323 /* If addresses are 64 bits wide, then unwinds are supposed to
324 be segment relative offsets instead of absolute addresses.
325
326 Note that when loading a shared library (text_offset != 0) the
327 unwinds are already relative to the text_offset that will be
328 passed in. */
329 if (TARGET_PTR_BIT == 64 && text_offset == 0)
330 {
331 bfd_map_over_sections (objfile->obfd,
332 record_text_segment_lowaddr, (PTR) NULL);
333
334 /* ?!? Mask off some low bits. Should this instead subtract
335 out the lowest section's filepos or something like that?
336 This looks very hokey to me. */
337 low_text_segment_address &= ~0xfff;
338 text_offset += low_text_segment_address;
339 }
340
341 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
342
343 /* Now internalize the information being careful to handle host/target
344 endian issues. */
345 for (i = 0; i < entries; i++)
346 {
347 table[i].region_start = bfd_get_32 (objfile->obfd,
348 (bfd_byte *) buf);
349 table[i].region_start += text_offset;
350 buf += 4;
351 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
352 table[i].region_end += text_offset;
353 buf += 4;
354 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
355 buf += 4;
356 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
357 table[i].Millicode = (tmp >> 30) & 0x1;
358 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
359 table[i].Region_description = (tmp >> 27) & 0x3;
360 table[i].reserved1 = (tmp >> 26) & 0x1;
361 table[i].Entry_SR = (tmp >> 25) & 0x1;
362 table[i].Entry_FR = (tmp >> 21) & 0xf;
363 table[i].Entry_GR = (tmp >> 16) & 0x1f;
364 table[i].Args_stored = (tmp >> 15) & 0x1;
365 table[i].Variable_Frame = (tmp >> 14) & 0x1;
366 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
367 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
368 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
369 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
370 table[i].Ada_Region = (tmp >> 9) & 0x1;
371 table[i].cxx_info = (tmp >> 8) & 0x1;
372 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
373 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
374 table[i].reserved2 = (tmp >> 5) & 0x1;
375 table[i].Save_SP = (tmp >> 4) & 0x1;
376 table[i].Save_RP = (tmp >> 3) & 0x1;
377 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
378 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
379 table[i].Cleanup_defined = tmp & 0x1;
380 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
381 buf += 4;
382 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
383 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
384 table[i].Large_frame = (tmp >> 29) & 0x1;
385 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
386 table[i].reserved4 = (tmp >> 27) & 0x1;
387 table[i].Total_frame_size = tmp & 0x7ffffff;
388
389 /* Stub unwinds are handled elsewhere. */
390 table[i].stub_unwind.stub_type = 0;
391 table[i].stub_unwind.padding = 0;
392 }
393 }
394 }
395
396 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
397 the object file. This info is used mainly by find_unwind_entry() to find
398 out the stack frame size and frame pointer used by procedures. We put
399 everything on the psymbol obstack in the objfile so that it automatically
400 gets freed when the objfile is destroyed. */
401
402 static void
403 read_unwind_info (struct objfile *objfile)
404 {
405 asection *unwind_sec, *stub_unwind_sec;
406 unsigned unwind_size, stub_unwind_size, total_size;
407 unsigned index, unwind_entries;
408 unsigned stub_entries, total_entries;
409 CORE_ADDR text_offset;
410 struct obj_unwind_info *ui;
411 obj_private_data_t *obj_private;
412
413 text_offset = ANOFFSET (objfile->section_offsets, 0);
414 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
415 sizeof (struct obj_unwind_info));
416
417 ui->table = NULL;
418 ui->cache = NULL;
419 ui->last = -1;
420
421 /* For reasons unknown the HP PA64 tools generate multiple unwinder
422 sections in a single executable. So we just iterate over every
423 section in the BFD looking for unwinder sections intead of trying
424 to do a lookup with bfd_get_section_by_name.
425
426 First determine the total size of the unwind tables so that we
427 can allocate memory in a nice big hunk. */
428 total_entries = 0;
429 for (unwind_sec = objfile->obfd->sections;
430 unwind_sec;
431 unwind_sec = unwind_sec->next)
432 {
433 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
434 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
435 {
436 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
437 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
438
439 total_entries += unwind_entries;
440 }
441 }
442
443 /* Now compute the size of the stub unwinds. Note the ELF tools do not
444 use stub unwinds at the curren time. */
445 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
446
447 if (stub_unwind_sec)
448 {
449 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
450 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
451 }
452 else
453 {
454 stub_unwind_size = 0;
455 stub_entries = 0;
456 }
457
458 /* Compute total number of unwind entries and their total size. */
459 total_entries += stub_entries;
460 total_size = total_entries * sizeof (struct unwind_table_entry);
461
462 /* Allocate memory for the unwind table. */
463 ui->table = (struct unwind_table_entry *)
464 obstack_alloc (&objfile->psymbol_obstack, total_size);
465 ui->last = total_entries - 1;
466
467 /* Now read in each unwind section and internalize the standard unwind
468 entries. */
469 index = 0;
470 for (unwind_sec = objfile->obfd->sections;
471 unwind_sec;
472 unwind_sec = unwind_sec->next)
473 {
474 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
475 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
476 {
477 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
478 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
479
480 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
481 unwind_entries, unwind_size, text_offset);
482 index += unwind_entries;
483 }
484 }
485
486 /* Now read in and internalize the stub unwind entries. */
487 if (stub_unwind_size > 0)
488 {
489 unsigned int i;
490 char *buf = alloca (stub_unwind_size);
491
492 /* Read in the stub unwind entries. */
493 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
494 0, stub_unwind_size);
495
496 /* Now convert them into regular unwind entries. */
497 for (i = 0; i < stub_entries; i++, index++)
498 {
499 /* Clear out the next unwind entry. */
500 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
501
502 /* Convert offset & size into region_start and region_end.
503 Stuff away the stub type into "reserved" fields. */
504 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
505 (bfd_byte *) buf);
506 ui->table[index].region_start += text_offset;
507 buf += 4;
508 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
509 (bfd_byte *) buf);
510 buf += 2;
511 ui->table[index].region_end
512 = ui->table[index].region_start + 4 *
513 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
514 buf += 2;
515 }
516
517 }
518
519 /* Unwind table needs to be kept sorted. */
520 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
521 compare_unwind_entries);
522
523 /* Keep a pointer to the unwind information. */
524 if (objfile->obj_private == NULL)
525 {
526 obj_private = (obj_private_data_t *)
527 obstack_alloc (&objfile->psymbol_obstack,
528 sizeof (obj_private_data_t));
529 obj_private->unwind_info = NULL;
530 obj_private->so_info = NULL;
531 obj_private->dp = 0;
532
533 objfile->obj_private = (PTR) obj_private;
534 }
535 obj_private = (obj_private_data_t *) objfile->obj_private;
536 obj_private->unwind_info = ui;
537 }
538
539 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
540 of the objfiles seeking the unwind table entry for this PC. Each objfile
541 contains a sorted list of struct unwind_table_entry. Since we do a binary
542 search of the unwind tables, we depend upon them to be sorted. */
543
544 struct unwind_table_entry *
545 find_unwind_entry (CORE_ADDR pc)
546 {
547 int first, middle, last;
548 struct objfile *objfile;
549
550 /* A function at address 0? Not in HP-UX! */
551 if (pc == (CORE_ADDR) 0)
552 return NULL;
553
554 ALL_OBJFILES (objfile)
555 {
556 struct obj_unwind_info *ui;
557 ui = NULL;
558 if (objfile->obj_private)
559 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
560
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 if (objfile->obj_private == NULL)
565 error ("Internal error reading unwind information.");
566 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
567 }
568
569 /* First, check the cache */
570
571 if (ui->cache
572 && pc >= ui->cache->region_start
573 && pc <= ui->cache->region_end)
574 return ui->cache;
575
576 /* Not in the cache, do a binary search */
577
578 first = 0;
579 last = ui->last;
580
581 while (first <= last)
582 {
583 middle = (first + last) / 2;
584 if (pc >= ui->table[middle].region_start
585 && pc <= ui->table[middle].region_end)
586 {
587 ui->cache = &ui->table[middle];
588 return &ui->table[middle];
589 }
590
591 if (pc < ui->table[middle].region_start)
592 last = middle - 1;
593 else
594 first = middle + 1;
595 }
596 } /* ALL_OBJFILES() */
597 return NULL;
598 }
599
600 /* Return the adjustment necessary to make for addresses on the stack
601 as presented by hpread.c.
602
603 This is necessary because of the stack direction on the PA and the
604 bizarre way in which someone (?) decided they wanted to handle
605 frame pointerless code in GDB. */
606 int
607 hpread_adjust_stack_address (CORE_ADDR func_addr)
608 {
609 struct unwind_table_entry *u;
610
611 u = find_unwind_entry (func_addr);
612 if (!u)
613 return 0;
614 else
615 return u->Total_frame_size << 3;
616 }
617
618 /* Called to determine if PC is in an interrupt handler of some
619 kind. */
620
621 static int
622 pc_in_interrupt_handler (CORE_ADDR pc)
623 {
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
626
627 u = find_unwind_entry (pc);
628 if (!u)
629 return 0;
630
631 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
632 its frame isn't a pure interrupt frame. Deal with this. */
633 msym_us = lookup_minimal_symbol_by_pc (pc);
634
635 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
636 }
637
638 /* Called when no unwind descriptor was found for PC. Returns 1 if it
639 appears that PC is in a linker stub.
640
641 ?!? Need to handle stubs which appear in PA64 code. */
642
643 static int
644 pc_in_linker_stub (CORE_ADDR pc)
645 {
646 int found_magic_instruction = 0;
647 int i;
648 char buf[4];
649
650 /* If unable to read memory, assume pc is not in a linker stub. */
651 if (target_read_memory (pc, buf, 4) != 0)
652 return 0;
653
654 /* We are looking for something like
655
656 ; $$dyncall jams RP into this special spot in the frame (RP')
657 ; before calling the "call stub"
658 ldw -18(sp),rp
659
660 ldsid (rp),r1 ; Get space associated with RP into r1
661 mtsp r1,sp ; Move it into space register 0
662 be,n 0(sr0),rp) ; back to your regularly scheduled program */
663
664 /* Maximum known linker stub size is 4 instructions. Search forward
665 from the given PC, then backward. */
666 for (i = 0; i < 4; i++)
667 {
668 /* If we hit something with an unwind, stop searching this direction. */
669
670 if (find_unwind_entry (pc + i * 4) != 0)
671 break;
672
673 /* Check for ldsid (rp),r1 which is the magic instruction for a
674 return from a cross-space function call. */
675 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
676 {
677 found_magic_instruction = 1;
678 break;
679 }
680 /* Add code to handle long call/branch and argument relocation stubs
681 here. */
682 }
683
684 if (found_magic_instruction != 0)
685 return 1;
686
687 /* Now look backward. */
688 for (i = 0; i < 4; i++)
689 {
690 /* If we hit something with an unwind, stop searching this direction. */
691
692 if (find_unwind_entry (pc - i * 4) != 0)
693 break;
694
695 /* Check for ldsid (rp),r1 which is the magic instruction for a
696 return from a cross-space function call. */
697 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
698 {
699 found_magic_instruction = 1;
700 break;
701 }
702 /* Add code to handle long call/branch and argument relocation stubs
703 here. */
704 }
705 return found_magic_instruction;
706 }
707
708 static int
709 find_return_regnum (CORE_ADDR pc)
710 {
711 struct unwind_table_entry *u;
712
713 u = find_unwind_entry (pc);
714
715 if (!u)
716 return RP_REGNUM;
717
718 if (u->Millicode)
719 return 31;
720
721 return RP_REGNUM;
722 }
723
724 /* Return size of frame, or -1 if we should use a frame pointer. */
725 static int
726 find_proc_framesize (CORE_ADDR pc)
727 {
728 struct unwind_table_entry *u;
729 struct minimal_symbol *msym_us;
730
731 /* This may indicate a bug in our callers... */
732 if (pc == (CORE_ADDR) 0)
733 return -1;
734
735 u = find_unwind_entry (pc);
736
737 if (!u)
738 {
739 if (pc_in_linker_stub (pc))
740 /* Linker stubs have a zero size frame. */
741 return 0;
742 else
743 return -1;
744 }
745
746 msym_us = lookup_minimal_symbol_by_pc (pc);
747
748 /* If Save_SP is set, and we're not in an interrupt or signal caller,
749 then we have a frame pointer. Use it. */
750 if (u->Save_SP && !pc_in_interrupt_handler (pc)
751 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
752 return -1;
753
754 return u->Total_frame_size << 3;
755 }
756
757 /* Return offset from sp at which rp is saved, or 0 if not saved. */
758 static int rp_saved (CORE_ADDR);
759
760 static int
761 rp_saved (CORE_ADDR pc)
762 {
763 struct unwind_table_entry *u;
764
765 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
766 if (pc == (CORE_ADDR) 0)
767 return 0;
768
769 u = find_unwind_entry (pc);
770
771 if (!u)
772 {
773 if (pc_in_linker_stub (pc))
774 /* This is the so-called RP'. */
775 return -24;
776 else
777 return 0;
778 }
779
780 if (u->Save_RP)
781 return (TARGET_PTR_BIT == 64 ? -16 : -20);
782 else if (u->stub_unwind.stub_type != 0)
783 {
784 switch (u->stub_unwind.stub_type)
785 {
786 case EXPORT:
787 case IMPORT:
788 return -24;
789 case PARAMETER_RELOCATION:
790 return -8;
791 default:
792 return 0;
793 }
794 }
795 else
796 return 0;
797 }
798 \f
799 int
800 frameless_function_invocation (struct frame_info *frame)
801 {
802 struct unwind_table_entry *u;
803
804 u = find_unwind_entry (frame->pc);
805
806 if (u == 0)
807 return 0;
808
809 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
810 }
811
812 CORE_ADDR
813 saved_pc_after_call (struct frame_info *frame)
814 {
815 int ret_regnum;
816 CORE_ADDR pc;
817 struct unwind_table_entry *u;
818
819 ret_regnum = find_return_regnum (get_frame_pc (frame));
820 pc = read_register (ret_regnum) & ~0x3;
821
822 /* If PC is in a linker stub, then we need to dig the address
823 the stub will return to out of the stack. */
824 u = find_unwind_entry (pc);
825 if (u && u->stub_unwind.stub_type != 0)
826 return FRAME_SAVED_PC (frame);
827 else
828 return pc;
829 }
830 \f
831 CORE_ADDR
832 hppa_frame_saved_pc (struct frame_info *frame)
833 {
834 CORE_ADDR pc = get_frame_pc (frame);
835 struct unwind_table_entry *u;
836 CORE_ADDR old_pc;
837 int spun_around_loop = 0;
838 int rp_offset = 0;
839
840 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
841 at the base of the frame in an interrupt handler. Registers within
842 are saved in the exact same order as GDB numbers registers. How
843 convienent. */
844 if (pc_in_interrupt_handler (pc))
845 return read_memory_integer (frame->frame + PC_REGNUM * 4,
846 TARGET_PTR_BIT / 8) & ~0x3;
847
848 if ((frame->pc >= frame->frame
849 && frame->pc <= (frame->frame
850 /* A call dummy is sized in words, but it is
851 actually a series of instructions. Account
852 for that scaling factor. */
853 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
854 * CALL_DUMMY_LENGTH)
855 /* Similarly we have to account for 64bit
856 wide register saves. */
857 + (32 * REGISTER_SIZE)
858 /* We always consider FP regs 8 bytes long. */
859 + (NUM_REGS - FP0_REGNUM) * 8
860 /* Similarly we have to account for 64bit
861 wide register saves. */
862 + (6 * REGISTER_SIZE))))
863 {
864 return read_memory_integer ((frame->frame
865 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
866 TARGET_PTR_BIT / 8) & ~0x3;
867 }
868
869 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
870 /* Deal with signal handler caller frames too. */
871 if (frame->signal_handler_caller)
872 {
873 CORE_ADDR rp;
874 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
875 return rp & ~0x3;
876 }
877 #endif
878
879 if (frameless_function_invocation (frame))
880 {
881 int ret_regnum;
882
883 ret_regnum = find_return_regnum (pc);
884
885 /* If the next frame is an interrupt frame or a signal
886 handler caller, then we need to look in the saved
887 register area to get the return pointer (the values
888 in the registers may not correspond to anything useful). */
889 if (frame->next
890 && (frame->next->signal_handler_caller
891 || pc_in_interrupt_handler (frame->next->pc)))
892 {
893 struct frame_saved_regs saved_regs;
894
895 get_frame_saved_regs (frame->next, &saved_regs);
896 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
897 TARGET_PTR_BIT / 8) & 0x2)
898 {
899 pc = read_memory_integer (saved_regs.regs[31],
900 TARGET_PTR_BIT / 8) & ~0x3;
901
902 /* Syscalls are really two frames. The syscall stub itself
903 with a return pointer in %rp and the kernel call with
904 a return pointer in %r31. We return the %rp variant
905 if %r31 is the same as frame->pc. */
906 if (pc == frame->pc)
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
908 TARGET_PTR_BIT / 8) & ~0x3;
909 }
910 else
911 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
912 TARGET_PTR_BIT / 8) & ~0x3;
913 }
914 else
915 pc = read_register (ret_regnum) & ~0x3;
916 }
917 else
918 {
919 spun_around_loop = 0;
920 old_pc = pc;
921
922 restart:
923 rp_offset = rp_saved (pc);
924
925 /* Similar to code in frameless function case. If the next
926 frame is a signal or interrupt handler, then dig the right
927 information out of the saved register info. */
928 if (rp_offset == 0
929 && frame->next
930 && (frame->next->signal_handler_caller
931 || pc_in_interrupt_handler (frame->next->pc)))
932 {
933 struct frame_saved_regs saved_regs;
934
935 get_frame_saved_regs (frame->next, &saved_regs);
936 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
937 TARGET_PTR_BIT / 8) & 0x2)
938 {
939 pc = read_memory_integer (saved_regs.regs[31],
940 TARGET_PTR_BIT / 8) & ~0x3;
941
942 /* Syscalls are really two frames. The syscall stub itself
943 with a return pointer in %rp and the kernel call with
944 a return pointer in %r31. We return the %rp variant
945 if %r31 is the same as frame->pc. */
946 if (pc == frame->pc)
947 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
948 TARGET_PTR_BIT / 8) & ~0x3;
949 }
950 else
951 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
952 TARGET_PTR_BIT / 8) & ~0x3;
953 }
954 else if (rp_offset == 0)
955 {
956 old_pc = pc;
957 pc = read_register (RP_REGNUM) & ~0x3;
958 }
959 else
960 {
961 old_pc = pc;
962 pc = read_memory_integer (frame->frame + rp_offset,
963 TARGET_PTR_BIT / 8) & ~0x3;
964 }
965 }
966
967 /* If PC is inside a linker stub, then dig out the address the stub
968 will return to.
