]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
daily update
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
197e01b6 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f
JM
179/* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
488f131b 184#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
185#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186static void
c2d11a7d 187default_skip_permanent_breakpoint (void)
c2c6d25f 188{
8a3fe4f8 189 error (_("\
c2c6d25f
JM
190The program is stopped at a permanent breakpoint, but GDB does not know\n\
191how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 192a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
193}
194#endif
488f131b 195
c2c6d25f 196
7a292a7a
SS
197/* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200#ifndef HAVE_STEPPABLE_WATCHPOINT
201#define HAVE_STEPPABLE_WATCHPOINT 0
202#else
203#undef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 1
205#endif
206
692590c1
MS
207#ifndef CANNOT_STEP_HW_WATCHPOINTS
208#define CANNOT_STEP_HW_WATCHPOINTS 0
209#else
210#undef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 1
212#endif
213
c906108c
SS
214/* Tables of how to react to signals; the user sets them. */
215
216static unsigned char *signal_stop;
217static unsigned char *signal_print;
218static unsigned char *signal_program;
219
220#define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228#define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
39f77062
KB
236/* Value to pass to target_resume() to cause all threads to resume */
237
238#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
239
240/* Command list pointer for the "stop" placeholder. */
241
242static struct cmd_list_element *stop_command;
243
244/* Nonzero if breakpoints are now inserted in the inferior. */
245
246static int breakpoints_inserted;
247
248/* Function inferior was in as of last step command. */
249
250static struct symbol *step_start_function;
251
252/* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254static int trap_expected;
255
c906108c
SS
256/* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258static int stop_on_solib_events;
920d2a44
AC
259static void
260show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265}
c906108c 266
c906108c
SS
267/* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270int stop_after_trap;
271
272/* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
c0236d92 277enum stop_kind stop_soon;
c906108c
SS
278
279/* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282int proceed_to_finish;
283
284/* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
72cec141 289struct regcache *stop_registers;
c906108c
SS
290
291/* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293static int breakpoints_failed;
294
295/* Nonzero after stop if current stack frame should be printed. */
296
297static int stop_print_frame;
298
299static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 300
e02bc4cc 301/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
39f77062 304static ptid_t target_last_wait_ptid;
e02bc4cc
DS
305static struct target_waitstatus target_last_waitstatus;
306
c906108c
SS
307/* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311static struct
488f131b
JB
312{
313 enum target_waitkind kind;
314 struct
c906108c 315 {
488f131b 316 int parent_pid;
488f131b 317 int child_pid;
c906108c 318 }
488f131b
JB
319 fork_event;
320 char *execd_pathname;
321}
c906108c
SS
322pending_follow;
323
53904c9e
AC
324static const char follow_fork_mode_child[] = "child";
325static const char follow_fork_mode_parent[] = "parent";
326
488f131b 327static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
ef346e04 331};
c906108c 332
53904c9e 333static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
334static void
335show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337{
338 fprintf_filtered (file, _("\
339Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341}
c906108c
SS
342\f
343
6604731b 344static int
4ef3f3be 345follow_fork (void)
c906108c 346{
ea1dd7bc 347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 348
6604731b 349 return target_follow_fork (follow_child);
c906108c
SS
350}
351
6604731b
DJ
352void
353follow_inferior_reset_breakpoints (void)
c906108c 354{
6604731b
DJ
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
c906108c 376}
c906108c 377
1adeb98a
FN
378/* EXECD_PATHNAME is assumed to be non-NULL. */
379
c906108c 380static void
96baa820 381follow_exec (int pid, char *execd_pathname)
c906108c 382{
c906108c 383 int saved_pid = pid;
7a292a7a
SS
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
c906108c 388
c906108c
SS
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
c906108c 417 /* What is this a.out's name? */
a3f17187 418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
7a292a7a
SS
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
8a3fe4f8 427 error (_("Could find run target to save before following exec"));
7a292a7a 428
c906108c
SS
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
39f77062 431 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 432 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 433 push_target (tgt);
c906108c
SS
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
1adeb98a 439 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
7a292a7a 444#if defined(SOLIB_RESTART)
c906108c 445 SOLIB_RESTART ();
7a292a7a
SS
446#endif
447#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
449#else
450 solib_create_inferior_hook ();
7a292a7a 451#endif
c906108c
SS
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
c906108c
SS
462}
463
464/* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
468
469/* The thread we inserted single-step breakpoints for. */
470static ptid_t singlestep_ptid;
471
472/* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474static ptid_t saved_singlestep_ptid;
475static int stepping_past_singlestep_breakpoint;
c906108c
SS
476\f
477
478/* Things to clean up if we QUIT out of resume (). */
c906108c 479static void
74b7792f 480resume_cleanups (void *ignore)
c906108c
SS
481{
482 normal_stop ();
483}
484
53904c9e
AC
485static const char schedlock_off[] = "off";
486static const char schedlock_on[] = "on";
487static const char schedlock_step[] = "step";
488f131b 488static const char *scheduler_enums[] = {
ef346e04
AC
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493};
920d2a44
AC
494static const char *scheduler_mode = schedlock_off;
495static void
496show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498{
499 fprintf_filtered (file, _("\
500Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502}
c906108c
SS
503
504static void
96baa820 505set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 506{
eefe576e
AC
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
c906108c
SS
512}
513
514
515/* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523void
96baa820 524resume (int step, enum target_signal sig)
c906108c
SS
525{
526 int should_resume = 1;
74b7792f 527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
528 QUIT;
529
527159b7 530 if (debug_infrun)
8a9de0e4
AC
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
527159b7 533
ef5cf84e
MS
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
c906108c 536
692590c1
MS
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
488f131b 547
692590c1 548
c2c6d25f
JM
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
b0ed3589 556 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
557 {
558 /* Do it the hard way, w/temp breakpoints */
c5aa993b 559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
9f976b41 565 singlestep_ptid = inferior_ptid;
c906108c
SS
566 }
567
c906108c 568 /* If there were any forks/vforks/execs that were caught and are
6604731b 569 now to be followed, then do so. */
c906108c
SS
570 switch (pending_follow.kind)
571 {
6604731b
DJ
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
c906108c 574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
575 if (follow_fork ())
576 should_resume = 0;
c906108c
SS
577 break;
578
6604731b 579 case TARGET_WAITKIND_EXECD:
c906108c 580 /* follow_exec is called as soon as the exec event is seen. */
6604731b 581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
582 break;
583
584 default:
585 break;
586 }
c906108c
SS
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
39f77062 593 ptid_t resume_ptid;
dfcd3bfb 594
488f131b 595 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 596
8fb3e588
AC
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 600 {
ef5cf84e
MS
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
c906108c 605
ef5cf84e 606 resume_ptid = inferior_ptid;
c906108c 607 }
ef5cf84e 608
8fb3e588
AC
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
c906108c 612 {
ef5cf84e 613 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 614 resume_ptid = inferior_ptid;
c906108c 615 }
ef5cf84e 616
c4ed33b9
AC
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
39f77062 625 target_resume (resume_ptid, step, sig);
c906108c
SS
626 }
627
628 discard_cleanups (old_cleanups);
629}
630\f
631
632/* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635void
96baa820 636clear_proceed_status (void)
c906108c
SS
637{
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
aa0cd9c1 641 step_frame_id = null_frame_id;
5fbbeb29 642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 643 stop_after_trap = 0;
c0236d92 644 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650}
651
ea67f13b
DJ
652/* This should be suitable for any targets that support threads. */
653
654static int
655prepare_to_proceed (void)
656{
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
8fb3e588
AC
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
ea67f13b
DJ
696 }
697
698 return 0;
8fb3e588 699
ea67f13b 700}
e4846b08
JJ
701
702/* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705static CORE_ADDR prev_pc;
706
c906108c
SS
707/* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 711 or -1 for act according to how it stopped.
c906108c 712 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
c906108c
SS
716
717 You should call clear_proceed_status before calling proceed. */
718
719void
96baa820 720proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
721{
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
2acceee2 729 if (addr == (CORE_ADDR) -1)
c906108c 730 {
c906108c 731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
c906108c 736 oneproc = 1;
3352ef37
AC
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
c906108c
SS
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
c906108c
SS
747 }
748
527159b7 749 if (debug_infrun)
8a9de0e4
AC
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
527159b7 753
c906108c
SS
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
ea67f13b 762 prepare_to_proceed checks the current thread against the thread
c906108c
SS
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
c906108c 767
c906108c
SS
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
81d0cc19
GS
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
8fb3e588 776 insert breakpoints -- so they were inserted. */
c906108c
SS
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
e4846b08
JJ
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 814 updated correctly when the inferior is stopped. */
e4846b08
JJ
815 prev_pc = read_pc ();
816
c906108c
SS
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
362646f5 824 if (!target_can_async_p ())
43ff13b4
JM
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
c906108c 829}
c906108c
SS
830\f
831
832/* Start remote-debugging of a machine over a serial link. */
96baa820 833
c906108c 834void
96baa820 835start_remote (void)
c906108c
SS
836{
837 init_thread_list ();
838 init_wait_for_inferior ();
c0236d92 839 stop_soon = STOP_QUIETLY;
c906108c 840 trap_expected = 0;
43ff13b4 841
6426a772
JM
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 844 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
c906108c
SS
858}
859
860/* Initialize static vars when a new inferior begins. */
861
862void
96baa820 863init_wait_for_inferior (void)
c906108c
SS
864{
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
c906108c 867
c906108c
SS
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 876
c906108c 877 clear_proceed_status ();
9f976b41
DJ
878
879 stepping_past_singlestep_breakpoint = 0;
c906108c 880}
c906108c 881\f
b83266a0
SS
882/* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
c5aa993b
JM
886enum infwait_states
887{
cd0fc7c3
SS
888 infwait_normal_state,
889 infwait_thread_hop_state,
cd0fc7c3 890 infwait_nonstep_watch_state
b83266a0
SS
891};
892
11cf8741
JM
893/* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895enum inferior_stop_reason
896{
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909};
910
cd0fc7c3
SS
911/* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
c5aa993b 915struct execution_control_state
488f131b
JB
916{
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
488f131b
JB
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
68f53502 930 int step_after_step_resume_breakpoint;
488f131b
JB
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
488f131b
JB
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938};
939
940void init_execution_control_state (struct execution_control_state *ecs);
941
942void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 943
c2c6d25f 944static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
945static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
947 struct frame_id sr_id);
104c1213
JM
948static void stop_stepping (struct execution_control_state *ecs);
949static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 950static void keep_going (struct execution_control_state *ecs);
488f131b
JB
951static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
104c1213 953
cd0fc7c3
SS
954/* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960void
96baa820 961wait_for_inferior (void)
cd0fc7c3
SS
962{
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
c906108c 966
527159b7 967 if (debug_infrun)
8a9de0e4 968 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 969
8601f500 970 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 971 &step_resume_breakpoint);
cd0fc7c3
SS
972
973 /* wfi still stays in a loop, so it's OK just to take the address of
974 a local to get the ecs pointer. */
975 ecs = &ecss;
976
977 /* Fill in with reasonable starting values. */
978 init_execution_control_state (ecs);
979
c906108c 980 /* We'll update this if & when we switch to a new thread. */
39f77062 981 previous_inferior_ptid = inferior_ptid;
c906108c 982
cd0fc7c3
SS
983 overlay_cache_invalid = 1;
984
985 /* We have to invalidate the registers BEFORE calling target_wait
986 because they can be loaded from the target while in target_wait.
987 This makes remote debugging a bit more efficient for those
988 targets that provide critical registers as part of their normal
989 status mechanism. */
990
991 registers_changed ();
b83266a0 992
c906108c
SS
993 while (1)
994 {
9a4105ab
AC
995 if (deprecated_target_wait_hook)
996 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 997 else
39f77062 998 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 999
cd0fc7c3
SS
1000 /* Now figure out what to do with the result of the result. */
1001 handle_inferior_event (ecs);
c906108c 1002
cd0fc7c3
SS
1003 if (!ecs->wait_some_more)
1004 break;
1005 }
1006 do_cleanups (old_cleanups);
1007}
c906108c 1008
43ff13b4
JM
1009/* Asynchronous version of wait_for_inferior. It is called by the
1010 event loop whenever a change of state is detected on the file
1011 descriptor corresponding to the target. It can be called more than
1012 once to complete a single execution command. In such cases we need
1013 to keep the state in a global variable ASYNC_ECSS. If it is the
1014 last time that this function is called for a single execution
1015 command, then report to the user that the inferior has stopped, and
1016 do the necessary cleanups. */
1017
1018struct execution_control_state async_ecss;
1019struct execution_control_state *async_ecs;
1020
1021void
fba45db2 1022fetch_inferior_event (void *client_data)
43ff13b4
JM
1023{
1024 static struct cleanup *old_cleanups;
1025
c5aa993b 1026 async_ecs = &async_ecss;
43ff13b4
JM
1027
1028 if (!async_ecs->wait_some_more)
1029 {
488f131b 1030 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1031 &step_resume_breakpoint);
43ff13b4
JM
1032
1033 /* Fill in with reasonable starting values. */
1034 init_execution_control_state (async_ecs);
1035
43ff13b4 1036 /* We'll update this if & when we switch to a new thread. */
39f77062 1037 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1038
1039 overlay_cache_invalid = 1;
1040
1041 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1042 because they can be loaded from the target while in target_wait.
