]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Normalize include guards in gdb
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
c906108c
SS
71
72/* Prototypes for local functions */
73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
4ef3f3be 78static int follow_fork (void);
96baa820 79
d83ad864
DB
80static int follow_fork_inferior (int follow_child, int detach_fork);
81
82static void follow_inferior_reset_breakpoints (void);
83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
2c03e5be 88static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
89
90static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
2484c66b
UW
92static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
8550d3b3
YQ
94static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
aff4e175
AB
96static void resume (gdb_signal sig);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125}
126
0b333c5e
PA
127/* See infrun.h. */
128
129void
130mark_infrun_async_event_handler (void)
131{
132 mark_async_event_handler (infrun_async_inferior_event_token);
133}
134
5fbbeb29
CF
135/* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138int step_stop_if_no_debug = 0;
920d2a44
AC
139static void
140show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144}
5fbbeb29 145
b9f437de
PA
146/* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
96baa820 149
39f77062 150static ptid_t previous_inferior_ptid;
7a292a7a 151
07107ca6
LM
152/* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157static int detach_fork = 1;
6c95b8df 158
237fc4c9
PA
159int debug_displaced = 0;
160static void
161show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165}
166
ccce17b0 167unsigned int debug_infrun = 0;
920d2a44
AC
168static void
169show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173}
527159b7 174
03583c20
UW
175
176/* Support for disabling address space randomization. */
177
178int disable_randomization = 1;
179
180static void
181show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193}
194
195static void
eb4c3f4a 196set_disable_randomization (const char *args, int from_tty,
03583c20
UW
197 struct cmd_list_element *c)
198{
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203}
204
d32dc48e
PA
205/* User interface for non-stop mode. */
206
207int non_stop = 0;
208static int non_stop_1 = 0;
209
210static void
eb4c3f4a 211set_non_stop (const char *args, int from_tty,
d32dc48e
PA
212 struct cmd_list_element *c)
213{
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221}
222
223static void
224show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226{
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230}
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
d914c394
SS
236int observer_mode = 0;
237static int observer_mode_1 = 0;
238
239static void
eb4c3f4a 240set_observer_mode (const char *args, int from_tty,
d914c394
SS
241 struct cmd_list_element *c)
242{
d914c394
SS
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
d914c394
SS
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273}
274
275static void
276show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280}
281
282/* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288void
289update_observer_mode (void)
290{
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305}
c2c6d25f 306
c906108c
SS
307/* Tables of how to react to signals; the user sets them. */
308
adc6a863
PA
309static unsigned char signal_stop[GDB_SIGNAL_LAST];
310static unsigned char signal_print[GDB_SIGNAL_LAST];
311static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 312
ab04a2af
TT
313/* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
315 signal" command. */
316static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
adc6a863 321static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
adc6a863 345 target_program_signals (signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
6c95b8df 1085 struct inferior *inf = current_inferior ();
e99b03dc 1086 int pid = ptid.pid ();
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
08036331 1131 for (thread_info *th : all_threads_safe ())
d7e15655 1132 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1133 delete_thread (th);
95e50b27
PA
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
08036331 1139 thread_info *th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
f2907e49 1154 process_ptid = ptid_t (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
35ed81d4
SM
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
057302ce 1197 exit_inferior_silent (current_inferior ());
17d8546e 1198
94585166 1199 inf->pid = pid;
ecf45d2c 1200 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1201
1202 set_current_inferior (inf);
94585166 1203 set_current_program_space (inf->pspace);
c4c17fb0 1204 add_thread (ptid);
6c95b8df 1205 }
9107fc8d
PA
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
6c95b8df
PA
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
ecf45d2c
SL
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
797bc1cb 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1225
9107fc8d
PA
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
268a4a75 1234 solib_create_inferior_hook (0);
c906108c 1235
4efc6507
DE
1236 jit_inferior_created_hook ();
1237
c1e56572
JK
1238 breakpoint_re_set ();
1239
c906108c
SS
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1777feb0 1242 to symbol_file_command...). */
c906108c
SS
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1777feb0 1248 matically get reset there in the new process.). */
c906108c
SS
1249}
1250
c2829269
PA
1251/* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258struct thread_info *step_over_queue_head;
1259
6c4cfb24
PA
1260/* Bit flags indicating what the thread needs to step over. */
1261
8d297bbf 1262enum step_over_what_flag
6c4cfb24
PA
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
8d297bbf 1272DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1273
963f9c80 1274/* Info about an instruction that is being stepped over. */
31e77af2
PA
1275
1276struct step_over_info
1277{
963f9c80
PA
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
8b86c959 1282 const address_space *aspace;
31e77af2 1283 CORE_ADDR address;
963f9c80
PA
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
21edc42f
YQ
1288
1289 /* The thread's global number. */
1290 int thread;
31e77af2
PA
1291};
1292
1293/* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317static struct step_over_info step_over_info;
1318
1319/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
31e77af2
PA
1323
1324static void
8b86c959 1325set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1326 int nonsteppable_watchpoint_p,
1327 int thread)
31e77af2
PA
1328{
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
963f9c80 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1332 step_over_info.thread = thread;
31e77af2
PA
1333}
1334
1335/* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338static void
1339clear_step_over_info (void)
1340{
372316f1
PA
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
31e77af2
PA
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
963f9c80 1346 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1347 step_over_info.thread = -1;
31e77af2
PA
1348}
1349
7f89fd65 1350/* See infrun.h. */
31e77af2
PA
1351
1352int
1353stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355{
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360}
1361
963f9c80
PA
1362/* See infrun.h. */
1363
21edc42f
YQ
1364int
1365thread_is_stepping_over_breakpoint (int thread)
1366{
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369}
1370
1371/* See infrun.h. */
1372
963f9c80
PA
1373int
1374stepping_past_nonsteppable_watchpoint (void)
1375{
1376 return step_over_info.nonsteppable_watchpoint_p;
1377}
1378
6cc83d2a
PA
1379/* Returns true if step-over info is valid. */
1380
1381static int
1382step_over_info_valid_p (void)
1383{
963f9c80
PA
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1386}
1387
c906108c 1388\f
237fc4c9
PA
1389/* Displaced stepping. */
1390
1391/* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
237fc4c9
PA
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
cfba9872
SM
1475/* Default destructor for displaced_step_closure. */
1476
1477displaced_step_closure::~displaced_step_closure () = default;
1478
fc1cf338
PA
1479/* Get the displaced stepping state of process PID. */
1480
39a36629 1481static displaced_step_inferior_state *
00431a78 1482get_displaced_stepping_state (inferior *inf)
fc1cf338 1483{
d20172fc 1484 return &inf->displaced_step_state;
fc1cf338
PA
1485}
1486
372316f1
PA
1487/* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
39a36629
SM
1490static bool
1491displaced_step_in_progress_any_inferior ()
372316f1 1492{
d20172fc 1493 for (inferior *i : all_inferiors ())
39a36629 1494 {
d20172fc 1495 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1496 return true;
1497 }
372316f1 1498
39a36629 1499 return false;
372316f1
PA
1500}
1501
c0987663
YQ
1502/* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505static int
00431a78 1506displaced_step_in_progress_thread (thread_info *thread)
c0987663 1507{
00431a78 1508 gdb_assert (thread != NULL);
c0987663 1509
d20172fc 1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1511}
1512
8f572e5c
PA
1513/* Return true if process PID has a thread doing a displaced step. */
1514
1515static int
00431a78 1516displaced_step_in_progress (inferior *inf)
8f572e5c 1517{
d20172fc 1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1519}
1520
a42244db
YQ
1521/* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525struct displaced_step_closure*
1526get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527{
d20172fc 1528 displaced_step_inferior_state *displaced
00431a78 1529 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1530
1531 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1532 if (displaced->step_thread != nullptr
00431a78 1533 && displaced->step_copy == addr)
a42244db
YQ
1534 return displaced->step_closure;
1535
1536 return NULL;
1537}
1538
fc1cf338
PA
1539static void
1540infrun_inferior_exit (struct inferior *inf)
1541{
d20172fc 1542 inf->displaced_step_state.reset ();
fc1cf338 1543}
237fc4c9 1544
fff08868
HZ
1545/* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
72d0e2c5 1553static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1554
237fc4c9
PA
1555static void
1556show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559{
72d0e2c5 1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1564 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1565 else
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1569}
1570
fff08868 1571/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1572 over breakpoints of thread TP. */
fff08868 1573
237fc4c9 1574static int
3fc8eb30 1575use_displaced_stepping (struct thread_info *tp)
237fc4c9 1576{
00431a78 1577 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1578 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1581
fbea99ea
PA
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
72d0e2c5 1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1586 && find_record_target () == NULL
d20172fc 1587 && !displaced_state->failed_before);
237fc4c9
PA
1588}
1589
1590/* Clean out any stray displaced stepping state. */
1591static void
fc1cf338 1592displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1593{
1594 /* Indicate that there is no cleanup pending. */
00431a78 1595 displaced->step_thread = nullptr;
237fc4c9 1596
cfba9872 1597 delete displaced->step_closure;
6d45d4b4 1598 displaced->step_closure = NULL;
237fc4c9
PA
1599}
1600
1601static void
fc1cf338 1602displaced_step_clear_cleanup (void *arg)
237fc4c9 1603{
9a3c8263
SM
1604 struct displaced_step_inferior_state *state
1605 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1606
1607 displaced_step_clear (state);
237fc4c9
PA
1608}
1609
1610/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1611void
1612displaced_step_dump_bytes (struct ui_file *file,
1613 const gdb_byte *buf,
1614 size_t len)
1615{
1616 int i;
1617
1618 for (i = 0; i < len; i++)
1619 fprintf_unfiltered (file, "%02x ", buf[i]);
1620 fputs_unfiltered ("\n", file);
1621}
1622
1623/* Prepare to single-step, using displaced stepping.
1624
1625 Note that we cannot use displaced stepping when we have a signal to
1626 deliver. If we have a signal to deliver and an instruction to step
1627 over, then after the step, there will be no indication from the
1628 target whether the thread entered a signal handler or ignored the
1629 signal and stepped over the instruction successfully --- both cases
1630 result in a simple SIGTRAP. In the first case we mustn't do a
1631 fixup, and in the second case we must --- but we can't tell which.
1632 Comments in the code for 'random signals' in handle_inferior_event
1633 explain how we handle this case instead.
1634
1635 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1636 stepped now; 0 if displaced stepping this thread got queued; or -1
1637 if this instruction can't be displaced stepped. */
1638
237fc4c9 1639static int
00431a78 1640displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1641{
00431a78 1642 regcache *regcache = get_thread_regcache (tp);
ac7936df 1643 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1644 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1645 CORE_ADDR original, copy;
1646 ULONGEST len;
1647 struct displaced_step_closure *closure;
9e529e1d 1648 int status;
237fc4c9
PA
1649
1650 /* We should never reach this function if the architecture does not
1651 support displaced stepping. */
1652 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1653
c2829269
PA
1654 /* Nor if the thread isn't meant to step over a breakpoint. */
1655 gdb_assert (tp->control.trap_expected);
1656
c1e36e3e
PA
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
fc1cf338
PA
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
237fc4c9 1665
d20172fc
SM
1666 displaced_step_inferior_state *displaced
1667 = get_displaced_stepping_state (tp->inf);
fc1cf338 1668
00431a78 1669 if (displaced->step_thread != nullptr)
237fc4c9
PA
1670 {
1671 /* Already waiting for a displaced step to finish. Defer this
1672 request and place in queue. */
237fc4c9
PA
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
c2829269 1676 "displaced: deferring step of %s\n",
00431a78 1677 target_pid_to_str (tp->ptid));
237fc4c9 1678
c2829269 1679 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1680 return 0;
1681 }
1682 else
1683 {
1684 if (debug_displaced)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "displaced: stepping %s now\n",
00431a78 1687 target_pid_to_str (tp->ptid));
237fc4c9
PA
1688 }
1689
fc1cf338 1690 displaced_step_clear (displaced);
237fc4c9 1691
00431a78
PA
1692 scoped_restore_current_thread restore_thread;
1693
1694 switch_to_thread (tp);
ad53cd71 1695
515630c5 1696 original = regcache_read_pc (regcache);
237fc4c9
PA
1697
1698 copy = gdbarch_displaced_step_location (gdbarch);
1699 len = gdbarch_max_insn_length (gdbarch);
1700
d35ae833
PA
1701 if (breakpoint_in_range_p (aspace, copy, len))
1702 {
1703 /* There's a breakpoint set in the scratch pad location range
1704 (which is usually around the entry point). We'd either
1705 install it before resuming, which would overwrite/corrupt the
1706 scratch pad, or if it was already inserted, this displaced
1707 step would overwrite it. The latter is OK in the sense that
1708 we already assume that no thread is going to execute the code
1709 in the scratch pad range (after initial startup) anyway, but
1710 the former is unacceptable. Simply punt and fallback to
1711 stepping over this breakpoint in-line. */
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: breakpoint set in scratch pad. "
1716 "Stepping over breakpoint in-line instead.\n");
1717 }
1718
d35ae833
PA
1719 return -1;
1720 }
1721
237fc4c9 1722 /* Save the original contents of the copy area. */
d20172fc
SM
1723 displaced->step_saved_copy.resize (len);
1724 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1725 if (status != 0)
1726 throw_error (MEMORY_ERROR,
1727 _("Error accessing memory address %s (%s) for "
1728 "displaced-stepping scratch space."),
1729 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1730 if (debug_displaced)
1731 {
5af949e3
UW
1732 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1733 paddress (gdbarch, copy));
fc1cf338 1734 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1735 displaced->step_saved_copy.data (),
fc1cf338 1736 len);
237fc4c9
PA
1737 };
1738
1739 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1740 original, copy, regcache);
7f03bd92
PA
1741 if (closure == NULL)
1742 {
1743 /* The architecture doesn't know how or want to displaced step
1744 this instruction or instruction sequence. Fallback to
1745 stepping over the breakpoint in-line. */
7f03bd92
PA
1746 return -1;
1747 }
237fc4c9 1748
9f5a595d
UW
1749 /* Save the information we need to fix things up if the step
1750 succeeds. */
00431a78 1751 displaced->step_thread = tp;
fc1cf338
PA
1752 displaced->step_gdbarch = gdbarch;
1753 displaced->step_closure = closure;
1754 displaced->step_original = original;
1755 displaced->step_copy = copy;
9f5a595d 1756
d20172fc
SM
1757 cleanup *ignore_cleanups
1758 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1759
1760 /* Resume execution at the copy. */
515630c5 1761 regcache_write_pc (regcache, copy);
237fc4c9 1762
ad53cd71
PA
1763 discard_cleanups (ignore_cleanups);
1764
237fc4c9 1765 if (debug_displaced)
5af949e3
UW
1766 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1767 paddress (gdbarch, copy));
237fc4c9 1768
237fc4c9
PA
1769 return 1;
1770}
1771
3fc8eb30
PA
1772/* Wrapper for displaced_step_prepare_throw that disabled further
1773 attempts at displaced stepping if we get a memory error. */
1774
1775static int
00431a78 1776displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1777{
1778 int prepared = -1;
1779
1780 TRY
1781 {
00431a78 1782 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1783 }
1784 CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 struct displaced_step_inferior_state *displaced_state;
1787
16b41842
PA
1788 if (ex.error != MEMORY_ERROR
1789 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1790 throw_exception (ex);
1791
1792 if (debug_infrun)
1793 {
1794 fprintf_unfiltered (gdb_stdlog,
1795 "infrun: disabling displaced stepping: %s\n",
1796 ex.message);
1797 }
1798
1799 /* Be verbose if "set displaced-stepping" is "on", silent if
1800 "auto". */
1801 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1802 {
fd7dcb94 1803 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1804 ex.message);
1805 }
1806
1807 /* Disable further displaced stepping attempts. */
1808 displaced_state
00431a78 1809 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1810 displaced_state->failed_before = 1;
1811 }
1812 END_CATCH
1813
1814 return prepared;
1815}
1816
237fc4c9 1817static void
3e43a32a
MS
1818write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1819 const gdb_byte *myaddr, int len)
237fc4c9 1820{
2989a365 1821 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1822
237fc4c9
PA
1823 inferior_ptid = ptid;
1824 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1825}
1826
e2d96639
YQ
1827/* Restore the contents of the copy area for thread PTID. */
1828
1829static void
1830displaced_step_restore (struct displaced_step_inferior_state *displaced,
1831 ptid_t ptid)
1832{
1833 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1834
1835 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1836 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1837 if (debug_displaced)
1838 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1839 target_pid_to_str (ptid),
1840 paddress (displaced->step_gdbarch,
1841 displaced->step_copy));
1842}
1843
372316f1
PA
1844/* If we displaced stepped an instruction successfully, adjust
1845 registers and memory to yield the same effect the instruction would
1846 have had if we had executed it at its original address, and return
1847 1. If the instruction didn't complete, relocate the PC and return
1848 -1. If the thread wasn't displaced stepping, return 0. */
1849
1850static int
00431a78 1851displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1852{
1853 struct cleanup *old_cleanups;
fc1cf338 1854 struct displaced_step_inferior_state *displaced
00431a78 1855 = get_displaced_stepping_state (event_thread->inf);
372316f1 1856 int ret;
fc1cf338 1857
00431a78
PA
1858 /* Was this event for the thread we displaced? */
1859 if (displaced->step_thread != event_thread)
372316f1 1860 return 0;
237fc4c9 1861
fc1cf338 1862 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1863
00431a78 1864 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1865
cb71640d
PA
1866 /* Fixup may need to read memory/registers. Switch to the thread
1867 that we're fixing up. Also, target_stopped_by_watchpoint checks
1868 the current thread. */
00431a78 1869 switch_to_thread (event_thread);
cb71640d 1870
237fc4c9 1871 /* Did the instruction complete successfully? */
cb71640d
PA
1872 if (signal == GDB_SIGNAL_TRAP
1873 && !(target_stopped_by_watchpoint ()
1874 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1875 || target_have_steppable_watchpoint)))
237fc4c9
PA
1876 {
1877 /* Fix up the resulting state. */
fc1cf338
PA
1878 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1879 displaced->step_closure,
1880 displaced->step_original,
1881 displaced->step_copy,
00431a78 1882 get_thread_regcache (displaced->step_thread));
372316f1 1883 ret = 1;
237fc4c9
PA
1884 }
1885 else
1886 {
1887 /* Since the instruction didn't complete, all we can do is
1888 relocate the PC. */
00431a78 1889 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1890 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1891
fc1cf338 1892 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1893 regcache_write_pc (regcache, pc);
372316f1 1894 ret = -1;
237fc4c9
PA
1895 }
1896
1897 do_cleanups (old_cleanups);
1898
00431a78 1899 displaced->step_thread = nullptr;
372316f1
PA
1900
1901 return ret;
c2829269 1902}
1c5cfe86 1903
4d9d9d04
PA
1904/* Data to be passed around while handling an event. This data is
1905 discarded between events. */
1906struct execution_control_state
1907{
1908 ptid_t ptid;
1909 /* The thread that got the event, if this was a thread event; NULL
1910 otherwise. */
1911 struct thread_info *event_thread;
1912
1913 struct target_waitstatus ws;
1914 int stop_func_filled_in;
1915 CORE_ADDR stop_func_start;
1916 CORE_ADDR stop_func_end;
1917 const char *stop_func_name;
1918 int wait_some_more;
1919
1920 /* True if the event thread hit the single-step breakpoint of
1921 another thread. Thus the event doesn't cause a stop, the thread
1922 needs to be single-stepped past the single-step breakpoint before
1923 we can switch back to the original stepping thread. */
1924 int hit_singlestep_breakpoint;
1925};
1926
1927/* Clear ECS and set it to point at TP. */
c2829269
PA
1928
1929static void
4d9d9d04
PA
1930reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931{
1932 memset (ecs, 0, sizeof (*ecs));
1933 ecs->event_thread = tp;
1934 ecs->ptid = tp->ptid;
1935}
1936
1937static void keep_going_pass_signal (struct execution_control_state *ecs);
1938static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1939static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1940static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1941
1942/* Are there any pending step-over requests? If so, run all we can
1943 now and return true. Otherwise, return false. */
1944
1945static int
c2829269
PA
1946start_step_over (void)
1947{
1948 struct thread_info *tp, *next;
1949
372316f1
PA
1950 /* Don't start a new step-over if we already have an in-line
1951 step-over operation ongoing. */
1952 if (step_over_info_valid_p ())
1953 return 0;
1954
c2829269 1955 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1956 {
4d9d9d04
PA
1957 struct execution_control_state ecss;
1958 struct execution_control_state *ecs = &ecss;
8d297bbf 1959 step_over_what step_what;
372316f1 1960 int must_be_in_line;
c2829269 1961
c65d6b55
PA
1962 gdb_assert (!tp->stop_requested);
1963
c2829269 1964 next = thread_step_over_chain_next (tp);
237fc4c9 1965
c2829269
PA
1966 /* If this inferior already has a displaced step in process,
1967 don't start a new one. */
00431a78 1968 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1969 continue;
1970
372316f1
PA
1971 step_what = thread_still_needs_step_over (tp);
1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1974 && !use_displaced_stepping (tp)));
372316f1
PA
1975
1976 /* We currently stop all threads of all processes to step-over
1977 in-line. If we need to start a new in-line step-over, let
1978 any pending displaced steps finish first. */
1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 return 0;
1981
c2829269
PA
1982 thread_step_over_chain_remove (tp);
1983
1984 if (step_over_queue_head == NULL)
1985 {
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: step-over queue now empty\n");
1989 }
1990
372316f1
PA
1991 if (tp->control.trap_expected
1992 || tp->resumed
1993 || tp->executing)
ad53cd71 1994 {
4d9d9d04
PA
1995 internal_error (__FILE__, __LINE__,
1996 "[%s] has inconsistent state: "
372316f1 1997 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1998 target_pid_to_str (tp->ptid),
1999 tp->control.trap_expected,
372316f1 2000 tp->resumed,
4d9d9d04 2001 tp->executing);
ad53cd71 2002 }
1c5cfe86 2003
4d9d9d04
PA
2004 if (debug_infrun)
2005 fprintf_unfiltered (gdb_stdlog,
2006 "infrun: resuming [%s] for step-over\n",
2007 target_pid_to_str (tp->ptid));
2008
2009 /* keep_going_pass_signal skips the step-over if the breakpoint
2010 is no longer inserted. In all-stop, we want to keep looking
2011 for a thread that needs a step-over instead of resuming TP,
2012 because we wouldn't be able to resume anything else until the
2013 target stops again. In non-stop, the resume always resumes
2014 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2015 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2016 continue;
8550d3b3 2017
00431a78 2018 switch_to_thread (tp);
4d9d9d04
PA
2019 reset_ecs (ecs, tp);
2020 keep_going_pass_signal (ecs);
1c5cfe86 2021
4d9d9d04
PA
2022 if (!ecs->wait_some_more)
2023 error (_("Command aborted."));
1c5cfe86 2024
372316f1
PA
2025 gdb_assert (tp->resumed);
2026
2027 /* If we started a new in-line step-over, we're done. */
2028 if (step_over_info_valid_p ())
2029 {
2030 gdb_assert (tp->control.trap_expected);
2031 return 1;
2032 }
2033
fbea99ea 2034 if (!target_is_non_stop_p ())
4d9d9d04
PA
2035 {
2036 /* On all-stop, shouldn't have resumed unless we needed a
2037 step over. */
2038 gdb_assert (tp->control.trap_expected
2039 || tp->step_after_step_resume_breakpoint);
2040
2041 /* With remote targets (at least), in all-stop, we can't
2042 issue any further remote commands until the program stops
2043 again. */
2044 return 1;
1c5cfe86 2045 }
c2829269 2046
4d9d9d04
PA
2047 /* Either the thread no longer needed a step-over, or a new
2048 displaced stepping sequence started. Even in the latter
2049 case, continue looking. Maybe we can also start another
2050 displaced step on a thread of other process. */
237fc4c9 2051 }
4d9d9d04
PA
2052
2053 return 0;
237fc4c9
PA
2054}
2055
5231c1fd
PA
2056/* Update global variables holding ptids to hold NEW_PTID if they were
2057 holding OLD_PTID. */
2058static void
2059infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060{
d7e15655 2061 if (inferior_ptid == old_ptid)
5231c1fd 2062 inferior_ptid = new_ptid;
5231c1fd
PA
2063}
2064
237fc4c9 2065\f
c906108c 2066
53904c9e
AC
2067static const char schedlock_off[] = "off";
2068static const char schedlock_on[] = "on";
2069static const char schedlock_step[] = "step";
f2665db5 2070static const char schedlock_replay[] = "replay";
40478521 2071static const char *const scheduler_enums[] = {
ef346e04
AC
2072 schedlock_off,
2073 schedlock_on,
2074 schedlock_step,
f2665db5 2075 schedlock_replay,
ef346e04
AC
2076 NULL
2077};
f2665db5 2078static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2079static void
2080show_scheduler_mode (struct ui_file *file, int from_tty,
2081 struct cmd_list_element *c, const char *value)
2082{
3e43a32a
MS
2083 fprintf_filtered (file,
2084 _("Mode for locking scheduler "
2085 "during execution is \"%s\".\n"),
920d2a44
AC
2086 value);
2087}
c906108c
SS
2088
2089static void
eb4c3f4a 2090set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2091{
eefe576e
AC
2092 if (!target_can_lock_scheduler)
2093 {
2094 scheduler_mode = schedlock_off;
2095 error (_("Target '%s' cannot support this command."), target_shortname);
2096 }
c906108c
SS
2097}
2098
d4db2f36
PA
2099/* True if execution commands resume all threads of all processes by
2100 default; otherwise, resume only threads of the current inferior
2101 process. */
2102int sched_multi = 0;
2103
2facfe5c
DD
2104/* Try to setup for software single stepping over the specified location.
2105 Return 1 if target_resume() should use hardware single step.
2106
2107 GDBARCH the current gdbarch.
2108 PC the location to step over. */
2109
2110static int
2111maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112{
2113 int hw_step = 1;
2114
f02253f1 2115 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2116 && gdbarch_software_single_step_p (gdbarch))
2117 hw_step = !insert_single_step_breakpoints (gdbarch);
2118
2facfe5c
DD
2119 return hw_step;
2120}
c906108c 2121
f3263aa4
PA
2122/* See infrun.h. */
2123
09cee04b
PA
2124ptid_t
2125user_visible_resume_ptid (int step)
2126{
f3263aa4 2127 ptid_t resume_ptid;
09cee04b 2128
09cee04b
PA
2129 if (non_stop)
2130 {
2131 /* With non-stop mode on, threads are always handled
2132 individually. */
2133 resume_ptid = inferior_ptid;
2134 }
2135 else if ((scheduler_mode == schedlock_on)
03d46957 2136 || (scheduler_mode == schedlock_step && step))
09cee04b 2137 {
f3263aa4
PA
2138 /* User-settable 'scheduler' mode requires solo thread
2139 resume. */
09cee04b
PA
2140 resume_ptid = inferior_ptid;
2141 }
f2665db5
MM
2142 else if ((scheduler_mode == schedlock_replay)
2143 && target_record_will_replay (minus_one_ptid, execution_direction))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 mode. */
2147 resume_ptid = inferior_ptid;
2148 }
f3263aa4
PA
2149 else if (!sched_multi && target_supports_multi_process ())
2150 {
2151 /* Resume all threads of the current process (and none of other
2152 processes). */
e99b03dc 2153 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2154 }
2155 else
2156 {
2157 /* Resume all threads of all processes. */
2158 resume_ptid = RESUME_ALL;
2159 }
09cee04b
PA
2160
2161 return resume_ptid;
2162}
2163
fbea99ea
PA
2164/* Return a ptid representing the set of threads that we will resume,
2165 in the perspective of the target, assuming run control handling
2166 does not require leaving some threads stopped (e.g., stepping past
2167 breakpoint). USER_STEP indicates whether we're about to start the
2168 target for a stepping command. */
2169
2170static ptid_t
2171internal_resume_ptid (int user_step)
2172{
2173 /* In non-stop, we always control threads individually. Note that
2174 the target may always work in non-stop mode even with "set
2175 non-stop off", in which case user_visible_resume_ptid could
2176 return a wildcard ptid. */
2177 if (target_is_non_stop_p ())
2178 return inferior_ptid;
2179 else
2180 return user_visible_resume_ptid (user_step);
2181}
2182
64ce06e4
PA
2183/* Wrapper for target_resume, that handles infrun-specific
2184 bookkeeping. */
2185
2186static void
2187do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2188{
2189 struct thread_info *tp = inferior_thread ();
2190
c65d6b55
PA
2191 gdb_assert (!tp->stop_requested);
2192
64ce06e4 2193 /* Install inferior's terminal modes. */
223ffa71 2194 target_terminal::inferior ();
64ce06e4
PA
2195
2196 /* Avoid confusing the next resume, if the next stop/resume
2197 happens to apply to another thread. */
2198 tp->suspend.stop_signal = GDB_SIGNAL_0;
2199
8f572e5c
PA
2200 /* Advise target which signals may be handled silently.
2201
2202 If we have removed breakpoints because we are stepping over one
2203 in-line (in any thread), we need to receive all signals to avoid
2204 accidentally skipping a breakpoint during execution of a signal
2205 handler.
2206
2207 Likewise if we're displaced stepping, otherwise a trap for a
2208 breakpoint in a signal handler might be confused with the
2209 displaced step finishing. We don't make the displaced_step_fixup
2210 step distinguish the cases instead, because:
2211
2212 - a backtrace while stopped in the signal handler would show the
2213 scratch pad as frame older than the signal handler, instead of
2214 the real mainline code.
2215
2216 - when the thread is later resumed, the signal handler would
2217 return to the scratch pad area, which would no longer be
2218 valid. */
2219 if (step_over_info_valid_p ()
00431a78 2220 || displaced_step_in_progress (tp->inf))
adc6a863 2221 target_pass_signals ({});
64ce06e4 2222 else
adc6a863 2223 target_pass_signals (signal_pass);
64ce06e4
PA
2224
2225 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2226
2227 target_commit_resume ();
64ce06e4
PA
2228}
2229
d930703d 2230/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2231 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2232 call 'resume', which handles exceptions. */
c906108c 2233
71d378ae
PA
2234static void
2235resume_1 (enum gdb_signal sig)
c906108c 2236{
515630c5 2237 struct regcache *regcache = get_current_regcache ();
ac7936df 2238 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2239 struct thread_info *tp = inferior_thread ();
515630c5 2240 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2241 const address_space *aspace = regcache->aspace ();
b0f16a3e 2242 ptid_t resume_ptid;
856e7dd6
PA
2243 /* This represents the user's step vs continue request. When
2244 deciding whether "set scheduler-locking step" applies, it's the
2245 user's intention that counts. */
2246 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2247 /* This represents what we'll actually request the target to do.
2248 This can decay from a step to a continue, if e.g., we need to
2249 implement single-stepping with breakpoints (software
2250 single-step). */
6b403daa 2251 int step;
c7e8a53c 2252
c65d6b55 2253 gdb_assert (!tp->stop_requested);
c2829269
PA
2254 gdb_assert (!thread_is_in_step_over_chain (tp));
2255
372316f1
PA
2256 if (tp->suspend.waitstatus_pending_p)
2257 {
2258 if (debug_infrun)
2259 {
23fdd69e
SM
2260 std::string statstr
2261 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2262
372316f1 2263 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2264 "infrun: resume: thread %s has pending wait "
2265 "status %s (currently_stepping=%d).\n",
2266 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2267 currently_stepping (tp));
372316f1
PA
2268 }
2269
2270 tp->resumed = 1;
2271
2272 /* FIXME: What should we do if we are supposed to resume this
2273 thread with a signal? Maybe we should maintain a queue of
2274 pending signals to deliver. */
2275 if (sig != GDB_SIGNAL_0)
2276 {
fd7dcb94 2277 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2278 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2279 }
2280
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2282
2283 if (target_can_async_p ())
9516f85a
AB
2284 {
2285 target_async (1);
2286 /* Tell the event loop we have an event to process. */
2287 mark_async_event_handler (infrun_async_inferior_event_token);
2288 }
372316f1
PA
2289 return;
2290 }
2291
2292 tp->stepped_breakpoint = 0;
2293
6b403daa
PA
2294 /* Depends on stepped_breakpoint. */
2295 step = currently_stepping (tp);
2296
74609e71
YQ
2297 if (current_inferior ()->waiting_for_vfork_done)
2298 {
48f9886d
PA
2299 /* Don't try to single-step a vfork parent that is waiting for
2300 the child to get out of the shared memory region (by exec'ing
2301 or exiting). This is particularly important on software
2302 single-step archs, as the child process would trip on the
2303 software single step breakpoint inserted for the parent
2304 process. Since the parent will not actually execute any
2305 instruction until the child is out of the shared region (such
2306 are vfork's semantics), it is safe to simply continue it.
