]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* po/hr.po: New Croation translation.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
28106bc2
SDJ
58#include "probe.h"
59#include "objfiles.h"
de0bea00 60#include "completer.h"
c906108c
SS
61
62/* Prototypes for local functions */
63
96baa820 64static void signals_info (char *, int);
c906108c 65
96baa820 66static void handle_command (char *, int);
c906108c 67
2ea28649 68static void sig_print_info (enum gdb_signal);
c906108c 69
96baa820 70static void sig_print_header (void);
c906108c 71
74b7792f 72static void resume_cleanups (void *);
c906108c 73
96baa820 74static int hook_stop_stub (void *);
c906108c 75
96baa820
JM
76static int restore_selected_frame (void *);
77
4ef3f3be 78static int follow_fork (void);
96baa820
JM
79
80static void set_schedlock_func (char *args, int from_tty,
488f131b 81 struct cmd_list_element *c);
96baa820 82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
b3444185
PA
85static int currently_stepping_or_nexting_callback (struct thread_info *tp,
86 void *data);
a7212384 87
96baa820
JM
88static void xdb_handle_command (char *args, int from_tty);
89
6a6b96b9 90static int prepare_to_proceed (int);
ea67f13b 91
33d62d64
JK
92static void print_exited_reason (int exitstatus);
93
2ea28649 94static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
95
96static void print_no_history_reason (void);
97
2ea28649 98static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
99
100static void print_end_stepping_range_reason (void);
101
96baa820 102void _initialize_infrun (void);
43ff13b4 103
e58b0e63
PA
104void nullify_last_target_wait_ptid (void);
105
2c03e5be 106static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
107
108static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
109
2484c66b
UW
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
5fbbeb29
CF
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
920d2a44
AC
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
5fbbeb29 122
1777feb0 123/* In asynchronous mode, but simulating synchronous execution. */
96baa820 124
43ff13b4
JM
125int sync_execution = 0;
126
c906108c
SS
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
96baa820
JM
129 running in. */
130
39f77062 131static ptid_t previous_inferior_ptid;
7a292a7a 132
6c95b8df
PA
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
237fc4c9
PA
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
ccce17b0 144unsigned int debug_infrun = 0;
920d2a44
AC
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
527159b7 151
03583c20
UW
152
153/* Support for disabling address space randomization. */
154
155int disable_randomization = 1;
156
157static void
158show_disable_randomization (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 if (target_supports_disable_randomization ())
162 fprintf_filtered (file,
163 _("Disabling randomization of debuggee's "
164 "virtual address space is %s.\n"),
165 value);
166 else
167 fputs_filtered (_("Disabling randomization of debuggee's "
168 "virtual address space is unsupported on\n"
169 "this platform.\n"), file);
170}
171
172static void
173set_disable_randomization (char *args, int from_tty,
174 struct cmd_list_element *c)
175{
176 if (!target_supports_disable_randomization ())
177 error (_("Disabling randomization of debuggee's "
178 "virtual address space is unsupported on\n"
179 "this platform."));
180}
181
182
d4f3574e
SS
183/* If the program uses ELF-style shared libraries, then calls to
184 functions in shared libraries go through stubs, which live in a
185 table called the PLT (Procedure Linkage Table). The first time the
186 function is called, the stub sends control to the dynamic linker,
187 which looks up the function's real address, patches the stub so
188 that future calls will go directly to the function, and then passes
189 control to the function.
190
191 If we are stepping at the source level, we don't want to see any of
192 this --- we just want to skip over the stub and the dynamic linker.
193 The simple approach is to single-step until control leaves the
194 dynamic linker.
195
ca557f44
AC
196 However, on some systems (e.g., Red Hat's 5.2 distribution) the
197 dynamic linker calls functions in the shared C library, so you
198 can't tell from the PC alone whether the dynamic linker is still
199 running. In this case, we use a step-resume breakpoint to get us
200 past the dynamic linker, as if we were using "next" to step over a
201 function call.
d4f3574e 202
cfd8ab24 203 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
204 linker code or not. Normally, this means we single-step. However,
205 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
206 address where we can place a step-resume breakpoint to get past the
207 linker's symbol resolution function.
208
cfd8ab24 209 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
210 pretty portable way, by comparing the PC against the address ranges
211 of the dynamic linker's sections.
212
213 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
214 it depends on internal details of the dynamic linker. It's usually
215 not too hard to figure out where to put a breakpoint, but it
216 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
217 sanity checking. If it can't figure things out, returning zero and
218 getting the (possibly confusing) stepping behavior is better than
219 signalling an error, which will obscure the change in the
220 inferior's state. */
c906108c 221
c906108c
SS
222/* This function returns TRUE if pc is the address of an instruction
223 that lies within the dynamic linker (such as the event hook, or the
224 dld itself).
225
226 This function must be used only when a dynamic linker event has
227 been caught, and the inferior is being stepped out of the hook, or
228 undefined results are guaranteed. */
229
230#ifndef SOLIB_IN_DYNAMIC_LINKER
231#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
232#endif
233
d914c394
SS
234/* "Observer mode" is somewhat like a more extreme version of
235 non-stop, in which all GDB operations that might affect the
236 target's execution have been disabled. */
237
238static int non_stop_1 = 0;
239
240int observer_mode = 0;
241static int observer_mode_1 = 0;
242
243static void
244set_observer_mode (char *args, int from_tty,
245 struct cmd_list_element *c)
246{
247 extern int pagination_enabled;
248
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
272 target_async_permitted = 1;
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = 1;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280}
281
282static void
283show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285{
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287}
288
289/* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295void
296update_observer_mode (void)
297{
298 int newval;
299
300 newval = (!may_insert_breakpoints
301 && !may_insert_tracepoints
302 && may_insert_fast_tracepoints
303 && !may_stop
304 && non_stop);
305
306 /* Let the user know if things change. */
307 if (newval != observer_mode)
308 printf_filtered (_("Observer mode is now %s.\n"),
309 (newval ? "on" : "off"));
310
311 observer_mode = observer_mode_1 = newval;
312}
c2c6d25f 313
c906108c
SS
314/* Tables of how to react to signals; the user sets them. */
315
316static unsigned char *signal_stop;
317static unsigned char *signal_print;
318static unsigned char *signal_program;
319
2455069d
UW
320/* Table of signals that the target may silently handle.
321 This is automatically determined from the flags above,
322 and simply cached here. */
323static unsigned char *signal_pass;
324
c906108c
SS
325#define SET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 1; \
331 } while (0)
332
333#define UNSET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 0; \
339 } while (0)
340
9b224c5e
PA
341/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
342 this function is to avoid exporting `signal_program'. */
343
344void
345update_signals_program_target (void)
346{
a493e3e2 347 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
348}
349
1777feb0 350/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 351
edb3359d 352#define RESUME_ALL minus_one_ptid
c906108c
SS
353
354/* Command list pointer for the "stop" placeholder. */
355
356static struct cmd_list_element *stop_command;
357
c906108c
SS
358/* Function inferior was in as of last step command. */
359
360static struct symbol *step_start_function;
361
c906108c
SS
362/* Nonzero if we want to give control to the user when we're notified
363 of shared library events by the dynamic linker. */
628fe4e4 364int stop_on_solib_events;
920d2a44
AC
365static void
366show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368{
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371}
c906108c 372
c906108c
SS
373/* Nonzero means expecting a trace trap
374 and should stop the inferior and return silently when it happens. */
375
376int stop_after_trap;
377
642fd101
DE
378/* Save register contents here when executing a "finish" command or are
379 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
380 Thus this contains the return value from the called function (assuming
381 values are returned in a register). */
382
72cec141 383struct regcache *stop_registers;
c906108c 384
c906108c
SS
385/* Nonzero after stop if current stack frame should be printed. */
386
387static int stop_print_frame;
388
e02bc4cc 389/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
390 returned by target_wait()/deprecated_target_wait_hook(). This
391 information is returned by get_last_target_status(). */
39f77062 392static ptid_t target_last_wait_ptid;
e02bc4cc
DS
393static struct target_waitstatus target_last_waitstatus;
394
0d1e5fa7
PA
395static void context_switch (ptid_t ptid);
396
4e1c45ea 397void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
398
399void init_infwait_state (void);
a474d7c2 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
e58b0e63
PA
422/* Tell the target to follow the fork we're stopped at. Returns true
423 if the inferior should be resumed; false, if the target for some
424 reason decided it's best not to resume. */
425
6604731b 426static int
4ef3f3be 427follow_fork (void)
c906108c 428{
ea1dd7bc 429 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
430 int should_resume = 1;
431 struct thread_info *tp;
432
433 /* Copy user stepping state to the new inferior thread. FIXME: the
434 followed fork child thread should have a copy of most of the
4e3990f4
DE
435 parent thread structure's run control related fields, not just these.
436 Initialized to avoid "may be used uninitialized" warnings from gcc. */
437 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 438 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
439 CORE_ADDR step_range_start = 0;
440 CORE_ADDR step_range_end = 0;
441 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
442
443 if (!non_stop)
444 {
445 ptid_t wait_ptid;
446 struct target_waitstatus wait_status;
447
448 /* Get the last target status returned by target_wait(). */
449 get_last_target_status (&wait_ptid, &wait_status);
450
451 /* If not stopped at a fork event, then there's nothing else to
452 do. */
453 if (wait_status.kind != TARGET_WAITKIND_FORKED
454 && wait_status.kind != TARGET_WAITKIND_VFORKED)
455 return 1;
456
457 /* Check if we switched over from WAIT_PTID, since the event was
458 reported. */
459 if (!ptid_equal (wait_ptid, minus_one_ptid)
460 && !ptid_equal (inferior_ptid, wait_ptid))
461 {
462 /* We did. Switch back to WAIT_PTID thread, to tell the
463 target to follow it (in either direction). We'll
464 afterwards refuse to resume, and inform the user what
465 happened. */
466 switch_to_thread (wait_ptid);
467 should_resume = 0;
468 }
469 }
470
471 tp = inferior_thread ();
472
473 /* If there were any forks/vforks that were caught and are now to be
474 followed, then do so now. */
475 switch (tp->pending_follow.kind)
476 {
477 case TARGET_WAITKIND_FORKED:
478 case TARGET_WAITKIND_VFORKED:
479 {
480 ptid_t parent, child;
481
482 /* If the user did a next/step, etc, over a fork call,
483 preserve the stepping state in the fork child. */
484 if (follow_child && should_resume)
485 {
8358c15c
JK
486 step_resume_breakpoint = clone_momentary_breakpoint
487 (tp->control.step_resume_breakpoint);
16c381f0
JK
488 step_range_start = tp->control.step_range_start;
489 step_range_end = tp->control.step_range_end;
490 step_frame_id = tp->control.step_frame_id;
186c406b
TT
491 exception_resume_breakpoint
492 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
493
494 /* For now, delete the parent's sr breakpoint, otherwise,
495 parent/child sr breakpoints are considered duplicates,
496 and the child version will not be installed. Remove
497 this when the breakpoints module becomes aware of
498 inferiors and address spaces. */
499 delete_step_resume_breakpoint (tp);
16c381f0
JK
500 tp->control.step_range_start = 0;
501 tp->control.step_range_end = 0;
502 tp->control.step_frame_id = null_frame_id;
186c406b 503 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
504 }
505
506 parent = inferior_ptid;
507 child = tp->pending_follow.value.related_pid;
508
509 /* Tell the target to do whatever is necessary to follow
510 either parent or child. */
511 if (target_follow_fork (follow_child))
512 {
513 /* Target refused to follow, or there's some other reason
514 we shouldn't resume. */
515 should_resume = 0;
516 }
517 else
518 {
519 /* This pending follow fork event is now handled, one way
520 or another. The previous selected thread may be gone
521 from the lists by now, but if it is still around, need
522 to clear the pending follow request. */
e09875d4 523 tp = find_thread_ptid (parent);
e58b0e63
PA
524 if (tp)
525 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
526
527 /* This makes sure we don't try to apply the "Switched
528 over from WAIT_PID" logic above. */
529 nullify_last_target_wait_ptid ();
530
1777feb0 531 /* If we followed the child, switch to it... */
e58b0e63
PA
532 if (follow_child)
533 {
534 switch_to_thread (child);
535
536 /* ... and preserve the stepping state, in case the
537 user was stepping over the fork call. */
538 if (should_resume)
539 {
540 tp = inferior_thread ();
8358c15c
JK
541 tp->control.step_resume_breakpoint
542 = step_resume_breakpoint;
16c381f0
JK
543 tp->control.step_range_start = step_range_start;
544 tp->control.step_range_end = step_range_end;
545 tp->control.step_frame_id = step_frame_id;
186c406b
TT
546 tp->control.exception_resume_breakpoint
547 = exception_resume_breakpoint;
e58b0e63
PA
548 }
549 else
550 {
551 /* If we get here, it was because we're trying to
552 resume from a fork catchpoint, but, the user
553 has switched threads away from the thread that
554 forked. In that case, the resume command
555 issued is most likely not applicable to the
556 child, so just warn, and refuse to resume. */
3e43a32a
MS
557 warning (_("Not resuming: switched threads "
558 "before following fork child.\n"));
e58b0e63
PA
559 }
560
561 /* Reset breakpoints in the child as appropriate. */
562 follow_inferior_reset_breakpoints ();
563 }
564 else
565 switch_to_thread (parent);
566 }
567 }
568 break;
569 case TARGET_WAITKIND_SPURIOUS:
570 /* Nothing to follow. */
571 break;
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected pending_follow.kind %d\n",
575 tp->pending_follow.kind);
576 break;
577 }
c906108c 578
e58b0e63 579 return should_resume;
c906108c
SS
580}
581
6604731b
DJ
582void
583follow_inferior_reset_breakpoints (void)
c906108c 584{
4e1c45ea
PA
585 struct thread_info *tp = inferior_thread ();
586
6604731b
DJ
587 /* Was there a step_resume breakpoint? (There was if the user
588 did a "next" at the fork() call.) If so, explicitly reset its
589 thread number.
590
591 step_resumes are a form of bp that are made to be per-thread.
592 Since we created the step_resume bp when the parent process
593 was being debugged, and now are switching to the child process,
594 from the breakpoint package's viewpoint, that's a switch of
595 "threads". We must update the bp's notion of which thread
596 it is for, or it'll be ignored when it triggers. */
597
8358c15c
JK
598 if (tp->control.step_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 600
186c406b
TT
601 if (tp->control.exception_resume_breakpoint)
602 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
603
6604731b
DJ
604 /* Reinsert all breakpoints in the child. The user may have set
605 breakpoints after catching the fork, in which case those
606 were never set in the child, but only in the parent. This makes
607 sure the inserted breakpoints match the breakpoint list. */
608
609 breakpoint_re_set ();
610 insert_breakpoints ();
c906108c 611}
c906108c 612
6c95b8df
PA
613/* The child has exited or execed: resume threads of the parent the
614 user wanted to be executing. */
615
616static int
617proceed_after_vfork_done (struct thread_info *thread,
618 void *arg)
619{
620 int pid = * (int *) arg;
621
622 if (ptid_get_pid (thread->ptid) == pid
623 && is_running (thread->ptid)
624 && !is_executing (thread->ptid)
625 && !thread->stop_requested
a493e3e2 626 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
627 {
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog,
630 "infrun: resuming vfork parent thread %s\n",
631 target_pid_to_str (thread->ptid));
632
633 switch_to_thread (thread->ptid);
634 clear_proceed_status ();
a493e3e2 635 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
636 }
637
638 return 0;
639}
640
641/* Called whenever we notice an exec or exit event, to handle
642 detaching or resuming a vfork parent. */
643
644static void
645handle_vfork_child_exec_or_exit (int exec)
646{
647 struct inferior *inf = current_inferior ();
648
649 if (inf->vfork_parent)
650 {
651 int resume_parent = -1;
652
653 /* This exec or exit marks the end of the shared memory region
654 between the parent and the child. If the user wanted to
655 detach from the parent, now is the time. */
656
657 if (inf->vfork_parent->pending_detach)
658 {
659 struct thread_info *tp;
660 struct cleanup *old_chain;
661 struct program_space *pspace;
662 struct address_space *aspace;
663
1777feb0 664 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
665
666 old_chain = make_cleanup_restore_current_thread ();
667
668 /* We're letting loose of the parent. */
669 tp = any_live_thread_of_process (inf->vfork_parent->pid);
670 switch_to_thread (tp->ptid);
671
672 /* We're about to detach from the parent, which implicitly
673 removes breakpoints from its address space. There's a
674 catch here: we want to reuse the spaces for the child,
675 but, parent/child are still sharing the pspace at this
676 point, although the exec in reality makes the kernel give
677 the child a fresh set of new pages. The problem here is
678 that the breakpoints module being unaware of this, would
679 likely chose the child process to write to the parent
680 address space. Swapping the child temporarily away from
681 the spaces has the desired effect. Yes, this is "sort
682 of" a hack. */
683
684 pspace = inf->pspace;
685 aspace = inf->aspace;
686 inf->aspace = NULL;
687 inf->pspace = NULL;
688
689 if (debug_infrun || info_verbose)
690 {
691 target_terminal_ours ();
692
693 if (exec)
694 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
695 "Detaching vfork parent process "
696 "%d after child exec.\n",
6c95b8df
PA
697 inf->vfork_parent->pid);
698 else
699 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
700 "Detaching vfork parent process "
701 "%d after child exit.\n",
6c95b8df
PA
702 inf->vfork_parent->pid);
703 }
704
705 target_detach (NULL, 0);
706
707 /* Put it back. */
708 inf->pspace = pspace;
709 inf->aspace = aspace;
710
711 do_cleanups (old_chain);
712 }
713 else if (exec)
714 {
715 /* We're staying attached to the parent, so, really give the
716 child a new address space. */
717 inf->pspace = add_program_space (maybe_new_address_space ());
718 inf->aspace = inf->pspace->aspace;
719 inf->removable = 1;
720 set_current_program_space (inf->pspace);
721
722 resume_parent = inf->vfork_parent->pid;
723
724 /* Break the bonds. */
725 inf->vfork_parent->vfork_child = NULL;
726 }
727 else
728 {
729 struct cleanup *old_chain;
730 struct program_space *pspace;
731
732 /* If this is a vfork child exiting, then the pspace and
733 aspaces were shared with the parent. Since we're
734 reporting the process exit, we'll be mourning all that is
735 found in the address space, and switching to null_ptid,
736 preparing to start a new inferior. But, since we don't
737 want to clobber the parent's address/program spaces, we
738 go ahead and create a new one for this exiting
739 inferior. */
740
741 /* Switch to null_ptid, so that clone_program_space doesn't want
742 to read the selected frame of a dead process. */
743 old_chain = save_inferior_ptid ();
744 inferior_ptid = null_ptid;
745
746 /* This inferior is dead, so avoid giving the breakpoints
747 module the option to write through to it (cloning a
748 program space resets breakpoints). */
749 inf->aspace = NULL;
750 inf->pspace = NULL;
751 pspace = add_program_space (maybe_new_address_space ());
752 set_current_program_space (pspace);
753 inf->removable = 1;
7dcd53a0 754 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
755 clone_program_space (pspace, inf->vfork_parent->pspace);
756 inf->pspace = pspace;
757 inf->aspace = pspace->aspace;
758
759 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 760 inferior. */
6c95b8df
PA
761 do_cleanups (old_chain);
762
763 resume_parent = inf->vfork_parent->pid;
764 /* Break the bonds. */
765 inf->vfork_parent->vfork_child = NULL;
766 }
767
768 inf->vfork_parent = NULL;
769
770 gdb_assert (current_program_space == inf->pspace);
771
772 if (non_stop && resume_parent != -1)
773 {
774 /* If the user wanted the parent to be running, let it go
775 free now. */
776 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
777
778 if (debug_infrun)
3e43a32a
MS
779 fprintf_unfiltered (gdb_stdlog,
780 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
781 resume_parent);
782
783 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
784
785 do_cleanups (old_chain);
786 }
787 }
788}
789
790/* Enum strings for "set|show displaced-stepping". */
791
792static const char follow_exec_mode_new[] = "new";
793static const char follow_exec_mode_same[] = "same";
40478521 794static const char *const follow_exec_mode_names[] =
6c95b8df
PA
795{
796 follow_exec_mode_new,
797 follow_exec_mode_same,
798 NULL,
799};
800
801static const char *follow_exec_mode_string = follow_exec_mode_same;
802static void
803show_follow_exec_mode_string (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c, const char *value)
805{
806 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
807}
808
1777feb0 809/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 810
c906108c 811static void
3a3e9ee3 812follow_exec (ptid_t pid, char *execd_pathname)
c906108c 813{
4e1c45ea 814 struct thread_info *th = inferior_thread ();
6c95b8df 815 struct inferior *inf = current_inferior ();
7a292a7a 816
c906108c
SS
817 /* This is an exec event that we actually wish to pay attention to.
818 Refresh our symbol table to the newly exec'd program, remove any
819 momentary bp's, etc.
820
821 If there are breakpoints, they aren't really inserted now,
822 since the exec() transformed our inferior into a fresh set
823 of instructions.
824
825 We want to preserve symbolic breakpoints on the list, since
826 we have hopes that they can be reset after the new a.out's
827 symbol table is read.
828
829 However, any "raw" breakpoints must be removed from the list
830 (e.g., the solib bp's), since their address is probably invalid
831 now.
832
833 And, we DON'T want to call delete_breakpoints() here, since
834 that may write the bp's "shadow contents" (the instruction
835 value that was overwritten witha TRAP instruction). Since
1777feb0 836 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
837
838 mark_breakpoints_out ();
839
c906108c
SS
840 update_breakpoints_after_exec ();
841
842 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 843 statement through an exec(). */
8358c15c 844 th->control.step_resume_breakpoint = NULL;
186c406b 845 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
846 th->control.step_range_start = 0;
847 th->control.step_range_end = 0;
c906108c 848
a75724bc
PA
849 /* The target reports the exec event to the main thread, even if
850 some other thread does the exec, and even if the main thread was
851 already stopped --- if debugging in non-stop mode, it's possible
852 the user had the main thread held stopped in the previous image
853 --- release it now. This is the same behavior as step-over-exec
854 with scheduler-locking on in all-stop mode. */
855 th->stop_requested = 0;
856
1777feb0 857 /* What is this a.out's name? */
6c95b8df
PA
858 printf_unfiltered (_("%s is executing new program: %s\n"),
859 target_pid_to_str (inferior_ptid),
860 execd_pathname);
c906108c
SS
861
862 /* We've followed the inferior through an exec. Therefore, the
1777feb0 863 inferior has essentially been killed & reborn. */
7a292a7a 864
c906108c 865 gdb_flush (gdb_stdout);
6ca15a4b
PA
866
867 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
868
869 if (gdb_sysroot && *gdb_sysroot)
870 {
871 char *name = alloca (strlen (gdb_sysroot)
872 + strlen (execd_pathname)
873 + 1);
abbb1732 874
e85a822c
DJ
875 strcpy (name, gdb_sysroot);
876 strcat (name, execd_pathname);
877 execd_pathname = name;
878 }
c906108c 879
cce9b6bf
PA
880 /* Reset the shared library package. This ensures that we get a
881 shlib event when the child reaches "_start", at which point the
882 dld will have had a chance to initialize the child. */
883 /* Also, loading a symbol file below may trigger symbol lookups, and
884 we don't want those to be satisfied by the libraries of the
885 previous incarnation of this process. */
886 no_shared_libraries (NULL, 0);
887
6c95b8df
PA
888 if (follow_exec_mode_string == follow_exec_mode_new)
889 {
890 struct program_space *pspace;
6c95b8df
PA
891
892 /* The user wants to keep the old inferior and program spaces
893 around. Create a new fresh one, and switch to it. */
894
895 inf = add_inferior (current_inferior ()->pid);
896 pspace = add_program_space (maybe_new_address_space ());
897 inf->pspace = pspace;
898 inf->aspace = pspace->aspace;
899
900 exit_inferior_num_silent (current_inferior ()->num);
901
902 set_current_inferior (inf);
903 set_current_program_space (pspace);
904 }
905
906 gdb_assert (current_program_space == inf->pspace);
907
1777feb0 908 /* That a.out is now the one to use. */
6c95b8df
PA
909 exec_file_attach (execd_pathname, 0);
910
c1e56572
JK
911 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
912 (Position Independent Executable) main symbol file will get applied by
913 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
914 the breakpoints with the zero displacement. */
915
7dcd53a0
TT
916 symbol_file_add (execd_pathname,
917 (inf->symfile_flags
918 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
919 NULL, 0);
920
7dcd53a0
TT
921 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
922 set_initial_language ();
c906108c 923
7a292a7a 924#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 925 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 926#else
268a4a75 927 solib_create_inferior_hook (0);
7a292a7a 928#endif
c906108c 929
4efc6507
DE
930 jit_inferior_created_hook ();
931
c1e56572
JK
932 breakpoint_re_set ();
933
c906108c
SS
934 /* Reinsert all breakpoints. (Those which were symbolic have
935 been reset to the proper address in the new a.out, thanks
1777feb0 936 to symbol_file_command...). */
c906108c
SS
937 insert_breakpoints ();
938
939 /* The next resume of this inferior should bring it to the shlib
940 startup breakpoints. (If the user had also set bp's on
941 "main" from the old (parent) process, then they'll auto-
1777feb0 942 matically get reset there in the new process.). */
c906108c
SS
943}
944
945/* Non-zero if we just simulating a single-step. This is needed
946 because we cannot remove the breakpoints in the inferior process
947 until after the `wait' in `wait_for_inferior'. */
948static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
949
950/* The thread we inserted single-step breakpoints for. */
951static ptid_t singlestep_ptid;
952
fd48f117
DJ
953/* PC when we started this single-step. */
954static CORE_ADDR singlestep_pc;
955
9f976b41
DJ
956/* If another thread hit the singlestep breakpoint, we save the original
957 thread here so that we can resume single-stepping it later. */
958static ptid_t saved_singlestep_ptid;
959static int stepping_past_singlestep_breakpoint;
6a6b96b9 960
ca67fcb8
VP
961/* If not equal to null_ptid, this means that after stepping over breakpoint
962 is finished, we need to switch to deferred_step_ptid, and step it.
963
964 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 965 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
966 breakpoint in the thread which hit the breakpoint, but then continue
967 stepping the thread user has selected. */
968static ptid_t deferred_step_ptid;
c906108c 969\f
237fc4c9
PA
970/* Displaced stepping. */
971
972/* In non-stop debugging mode, we must take special care to manage
973 breakpoints properly; in particular, the traditional strategy for
974 stepping a thread past a breakpoint it has hit is unsuitable.
975 'Displaced stepping' is a tactic for stepping one thread past a
976 breakpoint it has hit while ensuring that other threads running
977 concurrently will hit the breakpoint as they should.
978
979 The traditional way to step a thread T off a breakpoint in a
980 multi-threaded program in all-stop mode is as follows:
981
982 a0) Initially, all threads are stopped, and breakpoints are not
983 inserted.
984 a1) We single-step T, leaving breakpoints uninserted.
985 a2) We insert breakpoints, and resume all threads.
986
987 In non-stop debugging, however, this strategy is unsuitable: we
988 don't want to have to stop all threads in the system in order to
989 continue or step T past a breakpoint. Instead, we use displaced
990 stepping:
991
992 n0) Initially, T is stopped, other threads are running, and
993 breakpoints are inserted.
994 n1) We copy the instruction "under" the breakpoint to a separate
995 location, outside the main code stream, making any adjustments
996 to the instruction, register, and memory state as directed by
997 T's architecture.
998 n2) We single-step T over the instruction at its new location.
999 n3) We adjust the resulting register and memory state as directed
1000 by T's architecture. This includes resetting T's PC to point
1001 back into the main instruction stream.
1002 n4) We resume T.
1003
1004 This approach depends on the following gdbarch methods:
1005
1006 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1007 indicate where to copy the instruction, and how much space must
1008 be reserved there. We use these in step n1.
1009
1010 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1011 address, and makes any necessary adjustments to the instruction,
1012 register contents, and memory. We use this in step n1.
1013
1014 - gdbarch_displaced_step_fixup adjusts registers and memory after
1015 we have successfuly single-stepped the instruction, to yield the
1016 same effect the instruction would have had if we had executed it
1017 at its original address. We use this in step n3.
1018
1019 - gdbarch_displaced_step_free_closure provides cleanup.
1020
1021 The gdbarch_displaced_step_copy_insn and
1022 gdbarch_displaced_step_fixup functions must be written so that
1023 copying an instruction with gdbarch_displaced_step_copy_insn,
1024 single-stepping across the copied instruction, and then applying
1025 gdbarch_displaced_insn_fixup should have the same effects on the
1026 thread's memory and registers as stepping the instruction in place
1027 would have. Exactly which responsibilities fall to the copy and
1028 which fall to the fixup is up to the author of those functions.
1029
1030 See the comments in gdbarch.sh for details.
1031
1032 Note that displaced stepping and software single-step cannot
1033 currently be used in combination, although with some care I think
1034 they could be made to. Software single-step works by placing
1035 breakpoints on all possible subsequent instructions; if the
1036 displaced instruction is a PC-relative jump, those breakpoints
1037 could fall in very strange places --- on pages that aren't
1038 executable, or at addresses that are not proper instruction
1039 boundaries. (We do generally let other threads run while we wait
1040 to hit the software single-step breakpoint, and they might
1041 encounter such a corrupted instruction.) One way to work around
1042 this would be to have gdbarch_displaced_step_copy_insn fully
1043 simulate the effect of PC-relative instructions (and return NULL)
1044 on architectures that use software single-stepping.