969
970 Don't do this for long branch stubs. Why? For some unknown reason
971 _start is marked as a long branch stub in hpux10. */
972 u = find_unwind_entry (pc);
973 if (u && u->stub_unwind.stub_type != 0
974 && u->stub_unwind.stub_type != LONG_BRANCH)
975 {
976 unsigned int insn;
977
978 /* If this is a dynamic executable, and we're in a signal handler,
979 then the call chain will eventually point us into the stub for
980 _sigreturn. Unlike most cases, we'll be pointed to the branch
981 to the real sigreturn rather than the code after the real branch!.
982
983 Else, try to dig the address the stub will return to in the normal
984 fashion. */
985 insn = read_memory_integer (pc, 4);
986 if ((insn & 0xfc00e000) == 0xe8000000)
987 return (pc + extract_17 (insn) + 8) & ~0x3;
988 else
989 {
990 if (old_pc == pc)
991 spun_around_loop++;
992
993 if (spun_around_loop > 1)
994 {
995 /* We're just about to go around the loop again with
996 no more hope of success. Die. */
997 error ("Unable to find return pc for this frame");
998 }
999 else
1000 goto restart;
1001 }
1002 }
1003
1004 return pc;
1005 }
1006 \f
1007 /* We need to correct the PC and the FP for the outermost frame when we are
1008 in a system call. */
1009
1010 void
1011 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1012 {
1013 int flags;
1014 int framesize;
1015
1016 if (frame->next && !fromleaf)
1017 return;
1018
1019 /* If the next frame represents a frameless function invocation
1020 then we have to do some adjustments that are normally done by
1021 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1022 if (fromleaf)
1023 {
1024 /* Find the framesize of *this* frame without peeking at the PC
1025 in the current frame structure (it isn't set yet). */
1026 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1027
1028 /* Now adjust our base frame accordingly. If we have a frame pointer
1029 use it, else subtract the size of this frame from the current
1030 frame. (we always want frame->frame to point at the lowest address
1031 in the frame). */
1032 if (framesize == -1)
1033 frame->frame = TARGET_READ_FP ();
1034 else
1035 frame->frame -= framesize;
1036 return;
1037 }
1038
1039 flags = read_register (FLAGS_REGNUM);
1040 if (flags & 2) /* In system call? */
1041 frame->pc = read_register (31) & ~0x3;
1042
1043 /* The outermost frame is always derived from PC-framesize
1044
1045 One might think frameless innermost frames should have
1046 a frame->frame that is the same as the parent's frame->frame.
1047 That is wrong; frame->frame in that case should be the *high*
1048 address of the parent's frame. It's complicated as hell to
1049 explain, but the parent *always* creates some stack space for
1050 the child. So the child actually does have a frame of some
1051 sorts, and its base is the high address in its parent's frame. */
1052 framesize = find_proc_framesize (frame->pc);
1053 if (framesize == -1)
1054 frame->frame = TARGET_READ_FP ();
1055 else
1056 frame->frame = read_register (SP_REGNUM) - framesize;
1057 }
1058 \f
1059 /* Given a GDB frame, determine the address of the calling function's frame.
1060 This will be used to create a new GDB frame struct, and then
1061 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1062
1063 This may involve searching through prologues for several functions
1064 at boundaries where GCC calls HP C code, or where code which has
1065 a frame pointer calls code without a frame pointer. */
1066
1067 CORE_ADDR
1068 frame_chain (struct frame_info *frame)
1069 {
1070 int my_framesize, caller_framesize;
1071 struct unwind_table_entry *u;
1072 CORE_ADDR frame_base;
1073 struct frame_info *tmp_frame;
1074
1075 /* A frame in the current frame list, or zero. */
1076 struct frame_info *saved_regs_frame = 0;
1077 /* Where the registers were saved in saved_regs_frame.
1078 If saved_regs_frame is zero, this is garbage. */
1079 struct frame_saved_regs saved_regs;
1080
1081 CORE_ADDR caller_pc;
1082
1083 struct minimal_symbol *min_frame_symbol;
1084 struct symbol *frame_symbol;
1085 char *frame_symbol_name;
1086
1087 /* If this is a threaded application, and we see the
1088 routine "__pthread_exit", treat it as the stack root
1089 for this thread. */
1090 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1091 frame_symbol = find_pc_function (frame->pc);
1092
1093 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1094 {
1095 /* The test above for "no user function name" would defend
1096 against the slim likelihood that a user might define a
1097 routine named "__pthread_exit" and then try to debug it.
1098
1099 If it weren't commented out, and you tried to debug the
1100 pthread library itself, you'd get errors.
1101
1102 So for today, we don't make that check. */
1103 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1104 if (frame_symbol_name != 0)
1105 {
1106 if (0 == strncmp (frame_symbol_name,
1107 THREAD_INITIAL_FRAME_SYMBOL,
1108 THREAD_INITIAL_FRAME_SYM_LEN))
1109 {
1110 /* Pretend we've reached the bottom of the stack. */
1111 return (CORE_ADDR) 0;
1112 }
1113 }
1114 } /* End of hacky code for threads. */
1115
1116 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1117 are easy; at *sp we have a full save state strucutre which we can
1118 pull the old stack pointer from. Also see frame_saved_pc for
1119 code to dig a saved PC out of the save state structure. */
1120 if (pc_in_interrupt_handler (frame->pc))
1121 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1122 TARGET_PTR_BIT / 8);
1123 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1124 else if (frame->signal_handler_caller)
1125 {
1126 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1127 }
1128 #endif
1129 else
1130 frame_base = frame->frame;
1131
1132 /* Get frame sizes for the current frame and the frame of the
1133 caller. */
1134 my_framesize = find_proc_framesize (frame->pc);
1135 caller_pc = FRAME_SAVED_PC (frame);
1136
1137 /* If we can't determine the caller's PC, then it's not likely we can
1138 really determine anything meaningful about its frame. We'll consider
1139 this to be stack bottom. */
1140 if (caller_pc == (CORE_ADDR) 0)
1141 return (CORE_ADDR) 0;
1142
1143 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1144
1145 /* If caller does not have a frame pointer, then its frame
1146 can be found at current_frame - caller_framesize. */
1147 if (caller_framesize != -1)
1148 {
1149 return frame_base - caller_framesize;
1150 }
1151 /* Both caller and callee have frame pointers and are GCC compiled
1152 (SAVE_SP bit in unwind descriptor is on for both functions.
1153 The previous frame pointer is found at the top of the current frame. */
1154 if (caller_framesize == -1 && my_framesize == -1)
1155 {
1156 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1157 }
1158 /* Caller has a frame pointer, but callee does not. This is a little
1159 more difficult as GCC and HP C lay out locals and callee register save
1160 areas very differently.
1161
1162 The previous frame pointer could be in a register, or in one of
1163 several areas on the stack.
1164
1165 Walk from the current frame to the innermost frame examining
1166 unwind descriptors to determine if %r3 ever gets saved into the
1167 stack. If so return whatever value got saved into the stack.
1168 If it was never saved in the stack, then the value in %r3 is still
1169 valid, so use it.
1170
1171 We use information from unwind descriptors to determine if %r3
1172 is saved into the stack (Entry_GR field has this information). */
1173
1174 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1175 {
1176 u = find_unwind_entry (tmp_frame->pc);
1177
1178 if (!u)
1179 {
1180 /* We could find this information by examining prologues. I don't
1181 think anyone has actually written any tools (not even "strip")
1182 which leave them out of an executable, so maybe this is a moot
1183 point. */
1184 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1185 code that doesn't have unwind entries. For example, stepping into
1186 the dynamic linker will give you a PC that has none. Thus, I've
1187 disabled this warning. */
1188 #if 0
1189 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1190 #endif
1191 return (CORE_ADDR) 0;
1192 }
1193
1194 if (u->Save_SP
1195 || tmp_frame->signal_handler_caller
1196 || pc_in_interrupt_handler (tmp_frame->pc))
1197 break;
1198
1199 /* Entry_GR specifies the number of callee-saved general registers
1200 saved in the stack. It starts at %r3, so %r3 would be 1. */
1201 if (u->Entry_GR >= 1)
1202 {
1203 /* The unwind entry claims that r3 is saved here. However,
1204 in optimized code, GCC often doesn't actually save r3.
1205 We'll discover this if we look at the prologue. */
1206 get_frame_saved_regs (tmp_frame, &saved_regs);
1207 saved_regs_frame = tmp_frame;
1208
1209 /* If we have an address for r3, that's good. */
1210 if (saved_regs.regs[FP_REGNUM])
1211 break;
1212 }
1213 }
1214
1215 if (tmp_frame)
1216 {
1217 /* We may have walked down the chain into a function with a frame
1218 pointer. */
1219 if (u->Save_SP
1220 && !tmp_frame->signal_handler_caller
1221 && !pc_in_interrupt_handler (tmp_frame->pc))
1222 {
1223 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1224 }
1225 /* %r3 was saved somewhere in the stack. Dig it out. */
1226 else
1227 {
1228 /* Sick.
1229
1230 For optimization purposes many kernels don't have the
1231 callee saved registers into the save_state structure upon
1232 entry into the kernel for a syscall; the optimization
1233 is usually turned off if the process is being traced so
1234 that the debugger can get full register state for the
1235 process.
1236
1237 This scheme works well except for two cases:
1238
1239 * Attaching to a process when the process is in the
1240 kernel performing a system call (debugger can't get
1241 full register state for the inferior process since
1242 the process wasn't being traced when it entered the
1243 system call).
1244
1245 * Register state is not complete if the system call
1246 causes the process to core dump.
1247
1248
1249 The following heinous code is an attempt to deal with
1250 the lack of register state in a core dump. It will
1251 fail miserably if the function which performs the
1252 system call has a variable sized stack frame. */
1253
1254 if (tmp_frame != saved_regs_frame)
1255 get_frame_saved_regs (tmp_frame, &saved_regs);
1256
1257 /* Abominable hack. */
1258 if (current_target.to_has_execution == 0
1259 && ((saved_regs.regs[FLAGS_REGNUM]
1260 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1261 TARGET_PTR_BIT / 8)
1262 & 0x2))
1263 || (saved_regs.regs[FLAGS_REGNUM] == 0
1264 && read_register (FLAGS_REGNUM) & 0x2)))
1265 {
1266 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1267 if (!u)
1268 {
1269 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1270 TARGET_PTR_BIT / 8);
1271 }
1272 else
1273 {
1274 return frame_base - (u->Total_frame_size << 3);
1275 }
1276 }
1277
1278 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1279 TARGET_PTR_BIT / 8);
1280 }
1281 }
1282 else
1283 {
1284 /* Get the innermost frame. */
1285 tmp_frame = frame;
1286 while (tmp_frame->next != NULL)
1287 tmp_frame = tmp_frame->next;
1288
1289 if (tmp_frame != saved_regs_frame)
1290 get_frame_saved_regs (tmp_frame, &saved_regs);
1291
1292 /* Abominable hack. See above. */
1293 if (current_target.to_has_execution == 0
1294 && ((saved_regs.regs[FLAGS_REGNUM]
1295 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1296 TARGET_PTR_BIT / 8)
1297 & 0x2))
1298 || (saved_regs.regs[FLAGS_REGNUM] == 0
1299 && read_register (FLAGS_REGNUM) & 0x2)))
1300 {
1301 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1302 if (!u)
1303 {
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1305 TARGET_PTR_BIT / 8);
1306 }
1307 else
1308 {
1309 return frame_base - (u->Total_frame_size << 3);
1310 }
1311 }
1312
1313 /* The value in %r3 was never saved into the stack (thus %r3 still
1314 holds the value of the previous frame pointer). */
1315 return TARGET_READ_FP ();
1316 }
1317 }
1318 \f
1319
1320 /* To see if a frame chain is valid, see if the caller looks like it
1321 was compiled with gcc. */
1322
1323 int
1324 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1325 {
1326 struct minimal_symbol *msym_us;
1327 struct minimal_symbol *msym_start;
1328 struct unwind_table_entry *u, *next_u = NULL;
1329 struct frame_info *next;
1330
1331 if (!chain)
1332 return 0;
1333
1334 u = find_unwind_entry (thisframe->pc);
1335
1336 if (u == NULL)
1337 return 1;
1338
1339 /* We can't just check that the same of msym_us is "_start", because
1340 someone idiotically decided that they were going to make a Ltext_end
1341 symbol with the same address. This Ltext_end symbol is totally
1342 indistinguishable (as nearly as I can tell) from the symbol for a function
1343 which is (legitimately, since it is in the user's namespace)
1344 named Ltext_end, so we can't just ignore it. */
1345 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1346 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1347 if (msym_us
1348 && msym_start
1349 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1350 return 0;
1351
1352 /* Grrrr. Some new idiot decided that they don't want _start for the
1353 PRO configurations; $START$ calls main directly.... Deal with it. */
1354 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1355 if (msym_us
1356 && msym_start
1357 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1358 return 0;
1359
1360 next = get_next_frame (thisframe);
1361 if (next)
1362 next_u = find_unwind_entry (next->pc);
1363
1364 /* If this frame does not save SP, has no stack, isn't a stub,
1365 and doesn't "call" an interrupt routine or signal handler caller,
1366 then its not valid. */
1367 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1368 || (thisframe->next && thisframe->next->signal_handler_caller)
1369 || (next_u && next_u->HP_UX_interrupt_marker))
1370 return 1;
1371
1372 if (pc_in_linker_stub (thisframe->pc))
1373 return 1;
1374
1375 return 0;
1376 }
1377
1378 /*
1379 These functions deal with saving and restoring register state
1380 around a function call in the inferior. They keep the stack
1381 double-word aligned; eventually, on an hp700, the stack will have
1382 to be aligned to a 64-byte boundary. */
1383
1384 void
1385 push_dummy_frame (struct inferior_status *inf_status)
1386 {
1387 CORE_ADDR sp, pc, pcspace;
1388 register int regnum;
1389 CORE_ADDR int_buffer;
1390 double freg_buffer;
1391
1392 /* Oh, what a hack. If we're trying to perform an inferior call
1393 while the inferior is asleep, we have to make sure to clear
1394 the "in system call" bit in the flag register (the call will
1395 start after the syscall returns, so we're no longer in the system
1396 call!) This state is kept in "inf_status", change it there.