2307 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2308 the parent, and tell it to `keep_going', which automatically
2309 re-sets it stepping. */
74609e71
YQ
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog,
2312 "infrun: resume : clear step\n");
a09dd441 2313 step = 0;
74609e71
YQ
2314 }
2315
527159b7 2316 if (debug_infrun)
237fc4c9 2317 fprintf_unfiltered (gdb_stdlog,
c9737c08 2318 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2319 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2320 step, gdb_signal_to_symbol_string (sig),
2321 tp->control.trap_expected,
0d9a9a5f
PA
2322 target_pid_to_str (inferior_ptid),
2323 paddress (gdbarch, pc));
c906108c 2324
c2c6d25f
JM
2325 /* Normally, by the time we reach `resume', the breakpoints are either
2326 removed or inserted, as appropriate. The exception is if we're sitting
2327 at a permanent breakpoint; we need to step over it, but permanent
2328 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2329 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2330 {
af48d08f
PA
2331 if (sig != GDB_SIGNAL_0)
2332 {
2333 /* We have a signal to pass to the inferior. The resume
2334 may, or may not take us to the signal handler. If this
2335 is a step, we'll need to stop in the signal handler, if
2336 there's one, (if the target supports stepping into
2337 handlers), or in the next mainline instruction, if
2338 there's no handler. If this is a continue, we need to be
2339 sure to run the handler with all breakpoints inserted.
2340 In all cases, set a breakpoint at the current address
2341 (where the handler returns to), and once that breakpoint
2342 is hit, resume skipping the permanent breakpoint. If
2343 that breakpoint isn't hit, then we've stepped into the
2344 signal handler (or hit some other event). We'll delete
2345 the step-resume breakpoint then. */
2346
2347 if (debug_infrun)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "infrun: resume: skipping permanent breakpoint, "
2350 "deliver signal first\n");
2351
2352 clear_step_over_info ();
2353 tp->control.trap_expected = 0;
2354
2355 if (tp->control.step_resume_breakpoint == NULL)
2356 {
2357 /* Set a "high-priority" step-resume, as we don't want
2358 user breakpoints at PC to trigger (again) when this
2359 hits. */
2360 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2361 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2362
2363 tp->step_after_step_resume_breakpoint = step;
2364 }
2365
2366 insert_breakpoints ();
2367 }
2368 else
2369 {
2370 /* There's no signal to pass, we can go ahead and skip the
2371 permanent breakpoint manually. */
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: resume: skipping permanent breakpoint\n");
2375 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2376 /* Update pc to reflect the new address from which we will
2377 execute instructions. */
2378 pc = regcache_read_pc (regcache);
2379
2380 if (step)
2381 {
2382 /* We've already advanced the PC, so the stepping part
2383 is done. Now we need to arrange for a trap to be
2384 reported to handle_inferior_event. Set a breakpoint
2385 at the current PC, and run to it. Don't update
2386 prev_pc, because if we end in
44a1ee51
PA
2387 switch_back_to_stepped_thread, we want the "expected
2388 thread advanced also" branch to be taken. IOW, we
2389 don't want this thread to step further from PC
af48d08f 2390 (overstep). */
1ac806b8 2391 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2392 insert_single_step_breakpoint (gdbarch, aspace, pc);
2393 insert_breakpoints ();
2394
fbea99ea 2395 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2396 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2397 tp->resumed = 1;
af48d08f
PA
2398 return;
2399 }
2400 }
6d350bb5 2401 }
c2c6d25f 2402
c1e36e3e
PA
2403 /* If we have a breakpoint to step over, make sure to do a single
2404 step only. Same if we have software watchpoints. */
2405 if (tp->control.trap_expected || bpstat_should_step ())
2406 tp->control.may_range_step = 0;
2407
237fc4c9
PA
2408 /* If enabled, step over breakpoints by executing a copy of the
2409 instruction at a different address.
2410
2411 We can't use displaced stepping when we have a signal to deliver;
2412 the comments for displaced_step_prepare explain why. The
2413 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2414 signals' explain what we do instead.
2415
2416 We can't use displaced stepping when we are waiting for vfork_done
2417 event, displaced stepping breaks the vfork child similarly as single
2418 step software breakpoint. */
3fc8eb30
PA
2419 if (tp->control.trap_expected
2420 && use_displaced_stepping (tp)
cb71640d 2421 && !step_over_info_valid_p ()
a493e3e2 2422 && sig == GDB_SIGNAL_0
74609e71 2423 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2424 {
00431a78 2425 int prepared = displaced_step_prepare (tp);
fc1cf338 2426
3fc8eb30 2427 if (prepared == 0)
d56b7306 2428 {
4d9d9d04
PA
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "Got placed in step-over queue\n");
2432
2433 tp->control.trap_expected = 0;
d56b7306
VP
2434 return;
2435 }
3fc8eb30
PA
2436 else if (prepared < 0)
2437 {
2438 /* Fallback to stepping over the breakpoint in-line. */
2439
2440 if (target_is_non_stop_p ())
2441 stop_all_threads ();
2442
a01bda52 2443 set_step_over_info (regcache->aspace (),
21edc42f 2444 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2445
2446 step = maybe_software_singlestep (gdbarch, pc);
2447
2448 insert_breakpoints ();
2449 }
2450 else if (prepared > 0)
2451 {
2452 struct displaced_step_inferior_state *displaced;
99e40580 2453
3fc8eb30
PA
2454 /* Update pc to reflect the new address from which we will
2455 execute instructions due to displaced stepping. */
00431a78 2456 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2457
00431a78 2458 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2459 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2460 displaced->step_closure);
2461 }
237fc4c9
PA
2462 }
2463
2facfe5c 2464 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2465 else if (step)
2facfe5c 2466 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2467
30852783
UW
2468 /* Currently, our software single-step implementation leads to different
2469 results than hardware single-stepping in one situation: when stepping
2470 into delivering a signal which has an associated signal handler,
2471 hardware single-step will stop at the first instruction of the handler,
2472 while software single-step will simply skip execution of the handler.
2473
2474 For now, this difference in behavior is accepted since there is no
2475 easy way to actually implement single-stepping into a signal handler
2476 without kernel support.
2477
2478 However, there is one scenario where this difference leads to follow-on
2479 problems: if we're stepping off a breakpoint by removing all breakpoints
2480 and then single-stepping. In this case, the software single-step
2481 behavior means that even if there is a *breakpoint* in the signal
2482 handler, GDB still would not stop.
2483
2484 Fortunately, we can at least fix this particular issue. We detect
2485 here the case where we are about to deliver a signal while software
2486 single-stepping with breakpoints removed. In this situation, we
2487 revert the decisions to remove all breakpoints and insert single-
2488 step breakpoints, and instead we install a step-resume breakpoint
2489 at the current address, deliver the signal without stepping, and
2490 once we arrive back at the step-resume breakpoint, actually step
2491 over the breakpoint we originally wanted to step over. */
34b7e8a6 2492 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2493 && sig != GDB_SIGNAL_0
2494 && step_over_info_valid_p ())
30852783
UW
2495 {
2496 /* If we have nested signals or a pending signal is delivered
2497 immediately after a handler returns, might might already have
2498 a step-resume breakpoint set on the earlier handler. We cannot
2499 set another step-resume breakpoint; just continue on until the
2500 original breakpoint is hit. */
2501 if (tp->control.step_resume_breakpoint == NULL)
2502 {
2c03e5be 2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2504 tp->step_after_step_resume_breakpoint = 1;
2505 }
2506
34b7e8a6 2507 delete_single_step_breakpoints (tp);
30852783 2508
31e77af2 2509 clear_step_over_info ();
30852783 2510 tp->control.trap_expected = 0;
31e77af2
PA
2511
2512 insert_breakpoints ();
30852783
UW
2513 }
2514
b0f16a3e
SM
2515 /* If STEP is set, it's a request to use hardware stepping
2516 facilities. But in that case, we should never
2517 use singlestep breakpoint. */
34b7e8a6 2518 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2519
fbea99ea 2520 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2521 if (tp->control.trap_expected)
b0f16a3e
SM
2522 {
2523 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2524 hit, either by single-stepping the thread with the breakpoint
2525 removed, or by displaced stepping, with the breakpoint inserted.
2526 In the former case, we need to single-step only this thread,
2527 and keep others stopped, as they can miss this breakpoint if
2528 allowed to run. That's not really a problem for displaced
2529 stepping, but, we still keep other threads stopped, in case
2530 another thread is also stopped for a breakpoint waiting for
2531 its turn in the displaced stepping queue. */
b0f16a3e
SM
2532 resume_ptid = inferior_ptid;
2533 }
fbea99ea
PA
2534 else
2535 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2536
7f5ef605
PA
2537 if (execution_direction != EXEC_REVERSE
2538 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2539 {
372316f1
PA
2540 /* There are two cases where we currently need to step a
2541 breakpoint instruction when we have a signal to deliver:
2542
2543 - See handle_signal_stop where we handle random signals that
2544 could take out us out of the stepping range. Normally, in
2545 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2546 signal handler with a breakpoint at PC, but there are cases
2547 where we should _always_ single-step, even if we have a
2548 step-resume breakpoint, like when a software watchpoint is
2549 set. Assuming single-stepping and delivering a signal at the
2550 same time would takes us to the signal handler, then we could
2551 have removed the breakpoint at PC to step over it. However,
2552 some hardware step targets (like e.g., Mac OS) can't step
2553 into signal handlers, and for those, we need to leave the
2554 breakpoint at PC inserted, as otherwise if the handler
2555 recurses and executes PC again, it'll miss the breakpoint.
2556 So we leave the breakpoint inserted anyway, but we need to
2557 record that we tried to step a breakpoint instruction, so
372316f1
PA
2558 that adjust_pc_after_break doesn't end up confused.
2559
2560 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2561 in one thread after another thread that was stepping had been
2562 momentarily paused for a step-over. When we re-resume the
2563 stepping thread, it may be resumed from that address with a
2564 breakpoint that hasn't trapped yet. Seen with
2565 gdb.threads/non-stop-fair-events.exp, on targets that don't
2566 do displaced stepping. */
2567
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: resume: [%s] stepped breakpoint\n",
2571 target_pid_to_str (tp->ptid));
7f5ef605
PA
2572
2573 tp->stepped_breakpoint = 1;
2574
b0f16a3e
SM
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
7f5ef605 2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2579 step = 0;
2580 }
ef5cf84e 2581
b0f16a3e 2582 if (debug_displaced
cb71640d 2583 && tp->control.trap_expected
3fc8eb30 2584 && use_displaced_stepping (tp)
cb71640d 2585 && !step_over_info_valid_p ())
b0f16a3e 2586 {
00431a78 2587 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
237fc4c9 2597
b0f16a3e
SM
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
c1e36e3e 2607
64ce06e4 2608 do_target_resume (resume_ptid, step, sig);
372316f1 2609 tp->resumed = 1;
c906108c 2610}
71d378ae
PA
2611
2612/* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
aff4e175 2616static void
71d378ae
PA
2617resume (gdb_signal sig)
2618{
2619 TRY
2620 {
2621 resume_1 (sig);
2622 }
2623 CATCH (ex, RETURN_MASK_ALL)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw_exception (ex);
2633 }
2634 END_CATCH
2635}
2636
c906108c 2637\f
237fc4c9 2638/* Proceeding. */
c906108c 2639
4c2f2a79
PA
2640/* See infrun.h. */
2641
2642/* Counter that tracks number of user visible stops. This can be used
2643 to tell whether a command has proceeded the inferior past the
2644 current location. This allows e.g., inferior function calls in
2645 breakpoint commands to not interrupt the command list. When the
2646 call finishes successfully, the inferior is standing at the same
2647 breakpoint as if nothing happened (and so we don't call
2648 normal_stop). */
2649static ULONGEST current_stop_id;
2650
2651/* See infrun.h. */
2652
2653ULONGEST
2654get_stop_id (void)
2655{
2656 return current_stop_id;
2657}
2658
2659/* Called when we report a user visible stop. */
2660
2661static void
2662new_stop_id (void)
2663{
2664 current_stop_id++;
2665}
2666
c906108c
SS
2667/* Clear out all variables saying what to do when inferior is continued.
2668 First do this, then set the ones you want, then call `proceed'. */
2669
a7212384
UW
2670static void
2671clear_proceed_status_thread (struct thread_info *tp)
c906108c 2672{
a7212384
UW
2673 if (debug_infrun)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "infrun: clear_proceed_status_thread (%s)\n",
2676 target_pid_to_str (tp->ptid));
d6b48e9c 2677
372316f1
PA
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "infrun: clear_proceed_status: pending "
2687 "event of %s was a finished step. "
2688 "Discarding.\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->suspend.waitstatus_pending_p = 0;
2692 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2693 }
2694 else if (debug_infrun)
2695 {
23fdd69e
SM
2696 std::string statstr
2697 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2698
372316f1
PA
2699 fprintf_unfiltered (gdb_stdlog,
2700 "infrun: clear_proceed_status_thread: thread %s "
2701 "has pending wait status %s "
2702 "(currently_stepping=%d).\n",
23fdd69e 2703 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2704 currently_stepping (tp));
372316f1
PA
2705 }
2706 }
2707
70509625
PA
2708 /* If this signal should not be seen by program, give it zero.
2709 Used for debugging signals. */
2710 if (!signal_pass_state (tp->suspend.stop_signal))
2711 tp->suspend.stop_signal = GDB_SIGNAL_0;
2712
243a9253
PA
2713 thread_fsm_delete (tp->thread_fsm);
2714 tp->thread_fsm = NULL;
2715
16c381f0
JK
2716 tp->control.trap_expected = 0;
2717 tp->control.step_range_start = 0;
2718 tp->control.step_range_end = 0;
c1e36e3e 2719 tp->control.may_range_step = 0;
16c381f0
JK
2720 tp->control.step_frame_id = null_frame_id;
2721 tp->control.step_stack_frame_id = null_frame_id;
2722 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2723 tp->control.step_start_function = NULL;
a7212384 2724 tp->stop_requested = 0;
4e1c45ea 2725
16c381f0 2726 tp->control.stop_step = 0;
32400beb 2727
16c381f0 2728 tp->control.proceed_to_finish = 0;
414c69f7 2729
856e7dd6 2730 tp->control.stepping_command = 0;
17b2616c 2731
a7212384 2732 /* Discard any remaining commands or status from previous stop. */
16c381f0 2733 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2734}
32400beb 2735
a7212384 2736void
70509625 2737clear_proceed_status (int step)
a7212384 2738{
f2665db5
MM
2739 /* With scheduler-locking replay, stop replaying other threads if we're
2740 not replaying the user-visible resume ptid.
2741
2742 This is a convenience feature to not require the user to explicitly
2743 stop replaying the other threads. We're assuming that the user's
2744 intent is to resume tracing the recorded process. */
2745 if (!non_stop && scheduler_mode == schedlock_replay
2746 && target_record_is_replaying (minus_one_ptid)
2747 && !target_record_will_replay (user_visible_resume_ptid (step),
2748 execution_direction))
2749 target_record_stop_replaying ();
2750
08036331 2751 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2752 {
08036331 2753 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
08036331
PA
2757 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2758 clear_proceed_status_thread (tp);
6c95b8df
PA
2759 }
2760
d7e15655 2761 if (inferior_ptid != null_ptid)
a7212384
UW
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
6c95b8df
PA
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
a7212384
UW
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
6c95b8df 2771
d6b48e9c 2772 inferior = current_inferior ();
16c381f0 2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2774 }
2775
76727919 2776 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2777}
2778
99619bea
PA
2779/* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2782
2783static int
6c4cfb24 2784thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2785{
2786 if (tp->stepping_over_breakpoint)
2787 {
00431a78 2788 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2789
a01bda52 2790 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
99619bea
PA
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799}
2800
6c4cfb24
PA
2801/* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
8d297bbf 2805static step_over_what
6c4cfb24
PA
2806thread_still_needs_step_over (struct thread_info *tp)
2807{
8d297bbf 2808 step_over_what what = 0;
6c4cfb24
PA
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint)
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818}
2819
483805cf
PA
2820/* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823static int
856e7dd6 2824schedlock_applies (struct thread_info *tp)
483805cf
PA
2825{
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
f2665db5
MM
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
483805cf
PA
2832}
2833
c906108c
SS
2834/* Basic routine for continuing the program in various fashions.
2835
2836 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2837 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2838 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2839
2840 You should call clear_proceed_status before calling proceed. */
2841
2842void
64ce06e4 2843proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2844{
e58b0e63
PA
2845 struct regcache *regcache;
2846 struct gdbarch *gdbarch;
e58b0e63 2847 CORE_ADDR pc;
4d9d9d04
PA
2848 ptid_t resume_ptid;
2849 struct execution_control_state ecss;
2850 struct execution_control_state *ecs = &ecss;
4d9d9d04 2851 int started;
c906108c 2852
e58b0e63
PA
2853 /* If we're stopped at a fork/vfork, follow the branch set by the
2854 "set follow-fork-mode" command; otherwise, we'll just proceed
2855 resuming the current thread. */
2856 if (!follow_fork ())
2857 {
2858 /* The target for some reason decided not to resume. */
2859 normal_stop ();
f148b27e
PA
2860 if (target_can_async_p ())
2861 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2862 return;
2863 }
2864
842951eb
PA
2865 /* We'll update this if & when we switch to a new thread. */
2866 previous_inferior_ptid = inferior_ptid;
2867
e58b0e63 2868 regcache = get_current_regcache ();
ac7936df 2869 gdbarch = regcache->arch ();
8b86c959
YQ
2870 const address_space *aspace = regcache->aspace ();
2871
e58b0e63 2872 pc = regcache_read_pc (regcache);
08036331 2873 thread_info *cur_thr = inferior_thread ();
e58b0e63 2874
99619bea 2875 /* Fill in with reasonable starting values. */
08036331 2876 init_thread_stepping_state (cur_thr);
99619bea 2877
08036331 2878 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2879
2acceee2 2880 if (addr == (CORE_ADDR) -1)
c906108c 2881 {
08036331 2882 if (pc == cur_thr->suspend.stop_pc
af48d08f 2883 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2884 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2885 /* There is a breakpoint at the address we will resume at,
2886 step one instruction before inserting breakpoints so that
2887 we do not stop right away (and report a second hit at this
b2175913
MS
2888 breakpoint).
2889
2890 Note, we don't do this in reverse, because we won't
2891 actually be executing the breakpoint insn anyway.
2892 We'll be (un-)executing the previous instruction. */
08036331 2893 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2894 else if (gdbarch_single_step_through_delay_p (gdbarch)
2895 && gdbarch_single_step_through_delay (gdbarch,
2896 get_current_frame ()))
3352ef37
AC
2897 /* We stepped onto an instruction that needs to be stepped
2898 again before re-inserting the breakpoint, do so. */
08036331 2899 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2900 }
2901 else
2902 {
515630c5 2903 regcache_write_pc (regcache, addr);
c906108c
SS
2904 }
2905
70509625 2906 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2907 cur_thr->suspend.stop_signal = siggnal;
70509625 2908
08036331 2909 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2910
2911 /* If an exception is thrown from this point on, make sure to
2912 propagate GDB's knowledge of the executing state to the
2913 frontend/user running state. */
731f534f 2914 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2915
2916 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2917 threads (e.g., we might need to set threads stepping over
2918 breakpoints first), from the user/frontend's point of view, all
2919 threads in RESUME_PTID are now running. Unless we're calling an
2920 inferior function, as in that case we pretend the inferior
2921 doesn't run at all. */
08036331 2922 if (!cur_thr->control.in_infcall)
4d9d9d04 2923 set_running (resume_ptid, 1);
17b2616c 2924
527159b7 2925 if (debug_infrun)
8a9de0e4 2926 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2927 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2928 paddress (gdbarch, addr),
64ce06e4 2929 gdb_signal_to_symbol_string (siggnal));
527159b7 2930
4d9d9d04
PA
2931 annotate_starting ();
2932
2933 /* Make sure that output from GDB appears before output from the
2934 inferior. */
2935 gdb_flush (gdb_stdout);
2936
d930703d
PA
2937 /* Since we've marked the inferior running, give it the terminal. A
2938 QUIT/Ctrl-C from here on is forwarded to the target (which can
2939 still detect attempts to unblock a stuck connection with repeated
2940 Ctrl-C from within target_pass_ctrlc). */
2941 target_terminal::inferior ();
2942
4d9d9d04
PA
2943 /* In a multi-threaded task we may select another thread and
2944 then continue or step.
2945
2946 But if a thread that we're resuming had stopped at a breakpoint,
2947 it will immediately cause another breakpoint stop without any
2948 execution (i.e. it will report a breakpoint hit incorrectly). So
2949 we must step over it first.
2950
2951 Look for threads other than the current (TP) that reported a
2952 breakpoint hit and haven't been resumed yet since. */
2953
2954 /* If scheduler locking applies, we can avoid iterating over all
2955 threads. */
08036331 2956 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2957 {
08036331
PA
2958 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2959 {
4d9d9d04
PA
2960 /* Ignore the current thread here. It's handled
2961 afterwards. */
08036331 2962 if (tp == cur_thr)
4d9d9d04 2963 continue;
c906108c 2964
4d9d9d04
PA
2965 if (!thread_still_needs_step_over (tp))
2966 continue;
2967
2968 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2969
99619bea
PA
2970 if (debug_infrun)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "infrun: need to step-over [%s] first\n",
4d9d9d04 2973 target_pid_to_str (tp->ptid));
99619bea 2974
4d9d9d04 2975 thread_step_over_chain_enqueue (tp);
2adfaa28 2976 }
30852783
UW
2977 }
2978
4d9d9d04
PA
2979 /* Enqueue the current thread last, so that we move all other
2980 threads over their breakpoints first. */
08036331
PA
2981 if (cur_thr->stepping_over_breakpoint)
2982 thread_step_over_chain_enqueue (cur_thr);
30852783 2983
4d9d9d04
PA
2984 /* If the thread isn't started, we'll still need to set its prev_pc,
2985 so that switch_back_to_stepped_thread knows the thread hasn't
2986 advanced. Must do this before resuming any thread, as in
2987 all-stop/remote, once we resume we can't send any other packet
2988 until the target stops again. */
08036331 2989 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2990
a9bc57b9
TT
2991 {
2992 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2993
a9bc57b9 2994 started = start_step_over ();
c906108c 2995
a9bc57b9
TT
2996 if (step_over_info_valid_p ())
2997 {
2998 /* Either this thread started a new in-line step over, or some
2999 other thread was already doing one. In either case, don't
3000 resume anything else until the step-over is finished. */
3001 }
3002 else if (started && !target_is_non_stop_p ())
3003 {
3004 /* A new displaced stepping sequence was started. In all-stop,
3005 we can't talk to the target anymore until it next stops. */
3006 }
3007 else if (!non_stop && target_is_non_stop_p ())
3008 {
3009 /* In all-stop, but the target is always in non-stop mode.
3010 Start all other threads that are implicitly resumed too. */
08036331 3011 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3012 {
fbea99ea
PA
3013 if (tp->resumed)
3014 {
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: [%s] resumed\n",
3018 target_pid_to_str (tp->ptid));
3019 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3020 continue;
3021 }
3022
3023 if (thread_is_in_step_over_chain (tp))
3024 {
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: [%s] needs step-over\n",
3028 target_pid_to_str (tp->ptid));
3029 continue;
3030 }
3031
3032 if (debug_infrun)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "infrun: proceed: resuming %s\n",
3035 target_pid_to_str (tp->ptid));
3036
3037 reset_ecs (ecs, tp);
00431a78 3038 switch_to_thread (tp);
fbea99ea
PA
3039 keep_going_pass_signal (ecs);
3040 if (!ecs->wait_some_more)
fd7dcb94 3041 error (_("Command aborted."));
fbea99ea 3042 }
a9bc57b9 3043 }
08036331 3044 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3045 {
3046 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3047 reset_ecs (ecs, cur_thr);
3048 switch_to_thread (cur_thr);
a9bc57b9
TT
3049 keep_going_pass_signal (ecs);
3050 if (!ecs->wait_some_more)
3051 error (_("Command aborted."));
3052 }
3053 }
c906108c 3054
85ad3aaf
PA
3055 target_commit_resume ();
3056
731f534f 3057 finish_state.release ();
c906108c 3058
0b333c5e
PA
3059 /* Tell the event loop to wait for it to stop. If the target
3060 supports asynchronous execution, it'll do this from within
3061 target_resume. */
362646f5 3062 if (!target_can_async_p ())
0b333c5e 3063 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3064}
c906108c
SS
3065\f
3066
3067/* Start remote-debugging of a machine over a serial link. */
96baa820 3068
c906108c 3069void
8621d6a9 3070start_remote (int from_tty)
c906108c 3071{
d6b48e9c 3072 struct inferior *inferior;
d6b48e9c
PA
3073
3074 inferior = current_inferior ();
16c381f0 3075 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3076
1777feb0 3077 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3078 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3079 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3080 nothing is returned (instead of just blocking). Because of this,
3081 targets expecting an immediate response need to, internally, set
3082 things up so that the target_wait() is forced to eventually
1777feb0 3083 timeout. */
6426a772
JM
3084 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3085 differentiate to its caller what the state of the target is after
3086 the initial open has been performed. Here we're assuming that
3087 the target has stopped. It should be possible to eventually have
3088 target_open() return to the caller an indication that the target
3089 is currently running and GDB state should be set to the same as
1777feb0 3090 for an async run. */
e4c8541f 3091 wait_for_inferior ();
8621d6a9
DJ
3092
3093 /* Now that the inferior has stopped, do any bookkeeping like
3094 loading shared libraries. We want to do this before normal_stop,
3095 so that the displayed frame is up to date. */
8b88a78e 3096 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3097
6426a772 3098 normal_stop ();
c906108c
SS
3099}
3100
3101/* Initialize static vars when a new inferior begins. */
3102
3103void
96baa820 3104init_wait_for_inferior (void)
c906108c
SS
3105{
3106 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3107
c906108c
SS
3108 breakpoint_init_inferior (inf_starting);
3109
70509625 3110 clear_proceed_status (0);
9f976b41 3111
ca005067 3112 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3113
842951eb 3114 previous_inferior_ptid = inferior_ptid;
c906108c 3115}
237fc4c9 3116
c906108c 3117\f
488f131b 3118
ec9499be 3119static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3120
568d6575
UW
3121static void handle_step_into_function (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs);
3123static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs);
4f5d7f63 3125static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3126static void check_exception_resume (struct execution_control_state *,
28106bc2 3127 struct frame_info *);
611c83ae 3128
bdc36728 3129static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3130static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3131static void keep_going (struct execution_control_state *ecs);
94c57d6a 3132static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3133static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3134
252fbfc8
PA
3135/* This function is attached as a "thread_stop_requested" observer.
3136 Cleanup local state that assumed the PTID was to be resumed, and
3137 report the stop to the frontend. */
3138
2c0b251b 3139static void
252fbfc8
PA
3140infrun_thread_stop_requested (ptid_t ptid)
3141{
c65d6b55
PA
3142 /* PTID was requested to stop. If the thread was already stopped,
3143 but the user/frontend doesn't know about that yet (e.g., the
3144 thread had been temporarily paused for some step-over), set up
3145 for reporting the stop now. */
08036331
PA
3146 for (thread_info *tp : all_threads (ptid))
3147 {
3148 if (tp->state != THREAD_RUNNING)
3149 continue;
3150 if (tp->executing)
3151 continue;
c65d6b55 3152
08036331
PA
3153 /* Remove matching threads from the step-over queue, so
3154 start_step_over doesn't try to resume them
3155 automatically. */
3156 if (thread_is_in_step_over_chain (tp))
3157 thread_step_over_chain_remove (tp);
c65d6b55 3158
08036331
PA
3159 /* If the thread is stopped, but the user/frontend doesn't
3160 know about that yet, queue a pending event, as if the
3161 thread had just stopped now. Unless the thread already had
3162 a pending event. */
3163 if (!tp->suspend.waitstatus_pending_p)
3164 {
3165 tp->suspend.waitstatus_pending_p = 1;
3166 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3167 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3168 }
c65d6b55 3169
08036331
PA
3170 /* Clear the inline-frame state, since we're re-processing the
3171 stop. */
3172 clear_inline_frame_state (tp->ptid);
c65d6b55 3173
08036331
PA
3174 /* If this thread was paused because some other thread was
3175 doing an inline-step over, let that finish first. Once
3176 that happens, we'll restart all threads and consume pending
3177 stop events then. */
3178 if (step_over_info_valid_p ())
3179 continue;
3180
3181 /* Otherwise we can process the (new) pending event now. Set
3182 it so this pending event is considered by
3183 do_target_wait. */
3184 tp->resumed = 1;
3185 }
252fbfc8
PA
3186}
3187
a07daef3
PA
3188static void
3189infrun_thread_thread_exit (struct thread_info *tp, int silent)
3190{
d7e15655 3191 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3192 nullify_last_target_wait_ptid ();
3193}
3194
0cbcdb96
PA
3195/* Delete the step resume, single-step and longjmp/exception resume
3196 breakpoints of TP. */
4e1c45ea 3197
0cbcdb96
PA
3198static void
3199delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3200{
0cbcdb96
PA
3201 delete_step_resume_breakpoint (tp);
3202 delete_exception_resume_breakpoint (tp);
34b7e8a6 3203 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3204}
3205
0cbcdb96
PA
3206/* If the target still has execution, call FUNC for each thread that
3207 just stopped. In all-stop, that's all the non-exited threads; in
3208 non-stop, that's the current thread, only. */
3209
3210typedef void (*for_each_just_stopped_thread_callback_func)
3211 (struct thread_info *tp);
4e1c45ea
PA
3212
3213static void
0cbcdb96 3214for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3215{
d7e15655 3216 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3217 return;
3218
fbea99ea 3219 if (target_is_non_stop_p ())
4e1c45ea 3220 {
0cbcdb96
PA
3221 /* If in non-stop mode, only the current thread stopped. */
3222 func (inferior_thread ());
4e1c45ea
PA
3223 }
3224 else
0cbcdb96 3225 {
0cbcdb96 3226 /* In all-stop mode, all threads have stopped. */
08036331
PA
3227 for (thread_info *tp : all_non_exited_threads ())
3228 func (tp);
0cbcdb96
PA
3229 }
3230}
3231
3232/* Delete the step resume and longjmp/exception resume breakpoints of
3233 the threads that just stopped. */
3234
3235static void
3236delete_just_stopped_threads_infrun_breakpoints (void)
3237{
3238 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3239}
3240
3241/* Delete the single-step breakpoints of the threads that just
3242 stopped. */
7c16b83e 3243
34b7e8a6
PA
3244static void
3245delete_just_stopped_threads_single_step_breakpoints (void)
3246{
3247 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3248}
3249
221e1a37 3250/* See infrun.h. */
223698f8 3251
221e1a37 3252void
223698f8
DE
3253print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3254 const struct target_waitstatus *ws)
3255{
23fdd69e 3256 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3257 string_file stb;
223698f8
DE
3258
3259 /* The text is split over several lines because it was getting too long.