1043 This makes remote debugging a bit more efficient for those
1044 targets that provide critical registers as part of their normal
1045 status mechanism. */
43ff13b4
JM
1046
1047 registers_changed ();
1048 }
1049
9a4105ab 1050 if (deprecated_target_wait_hook)
488f131b 1051 async_ecs->ptid =
9a4105ab 1052 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1053 else
39f77062 1054 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1055
1056 /* Now figure out what to do with the result of the result. */
1057 handle_inferior_event (async_ecs);
1058
1059 if (!async_ecs->wait_some_more)
1060 {
adf40b2e 1061 /* Do only the cleanups that have been added by this
488f131b
JB
1062 function. Let the continuations for the commands do the rest,
1063 if there are any. */
43ff13b4
JM
1064 do_exec_cleanups (old_cleanups);
1065 normal_stop ();
c2d11a7d
JM
1066 if (step_multi && stop_step)
1067 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1068 else
1069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1070 }
1071}
1072
cd0fc7c3
SS
1073/* Prepare an execution control state for looping through a
1074 wait_for_inferior-type loop. */
1075
1076void
96baa820 1077init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1078{
6ad80df0 1079 ecs->another_trap = 0;
cd0fc7c3 1080 ecs->random_signal = 0;
68f53502 1081 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1082 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1083 ecs->stepping_through_solib_after_catch = 0;
1084 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1085 ecs->sal = find_pc_line (prev_pc, 0);
1086 ecs->current_line = ecs->sal.line;
1087 ecs->current_symtab = ecs->sal.symtab;
1088 ecs->infwait_state = infwait_normal_state;
39f77062 1089 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1090 ecs->wp = &(ecs->ws);
1091}
1092
e02bc4cc 1093/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1094 target_wait()/deprecated_target_wait_hook(). The data is actually
1095 cached by handle_inferior_event(), which gets called immediately
1096 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1097
1098void
488f131b 1099get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1100{
39f77062 1101 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1102 *status = target_last_waitstatus;
1103}
1104
ac264b3b
MS
1105void
1106nullify_last_target_wait_ptid (void)
1107{
1108 target_last_wait_ptid = minus_one_ptid;
1109}
1110
dd80620e
MS
1111/* Switch thread contexts, maintaining "infrun state". */
1112
1113static void
1114context_switch (struct execution_control_state *ecs)
1115{
1116 /* Caution: it may happen that the new thread (or the old one!)
1117 is not in the thread list. In this case we must not attempt
1118 to "switch context", or we run the risk that our context may
1119 be lost. This may happen as a result of the target module
1120 mishandling thread creation. */
1121
1122 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1123 { /* Perform infrun state context switch: */
dd80620e 1124 /* Save infrun state for the old thread. */
0ce3d317 1125 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1126 trap_expected, step_resume_breakpoint,
15960608 1127 step_range_start,
aa0cd9c1 1128 step_range_end, &step_frame_id,
dd80620e
MS
1129 ecs->handling_longjmp, ecs->another_trap,
1130 ecs->stepping_through_solib_after_catch,
1131 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1132 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1133
1134 /* Load infrun state for the new thread. */
0ce3d317 1135 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1136 &trap_expected, &step_resume_breakpoint,
15960608 1137 &step_range_start,
aa0cd9c1 1138 &step_range_end, &step_frame_id,
dd80620e
MS
1139 &ecs->handling_longjmp, &ecs->another_trap,
1140 &ecs->stepping_through_solib_after_catch,
1141 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1142 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1143 }
1144 inferior_ptid = ecs->ptid;
1145}
1146
4fa8626c
DJ
1147static void
1148adjust_pc_after_break (struct execution_control_state *ecs)
1149{
8aad930b 1150 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
1154 if (DECR_PC_AFTER_BREAK == 0)
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
9709f61c
DJ
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1161 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1162 by software breakpoints should be handled through the normal breakpoint
1163 layer.
8fb3e588 1164
4fa8626c
DJ
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
1168 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1169 these signals at breakpoints (the code has been in GDB since at least
1170 1992) so I can not guess how to handle them here.
8fb3e588 1171
4fa8626c
DJ
1172 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1173 would have the PC after hitting a watchpoint affected by
1174 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1175 in GDB history, and it seems unlikely to be correct, so
1176 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
8aad930b
AC
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1187
1188 if (SOFTWARE_SINGLE_STEP_P ())
1189 {
1190 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1191 an inserted breakpoint. This actually makes things
1192 easier. */
8aad930b
AC
1193 if (singlestep_breakpoints_inserted_p)
1194 /* When software single stepping, the instruction at [prev_pc]
1195 is never a breakpoint, but the instruction following
1196 [prev_pc] (in program execution order) always is. Assume
1197 that following instruction was reached and hence a software
1198 breakpoint was hit. */
1199 write_pc_pid (breakpoint_pc, ecs->ptid);
1200 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1201 /* The inferior was free running (i.e., no single-step
1202 breakpoints inserted) and it hit a software breakpoint. */
1203 write_pc_pid (breakpoint_pc, ecs->ptid);
1204 }
1205 else
1206 {
1207 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1208 both a completed single-step and a software breakpoint. Need
1209 to differentiate between the two as the latter needs
90225438
AS
1210 adjusting but the former does not.
1211
1212 When the thread to be examined does not match the current thread
1213 context we can't use currently_stepping, so assume no
1214 single-stepping in this case. */
1215 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1216 {
1217 if (prev_pc == breakpoint_pc
1218 && software_breakpoint_inserted_here_p (breakpoint_pc))
1219 /* Hardware single-stepped a software breakpoint (as
1220 occures when the inferior is resumed with PC pointing
1221 at not-yet-hit software breakpoint). Since the
1222 breakpoint really is executed, the inferior needs to be
1223 backed up to the breakpoint address. */
1224 write_pc_pid (breakpoint_pc, ecs->ptid);
1225 }
1226 else
1227 {
1228 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1229 /* The inferior was free running (i.e., no hardware
1230 single-step and no possibility of a false SIGTRAP) and
1231 hit a software breakpoint. */
1232 write_pc_pid (breakpoint_pc, ecs->ptid);
1233 }
1234 }
4fa8626c
DJ
1235}
1236
cd0fc7c3
SS
1237/* Given an execution control state that has been freshly filled in
1238 by an event from the inferior, figure out what it means and take
1239 appropriate action. */
c906108c 1240
7270d8f2
OF
1241int stepped_after_stopped_by_watchpoint;
1242
cd0fc7c3 1243void
96baa820 1244handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1245{
8bbde302
BE
1246 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1247 that the variable stepped_after_stopped_by_watchpoint isn't used,
1248 then you're wrong! See remote.c:remote_stopped_data_address. */
1249
c8edd8b4 1250 int sw_single_step_trap_p = 0;
8fb3e588 1251 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1252
e02bc4cc 1253 /* Cache the last pid/waitstatus. */
39f77062 1254 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1255 target_last_waitstatus = *ecs->wp;
1256
4fa8626c
DJ
1257 adjust_pc_after_break (ecs);
1258
488f131b
JB
1259 switch (ecs->infwait_state)
1260 {
1261 case infwait_thread_hop_state:
527159b7 1262 if (debug_infrun)
8a9de0e4 1263 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1264 /* Cancel the waiton_ptid. */
1265 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1266 break;
b83266a0 1267
488f131b 1268 case infwait_normal_state:
527159b7 1269 if (debug_infrun)
8a9de0e4 1270 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1271 stepped_after_stopped_by_watchpoint = 0;
1272 break;
b83266a0 1273
488f131b 1274 case infwait_nonstep_watch_state:
527159b7 1275 if (debug_infrun)
8a9de0e4
AC
1276 fprintf_unfiltered (gdb_stdlog,
1277 "infrun: infwait_nonstep_watch_state\n");
488f131b 1278 insert_breakpoints ();
c906108c 1279
488f131b
JB
1280 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1281 handle things like signals arriving and other things happening
1282 in combination correctly? */
1283 stepped_after_stopped_by_watchpoint = 1;
1284 break;
65e82032
AC
1285
1286 default:
e2e0b3e5 1287 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1288 }
1289 ecs->infwait_state = infwait_normal_state;
c906108c 1290
488f131b 1291 flush_cached_frames ();
c906108c 1292
488f131b 1293 /* If it's a new process, add it to the thread database */
c906108c 1294
488f131b 1295 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1296 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1297 && !in_thread_list (ecs->ptid));
1298
1299 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1300 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1301 {
1302 add_thread (ecs->ptid);
c906108c 1303
488f131b
JB
1304 ui_out_text (uiout, "[New ");
1305 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1306 ui_out_text (uiout, "]\n");
488f131b 1307 }
c906108c 1308
488f131b
JB
1309 switch (ecs->ws.kind)
1310 {
1311 case TARGET_WAITKIND_LOADED:
527159b7 1312 if (debug_infrun)
8a9de0e4 1313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1314 /* Ignore gracefully during startup of the inferior, as it
1315 might be the shell which has just loaded some objects,
1316 otherwise add the symbols for the newly loaded objects. */
c906108c 1317#ifdef SOLIB_ADD
c0236d92 1318 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1319 {
1320 /* Remove breakpoints, SOLIB_ADD might adjust
1321 breakpoint addresses via breakpoint_re_set. */
1322 if (breakpoints_inserted)
1323 remove_breakpoints ();
c906108c 1324
488f131b
JB
1325 /* Check for any newly added shared libraries if we're
1326 supposed to be adding them automatically. Switch
1327 terminal for any messages produced by
1328 breakpoint_re_set. */
1329 target_terminal_ours_for_output ();
aff6338a 1330 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1331 stack's section table is kept up-to-date. Architectures,
1332 (e.g., PPC64), use the section table to perform
1333 operations such as address => section name and hence
1334 require the table to contain all sections (including
1335 those found in shared libraries). */
aff6338a 1336 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1337 exec_ops to SOLIB_ADD. This is because current GDB is
1338 only tooled to propagate section_table changes out from
1339 the "current_target" (see target_resize_to_sections), and
1340 not up from the exec stratum. This, of course, isn't
1341 right. "infrun.c" should only interact with the
1342 exec/process stratum, instead relying on the target stack
1343 to propagate relevant changes (stop, section table
1344 changed, ...) up to other layers. */
aff6338a 1345 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1346 target_terminal_inferior ();
1347
1348 /* Reinsert breakpoints and continue. */
1349 if (breakpoints_inserted)
1350 insert_breakpoints ();
1351 }
c906108c 1352#endif
488f131b
JB
1353 resume (0, TARGET_SIGNAL_0);
1354 prepare_to_wait (ecs);
1355 return;
c5aa993b 1356
488f131b 1357 case TARGET_WAITKIND_SPURIOUS:
527159b7 1358 if (debug_infrun)
8a9de0e4 1359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1360 resume (0, TARGET_SIGNAL_0);
1361 prepare_to_wait (ecs);
1362 return;
c5aa993b 1363
488f131b 1364 case TARGET_WAITKIND_EXITED:
527159b7 1365 if (debug_infrun)
8a9de0e4 1366 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1367 target_terminal_ours (); /* Must do this before mourn anyway */
1368 print_stop_reason (EXITED, ecs->ws.value.integer);
1369
1370 /* Record the exit code in the convenience variable $_exitcode, so
1371 that the user can inspect this again later. */
1372 set_internalvar (lookup_internalvar ("_exitcode"),
1373 value_from_longest (builtin_type_int,
1374 (LONGEST) ecs->ws.value.integer));
1375 gdb_flush (gdb_stdout);
1376 target_mourn_inferior ();
1377 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1378 stop_print_frame = 0;
1379 stop_stepping (ecs);
1380 return;
c5aa993b 1381
488f131b 1382 case TARGET_WAITKIND_SIGNALLED:
527159b7 1383 if (debug_infrun)
8a9de0e4 1384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1385 stop_print_frame = 0;
1386 stop_signal = ecs->ws.value.sig;
1387 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1388
488f131b
JB
1389 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1390 reach here unless the inferior is dead. However, for years
1391 target_kill() was called here, which hints that fatal signals aren't
1392 really fatal on some systems. If that's true, then some changes
1393 may be needed. */
1394 target_mourn_inferior ();
c906108c 1395
488f131b
JB
1396 print_stop_reason (SIGNAL_EXITED, stop_signal);
1397 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1398 stop_stepping (ecs);
1399 return;
c906108c 1400
488f131b
JB
1401 /* The following are the only cases in which we keep going;
1402 the above cases end in a continue or goto. */
1403 case TARGET_WAITKIND_FORKED:
deb3b17b 1404 case TARGET_WAITKIND_VFORKED:
527159b7 1405 if (debug_infrun)
8a9de0e4 1406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1407 stop_signal = TARGET_SIGNAL_TRAP;
1408 pending_follow.kind = ecs->ws.kind;
1409
8e7d2c16
DJ
1410 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1411 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1412
488f131b 1413 stop_pc = read_pc ();
675bf4cb 1414
00d4360e 1415 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1416
488f131b 1417 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1418
1419 /* If no catchpoint triggered for this, then keep going. */
1420 if (ecs->random_signal)
1421 {
1422 stop_signal = TARGET_SIGNAL_0;
1423 keep_going (ecs);
1424 return;
1425 }
488f131b
JB
1426 goto process_event_stop_test;
1427
1428 case TARGET_WAITKIND_EXECD:
527159b7 1429 if (debug_infrun)
8a9de0e4 1430 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1431 stop_signal = TARGET_SIGNAL_TRAP;
1432
7d2830a3 1433 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1434 target_wait function. Until then following vfork on HP/UX 10.20
1435 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1436 /* Is this a target which reports multiple exec events per actual
1437 call to exec()? (HP-UX using ptrace does, for example.) If so,
1438 ignore all but the last one. Just resume the exec'r, and wait
1439 for the next exec event. */
1440 if (inferior_ignoring_leading_exec_events)
1441 {
1442 inferior_ignoring_leading_exec_events--;
1443 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1444 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1445 parent_pid);
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
488f131b
JB
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
c906108c 1461
488f131b
JB
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
675bf4cb 1465
00d4360e 1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1467
488f131b
JB
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1470
1471 /* If no catchpoint triggered for this, then keep going. */
1472 if (ecs->random_signal)
1473 {
1474 stop_signal = TARGET_SIGNAL_0;
1475 keep_going (ecs);
1476 return;
1477 }
488f131b
JB
1478 goto process_event_stop_test;
1479
b4dc5ffa
MK
1480 /* Be careful not to try to gather much state about a thread
1481 that's in a syscall. It's frequently a losing proposition. */
488f131b 1482 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1483 if (debug_infrun)
8a9de0e4 1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1485 resume (0, TARGET_SIGNAL_0);
1486 prepare_to_wait (ecs);
1487 return;
c906108c 1488
488f131b
JB
1489 /* Before examining the threads further, step this thread to
1490 get it entirely out of the syscall. (We get notice of the
1491 event when the thread is just on the verge of exiting a
1492 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1493 into user code.) */
488f131b 1494 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1495 if (debug_infrun)
8a9de0e4 1496 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1497 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1498 prepare_to_wait (ecs);
1499 return;
c906108c 1500
488f131b 1501 case TARGET_WAITKIND_STOPPED:
527159b7 1502 if (debug_infrun)
8a9de0e4 1503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1504 stop_signal = ecs->ws.value.sig;
1505 break;
c906108c 1506
488f131b
JB
1507 /* We had an event in the inferior, but we are not interested
1508 in handling it at this level. The lower layers have already
8e7d2c16 1509 done what needs to be done, if anything.