1397
1398 We also need a number of horrid hacks to deal with lossage in the
1399 PC queue registers (apparently they're not valid when the in syscall
1400 bit is set). */
1401 pc = target_read_pc (inferior_pid);
1402 int_buffer = read_register (FLAGS_REGNUM);
1403 if (int_buffer & 0x2)
1404 {
1405 unsigned int sid;
1406 int_buffer &= ~0x2;
1407 write_inferior_status_register (inf_status, 0, int_buffer);
1408 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1409 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1410 sid = (pc >> 30) & 0x3;
1411 if (sid == 0)
1412 pcspace = read_register (SR4_REGNUM);
1413 else
1414 pcspace = read_register (SR4_REGNUM + 4 + sid);
1415 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1416 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1417 }
1418 else
1419 pcspace = read_register (PCSQ_HEAD_REGNUM);
1420
1421 /* Space for "arguments"; the RP goes in here. */
1422 sp = read_register (SP_REGNUM) + 48;
1423 int_buffer = read_register (RP_REGNUM) | 0x3;
1424
1425 /* The 32bit and 64bit ABIs save the return pointer into different
1426 stack slots. */
1427 if (REGISTER_SIZE == 8)
1428 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1429 else
1430 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1431
1432 int_buffer = TARGET_READ_FP ();
1433 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1434
1435 write_register (FP_REGNUM, sp);
1436
1437 sp += 2 * REGISTER_SIZE;
1438
1439 for (regnum = 1; regnum < 32; regnum++)
1440 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1441 sp = push_word (sp, read_register (regnum));
1442
1443 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1444 if (REGISTER_SIZE != 8)
1445 sp += 4;
1446
1447 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1448 {
1449 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1450 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1451 }
1452 sp = push_word (sp, read_register (IPSW_REGNUM));
1453 sp = push_word (sp, read_register (SAR_REGNUM));
1454 sp = push_word (sp, pc);
1455 sp = push_word (sp, pcspace);
1456 sp = push_word (sp, pc + 4);
1457 sp = push_word (sp, pcspace);
1458 write_register (SP_REGNUM, sp);
1459 }
1460
1461 static void
1462 find_dummy_frame_regs (struct frame_info *frame,
1463 struct frame_saved_regs *frame_saved_regs)
1464 {
1465 CORE_ADDR fp = frame->frame;
1466 int i;
1467
1468 /* The 32bit and 64bit ABIs save RP into different locations. */
1469 if (REGISTER_SIZE == 8)
1470 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1471 else
1472 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1473
1474 frame_saved_regs->regs[FP_REGNUM] = fp;
1475
1476 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1477
1478 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1479 {
1480 if (i != FP_REGNUM)
1481 {
1482 frame_saved_regs->regs[i] = fp;
1483 fp += REGISTER_SIZE;
1484 }
1485 }
1486
1487 /* This is not necessary or desirable for the 64bit ABI. */
1488 if (REGISTER_SIZE != 8)
1489 fp += 4;
1490
1491 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1492 frame_saved_regs->regs[i] = fp;
1493
1494 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1495 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1496 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1499 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1500 }
1501
1502 void
1503 hppa_pop_frame (void)
1504 {
1505 register struct frame_info *frame = get_current_frame ();
1506 register CORE_ADDR fp, npc, target_pc;
1507 register int regnum;
1508 struct frame_saved_regs fsr;
1509 double freg_buffer;
1510
1511 fp = FRAME_FP (frame);
1512 get_frame_saved_regs (frame, &fsr);
1513
1514 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1515 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1516 restore_pc_queue (&fsr);
1517 #endif
1518
1519 for (regnum = 31; regnum > 0; regnum--)
1520 if (fsr.regs[regnum])
1521 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1522 REGISTER_SIZE));
1523
1524 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1525 if (fsr.regs[regnum])
1526 {
1527 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1528 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1529 }
1530
1531 if (fsr.regs[IPSW_REGNUM])
1532 write_register (IPSW_REGNUM,
1533 read_memory_integer (fsr.regs[IPSW_REGNUM],
1534 REGISTER_SIZE));
1535
1536 if (fsr.regs[SAR_REGNUM])
1537 write_register (SAR_REGNUM,
1538 read_memory_integer (fsr.regs[SAR_REGNUM],
1539 REGISTER_SIZE));
1540
1541 /* If the PC was explicitly saved, then just restore it. */
1542 if (fsr.regs[PCOQ_TAIL_REGNUM])
1543 {
1544 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1545 REGISTER_SIZE);
1546 write_register (PCOQ_TAIL_REGNUM, npc);
1547 }
1548 /* Else use the value in %rp to set the new PC. */
1549 else
1550 {
1551 npc = read_register (RP_REGNUM);
1552 write_pc (npc);
1553 }
1554
1555 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1556
1557 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1558 write_register (SP_REGNUM, fp - 48);
1559 else
1560 write_register (SP_REGNUM, fp);
1561
1562 /* The PC we just restored may be inside a return trampoline. If so
1563 we want to restart the inferior and run it through the trampoline.
1564
1565 Do this by setting a momentary breakpoint at the location the
1566 trampoline returns to.
1567
1568 Don't skip through the trampoline if we're popping a dummy frame. */
1569 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1570 if (target_pc && !fsr.regs[IPSW_REGNUM])
1571 {
1572 struct symtab_and_line sal;
1573 struct breakpoint *breakpoint;
1574 struct cleanup *old_chain;
1575
1576 /* Set up our breakpoint. Set it to be silent as the MI code
1577 for "return_command" will print the frame we returned to. */
1578 sal = find_pc_line (target_pc, 0);
1579 sal.pc = target_pc;
1580 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1581 breakpoint->silent = 1;
1582
1583 /* So we can clean things up. */
1584 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1585
1586 /* Start up the inferior. */
1587 clear_proceed_status ();
1588 proceed_to_finish = 1;
1589 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1590
1591 /* Perform our cleanups. */
1592 do_cleanups (old_chain);
1593 }
1594 flush_cached_frames ();
1595 }
1596
1597 /* After returning to a dummy on the stack, restore the instruction
1598 queue space registers. */
1599
1600 static int
1601 restore_pc_queue (struct frame_saved_regs *fsr)
1602 {
1603 CORE_ADDR pc = read_pc ();
1604 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1605 TARGET_PTR_BIT / 8);
1606 struct target_waitstatus w;
1607 int insn_count;
1608
1609 /* Advance past break instruction in the call dummy. */
1610 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1611 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1612
1613 /* HPUX doesn't let us set the space registers or the space
1614 registers of the PC queue through ptrace. Boo, hiss.
1615 Conveniently, the call dummy has this sequence of instructions
1616 after the break:
1617 mtsp r21, sr0
1618 ble,n 0(sr0, r22)
1619
1620 So, load up the registers and single step until we are in the
1621 right place. */
1622
1623 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1624 REGISTER_SIZE));
1625 write_register (22, new_pc);
1626
1627 for (insn_count = 0; insn_count < 3; insn_count++)
1628 {
1629 /* FIXME: What if the inferior gets a signal right now? Want to
1630 merge this into wait_for_inferior (as a special kind of
1631 watchpoint? By setting a breakpoint at the end? Is there
1632 any other choice? Is there *any* way to do this stuff with
1633 ptrace() or some equivalent?). */
1634 resume (1, 0);
1635 target_wait (inferior_pid, &w);
1636
1637 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1638 {
1639 stop_signal = w.value.sig;
1640 terminal_ours_for_output ();
1641 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1642 target_signal_to_name (stop_signal),
1643 target_signal_to_string (stop_signal));
1644 gdb_flush (gdb_stdout);
1645 return 0;
1646 }
1647 }
1648 target_terminal_ours ();
1649 target_fetch_registers (-1);
1650 return 1;
1651 }
1652
1653
1654 #ifdef PA20W_CALLING_CONVENTIONS
1655
1656 /* This function pushes a stack frame with arguments as part of the
1657 inferior function calling mechanism.
1658
1659 This is the version for the PA64, in which later arguments appear
1660 at higher addresses. (The stack always grows towards higher
1661 addresses.)
1662
1663 We simply allocate the appropriate amount of stack space and put
1664 arguments into their proper slots. The call dummy code will copy
1665 arguments into registers as needed by the ABI.
1666
1667 This ABI also requires that the caller provide an argument pointer
1668 to the callee, so we do that too. */
1669
1670 CORE_ADDR
1671 hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1672 int struct_return, CORE_ADDR struct_addr)
1673 {
1674 /* array of arguments' offsets */
1675 int *offset = (int *) alloca (nargs * sizeof (int));
1676
1677 /* array of arguments' lengths: real lengths in bytes, not aligned to
1678 word size */
1679 int *lengths = (int *) alloca (nargs * sizeof (int));
1680
1681 /* The value of SP as it was passed into this function after
1682 aligning. */
1683 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1684
1685 /* The number of stack bytes occupied by the current argument. */
1686 int bytes_reserved;
1687
1688 /* The total number of bytes reserved for the arguments. */
1689 int cum_bytes_reserved = 0;
1690
1691 /* Similarly, but aligned. */
1692 int cum_bytes_aligned = 0;
1693 int i;
1694
1695 /* Iterate over each argument provided by the user. */
1696 for (i = 0; i < nargs; i++)
1697 {
1698 struct type *arg_type = VALUE_TYPE (args[i]);
1699
1700 /* Integral scalar values smaller than a register are padded on
1701 the left. We do this by promoting them to full-width,
1702 although the ABI says to pad them with garbage. */
1703 if (is_integral_type (arg_type)
1704 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1705 {
1706 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1707 ? builtin_type_unsigned_long
1708 : builtin_type_long),
1709 args[i]);
1710 arg_type = VALUE_TYPE (args[i]);
1711 }
1712
1713 lengths[i] = TYPE_LENGTH (arg_type);
1714
1715 /* Align the size of the argument to the word size for this
1716 target. */
1717 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1718
1719 offset[i] = cum_bytes_reserved;
1720
1721 /* Aggregates larger than eight bytes (the only types larger
1722 than eight bytes we have) are aligned on a 16-byte boundary,
1723 possibly padded on the right with garbage. This may leave an
1724 empty word on the stack, and thus an unused register, as per
1725 the ABI. */
1726 if (bytes_reserved > 8)
1727 {
1728 /* Round up the offset to a multiple of two slots. */
1729 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1730 & -(2*REGISTER_SIZE));
1731
1732 /* Note the space we've wasted, if any. */
1733 bytes_reserved += new_offset - offset[i];
1734 offset[i] = new_offset;
1735 }
1736
1737 cum_bytes_reserved += bytes_reserved;
1738 }
1739
1740 /* CUM_BYTES_RESERVED already accounts for all the arguments
1741 passed by the user. However, the ABIs mandate minimum stack space
1742 allocations for outgoing arguments.
1743
1744 The ABIs also mandate minimum stack alignments which we must
1745 preserve. */
1746 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1747 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1748
1749 /* Now write each of the args at the proper offset down the stack. */
1750 for (i = 0; i < nargs; i++)
1751 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1752
1753 /* If a structure has to be returned, set up register 28 to hold its
1754 address */
1755 if (struct_return)
1756 write_register (28, struct_addr);
1757
1758 /* For the PA64 we must pass a pointer to the outgoing argument list.
1759 The ABI mandates that the pointer should point to the first byte of
1760 storage beyond the register flushback area.
1761
1762 However, the call dummy expects the outgoing argument pointer to
1763 be passed in register %r4. */
1764 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1765
1766 /* ?!? This needs further work. We need to set up the global data
1767 pointer for this procedure. This assumes the same global pointer
1768 for every procedure. The call dummy expects the dp value to
1769 be passed in register %r6. */
1770 write_register (6, read_register (27));
1771
1772 /* The stack will have 64 bytes of additional space for a frame marker. */
1773 return sp + 64;
1774 }
1775
1776 #else
1777
1778 /* This function pushes a stack frame with arguments as part of the
1779 inferior function calling mechanism.
1780
1781 This is the version of the function for the 32-bit PA machines, in
1782 which later arguments appear at lower addresses. (The stack always
1783 grows towards higher addresses.)
1784
1785 We simply allocate the appropriate amount of stack space and put
1786 arguments into their proper slots. The call dummy code will copy
1787 arguments into registers as needed by the ABI. */
1788
1789 CORE_ADDR
1790 hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1791 int struct_return, CORE_ADDR struct_addr)
1792 {
1793 /* array of arguments' offsets */
1794 int *offset = (int *) alloca (nargs * sizeof (int));
1795
1796 /* array of arguments' lengths: real lengths in bytes, not aligned to
1797 word size */
1798 int *lengths = (int *) alloca (nargs * sizeof (int));
1799
1800 /* The number of stack bytes occupied by the current argument. */
1801 int bytes_reserved;
1802
1803 /* The total number of bytes reserved for the arguments. */
1804 int cum_bytes_reserved = 0;
1805
1806 /* Similarly, but aligned. */
1807 int cum_bytes_aligned = 0;
1808 int i;
1809
1810 /* Iterate over each argument provided by the user. */
1811 for (i = 0; i < nargs; i++)
1812 {
1813 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1814
1815 /* Align the size of the argument to the word size for this
1816 target. */
1817 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1818
1819 offset[i] = cum_bytes_reserved + lengths[i];
1820
1821 /* If the argument is a double word argument, then it needs to be
1822 double word aligned. */
1823 if ((bytes_reserved == 2 * REGISTER_SIZE)
1824 && (offset[i] % 2 * REGISTER_SIZE))
1825 {
1826 int new_offset = 0;
1827 /* BYTES_RESERVED is already aligned to the word, so we put
1828 the argument at one word more down the stack.
1829
1830 This will leave one empty word on the stack, and one unused
1831 register as mandated by the ABI. */
1832 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1833 & -(2 * REGISTER_SIZE));
1834
1835 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1836 {
1837 bytes_reserved += REGISTER_SIZE;
1838 offset[i] += REGISTER_SIZE;
1839 }
1840 }
1841
1842 cum_bytes_reserved += bytes_reserved;
1843
1844 }
1845
1846 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1847 by the user. However, the ABI mandates minimum stack space
1848 allocations for outgoing arguments.
1849
1850 The ABI also mandates minimum stack alignments which we must
1851 preserve. */
1852 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1853 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1854
1855 /* Now write each of the args at the proper offset down the stack.
1856 ?!? We need to promote values to a full register instead of skipping
1857 words in the stack. */
1858 for (i = 0; i < nargs; i++)
1859 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1860
1861 /* If a structure has to be returned, set up register 28 to hold its
1862 address */
1863 if (struct_return)
1864 write_register (28, struct_addr);
1865
1866 /* The stack will have 32 bytes of additional space for a frame marker. */
1867 return sp + 32;
1868 }
1869
1870 #endif
1871
1872 /* elz: this function returns a value which is built looking at the given address.
1873 It is called from call_function_by_hand, in case we need to return a
1874 value which is larger than 64 bits, and it is stored in the stack rather than
1875 in the registers r28 and r29 or fr4.
1876 This function does the same stuff as value_being_returned in values.c, but
1877 gets the value from the stack rather than from the buffer where all the
1878 registers were saved when the function called completed. */
1879 value_ptr
1880 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1881 {
1882 register value_ptr val;
1883
1884 val = allocate_value (valtype);
1885 CHECK_TYPEDEF (valtype);
1886 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1887
1888 return val;
1889 }
1890
1891
1892
1893 /* elz: Used to lookup a symbol in the shared libraries.
1894 This function calls shl_findsym, indirectly through a
1895 call to __d_shl_get. __d_shl_get is in end.c, which is always
1896 linked in by the hp compilers/linkers.
1897 The call to shl_findsym cannot be made directly because it needs
1898 to be active in target address space.
1899 inputs: - minimal symbol pointer for the function we want to look up
1900 - address in target space of the descriptor for the library
1901 where we want to look the symbol up.
1902 This address is retrieved using the
1903 som_solib_get_solib_by_pc function (somsolib.c).
1904 output: - real address in the library of the function.
1905 note: the handle can be null, in which case shl_findsym will look for
1906 the symbol in all the loaded shared libraries.
1907 files to look at if you need reference on this stuff:
1908 dld.c, dld_shl_findsym.c
1909 end.c
1910 man entry for shl_findsym */
1911
1912 CORE_ADDR
1913 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1914 {
1915 struct symbol *get_sym, *symbol2;
1916 struct minimal_symbol *buff_minsym, *msymbol;
1917 struct type *ftype;
1918 value_ptr *args;
1919 value_ptr funcval, val;
1920
1921 int x, namelen, err_value, tmp = -1;
1922 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1923 CORE_ADDR stub_addr;
1924
1925
1926 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1927 funcval = find_function_in_inferior ("__d_shl_get");
1928 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1929 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1930 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1931 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1932 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1933 namelen = strlen (SYMBOL_NAME (function));
1934 value_return_addr = endo_buff_addr + namelen;
1935 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1936
1937 /* do alignment */
1938 if ((x = value_return_addr % 64) != 0)
1939 value_return_addr = value_return_addr + 64 - x;
1940
1941 errno_return_addr = value_return_addr + 64;
1942
1943
1944 /* set up stuff needed by __d_shl_get in buffer in end.o */
1945
1946 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1947
1948 target_write_memory (value_return_addr, (char *) &tmp, 4);
1949
1950 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1951
1952 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1953 (char *) &handle, 4);
1954
1955 /* now prepare the arguments for the call */
1956
1957 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1958 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1959 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1960 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1961 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1962 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1963
1964 /* now call the function */
1965
1966 val = call_function_by_hand (funcval, 6, args);
1967
1968 /* now get the results */
1969
1970 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1971
1972 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1973 if (stub_addr <= 0)
1974 error ("call to __d_shl_get failed, error code is %d", err_value);
1975
1976 return (stub_addr);
1977 }
1978
1979 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1980 static int
1981 cover_find_stub_with_shl_get (PTR args_untyped)
1982 {
1983 args_for_find_stub *args = args_untyped;
1984 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1985 return 0;
1986 }
1987
1988 /* Insert the specified number of args and function address
1989 into a call sequence of the above form stored at DUMMYNAME.