3260 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3261 output as a unit; we want only one timestamp printed if debug_timestamp
3262 is set. */
3263
d7e74731 3264 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3265 waiton_ptid.pid (),
e38504b3 3266 waiton_ptid.lwp (),
cc6bcb54 3267 waiton_ptid.tid ());
e99b03dc 3268 if (waiton_ptid.pid () != -1)
d7e74731
PA
3269 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3270 stb.printf (", status) =\n");
3271 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3272 result_ptid.pid (),
e38504b3 3273 result_ptid.lwp (),
cc6bcb54 3274 result_ptid.tid (),
d7e74731 3275 target_pid_to_str (result_ptid));
23fdd69e 3276 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3277
3278 /* This uses %s in part to handle %'s in the text, but also to avoid
3279 a gcc error: the format attribute requires a string literal. */
d7e74731 3280 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3281}
3282
372316f1
PA
3283/* Select a thread at random, out of those which are resumed and have
3284 had events. */
3285
3286static struct thread_info *
3287random_pending_event_thread (ptid_t waiton_ptid)
3288{
372316f1 3289 int num_events = 0;
08036331
PA
3290
3291 auto has_event = [] (thread_info *tp)
3292 {
3293 return (tp->resumed
3294 && tp->suspend.waitstatus_pending_p);
3295 };
372316f1
PA
3296
3297 /* First see how many events we have. Count only resumed threads
3298 that have an event pending. */
08036331
PA
3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300 if (has_event (tp))
372316f1
PA
3301 num_events++;
3302
3303 if (num_events == 0)
3304 return NULL;
3305
3306 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3307 int random_selector = (int) ((num_events * (double) rand ())
3308 / (RAND_MAX + 1.0));
372316f1
PA
3309
3310 if (debug_infrun && num_events > 1)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "infrun: Found %d events, selecting #%d\n",
3313 num_events, random_selector);
3314
3315 /* Select the Nth thread that has had an event. */
08036331
PA
3316 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3317 if (has_event (tp))
372316f1 3318 if (random_selector-- == 0)
08036331 3319 return tp;
372316f1 3320
08036331 3321 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3322}
3323
3324/* Wrapper for target_wait that first checks whether threads have
3325 pending statuses to report before actually asking the target for
3326 more events. */
3327
3328static ptid_t
3329do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3330{
3331 ptid_t event_ptid;
3332 struct thread_info *tp;
3333
3334 /* First check if there is a resumed thread with a wait status
3335 pending. */
d7e15655 3336 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3337 {
3338 tp = random_pending_event_thread (ptid);
3339 }
3340 else
3341 {
3342 if (debug_infrun)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "infrun: Waiting for specific thread %s.\n",
3345 target_pid_to_str (ptid));
3346
3347 /* We have a specific thread to check. */
3348 tp = find_thread_ptid (ptid);
3349 gdb_assert (tp != NULL);
3350 if (!tp->suspend.waitstatus_pending_p)
3351 tp = NULL;
3352 }
3353
3354 if (tp != NULL
3355 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3356 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3357 {
00431a78 3358 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3359 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3360 CORE_ADDR pc;
3361 int discard = 0;
3362
3363 pc = regcache_read_pc (regcache);
3364
3365 if (pc != tp->suspend.stop_pc)
3366 {
3367 if (debug_infrun)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "infrun: PC of %s changed. was=%s, now=%s\n",
3370 target_pid_to_str (tp->ptid),
defd2172 3371 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3372 paddress (gdbarch, pc));
3373 discard = 1;
3374 }
a01bda52 3375 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3376 {
3377 if (debug_infrun)
3378 fprintf_unfiltered (gdb_stdlog,
3379 "infrun: previous breakpoint of %s, at %s gone\n",
3380 target_pid_to_str (tp->ptid),
3381 paddress (gdbarch, pc));
3382
3383 discard = 1;
3384 }
3385
3386 if (discard)
3387 {
3388 if (debug_infrun)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: pending event of %s cancelled.\n",
3391 target_pid_to_str (tp->ptid));
3392
3393 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3394 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3395 }
3396 }
3397
3398 if (tp != NULL)
3399 {
3400 if (debug_infrun)
3401 {
23fdd69e
SM
3402 std::string statstr
3403 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3404
372316f1
PA
3405 fprintf_unfiltered (gdb_stdlog,
3406 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3407 statstr.c_str (),
372316f1 3408 target_pid_to_str (tp->ptid));
372316f1
PA
3409 }
3410
3411 /* Now that we've selected our final event LWP, un-adjust its PC
3412 if it was a software breakpoint (and the target doesn't
3413 always adjust the PC itself). */
3414 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3415 && !target_supports_stopped_by_sw_breakpoint ())
3416 {
3417 struct regcache *regcache;
3418 struct gdbarch *gdbarch;
3419 int decr_pc;
3420
00431a78 3421 regcache = get_thread_regcache (tp);
ac7936df 3422 gdbarch = regcache->arch ();
372316f1
PA
3423
3424 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3425 if (decr_pc != 0)
3426 {
3427 CORE_ADDR pc;
3428
3429 pc = regcache_read_pc (regcache);
3430 regcache_write_pc (regcache, pc + decr_pc);
3431 }
3432 }
3433
3434 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3435 *status = tp->suspend.waitstatus;
3436 tp->suspend.waitstatus_pending_p = 0;
3437
3438 /* Wake up the event loop again, until all pending events are
3439 processed. */
3440 if (target_is_async_p ())
3441 mark_async_event_handler (infrun_async_inferior_event_token);
3442 return tp->ptid;
3443 }
3444
3445 /* But if we don't find one, we'll have to wait. */
3446
3447 if (deprecated_target_wait_hook)
3448 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3449 else
3450 event_ptid = target_wait (ptid, status, options);
3451
3452 return event_ptid;
3453}
3454
24291992
PA
3455/* Prepare and stabilize the inferior for detaching it. E.g.,
3456 detaching while a thread is displaced stepping is a recipe for
3457 crashing it, as nothing would readjust the PC out of the scratch
3458 pad. */
3459
3460void
3461prepare_for_detach (void)
3462{
3463 struct inferior *inf = current_inferior ();
f2907e49 3464 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3465
00431a78 3466 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3467
3468 /* Is any thread of this process displaced stepping? If not,
3469 there's nothing else to do. */
d20172fc 3470 if (displaced->step_thread == nullptr)
24291992
PA
3471 return;
3472
3473 if (debug_infrun)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "displaced-stepping in-process while detaching");
3476
9bcb1f16 3477 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3478
00431a78 3479 while (displaced->step_thread != nullptr)
24291992 3480 {
24291992
PA
3481 struct execution_control_state ecss;
3482 struct execution_control_state *ecs;
3483
3484 ecs = &ecss;
3485 memset (ecs, 0, sizeof (*ecs));
3486
3487 overlay_cache_invalid = 1;
f15cb84a
YQ
3488 /* Flush target cache before starting to handle each event.
3489 Target was running and cache could be stale. This is just a
3490 heuristic. Running threads may modify target memory, but we
3491 don't get any event. */
3492 target_dcache_invalidate ();
24291992 3493
372316f1 3494 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3495
3496 if (debug_infrun)
3497 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3498
3499 /* If an error happens while handling the event, propagate GDB's
3500 knowledge of the executing state to the frontend/user running
3501 state. */
731f534f 3502 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3503
3504 /* Now figure out what to do with the result of the result. */
3505 handle_inferior_event (ecs);
3506
3507 /* No error, don't finish the state yet. */
731f534f 3508 finish_state.release ();
24291992
PA
3509
3510 /* Breakpoints and watchpoints are not installed on the target
3511 at this point, and signals are passed directly to the
3512 inferior, so this must mean the process is gone. */
3513 if (!ecs->wait_some_more)
3514 {
9bcb1f16 3515 restore_detaching.release ();
24291992
PA
3516 error (_("Program exited while detaching"));
3517 }
3518 }
3519
9bcb1f16 3520 restore_detaching.release ();
24291992
PA
3521}
3522
cd0fc7c3 3523/* Wait for control to return from inferior to debugger.
ae123ec6 3524
cd0fc7c3
SS
3525 If inferior gets a signal, we may decide to start it up again
3526 instead of returning. That is why there is a loop in this function.
3527 When this function actually returns it means the inferior
3528 should be left stopped and GDB should read more commands. */
3529
3530void
e4c8541f 3531wait_for_inferior (void)
cd0fc7c3 3532{
527159b7 3533 if (debug_infrun)
ae123ec6 3534 fprintf_unfiltered
e4c8541f 3535 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3536
4c41382a 3537 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3538
e6f5c25b
PA
3539 /* If an error happens while handling the event, propagate GDB's
3540 knowledge of the executing state to the frontend/user running
3541 state. */
731f534f 3542 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3543
c906108c
SS
3544 while (1)
3545 {
ae25568b
PA
3546 struct execution_control_state ecss;
3547 struct execution_control_state *ecs = &ecss;
963f9c80 3548 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3549
ae25568b
PA
3550 memset (ecs, 0, sizeof (*ecs));
3551
ec9499be 3552 overlay_cache_invalid = 1;
ec9499be 3553
f15cb84a
YQ
3554 /* Flush target cache before starting to handle each event.
3555 Target was running and cache could be stale. This is just a
3556 heuristic. Running threads may modify target memory, but we
3557 don't get any event. */
3558 target_dcache_invalidate ();
3559
372316f1 3560 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3561
f00150c9 3562 if (debug_infrun)
223698f8 3563 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3564
cd0fc7c3
SS
3565 /* Now figure out what to do with the result of the result. */
3566 handle_inferior_event (ecs);
c906108c 3567
cd0fc7c3
SS
3568 if (!ecs->wait_some_more)
3569 break;
3570 }
4e1c45ea 3571
e6f5c25b 3572 /* No error, don't finish the state yet. */
731f534f 3573 finish_state.release ();
cd0fc7c3 3574}
c906108c 3575
d3d4baed
PA
3576/* Cleanup that reinstalls the readline callback handler, if the
3577 target is running in the background. If while handling the target
3578 event something triggered a secondary prompt, like e.g., a
3579 pagination prompt, we'll have removed the callback handler (see
3580 gdb_readline_wrapper_line). Need to do this as we go back to the
3581 event loop, ready to process further input. Note this has no
3582 effect if the handler hasn't actually been removed, because calling
3583 rl_callback_handler_install resets the line buffer, thus losing
3584 input. */
3585
3586static void
d238133d 3587reinstall_readline_callback_handler_cleanup ()
d3d4baed 3588{
3b12939d
PA
3589 struct ui *ui = current_ui;
3590
3591 if (!ui->async)
6c400b59
PA
3592 {
3593 /* We're not going back to the top level event loop yet. Don't
3594 install the readline callback, as it'd prep the terminal,
3595 readline-style (raw, noecho) (e.g., --batch). We'll install
3596 it the next time the prompt is displayed, when we're ready
3597 for input. */
3598 return;
3599 }
3600
3b12939d 3601 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3602 gdb_rl_callback_handler_reinstall ();
3603}
3604
243a9253
PA
3605/* Clean up the FSMs of threads that are now stopped. In non-stop,
3606 that's just the event thread. In all-stop, that's all threads. */
3607
3608static void
3609clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3610{
08036331
PA
3611 if (ecs->event_thread != NULL
3612 && ecs->event_thread->thread_fsm != NULL)
3613 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3614 ecs->event_thread);
243a9253
PA
3615
3616 if (!non_stop)
3617 {
08036331 3618 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3619 {
3620 if (thr->thread_fsm == NULL)
3621 continue;
3622 if (thr == ecs->event_thread)
3623 continue;
3624
00431a78 3625 switch_to_thread (thr);
8980e177 3626 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3627 }
3628
3629 if (ecs->event_thread != NULL)
00431a78 3630 switch_to_thread (ecs->event_thread);
243a9253
PA
3631 }
3632}
3633
3b12939d
PA
3634/* Helper for all_uis_check_sync_execution_done that works on the
3635 current UI. */
3636
3637static void
3638check_curr_ui_sync_execution_done (void)
3639{
3640 struct ui *ui = current_ui;
3641
3642 if (ui->prompt_state == PROMPT_NEEDED
3643 && ui->async
3644 && !gdb_in_secondary_prompt_p (ui))
3645 {
223ffa71 3646 target_terminal::ours ();
76727919 3647 gdb::observers::sync_execution_done.notify ();
3eb7562a 3648 ui_register_input_event_handler (ui);
3b12939d
PA
3649 }
3650}
3651
3652/* See infrun.h. */
3653
3654void
3655all_uis_check_sync_execution_done (void)
3656{
0e454242 3657 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3658 {
3659 check_curr_ui_sync_execution_done ();
3660 }
3661}
3662
a8836c93
PA
3663/* See infrun.h. */
3664
3665void
3666all_uis_on_sync_execution_starting (void)
3667{
0e454242 3668 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3669 {
3670 if (current_ui->prompt_state == PROMPT_NEEDED)
3671 async_disable_stdin ();
3672 }
3673}
3674
1777feb0 3675/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3676 event loop whenever a change of state is detected on the file
1777feb0
MS
3677 descriptor corresponding to the target. It can be called more than
3678 once to complete a single execution command. In such cases we need
3679 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3680 that this function is called for a single execution command, then
3681 report to the user that the inferior has stopped, and do the
1777feb0 3682 necessary cleanups. */
43ff13b4
JM
3683
3684void
fba45db2 3685fetch_inferior_event (void *client_data)
43ff13b4 3686{
0d1e5fa7 3687 struct execution_control_state ecss;
a474d7c2 3688 struct execution_control_state *ecs = &ecss;
0f641c01 3689 int cmd_done = 0;
963f9c80 3690 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3691
0d1e5fa7
PA
3692 memset (ecs, 0, sizeof (*ecs));
3693
c61db772
PA
3694 /* Events are always processed with the main UI as current UI. This
3695 way, warnings, debug output, etc. are always consistently sent to
3696 the main console. */
4b6749b9 3697 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3698
d3d4baed 3699 /* End up with readline processing input, if necessary. */
d238133d
TT
3700 {
3701 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3702
3703 /* We're handling a live event, so make sure we're doing live
3704 debugging. If we're looking at traceframes while the target is
3705 running, we're going to need to get back to that mode after
3706 handling the event. */
3707 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3708 if (non_stop)
3709 {
3710 maybe_restore_traceframe.emplace ();
3711 set_current_traceframe (-1);
3712 }
43ff13b4 3713
d238133d
TT
3714 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3715
3716 if (non_stop)
3717 /* In non-stop mode, the user/frontend should not notice a thread
3718 switch due to internal events. Make sure we reverse to the
3719 user selected thread and frame after handling the event and
3720 running any breakpoint commands. */
3721 maybe_restore_thread.emplace ();
3722
3723 overlay_cache_invalid = 1;
3724 /* Flush target cache before starting to handle each event. Target
3725 was running and cache could be stale. This is just a heuristic.
3726 Running threads may modify target memory, but we don't get any
3727 event. */
3728 target_dcache_invalidate ();
3729
3730 scoped_restore save_exec_dir
3731 = make_scoped_restore (&execution_direction,
3732 target_execution_direction ());
3733
3734 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3735 target_can_async_p () ? TARGET_WNOHANG : 0);
3736
3737 if (debug_infrun)
3738 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3744 scoped_finish_thread_state finish_state (finish_ptid);
3745
979a0d13 3746 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3747 still for the thread which has thrown the exception. */
3748 auto defer_bpstat_clear
3749 = make_scope_exit (bpstat_clear_actions);
3750 auto defer_delete_threads
3751 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3752
3753 /* Now figure out what to do with the result of the result. */
3754 handle_inferior_event (ecs);
3755
3756 if (!ecs->wait_some_more)
3757 {
3758 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3759 int should_stop = 1;
3760 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3761
d238133d 3762 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3763
d238133d
TT
3764 if (thr != NULL)
3765 {
3766 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3767
d238133d
TT
3768 if (thread_fsm != NULL)
3769 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3770 }
243a9253 3771
d238133d
TT
3772 if (!should_stop)
3773 {
3774 keep_going (ecs);
3775 }
3776 else
3777 {
3778 int should_notify_stop = 1;
3779 int proceeded = 0;
1840d81a 3780
d238133d 3781 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3782
d238133d
TT
3783 if (thr != NULL && thr->thread_fsm != NULL)
3784 {
3785 should_notify_stop
3786 = thread_fsm_should_notify_stop (thr->thread_fsm);
3787 }
388a7084 3788
d238133d
TT
3789 if (should_notify_stop)
3790 {
3791 /* We may not find an inferior if this was a process exit. */
3792 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3793 proceeded = normal_stop ();
3794 }
243a9253 3795
d238133d
TT
3796 if (!proceeded)
3797 {
3798 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3799 cmd_done = 1;
3800 }
3801 }
3802 }
4f8d22e3 3803
d238133d
TT
3804 defer_delete_threads.release ();
3805 defer_bpstat_clear.release ();
29f49a6a 3806
d238133d
TT
3807 /* No error, don't finish the thread states yet. */
3808 finish_state.release ();
731f534f 3809
d238133d
TT
3810 /* This scope is used to ensure that readline callbacks are
3811 reinstalled here. */
3812 }
4f8d22e3 3813
3b12939d
PA
3814 /* If a UI was in sync execution mode, and now isn't, restore its
3815 prompt (a synchronous execution command has finished, and we're
3816 ready for input). */
3817 all_uis_check_sync_execution_done ();
0f641c01
PA
3818
3819 if (cmd_done
0f641c01 3820 && exec_done_display_p
00431a78
PA
3821 && (inferior_ptid == null_ptid
3822 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3823 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3824}
3825
edb3359d
DJ
3826/* Record the frame and location we're currently stepping through. */
3827void
3828set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3829{
3830 struct thread_info *tp = inferior_thread ();
3831
16c381f0
JK
3832 tp->control.step_frame_id = get_frame_id (frame);
3833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3834
3835 tp->current_symtab = sal.symtab;
3836 tp->current_line = sal.line;
3837}
3838
0d1e5fa7
PA
3839/* Clear context switchable stepping state. */
3840
3841void
4e1c45ea 3842init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3843{
7f5ef605 3844 tss->stepped_breakpoint = 0;
0d1e5fa7 3845 tss->stepping_over_breakpoint = 0;
963f9c80 3846 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3847 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3848}
3849
c32c64b7
DE
3850/* Set the cached copy of the last ptid/waitstatus. */
3851
6efcd9a8 3852void
c32c64b7
DE
3853set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3854{
3855 target_last_wait_ptid = ptid;
3856 target_last_waitstatus = status;
3857}
3858
e02bc4cc 3859/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3860 target_wait()/deprecated_target_wait_hook(). The data is actually
3861 cached by handle_inferior_event(), which gets called immediately
3862 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3863
3864void
488f131b 3865get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3866{
39f77062 3867 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3868 *status = target_last_waitstatus;
3869}
3870
ac264b3b
MS
3871void
3872nullify_last_target_wait_ptid (void)
3873{
3874 target_last_wait_ptid = minus_one_ptid;
3875}
3876
dcf4fbde 3877/* Switch thread contexts. */
dd80620e
MS
3878
3879static void
00431a78 3880context_switch (execution_control_state *ecs)
dd80620e 3881{
00431a78
PA
3882 if (debug_infrun
3883 && ecs->ptid != inferior_ptid
3884 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3885 {
3886 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3887 target_pid_to_str (inferior_ptid));
3888 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3889 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3890 }
3891
00431a78 3892 switch_to_thread (ecs->event_thread);
dd80620e
MS
3893}
3894
d8dd4d5f
PA
3895/* If the target can't tell whether we've hit breakpoints
3896 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3897 check whether that could have been caused by a breakpoint. If so,
3898 adjust the PC, per gdbarch_decr_pc_after_break. */
3899
4fa8626c 3900static void
d8dd4d5f
PA
3901adjust_pc_after_break (struct thread_info *thread,
3902 struct target_waitstatus *ws)
4fa8626c 3903{
24a73cce
UW
3904 struct regcache *regcache;
3905 struct gdbarch *gdbarch;
118e6252 3906 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3907
4fa8626c
DJ
3908 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3909 we aren't, just return.
9709f61c
DJ
3910
3911 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3912 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3913 implemented by software breakpoints should be handled through the normal
3914 breakpoint layer.
8fb3e588 3915
4fa8626c
DJ
3916 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3917 different signals (SIGILL or SIGEMT for instance), but it is less
3918 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3919 gdbarch_decr_pc_after_break. I don't know any specific target that
3920 generates these signals at breakpoints (the code has been in GDB since at
3921 least 1992) so I can not guess how to handle them here.
8fb3e588 3922
e6cf7916
UW
3923 In earlier versions of GDB, a target with
3924 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3925 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3926 target with both of these set in GDB history, and it seems unlikely to be
3927 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3928
d8dd4d5f 3929 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3930 return;
3931
d8dd4d5f 3932 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3933 return;
3934
4058b839
PA
3935 /* In reverse execution, when a breakpoint is hit, the instruction
3936 under it has already been de-executed. The reported PC always
3937 points at the breakpoint address, so adjusting it further would
3938 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3939 architecture:
3940
3941 B1 0x08000000 : INSN1
3942 B2 0x08000001 : INSN2
3943 0x08000002 : INSN3
3944 PC -> 0x08000003 : INSN4
3945
3946 Say you're stopped at 0x08000003 as above. Reverse continuing
3947 from that point should hit B2 as below. Reading the PC when the
3948 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3949 been de-executed already.
3950
3951 B1 0x08000000 : INSN1
3952 B2 PC -> 0x08000001 : INSN2
3953 0x08000002 : INSN3
3954 0x08000003 : INSN4
3955
3956 We can't apply the same logic as for forward execution, because
3957 we would wrongly adjust the PC to 0x08000000, since there's a
3958 breakpoint at PC - 1. We'd then report a hit on B1, although
3959 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3960 behaviour. */
3961 if (execution_direction == EXEC_REVERSE)
3962 return;
3963
1cf4d951
PA
3964 /* If the target can tell whether the thread hit a SW breakpoint,
3965 trust it. Targets that can tell also adjust the PC
3966 themselves. */
3967 if (target_supports_stopped_by_sw_breakpoint ())
3968 return;
3969
3970 /* Note that relying on whether a breakpoint is planted in memory to
3971 determine this can fail. E.g,. the breakpoint could have been
3972 removed since. Or the thread could have been told to step an
3973 instruction the size of a breakpoint instruction, and only
3974 _after_ was a breakpoint inserted at its address. */
3975
24a73cce
UW
3976 /* If this target does not decrement the PC after breakpoints, then
3977 we have nothing to do. */
00431a78 3978 regcache = get_thread_regcache (thread);
ac7936df 3979 gdbarch = regcache->arch ();
118e6252 3980
527a273a 3981 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3982 if (decr_pc == 0)
24a73cce
UW
3983 return;
3984
8b86c959 3985 const address_space *aspace = regcache->aspace ();
6c95b8df 3986
8aad930b
AC
3987 /* Find the location where (if we've hit a breakpoint) the
3988 breakpoint would be. */
118e6252 3989 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3990
1cf4d951
PA
3991 /* If the target can't tell whether a software breakpoint triggered,
3992 fallback to figuring it out based on breakpoints we think were
3993 inserted in the target, and on whether the thread was stepped or
3994 continued. */
3995
1c5cfe86
PA
3996 /* Check whether there actually is a software breakpoint inserted at
3997 that location.
3998
3999 If in non-stop mode, a race condition is possible where we've
4000 removed a breakpoint, but stop events for that breakpoint were
4001 already queued and arrive later. To suppress those spurious
4002 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4003 and retire them after a number of stop events are reported. Note
4004 this is an heuristic and can thus get confused. The real fix is
4005 to get the "stopped by SW BP and needs adjustment" info out of
4006 the target/kernel (and thus never reach here; see above). */
6c95b8df 4007 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4008 || (target_is_non_stop_p ()
4009 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4010 {
07036511 4011 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4012
8213266a 4013 if (record_full_is_used ())
07036511
TT
4014 restore_operation_disable.emplace
4015 (record_full_gdb_operation_disable_set ());
96429cc8 4016
1c0fdd0e
UW
4017 /* When using hardware single-step, a SIGTRAP is reported for both
4018 a completed single-step and a software breakpoint. Need to
4019 differentiate between the two, as the latter needs adjusting
4020 but the former does not.
4021
4022 The SIGTRAP can be due to a completed hardware single-step only if
4023 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4024 - this thread is currently being stepped
4025
4026 If any of these events did not occur, we must have stopped due
4027 to hitting a software breakpoint, and have to back up to the
4028 breakpoint address.
4029
4030 As a special case, we could have hardware single-stepped a
4031 software breakpoint. In this case (prev_pc == breakpoint_pc),
4032 we also need to back up to the breakpoint address. */
4033
d8dd4d5f
PA
4034 if (thread_has_single_step_breakpoints_set (thread)
4035 || !currently_stepping (thread)
4036 || (thread->stepped_breakpoint
4037 && thread->prev_pc == breakpoint_pc))
515630c5 4038 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4039 }
4fa8626c
DJ
4040}
4041
edb3359d
DJ
4042static int
4043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4044{
4045 for (frame = get_prev_frame (frame);
4046 frame != NULL;
4047 frame = get_prev_frame (frame))
4048 {
4049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4050 return 1;
4051 if (get_frame_type (frame) != INLINE_FRAME)
4052 break;
4053 }
4054
4055 return 0;
4056}
4057
c65d6b55
PA
4058/* If the event thread has the stop requested flag set, pretend it
4059 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4060 target_stop). */
4061
4062static bool
4063handle_stop_requested (struct execution_control_state *ecs)
4064{
4065 if (ecs->event_thread->stop_requested)
4066 {
4067 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4068 ecs->ws.value.sig = GDB_SIGNAL_0;
4069 handle_signal_stop (ecs);
4070 return true;
4071 }
4072 return false;
4073}
4074
a96d9b2e
SDJ
4075/* Auxiliary function that handles syscall entry/return events.
4076 It returns 1 if the inferior should keep going (and GDB
4077 should ignore the event), or 0 if the event deserves to be
4078 processed. */
ca2163eb 4079
a96d9b2e 4080static int
ca2163eb 4081handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4082{
ca2163eb 4083 struct regcache *regcache;
ca2163eb
PA
4084 int syscall_number;
4085
00431a78 4086 context_switch (ecs);
ca2163eb 4087
00431a78 4088 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4089 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4090 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4091
a96d9b2e
SDJ
4092 if (catch_syscall_enabled () > 0
4093 && catching_syscall_number (syscall_number) > 0)
4094 {
4095 if (debug_infrun)
4096 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4097 syscall_number);
a96d9b2e 4098
16c381f0 4099 ecs->event_thread->control.stop_bpstat
a01bda52 4100 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4101 ecs->event_thread->suspend.stop_pc,
4102 ecs->event_thread, &ecs->ws);
ab04a2af 4103
c65d6b55
PA
4104 if (handle_stop_requested (ecs))
4105 return 0;
4106
ce12b012 4107 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4108 {
4109 /* Catchpoint hit. */
ca2163eb
PA
4110 return 0;
4111 }
a96d9b2e 4112 }
ca2163eb 4113
c65d6b55
PA
4114 if (handle_stop_requested (ecs))
4115 return 0;
4116
ca2163eb 4117 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4118 keep_going (ecs);
4119 return 1;
a96d9b2e
SDJ
4120}
4121
7e324e48
GB
4122/* Lazily fill in the execution_control_state's stop_func_* fields. */
4123
4124static void
4125fill_in_stop_func (struct gdbarch *gdbarch,
4126 struct execution_control_state *ecs)
4127{
4128 if (!ecs->stop_func_filled_in)
4129 {
4130 /* Don't care about return value; stop_func_start and stop_func_name
4131 will both be 0 if it doesn't work. */
59adbf5d
KB
4132 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4133 &ecs->stop_func_name,
4134 &ecs->stop_func_start,
4135 &ecs->stop_func_end);
7e324e48
GB
4136 ecs->stop_func_start
4137 += gdbarch_deprecated_function_start_offset (gdbarch);
4138
591a12a1
UW
4139 if (gdbarch_skip_entrypoint_p (gdbarch))
4140 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4141 ecs->stop_func_start);
4142
7e324e48
GB
4143 ecs->stop_func_filled_in = 1;
4144 }
4145}
4146
4f5d7f63 4147
00431a78 4148/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4149
4150static enum stop_kind
00431a78 4151get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4152{
00431a78 4153 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4154
4155 gdb_assert (inf != NULL);
4156 return inf->control.stop_soon;
4157}
4158
372316f1
PA
4159/* Wait for one event. Store the resulting waitstatus in WS, and
4160 return the event ptid. */
4161
4162static ptid_t
4163wait_one (struct target_waitstatus *ws)
4164{
4165 ptid_t event_ptid;
4166 ptid_t wait_ptid = minus_one_ptid;
4167
4168 overlay_cache_invalid = 1;
4169
4170 /* Flush target cache before starting to handle each event.
4171 Target was running and cache could be stale. This is just a
4172 heuristic. Running threads may modify target memory, but we
4173 don't get any event. */
4174 target_dcache_invalidate ();
4175
4176 if (deprecated_target_wait_hook)
4177 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4178 else
4179 event_ptid = target_wait (wait_ptid, ws, 0);
4180
4181 if (debug_infrun)
4182 print_target_wait_results (wait_ptid, event_ptid, ws);
4183
4184 return event_ptid;
4185}
4186
4187/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4188 instead of the current thread. */
4189#define THREAD_STOPPED_BY(REASON) \
4190static int \
4191thread_stopped_by_ ## REASON (ptid_t ptid) \
4192{ \
2989a365 4193 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4194 inferior_ptid = ptid; \
4195 \
2989a365 4196 return target_stopped_by_ ## REASON (); \
372316f1
PA
4197}
4198
4199/* Generate thread_stopped_by_watchpoint. */
4200THREAD_STOPPED_BY (watchpoint)
4201/* Generate thread_stopped_by_sw_breakpoint. */
4202THREAD_STOPPED_BY (sw_breakpoint)
4203/* Generate thread_stopped_by_hw_breakpoint. */
4204THREAD_STOPPED_BY (hw_breakpoint)
4205
372316f1
PA
4206/* Save the thread's event and stop reason to process it later. */
4207
4208static void
4209save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4210{
372316f1
PA
4211 if (debug_infrun)
4212 {
23fdd69e 4213 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4214
372316f1
PA
4215 fprintf_unfiltered (gdb_stdlog,
4216 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4217 statstr.c_str (),
e99b03dc 4218 tp->ptid.pid (),
e38504b3 4219 tp->ptid.lwp (),
cc6bcb54 4220 tp->ptid.tid ());
372316f1
PA
4221 }
4222
4223 /* Record for later. */
4224 tp->suspend.waitstatus = *ws;
4225 tp->suspend.waitstatus_pending_p = 1;
4226
00431a78 4227 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4228 const address_space *aspace = regcache->aspace ();
372316f1
PA
4229
4230 if (ws->kind == TARGET_WAITKIND_STOPPED
4231 && ws->value.sig == GDB_SIGNAL_TRAP)
4232 {
4233 CORE_ADDR pc = regcache_read_pc (regcache);
4234
4235 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4236
4237 if (thread_stopped_by_watchpoint (tp->ptid))
4238 {
4239 tp->suspend.stop_reason
4240 = TARGET_STOPPED_BY_WATCHPOINT;
4241 }
4242 else if (target_supports_stopped_by_sw_breakpoint ()
4243 && thread_stopped_by_sw_breakpoint (tp->ptid))
4244 {
4245 tp->suspend.stop_reason
4246 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4247 }
4248 else if (target_supports_stopped_by_hw_breakpoint ()
4249 && thread_stopped_by_hw_breakpoint (tp->ptid))
4250 {
4251 tp->suspend.stop_reason
4252 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4253 }
4254 else if (!target_supports_stopped_by_hw_breakpoint ()
4255 && hardware_breakpoint_inserted_here_p (aspace,
4256 pc))
4257 {
4258 tp->suspend.stop_reason
4259 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4260 }
4261 else if (!target_supports_stopped_by_sw_breakpoint ()
4262 && software_breakpoint_inserted_here_p (aspace,
4263 pc))
4264 {
4265 tp->suspend.stop_reason
4266 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4267 }
4268 else if (!thread_has_single_step_breakpoints_set (tp)
4269 && currently_stepping (tp))
4270 {
4271 tp->suspend.stop_reason
4272 = TARGET_STOPPED_BY_SINGLE_STEP;
4273 }
4274 }
4275}
4276
6efcd9a8 4277/* See infrun.h. */
372316f1 4278
6efcd9a8 4279void
372316f1
PA
4280stop_all_threads (void)
4281{
4282 /* We may need multiple passes to discover all threads. */
4283 int pass;
4284 int iterations = 0;
372316f1 4285
fbea99ea 4286 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4287
4288 if (debug_infrun)
4289 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4290
00431a78 4291 scoped_restore_current_thread restore_thread;
372316f1 4292
65706a29 4293 target_thread_events (1);
9885e6bb 4294 SCOPE_EXIT { target_thread_events (0); };
65706a29 4295
372316f1
PA
4296 /* Request threads to stop, and then wait for the stops. Because
4297 threads we already know about can spawn more threads while we're
4298 trying to stop them, and we only learn about new threads when we
4299 update the thread list, do this in a loop, and keep iterating
4300 until two passes find no threads that need to be stopped. */
4301 for (pass = 0; pass < 2; pass++, iterations++)
4302 {
4303 if (debug_infrun)
4304 fprintf_unfiltered (gdb_stdlog,
4305 "infrun: stop_all_threads, pass=%d, "
4306 "iterations=%d\n", pass, iterations);
4307 while (1)
4308 {
4309 ptid_t event_ptid;
4310 struct target_waitstatus ws;
4311 int need_wait = 0;
372316f1
PA
4312
4313 update_thread_list ();
4314
4315 /* Go through all threads looking for threads that we need
4316 to tell the target to stop. */
08036331 4317 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4318 {
4319 if (t->executing)
4320 {
4321 /* If already stopping, don't request a stop again.