8fb3e588
AC
1510
1511 One of the possible circumstances for this is when the
1512 inferior produces output for the console. The inferior has
1513 not stopped, and we are ignoring the event. Another possible
1514 circumstance is any event which the lower level knows will be
1515 reported multiple times without an intervening resume. */
488f131b 1516 case TARGET_WAITKIND_IGNORE:
527159b7 1517 if (debug_infrun)
8a9de0e4 1518 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1519 prepare_to_wait (ecs);
488f131b
JB
1520 return;
1521 }
c906108c 1522
488f131b
JB
1523 /* We may want to consider not doing a resume here in order to give
1524 the user a chance to play with the new thread. It might be good
1525 to make that a user-settable option. */
c906108c 1526
488f131b
JB
1527 /* At this point, all threads are stopped (happens automatically in
1528 either the OS or the native code). Therefore we need to continue
1529 all threads in order to make progress. */
1530 if (ecs->new_thread_event)
1531 {
1532 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1533 prepare_to_wait (ecs);
1534 return;
1535 }
c906108c 1536
488f131b
JB
1537 stop_pc = read_pc_pid (ecs->ptid);
1538
527159b7 1539 if (debug_infrun)
8a9de0e4 1540 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1541
9f976b41
DJ
1542 if (stepping_past_singlestep_breakpoint)
1543 {
8fb3e588
AC
1544 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1545 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1546 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1547 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1548
1549 stepping_past_singlestep_breakpoint = 0;
1550
1551 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1552 breakpoint, or stopped for some other reason. It would be nice if
1553 we could tell, but we can't reliably. */
9f976b41 1554 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1555 {
527159b7 1556 if (debug_infrun)
8a9de0e4 1557 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1558 /* Pull the single step breakpoints out of the target. */
1559 SOFTWARE_SINGLE_STEP (0, 0);
1560 singlestep_breakpoints_inserted_p = 0;
1561
1562 ecs->random_signal = 0;
1563
1564 ecs->ptid = saved_singlestep_ptid;
1565 context_switch (ecs);
9a4105ab
AC
1566 if (deprecated_context_hook)
1567 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1568
1569 resume (1, TARGET_SIGNAL_0);
1570 prepare_to_wait (ecs);
1571 return;
1572 }
1573 }
1574
1575 stepping_past_singlestep_breakpoint = 0;
1576
488f131b
JB
1577 /* See if a thread hit a thread-specific breakpoint that was meant for
1578 another thread. If so, then step that thread past the breakpoint,
1579 and continue it. */
1580
1581 if (stop_signal == TARGET_SIGNAL_TRAP)
1582 {
9f976b41
DJ
1583 int thread_hop_needed = 0;
1584
f8d40ec8
JB
1585 /* Check if a regular breakpoint has been hit before checking
1586 for a potential single step breakpoint. Otherwise, GDB will
1587 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1588 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1589 {
c5aa993b 1590 ecs->random_signal = 0;
4fa8626c 1591 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1592 thread_hop_needed = 1;
1593 }
1594 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1595 {
1596 ecs->random_signal = 0;
1597 /* The call to in_thread_list is necessary because PTIDs sometimes
1598 change when we go from single-threaded to multi-threaded. If
1599 the singlestep_ptid is still in the list, assume that it is
1600 really different from ecs->ptid. */
1601 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1602 && in_thread_list (singlestep_ptid))
1603 {
1604 thread_hop_needed = 1;
1605 stepping_past_singlestep_breakpoint = 1;
1606 saved_singlestep_ptid = singlestep_ptid;
1607 }
1608 }
1609
1610 if (thread_hop_needed)
8fb3e588
AC
1611 {
1612 int remove_status;
1613
527159b7 1614 if (debug_infrun)
8a9de0e4 1615 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1616
8fb3e588
AC
1617 /* Saw a breakpoint, but it was hit by the wrong thread.
1618 Just continue. */
1619
1620 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1621 {
8fb3e588
AC
1622 /* Pull the single step breakpoints out of the target. */
1623 SOFTWARE_SINGLE_STEP (0, 0);
1624 singlestep_breakpoints_inserted_p = 0;
1625 }
1626
1627 remove_status = remove_breakpoints ();
1628 /* Did we fail to remove breakpoints? If so, try
1629 to set the PC past the bp. (There's at least
1630 one situation in which we can fail to remove
1631 the bp's: On HP-UX's that use ttrace, we can't
1632 change the address space of a vforking child
1633 process until the child exits (well, okay, not
1634 then either :-) or execs. */
1635 if (remove_status != 0)
1636 {
1637 /* FIXME! This is obviously non-portable! */
1638 write_pc_pid (stop_pc + 4, ecs->ptid);
1639 /* We need to restart all the threads now,
1640 * unles we're running in scheduler-locked mode.
1641 * Use currently_stepping to determine whether to
1642 * step or continue.
1643 */
1644 /* FIXME MVS: is there any reason not to call resume()? */
1645 if (scheduler_mode == schedlock_on)
1646 target_resume (ecs->ptid,
1647 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1648 else
8fb3e588
AC
1649 target_resume (RESUME_ALL,
1650 currently_stepping (ecs), TARGET_SIGNAL_0);
1651 prepare_to_wait (ecs);
1652 return;
1653 }
1654 else
1655 { /* Single step */
1656 breakpoints_inserted = 0;
1657 if (!ptid_equal (inferior_ptid, ecs->ptid))
1658 context_switch (ecs);
1659 ecs->waiton_ptid = ecs->ptid;
1660 ecs->wp = &(ecs->ws);
1661 ecs->another_trap = 1;
1662
1663 ecs->infwait_state = infwait_thread_hop_state;
1664 keep_going (ecs);
1665 registers_changed ();
1666 return;
1667 }
488f131b 1668 }
f8d40ec8 1669 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1670 {
1671 sw_single_step_trap_p = 1;
1672 ecs->random_signal = 0;
1673 }
488f131b
JB
1674 }
1675 else
1676 ecs->random_signal = 1;
c906108c 1677
488f131b 1678 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1679 so, then switch to that thread. */
1680 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1681 {
527159b7 1682 if (debug_infrun)
8a9de0e4 1683 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1684
488f131b 1685 context_switch (ecs);
c5aa993b 1686
9a4105ab
AC
1687 if (deprecated_context_hook)
1688 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1689
488f131b
JB
1690 flush_cached_frames ();
1691 }
c906108c 1692
488f131b
JB
1693 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1694 {
1695 /* Pull the single step breakpoints out of the target. */
1696 SOFTWARE_SINGLE_STEP (0, 0);
1697 singlestep_breakpoints_inserted_p = 0;
1698 }
c906108c 1699
488f131b
JB
1700 /* It may not be necessary to disable the watchpoint to stop over
1701 it. For example, the PA can (with some kernel cooperation)
1702 single step over a watchpoint without disabling the watchpoint. */
1703 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1704 {
527159b7 1705 if (debug_infrun)
8a9de0e4 1706 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1707 resume (1, 0);
1708 prepare_to_wait (ecs);
1709 return;
1710 }
c906108c 1711
488f131b
JB
1712 /* It is far more common to need to disable a watchpoint to step
1713 the inferior over it. FIXME. What else might a debug
1714 register or page protection watchpoint scheme need here? */
1715 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1716 {
1717 /* At this point, we are stopped at an instruction which has
1718 attempted to write to a piece of memory under control of
1719 a watchpoint. The instruction hasn't actually executed
1720 yet. If we were to evaluate the watchpoint expression
1721 now, we would get the old value, and therefore no change
1722 would seem to have occurred.
1723
1724 In order to make watchpoints work `right', we really need
1725 to complete the memory write, and then evaluate the
1726 watchpoint expression. The following code does that by
1727 removing the watchpoint (actually, all watchpoints and
1728 breakpoints), single-stepping the target, re-inserting
1729 watchpoints, and then falling through to let normal
1730 single-step processing handle proceed. Since this
1731 includes evaluating watchpoints, things will come to a
1732 stop in the correct manner. */
1733
527159b7 1734 if (debug_infrun)
8a9de0e4 1735 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1736 remove_breakpoints ();
1737 registers_changed ();
1738 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1739
488f131b
JB
1740 ecs->waiton_ptid = ecs->ptid;
1741 ecs->wp = &(ecs->ws);
1742 ecs->infwait_state = infwait_nonstep_watch_state;
1743 prepare_to_wait (ecs);
1744 return;
1745 }
1746
1747 /* It may be possible to simply continue after a watchpoint. */
1748 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1749 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1750
1751 ecs->stop_func_start = 0;
1752 ecs->stop_func_end = 0;
1753 ecs->stop_func_name = 0;
1754 /* Don't care about return value; stop_func_start and stop_func_name
1755 will both be 0 if it doesn't work. */
1756 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1757 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1758 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1759 ecs->another_trap = 0;
1760 bpstat_clear (&stop_bpstat);
1761 stop_step = 0;
1762 stop_stack_dummy = 0;
1763 stop_print_frame = 1;
1764 ecs->random_signal = 0;
1765 stopped_by_random_signal = 0;
1766 breakpoints_failed = 0;
1767
3352ef37
AC
1768 if (stop_signal == TARGET_SIGNAL_TRAP
1769 && trap_expected
1770 && gdbarch_single_step_through_delay_p (current_gdbarch)
1771 && currently_stepping (ecs))
1772 {
1773 /* We're trying to step of a breakpoint. Turns out that we're
1774 also on an instruction that needs to be stepped multiple
1775 times before it's been fully executing. E.g., architectures
1776 with a delay slot. It needs to be stepped twice, once for
1777 the instruction and once for the delay slot. */
1778 int step_through_delay
1779 = gdbarch_single_step_through_delay (current_gdbarch,
1780 get_current_frame ());
527159b7 1781 if (debug_infrun && step_through_delay)
8a9de0e4 1782 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1783 if (step_range_end == 0 && step_through_delay)
1784 {
1785 /* The user issued a continue when stopped at a breakpoint.
1786 Set up for another trap and get out of here. */
1787 ecs->another_trap = 1;
1788 keep_going (ecs);
1789 return;
1790 }
1791 else if (step_through_delay)
1792 {
1793 /* The user issued a step when stopped at a breakpoint.
1794 Maybe we should stop, maybe we should not - the delay
1795 slot *might* correspond to a line of source. In any
1796 case, don't decide that here, just set ecs->another_trap,
1797 making sure we single-step again before breakpoints are
1798 re-inserted. */
1799 ecs->another_trap = 1;
1800 }
1801 }
1802
488f131b
JB
1803 /* Look at the cause of the stop, and decide what to do.
1804 The alternatives are:
1805 1) break; to really stop and return to the debugger,
1806 2) drop through to start up again
1807 (set ecs->another_trap to 1 to single step once)
1808 3) set ecs->random_signal to 1, and the decision between 1 and 2
1809 will be made according to the signal handling tables. */
1810
1811 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1812 that have to do with the program's own actions. Note that
1813 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1814 on the operating system version. Here we detect when a SIGILL or
1815 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1816 something similar for SIGSEGV, since a SIGSEGV will be generated
1817 when we're trying to execute a breakpoint instruction on a
1818 non-executable stack. This happens for call dummy breakpoints
1819 for architectures like SPARC that place call dummies on the
1820 stack. */
488f131b
JB
1821
1822 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1823 || (breakpoints_inserted
1824 && (stop_signal == TARGET_SIGNAL_ILL
1825 || stop_signal == TARGET_SIGNAL_SEGV
1826 || stop_signal == TARGET_SIGNAL_EMT))
1827 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1828 {
1829 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1830 {
527159b7 1831 if (debug_infrun)
8a9de0e4 1832 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1833 stop_print_frame = 0;
1834 stop_stepping (ecs);
1835 return;
1836 }
c54cfec8
EZ
1837
1838 /* This is originated from start_remote(), start_inferior() and
1839 shared libraries hook functions. */
c0236d92 1840 if (stop_soon == STOP_QUIETLY)
488f131b 1841 {
527159b7 1842 if (debug_infrun)
8a9de0e4 1843 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1844 stop_stepping (ecs);
1845 return;
1846 }
1847
c54cfec8
EZ
1848 /* This originates from attach_command(). We need to overwrite
1849 the stop_signal here, because some kernels don't ignore a
1850 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1851 See more comments in inferior.h. */
c0236d92 1852 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1853 {
1854 stop_stepping (ecs);
1855 if (stop_signal == TARGET_SIGNAL_STOP)
1856 stop_signal = TARGET_SIGNAL_0;
1857 return;
1858 }
1859
d303a6c7
AC
1860 /* Don't even think about breakpoints if just proceeded over a
1861 breakpoint. */
1862 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1863 {
1864 if (debug_infrun)
8a9de0e4 1865 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1866 bpstat_clear (&stop_bpstat);
1867 }
488f131b
JB
1868 else
1869 {
1870 /* See if there is a breakpoint at the current PC. */
8fb3e588 1871 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1872 stopped_by_watchpoint);
488f131b 1873
488f131b
JB
1874 /* Following in case break condition called a
1875 function. */
1876 stop_print_frame = 1;
1877 }
1878
73dd234f 1879 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1880 at one stage in the past included checks for an inferior
1881 function call's call dummy's return breakpoint. The original
1882 comment, that went with the test, read:
73dd234f 1883
8fb3e588
AC
1884 ``End of a stack dummy. Some systems (e.g. Sony news) give
1885 another signal besides SIGTRAP, so check here as well as
1886 above.''
73dd234f
AC
1887
1888 If someone ever tries to get get call dummys on a
1889 non-executable stack to work (where the target would stop
03cebad2
MK
1890 with something like a SIGSEGV), then those tests might need
1891 to be re-instated. Given, however, that the tests were only
73dd234f 1892 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1893 suspect that it won't be the case.
