]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
gdb: add inferior_execd observable
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
b161a60d
SM
70#include "gdbsupport/selftest.h"
71#include "scoped-mock-context.h"
72#include "test-target.h"
ba988419 73#include "gdbsupport/common-debug.h"
c906108c
SS
74
75/* Prototypes for local functions */
76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
d83ad864
DB
81static void follow_inferior_reset_breakpoints (void);
82
c4464ade 83static bool currently_stepping (struct thread_info *tp);
a289b8f6 84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
c4464ade 91static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
8550d3b3 92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
1eb8556f 114 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121}
122
0b333c5e
PA
123/* See infrun.h. */
124
125void
126mark_infrun_async_event_handler (void)
127{
128 mark_async_event_handler (infrun_async_inferior_event_token);
129}
130
5fbbeb29
CF
131/* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
491144b5 134bool step_stop_if_no_debug = false;
920d2a44
AC
135static void
136show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140}
5fbbeb29 141
b9f437de
PA
142/* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
96baa820 145
39f77062 146static ptid_t previous_inferior_ptid;
7a292a7a 147
07107ca6
LM
148/* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
491144b5 153static bool detach_fork = true;
6c95b8df 154
491144b5 155bool debug_displaced = false;
237fc4c9
PA
156static void
157show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161}
162
ccce17b0 163unsigned int debug_infrun = 0;
920d2a44
AC
164static void
165show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169}
527159b7 170
03583c20
UW
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
55f6301a 209 if (target_has_execution ())
d32dc48e
PA
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
55f6301a 238 if (target_has_execution ())
d914c394
SS
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c4464ade 371/* True after stop if current stack frame should be printed. */
c906108c 372
c4464ade 373static bool stop_print_frame;
c906108c 374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 487 push_target (parent_inf->process_target ());
18493a00
PA
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
18493a00
PA
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
d83ad864
DB
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
564b1e3f 516 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
18493a00
PA
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
d83ad864
DB
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
d83ad864
DB
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
f67c0c91 558 if (print_inferior_events)
d83ad864 559 {
f67c0c91
SDJ
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
223ffa71 563 target_terminal::ours_for_output ();
6f259a23 564 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
6f259a23 567 has_vforked ? "vfork" : "fork",
f67c0c91 568 child_pid.c_str ());
d83ad864
DB
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
e99b03dc 574 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
5b6d1e4f 584 process_stratum_target *target = parent_inf->process_target ();
d83ad864 585
5b6d1e4f
PA
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
8dd06f7a 625
5b6d1e4f
PA
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
6f259a23 629
5b6d1e4f 630 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 631
5b6d1e4f
PA
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
d83ad864 635
5b6d1e4f
PA
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
d83ad864 639
18493a00 640 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
649
650 exec_on_vfork ();
d83ad864
DB
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
564b1e3f 655 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
18493a00
PA
668
669 switch_to_thread (child_thr);
d83ad864
DB
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673}
674
e58b0e63
PA
675/* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
5ab2fbf1
SM
679static bool
680follow_fork ()
c906108c 681{
5ab2fbf1
SM
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
e58b0e63
PA
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
4e3990f4
DE
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 691 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
694 int current_line = 0;
695 symtab *current_symtab = NULL;
4e3990f4 696 struct frame_id step_frame_id = { 0 };
8980e177 697 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
698
699 if (!non_stop)
700 {
5b6d1e4f 701 process_stratum_target *wait_target;
e58b0e63
PA
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
5b6d1e4f 706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
00431a78 716 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
e58b0e63
PA
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
5b6d1e4f 724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 725 switch_to_thread (wait_thread);
5ab2fbf1 726 should_resume = false;
e58b0e63
PA
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
8358c15c
JK
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
16c381f0
JK
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
16c381f0 751 step_frame_id = tp->control.step_frame_id;
186c406b
TT
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 754 thread_fsm = tp->thread_fsm;
e58b0e63
PA
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
16c381f0
JK
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
186c406b 765 delete_exception_resume_breakpoint (tp);
8980e177 766 tp->thread_fsm = NULL;
e58b0e63
PA
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
5b6d1e4f 772 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
5b6d1e4f 788 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
1777feb0 796 /* If we followed the child, switch to it... */
e58b0e63
PA
797 if (follow_child)
798 {
5b6d1e4f 799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 800 switch_to_thread (child_thr);
e58b0e63
PA
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
8358c15c
JK
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
16c381f0
JK
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
16c381f0 813 tp->control.step_frame_id = step_frame_id;
186c406b
TT
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
8980e177 816 tp->thread_fsm = thread_fsm;
e58b0e63
PA
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
3e43a32a 826 warning (_("Not resuming: switched threads "
fd7dcb94 827 "before following fork child."));
e58b0e63
PA
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
e58b0e63
PA
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
c906108c 845
e58b0e63 846 return should_resume;
c906108c
SS
847}
848
d83ad864 849static void
6604731b 850follow_inferior_reset_breakpoints (void)
c906108c 851{
4e1c45ea
PA
852 struct thread_info *tp = inferior_thread ();
853
6604731b
DJ
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
6604731b
DJ
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
8358c15c 867 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
6604731b 872
a1aa2221 873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 874 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
186c406b 879
6604731b
DJ
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
c906108c 887}
c906108c 888
6c95b8df
PA
889/* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892static int
893proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895{
896 int pid = * (int *) arg;
897
00431a78
PA
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
6c95b8df 901 && !thread->stop_requested
a493e3e2 902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 903 {
1eb8556f
SM
904 infrun_debug_printf ("resuming vfork parent thread %s",
905 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 906
00431a78 907 switch_to_thread (thread);
70509625 908 clear_proceed_status (0);
64ce06e4 909 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
910 }
911
912 return 0;
913}
914
915/* Called whenever we notice an exec or exit event, to handle
916 detaching or resuming a vfork parent. */
917
918static void
919handle_vfork_child_exec_or_exit (int exec)
920{
921 struct inferior *inf = current_inferior ();
922
923 if (inf->vfork_parent)
924 {
925 int resume_parent = -1;
926
927 /* This exec or exit marks the end of the shared memory region
b73715df
TV
928 between the parent and the child. Break the bonds. */
929 inferior *vfork_parent = inf->vfork_parent;
930 inf->vfork_parent->vfork_child = NULL;
931 inf->vfork_parent = NULL;
6c95b8df 932
b73715df
TV
933 /* If the user wanted to detach from the parent, now is the
934 time. */
935 if (vfork_parent->pending_detach)
6c95b8df 936 {
6c95b8df
PA
937 struct program_space *pspace;
938 struct address_space *aspace;
939
1777feb0 940 /* follow-fork child, detach-on-fork on. */
6c95b8df 941
b73715df 942 vfork_parent->pending_detach = 0;
68c9da30 943
18493a00 944 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
945
946 /* We're letting loose of the parent. */
18493a00 947 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 948 switch_to_thread (tp);
6c95b8df
PA
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
f67c0c91 967 if (print_inferior_events)
6c95b8df 968 {
a068643d 969 std::string pidstr
b73715df 970 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 971
223ffa71 972 target_terminal::ours_for_output ();
6c95b8df
PA
973
974 if (exec)
6f259a23
DB
975 {
976 fprintf_filtered (gdb_stdlog,
f67c0c91 977 _("[Detaching vfork parent %s "
a068643d 978 "after child exec]\n"), pidstr.c_str ());
6f259a23 979 }
6c95b8df 980 else
6f259a23
DB
981 {
982 fprintf_filtered (gdb_stdlog,
f67c0c91 983 _("[Detaching vfork parent %s "
a068643d 984 "after child exit]\n"), pidstr.c_str ());
6f259a23 985 }
6c95b8df
PA
986 }
987
b73715df 988 target_detach (vfork_parent, 0);
6c95b8df
PA
989
990 /* Put it back. */
991 inf->pspace = pspace;
992 inf->aspace = aspace;
6c95b8df
PA
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
564b1e3f 998 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
b73715df 1003 resume_parent = vfork_parent->pid;
6c95b8df
PA
1004 }
1005 else
1006 {
6c95b8df
PA
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
18493a00 1016 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
18493a00
PA
1019 scoped_restore_current_thread restore_thread;
1020 switch_to_no_thread ();
6c95b8df 1021
53af73bf
PA
1022 inf->pspace = new program_space (maybe_new_address_space ());
1023 inf->aspace = inf->pspace->aspace;
1024 set_current_program_space (inf->pspace);
6c95b8df 1025 inf->removable = 1;
7dcd53a0 1026 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1027 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1028
b73715df 1029 resume_parent = vfork_parent->pid;
6c95b8df
PA
1030 }
1031
6c95b8df
PA
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
5ed8105e 1038 scoped_restore_current_thread restore_thread;
6c95b8df 1039
1eb8556f
SM
1040 infrun_debug_printf ("resuming vfork parent process %d",
1041 resume_parent);
6c95b8df
PA
1042
1043 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1044 }
1045 }
1046}
1047
eb6c553b 1048/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1049
1050static const char follow_exec_mode_new[] = "new";
1051static const char follow_exec_mode_same[] = "same";
40478521 1052static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1053{
1054 follow_exec_mode_new,
1055 follow_exec_mode_same,
1056 NULL,
1057};
1058
1059static const char *follow_exec_mode_string = follow_exec_mode_same;
1060static void
1061show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1062 struct cmd_list_element *c, const char *value)
1063{
1064 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1065}
1066
ecf45d2c 1067/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1068
c906108c 1069static void
4ca51187 1070follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1071{
6c95b8df 1072 struct inferior *inf = current_inferior ();
e99b03dc 1073 int pid = ptid.pid ();
94585166 1074 ptid_t process_ptid;
7a292a7a 1075
65d2b333
PW
1076 /* Switch terminal for any messages produced e.g. by
1077 breakpoint_re_set. */
1078 target_terminal::ours_for_output ();
1079
c906108c
SS
1080 /* This is an exec event that we actually wish to pay attention to.
1081 Refresh our symbol table to the newly exec'd program, remove any
1082 momentary bp's, etc.
1083
1084 If there are breakpoints, they aren't really inserted now,
1085 since the exec() transformed our inferior into a fresh set
1086 of instructions.
1087
1088 We want to preserve symbolic breakpoints on the list, since
1089 we have hopes that they can be reset after the new a.out's
1090 symbol table is read.
1091
1092 However, any "raw" breakpoints must be removed from the list
1093 (e.g., the solib bp's), since their address is probably invalid
1094 now.
1095
1096 And, we DON'T want to call delete_breakpoints() here, since
1097 that may write the bp's "shadow contents" (the instruction
85102364 1098 value that was overwritten with a TRAP instruction). Since
1777feb0 1099 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1100
1101 mark_breakpoints_out ();
1102
95e50b27
PA
1103 /* The target reports the exec event to the main thread, even if
1104 some other thread does the exec, and even if the main thread was
1105 stopped or already gone. We may still have non-leader threads of
1106 the process on our list. E.g., on targets that don't have thread
1107 exit events (like remote); or on native Linux in non-stop mode if
1108 there were only two threads in the inferior and the non-leader
1109 one is the one that execs (and nothing forces an update of the
1110 thread list up to here). When debugging remotely, it's best to
1111 avoid extra traffic, when possible, so avoid syncing the thread
1112 list with the target, and instead go ahead and delete all threads
1113 of the process but one that reported the event. Note this must
1114 be done before calling update_breakpoints_after_exec, as
1115 otherwise clearing the threads' resources would reference stale
1116 thread breakpoints -- it may have been one of these threads that
1117 stepped across the exec. We could just clear their stepping
1118 states, but as long as we're iterating, might as well delete
1119 them. Deleting them now rather than at the next user-visible
1120 stop provides a nicer sequence of events for user and MI
1121 notifications. */
08036331 1122 for (thread_info *th : all_threads_safe ())
d7e15655 1123 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1124 delete_thread (th);
95e50b27
PA
1125
1126 /* We also need to clear any left over stale state for the
1127 leader/event thread. E.g., if there was any step-resume
1128 breakpoint or similar, it's gone now. We cannot truly
1129 step-to-next statement through an exec(). */
08036331 1130 thread_info *th = inferior_thread ();
8358c15c 1131 th->control.step_resume_breakpoint = NULL;
186c406b 1132 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1133 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1134 th->control.step_range_start = 0;
1135 th->control.step_range_end = 0;
c906108c 1136
95e50b27
PA
1137 /* The user may have had the main thread held stopped in the
1138 previous image (e.g., schedlock on, or non-stop). Release
1139 it now. */
a75724bc
PA
1140 th->stop_requested = 0;
1141
95e50b27
PA
1142 update_breakpoints_after_exec ();
1143
1777feb0 1144 /* What is this a.out's name? */
f2907e49 1145 process_ptid = ptid_t (pid);
6c95b8df 1146 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1147 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1148 exec_file_target);
c906108c
SS
1149
1150 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1151 inferior has essentially been killed & reborn. */
7a292a7a 1152
6ca15a4b 1153 breakpoint_init_inferior (inf_execd);
e85a822c 1154
797bc1cb
TT
1155 gdb::unique_xmalloc_ptr<char> exec_file_host
1156 = exec_file_find (exec_file_target, NULL);
ff862be4 1157
ecf45d2c
SL
1158 /* If we were unable to map the executable target pathname onto a host
1159 pathname, tell the user that. Otherwise GDB's subsequent behavior
1160 is confusing. Maybe it would even be better to stop at this point
1161 so that the user can specify a file manually before continuing. */
1162 if (exec_file_host == NULL)
1163 warning (_("Could not load symbols for executable %s.\n"
1164 "Do you need \"set sysroot\"?"),
1165 exec_file_target);
c906108c 1166
cce9b6bf
PA
1167 /* Reset the shared library package. This ensures that we get a
1168 shlib event when the child reaches "_start", at which point the
1169 dld will have had a chance to initialize the child. */
1170 /* Also, loading a symbol file below may trigger symbol lookups, and
1171 we don't want those to be satisfied by the libraries of the
1172 previous incarnation of this process. */
1173 no_shared_libraries (NULL, 0);
1174
6c95b8df
PA
1175 if (follow_exec_mode_string == follow_exec_mode_new)
1176 {
6c95b8df
PA
1177 /* The user wants to keep the old inferior and program spaces
1178 around. Create a new fresh one, and switch to it. */
1179
35ed81d4
SM
1180 /* Do exit processing for the original inferior before setting the new
1181 inferior's pid. Having two inferiors with the same pid would confuse
1182 find_inferior_p(t)id. Transfer the terminal state and info from the
1183 old to the new inferior. */
1184 inf = add_inferior_with_spaces ();
1185 swap_terminal_info (inf, current_inferior ());
057302ce 1186 exit_inferior_silent (current_inferior ());
17d8546e 1187
94585166 1188 inf->pid = pid;
ecf45d2c 1189 target_follow_exec (inf, exec_file_target);
6c95b8df 1190
5b6d1e4f
PA
1191 inferior *org_inferior = current_inferior ();
1192 switch_to_inferior_no_thread (inf);
1193 push_target (org_inferior->process_target ());
1194 thread_info *thr = add_thread (inf->process_target (), ptid);
1195 switch_to_thread (thr);
6c95b8df 1196 }
9107fc8d
PA
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
6c95b8df
PA
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
ecf45d2c
SL
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
797bc1cb 1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1216
9107fc8d
PA
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
42a4fec5 1225 gdb::observers::inferior_execd.notify (inf);
4efc6507 1226
c1e56572
JK
1227 breakpoint_re_set ();
1228
c906108c
SS
1229 /* Reinsert all breakpoints. (Those which were symbolic have
1230 been reset to the proper address in the new a.out, thanks
1777feb0 1231 to symbol_file_command...). */
c906108c
SS
1232 insert_breakpoints ();
1233
1234 /* The next resume of this inferior should bring it to the shlib
1235 startup breakpoints. (If the user had also set bp's on
1236 "main" from the old (parent) process, then they'll auto-
1777feb0 1237 matically get reset there in the new process.). */
c906108c
SS
1238}
1239
c2829269
PA
1240/* The queue of threads that need to do a step-over operation to get
1241 past e.g., a breakpoint. What technique is used to step over the
1242 breakpoint/watchpoint does not matter -- all threads end up in the
1243 same queue, to maintain rough temporal order of execution, in order
1244 to avoid starvation, otherwise, we could e.g., find ourselves
1245 constantly stepping the same couple threads past their breakpoints
1246 over and over, if the single-step finish fast enough. */
1247struct thread_info *step_over_queue_head;
1248
6c4cfb24
PA
1249/* Bit flags indicating what the thread needs to step over. */
1250
8d297bbf 1251enum step_over_what_flag
6c4cfb24
PA
1252 {
1253 /* Step over a breakpoint. */
1254 STEP_OVER_BREAKPOINT = 1,
1255
1256 /* Step past a non-continuable watchpoint, in order to let the
1257 instruction execute so we can evaluate the watchpoint
1258 expression. */
1259 STEP_OVER_WATCHPOINT = 2
1260 };
8d297bbf 1261DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1262
963f9c80 1263/* Info about an instruction that is being stepped over. */
31e77af2
PA
1264
1265struct step_over_info
1266{
963f9c80
PA
1267 /* If we're stepping past a breakpoint, this is the address space
1268 and address of the instruction the breakpoint is set at. We'll
1269 skip inserting all breakpoints here. Valid iff ASPACE is
1270 non-NULL. */
8b86c959 1271 const address_space *aspace;
31e77af2 1272 CORE_ADDR address;
963f9c80
PA
1273
1274 /* The instruction being stepped over triggers a nonsteppable
1275 watchpoint. If true, we'll skip inserting watchpoints. */
1276 int nonsteppable_watchpoint_p;
21edc42f
YQ
1277
1278 /* The thread's global number. */
1279 int thread;
31e77af2
PA
1280};
1281
1282/* The step-over info of the location that is being stepped over.
1283
1284 Note that with async/breakpoint always-inserted mode, a user might
1285 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1286 being stepped over. As setting a new breakpoint inserts all
1287 breakpoints, we need to make sure the breakpoint being stepped over
1288 isn't inserted then. We do that by only clearing the step-over
1289 info when the step-over is actually finished (or aborted).
1290
1291 Presently GDB can only step over one breakpoint at any given time.
1292 Given threads that can't run code in the same address space as the
1293 breakpoint's can't really miss the breakpoint, GDB could be taught
1294 to step-over at most one breakpoint per address space (so this info
1295 could move to the address space object if/when GDB is extended).
1296 The set of breakpoints being stepped over will normally be much
1297 smaller than the set of all breakpoints, so a flag in the
1298 breakpoint location structure would be wasteful. A separate list
1299 also saves complexity and run-time, as otherwise we'd have to go
1300 through all breakpoint locations clearing their flag whenever we
1301 start a new sequence. Similar considerations weigh against storing
1302 this info in the thread object. Plus, not all step overs actually
1303 have breakpoint locations -- e.g., stepping past a single-step
1304 breakpoint, or stepping to complete a non-continuable
1305 watchpoint. */
1306static struct step_over_info step_over_info;
1307
1308/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1309 stepping over.
1310 N.B. We record the aspace and address now, instead of say just the thread,
1311 because when we need the info later the thread may be running. */
31e77af2
PA
1312
1313static void
8b86c959 1314set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1315 int nonsteppable_watchpoint_p,
1316 int thread)
31e77af2
PA
1317{
1318 step_over_info.aspace = aspace;
1319 step_over_info.address = address;
963f9c80 1320 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1321 step_over_info.thread = thread;
31e77af2
PA
1322}
1323
1324/* Called when we're not longer stepping over a breakpoint / an
1325 instruction, so all breakpoints are free to be (re)inserted. */
1326
1327static void
1328clear_step_over_info (void)
1329{
1eb8556f 1330 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1331 step_over_info.aspace = NULL;
1332 step_over_info.address = 0;
963f9c80 1333 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1334 step_over_info.thread = -1;
31e77af2
PA
1335}
1336
7f89fd65 1337/* See infrun.h. */
31e77af2
PA
1338
1339int
1340stepping_past_instruction_at (struct address_space *aspace,
1341 CORE_ADDR address)
1342{
1343 return (step_over_info.aspace != NULL
1344 && breakpoint_address_match (aspace, address,
1345 step_over_info.aspace,
1346 step_over_info.address));
1347}
1348
963f9c80
PA
1349/* See infrun.h. */
1350
21edc42f
YQ
1351int
1352thread_is_stepping_over_breakpoint (int thread)
1353{
1354 return (step_over_info.thread != -1
1355 && thread == step_over_info.thread);
1356}
1357
1358/* See infrun.h. */
1359
963f9c80
PA
1360int
1361stepping_past_nonsteppable_watchpoint (void)
1362{
1363 return step_over_info.nonsteppable_watchpoint_p;
1364}
1365
6cc83d2a
PA
1366/* Returns true if step-over info is valid. */
1367
c4464ade 1368static bool
6cc83d2a
PA
1369step_over_info_valid_p (void)
1370{
963f9c80
PA
1371 return (step_over_info.aspace != NULL
1372 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1373}
1374
c906108c 1375\f
237fc4c9
PA
1376/* Displaced stepping. */
1377
1378/* In non-stop debugging mode, we must take special care to manage
1379 breakpoints properly; in particular, the traditional strategy for
1380 stepping a thread past a breakpoint it has hit is unsuitable.
1381 'Displaced stepping' is a tactic for stepping one thread past a
1382 breakpoint it has hit while ensuring that other threads running
1383 concurrently will hit the breakpoint as they should.
1384
1385 The traditional way to step a thread T off a breakpoint in a
1386 multi-threaded program in all-stop mode is as follows:
1387
1388 a0) Initially, all threads are stopped, and breakpoints are not
1389 inserted.
1390 a1) We single-step T, leaving breakpoints uninserted.
1391 a2) We insert breakpoints, and resume all threads.
1392
1393 In non-stop debugging, however, this strategy is unsuitable: we
1394 don't want to have to stop all threads in the system in order to
1395 continue or step T past a breakpoint. Instead, we use displaced
1396 stepping:
1397
1398 n0) Initially, T is stopped, other threads are running, and
1399 breakpoints are inserted.
1400 n1) We copy the instruction "under" the breakpoint to a separate
1401 location, outside the main code stream, making any adjustments
1402 to the instruction, register, and memory state as directed by
1403 T's architecture.
1404 n2) We single-step T over the instruction at its new location.
1405 n3) We adjust the resulting register and memory state as directed
1406 by T's architecture. This includes resetting T's PC to point
1407 back into the main instruction stream.
1408 n4) We resume T.
1409
1410 This approach depends on the following gdbarch methods:
1411
1412 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1413 indicate where to copy the instruction, and how much space must
1414 be reserved there. We use these in step n1.
1415
1416 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1417 address, and makes any necessary adjustments to the instruction,
1418 register contents, and memory. We use this in step n1.
1419
1420 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1421 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1422 same effect the instruction would have had if we had executed it
1423 at its original address. We use this in step n3.
1424
237fc4c9
PA
1425 The gdbarch_displaced_step_copy_insn and
1426 gdbarch_displaced_step_fixup functions must be written so that
1427 copying an instruction with gdbarch_displaced_step_copy_insn,
1428 single-stepping across the copied instruction, and then applying
1429 gdbarch_displaced_insn_fixup should have the same effects on the
1430 thread's memory and registers as stepping the instruction in place
1431 would have. Exactly which responsibilities fall to the copy and
1432 which fall to the fixup is up to the author of those functions.
1433
1434 See the comments in gdbarch.sh for details.
1435
1436 Note that displaced stepping and software single-step cannot
1437 currently be used in combination, although with some care I think
1438 they could be made to. Software single-step works by placing
1439 breakpoints on all possible subsequent instructions; if the
1440 displaced instruction is a PC-relative jump, those breakpoints
1441 could fall in very strange places --- on pages that aren't
1442 executable, or at addresses that are not proper instruction
1443 boundaries. (We do generally let other threads run while we wait
1444 to hit the software single-step breakpoint, and they might
1445 encounter such a corrupted instruction.) One way to work around
1446 this would be to have gdbarch_displaced_step_copy_insn fully
1447 simulate the effect of PC-relative instructions (and return NULL)
1448 on architectures that use software single-stepping.
1449
1450 In non-stop mode, we can have independent and simultaneous step
1451 requests, so more than one thread may need to simultaneously step
1452 over a breakpoint. The current implementation assumes there is
1453 only one scratch space per process. In this case, we have to
1454 serialize access to the scratch space. If thread A wants to step
1455 over a breakpoint, but we are currently waiting for some other
1456 thread to complete a displaced step, we leave thread A stopped and
1457 place it in the displaced_step_request_queue. Whenever a displaced
1458 step finishes, we pick the next thread in the queue and start a new
1459 displaced step operation on it. See displaced_step_prepare and
1460 displaced_step_fixup for details. */
1461
cfba9872
SM
1462/* Default destructor for displaced_step_closure. */
1463
1464displaced_step_closure::~displaced_step_closure () = default;
1465
2eb20436 1466/* Get the displaced stepping state of inferior INF. */
fc1cf338 1467
39a36629 1468static displaced_step_inferior_state *
00431a78 1469get_displaced_stepping_state (inferior *inf)
fc1cf338 1470{
d20172fc 1471 return &inf->displaced_step_state;
fc1cf338
PA
1472}
1473
372316f1
PA
1474/* Returns true if any inferior has a thread doing a displaced
1475 step. */
1476
39a36629
SM
1477static bool
1478displaced_step_in_progress_any_inferior ()
372316f1 1479{
d20172fc 1480 for (inferior *i : all_inferiors ())
39a36629 1481 {
d20172fc 1482 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1483 return true;
1484 }
372316f1 1485
39a36629 1486 return false;
372316f1
PA
1487}
1488
a46d1843 1489/* Return true if THREAD is doing a displaced step. */
c0987663 1490
c4464ade 1491static bool
00431a78 1492displaced_step_in_progress_thread (thread_info *thread)
c0987663 1493{
00431a78 1494 gdb_assert (thread != NULL);
c0987663 1495
d20172fc 1496 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1497}
1498
a46d1843 1499/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1500
c4464ade 1501static bool
00431a78 1502displaced_step_in_progress (inferior *inf)
8f572e5c 1503{
d20172fc 1504 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1505}
1506
a42244db
YQ
1507/* If inferior is in displaced stepping, and ADDR equals to starting address
1508 of copy area, return corresponding displaced_step_closure. Otherwise,
1509 return NULL. */
1510
1511struct displaced_step_closure*
1512get_displaced_step_closure_by_addr (CORE_ADDR addr)
1513{
d20172fc 1514 displaced_step_inferior_state *displaced
00431a78 1515 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1516
1517 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1518 if (displaced->step_thread != nullptr
00431a78 1519 && displaced->step_copy == addr)
d8d83535 1520 return displaced->step_closure.get ();
a42244db
YQ
1521
1522 return NULL;
1523}
1524
fc1cf338
PA
1525static void
1526infrun_inferior_exit (struct inferior *inf)
1527{
d20172fc 1528 inf->displaced_step_state.reset ();
fc1cf338 1529}
237fc4c9 1530
fff08868
HZ
1531/* If ON, and the architecture supports it, GDB will use displaced
1532 stepping to step over breakpoints. If OFF, or if the architecture
1533 doesn't support it, GDB will instead use the traditional
1534 hold-and-step approach. If AUTO (which is the default), GDB will
1535 decide which technique to use to step over breakpoints depending on
9822cb57 1536 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1537
72d0e2c5 1538static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1539
237fc4c9
PA
1540static void
1541show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1542 struct cmd_list_element *c,
1543 const char *value)
1544{
72d0e2c5 1545 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1549 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1550 else
3e43a32a
MS
1551 fprintf_filtered (file,
1552 _("Debugger's willingness to use displaced stepping "
1553 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1554}
1555
9822cb57
SM
1556/* Return true if the gdbarch implements the required methods to use
1557 displaced stepping. */
1558
1559static bool
1560gdbarch_supports_displaced_stepping (gdbarch *arch)
1561{
1562 /* Only check for the presence of step_copy_insn. Other required methods
1563 are checked by the gdbarch validation. */
1564 return gdbarch_displaced_step_copy_insn_p (arch);
1565}
1566
fff08868 1567/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1568 over breakpoints of thread TP. */
fff08868 1569
9822cb57
SM
1570static bool
1571use_displaced_stepping (thread_info *tp)
237fc4c9 1572{
9822cb57
SM
1573 /* If the user disabled it explicitly, don't use displaced stepping. */
1574 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1575 return false;
1576
1577 /* If "auto", only use displaced stepping if the target operates in a non-stop
1578 way. */
1579 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1580 && !target_is_non_stop_p ())
1581 return false;
1582
1583 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1584
1585 /* If the architecture doesn't implement displaced stepping, don't use
1586 it. */
1587 if (!gdbarch_supports_displaced_stepping (gdbarch))
1588 return false;
1589
1590 /* If recording, don't use displaced stepping. */
1591 if (find_record_target () != nullptr)
1592 return false;
1593
d20172fc
SM
1594 displaced_step_inferior_state *displaced_state
1595 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1596
9822cb57
SM
1597 /* If displaced stepping failed before for this inferior, don't bother trying
1598 again. */
1599 if (displaced_state->failed_before)
1600 return false;
1601
1602 return true;
237fc4c9
PA
1603}
1604
d8d83535
SM
1605/* Simple function wrapper around displaced_step_inferior_state::reset. */
1606
237fc4c9 1607static void
d8d83535 1608displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1609{
d8d83535 1610 displaced->reset ();
237fc4c9
PA
1611}
1612
d8d83535
SM
1613/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1614 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1615
1616using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1617
136821d9
SM
1618/* See infrun.h. */
1619
1620std::string
1621displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1622{
136821d9 1623 std::string ret;
237fc4c9 1624
136821d9
SM
1625 for (size_t i = 0; i < len; i++)
1626 {
1627 if (i == 0)
1628 ret += string_printf ("%02x", buf[i]);
1629 else
1630 ret += string_printf (" %02x", buf[i]);
1631 }
1632
1633 return ret;
237fc4c9
PA
1634}
1635
1636/* Prepare to single-step, using displaced stepping.
1637
1638 Note that we cannot use displaced stepping when we have a signal to
1639 deliver. If we have a signal to deliver and an instruction to step
1640 over, then after the step, there will be no indication from the
1641 target whether the thread entered a signal handler or ignored the
1642 signal and stepped over the instruction successfully --- both cases
1643 result in a simple SIGTRAP. In the first case we mustn't do a
1644 fixup, and in the second case we must --- but we can't tell which.
1645 Comments in the code for 'random signals' in handle_inferior_event
1646 explain how we handle this case instead.