1990
1991 On the hppa we need to call the stack dummy through $$dyncall.
1992 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1993 real_pc, which is the location where gdb should start up the
1994 inferior to do the function call.
1995
1996 This has to work across several versions of hpux, bsd, osf1. It has to
1997 work regardless of what compiler was used to build the inferior program.
1998 It should work regardless of whether or not end.o is available. It has
1999 to work even if gdb can not call into the dynamic loader in the inferior
2000 to query it for symbol names and addresses.
2001
2002 Yes, all those cases should work. Luckily code exists to handle most
2003 of them. The complexity is in selecting exactly what scheme should
2004 be used to perform the inferior call.
2005
2006 At the current time this routine is known not to handle cases where
2007 the program was linked with HP's compiler without including end.o.
2008
2009 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2010
2011 CORE_ADDR
2012 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2013 value_ptr *args, struct type *type, int gcc_p)
2014 {
2015 CORE_ADDR dyncall_addr;
2016 struct minimal_symbol *msymbol;
2017 struct minimal_symbol *trampoline;
2018 int flags = read_register (FLAGS_REGNUM);
2019 struct unwind_table_entry *u = NULL;
2020 CORE_ADDR new_stub = 0;
2021 CORE_ADDR solib_handle = 0;
2022
2023 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2024 passed an import stub, not a PLABEL. It is also necessary to set %r19
2025 (the PIC register) before performing the call.
2026
2027 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2028 are calling the target directly. When using __d_plt_call we want to
2029 use a PLABEL instead of an import stub. */
2030 int using_gcc_plt_call = 1;
2031
2032 #ifdef GDB_TARGET_IS_HPPA_20W
2033 /* We currently use completely different code for the PA2.0W inferior
2034 function call sequences. This needs to be cleaned up. */
2035 {
2036 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2037 struct target_waitstatus w;
2038 int inst1, inst2;
2039 char buf[4];
2040 int status;
2041 struct objfile *objfile;
2042
2043 /* We can not modify the PC space queues directly, so we start
2044 up the inferior and execute a couple instructions to set the
2045 space queues so that they point to the call dummy in the stack. */
2046 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2047 sr5 = read_register (SR5_REGNUM);
2048 if (1)
2049 {
2050 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2051 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2052 if (target_read_memory (pcoqh, buf, 4) != 0)
2053 error ("Couldn't modify space queue\n");
2054 inst1 = extract_unsigned_integer (buf, 4);
2055
2056 if (target_read_memory (pcoqt, buf, 4) != 0)
2057 error ("Couldn't modify space queue\n");
2058 inst2 = extract_unsigned_integer (buf, 4);
2059
2060 /* BVE (r1) */
2061 *((int *) buf) = 0xe820d000;
2062 if (target_write_memory (pcoqh, buf, 4) != 0)
2063 error ("Couldn't modify space queue\n");
2064
2065 /* NOP */
2066 *((int *) buf) = 0x08000240;
2067 if (target_write_memory (pcoqt, buf, 4) != 0)
2068 {
2069 *((int *) buf) = inst1;
2070 target_write_memory (pcoqh, buf, 4);
2071 error ("Couldn't modify space queue\n");
2072 }
2073
2074 write_register (1, pc);
2075
2076 /* Single step twice, the BVE instruction will set the space queue
2077 such that it points to the PC value written immediately above
2078 (ie the call dummy). */
2079 resume (1, 0);
2080 target_wait (inferior_pid, &w);
2081 resume (1, 0);
2082 target_wait (inferior_pid, &w);
2083
2084 /* Restore the two instructions at the old PC locations. */
2085 *((int *) buf) = inst1;
2086 target_write_memory (pcoqh, buf, 4);
2087 *((int *) buf) = inst2;
2088 target_write_memory (pcoqt, buf, 4);
2089 }
2090
2091 /* The call dummy wants the ultimate destination address initially
2092 in register %r5. */
2093 write_register (5, fun);
2094
2095 /* We need to see if this objfile has a different DP value than our
2096 own (it could be a shared library for example). */
2097 ALL_OBJFILES (objfile)
2098 {
2099 struct obj_section *s;
2100 obj_private_data_t *obj_private;
2101
2102 /* See if FUN is in any section within this shared library. */
2103 for (s = objfile->sections; s < objfile->sections_end; s++)
2104 if (s->addr <= fun && fun < s->endaddr)
2105 break;
2106
2107 if (s >= objfile->sections_end)
2108 continue;
2109
2110 obj_private = (obj_private_data_t *) objfile->obj_private;
2111
2112 /* The DP value may be different for each objfile. But within an
2113 objfile each function uses the same dp value. Thus we do not need
2114 to grope around the opd section looking for dp values.
2115
2116 ?!? This is not strictly correct since we may be in a shared library
2117 and want to call back into the main program. To make that case
2118 work correctly we need to set obj_private->dp for the main program's
2119 objfile, then remove this conditional. */
2120 if (obj_private->dp)
2121 write_register (27, obj_private->dp);
2122 break;
2123 }
2124 return pc;
2125 }
2126 #endif
2127
2128 #ifndef GDB_TARGET_IS_HPPA_20W
2129 /* Prefer __gcc_plt_call over the HP supplied routine because
2130 __gcc_plt_call works for any number of arguments. */
2131 trampoline = NULL;
2132 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2133 using_gcc_plt_call = 0;
2134
2135 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2136 if (msymbol == NULL)
2137 error ("Can't find an address for $$dyncall trampoline");
2138
2139 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2140
2141 /* FUN could be a procedure label, in which case we have to get
2142 its real address and the value of its GOT/DP if we plan to
2143 call the routine via gcc_plt_call. */
2144 if ((fun & 0x2) && using_gcc_plt_call)
2145 {
2146 /* Get the GOT/DP value for the target function. It's
2147 at *(fun+4). Note the call dummy is *NOT* allowed to
2148 trash %r19 before calling the target function. */
2149 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2150 REGISTER_SIZE));
2151
2152 /* Now get the real address for the function we are calling, it's
2153 at *fun. */
2154 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2155 TARGET_PTR_BIT / 8);
2156 }
2157 else
2158 {
2159
2160 #ifndef GDB_TARGET_IS_PA_ELF
2161 /* FUN could be an export stub, the real address of a function, or
2162 a PLABEL. When using gcc's PLT call routine we must call an import
2163 stub rather than the export stub or real function for lazy binding
2164 to work correctly
2165
2166 /* If we are using the gcc PLT call routine, then we need to
2167 get the import stub for the target function. */
2168 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2169 {
2170 struct objfile *objfile;
2171 struct minimal_symbol *funsymbol, *stub_symbol;
2172 CORE_ADDR newfun = 0;
2173
2174 funsymbol = lookup_minimal_symbol_by_pc (fun);
2175 if (!funsymbol)
2176 error ("Unable to find minimal symbol for target function.\n");
2177
2178 /* Search all the object files for an import symbol with the
2179 right name. */
2180 ALL_OBJFILES (objfile)
2181 {
2182 stub_symbol
2183 = lookup_minimal_symbol_solib_trampoline
2184 (SYMBOL_NAME (funsymbol), NULL, objfile);
2185
2186 if (!stub_symbol)
2187 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2188 NULL, objfile);
2189
2190 /* Found a symbol with the right name. */
2191 if (stub_symbol)
2192 {
2193 struct unwind_table_entry *u;
2194 /* It must be a shared library trampoline. */
2195 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2196 continue;
2197
2198 /* It must also be an import stub. */
2199 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2200 if (u == NULL
2201 || (u->stub_unwind.stub_type != IMPORT
2202 #ifdef GDB_NATIVE_HPUX_11
2203 /* Sigh. The hpux 10.20 dynamic linker will blow
2204 chunks if we perform a call to an unbound function
2205 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2206 linker will blow chunks if we do not call the
2207 unbound function via the IMPORT_SHLIB stub.
2208
2209 We currently have no way to select bevahior on just
2210 the target. However, we only support HPUX/SOM in
2211 native mode. So we conditinalize on a native
2212 #ifdef. Ugly. Ugly. Ugly */
2213 && u->stub_unwind.stub_type != IMPORT_SHLIB
2214 #endif
2215 ))
2216 continue;
2217
2218 /* OK. Looks like the correct import stub. */
2219 newfun = SYMBOL_VALUE (stub_symbol);
2220 fun = newfun;
2221
2222 /* If we found an IMPORT stub, then we want to stop
2223 searching now. If we found an IMPORT_SHLIB, we want
2224 to continue the search in the hopes that we will find
2225 an IMPORT stub. */
2226 if (u->stub_unwind.stub_type == IMPORT)
2227 break;
2228 }
2229 }
2230
2231 /* Ouch. We did not find an import stub. Make an attempt to
2232 do the right thing instead of just croaking. Most of the
2233 time this will actually work. */
2234 if (newfun == 0)
2235 write_register (19, som_solib_get_got_by_pc (fun));
2236
2237 u = find_unwind_entry (fun);
2238 if (u
2239 && (u->stub_unwind.stub_type == IMPORT
2240 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2241 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2242
2243 /* If we found the import stub in the shared library, then we have
2244 to set %r19 before we call the stub. */
2245 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2246 write_register (19, som_solib_get_got_by_pc (fun));
2247 }
2248 #endif
2249 }
2250
2251 /* If we are calling into another load module then have sr4export call the
2252 magic __d_plt_call routine which is linked in from end.o.
2253
2254 You can't use _sr4export to make the call as the value in sp-24 will get
2255 fried and you end up returning to the wrong location. You can't call the
2256 target as the code to bind the PLT entry to a function can't return to a
2257 stack address.
2258
2259 Also, query the dynamic linker in the inferior to provide a suitable
2260 PLABEL for the target function. */
2261 if (!using_gcc_plt_call)
2262 {
2263 CORE_ADDR new_fun;
2264
2265 /* Get a handle for the shared library containing FUN. Given the
2266 handle we can query the shared library for a PLABEL. */
2267 solib_handle = som_solib_get_solib_by_pc (fun);
2268
2269 if (solib_handle)
2270 {
2271 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2272
2273 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2274
2275 if (trampoline == NULL)
2276 {
2277 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2278 }
2279
2280 /* This is where sr4export will jump to. */
2281 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2282
2283 /* If the function is in a shared library, then call __d_shl_get to
2284 get a PLABEL for the target function. */
2285 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2286
2287 if (new_stub == 0)
2288 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2289
2290 /* We have to store the address of the stub in __shlib_funcptr. */
2291 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2292 (struct objfile *) NULL);
2293
2294 if (msymbol == NULL)
2295 error ("Can't find an address for __shlib_funcptr");
2296 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2297 (char *) &new_stub, 4);
2298
2299 /* We want sr4export to call __d_plt_call, so we claim it is
2300 the final target. Clear trampoline. */
2301 fun = new_fun;
2302 trampoline = NULL;
2303 }
2304 }
2305
2306 /* Store upper 21 bits of function address into ldil. fun will either be
2307 the final target (most cases) or __d_plt_call when calling into a shared
2308 library and __gcc_plt_call is not available. */
2309 store_unsigned_integer
2310 (&dummy[FUNC_LDIL_OFFSET],
2311 INSTRUCTION_SIZE,
2312 deposit_21 (fun >> 11,
2313 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2314 INSTRUCTION_SIZE)));
2315
2316 /* Store lower 11 bits of function address into ldo */
2317 store_unsigned_integer
2318 (&dummy[FUNC_LDO_OFFSET],
2319 INSTRUCTION_SIZE,
2320 deposit_14 (fun & MASK_11,
2321 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2322 INSTRUCTION_SIZE)));
2323 #ifdef SR4EXPORT_LDIL_OFFSET
2324
2325 {
2326 CORE_ADDR trampoline_addr;
2327
2328 /* We may still need sr4export's address too. */
2329
2330 if (trampoline == NULL)
2331 {
2332 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2333 if (msymbol == NULL)
2334 error ("Can't find an address for _sr4export trampoline");
2335
2336 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2337 }
2338 else
2339 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2340
2341
2342 /* Store upper 21 bits of trampoline's address into ldil */
2343 store_unsigned_integer
2344 (&dummy[SR4EXPORT_LDIL_OFFSET],
2345 INSTRUCTION_SIZE,
2346 deposit_21 (trampoline_addr >> 11,
2347 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2348 INSTRUCTION_SIZE)));
2349
2350 /* Store lower 11 bits of trampoline's address into ldo */
2351 store_unsigned_integer
2352 (&dummy[SR4EXPORT_LDO_OFFSET],
2353 INSTRUCTION_SIZE,
2354 deposit_14 (trampoline_addr & MASK_11,
2355 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2356 INSTRUCTION_SIZE)));
2357 }
2358 #endif
2359
2360 write_register (22, pc);
2361
2362 /* If we are in a syscall, then we should call the stack dummy
2363 directly. $$dyncall is not needed as the kernel sets up the
2364 space id registers properly based on the value in %r31. In
2365 fact calling $$dyncall will not work because the value in %r22
2366 will be clobbered on the syscall exit path.
2367
2368 Similarly if the current PC is in a shared library. Note however,
2369 this scheme won't work if the shared library isn't mapped into
2370 the same space as the stack. */
2371 if (flags & 2)
2372 return pc;
2373 #ifndef GDB_TARGET_IS_PA_ELF
2374 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2375 return pc;
2376 #endif
2377 else
2378 return dyncall_addr;
2379 #endif
2380 }
2381
2382
2383
2384
2385 /* If the pid is in a syscall, then the FP register is not readable.
2386 We'll return zero in that case, rather than attempting to read it
2387 and cause a warning. */
2388 CORE_ADDR
2389 target_read_fp (int pid)
2390 {
2391 int flags = read_register (FLAGS_REGNUM);
2392
2393 if (flags & 2)
2394 {
2395 return (CORE_ADDR) 0;
2396 }
2397
2398 /* This is the only site that may directly read_register () the FP
2399 register. All others must use TARGET_READ_FP (). */
2400 return read_register (FP_REGNUM);
2401 }
2402
2403
2404 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2405 bits. */
2406
2407 CORE_ADDR
2408 target_read_pc (int pid)
2409 {
2410 int flags = read_register_pid (FLAGS_REGNUM, pid);
2411
2412 /* The following test does not belong here. It is OS-specific, and belongs
2413 in native code. */
2414 /* Test SS_INSYSCALL */
2415 if (flags & 2)
2416 return read_register_pid (31, pid) & ~0x3;
2417
2418 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2419 }
2420
2421 /* Write out the PC. If currently in a syscall, then also write the new
2422 PC value into %r31. */
2423
2424 void
2425 target_write_pc (CORE_ADDR v, int pid)
2426 {
2427 int flags = read_register_pid (FLAGS_REGNUM, pid);
2428
2429 /* The following test does not belong here. It is OS-specific, and belongs
2430 in native code. */
2431 /* If in a syscall, then set %r31. Also make sure to get the
2432 privilege bits set correctly. */
2433 /* Test SS_INSYSCALL */
2434 if (flags & 2)
2435 write_register_pid (31, v | 0x3, pid);
2436
2437 write_register_pid (PC_REGNUM, v, pid);
2438 write_register_pid (NPC_REGNUM, v + 4, pid);
2439 }
2440
2441 /* return the alignment of a type in bytes. Structures have the maximum
2442 alignment required by their fields. */
2443
2444 static int
2445 hppa_alignof (struct type *type)
2446 {
2447 int max_align, align, i;
2448 CHECK_TYPEDEF (type);
2449 switch (TYPE_CODE (type))
2450 {
2451 case TYPE_CODE_PTR:
2452 case TYPE_CODE_INT:
2453 case TYPE_CODE_FLT:
2454 return TYPE_LENGTH (type);
2455 case TYPE_CODE_ARRAY:
2456 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2457 case TYPE_CODE_STRUCT:
2458 case TYPE_CODE_UNION:
2459 max_align = 1;
2460 for (i = 0; i < TYPE_NFIELDS (type); i++)
2461 {
2462 /* Bit fields have no real alignment. */
2463 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2464 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2465 {
2466 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2467 max_align = max (max_align, align);
2468 }
2469 }
2470 return max_align;
2471 default:
2472 return 4;
2473 }
2474 }
2475
2476 /* Print the register regnum, or all registers if regnum is -1 */
2477
2478 void
2479 pa_do_registers_info (int regnum, int fpregs)
2480 {
2481 char raw_regs[REGISTER_BYTES];
2482 int i;
2483
2484 /* Make a copy of gdb's save area (may cause actual
2485 reads from the target). */
2486 for (i = 0; i < NUM_REGS; i++)
2487 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2488
2489 if (regnum == -1)
2490 pa_print_registers (raw_regs, regnum, fpregs);
2491 else if (regnum < FP4_REGNUM)
2492 {
2493 long reg_val[2];
2494
2495 /* Why is the value not passed through "extract_signed_integer"
2496 as in "pa_print_registers" below? */
2497 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2498
2499 if (!is_pa_2)
2500 {
2501 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2502 }
2503 else
2504 {
2505 /* Fancy % formats to prevent leading zeros. */
2506 if (reg_val[0] == 0)
2507 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2508 else
2509 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2510 reg_val[0], reg_val[1]);
2511 }
2512 }
2513 else
2514 /* Note that real floating point values only start at
2515 FP4_REGNUM. FP0 and up are just status and error
2516 registers, which have integral (bit) values. */
2517 pa_print_fp_reg (regnum);
2518 }
2519
2520 /********** new function ********************/
2521 void
2522 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2523 enum precision_type precision)
2524 {
2525 char raw_regs[REGISTER_BYTES];
2526 int i;
2527
2528 /* Make a copy of gdb's save area (may cause actual
2529 reads from the target). */
2530 for (i = 0; i < NUM_REGS; i++)
2531 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2532
2533 if (regnum == -1)
2534 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2535
2536 else if (regnum < FP4_REGNUM)
2537 {
2538 long reg_val[2];
2539
2540 /* Why is the value not passed through "extract_signed_integer"
2541 as in "pa_print_registers" below? */
2542 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2543
2544 if (!is_pa_2)
2545 {
2546 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2547 }
2548 else
2549 {
2550 /* Fancy % formats to prevent leading zeros. */
2551 if (reg_val[0] == 0)
2552 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2553 reg_val[1]);
2554 else
2555 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2556 reg_val[0], reg_val[1]);
2557 }
2558 }
2559 else
2560 /* Note that real floating point values only start at
2561 FP4_REGNUM. FP0 and up are just status and error
2562 registers, which have integral (bit) values. */
2563 pa_strcat_fp_reg (regnum, stream, precision);
2564 }
2565
2566 /* If this is a PA2.0 machine, fetch the real 64-bit register
2567 value. Otherwise use the info from gdb's saved register area.