4322 We just haven't seen the notification yet. */
4323 if (!t->stop_requested)
4324 {
4325 if (debug_infrun)
4326 fprintf_unfiltered (gdb_stdlog,
4327 "infrun: %s executing, "
4328 "need stop\n",
4329 target_pid_to_str (t->ptid));
4330 target_stop (t->ptid);
4331 t->stop_requested = 1;
4332 }
4333 else
4334 {
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: %s executing, "
4338 "already stopping\n",
4339 target_pid_to_str (t->ptid));
4340 }
4341
4342 if (t->stop_requested)
4343 need_wait = 1;
4344 }
4345 else
4346 {
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog,
4349 "infrun: %s not executing\n",
4350 target_pid_to_str (t->ptid));
4351
4352 /* The thread may be not executing, but still be
4353 resumed with a pending status to process. */
4354 t->resumed = 0;
4355 }
4356 }
4357
4358 if (!need_wait)
4359 break;
4360
4361 /* If we find new threads on the second iteration, restart
4362 over. We want to see two iterations in a row with all
4363 threads stopped. */
4364 if (pass > 0)
4365 pass = -1;
4366
4367 event_ptid = wait_one (&ws);
00431a78 4368
372316f1
PA
4369 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4370 {
4371 /* All resumed threads exited. */
4372 }
65706a29
PA
4373 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4374 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4375 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4376 {
4377 if (debug_infrun)
4378 {
f2907e49 4379 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4380
4381 fprintf_unfiltered (gdb_stdlog,
4382 "infrun: %s exited while "
4383 "stopping threads\n",
4384 target_pid_to_str (ptid));
4385 }
4386 }
4387 else
4388 {
08036331 4389 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4390 if (t == NULL)
4391 t = add_thread (event_ptid);
4392
4393 t->stop_requested = 0;
4394 t->executing = 0;
4395 t->resumed = 0;
4396 t->control.may_range_step = 0;
4397
6efcd9a8
PA
4398 /* This may be the first time we see the inferior report
4399 a stop. */
08036331 4400 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4401 if (inf->needs_setup)
4402 {
4403 switch_to_thread_no_regs (t);
4404 setup_inferior (0);
4405 }
4406
372316f1
PA
4407 if (ws.kind == TARGET_WAITKIND_STOPPED
4408 && ws.value.sig == GDB_SIGNAL_0)
4409 {
4410 /* We caught the event that we intended to catch, so
4411 there's no event pending. */
4412 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4413 t->suspend.waitstatus_pending_p = 0;
4414
00431a78 4415 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4416 {
4417 /* Add it back to the step-over queue. */
4418 if (debug_infrun)
4419 {
4420 fprintf_unfiltered (gdb_stdlog,
4421 "infrun: displaced-step of %s "
4422 "canceled: adding back to the "
4423 "step-over queue\n",
4424 target_pid_to_str (t->ptid));
4425 }
4426 t->control.trap_expected = 0;
4427 thread_step_over_chain_enqueue (t);
4428 }
4429 }
4430 else
4431 {
4432 enum gdb_signal sig;
4433 struct regcache *regcache;
372316f1
PA
4434
4435 if (debug_infrun)
4436 {
23fdd69e 4437 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4438
372316f1
PA
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: target_wait %s, saving "
4441 "status for %d.%ld.%ld\n",
23fdd69e 4442 statstr.c_str (),
e99b03dc 4443 t->ptid.pid (),
e38504b3 4444 t->ptid.lwp (),
cc6bcb54 4445 t->ptid.tid ());
372316f1
PA
4446 }
4447
4448 /* Record for later. */
4449 save_waitstatus (t, &ws);
4450
4451 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4452 ? ws.value.sig : GDB_SIGNAL_0);
4453
00431a78 4454 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4455 {
4456 /* Add it back to the step-over queue. */
4457 t->control.trap_expected = 0;
4458 thread_step_over_chain_enqueue (t);
4459 }
4460
00431a78 4461 regcache = get_thread_regcache (t);
372316f1
PA
4462 t->suspend.stop_pc = regcache_read_pc (regcache);
4463
4464 if (debug_infrun)
4465 {
4466 fprintf_unfiltered (gdb_stdlog,
4467 "infrun: saved stop_pc=%s for %s "
4468 "(currently_stepping=%d)\n",
4469 paddress (target_gdbarch (),
4470 t->suspend.stop_pc),
4471 target_pid_to_str (t->ptid),
4472 currently_stepping (t));
4473 }
4474 }
4475 }
4476 }
4477 }
4478
372316f1
PA
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4481}
4482
f4836ba9
PA
4483/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4484
4485static int
4486handle_no_resumed (struct execution_control_state *ecs)
4487{
3b12939d 4488 if (target_can_async_p ())
f4836ba9 4489 {
3b12939d
PA
4490 struct ui *ui;
4491 int any_sync = 0;
f4836ba9 4492
3b12939d
PA
4493 ALL_UIS (ui)
4494 {
4495 if (ui->prompt_state == PROMPT_BLOCKED)
4496 {
4497 any_sync = 1;
4498 break;
4499 }
4500 }
4501 if (!any_sync)
4502 {
4503 /* There were no unwaited-for children left in the target, but,
4504 we're not synchronously waiting for events either. Just
4505 ignore. */
4506
4507 if (debug_infrun)
4508 fprintf_unfiltered (gdb_stdlog,
4509 "infrun: TARGET_WAITKIND_NO_RESUMED "
4510 "(ignoring: bg)\n");
4511 prepare_to_wait (ecs);
4512 return 1;
4513 }
f4836ba9
PA
4514 }
4515
4516 /* Otherwise, if we were running a synchronous execution command, we
4517 may need to cancel it and give the user back the terminal.
4518
4519 In non-stop mode, the target can't tell whether we've already
4520 consumed previous stop events, so it can end up sending us a
4521 no-resumed event like so:
4522
4523 #0 - thread 1 is left stopped
4524
4525 #1 - thread 2 is resumed and hits breakpoint
4526 -> TARGET_WAITKIND_STOPPED
4527
4528 #2 - thread 3 is resumed and exits
4529 this is the last resumed thread, so
4530 -> TARGET_WAITKIND_NO_RESUMED
4531
4532 #3 - gdb processes stop for thread 2 and decides to re-resume
4533 it.
4534
4535 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4536 thread 2 is now resumed, so the event should be ignored.
4537
4538 IOW, if the stop for thread 2 doesn't end a foreground command,
4539 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4540 event. But it could be that the event meant that thread 2 itself
4541 (or whatever other thread was the last resumed thread) exited.
4542
4543 To address this we refresh the thread list and check whether we
4544 have resumed threads _now_. In the example above, this removes
4545 thread 3 from the thread list. If thread 2 was re-resumed, we
4546 ignore this event. If we find no thread resumed, then we cancel
4547 the synchronous command show "no unwaited-for " to the user. */
4548 update_thread_list ();
4549
08036331 4550 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4551 {
4552 if (thread->executing
4553 || thread->suspend.waitstatus_pending_p)
4554 {
4555 /* There were no unwaited-for children left in the target at
4556 some point, but there are now. Just ignore. */
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: TARGET_WAITKIND_NO_RESUMED "
4560 "(ignoring: found resumed)\n");
4561 prepare_to_wait (ecs);
4562 return 1;
4563 }
4564 }
4565
4566 /* Note however that we may find no resumed thread because the whole
4567 process exited meanwhile (thus updating the thread list results
4568 in an empty thread list). In this case we know we'll be getting
4569 a process exit event shortly. */
08036331 4570 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4571 {
4572 if (inf->pid == 0)
4573 continue;
4574
08036331 4575 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4576 if (thread == NULL)
4577 {
4578 if (debug_infrun)
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: TARGET_WAITKIND_NO_RESUMED "
4581 "(expect process exit)\n");
4582 prepare_to_wait (ecs);
4583 return 1;
4584 }
4585 }
4586
4587 /* Go ahead and report the event. */
4588 return 0;
4589}
4590
05ba8510
PA
4591/* Given an execution control state that has been freshly filled in by
4592 an event from the inferior, figure out what it means and take
4593 appropriate action.
4594
4595 The alternatives are:
4596
22bcd14b 4597 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4598 debugger.
4599
4600 2) keep_going and return; to wait for the next event (set
4601 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4602 once). */
c906108c 4603
ec9499be 4604static void
0b6e5e10 4605handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4606{
d6b48e9c
PA
4607 enum stop_kind stop_soon;
4608
28736962
PA
4609 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4610 {
4611 /* We had an event in the inferior, but we are not interested in
4612 handling it at this level. The lower layers have already
4613 done what needs to be done, if anything.
4614
4615 One of the possible circumstances for this is when the
4616 inferior produces output for the console. The inferior has
4617 not stopped, and we are ignoring the event. Another possible
4618 circumstance is any event which the lower level knows will be
4619 reported multiple times without an intervening resume. */
4620 if (debug_infrun)
4621 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4622 prepare_to_wait (ecs);
4623 return;
4624 }
4625
65706a29
PA
4626 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4627 {
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4630 prepare_to_wait (ecs);
4631 return;
4632 }
4633
0e5bf2a8 4634 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4635 && handle_no_resumed (ecs))
4636 return;
0e5bf2a8 4637
1777feb0 4638 /* Cache the last pid/waitstatus. */
c32c64b7 4639 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4640
ca005067 4641 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4642 stop_stack_dummy = STOP_NONE;
ca005067 4643
0e5bf2a8
PA
4644 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4645 {
4646 /* No unwaited-for children left. IOW, all resumed children
4647 have exited. */
4648 if (debug_infrun)
4649 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4650
4651 stop_print_frame = 0;
22bcd14b 4652 stop_waiting (ecs);
0e5bf2a8
PA
4653 return;
4654 }
4655
8c90c137 4656 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4657 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4658 {
4659 ecs->event_thread = find_thread_ptid (ecs->ptid);
4660 /* If it's a new thread, add it to the thread database. */
4661 if (ecs->event_thread == NULL)
4662 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4663
4664 /* Disable range stepping. If the next step request could use a
4665 range, this will be end up re-enabled then. */
4666 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4667 }
88ed393a
JK
4668
4669 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4670 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4671
4672 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4673 reinit_frame_cache ();
4674
28736962
PA
4675 breakpoint_retire_moribund ();
4676
2b009048
DJ
4677 /* First, distinguish signals caused by the debugger from signals
4678 that have to do with the program's own actions. Note that
4679 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4680 on the operating system version. Here we detect when a SIGILL or
4681 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4682 something similar for SIGSEGV, since a SIGSEGV will be generated
4683 when we're trying to execute a breakpoint instruction on a
4684 non-executable stack. This happens for call dummy breakpoints
4685 for architectures like SPARC that place call dummies on the
4686 stack. */
2b009048 4687 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4688 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4689 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4690 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4691 {
00431a78 4692 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4693
a01bda52 4694 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4695 regcache_read_pc (regcache)))
4696 {
4697 if (debug_infrun)
4698 fprintf_unfiltered (gdb_stdlog,
4699 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4700 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4701 }
2b009048
DJ
4702 }
4703
28736962
PA
4704 /* Mark the non-executing threads accordingly. In all-stop, all
4705 threads of all processes are stopped when we get any event
e1316e60 4706 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4707 {
4708 ptid_t mark_ptid;
4709
fbea99ea 4710 if (!target_is_non_stop_p ())
372316f1
PA
4711 mark_ptid = minus_one_ptid;
4712 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4713 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4714 {
4715 /* If we're handling a process exit in non-stop mode, even
4716 though threads haven't been deleted yet, one would think
4717 that there is nothing to do, as threads of the dead process
4718 will be soon deleted, and threads of any other process were
4719 left running. However, on some targets, threads survive a
4720 process exit event. E.g., for the "checkpoint" command,
4721 when the current checkpoint/fork exits, linux-fork.c
4722 automatically switches to another fork from within
4723 target_mourn_inferior, by associating the same
4724 inferior/thread to another fork. We haven't mourned yet at
4725 this point, but we must mark any threads left in the
4726 process as not-executing so that finish_thread_state marks
4727 them stopped (in the user's perspective) if/when we present
4728 the stop to the user. */
e99b03dc 4729 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4730 }
4731 else
4732 mark_ptid = ecs->ptid;
4733
4734 set_executing (mark_ptid, 0);
4735
4736 /* Likewise the resumed flag. */
4737 set_resumed (mark_ptid, 0);
4738 }
8c90c137 4739
488f131b
JB
4740 switch (ecs->ws.kind)
4741 {
4742 case TARGET_WAITKIND_LOADED:
527159b7 4743 if (debug_infrun)
8a9de0e4 4744 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4745 context_switch (ecs);
b0f4b84b
DJ
4746 /* Ignore gracefully during startup of the inferior, as it might
4747 be the shell which has just loaded some objects, otherwise
4748 add the symbols for the newly loaded objects. Also ignore at
4749 the beginning of an attach or remote session; we will query
4750 the full list of libraries once the connection is
4751 established. */
4f5d7f63 4752
00431a78 4753 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4754 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4755 {
edcc5120
TT
4756 struct regcache *regcache;
4757
00431a78 4758 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4759
4760 handle_solib_event ();
4761
4762 ecs->event_thread->control.stop_bpstat
a01bda52 4763 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4764 ecs->event_thread->suspend.stop_pc,
4765 ecs->event_thread, &ecs->ws);
ab04a2af 4766
c65d6b55
PA
4767 if (handle_stop_requested (ecs))
4768 return;
4769
ce12b012 4770 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4771 {
4772 /* A catchpoint triggered. */
94c57d6a
PA
4773 process_event_stop_test (ecs);
4774 return;
edcc5120 4775 }
488f131b 4776
b0f4b84b
DJ
4777 /* If requested, stop when the dynamic linker notifies
4778 gdb of events. This allows the user to get control
4779 and place breakpoints in initializer routines for
4780 dynamically loaded objects (among other things). */
a493e3e2 4781 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4782 if (stop_on_solib_events)
4783 {
55409f9d
DJ
4784 /* Make sure we print "Stopped due to solib-event" in
4785 normal_stop. */
4786 stop_print_frame = 1;
4787
22bcd14b 4788 stop_waiting (ecs);
b0f4b84b
DJ
4789 return;
4790 }
488f131b 4791 }
b0f4b84b
DJ
4792
4793 /* If we are skipping through a shell, or through shared library
4794 loading that we aren't interested in, resume the program. If
5c09a2c5 4795 we're running the program normally, also resume. */
b0f4b84b
DJ
4796 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4797 {
74960c60
VP
4798 /* Loading of shared libraries might have changed breakpoint
4799 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4800 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4801 insert_breakpoints ();
64ce06e4 4802 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4803 prepare_to_wait (ecs);
4804 return;
4805 }
4806
5c09a2c5
PA
4807 /* But stop if we're attaching or setting up a remote
4808 connection. */
4809 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4810 || stop_soon == STOP_QUIETLY_REMOTE)
4811 {
4812 if (debug_infrun)
4813 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4814 stop_waiting (ecs);
5c09a2c5
PA
4815 return;
4816 }
4817
4818 internal_error (__FILE__, __LINE__,
4819 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4820
488f131b 4821 case TARGET_WAITKIND_SPURIOUS:
527159b7 4822 if (debug_infrun)
8a9de0e4 4823 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4824 if (handle_stop_requested (ecs))
4825 return;
00431a78 4826 context_switch (ecs);
64ce06e4 4827 resume (GDB_SIGNAL_0);
488f131b
JB
4828 prepare_to_wait (ecs);
4829 return;
c5aa993b 4830
65706a29
PA
4831 case TARGET_WAITKIND_THREAD_CREATED:
4832 if (debug_infrun)
4833 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4834 if (handle_stop_requested (ecs))
4835 return;
00431a78 4836 context_switch (ecs);
65706a29
PA
4837 if (!switch_back_to_stepped_thread (ecs))
4838 keep_going (ecs);
4839 return;
4840
488f131b 4841 case TARGET_WAITKIND_EXITED:
940c3c06 4842 case TARGET_WAITKIND_SIGNALLED:
527159b7 4843 if (debug_infrun)
940c3c06
PA
4844 {
4845 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4846 fprintf_unfiltered (gdb_stdlog,
4847 "infrun: TARGET_WAITKIND_EXITED\n");
4848 else
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4851 }
4852
fb66883a 4853 inferior_ptid = ecs->ptid;
c9657e70 4854 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4855 set_current_program_space (current_inferior ()->pspace);
4856 handle_vfork_child_exec_or_exit (0);
223ffa71 4857 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4858
0c557179
SDJ
4859 /* Clearing any previous state of convenience variables. */
4860 clear_exit_convenience_vars ();
4861
940c3c06
PA
4862 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4863 {
4864 /* Record the exit code in the convenience variable $_exitcode, so
4865 that the user can inspect this again later. */
4866 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4867 (LONGEST) ecs->ws.value.integer);
4868
4869 /* Also record this in the inferior itself. */
4870 current_inferior ()->has_exit_code = 1;
4871 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4872
98eb56a4
PA
4873 /* Support the --return-child-result option. */
4874 return_child_result_value = ecs->ws.value.integer;
4875
76727919 4876 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4877 }
4878 else
0c557179 4879 {
00431a78 4880 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4881
4882 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4883 {
4884 /* Set the value of the internal variable $_exitsignal,
4885 which holds the signal uncaught by the inferior. */
4886 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4887 gdbarch_gdb_signal_to_target (gdbarch,
4888 ecs->ws.value.sig));
4889 }
4890 else
4891 {
4892 /* We don't have access to the target's method used for
4893 converting between signal numbers (GDB's internal
4894 representation <-> target's representation).
4895 Therefore, we cannot do a good job at displaying this
4896 information to the user. It's better to just warn
4897 her about it (if infrun debugging is enabled), and
4898 give up. */
4899 if (debug_infrun)
4900 fprintf_filtered (gdb_stdlog, _("\
4901Cannot fill $_exitsignal with the correct signal number.\n"));
4902 }
4903
76727919 4904 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4905 }
8cf64490 4906
488f131b 4907 gdb_flush (gdb_stdout);
bc1e6c81 4908 target_mourn_inferior (inferior_ptid);
488f131b 4909 stop_print_frame = 0;
22bcd14b 4910 stop_waiting (ecs);
488f131b 4911 return;
c5aa993b 4912
488f131b 4913 /* The following are the only cases in which we keep going;
1777feb0 4914 the above cases end in a continue or goto. */
488f131b 4915 case TARGET_WAITKIND_FORKED:
deb3b17b 4916 case TARGET_WAITKIND_VFORKED:
527159b7 4917 if (debug_infrun)
fed708ed
PA
4918 {
4919 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4920 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4921 else
4922 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4923 }
c906108c 4924
e2d96639
YQ
4925 /* Check whether the inferior is displaced stepping. */
4926 {
00431a78 4927 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4928 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4929
4930 /* If checking displaced stepping is supported, and thread
4931 ecs->ptid is displaced stepping. */
00431a78 4932 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4933 {
4934 struct inferior *parent_inf
c9657e70 4935 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4936 struct regcache *child_regcache;
4937 CORE_ADDR parent_pc;
4938
4939 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4940 indicating that the displaced stepping of syscall instruction
4941 has been done. Perform cleanup for parent process here. Note
4942 that this operation also cleans up the child process for vfork,
4943 because their pages are shared. */
00431a78 4944 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4945 /* Start a new step-over in another thread if there's one
4946 that needs it. */
4947 start_step_over ();
e2d96639
YQ
4948
4949 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4950 {
c0987663 4951 struct displaced_step_inferior_state *displaced
00431a78 4952 = get_displaced_stepping_state (parent_inf);
c0987663 4953
e2d96639
YQ
4954 /* Restore scratch pad for child process. */
4955 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4956 }
4957
4958 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4959 the child's PC is also within the scratchpad. Set the child's PC
4960 to the parent's PC value, which has already been fixed up.
4961 FIXME: we use the parent's aspace here, although we're touching
4962 the child, because the child hasn't been added to the inferior
4963 list yet at this point. */
4964
4965 child_regcache
4966 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4967 gdbarch,
4968 parent_inf->aspace);
4969 /* Read PC value of parent process. */
4970 parent_pc = regcache_read_pc (regcache);
4971
4972 if (debug_displaced)
4973 fprintf_unfiltered (gdb_stdlog,
4974 "displaced: write child pc from %s to %s\n",
4975 paddress (gdbarch,
4976 regcache_read_pc (child_regcache)),
4977 paddress (gdbarch, parent_pc));
4978
4979 regcache_write_pc (child_regcache, parent_pc);
4980 }
4981 }
4982
00431a78 4983 context_switch (ecs);
5a2901d9 4984
b242c3c2
PA
4985 /* Immediately detach breakpoints from the child before there's
4986 any chance of letting the user delete breakpoints from the
4987 breakpoint lists. If we don't do this early, it's easy to
4988 leave left over traps in the child, vis: "break foo; catch
4989 fork; c; <fork>; del; c; <child calls foo>". We only follow
4990 the fork on the last `continue', and by that time the
4991 breakpoint at "foo" is long gone from the breakpoint table.
4992 If we vforked, then we don't need to unpatch here, since both
4993 parent and child are sharing the same memory pages; we'll
4994 need to unpatch at follow/detach time instead to be certain
4995 that new breakpoints added between catchpoint hit time and
4996 vfork follow are detached. */
4997 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4998 {
b242c3c2
PA
4999 /* This won't actually modify the breakpoint list, but will
5000 physically remove the breakpoints from the child. */
d80ee84f 5001 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5002 }
5003
34b7e8a6 5004 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5005
e58b0e63
PA
5006 /* In case the event is caught by a catchpoint, remember that
5007 the event is to be followed at the next resume of the thread,
5008 and not immediately. */
5009 ecs->event_thread->pending_follow = ecs->ws;
5010
f2ffa92b
PA
5011 ecs->event_thread->suspend.stop_pc
5012 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5013
16c381f0 5014 ecs->event_thread->control.stop_bpstat
a01bda52 5015 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5016 ecs->event_thread->suspend.stop_pc,
5017 ecs->event_thread, &ecs->ws);
675bf4cb 5018
c65d6b55
PA
5019 if (handle_stop_requested (ecs))
5020 return;
5021
ce12b012
PA
5022 /* If no catchpoint triggered for this, then keep going. Note
5023 that we're interested in knowing the bpstat actually causes a
5024 stop, not just if it may explain the signal. Software
5025 watchpoints, for example, always appear in the bpstat. */
5026 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5027 {
e58b0e63 5028 int should_resume;
3e43a32a
MS
5029 int follow_child
5030 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5031
a493e3e2 5032 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5033
5034 should_resume = follow_fork ();
5035
00431a78
PA
5036 thread_info *parent = ecs->event_thread;
5037 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5038
a2077e25
PA
5039 /* At this point, the parent is marked running, and the
5040 child is marked stopped. */
5041
5042 /* If not resuming the parent, mark it stopped. */
5043 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5044 parent->set_running (false);
a2077e25
PA
5045
5046 /* If resuming the child, mark it running. */
5047 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5048 child->set_running (true);
a2077e25 5049
6c95b8df 5050 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5051 if (!detach_fork && (non_stop
5052 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5053 {
5054 if (follow_child)
5055 switch_to_thread (parent);
5056 else
5057 switch_to_thread (child);
5058
5059 ecs->event_thread = inferior_thread ();
5060 ecs->ptid = inferior_ptid;
5061 keep_going (ecs);
5062 }
5063
5064 if (follow_child)
5065 switch_to_thread (child);
5066 else
5067 switch_to_thread (parent);
5068
e58b0e63
PA
5069 ecs->event_thread = inferior_thread ();
5070 ecs->ptid = inferior_ptid;
5071
5072 if (should_resume)
5073 keep_going (ecs);
5074 else
22bcd14b 5075 stop_waiting (ecs);
04e68871
DJ
5076 return;
5077 }
94c57d6a
PA
5078 process_event_stop_test (ecs);
5079 return;
488f131b 5080
6c95b8df
PA
5081 case TARGET_WAITKIND_VFORK_DONE:
5082 /* Done with the shared memory region. Re-insert breakpoints in
5083 the parent, and keep going. */
5084
5085 if (debug_infrun)
3e43a32a
MS
5086 fprintf_unfiltered (gdb_stdlog,
5087 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5088
00431a78 5089 context_switch (ecs);
6c95b8df
PA
5090
5091 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5092 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5093
5094 if (handle_stop_requested (ecs))
5095 return;
5096
6c95b8df
PA
5097 /* This also takes care of reinserting breakpoints in the
5098 previously locked inferior. */
5099 keep_going (ecs);
5100 return;
5101
488f131b 5102 case TARGET_WAITKIND_EXECD:
527159b7 5103 if (debug_infrun)
fc5261f2 5104 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5105
cbd2b4e3
PA
5106 /* Note we can't read registers yet (the stop_pc), because we
5107 don't yet know the inferior's post-exec architecture.
5108 'stop_pc' is explicitly read below instead. */
00431a78 5109 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5110
6c95b8df
PA
5111 /* Do whatever is necessary to the parent branch of the vfork. */
5112 handle_vfork_child_exec_or_exit (1);
5113
795e548f
PA
5114 /* This causes the eventpoints and symbol table to be reset.
5115 Must do this now, before trying to determine whether to
5116 stop. */
71b43ef8 5117 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5118
17d8546e
DB
5119 /* In follow_exec we may have deleted the original thread and
5120 created a new one. Make sure that the event thread is the
5121 execd thread for that case (this is a nop otherwise). */
5122 ecs->event_thread = inferior_thread ();
5123
f2ffa92b
PA
5124 ecs->event_thread->suspend.stop_pc
5125 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5126
16c381f0 5127 ecs->event_thread->control.stop_bpstat
a01bda52 5128 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5129 ecs->event_thread->suspend.stop_pc,
5130 ecs->event_thread, &ecs->ws);
795e548f 5131
71b43ef8
PA
5132 /* Note that this may be referenced from inside
5133 bpstat_stop_status above, through inferior_has_execd. */
5134 xfree (ecs->ws.value.execd_pathname);
5135 ecs->ws.value.execd_pathname = NULL;
5136
c65d6b55
PA
5137 if (handle_stop_requested (ecs))
5138 return;
5139
04e68871 5140 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5141 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5142 {
a493e3e2 5143 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5144 keep_going (ecs);
5145 return;
5146 }
94c57d6a
PA
5147 process_event_stop_test (ecs);
5148 return;
488f131b 5149
b4dc5ffa
MK
5150 /* Be careful not to try to gather much state about a thread
5151 that's in a syscall. It's frequently a losing proposition. */
488f131b 5152 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5153 if (debug_infrun)
3e43a32a
MS
5154 fprintf_unfiltered (gdb_stdlog,
5155 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5156 /* Getting the current syscall number. */
94c57d6a
PA
5157 if (handle_syscall_event (ecs) == 0)
5158 process_event_stop_test (ecs);
5159 return;
c906108c 5160
488f131b
JB
5161 /* Before examining the threads further, step this thread to
5162 get it entirely out of the syscall. (We get notice of the
5163 event when the thread is just on the verge of exiting a
5164 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5165 into user code.) */
488f131b 5166 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5167 if (debug_infrun)
3e43a32a
MS
5168 fprintf_unfiltered (gdb_stdlog,
5169 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5170 if (handle_syscall_event (ecs) == 0)
5171 process_event_stop_test (ecs);
5172 return;
c906108c 5173
488f131b 5174 case TARGET_WAITKIND_STOPPED:
527159b7 5175 if (debug_infrun)
8a9de0e4 5176 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5177 handle_signal_stop (ecs);
5178 return;
c906108c 5179
b2175913 5180 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5183 /* Reverse execution: target ran out of history info. */
eab402df 5184
d1988021 5185 /* Switch to the stopped thread. */
00431a78 5186 context_switch (ecs);
d1988021
MM
5187 if (debug_infrun)
5188 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5189
34b7e8a6 5190 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5191 ecs->event_thread->suspend.stop_pc
5192 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5193
5194 if (handle_stop_requested (ecs))
5195 return;
5196
76727919 5197 gdb::observers::no_history.notify ();
22bcd14b 5198 stop_waiting (ecs);
b2175913 5199 return;
488f131b 5200 }
4f5d7f63
PA
5201}
5202
0b6e5e10
JB
5203/* A wrapper around handle_inferior_event_1, which also makes sure
5204 that all temporary struct value objects that were created during
5205 the handling of the event get deleted at the end. */
5206
5207static void
5208handle_inferior_event (struct execution_control_state *ecs)
5209{
5210 struct value *mark = value_mark ();
5211
5212 handle_inferior_event_1 (ecs);
5213 /* Purge all temporary values created during the event handling,
5214 as it could be a long time before we return to the command level
5215 where such values would otherwise be purged. */
5216 value_free_to_mark (mark);
5217}
5218
372316f1
PA
5219/* Restart threads back to what they were trying to do back when we
5220 paused them for an in-line step-over. The EVENT_THREAD thread is
5221 ignored. */
4d9d9d04
PA
5222
5223static void
372316f1
PA
5224restart_threads (struct thread_info *event_thread)
5225{
372316f1
PA
5226 /* In case the instruction just stepped spawned a new thread. */
5227 update_thread_list ();
5228
08036331 5229 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5230 {
5231 if (tp == event_thread)
5232 {
5233 if (debug_infrun)
5234 fprintf_unfiltered (gdb_stdlog,
5235 "infrun: restart threads: "
5236 "[%s] is event thread\n",
5237 target_pid_to_str (tp->ptid));
5238 continue;
5239 }
5240
5241 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5242 {
5243 if (debug_infrun)
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: restart threads: "
5246 "[%s] not meant to be running\n",
5247 target_pid_to_str (tp->ptid));
5248 continue;
5249 }
5250
5251 if (tp->resumed)
5252 {
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: restart threads: [%s] resumed\n",
5256 target_pid_to_str (tp->ptid));
5257 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5258 continue;
5259 }
5260
5261 if (thread_is_in_step_over_chain (tp))
5262 {
5263 if (debug_infrun)
5264 fprintf_unfiltered (gdb_stdlog,
5265 "infrun: restart threads: "
5266 "[%s] needs step-over\n",
5267 target_pid_to_str (tp->ptid));
5268 gdb_assert (!tp->resumed);
5269 continue;
5270 }
5271
5272
5273 if (tp->suspend.waitstatus_pending_p)
5274 {
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: restart threads: "
5278 "[%s] has pending status\n",
5279 target_pid_to_str (tp->ptid));
5280 tp->resumed = 1;
5281 continue;
5282 }
5283
c65d6b55
PA
5284 gdb_assert (!tp->stop_requested);
5285
372316f1
PA
5286 /* If some thread needs to start a step-over at this point, it
5287 should still be in the step-over queue, and thus skipped
5288 above. */
5289 if (thread_still_needs_step_over (tp))
5290 {
5291 internal_error (__FILE__, __LINE__,
5292 "thread [%s] needs a step-over, but not in "
5293 "step-over queue\n",
5294 target_pid_to_str (tp->ptid));
5295 }
5296
5297 if (currently_stepping (tp))
5298 {
5299 if (debug_infrun)
5300 fprintf_unfiltered (gdb_stdlog,
5301 "infrun: restart threads: [%s] was stepping\n",
5302 target_pid_to_str (tp->ptid));
5303 keep_going_stepped_thread (tp);
5304 }
5305 else
5306 {
5307 struct execution_control_state ecss;
5308 struct execution_control_state *ecs = &ecss;
5309
5310 if (debug_infrun)
5311 fprintf_unfiltered (gdb_stdlog,
5312 "infrun: restart threads: [%s] continuing\n",
5313 target_pid_to_str (tp->ptid));
5314 reset_ecs (ecs, tp);
00431a78 5315 switch_to_thread (tp);
372316f1
PA
5316 keep_going_pass_signal (ecs);
5317 }
5318 }
5319}
5320
5321/* Callback for iterate_over_threads. Find a resumed thread that has
5322 a pending waitstatus. */
5323
5324static int
5325resumed_thread_with_pending_status (struct thread_info *tp,
5326 void *arg)
5327{
5328 return (tp->resumed
5329 && tp->suspend.waitstatus_pending_p);
5330}
5331
5332/* Called when we get an event that may finish an in-line or
5333 out-of-line (displaced stepping) step-over started previously.
5334 Return true if the event is processed and we should go back to the
5335 event loop; false if the caller should continue processing the
5336 event. */
5337
5338static int
4d9d9d04
PA
5339finish_step_over (struct execution_control_state *ecs)
5340{
372316f1
PA
5341 int had_step_over_info;
5342
00431a78 5343 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5344 ecs->event_thread->suspend.stop_signal);
5345
372316f1
PA
5346 had_step_over_info = step_over_info_valid_p ();
5347
5348 if (had_step_over_info)
4d9d9d04
PA
5349 {
5350 /* If we're stepping over a breakpoint with all threads locked,
5351 then only the thread that was stepped should be reporting
5352 back an event. */
5353 gdb_assert (ecs->event_thread->control.trap_expected);
5354
c65d6b55 5355 clear_step_over_info ();
4d9d9d04
PA
5356 }
5357
fbea99ea 5358 if (!target_is_non_stop_p ())
372316f1 5359 return 0;
4d9d9d04
PA
5360
5361 /* Start a new step-over in another thread if there's one that
5362 needs it. */
5363 start_step_over ();
372316f1
PA
5364
5365 /* If we were stepping over a breakpoint before, and haven't started
5366 a new in-line step-over sequence, then restart all other threads
5367 (except the event thread). We can't do this in all-stop, as then
5368 e.g., we wouldn't be able to issue any other remote packet until
5369 these other threads stop. */
5370 if (had_step_over_info && !step_over_info_valid_p ())
5371 {
5372 struct thread_info *pending;
5373
5374 /* If we only have threads with pending statuses, the restart
5375 below won't restart any thread and so nothing re-inserts the
5376 breakpoint we just stepped over. But we need it inserted
5377 when we later process the pending events, otherwise if
5378 another thread has a pending event for this breakpoint too,
5379 we'd discard its event (because the breakpoint that
5380 originally caused the event was no longer inserted). */
00431a78 5381 context_switch (ecs);
372316f1
PA
5382 insert_breakpoints ();
5383
5384 restart_threads (ecs->event_thread);
5385
5386 /* If we have events pending, go through handle_inferior_event
5387 again, picking up a pending event at random. This avoids
5388 thread starvation. */
5389
5390 /* But not if we just stepped over a watchpoint in order to let
5391 the instruction execute so we can evaluate its expression.
5392 The set of watchpoints that triggered is recorded in the
5393 breakpoint objects themselves (see bp->watchpoint_triggered).