1045
1046 In non-stop mode, we can have independent and simultaneous step
1047 requests, so more than one thread may need to simultaneously step
1048 over a breakpoint. The current implementation assumes there is
1049 only one scratch space per process. In this case, we have to
1050 serialize access to the scratch space. If thread A wants to step
1051 over a breakpoint, but we are currently waiting for some other
1052 thread to complete a displaced step, we leave thread A stopped and
1053 place it in the displaced_step_request_queue. Whenever a displaced
1054 step finishes, we pick the next thread in the queue and start a new
1055 displaced step operation on it. See displaced_step_prepare and
1056 displaced_step_fixup for details. */
1057
237fc4c9
PA
1058struct displaced_step_request
1059{
1060 ptid_t ptid;
1061 struct displaced_step_request *next;
1062};
1063
fc1cf338
PA
1064/* Per-inferior displaced stepping state. */
1065struct displaced_step_inferior_state
1066{
1067 /* Pointer to next in linked list. */
1068 struct displaced_step_inferior_state *next;
1069
1070 /* The process this displaced step state refers to. */
1071 int pid;
1072
1073 /* A queue of pending displaced stepping requests. One entry per
1074 thread that needs to do a displaced step. */
1075 struct displaced_step_request *step_request_queue;
1076
1077 /* If this is not null_ptid, this is the thread carrying out a
1078 displaced single-step in process PID. This thread's state will
1079 require fixing up once it has completed its step. */
1080 ptid_t step_ptid;
1081
1082 /* The architecture the thread had when we stepped it. */
1083 struct gdbarch *step_gdbarch;
1084
1085 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1086 for post-step cleanup. */
1087 struct displaced_step_closure *step_closure;
1088
1089 /* The address of the original instruction, and the copy we
1090 made. */
1091 CORE_ADDR step_original, step_copy;
1092
1093 /* Saved contents of copy area. */
1094 gdb_byte *step_saved_copy;
1095};
1096
1097/* The list of states of processes involved in displaced stepping
1098 presently. */
1099static struct displaced_step_inferior_state *displaced_step_inferior_states;
1100
1101/* Get the displaced stepping state of process PID. */
1102
1103static struct displaced_step_inferior_state *
1104get_displaced_stepping_state (int pid)
1105{
1106 struct displaced_step_inferior_state *state;
1107
1108 for (state = displaced_step_inferior_states;
1109 state != NULL;
1110 state = state->next)
1111 if (state->pid == pid)
1112 return state;
1113
1114 return NULL;
1115}
1116
1117/* Add a new displaced stepping state for process PID to the displaced
1118 stepping state list, or return a pointer to an already existing
1119 entry, if it already exists. Never returns NULL. */
1120
1121static struct displaced_step_inferior_state *
1122add_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
237fc4c9 1131
fc1cf338
PA
1132 state = xcalloc (1, sizeof (*state));
1133 state->pid = pid;
1134 state->next = displaced_step_inferior_states;
1135 displaced_step_inferior_states = state;
237fc4c9 1136
fc1cf338
PA
1137 return state;
1138}
1139
a42244db
YQ
1140/* If inferior is in displaced stepping, and ADDR equals to starting address
1141 of copy area, return corresponding displaced_step_closure. Otherwise,
1142 return NULL. */
1143
1144struct displaced_step_closure*
1145get_displaced_step_closure_by_addr (CORE_ADDR addr)
1146{
1147 struct displaced_step_inferior_state *displaced
1148 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1149
1150 /* If checking the mode of displaced instruction in copy area. */
1151 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1152 && (displaced->step_copy == addr))
1153 return displaced->step_closure;
1154
1155 return NULL;
1156}
1157
fc1cf338 1158/* Remove the displaced stepping state of process PID. */
237fc4c9 1159
fc1cf338
PA
1160static void
1161remove_displaced_stepping_state (int pid)
1162{
1163 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1164
fc1cf338
PA
1165 gdb_assert (pid != 0);
1166
1167 it = displaced_step_inferior_states;
1168 prev_next_p = &displaced_step_inferior_states;
1169 while (it)
1170 {
1171 if (it->pid == pid)
1172 {
1173 *prev_next_p = it->next;
1174 xfree (it);
1175 return;
1176 }
1177
1178 prev_next_p = &it->next;
1179 it = *prev_next_p;
1180 }
1181}
1182
1183static void
1184infrun_inferior_exit (struct inferior *inf)
1185{
1186 remove_displaced_stepping_state (inf->pid);
1187}
237fc4c9 1188
fff08868
HZ
1189/* If ON, and the architecture supports it, GDB will use displaced
1190 stepping to step over breakpoints. If OFF, or if the architecture
1191 doesn't support it, GDB will instead use the traditional
1192 hold-and-step approach. If AUTO (which is the default), GDB will
1193 decide which technique to use to step over breakpoints depending on
1194 which of all-stop or non-stop mode is active --- displaced stepping
1195 in non-stop mode; hold-and-step in all-stop mode. */
1196
72d0e2c5 1197static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1198
237fc4c9
PA
1199static void
1200show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203{
72d0e2c5 1204 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1208 value, non_stop ? "on" : "off");
1209 else
3e43a32a
MS
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1213}
1214
fff08868
HZ
1215/* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
237fc4c9
PA
1218static int
1219use_displaced_stepping (struct gdbarch *gdbarch)
1220{
72d0e2c5
YQ
1221 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1222 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
237fc4c9
PA
1225}
1226
1227/* Clean out any stray displaced stepping state. */
1228static void
fc1cf338 1229displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1230{
1231 /* Indicate that there is no cleanup pending. */
fc1cf338 1232 displaced->step_ptid = null_ptid;
237fc4c9 1233
fc1cf338 1234 if (displaced->step_closure)
237fc4c9 1235 {
fc1cf338
PA
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
237fc4c9
PA
1239 }
1240}
1241
1242static void
fc1cf338 1243displaced_step_clear_cleanup (void *arg)
237fc4c9 1244{
fc1cf338
PA
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
237fc4c9
PA
1248}
1249
1250/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251void
1252displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255{
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261}
1262
1263/* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277static int
1278displaced_step_prepare (ptid_t ptid)
1279{
ad53cd71 1280 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
fc1cf338 1286 struct displaced_step_inferior_state *displaced;
9e529e1d 1287 int status;
237fc4c9
PA
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
fc1cf338
PA
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
237fc4c9 1295
fc1cf338
PA
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
fc1cf338 1313 if (displaced->step_request_queue)
237fc4c9 1314 {
fc1cf338 1315 for (req = displaced->step_request_queue;
237fc4c9
PA
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
fc1cf338 1322 displaced->step_request_queue = new_req;
237fc4c9
PA
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
fc1cf338 1334 displaced_step_clear (displaced);
237fc4c9 1335
ad53cd71
PA
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
515630c5 1339 original = regcache_read_pc (regcache);
237fc4c9
PA
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
fc1cf338 1345 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1346 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1347 &displaced->step_saved_copy);
9e529e1d
JK
1348 status = target_read_memory (copy, displaced->step_saved_copy, len);
1349 if (status != 0)
1350 throw_error (MEMORY_ERROR,
1351 _("Error accessing memory address %s (%s) for "
1352 "displaced-stepping scratch space."),
1353 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1354 if (debug_displaced)
1355 {
5af949e3
UW
1356 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1357 paddress (gdbarch, copy));
fc1cf338
PA
1358 displaced_step_dump_bytes (gdb_stdlog,
1359 displaced->step_saved_copy,
1360 len);
237fc4c9
PA
1361 };
1362
1363 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1364 original, copy, regcache);
237fc4c9
PA
1365
1366 /* We don't support the fully-simulated case at present. */
1367 gdb_assert (closure);
1368
9f5a595d
UW
1369 /* Save the information we need to fix things up if the step
1370 succeeds. */
fc1cf338
PA
1371 displaced->step_ptid = ptid;
1372 displaced->step_gdbarch = gdbarch;
1373 displaced->step_closure = closure;
1374 displaced->step_original = original;
1375 displaced->step_copy = copy;
9f5a595d 1376
fc1cf338 1377 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1378
1379 /* Resume execution at the copy. */
515630c5 1380 regcache_write_pc (regcache, copy);
237fc4c9 1381
ad53cd71
PA
1382 discard_cleanups (ignore_cleanups);
1383
1384 do_cleanups (old_cleanups);
237fc4c9
PA
1385
1386 if (debug_displaced)
5af949e3
UW
1387 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1388 paddress (gdbarch, copy));
237fc4c9 1389
237fc4c9
PA
1390 return 1;
1391}
1392
237fc4c9 1393static void
3e43a32a
MS
1394write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1395 const gdb_byte *myaddr, int len)
237fc4c9
PA
1396{
1397 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1398
237fc4c9
PA
1399 inferior_ptid = ptid;
1400 write_memory (memaddr, myaddr, len);
1401 do_cleanups (ptid_cleanup);
1402}
1403
e2d96639
YQ
1404/* Restore the contents of the copy area for thread PTID. */
1405
1406static void
1407displaced_step_restore (struct displaced_step_inferior_state *displaced,
1408 ptid_t ptid)
1409{
1410 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1411
1412 write_memory_ptid (ptid, displaced->step_copy,
1413 displaced->step_saved_copy, len);
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1416 target_pid_to_str (ptid),
1417 paddress (displaced->step_gdbarch,
1418 displaced->step_copy));
1419}
1420
237fc4c9 1421static void
2ea28649 1422displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1423{
1424 struct cleanup *old_cleanups;
fc1cf338
PA
1425 struct displaced_step_inferior_state *displaced
1426 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1427
1428 /* Was any thread of this process doing a displaced step? */
1429 if (displaced == NULL)
1430 return;
237fc4c9
PA
1431
1432 /* Was this event for the pid we displaced? */
fc1cf338
PA
1433 if (ptid_equal (displaced->step_ptid, null_ptid)
1434 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1435 return;
1436
fc1cf338 1437 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1438
e2d96639 1439 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1440
1441 /* Did the instruction complete successfully? */
a493e3e2 1442 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1443 {
1444 /* Fix up the resulting state. */
fc1cf338
PA
1445 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1446 displaced->step_closure,
1447 displaced->step_original,
1448 displaced->step_copy,
1449 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1450 }
1451 else
1452 {
1453 /* Since the instruction didn't complete, all we can do is
1454 relocate the PC. */
515630c5
UW
1455 struct regcache *regcache = get_thread_regcache (event_ptid);
1456 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1457
fc1cf338 1458 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1459 regcache_write_pc (regcache, pc);
237fc4c9
PA
1460 }
1461
1462 do_cleanups (old_cleanups);
1463
fc1cf338 1464 displaced->step_ptid = null_ptid;
1c5cfe86 1465
237fc4c9 1466 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1467 one now. Leave the state object around, since we're likely to
1468 need it again soon. */
1469 while (displaced->step_request_queue)
237fc4c9
PA
1470 {
1471 struct displaced_step_request *head;
1472 ptid_t ptid;
5af949e3 1473 struct regcache *regcache;
929dfd4f 1474 struct gdbarch *gdbarch;
1c5cfe86 1475 CORE_ADDR actual_pc;
6c95b8df 1476 struct address_space *aspace;
237fc4c9 1477
fc1cf338 1478 head = displaced->step_request_queue;
237fc4c9 1479 ptid = head->ptid;
fc1cf338 1480 displaced->step_request_queue = head->next;
237fc4c9
PA
1481 xfree (head);
1482
ad53cd71
PA
1483 context_switch (ptid);
1484
5af949e3
UW
1485 regcache = get_thread_regcache (ptid);
1486 actual_pc = regcache_read_pc (regcache);
6c95b8df 1487 aspace = get_regcache_aspace (regcache);
1c5cfe86 1488
6c95b8df 1489 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1490 {
1c5cfe86
PA
1491 if (debug_displaced)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "displaced: stepping queued %s now\n",
1494 target_pid_to_str (ptid));
1495
1496 displaced_step_prepare (ptid);
1497
929dfd4f
JB
1498 gdbarch = get_regcache_arch (regcache);
1499
1c5cfe86
PA
1500 if (debug_displaced)
1501 {
929dfd4f 1502 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1503 gdb_byte buf[4];
1504
5af949e3
UW
1505 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1506 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1507 read_memory (actual_pc, buf, sizeof (buf));
1508 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1509 }
1510
fc1cf338
PA
1511 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1512 displaced->step_closure))
a493e3e2 1513 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1514 else
a493e3e2 1515 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1516
1517 /* Done, we're stepping a thread. */
1518 break;
ad53cd71 1519 }
1c5cfe86
PA
1520 else
1521 {
1522 int step;
1523 struct thread_info *tp = inferior_thread ();
1524
1525 /* The breakpoint we were sitting under has since been
1526 removed. */
16c381f0 1527 tp->control.trap_expected = 0;
1c5cfe86
PA
1528
1529 /* Go back to what we were trying to do. */
1530 step = currently_stepping (tp);
ad53cd71 1531
1c5cfe86 1532 if (debug_displaced)
3e43a32a 1533 fprintf_unfiltered (gdb_stdlog,
27d2932e 1534 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1535 target_pid_to_str (tp->ptid), step);
1536
a493e3e2
PA
1537 target_resume (ptid, step, GDB_SIGNAL_0);
1538 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1539
1540 /* This request was discarded. See if there's any other
1541 thread waiting for its turn. */
1542 }
237fc4c9
PA
1543 }
1544}
1545
5231c1fd
PA
1546/* Update global variables holding ptids to hold NEW_PTID if they were
1547 holding OLD_PTID. */
1548static void
1549infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1550{
1551 struct displaced_step_request *it;
fc1cf338 1552 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1553
1554 if (ptid_equal (inferior_ptid, old_ptid))
1555 inferior_ptid = new_ptid;
1556
1557 if (ptid_equal (singlestep_ptid, old_ptid))
1558 singlestep_ptid = new_ptid;
1559
5231c1fd
PA
1560 if (ptid_equal (deferred_step_ptid, old_ptid))
1561 deferred_step_ptid = new_ptid;
1562
fc1cf338
PA
1563 for (displaced = displaced_step_inferior_states;
1564 displaced;
1565 displaced = displaced->next)
1566 {
1567 if (ptid_equal (displaced->step_ptid, old_ptid))
1568 displaced->step_ptid = new_ptid;
1569
1570 for (it = displaced->step_request_queue; it; it = it->next)
1571 if (ptid_equal (it->ptid, old_ptid))
1572 it->ptid = new_ptid;
1573 }
5231c1fd
PA
1574}
1575
237fc4c9
PA
1576\f
1577/* Resuming. */
c906108c
SS
1578
1579/* Things to clean up if we QUIT out of resume (). */
c906108c 1580static void
74b7792f 1581resume_cleanups (void *ignore)
c906108c
SS
1582{
1583 normal_stop ();
1584}
1585
53904c9e
AC
1586static const char schedlock_off[] = "off";
1587static const char schedlock_on[] = "on";
1588static const char schedlock_step[] = "step";
40478521 1589static const char *const scheduler_enums[] = {
ef346e04
AC
1590 schedlock_off,
1591 schedlock_on,
1592 schedlock_step,
1593 NULL
1594};
920d2a44
AC
1595static const char *scheduler_mode = schedlock_off;
1596static void
1597show_scheduler_mode (struct ui_file *file, int from_tty,
1598 struct cmd_list_element *c, const char *value)
1599{
3e43a32a
MS
1600 fprintf_filtered (file,
1601 _("Mode for locking scheduler "
1602 "during execution is \"%s\".\n"),
920d2a44
AC
1603 value);
1604}
c906108c
SS
1605
1606static void
96baa820 1607set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1608{
eefe576e
AC
1609 if (!target_can_lock_scheduler)
1610 {
1611 scheduler_mode = schedlock_off;
1612 error (_("Target '%s' cannot support this command."), target_shortname);
1613 }
c906108c
SS
1614}
1615
d4db2f36
PA
1616/* True if execution commands resume all threads of all processes by
1617 default; otherwise, resume only threads of the current inferior
1618 process. */
1619int sched_multi = 0;
1620
2facfe5c
DD
1621/* Try to setup for software single stepping over the specified location.
1622 Return 1 if target_resume() should use hardware single step.
1623
1624 GDBARCH the current gdbarch.
1625 PC the location to step over. */
1626
1627static int
1628maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1629{
1630 int hw_step = 1;
1631
f02253f1
HZ
1632 if (execution_direction == EXEC_FORWARD
1633 && gdbarch_software_single_step_p (gdbarch)
99e40580 1634 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1635 {
99e40580
UW
1636 hw_step = 0;
1637 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1638 `wait_for_inferior'. */
99e40580
UW
1639 singlestep_breakpoints_inserted_p = 1;
1640 singlestep_ptid = inferior_ptid;
1641 singlestep_pc = pc;
2facfe5c
DD
1642 }
1643 return hw_step;
1644}
c906108c 1645
09cee04b
PA
1646/* Return a ptid representing the set of threads that we will proceed,
1647 in the perspective of the user/frontend. We may actually resume
1648 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1649 breakpoint that needs stepping-off, but that should not be visible
1650 to the user/frontend, and neither should the frontend/user be
1651 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1652 internal run control handling, if a previous command wanted them
1653 resumed. */
1654
1655ptid_t
1656user_visible_resume_ptid (int step)
1657{
1658 /* By default, resume all threads of all processes. */
1659 ptid_t resume_ptid = RESUME_ALL;
1660
1661 /* Maybe resume only all threads of the current process. */
1662 if (!sched_multi && target_supports_multi_process ())
1663 {
1664 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1665 }
1666
1667 /* Maybe resume a single thread after all. */
1668 if (non_stop)
1669 {
1670 /* With non-stop mode on, threads are always handled
1671 individually. */
1672 resume_ptid = inferior_ptid;
1673 }
1674 else if ((scheduler_mode == schedlock_on)
1675 || (scheduler_mode == schedlock_step
1676 && (step || singlestep_breakpoints_inserted_p)))
1677 {
1678 /* User-settable 'scheduler' mode requires solo thread resume. */
1679 resume_ptid = inferior_ptid;
1680 }
1681
1682 return resume_ptid;
1683}
1684
c906108c
SS
1685/* Resume the inferior, but allow a QUIT. This is useful if the user
1686 wants to interrupt some lengthy single-stepping operation
1687 (for child processes, the SIGINT goes to the inferior, and so
1688 we get a SIGINT random_signal, but for remote debugging and perhaps
1689 other targets, that's not true).
1690
1691 STEP nonzero if we should step (zero to continue instead).
1692 SIG is the signal to give the inferior (zero for none). */
1693void
2ea28649 1694resume (int step, enum gdb_signal sig)
c906108c
SS
1695{
1696 int should_resume = 1;
74b7792f 1697 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1698 struct regcache *regcache = get_current_regcache ();
1699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1700 struct thread_info *tp = inferior_thread ();
515630c5 1701 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1702 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1703
c906108c
SS
1704 QUIT;
1705
74609e71
YQ
1706 if (current_inferior ()->waiting_for_vfork_done)
1707 {
48f9886d
PA
1708 /* Don't try to single-step a vfork parent that is waiting for
1709 the child to get out of the shared memory region (by exec'ing
1710 or exiting). This is particularly important on software
1711 single-step archs, as the child process would trip on the
1712 software single step breakpoint inserted for the parent
1713 process. Since the parent will not actually execute any
1714 instruction until the child is out of the shared region (such
1715 are vfork's semantics), it is safe to simply continue it.
1716 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1717 the parent, and tell it to `keep_going', which automatically
1718 re-sets it stepping. */
74609e71
YQ
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume : clear step\n");
1722 step = 0;
1723 }
1724
527159b7 1725 if (debug_infrun)
237fc4c9
PA
1726 fprintf_unfiltered (gdb_stdlog,
1727 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1728 "trap_expected=%d, current thread [%s] at %s\n",
1729 step, sig, tp->control.trap_expected,
1730 target_pid_to_str (inferior_ptid),
1731 paddress (gdbarch, pc));
c906108c 1732
c2c6d25f
JM
1733 /* Normally, by the time we reach `resume', the breakpoints are either
1734 removed or inserted, as appropriate. The exception is if we're sitting
1735 at a permanent breakpoint; we need to step over it, but permanent
1736 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1737 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1738 {
515630c5
UW
1739 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1740 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1741 else
ac74f770
MS
1742 error (_("\
1743The program is stopped at a permanent breakpoint, but GDB does not know\n\
1744how to step past a permanent breakpoint on this architecture. Try using\n\
1745a command like `return' or `jump' to continue execution."));
6d350bb5 1746 }
c2c6d25f 1747
237fc4c9
PA
1748 /* If enabled, step over breakpoints by executing a copy of the
1749 instruction at a different address.
1750
1751 We can't use displaced stepping when we have a signal to deliver;
1752 the comments for displaced_step_prepare explain why. The
1753 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1754 signals' explain what we do instead.
1755
1756 We can't use displaced stepping when we are waiting for vfork_done
1757 event, displaced stepping breaks the vfork child similarly as single
1758 step software breakpoint. */
515630c5 1759 if (use_displaced_stepping (gdbarch)
16c381f0 1760 && (tp->control.trap_expected
929dfd4f 1761 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1762 && sig == GDB_SIGNAL_0
74609e71 1763 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1764 {
fc1cf338
PA
1765 struct displaced_step_inferior_state *displaced;
1766
237fc4c9 1767 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1768 {
1769 /* Got placed in displaced stepping queue. Will be resumed
1770 later when all the currently queued displaced stepping
7f7efbd9
VP
1771 requests finish. The thread is not executing at this point,
1772 and the call to set_executing will be made later. But we
1773 need to call set_running here, since from frontend point of view,
1774 the thread is running. */
1775 set_running (inferior_ptid, 1);
d56b7306
VP
1776 discard_cleanups (old_cleanups);
1777 return;
1778 }
99e40580 1779
ca7781d2
LM
1780 /* Update pc to reflect the new address from which we will execute
1781 instructions due to displaced stepping. */
1782 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1783
fc1cf338
PA
1784 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1785 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1786 displaced->step_closure);
237fc4c9
PA
1787 }
1788
2facfe5c 1789 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1790 else if (step)
2facfe5c 1791 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1792
30852783
UW
1793 /* Currently, our software single-step implementation leads to different
1794 results than hardware single-stepping in one situation: when stepping
1795 into delivering a signal which has an associated signal handler,
1796 hardware single-step will stop at the first instruction of the handler,
1797 while software single-step will simply skip execution of the handler.
1798
1799 For now, this difference in behavior is accepted since there is no
1800 easy way to actually implement single-stepping into a signal handler
1801 without kernel support.
1802
1803 However, there is one scenario where this difference leads to follow-on
1804 problems: if we're stepping off a breakpoint by removing all breakpoints
1805 and then single-stepping. In this case, the software single-step
1806 behavior means that even if there is a *breakpoint* in the signal
1807 handler, GDB still would not stop.
1808
1809 Fortunately, we can at least fix this particular issue. We detect
1810 here the case where we are about to deliver a signal while software
1811 single-stepping with breakpoints removed. In this situation, we
1812 revert the decisions to remove all breakpoints and insert single-
1813 step breakpoints, and instead we install a step-resume breakpoint
1814 at the current address, deliver the signal without stepping, and
1815 once we arrive back at the step-resume breakpoint, actually step
1816 over the breakpoint we originally wanted to step over. */
1817 if (singlestep_breakpoints_inserted_p
a493e3e2 1818 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1819 {
1820 /* If we have nested signals or a pending signal is delivered
1821 immediately after a handler returns, might might already have
1822 a step-resume breakpoint set on the earlier handler. We cannot
1823 set another step-resume breakpoint; just continue on until the
1824 original breakpoint is hit. */
1825 if (tp->control.step_resume_breakpoint == NULL)
1826 {
2c03e5be 1827 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1828 tp->step_after_step_resume_breakpoint = 1;
1829 }
1830
1831 remove_single_step_breakpoints ();
1832 singlestep_breakpoints_inserted_p = 0;
1833
1834 insert_breakpoints ();
1835 tp->control.trap_expected = 0;
1836 }
1837
c906108c
SS
1838 if (should_resume)
1839 {
39f77062 1840 ptid_t resume_ptid;
dfcd3bfb 1841
cd76b0b7
VP
1842 /* If STEP is set, it's a request to use hardware stepping
1843 facilities. But in that case, we should never
1844 use singlestep breakpoint. */
1845 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1846
d4db2f36
PA
1847 /* Decide the set of threads to ask the target to resume. Start
1848 by assuming everything will be resumed, than narrow the set
1849 by applying increasingly restricting conditions. */
09cee04b 1850 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1851
1852 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1853 if (singlestep_breakpoints_inserted_p
1854 && stepping_past_singlestep_breakpoint)
c906108c 1855 {
cd76b0b7
VP
1856 /* The situation here is as follows. In thread T1 we wanted to
1857 single-step. Lacking hardware single-stepping we've
1858 set breakpoint at the PC of the next instruction -- call it
1859 P. After resuming, we've hit that breakpoint in thread T2.
1860 Now we've removed original breakpoint, inserted breakpoint
1861 at P+1, and try to step to advance T2 past breakpoint.
1862 We need to step only T2, as if T1 is allowed to freely run,
1863 it can run past P, and if other threads are allowed to run,
1864 they can hit breakpoint at P+1, and nested hits of single-step
1865 breakpoints is not something we'd want -- that's complicated
1866 to support, and has no value. */
1867 resume_ptid = inferior_ptid;
1868 }
d4db2f36 1869 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1870 && tp->control.trap_expected)
cd76b0b7 1871 {
74960c60
VP
1872 /* We're allowing a thread to run past a breakpoint it has
1873 hit, by single-stepping the thread with the breakpoint
1874 removed. In which case, we need to single-step only this
1875 thread, and keep others stopped, as they can miss this
1876 breakpoint if allowed to run.
1877
1878 The current code actually removes all breakpoints when
1879 doing this, not just the one being stepped over, so if we
1880 let other threads run, we can actually miss any
1881 breakpoint, not just the one at PC. */
ef5cf84e 1882 resume_ptid = inferior_ptid;
c906108c 1883 }
ef5cf84e 1884
515630c5 1885 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1886 {
1887 /* Most targets can step a breakpoint instruction, thus
1888 executing it normally. But if this one cannot, just
1889 continue and we will hit it anyway. */
6c95b8df 1890 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1891 step = 0;
1892 }
237fc4c9
PA
1893
1894 if (debug_displaced
515630c5 1895 && use_displaced_stepping (gdbarch)
16c381f0 1896 && tp->control.trap_expected)
237fc4c9 1897 {
515630c5 1898 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1899 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1900 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1901 gdb_byte buf[4];
1902
5af949e3
UW
1903 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1904 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1905 read_memory (actual_pc, buf, sizeof (buf));
1906 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1907 }
1908
e58b0e63
PA
1909 /* Install inferior's terminal modes. */
1910 target_terminal_inferior ();
1911
2020b7ab
PA
1912 /* Avoid confusing the next resume, if the next stop/resume
1913 happens to apply to another thread. */
a493e3e2 1914 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1915
2455069d
UW
1916 /* Advise target which signals may be handled silently. If we have
1917 removed breakpoints because we are stepping over one (which can
1918 happen only if we are not using displaced stepping), we need to
1919 receive all signals to avoid accidentally skipping a breakpoint
1920 during execution of a signal handler. */
1921 if ((step || singlestep_breakpoints_inserted_p)
1922 && tp->control.trap_expected
1923 && !use_displaced_stepping (gdbarch))
1924 target_pass_signals (0, NULL);
1925 else
a493e3e2 1926 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1927
607cecd2 1928 target_resume (resume_ptid, step, sig);
c906108c
SS
1929 }
1930
1931 discard_cleanups (old_cleanups);
1932}
1933\f
237fc4c9 1934/* Proceeding. */
c906108c
SS
1935
1936/* Clear out all variables saying what to do when inferior is continued.
1937 First do this, then set the ones you want, then call `proceed'. */
1938
a7212384
UW
1939static void
1940clear_proceed_status_thread (struct thread_info *tp)
c906108c 1941{
a7212384
UW
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "infrun: clear_proceed_status_thread (%s)\n",
1945 target_pid_to_str (tp->ptid));
d6b48e9c 1946
16c381f0
JK
1947 tp->control.trap_expected = 0;
1948 tp->control.step_range_start = 0;
1949 tp->control.step_range_end = 0;
1950 tp->control.step_frame_id = null_frame_id;
1951 tp->control.step_stack_frame_id = null_frame_id;
1952 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1953 tp->stop_requested = 0;
4e1c45ea 1954
16c381f0 1955 tp->control.stop_step = 0;
32400beb 1956
16c381f0 1957 tp->control.proceed_to_finish = 0;
414c69f7 1958
a7212384 1959 /* Discard any remaining commands or status from previous stop. */
16c381f0 1960 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1961}
32400beb 1962
a7212384
UW
1963static int
1964clear_proceed_status_callback (struct thread_info *tp, void *data)
1965{
1966 if (is_exited (tp->ptid))
1967 return 0;
d6b48e9c 1968
a7212384
UW
1969 clear_proceed_status_thread (tp);
1970 return 0;
1971}
1972
1973void
1974clear_proceed_status (void)
1975{
6c95b8df
PA
1976 if (!non_stop)
1977 {
1978 /* In all-stop mode, delete the per-thread status of all
1979 threads, even if inferior_ptid is null_ptid, there may be
1980 threads on the list. E.g., we may be launching a new
1981 process, while selecting the executable. */
1982 iterate_over_threads (clear_proceed_status_callback, NULL);
1983 }
1984
a7212384
UW
1985 if (!ptid_equal (inferior_ptid, null_ptid))
1986 {
1987 struct inferior *inferior;
1988
1989 if (non_stop)
1990 {
6c95b8df
PA
1991 /* If in non-stop mode, only delete the per-thread status of
1992 the current thread. */
a7212384
UW
1993 clear_proceed_status_thread (inferior_thread ());
1994 }
6c95b8df 1995
d6b48e9c 1996 inferior = current_inferior ();
16c381f0 1997 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1998 }
1999
c906108c 2000 stop_after_trap = 0;
f3b1572e
PA
2001
2002 observer_notify_about_to_proceed ();
c906108c 2003
d5c31457
UW
2004 if (stop_registers)
2005 {
2006 regcache_xfree (stop_registers);
2007 stop_registers = NULL;
2008 }
c906108c
SS
2009}
2010
5a437975
DE
2011/* Check the current thread against the thread that reported the most recent
2012 event. If a step-over is required return TRUE and set the current thread
2013 to the old thread. Otherwise return FALSE.