1647
1648 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1649 stepped now; 0 if displaced stepping this thread got queued; or -1
1650 if this instruction can't be displaced stepped. */
1651
237fc4c9 1652static int
00431a78 1653displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1654{
00431a78 1655 regcache *regcache = get_thread_regcache (tp);
ac7936df 1656 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1657 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1658 CORE_ADDR original, copy;
1659 ULONGEST len;
9e529e1d 1660 int status;
237fc4c9
PA
1661
1662 /* We should never reach this function if the architecture does not
1663 support displaced stepping. */
9822cb57 1664 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1665
c2829269
PA
1666 /* Nor if the thread isn't meant to step over a breakpoint. */
1667 gdb_assert (tp->control.trap_expected);
1668
c1e36e3e
PA
1669 /* Disable range stepping while executing in the scratch pad. We
1670 want a single-step even if executing the displaced instruction in
1671 the scratch buffer lands within the stepping range (e.g., a
1672 jump/branch). */
1673 tp->control.may_range_step = 0;
1674
fc1cf338
PA
1675 /* We have to displaced step one thread at a time, as we only have
1676 access to a single scratch space per inferior. */
237fc4c9 1677
d20172fc
SM
1678 displaced_step_inferior_state *displaced
1679 = get_displaced_stepping_state (tp->inf);
fc1cf338 1680
00431a78 1681 if (displaced->step_thread != nullptr)
237fc4c9
PA
1682 {
1683 /* Already waiting for a displaced step to finish. Defer this
1684 request and place in queue. */
237fc4c9 1685
136821d9
SM
1686 displaced_debug_printf ("deferring step of %s",
1687 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1688
c2829269 1689 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1690 return 0;
1691 }
1692 else
136821d9 1693 displaced_debug_printf ("stepping %s now",
a068643d 1694 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1695
d8d83535 1696 displaced_step_reset (displaced);
237fc4c9 1697
00431a78
PA
1698 scoped_restore_current_thread restore_thread;
1699
1700 switch_to_thread (tp);
ad53cd71 1701
515630c5 1702 original = regcache_read_pc (regcache);
237fc4c9
PA
1703
1704 copy = gdbarch_displaced_step_location (gdbarch);
1705 len = gdbarch_max_insn_length (gdbarch);
1706
d35ae833
PA
1707 if (breakpoint_in_range_p (aspace, copy, len))
1708 {
1709 /* There's a breakpoint set in the scratch pad location range
1710 (which is usually around the entry point). We'd either
1711 install it before resuming, which would overwrite/corrupt the
1712 scratch pad, or if it was already inserted, this displaced
1713 step would overwrite it. The latter is OK in the sense that
1714 we already assume that no thread is going to execute the code
1715 in the scratch pad range (after initial startup) anyway, but
1716 the former is unacceptable. Simply punt and fallback to
1717 stepping over this breakpoint in-line. */
136821d9
SM
1718 displaced_debug_printf ("breakpoint set in scratch pad. "
1719 "Stepping over breakpoint in-line instead.");
d35ae833 1720
d35ae833
PA
1721 return -1;
1722 }
1723
237fc4c9 1724 /* Save the original contents of the copy area. */
d20172fc
SM
1725 displaced->step_saved_copy.resize (len);
1726 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1727 if (status != 0)
1728 throw_error (MEMORY_ERROR,
1729 _("Error accessing memory address %s (%s) for "
1730 "displaced-stepping scratch space."),
1731 paddress (gdbarch, copy), safe_strerror (status));
136821d9
SM
1732
1733 displaced_debug_printf ("saved %s: %s",
1734 paddress (gdbarch, copy),
1735 displaced_step_dump_bytes
1736 (displaced->step_saved_copy.data (), len).c_str ());
237fc4c9 1737
e8217e61
SM
1738 displaced->step_closure
1739 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1740 if (displaced->step_closure == NULL)
7f03bd92
PA
1741 {
1742 /* The architecture doesn't know how or want to displaced step
1743 this instruction or instruction sequence. Fallback to
1744 stepping over the breakpoint in-line. */
7f03bd92
PA
1745 return -1;
1746 }
237fc4c9 1747
9f5a595d
UW
1748 /* Save the information we need to fix things up if the step
1749 succeeds. */
00431a78 1750 displaced->step_thread = tp;
fc1cf338 1751 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1752 displaced->step_original = original;
1753 displaced->step_copy = copy;
9f5a595d 1754
9799571e 1755 {
d8d83535 1756 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1757
9799571e
TT
1758 /* Resume execution at the copy. */
1759 regcache_write_pc (regcache, copy);
237fc4c9 1760
9799571e
TT
1761 cleanup.release ();
1762 }
ad53cd71 1763
136821d9 1764 displaced_debug_printf ("displaced pc to %s", paddress (gdbarch, copy));
237fc4c9 1765
237fc4c9
PA
1766 return 1;
1767}
1768
3fc8eb30
PA
1769/* Wrapper for displaced_step_prepare_throw that disabled further
1770 attempts at displaced stepping if we get a memory error. */
1771
1772static int
00431a78 1773displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1774{
1775 int prepared = -1;
1776
a70b8144 1777 try
3fc8eb30 1778 {
00431a78 1779 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1780 }
230d2906 1781 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1782 {
1783 struct displaced_step_inferior_state *displaced_state;
1784
16b41842
PA
1785 if (ex.error != MEMORY_ERROR
1786 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1787 throw;
3fc8eb30 1788
1eb8556f
SM
1789 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1790 ex.what ());
3fc8eb30
PA
1791
1792 /* Be verbose if "set displaced-stepping" is "on", silent if
1793 "auto". */
1794 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1795 {
fd7dcb94 1796 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1797 ex.what ());
3fc8eb30
PA
1798 }
1799
1800 /* Disable further displaced stepping attempts. */
1801 displaced_state
00431a78 1802 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1803 displaced_state->failed_before = 1;
1804 }
3fc8eb30
PA
1805
1806 return prepared;
1807}
1808
237fc4c9 1809static void
3e43a32a
MS
1810write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1811 const gdb_byte *myaddr, int len)
237fc4c9 1812{
2989a365 1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1814
237fc4c9
PA
1815 inferior_ptid = ptid;
1816 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1817}
1818
e2d96639
YQ
1819/* Restore the contents of the copy area for thread PTID. */
1820
1821static void
1822displaced_step_restore (struct displaced_step_inferior_state *displaced,
1823 ptid_t ptid)
1824{
1825 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1826
1827 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1828 displaced->step_saved_copy.data (), len);
136821d9
SM
1829
1830 displaced_debug_printf ("restored %s %s",
1831 target_pid_to_str (ptid).c_str (),
1832 paddress (displaced->step_gdbarch,
1833 displaced->step_copy));
e2d96639
YQ
1834}
1835
372316f1
PA
1836/* If we displaced stepped an instruction successfully, adjust
1837 registers and memory to yield the same effect the instruction would
1838 have had if we had executed it at its original address, and return
1839 1. If the instruction didn't complete, relocate the PC and return
1840 -1. If the thread wasn't displaced stepping, return 0. */
1841
1842static int
00431a78 1843displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1844{
fc1cf338 1845 struct displaced_step_inferior_state *displaced
00431a78 1846 = get_displaced_stepping_state (event_thread->inf);
372316f1 1847 int ret;
fc1cf338 1848
00431a78
PA
1849 /* Was this event for the thread we displaced? */
1850 if (displaced->step_thread != event_thread)
372316f1 1851 return 0;
237fc4c9 1852
cb71640d
PA
1853 /* Fixup may need to read memory/registers. Switch to the thread
1854 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1855 the current thread, and displaced_step_restore performs ptid-dependent
1856 memory accesses using current_inferior() and current_top_target(). */
00431a78 1857 switch_to_thread (event_thread);
cb71640d 1858
d43b7a2d
TBA
1859 displaced_step_reset_cleanup cleanup (displaced);
1860
1861 displaced_step_restore (displaced, displaced->step_thread->ptid);
1862
237fc4c9 1863 /* Did the instruction complete successfully? */
cb71640d
PA
1864 if (signal == GDB_SIGNAL_TRAP
1865 && !(target_stopped_by_watchpoint ()
1866 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
9aed480c 1867 || target_have_steppable_watchpoint ())))
237fc4c9
PA
1868 {
1869 /* Fix up the resulting state. */
fc1cf338 1870 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
dda83cd7
SM
1871 displaced->step_closure.get (),
1872 displaced->step_original,
1873 displaced->step_copy,
1874 get_thread_regcache (displaced->step_thread));
372316f1 1875 ret = 1;
237fc4c9
PA
1876 }
1877 else
1878 {
1879 /* Since the instruction didn't complete, all we can do is
dda83cd7 1880 relocate the PC. */
00431a78 1881 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1882 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1883
fc1cf338 1884 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1885 regcache_write_pc (regcache, pc);
372316f1 1886 ret = -1;
237fc4c9
PA
1887 }
1888
372316f1 1889 return ret;
c2829269 1890}
1c5cfe86 1891
4d9d9d04
PA
1892/* Data to be passed around while handling an event. This data is
1893 discarded between events. */
1894struct execution_control_state
1895{
5b6d1e4f 1896 process_stratum_target *target;
4d9d9d04
PA
1897 ptid_t ptid;
1898 /* The thread that got the event, if this was a thread event; NULL
1899 otherwise. */
1900 struct thread_info *event_thread;
1901
1902 struct target_waitstatus ws;
1903 int stop_func_filled_in;
1904 CORE_ADDR stop_func_start;
1905 CORE_ADDR stop_func_end;
1906 const char *stop_func_name;
1907 int wait_some_more;
1908
1909 /* True if the event thread hit the single-step breakpoint of
1910 another thread. Thus the event doesn't cause a stop, the thread
1911 needs to be single-stepped past the single-step breakpoint before
1912 we can switch back to the original stepping thread. */
1913 int hit_singlestep_breakpoint;
1914};
1915
1916/* Clear ECS and set it to point at TP. */
c2829269
PA
1917
1918static void
4d9d9d04
PA
1919reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1920{
1921 memset (ecs, 0, sizeof (*ecs));
1922 ecs->event_thread = tp;
1923 ecs->ptid = tp->ptid;
1924}
1925
1926static void keep_going_pass_signal (struct execution_control_state *ecs);
1927static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1928static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1929static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1930
1931/* Are there any pending step-over requests? If so, run all we can
1932 now and return true. Otherwise, return false. */
1933
c4464ade 1934static bool
c2829269
PA
1935start_step_over (void)
1936{
1937 struct thread_info *tp, *next;
1938
372316f1
PA
1939 /* Don't start a new step-over if we already have an in-line
1940 step-over operation ongoing. */
1941 if (step_over_info_valid_p ())
c4464ade 1942 return false;
372316f1 1943
c2829269 1944 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1945 {
4d9d9d04
PA
1946 struct execution_control_state ecss;
1947 struct execution_control_state *ecs = &ecss;
8d297bbf 1948 step_over_what step_what;
372316f1 1949 int must_be_in_line;
c2829269 1950
c65d6b55
PA
1951 gdb_assert (!tp->stop_requested);
1952
c2829269 1953 next = thread_step_over_chain_next (tp);
237fc4c9 1954
c2829269
PA
1955 /* If this inferior already has a displaced step in process,
1956 don't start a new one. */
00431a78 1957 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1958 continue;
1959
372316f1
PA
1960 step_what = thread_still_needs_step_over (tp);
1961 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1962 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1963 && !use_displaced_stepping (tp)));
372316f1
PA
1964
1965 /* We currently stop all threads of all processes to step-over
1966 in-line. If we need to start a new in-line step-over, let
1967 any pending displaced steps finish first. */
1968 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
c4464ade 1969 return false;
372316f1 1970
c2829269
PA
1971 thread_step_over_chain_remove (tp);
1972
1973 if (step_over_queue_head == NULL)
1eb8556f 1974 infrun_debug_printf ("step-over queue now empty");
c2829269 1975
372316f1
PA
1976 if (tp->control.trap_expected
1977 || tp->resumed
1978 || tp->executing)
ad53cd71 1979 {
4d9d9d04
PA
1980 internal_error (__FILE__, __LINE__,
1981 "[%s] has inconsistent state: "
372316f1 1982 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1983 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1984 tp->control.trap_expected,
372316f1 1985 tp->resumed,
4d9d9d04 1986 tp->executing);
ad53cd71 1987 }
1c5cfe86 1988
1eb8556f
SM
1989 infrun_debug_printf ("resuming [%s] for step-over",
1990 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1991
1992 /* keep_going_pass_signal skips the step-over if the breakpoint
1993 is no longer inserted. In all-stop, we want to keep looking
1994 for a thread that needs a step-over instead of resuming TP,
1995 because we wouldn't be able to resume anything else until the
1996 target stops again. In non-stop, the resume always resumes
1997 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1998 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1999 continue;
8550d3b3 2000
00431a78 2001 switch_to_thread (tp);
4d9d9d04
PA
2002 reset_ecs (ecs, tp);
2003 keep_going_pass_signal (ecs);
1c5cfe86 2004
4d9d9d04
PA
2005 if (!ecs->wait_some_more)
2006 error (_("Command aborted."));
1c5cfe86 2007
372316f1
PA
2008 gdb_assert (tp->resumed);
2009
2010 /* If we started a new in-line step-over, we're done. */
2011 if (step_over_info_valid_p ())
2012 {
2013 gdb_assert (tp->control.trap_expected);
c4464ade 2014 return true;
372316f1
PA
2015 }
2016
fbea99ea 2017 if (!target_is_non_stop_p ())
4d9d9d04
PA
2018 {
2019 /* On all-stop, shouldn't have resumed unless we needed a
2020 step over. */
2021 gdb_assert (tp->control.trap_expected
2022 || tp->step_after_step_resume_breakpoint);
2023
2024 /* With remote targets (at least), in all-stop, we can't
2025 issue any further remote commands until the program stops
2026 again. */
c4464ade 2027 return true;
1c5cfe86 2028 }
c2829269 2029
4d9d9d04
PA
2030 /* Either the thread no longer needed a step-over, or a new
2031 displaced stepping sequence started. Even in the latter
2032 case, continue looking. Maybe we can also start another
2033 displaced step on a thread of other process. */
237fc4c9 2034 }
4d9d9d04 2035
c4464ade 2036 return false;
237fc4c9
PA
2037}
2038
5231c1fd
PA
2039/* Update global variables holding ptids to hold NEW_PTID if they were
2040 holding OLD_PTID. */
2041static void
b161a60d
SM
2042infrun_thread_ptid_changed (process_stratum_target *target,
2043 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 2044{
b161a60d
SM
2045 if (inferior_ptid == old_ptid
2046 && current_inferior ()->process_target () == target)
5231c1fd 2047 inferior_ptid = new_ptid;
5231c1fd
PA
2048}
2049
237fc4c9 2050\f
c906108c 2051
53904c9e
AC
2052static const char schedlock_off[] = "off";
2053static const char schedlock_on[] = "on";
2054static const char schedlock_step[] = "step";
f2665db5 2055static const char schedlock_replay[] = "replay";
40478521 2056static const char *const scheduler_enums[] = {
ef346e04
AC
2057 schedlock_off,
2058 schedlock_on,
2059 schedlock_step,
f2665db5 2060 schedlock_replay,
ef346e04
AC
2061 NULL
2062};
f2665db5 2063static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2064static void
2065show_scheduler_mode (struct ui_file *file, int from_tty,
2066 struct cmd_list_element *c, const char *value)
2067{
3e43a32a
MS
2068 fprintf_filtered (file,
2069 _("Mode for locking scheduler "
2070 "during execution is \"%s\".\n"),
920d2a44
AC
2071 value);
2072}
c906108c
SS
2073
2074static void
eb4c3f4a 2075set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2076{
8a3ecb79 2077 if (!target_can_lock_scheduler ())
eefe576e
AC
2078 {
2079 scheduler_mode = schedlock_off;
2080 error (_("Target '%s' cannot support this command."), target_shortname);
2081 }
c906108c
SS
2082}
2083
d4db2f36
PA
2084/* True if execution commands resume all threads of all processes by
2085 default; otherwise, resume only threads of the current inferior
2086 process. */
491144b5 2087bool sched_multi = false;
d4db2f36 2088
2facfe5c 2089/* Try to setup for software single stepping over the specified location.
c4464ade 2090 Return true if target_resume() should use hardware single step.
2facfe5c
DD
2091
2092 GDBARCH the current gdbarch.
2093 PC the location to step over. */
2094
c4464ade 2095static bool
2facfe5c
DD
2096maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2097{
c4464ade 2098 bool hw_step = true;
2facfe5c 2099
f02253f1 2100 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2101 && gdbarch_software_single_step_p (gdbarch))
2102 hw_step = !insert_single_step_breakpoints (gdbarch);
2103
2facfe5c
DD
2104 return hw_step;
2105}
c906108c 2106
f3263aa4
PA
2107/* See infrun.h. */
2108
09cee04b
PA
2109ptid_t
2110user_visible_resume_ptid (int step)
2111{
f3263aa4 2112 ptid_t resume_ptid;
09cee04b 2113
09cee04b
PA
2114 if (non_stop)
2115 {
2116 /* With non-stop mode on, threads are always handled
2117 individually. */
2118 resume_ptid = inferior_ptid;
2119 }
2120 else if ((scheduler_mode == schedlock_on)
03d46957 2121 || (scheduler_mode == schedlock_step && step))
09cee04b 2122 {
f3263aa4
PA
2123 /* User-settable 'scheduler' mode requires solo thread
2124 resume. */
09cee04b
PA
2125 resume_ptid = inferior_ptid;
2126 }
f2665db5
MM
2127 else if ((scheduler_mode == schedlock_replay)
2128 && target_record_will_replay (minus_one_ptid, execution_direction))
2129 {
2130 /* User-settable 'scheduler' mode requires solo thread resume in replay
2131 mode. */
2132 resume_ptid = inferior_ptid;
2133 }
f3263aa4
PA
2134 else if (!sched_multi && target_supports_multi_process ())
2135 {
2136 /* Resume all threads of the current process (and none of other
2137 processes). */
e99b03dc 2138 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2139 }
2140 else
2141 {
2142 /* Resume all threads of all processes. */
2143 resume_ptid = RESUME_ALL;
2144 }
09cee04b
PA
2145
2146 return resume_ptid;
2147}
2148
5b6d1e4f
PA
2149/* See infrun.h. */
2150
2151process_stratum_target *
2152user_visible_resume_target (ptid_t resume_ptid)
2153{
2154 return (resume_ptid == minus_one_ptid && sched_multi
2155 ? NULL
2156 : current_inferior ()->process_target ());
2157}
2158
fbea99ea
PA
2159/* Return a ptid representing the set of threads that we will resume,
2160 in the perspective of the target, assuming run control handling
2161 does not require leaving some threads stopped (e.g., stepping past
2162 breakpoint). USER_STEP indicates whether we're about to start the
2163 target for a stepping command. */
2164
2165static ptid_t
2166internal_resume_ptid (int user_step)
2167{
2168 /* In non-stop, we always control threads individually. Note that
2169 the target may always work in non-stop mode even with "set
2170 non-stop off", in which case user_visible_resume_ptid could
2171 return a wildcard ptid. */
2172 if (target_is_non_stop_p ())
2173 return inferior_ptid;
2174 else
2175 return user_visible_resume_ptid (user_step);
2176}
2177
64ce06e4
PA
2178/* Wrapper for target_resume, that handles infrun-specific
2179 bookkeeping. */
2180
2181static void
c4464ade 2182do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2183{
2184 struct thread_info *tp = inferior_thread ();
2185
c65d6b55
PA
2186 gdb_assert (!tp->stop_requested);
2187
64ce06e4 2188 /* Install inferior's terminal modes. */
223ffa71 2189 target_terminal::inferior ();
64ce06e4
PA
2190
2191 /* Avoid confusing the next resume, if the next stop/resume
2192 happens to apply to another thread. */
2193 tp->suspend.stop_signal = GDB_SIGNAL_0;
2194
8f572e5c
PA
2195 /* Advise target which signals may be handled silently.
2196
2197 If we have removed breakpoints because we are stepping over one
2198 in-line (in any thread), we need to receive all signals to avoid
2199 accidentally skipping a breakpoint during execution of a signal
2200 handler.
2201
2202 Likewise if we're displaced stepping, otherwise a trap for a
2203 breakpoint in a signal handler might be confused with the
2204 displaced step finishing. We don't make the displaced_step_fixup
2205 step distinguish the cases instead, because:
2206
2207 - a backtrace while stopped in the signal handler would show the
2208 scratch pad as frame older than the signal handler, instead of
2209 the real mainline code.
2210
2211 - when the thread is later resumed, the signal handler would
2212 return to the scratch pad area, which would no longer be
2213 valid. */
2214 if (step_over_info_valid_p ()
00431a78 2215 || displaced_step_in_progress (tp->inf))
adc6a863 2216 target_pass_signals ({});
64ce06e4 2217 else
adc6a863 2218 target_pass_signals (signal_pass);
64ce06e4
PA
2219
2220 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2221
2222 target_commit_resume ();
5b6d1e4f
PA
2223
2224 if (target_can_async_p ())
2225 target_async (1);
64ce06e4
PA
2226}
2227
d930703d 2228/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2229 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2230 call 'resume', which handles exceptions. */
c906108c 2231
71d378ae
PA
2232static void
2233resume_1 (enum gdb_signal sig)
c906108c 2234{
515630c5 2235 struct regcache *regcache = get_current_regcache ();
ac7936df 2236 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2237 struct thread_info *tp = inferior_thread ();
8b86c959 2238 const address_space *aspace = regcache->aspace ();
b0f16a3e 2239 ptid_t resume_ptid;
856e7dd6
PA
2240 /* This represents the user's step vs continue request. When
2241 deciding whether "set scheduler-locking step" applies, it's the
2242 user's intention that counts. */
2243 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2244 /* This represents what we'll actually request the target to do.
2245 This can decay from a step to a continue, if e.g., we need to
2246 implement single-stepping with breakpoints (software
2247 single-step). */
c4464ade 2248 bool step;
c7e8a53c 2249
c65d6b55 2250 gdb_assert (!tp->stop_requested);
c2829269
PA
2251 gdb_assert (!thread_is_in_step_over_chain (tp));
2252
372316f1
PA
2253 if (tp->suspend.waitstatus_pending_p)
2254 {
1eb8556f
SM
2255 infrun_debug_printf
2256 ("thread %s has pending wait "
2257 "status %s (currently_stepping=%d).",
2258 target_pid_to_str (tp->ptid).c_str (),
2259 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2260 currently_stepping (tp));
372316f1 2261
5b6d1e4f 2262 tp->inf->process_target ()->threads_executing = true;
719546c4 2263 tp->resumed = true;
372316f1
PA
2264
2265 /* FIXME: What should we do if we are supposed to resume this
2266 thread with a signal? Maybe we should maintain a queue of
2267 pending signals to deliver. */
2268 if (sig != GDB_SIGNAL_0)
2269 {
fd7dcb94 2270 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2271 gdb_signal_to_name (sig),
2272 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2273 }
2274
2275 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2276
2277 if (target_can_async_p ())
9516f85a
AB
2278 {
2279 target_async (1);
2280 /* Tell the event loop we have an event to process. */
2281 mark_async_event_handler (infrun_async_inferior_event_token);
2282 }
372316f1
PA
2283 return;
2284 }
2285
2286 tp->stepped_breakpoint = 0;
2287
6b403daa
PA
2288 /* Depends on stepped_breakpoint. */
2289 step = currently_stepping (tp);
2290
74609e71
YQ
2291 if (current_inferior ()->waiting_for_vfork_done)
2292 {
48f9886d
PA
2293 /* Don't try to single-step a vfork parent that is waiting for
2294 the child to get out of the shared memory region (by exec'ing
2295 or exiting). This is particularly important on software
2296 single-step archs, as the child process would trip on the
2297 software single step breakpoint inserted for the parent
2298 process. Since the parent will not actually execute any
2299 instruction until the child is out of the shared region (such
2300 are vfork's semantics), it is safe to simply continue it.
2301 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2302 the parent, and tell it to `keep_going', which automatically
2303 re-sets it stepping. */
1eb8556f 2304 infrun_debug_printf ("resume : clear step");
c4464ade 2305 step = false;
74609e71
YQ
2306 }
2307
7ca9b62a
TBA
2308 CORE_ADDR pc = regcache_read_pc (regcache);
2309
1eb8556f
SM
2310 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2311 "current thread [%s] at %s",
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
2314 target_pid_to_str (inferior_ptid).c_str (),
2315 paddress (gdbarch, pc));
c906108c 2316
c2c6d25f
JM
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2322 {
af48d08f
PA
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
1eb8556f
SM
2339 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2340 "deliver signal first");
af48d08f
PA
2341
2342 clear_step_over_info ();
2343 tp->control.trap_expected = 0;
2344
2345 if (tp->control.step_resume_breakpoint == NULL)
2346 {
2347 /* Set a "high-priority" step-resume, as we don't want
2348 user breakpoints at PC to trigger (again) when this
2349 hits. */
2350 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2351 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2352
2353 tp->step_after_step_resume_breakpoint = step;
2354 }
2355
2356 insert_breakpoints ();
2357 }
2358 else
2359 {
2360 /* There's no signal to pass, we can go ahead and skip the
2361 permanent breakpoint manually. */
1eb8556f 2362 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2363 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2364 /* Update pc to reflect the new address from which we will
2365 execute instructions. */
2366 pc = regcache_read_pc (regcache);
2367
2368 if (step)
2369 {
2370 /* We've already advanced the PC, so the stepping part
2371 is done. Now we need to arrange for a trap to be
2372 reported to handle_inferior_event. Set a breakpoint
2373 at the current PC, and run to it. Don't update
2374 prev_pc, because if we end in
44a1ee51
PA
2375 switch_back_to_stepped_thread, we want the "expected
2376 thread advanced also" branch to be taken. IOW, we
2377 don't want this thread to step further from PC
af48d08f 2378 (overstep). */
1ac806b8 2379 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2380 insert_single_step_breakpoint (gdbarch, aspace, pc);
2381 insert_breakpoints ();
2382
fbea99ea 2383 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2384 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
719546c4 2385 tp->resumed = true;
af48d08f
PA
2386 return;
2387 }
2388 }
6d350bb5 2389 }
c2c6d25f 2390
c1e36e3e
PA
2391 /* If we have a breakpoint to step over, make sure to do a single
2392 step only. Same if we have software watchpoints. */
2393 if (tp->control.trap_expected || bpstat_should_step ())
2394 tp->control.may_range_step = 0;
2395
7da6a5b9
LM
2396 /* If displaced stepping is enabled, step over breakpoints by executing a
2397 copy of the instruction at a different address.
237fc4c9
PA
2398
2399 We can't use displaced stepping when we have a signal to deliver;
2400 the comments for displaced_step_prepare explain why. The
2401 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2402 signals' explain what we do instead.
2403
2404 We can't use displaced stepping when we are waiting for vfork_done
2405 event, displaced stepping breaks the vfork child similarly as single
2406 step software breakpoint. */
3fc8eb30
PA
2407 if (tp->control.trap_expected
2408 && use_displaced_stepping (tp)
cb71640d 2409 && !step_over_info_valid_p ()
a493e3e2 2410 && sig == GDB_SIGNAL_0
74609e71 2411 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2412 {
00431a78 2413 int prepared = displaced_step_prepare (tp);
fc1cf338 2414
3fc8eb30 2415 if (prepared == 0)
d56b7306 2416 {
1eb8556f 2417 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2418
2419 tp->control.trap_expected = 0;
d56b7306
VP
2420 return;
2421 }
3fc8eb30
PA
2422 else if (prepared < 0)
2423 {
2424 /* Fallback to stepping over the breakpoint in-line. */
2425
2426 if (target_is_non_stop_p ())
2427 stop_all_threads ();
2428
a01bda52 2429 set_step_over_info (regcache->aspace (),
21edc42f 2430 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2431
2432 step = maybe_software_singlestep (gdbarch, pc);
2433
2434 insert_breakpoints ();
2435 }
2436 else if (prepared > 0)
2437 {
3fc8eb30
PA
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
00431a78 2440 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2441
40a53766 2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2443 }
237fc4c9
PA
2444 }
2445
2facfe5c 2446 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2447 else if (step)
2facfe5c 2448 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2449
30852783
UW
2450 /* Currently, our software single-step implementation leads to different
2451 results than hardware single-stepping in one situation: when stepping
2452 into delivering a signal which has an associated signal handler,
2453 hardware single-step will stop at the first instruction of the handler,
2454 while software single-step will simply skip execution of the handler.
2455
2456 For now, this difference in behavior is accepted since there is no
2457 easy way to actually implement single-stepping into a signal handler
2458 without kernel support.
2459
2460 However, there is one scenario where this difference leads to follow-on
2461 problems: if we're stepping off a breakpoint by removing all breakpoints
2462 and then single-stepping. In this case, the software single-step
2463 behavior means that even if there is a *breakpoint* in the signal
2464 handler, GDB still would not stop.
2465
2466 Fortunately, we can at least fix this particular issue. We detect
2467 here the case where we are about to deliver a signal while software
2468 single-stepping with breakpoints removed. In this situation, we
2469 revert the decisions to remove all breakpoints and insert single-
2470 step breakpoints, and instead we install a step-resume breakpoint
2471 at the current address, deliver the signal without stepping, and
2472 once we arrive back at the step-resume breakpoint, actually step
2473 over the breakpoint we originally wanted to step over. */
34b7e8a6 2474 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2475 && sig != GDB_SIGNAL_0
2476 && step_over_info_valid_p ())
30852783
UW
2477 {
2478 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2479 immediately after a handler returns, might already have
30852783
UW
2480 a step-resume breakpoint set on the earlier handler. We cannot
2481 set another step-resume breakpoint; just continue on until the
2482 original breakpoint is hit. */
2483 if (tp->control.step_resume_breakpoint == NULL)
2484 {
2c03e5be 2485 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2486 tp->step_after_step_resume_breakpoint = 1;
2487 }
2488
34b7e8a6 2489 delete_single_step_breakpoints (tp);
30852783 2490
31e77af2 2491 clear_step_over_info ();
30852783 2492 tp->control.trap_expected = 0;
31e77af2
PA
2493
2494 insert_breakpoints ();
30852783
UW
2495 }
2496
b0f16a3e
SM
2497 /* If STEP is set, it's a request to use hardware stepping
2498 facilities. But in that case, we should never
2499 use singlestep breakpoint. */
34b7e8a6 2500 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2501
fbea99ea 2502 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2503 if (tp->control.trap_expected)
b0f16a3e
SM
2504 {
2505 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2506 hit, either by single-stepping the thread with the breakpoint
2507 removed, or by displaced stepping, with the breakpoint inserted.
2508 In the former case, we need to single-step only this thread,
2509 and keep others stopped, as they can miss this breakpoint if
2510 allowed to run. That's not really a problem for displaced
2511 stepping, but, we still keep other threads stopped, in case
2512 another thread is also stopped for a breakpoint waiting for
2513 its turn in the displaced stepping queue. */
b0f16a3e
SM
2514 resume_ptid = inferior_ptid;
2515 }
fbea99ea
PA
2516 else
2517 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2518
7f5ef605
PA
2519 if (execution_direction != EXEC_REVERSE
2520 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2521 {
372316f1
PA
2522 /* There are two cases where we currently need to step a
2523 breakpoint instruction when we have a signal to deliver:
2524
2525 - See handle_signal_stop where we handle random signals that
2526 could take out us out of the stepping range. Normally, in
2527 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2528 signal handler with a breakpoint at PC, but there are cases
2529 where we should _always_ single-step, even if we have a
2530 step-resume breakpoint, like when a software watchpoint is
2531 set. Assuming single-stepping and delivering a signal at the
2532 same time would takes us to the signal handler, then we could
2533 have removed the breakpoint at PC to step over it. However,
2534 some hardware step targets (like e.g., Mac OS) can't step
2535 into signal handlers, and for those, we need to leave the
2536 breakpoint at PC inserted, as otherwise if the handler
2537 recurses and executes PC again, it'll miss the breakpoint.
2538 So we leave the breakpoint inserted anyway, but we need to
2539 record that we tried to step a breakpoint instruction, so
372316f1
PA
2540 that adjust_pc_after_break doesn't end up confused.
2541
dda83cd7 2542 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2543 in one thread after another thread that was stepping had been
2544 momentarily paused for a step-over. When we re-resume the
2545 stepping thread, it may be resumed from that address with a
2546 breakpoint that hasn't trapped yet. Seen with
2547 gdb.threads/non-stop-fair-events.exp, on targets that don't
2548 do displaced stepping. */
2549
1eb8556f
SM
2550 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2551 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2552
2553 tp->stepped_breakpoint = 1;
2554
b0f16a3e
SM
2555 /* Most targets can step a breakpoint instruction, thus
2556 executing it normally. But if this one cannot, just
2557 continue and we will hit it anyway. */
7f5ef605 2558 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2559 step = false;
b0f16a3e 2560 }
ef5cf84e 2561
b0f16a3e 2562 if (debug_displaced
cb71640d 2563 && tp->control.trap_expected
3fc8eb30 2564 && use_displaced_stepping (tp)
cb71640d 2565 && !step_over_info_valid_p ())
b0f16a3e 2566 {
00431a78 2567 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2568 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2569 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2570 gdb_byte buf[4];
2571
b0f16a3e 2572 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2573 displaced_debug_printf ("run %s: %s",
2574 paddress (resume_gdbarch, actual_pc),
2575 displaced_step_dump_bytes
2576 (buf, sizeof (buf)).c_str ());
b0f16a3e 2577 }
237fc4c9 2578
b0f16a3e
SM
2579 if (tp->control.may_range_step)
2580 {
2581 /* If we're resuming a thread with the PC out of the step
2582 range, then we're doing some nested/finer run control
2583 operation, like stepping the thread out of the dynamic
2584 linker or the displaced stepping scratch pad. We
2585 shouldn't have allowed a range step then. */
2586 gdb_assert (pc_in_thread_step_range (pc, tp));
2587 }
c1e36e3e 2588
64ce06e4 2589 do_target_resume (resume_ptid, step, sig);
719546c4 2590 tp->resumed = true;
c906108c 2591}
71d378ae
PA
2592
2593/* Resume the inferior. SIG is the signal to give the inferior
2594 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2595 rolls back state on error. */
2596
aff4e175 2597static void
71d378ae
PA
2598resume (gdb_signal sig)
2599{
a70b8144 2600 try
71d378ae
PA
2601 {
2602 resume_1 (sig);
2603 }
230d2906 2604 catch (const gdb_exception &ex)
71d378ae
PA
2605 {
2606 /* If resuming is being aborted for any reason, delete any
2607 single-step breakpoint resume_1 may have created, to avoid
2608 confusing the following resumption, and to avoid leaving
2609 single-step breakpoints perturbing other threads, in case
2610 we're running in non-stop mode. */
2611 if (inferior_ptid != null_ptid)
2612 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2613 throw;
71d378ae 2614 }
71d378ae
PA
2615}
2616
c906108c 2617\f
237fc4c9 2618/* Proceeding. */
c906108c 2619
4c2f2a79
PA
2620/* See infrun.h. */
2621
2622/* Counter that tracks number of user visible stops. This can be used
2623 to tell whether a command has proceeded the inferior past the
2624 current location. This allows e.g., inferior function calls in
2625 breakpoint commands to not interrupt the command list. When the
2626 call finishes successfully, the inferior is standing at the same
2627 breakpoint as if nothing happened (and so we don't call
2628 normal_stop). */
2629static ULONGEST current_stop_id;
2630
2631/* See infrun.h. */
2632
2633ULONGEST
2634get_stop_id (void)
2635{
2636 return current_stop_id;
2637}
2638
2639/* Called when we report a user visible stop. */
2640
2641static void
2642new_stop_id (void)
2643{
2644 current_stop_id++;
2645}
2646
c906108c
SS
2647/* Clear out all variables saying what to do when inferior is continued.
2648 First do this, then set the ones you want, then call `proceed'. */
2649
a7212384
UW
2650static void
2651clear_proceed_status_thread (struct thread_info *tp)
c906108c 2652{
1eb8556f 2653 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2654
372316f1
PA
2655 /* If we're starting a new sequence, then the previous finished
2656 single-step is no longer relevant. */
2657 if (tp->suspend.waitstatus_pending_p)
2658 {
2659 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2660 {
1eb8556f
SM
2661 infrun_debug_printf ("pending event of %s was a finished step. "
2662 "Discarding.",
2663 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2664
2665 tp->suspend.waitstatus_pending_p = 0;
2666 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2667 }
1eb8556f 2668 else
372316f1 2669 {
1eb8556f
SM
2670 infrun_debug_printf
2671 ("thread %s has pending wait status %s (currently_stepping=%d).",
2672 target_pid_to_str (tp->ptid).c_str (),
2673 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2674 currently_stepping (tp));
372316f1
PA
2675 }
2676 }
2677
70509625
PA
2678 /* If this signal should not be seen by program, give it zero.
2679 Used for debugging signals. */
2680 if (!signal_pass_state (tp->suspend.stop_signal))
2681 tp->suspend.stop_signal = GDB_SIGNAL_0;
2682
46e3ed7f 2683 delete tp->thread_fsm;
243a9253
PA
2684 tp->thread_fsm = NULL;
2685
16c381f0
JK
2686 tp->control.trap_expected = 0;
2687 tp->control.step_range_start = 0;
2688 tp->control.step_range_end = 0;
c1e36e3e 2689 tp->control.may_range_step = 0;
16c381f0
JK
2690 tp->control.step_frame_id = null_frame_id;
2691 tp->control.step_stack_frame_id = null_frame_id;
2692 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2693 tp->control.step_start_function = NULL;
a7212384 2694 tp->stop_requested = 0;
4e1c45ea 2695
16c381f0 2696 tp->control.stop_step = 0;
32400beb 2697
16c381f0 2698 tp->control.proceed_to_finish = 0;
414c69f7 2699
856e7dd6 2700 tp->control.stepping_command = 0;
17b2616c 2701
a7212384 2702 /* Discard any remaining commands or status from previous stop. */
16c381f0 2703 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2704}
32400beb 2705
a7212384 2706void
70509625 2707clear_proceed_status (int step)
a7212384 2708{
f2665db5
MM
2709 /* With scheduler-locking replay, stop replaying other threads if we're
2710 not replaying the user-visible resume ptid.
2711
2712 This is a convenience feature to not require the user to explicitly
2713 stop replaying the other threads. We're assuming that the user's
2714 intent is to resume tracing the recorded process. */
2715 if (!non_stop && scheduler_mode == schedlock_replay
2716 && target_record_is_replaying (minus_one_ptid)
2717 && !target_record_will_replay (user_visible_resume_ptid (step),
2718 execution_direction))
2719 target_record_stop_replaying ();
2720
08036331 2721 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2722 {
08036331 2723 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2724 process_stratum_target *resume_target
2725 = user_visible_resume_target (resume_ptid);
70509625
PA
2726
2727 /* In all-stop mode, delete the per-thread status of all threads
2728 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2729 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2730 clear_proceed_status_thread (tp);
6c95b8df
PA
2731 }
2732
d7e15655 2733 if (inferior_ptid != null_ptid)
a7212384
UW
2734 {
2735 struct inferior *inferior;
2736
2737 if (non_stop)
2738 {
6c95b8df
PA
2739 /* If in non-stop mode, only delete the per-thread status of
2740 the current thread. */
a7212384
UW
2741 clear_proceed_status_thread (inferior_thread ());
2742 }
6c95b8df 2743
d6b48e9c 2744 inferior = current_inferior ();
16c381f0 2745 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2746 }
2747
76727919 2748 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2749}
2750
99619bea
PA
2751/* Returns true if TP is still stopped at a breakpoint that needs
2752 stepping-over in order to make progress. If the breakpoint is gone
2753 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2754
c4464ade 2755static bool
6c4cfb24 2756thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2757{
2758 if (tp->stepping_over_breakpoint)
2759 {
00431a78 2760 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2761
a01bda52 2762 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2763 regcache_read_pc (regcache))
2764 == ordinary_breakpoint_here)
c4464ade 2765 return true;
99619bea
PA
2766
2767 tp->stepping_over_breakpoint = 0;
2768 }
2769
c4464ade 2770 return false;
99619bea
PA
2771}
2772
6c4cfb24
PA
2773/* Check whether thread TP still needs to start a step-over in order
2774 to make progress when resumed. Returns an bitwise or of enum
2775 step_over_what bits, indicating what needs to be stepped over. */
2776
8d297bbf 2777static step_over_what
6c4cfb24
PA
2778thread_still_needs_step_over (struct thread_info *tp)
2779{
8d297bbf 2780 step_over_what what = 0;
6c4cfb24
PA
2781
2782 if (thread_still_needs_step_over_bp (tp))
2783 what |= STEP_OVER_BREAKPOINT;
2784
2785 if (tp->stepping_over_watchpoint
9aed480c 2786 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2787 what |= STEP_OVER_WATCHPOINT;
2788
2789 return what;
2790}
2791
483805cf
PA
2792/* Returns true if scheduler locking applies. STEP indicates whether
2793 we're about to do a step/next-like command to a thread. */
2794
c4464ade 2795static bool
856e7dd6 2796schedlock_applies (struct thread_info *tp)
483805cf
PA
2797{
2798 return (scheduler_mode == schedlock_on
2799 || (scheduler_mode == schedlock_step
f2665db5
MM
2800 && tp->control.stepping_command)
2801 || (scheduler_mode == schedlock_replay
2802 && target_record_will_replay (minus_one_ptid,
2803 execution_direction)));
483805cf
PA
2804}
2805
5b6d1e4f
PA
2806/* Calls target_commit_resume on all targets. */
2807
2808static void
2809commit_resume_all_targets ()
2810{
2811 scoped_restore_current_thread restore_thread;
2812
2813 /* Map between process_target and a representative inferior. This
2814 is to avoid committing a resume in the same target more than
2815 once. Resumptions must be idempotent, so this is an
2816 optimization. */
2817 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2818
2819 for (inferior *inf : all_non_exited_inferiors ())
2820 if (inf->has_execution ())
2821 conn_inf[inf->process_target ()] = inf;
2822
2823 for (const auto &ci : conn_inf)
2824 {
2825 inferior *inf = ci.second;
2826 switch_to_inferior_no_thread (inf);
2827 target_commit_resume ();
2828 }
2829}
2830
2f4fcf00
PA
2831/* Check that all the targets we're about to resume are in non-stop
2832 mode. Ideally, we'd only care whether all targets support
2833 target-async, but we're not there yet. E.g., stop_all_threads
2834 doesn't know how to handle all-stop targets. Also, the remote
2835 protocol in all-stop mode is synchronous, irrespective of
2836 target-async, which means that things like a breakpoint re-set
2837 triggered by one target would try to read memory from all targets
2838 and fail. */
2839
2840static void
2841check_multi_target_resumption (process_stratum_target *resume_target)
2842{
2843 if (!non_stop && resume_target == nullptr)
2844 {
2845 scoped_restore_current_thread restore_thread;
2846
2847 /* This is used to track whether we're resuming more than one
2848 target. */
2849 process_stratum_target *first_connection = nullptr;
2850
2851 /* The first inferior we see with a target that does not work in
2852 always-non-stop mode. */
2853 inferior *first_not_non_stop = nullptr;
2854
2855 for (inferior *inf : all_non_exited_inferiors (resume_target))
2856 {
2857 switch_to_inferior_no_thread (inf);
2858
55f6301a 2859 if (!target_has_execution ())
2f4fcf00
PA
2860 continue;
2861
2862 process_stratum_target *proc_target
2863 = current_inferior ()->process_target();
2864
2865 if (!target_is_non_stop_p ())
2866 first_not_non_stop = inf;
2867
2868 if (first_connection == nullptr)
2869 first_connection = proc_target;
2870 else if (first_connection != proc_target
2871 && first_not_non_stop != nullptr)
2872 {
2873 switch_to_inferior_no_thread (first_not_non_stop);
2874
2875 proc_target = current_inferior ()->process_target();
2876
2877 error (_("Connection %d (%s) does not support "
2878 "multi-target resumption."),
2879 proc_target->connection_number,
2880 make_target_connection_string (proc_target).c_str ());
2881 }
2882 }
2883 }
2884}
2885
c906108c
SS
2886/* Basic routine for continuing the program in various fashions.