5394 If we processed another event first, that other event could
5395 clobber this info. */
5396 if (ecs->event_thread->stepping_over_watchpoint)
5397 return 0;
5398
5399 pending = iterate_over_threads (resumed_thread_with_pending_status,
5400 NULL);
5401 if (pending != NULL)
5402 {
5403 struct thread_info *tp = ecs->event_thread;
5404 struct regcache *regcache;
5405
5406 if (debug_infrun)
5407 {
5408 fprintf_unfiltered (gdb_stdlog,
5409 "infrun: found resumed threads with "
5410 "pending events, saving status\n");
5411 }
5412
5413 gdb_assert (pending != tp);
5414
5415 /* Record the event thread's event for later. */
5416 save_waitstatus (tp, &ecs->ws);
5417 /* This was cleared early, by handle_inferior_event. Set it
5418 so this pending event is considered by
5419 do_target_wait. */
5420 tp->resumed = 1;
5421
5422 gdb_assert (!tp->executing);
5423
00431a78 5424 regcache = get_thread_regcache (tp);
372316f1
PA
5425 tp->suspend.stop_pc = regcache_read_pc (regcache);
5426
5427 if (debug_infrun)
5428 {
5429 fprintf_unfiltered (gdb_stdlog,
5430 "infrun: saved stop_pc=%s for %s "
5431 "(currently_stepping=%d)\n",
5432 paddress (target_gdbarch (),
5433 tp->suspend.stop_pc),
5434 target_pid_to_str (tp->ptid),
5435 currently_stepping (tp));
5436 }
5437
5438 /* This in-line step-over finished; clear this so we won't
5439 start a new one. This is what handle_signal_stop would
5440 do, if we returned false. */
5441 tp->stepping_over_breakpoint = 0;
5442
5443 /* Wake up the event loop again. */
5444 mark_async_event_handler (infrun_async_inferior_event_token);
5445
5446 prepare_to_wait (ecs);
5447 return 1;
5448 }
5449 }
5450
5451 return 0;
4d9d9d04
PA
5452}
5453
4f5d7f63
PA
5454/* Come here when the program has stopped with a signal. */
5455
5456static void
5457handle_signal_stop (struct execution_control_state *ecs)
5458{
5459 struct frame_info *frame;
5460 struct gdbarch *gdbarch;
5461 int stopped_by_watchpoint;
5462 enum stop_kind stop_soon;
5463 int random_signal;
c906108c 5464
f0407826
DE
5465 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5466
c65d6b55
PA
5467 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5468
f0407826
DE
5469 /* Do we need to clean up the state of a thread that has
5470 completed a displaced single-step? (Doing so usually affects
5471 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5472 if (finish_step_over (ecs))
5473 return;
f0407826
DE
5474
5475 /* If we either finished a single-step or hit a breakpoint, but
5476 the user wanted this thread to be stopped, pretend we got a
5477 SIG0 (generic unsignaled stop). */
5478 if (ecs->event_thread->stop_requested
5479 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5480 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5481
f2ffa92b
PA
5482 ecs->event_thread->suspend.stop_pc
5483 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5484
527159b7 5485 if (debug_infrun)
237fc4c9 5486 {
00431a78 5487 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5488 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5489 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5490
5491 inferior_ptid = ecs->ptid;
5af949e3
UW
5492
5493 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5494 paddress (reg_gdbarch,
f2ffa92b 5495 ecs->event_thread->suspend.stop_pc));
d92524f1 5496 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5497 {
5498 CORE_ADDR addr;
abbb1732 5499
237fc4c9
PA
5500 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5501
8b88a78e 5502 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5503 fprintf_unfiltered (gdb_stdlog,
5af949e3 5504 "infrun: stopped data address = %s\n",
b926417a 5505 paddress (reg_gdbarch, addr));
237fc4c9
PA
5506 else
5507 fprintf_unfiltered (gdb_stdlog,
5508 "infrun: (no data address available)\n");
5509 }
5510 }
527159b7 5511
36fa8042
PA
5512 /* This is originated from start_remote(), start_inferior() and
5513 shared libraries hook functions. */
00431a78 5514 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5515 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5516 {
00431a78 5517 context_switch (ecs);
36fa8042
PA
5518 if (debug_infrun)
5519 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5520 stop_print_frame = 1;
22bcd14b 5521 stop_waiting (ecs);
36fa8042
PA
5522 return;
5523 }
5524
36fa8042
PA
5525 /* This originates from attach_command(). We need to overwrite
5526 the stop_signal here, because some kernels don't ignore a
5527 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5528 See more comments in inferior.h. On the other hand, if we
5529 get a non-SIGSTOP, report it to the user - assume the backend
5530 will handle the SIGSTOP if it should show up later.
5531
5532 Also consider that the attach is complete when we see a
5533 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5534 target extended-remote report it instead of a SIGSTOP
5535 (e.g. gdbserver). We already rely on SIGTRAP being our
5536 signal, so this is no exception.
5537
5538 Also consider that the attach is complete when we see a
5539 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5540 the target to stop all threads of the inferior, in case the
5541 low level attach operation doesn't stop them implicitly. If
5542 they weren't stopped implicitly, then the stub will report a
5543 GDB_SIGNAL_0, meaning: stopped for no particular reason
5544 other than GDB's request. */
5545 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5546 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5547 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5548 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5549 {
5550 stop_print_frame = 1;
22bcd14b 5551 stop_waiting (ecs);
36fa8042
PA
5552 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5553 return;
5554 }
5555
488f131b 5556 /* See if something interesting happened to the non-current thread. If
b40c7d58 5557 so, then switch to that thread. */
d7e15655 5558 if (ecs->ptid != inferior_ptid)
488f131b 5559 {
527159b7 5560 if (debug_infrun)
8a9de0e4 5561 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5562
00431a78 5563 context_switch (ecs);
c5aa993b 5564
9a4105ab 5565 if (deprecated_context_hook)
00431a78 5566 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5567 }
c906108c 5568
568d6575
UW
5569 /* At this point, get hold of the now-current thread's frame. */
5570 frame = get_current_frame ();
5571 gdbarch = get_frame_arch (frame);
5572
2adfaa28 5573 /* Pull the single step breakpoints out of the target. */
af48d08f 5574 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5575 {
af48d08f 5576 struct regcache *regcache;
af48d08f 5577 CORE_ADDR pc;
2adfaa28 5578
00431a78 5579 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5580 const address_space *aspace = regcache->aspace ();
5581
af48d08f 5582 pc = regcache_read_pc (regcache);
34b7e8a6 5583
af48d08f
PA
5584 /* However, before doing so, if this single-step breakpoint was
5585 actually for another thread, set this thread up for moving
5586 past it. */
5587 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5588 aspace, pc))
5589 {
5590 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5591 {
5592 if (debug_infrun)
5593 {
5594 fprintf_unfiltered (gdb_stdlog,
af48d08f 5595 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5596 "single-step breakpoint\n",
5597 target_pid_to_str (ecs->ptid));
2adfaa28 5598 }
af48d08f
PA
5599 ecs->hit_singlestep_breakpoint = 1;
5600 }
5601 }
5602 else
5603 {
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
5607 "infrun: [%s] hit its "
5608 "single-step breakpoint\n",
5609 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5610 }
5611 }
488f131b 5612 }
af48d08f 5613 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5614
963f9c80
PA
5615 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5616 && ecs->event_thread->control.trap_expected
5617 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5618 stopped_by_watchpoint = 0;
5619 else
5620 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5621
5622 /* If necessary, step over this watchpoint. We'll be back to display
5623 it in a moment. */
5624 if (stopped_by_watchpoint
d92524f1 5625 && (target_have_steppable_watchpoint
568d6575 5626 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5627 {
488f131b
JB
5628 /* At this point, we are stopped at an instruction which has
5629 attempted to write to a piece of memory under control of
5630 a watchpoint. The instruction hasn't actually executed
5631 yet. If we were to evaluate the watchpoint expression
5632 now, we would get the old value, and therefore no change
5633 would seem to have occurred.
5634
5635 In order to make watchpoints work `right', we really need
5636 to complete the memory write, and then evaluate the
d983da9c
DJ
5637 watchpoint expression. We do this by single-stepping the
5638 target.
5639
7f89fd65 5640 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5641 it. For example, the PA can (with some kernel cooperation)
5642 single step over a watchpoint without disabling the watchpoint.
5643
5644 It is far more common to need to disable a watchpoint to step
5645 the inferior over it. If we have non-steppable watchpoints,
5646 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5647 disable all watchpoints.
5648
5649 Any breakpoint at PC must also be stepped over -- if there's
5650 one, it will have already triggered before the watchpoint
5651 triggered, and we either already reported it to the user, or
5652 it didn't cause a stop and we called keep_going. In either
5653 case, if there was a breakpoint at PC, we must be trying to
5654 step past it. */
5655 ecs->event_thread->stepping_over_watchpoint = 1;
5656 keep_going (ecs);
488f131b
JB
5657 return;
5658 }
5659
4e1c45ea 5660 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5661 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5662 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5663 ecs->event_thread->control.stop_step = 0;
488f131b 5664 stop_print_frame = 1;
488f131b 5665 stopped_by_random_signal = 0;
ddfe970e 5666 bpstat stop_chain = NULL;
488f131b 5667
edb3359d
DJ
5668 /* Hide inlined functions starting here, unless we just performed stepi or
5669 nexti. After stepi and nexti, always show the innermost frame (not any
5670 inline function call sites). */
16c381f0 5671 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5672 {
00431a78
PA
5673 const address_space *aspace
5674 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5675
5676 /* skip_inline_frames is expensive, so we avoid it if we can
5677 determine that the address is one where functions cannot have
5678 been inlined. This improves performance with inferiors that
5679 load a lot of shared libraries, because the solib event
5680 breakpoint is defined as the address of a function (i.e. not
5681 inline). Note that we have to check the previous PC as well
5682 as the current one to catch cases when we have just
5683 single-stepped off a breakpoint prior to reinstating it.
5684 Note that we're assuming that the code we single-step to is
5685 not inline, but that's not definitive: there's nothing
5686 preventing the event breakpoint function from containing
5687 inlined code, and the single-step ending up there. If the
5688 user had set a breakpoint on that inlined code, the missing
5689 skip_inline_frames call would break things. Fortunately
5690 that's an extremely unlikely scenario. */
f2ffa92b
PA
5691 if (!pc_at_non_inline_function (aspace,
5692 ecs->event_thread->suspend.stop_pc,
5693 &ecs->ws)
a210c238
MR
5694 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5695 && ecs->event_thread->control.trap_expected
5696 && pc_at_non_inline_function (aspace,
5697 ecs->event_thread->prev_pc,
09ac7c10 5698 &ecs->ws)))
1c5a993e 5699 {
f2ffa92b
PA
5700 stop_chain = build_bpstat_chain (aspace,
5701 ecs->event_thread->suspend.stop_pc,
5702 &ecs->ws);
00431a78 5703 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5704
5705 /* Re-fetch current thread's frame in case that invalidated
5706 the frame cache. */
5707 frame = get_current_frame ();
5708 gdbarch = get_frame_arch (frame);
5709 }
0574c78f 5710 }
edb3359d 5711
a493e3e2 5712 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5713 && ecs->event_thread->control.trap_expected
568d6575 5714 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5715 && currently_stepping (ecs->event_thread))
3352ef37 5716 {
b50d7442 5717 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5718 also on an instruction that needs to be stepped multiple
1777feb0 5719 times before it's been fully executing. E.g., architectures
3352ef37
AC
5720 with a delay slot. It needs to be stepped twice, once for
5721 the instruction and once for the delay slot. */
5722 int step_through_delay
568d6575 5723 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5724
527159b7 5725 if (debug_infrun && step_through_delay)
8a9de0e4 5726 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5727 if (ecs->event_thread->control.step_range_end == 0
5728 && step_through_delay)
3352ef37
AC
5729 {
5730 /* The user issued a continue when stopped at a breakpoint.
5731 Set up for another trap and get out of here. */
4e1c45ea 5732 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5733 keep_going (ecs);
5734 return;
5735 }
5736 else if (step_through_delay)
5737 {
5738 /* The user issued a step when stopped at a breakpoint.
5739 Maybe we should stop, maybe we should not - the delay
5740 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5741 case, don't decide that here, just set
5742 ecs->stepping_over_breakpoint, making sure we
5743 single-step again before breakpoints are re-inserted. */
4e1c45ea 5744 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5745 }
5746 }
5747
ab04a2af
TT
5748 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5749 handles this event. */
5750 ecs->event_thread->control.stop_bpstat
a01bda52 5751 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5752 ecs->event_thread->suspend.stop_pc,
5753 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5754
ab04a2af
TT
5755 /* Following in case break condition called a
5756 function. */
5757 stop_print_frame = 1;
73dd234f 5758
ab04a2af
TT
5759 /* This is where we handle "moribund" watchpoints. Unlike
5760 software breakpoints traps, hardware watchpoint traps are
5761 always distinguishable from random traps. If no high-level
5762 watchpoint is associated with the reported stop data address
5763 anymore, then the bpstat does not explain the signal ---
5764 simply make sure to ignore it if `stopped_by_watchpoint' is
5765 set. */
5766
5767 if (debug_infrun
5768 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5769 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5770 GDB_SIGNAL_TRAP)
ab04a2af
TT
5771 && stopped_by_watchpoint)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "infrun: no user watchpoint explains "
5774 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5775
bac7d97b 5776 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5777 at one stage in the past included checks for an inferior
5778 function call's call dummy's return breakpoint. The original
5779 comment, that went with the test, read:
03cebad2 5780
ab04a2af
TT
5781 ``End of a stack dummy. Some systems (e.g. Sony news) give
5782 another signal besides SIGTRAP, so check here as well as
5783 above.''
73dd234f 5784
ab04a2af
TT
5785 If someone ever tries to get call dummys on a
5786 non-executable stack to work (where the target would stop
5787 with something like a SIGSEGV), then those tests might need
5788 to be re-instated. Given, however, that the tests were only
5789 enabled when momentary breakpoints were not being used, I
5790 suspect that it won't be the case.
488f131b 5791
ab04a2af
TT
5792 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5793 be necessary for call dummies on a non-executable stack on
5794 SPARC. */
488f131b 5795
bac7d97b 5796 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5797 random_signal
5798 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5799 ecs->event_thread->suspend.stop_signal);
bac7d97b 5800
1cf4d951
PA
5801 /* Maybe this was a trap for a software breakpoint that has since
5802 been removed. */
5803 if (random_signal && target_stopped_by_sw_breakpoint ())
5804 {
f2ffa92b
PA
5805 if (program_breakpoint_here_p (gdbarch,
5806 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5807 {
5808 struct regcache *regcache;
5809 int decr_pc;
5810
5811 /* Re-adjust PC to what the program would see if GDB was not
5812 debugging it. */
00431a78 5813 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5814 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5815 if (decr_pc != 0)
5816 {
07036511
TT
5817 gdb::optional<scoped_restore_tmpl<int>>
5818 restore_operation_disable;
1cf4d951
PA
5819
5820 if (record_full_is_used ())
07036511
TT
5821 restore_operation_disable.emplace
5822 (record_full_gdb_operation_disable_set ());
1cf4d951 5823
f2ffa92b
PA
5824 regcache_write_pc (regcache,
5825 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5826 }
5827 }
5828 else
5829 {
5830 /* A delayed software breakpoint event. Ignore the trap. */
5831 if (debug_infrun)
5832 fprintf_unfiltered (gdb_stdlog,
5833 "infrun: delayed software breakpoint "
5834 "trap, ignoring\n");
5835 random_signal = 0;
5836 }
5837 }
5838
5839 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5840 has since been removed. */
5841 if (random_signal && target_stopped_by_hw_breakpoint ())
5842 {
5843 /* A delayed hardware breakpoint event. Ignore the trap. */
5844 if (debug_infrun)
5845 fprintf_unfiltered (gdb_stdlog,
5846 "infrun: delayed hardware breakpoint/watchpoint "
5847 "trap, ignoring\n");
5848 random_signal = 0;
5849 }
5850
bac7d97b
PA
5851 /* If not, perhaps stepping/nexting can. */
5852 if (random_signal)
5853 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5854 && currently_stepping (ecs->event_thread));
ab04a2af 5855
2adfaa28
PA
5856 /* Perhaps the thread hit a single-step breakpoint of _another_
5857 thread. Single-step breakpoints are transparent to the
5858 breakpoints module. */
5859 if (random_signal)
5860 random_signal = !ecs->hit_singlestep_breakpoint;
5861
bac7d97b
PA
5862 /* No? Perhaps we got a moribund watchpoint. */
5863 if (random_signal)
5864 random_signal = !stopped_by_watchpoint;
ab04a2af 5865
c65d6b55
PA
5866 /* Always stop if the user explicitly requested this thread to
5867 remain stopped. */
5868 if (ecs->event_thread->stop_requested)
5869 {
5870 random_signal = 1;
5871 if (debug_infrun)
5872 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5873 }
5874
488f131b
JB
5875 /* For the program's own signals, act according to
5876 the signal handling tables. */
5877
ce12b012 5878 if (random_signal)
488f131b
JB
5879 {
5880 /* Signal not for debugging purposes. */
c9657e70 5881 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5882 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5883
527159b7 5884 if (debug_infrun)
c9737c08
PA
5885 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5886 gdb_signal_to_symbol_string (stop_signal));
527159b7 5887
488f131b
JB
5888 stopped_by_random_signal = 1;
5889
252fbfc8
PA
5890 /* Always stop on signals if we're either just gaining control
5891 of the program, or the user explicitly requested this thread
5892 to remain stopped. */
d6b48e9c 5893 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5894 || ecs->event_thread->stop_requested
24291992 5895 || (!inf->detaching
16c381f0 5896 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5897 {
22bcd14b 5898 stop_waiting (ecs);
488f131b
JB
5899 return;
5900 }
b57bacec
PA
5901
5902 /* Notify observers the signal has "handle print" set. Note we
5903 returned early above if stopping; normal_stop handles the
5904 printing in that case. */
5905 if (signal_print[ecs->event_thread->suspend.stop_signal])
5906 {
5907 /* The signal table tells us to print about this signal. */
223ffa71 5908 target_terminal::ours_for_output ();
76727919 5909 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5910 target_terminal::inferior ();
b57bacec 5911 }
488f131b
JB
5912
5913 /* Clear the signal if it should not be passed. */
16c381f0 5914 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5915 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5916
f2ffa92b 5917 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5918 && ecs->event_thread->control.trap_expected
8358c15c 5919 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5920 {
5921 /* We were just starting a new sequence, attempting to
5922 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5923 Instead this signal arrives. This signal will take us out
68f53502
AC
5924 of the stepping range so GDB needs to remember to, when
5925 the signal handler returns, resume stepping off that
5926 breakpoint. */
5927 /* To simplify things, "continue" is forced to use the same
5928 code paths as single-step - set a breakpoint at the
5929 signal return address and then, once hit, step off that
5930 breakpoint. */
237fc4c9
PA
5931 if (debug_infrun)
5932 fprintf_unfiltered (gdb_stdlog,
5933 "infrun: signal arrived while stepping over "
5934 "breakpoint\n");
d3169d93 5935
2c03e5be 5936 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5937 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5938 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5939 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5940
5941 /* If we were nexting/stepping some other thread, switch to
5942 it, so that we don't continue it, losing control. */
5943 if (!switch_back_to_stepped_thread (ecs))
5944 keep_going (ecs);
9d799f85 5945 return;
68f53502 5946 }
9d799f85 5947
e5f8a7cc 5948 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5949 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5950 ecs->event_thread)
e5f8a7cc 5951 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5952 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5953 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5954 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5955 {
5956 /* The inferior is about to take a signal that will take it
5957 out of the single step range. Set a breakpoint at the
5958 current PC (which is presumably where the signal handler
5959 will eventually return) and then allow the inferior to
5960 run free.
5961
5962 Note that this is only needed for a signal delivered
5963 while in the single-step range. Nested signals aren't a
5964 problem as they eventually all return. */
237fc4c9
PA
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: signal may take us out of "
5968 "single-step range\n");
5969
372316f1 5970 clear_step_over_info ();
2c03e5be 5971 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5972 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5973 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5974 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5975 keep_going (ecs);
5976 return;
d303a6c7 5977 }
9d799f85
AC
5978
5979 /* Note: step_resume_breakpoint may be non-NULL. This occures
5980 when either there's a nested signal, or when there's a
5981 pending signal enabled just as the signal handler returns
5982 (leaving the inferior at the step-resume-breakpoint without
5983 actually executing it). Either way continue until the
5984 breakpoint is really hit. */
c447ac0b
PA
5985
5986 if (!switch_back_to_stepped_thread (ecs))
5987 {
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: random signal, keep going\n");
5991
5992 keep_going (ecs);
5993 }
5994 return;
488f131b 5995 }
94c57d6a
PA
5996
5997 process_event_stop_test (ecs);
5998}
5999
6000/* Come here when we've got some debug event / signal we can explain
6001 (IOW, not a random signal), and test whether it should cause a
6002 stop, or whether we should resume the inferior (transparently).
6003 E.g., could be a breakpoint whose condition evaluates false; we
6004 could be still stepping within the line; etc. */
6005
6006static void
6007process_event_stop_test (struct execution_control_state *ecs)
6008{
6009 struct symtab_and_line stop_pc_sal;
6010 struct frame_info *frame;
6011 struct gdbarch *gdbarch;
cdaa5b73
PA
6012 CORE_ADDR jmp_buf_pc;
6013 struct bpstat_what what;
94c57d6a 6014
cdaa5b73 6015 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6016
cdaa5b73
PA
6017 frame = get_current_frame ();
6018 gdbarch = get_frame_arch (frame);
fcf3daef 6019
cdaa5b73 6020 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6021
cdaa5b73
PA
6022 if (what.call_dummy)
6023 {
6024 stop_stack_dummy = what.call_dummy;
6025 }
186c406b 6026
243a9253
PA
6027 /* A few breakpoint types have callbacks associated (e.g.,
6028 bp_jit_event). Run them now. */
6029 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6030
cdaa5b73
PA
6031 /* If we hit an internal event that triggers symbol changes, the
6032 current frame will be invalidated within bpstat_what (e.g., if we
6033 hit an internal solib event). Re-fetch it. */
6034 frame = get_current_frame ();
6035 gdbarch = get_frame_arch (frame);
e2e4d78b 6036
cdaa5b73
PA
6037 switch (what.main_action)
6038 {
6039 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6040 /* If we hit the breakpoint at longjmp while stepping, we
6041 install a momentary breakpoint at the target of the
6042 jmp_buf. */
186c406b 6043
cdaa5b73
PA
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6047
cdaa5b73 6048 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6049
cdaa5b73
PA
6050 if (what.is_longjmp)
6051 {
6052 struct value *arg_value;
6053
6054 /* If we set the longjmp breakpoint via a SystemTap probe,
6055 then use it to extract the arguments. The destination PC
6056 is the third argument to the probe. */
6057 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6058 if (arg_value)
8fa0c4f8
AA
6059 {
6060 jmp_buf_pc = value_as_address (arg_value);
6061 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6062 }
cdaa5b73
PA
6063 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6064 || !gdbarch_get_longjmp_target (gdbarch,
6065 frame, &jmp_buf_pc))
e2e4d78b 6066 {
cdaa5b73
PA
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog,
6069 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6070 "(!gdbarch_get_longjmp_target)\n");
6071 keep_going (ecs);
6072 return;
e2e4d78b 6073 }
e2e4d78b 6074
cdaa5b73
PA
6075 /* Insert a breakpoint at resume address. */
6076 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6077 }
6078 else
6079 check_exception_resume (ecs, frame);
6080 keep_going (ecs);
6081 return;
e81a37f7 6082
cdaa5b73
PA
6083 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6084 {
6085 struct frame_info *init_frame;
e81a37f7 6086
cdaa5b73 6087 /* There are several cases to consider.
c906108c 6088
cdaa5b73
PA
6089 1. The initiating frame no longer exists. In this case we
6090 must stop, because the exception or longjmp has gone too
6091 far.
2c03e5be 6092
cdaa5b73
PA
6093 2. The initiating frame exists, and is the same as the
6094 current frame. We stop, because the exception or longjmp
6095 has been caught.
2c03e5be 6096
cdaa5b73
PA
6097 3. The initiating frame exists and is different from the
6098 current frame. This means the exception or longjmp has
6099 been caught beneath the initiating frame, so keep going.
c906108c 6100
cdaa5b73
PA
6101 4. longjmp breakpoint has been placed just to protect
6102 against stale dummy frames and user is not interested in
6103 stopping around longjmps. */
c5aa993b 6104
cdaa5b73
PA
6105 if (debug_infrun)
6106 fprintf_unfiltered (gdb_stdlog,
6107 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6108
cdaa5b73
PA
6109 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6110 != NULL);
6111 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6112
cdaa5b73
PA
6113 if (what.is_longjmp)
6114 {
b67a2c6f 6115 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6116
cdaa5b73 6117 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6118 {
cdaa5b73
PA
6119 /* Case 4. */
6120 keep_going (ecs);
6121 return;
e5ef252a 6122 }
cdaa5b73 6123 }
c5aa993b 6124
cdaa5b73 6125 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6126
cdaa5b73
PA
6127 if (init_frame)
6128 {
6129 struct frame_id current_id
6130 = get_frame_id (get_current_frame ());
6131 if (frame_id_eq (current_id,
6132 ecs->event_thread->initiating_frame))
6133 {
6134 /* Case 2. Fall through. */
6135 }
6136 else
6137 {
6138 /* Case 3. */
6139 keep_going (ecs);
6140 return;
6141 }
68f53502 6142 }
488f131b 6143
cdaa5b73
PA
6144 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6145 exists. */
6146 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6147
bdc36728 6148 end_stepping_range (ecs);
cdaa5b73
PA
6149 }
6150 return;
e5ef252a 6151
cdaa5b73
PA
6152 case BPSTAT_WHAT_SINGLE:
6153 if (debug_infrun)
6154 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6155 ecs->event_thread->stepping_over_breakpoint = 1;
6156 /* Still need to check other stuff, at least the case where we
6157 are stepping and step out of the right range. */
6158 break;
e5ef252a 6159
cdaa5b73
PA
6160 case BPSTAT_WHAT_STEP_RESUME:
6161 if (debug_infrun)
6162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6163
cdaa5b73
PA
6164 delete_step_resume_breakpoint (ecs->event_thread);
6165 if (ecs->event_thread->control.proceed_to_finish
6166 && execution_direction == EXEC_REVERSE)
6167 {
6168 struct thread_info *tp = ecs->event_thread;
6169
6170 /* We are finishing a function in reverse, and just hit the
6171 step-resume breakpoint at the start address of the
6172 function, and we're almost there -- just need to back up
6173 by one more single-step, which should take us back to the
6174 function call. */
6175 tp->control.step_range_start = tp->control.step_range_end = 1;
6176 keep_going (ecs);
e5ef252a 6177 return;
cdaa5b73
PA
6178 }
6179 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6180 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6181 && execution_direction == EXEC_REVERSE)
6182 {
6183 /* We are stepping over a function call in reverse, and just
6184 hit the step-resume breakpoint at the start address of
6185 the function. Go back to single-stepping, which should
6186 take us back to the function call. */
6187 ecs->event_thread->stepping_over_breakpoint = 1;
6188 keep_going (ecs);
6189 return;
6190 }
6191 break;
e5ef252a 6192
cdaa5b73
PA
6193 case BPSTAT_WHAT_STOP_NOISY:
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6196 stop_print_frame = 1;
e5ef252a 6197
99619bea
PA
6198 /* Assume the thread stopped for a breapoint. We'll still check
6199 whether a/the breakpoint is there when the thread is next
6200 resumed. */
6201 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6202
22bcd14b 6203 stop_waiting (ecs);
cdaa5b73 6204 return;
e5ef252a 6205
cdaa5b73
PA
6206 case BPSTAT_WHAT_STOP_SILENT:
6207 if (debug_infrun)
6208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6209 stop_print_frame = 0;
e5ef252a 6210
99619bea
PA
6211 /* Assume the thread stopped for a breapoint. We'll still check
6212 whether a/the breakpoint is there when the thread is next
6213 resumed. */
6214 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6215 stop_waiting (ecs);
cdaa5b73
PA
6216 return;
6217
6218 case BPSTAT_WHAT_HP_STEP_RESUME:
6219 if (debug_infrun)
6220 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6221
6222 delete_step_resume_breakpoint (ecs->event_thread);
6223 if (ecs->event_thread->step_after_step_resume_breakpoint)
6224 {
6225 /* Back when the step-resume breakpoint was inserted, we
6226 were trying to single-step off a breakpoint. Go back to
6227 doing that. */
6228 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6229 ecs->event_thread->stepping_over_breakpoint = 1;
6230 keep_going (ecs);
6231 return;
e5ef252a 6232 }
cdaa5b73
PA
6233 break;
6234
6235 case BPSTAT_WHAT_KEEP_CHECKING:
6236 break;
e5ef252a 6237 }
c906108c 6238
af48d08f
PA
6239 /* If we stepped a permanent breakpoint and we had a high priority
6240 step-resume breakpoint for the address we stepped, but we didn't
6241 hit it, then we must have stepped into the signal handler. The
6242 step-resume was only necessary to catch the case of _not_
6243 stepping into the handler, so delete it, and fall through to
6244 checking whether the step finished. */
6245 if (ecs->event_thread->stepped_breakpoint)
6246 {
6247 struct breakpoint *sr_bp
6248 = ecs->event_thread->control.step_resume_breakpoint;
6249
8d707a12
PA
6250 if (sr_bp != NULL
6251 && sr_bp->loc->permanent
af48d08f
PA
6252 && sr_bp->type == bp_hp_step_resume
6253 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6254 {
6255 if (debug_infrun)
6256 fprintf_unfiltered (gdb_stdlog,
6257 "infrun: stepped permanent breakpoint, stopped in "
6258 "handler\n");
6259 delete_step_resume_breakpoint (ecs->event_thread);
6260 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6261 }
6262 }
6263
cdaa5b73
PA
6264 /* We come here if we hit a breakpoint but should not stop for it.
6265 Possibly we also were stepping and should stop for that. So fall
6266 through and test for stepping. But, if not stepping, do not
6267 stop. */
c906108c 6268
a7212384
UW
6269 /* In all-stop mode, if we're currently stepping but have stopped in
6270 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6271 if (switch_back_to_stepped_thread (ecs))
6272 return;
776f04fa 6273
8358c15c 6274 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6275 {
527159b7 6276 if (debug_infrun)
d3169d93
DJ
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: step-resume breakpoint is inserted\n");
527159b7 6279
488f131b
JB
6280 /* Having a step-resume breakpoint overrides anything
6281 else having to do with stepping commands until
6282 that breakpoint is reached. */
488f131b
JB
6283 keep_going (ecs);
6284 return;
6285 }
c5aa993b 6286
16c381f0 6287 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6288 {
527159b7 6289 if (debug_infrun)
8a9de0e4 6290 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6291 /* Likewise if we aren't even stepping. */
488f131b
JB
6292 keep_going (ecs);
6293 return;
6294 }
c5aa993b 6295
4b7703ad
JB
6296 /* Re-fetch current thread's frame in case the code above caused
6297 the frame cache to be re-initialized, making our FRAME variable
6298 a dangling pointer. */
6299 frame = get_current_frame ();
628fe4e4 6300 gdbarch = get_frame_arch (frame);
7e324e48 6301 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6302
488f131b 6303 /* If stepping through a line, keep going if still within it.
c906108c 6304
488f131b
JB
6305 Note that step_range_end is the address of the first instruction
6306 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6307 within it!
6308
6309 Note also that during reverse execution, we may be stepping
6310 through a function epilogue and therefore must detect when
6311 the current-frame changes in the middle of a line. */
6312
f2ffa92b
PA
6313 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6314 ecs->event_thread)
31410e84 6315 && (execution_direction != EXEC_REVERSE
388a8562 6316 || frame_id_eq (get_frame_id (frame),
16c381f0 6317 ecs->event_thread->control.step_frame_id)))
488f131b 6318 {
527159b7 6319 if (debug_infrun)
5af949e3
UW
6320 fprintf_unfiltered
6321 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6322 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6323 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6324
c1e36e3e
PA
6325 /* Tentatively re-enable range stepping; `resume' disables it if
6326 necessary (e.g., if we're stepping over a breakpoint or we
6327 have software watchpoints). */
6328 ecs->event_thread->control.may_range_step = 1;
6329
b2175913
MS
6330 /* When stepping backward, stop at beginning of line range
6331 (unless it's the function entry point, in which case
6332 keep going back to the call point). */
f2ffa92b 6333 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6334 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6335 && stop_pc != ecs->stop_func_start
6336 && execution_direction == EXEC_REVERSE)
bdc36728 6337 end_stepping_range (ecs);
b2175913
MS
6338 else
6339 keep_going (ecs);
6340
488f131b
JB
6341 return;
6342 }
c5aa993b 6343
488f131b 6344 /* We stepped out of the stepping range. */
c906108c 6345
488f131b 6346 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6347 loader dynamic symbol resolution code...
6348
6349 EXEC_FORWARD: we keep on single stepping until we exit the run
6350 time loader code and reach the callee's address.