2014
1777feb0 2015 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2016
2017static int
6a6b96b9 2018prepare_to_proceed (int step)
ea67f13b
DJ
2019{
2020 ptid_t wait_ptid;
2021 struct target_waitstatus wait_status;
5a437975
DE
2022 int schedlock_enabled;
2023
2024 /* With non-stop mode on, threads are always handled individually. */
2025 gdb_assert (! non_stop);
ea67f13b
DJ
2026
2027 /* Get the last target status returned by target_wait(). */
2028 get_last_target_status (&wait_ptid, &wait_status);
2029
6a6b96b9 2030 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2031 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2032 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2033 && wait_status.value.sig != GDB_SIGNAL_ILL
2034 && wait_status.value.sig != GDB_SIGNAL_SEGV
2035 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2036 {
2037 return 0;
2038 }
2039
5a437975
DE
2040 schedlock_enabled = (scheduler_mode == schedlock_on
2041 || (scheduler_mode == schedlock_step
2042 && step));
2043
d4db2f36
PA
2044 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2045 if (schedlock_enabled)
2046 return 0;
2047
2048 /* Don't switch over if we're about to resume some other process
2049 other than WAIT_PTID's, and schedule-multiple is off. */
2050 if (!sched_multi
2051 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2052 return 0;
2053
6a6b96b9 2054 /* Switched over from WAIT_PID. */
ea67f13b 2055 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2056 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2057 {
515630c5
UW
2058 struct regcache *regcache = get_thread_regcache (wait_ptid);
2059
6c95b8df
PA
2060 if (breakpoint_here_p (get_regcache_aspace (regcache),
2061 regcache_read_pc (regcache)))
ea67f13b 2062 {
515630c5
UW
2063 /* If stepping, remember current thread to switch back to. */
2064 if (step)
2065 deferred_step_ptid = inferior_ptid;
ea67f13b 2066
515630c5
UW
2067 /* Switch back to WAIT_PID thread. */
2068 switch_to_thread (wait_ptid);
6a6b96b9 2069
0d9a9a5f
PA
2070 if (debug_infrun)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "infrun: prepare_to_proceed (step=%d), "
2073 "switched to [%s]\n",
2074 step, target_pid_to_str (inferior_ptid));
2075
515630c5
UW
2076 /* We return 1 to indicate that there is a breakpoint here,
2077 so we need to step over it before continuing to avoid
1777feb0 2078 hitting it straight away. */
515630c5
UW
2079 return 1;
2080 }
ea67f13b
DJ
2081 }
2082
2083 return 0;
ea67f13b 2084}
e4846b08 2085
c906108c
SS
2086/* Basic routine for continuing the program in various fashions.
2087
2088 ADDR is the address to resume at, or -1 for resume where stopped.
2089 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2090 or -1 for act according to how it stopped.
c906108c 2091 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2092 -1 means return after that and print nothing.
2093 You should probably set various step_... variables
2094 before calling here, if you are stepping.
c906108c
SS
2095
2096 You should call clear_proceed_status before calling proceed. */
2097
2098void
2ea28649 2099proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2100{
e58b0e63
PA
2101 struct regcache *regcache;
2102 struct gdbarch *gdbarch;
4e1c45ea 2103 struct thread_info *tp;
e58b0e63 2104 CORE_ADDR pc;
6c95b8df 2105 struct address_space *aspace;
c906108c
SS
2106 int oneproc = 0;
2107
e58b0e63
PA
2108 /* If we're stopped at a fork/vfork, follow the branch set by the
2109 "set follow-fork-mode" command; otherwise, we'll just proceed
2110 resuming the current thread. */
2111 if (!follow_fork ())
2112 {
2113 /* The target for some reason decided not to resume. */
2114 normal_stop ();
f148b27e
PA
2115 if (target_can_async_p ())
2116 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2117 return;
2118 }
2119
842951eb
PA
2120 /* We'll update this if & when we switch to a new thread. */
2121 previous_inferior_ptid = inferior_ptid;
2122
e58b0e63
PA
2123 regcache = get_current_regcache ();
2124 gdbarch = get_regcache_arch (regcache);
6c95b8df 2125 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2126 pc = regcache_read_pc (regcache);
2127
c906108c 2128 if (step > 0)
515630c5 2129 step_start_function = find_pc_function (pc);
c906108c
SS
2130 if (step < 0)
2131 stop_after_trap = 1;
2132
2acceee2 2133 if (addr == (CORE_ADDR) -1)
c906108c 2134 {
6c95b8df 2135 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2136 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2137 /* There is a breakpoint at the address we will resume at,
2138 step one instruction before inserting breakpoints so that
2139 we do not stop right away (and report a second hit at this
b2175913
MS
2140 breakpoint).
2141
2142 Note, we don't do this in reverse, because we won't
2143 actually be executing the breakpoint insn anyway.
2144 We'll be (un-)executing the previous instruction. */
2145
c906108c 2146 oneproc = 1;
515630c5
UW
2147 else if (gdbarch_single_step_through_delay_p (gdbarch)
2148 && gdbarch_single_step_through_delay (gdbarch,
2149 get_current_frame ()))
3352ef37
AC
2150 /* We stepped onto an instruction that needs to be stepped
2151 again before re-inserting the breakpoint, do so. */
c906108c
SS
2152 oneproc = 1;
2153 }
2154 else
2155 {
515630c5 2156 regcache_write_pc (regcache, addr);
c906108c
SS
2157 }
2158
527159b7 2159 if (debug_infrun)
8a9de0e4 2160 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2161 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2162 paddress (gdbarch, addr), siggnal, step);
527159b7 2163
94cc34af
PA
2164 if (non_stop)
2165 /* In non-stop, each thread is handled individually. The context
2166 must already be set to the right thread here. */
2167 ;
2168 else
2169 {
2170 /* In a multi-threaded task we may select another thread and
2171 then continue or step.
c906108c 2172
94cc34af
PA
2173 But if the old thread was stopped at a breakpoint, it will
2174 immediately cause another breakpoint stop without any
2175 execution (i.e. it will report a breakpoint hit incorrectly).
2176 So we must step over it first.
c906108c 2177
94cc34af
PA
2178 prepare_to_proceed checks the current thread against the
2179 thread that reported the most recent event. If a step-over
2180 is required it returns TRUE and sets the current thread to
1777feb0 2181 the old thread. */
94cc34af
PA
2182 if (prepare_to_proceed (step))
2183 oneproc = 1;
2184 }
c906108c 2185
4e1c45ea
PA
2186 /* prepare_to_proceed may change the current thread. */
2187 tp = inferior_thread ();
2188
30852783
UW
2189 if (oneproc)
2190 {
2191 tp->control.trap_expected = 1;
2192 /* If displaced stepping is enabled, we can step over the
2193 breakpoint without hitting it, so leave all breakpoints
2194 inserted. Otherwise we need to disable all breakpoints, step
2195 one instruction, and then re-add them when that step is
2196 finished. */
2197 if (!use_displaced_stepping (gdbarch))
2198 remove_breakpoints ();
2199 }
2200
2201 /* We can insert breakpoints if we're not trying to step over one,
2202 or if we are stepping over one but we're using displaced stepping
2203 to do so. */
2204 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2205 insert_breakpoints ();
2206
2020b7ab
PA
2207 if (!non_stop)
2208 {
2209 /* Pass the last stop signal to the thread we're resuming,
2210 irrespective of whether the current thread is the thread that
2211 got the last event or not. This was historically GDB's
2212 behaviour before keeping a stop_signal per thread. */
2213
2214 struct thread_info *last_thread;
2215 ptid_t last_ptid;
2216 struct target_waitstatus last_status;
2217
2218 get_last_target_status (&last_ptid, &last_status);
2219 if (!ptid_equal (inferior_ptid, last_ptid)
2220 && !ptid_equal (last_ptid, null_ptid)
2221 && !ptid_equal (last_ptid, minus_one_ptid))
2222 {
e09875d4 2223 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2224 if (last_thread)
2225 {
16c381f0 2226 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2227 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2228 }
2229 }
2230 }
2231
a493e3e2 2232 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2233 tp->suspend.stop_signal = siggnal;
c906108c
SS
2234 /* If this signal should not be seen by program,
2235 give it zero. Used for debugging signals. */
16c381f0 2236 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2238
2239 annotate_starting ();
2240
2241 /* Make sure that output from GDB appears before output from the
2242 inferior. */
2243 gdb_flush (gdb_stdout);
2244
e4846b08
JJ
2245 /* Refresh prev_pc value just prior to resuming. This used to be
2246 done in stop_stepping, however, setting prev_pc there did not handle
2247 scenarios such as inferior function calls or returning from
2248 a function via the return command. In those cases, the prev_pc
2249 value was not set properly for subsequent commands. The prev_pc value
2250 is used to initialize the starting line number in the ecs. With an
2251 invalid value, the gdb next command ends up stopping at the position
2252 represented by the next line table entry past our start position.
2253 On platforms that generate one line table entry per line, this
2254 is not a problem. However, on the ia64, the compiler generates
2255 extraneous line table entries that do not increase the line number.
2256 When we issue the gdb next command on the ia64 after an inferior call
2257 or a return command, we often end up a few instructions forward, still
2258 within the original line we started.
2259
d5cd6034
JB
2260 An attempt was made to refresh the prev_pc at the same time the
2261 execution_control_state is initialized (for instance, just before
2262 waiting for an inferior event). But this approach did not work
2263 because of platforms that use ptrace, where the pc register cannot
2264 be read unless the inferior is stopped. At that point, we are not
2265 guaranteed the inferior is stopped and so the regcache_read_pc() call
2266 can fail. Setting the prev_pc value here ensures the value is updated
2267 correctly when the inferior is stopped. */
4e1c45ea 2268 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2269
59f0d5d9 2270 /* Fill in with reasonable starting values. */
4e1c45ea 2271 init_thread_stepping_state (tp);
59f0d5d9 2272
59f0d5d9
PA
2273 /* Reset to normal state. */
2274 init_infwait_state ();
2275
c906108c 2276 /* Resume inferior. */
16c381f0 2277 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2278
2279 /* Wait for it to stop (if not standalone)
2280 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2281 /* Do this only if we are not using the event loop, or if the target
1777feb0 2282 does not support asynchronous execution. */
362646f5 2283 if (!target_can_async_p ())
43ff13b4 2284 {
e4c8541f 2285 wait_for_inferior ();
43ff13b4
JM
2286 normal_stop ();
2287 }
c906108c 2288}
c906108c
SS
2289\f
2290
2291/* Start remote-debugging of a machine over a serial link. */
96baa820 2292
c906108c 2293void
8621d6a9 2294start_remote (int from_tty)
c906108c 2295{
d6b48e9c 2296 struct inferior *inferior;
d6b48e9c
PA
2297
2298 inferior = current_inferior ();
16c381f0 2299 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2300
1777feb0 2301 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2302 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2303 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2304 nothing is returned (instead of just blocking). Because of this,
2305 targets expecting an immediate response need to, internally, set
2306 things up so that the target_wait() is forced to eventually
1777feb0 2307 timeout. */
6426a772
JM
2308 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2309 differentiate to its caller what the state of the target is after
2310 the initial open has been performed. Here we're assuming that
2311 the target has stopped. It should be possible to eventually have
2312 target_open() return to the caller an indication that the target
2313 is currently running and GDB state should be set to the same as
1777feb0 2314 for an async run. */
e4c8541f 2315 wait_for_inferior ();
8621d6a9
DJ
2316
2317 /* Now that the inferior has stopped, do any bookkeeping like
2318 loading shared libraries. We want to do this before normal_stop,
2319 so that the displayed frame is up to date. */
2320 post_create_inferior (&current_target, from_tty);
2321
6426a772 2322 normal_stop ();
c906108c
SS
2323}
2324
2325/* Initialize static vars when a new inferior begins. */
2326
2327void
96baa820 2328init_wait_for_inferior (void)
c906108c
SS
2329{
2330 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2331
c906108c
SS
2332 breakpoint_init_inferior (inf_starting);
2333
c906108c 2334 clear_proceed_status ();
9f976b41
DJ
2335
2336 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2337 deferred_step_ptid = null_ptid;
ca005067
DJ
2338
2339 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2340
842951eb 2341 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2342 init_infwait_state ();
2343
edb3359d
DJ
2344 /* Discard any skipped inlined frames. */
2345 clear_inline_frame_state (minus_one_ptid);
c906108c 2346}
237fc4c9 2347
c906108c 2348\f
b83266a0
SS
2349/* This enum encodes possible reasons for doing a target_wait, so that
2350 wfi can call target_wait in one place. (Ultimately the call will be
2351 moved out of the infinite loop entirely.) */
2352
c5aa993b
JM
2353enum infwait_states
2354{
cd0fc7c3
SS
2355 infwait_normal_state,
2356 infwait_thread_hop_state,
d983da9c 2357 infwait_step_watch_state,
cd0fc7c3 2358 infwait_nonstep_watch_state
b83266a0
SS
2359};
2360
0d1e5fa7
PA
2361/* The PTID we'll do a target_wait on.*/
2362ptid_t waiton_ptid;
2363
2364/* Current inferior wait state. */
2365enum infwait_states infwait_state;
cd0fc7c3 2366
0d1e5fa7
PA
2367/* Data to be passed around while handling an event. This data is
2368 discarded between events. */
c5aa993b 2369struct execution_control_state
488f131b 2370{
0d1e5fa7 2371 ptid_t ptid;
4e1c45ea
PA
2372 /* The thread that got the event, if this was a thread event; NULL
2373 otherwise. */
2374 struct thread_info *event_thread;
2375
488f131b 2376 struct target_waitstatus ws;
488f131b 2377 int random_signal;
7e324e48 2378 int stop_func_filled_in;
488f131b
JB
2379 CORE_ADDR stop_func_start;
2380 CORE_ADDR stop_func_end;
2c02bd72 2381 const char *stop_func_name;
488f131b
JB
2382 int wait_some_more;
2383};
2384
ec9499be 2385static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2386
568d6575
UW
2387static void handle_step_into_function (struct gdbarch *gdbarch,
2388 struct execution_control_state *ecs);
2389static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2390 struct execution_control_state *ecs);
186c406b 2391static void check_exception_resume (struct execution_control_state *,
28106bc2 2392 struct frame_info *);
611c83ae 2393
104c1213
JM
2394static void stop_stepping (struct execution_control_state *ecs);
2395static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2396static void keep_going (struct execution_control_state *ecs);
104c1213 2397
252fbfc8
PA
2398/* Callback for iterate over threads. If the thread is stopped, but
2399 the user/frontend doesn't know about that yet, go through
2400 normal_stop, as if the thread had just stopped now. ARG points at
2401 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2402 ptid_is_pid(PTID) is true, applies to all threads of the process
2403 pointed at by PTID. Otherwise, apply only to the thread pointed by
2404 PTID. */
2405
2406static int
2407infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2408{
2409 ptid_t ptid = * (ptid_t *) arg;
2410
2411 if ((ptid_equal (info->ptid, ptid)
2412 || ptid_equal (minus_one_ptid, ptid)
2413 || (ptid_is_pid (ptid)
2414 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2415 && is_running (info->ptid)
2416 && !is_executing (info->ptid))
2417 {
2418 struct cleanup *old_chain;
2419 struct execution_control_state ecss;
2420 struct execution_control_state *ecs = &ecss;
2421
2422 memset (ecs, 0, sizeof (*ecs));
2423
2424 old_chain = make_cleanup_restore_current_thread ();
2425
252fbfc8
PA
2426 /* Go through handle_inferior_event/normal_stop, so we always
2427 have consistent output as if the stop event had been
2428 reported. */
2429 ecs->ptid = info->ptid;
e09875d4 2430 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2431 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2432 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2433
2434 handle_inferior_event (ecs);
2435
2436 if (!ecs->wait_some_more)
2437 {
2438 struct thread_info *tp;
2439
2440 normal_stop ();
2441
fa4cd53f 2442 /* Finish off the continuations. */
252fbfc8 2443 tp = inferior_thread ();
fa4cd53f
PA
2444 do_all_intermediate_continuations_thread (tp, 1);
2445 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2446 }
2447
2448 do_cleanups (old_chain);
2449 }
2450
2451 return 0;
2452}
2453
2454/* This function is attached as a "thread_stop_requested" observer.
2455 Cleanup local state that assumed the PTID was to be resumed, and
2456 report the stop to the frontend. */
2457
2c0b251b 2458static void
252fbfc8
PA
2459infrun_thread_stop_requested (ptid_t ptid)
2460{
fc1cf338 2461 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2462
2463 /* PTID was requested to stop. Remove it from the displaced
2464 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2465
2466 for (displaced = displaced_step_inferior_states;
2467 displaced;
2468 displaced = displaced->next)
252fbfc8 2469 {
fc1cf338 2470 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2471
fc1cf338
PA
2472 it = displaced->step_request_queue;
2473 prev_next_p = &displaced->step_request_queue;
2474 while (it)
252fbfc8 2475 {
fc1cf338
PA
2476 if (ptid_match (it->ptid, ptid))
2477 {
2478 *prev_next_p = it->next;
2479 it->next = NULL;
2480 xfree (it);
2481 }
252fbfc8 2482 else
fc1cf338
PA
2483 {
2484 prev_next_p = &it->next;
2485 }
252fbfc8 2486
fc1cf338 2487 it = *prev_next_p;
252fbfc8 2488 }
252fbfc8
PA
2489 }
2490
2491 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2492}
2493
a07daef3
PA
2494static void
2495infrun_thread_thread_exit (struct thread_info *tp, int silent)
2496{
2497 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2498 nullify_last_target_wait_ptid ();
2499}
2500
4e1c45ea
PA
2501/* Callback for iterate_over_threads. */
2502
2503static int
2504delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2505{
2506 if (is_exited (info->ptid))
2507 return 0;
2508
2509 delete_step_resume_breakpoint (info);
186c406b 2510 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2511 return 0;
2512}
2513
2514/* In all-stop, delete the step resume breakpoint of any thread that
2515 had one. In non-stop, delete the step resume breakpoint of the
2516 thread that just stopped. */
2517
2518static void
2519delete_step_thread_step_resume_breakpoint (void)
2520{
2521 if (!target_has_execution
2522 || ptid_equal (inferior_ptid, null_ptid))
2523 /* If the inferior has exited, we have already deleted the step
2524 resume breakpoints out of GDB's lists. */
2525 return;
2526
2527 if (non_stop)
2528 {
2529 /* If in non-stop mode, only delete the step-resume or
2530 longjmp-resume breakpoint of the thread that just stopped
2531 stepping. */
2532 struct thread_info *tp = inferior_thread ();
abbb1732 2533
4e1c45ea 2534 delete_step_resume_breakpoint (tp);
186c406b 2535 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2536 }
2537 else
2538 /* In all-stop mode, delete all step-resume and longjmp-resume
2539 breakpoints of any thread that had them. */
2540 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2541}
2542
1777feb0 2543/* A cleanup wrapper. */
4e1c45ea
PA
2544
2545static void
2546delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2547{
2548 delete_step_thread_step_resume_breakpoint ();
2549}
2550
223698f8
DE
2551/* Pretty print the results of target_wait, for debugging purposes. */
2552
2553static void
2554print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2555 const struct target_waitstatus *ws)
2556{
2557 char *status_string = target_waitstatus_to_string (ws);
2558 struct ui_file *tmp_stream = mem_fileopen ();
2559 char *text;
223698f8
DE
2560
2561 /* The text is split over several lines because it was getting too long.
2562 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2563 output as a unit; we want only one timestamp printed if debug_timestamp
2564 is set. */
2565
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2568 if (PIDGET (waiton_ptid) != -1)
2569 fprintf_unfiltered (tmp_stream,
2570 " [%s]", target_pid_to_str (waiton_ptid));
2571 fprintf_unfiltered (tmp_stream, ", status) =\n");
2572 fprintf_unfiltered (tmp_stream,
2573 "infrun: %d [%s],\n",
2574 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2575 fprintf_unfiltered (tmp_stream,
2576 "infrun: %s\n",
2577 status_string);
2578
759ef836 2579 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2580
2581 /* This uses %s in part to handle %'s in the text, but also to avoid
2582 a gcc error: the format attribute requires a string literal. */
2583 fprintf_unfiltered (gdb_stdlog, "%s", text);
2584
2585 xfree (status_string);
2586 xfree (text);
2587 ui_file_delete (tmp_stream);
2588}
2589
24291992
PA
2590/* Prepare and stabilize the inferior for detaching it. E.g.,
2591 detaching while a thread is displaced stepping is a recipe for
2592 crashing it, as nothing would readjust the PC out of the scratch
2593 pad. */
2594
2595void
2596prepare_for_detach (void)
2597{
2598 struct inferior *inf = current_inferior ();
2599 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2600 struct cleanup *old_chain_1;
2601 struct displaced_step_inferior_state *displaced;
2602
2603 displaced = get_displaced_stepping_state (inf->pid);
2604
2605 /* Is any thread of this process displaced stepping? If not,
2606 there's nothing else to do. */
2607 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2608 return;
2609
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "displaced-stepping in-process while detaching");
2613
2614 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2615 inf->detaching = 1;
2616
2617 while (!ptid_equal (displaced->step_ptid, null_ptid))
2618 {
2619 struct cleanup *old_chain_2;
2620 struct execution_control_state ecss;
2621 struct execution_control_state *ecs;
2622
2623 ecs = &ecss;
2624 memset (ecs, 0, sizeof (*ecs));
2625
2626 overlay_cache_invalid = 1;
2627
24291992
PA
2628 if (deprecated_target_wait_hook)
2629 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2630 else
2631 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2632
2633 if (debug_infrun)
2634 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2635
2636 /* If an error happens while handling the event, propagate GDB's
2637 knowledge of the executing state to the frontend/user running
2638 state. */
3e43a32a
MS
2639 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2640 &minus_one_ptid);
24291992
PA
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
cd0fc7c3 2661/* Wait for control to return from inferior to debugger.
ae123ec6 2662
cd0fc7c3
SS
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
e4c8541f 2669wait_for_inferior (void)
cd0fc7c3
SS
2670{
2671 struct cleanup *old_cleanups;
c906108c 2672
527159b7 2673 if (debug_infrun)
ae123ec6 2674 fprintf_unfiltered
e4c8541f 2675 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2676
4e1c45ea
PA
2677 old_cleanups =
2678 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2679
c906108c
SS
2680 while (1)
2681 {
ae25568b
PA
2682 struct execution_control_state ecss;
2683 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2684 struct cleanup *old_chain;
2685
ae25568b
PA
2686 memset (ecs, 0, sizeof (*ecs));
2687
ec9499be 2688 overlay_cache_invalid = 1;
ec9499be 2689
9a4105ab 2690 if (deprecated_target_wait_hook)
47608cb1 2691 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2692 else
47608cb1 2693 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2694
f00150c9 2695 if (debug_infrun)
223698f8 2696 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2697
29f49a6a
PA
2698 /* If an error happens while handling the event, propagate GDB's
2699 knowledge of the executing state to the frontend/user running
2700 state. */
2701 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2702
cd0fc7c3
SS
2703 /* Now figure out what to do with the result of the result. */
2704 handle_inferior_event (ecs);
c906108c 2705
29f49a6a
PA
2706 /* No error, don't finish the state yet. */
2707 discard_cleanups (old_chain);
2708
cd0fc7c3
SS
2709 if (!ecs->wait_some_more)
2710 break;
2711 }
4e1c45ea 2712
cd0fc7c3
SS
2713 do_cleanups (old_cleanups);
2714}
c906108c 2715
1777feb0 2716/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2717 event loop whenever a change of state is detected on the file
1777feb0
MS
2718 descriptor corresponding to the target. It can be called more than
2719 once to complete a single execution command. In such cases we need
2720 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2721 that this function is called for a single execution command, then
2722 report to the user that the inferior has stopped, and do the
1777feb0 2723 necessary cleanups. */
43ff13b4
JM
2724
2725void
fba45db2 2726fetch_inferior_event (void *client_data)
43ff13b4 2727{
0d1e5fa7 2728 struct execution_control_state ecss;
a474d7c2 2729 struct execution_control_state *ecs = &ecss;
4f8d22e3 2730 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2731 struct cleanup *ts_old_chain;
4f8d22e3 2732 int was_sync = sync_execution;
0f641c01 2733 int cmd_done = 0;
43ff13b4 2734
0d1e5fa7
PA
2735 memset (ecs, 0, sizeof (*ecs));
2736
c5187ac6
PA
2737 /* We're handling a live event, so make sure we're doing live
2738 debugging. If we're looking at traceframes while the target is
2739 running, we're going to need to get back to that mode after
2740 handling the event. */
2741 if (non_stop)
2742 {
2743 make_cleanup_restore_current_traceframe ();
e6e4e701 2744 set_current_traceframe (-1);
c5187ac6
PA
2745 }
2746
4f8d22e3
PA
2747 if (non_stop)
2748 /* In non-stop mode, the user/frontend should not notice a thread
2749 switch due to internal events. Make sure we reverse to the
2750 user selected thread and frame after handling the event and
2751 running any breakpoint commands. */
2752 make_cleanup_restore_current_thread ();
2753
ec9499be 2754 overlay_cache_invalid = 1;
3dd5b83d 2755
32231432
PA
2756 make_cleanup_restore_integer (&execution_direction);
2757 execution_direction = target_execution_direction ();
2758
9a4105ab 2759 if (deprecated_target_wait_hook)
a474d7c2 2760 ecs->ptid =
47608cb1 2761 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2762 else
47608cb1 2763 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2764
f00150c9 2765 if (debug_infrun)
223698f8 2766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2767
29f49a6a
PA
2768 /* If an error happens while handling the event, propagate GDB's
2769 knowledge of the executing state to the frontend/user running
2770 state. */
2771 if (!non_stop)
2772 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2773 else
2774 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2775
353d1d73
JK
2776 /* Get executed before make_cleanup_restore_current_thread above to apply
2777 still for the thread which has thrown the exception. */
2778 make_bpstat_clear_actions_cleanup ();
2779
43ff13b4 2780 /* Now figure out what to do with the result of the result. */
a474d7c2 2781 handle_inferior_event (ecs);
43ff13b4 2782
a474d7c2 2783 if (!ecs->wait_some_more)
43ff13b4 2784 {
d6b48e9c
PA
2785 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2786
4e1c45ea 2787 delete_step_thread_step_resume_breakpoint ();
f107f563 2788
d6b48e9c 2789 /* We may not find an inferior if this was a process exit. */
16c381f0 2790 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2791 normal_stop ();
2792
af679fd0 2793 if (target_has_execution
0e5bf2a8 2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2797 && ecs->event_thread->step_multi
16c381f0 2798 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2799 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2800 else
0f641c01
PA
2801 {
2802 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2803 cmd_done = 1;
2804 }
43ff13b4 2805 }
4f8d22e3 2806
29f49a6a
PA
2807 /* No error, don't finish the thread states yet. */
2808 discard_cleanups (ts_old_chain);
2809
4f8d22e3
PA
2810 /* Revert thread and frame. */
2811 do_cleanups (old_chain);
2812
2813 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2814 restore the prompt (a synchronous execution command has finished,
2815 and we're ready for input). */
b4a14fd0 2816 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2817 display_gdb_prompt (0);
0f641c01
PA
2818
2819 if (cmd_done
2820 && !was_sync
2821 && exec_done_display_p
2822 && (ptid_equal (inferior_ptid, null_ptid)
2823 || !is_running (inferior_ptid)))
2824 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2825}
2826
edb3359d
DJ
2827/* Record the frame and location we're currently stepping through. */
2828void
2829set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2830{
2831 struct thread_info *tp = inferior_thread ();
2832
16c381f0
JK
2833 tp->control.step_frame_id = get_frame_id (frame);
2834 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2835
2836 tp->current_symtab = sal.symtab;
2837 tp->current_line = sal.line;
2838}
2839
0d1e5fa7
PA
2840/* Clear context switchable stepping state. */
2841
2842void
4e1c45ea 2843init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2844{
2845 tss->stepping_over_breakpoint = 0;
2846 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2847}
2848
e02bc4cc 2849/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2850 target_wait()/deprecated_target_wait_hook(). The data is actually
2851 cached by handle_inferior_event(), which gets called immediately
2852 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2853
2854void
488f131b 2855get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2856{
39f77062 2857 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2858 *status = target_last_waitstatus;
2859}
2860
ac264b3b
MS
2861void
2862nullify_last_target_wait_ptid (void)
2863{
2864 target_last_wait_ptid = minus_one_ptid;
2865}
2866
dcf4fbde 2867/* Switch thread contexts. */
dd80620e
MS
2868
2869static void
0d1e5fa7 2870context_switch (ptid_t ptid)
dd80620e 2871{
4b51d87b 2872 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2873 {
2874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2875 target_pid_to_str (inferior_ptid));
2876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2877 target_pid_to_str (ptid));
fd48f117
DJ
2878 }
2879
0d1e5fa7 2880 switch_to_thread (ptid);
dd80620e
MS
2881}
2882
4fa8626c
DJ
2883static void
2884adjust_pc_after_break (struct execution_control_state *ecs)
2885{
24a73cce
UW
2886 struct regcache *regcache;
2887 struct gdbarch *gdbarch;
6c95b8df 2888 struct address_space *aspace;
8aad930b 2889 CORE_ADDR breakpoint_pc;
4fa8626c 2890
4fa8626c
DJ
2891 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2892 we aren't, just return.
9709f61c
DJ
2893
2894 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2895 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2896 implemented by software breakpoints should be handled through the normal
2897 breakpoint layer.
8fb3e588 2898
4fa8626c
DJ
2899 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2900 different signals (SIGILL or SIGEMT for instance), but it is less
2901 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2902 gdbarch_decr_pc_after_break. I don't know any specific target that
2903 generates these signals at breakpoints (the code has been in GDB since at
2904 least 1992) so I can not guess how to handle them here.