2568
2569 Note that reg_val is really expected to be an array of longs,
2570 with two elements. */
2571 static void
2572 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2573 {
2574 static int know_which = 0; /* False */
2575
2576 int regaddr;
2577 unsigned int offset;
2578 register int i;
2579 int start;
2580
2581
2582 char buf[MAX_REGISTER_RAW_SIZE];
2583 long long reg_val;
2584
2585 if (!know_which)
2586 {
2587 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2588 {
2589 is_pa_2 = (1 == 1);
2590 }
2591
2592 know_which = 1; /* True */
2593 }
2594
2595 raw_val[0] = 0;
2596 raw_val[1] = 0;
2597
2598 if (!is_pa_2)
2599 {
2600 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2601 return;
2602 }
2603
2604 /* Code below copied from hppah-nat.c, with fixes for wide
2605 registers, using different area of save_state, etc. */
2606 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2607 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2608 {
2609 /* Use narrow regs area of save_state and default macro. */
2610 offset = U_REGS_OFFSET;
2611 regaddr = register_addr (regnum, offset);
2612 start = 1;
2613 }
2614 else
2615 {
2616 /* Use wide regs area, and calculate registers as 8 bytes wide.
2617
2618 We'd like to do this, but current version of "C" doesn't
2619 permit "offsetof":
2620
2621 offset = offsetof(save_state_t, ss_wide);
2622
2623 Note that to avoid "C" doing typed pointer arithmetic, we
2624 have to cast away the type in our offset calculation:
2625 otherwise we get an offset of 1! */
2626
2627 /* NB: save_state_t is not available before HPUX 9.
2628 The ss_wide field is not available previous to HPUX 10.20,
2629 so to avoid compile-time warnings, we only compile this for
2630 PA 2.0 processors. This control path should only be followed
2631 if we're debugging a PA 2.0 processor, so this should not cause
2632 problems. */
2633
2634 /* #if the following code out so that this file can still be
2635 compiled on older HPUX boxes (< 10.20) which don't have
2636 this structure/structure member. */
2637 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2638 save_state_t temp;
2639
2640 offset = ((int) &temp.ss_wide) - ((int) &temp);
2641 regaddr = offset + regnum * 8;
2642 start = 0;
2643 #endif
2644 }
2645
2646 for (i = start; i < 2; i++)
2647 {
2648 errno = 0;
2649 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
2650 (PTRACE_ARG3_TYPE) regaddr, 0);
2651 if (errno != 0)
2652 {
2653 /* Warning, not error, in case we are attached; sometimes the
2654 kernel doesn't let us at the registers. */
2655 char *err = safe_strerror (errno);
2656 char *msg = alloca (strlen (err) + 128);
2657 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2658 warning (msg);
2659 goto error_exit;
2660 }
2661
2662 regaddr += sizeof (long);
2663 }
2664
2665 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2666 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2667
2668 error_exit:
2669 ;
2670 }
2671
2672 /* "Info all-reg" command */
2673
2674 static void
2675 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2676 {
2677 int i, j;
2678 /* Alas, we are compiled so that "long long" is 32 bits */
2679 long raw_val[2];
2680 long long_val;
2681 int rows = 48, columns = 2;
2682
2683 for (i = 0; i < rows; i++)
2684 {
2685 for (j = 0; j < columns; j++)
2686 {
2687 /* We display registers in column-major order. */
2688 int regnum = i + j * rows;
2689
2690 /* Q: Why is the value passed through "extract_signed_integer",
2691 while above, in "pa_do_registers_info" it isn't?
2692 A: ? */
2693 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2694
2695 /* Even fancier % formats to prevent leading zeros
2696 and still maintain the output in columns. */
2697 if (!is_pa_2)
2698 {
2699 /* Being big-endian, on this machine the low bits
2700 (the ones we want to look at) are in the second longword. */
2701 long_val = extract_signed_integer (&raw_val[1], 4);
2702 printf_filtered ("%10.10s: %8x ",
2703 REGISTER_NAME (regnum), long_val);
2704 }
2705 else
2706 {
2707 /* raw_val = extract_signed_integer(&raw_val, 8); */
2708 if (raw_val[0] == 0)
2709 printf_filtered ("%10.10s: %8x ",
2710 REGISTER_NAME (regnum), raw_val[1]);
2711 else
2712 printf_filtered ("%10.10s: %8x%8.8x ",
2713 REGISTER_NAME (regnum),
2714 raw_val[0], raw_val[1]);
2715 }
2716 }
2717 printf_unfiltered ("\n");
2718 }
2719
2720 if (fpregs)
2721 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2722 pa_print_fp_reg (i);
2723 }
2724
2725 /************* new function ******************/
2726 static void
2727 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2728 struct ui_file *stream)
2729 {
2730 int i, j;
2731 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2732 long long_val;
2733 enum precision_type precision;
2734
2735 precision = unspecified_precision;
2736
2737 for (i = 0; i < 18; i++)
2738 {
2739 for (j = 0; j < 4; j++)
2740 {
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2743 A: ? */
2744 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2745
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2748 if (!is_pa_2)
2749 {
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
2753 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2754 }
2755 else
2756 {
2757 /* raw_val = extract_signed_integer(&raw_val, 8); */
2758 if (raw_val[0] == 0)
2759 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2760 raw_val[1]);
2761 else
2762 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2763 raw_val[0], raw_val[1]);
2764 }
2765 }
2766 fprintf_unfiltered (stream, "\n");
2767 }
2768
2769 if (fpregs)
2770 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2771 pa_strcat_fp_reg (i, stream, precision);
2772 }
2773
2774 static void
2775 pa_print_fp_reg (int i)
2776 {
2777 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2778 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2779
2780 /* Get 32bits of data. */
2781 read_relative_register_raw_bytes (i, raw_buffer);
2782
2783 /* Put it in the buffer. No conversions are ever necessary. */
2784 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2785
2786 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2787 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2788 fputs_filtered ("(single precision) ", gdb_stdout);
2789
2790 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2791 1, 0, Val_pretty_default);
2792 printf_filtered ("\n");
2793
2794 /* If "i" is even, then this register can also be a double-precision
2795 FP register. Dump it out as such. */
2796 if ((i % 2) == 0)
2797 {
2798 /* Get the data in raw format for the 2nd half. */
2799 read_relative_register_raw_bytes (i + 1, raw_buffer);
2800
2801 /* Copy it into the appropriate part of the virtual buffer. */
2802 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2803 REGISTER_RAW_SIZE (i));
2804
2805 /* Dump it as a double. */
2806 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2807 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2808 fputs_filtered ("(double precision) ", gdb_stdout);
2809
2810 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2811 1, 0, Val_pretty_default);
2812 printf_filtered ("\n");
2813 }
2814 }
2815
2816 /*************** new function ***********************/
2817 static void
2818 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2819 {
2820 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2821 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2822
2823 fputs_filtered (REGISTER_NAME (i), stream);
2824 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2825
2826 /* Get 32bits of data. */
2827 read_relative_register_raw_bytes (i, raw_buffer);
2828
2829 /* Put it in the buffer. No conversions are ever necessary. */
2830 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2831
2832 if (precision == double_precision && (i % 2) == 0)
2833 {
2834
2835 char raw_buf[MAX_REGISTER_RAW_SIZE];
2836
2837 /* Get the data in raw format for the 2nd half. */
2838 read_relative_register_raw_bytes (i + 1, raw_buf);
2839
2840 /* Copy it into the appropriate part of the virtual buffer. */
2841 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2842
2843 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2844 1, 0, Val_pretty_default);
2845
2846 }
2847 else
2848 {
2849 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2850 1, 0, Val_pretty_default);
2851 }
2852
2853 }
2854
2855 /* Return one if PC is in the call path of a trampoline, else return zero.
2856
2857 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2858 just shared library trampolines (import, export). */
2859
2860 int
2861 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2862 {
2863 struct minimal_symbol *minsym;
2864 struct unwind_table_entry *u;
2865 static CORE_ADDR dyncall = 0;
2866 static CORE_ADDR sr4export = 0;
2867
2868 #ifdef GDB_TARGET_IS_HPPA_20W
2869 /* PA64 has a completely different stub/trampoline scheme. Is it
2870 better? Maybe. It's certainly harder to determine with any
2871 certainty that we are in a stub because we can not refer to the
2872 unwinders to help.
2873
2874 The heuristic is simple. Try to lookup the current PC value in th
2875 minimal symbol table. If that fails, then assume we are not in a
2876 stub and return.
2877
2878 Then see if the PC value falls within the section bounds for the
2879 section containing the minimal symbol we found in the first
2880 step. If it does, then assume we are not in a stub and return.
2881
2882 Finally peek at the instructions to see if they look like a stub. */
2883 {
2884 struct minimal_symbol *minsym;
2885 asection *sec;
2886 CORE_ADDR addr;
2887 int insn, i;
2888
2889 minsym = lookup_minimal_symbol_by_pc (pc);
2890 if (! minsym)
2891 return 0;
2892
2893 sec = SYMBOL_BFD_SECTION (minsym);
2894
2895 if (sec->vma <= pc
2896 && sec->vma + sec->_cooked_size < pc)
2897 return 0;
2898
2899 /* We might be in a stub. Peek at the instructions. Stubs are 3
2900 instructions long. */
2901 insn = read_memory_integer (pc, 4);
2902
2903 /* Find out where we we think we are within the stub. */
2904 if ((insn & 0xffffc00e) == 0x53610000)
2905 addr = pc;
2906 else if ((insn & 0xffffffff) == 0xe820d000)
2907 addr = pc - 4;
2908 else if ((insn & 0xffffc00e) == 0x537b0000)
2909 addr = pc - 8;
2910 else
2911 return 0;
2912
2913 /* Now verify each insn in the range looks like a stub instruction. */
2914 insn = read_memory_integer (addr, 4);
2915 if ((insn & 0xffffc00e) != 0x53610000)
2916 return 0;
2917
2918 /* Now verify each insn in the range looks like a stub instruction. */
2919 insn = read_memory_integer (addr + 4, 4);
2920 if ((insn & 0xffffffff) != 0xe820d000)
2921 return 0;
2922
2923 /* Now verify each insn in the range looks like a stub instruction. */
2924 insn = read_memory_integer (addr + 8, 4);
2925 if ((insn & 0xffffc00e) != 0x537b0000)
2926 return 0;
2927
2928 /* Looks like a stub. */
2929 return 1;
2930 }
2931 #endif
2932
2933 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2934 new exec file */
2935
2936 /* First see if PC is in one of the two C-library trampolines. */
2937 if (!dyncall)
2938 {
2939 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2940 if (minsym)
2941 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2942 else
2943 dyncall = -1;
2944 }
2945
2946 if (!sr4export)
2947 {
2948 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2949 if (minsym)
2950 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2951 else
2952 sr4export = -1;
2953 }
2954
2955 if (pc == dyncall || pc == sr4export)
2956 return 1;
2957
2958 minsym = lookup_minimal_symbol_by_pc (pc);
2959 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2960 return 1;
2961
2962 /* Get the unwind descriptor corresponding to PC, return zero
2963 if no unwind was found. */
2964 u = find_unwind_entry (pc);
2965 if (!u)
2966 return 0;
2967
2968 /* If this isn't a linker stub, then return now. */
2969 if (u->stub_unwind.stub_type == 0)
2970 return 0;
2971
2972 /* By definition a long-branch stub is a call stub. */
2973 if (u->stub_unwind.stub_type == LONG_BRANCH)
2974 return 1;
2975
2976 /* The call and return path execute the same instructions within
2977 an IMPORT stub! So an IMPORT stub is both a call and return
2978 trampoline. */
2979 if (u->stub_unwind.stub_type == IMPORT)
2980 return 1;
2981
2982 /* Parameter relocation stubs always have a call path and may have a
2983 return path. */
2984 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2985 || u->stub_unwind.stub_type == EXPORT)
2986 {
2987 CORE_ADDR addr;
2988
2989 /* Search forward from the current PC until we hit a branch
2990 or the end of the stub. */
2991 for (addr = pc; addr <= u->region_end; addr += 4)
2992 {
2993 unsigned long insn;
2994
2995 insn = read_memory_integer (addr, 4);
2996
2997 /* Does it look like a bl? If so then it's the call path, if
2998 we find a bv or be first, then we're on the return path. */
2999 if ((insn & 0xfc00e000) == 0xe8000000)
3000 return 1;
3001 else if ((insn & 0xfc00e001) == 0xe800c000
3002 || (insn & 0xfc000000) == 0xe0000000)
3003 return 0;
3004 }
3005
3006 /* Should never happen. */
3007 warning ("Unable to find branch in parameter relocation stub.\n");
3008 return 0;
3009 }
3010
3011 /* Unknown stub type. For now, just return zero. */
3012 return 0;
3013 }
3014
3015 /* Return one if PC is in the return path of a trampoline, else return zero.
3016
3017 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3018 just shared library trampolines (import, export). */
3019
3020 int
3021 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3022 {
3023 struct unwind_table_entry *u;
3024
3025 /* Get the unwind descriptor corresponding to PC, return zero
3026 if no unwind was found. */
3027 u = find_unwind_entry (pc);
3028 if (!u)
3029 return 0;
3030
3031 /* If this isn't a linker stub or it's just a long branch stub, then
3032 return zero. */
3033 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3034 return 0;
3035
3036 /* The call and return path execute the same instructions within
3037 an IMPORT stub! So an IMPORT stub is both a call and return
3038 trampoline. */
3039 if (u->stub_unwind.stub_type == IMPORT)
3040 return 1;
3041
3042 /* Parameter relocation stubs always have a call path and may have a
3043 return path. */
3044 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3045 || u->stub_unwind.stub_type == EXPORT)
3046 {
3047 CORE_ADDR addr;
3048
3049 /* Search forward from the current PC until we hit a branch
3050 or the end of the stub. */
3051 for (addr = pc; addr <= u->region_end; addr += 4)
3052 {
3053 unsigned long insn;
3054
3055 insn = read_memory_integer (addr, 4);
3056
3057 /* Does it look like a bl? If so then it's the call path, if
3058 we find a bv or be first, then we're on the return path. */
3059 if ((insn & 0xfc00e000) == 0xe8000000)
3060 return 0;
3061 else if ((insn & 0xfc00e001) == 0xe800c000
3062 || (insn & 0xfc000000) == 0xe0000000)
3063 return 1;
3064 }
3065
3066 /* Should never happen. */
3067 warning ("Unable to find branch in parameter relocation stub.\n");
3068 return 0;
3069 }
3070
3071 /* Unknown stub type. For now, just return zero. */
3072 return 0;
3073
3074 }
3075
3076 /* Figure out if PC is in a trampoline, and if so find out where
3077 the trampoline will jump to. If not in a trampoline, return zero.
3078
3079 Simple code examination probably is not a good idea since the code
3080 sequences in trampolines can also appear in user code.
3081
3082 We use unwinds and information from the minimal symbol table to
3083 determine when we're in a trampoline. This won't work for ELF
3084 (yet) since it doesn't create stub unwind entries. Whether or
3085 not ELF will create stub unwinds or normal unwinds for linker
3086 stubs is still being debated.