1894
8fb3e588
AC
1895 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1896 be necessary for call dummies on a non-executable stack on
1897 SPARC. */
73dd234f 1898
488f131b
JB
1899 if (stop_signal == TARGET_SIGNAL_TRAP)
1900 ecs->random_signal
1901 = !(bpstat_explains_signal (stop_bpstat)
1902 || trap_expected
488f131b 1903 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1904 else
1905 {
73dd234f 1906 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1907 if (!ecs->random_signal)
1908 stop_signal = TARGET_SIGNAL_TRAP;
1909 }
1910 }
1911
1912 /* When we reach this point, we've pretty much decided
1913 that the reason for stopping must've been a random
1914 (unexpected) signal. */
1915
1916 else
1917 ecs->random_signal = 1;
488f131b 1918
04e68871 1919process_event_stop_test:
488f131b
JB
1920 /* For the program's own signals, act according to
1921 the signal handling tables. */
1922
1923 if (ecs->random_signal)
1924 {
1925 /* Signal not for debugging purposes. */
1926 int printed = 0;
1927
527159b7 1928 if (debug_infrun)
8a9de0e4 1929 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1930
488f131b
JB
1931 stopped_by_random_signal = 1;
1932
1933 if (signal_print[stop_signal])
1934 {
1935 printed = 1;
1936 target_terminal_ours_for_output ();
1937 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1938 }
1939 if (signal_stop[stop_signal])
1940 {
1941 stop_stepping (ecs);
1942 return;
1943 }
1944 /* If not going to stop, give terminal back
1945 if we took it away. */
1946 else if (printed)
1947 target_terminal_inferior ();
1948
1949 /* Clear the signal if it should not be passed. */
1950 if (signal_program[stop_signal] == 0)
1951 stop_signal = TARGET_SIGNAL_0;
1952
68f53502
AC
1953 if (prev_pc == read_pc ()
1954 && !breakpoints_inserted
1955 && breakpoint_here_p (read_pc ())
1956 && step_resume_breakpoint == NULL)
1957 {
1958 /* We were just starting a new sequence, attempting to
1959 single-step off of a breakpoint and expecting a SIGTRAP.
1960 Intead this signal arrives. This signal will take us out
1961 of the stepping range so GDB needs to remember to, when
1962 the signal handler returns, resume stepping off that
1963 breakpoint. */
1964 /* To simplify things, "continue" is forced to use the same
1965 code paths as single-step - set a breakpoint at the
1966 signal return address and then, once hit, step off that
1967 breakpoint. */
44cbf7b5 1968 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 1969 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
1970 keep_going (ecs);
1971 return;
68f53502 1972 }
9d799f85
AC
1973
1974 if (step_range_end != 0
1975 && stop_signal != TARGET_SIGNAL_0
1976 && stop_pc >= step_range_start && stop_pc < step_range_end
1977 && frame_id_eq (get_frame_id (get_current_frame ()),
1978 step_frame_id)
1979 && step_resume_breakpoint == NULL)
d303a6c7
AC
1980 {
1981 /* The inferior is about to take a signal that will take it
1982 out of the single step range. Set a breakpoint at the
1983 current PC (which is presumably where the signal handler
1984 will eventually return) and then allow the inferior to
1985 run free.
1986
1987 Note that this is only needed for a signal delivered
1988 while in the single-step range. Nested signals aren't a
1989 problem as they eventually all return. */
44cbf7b5 1990 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
1991 keep_going (ecs);
1992 return;
d303a6c7 1993 }
9d799f85
AC
1994
1995 /* Note: step_resume_breakpoint may be non-NULL. This occures
1996 when either there's a nested signal, or when there's a
1997 pending signal enabled just as the signal handler returns
1998 (leaving the inferior at the step-resume-breakpoint without
1999 actually executing it). Either way continue until the
2000 breakpoint is really hit. */
488f131b
JB
2001 keep_going (ecs);
2002 return;
2003 }
2004
2005 /* Handle cases caused by hitting a breakpoint. */
2006 {
2007 CORE_ADDR jmp_buf_pc;
2008 struct bpstat_what what;
2009
2010 what = bpstat_what (stop_bpstat);
2011
2012 if (what.call_dummy)
2013 {
2014 stop_stack_dummy = 1;
c5aa993b 2015 }
c906108c 2016
488f131b 2017 switch (what.main_action)
c5aa993b 2018 {
488f131b
JB
2019 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2020 /* If we hit the breakpoint at longjmp, disable it for the
2021 duration of this command. Then, install a temporary
2022 breakpoint at the target of the jmp_buf. */
527159b7 2023 if (debug_infrun)
8a9de0e4 2024 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2025 disable_longjmp_breakpoint ();
2026 remove_breakpoints ();
2027 breakpoints_inserted = 0;
2028 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2029 {
488f131b 2030 keep_going (ecs);
104c1213 2031 return;
c5aa993b 2032 }
488f131b
JB
2033
2034 /* Need to blow away step-resume breakpoint, as it
2035 interferes with us */
2036 if (step_resume_breakpoint != NULL)
104c1213 2037 {
488f131b 2038 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2039 }
c906108c 2040
8fb3e588 2041 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2042 ecs->handling_longjmp = 1; /* FIXME */
2043 keep_going (ecs);
2044 return;
c906108c 2045
488f131b
JB
2046 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2047 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2048 if (debug_infrun)
8a9de0e4 2049 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2050 remove_breakpoints ();
2051 breakpoints_inserted = 0;
488f131b
JB
2052 disable_longjmp_breakpoint ();
2053 ecs->handling_longjmp = 0; /* FIXME */
2054 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2055 break;
2056 /* else fallthrough */
2057
2058 case BPSTAT_WHAT_SINGLE:
527159b7 2059 if (debug_infrun)
8a9de0e4 2060 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2061 if (breakpoints_inserted)
c5aa993b 2062 {
488f131b 2063 remove_breakpoints ();
c5aa993b 2064 }
488f131b
JB
2065 breakpoints_inserted = 0;
2066 ecs->another_trap = 1;
2067 /* Still need to check other stuff, at least the case
2068 where we are stepping and step out of the right range. */
2069 break;
c906108c 2070
488f131b 2071 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2072 if (debug_infrun)
8a9de0e4 2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2074 stop_print_frame = 1;
c906108c 2075
d303a6c7
AC
2076 /* We are about to nuke the step_resume_breakpointt via the
2077 cleanup chain, so no need to worry about it here. */
c5aa993b 2078
488f131b
JB
2079 stop_stepping (ecs);
2080 return;
c5aa993b 2081
488f131b 2082 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2083 if (debug_infrun)
8a9de0e4 2084 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2085 stop_print_frame = 0;
c5aa993b 2086
d303a6c7
AC
2087 /* We are about to nuke the step_resume_breakpoin via the
2088 cleanup chain, so no need to worry about it here. */
c5aa993b 2089
488f131b 2090 stop_stepping (ecs);
e441088d 2091 return;
c5aa993b 2092
488f131b
JB
2093 case BPSTAT_WHAT_STEP_RESUME:
2094 /* This proably demands a more elegant solution, but, yeah
2095 right...
c5aa993b 2096
488f131b
JB
2097 This function's use of the simple variable
2098 step_resume_breakpoint doesn't seem to accomodate
2099 simultaneously active step-resume bp's, although the
2100 breakpoint list certainly can.
c5aa993b 2101
488f131b
JB
2102 If we reach here and step_resume_breakpoint is already
2103 NULL, then apparently we have multiple active
2104 step-resume bp's. We'll just delete the breakpoint we
2105 stopped at, and carry on.
2106
2107 Correction: what the code currently does is delete a
2108 step-resume bp, but it makes no effort to ensure that
2109 the one deleted is the one currently stopped at. MVS */
c5aa993b 2110
527159b7 2111 if (debug_infrun)
8a9de0e4 2112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
527159b7 2113
488f131b
JB
2114 if (step_resume_breakpoint == NULL)
2115 {
2116 step_resume_breakpoint =
2117 bpstat_find_step_resume_breakpoint (stop_bpstat);
2118 }
2119 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2120 if (ecs->step_after_step_resume_breakpoint)
2121 {
2122 /* Back when the step-resume breakpoint was inserted, we
2123 were trying to single-step off a breakpoint. Go back
2124 to doing that. */
2125 ecs->step_after_step_resume_breakpoint = 0;
2126 remove_breakpoints ();
2127 breakpoints_inserted = 0;
2128 ecs->another_trap = 1;
2129 keep_going (ecs);
2130 return;
2131 }
488f131b
JB
2132 break;
2133
2134 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2135 if (debug_infrun)
8a9de0e4 2136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2137 /* If were waiting for a trap, hitting the step_resume_break
2138 doesn't count as getting it. */
2139 if (trap_expected)
2140 ecs->another_trap = 1;
2141 break;
2142
2143 case BPSTAT_WHAT_CHECK_SHLIBS:
2144 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2145 {
527159b7 2146 if (debug_infrun)
8a9de0e4 2147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2148 /* Remove breakpoints, we eventually want to step over the
2149 shlib event breakpoint, and SOLIB_ADD might adjust
2150 breakpoint addresses via breakpoint_re_set. */
2151 if (breakpoints_inserted)
2152 remove_breakpoints ();
c5aa993b 2153 breakpoints_inserted = 0;
488f131b
JB
2154
2155 /* Check for any newly added shared libraries if we're
2156 supposed to be adding them automatically. Switch
2157 terminal for any messages produced by
2158 breakpoint_re_set. */
2159 target_terminal_ours_for_output ();
aff6338a 2160 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2161 stack's section table is kept up-to-date. Architectures,
2162 (e.g., PPC64), use the section table to perform
2163 operations such as address => section name and hence
2164 require the table to contain all sections (including
2165 those found in shared libraries). */
aff6338a 2166 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2167 exec_ops to SOLIB_ADD. This is because current GDB is
2168 only tooled to propagate section_table changes out from
2169 the "current_target" (see target_resize_to_sections), and
2170 not up from the exec stratum. This, of course, isn't
2171 right. "infrun.c" should only interact with the
2172 exec/process stratum, instead relying on the target stack
2173 to propagate relevant changes (stop, section table
2174 changed, ...) up to other layers. */
a77053c2 2175#ifdef SOLIB_ADD
aff6338a 2176 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2177#else
2178 solib_add (NULL, 0, &current_target, auto_solib_add);
2179#endif
488f131b
JB
2180 target_terminal_inferior ();
2181
2182 /* Try to reenable shared library breakpoints, additional
2183 code segments in shared libraries might be mapped in now. */
2184 re_enable_breakpoints_in_shlibs ();
2185
2186 /* If requested, stop when the dynamic linker notifies
2187 gdb of events. This allows the user to get control
2188 and place breakpoints in initializer routines for
2189 dynamically loaded objects (among other things). */
877522db 2190 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2191 {
488f131b 2192 stop_stepping (ecs);
d4f3574e
SS
2193 return;
2194 }
c5aa993b 2195
488f131b
JB
2196 /* If we stopped due to an explicit catchpoint, then the
2197 (see above) call to SOLIB_ADD pulled in any symbols
2198 from a newly-loaded library, if appropriate.
2199
2200 We do want the inferior to stop, but not where it is
2201 now, which is in the dynamic linker callback. Rather,
2202 we would like it stop in the user's program, just after
2203 the call that caused this catchpoint to trigger. That
2204 gives the user a more useful vantage from which to
2205 examine their program's state. */
8fb3e588
AC
2206 else if (what.main_action
2207 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2208 {
488f131b
JB
2209 /* ??rehrauer: If I could figure out how to get the
2210 right return PC from here, we could just set a temp
2211 breakpoint and resume. I'm not sure we can without
2212 cracking open the dld's shared libraries and sniffing
2213 their unwind tables and text/data ranges, and that's
2214 not a terribly portable notion.
2215
2216 Until that time, we must step the inferior out of the
2217 dld callback, and also out of the dld itself (and any
2218 code or stubs in libdld.sl, such as "shl_load" and
2219 friends) until we reach non-dld code. At that point,
2220 we can stop stepping. */
2221 bpstat_get_triggered_catchpoints (stop_bpstat,
2222 &ecs->
2223 stepping_through_solib_catchpoints);
2224 ecs->stepping_through_solib_after_catch = 1;
2225
2226 /* Be sure to lift all breakpoints, so the inferior does
2227 actually step past this point... */
2228 ecs->another_trap = 1;
2229 break;
c906108c 2230 }
c5aa993b 2231 else
c5aa993b 2232 {
488f131b 2233 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2234 ecs->another_trap = 1;
488f131b 2235 break;
c5aa993b 2236 }
488f131b 2237 }
488f131b 2238 break;
c906108c 2239
488f131b
JB
2240 case BPSTAT_WHAT_LAST:
2241 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2242
488f131b
JB
2243 case BPSTAT_WHAT_KEEP_CHECKING:
2244 break;
2245 }
2246 }
c906108c 2247
488f131b
JB
2248 /* We come here if we hit a breakpoint but should not
2249 stop for it. Possibly we also were stepping
2250 and should stop for that. So fall through and
2251 test for stepping. But, if not stepping,
2252 do not stop. */
c906108c 2253
9d1ff73f
MS
2254 /* Are we stepping to get the inferior out of the dynamic linker's
2255 hook (and possibly the dld itself) after catching a shlib
2256 event? */
488f131b
JB
2257 if (ecs->stepping_through_solib_after_catch)
2258 {
2259#if defined(SOLIB_ADD)
2260 /* Have we reached our destination? If not, keep going. */
2261 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2262 {
527159b7 2263 if (debug_infrun)
8a9de0e4 2264 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2265 ecs->another_trap = 1;
2266 keep_going (ecs);
104c1213 2267 return;
488f131b
JB
2268 }
2269#endif
527159b7 2270 if (debug_infrun)
8a9de0e4 2271 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2272 /* Else, stop and report the catchpoint(s) whose triggering
2273 caused us to begin stepping. */
2274 ecs->stepping_through_solib_after_catch = 0;
2275 bpstat_clear (&stop_bpstat);
2276 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2277 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2278 stop_print_frame = 1;
2279 stop_stepping (ecs);
2280 return;
2281 }
c906108c 2282
488f131b
JB
2283 if (step_resume_breakpoint)
2284 {
527159b7 2285 if (debug_infrun)
8a9de0e4 2286 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2287
488f131b
JB
2288 /* Having a step-resume breakpoint overrides anything
2289 else having to do with stepping commands until
2290 that breakpoint is reached. */
488f131b
JB
2291 keep_going (ecs);
2292 return;
2293 }
c5aa993b 2294
488f131b
JB
2295 if (step_range_end == 0)
2296 {
527159b7 2297 if (debug_infrun)
8a9de0e4 2298 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2299 /* Likewise if we aren't even stepping. */
488f131b
JB
2300 keep_going (ecs);
2301 return;
2302 }
c5aa993b 2303
488f131b 2304 /* If stepping through a line, keep going if still within it.