2887
2888 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2889 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2890 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2891
2892 You should call clear_proceed_status before calling proceed. */
2893
2894void
64ce06e4 2895proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2896{
e58b0e63
PA
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
e58b0e63 2899 CORE_ADDR pc;
4d9d9d04
PA
2900 struct execution_control_state ecss;
2901 struct execution_control_state *ecs = &ecss;
c4464ade 2902 bool started;
c906108c 2903
e58b0e63
PA
2904 /* If we're stopped at a fork/vfork, follow the branch set by the
2905 "set follow-fork-mode" command; otherwise, we'll just proceed
2906 resuming the current thread. */
2907 if (!follow_fork ())
2908 {
2909 /* The target for some reason decided not to resume. */
2910 normal_stop ();
f148b27e 2911 if (target_can_async_p ())
b1a35af2 2912 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2913 return;
2914 }
2915
842951eb
PA
2916 /* We'll update this if & when we switch to a new thread. */
2917 previous_inferior_ptid = inferior_ptid;
2918
e58b0e63 2919 regcache = get_current_regcache ();
ac7936df 2920 gdbarch = regcache->arch ();
8b86c959
YQ
2921 const address_space *aspace = regcache->aspace ();
2922
fc75c28b
TBA
2923 pc = regcache_read_pc_protected (regcache);
2924
08036331 2925 thread_info *cur_thr = inferior_thread ();
e58b0e63 2926
99619bea 2927 /* Fill in with reasonable starting values. */
08036331 2928 init_thread_stepping_state (cur_thr);
99619bea 2929
08036331 2930 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2931
5b6d1e4f
PA
2932 ptid_t resume_ptid
2933 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2934 process_stratum_target *resume_target
2935 = user_visible_resume_target (resume_ptid);
2936
2f4fcf00
PA
2937 check_multi_target_resumption (resume_target);
2938
2acceee2 2939 if (addr == (CORE_ADDR) -1)
c906108c 2940 {
08036331 2941 if (pc == cur_thr->suspend.stop_pc
af48d08f 2942 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2943 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2944 /* There is a breakpoint at the address we will resume at,
2945 step one instruction before inserting breakpoints so that
2946 we do not stop right away (and report a second hit at this
b2175913
MS
2947 breakpoint).
2948
2949 Note, we don't do this in reverse, because we won't
2950 actually be executing the breakpoint insn anyway.
2951 We'll be (un-)executing the previous instruction. */
08036331 2952 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2953 else if (gdbarch_single_step_through_delay_p (gdbarch)
2954 && gdbarch_single_step_through_delay (gdbarch,
2955 get_current_frame ()))
3352ef37
AC
2956 /* We stepped onto an instruction that needs to be stepped
2957 again before re-inserting the breakpoint, do so. */
08036331 2958 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2959 }
2960 else
2961 {
515630c5 2962 regcache_write_pc (regcache, addr);
c906108c
SS
2963 }
2964
70509625 2965 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2966 cur_thr->suspend.stop_signal = siggnal;
70509625 2967
4d9d9d04
PA
2968 /* If an exception is thrown from this point on, make sure to
2969 propagate GDB's knowledge of the executing state to the
2970 frontend/user running state. */
5b6d1e4f 2971 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2972
2973 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2974 threads (e.g., we might need to set threads stepping over
2975 breakpoints first), from the user/frontend's point of view, all
2976 threads in RESUME_PTID are now running. Unless we're calling an
2977 inferior function, as in that case we pretend the inferior
2978 doesn't run at all. */
08036331 2979 if (!cur_thr->control.in_infcall)
719546c4 2980 set_running (resume_target, resume_ptid, true);
17b2616c 2981
1eb8556f
SM
2982 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2983 gdb_signal_to_symbol_string (siggnal));
527159b7 2984
4d9d9d04
PA
2985 annotate_starting ();
2986
2987 /* Make sure that output from GDB appears before output from the
2988 inferior. */
2989 gdb_flush (gdb_stdout);
2990
d930703d
PA
2991 /* Since we've marked the inferior running, give it the terminal. A
2992 QUIT/Ctrl-C from here on is forwarded to the target (which can
2993 still detect attempts to unblock a stuck connection with repeated
2994 Ctrl-C from within target_pass_ctrlc). */
2995 target_terminal::inferior ();
2996
4d9d9d04
PA
2997 /* In a multi-threaded task we may select another thread and
2998 then continue or step.
2999
3000 But if a thread that we're resuming had stopped at a breakpoint,
3001 it will immediately cause another breakpoint stop without any
3002 execution (i.e. it will report a breakpoint hit incorrectly). So
3003 we must step over it first.
3004
3005 Look for threads other than the current (TP) that reported a
3006 breakpoint hit and haven't been resumed yet since. */
3007
3008 /* If scheduler locking applies, we can avoid iterating over all
3009 threads. */
08036331 3010 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3011 {
5b6d1e4f
PA
3012 for (thread_info *tp : all_non_exited_threads (resume_target,
3013 resume_ptid))
08036331 3014 {
f3f8ece4
PA
3015 switch_to_thread_no_regs (tp);
3016
4d9d9d04
PA
3017 /* Ignore the current thread here. It's handled
3018 afterwards. */
08036331 3019 if (tp == cur_thr)
4d9d9d04 3020 continue;
c906108c 3021
4d9d9d04
PA
3022 if (!thread_still_needs_step_over (tp))
3023 continue;
3024
3025 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3026
1eb8556f
SM
3027 infrun_debug_printf ("need to step-over [%s] first",
3028 target_pid_to_str (tp->ptid).c_str ());
99619bea 3029
4d9d9d04 3030 thread_step_over_chain_enqueue (tp);
2adfaa28 3031 }
f3f8ece4
PA
3032
3033 switch_to_thread (cur_thr);
30852783
UW
3034 }
3035
4d9d9d04
PA
3036 /* Enqueue the current thread last, so that we move all other
3037 threads over their breakpoints first. */
08036331
PA
3038 if (cur_thr->stepping_over_breakpoint)
3039 thread_step_over_chain_enqueue (cur_thr);
30852783 3040
4d9d9d04
PA
3041 /* If the thread isn't started, we'll still need to set its prev_pc,
3042 so that switch_back_to_stepped_thread knows the thread hasn't
3043 advanced. Must do this before resuming any thread, as in
3044 all-stop/remote, once we resume we can't send any other packet
3045 until the target stops again. */
fc75c28b 3046 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3047
a9bc57b9
TT
3048 {
3049 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3050
a9bc57b9 3051 started = start_step_over ();
c906108c 3052
a9bc57b9
TT
3053 if (step_over_info_valid_p ())
3054 {
3055 /* Either this thread started a new in-line step over, or some
3056 other thread was already doing one. In either case, don't
3057 resume anything else until the step-over is finished. */
3058 }
3059 else if (started && !target_is_non_stop_p ())
3060 {
3061 /* A new displaced stepping sequence was started. In all-stop,
3062 we can't talk to the target anymore until it next stops. */
3063 }
3064 else if (!non_stop && target_is_non_stop_p ())
3065 {
3066 /* In all-stop, but the target is always in non-stop mode.
3067 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3068 for (thread_info *tp : all_non_exited_threads (resume_target,
3069 resume_ptid))
3070 {
3071 switch_to_thread_no_regs (tp);
3072
f9fac3c8
SM
3073 if (!tp->inf->has_execution ())
3074 {
1eb8556f
SM
3075 infrun_debug_printf ("[%s] target has no execution",
3076 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3077 continue;
3078 }
f3f8ece4 3079
f9fac3c8
SM
3080 if (tp->resumed)
3081 {
1eb8556f
SM
3082 infrun_debug_printf ("[%s] resumed",
3083 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3084 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3085 continue;
3086 }
fbea99ea 3087
f9fac3c8
SM
3088 if (thread_is_in_step_over_chain (tp))
3089 {
1eb8556f
SM
3090 infrun_debug_printf ("[%s] needs step-over",
3091 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3092 continue;
3093 }
fbea99ea 3094
1eb8556f 3095 infrun_debug_printf ("resuming %s",
dda83cd7 3096 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3097
f9fac3c8
SM
3098 reset_ecs (ecs, tp);
3099 switch_to_thread (tp);
3100 keep_going_pass_signal (ecs);
3101 if (!ecs->wait_some_more)
3102 error (_("Command aborted."));
3103 }
a9bc57b9 3104 }
08036331 3105 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3106 {
3107 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3108 reset_ecs (ecs, cur_thr);
3109 switch_to_thread (cur_thr);
a9bc57b9
TT
3110 keep_going_pass_signal (ecs);
3111 if (!ecs->wait_some_more)
3112 error (_("Command aborted."));
3113 }
3114 }
c906108c 3115
5b6d1e4f 3116 commit_resume_all_targets ();
85ad3aaf 3117
731f534f 3118 finish_state.release ();
c906108c 3119
873657b9
PA
3120 /* If we've switched threads above, switch back to the previously
3121 current thread. We don't want the user to see a different
3122 selected thread. */
3123 switch_to_thread (cur_thr);
3124
0b333c5e
PA
3125 /* Tell the event loop to wait for it to stop. If the target
3126 supports asynchronous execution, it'll do this from within
3127 target_resume. */
362646f5 3128 if (!target_can_async_p ())
0b333c5e 3129 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3130}
c906108c
SS
3131\f
3132
3133/* Start remote-debugging of a machine over a serial link. */
96baa820 3134
c906108c 3135void
8621d6a9 3136start_remote (int from_tty)
c906108c 3137{
5b6d1e4f
PA
3138 inferior *inf = current_inferior ();
3139 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3140
1777feb0 3141 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3142 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3143 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3144 nothing is returned (instead of just blocking). Because of this,
3145 targets expecting an immediate response need to, internally, set
3146 things up so that the target_wait() is forced to eventually
1777feb0 3147 timeout. */
6426a772
JM
3148 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3149 differentiate to its caller what the state of the target is after
3150 the initial open has been performed. Here we're assuming that
3151 the target has stopped. It should be possible to eventually have
3152 target_open() return to the caller an indication that the target
3153 is currently running and GDB state should be set to the same as
1777feb0 3154 for an async run. */
5b6d1e4f 3155 wait_for_inferior (inf);
8621d6a9
DJ
3156
3157 /* Now that the inferior has stopped, do any bookkeeping like
3158 loading shared libraries. We want to do this before normal_stop,
3159 so that the displayed frame is up to date. */
a7aba266 3160 post_create_inferior (from_tty);
8621d6a9 3161
6426a772 3162 normal_stop ();
c906108c
SS
3163}
3164
3165/* Initialize static vars when a new inferior begins. */
3166
3167void
96baa820 3168init_wait_for_inferior (void)
c906108c
SS
3169{
3170 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3171
c906108c
SS
3172 breakpoint_init_inferior (inf_starting);
3173
70509625 3174 clear_proceed_status (0);
9f976b41 3175
ab1ddbcf 3176 nullify_last_target_wait_ptid ();
237fc4c9 3177
842951eb 3178 previous_inferior_ptid = inferior_ptid;
c906108c 3179}
237fc4c9 3180
c906108c 3181\f
488f131b 3182
ec9499be 3183static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3184
568d6575
UW
3185static void handle_step_into_function (struct gdbarch *gdbarch,
3186 struct execution_control_state *ecs);
3187static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3188 struct execution_control_state *ecs);
4f5d7f63 3189static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3190static void check_exception_resume (struct execution_control_state *,
28106bc2 3191 struct frame_info *);
611c83ae 3192
bdc36728 3193static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3194static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3195static void keep_going (struct execution_control_state *ecs);
94c57d6a 3196static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3197static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3198
252fbfc8
PA
3199/* This function is attached as a "thread_stop_requested" observer.
3200 Cleanup local state that assumed the PTID was to be resumed, and
3201 report the stop to the frontend. */
3202
2c0b251b 3203static void
252fbfc8
PA
3204infrun_thread_stop_requested (ptid_t ptid)
3205{
5b6d1e4f
PA
3206 process_stratum_target *curr_target = current_inferior ()->process_target ();
3207
c65d6b55
PA
3208 /* PTID was requested to stop. If the thread was already stopped,
3209 but the user/frontend doesn't know about that yet (e.g., the
3210 thread had been temporarily paused for some step-over), set up
3211 for reporting the stop now. */
5b6d1e4f 3212 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3213 {
3214 if (tp->state != THREAD_RUNNING)
3215 continue;
3216 if (tp->executing)
3217 continue;
c65d6b55 3218
08036331
PA
3219 /* Remove matching threads from the step-over queue, so
3220 start_step_over doesn't try to resume them
3221 automatically. */
3222 if (thread_is_in_step_over_chain (tp))
3223 thread_step_over_chain_remove (tp);
c65d6b55 3224
08036331
PA
3225 /* If the thread is stopped, but the user/frontend doesn't
3226 know about that yet, queue a pending event, as if the
3227 thread had just stopped now. Unless the thread already had
3228 a pending event. */
3229 if (!tp->suspend.waitstatus_pending_p)
3230 {
3231 tp->suspend.waitstatus_pending_p = 1;
3232 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3233 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3234 }
c65d6b55 3235
08036331
PA
3236 /* Clear the inline-frame state, since we're re-processing the
3237 stop. */
5b6d1e4f 3238 clear_inline_frame_state (tp);
c65d6b55 3239
08036331
PA
3240 /* If this thread was paused because some other thread was
3241 doing an inline-step over, let that finish first. Once
3242 that happens, we'll restart all threads and consume pending
3243 stop events then. */
3244 if (step_over_info_valid_p ())
3245 continue;
3246
3247 /* Otherwise we can process the (new) pending event now. Set
3248 it so this pending event is considered by
3249 do_target_wait. */
719546c4 3250 tp->resumed = true;
08036331 3251 }
252fbfc8
PA
3252}
3253
a07daef3
PA
3254static void
3255infrun_thread_thread_exit (struct thread_info *tp, int silent)
3256{
5b6d1e4f
PA
3257 if (target_last_proc_target == tp->inf->process_target ()
3258 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3259 nullify_last_target_wait_ptid ();
3260}
3261
0cbcdb96
PA
3262/* Delete the step resume, single-step and longjmp/exception resume
3263 breakpoints of TP. */
4e1c45ea 3264
0cbcdb96
PA
3265static void
3266delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3267{
0cbcdb96
PA
3268 delete_step_resume_breakpoint (tp);
3269 delete_exception_resume_breakpoint (tp);
34b7e8a6 3270 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3271}
3272
0cbcdb96
PA
3273/* If the target still has execution, call FUNC for each thread that
3274 just stopped. In all-stop, that's all the non-exited threads; in
3275 non-stop, that's the current thread, only. */
3276
3277typedef void (*for_each_just_stopped_thread_callback_func)
3278 (struct thread_info *tp);
4e1c45ea
PA
3279
3280static void
0cbcdb96 3281for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3282{
55f6301a 3283 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3284 return;
3285
fbea99ea 3286 if (target_is_non_stop_p ())
4e1c45ea 3287 {
0cbcdb96
PA
3288 /* If in non-stop mode, only the current thread stopped. */
3289 func (inferior_thread ());
4e1c45ea
PA
3290 }
3291 else
0cbcdb96 3292 {
0cbcdb96 3293 /* In all-stop mode, all threads have stopped. */
08036331
PA
3294 for (thread_info *tp : all_non_exited_threads ())
3295 func (tp);
0cbcdb96
PA
3296 }
3297}
3298
3299/* Delete the step resume and longjmp/exception resume breakpoints of
3300 the threads that just stopped. */
3301
3302static void
3303delete_just_stopped_threads_infrun_breakpoints (void)
3304{
3305 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3306}
3307
3308/* Delete the single-step breakpoints of the threads that just
3309 stopped. */
7c16b83e 3310
34b7e8a6
PA
3311static void
3312delete_just_stopped_threads_single_step_breakpoints (void)
3313{
3314 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3315}
3316
221e1a37 3317/* See infrun.h. */
223698f8 3318
221e1a37 3319void
223698f8
DE
3320print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3321 const struct target_waitstatus *ws)
3322{
23fdd69e 3323 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3324 string_file stb;
223698f8
DE
3325
3326 /* The text is split over several lines because it was getting too long.
3327 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3328 output as a unit; we want only one timestamp printed if debug_timestamp
3329 is set. */
3330
1eb8556f 3331 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
e99b03dc 3332 waiton_ptid.pid (),
e38504b3 3333 waiton_ptid.lwp (),
cc6bcb54 3334 waiton_ptid.tid ());
e99b03dc 3335 if (waiton_ptid.pid () != -1)
a068643d 3336 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731 3337 stb.printf (", status) =\n");
1eb8556f 3338 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
e99b03dc 3339 result_ptid.pid (),
e38504b3 3340 result_ptid.lwp (),
cc6bcb54 3341 result_ptid.tid (),
a068643d 3342 target_pid_to_str (result_ptid).c_str ());
1eb8556f 3343 stb.printf ("[infrun] %s\n", status_string.c_str ());
223698f8
DE
3344
3345 /* This uses %s in part to handle %'s in the text, but also to avoid
3346 a gcc error: the format attribute requires a string literal. */
d7e74731 3347 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3348}
3349
372316f1
PA
3350/* Select a thread at random, out of those which are resumed and have
3351 had events. */
3352
3353static struct thread_info *
5b6d1e4f 3354random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3355{
372316f1 3356 int num_events = 0;
08036331 3357
5b6d1e4f 3358 auto has_event = [&] (thread_info *tp)
08036331 3359 {
5b6d1e4f
PA
3360 return (tp->ptid.matches (waiton_ptid)
3361 && tp->resumed
08036331
PA
3362 && tp->suspend.waitstatus_pending_p);
3363 };
372316f1
PA
3364
3365 /* First see how many events we have. Count only resumed threads
3366 that have an event pending. */
5b6d1e4f 3367 for (thread_info *tp : inf->non_exited_threads ())
08036331 3368 if (has_event (tp))
372316f1
PA
3369 num_events++;
3370
3371 if (num_events == 0)
3372 return NULL;
3373
3374 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3375 int random_selector = (int) ((num_events * (double) rand ())
3376 / (RAND_MAX + 1.0));
372316f1 3377
1eb8556f
SM
3378 if (num_events > 1)
3379 infrun_debug_printf ("Found %d events, selecting #%d",
3380 num_events, random_selector);
372316f1
PA
3381
3382 /* Select the Nth thread that has had an event. */
5b6d1e4f 3383 for (thread_info *tp : inf->non_exited_threads ())
08036331 3384 if (has_event (tp))
372316f1 3385 if (random_selector-- == 0)
08036331 3386 return tp;
372316f1 3387
08036331 3388 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3389}
3390
3391/* Wrapper for target_wait that first checks whether threads have
3392 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3393 more events. INF is the inferior we're using to call target_wait
3394 on. */
372316f1
PA
3395
3396static ptid_t
5b6d1e4f 3397do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3398 target_waitstatus *status, target_wait_flags options)
372316f1
PA
3399{
3400 ptid_t event_ptid;
3401 struct thread_info *tp;
3402
24ed6739
AB
3403 /* We know that we are looking for an event in the target of inferior
3404 INF, but we don't know which thread the event might come from. As
3405 such we want to make sure that INFERIOR_PTID is reset so that none of
3406 the wait code relies on it - doing so is always a mistake. */
3407 switch_to_inferior_no_thread (inf);
3408
372316f1
PA
3409 /* First check if there is a resumed thread with a wait status
3410 pending. */
d7e15655 3411 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3412 {
5b6d1e4f 3413 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3414 }
3415 else
3416 {
1eb8556f
SM
3417 infrun_debug_printf ("Waiting for specific thread %s.",
3418 target_pid_to_str (ptid).c_str ());
372316f1
PA
3419
3420 /* We have a specific thread to check. */
5b6d1e4f 3421 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3422 gdb_assert (tp != NULL);
3423 if (!tp->suspend.waitstatus_pending_p)
3424 tp = NULL;
3425 }
3426
3427 if (tp != NULL
3428 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3429 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3430 {
00431a78 3431 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3432 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3433 CORE_ADDR pc;
3434 int discard = 0;
3435
3436 pc = regcache_read_pc (regcache);
3437
3438 if (pc != tp->suspend.stop_pc)
3439 {
1eb8556f
SM
3440 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3441 target_pid_to_str (tp->ptid).c_str (),
3442 paddress (gdbarch, tp->suspend.stop_pc),
3443 paddress (gdbarch, pc));
372316f1
PA
3444 discard = 1;
3445 }
a01bda52 3446 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3447 {
1eb8556f
SM
3448 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3449 target_pid_to_str (tp->ptid).c_str (),
3450 paddress (gdbarch, pc));
372316f1
PA
3451
3452 discard = 1;
3453 }
3454
3455 if (discard)
3456 {
1eb8556f
SM
3457 infrun_debug_printf ("pending event of %s cancelled.",
3458 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3459
3460 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3461 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3462 }
3463 }
3464
3465 if (tp != NULL)
3466 {
1eb8556f
SM
3467 infrun_debug_printf ("Using pending wait status %s for %s.",
3468 target_waitstatus_to_string
3469 (&tp->suspend.waitstatus).c_str (),
3470 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3471
3472 /* Now that we've selected our final event LWP, un-adjust its PC
3473 if it was a software breakpoint (and the target doesn't
3474 always adjust the PC itself). */
3475 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3476 && !target_supports_stopped_by_sw_breakpoint ())
3477 {
3478 struct regcache *regcache;
3479 struct gdbarch *gdbarch;
3480 int decr_pc;
3481
00431a78 3482 regcache = get_thread_regcache (tp);
ac7936df 3483 gdbarch = regcache->arch ();
372316f1
PA
3484
3485 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3486 if (decr_pc != 0)
3487 {
3488 CORE_ADDR pc;
3489
3490 pc = regcache_read_pc (regcache);
3491 regcache_write_pc (regcache, pc + decr_pc);
3492 }
3493 }
3494
3495 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3496 *status = tp->suspend.waitstatus;
3497 tp->suspend.waitstatus_pending_p = 0;
3498
3499 /* Wake up the event loop again, until all pending events are
3500 processed. */
3501 if (target_is_async_p ())
3502 mark_async_event_handler (infrun_async_inferior_event_token);
3503 return tp->ptid;
3504 }
3505
3506 /* But if we don't find one, we'll have to wait. */
3507
d3a07122
SM
3508 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3509 a blocking wait. */
3510 if (!target_can_async_p ())
3511 options &= ~TARGET_WNOHANG;
3512
372316f1
PA
3513 if (deprecated_target_wait_hook)
3514 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3515 else
3516 event_ptid = target_wait (ptid, status, options);
3517
3518 return event_ptid;
3519}
3520
5b6d1e4f
PA
3521/* Wrapper for target_wait that first checks whether threads have
3522 pending statuses to report before actually asking the target for
b3e3a4c1 3523 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3524
3525static bool
b60cea74
TT
3526do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3527 target_wait_flags options)
5b6d1e4f
PA
3528{
3529 int num_inferiors = 0;
3530 int random_selector;
3531
b3e3a4c1
SM
3532 /* For fairness, we pick the first inferior/target to poll at random
3533 out of all inferiors that may report events, and then continue
3534 polling the rest of the inferior list starting from that one in a
3535 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3536
3537 auto inferior_matches = [&wait_ptid] (inferior *inf)
3538 {
3539 return (inf->process_target () != NULL
5b6d1e4f
PA
3540 && ptid_t (inf->pid).matches (wait_ptid));
3541 };
3542
b3e3a4c1 3543 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3544 for (inferior *inf : all_inferiors ())
3545 if (inferior_matches (inf))
3546 num_inferiors++;
3547
3548 if (num_inferiors == 0)
3549 {
3550 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3551 return false;
3552 }
3553
b3e3a4c1 3554 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3555 random_selector = (int)
3556 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3557
1eb8556f
SM
3558 if (num_inferiors > 1)
3559 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3560 num_inferiors, random_selector);
5b6d1e4f 3561
b3e3a4c1 3562 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3563
3564 inferior *selected = nullptr;
3565
3566 for (inferior *inf : all_inferiors ())
3567 if (inferior_matches (inf))
3568 if (random_selector-- == 0)
3569 {
3570 selected = inf;
3571 break;
3572 }
3573
b3e3a4c1 3574 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3575 targets, starting from the selected one. */
3576
3577 auto do_wait = [&] (inferior *inf)
3578 {
5b6d1e4f
PA
3579 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3580 ecs->target = inf->process_target ();
3581 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3582 };
3583
b3e3a4c1
SM
3584 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3585 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3586 reported the stop to the user, polling for events. */
3587 scoped_restore_current_thread restore_thread;
3588
3589 int inf_num = selected->num;
3590 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3591 if (inferior_matches (inf))
3592 if (do_wait (inf))
3593 return true;
3594
3595 for (inferior *inf = inferior_list;
3596 inf != NULL && inf->num < inf_num;
3597 inf = inf->next)
3598 if (inferior_matches (inf))
3599 if (do_wait (inf))
3600 return true;
3601
3602 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3603 return false;
3604}
3605
24291992
PA
3606/* Prepare and stabilize the inferior for detaching it. E.g.,
3607 detaching while a thread is displaced stepping is a recipe for
3608 crashing it, as nothing would readjust the PC out of the scratch
3609 pad. */
3610
3611void
3612prepare_for_detach (void)
3613{
3614 struct inferior *inf = current_inferior ();
f2907e49 3615 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3616
00431a78 3617 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3618
3619 /* Is any thread of this process displaced stepping? If not,
3620 there's nothing else to do. */
d20172fc 3621 if (displaced->step_thread == nullptr)
24291992
PA
3622 return;
3623
1eb8556f 3624 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3625
9bcb1f16 3626 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3627
00431a78 3628 while (displaced->step_thread != nullptr)
24291992 3629 {
24291992
PA
3630 struct execution_control_state ecss;
3631 struct execution_control_state *ecs;
3632
3633 ecs = &ecss;
3634 memset (ecs, 0, sizeof (*ecs));
3635
3636 overlay_cache_invalid = 1;
f15cb84a
YQ
3637 /* Flush target cache before starting to handle each event.
3638 Target was running and cache could be stale. This is just a
3639 heuristic. Running threads may modify target memory, but we
3640 don't get any event. */
3641 target_dcache_invalidate ();
24291992 3642
5b6d1e4f 3643 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3644
3645 if (debug_infrun)
3646 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3647
3648 /* If an error happens while handling the event, propagate GDB's
3649 knowledge of the executing state to the frontend/user running
3650 state. */
5b6d1e4f
PA
3651 scoped_finish_thread_state finish_state (inf->process_target (),
3652 minus_one_ptid);
24291992
PA
3653
3654 /* Now figure out what to do with the result of the result. */
3655 handle_inferior_event (ecs);
3656
3657 /* No error, don't finish the state yet. */
731f534f 3658 finish_state.release ();
24291992
PA
3659
3660 /* Breakpoints and watchpoints are not installed on the target
3661 at this point, and signals are passed directly to the
3662 inferior, so this must mean the process is gone. */
3663 if (!ecs->wait_some_more)
3664 {
9bcb1f16 3665 restore_detaching.release ();
24291992
PA
3666 error (_("Program exited while detaching"));
3667 }
3668 }
3669
9bcb1f16 3670 restore_detaching.release ();
24291992
PA
3671}
3672
cd0fc7c3 3673/* Wait for control to return from inferior to debugger.
ae123ec6 3674
cd0fc7c3
SS
3675 If inferior gets a signal, we may decide to start it up again
3676 instead of returning. That is why there is a loop in this function.
3677 When this function actually returns it means the inferior
3678 should be left stopped and GDB should read more commands. */
3679
5b6d1e4f
PA
3680static void
3681wait_for_inferior (inferior *inf)
cd0fc7c3 3682{
1eb8556f 3683 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3684
4c41382a 3685 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3686
e6f5c25b
PA
3687 /* If an error happens while handling the event, propagate GDB's
3688 knowledge of the executing state to the frontend/user running
3689 state. */
5b6d1e4f
PA
3690 scoped_finish_thread_state finish_state
3691 (inf->process_target (), minus_one_ptid);
e6f5c25b 3692
c906108c
SS
3693 while (1)
3694 {
ae25568b
PA
3695 struct execution_control_state ecss;
3696 struct execution_control_state *ecs = &ecss;
29f49a6a 3697
ae25568b
PA
3698 memset (ecs, 0, sizeof (*ecs));
3699
ec9499be 3700 overlay_cache_invalid = 1;
ec9499be 3701
f15cb84a
YQ
3702 /* Flush target cache before starting to handle each event.
3703 Target was running and cache could be stale. This is just a
3704 heuristic. Running threads may modify target memory, but we
3705 don't get any event. */
3706 target_dcache_invalidate ();
3707
5b6d1e4f
PA
3708 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3709 ecs->target = inf->process_target ();
c906108c 3710
f00150c9 3711 if (debug_infrun)
5b6d1e4f 3712 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3713
cd0fc7c3
SS
3714 /* Now figure out what to do with the result of the result. */
3715 handle_inferior_event (ecs);
c906108c 3716
cd0fc7c3
SS
3717 if (!ecs->wait_some_more)
3718 break;
3719 }
4e1c45ea 3720
e6f5c25b 3721 /* No error, don't finish the state yet. */
731f534f 3722 finish_state.release ();
cd0fc7c3 3723}
c906108c 3724
d3d4baed
PA
3725/* Cleanup that reinstalls the readline callback handler, if the
3726 target is running in the background. If while handling the target
3727 event something triggered a secondary prompt, like e.g., a
3728 pagination prompt, we'll have removed the callback handler (see
3729 gdb_readline_wrapper_line). Need to do this as we go back to the
3730 event loop, ready to process further input. Note this has no
3731 effect if the handler hasn't actually been removed, because calling
3732 rl_callback_handler_install resets the line buffer, thus losing
3733 input. */
3734
3735static void
d238133d 3736reinstall_readline_callback_handler_cleanup ()
d3d4baed 3737{
3b12939d
PA
3738 struct ui *ui = current_ui;
3739
3740 if (!ui->async)
6c400b59
PA
3741 {
3742 /* We're not going back to the top level event loop yet. Don't
3743 install the readline callback, as it'd prep the terminal,
3744 readline-style (raw, noecho) (e.g., --batch). We'll install
3745 it the next time the prompt is displayed, when we're ready
3746 for input. */
3747 return;
3748 }
3749
3b12939d 3750 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3751 gdb_rl_callback_handler_reinstall ();
3752}
3753
243a9253
PA
3754/* Clean up the FSMs of threads that are now stopped. In non-stop,
3755 that's just the event thread. In all-stop, that's all threads. */
3756
3757static void
3758clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3759{
08036331
PA
3760 if (ecs->event_thread != NULL
3761 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3762 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3763
3764 if (!non_stop)
3765 {
08036331 3766 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 3767 {
243a9253
PA
3768 if (thr->thread_fsm == NULL)
3769 continue;
3770 if (thr == ecs->event_thread)
3771 continue;
3772
00431a78 3773 switch_to_thread (thr);
46e3ed7f 3774 thr->thread_fsm->clean_up (thr);
243a9253
PA
3775 }
3776
3777 if (ecs->event_thread != NULL)
00431a78 3778 switch_to_thread (ecs->event_thread);
243a9253
PA
3779 }
3780}
3781
3b12939d
PA
3782/* Helper for all_uis_check_sync_execution_done that works on the
3783 current UI. */
3784
3785static void
3786check_curr_ui_sync_execution_done (void)
3787{
3788 struct ui *ui = current_ui;
3789
3790 if (ui->prompt_state == PROMPT_NEEDED
3791 && ui->async
3792 && !gdb_in_secondary_prompt_p (ui))
3793 {
223ffa71 3794 target_terminal::ours ();
76727919 3795 gdb::observers::sync_execution_done.notify ();
3eb7562a 3796 ui_register_input_event_handler (ui);
3b12939d
PA
3797 }
3798}
3799
3800/* See infrun.h. */
3801
3802void
3803all_uis_check_sync_execution_done (void)
3804{
0e454242 3805 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3806 {
3807 check_curr_ui_sync_execution_done ();
3808 }
3809}
3810
a8836c93
PA
3811/* See infrun.h. */
3812
3813void
3814all_uis_on_sync_execution_starting (void)
3815{
0e454242 3816 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3817 {
3818 if (current_ui->prompt_state == PROMPT_NEEDED)
3819 async_disable_stdin ();
3820 }
3821}
3822
1777feb0 3823/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3824 event loop whenever a change of state is detected on the file
1777feb0
MS
3825 descriptor corresponding to the target. It can be called more than
3826 once to complete a single execution command. In such cases we need
3827 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3828 that this function is called for a single execution command, then
3829 report to the user that the inferior has stopped, and do the
1777feb0 3830 necessary cleanups. */
43ff13b4
JM
3831
3832void
b1a35af2 3833fetch_inferior_event ()
43ff13b4 3834{
0d1e5fa7 3835 struct execution_control_state ecss;
a474d7c2 3836 struct execution_control_state *ecs = &ecss;
0f641c01 3837 int cmd_done = 0;
43ff13b4 3838
0d1e5fa7
PA
3839 memset (ecs, 0, sizeof (*ecs));
3840
c61db772
PA
3841 /* Events are always processed with the main UI as current UI. This
3842 way, warnings, debug output, etc. are always consistently sent to
3843 the main console. */
4b6749b9 3844 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3845
b78b3a29
TBA
3846 /* Temporarily disable pagination. Otherwise, the user would be
3847 given an option to press 'q' to quit, which would cause an early
3848 exit and could leave GDB in a half-baked state. */
3849 scoped_restore save_pagination
3850 = make_scoped_restore (&pagination_enabled, false);
3851
d3d4baed 3852 /* End up with readline processing input, if necessary. */
d238133d
TT
3853 {
3854 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3855
3856 /* We're handling a live event, so make sure we're doing live
3857 debugging. If we're looking at traceframes while the target is
3858 running, we're going to need to get back to that mode after
3859 handling the event. */
3860 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3861 if (non_stop)
3862 {
3863 maybe_restore_traceframe.emplace ();
3864 set_current_traceframe (-1);
3865 }
43ff13b4 3866
873657b9
PA
3867 /* The user/frontend should not notice a thread switch due to
3868 internal events. Make sure we revert to the user selected
3869 thread and frame after handling the event and running any
3870 breakpoint commands. */
3871 scoped_restore_current_thread restore_thread;
d238133d
TT
3872
3873 overlay_cache_invalid = 1;
3874 /* Flush target cache before starting to handle each event. Target
3875 was running and cache could be stale. This is just a heuristic.