8fb3e588 2905
e6cf7916
UW
2906 In earlier versions of GDB, a target with
2907 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2908 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2909 target with both of these set in GDB history, and it seems unlikely to be
2910 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2911
2912 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2913 return;
2914
a493e3e2 2915 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2916 return;
2917
4058b839
PA
2918 /* In reverse execution, when a breakpoint is hit, the instruction
2919 under it has already been de-executed. The reported PC always
2920 points at the breakpoint address, so adjusting it further would
2921 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2922 architecture:
2923
2924 B1 0x08000000 : INSN1
2925 B2 0x08000001 : INSN2
2926 0x08000002 : INSN3
2927 PC -> 0x08000003 : INSN4
2928
2929 Say you're stopped at 0x08000003 as above. Reverse continuing
2930 from that point should hit B2 as below. Reading the PC when the
2931 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2932 been de-executed already.
2933
2934 B1 0x08000000 : INSN1
2935 B2 PC -> 0x08000001 : INSN2
2936 0x08000002 : INSN3
2937 0x08000003 : INSN4
2938
2939 We can't apply the same logic as for forward execution, because
2940 we would wrongly adjust the PC to 0x08000000, since there's a
2941 breakpoint at PC - 1. We'd then report a hit on B1, although
2942 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2943 behaviour. */
2944 if (execution_direction == EXEC_REVERSE)
2945 return;
2946
24a73cce
UW
2947 /* If this target does not decrement the PC after breakpoints, then
2948 we have nothing to do. */
2949 regcache = get_thread_regcache (ecs->ptid);
2950 gdbarch = get_regcache_arch (regcache);
2951 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2952 return;
2953
6c95b8df
PA
2954 aspace = get_regcache_aspace (regcache);
2955
8aad930b
AC
2956 /* Find the location where (if we've hit a breakpoint) the
2957 breakpoint would be. */
515630c5
UW
2958 breakpoint_pc = regcache_read_pc (regcache)
2959 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2960
1c5cfe86
PA
2961 /* Check whether there actually is a software breakpoint inserted at
2962 that location.
2963
2964 If in non-stop mode, a race condition is possible where we've
2965 removed a breakpoint, but stop events for that breakpoint were
2966 already queued and arrive later. To suppress those spurious
2967 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2968 and retire them after a number of stop events are reported. */
6c95b8df
PA
2969 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2970 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2971 {
96429cc8 2972 struct cleanup *old_cleanups = NULL;
abbb1732 2973
96429cc8
HZ
2974 if (RECORD_IS_USED)
2975 old_cleanups = record_gdb_operation_disable_set ();
2976
1c0fdd0e
UW
2977 /* When using hardware single-step, a SIGTRAP is reported for both
2978 a completed single-step and a software breakpoint. Need to
2979 differentiate between the two, as the latter needs adjusting
2980 but the former does not.
2981
2982 The SIGTRAP can be due to a completed hardware single-step only if
2983 - we didn't insert software single-step breakpoints
2984 - the thread to be examined is still the current thread
2985 - this thread is currently being stepped
2986
2987 If any of these events did not occur, we must have stopped due
2988 to hitting a software breakpoint, and have to back up to the
2989 breakpoint address.
2990
2991 As a special case, we could have hardware single-stepped a
2992 software breakpoint. In this case (prev_pc == breakpoint_pc),
2993 we also need to back up to the breakpoint address. */
2994
2995 if (singlestep_breakpoints_inserted_p
2996 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2997 || !currently_stepping (ecs->event_thread)
2998 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2999 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3000
3001 if (RECORD_IS_USED)
3002 do_cleanups (old_cleanups);
8aad930b 3003 }
4fa8626c
DJ
3004}
3005
0d1e5fa7
PA
3006void
3007init_infwait_state (void)
3008{
3009 waiton_ptid = pid_to_ptid (-1);
3010 infwait_state = infwait_normal_state;
3011}
3012
94cc34af
PA
3013void
3014error_is_running (void)
3015{
3e43a32a
MS
3016 error (_("Cannot execute this command while "
3017 "the selected thread is running."));
94cc34af
PA
3018}
3019
3020void
3021ensure_not_running (void)
3022{
3023 if (is_running (inferior_ptid))
3024 error_is_running ();
3025}
3026
edb3359d
DJ
3027static int
3028stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3029{
3030 for (frame = get_prev_frame (frame);
3031 frame != NULL;
3032 frame = get_prev_frame (frame))
3033 {
3034 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3035 return 1;
3036 if (get_frame_type (frame) != INLINE_FRAME)
3037 break;
3038 }
3039
3040 return 0;
3041}
3042
a96d9b2e
SDJ
3043/* Auxiliary function that handles syscall entry/return events.
3044 It returns 1 if the inferior should keep going (and GDB
3045 should ignore the event), or 0 if the event deserves to be
3046 processed. */
ca2163eb 3047
a96d9b2e 3048static int
ca2163eb 3049handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3050{
ca2163eb
PA
3051 struct regcache *regcache;
3052 struct gdbarch *gdbarch;
3053 int syscall_number;
3054
3055 if (!ptid_equal (ecs->ptid, inferior_ptid))
3056 context_switch (ecs->ptid);
3057
3058 regcache = get_thread_regcache (ecs->ptid);
3059 gdbarch = get_regcache_arch (regcache);
f90263c1 3060 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3061 stop_pc = regcache_read_pc (regcache);
3062
a96d9b2e
SDJ
3063 if (catch_syscall_enabled () > 0
3064 && catching_syscall_number (syscall_number) > 0)
3065 {
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3068 syscall_number);
a96d9b2e 3069
16c381f0 3070 ecs->event_thread->control.stop_bpstat
6c95b8df 3071 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3072 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3073 ecs->random_signal
3074 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3075
ca2163eb
PA
3076 if (!ecs->random_signal)
3077 {
3078 /* Catchpoint hit. */
a493e3e2 3079 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3080 return 0;
3081 }
a96d9b2e 3082 }
ca2163eb
PA
3083
3084 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3086 keep_going (ecs);
3087 return 1;
a96d9b2e
SDJ
3088}
3089
7e324e48
GB
3090/* Clear the supplied execution_control_state's stop_func_* fields. */
3091
3092static void
3093clear_stop_func (struct execution_control_state *ecs)
3094{
3095 ecs->stop_func_filled_in = 0;
3096 ecs->stop_func_start = 0;
3097 ecs->stop_func_end = 0;
3098 ecs->stop_func_name = NULL;
3099}
3100
3101/* Lazily fill in the execution_control_state's stop_func_* fields. */
3102
3103static void
3104fill_in_stop_func (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs)
3106{
3107 if (!ecs->stop_func_filled_in)
3108 {
3109 /* Don't care about return value; stop_func_start and stop_func_name
3110 will both be 0 if it doesn't work. */
3111 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3112 &ecs->stop_func_start, &ecs->stop_func_end);
3113 ecs->stop_func_start
3114 += gdbarch_deprecated_function_start_offset (gdbarch);
3115
3116 ecs->stop_func_filled_in = 1;
3117 }
3118}
3119
cd0fc7c3
SS
3120/* Given an execution control state that has been freshly filled in
3121 by an event from the inferior, figure out what it means and take
3122 appropriate action. */
c906108c 3123
ec9499be 3124static void
96baa820 3125handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3126{
568d6575
UW
3127 struct frame_info *frame;
3128 struct gdbarch *gdbarch;
d983da9c
DJ
3129 int stopped_by_watchpoint;
3130 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3131 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3132 enum stop_kind stop_soon;
3133
28736962
PA
3134 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3135 {
3136 /* We had an event in the inferior, but we are not interested in
3137 handling it at this level. The lower layers have already
3138 done what needs to be done, if anything.
3139
3140 One of the possible circumstances for this is when the
3141 inferior produces output for the console. The inferior has
3142 not stopped, and we are ignoring the event. Another possible
3143 circumstance is any event which the lower level knows will be
3144 reported multiple times without an intervening resume. */
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3147 prepare_to_wait (ecs);
3148 return;
3149 }
3150
0e5bf2a8
PA
3151 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3152 && target_can_async_p () && !sync_execution)
3153 {
3154 /* There were no unwaited-for children left in the target, but,
3155 we're not synchronously waiting for events either. Just
3156 ignore. Otherwise, if we were running a synchronous
3157 execution command, we need to cancel it and give the user
3158 back the terminal. */
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
d6b48e9c 3166 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3167 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3168 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3171
d6b48e9c 3172 gdb_assert (inf);
16c381f0 3173 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3177
1777feb0 3178 /* Cache the last pid/waitstatus. */
39f77062 3179 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3180 target_last_waitstatus = ecs->ws;
e02bc4cc 3181
ca005067 3182 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3183 stop_stack_dummy = STOP_NONE;
ca005067 3184
0e5bf2a8
PA
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3186 {
3187 /* No unwaited-for children left. IOW, all resumed children
3188 have exited. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3191
3192 stop_print_frame = 0;
3193 stop_stepping (ecs);
3194 return;
3195 }
3196
8c90c137 3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
88ed393a
JK
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
28736962
PA
3212 breakpoint_retire_moribund ();
3213
2b009048
DJ
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
2b009048 3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3228 {
de0a0249
UW
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3238 }
2b009048
DJ
3239 }
3240
28736962
PA
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3251 set_executing (ecs->ptid, 0);
8c90c137 3252
0d1e5fa7 3253 switch (infwait_state)
488f131b
JB
3254 {
3255 case infwait_thread_hop_state:
527159b7 3256 if (debug_infrun)
8a9de0e4 3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3258 break;
b83266a0 3259
488f131b 3260 case infwait_normal_state:
527159b7 3261 if (debug_infrun)
8a9de0e4 3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
488f131b 3271 break;
b83266a0 3272
488f131b 3273 case infwait_nonstep_watch_state:
527159b7 3274 if (debug_infrun)
8a9de0e4
AC
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
488f131b 3277 insert_breakpoints ();
c906108c 3278
488f131b
JB
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
65e82032
AC
3284
3285 default:
e2e0b3e5 3286 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3287 }
ec9499be 3288
0d1e5fa7 3289 infwait_state = infwait_normal_state;
ec9499be 3290 waiton_ptid = pid_to_ptid (-1);
c906108c 3291
488f131b
JB
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
527159b7 3295 if (debug_infrun)
8a9de0e4 3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
c0236d92 3303 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3304 {
edcc5120
TT
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
a493e3e2 3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3323 goto process_event_stop_test;
3324 }
488f131b 3325
b0f4b84b
DJ
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
a493e3e2 3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3331 if (stop_on_solib_events)
3332 {
55409f9d
DJ
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
b0f4b84b
DJ
3337 stop_stepping (ecs);
3338 return;
3339 }
488f131b 3340 }
b0f4b84b
DJ
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
8b3ee56d
PA
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
74960c60
VP
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
74960c60 3355 insert_breakpoints ();
a493e3e2 3356 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
c5aa993b 3362
488f131b 3363 case TARGET_WAITKIND_SPURIOUS:
527159b7 3364 if (debug_infrun)
8a9de0e4 3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3366 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3367 context_switch (ecs->ptid);
a493e3e2 3368 resume (0, GDB_SIGNAL_0);
488f131b
JB
3369 prepare_to_wait (ecs);
3370 return;
c5aa993b 3371
488f131b 3372 case TARGET_WAITKIND_EXITED:
527159b7 3373 if (debug_infrun)
8a9de0e4 3374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3375 inferior_ptid = ecs->ptid;
6c95b8df
PA
3376 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3377 set_current_program_space (current_inferior ()->pspace);
3378 handle_vfork_child_exec_or_exit (0);
1777feb0 3379 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3380 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3381
3382 /* Record the exit code in the convenience variable $_exitcode, so
3383 that the user can inspect this again later. */
4fa62494
UW
3384 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3385 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3386
3387 /* Also record this in the inferior itself. */
3388 current_inferior ()->has_exit_code = 1;
3389 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3390
488f131b
JB
3391 gdb_flush (gdb_stdout);
3392 target_mourn_inferior ();
1c0fdd0e 3393 singlestep_breakpoints_inserted_p = 0;
d03285ec 3394 cancel_single_step_breakpoints ();
488f131b
JB
3395 stop_print_frame = 0;
3396 stop_stepping (ecs);
3397 return;
c5aa993b 3398
488f131b 3399 case TARGET_WAITKIND_SIGNALLED:
527159b7 3400 if (debug_infrun)
8a9de0e4 3401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3402 inferior_ptid = ecs->ptid;
6c95b8df
PA
3403 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3404 set_current_program_space (current_inferior ()->pspace);
3405 handle_vfork_child_exec_or_exit (0);
488f131b 3406 stop_print_frame = 0;
1777feb0 3407 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3408
488f131b
JB
3409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3410 reach here unless the inferior is dead. However, for years
3411 target_kill() was called here, which hints that fatal signals aren't
3412 really fatal on some systems. If that's true, then some changes
1777feb0 3413 may be needed. */
488f131b 3414 target_mourn_inferior ();
c906108c 3415
33d62d64 3416 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3417 singlestep_breakpoints_inserted_p = 0;
d03285ec 3418 cancel_single_step_breakpoints ();
488f131b
JB
3419 stop_stepping (ecs);
3420 return;
c906108c 3421
488f131b 3422 /* The following are the only cases in which we keep going;
1777feb0 3423 the above cases end in a continue or goto. */
488f131b 3424 case TARGET_WAITKIND_FORKED:
deb3b17b 3425 case TARGET_WAITKIND_VFORKED:
527159b7 3426 if (debug_infrun)
8a9de0e4 3427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3428
e2d96639
YQ
3429 /* Check whether the inferior is displaced stepping. */
3430 {
3431 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3432 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3433 struct displaced_step_inferior_state *displaced
3434 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3435
3436 /* If checking displaced stepping is supported, and thread
3437 ecs->ptid is displaced stepping. */
3438 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3439 {
3440 struct inferior *parent_inf
3441 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3442 struct regcache *child_regcache;
3443 CORE_ADDR parent_pc;
3444
3445 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3446 indicating that the displaced stepping of syscall instruction
3447 has been done. Perform cleanup for parent process here. Note
3448 that this operation also cleans up the child process for vfork,
3449 because their pages are shared. */
a493e3e2 3450 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3451
3452 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3453 {
3454 /* Restore scratch pad for child process. */
3455 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3456 }
3457
3458 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3459 the child's PC is also within the scratchpad. Set the child's PC
3460 to the parent's PC value, which has already been fixed up.
3461 FIXME: we use the parent's aspace here, although we're touching
3462 the child, because the child hasn't been added to the inferior
3463 list yet at this point. */
3464
3465 child_regcache
3466 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3467 gdbarch,
3468 parent_inf->aspace);
3469 /* Read PC value of parent process. */
3470 parent_pc = regcache_read_pc (regcache);
3471
3472 if (debug_displaced)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "displaced: write child pc from %s to %s\n",
3475 paddress (gdbarch,
3476 regcache_read_pc (child_regcache)),
3477 paddress (gdbarch, parent_pc));
3478
3479 regcache_write_pc (child_regcache, parent_pc);
3480 }
3481 }
3482
5a2901d9 3483 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3484 context_switch (ecs->ptid);
5a2901d9 3485
b242c3c2
PA
3486 /* Immediately detach breakpoints from the child before there's
3487 any chance of letting the user delete breakpoints from the
3488 breakpoint lists. If we don't do this early, it's easy to
3489 leave left over traps in the child, vis: "break foo; catch
3490 fork; c; <fork>; del; c; <child calls foo>". We only follow
3491 the fork on the last `continue', and by that time the
3492 breakpoint at "foo" is long gone from the breakpoint table.
3493 If we vforked, then we don't need to unpatch here, since both
3494 parent and child are sharing the same memory pages; we'll
3495 need to unpatch at follow/detach time instead to be certain
3496 that new breakpoints added between catchpoint hit time and
3497 vfork follow are detached. */
3498 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3499 {
b242c3c2
PA
3500 /* This won't actually modify the breakpoint list, but will
3501 physically remove the breakpoints from the child. */
d80ee84f 3502 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3503 }
3504
d03285ec
UW
3505 if (singlestep_breakpoints_inserted_p)
3506 {
1777feb0 3507 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3508 remove_single_step_breakpoints ();
3509 singlestep_breakpoints_inserted_p = 0;
3510 }
3511
e58b0e63
PA
3512 /* In case the event is caught by a catchpoint, remember that
3513 the event is to be followed at the next resume of the thread,
3514 and not immediately. */
3515 ecs->event_thread->pending_follow = ecs->ws;
3516
fb14de7b 3517 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3518
16c381f0 3519 ecs->event_thread->control.stop_bpstat
6c95b8df 3520 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3521 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3522
67822962
PA
3523 /* Note that we're interested in knowing the bpstat actually
3524 causes a stop, not just if it may explain the signal.
3525 Software watchpoints, for example, always appear in the
3526 bpstat. */
16c381f0
JK
3527 ecs->random_signal
3528 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3529
3530 /* If no catchpoint triggered for this, then keep going. */
3531 if (ecs->random_signal)
3532 {
6c95b8df
PA
3533 ptid_t parent;
3534 ptid_t child;
e58b0e63 3535 int should_resume;
3e43a32a
MS
3536 int follow_child
3537 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3538
a493e3e2 3539 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3540
3541 should_resume = follow_fork ();
3542
6c95b8df
PA
3543 parent = ecs->ptid;
3544 child = ecs->ws.value.related_pid;
3545
3546 /* In non-stop mode, also resume the other branch. */
3547 if (non_stop && !detach_fork)
3548 {
3549 if (follow_child)
3550 switch_to_thread (parent);
3551 else
3552 switch_to_thread (child);
3553
3554 ecs->event_thread = inferior_thread ();
3555 ecs->ptid = inferior_ptid;
3556 keep_going (ecs);
3557 }
3558
3559 if (follow_child)
3560 switch_to_thread (child);
3561 else
3562 switch_to_thread (parent);
3563
e58b0e63
PA
3564 ecs->event_thread = inferior_thread ();
3565 ecs->ptid = inferior_ptid;
3566
3567 if (should_resume)
3568 keep_going (ecs);
3569 else
3570 stop_stepping (ecs);
04e68871
DJ
3571 return;
3572 }
a493e3e2 3573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3574 goto process_event_stop_test;
3575
6c95b8df
PA
3576 case TARGET_WAITKIND_VFORK_DONE:
3577 /* Done with the shared memory region. Re-insert breakpoints in
3578 the parent, and keep going. */
3579
3580 if (debug_infrun)
3e43a32a
MS
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3583
3584 if (!ptid_equal (ecs->ptid, inferior_ptid))
3585 context_switch (ecs->ptid);
3586
3587 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3588 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3589 /* This also takes care of reinserting breakpoints in the
3590 previously locked inferior. */
3591 keep_going (ecs);
3592 return;
3593
488f131b 3594 case TARGET_WAITKIND_EXECD:
527159b7 3595 if (debug_infrun)
fc5261f2 3596 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3597
5a2901d9 3598 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3599 context_switch (ecs->ptid);
5a2901d9 3600
d03285ec
UW
3601 singlestep_breakpoints_inserted_p = 0;
3602 cancel_single_step_breakpoints ();
3603
fb14de7b 3604 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3605
6c95b8df
PA
3606 /* Do whatever is necessary to the parent branch of the vfork. */
3607 handle_vfork_child_exec_or_exit (1);
3608
795e548f
PA
3609 /* This causes the eventpoints and symbol table to be reset.
3610 Must do this now, before trying to determine whether to
3611 stop. */
71b43ef8 3612 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3613
16c381f0 3614 ecs->event_thread->control.stop_bpstat
6c95b8df 3615 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3616 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3617 ecs->random_signal
3618 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3619
71b43ef8
PA
3620 /* Note that this may be referenced from inside
3621 bpstat_stop_status above, through inferior_has_execd. */
3622 xfree (ecs->ws.value.execd_pathname);
3623 ecs->ws.value.execd_pathname = NULL;
3624
04e68871
DJ
3625 /* If no catchpoint triggered for this, then keep going. */
3626 if (ecs->random_signal)
3627 {
a493e3e2 3628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3629 keep_going (ecs);
3630 return;
3631 }
a493e3e2 3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3633 goto process_event_stop_test;
3634
b4dc5ffa
MK
3635 /* Be careful not to try to gather much state about a thread
3636 that's in a syscall. It's frequently a losing proposition. */
488f131b 3637 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3638 if (debug_infrun)
3e43a32a
MS
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3641 /* Getting the current syscall number. */
ca2163eb 3642 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3643 return;
3644 goto process_event_stop_test;
c906108c 3645
488f131b
JB
3646 /* Before examining the threads further, step this thread to
3647 get it entirely out of the syscall. (We get notice of the
3648 event when the thread is just on the verge of exiting a
3649 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3650 into user code.) */
488f131b 3651 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3652 if (debug_infrun)
3e43a32a
MS
3653 fprintf_unfiltered (gdb_stdlog,
3654 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3655 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3656 return;
3657 goto process_event_stop_test;
c906108c 3658
488f131b 3659 case TARGET_WAITKIND_STOPPED:
527159b7 3660 if (debug_infrun)
8a9de0e4 3661 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3662 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3663 break;
c906108c 3664
b2175913 3665 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3668 /* Reverse execution: target ran out of history info. */
eab402df
PA
3669
3670 /* Pull the single step breakpoints out of the target. */
3671 if (singlestep_breakpoints_inserted_p)
3672 {
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
3674 context_switch (ecs->ptid);
3675 remove_single_step_breakpoints ();
3676 singlestep_breakpoints_inserted_p = 0;
3677 }
fb14de7b 3678 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3679 print_no_history_reason ();
b2175913
MS
3680 stop_stepping (ecs);
3681 return;
488f131b 3682 }
c906108c 3683
2020b7ab 3684 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3685 {
3686 /* Do we need to clean up the state of a thread that has
3687 completed a displaced single-step? (Doing so usually affects
3688 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3689 displaced_step_fixup (ecs->ptid,
3690 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3691
3692 /* If we either finished a single-step or hit a breakpoint, but
3693 the user wanted this thread to be stopped, pretend we got a
3694 SIG0 (generic unsignaled stop). */
3695
3696 if (ecs->event_thread->stop_requested
a493e3e2
PA
3697 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3698 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3699 }
237fc4c9 3700
515630c5 3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3702
527159b7 3703 if (debug_infrun)
237fc4c9 3704 {
5af949e3
UW
3705 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3706 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3707 struct cleanup *old_chain = save_inferior_ptid ();
3708
3709 inferior_ptid = ecs->ptid;
5af949e3
UW
3710
3711 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3712 paddress (gdbarch, stop_pc));
d92524f1 3713 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3714 {
3715 CORE_ADDR addr;
abbb1732 3716
237fc4c9
PA
3717 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3718
3719 if (target_stopped_data_address (&current_target, &addr))
3720 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3721 "infrun: stopped data address = %s\n",
3722 paddress (gdbarch, addr));
237fc4c9
PA
3723 else
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: (no data address available)\n");
3726 }
7f82dfc7
JK
3727
3728 do_cleanups (old_chain);
237fc4c9 3729 }
527159b7 3730
9f976b41
DJ
3731 if (stepping_past_singlestep_breakpoint)
3732 {
1c0fdd0e 3733 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3734 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3735 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3736
3737 stepping_past_singlestep_breakpoint = 0;
3738
3739 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3740 breakpoint, or stopped for some other reason. It would be nice if
3741 we could tell, but we can't reliably. */
a493e3e2 3742 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3743 {
527159b7 3744 if (debug_infrun)
3e43a32a
MS
3745 fprintf_unfiltered (gdb_stdlog,
3746 "infrun: stepping_past_"
3747 "singlestep_breakpoint\n");
9f976b41 3748 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3749 if (!ptid_equal (ecs->ptid, inferior_ptid))
3750 context_switch (ecs->ptid);
e0cd558a 3751 remove_single_step_breakpoints ();
9f976b41
DJ
3752 singlestep_breakpoints_inserted_p = 0;
3753
3754 ecs->random_signal = 0;
16c381f0 3755 ecs->event_thread->control.trap_expected = 0;
9f976b41 3756
0d1e5fa7 3757 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3758 if (deprecated_context_hook)
3759 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41 3760
a493e3e2 3761 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3762 prepare_to_wait (ecs);
3763 return;
3764 }
3765 }
3766
ca67fcb8 3767 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3768 {
94cc34af
PA
3769 /* In non-stop mode, there's never a deferred_step_ptid set. */
3770 gdb_assert (!non_stop);
3771
6a6b96b9
UW
3772 /* If we stopped for some other reason than single-stepping, ignore
3773 the fact that we were supposed to switch back. */
a493e3e2 3774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3775 {
3776 if (debug_infrun)
3777 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3778 "infrun: handling deferred step\n");
6a6b96b9
UW
3779
3780 /* Pull the single step breakpoints out of the target. */
3781 if (singlestep_breakpoints_inserted_p)
3782 {
8b3ee56d
PA
3783 if (!ptid_equal (ecs->ptid, inferior_ptid))
3784 context_switch (ecs->ptid);
6a6b96b9
UW
3785 remove_single_step_breakpoints ();
3786 singlestep_breakpoints_inserted_p = 0;
3787 }
3788
cd3da28e
PA
3789 ecs->event_thread->control.trap_expected = 0;
3790
d25f45d9 3791 context_switch (deferred_step_ptid);
ca67fcb8 3792 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3793 /* Suppress spurious "Switching to ..." message. */
3794 previous_inferior_ptid = inferior_ptid;
3795
a493e3e2 3796 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3797 prepare_to_wait (ecs);
3798 return;
3799 }
ca67fcb8
VP
3800
3801 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3802 }
3803
488f131b
JB
3804 /* See if a thread hit a thread-specific breakpoint that was meant for
3805 another thread. If so, then step that thread past the breakpoint,
3806 and continue it. */
3807
a493e3e2 3808 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3809 {
9f976b41 3810 int thread_hop_needed = 0;
cf00dfa7
VP
3811 struct address_space *aspace =
3812 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3813
f8d40ec8 3814 /* Check if a regular breakpoint has been hit before checking
1777feb0 3815 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3816 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3817 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3818 {
c5aa993b 3819 ecs->random_signal = 0;
6c95b8df 3820 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3821 thread_hop_needed = 1;
3822 }
1c0fdd0e 3823 else if (singlestep_breakpoints_inserted_p)
9f976b41 3824 {
fd48f117
DJ
3825 /* We have not context switched yet, so this should be true
3826 no matter which thread hit the singlestep breakpoint. */
3827 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3830 "trap for %s\n",
3831 target_pid_to_str (ecs->ptid));
3832
9f976b41
DJ
3833 ecs->random_signal = 0;
3834 /* The call to in_thread_list is necessary because PTIDs sometimes
3835 change when we go from single-threaded to multi-threaded. If
3836 the singlestep_ptid is still in the list, assume that it is
3837 really different from ecs->ptid. */
3838 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3839 && in_thread_list (singlestep_ptid))
3840 {
fd48f117
DJ
3841 /* If the PC of the thread we were trying to single-step
3842 has changed, discard this event (which we were going
3843 to ignore anyway), and pretend we saw that thread
3844 trap. This prevents us continuously moving the
3845 single-step breakpoint forward, one instruction at a
3846 time. If the PC has changed, then the thread we were
3847 trying to single-step has trapped or been signalled,
3848 but the event has not been reported to GDB yet.