c906108c 2305
488f131b
JB
2306 Note that step_range_end is the address of the first instruction
2307 beyond the step range, and NOT the address of the last instruction
2308 within it! */
2309 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2310 {
527159b7 2311 if (debug_infrun)
8a9de0e4 2312 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2313 paddr_nz (step_range_start),
2314 paddr_nz (step_range_end));
488f131b
JB
2315 keep_going (ecs);
2316 return;
2317 }
c5aa993b 2318
488f131b 2319 /* We stepped out of the stepping range. */
c906108c 2320
488f131b
JB
2321 /* If we are stepping at the source level and entered the runtime
2322 loader dynamic symbol resolution code, we keep on single stepping
2323 until we exit the run time loader code and reach the callee's
2324 address. */
2325 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2326#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2327 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2328#else
2329 && in_solib_dynsym_resolve_code (stop_pc)
2330#endif
2331 )
488f131b 2332 {
4c8c40e6
MK
2333 CORE_ADDR pc_after_resolver =
2334 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2335
527159b7 2336 if (debug_infrun)
8a9de0e4 2337 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2338
488f131b
JB
2339 if (pc_after_resolver)
2340 {
2341 /* Set up a step-resume breakpoint at the address
2342 indicated by SKIP_SOLIB_RESOLVER. */
2343 struct symtab_and_line sr_sal;
fe39c653 2344 init_sal (&sr_sal);
488f131b
JB
2345 sr_sal.pc = pc_after_resolver;
2346
44cbf7b5 2347 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2348 }
c906108c 2349
488f131b
JB
2350 keep_going (ecs);
2351 return;
2352 }
c906108c 2353
42edda50
AC
2354 if (step_range_end != 1
2355 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2356 || step_over_calls == STEP_OVER_ALL)
2357 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2358 {
527159b7 2359 if (debug_infrun)
8a9de0e4 2360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2361 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2362 a signal trampoline (either by a signal being delivered or by
2363 the signal handler returning). Just single-step until the
2364 inferior leaves the trampoline (either by calling the handler
2365 or returning). */
488f131b
JB
2366 keep_going (ecs);
2367 return;
2368 }
c906108c 2369
8fb3e588 2370 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2371 {
2372 /* It's a subroutine call. */
95918acb 2373 CORE_ADDR real_stop_pc;
8fb3e588 2374
527159b7 2375 if (debug_infrun)
8a9de0e4 2376 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2377
95918acb
AC
2378 if ((step_over_calls == STEP_OVER_NONE)
2379 || ((step_range_end == 1)
2380 && in_prologue (prev_pc, ecs->stop_func_start)))
2381 {
2382 /* I presume that step_over_calls is only 0 when we're
2383 supposed to be stepping at the assembly language level
2384 ("stepi"). Just stop. */
2385 /* Also, maybe we just did a "nexti" inside a prolog, so we
2386 thought it was a subroutine call but it was not. Stop as
2387 well. FENN */
2388 stop_step = 1;
2389 print_stop_reason (END_STEPPING_RANGE, 0);
2390 stop_stepping (ecs);
2391 return;
2392 }
8fb3e588 2393
8567c30f
AC
2394 if (step_over_calls == STEP_OVER_ALL)
2395 {
2396 /* We're doing a "next", set a breakpoint at callee's return
2397 address (the address at which the caller will
2398 resume). */
44cbf7b5 2399 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2400 keep_going (ecs);
2401 return;
2402 }
a53c66de 2403
95918acb 2404 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2405 calling routine and the real function), locate the real
2406 function. That's what tells us (a) whether we want to step
2407 into it at all, and (b) what prologue we want to run to the
2408 end of, if we do step into it. */
95918acb
AC
2409 real_stop_pc = skip_language_trampoline (stop_pc);
2410 if (real_stop_pc == 0)
2411 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2412 if (real_stop_pc != 0)
2413 ecs->stop_func_start = real_stop_pc;
8fb3e588 2414
a77053c2
MK
2415 if (
2416#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2417 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2418#else
2419 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2420#endif
2421)
1b2bfbb9
RC
2422 {
2423 struct symtab_and_line sr_sal;
2424 init_sal (&sr_sal);
2425 sr_sal.pc = ecs->stop_func_start;
2426
44cbf7b5 2427 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2428 keep_going (ecs);
2429 return;
1b2bfbb9
RC
2430 }
2431
95918acb 2432 /* If we have line number information for the function we are
8fb3e588 2433 thinking of stepping into, step into it.
95918acb 2434
8fb3e588
AC
2435 If there are several symtabs at that PC (e.g. with include
2436 files), just want to know whether *any* of them have line
2437 numbers. find_pc_line handles this. */
95918acb
AC
2438 {
2439 struct symtab_and_line tmp_sal;
8fb3e588 2440
95918acb
AC
2441 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2442 if (tmp_sal.line != 0)
2443 {
2444 step_into_function (ecs);
2445 return;
2446 }
2447 }
2448
2449 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2450 set, we stop the step so that the user has a chance to switch
2451 in assembly mode. */
95918acb
AC
2452 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2453 {
2454 stop_step = 1;
2455 print_stop_reason (END_STEPPING_RANGE, 0);
2456 stop_stepping (ecs);
2457 return;
2458 }
2459
2460 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2461 which the caller will resume). */
44cbf7b5 2462 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2463 keep_going (ecs);
488f131b 2464 return;
488f131b 2465 }
c906108c 2466
488f131b
JB
2467 /* If we're in the return path from a shared library trampoline,
2468 we want to proceed through the trampoline when stepping. */
2469 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2470 {
488f131b 2471 /* Determine where this trampoline returns. */
5cf4d23a 2472 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2473
527159b7 2474 if (debug_infrun)
8a9de0e4 2475 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2476
488f131b 2477 /* Only proceed through if we know where it's going. */
d764a824 2478 if (real_stop_pc)
488f131b
JB
2479 {
2480 /* And put the step-breakpoint there and go until there. */
2481 struct symtab_and_line sr_sal;
2482
fe39c653 2483 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2484 sr_sal.pc = real_stop_pc;
488f131b 2485 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2486
2487 /* Do not specify what the fp should be when we stop since
2488 on some machines the prologue is where the new fp value
2489 is established. */
2490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2491
488f131b
JB
2492 /* Restart without fiddling with the step ranges or
2493 other state. */
2494 keep_going (ecs);
2495 return;
2496 }
2497 }
c906108c 2498
7ed0fe66
DJ
2499 ecs->sal = find_pc_line (stop_pc, 0);
2500
1b2bfbb9
RC
2501 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2502 the trampoline processing logic, however, there are some trampolines
2503 that have no names, so we should do trampoline handling first. */
2504 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2505 && ecs->stop_func_name == NULL
2506 && ecs->sal.line == 0)
1b2bfbb9 2507 {
527159b7 2508 if (debug_infrun)
8a9de0e4 2509 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2510
1b2bfbb9 2511 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2512 undebuggable function (where there is no debugging information
2513 and no line number corresponding to the address where the
1b2bfbb9
RC
2514 inferior stopped). Since we want to skip this kind of code,
2515 we keep going until the inferior returns from this
2516 function. */
2517 if (step_stop_if_no_debug)
2518 {
2519 /* If we have no line number and the step-stop-if-no-debug
2520 is set, we stop the step so that the user has a chance to
2521 switch in assembly mode. */
2522 stop_step = 1;
2523 print_stop_reason (END_STEPPING_RANGE, 0);
2524 stop_stepping (ecs);
2525 return;
2526 }
2527 else
2528 {
2529 /* Set a breakpoint at callee's return address (the address
2530 at which the caller will resume). */
44cbf7b5 2531 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2532 keep_going (ecs);
2533 return;
2534 }
2535 }
2536
2537 if (step_range_end == 1)
2538 {
2539 /* It is stepi or nexti. We always want to stop stepping after
2540 one instruction. */
527159b7 2541 if (debug_infrun)
8a9de0e4 2542 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2543 stop_step = 1;
2544 print_stop_reason (END_STEPPING_RANGE, 0);
2545 stop_stepping (ecs);
2546 return;
2547 }
2548
488f131b
JB
2549 if (ecs->sal.line == 0)
2550 {
2551 /* We have no line number information. That means to stop
2552 stepping (does this always happen right after one instruction,
2553 when we do "s" in a function with no line numbers,
2554 or can this happen as a result of a return or longjmp?). */
527159b7 2555 if (debug_infrun)
8a9de0e4 2556 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2557 stop_step = 1;
2558 print_stop_reason (END_STEPPING_RANGE, 0);
2559 stop_stepping (ecs);
2560 return;
2561 }
c906108c 2562
488f131b
JB
2563 if ((stop_pc == ecs->sal.pc)
2564 && (ecs->current_line != ecs->sal.line
2565 || ecs->current_symtab != ecs->sal.symtab))
2566 {
2567 /* We are at the start of a different line. So stop. Note that
2568 we don't stop if we step into the middle of a different line.
2569 That is said to make things like for (;;) statements work
2570 better. */
527159b7 2571 if (debug_infrun)
8a9de0e4 2572 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2573 stop_step = 1;
2574 print_stop_reason (END_STEPPING_RANGE, 0);
2575 stop_stepping (ecs);
2576 return;
2577 }
c906108c 2578
488f131b 2579 /* We aren't done stepping.
c906108c 2580
488f131b
JB
2581 Optimize by setting the stepping range to the line.
2582 (We might not be in the original line, but if we entered a
2583 new line in mid-statement, we continue stepping. This makes
2584 things like for(;;) statements work better.) */
c906108c 2585
488f131b 2586 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2587 {
488f131b
JB
2588 /* If this is the last line of the function, don't keep stepping
2589 (it would probably step us out of the function).
2590 This is particularly necessary for a one-line function,
2591 in which after skipping the prologue we better stop even though
2592 we will be in mid-line. */
527159b7 2593 if (debug_infrun)
8a9de0e4 2594 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2595 stop_step = 1;
2596 print_stop_reason (END_STEPPING_RANGE, 0);
2597 stop_stepping (ecs);
2598 return;
c5aa993b 2599 }
488f131b
JB
2600 step_range_start = ecs->sal.pc;
2601 step_range_end = ecs->sal.end;
aa0cd9c1 2602 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2603 ecs->current_line = ecs->sal.line;
2604 ecs->current_symtab = ecs->sal.symtab;
2605
aa0cd9c1
AC
2606 /* In the case where we just stepped out of a function into the
2607 middle of a line of the caller, continue stepping, but
2608 step_frame_id must be modified to current frame */
65815ea1
AC
2609#if 0
2610 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2611 generous. It will trigger on things like a step into a frameless
2612 stackless leaf function. I think the logic should instead look
2613 at the unwound frame ID has that should give a more robust
2614 indication of what happened. */
8fb3e588
AC
2615 if (step - ID == current - ID)
2616 still stepping in same function;
2617 else if (step - ID == unwind (current - ID))
2618 stepped into a function;
2619 else
2620 stepped out of a function;
2621 /* Of course this assumes that the frame ID unwind code is robust
2622 and we're willing to introduce frame unwind logic into this
2623 function. Fortunately, those days are nearly upon us. */
65815ea1 2624#endif
488f131b 2625 {
aa0cd9c1
AC
2626 struct frame_id current_frame = get_frame_id (get_current_frame ());
2627 if (!(frame_id_inner (current_frame, step_frame_id)))
2628 step_frame_id = current_frame;
488f131b 2629 }
c906108c 2630
527159b7 2631 if (debug_infrun)
8a9de0e4 2632 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2633 keep_going (ecs);
104c1213
JM
2634}
2635
2636/* Are we in the middle of stepping? */
2637
2638static int
2639currently_stepping (struct execution_control_state *ecs)
2640{
d303a6c7 2641 return ((!ecs->handling_longjmp
104c1213
JM
2642 && ((step_range_end && step_resume_breakpoint == NULL)
2643 || trap_expected))
2644 || ecs->stepping_through_solib_after_catch
2645 || bpstat_should_step ());
2646}
c906108c 2647
c2c6d25f
JM
2648/* Subroutine call with source code we should not step over. Do step
2649 to the first line of code in it. */
2650
2651static void
2652step_into_function (struct execution_control_state *ecs)
2653{
2654 struct symtab *s;
2655 struct symtab_and_line sr_sal;
2656
2657 s = find_pc_symtab (stop_pc);
2658 if (s && s->language != language_asm)
2659 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2660
2661 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2662 /* Use the step_resume_break to step until the end of the prologue,
2663 even if that involves jumps (as it seems to on the vax under
2664 4.2). */
2665 /* If the prologue ends in the middle of a source line, continue to
2666 the end of that source line (if it is still within the function).
2667 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2668 if (ecs->sal.end
2669 && ecs->sal.pc != ecs->stop_func_start
2670 && ecs->sal.end < ecs->stop_func_end)
2671 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2672
2dbd5e30
KB
2673 /* Architectures which require breakpoint adjustment might not be able
2674 to place a breakpoint at the computed address. If so, the test
2675 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2676 ecs->stop_func_start to an address at which a breakpoint may be
2677 legitimately placed.
8fb3e588 2678
2dbd5e30
KB
2679 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2680 made, GDB will enter an infinite loop when stepping through
2681 optimized code consisting of VLIW instructions which contain
2682 subinstructions corresponding to different source lines. On
2683 FR-V, it's not permitted to place a breakpoint on any but the
2684 first subinstruction of a VLIW instruction. When a breakpoint is
2685 set, GDB will adjust the breakpoint address to the beginning of
2686 the VLIW instruction. Thus, we need to make the corresponding
2687 adjustment here when computing the stop address. */
8fb3e588 2688
2dbd5e30
KB
2689 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2690 {
2691 ecs->stop_func_start
2692 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2693 ecs->stop_func_start);
2dbd5e30
KB
2694 }
2695
c2c6d25f
JM
2696 if (ecs->stop_func_start == stop_pc)
2697 {
2698 /* We are already there: stop now. */
2699 stop_step = 1;
488f131b 2700 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2701 stop_stepping (ecs);
2702 return;
2703 }
2704 else
2705 {
2706 /* Put the step-breakpoint there and go until there. */
fe39c653 2707 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2708 sr_sal.pc = ecs->stop_func_start;
2709 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2710
c2c6d25f 2711 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2712 some machines the prologue is where the new fp value is
2713 established. */
44cbf7b5 2714 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2715
2716 /* And make sure stepping stops right away then. */
2717 step_range_end = step_range_start;
2718 }
2719 keep_going (ecs);
2720}
d4f3574e 2721
44cbf7b5
AC
2722/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2723 This is used to both functions and to skip over code. */
2724
2725static void
2726insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2727 struct frame_id sr_id)
2728{
2729 /* There should never be more than one step-resume breakpoint per
2730 thread, so we should never be setting a new
2731 step_resume_breakpoint when one is already active. */
2732 gdb_assert (step_resume_breakpoint == NULL);
2733 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2734 bp_step_resume);
2735 if (breakpoints_inserted)
2736 insert_breakpoints ();
2737}
2738
7ce450bd
AC
2739/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2740 to skip a function (next, skip-no-debug) or signal. It's assumed
2741 that the function/signal handler being skipped eventually returns
2742 to the breakpoint inserted at RETURN_FRAME.pc.