3876 Running threads may modify target memory, but we don't get any
3877 event. */
3878 target_dcache_invalidate ();
3879
3880 scoped_restore save_exec_dir
3881 = make_scoped_restore (&execution_direction,
3882 target_execution_direction ());
3883
5b6d1e4f
PA
3884 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3885 return;
3886
3887 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3888
3889 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
3890 target calls. */
3891 switch_to_target_no_thread (ecs->target);
d238133d
TT
3892
3893 if (debug_infrun)
5b6d1e4f 3894 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3895
3896 /* If an error happens while handling the event, propagate GDB's
3897 knowledge of the executing state to the frontend/user running
3898 state. */
3899 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3900 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3901
979a0d13 3902 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3903 still for the thread which has thrown the exception. */
3904 auto defer_bpstat_clear
3905 = make_scope_exit (bpstat_clear_actions);
3906 auto defer_delete_threads
3907 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3908
3909 /* Now figure out what to do with the result of the result. */
3910 handle_inferior_event (ecs);
3911
3912 if (!ecs->wait_some_more)
3913 {
5b6d1e4f 3914 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 3915 bool should_stop = true;
d238133d 3916 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3917
d238133d 3918 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3919
d238133d
TT
3920 if (thr != NULL)
3921 {
3922 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3923
d238133d 3924 if (thread_fsm != NULL)
46e3ed7f 3925 should_stop = thread_fsm->should_stop (thr);
d238133d 3926 }
243a9253 3927
d238133d
TT
3928 if (!should_stop)
3929 {
3930 keep_going (ecs);
3931 }
3932 else
3933 {
46e3ed7f 3934 bool should_notify_stop = true;
d238133d 3935 int proceeded = 0;
1840d81a 3936
d238133d 3937 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3938
d238133d 3939 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3940 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3941
d238133d
TT
3942 if (should_notify_stop)
3943 {
3944 /* We may not find an inferior if this was a process exit. */
3945 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3946 proceeded = normal_stop ();
3947 }
243a9253 3948
d238133d
TT
3949 if (!proceeded)
3950 {
b1a35af2 3951 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
3952 cmd_done = 1;
3953 }
873657b9
PA
3954
3955 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3956 previously selected thread is gone. We have two
3957 choices - switch to no thread selected, or restore the
3958 previously selected thread (now exited). We chose the
3959 later, just because that's what GDB used to do. After
3960 this, "info threads" says "The current thread <Thread
3961 ID 2> has terminated." instead of "No thread
3962 selected.". */
3963 if (!non_stop
3964 && cmd_done
3965 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3966 restore_thread.dont_restore ();
d238133d
TT
3967 }
3968 }
4f8d22e3 3969
d238133d
TT
3970 defer_delete_threads.release ();
3971 defer_bpstat_clear.release ();
29f49a6a 3972
d238133d
TT
3973 /* No error, don't finish the thread states yet. */
3974 finish_state.release ();
731f534f 3975
d238133d
TT
3976 /* This scope is used to ensure that readline callbacks are
3977 reinstalled here. */
3978 }
4f8d22e3 3979
3b12939d
PA
3980 /* If a UI was in sync execution mode, and now isn't, restore its
3981 prompt (a synchronous execution command has finished, and we're
3982 ready for input). */
3983 all_uis_check_sync_execution_done ();
0f641c01
PA
3984
3985 if (cmd_done
0f641c01 3986 && exec_done_display_p
00431a78
PA
3987 && (inferior_ptid == null_ptid
3988 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3989 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3990}
3991
29734269
SM
3992/* See infrun.h. */
3993
edb3359d 3994void
29734269
SM
3995set_step_info (thread_info *tp, struct frame_info *frame,
3996 struct symtab_and_line sal)
edb3359d 3997{
29734269
SM
3998 /* This can be removed once this function no longer implicitly relies on the
3999 inferior_ptid value. */
4000 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4001
16c381f0
JK
4002 tp->control.step_frame_id = get_frame_id (frame);
4003 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4004
4005 tp->current_symtab = sal.symtab;
4006 tp->current_line = sal.line;
4007}
4008
0d1e5fa7
PA
4009/* Clear context switchable stepping state. */
4010
4011void
4e1c45ea 4012init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4013{
7f5ef605 4014 tss->stepped_breakpoint = 0;
0d1e5fa7 4015 tss->stepping_over_breakpoint = 0;
963f9c80 4016 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4017 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4018}
4019
ab1ddbcf 4020/* See infrun.h. */
c32c64b7 4021
6efcd9a8 4022void
5b6d1e4f
PA
4023set_last_target_status (process_stratum_target *target, ptid_t ptid,
4024 target_waitstatus status)
c32c64b7 4025{
5b6d1e4f 4026 target_last_proc_target = target;
c32c64b7
DE
4027 target_last_wait_ptid = ptid;
4028 target_last_waitstatus = status;
4029}
4030
ab1ddbcf 4031/* See infrun.h. */
e02bc4cc
DS
4032
4033void
5b6d1e4f
PA
4034get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4035 target_waitstatus *status)
e02bc4cc 4036{
5b6d1e4f
PA
4037 if (target != nullptr)
4038 *target = target_last_proc_target;
ab1ddbcf
PA
4039 if (ptid != nullptr)
4040 *ptid = target_last_wait_ptid;
4041 if (status != nullptr)
4042 *status = target_last_waitstatus;
e02bc4cc
DS
4043}
4044
ab1ddbcf
PA
4045/* See infrun.h. */
4046
ac264b3b
MS
4047void
4048nullify_last_target_wait_ptid (void)
4049{
5b6d1e4f 4050 target_last_proc_target = nullptr;
ac264b3b 4051 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4052 target_last_waitstatus = {};
ac264b3b
MS
4053}
4054
dcf4fbde 4055/* Switch thread contexts. */
dd80620e
MS
4056
4057static void
00431a78 4058context_switch (execution_control_state *ecs)
dd80620e 4059{
1eb8556f 4060 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4061 && (inferior_ptid == null_ptid
4062 || ecs->event_thread != inferior_thread ()))
fd48f117 4063 {
1eb8556f
SM
4064 infrun_debug_printf ("Switching context from %s to %s",
4065 target_pid_to_str (inferior_ptid).c_str (),
4066 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4067 }
4068
00431a78 4069 switch_to_thread (ecs->event_thread);
dd80620e
MS
4070}
4071
d8dd4d5f
PA
4072/* If the target can't tell whether we've hit breakpoints
4073 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4074 check whether that could have been caused by a breakpoint. If so,
4075 adjust the PC, per gdbarch_decr_pc_after_break. */
4076
4fa8626c 4077static void
d8dd4d5f
PA
4078adjust_pc_after_break (struct thread_info *thread,
4079 struct target_waitstatus *ws)
4fa8626c 4080{
24a73cce
UW
4081 struct regcache *regcache;
4082 struct gdbarch *gdbarch;
118e6252 4083 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4084
4fa8626c
DJ
4085 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4086 we aren't, just return.
9709f61c
DJ
4087
4088 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4089 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4090 implemented by software breakpoints should be handled through the normal
4091 breakpoint layer.
8fb3e588 4092
4fa8626c
DJ
4093 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4094 different signals (SIGILL or SIGEMT for instance), but it is less
4095 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4096 gdbarch_decr_pc_after_break. I don't know any specific target that
4097 generates these signals at breakpoints (the code has been in GDB since at
4098 least 1992) so I can not guess how to handle them here.
8fb3e588 4099
e6cf7916
UW
4100 In earlier versions of GDB, a target with
4101 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4102 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4103 target with both of these set in GDB history, and it seems unlikely to be
4104 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4105
d8dd4d5f 4106 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4107 return;
4108
d8dd4d5f 4109 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4110 return;
4111
4058b839
PA
4112 /* In reverse execution, when a breakpoint is hit, the instruction
4113 under it has already been de-executed. The reported PC always
4114 points at the breakpoint address, so adjusting it further would
4115 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4116 architecture:
4117
4118 B1 0x08000000 : INSN1
4119 B2 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 PC -> 0x08000003 : INSN4
4122
4123 Say you're stopped at 0x08000003 as above. Reverse continuing
4124 from that point should hit B2 as below. Reading the PC when the
4125 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4126 been de-executed already.
4127
4128 B1 0x08000000 : INSN1
4129 B2 PC -> 0x08000001 : INSN2
4130 0x08000002 : INSN3
4131 0x08000003 : INSN4
4132
4133 We can't apply the same logic as for forward execution, because
4134 we would wrongly adjust the PC to 0x08000000, since there's a
4135 breakpoint at PC - 1. We'd then report a hit on B1, although
4136 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4137 behaviour. */
4138 if (execution_direction == EXEC_REVERSE)
4139 return;
4140
1cf4d951
PA
4141 /* If the target can tell whether the thread hit a SW breakpoint,
4142 trust it. Targets that can tell also adjust the PC
4143 themselves. */
4144 if (target_supports_stopped_by_sw_breakpoint ())
4145 return;
4146
4147 /* Note that relying on whether a breakpoint is planted in memory to
4148 determine this can fail. E.g,. the breakpoint could have been
4149 removed since. Or the thread could have been told to step an
4150 instruction the size of a breakpoint instruction, and only
4151 _after_ was a breakpoint inserted at its address. */
4152
24a73cce
UW
4153 /* If this target does not decrement the PC after breakpoints, then
4154 we have nothing to do. */
00431a78 4155 regcache = get_thread_regcache (thread);
ac7936df 4156 gdbarch = regcache->arch ();
118e6252 4157
527a273a 4158 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4159 if (decr_pc == 0)
24a73cce
UW
4160 return;
4161
8b86c959 4162 const address_space *aspace = regcache->aspace ();
6c95b8df 4163
8aad930b
AC
4164 /* Find the location where (if we've hit a breakpoint) the
4165 breakpoint would be. */
118e6252 4166 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4167
1cf4d951
PA
4168 /* If the target can't tell whether a software breakpoint triggered,
4169 fallback to figuring it out based on breakpoints we think were
4170 inserted in the target, and on whether the thread was stepped or
4171 continued. */
4172
1c5cfe86
PA
4173 /* Check whether there actually is a software breakpoint inserted at
4174 that location.
4175
4176 If in non-stop mode, a race condition is possible where we've
4177 removed a breakpoint, but stop events for that breakpoint were
4178 already queued and arrive later. To suppress those spurious
4179 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4180 and retire them after a number of stop events are reported. Note
4181 this is an heuristic and can thus get confused. The real fix is
4182 to get the "stopped by SW BP and needs adjustment" info out of
4183 the target/kernel (and thus never reach here; see above). */
6c95b8df 4184 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4185 || (target_is_non_stop_p ()
4186 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4187 {
07036511 4188 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4189
8213266a 4190 if (record_full_is_used ())
07036511
TT
4191 restore_operation_disable.emplace
4192 (record_full_gdb_operation_disable_set ());
96429cc8 4193
1c0fdd0e
UW
4194 /* When using hardware single-step, a SIGTRAP is reported for both
4195 a completed single-step and a software breakpoint. Need to
4196 differentiate between the two, as the latter needs adjusting
4197 but the former does not.
4198
4199 The SIGTRAP can be due to a completed hardware single-step only if
4200 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4201 - this thread is currently being stepped
4202
4203 If any of these events did not occur, we must have stopped due
4204 to hitting a software breakpoint, and have to back up to the
4205 breakpoint address.
4206
4207 As a special case, we could have hardware single-stepped a
4208 software breakpoint. In this case (prev_pc == breakpoint_pc),
4209 we also need to back up to the breakpoint address. */
4210
d8dd4d5f
PA
4211 if (thread_has_single_step_breakpoints_set (thread)
4212 || !currently_stepping (thread)
4213 || (thread->stepped_breakpoint
4214 && thread->prev_pc == breakpoint_pc))
515630c5 4215 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4216 }
4fa8626c
DJ
4217}
4218
c4464ade 4219static bool
edb3359d
DJ
4220stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4221{
4222 for (frame = get_prev_frame (frame);
4223 frame != NULL;
4224 frame = get_prev_frame (frame))
4225 {
4226 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4227 return true;
4228
edb3359d
DJ
4229 if (get_frame_type (frame) != INLINE_FRAME)
4230 break;
4231 }
4232
c4464ade 4233 return false;
edb3359d
DJ
4234}
4235
4a4c04f1
BE
4236/* Look for an inline frame that is marked for skip.
4237 If PREV_FRAME is TRUE start at the previous frame,
4238 otherwise start at the current frame. Stop at the
4239 first non-inline frame, or at the frame where the
4240 step started. */
4241
4242static bool
4243inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4244{
4245 struct frame_info *frame = get_current_frame ();
4246
4247 if (prev_frame)
4248 frame = get_prev_frame (frame);
4249
4250 for (; frame != NULL; frame = get_prev_frame (frame))
4251 {
4252 const char *fn = NULL;
4253 symtab_and_line sal;
4254 struct symbol *sym;
4255
4256 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4257 break;
4258 if (get_frame_type (frame) != INLINE_FRAME)
4259 break;
4260
4261 sal = find_frame_sal (frame);
4262 sym = get_frame_function (frame);
4263
4264 if (sym != NULL)
4265 fn = sym->print_name ();
4266
4267 if (sal.line != 0
4268 && function_name_is_marked_for_skip (fn, sal))
4269 return true;
4270 }
4271
4272 return false;
4273}
4274
c65d6b55
PA
4275/* If the event thread has the stop requested flag set, pretend it
4276 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4277 target_stop). */
4278
4279static bool
4280handle_stop_requested (struct execution_control_state *ecs)
4281{
4282 if (ecs->event_thread->stop_requested)
4283 {
4284 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4285 ecs->ws.value.sig = GDB_SIGNAL_0;
4286 handle_signal_stop (ecs);
4287 return true;
4288 }
4289 return false;
4290}
4291
a96d9b2e 4292/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4293 It returns true if the inferior should keep going (and GDB
4294 should ignore the event), or false if the event deserves to be
a96d9b2e 4295 processed. */
ca2163eb 4296
c4464ade 4297static bool
ca2163eb 4298handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4299{
ca2163eb 4300 struct regcache *regcache;
ca2163eb
PA
4301 int syscall_number;
4302
00431a78 4303 context_switch (ecs);
ca2163eb 4304
00431a78 4305 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4306 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4307 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4308
a96d9b2e
SDJ
4309 if (catch_syscall_enabled () > 0
4310 && catching_syscall_number (syscall_number) > 0)
4311 {
1eb8556f 4312 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4313
16c381f0 4314 ecs->event_thread->control.stop_bpstat
a01bda52 4315 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4316 ecs->event_thread->suspend.stop_pc,
4317 ecs->event_thread, &ecs->ws);
ab04a2af 4318
c65d6b55 4319 if (handle_stop_requested (ecs))
c4464ade 4320 return false;
c65d6b55 4321
ce12b012 4322 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4323 {
4324 /* Catchpoint hit. */
c4464ade 4325 return false;
ca2163eb 4326 }
a96d9b2e 4327 }
ca2163eb 4328
c65d6b55 4329 if (handle_stop_requested (ecs))
c4464ade 4330 return false;
c65d6b55 4331
ca2163eb 4332 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4333 keep_going (ecs);
c4464ade
SM
4334
4335 return true;
a96d9b2e
SDJ
4336}
4337
7e324e48
GB
4338/* Lazily fill in the execution_control_state's stop_func_* fields. */
4339
4340static void
4341fill_in_stop_func (struct gdbarch *gdbarch,
4342 struct execution_control_state *ecs)
4343{
4344 if (!ecs->stop_func_filled_in)
4345 {
98a617f8 4346 const block *block;
fe830662 4347 const general_symbol_info *gsi;
98a617f8 4348
7e324e48
GB
4349 /* Don't care about return value; stop_func_start and stop_func_name
4350 will both be 0 if it doesn't work. */
fe830662
TT
4351 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4352 &gsi,
4353 &ecs->stop_func_start,
4354 &ecs->stop_func_end,
4355 &block);
4356 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4357
4358 /* The call to find_pc_partial_function, above, will set
4359 stop_func_start and stop_func_end to the start and end
4360 of the range containing the stop pc. If this range
4361 contains the entry pc for the block (which is always the
4362 case for contiguous blocks), advance stop_func_start past
4363 the function's start offset and entrypoint. Note that
4364 stop_func_start is NOT advanced when in a range of a
4365 non-contiguous block that does not contain the entry pc. */
4366 if (block != nullptr
4367 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4368 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4369 {
4370 ecs->stop_func_start
4371 += gdbarch_deprecated_function_start_offset (gdbarch);
4372
4373 if (gdbarch_skip_entrypoint_p (gdbarch))
4374 ecs->stop_func_start
4375 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4376 }
591a12a1 4377
7e324e48
GB
4378 ecs->stop_func_filled_in = 1;
4379 }
4380}
4381
4f5d7f63 4382
00431a78 4383/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4384
4385static enum stop_kind
00431a78 4386get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4387{
5b6d1e4f 4388 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4389
4390 gdb_assert (inf != NULL);
4391 return inf->control.stop_soon;
4392}
4393
5b6d1e4f
PA
4394/* Poll for one event out of the current target. Store the resulting
4395 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4396
4397static ptid_t
5b6d1e4f 4398poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4399{
4400 ptid_t event_ptid;
372316f1
PA
4401
4402 overlay_cache_invalid = 1;
4403
4404 /* Flush target cache before starting to handle each event.
4405 Target was running and cache could be stale. This is just a
4406 heuristic. Running threads may modify target memory, but we
4407 don't get any event. */
4408 target_dcache_invalidate ();
4409
4410 if (deprecated_target_wait_hook)
5b6d1e4f 4411 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4412 else
5b6d1e4f 4413 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4414
4415 if (debug_infrun)
5b6d1e4f 4416 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4417
4418 return event_ptid;
4419}
4420
5b6d1e4f
PA
4421/* An event reported by wait_one. */
4422
4423struct wait_one_event
4424{
4425 /* The target the event came out of. */
4426 process_stratum_target *target;
4427
4428 /* The PTID the event was for. */
4429 ptid_t ptid;
4430
4431 /* The waitstatus. */
4432 target_waitstatus ws;
4433};
4434
4435/* Wait for one event out of any target. */
4436
4437static wait_one_event
4438wait_one ()
4439{
4440 while (1)
4441 {
4442 for (inferior *inf : all_inferiors ())
4443 {
4444 process_stratum_target *target = inf->process_target ();
4445 if (target == NULL
4446 || !target->is_async_p ()
4447 || !target->threads_executing)
4448 continue;
4449
4450 switch_to_inferior_no_thread (inf);
4451
4452 wait_one_event event;
4453 event.target = target;
4454 event.ptid = poll_one_curr_target (&event.ws);
4455
4456 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4457 {
4458 /* If nothing is resumed, remove the target from the
4459 event loop. */
4460 target_async (0);
4461 }
4462 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4463 return event;
4464 }
4465
4466 /* Block waiting for some event. */
4467
4468 fd_set readfds;
4469 int nfds = 0;
4470
4471 FD_ZERO (&readfds);
4472
4473 for (inferior *inf : all_inferiors ())
4474 {
4475 process_stratum_target *target = inf->process_target ();
4476 if (target == NULL
4477 || !target->is_async_p ()
4478 || !target->threads_executing)
4479 continue;
4480
4481 int fd = target->async_wait_fd ();
4482 FD_SET (fd, &readfds);
4483 if (nfds <= fd)
4484 nfds = fd + 1;
4485 }
4486
4487 if (nfds == 0)
4488 {
4489 /* No waitable targets left. All must be stopped. */
4490 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4491 }
4492
4493 QUIT;
4494
4495 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4496 if (numfds < 0)
4497 {
4498 if (errno == EINTR)
4499 continue;
4500 else
4501 perror_with_name ("interruptible_select");
4502 }
4503 }
4504}
4505
372316f1
PA
4506/* Save the thread's event and stop reason to process it later. */
4507
4508static void
5b6d1e4f 4509save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4510{
1eb8556f
SM
4511 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4512 target_waitstatus_to_string (ws).c_str (),
4513 tp->ptid.pid (),
4514 tp->ptid.lwp (),
4515 tp->ptid.tid ());
372316f1
PA
4516
4517 /* Record for later. */
4518 tp->suspend.waitstatus = *ws;
4519 tp->suspend.waitstatus_pending_p = 1;
4520
00431a78 4521 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4522 const address_space *aspace = regcache->aspace ();
372316f1
PA
4523
4524 if (ws->kind == TARGET_WAITKIND_STOPPED
4525 && ws->value.sig == GDB_SIGNAL_TRAP)
4526 {
4527 CORE_ADDR pc = regcache_read_pc (regcache);
4528
4529 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4530
18493a00
PA
4531 scoped_restore_current_thread restore_thread;
4532 switch_to_thread (tp);
4533
4534 if (target_stopped_by_watchpoint ())
372316f1
PA
4535 {
4536 tp->suspend.stop_reason
4537 = TARGET_STOPPED_BY_WATCHPOINT;
4538 }
4539 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4540 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4541 {
4542 tp->suspend.stop_reason
4543 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4544 }
4545 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4546 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4547 {
4548 tp->suspend.stop_reason
4549 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4550 }
4551 else if (!target_supports_stopped_by_hw_breakpoint ()
4552 && hardware_breakpoint_inserted_here_p (aspace,
4553 pc))
4554 {
4555 tp->suspend.stop_reason
4556 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4557 }
4558 else if (!target_supports_stopped_by_sw_breakpoint ()
4559 && software_breakpoint_inserted_here_p (aspace,
4560 pc))
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4564 }
4565 else if (!thread_has_single_step_breakpoints_set (tp)
4566 && currently_stepping (tp))
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_SINGLE_STEP;
4570 }
4571 }
4572}
4573
293b3ebc
TBA
4574/* Mark the non-executing threads accordingly. In all-stop, all
4575 threads of all processes are stopped when we get any event
4576 reported. In non-stop mode, only the event thread stops. */
4577
4578static void
4579mark_non_executing_threads (process_stratum_target *target,
4580 ptid_t event_ptid,
4581 struct target_waitstatus ws)
4582{
4583 ptid_t mark_ptid;
4584
4585 if (!target_is_non_stop_p ())
4586 mark_ptid = minus_one_ptid;
4587 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4588 || ws.kind == TARGET_WAITKIND_EXITED)
4589 {
4590 /* If we're handling a process exit in non-stop mode, even
4591 though threads haven't been deleted yet, one would think
4592 that there is nothing to do, as threads of the dead process
4593 will be soon deleted, and threads of any other process were
4594 left running. However, on some targets, threads survive a
4595 process exit event. E.g., for the "checkpoint" command,
4596 when the current checkpoint/fork exits, linux-fork.c
4597 automatically switches to another fork from within
4598 target_mourn_inferior, by associating the same
4599 inferior/thread to another fork. We haven't mourned yet at
4600 this point, but we must mark any threads left in the
4601 process as not-executing so that finish_thread_state marks
4602 them stopped (in the user's perspective) if/when we present
4603 the stop to the user. */
4604 mark_ptid = ptid_t (event_ptid.pid ());
4605 }
4606 else
4607 mark_ptid = event_ptid;
4608
4609 set_executing (target, mark_ptid, false);
4610
4611 /* Likewise the resumed flag. */
4612 set_resumed (target, mark_ptid, false);
4613}
4614
6efcd9a8 4615/* See infrun.h. */
372316f1 4616
6efcd9a8 4617void
372316f1
PA
4618stop_all_threads (void)
4619{
4620 /* We may need multiple passes to discover all threads. */
4621 int pass;
4622 int iterations = 0;
372316f1 4623
53cccef1 4624 gdb_assert (exists_non_stop_target ());
372316f1 4625
1eb8556f 4626 infrun_debug_printf ("starting");
372316f1 4627
00431a78 4628 scoped_restore_current_thread restore_thread;
372316f1 4629
6ad82919
TBA
4630 /* Enable thread events of all targets. */
4631 for (auto *target : all_non_exited_process_targets ())
4632 {
4633 switch_to_target_no_thread (target);
4634 target_thread_events (true);
4635 }
4636
4637 SCOPE_EXIT
4638 {
4639 /* Disable thread events of all targets. */
4640 for (auto *target : all_non_exited_process_targets ())
4641 {
4642 switch_to_target_no_thread (target);
4643 target_thread_events (false);
4644 }
4645
17417fb0 4646 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 4647 name. */
6ad82919 4648 if (debug_infrun)
17417fb0 4649 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 4650 };
65706a29 4651
372316f1
PA
4652 /* Request threads to stop, and then wait for the stops. Because
4653 threads we already know about can spawn more threads while we're
4654 trying to stop them, and we only learn about new threads when we
4655 update the thread list, do this in a loop, and keep iterating
4656 until two passes find no threads that need to be stopped. */
4657 for (pass = 0; pass < 2; pass++, iterations++)
4658 {
1eb8556f 4659 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
4660 while (1)
4661 {
29d6859f 4662 int waits_needed = 0;
372316f1 4663
a05575d3
TBA
4664 for (auto *target : all_non_exited_process_targets ())
4665 {
4666 switch_to_target_no_thread (target);
4667 update_thread_list ();
4668 }
372316f1
PA
4669
4670 /* Go through all threads looking for threads that we need
4671 to tell the target to stop. */
08036331 4672 for (thread_info *t : all_non_exited_threads ())
372316f1 4673 {
53cccef1
TBA
4674 /* For a single-target setting with an all-stop target,
4675 we would not even arrive here. For a multi-target
4676 setting, until GDB is able to handle a mixture of
4677 all-stop and non-stop targets, simply skip all-stop
4678 targets' threads. This should be fine due to the
4679 protection of 'check_multi_target_resumption'. */
4680
4681 switch_to_thread_no_regs (t);
4682 if (!target_is_non_stop_p ())
4683 continue;
4684
372316f1
PA
4685 if (t->executing)
4686 {
4687 /* If already stopping, don't request a stop again.
4688 We just haven't seen the notification yet. */
4689 if (!t->stop_requested)
4690 {
1eb8556f
SM
4691 infrun_debug_printf (" %s executing, need stop",
4692 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4693 target_stop (t->ptid);
4694 t->stop_requested = 1;
4695 }
4696 else
4697 {
1eb8556f
SM
4698 infrun_debug_printf (" %s executing, already stopping",
4699 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4700 }
4701
4702 if (t->stop_requested)
29d6859f 4703 waits_needed++;
372316f1
PA
4704 }
4705 else
4706 {
1eb8556f
SM
4707 infrun_debug_printf (" %s not executing",
4708 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4709
4710 /* The thread may be not executing, but still be
4711 resumed with a pending status to process. */
719546c4 4712 t->resumed = false;
372316f1
PA
4713 }
4714 }
4715
29d6859f 4716 if (waits_needed == 0)
372316f1
PA
4717 break;
4718
4719 /* If we find new threads on the second iteration, restart
4720 over. We want to see two iterations in a row with all
4721 threads stopped. */
4722 if (pass > 0)
4723 pass = -1;
4724
29d6859f 4725 for (int i = 0; i < waits_needed; i++)
c29705b7 4726 {
29d6859f 4727 wait_one_event event = wait_one ();
a05575d3 4728
1eb8556f
SM
4729 infrun_debug_printf
4730 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4731 target_pid_to_str (event.ptid).c_str ());
a05575d3 4732
29d6859f 4733 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4734 {
29d6859f
LM
4735 /* All resumed threads exited. */
4736 break;
a05575d3 4737 }
29d6859f
LM
4738 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4739 || event.ws.kind == TARGET_WAITKIND_EXITED
4740 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4741 {
29d6859f 4742 /* One thread/process exited/signalled. */
6efcd9a8 4743
29d6859f 4744 thread_info *t = nullptr;
372316f1 4745
29d6859f
LM
4746 /* The target may have reported just a pid. If so, try
4747 the first non-exited thread. */
4748 if (event.ptid.is_pid ())
372316f1 4749 {
29d6859f
LM
4750 int pid = event.ptid.pid ();
4751 inferior *inf = find_inferior_pid (event.target, pid);
4752 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4753 {
29d6859f
LM
4754 t = tp;
4755 break;
372316f1 4756 }
29d6859f
LM
4757
4758 /* If there is no available thread, the event would
4759 have to be appended to a per-inferior event list,
4760 which does not exist (and if it did, we'd have
4761 to adjust run control command to be able to
4762 resume such an inferior). We assert here instead
4763 of going into an infinite loop. */
4764 gdb_assert (t != nullptr);
4765
1eb8556f
SM
4766 infrun_debug_printf
4767 ("using %s", target_pid_to_str (t->ptid).c_str ());
29d6859f
LM
4768 }
4769 else
4770 {
4771 t = find_thread_ptid (event.target, event.ptid);
4772 /* Check if this is the first time we see this thread.
4773 Don't bother adding if it individually exited. */
4774 if (t == nullptr
4775 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4776 t = add_thread (event.target, event.ptid);
4777 }
4778
4779 if (t != nullptr)
4780 {
4781 /* Set the threads as non-executing to avoid
4782 another stop attempt on them. */
4783 switch_to_thread_no_regs (t);
4784 mark_non_executing_threads (event.target, event.ptid,
4785 event.ws);
4786 save_waitstatus (t, &event.ws);
4787 t->stop_requested = false;
372316f1
PA
4788 }
4789 }
4790 else
4791 {
29d6859f
LM
4792 thread_info *t = find_thread_ptid (event.target, event.ptid);
4793 if (t == NULL)
4794 t = add_thread (event.target, event.ptid);
372316f1 4795
29d6859f
LM
4796 t->stop_requested = 0;
4797 t->executing = 0;
4798 t->resumed = false;
4799 t->control.may_range_step = 0;
4800
4801 /* This may be the first time we see the inferior report
4802 a stop. */
4803 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4804 if (inf->needs_setup)
372316f1 4805 {
29d6859f
LM
4806 switch_to_thread_no_regs (t);
4807 setup_inferior (0);
372316f1
PA
4808 }
4809
29d6859f
LM
4810 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4811 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4812 {
29d6859f
LM
4813 /* We caught the event that we intended to catch, so
4814 there's no event pending. */
4815 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4816 t->suspend.waitstatus_pending_p = 0;
4817
4818 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4819 {
4820 /* Add it back to the step-over queue. */
1eb8556f
SM
4821 infrun_debug_printf
4822 ("displaced-step of %s canceled: adding back to "
4823 "the step-over queue",
4824 target_pid_to_str (t->ptid).c_str ());
4825
29d6859f
LM
4826 t->control.trap_expected = 0;
4827 thread_step_over_chain_enqueue (t);
4828 }
372316f1 4829 }
29d6859f
LM
4830 else
4831 {
4832 enum gdb_signal sig;
4833 struct regcache *regcache;
372316f1 4834
1eb8556f
SM
4835 infrun_debug_printf
4836 ("target_wait %s, saving status for %d.%ld.%ld",
4837 target_waitstatus_to_string (&event.ws).c_str (),
4838 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
29d6859f
LM
4839
4840 /* Record for later. */
4841 save_waitstatus (t, &event.ws);
4842
4843 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4844 ? event.ws.value.sig : GDB_SIGNAL_0);
4845
4846 if (displaced_step_fixup (t, sig) < 0)
4847 {
4848 /* Add it back to the step-over queue. */
4849 t->control.trap_expected = 0;
4850 thread_step_over_chain_enqueue (t);
4851 }
4852
4853 regcache = get_thread_regcache (t);
4854 t->suspend.stop_pc = regcache_read_pc (regcache);
4855
1eb8556f
SM
4856 infrun_debug_printf ("saved stop_pc=%s for %s "
4857 "(currently_stepping=%d)",
4858 paddress (target_gdbarch (),
4859 t->suspend.stop_pc),
4860 target_pid_to_str (t->ptid).c_str (),
4861 currently_stepping (t));
372316f1
PA
4862 }
4863 }
4864 }
4865 }
4866 }
372316f1
PA
4867}
4868
f4836ba9
PA
4869/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4870
c4464ade 4871static bool
f4836ba9
PA
4872handle_no_resumed (struct execution_control_state *ecs)
4873{
3b12939d 4874 if (target_can_async_p ())
f4836ba9 4875 {
c4464ade 4876 bool any_sync = false;
f4836ba9 4877
2dab0c7b 4878 for (ui *ui : all_uis ())
3b12939d
PA
4879 {
4880 if (ui->prompt_state == PROMPT_BLOCKED)
4881 {
c4464ade 4882 any_sync = true;
3b12939d
PA
4883 break;
4884 }
4885 }
4886 if (!any_sync)
4887 {
4888 /* There were no unwaited-for children left in the target, but,
4889 we're not synchronously waiting for events either. Just
4890 ignore. */
4891
1eb8556f 4892 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 4893 prepare_to_wait (ecs);
c4464ade 4894 return true;
3b12939d 4895 }
f4836ba9
PA
4896 }
4897
4898 /* Otherwise, if we were running a synchronous execution command, we
4899 may need to cancel it and give the user back the terminal.
4900
4901 In non-stop mode, the target can't tell whether we've already
4902 consumed previous stop events, so it can end up sending us a
4903 no-resumed event like so:
4904
4905 #0 - thread 1 is left stopped
4906
4907 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 4908 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
4909
4910 #2 - thread 3 is resumed and exits
dda83cd7 4911 this is the last resumed thread, so
f4836ba9
PA
4912 -> TARGET_WAITKIND_NO_RESUMED
4913
4914 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 4915 it.
f4836ba9
PA
4916
4917 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 4918 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
4919
4920 IOW, if the stop for thread 2 doesn't end a foreground command,
4921 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4922 event. But it could be that the event meant that thread 2 itself
4923 (or whatever other thread was the last resumed thread) exited.
4924
4925 To address this we refresh the thread list and check whether we
4926 have resumed threads _now_. In the example above, this removes
4927 thread 3 from the thread list. If thread 2 was re-resumed, we
4928 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
4929 the synchronous command and show "no unwaited-for " to the
4930 user. */
f4836ba9 4931
d6cc5d98 4932 inferior *curr_inf = current_inferior ();
7d3badc6 4933
d6cc5d98
PA
4934 scoped_restore_current_thread restore_thread;
4935
4936 for (auto *target : all_non_exited_process_targets ())
4937 {
4938 switch_to_target_no_thread (target);
4939 update_thread_list ();
4940 }
4941
4942 /* If:
4943
4944 - the current target has no thread executing, and
4945 - the current inferior is native, and
4946 - the current inferior is the one which has the terminal, and
4947 - we did nothing,
4948
4949 then a Ctrl-C from this point on would remain stuck in the
4950 kernel, until a thread resumes and dequeues it. That would
4951 result in the GDB CLI not reacting to Ctrl-C, not able to
4952 interrupt the program. To address this, if the current inferior
4953 no longer has any thread executing, we give the terminal to some
4954 other inferior that has at least one thread executing. */
4955 bool swap_terminal = true;
4956
4957 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4958 whether to report it to the user. */
4959 bool ignore_event = false;
7d3badc6
PA
4960
4961 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 4962 {
d6cc5d98
PA
4963 if (swap_terminal && thread->executing)
4964 {
4965 if (thread->inf != curr_inf)
4966 {
4967 target_terminal::ours ();
4968
4969 switch_to_thread (thread);
4970 target_terminal::inferior ();
4971 }
4972 swap_terminal = false;
4973 }
4974
4975 if (!ignore_event
4976 && (thread->executing
4977 || thread->suspend.waitstatus_pending_p))
f4836ba9 4978 {
7d3badc6
PA
4979 /* Either there were no unwaited-for children left in the
4980 target at some point, but there are now, or some target
4981 other than the eventing one has unwaited-for children
4982 left. Just ignore. */
1eb8556f
SM
4983 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4984 "(ignoring: found resumed)");
d6cc5d98
PA
4985
4986 ignore_event = true;
f4836ba9 4987 }
d6cc5d98
PA
4988
4989 if (ignore_event && !swap_terminal)
4990 break;
4991 }
4992
4993 if (ignore_event)
4994 {
4995 switch_to_inferior_no_thread (curr_inf);
4996 prepare_to_wait (ecs);
c4464ade 4997 return true;
f4836ba9
PA
4998 }
4999
5000 /* Go ahead and report the event. */
c4464ade 5001 return false;
f4836ba9
PA
5002}
5003
05ba8510
PA
5004/* Given an execution control state that has been freshly filled in by
5005 an event from the inferior, figure out what it means and take
5006 appropriate action.
5007
5008 The alternatives are:
5009
22bcd14b 5010 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5011 debugger.
5012
5013 2) keep_going and return; to wait for the next event (set
5014 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5015 once). */
c906108c 5016
ec9499be 5017static void
595915c1 5018handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5019{
595915c1
TT
5020 /* Make sure that all temporary struct value objects that were
5021 created during the handling of the event get deleted at the
5022 end. */
5023 scoped_value_mark free_values;
5024
d6b48e9c
PA
5025 enum stop_kind stop_soon;
5026
1eb8556f 5027 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5028
28736962
PA
5029 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5030 {
5031 /* We had an event in the inferior, but we are not interested in
5032 handling it at this level. The lower layers have already
5033 done what needs to be done, if anything.
5034
5035 One of the possible circumstances for this is when the
5036 inferior produces output for the console. The inferior has
5037 not stopped, and we are ignoring the event. Another possible
5038 circumstance is any event which the lower level knows will be
5039 reported multiple times without an intervening resume. */
28736962
PA
5040 prepare_to_wait (ecs);
5041 return;
5042 }
5043
65706a29
PA
5044 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5045 {
65706a29
PA
5046 prepare_to_wait (ecs);
5047 return;
5048 }
5049
0e5bf2a8 5050 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5051 && handle_no_resumed (ecs))
5052 return;
0e5bf2a8 5053
5b6d1e4f
PA
5054 /* Cache the last target/ptid/waitstatus. */
5055 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5056
ca005067 5057 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5058 stop_stack_dummy = STOP_NONE;
ca005067 5059
0e5bf2a8
PA
5060 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5061 {
5062 /* No unwaited-for children left. IOW, all resumed children
5063 have exited. */
c4464ade 5064 stop_print_frame = false;
22bcd14b 5065 stop_waiting (ecs);
0e5bf2a8
PA
5066 return;
5067 }
5068
8c90c137 5069 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5070 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5071 {
5b6d1e4f 5072 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5073 /* If it's a new thread, add it to the thread database. */
5074 if (ecs->event_thread == NULL)
5b6d1e4f 5075 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5076
5077 /* Disable range stepping. If the next step request could use a
5078 range, this will be end up re-enabled then. */
5079 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5080 }
88ed393a
JK
5081
5082 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5083 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5084
5085 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5086 reinit_frame_cache ();
5087
28736962
PA
5088 breakpoint_retire_moribund ();
5089
2b009048
DJ
5090 /* First, distinguish signals caused by the debugger from signals
5091 that have to do with the program's own actions. Note that
5092 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5093 on the operating system version. Here we detect when a SIGILL or
5094 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5095 something similar for SIGSEGV, since a SIGSEGV will be generated
5096 when we're trying to execute a breakpoint instruction on a
5097 non-executable stack. This happens for call dummy breakpoints
5098 for architectures like SPARC that place call dummies on the
5099 stack. */
2b009048 5100 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5101 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5102 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5103 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5104 {
00431a78 5105 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5106
a01bda52 5107 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5108 regcache_read_pc (regcache)))
5109 {
1eb8556f 5110 infrun_debug_printf ("Treating signal as SIGTRAP");
a493e3e2 5111 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5112 }
2b009048
DJ
5113 }
5114
293b3ebc 5115 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5116
488f131b
JB
5117 switch (ecs->ws.kind)
5118 {
5119 case TARGET_WAITKIND_LOADED:
00431a78 5120 context_switch (ecs);
b0f4b84b 5121 /* Ignore gracefully during startup of the inferior, as it might
dda83cd7
SM
5122 be the shell which has just loaded some objects, otherwise
5123 add the symbols for the newly loaded objects. Also ignore at
5124 the beginning of an attach or remote session; we will query
5125 the full list of libraries once the connection is
5126 established. */
4f5d7f63 5127
00431a78 5128 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5129 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5130 {
edcc5120
TT
5131 struct regcache *regcache;
5132
00431a78 5133 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5134
5135 handle_solib_event ();
5136
5137 ecs->event_thread->control.stop_bpstat
a01bda52 5138 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5139 ecs->event_thread->suspend.stop_pc,
5140 ecs->event_thread, &ecs->ws);
ab04a2af 5141
c65d6b55
PA
5142 if (handle_stop_requested (ecs))
5143 return;
5144
ce12b012 5145 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5146 {
5147 /* A catchpoint triggered. */
94c57d6a
PA
5148 process_event_stop_test (ecs);
5149 return;
edcc5120 5150 }
488f131b 5151
b0f4b84b
DJ
5152 /* If requested, stop when the dynamic linker notifies
5153 gdb of events. This allows the user to get control
5154 and place breakpoints in initializer routines for
5155 dynamically loaded objects (among other things). */
a493e3e2 5156 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5157 if (stop_on_solib_events)
5158 {
55409f9d
DJ
5159 /* Make sure we print "Stopped due to solib-event" in
5160 normal_stop. */
c4464ade 5161 stop_print_frame = true;
55409f9d 5162
22bcd14b 5163 stop_waiting (ecs);
b0f4b84b
DJ
5164 return;
5165 }
488f131b 5166 }
b0f4b84b
DJ
5167
5168 /* If we are skipping through a shell, or through shared library
5169 loading that we aren't interested in, resume the program. If
5c09a2c5 5170 we're running the program normally, also resume. */
b0f4b84b
DJ
5171 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5172 {
74960c60
VP
5173 /* Loading of shared libraries might have changed breakpoint
5174 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5175 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5176 insert_breakpoints ();
64ce06e4 5177 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5178 prepare_to_wait (ecs);
5179 return;
5180 }
5181
5c09a2c5
PA
5182 /* But stop if we're attaching or setting up a remote
5183 connection. */
5184 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5185 || stop_soon == STOP_QUIETLY_REMOTE)
5186 {
1eb8556f 5187 infrun_debug_printf ("quietly stopped");
22bcd14b 5188 stop_waiting (ecs);
5c09a2c5
PA
5189 return;
5190 }
5191
5192 internal_error (__FILE__, __LINE__,
5193 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5194
488f131b 5195 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5196 if (handle_stop_requested (ecs))
5197 return;
00431a78 5198 context_switch (ecs);
64ce06e4 5199 resume (GDB_SIGNAL_0);
488f131b
JB
5200 prepare_to_wait (ecs);
5201 return;
c5aa993b 5202
65706a29 5203 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5204 if (handle_stop_requested (ecs))
5205 return;
00431a78 5206 context_switch (ecs);
65706a29
PA
5207 if (!switch_back_to_stepped_thread (ecs))
5208 keep_going (ecs);
5209 return;
5210
488f131b 5211 case TARGET_WAITKIND_EXITED:
940c3c06 5212 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5213 {
5214 /* Depending on the system, ecs->ptid may point to a thread or
5215 to a process. On some targets, target_mourn_inferior may
5216 need to have access to the just-exited thread. That is the
5217 case of GNU/Linux's "checkpoint" support, for example.