6351
6352 EXEC_REVERSE: we've already executed the callee (backward), and
6353 the runtime loader code is handled just like any other
6354 undebuggable function call. Now we need only keep stepping
6355 backward through the trampoline code, and that's handled further
6356 down, so there is nothing for us to do here. */
6357
6358 if (execution_direction != EXEC_REVERSE
16c381f0 6359 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6360 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6361 {
4c8c40e6 6362 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6363 gdbarch_skip_solib_resolver (gdbarch,
6364 ecs->event_thread->suspend.stop_pc);
c906108c 6365
527159b7 6366 if (debug_infrun)
3e43a32a
MS
6367 fprintf_unfiltered (gdb_stdlog,
6368 "infrun: stepped into dynsym resolve code\n");
527159b7 6369
488f131b
JB
6370 if (pc_after_resolver)
6371 {
6372 /* Set up a step-resume breakpoint at the address
6373 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6374 symtab_and_line sr_sal;
488f131b 6375 sr_sal.pc = pc_after_resolver;
6c95b8df 6376 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6377
a6d9a66e
UW
6378 insert_step_resume_breakpoint_at_sal (gdbarch,
6379 sr_sal, null_frame_id);
c5aa993b 6380 }
c906108c 6381
488f131b
JB
6382 keep_going (ecs);
6383 return;
6384 }
c906108c 6385
1d509aa6
MM
6386 /* Step through an indirect branch thunk. */
6387 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6388 && gdbarch_in_indirect_branch_thunk (gdbarch,
6389 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6390 {
6391 if (debug_infrun)
6392 fprintf_unfiltered (gdb_stdlog,
6393 "infrun: stepped into indirect branch thunk\n");
6394 keep_going (ecs);
6395 return;
6396 }
6397
16c381f0
JK
6398 if (ecs->event_thread->control.step_range_end != 1
6399 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6400 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6401 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6402 {
527159b7 6403 if (debug_infrun)
3e43a32a
MS
6404 fprintf_unfiltered (gdb_stdlog,
6405 "infrun: stepped into signal trampoline\n");
42edda50 6406 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6407 a signal trampoline (either by a signal being delivered or by
6408 the signal handler returning). Just single-step until the
6409 inferior leaves the trampoline (either by calling the handler
6410 or returning). */
488f131b
JB
6411 keep_going (ecs);
6412 return;
6413 }
c906108c 6414
14132e89
MR
6415 /* If we're in the return path from a shared library trampoline,
6416 we want to proceed through the trampoline when stepping. */
6417 /* macro/2012-04-25: This needs to come before the subroutine
6418 call check below as on some targets return trampolines look
6419 like subroutine calls (MIPS16 return thunks). */
6420 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6421 ecs->event_thread->suspend.stop_pc,
6422 ecs->stop_func_name)
14132e89
MR
6423 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6424 {
6425 /* Determine where this trampoline returns. */
f2ffa92b
PA
6426 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6427 CORE_ADDR real_stop_pc
6428 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6429
6430 if (debug_infrun)
6431 fprintf_unfiltered (gdb_stdlog,
6432 "infrun: stepped into solib return tramp\n");
6433
6434 /* Only proceed through if we know where it's going. */
6435 if (real_stop_pc)
6436 {
6437 /* And put the step-breakpoint there and go until there. */
51abb421 6438 symtab_and_line sr_sal;
14132e89
MR
6439 sr_sal.pc = real_stop_pc;
6440 sr_sal.section = find_pc_overlay (sr_sal.pc);
6441 sr_sal.pspace = get_frame_program_space (frame);
6442
6443 /* Do not specify what the fp should be when we stop since
6444 on some machines the prologue is where the new fp value
6445 is established. */
6446 insert_step_resume_breakpoint_at_sal (gdbarch,
6447 sr_sal, null_frame_id);
6448
6449 /* Restart without fiddling with the step ranges or
6450 other state. */
6451 keep_going (ecs);
6452 return;
6453 }
6454 }
6455
c17eaafe
DJ
6456 /* Check for subroutine calls. The check for the current frame
6457 equalling the step ID is not necessary - the check of the
6458 previous frame's ID is sufficient - but it is a common case and
6459 cheaper than checking the previous frame's ID.
14e60db5
DJ
6460
6461 NOTE: frame_id_eq will never report two invalid frame IDs as
6462 being equal, so to get into this block, both the current and
6463 previous frame must have valid frame IDs. */
005ca36a
JB
6464 /* The outer_frame_id check is a heuristic to detect stepping
6465 through startup code. If we step over an instruction which
6466 sets the stack pointer from an invalid value to a valid value,
6467 we may detect that as a subroutine call from the mythical
6468 "outermost" function. This could be fixed by marking
6469 outermost frames as !stack_p,code_p,special_p. Then the
6470 initial outermost frame, before sp was valid, would
ce6cca6d 6471 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6472 for more. */
edb3359d 6473 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6474 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6475 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6476 ecs->event_thread->control.step_stack_frame_id)
6477 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6478 outer_frame_id)
885eeb5b 6479 || (ecs->event_thread->control.step_start_function
f2ffa92b 6480 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6481 {
f2ffa92b 6482 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6483 CORE_ADDR real_stop_pc;
8fb3e588 6484
527159b7 6485 if (debug_infrun)
8a9de0e4 6486 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6487
b7a084be 6488 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6489 {
6490 /* I presume that step_over_calls is only 0 when we're
6491 supposed to be stepping at the assembly language level
6492 ("stepi"). Just stop. */
388a8562 6493 /* And this works the same backward as frontward. MVS */
bdc36728 6494 end_stepping_range (ecs);
95918acb
AC
6495 return;
6496 }
8fb3e588 6497
388a8562
MS
6498 /* Reverse stepping through solib trampolines. */
6499
6500 if (execution_direction == EXEC_REVERSE
16c381f0 6501 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6502 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6503 || (ecs->stop_func_start == 0
6504 && in_solib_dynsym_resolve_code (stop_pc))))
6505 {
6506 /* Any solib trampoline code can be handled in reverse
6507 by simply continuing to single-step. We have already
6508 executed the solib function (backwards), and a few
6509 steps will take us back through the trampoline to the
6510 caller. */
6511 keep_going (ecs);
6512 return;
6513 }
6514
16c381f0 6515 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6516 {
b2175913
MS
6517 /* We're doing a "next".
6518
6519 Normal (forward) execution: set a breakpoint at the
6520 callee's return address (the address at which the caller
6521 will resume).
6522
6523 Reverse (backward) execution. set the step-resume
6524 breakpoint at the start of the function that we just
6525 stepped into (backwards), and continue to there. When we
6130d0b7 6526 get there, we'll need to single-step back to the caller. */
b2175913
MS
6527
6528 if (execution_direction == EXEC_REVERSE)
6529 {
acf9414f
JK
6530 /* If we're already at the start of the function, we've either
6531 just stepped backward into a single instruction function,
6532 or stepped back out of a signal handler to the first instruction
6533 of the function. Just keep going, which will single-step back
6534 to the caller. */
58c48e72 6535 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6536 {
acf9414f 6537 /* Normal function call return (static or dynamic). */
51abb421 6538 symtab_and_line sr_sal;
acf9414f
JK
6539 sr_sal.pc = ecs->stop_func_start;
6540 sr_sal.pspace = get_frame_program_space (frame);
6541 insert_step_resume_breakpoint_at_sal (gdbarch,
6542 sr_sal, null_frame_id);
6543 }
b2175913
MS
6544 }
6545 else
568d6575 6546 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6547
8567c30f
AC
6548 keep_going (ecs);
6549 return;
6550 }
a53c66de 6551
95918acb 6552 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6553 calling routine and the real function), locate the real
6554 function. That's what tells us (a) whether we want to step
6555 into it at all, and (b) what prologue we want to run to the
6556 end of, if we do step into it. */
568d6575 6557 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6558 if (real_stop_pc == 0)
568d6575 6559 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6560 if (real_stop_pc != 0)
6561 ecs->stop_func_start = real_stop_pc;
8fb3e588 6562
db5f024e 6563 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6564 {
51abb421 6565 symtab_and_line sr_sal;
1b2bfbb9 6566 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6567 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6568
a6d9a66e
UW
6569 insert_step_resume_breakpoint_at_sal (gdbarch,
6570 sr_sal, null_frame_id);
8fb3e588
AC
6571 keep_going (ecs);
6572 return;
1b2bfbb9
RC
6573 }
6574
95918acb 6575 /* If we have line number information for the function we are
1bfeeb0f
JL
6576 thinking of stepping into and the function isn't on the skip
6577 list, step into it.
95918acb 6578
8fb3e588
AC
6579 If there are several symtabs at that PC (e.g. with include
6580 files), just want to know whether *any* of them have line
6581 numbers. find_pc_line handles this. */
95918acb
AC
6582 {
6583 struct symtab_and_line tmp_sal;
8fb3e588 6584
95918acb 6585 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6586 if (tmp_sal.line != 0
85817405 6587 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6588 tmp_sal))
95918acb 6589 {
b2175913 6590 if (execution_direction == EXEC_REVERSE)
568d6575 6591 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6592 else
568d6575 6593 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6594 return;
6595 }
6596 }
6597
6598 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6599 set, we stop the step so that the user has a chance to switch
6600 in assembly mode. */
16c381f0 6601 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6602 && step_stop_if_no_debug)
95918acb 6603 {
bdc36728 6604 end_stepping_range (ecs);
95918acb
AC
6605 return;
6606 }
6607
b2175913
MS
6608 if (execution_direction == EXEC_REVERSE)
6609 {
acf9414f
JK
6610 /* If we're already at the start of the function, we've either just
6611 stepped backward into a single instruction function without line
6612 number info, or stepped back out of a signal handler to the first
6613 instruction of the function without line number info. Just keep
6614 going, which will single-step back to the caller. */
6615 if (ecs->stop_func_start != stop_pc)
6616 {
6617 /* Set a breakpoint at callee's start address.
6618 From there we can step once and be back in the caller. */
51abb421 6619 symtab_and_line sr_sal;
acf9414f
JK
6620 sr_sal.pc = ecs->stop_func_start;
6621 sr_sal.pspace = get_frame_program_space (frame);
6622 insert_step_resume_breakpoint_at_sal (gdbarch,
6623 sr_sal, null_frame_id);
6624 }
b2175913
MS
6625 }
6626 else
6627 /* Set a breakpoint at callee's return address (the address
6628 at which the caller will resume). */
568d6575 6629 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6630
95918acb 6631 keep_going (ecs);
488f131b 6632 return;
488f131b 6633 }
c906108c 6634
fdd654f3
MS
6635 /* Reverse stepping through solib trampolines. */
6636
6637 if (execution_direction == EXEC_REVERSE
16c381f0 6638 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6639 {
f2ffa92b
PA
6640 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6641
fdd654f3
MS
6642 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6643 || (ecs->stop_func_start == 0
6644 && in_solib_dynsym_resolve_code (stop_pc)))
6645 {
6646 /* Any solib trampoline code can be handled in reverse
6647 by simply continuing to single-step. We have already
6648 executed the solib function (backwards), and a few
6649 steps will take us back through the trampoline to the
6650 caller. */
6651 keep_going (ecs);
6652 return;
6653 }
6654 else if (in_solib_dynsym_resolve_code (stop_pc))
6655 {
6656 /* Stepped backward into the solib dynsym resolver.
6657 Set a breakpoint at its start and continue, then
6658 one more step will take us out. */
51abb421 6659 symtab_and_line sr_sal;
fdd654f3 6660 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6661 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6662 insert_step_resume_breakpoint_at_sal (gdbarch,
6663 sr_sal, null_frame_id);
6664 keep_going (ecs);
6665 return;
6666 }
6667 }
6668
f2ffa92b 6669 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6670
1b2bfbb9
RC
6671 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6672 the trampoline processing logic, however, there are some trampolines
6673 that have no names, so we should do trampoline handling first. */
16c381f0 6674 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6675 && ecs->stop_func_name == NULL
2afb61aa 6676 && stop_pc_sal.line == 0)
1b2bfbb9 6677 {
527159b7 6678 if (debug_infrun)
3e43a32a
MS
6679 fprintf_unfiltered (gdb_stdlog,
6680 "infrun: stepped into undebuggable function\n");
527159b7 6681
1b2bfbb9 6682 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6683 undebuggable function (where there is no debugging information
6684 and no line number corresponding to the address where the
1b2bfbb9
RC
6685 inferior stopped). Since we want to skip this kind of code,
6686 we keep going until the inferior returns from this
14e60db5
DJ
6687 function - unless the user has asked us not to (via
6688 set step-mode) or we no longer know how to get back
6689 to the call site. */
6690 if (step_stop_if_no_debug
c7ce8faa 6691 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6692 {
6693 /* If we have no line number and the step-stop-if-no-debug
6694 is set, we stop the step so that the user has a chance to
6695 switch in assembly mode. */
bdc36728 6696 end_stepping_range (ecs);
1b2bfbb9
RC
6697 return;
6698 }
6699 else
6700 {
6701 /* Set a breakpoint at callee's return address (the address
6702 at which the caller will resume). */
568d6575 6703 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6704 keep_going (ecs);
6705 return;
6706 }
6707 }
6708
16c381f0 6709 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6710 {
6711 /* It is stepi or nexti. We always want to stop stepping after
6712 one instruction. */
527159b7 6713 if (debug_infrun)
8a9de0e4 6714 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6715 end_stepping_range (ecs);
1b2bfbb9
RC
6716 return;
6717 }
6718
2afb61aa 6719 if (stop_pc_sal.line == 0)
488f131b
JB
6720 {
6721 /* We have no line number information. That means to stop
6722 stepping (does this always happen right after one instruction,
6723 when we do "s" in a function with no line numbers,
6724 or can this happen as a result of a return or longjmp?). */
527159b7 6725 if (debug_infrun)
8a9de0e4 6726 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6727 end_stepping_range (ecs);
488f131b
JB
6728 return;
6729 }
c906108c 6730
edb3359d
DJ
6731 /* Look for "calls" to inlined functions, part one. If the inline
6732 frame machinery detected some skipped call sites, we have entered
6733 a new inline function. */
6734
6735 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6736 ecs->event_thread->control.step_frame_id)
00431a78 6737 && inline_skipped_frames (ecs->event_thread))
edb3359d 6738 {
edb3359d
DJ
6739 if (debug_infrun)
6740 fprintf_unfiltered (gdb_stdlog,
6741 "infrun: stepped into inlined function\n");
6742
51abb421 6743 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6744
16c381f0 6745 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6746 {
6747 /* For "step", we're going to stop. But if the call site
6748 for this inlined function is on the same source line as
6749 we were previously stepping, go down into the function
6750 first. Otherwise stop at the call site. */
6751
6752 if (call_sal.line == ecs->event_thread->current_line
6753 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6754 step_into_inline_frame (ecs->event_thread);
edb3359d 6755
bdc36728 6756 end_stepping_range (ecs);
edb3359d
DJ
6757 return;
6758 }
6759 else
6760 {
6761 /* For "next", we should stop at the call site if it is on a
6762 different source line. Otherwise continue through the
6763 inlined function. */
6764 if (call_sal.line == ecs->event_thread->current_line
6765 && call_sal.symtab == ecs->event_thread->current_symtab)
6766 keep_going (ecs);
6767 else
bdc36728 6768 end_stepping_range (ecs);
edb3359d
DJ
6769 return;
6770 }
6771 }
6772
6773 /* Look for "calls" to inlined functions, part two. If we are still
6774 in the same real function we were stepping through, but we have
6775 to go further up to find the exact frame ID, we are stepping
6776 through a more inlined call beyond its call site. */
6777
6778 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6779 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6780 ecs->event_thread->control.step_frame_id)
edb3359d 6781 && stepped_in_from (get_current_frame (),
16c381f0 6782 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6783 {
6784 if (debug_infrun)
6785 fprintf_unfiltered (gdb_stdlog,
6786 "infrun: stepping through inlined function\n");
6787
16c381f0 6788 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6789 keep_going (ecs);
6790 else
bdc36728 6791 end_stepping_range (ecs);
edb3359d
DJ
6792 return;
6793 }
6794
f2ffa92b 6795 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6796 && (ecs->event_thread->current_line != stop_pc_sal.line
6797 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6798 {
6799 /* We are at the start of a different line. So stop. Note that
6800 we don't stop if we step into the middle of a different line.
6801 That is said to make things like for (;;) statements work
6802 better. */
527159b7 6803 if (debug_infrun)
3e43a32a
MS
6804 fprintf_unfiltered (gdb_stdlog,
6805 "infrun: stepped to a different line\n");
bdc36728 6806 end_stepping_range (ecs);
488f131b
JB
6807 return;
6808 }
c906108c 6809
488f131b 6810 /* We aren't done stepping.
c906108c 6811
488f131b
JB
6812 Optimize by setting the stepping range to the line.
6813 (We might not be in the original line, but if we entered a
6814 new line in mid-statement, we continue stepping. This makes
6815 things like for(;;) statements work better.) */
c906108c 6816
16c381f0
JK
6817 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6818 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6819 ecs->event_thread->control.may_range_step = 1;
edb3359d 6820 set_step_info (frame, stop_pc_sal);
488f131b 6821
527159b7 6822 if (debug_infrun)
8a9de0e4 6823 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6824 keep_going (ecs);
104c1213
JM
6825}
6826
c447ac0b
PA
6827/* In all-stop mode, if we're currently stepping but have stopped in
6828 some other thread, we may need to switch back to the stepped
6829 thread. Returns true we set the inferior running, false if we left
6830 it stopped (and the event needs further processing). */
6831
6832static int
6833switch_back_to_stepped_thread (struct execution_control_state *ecs)
6834{
fbea99ea 6835 if (!target_is_non_stop_p ())
c447ac0b 6836 {
99619bea
PA
6837 struct thread_info *stepping_thread;
6838
6839 /* If any thread is blocked on some internal breakpoint, and we
6840 simply need to step over that breakpoint to get it going
6841 again, do that first. */
6842
6843 /* However, if we see an event for the stepping thread, then we
6844 know all other threads have been moved past their breakpoints
6845 already. Let the caller check whether the step is finished,
6846 etc., before deciding to move it past a breakpoint. */
6847 if (ecs->event_thread->control.step_range_end != 0)
6848 return 0;
6849
6850 /* Check if the current thread is blocked on an incomplete
6851 step-over, interrupted by a random signal. */
6852 if (ecs->event_thread->control.trap_expected
6853 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6854 {
99619bea
PA
6855 if (debug_infrun)
6856 {
6857 fprintf_unfiltered (gdb_stdlog,
6858 "infrun: need to finish step-over of [%s]\n",
6859 target_pid_to_str (ecs->event_thread->ptid));
6860 }
6861 keep_going (ecs);
6862 return 1;
6863 }
2adfaa28 6864
99619bea
PA
6865 /* Check if the current thread is blocked by a single-step
6866 breakpoint of another thread. */
6867 if (ecs->hit_singlestep_breakpoint)
6868 {
6869 if (debug_infrun)
6870 {
6871 fprintf_unfiltered (gdb_stdlog,
6872 "infrun: need to step [%s] over single-step "
6873 "breakpoint\n",
6874 target_pid_to_str (ecs->ptid));
6875 }
6876 keep_going (ecs);
6877 return 1;
6878 }
6879
4d9d9d04
PA
6880 /* If this thread needs yet another step-over (e.g., stepping
6881 through a delay slot), do it first before moving on to
6882 another thread. */
6883 if (thread_still_needs_step_over (ecs->event_thread))
6884 {
6885 if (debug_infrun)
6886 {
6887 fprintf_unfiltered (gdb_stdlog,
6888 "infrun: thread [%s] still needs step-over\n",
6889 target_pid_to_str (ecs->event_thread->ptid));
6890 }
6891 keep_going (ecs);
6892 return 1;
6893 }
70509625 6894
483805cf
PA
6895 /* If scheduler locking applies even if not stepping, there's no
6896 need to walk over threads. Above we've checked whether the
6897 current thread is stepping. If some other thread not the
6898 event thread is stepping, then it must be that scheduler
6899 locking is not in effect. */
856e7dd6 6900 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6901 return 0;
6902
4d9d9d04
PA
6903 /* Otherwise, we no longer expect a trap in the current thread.
6904 Clear the trap_expected flag before switching back -- this is
6905 what keep_going does as well, if we call it. */
6906 ecs->event_thread->control.trap_expected = 0;
6907
6908 /* Likewise, clear the signal if it should not be passed. */
6909 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6910 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6911
6912 /* Do all pending step-overs before actually proceeding with
483805cf 6913 step/next/etc. */
4d9d9d04
PA
6914 if (start_step_over ())
6915 {
6916 prepare_to_wait (ecs);
6917 return 1;
6918 }
6919
6920 /* Look for the stepping/nexting thread. */
483805cf 6921 stepping_thread = NULL;
4d9d9d04 6922
08036331 6923 for (thread_info *tp : all_non_exited_threads ())
483805cf 6924 {
fbea99ea
PA
6925 /* Ignore threads of processes the caller is not
6926 resuming. */
483805cf 6927 if (!sched_multi
e99b03dc 6928 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6929 continue;
6930
6931 /* When stepping over a breakpoint, we lock all threads
6932 except the one that needs to move past the breakpoint.
6933 If a non-event thread has this set, the "incomplete
6934 step-over" check above should have caught it earlier. */
372316f1
PA
6935 if (tp->control.trap_expected)
6936 {
6937 internal_error (__FILE__, __LINE__,
6938 "[%s] has inconsistent state: "
6939 "trap_expected=%d\n",
6940 target_pid_to_str (tp->ptid),
6941 tp->control.trap_expected);
6942 }
483805cf
PA
6943
6944 /* Did we find the stepping thread? */
6945 if (tp->control.step_range_end)
6946 {
6947 /* Yep. There should only one though. */
6948 gdb_assert (stepping_thread == NULL);
6949
6950 /* The event thread is handled at the top, before we
6951 enter this loop. */
6952 gdb_assert (tp != ecs->event_thread);
6953
6954 /* If some thread other than the event thread is
6955 stepping, then scheduler locking can't be in effect,
6956 otherwise we wouldn't have resumed the current event
6957 thread in the first place. */
856e7dd6 6958 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6959
6960 stepping_thread = tp;
6961 }
99619bea
PA
6962 }
6963
483805cf 6964 if (stepping_thread != NULL)
99619bea 6965 {
c447ac0b
PA
6966 if (debug_infrun)
6967 fprintf_unfiltered (gdb_stdlog,
6968 "infrun: switching back to stepped thread\n");
6969
2ac7589c
PA
6970 if (keep_going_stepped_thread (stepping_thread))
6971 {
6972 prepare_to_wait (ecs);
6973 return 1;
6974 }
6975 }
6976 }
2adfaa28 6977
2ac7589c
PA
6978 return 0;
6979}
2adfaa28 6980
2ac7589c
PA
6981/* Set a previously stepped thread back to stepping. Returns true on
6982 success, false if the resume is not possible (e.g., the thread
6983 vanished). */
6984
6985static int
6986keep_going_stepped_thread (struct thread_info *tp)
6987{
6988 struct frame_info *frame;
2ac7589c
PA
6989 struct execution_control_state ecss;
6990 struct execution_control_state *ecs = &ecss;
2adfaa28 6991
2ac7589c
PA
6992 /* If the stepping thread exited, then don't try to switch back and
6993 resume it, which could fail in several different ways depending
6994 on the target. Instead, just keep going.
2adfaa28 6995
2ac7589c
PA
6996 We can find a stepping dead thread in the thread list in two
6997 cases:
2adfaa28 6998
2ac7589c
PA
6999 - The target supports thread exit events, and when the target
7000 tries to delete the thread from the thread list, inferior_ptid
7001 pointed at the exiting thread. In such case, calling
7002 delete_thread does not really remove the thread from the list;
7003 instead, the thread is left listed, with 'exited' state.
64ce06e4 7004
2ac7589c
PA
7005 - The target's debug interface does not support thread exit
7006 events, and so we have no idea whatsoever if the previously
7007 stepping thread is still alive. For that reason, we need to
7008 synchronously query the target now. */
2adfaa28 7009
00431a78 7010 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7011 {
7012 if (debug_infrun)
7013 fprintf_unfiltered (gdb_stdlog,
7014 "infrun: not resuming previously "
7015 "stepped thread, it has vanished\n");
7016
00431a78 7017 delete_thread (tp);
2ac7589c 7018 return 0;
c447ac0b 7019 }
2ac7589c
PA
7020
7021 if (debug_infrun)
7022 fprintf_unfiltered (gdb_stdlog,
7023 "infrun: resuming previously stepped thread\n");
7024
7025 reset_ecs (ecs, tp);
00431a78 7026 switch_to_thread (tp);
2ac7589c 7027
f2ffa92b 7028 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7029 frame = get_current_frame ();
2ac7589c
PA
7030
7031 /* If the PC of the thread we were trying to single-step has
7032 changed, then that thread has trapped or been signaled, but the
7033 event has not been reported to GDB yet. Re-poll the target
7034 looking for this particular thread's event (i.e. temporarily
7035 enable schedlock) by:
7036
7037 - setting a break at the current PC
7038 - resuming that particular thread, only (by setting trap
7039 expected)
7040
7041 This prevents us continuously moving the single-step breakpoint
7042 forward, one instruction at a time, overstepping. */
7043
f2ffa92b 7044 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7045 {
7046 ptid_t resume_ptid;
7047
7048 if (debug_infrun)
7049 fprintf_unfiltered (gdb_stdlog,
7050 "infrun: expected thread advanced also (%s -> %s)\n",
7051 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7052 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7053
7054 /* Clear the info of the previous step-over, as it's no longer
7055 valid (if the thread was trying to step over a breakpoint, it
7056 has already succeeded). It's what keep_going would do too,
7057 if we called it. Do this before trying to insert the sss
7058 breakpoint, otherwise if we were previously trying to step
7059 over this exact address in another thread, the breakpoint is
7060 skipped. */
7061 clear_step_over_info ();
7062 tp->control.trap_expected = 0;
7063
7064 insert_single_step_breakpoint (get_frame_arch (frame),
7065 get_frame_address_space (frame),
f2ffa92b 7066 tp->suspend.stop_pc);
2ac7589c 7067
372316f1 7068 tp->resumed = 1;
fbea99ea 7069 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7070 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7071 }
7072 else
7073 {
7074 if (debug_infrun)
7075 fprintf_unfiltered (gdb_stdlog,
7076 "infrun: expected thread still hasn't advanced\n");
7077
7078 keep_going_pass_signal (ecs);
7079 }
7080 return 1;
c447ac0b
PA
7081}
7082
8b061563
PA
7083/* Is thread TP in the middle of (software or hardware)
7084 single-stepping? (Note the result of this function must never be
7085 passed directly as target_resume's STEP parameter.) */
104c1213 7086
a289b8f6 7087static int
b3444185 7088currently_stepping (struct thread_info *tp)
a7212384 7089{
8358c15c
JK
7090 return ((tp->control.step_range_end
7091 && tp->control.step_resume_breakpoint == NULL)
7092 || tp->control.trap_expected
af48d08f 7093 || tp->stepped_breakpoint
8358c15c 7094 || bpstat_should_step ());
a7212384
UW
7095}
7096
b2175913
MS
7097/* Inferior has stepped into a subroutine call with source code that
7098 we should not step over. Do step to the first line of code in
7099 it. */
c2c6d25f
JM
7100
7101static void
568d6575
UW
7102handle_step_into_function (struct gdbarch *gdbarch,
7103 struct execution_control_state *ecs)
c2c6d25f 7104{
7e324e48
GB
7105 fill_in_stop_func (gdbarch, ecs);
7106
f2ffa92b
PA
7107 compunit_symtab *cust
7108 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7109 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7110 ecs->stop_func_start
7111 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7112
51abb421 7113 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7114 /* Use the step_resume_break to step until the end of the prologue,
7115 even if that involves jumps (as it seems to on the vax under
7116 4.2). */
7117 /* If the prologue ends in the middle of a source line, continue to
7118 the end of that source line (if it is still within the function).
7119 Otherwise, just go to end of prologue. */
2afb61aa
PA
7120 if (stop_func_sal.end
7121 && stop_func_sal.pc != ecs->stop_func_start
7122 && stop_func_sal.end < ecs->stop_func_end)
7123 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7124
2dbd5e30
KB
7125 /* Architectures which require breakpoint adjustment might not be able
7126 to place a breakpoint at the computed address. If so, the test
7127 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7128 ecs->stop_func_start to an address at which a breakpoint may be
7129 legitimately placed.
8fb3e588 7130
2dbd5e30
KB
7131 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7132 made, GDB will enter an infinite loop when stepping through
7133 optimized code consisting of VLIW instructions which contain
7134 subinstructions corresponding to different source lines. On
7135 FR-V, it's not permitted to place a breakpoint on any but the
7136 first subinstruction of a VLIW instruction. When a breakpoint is
7137 set, GDB will adjust the breakpoint address to the beginning of
7138 the VLIW instruction. Thus, we need to make the corresponding
7139 adjustment here when computing the stop address. */
8fb3e588 7140
568d6575 7141 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7142 {
7143 ecs->stop_func_start
568d6575 7144 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7145 ecs->stop_func_start);
2dbd5e30
KB
7146 }
7147
f2ffa92b 7148 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7149 {
7150 /* We are already there: stop now. */
bdc36728 7151 end_stepping_range (ecs);
c2c6d25f
JM
7152 return;
7153 }
7154 else
7155 {
7156 /* Put the step-breakpoint there and go until there. */
51abb421 7157 symtab_and_line sr_sal;
c2c6d25f
JM
7158 sr_sal.pc = ecs->stop_func_start;
7159 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7160 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7161
c2c6d25f 7162 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7163 some machines the prologue is where the new fp value is
7164 established. */
a6d9a66e 7165 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7166
7167 /* And make sure stepping stops right away then. */
16c381f0
JK
7168 ecs->event_thread->control.step_range_end
7169 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7170 }
7171 keep_going (ecs);
7172}
d4f3574e 7173
b2175913
MS
7174/* Inferior has stepped backward into a subroutine call with source
7175 code that we should not step over. Do step to the beginning of the
7176 last line of code in it. */
7177
7178static void
568d6575
UW
7179handle_step_into_function_backward (struct gdbarch *gdbarch,
7180 struct execution_control_state *ecs)
b2175913 7181{
43f3e411 7182 struct compunit_symtab *cust;
167e4384 7183 struct symtab_and_line stop_func_sal;
b2175913 7184
7e324e48
GB
7185 fill_in_stop_func (gdbarch, ecs);
7186
f2ffa92b 7187 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7188 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7189 ecs->stop_func_start
7190 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7191
f2ffa92b 7192 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7193
7194 /* OK, we're just going to keep stepping here. */
f2ffa92b 7195 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7196 {
7197 /* We're there already. Just stop stepping now. */
bdc36728 7198 end_stepping_range (ecs);
b2175913
MS
7199 }
7200 else
7201 {
7202 /* Else just reset the step range and keep going.
7203 No step-resume breakpoint, they don't work for
7204 epilogues, which can have multiple entry paths. */
16c381f0
JK
7205 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7206 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7207 keep_going (ecs);
7208 }
7209 return;
7210}
7211
d3169d93 7212/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7213 This is used to both functions and to skip over code. */
7214
7215static void
2c03e5be
PA
7216insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7217 struct symtab_and_line sr_sal,
7218 struct frame_id sr_id,
7219 enum bptype sr_type)
44cbf7b5 7220{
611c83ae
PA
7221 /* There should never be more than one step-resume or longjmp-resume
7222 breakpoint per thread, so we should never be setting a new
44cbf7b5 7223 step_resume_breakpoint when one is already active. */
8358c15c 7224 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7225 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7226
7227 if (debug_infrun)
7228 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7229 "infrun: inserting step-resume breakpoint at %s\n",
7230 paddress (gdbarch, sr_sal.pc));
d3169d93 7231
8358c15c 7232 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7233 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7234}
7235
9da8c2a0 7236void
2c03e5be
PA
7237insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7238 struct symtab_and_line sr_sal,
7239 struct frame_id sr_id)
7240{
7241 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7242 sr_sal, sr_id,
7243 bp_step_resume);
44cbf7b5 7244}
7ce450bd 7245
2c03e5be
PA
7246/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7247 This is used to skip a potential signal handler.
7ce450bd 7248
14e60db5
DJ
7249 This is called with the interrupted function's frame. The signal
7250 handler, when it returns, will resume the interrupted function at
7251 RETURN_FRAME.pc. */
d303a6c7
AC
7252
7253static void
2c03e5be 7254insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7255{
f4c1edd8 7256 gdb_assert (return_frame != NULL);
d303a6c7 7257
51abb421
PA
7258 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7259
7260 symtab_and_line sr_sal;
568d6575 7261 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7262 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7263 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7264
2c03e5be
PA
7265 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7266 get_stack_frame_id (return_frame),
7267 bp_hp_step_resume);
d303a6c7
AC
7268}
7269
2c03e5be
PA
7270/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7271 is used to skip a function after stepping into it (for "next" or if
7272 the called function has no debugging information).
14e60db5
DJ
7273
7274 The current function has almost always been reached by single
7275 stepping a call or return instruction. NEXT_FRAME belongs to the
7276 current function, and the breakpoint will be set at the caller's
7277 resume address.