2743
2744 For the skip-function case, the function may have been reached by
2745 either single stepping a call / return / signal-return instruction,
2746 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2747 to the skip-function's caller.
2748
2749 For the signals case, this is called with the interrupted
2750 function's frame. The signal handler, when it returns, will resume
2751 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2752
2753static void
44cbf7b5 2754insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2755{
2756 struct symtab_and_line sr_sal;
2757
d303a6c7
AC
2758 init_sal (&sr_sal); /* initialize to zeros */
2759
7ce450bd 2760 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2761 sr_sal.section = find_pc_overlay (sr_sal.pc);
2762
44cbf7b5 2763 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2764}
2765
104c1213
JM
2766static void
2767stop_stepping (struct execution_control_state *ecs)
2768{
527159b7 2769 if (debug_infrun)
8a9de0e4 2770 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2771
cd0fc7c3
SS
2772 /* Let callers know we don't want to wait for the inferior anymore. */
2773 ecs->wait_some_more = 0;
2774}
2775
d4f3574e
SS
2776/* This function handles various cases where we need to continue
2777 waiting for the inferior. */
2778/* (Used to be the keep_going: label in the old wait_for_inferior) */
2779
2780static void
2781keep_going (struct execution_control_state *ecs)
2782{
d4f3574e 2783 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2784 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2785
d4f3574e
SS
2786 /* If we did not do break;, it means we should keep running the
2787 inferior and not return to debugger. */
2788
2789 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2790 {
2791 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2792 the inferior, else we'd have done a break above) and we
2793 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2794 resume (currently_stepping (ecs), stop_signal);
2795 }
2796 else
2797 {
2798 /* Either the trap was not expected, but we are continuing
488f131b
JB
2799 anyway (the user asked that this signal be passed to the
2800 child)
2801 -- or --
2802 The signal was SIGTRAP, e.g. it was our signal, but we
2803 decided we should resume from it.
d4f3574e 2804
68f53502 2805 We're going to run this baby now! */
d4f3574e 2806
68f53502 2807 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2808 {
2809 breakpoints_failed = insert_breakpoints ();
2810 if (breakpoints_failed)
2811 {
2812 stop_stepping (ecs);
2813 return;
2814 }
2815 breakpoints_inserted = 1;
2816 }
2817
2818 trap_expected = ecs->another_trap;
2819
2820 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2821 specifies that such a signal should be delivered to the
2822 target program).
2823
2824 Typically, this would occure when a user is debugging a
2825 target monitor on a simulator: the target monitor sets a
2826 breakpoint; the simulator encounters this break-point and
2827 halts the simulation handing control to GDB; GDB, noteing
2828 that the break-point isn't valid, returns control back to the
2829 simulator; the simulator then delivers the hardware
2830 equivalent of a SIGNAL_TRAP to the program being debugged. */
2831
2832 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2833 stop_signal = TARGET_SIGNAL_0;
2834
d4f3574e
SS
2835
2836 resume (currently_stepping (ecs), stop_signal);
2837 }
2838
488f131b 2839 prepare_to_wait (ecs);
d4f3574e
SS
2840}
2841
104c1213
JM
2842/* This function normally comes after a resume, before
2843 handle_inferior_event exits. It takes care of any last bits of
2844 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2845
104c1213
JM
2846static void
2847prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2848{
527159b7 2849 if (debug_infrun)
8a9de0e4 2850 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2851 if (ecs->infwait_state == infwait_normal_state)
2852 {
2853 overlay_cache_invalid = 1;
2854
2855 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2856 target_wait because they can be loaded from the target while
2857 in target_wait. This makes remote debugging a bit more
2858 efficient for those targets that provide critical registers
2859 as part of their normal status mechanism. */
104c1213
JM
2860
2861 registers_changed ();
39f77062 2862 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2863 ecs->wp = &(ecs->ws);
2864 }
2865 /* This is the old end of the while loop. Let everybody know we
2866 want to wait for the inferior some more and get called again
2867 soon. */
2868 ecs->wait_some_more = 1;
c906108c 2869}
11cf8741
JM
2870
2871/* Print why the inferior has stopped. We always print something when
2872 the inferior exits, or receives a signal. The rest of the cases are
2873 dealt with later on in normal_stop() and print_it_typical(). Ideally
2874 there should be a call to this function from handle_inferior_event()
2875 each time stop_stepping() is called.*/
2876static void
2877print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2878{
2879 switch (stop_reason)
2880 {
2881 case STOP_UNKNOWN:
2882 /* We don't deal with these cases from handle_inferior_event()
2883 yet. */
2884 break;
2885 case END_STEPPING_RANGE:
2886 /* We are done with a step/next/si/ni command. */
2887 /* For now print nothing. */
fb40c209 2888 /* Print a message only if not in the middle of doing a "step n"
488f131b 2889 operation for n > 1 */
fb40c209 2890 if (!step_multi || !stop_step)
9dc5e2a9 2891 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2892 ui_out_field_string
2893 (uiout, "reason",
2894 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741
JM
2895 break;
2896 case BREAKPOINT_HIT:
2897 /* We found a breakpoint. */
2898 /* For now print nothing. */
2899 break;
2900 case SIGNAL_EXITED:
2901 /* The inferior was terminated by a signal. */
8b93c638 2902 annotate_signalled ();
9dc5e2a9 2903 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2904 ui_out_field_string
2905 (uiout, "reason",
2906 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
2907 ui_out_text (uiout, "\nProgram terminated with signal ");
2908 annotate_signal_name ();
488f131b
JB
2909 ui_out_field_string (uiout, "signal-name",
2910 target_signal_to_name (stop_info));
8b93c638
JM
2911 annotate_signal_name_end ();
2912 ui_out_text (uiout, ", ");
2913 annotate_signal_string ();
488f131b
JB
2914 ui_out_field_string (uiout, "signal-meaning",
2915 target_signal_to_string (stop_info));
8b93c638
JM
2916 annotate_signal_string_end ();
2917 ui_out_text (uiout, ".\n");
2918 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2919 break;
2920 case EXITED:
2921 /* The inferior program is finished. */
8b93c638
JM
2922 annotate_exited (stop_info);
2923 if (stop_info)
2924 {
9dc5e2a9 2925 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2926 ui_out_field_string (uiout, "reason",
2927 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 2928 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2929 ui_out_field_fmt (uiout, "exit-code", "0%o",
2930 (unsigned int) stop_info);
8b93c638
JM
2931 ui_out_text (uiout, ".\n");
2932 }
2933 else
2934 {
9dc5e2a9 2935 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2936 ui_out_field_string
2937 (uiout, "reason",
2938 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
2939 ui_out_text (uiout, "\nProgram exited normally.\n");
2940 }
f17517ea
AS
2941 /* Support the --return-child-result option. */
2942 return_child_result_value = stop_info;
11cf8741
JM
2943 break;
2944 case SIGNAL_RECEIVED:
2945 /* Signal received. The signal table tells us to print about
2946 it. */
8b93c638
JM
2947 annotate_signal ();
2948 ui_out_text (uiout, "\nProgram received signal ");
2949 annotate_signal_name ();
84c6c83c 2950 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2951 ui_out_field_string
2952 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
2953 ui_out_field_string (uiout, "signal-name",
2954 target_signal_to_name (stop_info));
8b93c638
JM
2955 annotate_signal_name_end ();
2956 ui_out_text (uiout, ", ");
2957 annotate_signal_string ();
488f131b
JB
2958 ui_out_field_string (uiout, "signal-meaning",
2959 target_signal_to_string (stop_info));
8b93c638
JM
2960 annotate_signal_string_end ();
2961 ui_out_text (uiout, ".\n");
11cf8741
JM
2962 break;
2963 default:
8e65ff28 2964 internal_error (__FILE__, __LINE__,
e2e0b3e5 2965 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
2966 break;
2967 }
2968}
c906108c 2969\f
43ff13b4 2970
c906108c
SS
2971/* Here to return control to GDB when the inferior stops for real.
2972 Print appropriate messages, remove breakpoints, give terminal our modes.
2973
2974 STOP_PRINT_FRAME nonzero means print the executing frame
2975 (pc, function, args, file, line number and line text).
2976 BREAKPOINTS_FAILED nonzero means stop was due to error
2977 attempting to insert breakpoints. */
2978
2979void
96baa820 2980normal_stop (void)
c906108c 2981{
73b65bb0
DJ
2982 struct target_waitstatus last;
2983 ptid_t last_ptid;
2984
2985 get_last_target_status (&last_ptid, &last);
2986
c906108c
SS
2987 /* As with the notification of thread events, we want to delay
2988 notifying the user that we've switched thread context until
2989 the inferior actually stops.
2990
73b65bb0
DJ
2991 There's no point in saying anything if the inferior has exited.
2992 Note that SIGNALLED here means "exited with a signal", not
2993 "received a signal". */
488f131b 2994 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2995 && target_has_execution
2996 && last.kind != TARGET_WAITKIND_SIGNALLED
2997 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2998 {
2999 target_terminal_ours_for_output ();
a3f17187 3000 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3001 target_pid_or_tid_to_str (inferior_ptid));
3002 previous_inferior_ptid = inferior_ptid;
c906108c 3003 }
c906108c 3004
4fa8626c 3005 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3006 /* Make sure that the current_frame's pc is correct. This
3007 is a correction for setting up the frame info before doing
3008 DECR_PC_AFTER_BREAK */
b87efeee
AC
3009 if (target_has_execution)
3010 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3011 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3012 frame code to check for this and sort out any resultant mess.
3013 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3014 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3015
c906108c
SS
3016 if (target_has_execution && breakpoints_inserted)
3017 {
3018 if (remove_breakpoints ())
3019 {
3020 target_terminal_ours_for_output ();
a3f17187
AC
3021 printf_filtered (_("\
3022Cannot remove breakpoints because program is no longer writable.\n\
3023It might be running in another process.\n\
3024Further execution is probably impossible.\n"));
c906108c
SS
3025 }
3026 }
3027 breakpoints_inserted = 0;
3028
3029 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3030 Delete any breakpoint that is to be deleted at the next stop. */
3031
3032 breakpoint_auto_delete (stop_bpstat);
3033
3034 /* If an auto-display called a function and that got a signal,
3035 delete that auto-display to avoid an infinite recursion. */
3036
3037 if (stopped_by_random_signal)
3038 disable_current_display ();
3039
3040 /* Don't print a message if in the middle of doing a "step n"
3041 operation for n > 1 */
3042 if (step_multi && stop_step)
3043 goto done;
3044
3045 target_terminal_ours ();
3046
7abfe014
DJ
3047 /* Set the current source location. This will also happen if we
3048 display the frame below, but the current SAL will be incorrect
3049 during a user hook-stop function. */
3050 if (target_has_stack && !stop_stack_dummy)
3051 set_current_sal_from_frame (get_current_frame (), 1);
3052
5913bcb0
AC
3053 /* Look up the hook_stop and run it (CLI internally handles problem
3054 of stop_command's pre-hook not existing). */
3055 if (stop_command)
3056 catch_errors (hook_stop_stub, stop_command,
3057 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3058
3059 if (!target_has_stack)
3060 {
3061
3062 goto done;
3063 }
3064
3065 /* Select innermost stack frame - i.e., current frame is frame 0,
3066 and current location is based on that.
3067 Don't do this on return from a stack dummy routine,
3068 or if the program has exited. */
3069
3070 if (!stop_stack_dummy)
3071 {
0f7d239c 3072 select_frame (get_current_frame ());
c906108c
SS
3073
3074 /* Print current location without a level number, if
c5aa993b
JM
3075 we have changed functions or hit a breakpoint.
3076 Print source line if we have one.
3077 bpstat_print() contains the logic deciding in detail
3078 what to print, based on the event(s) that just occurred. */
c906108c 3079
6e7f8b9c 3080 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3081 {
3082 int bpstat_ret;
3083 int source_flag;
917317f4 3084 int do_frame_printing = 1;
c906108c
SS
3085
3086 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3087 switch (bpstat_ret)
3088 {
3089 case PRINT_UNKNOWN:
aa0cd9c1 3090 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3091 (or should) carry around the function and does (or
3092 should) use that when doing a frame comparison. */
917317f4 3093 if (stop_step
aa0cd9c1
AC
3094 && frame_id_eq (step_frame_id,
3095 get_frame_id (get_current_frame ()))
917317f4 3096 && step_start_function == find_pc_function (stop_pc))
488f131b 3097 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3098 else
488f131b 3099 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3100 break;
3101 case PRINT_SRC_AND_LOC:
488f131b 3102 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3103 break;
3104 case PRINT_SRC_ONLY:
c5394b80 3105 source_flag = SRC_LINE;
917317f4
JM
3106 break;
3107 case PRINT_NOTHING:
488f131b 3108 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3109 do_frame_printing = 0;
3110 break;
3111 default:
e2e0b3e5 3112 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3113 }
fb40c209 3114 /* For mi, have the same behavior every time we stop:
488f131b 3115 print everything but the source line. */
9dc5e2a9 3116 if (ui_out_is_mi_like_p (uiout))
fb40c209 3117 source_flag = LOC_AND_ADDRESS;
c906108c 3118
9dc5e2a9 3119 if (ui_out_is_mi_like_p (uiout))
39f77062 3120 ui_out_field_int (uiout, "thread-id",
488f131b 3121 pid_to_thread_id (inferior_ptid));
c906108c
SS
3122 /* The behavior of this routine with respect to the source
3123 flag is:
c5394b80
JM
3124 SRC_LINE: Print only source line
3125 LOCATION: Print only location
3126 SRC_AND_LOC: Print location and source line */
917317f4 3127 if (do_frame_printing)
b04f3ab4 3128 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3129
3130 /* Display the auto-display expressions. */
3131 do_displays ();
3132 }
3133 }
3134
3135 /* Save the function value return registers, if we care.