5218 Call the switch_to_xxx routine as appropriate. */
5219 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5220 if (thr != nullptr)
5221 switch_to_thread (thr);
5222 else
5223 {
5224 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5225 switch_to_inferior_no_thread (inf);
5226 }
5227 }
6c95b8df 5228 handle_vfork_child_exec_or_exit (0);
223ffa71 5229 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5230
0c557179
SDJ
5231 /* Clearing any previous state of convenience variables. */
5232 clear_exit_convenience_vars ();
5233
940c3c06
PA
5234 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5235 {
5236 /* Record the exit code in the convenience variable $_exitcode, so
5237 that the user can inspect this again later. */
5238 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5239 (LONGEST) ecs->ws.value.integer);
5240
5241 /* Also record this in the inferior itself. */
5242 current_inferior ()->has_exit_code = 1;
5243 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5244
98eb56a4
PA
5245 /* Support the --return-child-result option. */
5246 return_child_result_value = ecs->ws.value.integer;
5247
76727919 5248 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5249 }
5250 else
0c557179 5251 {
00431a78 5252 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5253
5254 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5255 {
5256 /* Set the value of the internal variable $_exitsignal,
5257 which holds the signal uncaught by the inferior. */
5258 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5259 gdbarch_gdb_signal_to_target (gdbarch,
5260 ecs->ws.value.sig));
5261 }
5262 else
5263 {
5264 /* We don't have access to the target's method used for
5265 converting between signal numbers (GDB's internal
5266 representation <-> target's representation).
5267 Therefore, we cannot do a good job at displaying this
5268 information to the user. It's better to just warn
5269 her about it (if infrun debugging is enabled), and
5270 give up. */
1eb8556f
SM
5271 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5272 "signal number.");
0c557179
SDJ
5273 }
5274
76727919 5275 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5276 }
8cf64490 5277
488f131b 5278 gdb_flush (gdb_stdout);
bc1e6c81 5279 target_mourn_inferior (inferior_ptid);
c4464ade 5280 stop_print_frame = false;
22bcd14b 5281 stop_waiting (ecs);
488f131b 5282 return;
c5aa993b 5283
488f131b 5284 case TARGET_WAITKIND_FORKED:
deb3b17b 5285 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5286 /* Check whether the inferior is displaced stepping. */
5287 {
00431a78 5288 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5289 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5290
5291 /* If checking displaced stepping is supported, and thread
5292 ecs->ptid is displaced stepping. */
00431a78 5293 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5294 {
5295 struct inferior *parent_inf
5b6d1e4f 5296 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5297 struct regcache *child_regcache;
5298 CORE_ADDR parent_pc;
5299
d8d83535
SM
5300 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5301 {
5302 struct displaced_step_inferior_state *displaced
5303 = get_displaced_stepping_state (parent_inf);
5304
5305 /* Restore scratch pad for child process. */
5306 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5307 }
5308
e2d96639
YQ
5309 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5310 indicating that the displaced stepping of syscall instruction
5311 has been done. Perform cleanup for parent process here. Note
5312 that this operation also cleans up the child process for vfork,
5313 because their pages are shared. */
00431a78 5314 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5315 /* Start a new step-over in another thread if there's one
5316 that needs it. */
5317 start_step_over ();
e2d96639 5318
e2d96639
YQ
5319 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5320 the child's PC is also within the scratchpad. Set the child's PC
5321 to the parent's PC value, which has already been fixed up.
5322 FIXME: we use the parent's aspace here, although we're touching
5323 the child, because the child hasn't been added to the inferior
5324 list yet at this point. */
5325
5326 child_regcache
5b6d1e4f
PA
5327 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5328 ecs->ws.value.related_pid,
e2d96639
YQ
5329 gdbarch,
5330 parent_inf->aspace);
5331 /* Read PC value of parent process. */
5332 parent_pc = regcache_read_pc (regcache);
5333
136821d9
SM
5334 displaced_debug_printf ("write child pc from %s to %s",
5335 paddress (gdbarch,
5336 regcache_read_pc (child_regcache)),
5337 paddress (gdbarch, parent_pc));
e2d96639
YQ
5338
5339 regcache_write_pc (child_regcache, parent_pc);
5340 }
5341 }
5342
00431a78 5343 context_switch (ecs);
5a2901d9 5344
b242c3c2
PA
5345 /* Immediately detach breakpoints from the child before there's
5346 any chance of letting the user delete breakpoints from the
5347 breakpoint lists. If we don't do this early, it's easy to
5348 leave left over traps in the child, vis: "break foo; catch
5349 fork; c; <fork>; del; c; <child calls foo>". We only follow
5350 the fork on the last `continue', and by that time the
5351 breakpoint at "foo" is long gone from the breakpoint table.
5352 If we vforked, then we don't need to unpatch here, since both
5353 parent and child are sharing the same memory pages; we'll
5354 need to unpatch at follow/detach time instead to be certain
5355 that new breakpoints added between catchpoint hit time and
5356 vfork follow are detached. */
5357 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5358 {
b242c3c2
PA
5359 /* This won't actually modify the breakpoint list, but will
5360 physically remove the breakpoints from the child. */
d80ee84f 5361 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5362 }
5363
34b7e8a6 5364 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5365
e58b0e63
PA
5366 /* In case the event is caught by a catchpoint, remember that
5367 the event is to be followed at the next resume of the thread,
5368 and not immediately. */
5369 ecs->event_thread->pending_follow = ecs->ws;
5370
f2ffa92b
PA
5371 ecs->event_thread->suspend.stop_pc
5372 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5373
16c381f0 5374 ecs->event_thread->control.stop_bpstat
a01bda52 5375 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5376 ecs->event_thread->suspend.stop_pc,
5377 ecs->event_thread, &ecs->ws);
675bf4cb 5378
c65d6b55
PA
5379 if (handle_stop_requested (ecs))
5380 return;
5381
ce12b012
PA
5382 /* If no catchpoint triggered for this, then keep going. Note
5383 that we're interested in knowing the bpstat actually causes a
5384 stop, not just if it may explain the signal. Software
5385 watchpoints, for example, always appear in the bpstat. */
5386 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5387 {
5ab2fbf1 5388 bool follow_child
3e43a32a 5389 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5390
a493e3e2 5391 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5392
5b6d1e4f
PA
5393 process_stratum_target *targ
5394 = ecs->event_thread->inf->process_target ();
5395
5ab2fbf1 5396 bool should_resume = follow_fork ();
e58b0e63 5397
5b6d1e4f
PA
5398 /* Note that one of these may be an invalid pointer,
5399 depending on detach_fork. */
00431a78 5400 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5401 thread_info *child
5402 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5403
a2077e25
PA
5404 /* At this point, the parent is marked running, and the
5405 child is marked stopped. */
5406
5407 /* If not resuming the parent, mark it stopped. */
5408 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5409 parent->set_running (false);
a2077e25
PA
5410
5411 /* If resuming the child, mark it running. */
5412 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5413 child->set_running (true);
a2077e25 5414
6c95b8df 5415 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5416 if (!detach_fork && (non_stop
5417 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5418 {
5419 if (follow_child)
5420 switch_to_thread (parent);
5421 else
5422 switch_to_thread (child);
5423
5424 ecs->event_thread = inferior_thread ();
5425 ecs->ptid = inferior_ptid;
5426 keep_going (ecs);
5427 }
5428
5429 if (follow_child)
5430 switch_to_thread (child);
5431 else
5432 switch_to_thread (parent);
5433
e58b0e63
PA
5434 ecs->event_thread = inferior_thread ();
5435 ecs->ptid = inferior_ptid;
5436
5437 if (should_resume)
5438 keep_going (ecs);
5439 else
22bcd14b 5440 stop_waiting (ecs);
04e68871
DJ
5441 return;
5442 }
94c57d6a
PA
5443 process_event_stop_test (ecs);
5444 return;
488f131b 5445
6c95b8df
PA
5446 case TARGET_WAITKIND_VFORK_DONE:
5447 /* Done with the shared memory region. Re-insert breakpoints in
5448 the parent, and keep going. */
5449
00431a78 5450 context_switch (ecs);
6c95b8df
PA
5451
5452 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5453 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5454
5455 if (handle_stop_requested (ecs))
5456 return;
5457
6c95b8df
PA
5458 /* This also takes care of reinserting breakpoints in the
5459 previously locked inferior. */
5460 keep_going (ecs);
5461 return;
5462
488f131b 5463 case TARGET_WAITKIND_EXECD:
488f131b 5464
cbd2b4e3
PA
5465 /* Note we can't read registers yet (the stop_pc), because we
5466 don't yet know the inferior's post-exec architecture.
5467 'stop_pc' is explicitly read below instead. */
00431a78 5468 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5469
6c95b8df
PA
5470 /* Do whatever is necessary to the parent branch of the vfork. */
5471 handle_vfork_child_exec_or_exit (1);
5472
795e548f 5473 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5474 Must do this now, before trying to determine whether to
5475 stop. */
71b43ef8 5476 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5477
17d8546e
DB
5478 /* In follow_exec we may have deleted the original thread and
5479 created a new one. Make sure that the event thread is the
5480 execd thread for that case (this is a nop otherwise). */
5481 ecs->event_thread = inferior_thread ();
5482
f2ffa92b
PA
5483 ecs->event_thread->suspend.stop_pc
5484 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5485
16c381f0 5486 ecs->event_thread->control.stop_bpstat
a01bda52 5487 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5488 ecs->event_thread->suspend.stop_pc,
5489 ecs->event_thread, &ecs->ws);
795e548f 5490
71b43ef8
PA
5491 /* Note that this may be referenced from inside
5492 bpstat_stop_status above, through inferior_has_execd. */
5493 xfree (ecs->ws.value.execd_pathname);
5494 ecs->ws.value.execd_pathname = NULL;
5495
c65d6b55
PA
5496 if (handle_stop_requested (ecs))
5497 return;
5498
04e68871 5499 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5500 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5501 {
a493e3e2 5502 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5503 keep_going (ecs);
5504 return;
5505 }
94c57d6a
PA
5506 process_event_stop_test (ecs);
5507 return;
488f131b 5508
b4dc5ffa 5509 /* Be careful not to try to gather much state about a thread
dda83cd7 5510 that's in a syscall. It's frequently a losing proposition. */
488f131b 5511 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5512 /* Getting the current syscall number. */
94c57d6a
PA
5513 if (handle_syscall_event (ecs) == 0)
5514 process_event_stop_test (ecs);
5515 return;
c906108c 5516
488f131b 5517 /* Before examining the threads further, step this thread to
dda83cd7
SM
5518 get it entirely out of the syscall. (We get notice of the
5519 event when the thread is just on the verge of exiting a
5520 syscall. Stepping one instruction seems to get it back
5521 into user code.) */
488f131b 5522 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5523 if (handle_syscall_event (ecs) == 0)
5524 process_event_stop_test (ecs);
5525 return;
c906108c 5526
488f131b 5527 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5528 handle_signal_stop (ecs);
5529 return;
c906108c 5530
b2175913
MS
5531 case TARGET_WAITKIND_NO_HISTORY:
5532 /* Reverse execution: target ran out of history info. */
eab402df 5533
d1988021 5534 /* Switch to the stopped thread. */
00431a78 5535 context_switch (ecs);
1eb8556f 5536 infrun_debug_printf ("stopped");
d1988021 5537
34b7e8a6 5538 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5539 ecs->event_thread->suspend.stop_pc
5540 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5541
5542 if (handle_stop_requested (ecs))
5543 return;
5544
76727919 5545 gdb::observers::no_history.notify ();
22bcd14b 5546 stop_waiting (ecs);
b2175913 5547 return;
488f131b 5548 }
4f5d7f63
PA
5549}
5550
372316f1
PA
5551/* Restart threads back to what they were trying to do back when we
5552 paused them for an in-line step-over. The EVENT_THREAD thread is
5553 ignored. */
4d9d9d04
PA
5554
5555static void
372316f1
PA
5556restart_threads (struct thread_info *event_thread)
5557{
372316f1
PA
5558 /* In case the instruction just stepped spawned a new thread. */
5559 update_thread_list ();
5560
08036331 5561 for (thread_info *tp : all_non_exited_threads ())
372316f1 5562 {
f3f8ece4
PA
5563 switch_to_thread_no_regs (tp);
5564
372316f1
PA
5565 if (tp == event_thread)
5566 {
1eb8556f
SM
5567 infrun_debug_printf ("restart threads: [%s] is event thread",
5568 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5569 continue;
5570 }
5571
5572 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5573 {
1eb8556f
SM
5574 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5575 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5576 continue;
5577 }
5578
5579 if (tp->resumed)
5580 {
1eb8556f
SM
5581 infrun_debug_printf ("restart threads: [%s] resumed",
5582 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5583 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5584 continue;
5585 }
5586
5587 if (thread_is_in_step_over_chain (tp))
5588 {
1eb8556f
SM
5589 infrun_debug_printf ("restart threads: [%s] needs step-over",
5590 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5591 gdb_assert (!tp->resumed);
5592 continue;
5593 }
5594
5595
5596 if (tp->suspend.waitstatus_pending_p)
5597 {
1eb8556f
SM
5598 infrun_debug_printf ("restart threads: [%s] has pending status",
5599 target_pid_to_str (tp->ptid).c_str ());
719546c4 5600 tp->resumed = true;
372316f1
PA
5601 continue;
5602 }
5603
c65d6b55
PA
5604 gdb_assert (!tp->stop_requested);
5605
372316f1
PA
5606 /* If some thread needs to start a step-over at this point, it
5607 should still be in the step-over queue, and thus skipped
5608 above. */
5609 if (thread_still_needs_step_over (tp))
5610 {
5611 internal_error (__FILE__, __LINE__,
5612 "thread [%s] needs a step-over, but not in "
5613 "step-over queue\n",
a068643d 5614 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5615 }
5616
5617 if (currently_stepping (tp))
5618 {
1eb8556f
SM
5619 infrun_debug_printf ("restart threads: [%s] was stepping",
5620 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5621 keep_going_stepped_thread (tp);
5622 }
5623 else
5624 {
5625 struct execution_control_state ecss;
5626 struct execution_control_state *ecs = &ecss;
5627
1eb8556f
SM
5628 infrun_debug_printf ("restart threads: [%s] continuing",
5629 target_pid_to_str (tp->ptid).c_str ());
372316f1 5630 reset_ecs (ecs, tp);
00431a78 5631 switch_to_thread (tp);
372316f1
PA
5632 keep_going_pass_signal (ecs);
5633 }
5634 }
5635}
5636
5637/* Callback for iterate_over_threads. Find a resumed thread that has
5638 a pending waitstatus. */
5639
5640static int
5641resumed_thread_with_pending_status (struct thread_info *tp,
5642 void *arg)
5643{
5644 return (tp->resumed
5645 && tp->suspend.waitstatus_pending_p);
5646}
5647
5648/* Called when we get an event that may finish an in-line or
5649 out-of-line (displaced stepping) step-over started previously.
5650 Return true if the event is processed and we should go back to the
5651 event loop; false if the caller should continue processing the
5652 event. */
5653
5654static int
4d9d9d04
PA
5655finish_step_over (struct execution_control_state *ecs)
5656{
00431a78 5657 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5658 ecs->event_thread->suspend.stop_signal);
5659
c4464ade 5660 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
5661
5662 if (had_step_over_info)
4d9d9d04
PA
5663 {
5664 /* If we're stepping over a breakpoint with all threads locked,
5665 then only the thread that was stepped should be reporting
5666 back an event. */
5667 gdb_assert (ecs->event_thread->control.trap_expected);
5668
c65d6b55 5669 clear_step_over_info ();
4d9d9d04
PA
5670 }
5671
fbea99ea 5672 if (!target_is_non_stop_p ())
372316f1 5673 return 0;
4d9d9d04
PA
5674
5675 /* Start a new step-over in another thread if there's one that
5676 needs it. */
5677 start_step_over ();
372316f1
PA
5678
5679 /* If we were stepping over a breakpoint before, and haven't started
5680 a new in-line step-over sequence, then restart all other threads
5681 (except the event thread). We can't do this in all-stop, as then
5682 e.g., we wouldn't be able to issue any other remote packet until
5683 these other threads stop. */
5684 if (had_step_over_info && !step_over_info_valid_p ())
5685 {
5686 struct thread_info *pending;
5687
5688 /* If we only have threads with pending statuses, the restart
5689 below won't restart any thread and so nothing re-inserts the
5690 breakpoint we just stepped over. But we need it inserted
5691 when we later process the pending events, otherwise if
5692 another thread has a pending event for this breakpoint too,
5693 we'd discard its event (because the breakpoint that
5694 originally caused the event was no longer inserted). */
00431a78 5695 context_switch (ecs);
372316f1
PA
5696 insert_breakpoints ();
5697
5698 restart_threads (ecs->event_thread);
5699
5700 /* If we have events pending, go through handle_inferior_event
5701 again, picking up a pending event at random. This avoids
5702 thread starvation. */
5703
5704 /* But not if we just stepped over a watchpoint in order to let
5705 the instruction execute so we can evaluate its expression.
5706 The set of watchpoints that triggered is recorded in the
5707 breakpoint objects themselves (see bp->watchpoint_triggered).
5708 If we processed another event first, that other event could
5709 clobber this info. */
5710 if (ecs->event_thread->stepping_over_watchpoint)
5711 return 0;
5712
5713 pending = iterate_over_threads (resumed_thread_with_pending_status,
5714 NULL);
5715 if (pending != NULL)
5716 {
5717 struct thread_info *tp = ecs->event_thread;
5718 struct regcache *regcache;
5719
1eb8556f
SM
5720 infrun_debug_printf ("found resumed threads with "
5721 "pending events, saving status");
372316f1
PA
5722
5723 gdb_assert (pending != tp);
5724
5725 /* Record the event thread's event for later. */
5726 save_waitstatus (tp, &ecs->ws);
5727 /* This was cleared early, by handle_inferior_event. Set it
5728 so this pending event is considered by
5729 do_target_wait. */
719546c4 5730 tp->resumed = true;
372316f1
PA
5731
5732 gdb_assert (!tp->executing);
5733
00431a78 5734 regcache = get_thread_regcache (tp);
372316f1
PA
5735 tp->suspend.stop_pc = regcache_read_pc (regcache);
5736
1eb8556f
SM
5737 infrun_debug_printf ("saved stop_pc=%s for %s "
5738 "(currently_stepping=%d)",
5739 paddress (target_gdbarch (),
dda83cd7 5740 tp->suspend.stop_pc),
1eb8556f
SM
5741 target_pid_to_str (tp->ptid).c_str (),
5742 currently_stepping (tp));
372316f1
PA
5743
5744 /* This in-line step-over finished; clear this so we won't
5745 start a new one. This is what handle_signal_stop would
5746 do, if we returned false. */
5747 tp->stepping_over_breakpoint = 0;
5748
5749 /* Wake up the event loop again. */
5750 mark_async_event_handler (infrun_async_inferior_event_token);
5751
5752 prepare_to_wait (ecs);
5753 return 1;
5754 }
5755 }
5756
5757 return 0;
4d9d9d04
PA
5758}
5759
4f5d7f63
PA
5760/* Come here when the program has stopped with a signal. */
5761
5762static void
5763handle_signal_stop (struct execution_control_state *ecs)
5764{
5765 struct frame_info *frame;
5766 struct gdbarch *gdbarch;
5767 int stopped_by_watchpoint;
5768 enum stop_kind stop_soon;
5769 int random_signal;
c906108c 5770
f0407826
DE
5771 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5772
c65d6b55
PA
5773 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5774
f0407826
DE
5775 /* Do we need to clean up the state of a thread that has
5776 completed a displaced single-step? (Doing so usually affects
5777 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5778 if (finish_step_over (ecs))
5779 return;
f0407826
DE
5780
5781 /* If we either finished a single-step or hit a breakpoint, but
5782 the user wanted this thread to be stopped, pretend we got a
5783 SIG0 (generic unsignaled stop). */
5784 if (ecs->event_thread->stop_requested
5785 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5786 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5787
f2ffa92b
PA
5788 ecs->event_thread->suspend.stop_pc
5789 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5790
527159b7 5791 if (debug_infrun)
237fc4c9 5792 {
00431a78 5793 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5794 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5795
f3f8ece4 5796 switch_to_thread (ecs->event_thread);
5af949e3 5797
1eb8556f
SM
5798 infrun_debug_printf ("stop_pc=%s",
5799 paddress (reg_gdbarch,
5800 ecs->event_thread->suspend.stop_pc));
d92524f1 5801 if (target_stopped_by_watchpoint ())
237fc4c9 5802 {
dda83cd7 5803 CORE_ADDR addr;
abbb1732 5804
1eb8556f 5805 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 5806
8b88a78e 5807 if (target_stopped_data_address (current_top_target (), &addr))
1eb8556f 5808 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
5809 paddress (reg_gdbarch, addr));
5810 else
1eb8556f 5811 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
5812 }
5813 }
527159b7 5814
36fa8042
PA
5815 /* This is originated from start_remote(), start_inferior() and
5816 shared libraries hook functions. */
00431a78 5817 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5818 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5819 {
00431a78 5820 context_switch (ecs);
1eb8556f 5821 infrun_debug_printf ("quietly stopped");
c4464ade 5822 stop_print_frame = true;
22bcd14b 5823 stop_waiting (ecs);
36fa8042
PA
5824 return;
5825 }
5826
36fa8042
PA
5827 /* This originates from attach_command(). We need to overwrite
5828 the stop_signal here, because some kernels don't ignore a
5829 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5830 See more comments in inferior.h. On the other hand, if we
5831 get a non-SIGSTOP, report it to the user - assume the backend
5832 will handle the SIGSTOP if it should show up later.
5833
5834 Also consider that the attach is complete when we see a
5835 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5836 target extended-remote report it instead of a SIGSTOP
5837 (e.g. gdbserver). We already rely on SIGTRAP being our
5838 signal, so this is no exception.
5839
5840 Also consider that the attach is complete when we see a
5841 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5842 the target to stop all threads of the inferior, in case the
5843 low level attach operation doesn't stop them implicitly. If
5844 they weren't stopped implicitly, then the stub will report a
5845 GDB_SIGNAL_0, meaning: stopped for no particular reason
5846 other than GDB's request. */
5847 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5848 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5849 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5850 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5851 {
c4464ade 5852 stop_print_frame = true;
22bcd14b 5853 stop_waiting (ecs);
36fa8042
PA
5854 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5855 return;
5856 }
5857
488f131b 5858 /* See if something interesting happened to the non-current thread. If
b40c7d58 5859 so, then switch to that thread. */
d7e15655 5860 if (ecs->ptid != inferior_ptid)
488f131b 5861 {
1eb8556f 5862 infrun_debug_printf ("context switch");
527159b7 5863
00431a78 5864 context_switch (ecs);
c5aa993b 5865
9a4105ab 5866 if (deprecated_context_hook)
00431a78 5867 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5868 }
c906108c 5869
568d6575
UW
5870 /* At this point, get hold of the now-current thread's frame. */
5871 frame = get_current_frame ();
5872 gdbarch = get_frame_arch (frame);
5873
2adfaa28 5874 /* Pull the single step breakpoints out of the target. */
af48d08f 5875 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5876 {
af48d08f 5877 struct regcache *regcache;
af48d08f 5878 CORE_ADDR pc;
2adfaa28 5879
00431a78 5880 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5881 const address_space *aspace = regcache->aspace ();
5882
af48d08f 5883 pc = regcache_read_pc (regcache);
34b7e8a6 5884
af48d08f
PA
5885 /* However, before doing so, if this single-step breakpoint was
5886 actually for another thread, set this thread up for moving
5887 past it. */
5888 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5889 aspace, pc))
5890 {
5891 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5892 {
1eb8556f
SM
5893 infrun_debug_printf ("[%s] hit another thread's single-step "
5894 "breakpoint",
5895 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5896 ecs->hit_singlestep_breakpoint = 1;
5897 }
5898 }
5899 else
5900 {
1eb8556f
SM
5901 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5902 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5903 }
488f131b 5904 }
af48d08f 5905 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5906
963f9c80
PA
5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5908 && ecs->event_thread->control.trap_expected
5909 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5910 stopped_by_watchpoint = 0;
5911 else
5912 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5913
5914 /* If necessary, step over this watchpoint. We'll be back to display
5915 it in a moment. */
5916 if (stopped_by_watchpoint
9aed480c 5917 && (target_have_steppable_watchpoint ()
568d6575 5918 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5919 {
488f131b 5920 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
5921 attempted to write to a piece of memory under control of
5922 a watchpoint. The instruction hasn't actually executed
5923 yet. If we were to evaluate the watchpoint expression
5924 now, we would get the old value, and therefore no change
5925 would seem to have occurred.
5926
5927 In order to make watchpoints work `right', we really need
5928 to complete the memory write, and then evaluate the
5929 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
5930 target.
5931
7f89fd65 5932 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5933 it. For example, the PA can (with some kernel cooperation)
5934 single step over a watchpoint without disabling the watchpoint.
5935
5936 It is far more common to need to disable a watchpoint to step
5937 the inferior over it. If we have non-steppable watchpoints,
5938 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5939 disable all watchpoints.
5940
5941 Any breakpoint at PC must also be stepped over -- if there's
5942 one, it will have already triggered before the watchpoint
5943 triggered, and we either already reported it to the user, or
5944 it didn't cause a stop and we called keep_going. In either
5945 case, if there was a breakpoint at PC, we must be trying to
5946 step past it. */
5947 ecs->event_thread->stepping_over_watchpoint = 1;
5948 keep_going (ecs);
488f131b
JB
5949 return;
5950 }
5951
4e1c45ea 5952 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5953 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5954 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5955 ecs->event_thread->control.stop_step = 0;
c4464ade 5956 stop_print_frame = true;
488f131b 5957 stopped_by_random_signal = 0;
ddfe970e 5958 bpstat stop_chain = NULL;
488f131b 5959
edb3359d
DJ
5960 /* Hide inlined functions starting here, unless we just performed stepi or
5961 nexti. After stepi and nexti, always show the innermost frame (not any
5962 inline function call sites). */
16c381f0 5963 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5964 {
00431a78
PA
5965 const address_space *aspace
5966 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5967
5968 /* skip_inline_frames is expensive, so we avoid it if we can
5969 determine that the address is one where functions cannot have
5970 been inlined. This improves performance with inferiors that
5971 load a lot of shared libraries, because the solib event
5972 breakpoint is defined as the address of a function (i.e. not
5973 inline). Note that we have to check the previous PC as well
5974 as the current one to catch cases when we have just
5975 single-stepped off a breakpoint prior to reinstating it.
5976 Note that we're assuming that the code we single-step to is
5977 not inline, but that's not definitive: there's nothing
5978 preventing the event breakpoint function from containing
5979 inlined code, and the single-step ending up there. If the
5980 user had set a breakpoint on that inlined code, the missing
5981 skip_inline_frames call would break things. Fortunately
5982 that's an extremely unlikely scenario. */
f2ffa92b
PA
5983 if (!pc_at_non_inline_function (aspace,
5984 ecs->event_thread->suspend.stop_pc,
5985 &ecs->ws)
a210c238
MR
5986 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5987 && ecs->event_thread->control.trap_expected
5988 && pc_at_non_inline_function (aspace,
5989 ecs->event_thread->prev_pc,
09ac7c10 5990 &ecs->ws)))
1c5a993e 5991 {
f2ffa92b
PA
5992 stop_chain = build_bpstat_chain (aspace,
5993 ecs->event_thread->suspend.stop_pc,
5994 &ecs->ws);
00431a78 5995 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5996
5997 /* Re-fetch current thread's frame in case that invalidated
5998 the frame cache. */
5999 frame = get_current_frame ();
6000 gdbarch = get_frame_arch (frame);
6001 }
0574c78f 6002 }
edb3359d 6003
a493e3e2 6004 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6005 && ecs->event_thread->control.trap_expected
568d6575 6006 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6007 && currently_stepping (ecs->event_thread))
3352ef37 6008 {
b50d7442 6009 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6010 also on an instruction that needs to be stepped multiple
1777feb0 6011 times before it's been fully executing. E.g., architectures
3352ef37
AC
6012 with a delay slot. It needs to be stepped twice, once for
6013 the instruction and once for the delay slot. */
6014 int step_through_delay
568d6575 6015 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6016
1eb8556f
SM
6017 if (step_through_delay)
6018 infrun_debug_printf ("step through delay");
6019
16c381f0
JK
6020 if (ecs->event_thread->control.step_range_end == 0
6021 && step_through_delay)
3352ef37
AC
6022 {
6023 /* The user issued a continue when stopped at a breakpoint.
6024 Set up for another trap and get out of here. */
dda83cd7
SM
6025 ecs->event_thread->stepping_over_breakpoint = 1;
6026 keep_going (ecs);
6027 return;
3352ef37
AC
6028 }
6029 else if (step_through_delay)
6030 {
6031 /* The user issued a step when stopped at a breakpoint.
6032 Maybe we should stop, maybe we should not - the delay
6033 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6034 case, don't decide that here, just set
6035 ecs->stepping_over_breakpoint, making sure we
6036 single-step again before breakpoints are re-inserted. */
4e1c45ea 6037 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6038 }
6039 }
6040
ab04a2af
TT
6041 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6042 handles this event. */
6043 ecs->event_thread->control.stop_bpstat
a01bda52 6044 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6045 ecs->event_thread->suspend.stop_pc,
6046 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6047
ab04a2af
TT
6048 /* Following in case break condition called a
6049 function. */
c4464ade 6050 stop_print_frame = true;
73dd234f 6051
ab04a2af
TT
6052 /* This is where we handle "moribund" watchpoints. Unlike
6053 software breakpoints traps, hardware watchpoint traps are
6054 always distinguishable from random traps. If no high-level
6055 watchpoint is associated with the reported stop data address
6056 anymore, then the bpstat does not explain the signal ---
6057 simply make sure to ignore it if `stopped_by_watchpoint' is
6058 set. */
6059
1eb8556f 6060 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6061 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6062 GDB_SIGNAL_TRAP)
ab04a2af 6063 && stopped_by_watchpoint)
1eb8556f
SM
6064 {
6065 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6066 "ignoring");
6067 }
73dd234f 6068
bac7d97b 6069 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6070 at one stage in the past included checks for an inferior
6071 function call's call dummy's return breakpoint. The original
6072 comment, that went with the test, read:
03cebad2 6073
ab04a2af
TT
6074 ``End of a stack dummy. Some systems (e.g. Sony news) give
6075 another signal besides SIGTRAP, so check here as well as
6076 above.''
73dd234f 6077
ab04a2af
TT
6078 If someone ever tries to get call dummys on a
6079 non-executable stack to work (where the target would stop
6080 with something like a SIGSEGV), then those tests might need
6081 to be re-instated. Given, however, that the tests were only
6082 enabled when momentary breakpoints were not being used, I
6083 suspect that it won't be the case.
488f131b 6084
ab04a2af
TT
6085 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6086 be necessary for call dummies on a non-executable stack on
6087 SPARC. */
488f131b 6088
bac7d97b 6089 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6090 random_signal
6091 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6092 ecs->event_thread->suspend.stop_signal);
bac7d97b 6093
1cf4d951
PA
6094 /* Maybe this was a trap for a software breakpoint that has since
6095 been removed. */
6096 if (random_signal && target_stopped_by_sw_breakpoint ())
6097 {
5133a315
LM
6098 if (gdbarch_program_breakpoint_here_p (gdbarch,
6099 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6100 {
6101 struct regcache *regcache;
6102 int decr_pc;
6103
6104 /* Re-adjust PC to what the program would see if GDB was not
6105 debugging it. */
00431a78 6106 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6107 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6108 if (decr_pc != 0)
6109 {
07036511
TT
6110 gdb::optional<scoped_restore_tmpl<int>>
6111 restore_operation_disable;
1cf4d951
PA
6112
6113 if (record_full_is_used ())
07036511
TT
6114 restore_operation_disable.emplace
6115 (record_full_gdb_operation_disable_set ());
1cf4d951 6116
f2ffa92b
PA
6117 regcache_write_pc (regcache,
6118 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6119 }
6120 }
6121 else
6122 {
6123 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6124 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6125 random_signal = 0;
6126 }
6127 }
6128
6129 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6130 has since been removed. */
6131 if (random_signal && target_stopped_by_hw_breakpoint ())
6132 {
6133 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6134 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6135 "trap, ignoring");
1cf4d951
PA
6136 random_signal = 0;
6137 }
6138
bac7d97b
PA
6139 /* If not, perhaps stepping/nexting can. */
6140 if (random_signal)
6141 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6142 && currently_stepping (ecs->event_thread));
ab04a2af 6143
2adfaa28
PA
6144 /* Perhaps the thread hit a single-step breakpoint of _another_
6145 thread. Single-step breakpoints are transparent to the
6146 breakpoints module. */
6147 if (random_signal)
6148 random_signal = !ecs->hit_singlestep_breakpoint;
6149
bac7d97b
PA
6150 /* No? Perhaps we got a moribund watchpoint. */
6151 if (random_signal)
6152 random_signal = !stopped_by_watchpoint;
ab04a2af 6153
c65d6b55
PA
6154 /* Always stop if the user explicitly requested this thread to
6155 remain stopped. */
6156 if (ecs->event_thread->stop_requested)
6157 {
6158 random_signal = 1;
1eb8556f 6159 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6160 }
6161
488f131b
JB
6162 /* For the program's own signals, act according to
6163 the signal handling tables. */
6164
ce12b012 6165 if (random_signal)
488f131b
JB
6166 {
6167 /* Signal not for debugging purposes. */
5b6d1e4f 6168 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6169 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6170
1eb8556f
SM
6171 infrun_debug_printf ("random signal (%s)",
6172 gdb_signal_to_symbol_string (stop_signal));
527159b7 6173
488f131b
JB
6174 stopped_by_random_signal = 1;
6175
252fbfc8
PA
6176 /* Always stop on signals if we're either just gaining control
6177 of the program, or the user explicitly requested this thread
6178 to remain stopped. */
d6b48e9c 6179 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6180 || ecs->event_thread->stop_requested
24291992 6181 || (!inf->detaching
16c381f0 6182 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6183 {
22bcd14b 6184 stop_waiting (ecs);
488f131b
JB
6185 return;
6186 }
b57bacec
PA
6187
6188 /* Notify observers the signal has "handle print" set. Note we
6189 returned early above if stopping; normal_stop handles the
6190 printing in that case. */
6191 if (signal_print[ecs->event_thread->suspend.stop_signal])
6192 {
6193 /* The signal table tells us to print about this signal. */
223ffa71 6194 target_terminal::ours_for_output ();
76727919 6195 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6196 target_terminal::inferior ();
b57bacec 6197 }
488f131b
JB
6198
6199 /* Clear the signal if it should not be passed. */
16c381f0 6200 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6201 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6202
f2ffa92b 6203 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6204 && ecs->event_thread->control.trap_expected
8358c15c 6205 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6206 {
6207 /* We were just starting a new sequence, attempting to
6208 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6209 Instead this signal arrives. This signal will take us out
68f53502
AC
6210 of the stepping range so GDB needs to remember to, when
6211 the signal handler returns, resume stepping off that
6212 breakpoint. */
6213 /* To simplify things, "continue" is forced to use the same
6214 code paths as single-step - set a breakpoint at the
6215 signal return address and then, once hit, step off that
6216 breakpoint. */
1eb8556f 6217 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6218
2c03e5be 6219 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6220 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6221 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6222 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6223
6224 /* If we were nexting/stepping some other thread, switch to
6225 it, so that we don't continue it, losing control. */
6226 if (!switch_back_to_stepped_thread (ecs))
6227 keep_going (ecs);
9d799f85 6228 return;
68f53502 6229 }
9d799f85 6230
e5f8a7cc 6231 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6232 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6233 ecs->event_thread)
e5f8a7cc 6234 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6235 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6236 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6237 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6238 {
6239 /* The inferior is about to take a signal that will take it
6240 out of the single step range. Set a breakpoint at the
6241 current PC (which is presumably where the signal handler
6242 will eventually return) and then allow the inferior to
6243 run free.