3087
3088 This should handle simple calls through dyncall or sr4export,
3089 long calls, argument relocation stubs, and dyncall/sr4export
3090 calling an argument relocation stub. It even handles some stubs
3091 used in dynamic executables. */
3092
3093 CORE_ADDR
3094 skip_trampoline_code (CORE_ADDR pc, char *name)
3095 {
3096 long orig_pc = pc;
3097 long prev_inst, curr_inst, loc;
3098 static CORE_ADDR dyncall = 0;
3099 static CORE_ADDR dyncall_external = 0;
3100 static CORE_ADDR sr4export = 0;
3101 struct minimal_symbol *msym;
3102 struct unwind_table_entry *u;
3103
3104 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3105 new exec file */
3106
3107 if (!dyncall)
3108 {
3109 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3110 if (msym)
3111 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3112 else
3113 dyncall = -1;
3114 }
3115
3116 if (!dyncall_external)
3117 {
3118 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3119 if (msym)
3120 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3121 else
3122 dyncall_external = -1;
3123 }
3124
3125 if (!sr4export)
3126 {
3127 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3128 if (msym)
3129 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3130 else
3131 sr4export = -1;
3132 }
3133
3134 /* Addresses passed to dyncall may *NOT* be the actual address
3135 of the function. So we may have to do something special. */
3136 if (pc == dyncall)
3137 {
3138 pc = (CORE_ADDR) read_register (22);
3139
3140 /* If bit 30 (counting from the left) is on, then pc is the address of
3141 the PLT entry for this function, not the address of the function
3142 itself. Bit 31 has meaning too, but only for MPE. */
3143 if (pc & 0x2)
3144 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3145 }
3146 if (pc == dyncall_external)
3147 {
3148 pc = (CORE_ADDR) read_register (22);
3149 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3150 }
3151 else if (pc == sr4export)
3152 pc = (CORE_ADDR) (read_register (22));
3153
3154 /* Get the unwind descriptor corresponding to PC, return zero
3155 if no unwind was found. */
3156 u = find_unwind_entry (pc);
3157 if (!u)
3158 return 0;
3159
3160 /* If this isn't a linker stub, then return now. */
3161 /* elz: attention here! (FIXME) because of a compiler/linker
3162 error, some stubs which should have a non zero stub_unwind.stub_type
3163 have unfortunately a value of zero. So this function would return here
3164 as if we were not in a trampoline. To fix this, we go look at the partial
3165 symbol information, which reports this guy as a stub.
3166 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3167 partial symbol information is also wrong sometimes. This is because
3168 when it is entered (somread.c::som_symtab_read()) it can happen that
3169 if the type of the symbol (from the som) is Entry, and the symbol is
3170 in a shared library, then it can also be a trampoline. This would
3171 be OK, except that I believe the way they decide if we are ina shared library
3172 does not work. SOOOO..., even if we have a regular function w/o trampolines
3173 its minimal symbol can be assigned type mst_solib_trampoline.
3174 Also, if we find that the symbol is a real stub, then we fix the unwind
3175 descriptor, and define the stub type to be EXPORT.
3176 Hopefully this is correct most of the times. */
3177 if (u->stub_unwind.stub_type == 0)
3178 {
3179
3180 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3181 we can delete all the code which appears between the lines */
3182 /*--------------------------------------------------------------------------*/
3183 msym = lookup_minimal_symbol_by_pc (pc);
3184
3185 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3186 return orig_pc == pc ? 0 : pc & ~0x3;
3187
3188 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3189 {
3190 struct objfile *objfile;
3191 struct minimal_symbol *msymbol;
3192 int function_found = 0;
3193
3194 /* go look if there is another minimal symbol with the same name as
3195 this one, but with type mst_text. This would happen if the msym
3196 is an actual trampoline, in which case there would be another
3197 symbol with the same name corresponding to the real function */
3198
3199 ALL_MSYMBOLS (objfile, msymbol)
3200 {
3201 if (MSYMBOL_TYPE (msymbol) == mst_text
3202 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3203 {
3204 function_found = 1;
3205 break;
3206 }
3207 }
3208
3209 if (function_found)
3210 /* the type of msym is correct (mst_solib_trampoline), but
3211 the unwind info is wrong, so set it to the correct value */
3212 u->stub_unwind.stub_type = EXPORT;
3213 else
3214 /* the stub type info in the unwind is correct (this is not a
3215 trampoline), but the msym type information is wrong, it
3216 should be mst_text. So we need to fix the msym, and also
3217 get out of this function */
3218 {
3219 MSYMBOL_TYPE (msym) = mst_text;
3220 return orig_pc == pc ? 0 : pc & ~0x3;
3221 }
3222 }
3223
3224 /*--------------------------------------------------------------------------*/
3225 }
3226
3227 /* It's a stub. Search for a branch and figure out where it goes.
3228 Note we have to handle multi insn branch sequences like ldil;ble.
3229 Most (all?) other branches can be determined by examining the contents
3230 of certain registers and the stack. */
3231
3232 loc = pc;
3233 curr_inst = 0;
3234 prev_inst = 0;
3235 while (1)
3236 {
3237 /* Make sure we haven't walked outside the range of this stub. */
3238 if (u != find_unwind_entry (loc))
3239 {
3240 warning ("Unable to find branch in linker stub");
3241 return orig_pc == pc ? 0 : pc & ~0x3;
3242 }
3243
3244 prev_inst = curr_inst;
3245 curr_inst = read_memory_integer (loc, 4);
3246
3247 /* Does it look like a branch external using %r1? Then it's the
3248 branch from the stub to the actual function. */
3249 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3250 {
3251 /* Yup. See if the previous instruction loaded
3252 a value into %r1. If so compute and return the jump address. */
3253 if ((prev_inst & 0xffe00000) == 0x20200000)
3254 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3255 else
3256 {
3257 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3258 return orig_pc == pc ? 0 : pc & ~0x3;
3259 }
3260 }
3261
3262 /* Does it look like a be 0(sr0,%r21)? OR
3263 Does it look like a be, n 0(sr0,%r21)? OR
3264 Does it look like a bve (r21)? (this is on PA2.0)
3265 Does it look like a bve, n(r21)? (this is also on PA2.0)
3266 That's the branch from an
3267 import stub to an export stub.
3268
3269 It is impossible to determine the target of the branch via
3270 simple examination of instructions and/or data (consider
3271 that the address in the plabel may be the address of the
3272 bind-on-reference routine in the dynamic loader).
3273
3274 So we have try an alternative approach.
3275
3276 Get the name of the symbol at our current location; it should
3277 be a stub symbol with the same name as the symbol in the
3278 shared library.
3279
3280 Then lookup a minimal symbol with the same name; we should
3281 get the minimal symbol for the target routine in the shared
3282 library as those take precedence of import/export stubs. */
3283 if ((curr_inst == 0xe2a00000) ||
3284 (curr_inst == 0xe2a00002) ||
3285 (curr_inst == 0xeaa0d000) ||
3286 (curr_inst == 0xeaa0d002))
3287 {
3288 struct minimal_symbol *stubsym, *libsym;
3289
3290 stubsym = lookup_minimal_symbol_by_pc (loc);
3291 if (stubsym == NULL)
3292 {
3293 warning ("Unable to find symbol for 0x%x", loc);
3294 return orig_pc == pc ? 0 : pc & ~0x3;
3295 }
3296
3297 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3298 if (libsym == NULL)
3299 {
3300 warning ("Unable to find library symbol for %s\n",
3301 SYMBOL_NAME (stubsym));
3302 return orig_pc == pc ? 0 : pc & ~0x3;
3303 }
3304
3305 return SYMBOL_VALUE (libsym);
3306 }
3307
3308 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3309 branch from the stub to the actual function. */
3310 /*elz */
3311 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3312 || (curr_inst & 0xffe0e000) == 0xe8000000
3313 || (curr_inst & 0xffe0e000) == 0xe800A000)
3314 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3315
3316 /* Does it look like bv (rp)? Note this depends on the
3317 current stack pointer being the same as the stack
3318 pointer in the stub itself! This is a branch on from the
3319 stub back to the original caller. */
3320 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3321 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3322 {
3323 /* Yup. See if the previous instruction loaded
3324 rp from sp - 8. */
3325 if (prev_inst == 0x4bc23ff1)
3326 return (read_memory_integer
3327 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3328 else
3329 {
3330 warning ("Unable to find restore of %%rp before bv (%%rp).");
3331 return orig_pc == pc ? 0 : pc & ~0x3;
3332 }
3333 }
3334
3335 /* elz: added this case to capture the new instruction
3336 at the end of the return part of an export stub used by
3337 the PA2.0: BVE, n (rp) */
3338 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3339 {
3340 return (read_memory_integer
3341 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3342 }
3343
3344 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3345 the original caller from the stub. Used in dynamic executables. */
3346 else if (curr_inst == 0xe0400002)
3347 {
3348 /* The value we jump to is sitting in sp - 24. But that's
3349 loaded several instructions before the be instruction.
3350 I guess we could check for the previous instruction being
3351 mtsp %r1,%sr0 if we want to do sanity checking. */
3352 return (read_memory_integer
3353 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3354 }
3355
3356 /* Haven't found the branch yet, but we're still in the stub.
3357 Keep looking. */
3358 loc += 4;
3359 }
3360 }
3361
3362
3363 /* For the given instruction (INST), return any adjustment it makes
3364 to the stack pointer or zero for no adjustment.
3365
3366 This only handles instructions commonly found in prologues. */
3367
3368 static int
3369 prologue_inst_adjust_sp (unsigned long inst)
3370 {
3371 /* This must persist across calls. */
3372 static int save_high21;
3373
3374 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3375 if ((inst & 0xffffc000) == 0x37de0000)
3376 return extract_14 (inst);
3377
3378 /* stwm X,D(sp) */
3379 if ((inst & 0xffe00000) == 0x6fc00000)
3380 return extract_14 (inst);
3381
3382 /* std,ma X,D(sp) */
3383 if ((inst & 0xffe00008) == 0x73c00008)
3384 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3385
3386 /* addil high21,%r1; ldo low11,(%r1),%r30)
3387 save high bits in save_high21 for later use. */
3388 if ((inst & 0xffe00000) == 0x28200000)
3389 {
3390 save_high21 = extract_21 (inst);
3391 return 0;
3392 }
3393
3394 if ((inst & 0xffff0000) == 0x343e0000)
3395 return save_high21 + extract_14 (inst);
3396
3397 /* fstws as used by the HP compilers. */
3398 if ((inst & 0xffffffe0) == 0x2fd01220)
3399 return extract_5_load (inst);
3400
3401 /* No adjustment. */
3402 return 0;
3403 }
3404
3405 /* Return nonzero if INST is a branch of some kind, else return zero. */
3406
3407 static int
3408 is_branch (unsigned long inst)
3409 {
3410 switch (inst >> 26)
3411 {
3412 case 0x20:
3413 case 0x21:
3414 case 0x22:
3415 case 0x23:
3416 case 0x27:
3417 case 0x28:
3418 case 0x29:
3419 case 0x2a:
3420 case 0x2b:
3421 case 0x2f:
3422 case 0x30:
3423 case 0x31:
3424 case 0x32:
3425 case 0x33:
3426 case 0x38:
3427 case 0x39:
3428 case 0x3a:
3429 case 0x3b:
3430 return 1;
3431
3432 default:
3433 return 0;
3434 }
3435 }
3436
3437 /* Return the register number for a GR which is saved by INST or
3438 zero it INST does not save a GR. */
3439
3440 static int
3441 inst_saves_gr (unsigned long inst)
3442 {
3443 /* Does it look like a stw? */
3444 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3445 || (inst >> 26) == 0x1f
3446 || ((inst >> 26) == 0x1f
3447 && ((inst >> 6) == 0xa)))
3448 return extract_5R_store (inst);
3449
3450 /* Does it look like a std? */
3451 if ((inst >> 26) == 0x1c
3452 || ((inst >> 26) == 0x03
3453 && ((inst >> 6) & 0xf) == 0xb))
3454 return extract_5R_store (inst);
3455
3456 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3457 if ((inst >> 26) == 0x1b)
3458 return extract_5R_store (inst);
3459
3460 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3461 too. */
3462 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3463 || ((inst >> 26) == 0x3
3464 && (((inst >> 6) & 0xf) == 0x8
3465 || (inst >> 6) & 0xf) == 0x9))
3466 return extract_5R_store (inst);
3467
3468 return 0;
3469 }
3470
3471 /* Return the register number for a FR which is saved by INST or
3472 zero it INST does not save a FR.
3473
3474 Note we only care about full 64bit register stores (that's the only
3475 kind of stores the prologue will use).
3476
3477 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3478
3479 static int
3480 inst_saves_fr (unsigned long inst)
3481 {
3482 /* is this an FSTD ? */
3483 if ((inst & 0xfc00dfc0) == 0x2c001200)
3484 return extract_5r_store (inst);
3485 if ((inst & 0xfc000002) == 0x70000002)
3486 return extract_5R_store (inst);
3487 /* is this an FSTW ? */
3488 if ((inst & 0xfc00df80) == 0x24001200)
3489 return extract_5r_store (inst);
3490 if ((inst & 0xfc000002) == 0x7c000000)
3491 return extract_5R_store (inst);
3492 return 0;
3493 }
3494
3495 /* Advance PC across any function entry prologue instructions
3496 to reach some "real" code.
3497
3498 Use information in the unwind table to determine what exactly should
3499 be in the prologue. */
3500
3501
3502 CORE_ADDR
3503 skip_prologue_hard_way (CORE_ADDR pc)
3504 {
3505 char buf[4];
3506 CORE_ADDR orig_pc = pc;
3507 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3508 unsigned long args_stored, status, i, restart_gr, restart_fr;
3509 struct unwind_table_entry *u;
3510
3511 restart_gr = 0;
3512 restart_fr = 0;
3513
3514 restart:
3515 u = find_unwind_entry (pc);
3516 if (!u)
3517 return pc;
3518
3519 /* If we are not at the beginning of a function, then return now. */
3520 if ((pc & ~0x3) != u->region_start)
3521 return pc;
3522
3523 /* This is how much of a frame adjustment we need to account for. */
3524 stack_remaining = u->Total_frame_size << 3;
3525
3526 /* Magic register saves we want to know about. */
3527 save_rp = u->Save_RP;
3528 save_sp = u->Save_SP;
3529
3530 /* An indication that args may be stored into the stack. Unfortunately
3531 the HPUX compilers tend to set this in cases where no args were
3532 stored too!. */
3533 args_stored = 1;
3534
3535 /* Turn the Entry_GR field into a bitmask. */
3536 save_gr = 0;
3537 for (i = 3; i < u->Entry_GR + 3; i++)
3538 {
3539 /* Frame pointer gets saved into a special location. */
3540 if (u->Save_SP && i == FP_REGNUM)
3541 continue;
3542
3543 save_gr |= (1 << i);
3544 }
3545 save_gr &= ~restart_gr;
3546
3547 /* Turn the Entry_FR field into a bitmask too. */
3548 save_fr = 0;
3549 for (i = 12; i < u->Entry_FR + 12; i++)
3550 save_fr |= (1 << i);
3551 save_fr &= ~restart_fr;
3552
3553 /* Loop until we find everything of interest or hit a branch.
3554
3555 For unoptimized GCC code and for any HP CC code this will never ever
3556 examine any user instructions.
3557
3558 For optimzied GCC code we're faced with problems. GCC will schedule
3559 its prologue and make prologue instructions available for delay slot
3560 filling. The end result is user code gets mixed in with the prologue
3561 and a prologue instruction may be in the delay slot of the first branch
3562 or call.
3563
3564 Some unexpected things are expected with debugging optimized code, so
3565 we allow this routine to walk past user instructions in optimized
3566 GCC code. */
3567 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3568 || args_stored)
3569 {
3570 unsigned int reg_num;
3571 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3572 unsigned long old_save_rp, old_save_sp, next_inst;
3573
3574 /* Save copies of all the triggers so we can compare them later
3575 (only for HPC). */
3576 old_save_gr = save_gr;
3577 old_save_fr = save_fr;
3578 old_save_rp = save_rp;
3579 old_save_sp = save_sp;
3580 old_stack_remaining = stack_remaining;
3581
3582 status = target_read_memory (pc, buf, 4);
3583 inst = extract_unsigned_integer (buf, 4);
3584
3585 /* Yow! */
3586 if (status != 0)
3587 return pc;
3588
3589 /* Note the interesting effects of this instruction. */
3590 stack_remaining -= prologue_inst_adjust_sp (inst);
3591
3592 /* There are limited ways to store the return pointer into the
3593 stack. */
3594 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3595 save_rp = 0;
3596
3597 /* These are the only ways we save SP into the stack. At this time
3598 the HP compilers never bother to save SP into the stack. */
3599 if ((inst & 0xffffc000) == 0x6fc10000
3600 || (inst & 0xffffc00c) == 0x73c10008)
3601 save_sp = 0;
3602
3603 /* Are we loading some register with an offset from the argument
3604 pointer? */
3605 if ((inst & 0xffe00000) == 0x37a00000
3606 || (inst & 0xffffffe0) == 0x081d0240)
3607 {
3608 pc += 4;
3609 continue;
3610 }
3611
3612 /* Account for general and floating-point register saves. */
3613 reg_num = inst_saves_gr (inst);
3614 save_gr &= ~(1 << reg_num);
3615
3616 /* Ugh. Also account for argument stores into the stack.