3136 We might be about to restore their previous contents. */
3137 if (proceed_to_finish)
72cec141
AC
3138 /* NB: The copy goes through to the target picking up the value of
3139 all the registers. */
3140 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3141
3142 if (stop_stack_dummy)
3143 {
dbe9fe58
AC
3144 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3145 ends with a setting of the current frame, so we can use that
3146 next. */
3147 frame_pop (get_current_frame ());
c906108c 3148 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3149 Can't rely on restore_inferior_status because that only gets
3150 called if we don't stop in the called function. */
c906108c 3151 stop_pc = read_pc ();
0f7d239c 3152 select_frame (get_current_frame ());
c906108c
SS
3153 }
3154
c906108c
SS
3155done:
3156 annotate_stopped ();
7a464420 3157 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3158}
3159
3160static int
96baa820 3161hook_stop_stub (void *cmd)
c906108c 3162{
5913bcb0 3163 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3164 return (0);
3165}
3166\f
c5aa993b 3167int
96baa820 3168signal_stop_state (int signo)
c906108c
SS
3169{
3170 return signal_stop[signo];
3171}
3172
c5aa993b 3173int
96baa820 3174signal_print_state (int signo)
c906108c
SS
3175{
3176 return signal_print[signo];
3177}
3178
c5aa993b 3179int
96baa820 3180signal_pass_state (int signo)
c906108c
SS
3181{
3182 return signal_program[signo];
3183}
3184
488f131b 3185int
7bda5e4a 3186signal_stop_update (int signo, int state)
d4f3574e
SS
3187{
3188 int ret = signal_stop[signo];
3189 signal_stop[signo] = state;
3190 return ret;
3191}
3192
488f131b 3193int
7bda5e4a 3194signal_print_update (int signo, int state)
d4f3574e
SS
3195{
3196 int ret = signal_print[signo];
3197 signal_print[signo] = state;
3198 return ret;
3199}
3200
488f131b 3201int
7bda5e4a 3202signal_pass_update (int signo, int state)
d4f3574e
SS
3203{
3204 int ret = signal_program[signo];
3205 signal_program[signo] = state;
3206 return ret;
3207}
3208
c906108c 3209static void
96baa820 3210sig_print_header (void)
c906108c 3211{
a3f17187
AC
3212 printf_filtered (_("\
3213Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3214}
3215
3216static void
96baa820 3217sig_print_info (enum target_signal oursig)
c906108c
SS
3218{
3219 char *name = target_signal_to_name (oursig);
3220 int name_padding = 13 - strlen (name);
96baa820 3221
c906108c
SS
3222 if (name_padding <= 0)
3223 name_padding = 0;
3224
3225 printf_filtered ("%s", name);
488f131b 3226 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3227 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3228 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3229 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3230 printf_filtered ("%s\n", target_signal_to_string (oursig));
3231}
3232
3233/* Specify how various signals in the inferior should be handled. */
3234
3235static void
96baa820 3236handle_command (char *args, int from_tty)
c906108c
SS
3237{
3238 char **argv;
3239 int digits, wordlen;
3240 int sigfirst, signum, siglast;
3241 enum target_signal oursig;
3242 int allsigs;
3243 int nsigs;
3244 unsigned char *sigs;
3245 struct cleanup *old_chain;
3246
3247 if (args == NULL)
3248 {
e2e0b3e5 3249 error_no_arg (_("signal to handle"));
c906108c
SS
3250 }
3251
3252 /* Allocate and zero an array of flags for which signals to handle. */
3253
3254 nsigs = (int) TARGET_SIGNAL_LAST;
3255 sigs = (unsigned char *) alloca (nsigs);
3256 memset (sigs, 0, nsigs);
3257
3258 /* Break the command line up into args. */
3259
3260 argv = buildargv (args);
3261 if (argv == NULL)
3262 {
3263 nomem (0);
3264 }
7a292a7a 3265 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3266
3267 /* Walk through the args, looking for signal oursigs, signal names, and
3268 actions. Signal numbers and signal names may be interspersed with
3269 actions, with the actions being performed for all signals cumulatively
3270 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3271
3272 while (*argv != NULL)
3273 {
3274 wordlen = strlen (*argv);
3275 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3276 {;
3277 }
3278 allsigs = 0;
3279 sigfirst = siglast = -1;
3280
3281 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3282 {
3283 /* Apply action to all signals except those used by the
3284 debugger. Silently skip those. */
3285 allsigs = 1;
3286 sigfirst = 0;
3287 siglast = nsigs - 1;
3288 }
3289 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3290 {
3291 SET_SIGS (nsigs, sigs, signal_stop);
3292 SET_SIGS (nsigs, sigs, signal_print);
3293 }
3294 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3295 {
3296 UNSET_SIGS (nsigs, sigs, signal_program);
3297 }
3298 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3299 {
3300 SET_SIGS (nsigs, sigs, signal_print);
3301 }
3302 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3303 {
3304 SET_SIGS (nsigs, sigs, signal_program);
3305 }
3306 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3307 {
3308 UNSET_SIGS (nsigs, sigs, signal_stop);
3309 }
3310 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3311 {
3312 SET_SIGS (nsigs, sigs, signal_program);
3313 }
3314 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3315 {
3316 UNSET_SIGS (nsigs, sigs, signal_print);
3317 UNSET_SIGS (nsigs, sigs, signal_stop);
3318 }
3319 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3320 {
3321 UNSET_SIGS (nsigs, sigs, signal_program);
3322 }
3323 else if (digits > 0)
3324 {
3325 /* It is numeric. The numeric signal refers to our own
3326 internal signal numbering from target.h, not to host/target
3327 signal number. This is a feature; users really should be
3328 using symbolic names anyway, and the common ones like
3329 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3330
3331 sigfirst = siglast = (int)
3332 target_signal_from_command (atoi (*argv));
3333 if ((*argv)[digits] == '-')
3334 {
3335 siglast = (int)
3336 target_signal_from_command (atoi ((*argv) + digits + 1));
3337 }
3338 if (sigfirst > siglast)
3339 {
3340 /* Bet he didn't figure we'd think of this case... */
3341 signum = sigfirst;
3342 sigfirst = siglast;
3343 siglast = signum;
3344 }
3345 }
3346 else
3347 {
3348 oursig = target_signal_from_name (*argv);
3349 if (oursig != TARGET_SIGNAL_UNKNOWN)
3350 {
3351 sigfirst = siglast = (int) oursig;
3352 }
3353 else
3354 {
3355 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3356 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3357 }
3358 }
3359
3360 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3361 which signals to apply actions to. */
c906108c
SS
3362
3363 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3364 {
3365 switch ((enum target_signal) signum)
3366 {
3367 case TARGET_SIGNAL_TRAP:
3368 case TARGET_SIGNAL_INT:
3369 if (!allsigs && !sigs[signum])
3370 {
3371 if (query ("%s is used by the debugger.\n\
488f131b 3372Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3373 {
3374 sigs[signum] = 1;
3375 }
3376 else
3377 {
a3f17187 3378 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3379 gdb_flush (gdb_stdout);
3380 }
3381 }
3382 break;
3383 case TARGET_SIGNAL_0:
3384 case TARGET_SIGNAL_DEFAULT:
3385 case TARGET_SIGNAL_UNKNOWN:
3386 /* Make sure that "all" doesn't print these. */
3387 break;
3388 default:
3389 sigs[signum] = 1;
3390 break;
3391 }
3392 }
3393
3394 argv++;
3395 }
3396
39f77062 3397 target_notice_signals (inferior_ptid);
c906108c
SS
3398
3399 if (from_tty)
3400 {
3401 /* Show the results. */
3402 sig_print_header ();
3403 for (signum = 0; signum < nsigs; signum++)
3404 {
3405 if (sigs[signum])
3406 {
3407 sig_print_info (signum);
3408 }
3409 }
3410 }
3411
3412 do_cleanups (old_chain);
3413}
3414
3415static void
96baa820 3416xdb_handle_command (char *args, int from_tty)
c906108c
SS
3417{
3418 char **argv;
3419 struct cleanup *old_chain;
3420
3421 /* Break the command line up into args. */
3422
3423 argv = buildargv (args);
3424 if (argv == NULL)
3425 {
3426 nomem (0);
3427 }
7a292a7a 3428 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3429 if (argv[1] != (char *) NULL)
3430 {
3431 char *argBuf;
3432 int bufLen;
3433
3434 bufLen = strlen (argv[0]) + 20;
3435 argBuf = (char *) xmalloc (bufLen);
3436 if (argBuf)
3437 {
3438 int validFlag = 1;
3439 enum target_signal oursig;
3440
3441 oursig = target_signal_from_name (argv[0]);
3442 memset (argBuf, 0, bufLen);
3443 if (strcmp (argv[1], "Q") == 0)
3444 sprintf (argBuf, "%s %s", argv[0], "noprint");
3445 else
3446 {
3447 if (strcmp (argv[1], "s") == 0)
3448 {
3449 if (!signal_stop[oursig])
3450 sprintf (argBuf, "%s %s", argv[0], "stop");
3451 else
3452 sprintf (argBuf, "%s %s", argv[0], "nostop");
3453 }
3454 else if (strcmp (argv[1], "i") == 0)
3455 {
3456 if (!signal_program[oursig])
3457 sprintf (argBuf, "%s %s", argv[0], "pass");
3458 else
3459 sprintf (argBuf, "%s %s", argv[0], "nopass");
3460 }
3461 else if (strcmp (argv[1], "r") == 0)
3462 {
3463 if (!signal_print[oursig])
3464 sprintf (argBuf, "%s %s", argv[0], "print");
3465 else
3466 sprintf (argBuf, "%s %s", argv[0], "noprint");
3467 }
3468 else
3469 validFlag = 0;
3470 }
3471 if (validFlag)
3472 handle_command (argBuf, from_tty);
3473 else
a3f17187 3474 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3475 if (argBuf)
b8c9b27d 3476 xfree (argBuf);
c906108c
SS
3477 }
3478 }
3479 do_cleanups (old_chain);
3480}
3481
3482/* Print current contents of the tables set by the handle command.
3483 It is possible we should just be printing signals actually used
3484 by the current target (but for things to work right when switching
3485 targets, all signals should be in the signal tables). */
3486
3487static void
96baa820 3488signals_info (char *signum_exp, int from_tty)
c906108c
SS
3489{
3490 enum target_signal oursig;
3491 sig_print_header ();
3492
3493 if (signum_exp)
3494 {
3495 /* First see if this is a symbol name. */
3496 oursig = target_signal_from_name (signum_exp);
3497 if (oursig == TARGET_SIGNAL_UNKNOWN)
3498 {
3499 /* No, try numeric. */
3500 oursig =
bb518678 3501 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3502 }
3503 sig_print_info (oursig);
3504 return;
3505 }
3506
3507 printf_filtered ("\n");
3508 /* These ugly casts brought to you by the native VAX compiler. */
3509 for (oursig = TARGET_SIGNAL_FIRST;
3510 (int) oursig < (int) TARGET_SIGNAL_LAST;
3511 oursig = (enum target_signal) ((int) oursig + 1))
3512 {
3513 QUIT;
3514
3515 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3516 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3517 sig_print_info (oursig);
3518 }
3519
a3f17187 3520 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3521}
3522\f
7a292a7a
SS
3523struct inferior_status
3524{
3525 enum target_signal stop_signal;
3526 CORE_ADDR stop_pc;
3527 bpstat stop_bpstat;
3528 int stop_step;
3529 int stop_stack_dummy;
3530 int stopped_by_random_signal;
3531 int trap_expected;
3532 CORE_ADDR step_range_start;
3533 CORE_ADDR step_range_end;
aa0cd9c1 3534 struct frame_id step_frame_id;
5fbbeb29 3535 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3536 CORE_ADDR step_resume_break_address;
3537 int stop_after_trap;
c0236d92 3538 int stop_soon;
72cec141 3539 struct regcache *stop_registers;
7a292a7a
SS
3540
3541 /* These are here because if call_function_by_hand has written some
3542 registers and then decides to call error(), we better not have changed
3543 any registers. */
72cec141 3544 struct regcache *registers;
7a292a7a 3545
101dcfbe
AC
3546 /* A frame unique identifier. */
3547 struct frame_id selected_frame_id;
3548
7a292a7a
SS
3549 int breakpoint_proceeded;
3550 int restore_stack_info;
3551 int proceed_to_finish;
3552};
3553
7a292a7a 3554void
96baa820
JM
3555write_inferior_status_register (struct inferior_status *inf_status, int regno,
3556 LONGEST val)
7a292a7a 3557{
3acba339 3558 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3559 void *buf = alloca (size);
3560 store_signed_integer (buf, size, val);
0818c12a 3561 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3562}
3563
c906108c
SS
3564/* Save all of the information associated with the inferior<==>gdb
3565 connection. INF_STATUS is a pointer to a "struct inferior_status"
3566 (defined in inferior.h). */
3567
7a292a7a 3568struct inferior_status *
96baa820 3569save_inferior_status (int restore_stack_info)
c906108c 3570{
72cec141 3571 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3572
c906108c
SS
3573 inf_status->stop_signal = stop_signal;
3574 inf_status->stop_pc = stop_pc;
3575 inf_status->stop_step = stop_step;
3576 inf_status->stop_stack_dummy = stop_stack_dummy;
3577 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3578 inf_status->trap_expected = trap_expected;
3579 inf_status->step_range_start = step_range_start;
3580 inf_status->step_range_end = step_range_end;
aa0cd9c1 3581 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3582 inf_status->step_over_calls = step_over_calls;
3583 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3584 inf_status->stop_soon = stop_soon;
c906108c
SS
3585 /* Save original bpstat chain here; replace it with copy of chain.