6244
6245 Note that this is only needed for a signal delivered
6246 while in the single-step range. Nested signals aren't a
6247 problem as they eventually all return. */
1eb8556f 6248 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6249
372316f1 6250 clear_step_over_info ();
2c03e5be 6251 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6252 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6253 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6254 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6255 keep_going (ecs);
6256 return;
d303a6c7 6257 }
9d799f85 6258
85102364 6259 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6260 when either there's a nested signal, or when there's a
6261 pending signal enabled just as the signal handler returns
6262 (leaving the inferior at the step-resume-breakpoint without
6263 actually executing it). Either way continue until the
6264 breakpoint is really hit. */
c447ac0b
PA
6265
6266 if (!switch_back_to_stepped_thread (ecs))
6267 {
1eb8556f 6268 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6269
6270 keep_going (ecs);
6271 }
6272 return;
488f131b 6273 }
94c57d6a
PA
6274
6275 process_event_stop_test (ecs);
6276}
6277
6278/* Come here when we've got some debug event / signal we can explain
6279 (IOW, not a random signal), and test whether it should cause a
6280 stop, or whether we should resume the inferior (transparently).
6281 E.g., could be a breakpoint whose condition evaluates false; we
6282 could be still stepping within the line; etc. */
6283
6284static void
6285process_event_stop_test (struct execution_control_state *ecs)
6286{
6287 struct symtab_and_line stop_pc_sal;
6288 struct frame_info *frame;
6289 struct gdbarch *gdbarch;
cdaa5b73
PA
6290 CORE_ADDR jmp_buf_pc;
6291 struct bpstat_what what;
94c57d6a 6292
cdaa5b73 6293 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6294
cdaa5b73
PA
6295 frame = get_current_frame ();
6296 gdbarch = get_frame_arch (frame);
fcf3daef 6297
cdaa5b73 6298 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6299
cdaa5b73
PA
6300 if (what.call_dummy)
6301 {
6302 stop_stack_dummy = what.call_dummy;
6303 }
186c406b 6304
243a9253
PA
6305 /* A few breakpoint types have callbacks associated (e.g.,
6306 bp_jit_event). Run them now. */
6307 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6308
cdaa5b73
PA
6309 /* If we hit an internal event that triggers symbol changes, the
6310 current frame will be invalidated within bpstat_what (e.g., if we
6311 hit an internal solib event). Re-fetch it. */
6312 frame = get_current_frame ();
6313 gdbarch = get_frame_arch (frame);
e2e4d78b 6314
cdaa5b73
PA
6315 switch (what.main_action)
6316 {
6317 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6318 /* If we hit the breakpoint at longjmp while stepping, we
6319 install a momentary breakpoint at the target of the
6320 jmp_buf. */
186c406b 6321
1eb8556f 6322 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6323
cdaa5b73 6324 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6325
cdaa5b73
PA
6326 if (what.is_longjmp)
6327 {
6328 struct value *arg_value;
6329
6330 /* If we set the longjmp breakpoint via a SystemTap probe,
6331 then use it to extract the arguments. The destination PC
6332 is the third argument to the probe. */
6333 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6334 if (arg_value)
8fa0c4f8
AA
6335 {
6336 jmp_buf_pc = value_as_address (arg_value);
6337 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6338 }
cdaa5b73
PA
6339 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6340 || !gdbarch_get_longjmp_target (gdbarch,
6341 frame, &jmp_buf_pc))
e2e4d78b 6342 {
1eb8556f
SM
6343 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6344 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6345 keep_going (ecs);
6346 return;
e2e4d78b 6347 }
e2e4d78b 6348
cdaa5b73
PA
6349 /* Insert a breakpoint at resume address. */
6350 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6351 }
6352 else
6353 check_exception_resume (ecs, frame);
6354 keep_going (ecs);
6355 return;
e81a37f7 6356
cdaa5b73
PA
6357 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6358 {
6359 struct frame_info *init_frame;
e81a37f7 6360
cdaa5b73 6361 /* There are several cases to consider.
c906108c 6362
cdaa5b73
PA
6363 1. The initiating frame no longer exists. In this case we
6364 must stop, because the exception or longjmp has gone too
6365 far.
2c03e5be 6366
cdaa5b73
PA
6367 2. The initiating frame exists, and is the same as the
6368 current frame. We stop, because the exception or longjmp
6369 has been caught.
2c03e5be 6370
cdaa5b73
PA
6371 3. The initiating frame exists and is different from the
6372 current frame. This means the exception or longjmp has
6373 been caught beneath the initiating frame, so keep going.
c906108c 6374
cdaa5b73
PA
6375 4. longjmp breakpoint has been placed just to protect
6376 against stale dummy frames and user is not interested in
6377 stopping around longjmps. */
c5aa993b 6378
1eb8556f 6379 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6380
cdaa5b73
PA
6381 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6382 != NULL);
6383 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6384
cdaa5b73
PA
6385 if (what.is_longjmp)
6386 {
b67a2c6f 6387 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6388
cdaa5b73 6389 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6390 {
cdaa5b73
PA
6391 /* Case 4. */
6392 keep_going (ecs);
6393 return;
e5ef252a 6394 }
cdaa5b73 6395 }
c5aa993b 6396
cdaa5b73 6397 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6398
cdaa5b73
PA
6399 if (init_frame)
6400 {
6401 struct frame_id current_id
6402 = get_frame_id (get_current_frame ());
6403 if (frame_id_eq (current_id,
6404 ecs->event_thread->initiating_frame))
6405 {
6406 /* Case 2. Fall through. */
6407 }
6408 else
6409 {
6410 /* Case 3. */
6411 keep_going (ecs);
6412 return;
6413 }
68f53502 6414 }
488f131b 6415
cdaa5b73
PA
6416 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6417 exists. */
6418 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6419
bdc36728 6420 end_stepping_range (ecs);
cdaa5b73
PA
6421 }
6422 return;
e5ef252a 6423
cdaa5b73 6424 case BPSTAT_WHAT_SINGLE:
1eb8556f 6425 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427 /* Still need to check other stuff, at least the case where we
6428 are stepping and step out of the right range. */
6429 break;
e5ef252a 6430
cdaa5b73 6431 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6432 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6433
cdaa5b73
PA
6434 delete_step_resume_breakpoint (ecs->event_thread);
6435 if (ecs->event_thread->control.proceed_to_finish
6436 && execution_direction == EXEC_REVERSE)
6437 {
6438 struct thread_info *tp = ecs->event_thread;
6439
6440 /* We are finishing a function in reverse, and just hit the
6441 step-resume breakpoint at the start address of the
6442 function, and we're almost there -- just need to back up
6443 by one more single-step, which should take us back to the
6444 function call. */
6445 tp->control.step_range_start = tp->control.step_range_end = 1;
6446 keep_going (ecs);
e5ef252a 6447 return;
cdaa5b73
PA
6448 }
6449 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6450 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6451 && execution_direction == EXEC_REVERSE)
6452 {
6453 /* We are stepping over a function call in reverse, and just
6454 hit the step-resume breakpoint at the start address of
6455 the function. Go back to single-stepping, which should
6456 take us back to the function call. */
6457 ecs->event_thread->stepping_over_breakpoint = 1;
6458 keep_going (ecs);
6459 return;
6460 }
6461 break;
e5ef252a 6462
cdaa5b73 6463 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6464 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6465 stop_print_frame = true;
e5ef252a 6466
33bf4c5c 6467 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6468 whether a/the breakpoint is there when the thread is next
6469 resumed. */
6470 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6471
22bcd14b 6472 stop_waiting (ecs);
cdaa5b73 6473 return;
e5ef252a 6474
cdaa5b73 6475 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6476 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6477 stop_print_frame = false;
e5ef252a 6478
33bf4c5c 6479 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6480 whether a/the breakpoint is there when the thread is next
6481 resumed. */
6482 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6483 stop_waiting (ecs);
cdaa5b73
PA
6484 return;
6485
6486 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6487 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6488
6489 delete_step_resume_breakpoint (ecs->event_thread);
6490 if (ecs->event_thread->step_after_step_resume_breakpoint)
6491 {
6492 /* Back when the step-resume breakpoint was inserted, we
6493 were trying to single-step off a breakpoint. Go back to
6494 doing that. */
6495 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6496 ecs->event_thread->stepping_over_breakpoint = 1;
6497 keep_going (ecs);
6498 return;
e5ef252a 6499 }
cdaa5b73
PA
6500 break;
6501
6502 case BPSTAT_WHAT_KEEP_CHECKING:
6503 break;
e5ef252a 6504 }
c906108c 6505
af48d08f
PA
6506 /* If we stepped a permanent breakpoint and we had a high priority
6507 step-resume breakpoint for the address we stepped, but we didn't
6508 hit it, then we must have stepped into the signal handler. The
6509 step-resume was only necessary to catch the case of _not_
6510 stepping into the handler, so delete it, and fall through to
6511 checking whether the step finished. */
6512 if (ecs->event_thread->stepped_breakpoint)
6513 {
6514 struct breakpoint *sr_bp
6515 = ecs->event_thread->control.step_resume_breakpoint;
6516
8d707a12
PA
6517 if (sr_bp != NULL
6518 && sr_bp->loc->permanent
af48d08f
PA
6519 && sr_bp->type == bp_hp_step_resume
6520 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6521 {
1eb8556f 6522 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6523 delete_step_resume_breakpoint (ecs->event_thread);
6524 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6525 }
6526 }
6527
cdaa5b73
PA
6528 /* We come here if we hit a breakpoint but should not stop for it.
6529 Possibly we also were stepping and should stop for that. So fall
6530 through and test for stepping. But, if not stepping, do not
6531 stop. */
c906108c 6532
a7212384
UW
6533 /* In all-stop mode, if we're currently stepping but have stopped in
6534 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6535 if (switch_back_to_stepped_thread (ecs))
6536 return;
776f04fa 6537
8358c15c 6538 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6539 {
1eb8556f 6540 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6541
488f131b 6542 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6543 else having to do with stepping commands until
6544 that breakpoint is reached. */
488f131b
JB
6545 keep_going (ecs);
6546 return;
6547 }
c5aa993b 6548
16c381f0 6549 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6550 {
1eb8556f 6551 infrun_debug_printf ("no stepping, continue");
488f131b 6552 /* Likewise if we aren't even stepping. */
488f131b
JB
6553 keep_going (ecs);
6554 return;
6555 }
c5aa993b 6556
4b7703ad
JB
6557 /* Re-fetch current thread's frame in case the code above caused
6558 the frame cache to be re-initialized, making our FRAME variable
6559 a dangling pointer. */
6560 frame = get_current_frame ();
628fe4e4 6561 gdbarch = get_frame_arch (frame);
7e324e48 6562 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6563
488f131b 6564 /* If stepping through a line, keep going if still within it.
c906108c 6565
488f131b
JB
6566 Note that step_range_end is the address of the first instruction
6567 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6568 within it!
6569
6570 Note also that during reverse execution, we may be stepping
6571 through a function epilogue and therefore must detect when
6572 the current-frame changes in the middle of a line. */
6573
f2ffa92b
PA
6574 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6575 ecs->event_thread)
31410e84 6576 && (execution_direction != EXEC_REVERSE
388a8562 6577 || frame_id_eq (get_frame_id (frame),
16c381f0 6578 ecs->event_thread->control.step_frame_id)))
488f131b 6579 {
1eb8556f
SM
6580 infrun_debug_printf
6581 ("stepping inside range [%s-%s]",
6582 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6583 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6584
c1e36e3e
PA
6585 /* Tentatively re-enable range stepping; `resume' disables it if
6586 necessary (e.g., if we're stepping over a breakpoint or we
6587 have software watchpoints). */
6588 ecs->event_thread->control.may_range_step = 1;
6589
b2175913
MS
6590 /* When stepping backward, stop at beginning of line range
6591 (unless it's the function entry point, in which case
6592 keep going back to the call point). */
f2ffa92b 6593 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6594 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6595 && stop_pc != ecs->stop_func_start
6596 && execution_direction == EXEC_REVERSE)
bdc36728 6597 end_stepping_range (ecs);
b2175913
MS
6598 else
6599 keep_going (ecs);
6600
488f131b
JB
6601 return;
6602 }
c5aa993b 6603
488f131b 6604 /* We stepped out of the stepping range. */
c906108c 6605
488f131b 6606 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6607 loader dynamic symbol resolution code...
6608
6609 EXEC_FORWARD: we keep on single stepping until we exit the run
6610 time loader code and reach the callee's address.
6611
6612 EXEC_REVERSE: we've already executed the callee (backward), and
6613 the runtime loader code is handled just like any other
6614 undebuggable function call. Now we need only keep stepping
6615 backward through the trampoline code, and that's handled further
6616 down, so there is nothing for us to do here. */
6617
6618 if (execution_direction != EXEC_REVERSE
16c381f0 6619 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6620 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6621 {
4c8c40e6 6622 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6623 gdbarch_skip_solib_resolver (gdbarch,
6624 ecs->event_thread->suspend.stop_pc);
c906108c 6625
1eb8556f 6626 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6627
488f131b
JB
6628 if (pc_after_resolver)
6629 {
6630 /* Set up a step-resume breakpoint at the address
6631 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6632 symtab_and_line sr_sal;
488f131b 6633 sr_sal.pc = pc_after_resolver;
6c95b8df 6634 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6635
a6d9a66e
UW
6636 insert_step_resume_breakpoint_at_sal (gdbarch,
6637 sr_sal, null_frame_id);
c5aa993b 6638 }
c906108c 6639
488f131b
JB
6640 keep_going (ecs);
6641 return;
6642 }
c906108c 6643
1d509aa6
MM
6644 /* Step through an indirect branch thunk. */
6645 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6646 && gdbarch_in_indirect_branch_thunk (gdbarch,
6647 ecs->event_thread->suspend.stop_pc))
1d509aa6 6648 {
1eb8556f 6649 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6650 keep_going (ecs);
6651 return;
6652 }
6653
16c381f0
JK
6654 if (ecs->event_thread->control.step_range_end != 1
6655 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6656 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6657 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6658 {
1eb8556f 6659 infrun_debug_printf ("stepped into signal trampoline");
42edda50 6660 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
6661 a signal trampoline (either by a signal being delivered or by
6662 the signal handler returning). Just single-step until the
6663 inferior leaves the trampoline (either by calling the handler
6664 or returning). */
488f131b
JB
6665 keep_going (ecs);
6666 return;
6667 }
c906108c 6668
14132e89
MR
6669 /* If we're in the return path from a shared library trampoline,
6670 we want to proceed through the trampoline when stepping. */
6671 /* macro/2012-04-25: This needs to come before the subroutine
6672 call check below as on some targets return trampolines look
6673 like subroutine calls (MIPS16 return thunks). */
6674 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6675 ecs->event_thread->suspend.stop_pc,
6676 ecs->stop_func_name)
14132e89
MR
6677 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6678 {
6679 /* Determine where this trampoline returns. */
f2ffa92b
PA
6680 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6681 CORE_ADDR real_stop_pc
6682 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6683
1eb8556f 6684 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
6685
6686 /* Only proceed through if we know where it's going. */
6687 if (real_stop_pc)
6688 {
6689 /* And put the step-breakpoint there and go until there. */
51abb421 6690 symtab_and_line sr_sal;
14132e89
MR
6691 sr_sal.pc = real_stop_pc;
6692 sr_sal.section = find_pc_overlay (sr_sal.pc);
6693 sr_sal.pspace = get_frame_program_space (frame);
6694
6695 /* Do not specify what the fp should be when we stop since
6696 on some machines the prologue is where the new fp value
6697 is established. */
6698 insert_step_resume_breakpoint_at_sal (gdbarch,
6699 sr_sal, null_frame_id);
6700
6701 /* Restart without fiddling with the step ranges or
6702 other state. */
6703 keep_going (ecs);
6704 return;
6705 }
6706 }
6707
c17eaafe
DJ
6708 /* Check for subroutine calls. The check for the current frame
6709 equalling the step ID is not necessary - the check of the
6710 previous frame's ID is sufficient - but it is a common case and
6711 cheaper than checking the previous frame's ID.
14e60db5
DJ
6712
6713 NOTE: frame_id_eq will never report two invalid frame IDs as
6714 being equal, so to get into this block, both the current and
6715 previous frame must have valid frame IDs. */
005ca36a
JB
6716 /* The outer_frame_id check is a heuristic to detect stepping
6717 through startup code. If we step over an instruction which
6718 sets the stack pointer from an invalid value to a valid value,
6719 we may detect that as a subroutine call from the mythical
6720 "outermost" function. This could be fixed by marking
6721 outermost frames as !stack_p,code_p,special_p. Then the
6722 initial outermost frame, before sp was valid, would
ce6cca6d 6723 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6724 for more. */
edb3359d 6725 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6726 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6727 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6728 ecs->event_thread->control.step_stack_frame_id)
6729 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6730 outer_frame_id)
885eeb5b 6731 || (ecs->event_thread->control.step_start_function
f2ffa92b 6732 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6733 {
f2ffa92b 6734 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6735 CORE_ADDR real_stop_pc;
8fb3e588 6736
1eb8556f 6737 infrun_debug_printf ("stepped into subroutine");
527159b7 6738
b7a084be 6739 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6740 {
6741 /* I presume that step_over_calls is only 0 when we're
6742 supposed to be stepping at the assembly language level
6743 ("stepi"). Just stop. */
388a8562 6744 /* And this works the same backward as frontward. MVS */
bdc36728 6745 end_stepping_range (ecs);
95918acb
AC
6746 return;
6747 }
8fb3e588 6748
388a8562
MS
6749 /* Reverse stepping through solib trampolines. */
6750
6751 if (execution_direction == EXEC_REVERSE
16c381f0 6752 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6753 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6754 || (ecs->stop_func_start == 0
6755 && in_solib_dynsym_resolve_code (stop_pc))))
6756 {
6757 /* Any solib trampoline code can be handled in reverse
6758 by simply continuing to single-step. We have already
6759 executed the solib function (backwards), and a few
6760 steps will take us back through the trampoline to the
6761 caller. */
6762 keep_going (ecs);
6763 return;
6764 }
6765
16c381f0 6766 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6767 {
b2175913
MS
6768 /* We're doing a "next".
6769
6770 Normal (forward) execution: set a breakpoint at the
6771 callee's return address (the address at which the caller
6772 will resume).
6773
6774 Reverse (backward) execution. set the step-resume
6775 breakpoint at the start of the function that we just
6776 stepped into (backwards), and continue to there. When we
6130d0b7 6777 get there, we'll need to single-step back to the caller. */
b2175913
MS
6778
6779 if (execution_direction == EXEC_REVERSE)
6780 {
acf9414f
JK
6781 /* If we're already at the start of the function, we've either
6782 just stepped backward into a single instruction function,
6783 or stepped back out of a signal handler to the first instruction
6784 of the function. Just keep going, which will single-step back
6785 to the caller. */
58c48e72 6786 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6787 {
acf9414f 6788 /* Normal function call return (static or dynamic). */
51abb421 6789 symtab_and_line sr_sal;
acf9414f
JK
6790 sr_sal.pc = ecs->stop_func_start;
6791 sr_sal.pspace = get_frame_program_space (frame);
6792 insert_step_resume_breakpoint_at_sal (gdbarch,
6793 sr_sal, null_frame_id);
6794 }
b2175913
MS
6795 }
6796 else
568d6575 6797 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6798
8567c30f
AC
6799 keep_going (ecs);
6800 return;
6801 }
a53c66de 6802
95918acb 6803 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
6804 calling routine and the real function), locate the real
6805 function. That's what tells us (a) whether we want to step
6806 into it at all, and (b) what prologue we want to run to the
6807 end of, if we do step into it. */
568d6575 6808 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6809 if (real_stop_pc == 0)
568d6575 6810 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6811 if (real_stop_pc != 0)
6812 ecs->stop_func_start = real_stop_pc;
8fb3e588 6813
db5f024e 6814 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6815 {
51abb421 6816 symtab_and_line sr_sal;
1b2bfbb9 6817 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6818 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6819
a6d9a66e
UW
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
8fb3e588
AC
6822 keep_going (ecs);
6823 return;
1b2bfbb9
RC
6824 }
6825
95918acb 6826 /* If we have line number information for the function we are
1bfeeb0f
JL
6827 thinking of stepping into and the function isn't on the skip
6828 list, step into it.
95918acb 6829
dda83cd7
SM
6830 If there are several symtabs at that PC (e.g. with include
6831 files), just want to know whether *any* of them have line
6832 numbers. find_pc_line handles this. */
95918acb
AC
6833 {
6834 struct symtab_and_line tmp_sal;
8fb3e588 6835
95918acb 6836 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6837 if (tmp_sal.line != 0
85817405 6838 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6839 tmp_sal)
6840 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6841 {
b2175913 6842 if (execution_direction == EXEC_REVERSE)
568d6575 6843 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6844 else
568d6575 6845 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6846 return;
6847 }
6848 }
6849
6850 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
6851 set, we stop the step so that the user has a chance to switch
6852 in assembly mode. */
16c381f0 6853 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6854 && step_stop_if_no_debug)
95918acb 6855 {
bdc36728 6856 end_stepping_range (ecs);
95918acb
AC
6857 return;
6858 }
6859
b2175913
MS
6860 if (execution_direction == EXEC_REVERSE)
6861 {
acf9414f
JK
6862 /* If we're already at the start of the function, we've either just
6863 stepped backward into a single instruction function without line
6864 number info, or stepped back out of a signal handler to the first
6865 instruction of the function without line number info. Just keep
6866 going, which will single-step back to the caller. */
6867 if (ecs->stop_func_start != stop_pc)
6868 {
6869 /* Set a breakpoint at callee's start address.
6870 From there we can step once and be back in the caller. */
51abb421 6871 symtab_and_line sr_sal;
acf9414f
JK
6872 sr_sal.pc = ecs->stop_func_start;
6873 sr_sal.pspace = get_frame_program_space (frame);
6874 insert_step_resume_breakpoint_at_sal (gdbarch,
6875 sr_sal, null_frame_id);
6876 }
b2175913
MS
6877 }
6878 else
6879 /* Set a breakpoint at callee's return address (the address
6880 at which the caller will resume). */
568d6575 6881 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6882
95918acb 6883 keep_going (ecs);
488f131b 6884 return;
488f131b 6885 }
c906108c 6886
fdd654f3
MS
6887 /* Reverse stepping through solib trampolines. */
6888
6889 if (execution_direction == EXEC_REVERSE
16c381f0 6890 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6891 {
f2ffa92b
PA
6892 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6893
fdd654f3
MS
6894 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6895 || (ecs->stop_func_start == 0
6896 && in_solib_dynsym_resolve_code (stop_pc)))
6897 {
6898 /* Any solib trampoline code can be handled in reverse
6899 by simply continuing to single-step. We have already
6900 executed the solib function (backwards), and a few
6901 steps will take us back through the trampoline to the
6902 caller. */
6903 keep_going (ecs);
6904 return;
6905 }
6906 else if (in_solib_dynsym_resolve_code (stop_pc))
6907 {
6908 /* Stepped backward into the solib dynsym resolver.
6909 Set a breakpoint at its start and continue, then
6910 one more step will take us out. */
51abb421 6911 symtab_and_line sr_sal;
fdd654f3 6912 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6913 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6914 insert_step_resume_breakpoint_at_sal (gdbarch,
6915 sr_sal, null_frame_id);
6916 keep_going (ecs);
6917 return;
6918 }
6919 }
6920
8c95582d
AB
6921 /* This always returns the sal for the inner-most frame when we are in a
6922 stack of inlined frames, even if GDB actually believes that it is in a
6923 more outer frame. This is checked for below by calls to
6924 inline_skipped_frames. */
f2ffa92b 6925 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6926
1b2bfbb9
RC
6927 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6928 the trampoline processing logic, however, there are some trampolines
6929 that have no names, so we should do trampoline handling first. */
16c381f0 6930 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6931 && ecs->stop_func_name == NULL
2afb61aa 6932 && stop_pc_sal.line == 0)
1b2bfbb9 6933 {
1eb8556f 6934 infrun_debug_printf ("stepped into undebuggable function");
527159b7 6935
1b2bfbb9 6936 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
6937 undebuggable function (where there is no debugging information
6938 and no line number corresponding to the address where the
6939 inferior stopped). Since we want to skip this kind of code,
6940 we keep going until the inferior returns from this
6941 function - unless the user has asked us not to (via
6942 set step-mode) or we no longer know how to get back
6943 to the call site. */
14e60db5 6944 if (step_stop_if_no_debug
c7ce8faa 6945 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6946 {
6947 /* If we have no line number and the step-stop-if-no-debug
6948 is set, we stop the step so that the user has a chance to
6949 switch in assembly mode. */
bdc36728 6950 end_stepping_range (ecs);
1b2bfbb9
RC
6951 return;
6952 }
6953 else
6954 {
6955 /* Set a breakpoint at callee's return address (the address
6956 at which the caller will resume). */
568d6575 6957 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6958 keep_going (ecs);
6959 return;
6960 }
6961 }
6962
16c381f0 6963 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6964 {
6965 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 6966 one instruction. */
1eb8556f 6967 infrun_debug_printf ("stepi/nexti");
bdc36728 6968 end_stepping_range (ecs);
1b2bfbb9
RC
6969 return;
6970 }
6971
2afb61aa 6972 if (stop_pc_sal.line == 0)
488f131b
JB
6973 {
6974 /* We have no line number information. That means to stop
dda83cd7
SM
6975 stepping (does this always happen right after one instruction,
6976 when we do "s" in a function with no line numbers,
6977 or can this happen as a result of a return or longjmp?). */
1eb8556f 6978 infrun_debug_printf ("line number info");
bdc36728 6979 end_stepping_range (ecs);
488f131b
JB
6980 return;
6981 }
c906108c 6982
edb3359d
DJ
6983 /* Look for "calls" to inlined functions, part one. If the inline
6984 frame machinery detected some skipped call sites, we have entered
6985 a new inline function. */
6986
6987 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6988 ecs->event_thread->control.step_frame_id)
00431a78 6989 && inline_skipped_frames (ecs->event_thread))
edb3359d 6990 {
1eb8556f 6991 infrun_debug_printf ("stepped into inlined function");
edb3359d 6992
51abb421 6993 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6994
16c381f0 6995 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6996 {
6997 /* For "step", we're going to stop. But if the call site
6998 for this inlined function is on the same source line as
6999 we were previously stepping, go down into the function
7000 first. Otherwise stop at the call site. */
7001
7002 if (call_sal.line == ecs->event_thread->current_line
7003 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7004 {
7005 step_into_inline_frame (ecs->event_thread);
7006 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7007 {
7008 keep_going (ecs);
7009 return;
7010 }
7011 }
edb3359d 7012
bdc36728 7013 end_stepping_range (ecs);
edb3359d
DJ
7014 return;
7015 }
7016 else
7017 {
7018 /* For "next", we should stop at the call site if it is on a
7019 different source line. Otherwise continue through the
7020 inlined function. */
7021 if (call_sal.line == ecs->event_thread->current_line
7022 && call_sal.symtab == ecs->event_thread->current_symtab)
7023 keep_going (ecs);
7024 else
bdc36728 7025 end_stepping_range (ecs);
edb3359d
DJ
7026 return;
7027 }
7028 }
7029
7030 /* Look for "calls" to inlined functions, part two. If we are still
7031 in the same real function we were stepping through, but we have
7032 to go further up to find the exact frame ID, we are stepping
7033 through a more inlined call beyond its call site. */
7034
7035 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7036 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7037 ecs->event_thread->control.step_frame_id)
edb3359d 7038 && stepped_in_from (get_current_frame (),
16c381f0 7039 ecs->event_thread->control.step_frame_id))
edb3359d 7040 {
1eb8556f 7041 infrun_debug_printf ("stepping through inlined function");
edb3359d 7042
4a4c04f1
BE
7043 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7044 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7045 keep_going (ecs);
7046 else
bdc36728 7047 end_stepping_range (ecs);
edb3359d
DJ
7048 return;
7049 }
7050
8c95582d 7051 bool refresh_step_info = true;
f2ffa92b 7052 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7053 && (ecs->event_thread->current_line != stop_pc_sal.line
7054 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7055 {
8c95582d
AB
7056 if (stop_pc_sal.is_stmt)
7057 {
7058 /* We are at the start of a different line. So stop. Note that
7059 we don't stop if we step into the middle of a different line.
7060 That is said to make things like for (;;) statements work
7061 better. */
1eb8556f 7062 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7063 end_stepping_range (ecs);
7064 return;
7065 }
7066 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7067 ecs->event_thread->control.step_frame_id))
7068 {
7069 /* We are at the start of a different line, however, this line is
7070 not marked as a statement, and we have not changed frame. We
7071 ignore this line table entry, and continue stepping forward,
7072 looking for a better place to stop. */
7073 refresh_step_info = false;
1eb8556f
SM
7074 infrun_debug_printf ("stepped to a different line, but "
7075 "it's not the start of a statement");
8c95582d 7076 }
488f131b 7077 }
c906108c 7078
488f131b 7079 /* We aren't done stepping.
c906108c 7080
488f131b
JB
7081 Optimize by setting the stepping range to the line.
7082 (We might not be in the original line, but if we entered a
7083 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7084 things like for(;;) statements work better.)
7085
7086 If we entered a SAL that indicates a non-statement line table entry,
7087 then we update the stepping range, but we don't update the step info,
7088 which includes things like the line number we are stepping away from.
7089 This means we will stop when we find a line table entry that is marked
7090 as is-statement, even if it matches the non-statement one we just
7091 stepped into. */
c906108c 7092
16c381f0
JK
7093 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7094 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7095 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7096 if (refresh_step_info)
7097 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7098
1eb8556f 7099 infrun_debug_printf ("keep going");
488f131b 7100 keep_going (ecs);
104c1213
JM
7101}
7102
c447ac0b
PA
7103/* In all-stop mode, if we're currently stepping but have stopped in
7104 some other thread, we may need to switch back to the stepped
7105 thread. Returns true we set the inferior running, false if we left
7106 it stopped (and the event needs further processing). */
7107
c4464ade 7108static bool
c447ac0b
PA
7109switch_back_to_stepped_thread (struct execution_control_state *ecs)
7110{
fbea99ea 7111 if (!target_is_non_stop_p ())
c447ac0b 7112 {
99619bea
PA
7113 struct thread_info *stepping_thread;
7114
7115 /* If any thread is blocked on some internal breakpoint, and we
7116 simply need to step over that breakpoint to get it going
7117 again, do that first. */
7118
7119 /* However, if we see an event for the stepping thread, then we
7120 know all other threads have been moved past their breakpoints
7121 already. Let the caller check whether the step is finished,
7122 etc., before deciding to move it past a breakpoint. */
7123 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7124 return false;
99619bea
PA
7125
7126 /* Check if the current thread is blocked on an incomplete
7127 step-over, interrupted by a random signal. */
7128 if (ecs->event_thread->control.trap_expected
7129 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7130 {
1eb8556f
SM
7131 infrun_debug_printf
7132 ("need to finish step-over of [%s]",
7133 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea 7134 keep_going (ecs);
c4464ade 7135 return true;
99619bea 7136 }
2adfaa28 7137
99619bea
PA
7138 /* Check if the current thread is blocked by a single-step
7139 breakpoint of another thread. */
7140 if (ecs->hit_singlestep_breakpoint)
7141 {
1eb8556f
SM
7142 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7143 target_pid_to_str (ecs->ptid).c_str ());
99619bea 7144 keep_going (ecs);
c4464ade 7145 return true;
99619bea
PA
7146 }
7147
4d9d9d04
PA
7148 /* If this thread needs yet another step-over (e.g., stepping
7149 through a delay slot), do it first before moving on to
7150 another thread. */
7151 if (thread_still_needs_step_over (ecs->event_thread))
7152 {
1eb8556f
SM
7153 infrun_debug_printf
7154 ("thread [%s] still needs step-over",
7155 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04 7156 keep_going (ecs);
c4464ade 7157 return true;
4d9d9d04 7158 }
70509625 7159
483805cf
PA
7160 /* If scheduler locking applies even if not stepping, there's no
7161 need to walk over threads. Above we've checked whether the
7162 current thread is stepping. If some other thread not the
7163 event thread is stepping, then it must be that scheduler
7164 locking is not in effect. */
856e7dd6 7165 if (schedlock_applies (ecs->event_thread))
c4464ade 7166 return false;
483805cf 7167
4d9d9d04
PA
7168 /* Otherwise, we no longer expect a trap in the current thread.
7169 Clear the trap_expected flag before switching back -- this is
7170 what keep_going does as well, if we call it. */
7171 ecs->event_thread->control.trap_expected = 0;
7172
7173 /* Likewise, clear the signal if it should not be passed. */
7174 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7175 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7176
7177 /* Do all pending step-overs before actually proceeding with
483805cf 7178 step/next/etc. */
4d9d9d04
PA
7179 if (start_step_over ())
7180 {
7181 prepare_to_wait (ecs);
c4464ade 7182 return true;
4d9d9d04
PA
7183 }
7184
7185 /* Look for the stepping/nexting thread. */
483805cf 7186 stepping_thread = NULL;
4d9d9d04 7187
08036331 7188 for (thread_info *tp : all_non_exited_threads ())
dda83cd7 7189 {
f3f8ece4
PA
7190 switch_to_thread_no_regs (tp);
7191
fbea99ea
PA
7192 /* Ignore threads of processes the caller is not
7193 resuming. */
483805cf 7194 if (!sched_multi
5b6d1e4f
PA
7195 && (tp->inf->process_target () != ecs->target
7196 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7197 continue;
7198
7199 /* When stepping over a breakpoint, we lock all threads
7200 except the one that needs to move past the breakpoint.
7201 If a non-event thread has this set, the "incomplete
7202 step-over" check above should have caught it earlier. */
372316f1
PA
7203 if (tp->control.trap_expected)
7204 {
7205 internal_error (__FILE__, __LINE__,
7206 "[%s] has inconsistent state: "
7207 "trap_expected=%d\n",
a068643d 7208 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7209 tp->control.trap_expected);
7210 }
483805cf
PA
7211
7212 /* Did we find the stepping thread? */
7213 if (tp->control.step_range_end)
7214 {
7215 /* Yep. There should only one though. */
7216 gdb_assert (stepping_thread == NULL);
7217
7218 /* The event thread is handled at the top, before we
7219 enter this loop. */
7220 gdb_assert (tp != ecs->event_thread);
7221
7222 /* If some thread other than the event thread is
7223 stepping, then scheduler locking can't be in effect,
7224 otherwise we wouldn't have resumed the current event
7225 thread in the first place. */
856e7dd6 7226 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7227
7228 stepping_thread = tp;
7229 }
99619bea
PA
7230 }
7231
483805cf 7232 if (stepping_thread != NULL)
99619bea 7233 {
1eb8556f 7234 infrun_debug_printf ("switching back to stepped thread");
c447ac0b 7235
2ac7589c
PA
7236 if (keep_going_stepped_thread (stepping_thread))
7237 {
7238 prepare_to_wait (ecs);
c4464ade 7239 return true;
2ac7589c
PA
7240 }
7241 }
f3f8ece4
PA
7242
7243 switch_to_thread (ecs->event_thread);
2ac7589c 7244 }
2adfaa28 7245
c4464ade 7246 return false;
2ac7589c 7247}
2adfaa28 7248
2ac7589c
PA
7249/* Set a previously stepped thread back to stepping. Returns true on
7250 success, false if the resume is not possible (e.g., the thread
7251 vanished). */
7252
c4464ade 7253static bool
2ac7589c
PA
7254keep_going_stepped_thread (struct thread_info *tp)
7255{
7256 struct frame_info *frame;
2ac7589c
PA
7257 struct execution_control_state ecss;
7258 struct execution_control_state *ecs = &ecss;
2adfaa28 7259
2ac7589c
PA
7260 /* If the stepping thread exited, then don't try to switch back and
7261 resume it, which could fail in several different ways depending
7262 on the target. Instead, just keep going.