3849
3850 There might be some cases where this loses signal
3851 information, if a signal has arrived at exactly the
3852 same time that the PC changed, but this is the best
3853 we can do with the information available. Perhaps we
3854 should arrange to report all events for all threads
3855 when they stop, or to re-poll the remote looking for
3856 this particular thread (i.e. temporarily enable
3857 schedlock). */
515630c5
UW
3858
3859 CORE_ADDR new_singlestep_pc
3860 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3861
3862 if (new_singlestep_pc != singlestep_pc)
fd48f117 3863 {
2ea28649 3864 enum gdb_signal stop_signal;
2020b7ab 3865
fd48f117
DJ
3866 if (debug_infrun)
3867 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3868 " but expected thread advanced also\n");
3869
3870 /* The current context still belongs to
3871 singlestep_ptid. Don't swap here, since that's
3872 the context we want to use. Just fudge our
3873 state and continue. */
16c381f0 3874 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3875 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3876 ecs->ptid = singlestep_ptid;
e09875d4 3877 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3878 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3879 stop_pc = new_singlestep_pc;
fd48f117
DJ
3880 }
3881 else
3882 {
3883 if (debug_infrun)
3884 fprintf_unfiltered (gdb_stdlog,
3885 "infrun: unexpected thread\n");
3886
3887 thread_hop_needed = 1;
3888 stepping_past_singlestep_breakpoint = 1;
3889 saved_singlestep_ptid = singlestep_ptid;
3890 }
9f976b41
DJ
3891 }
3892 }
3893
3894 if (thread_hop_needed)
8fb3e588 3895 {
9f5a595d 3896 struct regcache *thread_regcache;
237fc4c9 3897 int remove_status = 0;
8fb3e588 3898
527159b7 3899 if (debug_infrun)
8a9de0e4 3900 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3901
b3444185
PA
3902 /* Switch context before touching inferior memory, the
3903 previous thread may have exited. */
3904 if (!ptid_equal (inferior_ptid, ecs->ptid))
3905 context_switch (ecs->ptid);
3906
8fb3e588 3907 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3908 Just continue. */
8fb3e588 3909
1c0fdd0e 3910 if (singlestep_breakpoints_inserted_p)
488f131b 3911 {
1777feb0 3912 /* Pull the single step breakpoints out of the target. */
e0cd558a 3913 remove_single_step_breakpoints ();
8fb3e588
AC
3914 singlestep_breakpoints_inserted_p = 0;
3915 }
3916
237fc4c9
PA
3917 /* If the arch can displace step, don't remove the
3918 breakpoints. */
9f5a595d
UW
3919 thread_regcache = get_thread_regcache (ecs->ptid);
3920 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3921 remove_status = remove_breakpoints ();
3922
8fb3e588
AC
3923 /* Did we fail to remove breakpoints? If so, try
3924 to set the PC past the bp. (There's at least
3925 one situation in which we can fail to remove
3926 the bp's: On HP-UX's that use ttrace, we can't
3927 change the address space of a vforking child
3928 process until the child exits (well, okay, not
1777feb0 3929 then either :-) or execs. */
8fb3e588 3930 if (remove_status != 0)
9d9cd7ac 3931 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3932 else
3933 { /* Single step */
94cc34af
PA
3934 if (!non_stop)
3935 {
3936 /* Only need to require the next event from this
3937 thread in all-stop mode. */
3938 waiton_ptid = ecs->ptid;
3939 infwait_state = infwait_thread_hop_state;
3940 }
8fb3e588 3941
4e1c45ea 3942 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3943 keep_going (ecs);
8fb3e588
AC
3944 return;
3945 }
488f131b 3946 }
1c0fdd0e 3947 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3948 {
8fb3e588
AC
3949 ecs->random_signal = 0;
3950 }
488f131b
JB
3951 }
3952 else
3953 ecs->random_signal = 1;
c906108c 3954
488f131b 3955 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3956 so, then switch to that thread. */
3957 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3958 {
527159b7 3959 if (debug_infrun)
8a9de0e4 3960 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3961
0d1e5fa7 3962 context_switch (ecs->ptid);
c5aa993b 3963
9a4105ab
AC
3964 if (deprecated_context_hook)
3965 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3966 }
c906108c 3967
568d6575
UW
3968 /* At this point, get hold of the now-current thread's frame. */
3969 frame = get_current_frame ();
3970 gdbarch = get_frame_arch (frame);
3971
1c0fdd0e 3972 if (singlestep_breakpoints_inserted_p)
488f131b 3973 {
1777feb0 3974 /* Pull the single step breakpoints out of the target. */
e0cd558a 3975 remove_single_step_breakpoints ();
488f131b
JB
3976 singlestep_breakpoints_inserted_p = 0;
3977 }
c906108c 3978
d983da9c
DJ
3979 if (stepped_after_stopped_by_watchpoint)
3980 stopped_by_watchpoint = 0;
3981 else
3982 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3983
3984 /* If necessary, step over this watchpoint. We'll be back to display
3985 it in a moment. */
3986 if (stopped_by_watchpoint
d92524f1 3987 && (target_have_steppable_watchpoint
568d6575 3988 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3989 {
488f131b
JB
3990 /* At this point, we are stopped at an instruction which has
3991 attempted to write to a piece of memory under control of
3992 a watchpoint. The instruction hasn't actually executed
3993 yet. If we were to evaluate the watchpoint expression
3994 now, we would get the old value, and therefore no change
3995 would seem to have occurred.
3996
3997 In order to make watchpoints work `right', we really need
3998 to complete the memory write, and then evaluate the
d983da9c
DJ
3999 watchpoint expression. We do this by single-stepping the
4000 target.
4001
4002 It may not be necessary to disable the watchpoint to stop over
4003 it. For example, the PA can (with some kernel cooperation)
4004 single step over a watchpoint without disabling the watchpoint.
4005
4006 It is far more common to need to disable a watchpoint to step
4007 the inferior over it. If we have non-steppable watchpoints,
4008 we must disable the current watchpoint; it's simplest to
4009 disable all watchpoints and breakpoints. */
2facfe5c
DD
4010 int hw_step = 1;
4011
d92524f1 4012 if (!target_have_steppable_watchpoint)
2455069d
UW
4013 {
4014 remove_breakpoints ();
4015 /* See comment in resume why we need to stop bypassing signals
4016 while breakpoints have been removed. */
4017 target_pass_signals (0, NULL);
4018 }
2facfe5c 4019 /* Single step */
568d6575 4020 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4021 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4022 waiton_ptid = ecs->ptid;
d92524f1 4023 if (target_have_steppable_watchpoint)
0d1e5fa7 4024 infwait_state = infwait_step_watch_state;
d983da9c 4025 else
0d1e5fa7 4026 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4027 prepare_to_wait (ecs);
4028 return;
4029 }
4030
7e324e48 4031 clear_stop_func (ecs);
4e1c45ea 4032 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4033 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4034 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4035 stop_print_frame = 1;
4036 ecs->random_signal = 0;
4037 stopped_by_random_signal = 0;
488f131b 4038
edb3359d
DJ
4039 /* Hide inlined functions starting here, unless we just performed stepi or
4040 nexti. After stepi and nexti, always show the innermost frame (not any
4041 inline function call sites). */
16c381f0 4042 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4043 {
4044 struct address_space *aspace =
4045 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4046
4047 /* skip_inline_frames is expensive, so we avoid it if we can
4048 determine that the address is one where functions cannot have
4049 been inlined. This improves performance with inferiors that
4050 load a lot of shared libraries, because the solib event
4051 breakpoint is defined as the address of a function (i.e. not
4052 inline). Note that we have to check the previous PC as well
4053 as the current one to catch cases when we have just
4054 single-stepped off a breakpoint prior to reinstating it.
4055 Note that we're assuming that the code we single-step to is
4056 not inline, but that's not definitive: there's nothing
4057 preventing the event breakpoint function from containing
4058 inlined code, and the single-step ending up there. If the
4059 user had set a breakpoint on that inlined code, the missing
4060 skip_inline_frames call would break things. Fortunately
4061 that's an extremely unlikely scenario. */
09ac7c10 4062 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4063 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4064 && ecs->event_thread->control.trap_expected
4065 && pc_at_non_inline_function (aspace,
4066 ecs->event_thread->prev_pc,
09ac7c10 4067 &ecs->ws)))
1c5a993e
MR
4068 {
4069 skip_inline_frames (ecs->ptid);
4070
4071 /* Re-fetch current thread's frame in case that invalidated
4072 the frame cache. */
4073 frame = get_current_frame ();
4074 gdbarch = get_frame_arch (frame);
4075 }
0574c78f 4076 }
edb3359d 4077
a493e3e2 4078 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4079 && ecs->event_thread->control.trap_expected
568d6575 4080 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4081 && currently_stepping (ecs->event_thread))
3352ef37 4082 {
b50d7442 4083 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4084 also on an instruction that needs to be stepped multiple
1777feb0 4085 times before it's been fully executing. E.g., architectures
3352ef37
AC
4086 with a delay slot. It needs to be stepped twice, once for
4087 the instruction and once for the delay slot. */
4088 int step_through_delay
568d6575 4089 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4090
527159b7 4091 if (debug_infrun && step_through_delay)
8a9de0e4 4092 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4093 if (ecs->event_thread->control.step_range_end == 0
4094 && step_through_delay)
3352ef37
AC
4095 {
4096 /* The user issued a continue when stopped at a breakpoint.
4097 Set up for another trap and get out of here. */
4e1c45ea 4098 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4099 keep_going (ecs);
4100 return;
4101 }
4102 else if (step_through_delay)
4103 {
4104 /* The user issued a step when stopped at a breakpoint.
4105 Maybe we should stop, maybe we should not - the delay
4106 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4107 case, don't decide that here, just set
4108 ecs->stepping_over_breakpoint, making sure we
4109 single-step again before breakpoints are re-inserted. */
4e1c45ea 4110 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4111 }
4112 }
4113
488f131b
JB
4114 /* Look at the cause of the stop, and decide what to do.
4115 The alternatives are:
0d1e5fa7
PA
4116 1) stop_stepping and return; to really stop and return to the debugger,
4117 2) keep_going and return to start up again
4e1c45ea 4118 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4119 3) set ecs->random_signal to 1, and the decision between 1 and 2
4120 will be made according to the signal handling tables. */
4121
a493e3e2 4122 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
b0f4b84b
DJ
4123 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4124 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4125 {
a493e3e2 4126 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4127 && stop_after_trap)
488f131b 4128 {
527159b7 4129 if (debug_infrun)
8a9de0e4 4130 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4131 stop_print_frame = 0;
4132 stop_stepping (ecs);
4133 return;
4134 }
c54cfec8
EZ
4135
4136 /* This is originated from start_remote(), start_inferior() and
4137 shared libraries hook functions. */
b0f4b84b 4138 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4139 {
527159b7 4140 if (debug_infrun)
8a9de0e4 4141 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4142 stop_stepping (ecs);
4143 return;
4144 }
4145
c54cfec8 4146 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4147 the stop_signal here, because some kernels don't ignore a
4148 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4149 See more comments in inferior.h. On the other hand, if we
a0ef4274 4150 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4151 will handle the SIGSTOP if it should show up later.
4152
4153 Also consider that the attach is complete when we see a
4154 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4155 target extended-remote report it instead of a SIGSTOP
4156 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4157 signal, so this is no exception.
4158
4159 Also consider that the attach is complete when we see a
a493e3e2 4160 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
e0ba6746
PA
4161 the target to stop all threads of the inferior, in case the
4162 low level attach operation doesn't stop them implicitly. If
4163 they weren't stopped implicitly, then the stub will report a
a493e3e2 4164 GDB_SIGNAL_0, meaning: stopped for no particular reason
e0ba6746 4165 other than GDB's request. */
a0ef4274 4166 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a493e3e2
PA
4167 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4168 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4169 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
c54cfec8
EZ
4170 {
4171 stop_stepping (ecs);
a493e3e2 4172 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
c54cfec8
EZ
4173 return;
4174 }
4175
09ac7c10
TT
4176 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4177 handles this event. */
16c381f0 4178 ecs->event_thread->control.stop_bpstat
6c95b8df 4179 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4180 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4181
fba57f8f
VP
4182 /* Following in case break condition called a
4183 function. */
4184 stop_print_frame = 1;
488f131b 4185
db82e815
PA
4186 /* This is where we handle "moribund" watchpoints. Unlike
4187 software breakpoints traps, hardware watchpoint traps are
4188 always distinguishable from random traps. If no high-level
4189 watchpoint is associated with the reported stop data address
4190 anymore, then the bpstat does not explain the signal ---
4191 simply make sure to ignore it if `stopped_by_watchpoint' is
4192 set. */
4193
4194 if (debug_infrun
a493e3e2 4195 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4196 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4197 && stopped_by_watchpoint)
3e43a32a
MS
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: no user watchpoint explains "
4200 "watchpoint SIGTRAP, ignoring\n");
db82e815 4201
73dd234f 4202 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4203 at one stage in the past included checks for an inferior
4204 function call's call dummy's return breakpoint. The original
4205 comment, that went with the test, read:
73dd234f 4206
8fb3e588
AC
4207 ``End of a stack dummy. Some systems (e.g. Sony news) give
4208 another signal besides SIGTRAP, so check here as well as
4209 above.''
73dd234f 4210
8002d778 4211 If someone ever tries to get call dummys on a
73dd234f 4212 non-executable stack to work (where the target would stop
03cebad2
MK
4213 with something like a SIGSEGV), then those tests might need
4214 to be re-instated. Given, however, that the tests were only
73dd234f 4215 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4216 suspect that it won't be the case.
4217
8fb3e588
AC
4218 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4219 be necessary for call dummies on a non-executable stack on
4220 SPARC. */
73dd234f 4221
a493e3e2 4222 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4223 ecs->random_signal
16c381f0 4224 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4225 || stopped_by_watchpoint
16c381f0
JK
4226 || ecs->event_thread->control.trap_expected
4227 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4228 && (ecs->event_thread->control.step_resume_breakpoint
4229 == NULL)));
488f131b
JB
4230 else
4231 {
16c381f0
JK
4232 ecs->random_signal = !bpstat_explains_signal
4233 (ecs->event_thread->control.stop_bpstat);
488f131b 4234 if (!ecs->random_signal)
a493e3e2 4235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
4236 }
4237 }
4238
4239 /* When we reach this point, we've pretty much decided
4240 that the reason for stopping must've been a random
1777feb0 4241 (unexpected) signal. */
488f131b
JB
4242
4243 else
4244 ecs->random_signal = 1;
488f131b 4245
04e68871 4246process_event_stop_test:
568d6575
UW
4247
4248 /* Re-fetch current thread's frame in case we did a
4249 "goto process_event_stop_test" above. */
4250 frame = get_current_frame ();
4251 gdbarch = get_frame_arch (frame);
4252
488f131b
JB
4253 /* For the program's own signals, act according to
4254 the signal handling tables. */
4255
4256 if (ecs->random_signal)
4257 {
4258 /* Signal not for debugging purposes. */
4259 int printed = 0;
24291992 4260 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4261
527159b7 4262 if (debug_infrun)
2020b7ab 4263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4264 ecs->event_thread->suspend.stop_signal);
527159b7 4265
488f131b
JB
4266 stopped_by_random_signal = 1;
4267
16c381f0 4268 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4269 {
4270 printed = 1;
4271 target_terminal_ours_for_output ();
16c381f0
JK
4272 print_signal_received_reason
4273 (ecs->event_thread->suspend.stop_signal);
488f131b 4274 }
252fbfc8
PA
4275 /* Always stop on signals if we're either just gaining control
4276 of the program, or the user explicitly requested this thread
4277 to remain stopped. */
d6b48e9c 4278 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4279 || ecs->event_thread->stop_requested
24291992 4280 || (!inf->detaching
16c381f0 4281 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4282 {
4283 stop_stepping (ecs);
4284 return;
4285 }
4286 /* If not going to stop, give terminal back
4287 if we took it away. */
4288 else if (printed)
4289 target_terminal_inferior ();
4290
4291 /* Clear the signal if it should not be passed. */
16c381f0 4292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4294
fb14de7b 4295 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4296 && ecs->event_thread->control.trap_expected
8358c15c 4297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4298 {
4299 /* We were just starting a new sequence, attempting to
4300 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4301 Instead this signal arrives. This signal will take us out
68f53502
AC
4302 of the stepping range so GDB needs to remember to, when
4303 the signal handler returns, resume stepping off that
4304 breakpoint. */
4305 /* To simplify things, "continue" is forced to use the same
4306 code paths as single-step - set a breakpoint at the
4307 signal return address and then, once hit, step off that
4308 breakpoint. */
237fc4c9
PA
4309 if (debug_infrun)
4310 fprintf_unfiltered (gdb_stdlog,
4311 "infrun: signal arrived while stepping over "
4312 "breakpoint\n");
d3169d93 4313
2c03e5be 4314 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4317 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4318 keep_going (ecs);
4319 return;
68f53502 4320 }
9d799f85 4321
16c381f0 4322 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4323 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
16c381f0
JK
4324 && (ecs->event_thread->control.step_range_start <= stop_pc
4325 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4326 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4327 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4329 {
4330 /* The inferior is about to take a signal that will take it
4331 out of the single step range. Set a breakpoint at the
4332 current PC (which is presumably where the signal handler
4333 will eventually return) and then allow the inferior to
4334 run free.
4335
4336 Note that this is only needed for a signal delivered
4337 while in the single-step range. Nested signals aren't a
4338 problem as they eventually all return. */
237fc4c9
PA
4339 if (debug_infrun)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: signal may take us out of "
4342 "single-step range\n");
4343
2c03e5be 4344 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4345 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4346 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4347 keep_going (ecs);
4348 return;
d303a6c7 4349 }
9d799f85
AC
4350
4351 /* Note: step_resume_breakpoint may be non-NULL. This occures
4352 when either there's a nested signal, or when there's a
4353 pending signal enabled just as the signal handler returns
4354 (leaving the inferior at the step-resume-breakpoint without
4355 actually executing it). Either way continue until the
4356 breakpoint is really hit. */
488f131b 4357 }
e5ef252a
PA
4358 else
4359 {
4360 /* Handle cases caused by hitting a breakpoint. */
488f131b 4361
e5ef252a
PA
4362 CORE_ADDR jmp_buf_pc;
4363 struct bpstat_what what;
611c83ae 4364
e5ef252a 4365 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4366
e5ef252a 4367 if (what.call_dummy)
e81a37f7 4368 {
e5ef252a
PA
4369 stop_stack_dummy = what.call_dummy;
4370 }
186c406b 4371
e5ef252a
PA
4372 /* If we hit an internal event that triggers symbol changes, the
4373 current frame will be invalidated within bpstat_what (e.g.,
4374 if we hit an internal solib event). Re-fetch it. */
4375 frame = get_current_frame ();
4376 gdbarch = get_frame_arch (frame);
e2e4d78b 4377
e5ef252a
PA
4378 switch (what.main_action)
4379 {
4380 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4381 /* If we hit the breakpoint at longjmp while stepping, we
4382 install a momentary breakpoint at the target of the
4383 jmp_buf. */
186c406b 4384
e81a37f7
TT
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4387 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4388
e5ef252a 4389 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4390
e2e4d78b
JK
4391 if (what.is_longjmp)
4392 {
e5ef252a
PA
4393 struct value *arg_value;
4394
4395 /* If we set the longjmp breakpoint via a SystemTap
4396 probe, then use it to extract the arguments. The
4397 destination PC is the third argument to the
4398 probe. */
4399 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4400 if (arg_value)
4401 jmp_buf_pc = value_as_address (arg_value);
4402 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4403 || !gdbarch_get_longjmp_target (gdbarch,
4404 frame, &jmp_buf_pc))
e2e4d78b 4405 {
e5ef252a
PA
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4409 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4410 keep_going (ecs);
4411 return;
4412 }
e5ef252a
PA
4413
4414 /* Insert a breakpoint at resume address. */
4415 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4416 }
e5ef252a
PA
4417 else
4418 check_exception_resume (ecs, frame);
4419 keep_going (ecs);
4420 return;
e2e4d78b 4421
e5ef252a
PA
4422 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4423 {
4424 struct frame_info *init_frame;
e2e4d78b 4425
e5ef252a 4426 /* There are several cases to consider.
e81a37f7 4427
e5ef252a
PA
4428 1. The initiating frame no longer exists. In this case
4429 we must stop, because the exception or longjmp has gone
4430 too far.
e81a37f7 4431
e5ef252a
PA
4432 2. The initiating frame exists, and is the same as the
4433 current frame. We stop, because the exception or
4434 longjmp has been caught.
c906108c 4435
e5ef252a
PA
4436 3. The initiating frame exists and is different from
4437 the current frame. This means the exception or longjmp
4438 has been caught beneath the initiating frame, so keep
4439 going.
2c03e5be 4440
e5ef252a
PA
4441 4. longjmp breakpoint has been placed just to protect
4442 against stale dummy frames and user is not interested
4443 in stopping around longjmps. */
2c03e5be 4444
e5ef252a
PA
4445 if (debug_infrun)
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4448
e5ef252a
PA
4449 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4450 != NULL);
4451 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4452
e5ef252a
PA
4453 if (what.is_longjmp)
4454 {
4455 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4456
e5ef252a
PA
4457 if (!frame_id_p (ecs->event_thread->initiating_frame))
4458 {
4459 /* Case 4. */
4460 keep_going (ecs);
4461 return;
4462 }
4463 }
c5aa993b 4464
e5ef252a 4465 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4466
e5ef252a
PA
4467 if (init_frame)
4468 {
4469 struct frame_id current_id
4470 = get_frame_id (get_current_frame ());
4471 if (frame_id_eq (current_id,
4472 ecs->event_thread->initiating_frame))
4473 {
4474 /* Case 2. Fall through. */
4475 }
4476 else
4477 {
4478 /* Case 3. */
4479 keep_going (ecs);
4480 return;
4481 }
4482 }
c5aa993b 4483
e5ef252a
PA
4484 /* For Cases 1 and 2, remove the step-resume breakpoint,
4485 if it exists. */
4486 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4487
e5ef252a
PA
4488 ecs->event_thread->control.stop_step = 1;
4489 print_end_stepping_range_reason ();
4490 stop_stepping (ecs);
68f53502 4491 }
e5ef252a 4492 return;
488f131b 4493
e5ef252a
PA
4494 case BPSTAT_WHAT_SINGLE:
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4497 ecs->event_thread->stepping_over_breakpoint = 1;
4498 /* Still need to check other stuff, at least the case where
4499 we are stepping and step out of the right range. */
4500 break;
4501
4502 case BPSTAT_WHAT_STEP_RESUME:
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4505
4506 delete_step_resume_breakpoint (ecs->event_thread);
4507 if (ecs->event_thread->control.proceed_to_finish
4508 && execution_direction == EXEC_REVERSE)
4509 {
4510 struct thread_info *tp = ecs->event_thread;
4511
4512 /* We are finishing a function in reverse, and just hit
4513 the step-resume breakpoint at the start address of
4514 the function, and we're almost there -- just need to
4515 back up by one more single-step, which should take us
4516 back to the function call. */
4517 tp->control.step_range_start = tp->control.step_range_end = 1;
4518 keep_going (ecs);
4519 return;
4520 }
4521 fill_in_stop_func (gdbarch, ecs);
4522 if (stop_pc == ecs->stop_func_start
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 /* We are stepping over a function call in reverse, and
4526 just hit the step-resume breakpoint at the start
4527 address of the function. Go back to single-stepping,
4528 which should take us back to the function call. */
4529 ecs->event_thread->stepping_over_breakpoint = 1;
4530 keep_going (ecs);
4531 return;
4532 }
4533 break;
4534
4535 case BPSTAT_WHAT_STOP_NOISY:
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4538 stop_print_frame = 1;
4539
4540 /* We are about to nuke the step_resume_breakpointt via the
4541 cleanup chain, so no need to worry about it here. */
4542
4543 stop_stepping (ecs);
4544 return;
4545
4546 case BPSTAT_WHAT_STOP_SILENT:
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4549 stop_print_frame = 0;
4550
4551 /* We are about to nuke the step_resume_breakpoin via the
4552 cleanup chain, so no need to worry about it here. */
4553
4554 stop_stepping (ecs);
4555 return;
4556
4557 case BPSTAT_WHAT_HP_STEP_RESUME:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4560
4561 delete_step_resume_breakpoint (ecs->event_thread);
4562 if (ecs->event_thread->step_after_step_resume_breakpoint)
4563 {
4564 /* Back when the step-resume breakpoint was inserted, we
4565 were trying to single-step off a breakpoint. Go back
4566 to doing that. */
4567 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4568 ecs->event_thread->stepping_over_breakpoint = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 break;
4573
4574 case BPSTAT_WHAT_KEEP_CHECKING:
4575 break;
4576 }
4577 }
c906108c 4578
488f131b
JB
4579 /* We come here if we hit a breakpoint but should not
4580 stop for it. Possibly we also were stepping
4581 and should stop for that. So fall through and
4582 test for stepping. But, if not stepping,
4583 do not stop. */
c906108c 4584
a7212384
UW
4585 /* In all-stop mode, if we're currently stepping but have stopped in
4586 some other thread, we need to switch back to the stepped thread. */
4587 if (!non_stop)
4588 {
4589 struct thread_info *tp;
abbb1732 4590
b3444185 4591 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4592 ecs->event_thread);
4593 if (tp)
4594 {
4595 /* However, if the current thread is blocked on some internal
4596 breakpoint, and we simply need to step over that breakpoint
4597 to get it going again, do that first. */
16c381f0 4598 if ((ecs->event_thread->control.trap_expected
a493e3e2 4599 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4600 || ecs->event_thread->stepping_over_breakpoint)
4601 {
4602 keep_going (ecs);
4603 return;
4604 }
4605
66852e9c
PA
4606 /* If the stepping thread exited, then don't try to switch
4607 back and resume it, which could fail in several different
4608 ways depending on the target. Instead, just keep going.
4609
4610 We can find a stepping dead thread in the thread list in
4611 two cases:
4612
4613 - The target supports thread exit events, and when the
4614 target tries to delete the thread from the thread list,
4615 inferior_ptid pointed at the exiting thread. In such
4616 case, calling delete_thread does not really remove the
4617 thread from the list; instead, the thread is left listed,
4618 with 'exited' state.
4619
4620 - The target's debug interface does not support thread
4621 exit events, and so we have no idea whatsoever if the
4622 previously stepping thread is still alive. For that
4623 reason, we need to synchronously query the target
4624 now. */
b3444185
PA
4625 if (is_exited (tp->ptid)
4626 || !target_thread_alive (tp->ptid))
4627 {
4628 if (debug_infrun)
3e43a32a
MS
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: not switching back to "
4631 "stepped thread, it has vanished\n");
b3444185
PA
4632
4633 delete_thread (tp->ptid);
4634 keep_going (ecs);
4635 return;
4636 }
4637
a7212384
UW
4638 /* Otherwise, we no longer expect a trap in the current thread.
4639 Clear the trap_expected flag before switching back -- this is
4640 what keep_going would do as well, if we called it. */
16c381f0 4641 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4642
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: switching back to stepped thread\n");
4646
4647 ecs->event_thread = tp;
4648 ecs->ptid = tp->ptid;
4649 context_switch (ecs->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653 }
4654
8358c15c 4655 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4656 {
527159b7 4657 if (debug_infrun)
d3169d93
DJ
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: step-resume breakpoint is inserted\n");
527159b7 4660
488f131b
JB
4661 /* Having a step-resume breakpoint overrides anything
4662 else having to do with stepping commands until
4663 that breakpoint is reached. */
488f131b
JB
4664 keep_going (ecs);
4665 return;
4666 }
c5aa993b 4667
16c381f0 4668 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4669 {
527159b7 4670 if (debug_infrun)
8a9de0e4 4671 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4672 /* Likewise if we aren't even stepping. */
488f131b
JB
4673 keep_going (ecs);
4674 return;
4675 }
c5aa993b 4676
4b7703ad
JB
4677 /* Re-fetch current thread's frame in case the code above caused
4678 the frame cache to be re-initialized, making our FRAME variable
4679 a dangling pointer. */
4680 frame = get_current_frame ();
628fe4e4 4681 gdbarch = get_frame_arch (frame);
7e324e48 4682 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4683
488f131b 4684 /* If stepping through a line, keep going if still within it.
c906108c 4685
488f131b
JB
4686 Note that step_range_end is the address of the first instruction
4687 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4688 within it!
4689
4690 Note also that during reverse execution, we may be stepping
4691 through a function epilogue and therefore must detect when
4692 the current-frame changes in the middle of a line. */
4693
16c381f0
JK
4694 if (stop_pc >= ecs->event_thread->control.step_range_start
4695 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4696 && (execution_direction != EXEC_REVERSE
388a8562 4697 || frame_id_eq (get_frame_id (frame),
16c381f0 4698 ecs->event_thread->control.step_frame_id)))
488f131b 4699 {
527159b7 4700 if (debug_infrun)
5af949e3
UW
4701 fprintf_unfiltered
4702 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4703 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4704 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4705
4706 /* When stepping backward, stop at beginning of line range
4707 (unless it's the function entry point, in which case
4708 keep going back to the call point). */
16c381f0 4709 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4710 && stop_pc != ecs->stop_func_start
4711 && execution_direction == EXEC_REVERSE)
4712 {
16c381f0 4713 ecs->event_thread->control.stop_step = 1;
33d62d64 4714 print_end_stepping_range_reason ();
b2175913
MS
4715 stop_stepping (ecs);
4716 }
4717 else
4718 keep_going (ecs);
4719
488f131b
JB
4720 return;
4721 }
c5aa993b 4722
488f131b 4723 /* We stepped out of the stepping range. */
c906108c 4724
488f131b 4725 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4726 loader dynamic symbol resolution code...
4727
4728 EXEC_FORWARD: we keep on single stepping until we exit the run
4729 time loader code and reach the callee's address.
4730
4731 EXEC_REVERSE: we've already executed the callee (backward), and
4732 the runtime loader code is handled just like any other
4733 undebuggable function call. Now we need only keep stepping
4734 backward through the trampoline code, and that's handled further
4735 down, so there is nothing for us to do here. */
4736
4737 if (execution_direction != EXEC_REVERSE
16c381f0 4738 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4739 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4740 {
4c8c40e6 4741 CORE_ADDR pc_after_resolver =
568d6575 4742 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4743
527159b7 4744 if (debug_infrun)
3e43a32a
MS
4745 fprintf_unfiltered (gdb_stdlog,
4746 "infrun: stepped into dynsym resolve code\n");
527159b7 4747
488f131b
JB
4748 if (pc_after_resolver)
4749 {
4750 /* Set up a step-resume breakpoint at the address
4751 indicated by SKIP_SOLIB_RESOLVER. */
4752 struct symtab_and_line sr_sal;
abbb1732 4753
fe39c653 4754 init_sal (&sr_sal);
488f131b 4755 sr_sal.pc = pc_after_resolver;
6c95b8df 4756 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4757
a6d9a66e
UW
4758 insert_step_resume_breakpoint_at_sal (gdbarch,
4759 sr_sal, null_frame_id);
c5aa993b 4760 }
c906108c 4761
488f131b
JB
4762 keep_going (ecs);
4763 return;
4764 }
c906108c 4765
16c381f0
JK
4766 if (ecs->event_thread->control.step_range_end != 1
4767 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4768 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4769 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4770 {
527159b7 4771 if (debug_infrun)
3e43a32a
MS
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: stepped into signal trampoline\n");
42edda50 4774 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4775 a signal trampoline (either by a signal being delivered or by
4776 the signal handler returning). Just single-step until the
4777 inferior leaves the trampoline (either by calling the handler
4778 or returning). */
488f131b
JB
4779 keep_going (ecs);
4780 return;
4781 }
c906108c 4782
14132e89
MR
4783 /* If we're in the return path from a shared library trampoline,
4784 we want to proceed through the trampoline when stepping. */
4785 /* macro/2012-04-25: This needs to come before the subroutine
4786 call check below as on some targets return trampolines look
4787 like subroutine calls (MIPS16 return thunks). */
4788 if (gdbarch_in_solib_return_trampoline (gdbarch,
4789 stop_pc, ecs->stop_func_name)
4790 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4791 {
4792 /* Determine where this trampoline returns. */
4793 CORE_ADDR real_stop_pc;
4794
4795 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4796
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: stepped into solib return tramp\n");
4800
4801 /* Only proceed through if we know where it's going. */
4802 if (real_stop_pc)
4803 {
4804 /* And put the step-breakpoint there and go until there. */
4805 struct symtab_and_line sr_sal;
4806
4807 init_sal (&sr_sal); /* initialize to zeroes */
4808 sr_sal.pc = real_stop_pc;
4809 sr_sal.section = find_pc_overlay (sr_sal.pc);
4810 sr_sal.pspace = get_frame_program_space (frame);
4811
4812 /* Do not specify what the fp should be when we stop since
4813 on some machines the prologue is where the new fp value
4814 is established. */
4815 insert_step_resume_breakpoint_at_sal (gdbarch,
4816 sr_sal, null_frame_id);
4817
4818 /* Restart without fiddling with the step ranges or
4819 other state. */
4820 keep_going (ecs);
4821 return;
4822 }
4823 }
4824
c17eaafe
DJ
4825 /* Check for subroutine calls. The check for the current frame
4826 equalling the step ID is not necessary - the check of the
4827 previous frame's ID is sufficient - but it is a common case and
4828 cheaper than checking the previous frame's ID.