3586 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3587 hand them back the original chain when restore_inferior_status is
3588 called. */
c906108c
SS
3589 inf_status->stop_bpstat = stop_bpstat;
3590 stop_bpstat = bpstat_copy (stop_bpstat);
3591 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3592 inf_status->restore_stack_info = restore_stack_info;
3593 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3594
72cec141 3595 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3596
72cec141 3597 inf_status->registers = regcache_dup (current_regcache);
c906108c 3598
7a424e99 3599 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3600 return inf_status;
c906108c
SS
3601}
3602
c906108c 3603static int
96baa820 3604restore_selected_frame (void *args)
c906108c 3605{
488f131b 3606 struct frame_id *fid = (struct frame_id *) args;
c906108c 3607 struct frame_info *frame;
c906108c 3608
101dcfbe 3609 frame = frame_find_by_id (*fid);
c906108c 3610
aa0cd9c1
AC
3611 /* If inf_status->selected_frame_id is NULL, there was no previously
3612 selected frame. */
101dcfbe 3613 if (frame == NULL)
c906108c 3614 {
8a3fe4f8 3615 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3616 return 0;
3617 }
3618
0f7d239c 3619 select_frame (frame);
c906108c
SS
3620
3621 return (1);
3622}
3623
3624void
96baa820 3625restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3626{
3627 stop_signal = inf_status->stop_signal;
3628 stop_pc = inf_status->stop_pc;
3629 stop_step = inf_status->stop_step;
3630 stop_stack_dummy = inf_status->stop_stack_dummy;
3631 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3632 trap_expected = inf_status->trap_expected;
3633 step_range_start = inf_status->step_range_start;
3634 step_range_end = inf_status->step_range_end;
aa0cd9c1 3635 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3636 step_over_calls = inf_status->step_over_calls;
3637 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3638 stop_soon = inf_status->stop_soon;
c906108c
SS
3639 bpstat_clear (&stop_bpstat);
3640 stop_bpstat = inf_status->stop_bpstat;
3641 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3642 proceed_to_finish = inf_status->proceed_to_finish;
3643
72cec141
AC
3644 /* FIXME: Is the restore of stop_registers always needed. */
3645 regcache_xfree (stop_registers);
3646 stop_registers = inf_status->stop_registers;
c906108c
SS
3647
3648 /* The inferior can be gone if the user types "print exit(0)"
3649 (and perhaps other times). */
3650 if (target_has_execution)
72cec141
AC
3651 /* NB: The register write goes through to the target. */
3652 regcache_cpy (current_regcache, inf_status->registers);
3653 regcache_xfree (inf_status->registers);
c906108c 3654
c906108c
SS
3655 /* FIXME: If we are being called after stopping in a function which
3656 is called from gdb, we should not be trying to restore the
3657 selected frame; it just prints a spurious error message (The
3658 message is useful, however, in detecting bugs in gdb (like if gdb
3659 clobbers the stack)). In fact, should we be restoring the
3660 inferior status at all in that case? . */
3661
3662 if (target_has_stack && inf_status->restore_stack_info)
3663 {
c906108c 3664 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3665 walking the stack might encounter a garbage pointer and
3666 error() trying to dereference it. */
488f131b
JB
3667 if (catch_errors
3668 (restore_selected_frame, &inf_status->selected_frame_id,
3669 "Unable to restore previously selected frame:\n",
3670 RETURN_MASK_ERROR) == 0)
c906108c
SS
3671 /* Error in restoring the selected frame. Select the innermost
3672 frame. */
0f7d239c 3673 select_frame (get_current_frame ());
c906108c
SS
3674
3675 }
c906108c 3676
72cec141 3677 xfree (inf_status);
7a292a7a 3678}
c906108c 3679
74b7792f
AC
3680static void
3681do_restore_inferior_status_cleanup (void *sts)
3682{
3683 restore_inferior_status (sts);
3684}
3685
3686struct cleanup *
3687make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3688{
3689 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3690}
3691
c906108c 3692void
96baa820 3693discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3694{
3695 /* See save_inferior_status for info on stop_bpstat. */
3696 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3697 regcache_xfree (inf_status->registers);
3698 regcache_xfree (inf_status->stop_registers);
3699 xfree (inf_status);
7a292a7a
SS
3700}
3701
47932f85
DJ
3702int
3703inferior_has_forked (int pid, int *child_pid)
3704{
3705 struct target_waitstatus last;
3706 ptid_t last_ptid;
3707
3708 get_last_target_status (&last_ptid, &last);
3709
3710 if (last.kind != TARGET_WAITKIND_FORKED)
3711 return 0;
3712
3713 if (ptid_get_pid (last_ptid) != pid)
3714 return 0;
3715
3716 *child_pid = last.value.related_pid;
3717 return 1;
3718}
3719
3720int
3721inferior_has_vforked (int pid, int *child_pid)
3722{
3723 struct target_waitstatus last;
3724 ptid_t last_ptid;
3725
3726 get_last_target_status (&last_ptid, &last);
3727
3728 if (last.kind != TARGET_WAITKIND_VFORKED)
3729 return 0;
3730
3731 if (ptid_get_pid (last_ptid) != pid)
3732 return 0;
3733
3734 *child_pid = last.value.related_pid;
3735 return 1;
3736}
3737
3738int
3739inferior_has_execd (int pid, char **execd_pathname)
3740{
3741 struct target_waitstatus last;
3742 ptid_t last_ptid;
3743
3744 get_last_target_status (&last_ptid, &last);
3745
3746 if (last.kind != TARGET_WAITKIND_EXECD)
3747 return 0;
3748
3749 if (ptid_get_pid (last_ptid) != pid)
3750 return 0;
3751
3752 *execd_pathname = xstrdup (last.value.execd_pathname);
3753 return 1;
3754}
3755
ca6724c1
KB
3756/* Oft used ptids */
3757ptid_t null_ptid;
3758ptid_t minus_one_ptid;
3759
3760/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3761
ca6724c1
KB
3762ptid_t
3763ptid_build (int pid, long lwp, long tid)
3764{
3765 ptid_t ptid;
3766
3767 ptid.pid = pid;
3768 ptid.lwp = lwp;
3769 ptid.tid = tid;
3770 return ptid;
3771}
3772
3773/* Create a ptid from just a pid. */
3774
3775ptid_t
3776pid_to_ptid (int pid)
3777{
3778 return ptid_build (pid, 0, 0);
3779}
3780
3781/* Fetch the pid (process id) component from a ptid. */
3782
3783int
3784ptid_get_pid (ptid_t ptid)
3785{
3786 return ptid.pid;
3787}
3788
3789/* Fetch the lwp (lightweight process) component from a ptid. */
3790
3791long
3792ptid_get_lwp (ptid_t ptid)
3793{
3794 return ptid.lwp;
3795}
3796
3797/* Fetch the tid (thread id) component from a ptid. */
3798
3799long
3800ptid_get_tid (ptid_t ptid)
3801{
3802 return ptid.tid;
3803}
3804
3805/* ptid_equal() is used to test equality of two ptids. */
3806
3807int
3808ptid_equal (ptid_t ptid1, ptid_t ptid2)
3809{
3810 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3811 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3812}
3813
3814/* restore_inferior_ptid() will be used by the cleanup machinery
3815 to restore the inferior_ptid value saved in a call to
3816 save_inferior_ptid(). */
ce696e05
KB
3817
3818static void
3819restore_inferior_ptid (void *arg)
3820{
3821 ptid_t *saved_ptid_ptr = arg;
3822 inferior_ptid = *saved_ptid_ptr;
3823 xfree (arg);
3824}
3825
3826/* Save the value of inferior_ptid so that it may be restored by a
3827 later call to do_cleanups(). Returns the struct cleanup pointer
3828 needed for later doing the cleanup. */
3829
3830struct cleanup *
3831save_inferior_ptid (void)
3832{
3833 ptid_t *saved_ptid_ptr;
3834
3835 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3836 *saved_ptid_ptr = inferior_ptid;
3837 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3838}
c5aa993b 3839\f
488f131b 3840
7a292a7a 3841static void
96baa820 3842build_infrun (void)
7a292a7a 3843{
72cec141 3844 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3845}
c906108c 3846
c906108c 3847void
96baa820 3848_initialize_infrun (void)
c906108c 3849{
52f0bd74
AC
3850 int i;
3851 int numsigs;
c906108c
SS
3852 struct cmd_list_element *c;
3853
046a4708
AC
3854 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3855 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3856
1bedd215
AC
3857 add_info ("signals", signals_info, _("\
3858What debugger does when program gets various signals.\n\
3859Specify a signal as argument to print info on that signal only."));
c906108c
SS
3860 add_info_alias ("handle", "signals", 0);
3861
1bedd215
AC
3862 add_com ("handle", class_run, handle_command, _("\
3863Specify how to handle a signal.\n\
c906108c
SS
3864Args are signals and actions to apply to those signals.\n\
3865Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3866from 1-15 are allowed for compatibility with old versions of GDB.\n\
3867Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3868The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3869used by the debugger, typically SIGTRAP and SIGINT.\n\
3870Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3871\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3872Stop means reenter debugger if this signal happens (implies print).\n\
3873Print means print a message if this signal happens.\n\
3874Pass means let program see this signal; otherwise program doesn't know.\n\
3875Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3876Pass and Stop may be combined."));
c906108c
SS
3877 if (xdb_commands)
3878 {
1bedd215
AC
3879 add_com ("lz", class_info, signals_info, _("\
3880What debugger does when program gets various signals.\n\
3881Specify a signal as argument to print info on that signal only."));
3882 add_com ("z", class_run, xdb_handle_command, _("\
3883Specify how to handle a signal.\n\
c906108c
SS
3884Args are signals and actions to apply to those signals.\n\
3885Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3886from 1-15 are allowed for compatibility with old versions of GDB.\n\
3887Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3888The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3889used by the debugger, typically SIGTRAP and SIGINT.\n\
3890Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3891\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3892nopass), \"Q\" (noprint)\n\
3893Stop means reenter debugger if this signal happens (implies print).\n\
3894Print means print a message if this signal happens.\n\
3895Pass means let program see this signal; otherwise program doesn't know.\n\
3896Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3897Pass and Stop may be combined."));
c906108c
SS
3898 }
3899
3900 if (!dbx_commands)
1a966eab
AC
3901 stop_command = add_cmd ("stop", class_obscure,
3902 not_just_help_class_command, _("\
3903There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3904This allows you to set a list of commands to be run each time execution\n\
1a966eab 3905of the program stops."), &cmdlist);
c906108c 3906
85c07804
AC
3907 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3908Set inferior debugging."), _("\
3909Show inferior debugging."), _("\
3910When non-zero, inferior specific debugging is enabled."),
3911 NULL,
920d2a44 3912 show_debug_infrun,
85c07804 3913 &setdebuglist, &showdebuglist);
527159b7 3914
c906108c 3915 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3916 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3917 signal_print = (unsigned char *)
3918 xmalloc (sizeof (signal_print[0]) * numsigs);
3919 signal_program = (unsigned char *)
3920 xmalloc (sizeof (signal_program[0]) * numsigs);
3921 for (i = 0; i < numsigs; i++)
3922 {
3923 signal_stop[i] = 1;
3924 signal_print[i] = 1;
3925 signal_program[i] = 1;
3926 }
3927
3928 /* Signals caused by debugger's own actions
3929 should not be given to the program afterwards. */
3930 signal_program[TARGET_SIGNAL_TRAP] = 0;
3931 signal_program[TARGET_SIGNAL_INT] = 0;
3932
3933 /* Signals that are not errors should not normally enter the debugger. */
3934 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3935 signal_print[TARGET_SIGNAL_ALRM] = 0;
3936 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3937 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3938 signal_stop[TARGET_SIGNAL_PROF] = 0;
3939 signal_print[TARGET_SIGNAL_PROF] = 0;
3940 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3941 signal_print[TARGET_SIGNAL_CHLD] = 0;
3942 signal_stop[TARGET_SIGNAL_IO] = 0;
3943 signal_print[TARGET_SIGNAL_IO] = 0;
3944 signal_stop[TARGET_SIGNAL_POLL] = 0;
3945 signal_print[TARGET_SIGNAL_POLL] = 0;
3946 signal_stop[TARGET_SIGNAL_URG] = 0;
3947 signal_print[TARGET_SIGNAL_URG] = 0;
3948 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3949 signal_print[TARGET_SIGNAL_WINCH] = 0;
3950
cd0fc7c3
SS
3951 /* These signals are used internally by user-level thread
3952 implementations. (See signal(5) on Solaris.) Like the above
3953 signals, a healthy program receives and handles them as part of
3954 its normal operation. */
3955 signal_stop[TARGET_SIGNAL_LWP] = 0;
3956 signal_print[TARGET_SIGNAL_LWP] = 0;
3957 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3958 signal_print[TARGET_SIGNAL_WAITING] = 0;
3959 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3960 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3961
85c07804
AC
3962 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3963 &stop_on_solib_events, _("\
3964Set stopping for shared library events."), _("\
3965Show stopping for shared library events."), _("\
c906108c
SS
3966If nonzero, gdb will give control to the user when the dynamic linker\n\
3967notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
3968to the user would be loading/unloading of a new library."),
3969 NULL,
920d2a44 3970 show_stop_on_solib_events,
85c07804 3971 &setlist, &showlist);
c906108c 3972
7ab04401
AC
3973 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3974 follow_fork_mode_kind_names,
3975 &follow_fork_mode_string, _("\
3976Set debugger response to a program call of fork or vfork."), _("\
3977Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
3978A fork or vfork creates a new process. follow-fork-mode can be:\n\
3979 parent - the original process is debugged after a fork\n\
3980 child - the new process is debugged after a fork\n\
ea1dd7bc 3981The unfollowed process will continue to run.\n\
7ab04401
AC
3982By default, the debugger will follow the parent process."),
3983 NULL,
920d2a44 3984 show_follow_fork_mode_string,
7ab04401
AC
3985 &setlist, &showlist);
3986
3987 add_setshow_enum_cmd ("scheduler-locking", class_run,
3988 scheduler_enums, &scheduler_mode, _("\
3989Set mode for locking scheduler during execution."), _("\
3990Show mode for locking scheduler during execution."), _("\
c906108c
SS
3991off == no locking (threads may preempt at any time)\n\
3992on == full locking (no thread except the current thread may run)\n\
3993step == scheduler locked during every single-step operation.\n\
3994 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
3995 Other threads may run while stepping over a function call ('next')."),
3996 set_schedlock_func, /* traps on target vector */
920d2a44 3997 show_scheduler_mode,
7ab04401 3998 &setlist, &showlist);
5fbbeb29 3999
5bf193a2
AC
4000 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4001Set mode of the step operation."), _("\
4002Show mode of the step operation."), _("\
4003When set, doing a step over a function without debug line information\n\
4004will stop at the first instruction of that function. Otherwise, the\n\
4005function is skipped and the step command stops at a different source line."),
4006 NULL,
920d2a44 4007 show_step_stop_if_no_debug,
5bf193a2 4008 &setlist, &showlist);
ca6724c1
KB
4009
4010 /* ptid initializations */
4011 null_ptid = ptid_build (0, 0, 0);
4012 minus_one_ptid = ptid_build (-1, 0, 0);
4013 inferior_ptid = null_ptid;
4014 target_last_wait_ptid = minus_one_ptid;
c906108c 4015}