2adfaa28 7263
2ac7589c
PA
7264 We can find a stepping dead thread in the thread list in two
7265 cases:
2adfaa28 7266
2ac7589c
PA
7267 - The target supports thread exit events, and when the target
7268 tries to delete the thread from the thread list, inferior_ptid
7269 pointed at the exiting thread. In such case, calling
7270 delete_thread does not really remove the thread from the list;
7271 instead, the thread is left listed, with 'exited' state.
64ce06e4 7272
2ac7589c
PA
7273 - The target's debug interface does not support thread exit
7274 events, and so we have no idea whatsoever if the previously
7275 stepping thread is still alive. For that reason, we need to
7276 synchronously query the target now. */
2adfaa28 7277
00431a78 7278 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7279 {
1eb8556f
SM
7280 infrun_debug_printf ("not resuming previously stepped thread, it has "
7281 "vanished");
2ac7589c 7282
00431a78 7283 delete_thread (tp);
c4464ade 7284 return false;
c447ac0b 7285 }
2ac7589c 7286
1eb8556f 7287 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7288
7289 reset_ecs (ecs, tp);
00431a78 7290 switch_to_thread (tp);
2ac7589c 7291
f2ffa92b 7292 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7293 frame = get_current_frame ();
2ac7589c
PA
7294
7295 /* If the PC of the thread we were trying to single-step has
7296 changed, then that thread has trapped or been signaled, but the
7297 event has not been reported to GDB yet. Re-poll the target
7298 looking for this particular thread's event (i.e. temporarily
7299 enable schedlock) by:
7300
7301 - setting a break at the current PC
7302 - resuming that particular thread, only (by setting trap
7303 expected)
7304
7305 This prevents us continuously moving the single-step breakpoint
7306 forward, one instruction at a time, overstepping. */
7307
f2ffa92b 7308 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7309 {
7310 ptid_t resume_ptid;
7311
1eb8556f
SM
7312 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7313 paddress (target_gdbarch (), tp->prev_pc),
7314 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7315
7316 /* Clear the info of the previous step-over, as it's no longer
7317 valid (if the thread was trying to step over a breakpoint, it
7318 has already succeeded). It's what keep_going would do too,
7319 if we called it. Do this before trying to insert the sss
7320 breakpoint, otherwise if we were previously trying to step
7321 over this exact address in another thread, the breakpoint is
7322 skipped. */
7323 clear_step_over_info ();
7324 tp->control.trap_expected = 0;
7325
7326 insert_single_step_breakpoint (get_frame_arch (frame),
7327 get_frame_address_space (frame),
f2ffa92b 7328 tp->suspend.stop_pc);
2ac7589c 7329
719546c4 7330 tp->resumed = true;
fbea99ea 7331 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7332 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7333 }
7334 else
7335 {
1eb8556f 7336 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7337
7338 keep_going_pass_signal (ecs);
7339 }
c4464ade
SM
7340
7341 return true;
c447ac0b
PA
7342}
7343
8b061563
PA
7344/* Is thread TP in the middle of (software or hardware)
7345 single-stepping? (Note the result of this function must never be
7346 passed directly as target_resume's STEP parameter.) */
104c1213 7347
c4464ade 7348static bool
b3444185 7349currently_stepping (struct thread_info *tp)
a7212384 7350{
8358c15c
JK
7351 return ((tp->control.step_range_end
7352 && tp->control.step_resume_breakpoint == NULL)
7353 || tp->control.trap_expected
af48d08f 7354 || tp->stepped_breakpoint
8358c15c 7355 || bpstat_should_step ());
a7212384
UW
7356}
7357
b2175913
MS
7358/* Inferior has stepped into a subroutine call with source code that
7359 we should not step over. Do step to the first line of code in
7360 it. */
c2c6d25f
JM
7361
7362static void
568d6575
UW
7363handle_step_into_function (struct gdbarch *gdbarch,
7364 struct execution_control_state *ecs)
c2c6d25f 7365{
7e324e48
GB
7366 fill_in_stop_func (gdbarch, ecs);
7367
f2ffa92b
PA
7368 compunit_symtab *cust
7369 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7370 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7371 ecs->stop_func_start
7372 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7373
51abb421 7374 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7375 /* Use the step_resume_break to step until the end of the prologue,
7376 even if that involves jumps (as it seems to on the vax under
7377 4.2). */
7378 /* If the prologue ends in the middle of a source line, continue to
7379 the end of that source line (if it is still within the function).
7380 Otherwise, just go to end of prologue. */
2afb61aa
PA
7381 if (stop_func_sal.end
7382 && stop_func_sal.pc != ecs->stop_func_start
7383 && stop_func_sal.end < ecs->stop_func_end)
7384 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7385
2dbd5e30
KB
7386 /* Architectures which require breakpoint adjustment might not be able
7387 to place a breakpoint at the computed address. If so, the test
7388 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7389 ecs->stop_func_start to an address at which a breakpoint may be
7390 legitimately placed.
8fb3e588 7391
2dbd5e30
KB
7392 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7393 made, GDB will enter an infinite loop when stepping through
7394 optimized code consisting of VLIW instructions which contain
7395 subinstructions corresponding to different source lines. On
7396 FR-V, it's not permitted to place a breakpoint on any but the
7397 first subinstruction of a VLIW instruction. When a breakpoint is
7398 set, GDB will adjust the breakpoint address to the beginning of
7399 the VLIW instruction. Thus, we need to make the corresponding
7400 adjustment here when computing the stop address. */
8fb3e588 7401
568d6575 7402 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7403 {
7404 ecs->stop_func_start
568d6575 7405 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7406 ecs->stop_func_start);
2dbd5e30
KB
7407 }
7408
f2ffa92b 7409 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7410 {
7411 /* We are already there: stop now. */
bdc36728 7412 end_stepping_range (ecs);
c2c6d25f
JM
7413 return;
7414 }
7415 else
7416 {
7417 /* Put the step-breakpoint there and go until there. */
51abb421 7418 symtab_and_line sr_sal;
c2c6d25f
JM
7419 sr_sal.pc = ecs->stop_func_start;
7420 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7421 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7422
c2c6d25f 7423 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7424 some machines the prologue is where the new fp value is
7425 established. */
a6d9a66e 7426 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7427
7428 /* And make sure stepping stops right away then. */
16c381f0 7429 ecs->event_thread->control.step_range_end
dda83cd7 7430 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7431 }
7432 keep_going (ecs);
7433}
d4f3574e 7434
b2175913
MS
7435/* Inferior has stepped backward into a subroutine call with source
7436 code that we should not step over. Do step to the beginning of the
7437 last line of code in it. */
7438
7439static void
568d6575
UW
7440handle_step_into_function_backward (struct gdbarch *gdbarch,
7441 struct execution_control_state *ecs)
b2175913 7442{
43f3e411 7443 struct compunit_symtab *cust;
167e4384 7444 struct symtab_and_line stop_func_sal;
b2175913 7445
7e324e48
GB
7446 fill_in_stop_func (gdbarch, ecs);
7447
f2ffa92b 7448 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7449 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7450 ecs->stop_func_start
7451 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7452
f2ffa92b 7453 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7454
7455 /* OK, we're just going to keep stepping here. */
f2ffa92b 7456 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7457 {
7458 /* We're there already. Just stop stepping now. */
bdc36728 7459 end_stepping_range (ecs);
b2175913
MS
7460 }
7461 else
7462 {
7463 /* Else just reset the step range and keep going.
7464 No step-resume breakpoint, they don't work for
7465 epilogues, which can have multiple entry paths. */
16c381f0
JK
7466 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7467 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7468 keep_going (ecs);
7469 }
7470 return;
7471}
7472
d3169d93 7473/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7474 This is used to both functions and to skip over code. */
7475
7476static void
2c03e5be
PA
7477insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7478 struct symtab_and_line sr_sal,
7479 struct frame_id sr_id,
7480 enum bptype sr_type)
44cbf7b5 7481{
611c83ae
PA
7482 /* There should never be more than one step-resume or longjmp-resume
7483 breakpoint per thread, so we should never be setting a new
44cbf7b5 7484 step_resume_breakpoint when one is already active. */
8358c15c 7485 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7486 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7487
1eb8556f
SM
7488 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7489 paddress (gdbarch, sr_sal.pc));
d3169d93 7490
8358c15c 7491 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7492 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7493}
7494
9da8c2a0 7495void
2c03e5be
PA
7496insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7497 struct symtab_and_line sr_sal,
7498 struct frame_id sr_id)
7499{
7500 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7501 sr_sal, sr_id,
7502 bp_step_resume);
44cbf7b5 7503}
7ce450bd 7504
2c03e5be
PA
7505/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7506 This is used to skip a potential signal handler.
7ce450bd 7507
14e60db5
DJ
7508 This is called with the interrupted function's frame. The signal
7509 handler, when it returns, will resume the interrupted function at
7510 RETURN_FRAME.pc. */
d303a6c7
AC
7511
7512static void
2c03e5be 7513insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7514{
f4c1edd8 7515 gdb_assert (return_frame != NULL);
d303a6c7 7516
51abb421
PA
7517 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7518
7519 symtab_and_line sr_sal;
568d6575 7520 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7521 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7522 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7523
2c03e5be
PA
7524 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7525 get_stack_frame_id (return_frame),
7526 bp_hp_step_resume);
d303a6c7
AC
7527}
7528
2c03e5be
PA
7529/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7530 is used to skip a function after stepping into it (for "next" or if
7531 the called function has no debugging information).
14e60db5
DJ
7532
7533 The current function has almost always been reached by single
7534 stepping a call or return instruction. NEXT_FRAME belongs to the
7535 current function, and the breakpoint will be set at the caller's
7536 resume address.
7537
7538 This is a separate function rather than reusing
2c03e5be 7539 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7540 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7541 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7542
7543static void
7544insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7545{
14e60db5
DJ
7546 /* We shouldn't have gotten here if we don't know where the call site
7547 is. */
c7ce8faa 7548 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7549
51abb421 7550 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7551
51abb421 7552 symtab_and_line sr_sal;
c7ce8faa
DJ
7553 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7554 frame_unwind_caller_pc (next_frame));
14e60db5 7555 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7556 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7557
a6d9a66e 7558 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7559 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7560}
7561
611c83ae
PA
7562/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7563 new breakpoint at the target of a jmp_buf. The handling of
7564 longjmp-resume uses the same mechanisms used for handling
7565 "step-resume" breakpoints. */
7566
7567static void
a6d9a66e 7568insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7569{
e81a37f7
TT
7570 /* There should never be more than one longjmp-resume breakpoint per
7571 thread, so we should never be setting a new
611c83ae 7572 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7573 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7574
1eb8556f
SM
7575 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7576 paddress (gdbarch, pc));
611c83ae 7577
e81a37f7 7578 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7579 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7580}
7581
186c406b
TT
7582/* Insert an exception resume breakpoint. TP is the thread throwing
7583 the exception. The block B is the block of the unwinder debug hook
7584 function. FRAME is the frame corresponding to the call to this
7585 function. SYM is the symbol of the function argument holding the
7586 target PC of the exception. */
7587
7588static void
7589insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7590 const struct block *b,
186c406b
TT
7591 struct frame_info *frame,
7592 struct symbol *sym)
7593{
a70b8144 7594 try
186c406b 7595 {
63e43d3a 7596 struct block_symbol vsym;
186c406b
TT
7597 struct value *value;
7598 CORE_ADDR handler;
7599 struct breakpoint *bp;
7600
987012b8 7601 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7602 b, VAR_DOMAIN);
63e43d3a 7603 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7604 /* If the value was optimized out, revert to the old behavior. */
7605 if (! value_optimized_out (value))
7606 {
7607 handler = value_as_address (value);
7608
1eb8556f
SM
7609 infrun_debug_printf ("exception resume at %lx",
7610 (unsigned long) handler);
186c406b
TT
7611
7612 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7613 handler,
7614 bp_exception_resume).release ();
c70a6932
JK
7615
7616 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7617 frame = NULL;
7618
5d5658a1 7619 bp->thread = tp->global_num;
186c406b
TT
7620 inferior_thread ()->control.exception_resume_breakpoint = bp;
7621 }
7622 }
230d2906 7623 catch (const gdb_exception_error &e)
492d29ea
PA
7624 {
7625 /* We want to ignore errors here. */
7626 }
186c406b
TT
7627}
7628
28106bc2
SDJ
7629/* A helper for check_exception_resume that sets an
7630 exception-breakpoint based on a SystemTap probe. */
7631
7632static void
7633insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7634 const struct bound_probe *probe,
28106bc2
SDJ
7635 struct frame_info *frame)
7636{
7637 struct value *arg_value;
7638 CORE_ADDR handler;
7639 struct breakpoint *bp;
7640
7641 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7642 if (!arg_value)
7643 return;
7644
7645 handler = value_as_address (arg_value);
7646
1eb8556f
SM
7647 infrun_debug_printf ("exception resume at %s",
7648 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7649
7650 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7651 handler, bp_exception_resume).release ();
5d5658a1 7652 bp->thread = tp->global_num;
28106bc2
SDJ
7653 inferior_thread ()->control.exception_resume_breakpoint = bp;
7654}
7655
186c406b
TT
7656/* This is called when an exception has been intercepted. Check to
7657 see whether the exception's destination is of interest, and if so,
7658 set an exception resume breakpoint there. */
7659
7660static void
7661check_exception_resume (struct execution_control_state *ecs,
28106bc2 7662 struct frame_info *frame)
186c406b 7663{
729662a5 7664 struct bound_probe probe;
28106bc2
SDJ
7665 struct symbol *func;
7666
7667 /* First see if this exception unwinding breakpoint was set via a
7668 SystemTap probe point. If so, the probe has two arguments: the
7669 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7670 set a breakpoint there. */
6bac7473 7671 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7672 if (probe.prob)
28106bc2 7673 {
729662a5 7674 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7675 return;
7676 }
7677
7678 func = get_frame_function (frame);
7679 if (!func)
7680 return;
186c406b 7681
a70b8144 7682 try
186c406b 7683 {
3977b71f 7684 const struct block *b;
8157b174 7685 struct block_iterator iter;
186c406b
TT
7686 struct symbol *sym;
7687 int argno = 0;
7688
7689 /* The exception breakpoint is a thread-specific breakpoint on
7690 the unwinder's debug hook, declared as:
7691
7692 void _Unwind_DebugHook (void *cfa, void *handler);
7693
7694 The CFA argument indicates the frame to which control is
7695 about to be transferred. HANDLER is the destination PC.
7696
7697 We ignore the CFA and set a temporary breakpoint at HANDLER.
7698 This is not extremely efficient but it avoids issues in gdb
7699 with computing the DWARF CFA, and it also works even in weird
7700 cases such as throwing an exception from inside a signal
7701 handler. */
7702
7703 b = SYMBOL_BLOCK_VALUE (func);
7704 ALL_BLOCK_SYMBOLS (b, iter, sym)
7705 {
7706 if (!SYMBOL_IS_ARGUMENT (sym))
7707 continue;
7708
7709 if (argno == 0)
7710 ++argno;
7711 else
7712 {
7713 insert_exception_resume_breakpoint (ecs->event_thread,
7714 b, frame, sym);
7715 break;
7716 }
7717 }
7718 }
230d2906 7719 catch (const gdb_exception_error &e)
492d29ea
PA
7720 {
7721 }
186c406b
TT
7722}
7723
104c1213 7724static void
22bcd14b 7725stop_waiting (struct execution_control_state *ecs)
104c1213 7726{
1eb8556f 7727 infrun_debug_printf ("stop_waiting");
527159b7 7728
cd0fc7c3
SS
7729 /* Let callers know we don't want to wait for the inferior anymore. */
7730 ecs->wait_some_more = 0;
fbea99ea 7731
53cccef1 7732 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7733 threads now that we're presenting the stop to the user. */
53cccef1 7734 if (!non_stop && exists_non_stop_target ())
fbea99ea 7735 stop_all_threads ();
cd0fc7c3
SS
7736}
7737
4d9d9d04
PA
7738/* Like keep_going, but passes the signal to the inferior, even if the
7739 signal is set to nopass. */
d4f3574e
SS
7740
7741static void
4d9d9d04 7742keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7743{
d7e15655 7744 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7745 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7746
d4f3574e 7747 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7748 ecs->event_thread->prev_pc
fc75c28b 7749 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7750
4d9d9d04 7751 if (ecs->event_thread->control.trap_expected)
d4f3574e 7752 {
4d9d9d04
PA
7753 struct thread_info *tp = ecs->event_thread;
7754
1eb8556f
SM
7755 infrun_debug_printf ("%s has trap_expected set, "
7756 "resuming to collect trap",
7757 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7758
a9ba6bae
PA
7759 /* We haven't yet gotten our trap, and either: intercepted a
7760 non-signal event (e.g., a fork); or took a signal which we
7761 are supposed to pass through to the inferior. Simply
7762 continue. */
64ce06e4 7763 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7764 }
372316f1
PA
7765 else if (step_over_info_valid_p ())
7766 {
7767 /* Another thread is stepping over a breakpoint in-line. If
7768 this thread needs a step-over too, queue the request. In
7769 either case, this resume must be deferred for later. */
7770 struct thread_info *tp = ecs->event_thread;
7771
7772 if (ecs->hit_singlestep_breakpoint
7773 || thread_still_needs_step_over (tp))
7774 {
1eb8556f
SM
7775 infrun_debug_printf ("step-over already in progress: "
7776 "step-over for %s deferred",
7777 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7778 thread_step_over_chain_enqueue (tp);
7779 }
7780 else
7781 {
1eb8556f
SM
7782 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7783 target_pid_to_str (tp->ptid).c_str ());
372316f1 7784 }
372316f1 7785 }
d4f3574e
SS
7786 else
7787 {
31e77af2 7788 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7789 int remove_bp;
7790 int remove_wps;
8d297bbf 7791 step_over_what step_what;
31e77af2 7792
d4f3574e 7793 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7794 anyway (if we got a signal, the user asked it be passed to
7795 the child)
7796 -- or --
7797 We got our expected trap, but decided we should resume from
7798 it.
d4f3574e 7799
a9ba6bae 7800 We're going to run this baby now!
d4f3574e 7801
c36b740a
VP
7802 Note that insert_breakpoints won't try to re-insert
7803 already inserted breakpoints. Therefore, we don't
7804 care if breakpoints were already inserted, or not. */
a9ba6bae 7805
31e77af2
PA
7806 /* If we need to step over a breakpoint, and we're not using
7807 displaced stepping to do so, insert all breakpoints
7808 (watchpoints, etc.) but the one we're stepping over, step one
7809 instruction, and then re-insert the breakpoint when that step
7810 is finished. */
963f9c80 7811
6c4cfb24
PA
7812 step_what = thread_still_needs_step_over (ecs->event_thread);
7813
963f9c80 7814 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7815 || (step_what & STEP_OVER_BREAKPOINT));
7816 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7817
cb71640d
PA
7818 /* We can't use displaced stepping if we need to step past a
7819 watchpoint. The instruction copied to the scratch pad would
7820 still trigger the watchpoint. */
7821 if (remove_bp
3fc8eb30 7822 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7823 {
a01bda52 7824 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7825 regcache_read_pc (regcache), remove_wps,
7826 ecs->event_thread->global_num);
45e8c884 7827 }
963f9c80 7828 else if (remove_wps)
21edc42f 7829 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7830
7831 /* If we now need to do an in-line step-over, we need to stop
7832 all other threads. Note this must be done before
7833 insert_breakpoints below, because that removes the breakpoint
7834 we're about to step over, otherwise other threads could miss
7835 it. */
fbea99ea 7836 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7837 stop_all_threads ();
abbb1732 7838
31e77af2 7839 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7840 try
31e77af2
PA
7841 {
7842 insert_breakpoints ();
7843 }
230d2906 7844 catch (const gdb_exception_error &e)
31e77af2
PA
7845 {
7846 exception_print (gdb_stderr, e);
22bcd14b 7847 stop_waiting (ecs);
bdf2a94a 7848 clear_step_over_info ();
31e77af2 7849 return;
d4f3574e
SS
7850 }
7851
963f9c80 7852 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7853
64ce06e4 7854 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7855 }
7856
488f131b 7857 prepare_to_wait (ecs);
d4f3574e
SS
7858}
7859
4d9d9d04
PA
7860/* Called when we should continue running the inferior, because the
7861 current event doesn't cause a user visible stop. This does the
7862 resuming part; waiting for the next event is done elsewhere. */
7863
7864static void
7865keep_going (struct execution_control_state *ecs)
7866{
7867 if (ecs->event_thread->control.trap_expected
7868 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7869 ecs->event_thread->control.trap_expected = 0;
7870
7871 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7872 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7873 keep_going_pass_signal (ecs);
7874}
7875
104c1213
JM
7876/* This function normally comes after a resume, before
7877 handle_inferior_event exits. It takes care of any last bits of
7878 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7879
104c1213
JM
7880static void
7881prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7882{
1eb8556f 7883 infrun_debug_printf ("prepare_to_wait");
104c1213 7884
104c1213 7885 ecs->wait_some_more = 1;
0b333c5e 7886
42bd97a6
PA
7887 /* If the target can't async, emulate it by marking the infrun event
7888 handler such that as soon as we get back to the event-loop, we
7889 immediately end up in fetch_inferior_event again calling
7890 target_wait. */
7891 if (!target_can_async_p ())
0b333c5e 7892 mark_infrun_async_event_handler ();
c906108c 7893}
11cf8741 7894
fd664c91 7895/* We are done with the step range of a step/next/si/ni command.
b57bacec 7896 Called once for each n of a "step n" operation. */
fd664c91
PA
7897
7898static void
bdc36728 7899end_stepping_range (struct execution_control_state *ecs)
fd664c91 7900{
bdc36728 7901 ecs->event_thread->control.stop_step = 1;
bdc36728 7902 stop_waiting (ecs);
fd664c91
PA
7903}
7904
33d62d64
JK
7905/* Several print_*_reason functions to print why the inferior has stopped.
7906 We always print something when the inferior exits, or receives a signal.
7907 The rest of the cases are dealt with later on in normal_stop and
7908 print_it_typical. Ideally there should be a call to one of these
7909 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7910 stop_waiting is called.
33d62d64 7911
fd664c91
PA
7912 Note that we don't call these directly, instead we delegate that to
7913 the interpreters, through observers. Interpreters then call these
7914 with whatever uiout is right. */
33d62d64 7915
fd664c91
PA
7916void
7917print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7918{
fd664c91 7919 /* For CLI-like interpreters, print nothing. */
33d62d64 7920
112e8700 7921 if (uiout->is_mi_like_p ())
fd664c91 7922 {
112e8700 7923 uiout->field_string ("reason",
fd664c91
PA
7924 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7925 }
7926}
33d62d64 7927
fd664c91
PA
7928void
7929print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7930{
33d62d64 7931 annotate_signalled ();
112e8700
SM
7932 if (uiout->is_mi_like_p ())
7933 uiout->field_string
7934 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7935 uiout->text ("\nProgram terminated with signal ");
33d62d64 7936 annotate_signal_name ();
112e8700 7937 uiout->field_string ("signal-name",
2ea28649 7938 gdb_signal_to_name (siggnal));
33d62d64 7939 annotate_signal_name_end ();
112e8700 7940 uiout->text (", ");
33d62d64 7941 annotate_signal_string ();
112e8700 7942 uiout->field_string ("signal-meaning",
2ea28649 7943 gdb_signal_to_string (siggnal));
33d62d64 7944 annotate_signal_string_end ();
112e8700
SM
7945 uiout->text (".\n");
7946 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7947}
7948
fd664c91
PA
7949void
7950print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7951{
fda326dd 7952 struct inferior *inf = current_inferior ();
a068643d 7953 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7954
33d62d64
JK
7955 annotate_exited (exitstatus);
7956 if (exitstatus)
7957 {
112e8700
SM
7958 if (uiout->is_mi_like_p ())
7959 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7960 std::string exit_code_str
7961 = string_printf ("0%o", (unsigned int) exitstatus);
7962 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7963 plongest (inf->num), pidstr.c_str (),
7964 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7965 }
7966 else
11cf8741 7967 {
112e8700
SM
7968 if (uiout->is_mi_like_p ())
7969 uiout->field_string
7970 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7971 uiout->message ("[Inferior %s (%s) exited normally]\n",
7972 plongest (inf->num), pidstr.c_str ());
33d62d64 7973 }
33d62d64
JK
7974}
7975
fd664c91
PA
7976void
7977print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7978{
f303dbd6
PA
7979 struct thread_info *thr = inferior_thread ();
7980
33d62d64
JK
7981 annotate_signal ();
7982
112e8700 7983 if (uiout->is_mi_like_p ())
f303dbd6
PA
7984 ;
7985 else if (show_thread_that_caused_stop ())
33d62d64 7986 {
f303dbd6 7987 const char *name;
33d62d64 7988
112e8700 7989 uiout->text ("\nThread ");
33eca680 7990 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7991
7992 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7993 if (name != NULL)
7994 {
112e8700 7995 uiout->text (" \"");
33eca680 7996 uiout->field_string ("name", name);
112e8700 7997 uiout->text ("\"");
f303dbd6 7998 }
33d62d64 7999 }
f303dbd6 8000 else
112e8700 8001 uiout->text ("\nProgram");
f303dbd6 8002
112e8700
SM
8003 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8004 uiout->text (" stopped");
33d62d64
JK
8005 else
8006 {
112e8700 8007 uiout->text (" received signal ");
8b93c638 8008 annotate_signal_name ();
112e8700
SM
8009 if (uiout->is_mi_like_p ())
8010 uiout->field_string
8011 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8012 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8013 annotate_signal_name_end ();
112e8700 8014 uiout->text (", ");
8b93c638 8015 annotate_signal_string ();
112e8700 8016 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8017
272bb05c
JB
8018 struct regcache *regcache = get_current_regcache ();
8019 struct gdbarch *gdbarch = regcache->arch ();
8020 if (gdbarch_report_signal_info_p (gdbarch))
8021 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8022
8b93c638 8023 annotate_signal_string_end ();
33d62d64 8024 }
112e8700 8025 uiout->text (".\n");
33d62d64 8026}
252fbfc8 8027
fd664c91
PA
8028void
8029print_no_history_reason (struct ui_out *uiout)
33d62d64 8030{
112e8700 8031 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8032}
43ff13b4 8033
0c7e1a46
PA
8034/* Print current location without a level number, if we have changed
8035 functions or hit a breakpoint. Print source line if we have one.
8036 bpstat_print contains the logic deciding in detail what to print,
8037 based on the event(s) that just occurred. */
8038
243a9253
PA
8039static void
8040print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8041{
8042 int bpstat_ret;
f486487f 8043 enum print_what source_flag;
0c7e1a46
PA
8044 int do_frame_printing = 1;
8045 struct thread_info *tp = inferior_thread ();
8046
8047 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8048 switch (bpstat_ret)
8049 {
8050 case PRINT_UNKNOWN:
8051 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8052 should) carry around the function and does (or should) use
8053 that when doing a frame comparison. */
8054 if (tp->control.stop_step
8055 && frame_id_eq (tp->control.step_frame_id,
8056 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8057 && (tp->control.step_start_function
8058 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8059 {
8060 /* Finished step, just print source line. */
8061 source_flag = SRC_LINE;
8062 }
8063 else
8064 {
8065 /* Print location and source line. */
8066 source_flag = SRC_AND_LOC;
8067 }
8068 break;
8069 case PRINT_SRC_AND_LOC:
8070 /* Print location and source line. */
8071 source_flag = SRC_AND_LOC;
8072 break;
8073 case PRINT_SRC_ONLY:
8074 source_flag = SRC_LINE;
8075 break;
8076 case PRINT_NOTHING:
8077 /* Something bogus. */
8078 source_flag = SRC_LINE;
8079 do_frame_printing = 0;
8080 break;
8081 default:
8082 internal_error (__FILE__, __LINE__, _("Unknown value."));
8083 }
8084
8085 /* The behavior of this routine with respect to the source
8086 flag is:
8087 SRC_LINE: Print only source line
8088 LOCATION: Print only location
8089 SRC_AND_LOC: Print location and source line. */
8090 if (do_frame_printing)
8091 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8092}
8093
243a9253
PA
8094/* See infrun.h. */
8095
8096void
4c7d57e7 8097print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8098{
243a9253 8099 struct target_waitstatus last;
243a9253
PA
8100 struct thread_info *tp;
8101
5b6d1e4f 8102 get_last_target_status (nullptr, nullptr, &last);
243a9253 8103
67ad9399
TT
8104 {
8105 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8106
67ad9399 8107 print_stop_location (&last);
243a9253 8108
67ad9399 8109 /* Display the auto-display expressions. */
4c7d57e7
TT
8110 if (displays)
8111 do_displays ();
67ad9399 8112 }
243a9253
PA
8113
8114 tp = inferior_thread ();
8115 if (tp->thread_fsm != NULL
46e3ed7f 8116 && tp->thread_fsm->finished_p ())
243a9253
PA
8117 {
8118 struct return_value_info *rv;
8119
46e3ed7f 8120 rv = tp->thread_fsm->return_value ();
243a9253
PA
8121 if (rv != NULL)
8122 print_return_value (uiout, rv);
8123 }
0c7e1a46
PA
8124}
8125
388a7084
PA
8126/* See infrun.h. */
8127
8128void
8129maybe_remove_breakpoints (void)
8130{
55f6301a 8131 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8132 {
8133 if (remove_breakpoints ())
8134 {
223ffa71 8135 target_terminal::ours_for_output ();
388a7084
PA
8136 printf_filtered (_("Cannot remove breakpoints because "
8137 "program is no longer writable.\nFurther "
8138 "execution is probably impossible.\n"));
8139 }
8140 }
8141}
8142
4c2f2a79
PA
8143/* The execution context that just caused a normal stop. */
8144
8145struct stop_context
8146{
2d844eaf
TT
8147 stop_context ();
8148 ~stop_context ();
8149
8150 DISABLE_COPY_AND_ASSIGN (stop_context);
8151
8152 bool changed () const;
8153
4c2f2a79
PA
8154 /* The stop ID. */
8155 ULONGEST stop_id;
c906108c 8156
4c2f2a79 8157 /* The event PTID. */
c906108c 8158
4c2f2a79
PA
8159 ptid_t ptid;
8160
8161 /* If stopp for a thread event, this is the thread that caused the
8162 stop. */
8163 struct thread_info *thread;
8164
8165 /* The inferior that caused the stop. */
8166 int inf_num;
8167};
8168
2d844eaf 8169/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8170 takes a strong reference to the thread. */
8171
2d844eaf 8172stop_context::stop_context ()
4c2f2a79 8173{
2d844eaf
TT
8174 stop_id = get_stop_id ();
8175 ptid = inferior_ptid;
8176 inf_num = current_inferior ()->num;
4c2f2a79 8177
d7e15655 8178 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8179 {
8180 /* Take a strong reference so that the thread can't be deleted
8181 yet. */
2d844eaf
TT
8182 thread = inferior_thread ();
8183 thread->incref ();
4c2f2a79
PA
8184 }
8185 else
2d844eaf 8186 thread = NULL;
4c2f2a79
PA
8187}
8188
8189/* Release a stop context previously created with save_stop_context.
8190 Releases the strong reference to the thread as well. */
8191
2d844eaf 8192stop_context::~stop_context ()
4c2f2a79 8193{
2d844eaf
TT
8194 if (thread != NULL)
8195 thread->decref ();
4c2f2a79
PA
8196}
8197
8198/* Return true if the current context no longer matches the saved stop
8199 context. */
8200
2d844eaf
TT
8201bool
8202stop_context::changed () const
8203{
8204 if (ptid != inferior_ptid)
8205 return true;
8206 if (inf_num != current_inferior ()->num)
8207 return true;
8208 if (thread != NULL && thread->state != THREAD_STOPPED)
8209 return true;
8210 if (get_stop_id () != stop_id)
8211 return true;
8212 return false;
4c2f2a79
PA
8213}
8214
8215/* See infrun.h. */
8216
8217int
96baa820 8218normal_stop (void)
c906108c 8219{
73b65bb0 8220 struct target_waitstatus last;
73b65bb0 8221
5b6d1e4f 8222 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8223
4c2f2a79
PA
8224 new_stop_id ();
8225
29f49a6a
PA
8226 /* If an exception is thrown from this point on, make sure to
8227 propagate GDB's knowledge of the executing state to the
8228 frontend/user running state. A QUIT is an easy exception to see
8229 here, so do this before any filtered output. */
731f534f 8230
5b6d1e4f 8231 ptid_t finish_ptid = null_ptid;
731f534f 8232
c35b1492 8233 if (!non_stop)
5b6d1e4f 8234 finish_ptid = minus_one_ptid;
e1316e60
PA
8235 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8236 || last.kind == TARGET_WAITKIND_EXITED)
8237 {
8238 /* On some targets, we may still have live threads in the
8239 inferior when we get a process exit event. E.g., for
8240 "checkpoint", when the current checkpoint/fork exits,
8241 linux-fork.c automatically switches to another fork from
8242 within target_mourn_inferior. */
731f534f 8243 if (inferior_ptid != null_ptid)
5b6d1e4f 8244 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8245 }
8246 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8247 finish_ptid = inferior_ptid;
8248
8249 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8250 if (finish_ptid != null_ptid)
8251 {
8252 maybe_finish_thread_state.emplace
8253 (user_visible_resume_target (finish_ptid), finish_ptid);
8254 }
29f49a6a 8255
b57bacec
PA
8256 /* As we're presenting a stop, and potentially removing breakpoints,
8257 update the thread list so we can tell whether there are threads
8258 running on the target. With target remote, for example, we can
8259 only learn about new threads when we explicitly update the thread
8260 list. Do this before notifying the interpreters about signal
8261 stops, end of stepping ranges, etc., so that the "new thread"
8262 output is emitted before e.g., "Program received signal FOO",
8263 instead of after. */
8264 update_thread_list ();
8265
8266 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8267 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8268
c906108c
SS
8269 /* As with the notification of thread events, we want to delay
8270 notifying the user that we've switched thread context until
8271 the inferior actually stops.
8272
73b65bb0
DJ
8273 There's no point in saying anything if the inferior has exited.
8274 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8275 "received a signal".
8276
8277 Also skip saying anything in non-stop mode. In that mode, as we
8278 don't want GDB to switch threads behind the user's back, to avoid
8279 races where the user is typing a command to apply to thread x,
8280 but GDB switches to thread y before the user finishes entering
8281 the command, fetch_inferior_event installs a cleanup to restore
8282 the current thread back to the thread the user had selected right
8283 after this event is handled, so we're not really switching, only
8284 informing of a stop. */
4f8d22e3 8285 if (!non_stop
731f534f 8286 && previous_inferior_ptid != inferior_ptid
55f6301a 8287 && target_has_execution ()
73b65bb0 8288 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8289 && last.kind != TARGET_WAITKIND_EXITED
8290 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8291 {
0e454242 8292 SWITCH_THRU_ALL_UIS ()
3b12939d 8293 {
223ffa71 8294 target_terminal::ours_for_output ();
3b12939d 8295 printf_filtered (_("[Switching to %s]\n"),
a068643d 8296 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8297 annotate_thread_changed ();
8298 }
39f77062 8299 previous_inferior_ptid = inferior_ptid;
c906108c 8300 }
c906108c 8301
0e5bf2a8
PA
8302 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8303 {
0e454242 8304 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8305 if (current_ui->prompt_state == PROMPT_BLOCKED)
8306 {
223ffa71 8307 target_terminal::ours_for_output ();
3b12939d
PA
8308 printf_filtered (_("No unwaited-for children left.\n"));
8309 }
0e5bf2a8
PA
8310 }
8311
b57bacec 8312 /* Note: this depends on the update_thread_list call above. */
388a7084 8313 maybe_remove_breakpoints ();
c906108c 8314
c906108c
SS
8315 /* If an auto-display called a function and that got a signal,
8316 delete that auto-display to avoid an infinite recursion. */
8317
8318 if (stopped_by_random_signal)
8319 disable_current_display ();
8320
0e454242 8321 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8322 {
8323 async_enable_stdin ();
8324 }
c906108c 8325
388a7084 8326 /* Let the user/frontend see the threads as stopped. */
731f534f 8327 maybe_finish_thread_state.reset ();
388a7084
PA
8328
8329 /* Select innermost stack frame - i.e., current frame is frame 0,
8330 and current location is based on that. Handle the case where the
8331 dummy call is returning after being stopped. E.g. the dummy call
8332 previously hit a breakpoint. (If the dummy call returns
8333 normally, we won't reach here.) Do this before the stop hook is
8334 run, so that it doesn't get to see the temporary dummy frame,
8335 which is not where we'll present the stop. */
8336 if (has_stack_frames ())
8337 {
8338 if (stop_stack_dummy == STOP_STACK_DUMMY)
8339 {
8340 /* Pop the empty frame that contains the stack dummy. This
8341 also restores inferior state prior to the call (struct
8342 infcall_suspend_state). */
8343 struct frame_info *frame = get_current_frame ();
8344
8345 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8346 frame_pop (frame);
8347 /* frame_pop calls reinit_frame_cache as the last thing it
8348 does which means there's now no selected frame. */
8349 }
8350
8351 select_frame (get_current_frame ());
8352
8353 /* Set the current source location. */
8354 set_current_sal_from_frame (get_current_frame ());
8355 }
dd7e2d2b
PA
8356
8357 /* Look up the hook_stop and run it (CLI internally handles problem
8358 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8359 if (stop_command != NULL)
8360 {
2d844eaf 8361 stop_context saved_context;
4c2f2a79 8362
a70b8144 8363 try
bf469271
PA
8364 {
8365 execute_cmd_pre_hook (stop_command);
8366 }
230d2906 8367 catch (const gdb_exception &ex)
bf469271
PA
8368 {
8369 exception_fprintf (gdb_stderr, ex,
8370 "Error while running hook_stop:\n");
8371 }
4c2f2a79
PA
8372
8373 /* If the stop hook resumes the target, then there's no point in
8374 trying to notify about the previous stop; its context is
8375 gone. Likewise if the command switches thread or inferior --
8376 the observers would print a stop for the wrong
8377 thread/inferior. */
2d844eaf
TT
8378 if (saved_context.changed ())
8379 return 1;
4c2f2a79 8380 }
dd7e2d2b 8381
388a7084
PA
8382 /* Notify observers about the stop. This is where the interpreters
8383 print the stop event. */
d7e15655 8384 if (inferior_ptid != null_ptid)
76727919 8385 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8386 stop_print_frame);
8387 else
76727919 8388 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8389
243a9253
PA
8390 annotate_stopped ();
8391
55f6301a 8392 if (target_has_execution ())
48844aa6
PA
8393 {
8394 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8395 && last.kind != TARGET_WAITKIND_EXITED
8396 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8397 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8398 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8399 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8400 }
6c95b8df
PA
8401
8402 /* Try to get rid of automatically added inferiors that are no
8403 longer needed. Keeping those around slows down things linearly.