3617 Unfortunately args_stored only tells us that some arguments
3618 where stored into the stack. Not how many or what kind!
3619
3620 This is a kludge as on the HP compiler sets this bit and it
3621 never does prologue scheduling. So once we see one, skip past
3622 all of them. We have similar code for the fp arg stores below.
3623
3624 FIXME. Can still die if we have a mix of GR and FR argument
3625 stores! */
3626 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3627 {
3628 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3629 {
3630 pc += 4;
3631 status = target_read_memory (pc, buf, 4);
3632 inst = extract_unsigned_integer (buf, 4);
3633 if (status != 0)
3634 return pc;
3635 reg_num = inst_saves_gr (inst);
3636 }
3637 args_stored = 0;
3638 continue;
3639 }
3640
3641 reg_num = inst_saves_fr (inst);
3642 save_fr &= ~(1 << reg_num);
3643
3644 status = target_read_memory (pc + 4, buf, 4);
3645 next_inst = extract_unsigned_integer (buf, 4);
3646
3647 /* Yow! */
3648 if (status != 0)
3649 return pc;
3650
3651 /* We've got to be read to handle the ldo before the fp register
3652 save. */
3653 if ((inst & 0xfc000000) == 0x34000000
3654 && inst_saves_fr (next_inst) >= 4
3655 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3656 {
3657 /* So we drop into the code below in a reasonable state. */
3658 reg_num = inst_saves_fr (next_inst);
3659 pc -= 4;
3660 }
3661
3662 /* Ugh. Also account for argument stores into the stack.
3663 This is a kludge as on the HP compiler sets this bit and it
3664 never does prologue scheduling. So once we see one, skip past
3665 all of them. */
3666 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3667 {
3668 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3669 {
3670 pc += 8;
3671 status = target_read_memory (pc, buf, 4);
3672 inst = extract_unsigned_integer (buf, 4);
3673 if (status != 0)
3674 return pc;
3675 if ((inst & 0xfc000000) != 0x34000000)
3676 break;
3677 status = target_read_memory (pc + 4, buf, 4);
3678 next_inst = extract_unsigned_integer (buf, 4);
3679 if (status != 0)
3680 return pc;
3681 reg_num = inst_saves_fr (next_inst);
3682 }
3683 args_stored = 0;
3684 continue;
3685 }
3686
3687 /* Quit if we hit any kind of branch. This can happen if a prologue
3688 instruction is in the delay slot of the first call/branch. */
3689 if (is_branch (inst))
3690 break;
3691
3692 /* What a crock. The HP compilers set args_stored even if no
3693 arguments were stored into the stack (boo hiss). This could
3694 cause this code to then skip a bunch of user insns (up to the
3695 first branch).
3696
3697 To combat this we try to identify when args_stored was bogusly
3698 set and clear it. We only do this when args_stored is nonzero,
3699 all other resources are accounted for, and nothing changed on
3700 this pass. */
3701 if (args_stored
3702 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3703 && old_save_gr == save_gr && old_save_fr == save_fr
3704 && old_save_rp == save_rp && old_save_sp == save_sp
3705 && old_stack_remaining == stack_remaining)
3706 break;
3707
3708 /* Bump the PC. */
3709 pc += 4;
3710 }
3711
3712 /* We've got a tenative location for the end of the prologue. However
3713 because of limitations in the unwind descriptor mechanism we may
3714 have went too far into user code looking for the save of a register
3715 that does not exist. So, if there registers we expected to be saved
3716 but never were, mask them out and restart.
3717
3718 This should only happen in optimized code, and should be very rare. */
3719 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3720 {
3721 pc = orig_pc;
3722 restart_gr = save_gr;
3723 restart_fr = save_fr;
3724 goto restart;
3725 }
3726
3727 return pc;
3728 }
3729
3730
3731 /* Return the address of the PC after the last prologue instruction if
3732 we can determine it from the debug symbols. Else return zero. */
3733
3734 static CORE_ADDR
3735 after_prologue (CORE_ADDR pc)
3736 {
3737 struct symtab_and_line sal;
3738 CORE_ADDR func_addr, func_end;
3739 struct symbol *f;
3740
3741 /* If we can not find the symbol in the partial symbol table, then
3742 there is no hope we can determine the function's start address
3743 with this code. */
3744 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3745 return 0;
3746
3747 /* Get the line associated with FUNC_ADDR. */
3748 sal = find_pc_line (func_addr, 0);
3749
3750 /* There are only two cases to consider. First, the end of the source line
3751 is within the function bounds. In that case we return the end of the
3752 source line. Second is the end of the source line extends beyond the
3753 bounds of the current function. We need to use the slow code to
3754 examine instructions in that case.
3755
3756 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3757 the wrong thing to do. In fact, it should be entirely possible for this
3758 function to always return zero since the slow instruction scanning code
3759 is supposed to *always* work. If it does not, then it is a bug. */
3760 if (sal.end < func_end)
3761 return sal.end;
3762 else
3763 return 0;
3764 }
3765
3766 /* To skip prologues, I use this predicate. Returns either PC itself
3767 if the code at PC does not look like a function prologue; otherwise
3768 returns an address that (if we're lucky) follows the prologue. If
3769 LENIENT, then we must skip everything which is involved in setting
3770 up the frame (it's OK to skip more, just so long as we don't skip
3771 anything which might clobber the registers which are being saved.
3772 Currently we must not skip more on the alpha, but we might the lenient
3773 stuff some day. */
3774
3775 CORE_ADDR
3776 hppa_skip_prologue (CORE_ADDR pc)
3777 {
3778 unsigned long inst;
3779 int offset;
3780 CORE_ADDR post_prologue_pc;
3781 char buf[4];
3782
3783 /* See if we can determine the end of the prologue via the symbol table.
3784 If so, then return either PC, or the PC after the prologue, whichever
3785 is greater. */
3786
3787 post_prologue_pc = after_prologue (pc);
3788
3789 /* If after_prologue returned a useful address, then use it. Else
3790 fall back on the instruction skipping code.
3791
3792 Some folks have claimed this causes problems because the breakpoint
3793 may be the first instruction of the prologue. If that happens, then
3794 the instruction skipping code has a bug that needs to be fixed. */
3795 if (post_prologue_pc != 0)
3796 return max (pc, post_prologue_pc);
3797 else
3798 return (skip_prologue_hard_way (pc));
3799 }
3800
3801 /* Put here the code to store, into a struct frame_saved_regs,
3802 the addresses of the saved registers of frame described by FRAME_INFO.
3803 This includes special registers such as pc and fp saved in special
3804 ways in the stack frame. sp is even more special:
3805 the address we return for it IS the sp for the next frame. */
3806
3807 void
3808 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3809 struct frame_saved_regs *frame_saved_regs)
3810 {
3811 CORE_ADDR pc;
3812 struct unwind_table_entry *u;
3813 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3814 int status, i, reg;
3815 char buf[4];
3816 int fp_loc = -1;
3817 int final_iteration;
3818
3819 /* Zero out everything. */
3820 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3821
3822 /* Call dummy frames always look the same, so there's no need to
3823 examine the dummy code to determine locations of saved registers;
3824 instead, let find_dummy_frame_regs fill in the correct offsets
3825 for the saved registers. */
3826 if ((frame_info->pc >= frame_info->frame
3827 && frame_info->pc <= (frame_info->frame
3828 /* A call dummy is sized in words, but it is
3829 actually a series of instructions. Account
3830 for that scaling factor. */
3831 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3832 * CALL_DUMMY_LENGTH)
3833 /* Similarly we have to account for 64bit
3834 wide register saves. */
3835 + (32 * REGISTER_SIZE)
3836 /* We always consider FP regs 8 bytes long. */
3837 + (NUM_REGS - FP0_REGNUM) * 8
3838 /* Similarly we have to account for 64bit
3839 wide register saves. */
3840 + (6 * REGISTER_SIZE))))
3841 find_dummy_frame_regs (frame_info, frame_saved_regs);
3842
3843 /* Interrupt handlers are special too. They lay out the register
3844 state in the exact same order as the register numbers in GDB. */
3845 if (pc_in_interrupt_handler (frame_info->pc))
3846 {
3847 for (i = 0; i < NUM_REGS; i++)
3848 {
3849 /* SP is a little special. */
3850 if (i == SP_REGNUM)
3851 frame_saved_regs->regs[SP_REGNUM]
3852 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3853 TARGET_PTR_BIT / 8);
3854 else
3855 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3856 }
3857 return;
3858 }
3859
3860 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3861 /* Handle signal handler callers. */
3862 if (frame_info->signal_handler_caller)
3863 {
3864 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3865 return;
3866 }
3867 #endif
3868
3869 /* Get the starting address of the function referred to by the PC
3870 saved in frame. */
3871 pc = get_pc_function_start (frame_info->pc);
3872
3873 /* Yow! */
3874 u = find_unwind_entry (pc);
3875 if (!u)
3876 return;
3877
3878 /* This is how much of a frame adjustment we need to account for. */
3879 stack_remaining = u->Total_frame_size << 3;
3880
3881 /* Magic register saves we want to know about. */
3882 save_rp = u->Save_RP;
3883 save_sp = u->Save_SP;
3884
3885 /* Turn the Entry_GR field into a bitmask. */
3886 save_gr = 0;
3887 for (i = 3; i < u->Entry_GR + 3; i++)
3888 {
3889 /* Frame pointer gets saved into a special location. */
3890 if (u->Save_SP && i == FP_REGNUM)
3891 continue;
3892
3893 save_gr |= (1 << i);
3894 }
3895
3896 /* Turn the Entry_FR field into a bitmask too. */
3897 save_fr = 0;
3898 for (i = 12; i < u->Entry_FR + 12; i++)
3899 save_fr |= (1 << i);
3900
3901 /* The frame always represents the value of %sp at entry to the
3902 current function (and is thus equivalent to the "saved" stack
3903 pointer. */
3904 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3905
3906 /* Loop until we find everything of interest or hit a branch.
3907
3908 For unoptimized GCC code and for any HP CC code this will never ever
3909 examine any user instructions.
3910
3911 For optimized GCC code we're faced with problems. GCC will schedule
3912 its prologue and make prologue instructions available for delay slot
3913 filling. The end result is user code gets mixed in with the prologue
3914 and a prologue instruction may be in the delay slot of the first branch
3915 or call.
3916
3917 Some unexpected things are expected with debugging optimized code, so
3918 we allow this routine to walk past user instructions in optimized
3919 GCC code. */
3920 final_iteration = 0;
3921 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3922 && pc <= frame_info->pc)
3923 {
3924 status = target_read_memory (pc, buf, 4);
3925 inst = extract_unsigned_integer (buf, 4);
3926
3927 /* Yow! */
3928 if (status != 0)
3929 return;
3930
3931 /* Note the interesting effects of this instruction. */
3932 stack_remaining -= prologue_inst_adjust_sp (inst);
3933
3934 /* There are limited ways to store the return pointer into the
3935 stack. */
3936 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3937 {
3938 save_rp = 0;
3939 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3940 }
3941 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3942 {
3943 save_rp = 0;
3944 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3945 }
3946
3947 /* Note if we saved SP into the stack. This also happens to indicate
3948 the location of the saved frame pointer. */
3949 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3950 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3951 {
3952 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3953 save_sp = 0;
3954 }
3955
3956 /* Account for general and floating-point register saves. */
3957 reg = inst_saves_gr (inst);
3958 if (reg >= 3 && reg <= 18
3959 && (!u->Save_SP || reg != FP_REGNUM))
3960 {
3961 save_gr &= ~(1 << reg);
3962
3963 /* stwm with a positive displacement is a *post modify*. */
3964 if ((inst >> 26) == 0x1b
3965 && extract_14 (inst) >= 0)
3966 frame_saved_regs->regs[reg] = frame_info->frame;
3967 /* A std has explicit post_modify forms. */
3968 else if ((inst & 0xfc00000c0) == 0x70000008)
3969 frame_saved_regs->regs[reg] = frame_info->frame;
3970 else
3971 {
3972 CORE_ADDR offset;
3973
3974 if ((inst >> 26) == 0x1c)
3975 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3976 else if ((inst >> 26) == 0x03)
3977 offset = low_sign_extend (inst & 0x1f, 5);
3978 else
3979 offset = extract_14 (inst);
3980
3981 /* Handle code with and without frame pointers. */
3982 if (u->Save_SP)
3983 frame_saved_regs->regs[reg]
3984 = frame_info->frame + offset;
3985 else
3986 frame_saved_regs->regs[reg]
3987 = (frame_info->frame + (u->Total_frame_size << 3)
3988 + offset);
3989 }
3990 }
3991
3992
3993 /* GCC handles callee saved FP regs a little differently.
3994
3995 It emits an instruction to put the value of the start of
3996 the FP store area into %r1. It then uses fstds,ma with
3997 a basereg of %r1 for the stores.
3998
3999 HP CC emits them at the current stack pointer modifying
4000 the stack pointer as it stores each register. */
4001
4002 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4003 if ((inst & 0xffffc000) == 0x34610000
4004 || (inst & 0xffffc000) == 0x37c10000)
4005 fp_loc = extract_14 (inst);
4006
4007 reg = inst_saves_fr (inst);
4008 if (reg >= 12 && reg <= 21)
4009 {
4010 /* Note +4 braindamage below is necessary because the FP status
4011 registers are internally 8 registers rather than the expected
4012 4 registers. */
4013 save_fr &= ~(1 << reg);
4014 if (fp_loc == -1)
4015 {
4016 /* 1st HP CC FP register store. After this instruction
4017 we've set enough state that the GCC and HPCC code are
4018 both handled in the same manner. */
4019 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4020 fp_loc = 8;
4021 }
4022 else
4023 {
4024 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4025 = frame_info->frame + fp_loc;
4026 fp_loc += 8;
4027 }
4028 }
4029
4030 /* Quit if we hit any kind of branch the previous iteration.
4031 if (final_iteration)
4032 break;
4033
4034 /* We want to look precisely one instruction beyond the branch
4035 if we have not found everything yet. */
4036 if (is_branch (inst))
4037 final_iteration = 1;
4038
4039 /* Bump the PC. */
4040 pc += 4;
4041 }
4042 }
4043
4044
4045 /* Exception handling support for the HP-UX ANSI C++ compiler.
4046 The compiler (aCC) provides a callback for exception events;
4047 GDB can set a breakpoint on this callback and find out what
4048 exception event has occurred. */
4049
4050 /* The name of the hook to be set to point to the callback function */
4051 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4052 /* The name of the function to be used to set the hook value */
4053 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4054 /* The name of the callback function in end.o */
4055 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4056 /* Name of function in end.o on which a break is set (called by above) */
4057 static char HP_ACC_EH_break[] = "__d_eh_break";
4058 /* Name of flag (in end.o) that enables catching throws */
4059 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4060 /* Name of flag (in end.o) that enables catching catching */
4061 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4062 /* The enum used by aCC */
4063 typedef enum
4064 {
4065 __EH_NOTIFY_THROW,
4066 __EH_NOTIFY_CATCH
4067 }
4068 __eh_notification;
4069
4070 /* Is exception-handling support available with this executable? */
4071 static int hp_cxx_exception_support = 0;
4072 /* Has the initialize function been run? */
4073 int hp_cxx_exception_support_initialized = 0;
4074 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4075 extern int exception_support_initialized;
4076 /* Address of __eh_notify_hook */
4077 static CORE_ADDR eh_notify_hook_addr = 0;
4078 /* Address of __d_eh_notify_callback */
4079 static CORE_ADDR eh_notify_callback_addr = 0;
4080 /* Address of __d_eh_break */
4081 static CORE_ADDR eh_break_addr = 0;
4082 /* Address of __d_eh_catch_catch */
4083 static CORE_ADDR eh_catch_catch_addr = 0;
4084 /* Address of __d_eh_catch_throw */
4085 static CORE_ADDR eh_catch_throw_addr = 0;
4086 /* Sal for __d_eh_break */
4087 static struct symtab_and_line *break_callback_sal = 0;
4088
4089 /* Code in end.c expects __d_pid to be set in the inferior,
4090 otherwise __d_eh_notify_callback doesn't bother to call
4091 __d_eh_break! So we poke the pid into this symbol
4092 ourselves.