14e60db5
DJ
4829
4830 NOTE: frame_id_eq will never report two invalid frame IDs as
4831 being equal, so to get into this block, both the current and
4832 previous frame must have valid frame IDs. */
005ca36a
JB
4833 /* The outer_frame_id check is a heuristic to detect stepping
4834 through startup code. If we step over an instruction which
4835 sets the stack pointer from an invalid value to a valid value,
4836 we may detect that as a subroutine call from the mythical
4837 "outermost" function. This could be fixed by marking
4838 outermost frames as !stack_p,code_p,special_p. Then the
4839 initial outermost frame, before sp was valid, would
ce6cca6d 4840 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4841 for more. */
edb3359d 4842 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4843 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4844 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4845 ecs->event_thread->control.step_stack_frame_id)
4846 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4847 outer_frame_id)
4848 || step_start_function != find_pc_function (stop_pc))))
488f131b 4849 {
95918acb 4850 CORE_ADDR real_stop_pc;
8fb3e588 4851
527159b7 4852 if (debug_infrun)
8a9de0e4 4853 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4854
16c381f0
JK
4855 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4856 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4857 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4858 ecs->stop_func_start)))
95918acb
AC
4859 {
4860 /* I presume that step_over_calls is only 0 when we're
4861 supposed to be stepping at the assembly language level
4862 ("stepi"). Just stop. */
4863 /* Also, maybe we just did a "nexti" inside a prolog, so we
4864 thought it was a subroutine call but it was not. Stop as
4865 well. FENN */
388a8562 4866 /* And this works the same backward as frontward. MVS */
16c381f0 4867 ecs->event_thread->control.stop_step = 1;
33d62d64 4868 print_end_stepping_range_reason ();
95918acb
AC
4869 stop_stepping (ecs);
4870 return;
4871 }
8fb3e588 4872
388a8562
MS
4873 /* Reverse stepping through solib trampolines. */
4874
4875 if (execution_direction == EXEC_REVERSE
16c381f0 4876 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4877 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4878 || (ecs->stop_func_start == 0
4879 && in_solib_dynsym_resolve_code (stop_pc))))
4880 {
4881 /* Any solib trampoline code can be handled in reverse
4882 by simply continuing to single-step. We have already
4883 executed the solib function (backwards), and a few
4884 steps will take us back through the trampoline to the
4885 caller. */
4886 keep_going (ecs);
4887 return;
4888 }
4889
16c381f0 4890 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4891 {
b2175913
MS
4892 /* We're doing a "next".
4893
4894 Normal (forward) execution: set a breakpoint at the
4895 callee's return address (the address at which the caller
4896 will resume).
4897
4898 Reverse (backward) execution. set the step-resume
4899 breakpoint at the start of the function that we just
4900 stepped into (backwards), and continue to there. When we
6130d0b7 4901 get there, we'll need to single-step back to the caller. */
b2175913
MS
4902
4903 if (execution_direction == EXEC_REVERSE)
4904 {
acf9414f
JK
4905 /* If we're already at the start of the function, we've either
4906 just stepped backward into a single instruction function,
4907 or stepped back out of a signal handler to the first instruction
4908 of the function. Just keep going, which will single-step back
4909 to the caller. */
4910 if (ecs->stop_func_start != stop_pc)
4911 {
4912 struct symtab_and_line sr_sal;
4913
4914 /* Normal function call return (static or dynamic). */
4915 init_sal (&sr_sal);
4916 sr_sal.pc = ecs->stop_func_start;
4917 sr_sal.pspace = get_frame_program_space (frame);
4918 insert_step_resume_breakpoint_at_sal (gdbarch,
4919 sr_sal, null_frame_id);
4920 }
b2175913
MS
4921 }
4922 else
568d6575 4923 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4924
8567c30f
AC
4925 keep_going (ecs);
4926 return;
4927 }
a53c66de 4928
95918acb 4929 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4930 calling routine and the real function), locate the real
4931 function. That's what tells us (a) whether we want to step
4932 into it at all, and (b) what prologue we want to run to the
4933 end of, if we do step into it. */
568d6575 4934 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4935 if (real_stop_pc == 0)
568d6575 4936 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4937 if (real_stop_pc != 0)
4938 ecs->stop_func_start = real_stop_pc;
8fb3e588 4939
db5f024e 4940 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4941 {
4942 struct symtab_and_line sr_sal;
abbb1732 4943
1b2bfbb9
RC
4944 init_sal (&sr_sal);
4945 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4946 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4947
a6d9a66e
UW
4948 insert_step_resume_breakpoint_at_sal (gdbarch,
4949 sr_sal, null_frame_id);
8fb3e588
AC
4950 keep_going (ecs);
4951 return;
1b2bfbb9
RC
4952 }
4953
95918acb 4954 /* If we have line number information for the function we are
1bfeeb0f
JL
4955 thinking of stepping into and the function isn't on the skip
4956 list, step into it.
95918acb 4957
8fb3e588
AC
4958 If there are several symtabs at that PC (e.g. with include
4959 files), just want to know whether *any* of them have line
4960 numbers. find_pc_line handles this. */
95918acb
AC
4961 {
4962 struct symtab_and_line tmp_sal;
8fb3e588 4963
95918acb 4964 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4965 if (tmp_sal.line != 0
4966 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4967 {
b2175913 4968 if (execution_direction == EXEC_REVERSE)
568d6575 4969 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4970 else
568d6575 4971 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4972 return;
4973 }
4974 }
4975
4976 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4977 set, we stop the step so that the user has a chance to switch
4978 in assembly mode. */
16c381f0 4979 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4980 && step_stop_if_no_debug)
95918acb 4981 {
16c381f0 4982 ecs->event_thread->control.stop_step = 1;
33d62d64 4983 print_end_stepping_range_reason ();
95918acb
AC
4984 stop_stepping (ecs);
4985 return;
4986 }
4987
b2175913
MS
4988 if (execution_direction == EXEC_REVERSE)
4989 {
acf9414f
JK
4990 /* If we're already at the start of the function, we've either just
4991 stepped backward into a single instruction function without line
4992 number info, or stepped back out of a signal handler to the first
4993 instruction of the function without line number info. Just keep
4994 going, which will single-step back to the caller. */
4995 if (ecs->stop_func_start != stop_pc)
4996 {
4997 /* Set a breakpoint at callee's start address.
4998 From there we can step once and be back in the caller. */
4999 struct symtab_and_line sr_sal;
abbb1732 5000
acf9414f
JK
5001 init_sal (&sr_sal);
5002 sr_sal.pc = ecs->stop_func_start;
5003 sr_sal.pspace = get_frame_program_space (frame);
5004 insert_step_resume_breakpoint_at_sal (gdbarch,
5005 sr_sal, null_frame_id);
5006 }
b2175913
MS
5007 }
5008 else
5009 /* Set a breakpoint at callee's return address (the address
5010 at which the caller will resume). */
568d6575 5011 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5012
95918acb 5013 keep_going (ecs);
488f131b 5014 return;
488f131b 5015 }
c906108c 5016
fdd654f3
MS
5017 /* Reverse stepping through solib trampolines. */
5018
5019 if (execution_direction == EXEC_REVERSE
16c381f0 5020 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5021 {
5022 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5023 || (ecs->stop_func_start == 0
5024 && in_solib_dynsym_resolve_code (stop_pc)))
5025 {
5026 /* Any solib trampoline code can be handled in reverse
5027 by simply continuing to single-step. We have already
5028 executed the solib function (backwards), and a few
5029 steps will take us back through the trampoline to the
5030 caller. */
5031 keep_going (ecs);
5032 return;
5033 }
5034 else if (in_solib_dynsym_resolve_code (stop_pc))
5035 {
5036 /* Stepped backward into the solib dynsym resolver.
5037 Set a breakpoint at its start and continue, then
5038 one more step will take us out. */
5039 struct symtab_and_line sr_sal;
abbb1732 5040
fdd654f3
MS
5041 init_sal (&sr_sal);
5042 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5043 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5044 insert_step_resume_breakpoint_at_sal (gdbarch,
5045 sr_sal, null_frame_id);
5046 keep_going (ecs);
5047 return;
5048 }
5049 }
5050
2afb61aa 5051 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5052
1b2bfbb9
RC
5053 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5054 the trampoline processing logic, however, there are some trampolines
5055 that have no names, so we should do trampoline handling first. */
16c381f0 5056 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5057 && ecs->stop_func_name == NULL
2afb61aa 5058 && stop_pc_sal.line == 0)
1b2bfbb9 5059 {
527159b7 5060 if (debug_infrun)
3e43a32a
MS
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: stepped into undebuggable function\n");
527159b7 5063
1b2bfbb9 5064 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5065 undebuggable function (where there is no debugging information
5066 and no line number corresponding to the address where the
1b2bfbb9
RC
5067 inferior stopped). Since we want to skip this kind of code,
5068 we keep going until the inferior returns from this
14e60db5
DJ
5069 function - unless the user has asked us not to (via
5070 set step-mode) or we no longer know how to get back
5071 to the call site. */
5072 if (step_stop_if_no_debug
c7ce8faa 5073 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5074 {
5075 /* If we have no line number and the step-stop-if-no-debug
5076 is set, we stop the step so that the user has a chance to
5077 switch in assembly mode. */
16c381f0 5078 ecs->event_thread->control.stop_step = 1;
33d62d64 5079 print_end_stepping_range_reason ();
1b2bfbb9
RC
5080 stop_stepping (ecs);
5081 return;
5082 }
5083 else
5084 {
5085 /* Set a breakpoint at callee's return address (the address
5086 at which the caller will resume). */
568d6575 5087 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5088 keep_going (ecs);
5089 return;
5090 }
5091 }
5092
16c381f0 5093 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5094 {
5095 /* It is stepi or nexti. We always want to stop stepping after
5096 one instruction. */
527159b7 5097 if (debug_infrun)
8a9de0e4 5098 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5099 ecs->event_thread->control.stop_step = 1;
33d62d64 5100 print_end_stepping_range_reason ();
1b2bfbb9
RC
5101 stop_stepping (ecs);
5102 return;
5103 }
5104
2afb61aa 5105 if (stop_pc_sal.line == 0)
488f131b
JB
5106 {
5107 /* We have no line number information. That means to stop
5108 stepping (does this always happen right after one instruction,
5109 when we do "s" in a function with no line numbers,
5110 or can this happen as a result of a return or longjmp?). */
527159b7 5111 if (debug_infrun)
8a9de0e4 5112 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5113 ecs->event_thread->control.stop_step = 1;
33d62d64 5114 print_end_stepping_range_reason ();
488f131b
JB
5115 stop_stepping (ecs);
5116 return;
5117 }
c906108c 5118
edb3359d
DJ
5119 /* Look for "calls" to inlined functions, part one. If the inline
5120 frame machinery detected some skipped call sites, we have entered
5121 a new inline function. */
5122
5123 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5124 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5125 && inline_skipped_frames (ecs->ptid))
5126 {
5127 struct symtab_and_line call_sal;
5128
5129 if (debug_infrun)
5130 fprintf_unfiltered (gdb_stdlog,
5131 "infrun: stepped into inlined function\n");
5132
5133 find_frame_sal (get_current_frame (), &call_sal);
5134
16c381f0 5135 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5136 {
5137 /* For "step", we're going to stop. But if the call site
5138 for this inlined function is on the same source line as
5139 we were previously stepping, go down into the function
5140 first. Otherwise stop at the call site. */
5141
5142 if (call_sal.line == ecs->event_thread->current_line
5143 && call_sal.symtab == ecs->event_thread->current_symtab)
5144 step_into_inline_frame (ecs->ptid);
5145
16c381f0 5146 ecs->event_thread->control.stop_step = 1;
33d62d64 5147 print_end_stepping_range_reason ();
edb3359d
DJ
5148 stop_stepping (ecs);
5149 return;
5150 }
5151 else
5152 {
5153 /* For "next", we should stop at the call site if it is on a
5154 different source line. Otherwise continue through the
5155 inlined function. */
5156 if (call_sal.line == ecs->event_thread->current_line
5157 && call_sal.symtab == ecs->event_thread->current_symtab)
5158 keep_going (ecs);
5159 else
5160 {
16c381f0 5161 ecs->event_thread->control.stop_step = 1;
33d62d64 5162 print_end_stepping_range_reason ();
edb3359d
DJ
5163 stop_stepping (ecs);
5164 }
5165 return;
5166 }
5167 }
5168
5169 /* Look for "calls" to inlined functions, part two. If we are still
5170 in the same real function we were stepping through, but we have
5171 to go further up to find the exact frame ID, we are stepping
5172 through a more inlined call beyond its call site. */
5173
5174 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5175 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5176 ecs->event_thread->control.step_frame_id)
edb3359d 5177 && stepped_in_from (get_current_frame (),
16c381f0 5178 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5179 {
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog,
5182 "infrun: stepping through inlined function\n");
5183
16c381f0 5184 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5185 keep_going (ecs);
5186 else
5187 {
16c381f0 5188 ecs->event_thread->control.stop_step = 1;
33d62d64 5189 print_end_stepping_range_reason ();
edb3359d
DJ
5190 stop_stepping (ecs);
5191 }
5192 return;
5193 }
5194
2afb61aa 5195 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5196 && (ecs->event_thread->current_line != stop_pc_sal.line
5197 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5198 {
5199 /* We are at the start of a different line. So stop. Note that
5200 we don't stop if we step into the middle of a different line.
5201 That is said to make things like for (;;) statements work
5202 better. */
527159b7 5203 if (debug_infrun)
3e43a32a
MS
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: stepped to a different line\n");
16c381f0 5206 ecs->event_thread->control.stop_step = 1;
33d62d64 5207 print_end_stepping_range_reason ();
488f131b
JB
5208 stop_stepping (ecs);
5209 return;
5210 }
c906108c 5211
488f131b 5212 /* We aren't done stepping.
c906108c 5213
488f131b
JB
5214 Optimize by setting the stepping range to the line.
5215 (We might not be in the original line, but if we entered a
5216 new line in mid-statement, we continue stepping. This makes
5217 things like for(;;) statements work better.) */
c906108c 5218
16c381f0
JK
5219 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5220 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5221 set_step_info (frame, stop_pc_sal);
488f131b 5222
527159b7 5223 if (debug_infrun)
8a9de0e4 5224 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5225 keep_going (ecs);
104c1213
JM
5226}
5227
b3444185 5228/* Is thread TP in the middle of single-stepping? */
104c1213 5229
a289b8f6 5230static int
b3444185 5231currently_stepping (struct thread_info *tp)
a7212384 5232{
8358c15c
JK
5233 return ((tp->control.step_range_end
5234 && tp->control.step_resume_breakpoint == NULL)
5235 || tp->control.trap_expected
8358c15c 5236 || bpstat_should_step ());
a7212384
UW
5237}
5238
b3444185
PA
5239/* Returns true if any thread *but* the one passed in "data" is in the
5240 middle of stepping or of handling a "next". */
a7212384 5241
104c1213 5242static int
b3444185 5243currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5244{
b3444185
PA
5245 if (tp == data)
5246 return 0;
5247
16c381f0 5248 return (tp->control.step_range_end
ede1849f 5249 || tp->control.trap_expected);
104c1213 5250}
c906108c 5251
b2175913
MS
5252/* Inferior has stepped into a subroutine call with source code that
5253 we should not step over. Do step to the first line of code in
5254 it. */
c2c6d25f
JM
5255
5256static void
568d6575
UW
5257handle_step_into_function (struct gdbarch *gdbarch,
5258 struct execution_control_state *ecs)
c2c6d25f
JM
5259{
5260 struct symtab *s;
2afb61aa 5261 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5262
7e324e48
GB
5263 fill_in_stop_func (gdbarch, ecs);
5264
c2c6d25f
JM
5265 s = find_pc_symtab (stop_pc);
5266 if (s && s->language != language_asm)
568d6575 5267 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5268 ecs->stop_func_start);
c2c6d25f 5269
2afb61aa 5270 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5271 /* Use the step_resume_break to step until the end of the prologue,
5272 even if that involves jumps (as it seems to on the vax under
5273 4.2). */
5274 /* If the prologue ends in the middle of a source line, continue to
5275 the end of that source line (if it is still within the function).
5276 Otherwise, just go to end of prologue. */
2afb61aa
PA
5277 if (stop_func_sal.end
5278 && stop_func_sal.pc != ecs->stop_func_start
5279 && stop_func_sal.end < ecs->stop_func_end)
5280 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5281
2dbd5e30
KB
5282 /* Architectures which require breakpoint adjustment might not be able
5283 to place a breakpoint at the computed address. If so, the test
5284 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5285 ecs->stop_func_start to an address at which a breakpoint may be
5286 legitimately placed.
8fb3e588 5287
2dbd5e30
KB
5288 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5289 made, GDB will enter an infinite loop when stepping through
5290 optimized code consisting of VLIW instructions which contain
5291 subinstructions corresponding to different source lines. On
5292 FR-V, it's not permitted to place a breakpoint on any but the
5293 first subinstruction of a VLIW instruction. When a breakpoint is
5294 set, GDB will adjust the breakpoint address to the beginning of
5295 the VLIW instruction. Thus, we need to make the corresponding
5296 adjustment here when computing the stop address. */
8fb3e588 5297
568d6575 5298 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5299 {
5300 ecs->stop_func_start
568d6575 5301 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5302 ecs->stop_func_start);
2dbd5e30
KB
5303 }
5304
c2c6d25f
JM
5305 if (ecs->stop_func_start == stop_pc)
5306 {
5307 /* We are already there: stop now. */
16c381f0 5308 ecs->event_thread->control.stop_step = 1;
33d62d64 5309 print_end_stepping_range_reason ();
c2c6d25f
JM
5310 stop_stepping (ecs);
5311 return;
5312 }
5313 else
5314 {
5315 /* Put the step-breakpoint there and go until there. */
fe39c653 5316 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5317 sr_sal.pc = ecs->stop_func_start;
5318 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5319 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5320
c2c6d25f 5321 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5322 some machines the prologue is where the new fp value is
5323 established. */
a6d9a66e 5324 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5325
5326 /* And make sure stepping stops right away then. */
16c381f0
JK
5327 ecs->event_thread->control.step_range_end
5328 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5329 }
5330 keep_going (ecs);
5331}
d4f3574e 5332
b2175913
MS
5333/* Inferior has stepped backward into a subroutine call with source
5334 code that we should not step over. Do step to the beginning of the
5335 last line of code in it. */
5336
5337static void
568d6575
UW
5338handle_step_into_function_backward (struct gdbarch *gdbarch,
5339 struct execution_control_state *ecs)
b2175913
MS
5340{
5341 struct symtab *s;
167e4384 5342 struct symtab_and_line stop_func_sal;
b2175913 5343
7e324e48
GB
5344 fill_in_stop_func (gdbarch, ecs);
5345
b2175913
MS
5346 s = find_pc_symtab (stop_pc);
5347 if (s && s->language != language_asm)
568d6575 5348 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5349 ecs->stop_func_start);
5350
5351 stop_func_sal = find_pc_line (stop_pc, 0);
5352
5353 /* OK, we're just going to keep stepping here. */
5354 if (stop_func_sal.pc == stop_pc)
5355 {
5356 /* We're there already. Just stop stepping now. */
16c381f0 5357 ecs->event_thread->control.stop_step = 1;
33d62d64 5358 print_end_stepping_range_reason ();
b2175913
MS
5359 stop_stepping (ecs);
5360 }
5361 else
5362 {
5363 /* Else just reset the step range and keep going.
5364 No step-resume breakpoint, they don't work for
5365 epilogues, which can have multiple entry paths. */
16c381f0
JK
5366 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5367 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5368 keep_going (ecs);
5369 }
5370 return;
5371}
5372
d3169d93 5373/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5374 This is used to both functions and to skip over code. */
5375
5376static void
2c03e5be
PA
5377insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5378 struct symtab_and_line sr_sal,
5379 struct frame_id sr_id,
5380 enum bptype sr_type)
44cbf7b5 5381{
611c83ae
PA
5382 /* There should never be more than one step-resume or longjmp-resume
5383 breakpoint per thread, so we should never be setting a new
44cbf7b5 5384 step_resume_breakpoint when one is already active. */
8358c15c 5385 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5386 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5387
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5390 "infrun: inserting step-resume breakpoint at %s\n",
5391 paddress (gdbarch, sr_sal.pc));
d3169d93 5392
8358c15c 5393 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5394 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5395}
5396
9da8c2a0 5397void
2c03e5be
PA
5398insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5399 struct symtab_and_line sr_sal,
5400 struct frame_id sr_id)
5401{
5402 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5403 sr_sal, sr_id,
5404 bp_step_resume);
44cbf7b5 5405}
7ce450bd 5406
2c03e5be
PA
5407/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5408 This is used to skip a potential signal handler.
7ce450bd 5409
14e60db5
DJ
5410 This is called with the interrupted function's frame. The signal
5411 handler, when it returns, will resume the interrupted function at
5412 RETURN_FRAME.pc. */
d303a6c7
AC
5413
5414static void
2c03e5be 5415insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5416{
5417 struct symtab_and_line sr_sal;
a6d9a66e 5418 struct gdbarch *gdbarch;
d303a6c7 5419
f4c1edd8 5420 gdb_assert (return_frame != NULL);
d303a6c7
AC
5421 init_sal (&sr_sal); /* initialize to zeros */
5422
a6d9a66e 5423 gdbarch = get_frame_arch (return_frame);
568d6575 5424 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5425 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5426 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5427
2c03e5be
PA
5428 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5429 get_stack_frame_id (return_frame),
5430 bp_hp_step_resume);
d303a6c7
AC
5431}
5432
2c03e5be
PA
5433/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5434 is used to skip a function after stepping into it (for "next" or if
5435 the called function has no debugging information).
14e60db5
DJ
5436
5437 The current function has almost always been reached by single
5438 stepping a call or return instruction. NEXT_FRAME belongs to the
5439 current function, and the breakpoint will be set at the caller's
5440 resume address.
5441
5442 This is a separate function rather than reusing
2c03e5be 5443 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5444 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5445 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5446
5447static void
5448insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5449{
5450 struct symtab_and_line sr_sal;
a6d9a66e 5451 struct gdbarch *gdbarch;
14e60db5
DJ
5452
5453 /* We shouldn't have gotten here if we don't know where the call site
5454 is. */
c7ce8faa 5455 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5456
5457 init_sal (&sr_sal); /* initialize to zeros */
5458
a6d9a66e 5459 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5460 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5461 frame_unwind_caller_pc (next_frame));
14e60db5 5462 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5463 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5464
a6d9a66e 5465 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5466 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5467}
5468
611c83ae
PA
5469/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5470 new breakpoint at the target of a jmp_buf. The handling of
5471 longjmp-resume uses the same mechanisms used for handling
5472 "step-resume" breakpoints. */
5473
5474static void
a6d9a66e 5475insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5476{
e81a37f7
TT
5477 /* There should never be more than one longjmp-resume breakpoint per
5478 thread, so we should never be setting a new
611c83ae 5479 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5480 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5481
5482 if (debug_infrun)
5483 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5484 "infrun: inserting longjmp-resume breakpoint at %s\n",
5485 paddress (gdbarch, pc));
611c83ae 5486
e81a37f7 5487 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5488 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5489}
5490
186c406b
TT
5491/* Insert an exception resume breakpoint. TP is the thread throwing
5492 the exception. The block B is the block of the unwinder debug hook
5493 function. FRAME is the frame corresponding to the call to this
5494 function. SYM is the symbol of the function argument holding the
5495 target PC of the exception. */
5496
5497static void
5498insert_exception_resume_breakpoint (struct thread_info *tp,
5499 struct block *b,
5500 struct frame_info *frame,
5501 struct symbol *sym)
5502{
bfd189b1 5503 volatile struct gdb_exception e;
186c406b
TT
5504
5505 /* We want to ignore errors here. */
5506 TRY_CATCH (e, RETURN_MASK_ERROR)
5507 {
5508 struct symbol *vsym;
5509 struct value *value;
5510 CORE_ADDR handler;
5511 struct breakpoint *bp;
5512
5513 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5514 value = read_var_value (vsym, frame);
5515 /* If the value was optimized out, revert to the old behavior. */
5516 if (! value_optimized_out (value))
5517 {
5518 handler = value_as_address (value);
5519
5520 if (debug_infrun)
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: exception resume at %lx\n",
5523 (unsigned long) handler);
5524
5525 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5526 handler, bp_exception_resume);
c70a6932
JK
5527
5528 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5529 frame = NULL;
5530
186c406b
TT
5531 bp->thread = tp->num;
5532 inferior_thread ()->control.exception_resume_breakpoint = bp;
5533 }
5534 }
5535}
5536
28106bc2
SDJ
5537/* A helper for check_exception_resume that sets an
5538 exception-breakpoint based on a SystemTap probe. */
5539
5540static void
5541insert_exception_resume_from_probe (struct thread_info *tp,
5542 const struct probe *probe,
28106bc2
SDJ
5543 struct frame_info *frame)
5544{
5545 struct value *arg_value;
5546 CORE_ADDR handler;
5547 struct breakpoint *bp;
5548
5549 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5550 if (!arg_value)
5551 return;
5552
5553 handler = value_as_address (arg_value);
5554
5555 if (debug_infrun)
5556 fprintf_unfiltered (gdb_stdlog,
5557 "infrun: exception resume at %s\n",
6bac7473 5558 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5559 handler));
5560
5561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5562 handler, bp_exception_resume);
5563 bp->thread = tp->num;
5564 inferior_thread ()->control.exception_resume_breakpoint = bp;
5565}
5566
186c406b
TT
5567/* This is called when an exception has been intercepted. Check to
5568 see whether the exception's destination is of interest, and if so,
5569 set an exception resume breakpoint there. */
5570
5571static void
5572check_exception_resume (struct execution_control_state *ecs,
28106bc2 5573 struct frame_info *frame)
186c406b 5574{
bfd189b1 5575 volatile struct gdb_exception e;
28106bc2
SDJ
5576 const struct probe *probe;
5577 struct symbol *func;
5578
5579 /* First see if this exception unwinding breakpoint was set via a
5580 SystemTap probe point. If so, the probe has two arguments: the
5581 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5582 set a breakpoint there. */
6bac7473 5583 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5584 if (probe)
5585 {
6bac7473 5586 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5587 return;
5588 }
5589
5590 func = get_frame_function (frame);
5591 if (!func)
5592 return;
186c406b
TT
5593
5594 TRY_CATCH (e, RETURN_MASK_ERROR)
5595 {
5596 struct block *b;
8157b174 5597 struct block_iterator iter;
186c406b
TT
5598 struct symbol *sym;
5599 int argno = 0;
5600
5601 /* The exception breakpoint is a thread-specific breakpoint on
5602 the unwinder's debug hook, declared as:
5603
5604 void _Unwind_DebugHook (void *cfa, void *handler);
5605
5606 The CFA argument indicates the frame to which control is
5607 about to be transferred. HANDLER is the destination PC.
5608
5609 We ignore the CFA and set a temporary breakpoint at HANDLER.
5610 This is not extremely efficient but it avoids issues in gdb
5611 with computing the DWARF CFA, and it also works even in weird
5612 cases such as throwing an exception from inside a signal
5613 handler. */
5614
5615 b = SYMBOL_BLOCK_VALUE (func);
5616 ALL_BLOCK_SYMBOLS (b, iter, sym)
5617 {
5618 if (!SYMBOL_IS_ARGUMENT (sym))
5619 continue;
5620
5621 if (argno == 0)
5622 ++argno;
5623 else
5624 {
5625 insert_exception_resume_breakpoint (ecs->event_thread,
5626 b, frame, sym);
5627 break;
5628 }
5629 }
5630 }
5631}
5632
104c1213
JM
5633static void
5634stop_stepping (struct execution_control_state *ecs)
5635{
527159b7 5636 if (debug_infrun)
8a9de0e4 5637 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5638
cd0fc7c3
SS
5639 /* Let callers know we don't want to wait for the inferior anymore. */
5640 ecs->wait_some_more = 0;
5641}
5642
d4f3574e
SS
5643/* This function handles various cases where we need to continue
5644 waiting for the inferior. */
1777feb0 5645/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5646
5647static void
5648keep_going (struct execution_control_state *ecs)
5649{
c4dbc9af
PA
5650 /* Make sure normal_stop is called if we get a QUIT handled before
5651 reaching resume. */
5652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5653
d4f3574e 5654 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5655 ecs->event_thread->prev_pc
5656 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5657
d4f3574e
SS
5658 /* If we did not do break;, it means we should keep running the
5659 inferior and not return to debugger. */
5660
16c381f0 5661 if (ecs->event_thread->control.trap_expected
a493e3e2 5662 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5663 {
5664 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5665 the inferior, else we'd not get here) and we haven't yet
5666 gotten our trap. Simply continue. */
c4dbc9af
PA
5667
5668 discard_cleanups (old_cleanups);
2020b7ab 5669 resume (currently_stepping (ecs->event_thread),
16c381f0 5670 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5671 }
5672 else
5673 {
5674 /* Either the trap was not expected, but we are continuing
488f131b
JB
5675 anyway (the user asked that this signal be passed to the
5676 child)
5677 -- or --
5678 The signal was SIGTRAP, e.g. it was our signal, but we
5679 decided we should resume from it.
d4f3574e 5680
c36b740a 5681 We're going to run this baby now!
d4f3574e 5682
c36b740a
VP
5683 Note that insert_breakpoints won't try to re-insert
5684 already inserted breakpoints. Therefore, we don't
5685 care if breakpoints were already inserted, or not. */
5686
4e1c45ea 5687 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5688 {
9f5a595d 5689 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5690
9f5a595d 5691 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5692 /* Since we can't do a displaced step, we have to remove
5693 the breakpoint while we step it. To keep things
5694 simple, we remove them all. */
5695 remove_breakpoints ();
45e8c884
VP
5696 }
5697 else
d4f3574e 5698 {
bfd189b1 5699 volatile struct gdb_exception e;
abbb1732 5700
569631c6
UW
5701 /* Stop stepping when inserting breakpoints
5702 has failed. */
e236ba44
VP
5703 TRY_CATCH (e, RETURN_MASK_ERROR)
5704 {
5705 insert_breakpoints ();
5706 }
5707 if (e.reason < 0)
d4f3574e 5708 {
97bd5475 5709 exception_print (gdb_stderr, e);
d4f3574e
SS
5710 stop_stepping (ecs);
5711 return;
5712 }
d4f3574e
SS
5713 }
5714
16c381f0
JK
5715 ecs->event_thread->control.trap_expected
5716 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5717
5718 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5719 specifies that such a signal should be delivered to the
5720 target program).