7278
7279 This is a separate function rather than reusing
2c03e5be 7280 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7281 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7282 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7283
7284static void
7285insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7286{
14e60db5
DJ
7287 /* We shouldn't have gotten here if we don't know where the call site
7288 is. */
c7ce8faa 7289 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7290
51abb421 7291 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7292
51abb421 7293 symtab_and_line sr_sal;
c7ce8faa
DJ
7294 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7295 frame_unwind_caller_pc (next_frame));
14e60db5 7296 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7297 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7298
a6d9a66e 7299 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7300 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7301}
7302
611c83ae
PA
7303/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7304 new breakpoint at the target of a jmp_buf. The handling of
7305 longjmp-resume uses the same mechanisms used for handling
7306 "step-resume" breakpoints. */
7307
7308static void
a6d9a66e 7309insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7310{
e81a37f7
TT
7311 /* There should never be more than one longjmp-resume breakpoint per
7312 thread, so we should never be setting a new
611c83ae 7313 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7314 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7315
7316 if (debug_infrun)
7317 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7318 "infrun: inserting longjmp-resume breakpoint at %s\n",
7319 paddress (gdbarch, pc));
611c83ae 7320
e81a37f7 7321 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7322 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7323}
7324
186c406b
TT
7325/* Insert an exception resume breakpoint. TP is the thread throwing
7326 the exception. The block B is the block of the unwinder debug hook
7327 function. FRAME is the frame corresponding to the call to this
7328 function. SYM is the symbol of the function argument holding the
7329 target PC of the exception. */
7330
7331static void
7332insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7333 const struct block *b,
186c406b
TT
7334 struct frame_info *frame,
7335 struct symbol *sym)
7336{
492d29ea 7337 TRY
186c406b 7338 {
63e43d3a 7339 struct block_symbol vsym;
186c406b
TT
7340 struct value *value;
7341 CORE_ADDR handler;
7342 struct breakpoint *bp;
7343
de63c46b
PA
7344 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7345 b, VAR_DOMAIN);
63e43d3a 7346 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7347 /* If the value was optimized out, revert to the old behavior. */
7348 if (! value_optimized_out (value))
7349 {
7350 handler = value_as_address (value);
7351
7352 if (debug_infrun)
7353 fprintf_unfiltered (gdb_stdlog,
7354 "infrun: exception resume at %lx\n",
7355 (unsigned long) handler);
7356
7357 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7358 handler,
7359 bp_exception_resume).release ();
c70a6932
JK
7360
7361 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7362 frame = NULL;
7363
5d5658a1 7364 bp->thread = tp->global_num;
186c406b
TT
7365 inferior_thread ()->control.exception_resume_breakpoint = bp;
7366 }
7367 }
492d29ea
PA
7368 CATCH (e, RETURN_MASK_ERROR)
7369 {
7370 /* We want to ignore errors here. */
7371 }
7372 END_CATCH
186c406b
TT
7373}
7374
28106bc2
SDJ
7375/* A helper for check_exception_resume that sets an
7376 exception-breakpoint based on a SystemTap probe. */
7377
7378static void
7379insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7380 const struct bound_probe *probe,
28106bc2
SDJ
7381 struct frame_info *frame)
7382{
7383 struct value *arg_value;
7384 CORE_ADDR handler;
7385 struct breakpoint *bp;
7386
7387 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7388 if (!arg_value)
7389 return;
7390
7391 handler = value_as_address (arg_value);
7392
7393 if (debug_infrun)
7394 fprintf_unfiltered (gdb_stdlog,
7395 "infrun: exception resume at %s\n",
6bac7473 7396 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7397 handler));
7398
7399 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7400 handler, bp_exception_resume).release ();
5d5658a1 7401 bp->thread = tp->global_num;
28106bc2
SDJ
7402 inferior_thread ()->control.exception_resume_breakpoint = bp;
7403}
7404
186c406b
TT
7405/* This is called when an exception has been intercepted. Check to
7406 see whether the exception's destination is of interest, and if so,
7407 set an exception resume breakpoint there. */
7408
7409static void
7410check_exception_resume (struct execution_control_state *ecs,
28106bc2 7411 struct frame_info *frame)
186c406b 7412{
729662a5 7413 struct bound_probe probe;
28106bc2
SDJ
7414 struct symbol *func;
7415
7416 /* First see if this exception unwinding breakpoint was set via a
7417 SystemTap probe point. If so, the probe has two arguments: the
7418 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7419 set a breakpoint there. */
6bac7473 7420 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7421 if (probe.prob)
28106bc2 7422 {
729662a5 7423 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7424 return;
7425 }
7426
7427 func = get_frame_function (frame);
7428 if (!func)
7429 return;
186c406b 7430
492d29ea 7431 TRY
186c406b 7432 {
3977b71f 7433 const struct block *b;
8157b174 7434 struct block_iterator iter;
186c406b
TT
7435 struct symbol *sym;
7436 int argno = 0;
7437
7438 /* The exception breakpoint is a thread-specific breakpoint on
7439 the unwinder's debug hook, declared as:
7440
7441 void _Unwind_DebugHook (void *cfa, void *handler);
7442
7443 The CFA argument indicates the frame to which control is
7444 about to be transferred. HANDLER is the destination PC.
7445
7446 We ignore the CFA and set a temporary breakpoint at HANDLER.
7447 This is not extremely efficient but it avoids issues in gdb
7448 with computing the DWARF CFA, and it also works even in weird
7449 cases such as throwing an exception from inside a signal
7450 handler. */
7451
7452 b = SYMBOL_BLOCK_VALUE (func);
7453 ALL_BLOCK_SYMBOLS (b, iter, sym)
7454 {
7455 if (!SYMBOL_IS_ARGUMENT (sym))
7456 continue;
7457
7458 if (argno == 0)
7459 ++argno;
7460 else
7461 {
7462 insert_exception_resume_breakpoint (ecs->event_thread,
7463 b, frame, sym);
7464 break;
7465 }
7466 }
7467 }
492d29ea
PA
7468 CATCH (e, RETURN_MASK_ERROR)
7469 {
7470 }
7471 END_CATCH
186c406b
TT
7472}
7473
104c1213 7474static void
22bcd14b 7475stop_waiting (struct execution_control_state *ecs)
104c1213 7476{
527159b7 7477 if (debug_infrun)
22bcd14b 7478 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7479
cd0fc7c3
SS
7480 /* Let callers know we don't want to wait for the inferior anymore. */
7481 ecs->wait_some_more = 0;
fbea99ea
PA
7482
7483 /* If all-stop, but the target is always in non-stop mode, stop all
7484 threads now that we're presenting the stop to the user. */
7485 if (!non_stop && target_is_non_stop_p ())
7486 stop_all_threads ();
cd0fc7c3
SS
7487}
7488
4d9d9d04
PA
7489/* Like keep_going, but passes the signal to the inferior, even if the
7490 signal is set to nopass. */
d4f3574e
SS
7491
7492static void
4d9d9d04 7493keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7494{
d7e15655 7495 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7496 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7497
d4f3574e 7498 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7499 ecs->event_thread->prev_pc
00431a78 7500 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7501
4d9d9d04 7502 if (ecs->event_thread->control.trap_expected)
d4f3574e 7503 {
4d9d9d04
PA
7504 struct thread_info *tp = ecs->event_thread;
7505
7506 if (debug_infrun)
7507 fprintf_unfiltered (gdb_stdlog,
7508 "infrun: %s has trap_expected set, "
7509 "resuming to collect trap\n",
7510 target_pid_to_str (tp->ptid));
7511
a9ba6bae
PA
7512 /* We haven't yet gotten our trap, and either: intercepted a
7513 non-signal event (e.g., a fork); or took a signal which we
7514 are supposed to pass through to the inferior. Simply
7515 continue. */
64ce06e4 7516 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7517 }
372316f1
PA
7518 else if (step_over_info_valid_p ())
7519 {
7520 /* Another thread is stepping over a breakpoint in-line. If
7521 this thread needs a step-over too, queue the request. In
7522 either case, this resume must be deferred for later. */
7523 struct thread_info *tp = ecs->event_thread;
7524
7525 if (ecs->hit_singlestep_breakpoint
7526 || thread_still_needs_step_over (tp))
7527 {
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: step-over already in progress: "
7531 "step-over for %s deferred\n",
7532 target_pid_to_str (tp->ptid));
7533 thread_step_over_chain_enqueue (tp);
7534 }
7535 else
7536 {
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: step-over in progress: "
7540 "resume of %s deferred\n",
7541 target_pid_to_str (tp->ptid));
7542 }
372316f1 7543 }
d4f3574e
SS
7544 else
7545 {
31e77af2 7546 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7547 int remove_bp;
7548 int remove_wps;
8d297bbf 7549 step_over_what step_what;
31e77af2 7550
d4f3574e 7551 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7552 anyway (if we got a signal, the user asked it be passed to
7553 the child)
7554 -- or --
7555 We got our expected trap, but decided we should resume from
7556 it.
d4f3574e 7557
a9ba6bae 7558 We're going to run this baby now!
d4f3574e 7559
c36b740a
VP
7560 Note that insert_breakpoints won't try to re-insert
7561 already inserted breakpoints. Therefore, we don't
7562 care if breakpoints were already inserted, or not. */
a9ba6bae 7563
31e77af2
PA
7564 /* If we need to step over a breakpoint, and we're not using
7565 displaced stepping to do so, insert all breakpoints
7566 (watchpoints, etc.) but the one we're stepping over, step one
7567 instruction, and then re-insert the breakpoint when that step
7568 is finished. */
963f9c80 7569
6c4cfb24
PA
7570 step_what = thread_still_needs_step_over (ecs->event_thread);
7571
963f9c80 7572 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7573 || (step_what & STEP_OVER_BREAKPOINT));
7574 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7575
cb71640d
PA
7576 /* We can't use displaced stepping if we need to step past a
7577 watchpoint. The instruction copied to the scratch pad would
7578 still trigger the watchpoint. */
7579 if (remove_bp
3fc8eb30 7580 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7581 {
a01bda52 7582 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7583 regcache_read_pc (regcache), remove_wps,
7584 ecs->event_thread->global_num);
45e8c884 7585 }
963f9c80 7586 else if (remove_wps)
21edc42f 7587 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7588
7589 /* If we now need to do an in-line step-over, we need to stop
7590 all other threads. Note this must be done before
7591 insert_breakpoints below, because that removes the breakpoint
7592 we're about to step over, otherwise other threads could miss
7593 it. */
fbea99ea 7594 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7595 stop_all_threads ();
abbb1732 7596
31e77af2 7597 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7598 TRY
31e77af2
PA
7599 {
7600 insert_breakpoints ();
7601 }
492d29ea 7602 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7603 {
7604 exception_print (gdb_stderr, e);
22bcd14b 7605 stop_waiting (ecs);
bdf2a94a 7606 clear_step_over_info ();
31e77af2 7607 return;
d4f3574e 7608 }
492d29ea 7609 END_CATCH
d4f3574e 7610
963f9c80 7611 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7612
64ce06e4 7613 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7614 }
7615
488f131b 7616 prepare_to_wait (ecs);
d4f3574e
SS
7617}
7618
4d9d9d04
PA
7619/* Called when we should continue running the inferior, because the
7620 current event doesn't cause a user visible stop. This does the
7621 resuming part; waiting for the next event is done elsewhere. */
7622
7623static void
7624keep_going (struct execution_control_state *ecs)
7625{
7626 if (ecs->event_thread->control.trap_expected
7627 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7628 ecs->event_thread->control.trap_expected = 0;
7629
7630 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7632 keep_going_pass_signal (ecs);
7633}
7634
104c1213
JM
7635/* This function normally comes after a resume, before
7636 handle_inferior_event exits. It takes care of any last bits of
7637 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7638
104c1213
JM
7639static void
7640prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7641{
527159b7 7642 if (debug_infrun)
8a9de0e4 7643 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7644
104c1213 7645 ecs->wait_some_more = 1;
0b333c5e
PA
7646
7647 if (!target_is_async_p ())
7648 mark_infrun_async_event_handler ();
c906108c 7649}
11cf8741 7650
fd664c91 7651/* We are done with the step range of a step/next/si/ni command.
b57bacec 7652 Called once for each n of a "step n" operation. */
fd664c91
PA
7653
7654static void
bdc36728 7655end_stepping_range (struct execution_control_state *ecs)
fd664c91 7656{
bdc36728 7657 ecs->event_thread->control.stop_step = 1;
bdc36728 7658 stop_waiting (ecs);
fd664c91
PA
7659}
7660
33d62d64
JK
7661/* Several print_*_reason functions to print why the inferior has stopped.
7662 We always print something when the inferior exits, or receives a signal.
7663 The rest of the cases are dealt with later on in normal_stop and
7664 print_it_typical. Ideally there should be a call to one of these
7665 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7666 stop_waiting is called.
33d62d64 7667
fd664c91
PA
7668 Note that we don't call these directly, instead we delegate that to
7669 the interpreters, through observers. Interpreters then call these
7670 with whatever uiout is right. */
33d62d64 7671
fd664c91
PA
7672void
7673print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7674{
fd664c91 7675 /* For CLI-like interpreters, print nothing. */
33d62d64 7676
112e8700 7677 if (uiout->is_mi_like_p ())
fd664c91 7678 {
112e8700 7679 uiout->field_string ("reason",
fd664c91
PA
7680 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7681 }
7682}
33d62d64 7683
fd664c91
PA
7684void
7685print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7686{
33d62d64 7687 annotate_signalled ();
112e8700
SM
7688 if (uiout->is_mi_like_p ())
7689 uiout->field_string
7690 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7691 uiout->text ("\nProgram terminated with signal ");
33d62d64 7692 annotate_signal_name ();
112e8700 7693 uiout->field_string ("signal-name",
2ea28649 7694 gdb_signal_to_name (siggnal));
33d62d64 7695 annotate_signal_name_end ();
112e8700 7696 uiout->text (", ");
33d62d64 7697 annotate_signal_string ();
112e8700 7698 uiout->field_string ("signal-meaning",
2ea28649 7699 gdb_signal_to_string (siggnal));
33d62d64 7700 annotate_signal_string_end ();
112e8700
SM
7701 uiout->text (".\n");
7702 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7703}
7704
fd664c91
PA
7705void
7706print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7707{
fda326dd 7708 struct inferior *inf = current_inferior ();
f2907e49 7709 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7710
33d62d64
JK
7711 annotate_exited (exitstatus);
7712 if (exitstatus)
7713 {
112e8700
SM
7714 if (uiout->is_mi_like_p ())
7715 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7716 uiout->text ("[Inferior ");
7717 uiout->text (plongest (inf->num));
7718 uiout->text (" (");
7719 uiout->text (pidstr);
7720 uiout->text (") exited with code ");
7721 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7722 uiout->text ("]\n");
33d62d64
JK
7723 }
7724 else
11cf8741 7725 {
112e8700
SM
7726 if (uiout->is_mi_like_p ())
7727 uiout->field_string
7728 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7729 uiout->text ("[Inferior ");
7730 uiout->text (plongest (inf->num));
7731 uiout->text (" (");
7732 uiout->text (pidstr);
7733 uiout->text (") exited normally]\n");
33d62d64 7734 }
33d62d64
JK
7735}
7736
012b3a21
WT
7737/* Some targets/architectures can do extra processing/display of
7738 segmentation faults. E.g., Intel MPX boundary faults.
7739 Call the architecture dependent function to handle the fault. */
7740
7741static void
7742handle_segmentation_fault (struct ui_out *uiout)
7743{
7744 struct regcache *regcache = get_current_regcache ();
ac7936df 7745 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7746
7747 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7748 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7749}
7750
fd664c91
PA
7751void
7752print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7753{
f303dbd6
PA
7754 struct thread_info *thr = inferior_thread ();
7755
33d62d64
JK
7756 annotate_signal ();
7757
112e8700 7758 if (uiout->is_mi_like_p ())
f303dbd6
PA
7759 ;
7760 else if (show_thread_that_caused_stop ())
33d62d64 7761 {
f303dbd6 7762 const char *name;
33d62d64 7763
112e8700
SM
7764 uiout->text ("\nThread ");
7765 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7766
7767 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7768 if (name != NULL)
7769 {
112e8700
SM
7770 uiout->text (" \"");
7771 uiout->field_fmt ("name", "%s", name);
7772 uiout->text ("\"");
f303dbd6 7773 }
33d62d64 7774 }
f303dbd6 7775 else
112e8700 7776 uiout->text ("\nProgram");
f303dbd6 7777
112e8700
SM
7778 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7779 uiout->text (" stopped");
33d62d64
JK
7780 else
7781 {
112e8700 7782 uiout->text (" received signal ");
8b93c638 7783 annotate_signal_name ();
112e8700
SM
7784 if (uiout->is_mi_like_p ())
7785 uiout->field_string
7786 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7787 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7788 annotate_signal_name_end ();
112e8700 7789 uiout->text (", ");
8b93c638 7790 annotate_signal_string ();
112e8700 7791 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7792
7793 if (siggnal == GDB_SIGNAL_SEGV)
7794 handle_segmentation_fault (uiout);
7795
8b93c638 7796 annotate_signal_string_end ();
33d62d64 7797 }
112e8700 7798 uiout->text (".\n");
33d62d64 7799}
252fbfc8 7800
fd664c91
PA
7801void
7802print_no_history_reason (struct ui_out *uiout)
33d62d64 7803{
112e8700 7804 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7805}
43ff13b4 7806
0c7e1a46
PA
7807/* Print current location without a level number, if we have changed
7808 functions or hit a breakpoint. Print source line if we have one.
7809 bpstat_print contains the logic deciding in detail what to print,
7810 based on the event(s) that just occurred. */
7811
243a9253
PA
7812static void
7813print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7814{
7815 int bpstat_ret;
f486487f 7816 enum print_what source_flag;
0c7e1a46
PA
7817 int do_frame_printing = 1;
7818 struct thread_info *tp = inferior_thread ();
7819
7820 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7821 switch (bpstat_ret)
7822 {
7823 case PRINT_UNKNOWN:
7824 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7825 should) carry around the function and does (or should) use
7826 that when doing a frame comparison. */
7827 if (tp->control.stop_step
7828 && frame_id_eq (tp->control.step_frame_id,
7829 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7830 && (tp->control.step_start_function
7831 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7832 {
7833 /* Finished step, just print source line. */
7834 source_flag = SRC_LINE;
7835 }
7836 else
7837 {
7838 /* Print location and source line. */
7839 source_flag = SRC_AND_LOC;
7840 }
7841 break;
7842 case PRINT_SRC_AND_LOC:
7843 /* Print location and source line. */
7844 source_flag = SRC_AND_LOC;
7845 break;
7846 case PRINT_SRC_ONLY:
7847 source_flag = SRC_LINE;
7848 break;
7849 case PRINT_NOTHING:
7850 /* Something bogus. */
7851 source_flag = SRC_LINE;
7852 do_frame_printing = 0;
7853 break;
7854 default:
7855 internal_error (__FILE__, __LINE__, _("Unknown value."));
7856 }
7857
7858 /* The behavior of this routine with respect to the source
7859 flag is:
7860 SRC_LINE: Print only source line
7861 LOCATION: Print only location
7862 SRC_AND_LOC: Print location and source line. */
7863 if (do_frame_printing)
7864 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7865}
7866
243a9253
PA
7867/* See infrun.h. */
7868
7869void
7870print_stop_event (struct ui_out *uiout)
7871{
243a9253
PA
7872 struct target_waitstatus last;
7873 ptid_t last_ptid;
7874 struct thread_info *tp;
7875
7876 get_last_target_status (&last_ptid, &last);
7877
67ad9399
TT
7878 {
7879 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7880
67ad9399 7881 print_stop_location (&last);
243a9253 7882
67ad9399
TT
7883 /* Display the auto-display expressions. */
7884 do_displays ();
7885 }
243a9253
PA
7886
7887 tp = inferior_thread ();
7888 if (tp->thread_fsm != NULL
7889 && thread_fsm_finished_p (tp->thread_fsm))
7890 {
7891 struct return_value_info *rv;
7892
7893 rv = thread_fsm_return_value (tp->thread_fsm);
7894 if (rv != NULL)
7895 print_return_value (uiout, rv);
7896 }
0c7e1a46
PA
7897}
7898
388a7084
PA
7899/* See infrun.h. */
7900
7901void
7902maybe_remove_breakpoints (void)
7903{
7904 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7905 {
7906 if (remove_breakpoints ())
7907 {
223ffa71 7908 target_terminal::ours_for_output ();
388a7084
PA
7909 printf_filtered (_("Cannot remove breakpoints because "
7910 "program is no longer writable.\nFurther "
7911 "execution is probably impossible.\n"));
7912 }
7913 }
7914}
7915
4c2f2a79
PA
7916/* The execution context that just caused a normal stop. */
7917
7918struct stop_context
7919{
2d844eaf
TT
7920 stop_context ();
7921 ~stop_context ();
7922
7923 DISABLE_COPY_AND_ASSIGN (stop_context);
7924
7925 bool changed () const;
7926
4c2f2a79
PA
7927 /* The stop ID. */
7928 ULONGEST stop_id;
c906108c 7929
4c2f2a79 7930 /* The event PTID. */
c906108c 7931
4c2f2a79
PA
7932 ptid_t ptid;
7933
7934 /* If stopp for a thread event, this is the thread that caused the
7935 stop. */
7936 struct thread_info *thread;
7937
7938 /* The inferior that caused the stop. */
7939 int inf_num;
7940};
7941
2d844eaf 7942/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7943 takes a strong reference to the thread. */
7944
2d844eaf 7945stop_context::stop_context ()
4c2f2a79 7946{
2d844eaf
TT
7947 stop_id = get_stop_id ();
7948 ptid = inferior_ptid;
7949 inf_num = current_inferior ()->num;
4c2f2a79 7950
d7e15655 7951 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7952 {
7953 /* Take a strong reference so that the thread can't be deleted
7954 yet. */
2d844eaf
TT
7955 thread = inferior_thread ();
7956 thread->incref ();
4c2f2a79
PA
7957 }
7958 else
2d844eaf 7959 thread = NULL;
4c2f2a79
PA
7960}
7961
7962/* Release a stop context previously created with save_stop_context.
7963 Releases the strong reference to the thread as well. */
7964
2d844eaf 7965stop_context::~stop_context ()
4c2f2a79 7966{
2d844eaf
TT
7967 if (thread != NULL)
7968 thread->decref ();
4c2f2a79
PA
7969}
7970
7971/* Return true if the current context no longer matches the saved stop
7972 context. */
7973
2d844eaf
TT
7974bool
7975stop_context::changed () const
7976{
7977 if (ptid != inferior_ptid)
7978 return true;
7979 if (inf_num != current_inferior ()->num)
7980 return true;
7981 if (thread != NULL && thread->state != THREAD_STOPPED)
7982 return true;
7983 if (get_stop_id () != stop_id)
7984 return true;
7985 return false;
4c2f2a79
PA
7986}
7987
7988/* See infrun.h. */
7989
7990int
96baa820 7991normal_stop (void)
c906108c 7992{
73b65bb0
DJ
7993 struct target_waitstatus last;
7994 ptid_t last_ptid;
7995
7996 get_last_target_status (&last_ptid, &last);
7997
4c2f2a79
PA
7998 new_stop_id ();
7999
29f49a6a
PA
8000 /* If an exception is thrown from this point on, make sure to
8001 propagate GDB's knowledge of the executing state to the
8002 frontend/user running state. A QUIT is an easy exception to see
8003 here, so do this before any filtered output. */
731f534f
PA
8004
8005 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8006
c35b1492 8007 if (!non_stop)
731f534f 8008 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8009 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8010 || last.kind == TARGET_WAITKIND_EXITED)
8011 {
8012 /* On some targets, we may still have live threads in the
8013 inferior when we get a process exit event. E.g., for
8014 "checkpoint", when the current checkpoint/fork exits,
8015 linux-fork.c automatically switches to another fork from
8016 within target_mourn_inferior. */
731f534f
PA
8017 if (inferior_ptid != null_ptid)
8018 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8019 }
8020 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8021 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8022
b57bacec
PA
8023 /* As we're presenting a stop, and potentially removing breakpoints,
8024 update the thread list so we can tell whether there are threads
8025 running on the target. With target remote, for example, we can
8026 only learn about new threads when we explicitly update the thread
8027 list. Do this before notifying the interpreters about signal
8028 stops, end of stepping ranges, etc., so that the "new thread"
8029 output is emitted before e.g., "Program received signal FOO",
8030 instead of after. */
8031 update_thread_list ();
8032
8033 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8034 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8035
c906108c
SS
8036 /* As with the notification of thread events, we want to delay
8037 notifying the user that we've switched thread context until
8038 the inferior actually stops.
8039
73b65bb0
DJ
8040 There's no point in saying anything if the inferior has exited.
8041 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8042 "received a signal".
8043
8044 Also skip saying anything in non-stop mode. In that mode, as we
8045 don't want GDB to switch threads behind the user's back, to avoid
8046 races where the user is typing a command to apply to thread x,
8047 but GDB switches to thread y before the user finishes entering
8048 the command, fetch_inferior_event installs a cleanup to restore
8049 the current thread back to the thread the user had selected right
8050 after this event is handled, so we're not really switching, only
8051 informing of a stop. */
4f8d22e3 8052 if (!non_stop
731f534f 8053 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8054 && target_has_execution
8055 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8056 && last.kind != TARGET_WAITKIND_EXITED
8057 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8058 {
0e454242 8059 SWITCH_THRU_ALL_UIS ()
3b12939d 8060 {
223ffa71 8061 target_terminal::ours_for_output ();
3b12939d
PA
8062 printf_filtered (_("[Switching to %s]\n"),
8063 target_pid_to_str (inferior_ptid));
8064 annotate_thread_changed ();
8065 }
39f77062 8066 previous_inferior_ptid = inferior_ptid;
c906108c 8067 }
c906108c 8068
0e5bf2a8
PA
8069 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8070 {
0e454242 8071 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8072 if (current_ui->prompt_state == PROMPT_BLOCKED)
8073 {
223ffa71 8074 target_terminal::ours_for_output ();
3b12939d
PA
8075 printf_filtered (_("No unwaited-for children left.\n"));
8076 }
0e5bf2a8
PA
8077 }
8078
b57bacec 8079 /* Note: this depends on the update_thread_list call above. */
388a7084 8080 maybe_remove_breakpoints ();
c906108c 8081
c906108c
SS
8082 /* If an auto-display called a function and that got a signal,
8083 delete that auto-display to avoid an infinite recursion. */
8084
8085 if (stopped_by_random_signal)
8086 disable_current_display ();
8087
0e454242 8088 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8089 {
8090 async_enable_stdin ();
8091 }
c906108c 8092
388a7084 8093 /* Let the user/frontend see the threads as stopped. */
731f534f 8094 maybe_finish_thread_state.reset ();
388a7084
PA
8095
8096 /* Select innermost stack frame - i.e., current frame is frame 0,
8097 and current location is based on that. Handle the case where the
8098 dummy call is returning after being stopped. E.g. the dummy call
8099 previously hit a breakpoint. (If the dummy call returns
8100 normally, we won't reach here.) Do this before the stop hook is
8101 run, so that it doesn't get to see the temporary dummy frame,
8102 which is not where we'll present the stop. */
8103 if (has_stack_frames ())
8104 {
8105 if (stop_stack_dummy == STOP_STACK_DUMMY)
8106 {
8107 /* Pop the empty frame that contains the stack dummy. This
8108 also restores inferior state prior to the call (struct
8109 infcall_suspend_state). */
8110 struct frame_info *frame = get_current_frame ();
8111
8112 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8113 frame_pop (frame);
8114 /* frame_pop calls reinit_frame_cache as the last thing it
8115 does which means there's now no selected frame. */
8116 }
8117
8118 select_frame (get_current_frame ());
8119
8120 /* Set the current source location. */
8121 set_current_sal_from_frame (get_current_frame ());
8122 }
dd7e2d2b
PA
8123
8124 /* Look up the hook_stop and run it (CLI internally handles problem
8125 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8126 if (stop_command != NULL)
8127 {
2d844eaf 8128 stop_context saved_context;
4c2f2a79 8129
bf469271
PA
8130 TRY
8131 {
8132 execute_cmd_pre_hook (stop_command);
8133 }
8134 CATCH (ex, RETURN_MASK_ALL)
8135 {
8136 exception_fprintf (gdb_stderr, ex,
8137 "Error while running hook_stop:\n");
8138 }
8139 END_CATCH
4c2f2a79
PA
8140
8141 /* If the stop hook resumes the target, then there's no point in
8142 trying to notify about the previous stop; its context is
8143 gone. Likewise if the command switches thread or inferior --
8144 the observers would print a stop for the wrong
8145 thread/inferior. */
2d844eaf
TT
8146 if (saved_context.changed ())
8147 return 1;
4c2f2a79 8148 }
dd7e2d2b 8149
388a7084
PA
8150 /* Notify observers about the stop. This is where the interpreters
8151 print the stop event. */
d7e15655 8152 if (inferior_ptid != null_ptid)
76727919 8153 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8154 stop_print_frame);
8155 else
76727919 8156 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8157
243a9253
PA
8158 annotate_stopped ();
8159
48844aa6
PA
8160 if (target_has_execution)
8161 {
8162 if (last.kind != TARGET_WAITKIND_SIGNALLED
8163 && last.kind != TARGET_WAITKIND_EXITED)
8164 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8165 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8166 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8167 }
6c95b8df
PA
8168
8169 /* Try to get rid of automatically added inferiors that are no
8170 longer needed. Keeping those around slows down things linearly.