4093 0 => success
4094 1 => failure */
4095 int
4096 setup_d_pid_in_inferior (void)
4097 {
4098 CORE_ADDR anaddr;
4099 struct minimal_symbol *msymbol;
4100 char buf[4]; /* FIXME 32x64? */
4101
4102 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4103 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4104 if (msymbol == NULL)
4105 {
4106 warning ("Unable to find __d_pid symbol in object file.");
4107 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4108 return 1;
4109 }
4110
4111 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4112 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
4113 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4114 {
4115 warning ("Unable to write __d_pid");
4116 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4117 return 1;
4118 }
4119 return 0;
4120 }
4121
4122 /* Initialize exception catchpoint support by looking for the
4123 necessary hooks/callbacks in end.o, etc., and set the hook value to
4124 point to the required debug function
4125
4126 Return 0 => failure
4127 1 => success */
4128
4129 static int
4130 initialize_hp_cxx_exception_support (void)
4131 {
4132 struct symtabs_and_lines sals;
4133 struct cleanup *old_chain;
4134 struct cleanup *canonical_strings_chain = NULL;
4135 int i;
4136 char *addr_start;
4137 char *addr_end = NULL;
4138 char **canonical = (char **) NULL;
4139 int thread = -1;
4140 struct symbol *sym = NULL;
4141 struct minimal_symbol *msym = NULL;
4142 struct objfile *objfile;
4143 asection *shlib_info;
4144
4145 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4146 recursion is a possibility because finding the hook for exception
4147 callbacks involves making a call in the inferior, which means
4148 re-inserting breakpoints which can re-invoke this code */
4149
4150 static int recurse = 0;
4151 if (recurse > 0)
4152 {
4153 hp_cxx_exception_support_initialized = 0;
4154 exception_support_initialized = 0;
4155 return 0;
4156 }
4157
4158 hp_cxx_exception_support = 0;
4159
4160 /* First check if we have seen any HP compiled objects; if not,
4161 it is very unlikely that HP's idiosyncratic callback mechanism
4162 for exception handling debug support will be available!
4163 This will percolate back up to breakpoint.c, where our callers
4164 will decide to try the g++ exception-handling support instead. */
4165 if (!hp_som_som_object_present)
4166 return 0;
4167
4168 /* We have a SOM executable with SOM debug info; find the hooks */
4169
4170 /* First look for the notify hook provided by aCC runtime libs */
4171 /* If we find this symbol, we conclude that the executable must
4172 have HP aCC exception support built in. If this symbol is not
4173 found, even though we're a HP SOM-SOM file, we may have been
4174 built with some other compiler (not aCC). This results percolates
4175 back up to our callers in breakpoint.c which can decide to
4176 try the g++ style of exception support instead.
4177 If this symbol is found but the other symbols we require are
4178 not found, there is something weird going on, and g++ support
4179 should *not* be tried as an alternative.
4180
4181 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4182 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4183
4184 /* libCsup has this hook; it'll usually be non-debuggable */
4185 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4186 if (msym)
4187 {
4188 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4189 hp_cxx_exception_support = 1;
4190 }
4191 else
4192 {
4193 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4194 warning ("Executable may not have been compiled debuggable with HP aCC.");
4195 warning ("GDB will be unable to intercept exception events.");
4196 eh_notify_hook_addr = 0;
4197 hp_cxx_exception_support = 0;
4198 return 0;
4199 }
4200
4201 /* Next look for the notify callback routine in end.o */
4202 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4203 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4204 if (msym)
4205 {
4206 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4207 hp_cxx_exception_support = 1;
4208 }
4209 else
4210 {
4211 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4212 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4213 warning ("GDB will be unable to intercept exception events.");
4214 eh_notify_callback_addr = 0;
4215 return 0;
4216 }
4217
4218 #ifndef GDB_TARGET_IS_HPPA_20W
4219 /* Check whether the executable is dynamically linked or archive bound */
4220 /* With an archive-bound executable we can use the raw addresses we find
4221 for the callback function, etc. without modification. For an executable
4222 with shared libraries, we have to do more work to find the plabel, which
4223 can be the target of a call through $$dyncall from the aCC runtime support
4224 library (libCsup) which is linked shared by default by aCC. */
4225 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4226 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4227 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4228 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4229 {
4230 /* The minsym we have has the local code address, but that's not the
4231 plabel that can be used by an inter-load-module call. */
4232 /* Find solib handle for main image (which has end.o), and use that
4233 and the min sym as arguments to __d_shl_get() (which does the equivalent
4234 of shl_findsym()) to find the plabel. */
4235
4236 args_for_find_stub args;
4237 static char message[] = "Error while finding exception callback hook:\n";
4238
4239 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4240 args.msym = msym;
4241 args.return_val = 0;
4242
4243 recurse++;
4244 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4245 RETURN_MASK_ALL);
4246 eh_notify_callback_addr = args.return_val;
4247 recurse--;
4248
4249 exception_catchpoints_are_fragile = 1;
4250
4251 if (!eh_notify_callback_addr)
4252 {
4253 /* We can get here either if there is no plabel in the export list
4254 for the main image, or if something strange happened (??) */
4255 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4256 warning ("GDB will not be able to intercept exception events.");
4257 return 0;
4258 }
4259 }
4260 else
4261 exception_catchpoints_are_fragile = 0;
4262 #endif
4263
4264 /* Now, look for the breakpointable routine in end.o */
4265 /* This should also be available in the SOM symbol dict. if end.o linked in */
4266 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4267 if (msym)
4268 {
4269 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4270 hp_cxx_exception_support = 1;
4271 }
4272 else
4273 {
4274 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4275 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4276 warning ("GDB will be unable to intercept exception events.");
4277 eh_break_addr = 0;
4278 return 0;
4279 }
4280
4281 /* Next look for the catch enable flag provided in end.o */
4282 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4283 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4284 if (sym) /* sometimes present in debug info */
4285 {
4286 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4287 hp_cxx_exception_support = 1;
4288 }
4289 else
4290 /* otherwise look in SOM symbol dict. */
4291 {
4292 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4293 if (msym)
4294 {
4295 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4296 hp_cxx_exception_support = 1;
4297 }
4298 else
4299 {
4300 warning ("Unable to enable interception of exception catches.");
4301 warning ("Executable may not have been compiled debuggable with HP aCC.");
4302 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4303 return 0;
4304 }
4305 }
4306
4307 /* Next look for the catch enable flag provided end.o */
4308 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4309 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4310 if (sym) /* sometimes present in debug info */
4311 {
4312 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4313 hp_cxx_exception_support = 1;
4314 }
4315 else
4316 /* otherwise look in SOM symbol dict. */
4317 {
4318 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4319 if (msym)
4320 {
4321 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4322 hp_cxx_exception_support = 1;
4323 }
4324 else
4325 {
4326 warning ("Unable to enable interception of exception throws.");
4327 warning ("Executable may not have been compiled debuggable with HP aCC.");
4328 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4329 return 0;
4330 }
4331 }
4332
4333 /* Set the flags */
4334 hp_cxx_exception_support = 2; /* everything worked so far */
4335 hp_cxx_exception_support_initialized = 1;
4336 exception_support_initialized = 1;
4337
4338 return 1;
4339 }
4340
4341 /* Target operation for enabling or disabling interception of
4342 exception events.
4343 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4344 ENABLE is either 0 (disable) or 1 (enable).
4345 Return value is NULL if no support found;
4346 -1 if something went wrong,
4347 or a pointer to a symtab/line struct if the breakpointable
4348 address was found. */
4349
4350 struct symtab_and_line *
4351 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4352 {
4353 char buf[4];
4354
4355 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4356 if (!initialize_hp_cxx_exception_support ())
4357 return NULL;
4358
4359 switch (hp_cxx_exception_support)
4360 {
4361 case 0:
4362 /* Assuming no HP support at all */
4363 return NULL;
4364 case 1:
4365 /* HP support should be present, but something went wrong */
4366 return (struct symtab_and_line *) -1; /* yuck! */
4367 /* there may be other cases in the future */
4368 }
4369
4370 /* Set the EH hook to point to the callback routine */
4371 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4372 /* pai: (temp) FIXME should there be a pack operation first? */
4373 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4374 {
4375 warning ("Could not write to target memory for exception event callback.");
4376 warning ("Interception of exception events may not work.");
4377 return (struct symtab_and_line *) -1;
4378 }
4379 if (enable)
4380 {
4381 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4382 if (inferior_pid > 0)
4383 {
4384 if (setup_d_pid_in_inferior ())
4385 return (struct symtab_and_line *) -1;
4386 }
4387 else
4388 {
4389 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4390 return (struct symtab_and_line *) -1;
4391 }
4392 }
4393
4394 switch (kind)
4395 {
4396 case EX_EVENT_THROW:
4397 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4398 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4399 {
4400 warning ("Couldn't enable exception throw interception.");
4401 return (struct symtab_and_line *) -1;
4402 }
4403 break;
4404 case EX_EVENT_CATCH:
4405 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4406 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4407 {
4408 warning ("Couldn't enable exception catch interception.");
4409 return (struct symtab_and_line *) -1;
4410 }
4411 break;
4412 default:
4413 error ("Request to enable unknown or unsupported exception event.");
4414 }
4415
4416 /* Copy break address into new sal struct, malloc'ing if needed. */
4417 if (!break_callback_sal)
4418 {
4419 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4420 }
4421 INIT_SAL (break_callback_sal);
4422 break_callback_sal->symtab = NULL;
4423 break_callback_sal->pc = eh_break_addr;
4424 break_callback_sal->line = 0;
4425 break_callback_sal->end = eh_break_addr;
4426
4427 return break_callback_sal;
4428 }
4429
4430 /* Record some information about the current exception event */
4431 static struct exception_event_record current_ex_event;
4432 /* Convenience struct */
4433 static struct symtab_and_line null_symtab_and_line =
4434 {NULL, 0, 0, 0};
4435
4436 /* Report current exception event. Returns a pointer to a record
4437 that describes the kind of the event, where it was thrown from,
4438 and where it will be caught. More information may be reported
4439 in the future */
4440 struct exception_event_record *
4441 child_get_current_exception_event (void)
4442 {
4443 CORE_ADDR event_kind;
4444 CORE_ADDR throw_addr;
4445 CORE_ADDR catch_addr;
4446 struct frame_info *fi, *curr_frame;
4447 int level = 1;
4448
4449 curr_frame = get_current_frame ();
4450 if (!curr_frame)
4451 return (struct exception_event_record *) NULL;
4452
4453 /* Go up one frame to __d_eh_notify_callback, because at the
4454 point when this code is executed, there's garbage in the
4455 arguments of __d_eh_break. */
4456 fi = find_relative_frame (curr_frame, &level);
4457 if (level != 0)
4458 return (struct exception_event_record *) NULL;
4459
4460 select_frame (fi, -1);
4461
4462 /* Read in the arguments */
4463 /* __d_eh_notify_callback() is called with 3 arguments:
4464 1. event kind catch or throw
4465 2. the target address if known
4466 3. a flag -- not sure what this is. pai/1997-07-17 */
4467 event_kind = read_register (ARG0_REGNUM);
4468 catch_addr = read_register (ARG1_REGNUM);
4469
4470 /* Now go down to a user frame */
4471 /* For a throw, __d_eh_break is called by
4472 __d_eh_notify_callback which is called by
4473 __notify_throw which is called
4474 from user code.
4475 For a catch, __d_eh_break is called by
4476 __d_eh_notify_callback which is called by
4477 <stackwalking stuff> which is called by
4478 __throw__<stuff> or __rethrow_<stuff> which is called
4479 from user code. */
4480 /* FIXME: Don't use such magic numbers; search for the frames */
4481 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4482 fi = find_relative_frame (curr_frame, &level);
4483 if (level != 0)
4484 return (struct exception_event_record *) NULL;
4485
4486 select_frame (fi, -1);
4487 throw_addr = fi->pc;
4488
4489 /* Go back to original (top) frame */
4490 select_frame (curr_frame, -1);
4491
4492 current_ex_event.kind = (enum exception_event_kind) event_kind;
4493 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4494 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4495
4496 return &current_ex_event;
4497 }
4498
4499 static void
4500 unwind_command (char *exp, int from_tty)
4501 {
4502 CORE_ADDR address;
4503 struct unwind_table_entry *u;
4504
4505 /* If we have an expression, evaluate it and use it as the address. */
4506
4507 if (exp != 0 && *exp != 0)
4508 address = parse_and_eval_address (exp);
4509 else
4510 return;
4511
4512 u = find_unwind_entry (address);
4513
4514 if (!u)
4515 {
4516 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4517 return;
4518 }
4519
4520 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4521
4522 printf_unfiltered ("\tregion_start = ");
4523 print_address (u->region_start, gdb_stdout);
4524
4525 printf_unfiltered ("\n\tregion_end = ");
4526 print_address (u->region_end, gdb_stdout);
4527
4528 #ifdef __STDC__
4529 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4530 #else
4531 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4532 #endif
4533
4534 printf_unfiltered ("\n\tflags =");
4535 pif (Cannot_unwind);
4536 pif (Millicode);
4537 pif (Millicode_save_sr0);
4538 pif (Entry_SR);
4539 pif (Args_stored);
4540 pif (Variable_Frame);
4541 pif (Separate_Package_Body);
4542 pif (Frame_Extension_Millicode);
4543 pif (Stack_Overflow_Check);
4544 pif (Two_Instruction_SP_Increment);
4545 pif (Ada_Region);
4546 pif (Save_SP);
4547 pif (Save_RP);
4548 pif (Save_MRP_in_frame);
4549 pif (extn_ptr_defined);
4550 pif (Cleanup_defined);
4551 pif (MPE_XL_interrupt_marker);
4552 pif (HP_UX_interrupt_marker);
4553 pif (Large_frame);
4554
4555 putchar_unfiltered ('\n');
4556
4557 #ifdef __STDC__
4558 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4559 #else
4560 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4561 #endif
4562
4563 pin (Region_description);
4564 pin (Entry_FR);
4565 pin (Entry_GR);
4566 pin (Total_frame_size);
4567 }
4568
4569 #ifdef PREPARE_TO_PROCEED
4570
4571 /* If the user has switched threads, and there is a breakpoint
4572 at the old thread's pc location, then switch to that thread
4573 and return TRUE, else return FALSE and don't do a thread
4574 switch (or rather, don't seem to have done a thread switch).
4575
4576 Ptrace-based gdb will always return FALSE to the thread-switch
4577 query, and thus also to PREPARE_TO_PROCEED.
4578
4579 The important thing is whether there is a BPT instruction,
4580 not how many user breakpoints there are. So we have to worry
4581 about things like these:
4582
4583 o Non-bp stop -- NO
4584
4585 o User hits bp, no switch -- NO
4586
4587 o User hits bp, switches threads -- YES
4588
4589 o User hits bp, deletes bp, switches threads -- NO
4590
4591 o User hits bp, deletes one of two or more bps
4592 at that PC, user switches threads -- YES
4593
4594 o Plus, since we're buffering events, the user may have hit a
4595 breakpoint, deleted the breakpoint and then gotten another
4596 hit on that same breakpoint on another thread which
4597 actually hit before the delete. (FIXME in breakpoint.c
4598 so that "dead" breakpoints are ignored?) -- NO
4599
4600 For these reasons, we have to violate information hiding and
4601 call "breakpoint_here_p". If core gdb thinks there is a bpt
4602 here, that's what counts, as core gdb is the one which is
4603 putting the BPT instruction in and taking it out. */
4604 int
4605 hppa_prepare_to_proceed (void)
4606 {
4607 pid_t old_thread;
4608 pid_t current_thread;
4609
4610 old_thread = hppa_switched_threads (inferior_pid);
4611 if (old_thread != 0)
4612 {
4613 /* Switched over from "old_thread". Try to do
4614 as little work as possible, 'cause mostly
4615 we're going to switch back. */
4616 CORE_ADDR new_pc;
4617 CORE_ADDR old_pc = read_pc ();
4618
4619 /* Yuk, shouldn't use global to specify current
4620 thread. But that's how gdb does it. */
4621 current_thread = inferior_pid;
4622 inferior_pid = old_thread;
4623
4624 new_pc = read_pc ();
4625 if (new_pc != old_pc /* If at same pc, no need */
4626 && breakpoint_here_p (new_pc))
4627 {
4628 /* User hasn't deleted the BP.
4629 Return TRUE, finishing switch to "old_thread". */
4630 flush_cached_frames ();
4631 registers_changed ();
4632 #if 0
4633 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4634 current_thread, inferior_pid);
4635 #endif
4636
4637 return 1;
4638 }
4639
4640 /* Otherwise switch back to the user-chosen thread. */
4641 inferior_pid = current_thread;
4642 new_pc = read_pc (); /* Re-prime register cache */
4643 }
4644
4645 return 0;
4646 }
4647 #endif /* PREPARE_TO_PROCEED */
4648
4649 void
4650 hppa_skip_permanent_breakpoint (void)
4651 {
4652 /* To step over a breakpoint instruction on the PA takes some
4653 fiddling with the instruction address queue.
4654
4655 When we stop at a breakpoint, the IA queue front (the instruction
4656 we're executing now) points at the breakpoint instruction, and
4657 the IA queue back (the next instruction to execute) points to
4658 whatever instruction we would execute after the breakpoint, if it
4659 were an ordinary instruction. This is the case even if the
4660 breakpoint is in the delay slot of a branch instruction.
4661
4662 Clearly, to step past the breakpoint, we need to set the queue
4663 front to the back. But what do we put in the back? What
4664 instruction comes after that one? Because of the branch delay
4665 slot, the next insn is always at the back + 4. */
4666 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4667 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4668
4669 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4670 /* We can leave the tail's space the same, since there's no jump. */
4671 }
4672
4673 void
4674 _initialize_hppa_tdep (void)
4675 {
4676 tm_print_insn = print_insn_hppa;
4677
4678 add_cmd ("unwind", class_maintenance, unwind_command,
4679 "Print unwind table entry at given address.",
4680 &maintenanceprintlist);
4681 }