5721
5722 Typically, this would occure when a user is debugging a
5723 target monitor on a simulator: the target monitor sets a
5724 breakpoint; the simulator encounters this break-point and
5725 halts the simulation handing control to GDB; GDB, noteing
5726 that the break-point isn't valid, returns control back to the
5727 simulator; the simulator then delivers the hardware
1777feb0 5728 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5729
a493e3e2 5730 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5731 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5732 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5733
c4dbc9af 5734 discard_cleanups (old_cleanups);
2020b7ab 5735 resume (currently_stepping (ecs->event_thread),
16c381f0 5736 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5737 }
5738
488f131b 5739 prepare_to_wait (ecs);
d4f3574e
SS
5740}
5741
104c1213
JM
5742/* This function normally comes after a resume, before
5743 handle_inferior_event exits. It takes care of any last bits of
5744 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5745
104c1213
JM
5746static void
5747prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5748{
527159b7 5749 if (debug_infrun)
8a9de0e4 5750 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5751
104c1213
JM
5752 /* This is the old end of the while loop. Let everybody know we
5753 want to wait for the inferior some more and get called again
5754 soon. */
5755 ecs->wait_some_more = 1;
c906108c 5756}
11cf8741 5757
33d62d64
JK
5758/* Several print_*_reason functions to print why the inferior has stopped.
5759 We always print something when the inferior exits, or receives a signal.
5760 The rest of the cases are dealt with later on in normal_stop and
5761 print_it_typical. Ideally there should be a call to one of these
5762 print_*_reason functions functions from handle_inferior_event each time
5763 stop_stepping is called. */
5764
5765/* Print why the inferior has stopped.
5766 We are done with a step/next/si/ni command, print why the inferior has
5767 stopped. For now print nothing. Print a message only if not in the middle
5768 of doing a "step n" operation for n > 1. */
5769
5770static void
5771print_end_stepping_range_reason (void)
5772{
16c381f0
JK
5773 if ((!inferior_thread ()->step_multi
5774 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5775 && ui_out_is_mi_like_p (current_uiout))
5776 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5777 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5778}
5779
5780/* The inferior was terminated by a signal, print why it stopped. */
5781
11cf8741 5782static void
2ea28649 5783print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5784{
79a45e25
PA
5785 struct ui_out *uiout = current_uiout;
5786
33d62d64
JK
5787 annotate_signalled ();
5788 if (ui_out_is_mi_like_p (uiout))
5789 ui_out_field_string
5790 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5791 ui_out_text (uiout, "\nProgram terminated with signal ");
5792 annotate_signal_name ();
5793 ui_out_field_string (uiout, "signal-name",
2ea28649 5794 gdb_signal_to_name (siggnal));
33d62d64
JK
5795 annotate_signal_name_end ();
5796 ui_out_text (uiout, ", ");
5797 annotate_signal_string ();
5798 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5799 gdb_signal_to_string (siggnal));
33d62d64
JK
5800 annotate_signal_string_end ();
5801 ui_out_text (uiout, ".\n");
5802 ui_out_text (uiout, "The program no longer exists.\n");
5803}
5804
5805/* The inferior program is finished, print why it stopped. */
5806
5807static void
5808print_exited_reason (int exitstatus)
5809{
fda326dd
TT
5810 struct inferior *inf = current_inferior ();
5811 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5812 struct ui_out *uiout = current_uiout;
fda326dd 5813
33d62d64
JK
5814 annotate_exited (exitstatus);
5815 if (exitstatus)
5816 {
5817 if (ui_out_is_mi_like_p (uiout))
5818 ui_out_field_string (uiout, "reason",
5819 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5820 ui_out_text (uiout, "[Inferior ");
5821 ui_out_text (uiout, plongest (inf->num));
5822 ui_out_text (uiout, " (");
5823 ui_out_text (uiout, pidstr);
5824 ui_out_text (uiout, ") exited with code ");
33d62d64 5825 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5826 ui_out_text (uiout, "]\n");
33d62d64
JK
5827 }
5828 else
11cf8741 5829 {
9dc5e2a9 5830 if (ui_out_is_mi_like_p (uiout))
034dad6f 5831 ui_out_field_string
33d62d64 5832 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5833 ui_out_text (uiout, "[Inferior ");
5834 ui_out_text (uiout, plongest (inf->num));
5835 ui_out_text (uiout, " (");
5836 ui_out_text (uiout, pidstr);
5837 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5838 }
5839 /* Support the --return-child-result option. */
5840 return_child_result_value = exitstatus;
5841}
5842
5843/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5844 tells us to print about it. */
33d62d64
JK
5845
5846static void
2ea28649 5847print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5848{
79a45e25
PA
5849 struct ui_out *uiout = current_uiout;
5850
33d62d64
JK
5851 annotate_signal ();
5852
a493e3e2 5853 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5854 {
5855 struct thread_info *t = inferior_thread ();
5856
5857 ui_out_text (uiout, "\n[");
5858 ui_out_field_string (uiout, "thread-name",
5859 target_pid_to_str (t->ptid));
5860 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5861 ui_out_text (uiout, " stopped");
5862 }
5863 else
5864 {
5865 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5866 annotate_signal_name ();
33d62d64
JK
5867 if (ui_out_is_mi_like_p (uiout))
5868 ui_out_field_string
5869 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5870 ui_out_field_string (uiout, "signal-name",
2ea28649 5871 gdb_signal_to_name (siggnal));
8b93c638
JM
5872 annotate_signal_name_end ();
5873 ui_out_text (uiout, ", ");
5874 annotate_signal_string ();
488f131b 5875 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5876 gdb_signal_to_string (siggnal));
8b93c638 5877 annotate_signal_string_end ();
33d62d64
JK
5878 }
5879 ui_out_text (uiout, ".\n");
5880}
252fbfc8 5881
33d62d64
JK
5882/* Reverse execution: target ran out of history info, print why the inferior
5883 has stopped. */
252fbfc8 5884
33d62d64
JK
5885static void
5886print_no_history_reason (void)
5887{
79a45e25 5888 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5889}
43ff13b4 5890
c906108c
SS
5891/* Here to return control to GDB when the inferior stops for real.
5892 Print appropriate messages, remove breakpoints, give terminal our modes.
5893
5894 STOP_PRINT_FRAME nonzero means print the executing frame
5895 (pc, function, args, file, line number and line text).
5896 BREAKPOINTS_FAILED nonzero means stop was due to error
5897 attempting to insert breakpoints. */
5898
5899void
96baa820 5900normal_stop (void)
c906108c 5901{
73b65bb0
DJ
5902 struct target_waitstatus last;
5903 ptid_t last_ptid;
29f49a6a 5904 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5905
5906 get_last_target_status (&last_ptid, &last);
5907
29f49a6a
PA
5908 /* If an exception is thrown from this point on, make sure to
5909 propagate GDB's knowledge of the executing state to the
5910 frontend/user running state. A QUIT is an easy exception to see
5911 here, so do this before any filtered output. */
c35b1492
PA
5912 if (!non_stop)
5913 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5914 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5915 && last.kind != TARGET_WAITKIND_EXITED
5916 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5917 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5918
4f8d22e3
PA
5919 /* In non-stop mode, we don't want GDB to switch threads behind the
5920 user's back, to avoid races where the user is typing a command to
5921 apply to thread x, but GDB switches to thread y before the user
5922 finishes entering the command. */
5923
c906108c
SS
5924 /* As with the notification of thread events, we want to delay
5925 notifying the user that we've switched thread context until
5926 the inferior actually stops.
5927
73b65bb0
DJ
5928 There's no point in saying anything if the inferior has exited.
5929 Note that SIGNALLED here means "exited with a signal", not
5930 "received a signal". */
4f8d22e3
PA
5931 if (!non_stop
5932 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5933 && target_has_execution
5934 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5935 && last.kind != TARGET_WAITKIND_EXITED
5936 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5937 {
5938 target_terminal_ours_for_output ();
a3f17187 5939 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5940 target_pid_to_str (inferior_ptid));
b8fa951a 5941 annotate_thread_changed ();
39f77062 5942 previous_inferior_ptid = inferior_ptid;
c906108c 5943 }
c906108c 5944
0e5bf2a8
PA
5945 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5946 {
5947 gdb_assert (sync_execution || !target_can_async_p ());
5948
5949 target_terminal_ours_for_output ();
5950 printf_filtered (_("No unwaited-for children left.\n"));
5951 }
5952
74960c60 5953 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5954 {
5955 if (remove_breakpoints ())
5956 {
5957 target_terminal_ours_for_output ();
3e43a32a
MS
5958 printf_filtered (_("Cannot remove breakpoints because "
5959 "program is no longer writable.\nFurther "
5960 "execution is probably impossible.\n"));
c906108c
SS
5961 }
5962 }
c906108c 5963
c906108c
SS
5964 /* If an auto-display called a function and that got a signal,
5965 delete that auto-display to avoid an infinite recursion. */
5966
5967 if (stopped_by_random_signal)
5968 disable_current_display ();
5969
5970 /* Don't print a message if in the middle of doing a "step n"
5971 operation for n > 1 */
af679fd0
PA
5972 if (target_has_execution
5973 && last.kind != TARGET_WAITKIND_SIGNALLED
5974 && last.kind != TARGET_WAITKIND_EXITED
5975 && inferior_thread ()->step_multi
16c381f0 5976 && inferior_thread ()->control.stop_step)
c906108c
SS
5977 goto done;
5978
5979 target_terminal_ours ();
0f641c01 5980 async_enable_stdin ();
c906108c 5981
7abfe014
DJ
5982 /* Set the current source location. This will also happen if we
5983 display the frame below, but the current SAL will be incorrect
5984 during a user hook-stop function. */
d729566a 5985 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5986 set_current_sal_from_frame (get_current_frame (), 1);
5987
dd7e2d2b
PA
5988 /* Let the user/frontend see the threads as stopped. */
5989 do_cleanups (old_chain);
5990
5991 /* Look up the hook_stop and run it (CLI internally handles problem
5992 of stop_command's pre-hook not existing). */
5993 if (stop_command)
5994 catch_errors (hook_stop_stub, stop_command,
5995 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5996
d729566a 5997 if (!has_stack_frames ())
d51fd4c8 5998 goto done;
c906108c 5999
32400beb
PA
6000 if (last.kind == TARGET_WAITKIND_SIGNALLED
6001 || last.kind == TARGET_WAITKIND_EXITED)
6002 goto done;
6003
c906108c
SS
6004 /* Select innermost stack frame - i.e., current frame is frame 0,
6005 and current location is based on that.
6006 Don't do this on return from a stack dummy routine,
1777feb0 6007 or if the program has exited. */
c906108c
SS
6008
6009 if (!stop_stack_dummy)
6010 {
0f7d239c 6011 select_frame (get_current_frame ());
c906108c
SS
6012
6013 /* Print current location without a level number, if
c5aa993b
JM
6014 we have changed functions or hit a breakpoint.
6015 Print source line if we have one.
6016 bpstat_print() contains the logic deciding in detail
1777feb0 6017 what to print, based on the event(s) that just occurred. */
c906108c 6018
d01a8610
AS
6019 /* If --batch-silent is enabled then there's no need to print the current
6020 source location, and to try risks causing an error message about
6021 missing source files. */
6022 if (stop_print_frame && !batch_silent)
c906108c
SS
6023 {
6024 int bpstat_ret;
6025 int source_flag;
917317f4 6026 int do_frame_printing = 1;
347bddb7 6027 struct thread_info *tp = inferior_thread ();
c906108c 6028
36dfb11c 6029 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6030 switch (bpstat_ret)
6031 {
6032 case PRINT_UNKNOWN:
aa0cd9c1 6033 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6034 (or should) carry around the function and does (or
6035 should) use that when doing a frame comparison. */
16c381f0
JK
6036 if (tp->control.stop_step
6037 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6038 get_frame_id (get_current_frame ()))
917317f4 6039 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6040 source_flag = SRC_LINE; /* Finished step, just
6041 print source line. */
917317f4 6042 else
1777feb0
MS
6043 source_flag = SRC_AND_LOC; /* Print location and
6044 source line. */
917317f4
JM
6045 break;
6046 case PRINT_SRC_AND_LOC:
1777feb0
MS
6047 source_flag = SRC_AND_LOC; /* Print location and
6048 source line. */
917317f4
JM
6049 break;
6050 case PRINT_SRC_ONLY:
c5394b80 6051 source_flag = SRC_LINE;
917317f4
JM
6052 break;
6053 case PRINT_NOTHING:
488f131b 6054 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6055 do_frame_printing = 0;
6056 break;
6057 default:
e2e0b3e5 6058 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6059 }
c906108c
SS
6060
6061 /* The behavior of this routine with respect to the source
6062 flag is:
c5394b80
JM
6063 SRC_LINE: Print only source line
6064 LOCATION: Print only location
1777feb0 6065 SRC_AND_LOC: Print location and source line. */
917317f4 6066 if (do_frame_printing)
b04f3ab4 6067 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6068
6069 /* Display the auto-display expressions. */
6070 do_displays ();
6071 }
6072 }
6073
6074 /* Save the function value return registers, if we care.
6075 We might be about to restore their previous contents. */
9da8c2a0
PA
6076 if (inferior_thread ()->control.proceed_to_finish
6077 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6078 {
6079 /* This should not be necessary. */
6080 if (stop_registers)
6081 regcache_xfree (stop_registers);
6082
6083 /* NB: The copy goes through to the target picking up the value of
6084 all the registers. */
6085 stop_registers = regcache_dup (get_current_regcache ());
6086 }
c906108c 6087
aa7d318d 6088 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6089 {
b89667eb
DE
6090 /* Pop the empty frame that contains the stack dummy.
6091 This also restores inferior state prior to the call
16c381f0 6092 (struct infcall_suspend_state). */
b89667eb 6093 struct frame_info *frame = get_current_frame ();
abbb1732 6094
b89667eb
DE
6095 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6096 frame_pop (frame);
3e43a32a
MS
6097 /* frame_pop() calls reinit_frame_cache as the last thing it
6098 does which means there's currently no selected frame. We
6099 don't need to re-establish a selected frame if the dummy call
6100 returns normally, that will be done by
6101 restore_infcall_control_state. However, we do have to handle
6102 the case where the dummy call is returning after being
6103 stopped (e.g. the dummy call previously hit a breakpoint).
6104 We can't know which case we have so just always re-establish
6105 a selected frame here. */
0f7d239c 6106 select_frame (get_current_frame ());
c906108c
SS
6107 }
6108
c906108c
SS
6109done:
6110 annotate_stopped ();
41d2bdb4
PA
6111
6112 /* Suppress the stop observer if we're in the middle of:
6113
6114 - a step n (n > 1), as there still more steps to be done.
6115
6116 - a "finish" command, as the observer will be called in
6117 finish_command_continuation, so it can include the inferior
6118 function's return value.
6119
6120 - calling an inferior function, as we pretend we inferior didn't
6121 run at all. The return value of the call is handled by the
6122 expression evaluator, through call_function_by_hand. */
6123
6124 if (!target_has_execution
6125 || last.kind == TARGET_WAITKIND_SIGNALLED
6126 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6127 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6128 || (!(inferior_thread ()->step_multi
6129 && inferior_thread ()->control.stop_step)
16c381f0
JK
6130 && !(inferior_thread ()->control.stop_bpstat
6131 && inferior_thread ()->control.proceed_to_finish)
6132 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6133 {
6134 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6135 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6136 stop_print_frame);
347bddb7 6137 else
1d33d6ba 6138 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6139 }
347bddb7 6140
48844aa6
PA
6141 if (target_has_execution)
6142 {
6143 if (last.kind != TARGET_WAITKIND_SIGNALLED
6144 && last.kind != TARGET_WAITKIND_EXITED)
6145 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6146 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6147 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6148 }
6c95b8df
PA
6149
6150 /* Try to get rid of automatically added inferiors that are no
6151 longer needed. Keeping those around slows down things linearly.
6152 Note that this never removes the current inferior. */
6153 prune_inferiors ();
c906108c
SS
6154}
6155
6156static int
96baa820 6157hook_stop_stub (void *cmd)
c906108c 6158{
5913bcb0 6159 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6160 return (0);
6161}
6162\f
c5aa993b 6163int
96baa820 6164signal_stop_state (int signo)
c906108c 6165{
d6b48e9c 6166 return signal_stop[signo];
c906108c
SS
6167}
6168
c5aa993b 6169int
96baa820 6170signal_print_state (int signo)
c906108c
SS
6171{
6172 return signal_print[signo];
6173}
6174
c5aa993b 6175int
96baa820 6176signal_pass_state (int signo)
c906108c
SS
6177{
6178 return signal_program[signo];
6179}
6180
2455069d
UW
6181static void
6182signal_cache_update (int signo)
6183{
6184 if (signo == -1)
6185 {
a493e3e2 6186 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6187 signal_cache_update (signo);
6188
6189 return;
6190 }
6191
6192 signal_pass[signo] = (signal_stop[signo] == 0
6193 && signal_print[signo] == 0
6194 && signal_program[signo] == 1);
6195}
6196
488f131b 6197int
7bda5e4a 6198signal_stop_update (int signo, int state)
d4f3574e
SS
6199{
6200 int ret = signal_stop[signo];
abbb1732 6201
d4f3574e 6202 signal_stop[signo] = state;
2455069d 6203 signal_cache_update (signo);
d4f3574e
SS
6204 return ret;
6205}
6206
488f131b 6207int
7bda5e4a 6208signal_print_update (int signo, int state)
d4f3574e
SS
6209{
6210 int ret = signal_print[signo];
abbb1732 6211
d4f3574e 6212 signal_print[signo] = state;
2455069d 6213 signal_cache_update (signo);
d4f3574e
SS
6214 return ret;
6215}
6216
488f131b 6217int
7bda5e4a 6218signal_pass_update (int signo, int state)
d4f3574e
SS
6219{
6220 int ret = signal_program[signo];
abbb1732 6221
d4f3574e 6222 signal_program[signo] = state;
2455069d 6223 signal_cache_update (signo);
d4f3574e
SS
6224 return ret;
6225}
6226
c906108c 6227static void
96baa820 6228sig_print_header (void)
c906108c 6229{
3e43a32a
MS
6230 printf_filtered (_("Signal Stop\tPrint\tPass "
6231 "to program\tDescription\n"));
c906108c
SS
6232}
6233
6234static void
2ea28649 6235sig_print_info (enum gdb_signal oursig)
c906108c 6236{
2ea28649 6237 const char *name = gdb_signal_to_name (oursig);
c906108c 6238 int name_padding = 13 - strlen (name);
96baa820 6239
c906108c
SS
6240 if (name_padding <= 0)
6241 name_padding = 0;
6242
6243 printf_filtered ("%s", name);
488f131b 6244 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6245 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6246 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6247 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6248 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6249}
6250
6251/* Specify how various signals in the inferior should be handled. */
6252
6253static void
96baa820 6254handle_command (char *args, int from_tty)
c906108c
SS
6255{
6256 char **argv;
6257 int digits, wordlen;
6258 int sigfirst, signum, siglast;
2ea28649 6259 enum gdb_signal oursig;
c906108c
SS
6260 int allsigs;
6261 int nsigs;
6262 unsigned char *sigs;
6263 struct cleanup *old_chain;
6264
6265 if (args == NULL)
6266 {
e2e0b3e5 6267 error_no_arg (_("signal to handle"));
c906108c
SS
6268 }
6269
1777feb0 6270 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6271
a493e3e2 6272 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6273 sigs = (unsigned char *) alloca (nsigs);
6274 memset (sigs, 0, nsigs);
6275
1777feb0 6276 /* Break the command line up into args. */
c906108c 6277
d1a41061 6278 argv = gdb_buildargv (args);
7a292a7a 6279 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6280
6281 /* Walk through the args, looking for signal oursigs, signal names, and
6282 actions. Signal numbers and signal names may be interspersed with
6283 actions, with the actions being performed for all signals cumulatively
1777feb0 6284 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6285
6286 while (*argv != NULL)
6287 {
6288 wordlen = strlen (*argv);
6289 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6290 {;
6291 }
6292 allsigs = 0;
6293 sigfirst = siglast = -1;
6294
6295 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6296 {
6297 /* Apply action to all signals except those used by the
1777feb0 6298 debugger. Silently skip those. */
c906108c
SS
6299 allsigs = 1;
6300 sigfirst = 0;
6301 siglast = nsigs - 1;
6302 }
6303 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6304 {
6305 SET_SIGS (nsigs, sigs, signal_stop);
6306 SET_SIGS (nsigs, sigs, signal_print);
6307 }
6308 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6309 {
6310 UNSET_SIGS (nsigs, sigs, signal_program);
6311 }
6312 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6313 {
6314 SET_SIGS (nsigs, sigs, signal_print);
6315 }
6316 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6317 {
6318 SET_SIGS (nsigs, sigs, signal_program);
6319 }
6320 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6321 {
6322 UNSET_SIGS (nsigs, sigs, signal_stop);
6323 }
6324 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6325 {
6326 SET_SIGS (nsigs, sigs, signal_program);
6327 }
6328 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6329 {
6330 UNSET_SIGS (nsigs, sigs, signal_print);
6331 UNSET_SIGS (nsigs, sigs, signal_stop);
6332 }
6333 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6334 {
6335 UNSET_SIGS (nsigs, sigs, signal_program);
6336 }
6337 else if (digits > 0)
6338 {
6339 /* It is numeric. The numeric signal refers to our own
6340 internal signal numbering from target.h, not to host/target
6341 signal number. This is a feature; users really should be
6342 using symbolic names anyway, and the common ones like
6343 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6344
6345 sigfirst = siglast = (int)
2ea28649 6346 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6347 if ((*argv)[digits] == '-')
6348 {
6349 siglast = (int)
2ea28649 6350 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6351 }
6352 if (sigfirst > siglast)
6353 {
1777feb0 6354 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6355 signum = sigfirst;
6356 sigfirst = siglast;
6357 siglast = signum;
6358 }
6359 }
6360 else
6361 {
2ea28649 6362 oursig = gdb_signal_from_name (*argv);
a493e3e2 6363 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6364 {
6365 sigfirst = siglast = (int) oursig;
6366 }
6367 else
6368 {
6369 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6370 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6371 }
6372 }
6373
6374 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6375 which signals to apply actions to. */
c906108c
SS
6376
6377 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6378 {
2ea28649 6379 switch ((enum gdb_signal) signum)
c906108c 6380 {
a493e3e2
PA
6381 case GDB_SIGNAL_TRAP:
6382 case GDB_SIGNAL_INT:
c906108c
SS
6383 if (!allsigs && !sigs[signum])
6384 {
9e2f0ad4 6385 if (query (_("%s is used by the debugger.\n\
3e43a32a 6386Are you sure you want to change it? "),
2ea28649 6387 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6388 {
6389 sigs[signum] = 1;
6390 }
6391 else
6392 {
a3f17187 6393 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6394 gdb_flush (gdb_stdout);
6395 }
6396 }
6397 break;
a493e3e2
PA
6398 case GDB_SIGNAL_0:
6399 case GDB_SIGNAL_DEFAULT:
6400 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6401 /* Make sure that "all" doesn't print these. */
6402 break;
6403 default:
6404 sigs[signum] = 1;
6405 break;
6406 }
6407 }
6408
6409 argv++;
6410 }
6411
3a031f65
PA
6412 for (signum = 0; signum < nsigs; signum++)
6413 if (sigs[signum])
6414 {
2455069d 6415 signal_cache_update (-1);
a493e3e2
PA
6416 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6417 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6418
3a031f65
PA
6419 if (from_tty)
6420 {
6421 /* Show the results. */
6422 sig_print_header ();
6423 for (; signum < nsigs; signum++)
6424 if (sigs[signum])
6425 sig_print_info (signum);
6426 }
6427
6428 break;
6429 }
c906108c
SS
6430
6431 do_cleanups (old_chain);
6432}
6433
de0bea00
MF
6434/* Complete the "handle" command. */
6435
6436static VEC (char_ptr) *
6437handle_completer (struct cmd_list_element *ignore,
6438 char *text, char *word)
6439{
6440 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6441 static const char * const keywords[] =
6442 {
6443 "all",
6444 "stop",
6445 "ignore",
6446 "print",
6447 "pass",
6448 "nostop",
6449 "noignore",
6450 "noprint",
6451 "nopass",
6452 NULL,
6453 };
6454
6455 vec_signals = signal_completer (ignore, text, word);
6456 vec_keywords = complete_on_enum (keywords, word, word);
6457
6458 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6459 VEC_free (char_ptr, vec_signals);
6460 VEC_free (char_ptr, vec_keywords);
6461 return return_val;
6462}
6463
c906108c 6464static void
96baa820 6465xdb_handle_command (char *args, int from_tty)
c906108c
SS
6466{
6467 char **argv;
6468 struct cleanup *old_chain;
6469
d1a41061
PP
6470 if (args == NULL)
6471 error_no_arg (_("xdb command"));
6472
1777feb0 6473 /* Break the command line up into args. */
c906108c 6474
d1a41061 6475 argv = gdb_buildargv (args);
7a292a7a 6476 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6477 if (argv[1] != (char *) NULL)
6478 {
6479 char *argBuf;
6480 int bufLen;
6481
6482 bufLen = strlen (argv[0]) + 20;
6483 argBuf = (char *) xmalloc (bufLen);
6484 if (argBuf)
6485 {
6486 int validFlag = 1;
2ea28649 6487 enum gdb_signal oursig;
c906108c 6488
2ea28649 6489 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6490 memset (argBuf, 0, bufLen);
6491 if (strcmp (argv[1], "Q") == 0)
6492 sprintf (argBuf, "%s %s", argv[0], "noprint");
6493 else
6494 {
6495 if (strcmp (argv[1], "s") == 0)
6496 {
6497 if (!signal_stop[oursig])
6498 sprintf (argBuf, "%s %s", argv[0], "stop");
6499 else
6500 sprintf (argBuf, "%s %s", argv[0], "nostop");
6501 }
6502 else if (strcmp (argv[1], "i") == 0)
6503 {
6504 if (!signal_program[oursig])
6505 sprintf (argBuf, "%s %s", argv[0], "pass");
6506 else
6507 sprintf (argBuf, "%s %s", argv[0], "nopass");
6508 }
6509 else if (strcmp (argv[1], "r") == 0)
6510 {
6511 if (!signal_print[oursig])
6512 sprintf (argBuf, "%s %s", argv[0], "print");
6513 else
6514 sprintf (argBuf, "%s %s", argv[0], "noprint");
6515 }
6516 else
6517 validFlag = 0;
6518 }
6519 if (validFlag)
6520 handle_command (argBuf, from_tty);
6521 else
a3f17187 6522 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6523 if (argBuf)
b8c9b27d 6524 xfree (argBuf);
c906108c
SS
6525 }
6526 }
6527 do_cleanups (old_chain);
6528}
6529
2ea28649
PA
6530enum gdb_signal
6531gdb_signal_from_command (int num)
ed01b82c
PA
6532{
6533 if (num >= 1 && num <= 15)
2ea28649 6534 return (enum gdb_signal) num;
ed01b82c
PA
6535 error (_("Only signals 1-15 are valid as numeric signals.\n\
6536Use \"info signals\" for a list of symbolic signals."));
6537}
6538
c906108c
SS
6539/* Print current contents of the tables set by the handle command.