8171 Note that this never removes the current inferior. */
8172 prune_inferiors ();
4c2f2a79
PA
8173
8174 return 0;
c906108c 8175}
c906108c 8176\f
c5aa993b 8177int
96baa820 8178signal_stop_state (int signo)
c906108c 8179{
d6b48e9c 8180 return signal_stop[signo];
c906108c
SS
8181}
8182
c5aa993b 8183int
96baa820 8184signal_print_state (int signo)
c906108c
SS
8185{
8186 return signal_print[signo];
8187}
8188
c5aa993b 8189int
96baa820 8190signal_pass_state (int signo)
c906108c
SS
8191{
8192 return signal_program[signo];
8193}
8194
2455069d
UW
8195static void
8196signal_cache_update (int signo)
8197{
8198 if (signo == -1)
8199 {
a493e3e2 8200 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8201 signal_cache_update (signo);
8202
8203 return;
8204 }
8205
8206 signal_pass[signo] = (signal_stop[signo] == 0
8207 && signal_print[signo] == 0
ab04a2af
TT
8208 && signal_program[signo] == 1
8209 && signal_catch[signo] == 0);
2455069d
UW
8210}
8211
488f131b 8212int
7bda5e4a 8213signal_stop_update (int signo, int state)
d4f3574e
SS
8214{
8215 int ret = signal_stop[signo];
abbb1732 8216
d4f3574e 8217 signal_stop[signo] = state;
2455069d 8218 signal_cache_update (signo);
d4f3574e
SS
8219 return ret;
8220}
8221
488f131b 8222int
7bda5e4a 8223signal_print_update (int signo, int state)
d4f3574e
SS
8224{
8225 int ret = signal_print[signo];
abbb1732 8226
d4f3574e 8227 signal_print[signo] = state;
2455069d 8228 signal_cache_update (signo);
d4f3574e
SS
8229 return ret;
8230}
8231
488f131b 8232int
7bda5e4a 8233signal_pass_update (int signo, int state)
d4f3574e
SS
8234{
8235 int ret = signal_program[signo];
abbb1732 8236
d4f3574e 8237 signal_program[signo] = state;
2455069d 8238 signal_cache_update (signo);
d4f3574e
SS
8239 return ret;
8240}
8241
ab04a2af
TT
8242/* Update the global 'signal_catch' from INFO and notify the
8243 target. */
8244
8245void
8246signal_catch_update (const unsigned int *info)
8247{
8248 int i;
8249
8250 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8251 signal_catch[i] = info[i] > 0;
8252 signal_cache_update (-1);
adc6a863 8253 target_pass_signals (signal_pass);
ab04a2af
TT
8254}
8255
c906108c 8256static void
96baa820 8257sig_print_header (void)
c906108c 8258{
3e43a32a
MS
8259 printf_filtered (_("Signal Stop\tPrint\tPass "
8260 "to program\tDescription\n"));
c906108c
SS
8261}
8262
8263static void
2ea28649 8264sig_print_info (enum gdb_signal oursig)
c906108c 8265{
2ea28649 8266 const char *name = gdb_signal_to_name (oursig);
c906108c 8267 int name_padding = 13 - strlen (name);
96baa820 8268
c906108c
SS
8269 if (name_padding <= 0)
8270 name_padding = 0;
8271
8272 printf_filtered ("%s", name);
488f131b 8273 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8274 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8275 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8276 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8277 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8278}
8279
8280/* Specify how various signals in the inferior should be handled. */
8281
8282static void
0b39b52e 8283handle_command (const char *args, int from_tty)
c906108c 8284{
c906108c 8285 int digits, wordlen;
b926417a 8286 int sigfirst, siglast;
2ea28649 8287 enum gdb_signal oursig;
c906108c 8288 int allsigs;
c906108c
SS
8289
8290 if (args == NULL)
8291 {
e2e0b3e5 8292 error_no_arg (_("signal to handle"));
c906108c
SS
8293 }
8294
1777feb0 8295 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8296
adc6a863
PA
8297 const size_t nsigs = GDB_SIGNAL_LAST;
8298 unsigned char sigs[nsigs] {};
c906108c 8299
1777feb0 8300 /* Break the command line up into args. */
c906108c 8301
773a1edc 8302 gdb_argv built_argv (args);
c906108c
SS
8303
8304 /* Walk through the args, looking for signal oursigs, signal names, and
8305 actions. Signal numbers and signal names may be interspersed with
8306 actions, with the actions being performed for all signals cumulatively
1777feb0 8307 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8308
773a1edc 8309 for (char *arg : built_argv)
c906108c 8310 {
773a1edc
TT
8311 wordlen = strlen (arg);
8312 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8313 {;
8314 }
8315 allsigs = 0;
8316 sigfirst = siglast = -1;
8317
773a1edc 8318 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8319 {
8320 /* Apply action to all signals except those used by the
1777feb0 8321 debugger. Silently skip those. */
c906108c
SS
8322 allsigs = 1;
8323 sigfirst = 0;
8324 siglast = nsigs - 1;
8325 }
773a1edc 8326 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8327 {
8328 SET_SIGS (nsigs, sigs, signal_stop);
8329 SET_SIGS (nsigs, sigs, signal_print);
8330 }
773a1edc 8331 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8332 {
8333 UNSET_SIGS (nsigs, sigs, signal_program);
8334 }
773a1edc 8335 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8336 {
8337 SET_SIGS (nsigs, sigs, signal_print);
8338 }
773a1edc 8339 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8340 {
8341 SET_SIGS (nsigs, sigs, signal_program);
8342 }
773a1edc 8343 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8344 {
8345 UNSET_SIGS (nsigs, sigs, signal_stop);
8346 }
773a1edc 8347 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8348 {
8349 SET_SIGS (nsigs, sigs, signal_program);
8350 }
773a1edc 8351 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8352 {
8353 UNSET_SIGS (nsigs, sigs, signal_print);
8354 UNSET_SIGS (nsigs, sigs, signal_stop);
8355 }
773a1edc 8356 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8357 {
8358 UNSET_SIGS (nsigs, sigs, signal_program);
8359 }
8360 else if (digits > 0)
8361 {
8362 /* It is numeric. The numeric signal refers to our own
8363 internal signal numbering from target.h, not to host/target
8364 signal number. This is a feature; users really should be
8365 using symbolic names anyway, and the common ones like
8366 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8367
8368 sigfirst = siglast = (int)
773a1edc
TT
8369 gdb_signal_from_command (atoi (arg));
8370 if (arg[digits] == '-')
c906108c
SS
8371 {
8372 siglast = (int)
773a1edc 8373 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8374 }
8375 if (sigfirst > siglast)
8376 {
1777feb0 8377 /* Bet he didn't figure we'd think of this case... */
b926417a 8378 std::swap (sigfirst, siglast);
c906108c
SS
8379 }
8380 }
8381 else
8382 {
773a1edc 8383 oursig = gdb_signal_from_name (arg);
a493e3e2 8384 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8385 {
8386 sigfirst = siglast = (int) oursig;
8387 }
8388 else
8389 {
8390 /* Not a number and not a recognized flag word => complain. */
773a1edc 8391 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8392 }
8393 }
8394
8395 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8396 which signals to apply actions to. */
c906108c 8397
b926417a 8398 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8399 {
2ea28649 8400 switch ((enum gdb_signal) signum)
c906108c 8401 {
a493e3e2
PA
8402 case GDB_SIGNAL_TRAP:
8403 case GDB_SIGNAL_INT:
c906108c
SS
8404 if (!allsigs && !sigs[signum])
8405 {
9e2f0ad4 8406 if (query (_("%s is used by the debugger.\n\
3e43a32a 8407Are you sure you want to change it? "),
2ea28649 8408 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8409 {
8410 sigs[signum] = 1;
8411 }
8412 else
8413 {
a3f17187 8414 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8415 gdb_flush (gdb_stdout);
8416 }
8417 }
8418 break;
a493e3e2
PA
8419 case GDB_SIGNAL_0:
8420 case GDB_SIGNAL_DEFAULT:
8421 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8422 /* Make sure that "all" doesn't print these. */
8423 break;
8424 default:
8425 sigs[signum] = 1;
8426 break;
8427 }
8428 }
c906108c
SS
8429 }
8430
b926417a 8431 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8432 if (sigs[signum])
8433 {
2455069d 8434 signal_cache_update (-1);
adc6a863
PA
8435 target_pass_signals (signal_pass);
8436 target_program_signals (signal_program);
c906108c 8437
3a031f65
PA
8438 if (from_tty)
8439 {
8440 /* Show the results. */
8441 sig_print_header ();
8442 for (; signum < nsigs; signum++)
8443 if (sigs[signum])
aead7601 8444 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8445 }
8446
8447 break;
8448 }
c906108c
SS
8449}
8450
de0bea00
MF
8451/* Complete the "handle" command. */
8452
eb3ff9a5 8453static void
de0bea00 8454handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8455 completion_tracker &tracker,
6f937416 8456 const char *text, const char *word)
de0bea00 8457{
de0bea00
MF
8458 static const char * const keywords[] =
8459 {
8460 "all",
8461 "stop",
8462 "ignore",
8463 "print",
8464 "pass",
8465 "nostop",
8466 "noignore",
8467 "noprint",
8468 "nopass",
8469 NULL,
8470 };
8471
eb3ff9a5
PA
8472 signal_completer (ignore, tracker, text, word);
8473 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8474}
8475
2ea28649
PA
8476enum gdb_signal
8477gdb_signal_from_command (int num)
ed01b82c
PA
8478{
8479 if (num >= 1 && num <= 15)
2ea28649 8480 return (enum gdb_signal) num;
ed01b82c
PA
8481 error (_("Only signals 1-15 are valid as numeric signals.\n\
8482Use \"info signals\" for a list of symbolic signals."));
8483}
8484
c906108c
SS
8485/* Print current contents of the tables set by the handle command.
8486 It is possible we should just be printing signals actually used
8487 by the current target (but for things to work right when switching
8488 targets, all signals should be in the signal tables). */
8489
8490static void
1d12d88f 8491info_signals_command (const char *signum_exp, int from_tty)
c906108c 8492{
2ea28649 8493 enum gdb_signal oursig;
abbb1732 8494
c906108c
SS
8495 sig_print_header ();
8496
8497 if (signum_exp)
8498 {
8499 /* First see if this is a symbol name. */
2ea28649 8500 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8501 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8502 {
8503 /* No, try numeric. */
8504 oursig =
2ea28649 8505 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8506 }
8507 sig_print_info (oursig);
8508 return;
8509 }
8510
8511 printf_filtered ("\n");
8512 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8513 for (oursig = GDB_SIGNAL_FIRST;
8514 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8515 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8516 {
8517 QUIT;
8518
a493e3e2
PA
8519 if (oursig != GDB_SIGNAL_UNKNOWN
8520 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8521 sig_print_info (oursig);
8522 }
8523
3e43a32a
MS
8524 printf_filtered (_("\nUse the \"handle\" command "
8525 "to change these tables.\n"));
c906108c 8526}
4aa995e1
PA
8527
8528/* The $_siginfo convenience variable is a bit special. We don't know
8529 for sure the type of the value until we actually have a chance to
7a9dd1b2 8530 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8531 also dependent on which thread you have selected.
8532
8533 1. making $_siginfo be an internalvar that creates a new value on
8534 access.
8535
8536 2. making the value of $_siginfo be an lval_computed value. */
8537
8538/* This function implements the lval_computed support for reading a
8539 $_siginfo value. */
8540
8541static void
8542siginfo_value_read (struct value *v)
8543{
8544 LONGEST transferred;
8545
a911d87a
PA
8546 /* If we can access registers, so can we access $_siginfo. Likewise
8547 vice versa. */
8548 validate_registers_access ();
c709acd1 8549
4aa995e1 8550 transferred =
8b88a78e 8551 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8552 NULL,
8553 value_contents_all_raw (v),
8554 value_offset (v),
8555 TYPE_LENGTH (value_type (v)));
8556
8557 if (transferred != TYPE_LENGTH (value_type (v)))
8558 error (_("Unable to read siginfo"));
8559}
8560
8561/* This function implements the lval_computed support for writing a
8562 $_siginfo value. */
8563
8564static void
8565siginfo_value_write (struct value *v, struct value *fromval)
8566{
8567 LONGEST transferred;
8568
a911d87a
PA
8569 /* If we can access registers, so can we access $_siginfo. Likewise
8570 vice versa. */
8571 validate_registers_access ();
c709acd1 8572
8b88a78e 8573 transferred = target_write (current_top_target (),
4aa995e1
PA
8574 TARGET_OBJECT_SIGNAL_INFO,
8575 NULL,
8576 value_contents_all_raw (fromval),
8577 value_offset (v),
8578 TYPE_LENGTH (value_type (fromval)));
8579
8580 if (transferred != TYPE_LENGTH (value_type (fromval)))
8581 error (_("Unable to write siginfo"));
8582}
8583
c8f2448a 8584static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8585 {
8586 siginfo_value_read,
8587 siginfo_value_write
8588 };
8589
8590/* Return a new value with the correct type for the siginfo object of
78267919
UW
8591 the current thread using architecture GDBARCH. Return a void value
8592 if there's no object available. */
4aa995e1 8593
2c0b251b 8594static struct value *
22d2b532
SDJ
8595siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8596 void *ignore)
4aa995e1 8597{
4aa995e1 8598 if (target_has_stack
d7e15655 8599 && inferior_ptid != null_ptid
78267919 8600 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8601 {
78267919 8602 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8603
78267919 8604 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8605 }
8606
78267919 8607 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8608}
8609
c906108c 8610\f
16c381f0
JK
8611/* infcall_suspend_state contains state about the program itself like its
8612 registers and any signal it received when it last stopped.
8613 This state must be restored regardless of how the inferior function call
8614 ends (either successfully, or after it hits a breakpoint or signal)
8615 if the program is to properly continue where it left off. */
8616
6bf78e29 8617class infcall_suspend_state
7a292a7a 8618{
6bf78e29
AB
8619public:
8620 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8621 once the inferior function call has finished. */
8622 infcall_suspend_state (struct gdbarch *gdbarch,
8623 const struct thread_info *tp,
8624 struct regcache *regcache)
8625 : m_thread_suspend (tp->suspend),
8626 m_registers (new readonly_detached_regcache (*regcache))
8627 {
8628 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8629
8630 if (gdbarch_get_siginfo_type_p (gdbarch))
8631 {
8632 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8633 size_t len = TYPE_LENGTH (type);
8634
8635 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8636
8637 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8638 siginfo_data.get (), 0, len) != len)
8639 {
8640 /* Errors ignored. */
8641 siginfo_data.reset (nullptr);
8642 }
8643 }
8644
8645 if (siginfo_data)
8646 {
8647 m_siginfo_gdbarch = gdbarch;
8648 m_siginfo_data = std::move (siginfo_data);
8649 }
8650 }
8651
8652 /* Return a pointer to the stored register state. */
16c381f0 8653
6bf78e29
AB
8654 readonly_detached_regcache *registers () const
8655 {
8656 return m_registers.get ();
8657 }
8658
8659 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8660
8661 void restore (struct gdbarch *gdbarch,
8662 struct thread_info *tp,
8663 struct regcache *regcache) const
8664 {
8665 tp->suspend = m_thread_suspend;
8666
8667 if (m_siginfo_gdbarch == gdbarch)
8668 {
8669 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8670
8671 /* Errors ignored. */
8672 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8673 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8674 }
8675
8676 /* The inferior can be gone if the user types "print exit(0)"
8677 (and perhaps other times). */
8678 if (target_has_execution)
8679 /* NB: The register write goes through to the target. */
8680 regcache->restore (registers ());
8681 }
8682
8683private:
8684 /* How the current thread stopped before the inferior function call was
8685 executed. */
8686 struct thread_suspend_state m_thread_suspend;
8687
8688 /* The registers before the inferior function call was executed. */
8689 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8690
35515841 8691 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8692 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8693
8694 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8695 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8696 content would be invalid. */
6bf78e29 8697 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8698};
8699
cb524840
TT
8700infcall_suspend_state_up
8701save_infcall_suspend_state ()
b89667eb 8702{
b89667eb 8703 struct thread_info *tp = inferior_thread ();
1736ad11 8704 struct regcache *regcache = get_current_regcache ();
ac7936df 8705 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8706
6bf78e29
AB
8707 infcall_suspend_state_up inf_state
8708 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8709
6bf78e29
AB
8710 /* Having saved the current state, adjust the thread state, discarding
8711 any stop signal information. The stop signal is not useful when
8712 starting an inferior function call, and run_inferior_call will not use
8713 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8714 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8715
b89667eb
DE
8716 return inf_state;
8717}
8718
8719/* Restore inferior session state to INF_STATE. */
8720
8721void
16c381f0 8722restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8723{
8724 struct thread_info *tp = inferior_thread ();
1736ad11 8725 struct regcache *regcache = get_current_regcache ();
ac7936df 8726 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8727
6bf78e29 8728 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8729 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8730}
8731
b89667eb 8732void
16c381f0 8733discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8734{
dd848631 8735 delete inf_state;
b89667eb
DE
8736}
8737
daf6667d 8738readonly_detached_regcache *
16c381f0 8739get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8740{
6bf78e29 8741 return inf_state->registers ();
b89667eb
DE
8742}
8743
16c381f0
JK
8744/* infcall_control_state contains state regarding gdb's control of the
8745 inferior itself like stepping control. It also contains session state like
8746 the user's currently selected frame. */
b89667eb 8747
16c381f0 8748struct infcall_control_state
b89667eb 8749{
16c381f0
JK
8750 struct thread_control_state thread_control;
8751 struct inferior_control_state inferior_control;
d82142e2
JK
8752
8753 /* Other fields: */
ee841dd8
TT
8754 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8755 int stopped_by_random_signal = 0;
7a292a7a 8756
b89667eb 8757 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8758 struct frame_id selected_frame_id {};
7a292a7a
SS
8759};
8760
c906108c 8761/* Save all of the information associated with the inferior<==>gdb
b89667eb 8762 connection. */
c906108c 8763
cb524840
TT
8764infcall_control_state_up
8765save_infcall_control_state ()
c906108c 8766{
cb524840 8767 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8768 struct thread_info *tp = inferior_thread ();
d6b48e9c 8769 struct inferior *inf = current_inferior ();
7a292a7a 8770
16c381f0
JK
8771 inf_status->thread_control = tp->control;
8772 inf_status->inferior_control = inf->control;
d82142e2 8773
8358c15c 8774 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8775 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8776
16c381f0
JK
8777 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8778 chain. If caller's caller is walking the chain, they'll be happier if we
8779 hand them back the original chain when restore_infcall_control_state is
8780 called. */
8781 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8782
8783 /* Other fields: */
8784 inf_status->stop_stack_dummy = stop_stack_dummy;
8785 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8786
206415a3 8787 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8788
7a292a7a 8789 return inf_status;
c906108c
SS
8790}
8791
bf469271
PA
8792static void
8793restore_selected_frame (const frame_id &fid)
c906108c 8794{
bf469271 8795 frame_info *frame = frame_find_by_id (fid);
c906108c 8796
aa0cd9c1
AC
8797 /* If inf_status->selected_frame_id is NULL, there was no previously
8798 selected frame. */
101dcfbe 8799 if (frame == NULL)
c906108c 8800 {
8a3fe4f8 8801 warning (_("Unable to restore previously selected frame."));
bf469271 8802 return;
c906108c
SS
8803 }
8804
0f7d239c 8805 select_frame (frame);
c906108c
SS
8806}
8807
b89667eb
DE
8808/* Restore inferior session state to INF_STATUS. */
8809
c906108c 8810void
16c381f0 8811restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8812{
4e1c45ea 8813 struct thread_info *tp = inferior_thread ();
d6b48e9c 8814 struct inferior *inf = current_inferior ();
4e1c45ea 8815
8358c15c
JK
8816 if (tp->control.step_resume_breakpoint)
8817 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8818
5b79abe7
TT
8819 if (tp->control.exception_resume_breakpoint)
8820 tp->control.exception_resume_breakpoint->disposition
8821 = disp_del_at_next_stop;
8822
d82142e2 8823 /* Handle the bpstat_copy of the chain. */
16c381f0 8824 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8825
16c381f0
JK
8826 tp->control = inf_status->thread_control;
8827 inf->control = inf_status->inferior_control;
d82142e2
JK
8828
8829 /* Other fields: */
8830 stop_stack_dummy = inf_status->stop_stack_dummy;
8831 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8832
b89667eb 8833 if (target_has_stack)
c906108c 8834 {
bf469271 8835 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8836 walking the stack might encounter a garbage pointer and
8837 error() trying to dereference it. */
bf469271
PA
8838 TRY
8839 {
8840 restore_selected_frame (inf_status->selected_frame_id);
8841 }
8842 CATCH (ex, RETURN_MASK_ERROR)
8843 {
8844 exception_fprintf (gdb_stderr, ex,
8845 "Unable to restore previously selected frame:\n");
8846 /* Error in restoring the selected frame. Select the
8847 innermost frame. */
8848 select_frame (get_current_frame ());
8849 }
8850 END_CATCH
c906108c 8851 }
c906108c 8852
ee841dd8 8853 delete inf_status;
7a292a7a 8854}
c906108c
SS
8855
8856void
16c381f0 8857discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8858{
8358c15c
JK
8859 if (inf_status->thread_control.step_resume_breakpoint)
8860 inf_status->thread_control.step_resume_breakpoint->disposition
8861 = disp_del_at_next_stop;
8862
5b79abe7
TT
8863 if (inf_status->thread_control.exception_resume_breakpoint)
8864 inf_status->thread_control.exception_resume_breakpoint->disposition
8865 = disp_del_at_next_stop;
8866
1777feb0 8867 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8868 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8869
ee841dd8 8870 delete inf_status;
7a292a7a 8871}
b89667eb 8872\f
7f89fd65 8873/* See infrun.h. */
0c557179
SDJ
8874
8875void
8876clear_exit_convenience_vars (void)
8877{
8878 clear_internalvar (lookup_internalvar ("_exitsignal"));
8879 clear_internalvar (lookup_internalvar ("_exitcode"));
8880}
c5aa993b 8881\f
488f131b 8882
b2175913
MS
8883/* User interface for reverse debugging:
8884 Set exec-direction / show exec-direction commands
8885 (returns error unless target implements to_set_exec_direction method). */
8886
170742de 8887enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8888static const char exec_forward[] = "forward";
8889static const char exec_reverse[] = "reverse";
8890static const char *exec_direction = exec_forward;
40478521 8891static const char *const exec_direction_names[] = {
b2175913
MS
8892 exec_forward,
8893 exec_reverse,
8894 NULL
8895};
8896
8897static void
eb4c3f4a 8898set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8899 struct cmd_list_element *cmd)
8900{
8901 if (target_can_execute_reverse)
8902 {
8903 if (!strcmp (exec_direction, exec_forward))
8904 execution_direction = EXEC_FORWARD;
8905 else if (!strcmp (exec_direction, exec_reverse))
8906 execution_direction = EXEC_REVERSE;
8907 }
8bbed405
MS
8908 else
8909 {
8910 exec_direction = exec_forward;
8911 error (_("Target does not support this operation."));
8912 }
b2175913
MS
8913}
8914
8915static void
8916show_exec_direction_func (struct ui_file *out, int from_tty,
8917 struct cmd_list_element *cmd, const char *value)
8918{
8919 switch (execution_direction) {
8920 case EXEC_FORWARD:
8921 fprintf_filtered (out, _("Forward.\n"));
8922 break;
8923 case EXEC_REVERSE:
8924 fprintf_filtered (out, _("Reverse.\n"));
8925 break;
b2175913 8926 default:
d8b34453
PA
8927 internal_error (__FILE__, __LINE__,
8928 _("bogus execution_direction value: %d"),
8929 (int) execution_direction);
b2175913
MS
8930 }
8931}
8932
d4db2f36
PA
8933static void
8934show_schedule_multiple (struct ui_file *file, int from_tty,
8935 struct cmd_list_element *c, const char *value)
8936{
3e43a32a
MS
8937 fprintf_filtered (file, _("Resuming the execution of threads "
8938 "of all processes is %s.\n"), value);
d4db2f36 8939}
ad52ddc6 8940
22d2b532
SDJ
8941/* Implementation of `siginfo' variable. */
8942
8943static const struct internalvar_funcs siginfo_funcs =
8944{
8945 siginfo_make_value,
8946 NULL,
8947 NULL
8948};
8949
372316f1
PA
8950/* Callback for infrun's target events source. This is marked when a
8951 thread has a pending status to process. */
8952
8953static void
8954infrun_async_inferior_event_handler (gdb_client_data data)
8955{
372316f1
PA
8956 inferior_event_handler (INF_REG_EVENT, NULL);
8957}
8958
c906108c 8959void
96baa820 8960_initialize_infrun (void)
c906108c 8961{
de0bea00 8962 struct cmd_list_element *c;
c906108c 8963
372316f1
PA
8964 /* Register extra event sources in the event loop. */
8965 infrun_async_inferior_event_token
8966 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8967
11db9430 8968 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8969What debugger does when program gets various signals.\n\
8970Specify a signal as argument to print info on that signal only."));
c906108c
SS
8971 add_info_alias ("handle", "signals", 0);
8972
de0bea00 8973 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8974Specify how to handle signals.\n\
486c7739 8975Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8976Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8977If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8978will be displayed instead.\n\
8979\n\
c906108c
SS
8980Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8981from 1-15 are allowed for compatibility with old versions of GDB.\n\
8982Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8983The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8984used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8985\n\
1bedd215 8986Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8987\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8988Stop means reenter debugger if this signal happens (implies print).\n\
8989Print means print a message if this signal happens.\n\
8990Pass means let program see this signal; otherwise program doesn't know.\n\
8991Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8992Pass and Stop may be combined.\n\
8993\n\
8994Multiple signals may be specified. Signal numbers and signal names\n\
8995may be interspersed with actions, with the actions being performed for\n\
8996all signals cumulatively specified."));
de0bea00 8997 set_cmd_completer (c, handle_completer);
486c7739 8998
c906108c 8999 if (!dbx_commands)
1a966eab
AC
9000 stop_command = add_cmd ("stop", class_obscure,
9001 not_just_help_class_command, _("\
9002There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9003This allows you to set a list of commands to be run each time execution\n\
1a966eab 9004of the program stops."), &cmdlist);
c906108c 9005
ccce17b0 9006 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9007Set inferior debugging."), _("\
9008Show inferior debugging."), _("\
9009When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9010 NULL,
9011 show_debug_infrun,
9012 &setdebuglist, &showdebuglist);
527159b7 9013
3e43a32a
MS
9014 add_setshow_boolean_cmd ("displaced", class_maintenance,
9015 &debug_displaced, _("\
237fc4c9
PA
9016Set displaced stepping debugging."), _("\
9017Show displaced stepping debugging."), _("\
9018When non-zero, displaced stepping specific debugging is enabled."),
9019 NULL,
9020 show_debug_displaced,
9021 &setdebuglist, &showdebuglist);
9022
ad52ddc6
PA
9023 add_setshow_boolean_cmd ("non-stop", no_class,
9024 &non_stop_1, _("\
9025Set whether gdb controls the inferior in non-stop mode."), _("\
9026Show whether gdb controls the inferior in non-stop mode."), _("\
9027When debugging a multi-threaded program and this setting is\n\
9028off (the default, also called all-stop mode), when one thread stops\n\
9029(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9030all other threads in the program while you interact with the thread of\n\
9031interest. When you continue or step a thread, you can allow the other\n\
9032threads to run, or have them remain stopped, but while you inspect any\n\
9033thread's state, all threads stop.\n\
9034\n\
9035In non-stop mode, when one thread stops, other threads can continue\n\
9036to run freely. You'll be able to step each thread independently,\n\
9037leave it stopped or free to run as needed."),
9038 set_non_stop,
9039 show_non_stop,
9040 &setlist,
9041 &showlist);
9042
adc6a863 9043 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9044 {
9045 signal_stop[i] = 1;
9046 signal_print[i] = 1;
9047 signal_program[i] = 1;
ab04a2af 9048 signal_catch[i] = 0;
c906108c
SS
9049 }
9050
4d9d9d04
PA
9051 /* Signals caused by debugger's own actions should not be given to
9052 the program afterwards.
9053
9054 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9055 explicitly specifies that it should be delivered to the target
9056 program. Typically, that would occur when a user is debugging a
9057 target monitor on a simulator: the target monitor sets a
9058 breakpoint; the simulator encounters this breakpoint and halts
9059 the simulation handing control to GDB; GDB, noting that the stop
9060 address doesn't map to any known breakpoint, returns control back
9061 to the simulator; the simulator then delivers the hardware
9062 equivalent of a GDB_SIGNAL_TRAP to the program being
9063 debugged. */
a493e3e2
PA
9064 signal_program[GDB_SIGNAL_TRAP] = 0;
9065 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9066
9067 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9068 signal_stop[GDB_SIGNAL_ALRM] = 0;
9069 signal_print[GDB_SIGNAL_ALRM] = 0;
9070 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9071 signal_print[GDB_SIGNAL_VTALRM] = 0;
9072 signal_stop[GDB_SIGNAL_PROF] = 0;
9073 signal_print[GDB_SIGNAL_PROF] = 0;
9074 signal_stop[GDB_SIGNAL_CHLD] = 0;
9075 signal_print[GDB_SIGNAL_CHLD] = 0;
9076 signal_stop[GDB_SIGNAL_IO] = 0;
9077 signal_print[GDB_SIGNAL_IO] = 0;
9078 signal_stop[GDB_SIGNAL_POLL] = 0;
9079 signal_print[GDB_SIGNAL_POLL] = 0;
9080 signal_stop[GDB_SIGNAL_URG] = 0;
9081 signal_print[GDB_SIGNAL_URG] = 0;
9082 signal_stop[GDB_SIGNAL_WINCH] = 0;
9083 signal_print[GDB_SIGNAL_WINCH] = 0;
9084 signal_stop[GDB_SIGNAL_PRIO] = 0;
9085 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9086
cd0fc7c3
SS
9087 /* These signals are used internally by user-level thread
9088 implementations. (See signal(5) on Solaris.) Like the above
9089 signals, a healthy program receives and handles them as part of
9090 its normal operation. */
a493e3e2
PA
9091 signal_stop[GDB_SIGNAL_LWP] = 0;
9092 signal_print[GDB_SIGNAL_LWP] = 0;
9093 signal_stop[GDB_SIGNAL_WAITING] = 0;
9094 signal_print[GDB_SIGNAL_WAITING] = 0;
9095 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9096 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9097 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9098 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9099
2455069d
UW
9100 /* Update cached state. */
9101 signal_cache_update (-1);
9102
85c07804
AC
9103 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9104 &stop_on_solib_events, _("\
9105Set stopping for shared library events."), _("\
9106Show stopping for shared library events."), _("\
c906108c
SS
9107If nonzero, gdb will give control to the user when the dynamic linker\n\
9108notifies gdb of shared library events. The most common event of interest\n\
85c07804 9109to the user would be loading/unloading of a new library."),
f9e14852 9110 set_stop_on_solib_events,
920d2a44 9111 show_stop_on_solib_events,
85c07804 9112 &setlist, &showlist);
c906108c 9113
7ab04401
AC
9114 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9115 follow_fork_mode_kind_names,
9116 &follow_fork_mode_string, _("\
9117Set debugger response to a program call of fork or vfork."), _("\
9118Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9119A fork or vfork creates a new process. follow-fork-mode can be:\n\
9120 parent - the original process is debugged after a fork\n\
9121 child - the new process is debugged after a fork\n\
ea1dd7bc 9122The unfollowed process will continue to run.\n\
7ab04401
AC
9123By default, the debugger will follow the parent process."),
9124 NULL,
920d2a44 9125 show_follow_fork_mode_string,
7ab04401
AC
9126 &setlist, &showlist);
9127
6c95b8df
PA
9128 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9129 follow_exec_mode_names,
9130 &follow_exec_mode_string, _("\
9131Set debugger response to a program call of exec."), _("\
9132Show debugger response to a program call of exec."), _("\
9133An exec call replaces the program image of a process.\n\
9134\n\
9135follow-exec-mode can be:\n\
9136\n\
cce7e648 9137 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9138to this new inferior. The program the process was running before\n\
9139the exec call can be restarted afterwards by restarting the original\n\
9140inferior.\n\
9141\n\
9142 same - the debugger keeps the process bound to the same inferior.\n\
9143The new executable image replaces the previous executable loaded in\n\
9144the inferior. Restarting the inferior after the exec call restarts\n\
9145the executable the process was running after the exec call.\n\
9146\n\
9147By default, the debugger will use the same inferior."),
9148 NULL,
9149 show_follow_exec_mode_string,
9150 &setlist, &showlist);
9151
7ab04401
AC
9152 add_setshow_enum_cmd ("scheduler-locking", class_run,
9153 scheduler_enums, &scheduler_mode, _("\
9154Set mode for locking scheduler during execution."), _("\
9155Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9156off == no locking (threads may preempt at any time)\n\
9157on == full locking (no thread except the current thread may run)\n\
9158 This applies to both normal execution and replay mode.\n\
9159step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9160 In this mode, other threads may run during other commands.\n\
9161 This applies to both normal execution and replay mode.\n\
9162replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9163 set_schedlock_func, /* traps on target vector */
920d2a44 9164 show_scheduler_mode,
7ab04401 9165 &setlist, &showlist);
5fbbeb29 9166
d4db2f36
PA
9167 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9168Set mode for resuming threads of all processes."), _("\
9169Show mode for resuming threads of all processes."), _("\
9170When on, execution commands (such as 'continue' or 'next') resume all\n\
9171threads of all processes. When off (which is the default), execution\n\
9172commands only resume the threads of the current process. The set of\n\
9173threads that are resumed is further refined by the scheduler-locking\n\
9174mode (see help set scheduler-locking)."),
9175 NULL,
9176 show_schedule_multiple,
9177 &setlist, &showlist);
9178
5bf193a2
AC
9179 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9180Set mode of the step operation."), _("\
9181Show mode of the step operation."), _("\
9182When set, doing a step over a function without debug line information\n\
9183will stop at the first instruction of that function. Otherwise, the\n\
9184function is skipped and the step command stops at a different source line."),
9185 NULL,
920d2a44 9186 show_step_stop_if_no_debug,
5bf193a2 9187 &setlist, &showlist);
ca6724c1 9188
72d0e2c5
YQ
9189 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9190 &can_use_displaced_stepping, _("\
237fc4c9
PA
9191Set debugger's willingness to use displaced stepping."), _("\
9192Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9193If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9194supported by the target architecture. If off, gdb will not use displaced\n\
9195stepping to step over breakpoints, even if such is supported by the target\n\
9196architecture. If auto (which is the default), gdb will use displaced stepping\n\
9197if the target architecture supports it and non-stop mode is active, but will not\n\
9198use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9199 NULL,
9200 show_can_use_displaced_stepping,
9201 &setlist, &showlist);
237fc4c9 9202
b2175913
MS
9203 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9204 &exec_direction, _("Set direction of execution.\n\
9205Options are 'forward' or 'reverse'."),
9206 _("Show direction of execution (forward/reverse)."),
9207 _("Tells gdb whether to execute forward or backward."),
9208 set_exec_direction_func, show_exec_direction_func,
9209 &setlist, &showlist);
9210
6c95b8df
PA
9211 /* Set/show detach-on-fork: user-settable mode. */
9212
9213 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9214Set whether gdb will detach the child of a fork."), _("\
9215Show whether gdb will detach the child of a fork."), _("\
9216Tells gdb whether to detach the child of a fork."),
9217 NULL, NULL, &setlist, &showlist);
9218
03583c20
UW
9219 /* Set/show disable address space randomization mode. */
9220
9221 add_setshow_boolean_cmd ("disable-randomization", class_support,
9222 &disable_randomization, _("\
9223Set disabling of debuggee's virtual address space randomization."), _("\
9224Show disabling of debuggee's virtual address space randomization."), _("\
9225When this mode is on (which is the default), randomization of the virtual\n\
9226address space is disabled. Standalone programs run with the randomization\n\
9227enabled by default on some platforms."),
9228 &set_disable_randomization,
9229 &show_disable_randomization,
9230 &setlist, &showlist);
9231
ca6724c1 9232 /* ptid initializations */
ca6724c1
KB
9233 inferior_ptid = null_ptid;
9234 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9235
76727919
TT
9236 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9237 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9238 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9239 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9240
9241 /* Explicitly create without lookup, since that tries to create a
9242 value with a void typed value, and when we get here, gdbarch
9243 isn't initialized yet. At this point, we're quite sure there
9244 isn't another convenience variable of the same name. */
22d2b532 9245 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9246
9247 add_setshow_boolean_cmd ("observer", no_class,
9248 &observer_mode_1, _("\
9249Set whether gdb controls the inferior in observer mode."), _("\
9250Show whether gdb controls the inferior in observer mode."), _("\
9251In observer mode, GDB can get data from the inferior, but not\n\
9252affect its execution. Registers and memory may not be changed,\n\
9253breakpoints may not be set, and the program cannot be interrupted\n\
9254or signalled."),
9255 set_observer_mode,
9256 show_observer_mode,
9257 &setlist,
9258 &showlist);
c906108c 9259}