6540 It is possible we should just be printing signals actually used
6541 by the current target (but for things to work right when switching
6542 targets, all signals should be in the signal tables). */
6543
6544static void
96baa820 6545signals_info (char *signum_exp, int from_tty)
c906108c 6546{
2ea28649 6547 enum gdb_signal oursig;
abbb1732 6548
c906108c
SS
6549 sig_print_header ();
6550
6551 if (signum_exp)
6552 {
6553 /* First see if this is a symbol name. */
2ea28649 6554 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6555 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6556 {
6557 /* No, try numeric. */
6558 oursig =
2ea28649 6559 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6560 }
6561 sig_print_info (oursig);
6562 return;
6563 }
6564
6565 printf_filtered ("\n");
6566 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6567 for (oursig = GDB_SIGNAL_FIRST;
6568 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6569 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6570 {
6571 QUIT;
6572
a493e3e2
PA
6573 if (oursig != GDB_SIGNAL_UNKNOWN
6574 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6575 sig_print_info (oursig);
6576 }
6577
3e43a32a
MS
6578 printf_filtered (_("\nUse the \"handle\" command "
6579 "to change these tables.\n"));
c906108c 6580}
4aa995e1 6581
c709acd1
PA
6582/* Check if it makes sense to read $_siginfo from the current thread
6583 at this point. If not, throw an error. */
6584
6585static void
6586validate_siginfo_access (void)
6587{
6588 /* No current inferior, no siginfo. */
6589 if (ptid_equal (inferior_ptid, null_ptid))
6590 error (_("No thread selected."));
6591
6592 /* Don't try to read from a dead thread. */
6593 if (is_exited (inferior_ptid))
6594 error (_("The current thread has terminated"));
6595
6596 /* ... or from a spinning thread. */
6597 if (is_running (inferior_ptid))
6598 error (_("Selected thread is running."));
6599}
6600
4aa995e1
PA
6601/* The $_siginfo convenience variable is a bit special. We don't know
6602 for sure the type of the value until we actually have a chance to
7a9dd1b2 6603 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6604 also dependent on which thread you have selected.
6605
6606 1. making $_siginfo be an internalvar that creates a new value on
6607 access.
6608
6609 2. making the value of $_siginfo be an lval_computed value. */
6610
6611/* This function implements the lval_computed support for reading a
6612 $_siginfo value. */
6613
6614static void
6615siginfo_value_read (struct value *v)
6616{
6617 LONGEST transferred;
6618
c709acd1
PA
6619 validate_siginfo_access ();
6620
4aa995e1
PA
6621 transferred =
6622 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6623 NULL,
6624 value_contents_all_raw (v),
6625 value_offset (v),
6626 TYPE_LENGTH (value_type (v)));
6627
6628 if (transferred != TYPE_LENGTH (value_type (v)))
6629 error (_("Unable to read siginfo"));
6630}
6631
6632/* This function implements the lval_computed support for writing a
6633 $_siginfo value. */
6634
6635static void
6636siginfo_value_write (struct value *v, struct value *fromval)
6637{
6638 LONGEST transferred;
6639
c709acd1
PA
6640 validate_siginfo_access ();
6641
4aa995e1
PA
6642 transferred = target_write (&current_target,
6643 TARGET_OBJECT_SIGNAL_INFO,
6644 NULL,
6645 value_contents_all_raw (fromval),
6646 value_offset (v),
6647 TYPE_LENGTH (value_type (fromval)));
6648
6649 if (transferred != TYPE_LENGTH (value_type (fromval)))
6650 error (_("Unable to write siginfo"));
6651}
6652
c8f2448a 6653static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6654 {
6655 siginfo_value_read,
6656 siginfo_value_write
6657 };
6658
6659/* Return a new value with the correct type for the siginfo object of
78267919
UW
6660 the current thread using architecture GDBARCH. Return a void value
6661 if there's no object available. */
4aa995e1 6662
2c0b251b 6663static struct value *
22d2b532
SDJ
6664siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6665 void *ignore)
4aa995e1 6666{
4aa995e1 6667 if (target_has_stack
78267919
UW
6668 && !ptid_equal (inferior_ptid, null_ptid)
6669 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6670 {
78267919 6671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6672
78267919 6673 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6674 }
6675
78267919 6676 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6677}
6678
c906108c 6679\f
16c381f0
JK
6680/* infcall_suspend_state contains state about the program itself like its
6681 registers and any signal it received when it last stopped.
6682 This state must be restored regardless of how the inferior function call
6683 ends (either successfully, or after it hits a breakpoint or signal)
6684 if the program is to properly continue where it left off. */
6685
6686struct infcall_suspend_state
7a292a7a 6687{
16c381f0 6688 struct thread_suspend_state thread_suspend;
dd80ea3c 6689#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6690 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6691#endif
16c381f0
JK
6692
6693 /* Other fields: */
7a292a7a 6694 CORE_ADDR stop_pc;
b89667eb 6695 struct regcache *registers;
1736ad11 6696
35515841 6697 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6698 struct gdbarch *siginfo_gdbarch;
6699
6700 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6701 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6702 content would be invalid. */
6703 gdb_byte *siginfo_data;
b89667eb
DE
6704};
6705
16c381f0
JK
6706struct infcall_suspend_state *
6707save_infcall_suspend_state (void)
b89667eb 6708{
16c381f0 6709 struct infcall_suspend_state *inf_state;
b89667eb 6710 struct thread_info *tp = inferior_thread ();
16c381f0 6711 struct inferior *inf = current_inferior ();
1736ad11
JK
6712 struct regcache *regcache = get_current_regcache ();
6713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6714 gdb_byte *siginfo_data = NULL;
6715
6716 if (gdbarch_get_siginfo_type_p (gdbarch))
6717 {
6718 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6719 size_t len = TYPE_LENGTH (type);
6720 struct cleanup *back_to;
6721
6722 siginfo_data = xmalloc (len);
6723 back_to = make_cleanup (xfree, siginfo_data);
6724
6725 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6726 siginfo_data, 0, len) == len)
6727 discard_cleanups (back_to);
6728 else
6729 {
6730 /* Errors ignored. */
6731 do_cleanups (back_to);
6732 siginfo_data = NULL;
6733 }
6734 }
6735
16c381f0 6736 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6737
6738 if (siginfo_data)
6739 {
6740 inf_state->siginfo_gdbarch = gdbarch;
6741 inf_state->siginfo_data = siginfo_data;
6742 }
b89667eb 6743
16c381f0 6744 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6745#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6746 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6747#endif
16c381f0 6748
35515841 6749 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6750 GDB_SIGNAL_0 anyway. */
6751 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6752
b89667eb
DE
6753 inf_state->stop_pc = stop_pc;
6754
1736ad11 6755 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6756
6757 return inf_state;
6758}
6759
6760/* Restore inferior session state to INF_STATE. */
6761
6762void
16c381f0 6763restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6764{
6765 struct thread_info *tp = inferior_thread ();
16c381f0 6766 struct inferior *inf = current_inferior ();
1736ad11
JK
6767 struct regcache *regcache = get_current_regcache ();
6768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6769
16c381f0 6770 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6771#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6772 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6773#endif
16c381f0 6774
b89667eb
DE
6775 stop_pc = inf_state->stop_pc;
6776
1736ad11
JK
6777 if (inf_state->siginfo_gdbarch == gdbarch)
6778 {
6779 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6780
6781 /* Errors ignored. */
6782 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6783 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6784 }
6785
b89667eb
DE
6786 /* The inferior can be gone if the user types "print exit(0)"
6787 (and perhaps other times). */
6788 if (target_has_execution)
6789 /* NB: The register write goes through to the target. */
1736ad11 6790 regcache_cpy (regcache, inf_state->registers);
803b5f95 6791
16c381f0 6792 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6793}
6794
6795static void
16c381f0 6796do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6797{
16c381f0 6798 restore_infcall_suspend_state (state);
b89667eb
DE
6799}
6800
6801struct cleanup *
16c381f0
JK
6802make_cleanup_restore_infcall_suspend_state
6803 (struct infcall_suspend_state *inf_state)
b89667eb 6804{
16c381f0 6805 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6806}
6807
6808void
16c381f0 6809discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6810{
6811 regcache_xfree (inf_state->registers);
803b5f95 6812 xfree (inf_state->siginfo_data);
b89667eb
DE
6813 xfree (inf_state);
6814}
6815
6816struct regcache *
16c381f0 6817get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6818{
6819 return inf_state->registers;
6820}
6821
16c381f0
JK
6822/* infcall_control_state contains state regarding gdb's control of the
6823 inferior itself like stepping control. It also contains session state like
6824 the user's currently selected frame. */
b89667eb 6825
16c381f0 6826struct infcall_control_state
b89667eb 6827{
16c381f0
JK
6828 struct thread_control_state thread_control;
6829 struct inferior_control_state inferior_control;
d82142e2
JK
6830
6831 /* Other fields: */
6832 enum stop_stack_kind stop_stack_dummy;
6833 int stopped_by_random_signal;
7a292a7a 6834 int stop_after_trap;
7a292a7a 6835
b89667eb 6836 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6837 struct frame_id selected_frame_id;
7a292a7a
SS
6838};
6839
c906108c 6840/* Save all of the information associated with the inferior<==>gdb
b89667eb 6841 connection. */
c906108c 6842
16c381f0
JK
6843struct infcall_control_state *
6844save_infcall_control_state (void)
c906108c 6845{
16c381f0 6846 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6847 struct thread_info *tp = inferior_thread ();
d6b48e9c 6848 struct inferior *inf = current_inferior ();
7a292a7a 6849
16c381f0
JK
6850 inf_status->thread_control = tp->control;
6851 inf_status->inferior_control = inf->control;
d82142e2 6852
8358c15c 6853 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6854 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6855
16c381f0
JK
6856 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6857 chain. If caller's caller is walking the chain, they'll be happier if we
6858 hand them back the original chain when restore_infcall_control_state is
6859 called. */
6860 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6861
6862 /* Other fields: */
6863 inf_status->stop_stack_dummy = stop_stack_dummy;
6864 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6865 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6866
206415a3 6867 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6868
7a292a7a 6869 return inf_status;
c906108c
SS
6870}
6871
c906108c 6872static int
96baa820 6873restore_selected_frame (void *args)
c906108c 6874{
488f131b 6875 struct frame_id *fid = (struct frame_id *) args;
c906108c 6876 struct frame_info *frame;
c906108c 6877
101dcfbe 6878 frame = frame_find_by_id (*fid);
c906108c 6879
aa0cd9c1
AC
6880 /* If inf_status->selected_frame_id is NULL, there was no previously
6881 selected frame. */
101dcfbe 6882 if (frame == NULL)
c906108c 6883 {
8a3fe4f8 6884 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6885 return 0;
6886 }
6887
0f7d239c 6888 select_frame (frame);
c906108c
SS
6889
6890 return (1);
6891}
6892
b89667eb
DE
6893/* Restore inferior session state to INF_STATUS. */
6894
c906108c 6895void
16c381f0 6896restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6897{
4e1c45ea 6898 struct thread_info *tp = inferior_thread ();
d6b48e9c 6899 struct inferior *inf = current_inferior ();
4e1c45ea 6900
8358c15c
JK
6901 if (tp->control.step_resume_breakpoint)
6902 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6903
5b79abe7
TT
6904 if (tp->control.exception_resume_breakpoint)
6905 tp->control.exception_resume_breakpoint->disposition
6906 = disp_del_at_next_stop;
6907
d82142e2 6908 /* Handle the bpstat_copy of the chain. */
16c381f0 6909 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6910
16c381f0
JK
6911 tp->control = inf_status->thread_control;
6912 inf->control = inf_status->inferior_control;
d82142e2
JK
6913
6914 /* Other fields: */
6915 stop_stack_dummy = inf_status->stop_stack_dummy;
6916 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6917 stop_after_trap = inf_status->stop_after_trap;
c906108c 6918
b89667eb 6919 if (target_has_stack)
c906108c 6920 {
c906108c 6921 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6922 walking the stack might encounter a garbage pointer and
6923 error() trying to dereference it. */
488f131b
JB
6924 if (catch_errors
6925 (restore_selected_frame, &inf_status->selected_frame_id,
6926 "Unable to restore previously selected frame:\n",
6927 RETURN_MASK_ERROR) == 0)
c906108c
SS
6928 /* Error in restoring the selected frame. Select the innermost
6929 frame. */
0f7d239c 6930 select_frame (get_current_frame ());
c906108c 6931 }
c906108c 6932
72cec141 6933 xfree (inf_status);
7a292a7a 6934}
c906108c 6935
74b7792f 6936static void
16c381f0 6937do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6938{
16c381f0 6939 restore_infcall_control_state (sts);
74b7792f
AC
6940}
6941
6942struct cleanup *
16c381f0
JK
6943make_cleanup_restore_infcall_control_state
6944 (struct infcall_control_state *inf_status)
74b7792f 6945{
16c381f0 6946 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6947}
6948
c906108c 6949void
16c381f0 6950discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6951{
8358c15c
JK
6952 if (inf_status->thread_control.step_resume_breakpoint)
6953 inf_status->thread_control.step_resume_breakpoint->disposition
6954 = disp_del_at_next_stop;
6955
5b79abe7
TT
6956 if (inf_status->thread_control.exception_resume_breakpoint)
6957 inf_status->thread_control.exception_resume_breakpoint->disposition
6958 = disp_del_at_next_stop;
6959
1777feb0 6960 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6961 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6962
72cec141 6963 xfree (inf_status);
7a292a7a 6964}
b89667eb 6965\f
0723dbf5
PA
6966int
6967ptid_match (ptid_t ptid, ptid_t filter)
6968{
0723dbf5
PA
6969 if (ptid_equal (filter, minus_one_ptid))
6970 return 1;
6971 if (ptid_is_pid (filter)
6972 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6973 return 1;
6974 else if (ptid_equal (ptid, filter))
6975 return 1;
6976
6977 return 0;
6978}
6979
ca6724c1
KB
6980/* restore_inferior_ptid() will be used by the cleanup machinery
6981 to restore the inferior_ptid value saved in a call to
6982 save_inferior_ptid(). */
ce696e05
KB
6983
6984static void
6985restore_inferior_ptid (void *arg)
6986{
6987 ptid_t *saved_ptid_ptr = arg;
abbb1732 6988
ce696e05
KB
6989 inferior_ptid = *saved_ptid_ptr;
6990 xfree (arg);
6991}
6992
6993/* Save the value of inferior_ptid so that it may be restored by a
6994 later call to do_cleanups(). Returns the struct cleanup pointer
6995 needed for later doing the cleanup. */
6996
6997struct cleanup *
6998save_inferior_ptid (void)
6999{
7000 ptid_t *saved_ptid_ptr;
7001
7002 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7003 *saved_ptid_ptr = inferior_ptid;
7004 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7005}
c5aa993b 7006\f
488f131b 7007
b2175913
MS
7008/* User interface for reverse debugging:
7009 Set exec-direction / show exec-direction commands
7010 (returns error unless target implements to_set_exec_direction method). */
7011
32231432 7012int execution_direction = EXEC_FORWARD;
b2175913
MS
7013static const char exec_forward[] = "forward";
7014static const char exec_reverse[] = "reverse";
7015static const char *exec_direction = exec_forward;
40478521 7016static const char *const exec_direction_names[] = {
b2175913
MS
7017 exec_forward,
7018 exec_reverse,
7019 NULL
7020};
7021
7022static void
7023set_exec_direction_func (char *args, int from_tty,
7024 struct cmd_list_element *cmd)
7025{
7026 if (target_can_execute_reverse)
7027 {
7028 if (!strcmp (exec_direction, exec_forward))
7029 execution_direction = EXEC_FORWARD;
7030 else if (!strcmp (exec_direction, exec_reverse))
7031 execution_direction = EXEC_REVERSE;
7032 }
8bbed405
MS
7033 else
7034 {
7035 exec_direction = exec_forward;
7036 error (_("Target does not support this operation."));
7037 }
b2175913
MS
7038}
7039
7040static void
7041show_exec_direction_func (struct ui_file *out, int from_tty,
7042 struct cmd_list_element *cmd, const char *value)
7043{
7044 switch (execution_direction) {
7045 case EXEC_FORWARD:
7046 fprintf_filtered (out, _("Forward.\n"));
7047 break;
7048 case EXEC_REVERSE:
7049 fprintf_filtered (out, _("Reverse.\n"));
7050 break;
b2175913 7051 default:
d8b34453
PA
7052 internal_error (__FILE__, __LINE__,
7053 _("bogus execution_direction value: %d"),
7054 (int) execution_direction);
b2175913
MS
7055 }
7056}
7057
7058/* User interface for non-stop mode. */
7059
ad52ddc6 7060int non_stop = 0;
ad52ddc6
PA
7061
7062static void
7063set_non_stop (char *args, int from_tty,
7064 struct cmd_list_element *c)
7065{
7066 if (target_has_execution)
7067 {
7068 non_stop_1 = non_stop;
7069 error (_("Cannot change this setting while the inferior is running."));
7070 }
7071
7072 non_stop = non_stop_1;
7073}
7074
7075static void
7076show_non_stop (struct ui_file *file, int from_tty,
7077 struct cmd_list_element *c, const char *value)
7078{
7079 fprintf_filtered (file,
7080 _("Controlling the inferior in non-stop mode is %s.\n"),
7081 value);
7082}
7083
d4db2f36
PA
7084static void
7085show_schedule_multiple (struct ui_file *file, int from_tty,
7086 struct cmd_list_element *c, const char *value)
7087{
3e43a32a
MS
7088 fprintf_filtered (file, _("Resuming the execution of threads "
7089 "of all processes is %s.\n"), value);
d4db2f36 7090}
ad52ddc6 7091
22d2b532
SDJ
7092/* Implementation of `siginfo' variable. */
7093
7094static const struct internalvar_funcs siginfo_funcs =
7095{
7096 siginfo_make_value,
7097 NULL,
7098 NULL
7099};
7100
c906108c 7101void
96baa820 7102_initialize_infrun (void)
c906108c 7103{
52f0bd74
AC
7104 int i;
7105 int numsigs;
de0bea00 7106 struct cmd_list_element *c;
c906108c 7107
1bedd215
AC
7108 add_info ("signals", signals_info, _("\
7109What debugger does when program gets various signals.\n\
7110Specify a signal as argument to print info on that signal only."));
c906108c
SS
7111 add_info_alias ("handle", "signals", 0);
7112
de0bea00 7113 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7114Specify how to handle signals.\n\
486c7739 7115Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7116Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7117If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7118will be displayed instead.\n\
7119\n\
c906108c
SS
7120Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7121from 1-15 are allowed for compatibility with old versions of GDB.\n\
7122Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7123The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7124used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7125\n\
1bedd215 7126Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7127\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7128Stop means reenter debugger if this signal happens (implies print).\n\
7129Print means print a message if this signal happens.\n\
7130Pass means let program see this signal; otherwise program doesn't know.\n\
7131Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7132Pass and Stop may be combined.\n\
7133\n\
7134Multiple signals may be specified. Signal numbers and signal names\n\
7135may be interspersed with actions, with the actions being performed for\n\
7136all signals cumulatively specified."));
de0bea00 7137 set_cmd_completer (c, handle_completer);
486c7739 7138
c906108c
SS
7139 if (xdb_commands)
7140 {
1bedd215
AC
7141 add_com ("lz", class_info, signals_info, _("\
7142What debugger does when program gets various signals.\n\
7143Specify a signal as argument to print info on that signal only."));
7144 add_com ("z", class_run, xdb_handle_command, _("\
7145Specify how to handle a signal.\n\
c906108c
SS
7146Args are signals and actions to apply to those signals.\n\
7147Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7148from 1-15 are allowed for compatibility with old versions of GDB.\n\
7149Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7150The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7151used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7152Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7153\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7154nopass), \"Q\" (noprint)\n\
7155Stop means reenter debugger if this signal happens (implies print).\n\
7156Print means print a message if this signal happens.\n\
7157Pass means let program see this signal; otherwise program doesn't know.\n\
7158Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7159Pass and Stop may be combined."));
c906108c
SS
7160 }
7161
7162 if (!dbx_commands)
1a966eab
AC
7163 stop_command = add_cmd ("stop", class_obscure,
7164 not_just_help_class_command, _("\
7165There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7166This allows you to set a list of commands to be run each time execution\n\
1a966eab 7167of the program stops."), &cmdlist);
c906108c 7168
ccce17b0 7169 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7170Set inferior debugging."), _("\
7171Show inferior debugging."), _("\
7172When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7173 NULL,
7174 show_debug_infrun,
7175 &setdebuglist, &showdebuglist);
527159b7 7176
3e43a32a
MS
7177 add_setshow_boolean_cmd ("displaced", class_maintenance,
7178 &debug_displaced, _("\
237fc4c9
PA
7179Set displaced stepping debugging."), _("\
7180Show displaced stepping debugging."), _("\
7181When non-zero, displaced stepping specific debugging is enabled."),
7182 NULL,
7183 show_debug_displaced,
7184 &setdebuglist, &showdebuglist);
7185
ad52ddc6
PA
7186 add_setshow_boolean_cmd ("non-stop", no_class,
7187 &non_stop_1, _("\
7188Set whether gdb controls the inferior in non-stop mode."), _("\
7189Show whether gdb controls the inferior in non-stop mode."), _("\
7190When debugging a multi-threaded program and this setting is\n\
7191off (the default, also called all-stop mode), when one thread stops\n\
7192(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7193all other threads in the program while you interact with the thread of\n\
7194interest. When you continue or step a thread, you can allow the other\n\
7195threads to run, or have them remain stopped, but while you inspect any\n\
7196thread's state, all threads stop.\n\
7197\n\
7198In non-stop mode, when one thread stops, other threads can continue\n\
7199to run freely. You'll be able to step each thread independently,\n\
7200leave it stopped or free to run as needed."),
7201 set_non_stop,
7202 show_non_stop,
7203 &setlist,
7204 &showlist);
7205
a493e3e2 7206 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7207 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7208 signal_print = (unsigned char *)
7209 xmalloc (sizeof (signal_print[0]) * numsigs);
7210 signal_program = (unsigned char *)
7211 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7212 signal_pass = (unsigned char *)
7213 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7214 for (i = 0; i < numsigs; i++)
7215 {
7216 signal_stop[i] = 1;
7217 signal_print[i] = 1;
7218 signal_program[i] = 1;
7219 }
7220
7221 /* Signals caused by debugger's own actions
7222 should not be given to the program afterwards. */
a493e3e2
PA
7223 signal_program[GDB_SIGNAL_TRAP] = 0;
7224 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7225
7226 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7227 signal_stop[GDB_SIGNAL_ALRM] = 0;
7228 signal_print[GDB_SIGNAL_ALRM] = 0;
7229 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7230 signal_print[GDB_SIGNAL_VTALRM] = 0;
7231 signal_stop[GDB_SIGNAL_PROF] = 0;
7232 signal_print[GDB_SIGNAL_PROF] = 0;
7233 signal_stop[GDB_SIGNAL_CHLD] = 0;
7234 signal_print[GDB_SIGNAL_CHLD] = 0;
7235 signal_stop[GDB_SIGNAL_IO] = 0;
7236 signal_print[GDB_SIGNAL_IO] = 0;
7237 signal_stop[GDB_SIGNAL_POLL] = 0;
7238 signal_print[GDB_SIGNAL_POLL] = 0;
7239 signal_stop[GDB_SIGNAL_URG] = 0;
7240 signal_print[GDB_SIGNAL_URG] = 0;
7241 signal_stop[GDB_SIGNAL_WINCH] = 0;
7242 signal_print[GDB_SIGNAL_WINCH] = 0;
7243 signal_stop[GDB_SIGNAL_PRIO] = 0;
7244 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7245
cd0fc7c3
SS
7246 /* These signals are used internally by user-level thread
7247 implementations. (See signal(5) on Solaris.) Like the above
7248 signals, a healthy program receives and handles them as part of
7249 its normal operation. */
a493e3e2
PA
7250 signal_stop[GDB_SIGNAL_LWP] = 0;
7251 signal_print[GDB_SIGNAL_LWP] = 0;
7252 signal_stop[GDB_SIGNAL_WAITING] = 0;
7253 signal_print[GDB_SIGNAL_WAITING] = 0;
7254 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7255 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7256
2455069d
UW
7257 /* Update cached state. */
7258 signal_cache_update (-1);
7259
85c07804
AC
7260 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7261 &stop_on_solib_events, _("\
7262Set stopping for shared library events."), _("\
7263Show stopping for shared library events."), _("\
c906108c
SS
7264If nonzero, gdb will give control to the user when the dynamic linker\n\
7265notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7266to the user would be loading/unloading of a new library."),
7267 NULL,
920d2a44 7268 show_stop_on_solib_events,
85c07804 7269 &setlist, &showlist);
c906108c 7270
7ab04401
AC
7271 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7272 follow_fork_mode_kind_names,
7273 &follow_fork_mode_string, _("\
7274Set debugger response to a program call of fork or vfork."), _("\
7275Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7276A fork or vfork creates a new process. follow-fork-mode can be:\n\
7277 parent - the original process is debugged after a fork\n\
7278 child - the new process is debugged after a fork\n\
ea1dd7bc 7279The unfollowed process will continue to run.\n\
7ab04401
AC
7280By default, the debugger will follow the parent process."),
7281 NULL,
920d2a44 7282 show_follow_fork_mode_string,
7ab04401
AC
7283 &setlist, &showlist);
7284
6c95b8df
PA
7285 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7286 follow_exec_mode_names,
7287 &follow_exec_mode_string, _("\
7288Set debugger response to a program call of exec."), _("\
7289Show debugger response to a program call of exec."), _("\
7290An exec call replaces the program image of a process.\n\
7291\n\
7292follow-exec-mode can be:\n\
7293\n\
cce7e648 7294 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7295to this new inferior. The program the process was running before\n\
7296the exec call can be restarted afterwards by restarting the original\n\
7297inferior.\n\
7298\n\
7299 same - the debugger keeps the process bound to the same inferior.\n\
7300The new executable image replaces the previous executable loaded in\n\
7301the inferior. Restarting the inferior after the exec call restarts\n\
7302the executable the process was running after the exec call.\n\
7303\n\
7304By default, the debugger will use the same inferior."),
7305 NULL,
7306 show_follow_exec_mode_string,
7307 &setlist, &showlist);
7308
7ab04401
AC
7309 add_setshow_enum_cmd ("scheduler-locking", class_run,
7310 scheduler_enums, &scheduler_mode, _("\
7311Set mode for locking scheduler during execution."), _("\
7312Show mode for locking scheduler during execution."), _("\
c906108c
SS
7313off == no locking (threads may preempt at any time)\n\
7314on == full locking (no thread except the current thread may run)\n\
7315step == scheduler locked during every single-step operation.\n\
7316 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7317 Other threads may run while stepping over a function call ('next')."),
7318 set_schedlock_func, /* traps on target vector */
920d2a44 7319 show_scheduler_mode,
7ab04401 7320 &setlist, &showlist);
5fbbeb29 7321
d4db2f36
PA
7322 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7323Set mode for resuming threads of all processes."), _("\
7324Show mode for resuming threads of all processes."), _("\
7325When on, execution commands (such as 'continue' or 'next') resume all\n\
7326threads of all processes. When off (which is the default), execution\n\
7327commands only resume the threads of the current process. The set of\n\
7328threads that are resumed is further refined by the scheduler-locking\n\
7329mode (see help set scheduler-locking)."),
7330 NULL,
7331 show_schedule_multiple,
7332 &setlist, &showlist);
7333
5bf193a2
AC
7334 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7335Set mode of the step operation."), _("\
7336Show mode of the step operation."), _("\
7337When set, doing a step over a function without debug line information\n\
7338will stop at the first instruction of that function. Otherwise, the\n\
7339function is skipped and the step command stops at a different source line."),
7340 NULL,
920d2a44 7341 show_step_stop_if_no_debug,
5bf193a2 7342 &setlist, &showlist);
ca6724c1 7343
72d0e2c5
YQ
7344 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7345 &can_use_displaced_stepping, _("\
237fc4c9
PA
7346Set debugger's willingness to use displaced stepping."), _("\
7347Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7348If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7349supported by the target architecture. If off, gdb will not use displaced\n\
7350stepping to step over breakpoints, even if such is supported by the target\n\
7351architecture. If auto (which is the default), gdb will use displaced stepping\n\
7352if the target architecture supports it and non-stop mode is active, but will not\n\
7353use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7354 NULL,
7355 show_can_use_displaced_stepping,
7356 &setlist, &showlist);
237fc4c9 7357
b2175913
MS
7358 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7359 &exec_direction, _("Set direction of execution.\n\
7360Options are 'forward' or 'reverse'."),
7361 _("Show direction of execution (forward/reverse)."),
7362 _("Tells gdb whether to execute forward or backward."),
7363 set_exec_direction_func, show_exec_direction_func,
7364 &setlist, &showlist);
7365
6c95b8df
PA
7366 /* Set/show detach-on-fork: user-settable mode. */
7367
7368 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7369Set whether gdb will detach the child of a fork."), _("\
7370Show whether gdb will detach the child of a fork."), _("\
7371Tells gdb whether to detach the child of a fork."),
7372 NULL, NULL, &setlist, &showlist);
7373
03583c20
UW
7374 /* Set/show disable address space randomization mode. */
7375
7376 add_setshow_boolean_cmd ("disable-randomization", class_support,
7377 &disable_randomization, _("\
7378Set disabling of debuggee's virtual address space randomization."), _("\
7379Show disabling of debuggee's virtual address space randomization."), _("\
7380When this mode is on (which is the default), randomization of the virtual\n\
7381address space is disabled. Standalone programs run with the randomization\n\
7382enabled by default on some platforms."),
7383 &set_disable_randomization,
7384 &show_disable_randomization,
7385 &setlist, &showlist);
7386
ca6724c1 7387 /* ptid initializations */
ca6724c1
KB
7388 inferior_ptid = null_ptid;
7389 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7390
7391 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7392 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7393 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7394 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7395
7396 /* Explicitly create without lookup, since that tries to create a
7397 value with a void typed value, and when we get here, gdbarch
7398 isn't initialized yet. At this point, we're quite sure there
7399 isn't another convenience variable of the same name. */
22d2b532 7400 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7401
7402 add_setshow_boolean_cmd ("observer", no_class,
7403 &observer_mode_1, _("\
7404Set whether gdb controls the inferior in observer mode."), _("\
7405Show whether gdb controls the inferior in observer mode."), _("\
7406In observer mode, GDB can get data from the inferior, but not\n\
7407affect its execution. Registers and memory may not be changed,\n\
7408breakpoints may not be set, and the program cannot be interrupted\n\
7409or signalled."),
7410 set_observer_mode,
7411 show_observer_mode,
7412 &setlist,
7413 &showlist);
c906108c 7414}