8404 Note that this never removes the current inferior. */
8405 prune_inferiors ();
4c2f2a79
PA
8406
8407 return 0;
c906108c 8408}
c906108c 8409\f
c5aa993b 8410int
96baa820 8411signal_stop_state (int signo)
c906108c 8412{
d6b48e9c 8413 return signal_stop[signo];
c906108c
SS
8414}
8415
c5aa993b 8416int
96baa820 8417signal_print_state (int signo)
c906108c
SS
8418{
8419 return signal_print[signo];
8420}
8421
c5aa993b 8422int
96baa820 8423signal_pass_state (int signo)
c906108c
SS
8424{
8425 return signal_program[signo];
8426}
8427
2455069d
UW
8428static void
8429signal_cache_update (int signo)
8430{
8431 if (signo == -1)
8432 {
a493e3e2 8433 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8434 signal_cache_update (signo);
8435
8436 return;
8437 }
8438
8439 signal_pass[signo] = (signal_stop[signo] == 0
8440 && signal_print[signo] == 0
ab04a2af
TT
8441 && signal_program[signo] == 1
8442 && signal_catch[signo] == 0);
2455069d
UW
8443}
8444
488f131b 8445int
7bda5e4a 8446signal_stop_update (int signo, int state)
d4f3574e
SS
8447{
8448 int ret = signal_stop[signo];
abbb1732 8449
d4f3574e 8450 signal_stop[signo] = state;
2455069d 8451 signal_cache_update (signo);
d4f3574e
SS
8452 return ret;
8453}
8454
488f131b 8455int
7bda5e4a 8456signal_print_update (int signo, int state)
d4f3574e
SS
8457{
8458 int ret = signal_print[signo];
abbb1732 8459
d4f3574e 8460 signal_print[signo] = state;
2455069d 8461 signal_cache_update (signo);
d4f3574e
SS
8462 return ret;
8463}
8464
488f131b 8465int
7bda5e4a 8466signal_pass_update (int signo, int state)
d4f3574e
SS
8467{
8468 int ret = signal_program[signo];
abbb1732 8469
d4f3574e 8470 signal_program[signo] = state;
2455069d 8471 signal_cache_update (signo);
d4f3574e
SS
8472 return ret;
8473}
8474
ab04a2af
TT
8475/* Update the global 'signal_catch' from INFO and notify the
8476 target. */
8477
8478void
8479signal_catch_update (const unsigned int *info)
8480{
8481 int i;
8482
8483 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8484 signal_catch[i] = info[i] > 0;
8485 signal_cache_update (-1);
adc6a863 8486 target_pass_signals (signal_pass);
ab04a2af
TT
8487}
8488
c906108c 8489static void
96baa820 8490sig_print_header (void)
c906108c 8491{
3e43a32a
MS
8492 printf_filtered (_("Signal Stop\tPrint\tPass "
8493 "to program\tDescription\n"));
c906108c
SS
8494}
8495
8496static void
2ea28649 8497sig_print_info (enum gdb_signal oursig)
c906108c 8498{
2ea28649 8499 const char *name = gdb_signal_to_name (oursig);
c906108c 8500 int name_padding = 13 - strlen (name);
96baa820 8501
c906108c
SS
8502 if (name_padding <= 0)
8503 name_padding = 0;
8504
8505 printf_filtered ("%s", name);
488f131b 8506 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8507 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8508 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8510 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8511}
8512
8513/* Specify how various signals in the inferior should be handled. */
8514
8515static void
0b39b52e 8516handle_command (const char *args, int from_tty)
c906108c 8517{
c906108c 8518 int digits, wordlen;
b926417a 8519 int sigfirst, siglast;
2ea28649 8520 enum gdb_signal oursig;
c906108c 8521 int allsigs;
c906108c
SS
8522
8523 if (args == NULL)
8524 {
e2e0b3e5 8525 error_no_arg (_("signal to handle"));
c906108c
SS
8526 }
8527
1777feb0 8528 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8529
adc6a863
PA
8530 const size_t nsigs = GDB_SIGNAL_LAST;
8531 unsigned char sigs[nsigs] {};
c906108c 8532
1777feb0 8533 /* Break the command line up into args. */
c906108c 8534
773a1edc 8535 gdb_argv built_argv (args);
c906108c
SS
8536
8537 /* Walk through the args, looking for signal oursigs, signal names, and
8538 actions. Signal numbers and signal names may be interspersed with
8539 actions, with the actions being performed for all signals cumulatively
1777feb0 8540 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8541
773a1edc 8542 for (char *arg : built_argv)
c906108c 8543 {
773a1edc
TT
8544 wordlen = strlen (arg);
8545 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8546 {;
8547 }
8548 allsigs = 0;
8549 sigfirst = siglast = -1;
8550
773a1edc 8551 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8552 {
8553 /* Apply action to all signals except those used by the
1777feb0 8554 debugger. Silently skip those. */
c906108c
SS
8555 allsigs = 1;
8556 sigfirst = 0;
8557 siglast = nsigs - 1;
8558 }
773a1edc 8559 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8560 {
8561 SET_SIGS (nsigs, sigs, signal_stop);
8562 SET_SIGS (nsigs, sigs, signal_print);
8563 }
773a1edc 8564 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8565 {
8566 UNSET_SIGS (nsigs, sigs, signal_program);
8567 }
773a1edc 8568 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8569 {
8570 SET_SIGS (nsigs, sigs, signal_print);
8571 }
773a1edc 8572 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8573 {
8574 SET_SIGS (nsigs, sigs, signal_program);
8575 }
773a1edc 8576 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8577 {
8578 UNSET_SIGS (nsigs, sigs, signal_stop);
8579 }
773a1edc 8580 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8581 {
8582 SET_SIGS (nsigs, sigs, signal_program);
8583 }
773a1edc 8584 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8585 {
8586 UNSET_SIGS (nsigs, sigs, signal_print);
8587 UNSET_SIGS (nsigs, sigs, signal_stop);
8588 }
773a1edc 8589 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_program);
8592 }
8593 else if (digits > 0)
8594 {
8595 /* It is numeric. The numeric signal refers to our own
8596 internal signal numbering from target.h, not to host/target
8597 signal number. This is a feature; users really should be
8598 using symbolic names anyway, and the common ones like
8599 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8600
8601 sigfirst = siglast = (int)
773a1edc
TT
8602 gdb_signal_from_command (atoi (arg));
8603 if (arg[digits] == '-')
c906108c
SS
8604 {
8605 siglast = (int)
773a1edc 8606 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8607 }
8608 if (sigfirst > siglast)
8609 {
1777feb0 8610 /* Bet he didn't figure we'd think of this case... */
b926417a 8611 std::swap (sigfirst, siglast);
c906108c
SS
8612 }
8613 }
8614 else
8615 {
773a1edc 8616 oursig = gdb_signal_from_name (arg);
a493e3e2 8617 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8618 {
8619 sigfirst = siglast = (int) oursig;
8620 }
8621 else
8622 {
8623 /* Not a number and not a recognized flag word => complain. */
773a1edc 8624 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8625 }
8626 }
8627
8628 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 8629 which signals to apply actions to. */
c906108c 8630
b926417a 8631 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8632 {
2ea28649 8633 switch ((enum gdb_signal) signum)
c906108c 8634 {
a493e3e2
PA
8635 case GDB_SIGNAL_TRAP:
8636 case GDB_SIGNAL_INT:
c906108c
SS
8637 if (!allsigs && !sigs[signum])
8638 {
9e2f0ad4 8639 if (query (_("%s is used by the debugger.\n\
3e43a32a 8640Are you sure you want to change it? "),
2ea28649 8641 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8642 {
8643 sigs[signum] = 1;
8644 }
8645 else
c119e040 8646 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8647 }
8648 break;
a493e3e2
PA
8649 case GDB_SIGNAL_0:
8650 case GDB_SIGNAL_DEFAULT:
8651 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8652 /* Make sure that "all" doesn't print these. */
8653 break;
8654 default:
8655 sigs[signum] = 1;
8656 break;
8657 }
8658 }
c906108c
SS
8659 }
8660
b926417a 8661 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8662 if (sigs[signum])
8663 {
2455069d 8664 signal_cache_update (-1);
adc6a863
PA
8665 target_pass_signals (signal_pass);
8666 target_program_signals (signal_program);
c906108c 8667
3a031f65
PA
8668 if (from_tty)
8669 {
8670 /* Show the results. */
8671 sig_print_header ();
8672 for (; signum < nsigs; signum++)
8673 if (sigs[signum])
aead7601 8674 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8675 }
8676
8677 break;
8678 }
c906108c
SS
8679}
8680
de0bea00
MF
8681/* Complete the "handle" command. */
8682
eb3ff9a5 8683static void
de0bea00 8684handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8685 completion_tracker &tracker,
6f937416 8686 const char *text, const char *word)
de0bea00 8687{
de0bea00
MF
8688 static const char * const keywords[] =
8689 {
8690 "all",
8691 "stop",
8692 "ignore",
8693 "print",
8694 "pass",
8695 "nostop",
8696 "noignore",
8697 "noprint",
8698 "nopass",
8699 NULL,
8700 };
8701
eb3ff9a5
PA
8702 signal_completer (ignore, tracker, text, word);
8703 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8704}
8705
2ea28649
PA
8706enum gdb_signal
8707gdb_signal_from_command (int num)
ed01b82c
PA
8708{
8709 if (num >= 1 && num <= 15)
2ea28649 8710 return (enum gdb_signal) num;
ed01b82c
PA
8711 error (_("Only signals 1-15 are valid as numeric signals.\n\
8712Use \"info signals\" for a list of symbolic signals."));
8713}
8714
c906108c
SS
8715/* Print current contents of the tables set by the handle command.
8716 It is possible we should just be printing signals actually used
8717 by the current target (but for things to work right when switching
8718 targets, all signals should be in the signal tables). */
8719
8720static void
1d12d88f 8721info_signals_command (const char *signum_exp, int from_tty)
c906108c 8722{
2ea28649 8723 enum gdb_signal oursig;
abbb1732 8724
c906108c
SS
8725 sig_print_header ();
8726
8727 if (signum_exp)
8728 {
8729 /* First see if this is a symbol name. */
2ea28649 8730 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8731 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8732 {
8733 /* No, try numeric. */
8734 oursig =
2ea28649 8735 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8736 }
8737 sig_print_info (oursig);
8738 return;
8739 }
8740
8741 printf_filtered ("\n");
8742 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8743 for (oursig = GDB_SIGNAL_FIRST;
8744 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8745 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8746 {
8747 QUIT;
8748
a493e3e2
PA
8749 if (oursig != GDB_SIGNAL_UNKNOWN
8750 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8751 sig_print_info (oursig);
8752 }
8753
3e43a32a
MS
8754 printf_filtered (_("\nUse the \"handle\" command "
8755 "to change these tables.\n"));
c906108c 8756}
4aa995e1
PA
8757
8758/* The $_siginfo convenience variable is a bit special. We don't know
8759 for sure the type of the value until we actually have a chance to
7a9dd1b2 8760 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8761 also dependent on which thread you have selected.
8762
8763 1. making $_siginfo be an internalvar that creates a new value on
8764 access.
8765
8766 2. making the value of $_siginfo be an lval_computed value. */
8767
8768/* This function implements the lval_computed support for reading a
8769 $_siginfo value. */
8770
8771static void
8772siginfo_value_read (struct value *v)
8773{
8774 LONGEST transferred;
8775
a911d87a
PA
8776 /* If we can access registers, so can we access $_siginfo. Likewise
8777 vice versa. */
8778 validate_registers_access ();
c709acd1 8779
4aa995e1 8780 transferred =
8b88a78e 8781 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8782 NULL,
8783 value_contents_all_raw (v),
8784 value_offset (v),
8785 TYPE_LENGTH (value_type (v)));
8786
8787 if (transferred != TYPE_LENGTH (value_type (v)))
8788 error (_("Unable to read siginfo"));
8789}
8790
8791/* This function implements the lval_computed support for writing a
8792 $_siginfo value. */
8793
8794static void
8795siginfo_value_write (struct value *v, struct value *fromval)
8796{
8797 LONGEST transferred;
8798
a911d87a
PA
8799 /* If we can access registers, so can we access $_siginfo. Likewise
8800 vice versa. */
8801 validate_registers_access ();
c709acd1 8802
8b88a78e 8803 transferred = target_write (current_top_target (),
4aa995e1
PA
8804 TARGET_OBJECT_SIGNAL_INFO,
8805 NULL,
8806 value_contents_all_raw (fromval),
8807 value_offset (v),
8808 TYPE_LENGTH (value_type (fromval)));
8809
8810 if (transferred != TYPE_LENGTH (value_type (fromval)))
8811 error (_("Unable to write siginfo"));
8812}
8813
c8f2448a 8814static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8815 {
8816 siginfo_value_read,
8817 siginfo_value_write
8818 };
8819
8820/* Return a new value with the correct type for the siginfo object of
78267919
UW
8821 the current thread using architecture GDBARCH. Return a void value
8822 if there's no object available. */
4aa995e1 8823
2c0b251b 8824static struct value *
22d2b532
SDJ
8825siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8826 void *ignore)
4aa995e1 8827{
841de120 8828 if (target_has_stack ()
d7e15655 8829 && inferior_ptid != null_ptid
78267919 8830 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8831 {
78267919 8832 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8833
78267919 8834 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8835 }
8836
78267919 8837 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8838}
8839
c906108c 8840\f
16c381f0
JK
8841/* infcall_suspend_state contains state about the program itself like its
8842 registers and any signal it received when it last stopped.
8843 This state must be restored regardless of how the inferior function call
8844 ends (either successfully, or after it hits a breakpoint or signal)
8845 if the program is to properly continue where it left off. */
8846
6bf78e29 8847class infcall_suspend_state
7a292a7a 8848{
6bf78e29
AB
8849public:
8850 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8851 once the inferior function call has finished. */
8852 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
8853 const struct thread_info *tp,
8854 struct regcache *regcache)
6bf78e29
AB
8855 : m_thread_suspend (tp->suspend),
8856 m_registers (new readonly_detached_regcache (*regcache))
8857 {
8858 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8859
8860 if (gdbarch_get_siginfo_type_p (gdbarch))
8861 {
dda83cd7
SM
8862 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8863 size_t len = TYPE_LENGTH (type);
6bf78e29 8864
dda83cd7 8865 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 8866
dda83cd7
SM
8867 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8868 siginfo_data.get (), 0, len) != len)
8869 {
8870 /* Errors ignored. */
8871 siginfo_data.reset (nullptr);
8872 }
6bf78e29
AB
8873 }
8874
8875 if (siginfo_data)
8876 {
dda83cd7
SM
8877 m_siginfo_gdbarch = gdbarch;
8878 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
8879 }
8880 }
8881
8882 /* Return a pointer to the stored register state. */
16c381f0 8883
6bf78e29
AB
8884 readonly_detached_regcache *registers () const
8885 {
8886 return m_registers.get ();
8887 }
8888
8889 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8890
8891 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
8892 struct thread_info *tp,
8893 struct regcache *regcache) const
6bf78e29
AB
8894 {
8895 tp->suspend = m_thread_suspend;
8896
8897 if (m_siginfo_gdbarch == gdbarch)
8898 {
dda83cd7 8899 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 8900
dda83cd7
SM
8901 /* Errors ignored. */
8902 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8903 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
6bf78e29
AB
8904 }
8905
8906 /* The inferior can be gone if the user types "print exit(0)"
8907 (and perhaps other times). */
55f6301a 8908 if (target_has_execution ())
6bf78e29
AB
8909 /* NB: The register write goes through to the target. */
8910 regcache->restore (registers ());
8911 }
8912
8913private:
8914 /* How the current thread stopped before the inferior function call was
8915 executed. */
8916 struct thread_suspend_state m_thread_suspend;
8917
8918 /* The registers before the inferior function call was executed. */
8919 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8920
35515841 8921 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8922 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8923
8924 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8925 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8926 content would be invalid. */
6bf78e29 8927 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8928};
8929
cb524840
TT
8930infcall_suspend_state_up
8931save_infcall_suspend_state ()
b89667eb 8932{
b89667eb 8933 struct thread_info *tp = inferior_thread ();
1736ad11 8934 struct regcache *regcache = get_current_regcache ();
ac7936df 8935 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8936
6bf78e29
AB
8937 infcall_suspend_state_up inf_state
8938 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8939
6bf78e29
AB
8940 /* Having saved the current state, adjust the thread state, discarding
8941 any stop signal information. The stop signal is not useful when
8942 starting an inferior function call, and run_inferior_call will not use
8943 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8944 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8945
b89667eb
DE
8946 return inf_state;
8947}
8948
8949/* Restore inferior session state to INF_STATE. */
8950
8951void
16c381f0 8952restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8953{
8954 struct thread_info *tp = inferior_thread ();
1736ad11 8955 struct regcache *regcache = get_current_regcache ();
ac7936df 8956 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8957
6bf78e29 8958 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8959 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8960}
8961
b89667eb 8962void
16c381f0 8963discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8964{
dd848631 8965 delete inf_state;
b89667eb
DE
8966}
8967
daf6667d 8968readonly_detached_regcache *
16c381f0 8969get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8970{
6bf78e29 8971 return inf_state->registers ();
b89667eb
DE
8972}
8973
16c381f0
JK
8974/* infcall_control_state contains state regarding gdb's control of the
8975 inferior itself like stepping control. It also contains session state like
8976 the user's currently selected frame. */
b89667eb 8977
16c381f0 8978struct infcall_control_state
b89667eb 8979{
16c381f0
JK
8980 struct thread_control_state thread_control;
8981 struct inferior_control_state inferior_control;
d82142e2
JK
8982
8983 /* Other fields: */
ee841dd8
TT
8984 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8985 int stopped_by_random_signal = 0;
7a292a7a 8986
79952e69
PA
8987 /* ID and level of the selected frame when the inferior function
8988 call was made. */
ee841dd8 8989 struct frame_id selected_frame_id {};
79952e69 8990 int selected_frame_level = -1;
7a292a7a
SS
8991};
8992
c906108c 8993/* Save all of the information associated with the inferior<==>gdb
b89667eb 8994 connection. */
c906108c 8995
cb524840
TT
8996infcall_control_state_up
8997save_infcall_control_state ()
c906108c 8998{
cb524840 8999 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9000 struct thread_info *tp = inferior_thread ();
d6b48e9c 9001 struct inferior *inf = current_inferior ();
7a292a7a 9002
16c381f0
JK
9003 inf_status->thread_control = tp->control;
9004 inf_status->inferior_control = inf->control;
d82142e2 9005
8358c15c 9006 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9007 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9008
16c381f0
JK
9009 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9010 chain. If caller's caller is walking the chain, they'll be happier if we
9011 hand them back the original chain when restore_infcall_control_state is
9012 called. */
9013 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9014
9015 /* Other fields: */
9016 inf_status->stop_stack_dummy = stop_stack_dummy;
9017 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9018
79952e69
PA
9019 save_selected_frame (&inf_status->selected_frame_id,
9020 &inf_status->selected_frame_level);
b89667eb 9021
7a292a7a 9022 return inf_status;
c906108c
SS
9023}
9024
b89667eb
DE
9025/* Restore inferior session state to INF_STATUS. */
9026
c906108c 9027void
16c381f0 9028restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9029{
4e1c45ea 9030 struct thread_info *tp = inferior_thread ();
d6b48e9c 9031 struct inferior *inf = current_inferior ();
4e1c45ea 9032
8358c15c
JK
9033 if (tp->control.step_resume_breakpoint)
9034 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9035
5b79abe7
TT
9036 if (tp->control.exception_resume_breakpoint)
9037 tp->control.exception_resume_breakpoint->disposition
9038 = disp_del_at_next_stop;
9039
d82142e2 9040 /* Handle the bpstat_copy of the chain. */
16c381f0 9041 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9042
16c381f0
JK
9043 tp->control = inf_status->thread_control;
9044 inf->control = inf_status->inferior_control;
d82142e2
JK
9045
9046 /* Other fields: */
9047 stop_stack_dummy = inf_status->stop_stack_dummy;
9048 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9049
841de120 9050 if (target_has_stack ())
c906108c 9051 {
79952e69
PA
9052 restore_selected_frame (inf_status->selected_frame_id,
9053 inf_status->selected_frame_level);
c906108c 9054 }
c906108c 9055
ee841dd8 9056 delete inf_status;
7a292a7a 9057}
c906108c
SS
9058
9059void
16c381f0 9060discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9061{
8358c15c
JK
9062 if (inf_status->thread_control.step_resume_breakpoint)
9063 inf_status->thread_control.step_resume_breakpoint->disposition
9064 = disp_del_at_next_stop;
9065
5b79abe7
TT
9066 if (inf_status->thread_control.exception_resume_breakpoint)
9067 inf_status->thread_control.exception_resume_breakpoint->disposition
9068 = disp_del_at_next_stop;
9069
1777feb0 9070 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9071 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9072
ee841dd8 9073 delete inf_status;
7a292a7a 9074}
b89667eb 9075\f
7f89fd65 9076/* See infrun.h. */
0c557179
SDJ
9077
9078void
9079clear_exit_convenience_vars (void)
9080{
9081 clear_internalvar (lookup_internalvar ("_exitsignal"));
9082 clear_internalvar (lookup_internalvar ("_exitcode"));
9083}
c5aa993b 9084\f
488f131b 9085
b2175913
MS
9086/* User interface for reverse debugging:
9087 Set exec-direction / show exec-direction commands
9088 (returns error unless target implements to_set_exec_direction method). */
9089
170742de 9090enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9091static const char exec_forward[] = "forward";
9092static const char exec_reverse[] = "reverse";
9093static const char *exec_direction = exec_forward;
40478521 9094static const char *const exec_direction_names[] = {
b2175913
MS
9095 exec_forward,
9096 exec_reverse,
9097 NULL
9098};
9099
9100static void
eb4c3f4a 9101set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9102 struct cmd_list_element *cmd)
9103{
05374cfd 9104 if (target_can_execute_reverse ())
b2175913
MS
9105 {
9106 if (!strcmp (exec_direction, exec_forward))
9107 execution_direction = EXEC_FORWARD;
9108 else if (!strcmp (exec_direction, exec_reverse))
9109 execution_direction = EXEC_REVERSE;
9110 }
8bbed405
MS
9111 else
9112 {
9113 exec_direction = exec_forward;
9114 error (_("Target does not support this operation."));
9115 }
b2175913
MS
9116}
9117
9118static void
9119show_exec_direction_func (struct ui_file *out, int from_tty,
9120 struct cmd_list_element *cmd, const char *value)
9121{
9122 switch (execution_direction) {
9123 case EXEC_FORWARD:
9124 fprintf_filtered (out, _("Forward.\n"));
9125 break;
9126 case EXEC_REVERSE:
9127 fprintf_filtered (out, _("Reverse.\n"));
9128 break;
b2175913 9129 default:
d8b34453
PA
9130 internal_error (__FILE__, __LINE__,
9131 _("bogus execution_direction value: %d"),
9132 (int) execution_direction);
b2175913
MS
9133 }
9134}
9135
d4db2f36
PA
9136static void
9137show_schedule_multiple (struct ui_file *file, int from_tty,
9138 struct cmd_list_element *c, const char *value)
9139{
3e43a32a
MS
9140 fprintf_filtered (file, _("Resuming the execution of threads "
9141 "of all processes is %s.\n"), value);
d4db2f36 9142}
ad52ddc6 9143
22d2b532
SDJ
9144/* Implementation of `siginfo' variable. */
9145
9146static const struct internalvar_funcs siginfo_funcs =
9147{
9148 siginfo_make_value,
9149 NULL,
9150 NULL
9151};
9152
372316f1
PA
9153/* Callback for infrun's target events source. This is marked when a
9154 thread has a pending status to process. */
9155
9156static void
9157infrun_async_inferior_event_handler (gdb_client_data data)
9158{
b1a35af2 9159 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9160}
9161
8087c3fa 9162#if GDB_SELF_TEST
b161a60d
SM
9163namespace selftests
9164{
9165
9166/* Verify that when two threads with the same ptid exist (from two different
9167 targets) and one of them changes ptid, we only update inferior_ptid if
9168 it is appropriate. */
9169
9170static void
9171infrun_thread_ptid_changed ()
9172{
9173 gdbarch *arch = current_inferior ()->gdbarch;
9174
9175 /* The thread which inferior_ptid represents changes ptid. */
9176 {
9177 scoped_restore_current_pspace_and_thread restore;
9178
9179 scoped_mock_context<test_target_ops> target1 (arch);
9180 scoped_mock_context<test_target_ops> target2 (arch);
9181 target2.mock_inferior.next = &target1.mock_inferior;
9182
9183 ptid_t old_ptid (111, 222);
9184 ptid_t new_ptid (111, 333);
9185
9186 target1.mock_inferior.pid = old_ptid.pid ();
9187 target1.mock_thread.ptid = old_ptid;
9188 target2.mock_inferior.pid = old_ptid.pid ();
9189 target2.mock_thread.ptid = old_ptid;
9190
9191 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9192 set_current_inferior (&target1.mock_inferior);
9193
9194 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9195
9196 gdb_assert (inferior_ptid == new_ptid);
9197 }
9198
9199 /* A thread with the same ptid as inferior_ptid, but from another target,
9200 changes ptid. */
9201 {
9202 scoped_restore_current_pspace_and_thread restore;
9203
9204 scoped_mock_context<test_target_ops> target1 (arch);
9205 scoped_mock_context<test_target_ops> target2 (arch);
9206 target2.mock_inferior.next = &target1.mock_inferior;
9207
9208 ptid_t old_ptid (111, 222);
9209 ptid_t new_ptid (111, 333);
9210
9211 target1.mock_inferior.pid = old_ptid.pid ();
9212 target1.mock_thread.ptid = old_ptid;
9213 target2.mock_inferior.pid = old_ptid.pid ();
9214 target2.mock_thread.ptid = old_ptid;
9215
9216 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9217 set_current_inferior (&target2.mock_inferior);
9218
9219 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9220
9221 gdb_assert (inferior_ptid == old_ptid);
9222 }
9223}
9224
9225} /* namespace selftests */
9226
8087c3fa
JB
9227#endif /* GDB_SELF_TEST */
9228
6c265988 9229void _initialize_infrun ();
c906108c 9230void
6c265988 9231_initialize_infrun ()
c906108c 9232{
de0bea00 9233 struct cmd_list_element *c;
c906108c 9234
372316f1
PA
9235 /* Register extra event sources in the event loop. */
9236 infrun_async_inferior_event_token
db20ebdf
SM
9237 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9238 "infrun");
372316f1 9239
11db9430 9240 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9241What debugger does when program gets various signals.\n\
9242Specify a signal as argument to print info on that signal only."));
c906108c
SS
9243 add_info_alias ("handle", "signals", 0);
9244
de0bea00 9245 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9246Specify how to handle signals.\n\
486c7739 9247Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9248Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9249If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9250will be displayed instead.\n\
9251\n\
c906108c
SS
9252Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9253from 1-15 are allowed for compatibility with old versions of GDB.\n\
9254Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9255The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9256used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9257\n\
1bedd215 9258Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9259\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9260Stop means reenter debugger if this signal happens (implies print).\n\
9261Print means print a message if this signal happens.\n\
9262Pass means let program see this signal; otherwise program doesn't know.\n\
9263Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9264Pass and Stop may be combined.\n\
9265\n\
9266Multiple signals may be specified. Signal numbers and signal names\n\
9267may be interspersed with actions, with the actions being performed for\n\
9268all signals cumulatively specified."));
de0bea00 9269 set_cmd_completer (c, handle_completer);
486c7739 9270
c906108c 9271 if (!dbx_commands)
1a966eab
AC
9272 stop_command = add_cmd ("stop", class_obscure,
9273 not_just_help_class_command, _("\
9274There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9275This allows you to set a list of commands to be run each time execution\n\
1a966eab 9276of the program stops."), &cmdlist);
c906108c 9277
ccce17b0 9278 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9279Set inferior debugging."), _("\
9280Show inferior debugging."), _("\
9281When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9282 NULL,
9283 show_debug_infrun,
9284 &setdebuglist, &showdebuglist);
527159b7 9285
3e43a32a
MS
9286 add_setshow_boolean_cmd ("displaced", class_maintenance,
9287 &debug_displaced, _("\
237fc4c9
PA
9288Set displaced stepping debugging."), _("\
9289Show displaced stepping debugging."), _("\
9290When non-zero, displaced stepping specific debugging is enabled."),
9291 NULL,
9292 show_debug_displaced,
9293 &setdebuglist, &showdebuglist);
9294
ad52ddc6
PA
9295 add_setshow_boolean_cmd ("non-stop", no_class,
9296 &non_stop_1, _("\
9297Set whether gdb controls the inferior in non-stop mode."), _("\
9298Show whether gdb controls the inferior in non-stop mode."), _("\
9299When debugging a multi-threaded program and this setting is\n\
9300off (the default, also called all-stop mode), when one thread stops\n\
9301(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9302all other threads in the program while you interact with the thread of\n\
9303interest. When you continue or step a thread, you can allow the other\n\
9304threads to run, or have them remain stopped, but while you inspect any\n\
9305thread's state, all threads stop.\n\
9306\n\
9307In non-stop mode, when one thread stops, other threads can continue\n\
9308to run freely. You'll be able to step each thread independently,\n\
9309leave it stopped or free to run as needed."),
9310 set_non_stop,
9311 show_non_stop,
9312 &setlist,
9313 &showlist);
9314
adc6a863 9315 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9316 {
9317 signal_stop[i] = 1;
9318 signal_print[i] = 1;
9319 signal_program[i] = 1;
ab04a2af 9320 signal_catch[i] = 0;
c906108c
SS
9321 }
9322
4d9d9d04
PA
9323 /* Signals caused by debugger's own actions should not be given to
9324 the program afterwards.
9325
9326 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9327 explicitly specifies that it should be delivered to the target
9328 program. Typically, that would occur when a user is debugging a
9329 target monitor on a simulator: the target monitor sets a
9330 breakpoint; the simulator encounters this breakpoint and halts
9331 the simulation handing control to GDB; GDB, noting that the stop
9332 address doesn't map to any known breakpoint, returns control back
9333 to the simulator; the simulator then delivers the hardware
9334 equivalent of a GDB_SIGNAL_TRAP to the program being
9335 debugged. */
a493e3e2
PA
9336 signal_program[GDB_SIGNAL_TRAP] = 0;
9337 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9338
9339 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9340 signal_stop[GDB_SIGNAL_ALRM] = 0;
9341 signal_print[GDB_SIGNAL_ALRM] = 0;
9342 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9343 signal_print[GDB_SIGNAL_VTALRM] = 0;
9344 signal_stop[GDB_SIGNAL_PROF] = 0;
9345 signal_print[GDB_SIGNAL_PROF] = 0;
9346 signal_stop[GDB_SIGNAL_CHLD] = 0;
9347 signal_print[GDB_SIGNAL_CHLD] = 0;
9348 signal_stop[GDB_SIGNAL_IO] = 0;
9349 signal_print[GDB_SIGNAL_IO] = 0;
9350 signal_stop[GDB_SIGNAL_POLL] = 0;
9351 signal_print[GDB_SIGNAL_POLL] = 0;
9352 signal_stop[GDB_SIGNAL_URG] = 0;
9353 signal_print[GDB_SIGNAL_URG] = 0;
9354 signal_stop[GDB_SIGNAL_WINCH] = 0;
9355 signal_print[GDB_SIGNAL_WINCH] = 0;
9356 signal_stop[GDB_SIGNAL_PRIO] = 0;
9357 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9358
cd0fc7c3
SS
9359 /* These signals are used internally by user-level thread
9360 implementations. (See signal(5) on Solaris.) Like the above
9361 signals, a healthy program receives and handles them as part of
9362 its normal operation. */
a493e3e2
PA
9363 signal_stop[GDB_SIGNAL_LWP] = 0;
9364 signal_print[GDB_SIGNAL_LWP] = 0;
9365 signal_stop[GDB_SIGNAL_WAITING] = 0;
9366 signal_print[GDB_SIGNAL_WAITING] = 0;
9367 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9368 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9369 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9370 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9371
2455069d
UW
9372 /* Update cached state. */
9373 signal_cache_update (-1);
9374
85c07804
AC
9375 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9376 &stop_on_solib_events, _("\
9377Set stopping for shared library events."), _("\
9378Show stopping for shared library events."), _("\
c906108c
SS
9379If nonzero, gdb will give control to the user when the dynamic linker\n\
9380notifies gdb of shared library events. The most common event of interest\n\
85c07804 9381to the user would be loading/unloading of a new library."),
f9e14852 9382 set_stop_on_solib_events,
920d2a44 9383 show_stop_on_solib_events,
85c07804 9384 &setlist, &showlist);
c906108c 9385
7ab04401
AC
9386 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9387 follow_fork_mode_kind_names,
9388 &follow_fork_mode_string, _("\
9389Set debugger response to a program call of fork or vfork."), _("\
9390Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9391A fork or vfork creates a new process. follow-fork-mode can be:\n\
9392 parent - the original process is debugged after a fork\n\
9393 child - the new process is debugged after a fork\n\
ea1dd7bc 9394The unfollowed process will continue to run.\n\
7ab04401
AC
9395By default, the debugger will follow the parent process."),
9396 NULL,
920d2a44 9397 show_follow_fork_mode_string,
7ab04401
AC
9398 &setlist, &showlist);
9399
6c95b8df
PA
9400 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9401 follow_exec_mode_names,
9402 &follow_exec_mode_string, _("\
9403Set debugger response to a program call of exec."), _("\
9404Show debugger response to a program call of exec."), _("\
9405An exec call replaces the program image of a process.\n\
9406\n\
9407follow-exec-mode can be:\n\
9408\n\
cce7e648 9409 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9410to this new inferior. The program the process was running before\n\
9411the exec call can be restarted afterwards by restarting the original\n\
9412inferior.\n\
9413\n\
9414 same - the debugger keeps the process bound to the same inferior.\n\
9415The new executable image replaces the previous executable loaded in\n\
9416the inferior. Restarting the inferior after the exec call restarts\n\
9417the executable the process was running after the exec call.\n\
9418\n\
9419By default, the debugger will use the same inferior."),
9420 NULL,
9421 show_follow_exec_mode_string,
9422 &setlist, &showlist);
9423
7ab04401
AC
9424 add_setshow_enum_cmd ("scheduler-locking", class_run,
9425 scheduler_enums, &scheduler_mode, _("\
9426Set mode for locking scheduler during execution."), _("\
9427Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9428off == no locking (threads may preempt at any time)\n\
9429on == full locking (no thread except the current thread may run)\n\
dda83cd7 9430 This applies to both normal execution and replay mode.\n\
f2665db5 9431step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9432 In this mode, other threads may run during other commands.\n\
9433 This applies to both normal execution and replay mode.\n\
f2665db5 9434replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9435 set_schedlock_func, /* traps on target vector */
920d2a44 9436 show_scheduler_mode,
7ab04401 9437 &setlist, &showlist);
5fbbeb29 9438
d4db2f36
PA
9439 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9440Set mode for resuming threads of all processes."), _("\
9441Show mode for resuming threads of all processes."), _("\
9442When on, execution commands (such as 'continue' or 'next') resume all\n\
9443threads of all processes. When off (which is the default), execution\n\
9444commands only resume the threads of the current process. The set of\n\
9445threads that are resumed is further refined by the scheduler-locking\n\
9446mode (see help set scheduler-locking)."),
9447 NULL,
9448 show_schedule_multiple,
9449 &setlist, &showlist);
9450
5bf193a2
AC
9451 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9452Set mode of the step operation."), _("\
9453Show mode of the step operation."), _("\
9454When set, doing a step over a function without debug line information\n\
9455will stop at the first instruction of that function. Otherwise, the\n\
9456function is skipped and the step command stops at a different source line."),
9457 NULL,
920d2a44 9458 show_step_stop_if_no_debug,
5bf193a2 9459 &setlist, &showlist);
ca6724c1 9460
72d0e2c5
YQ
9461 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9462 &can_use_displaced_stepping, _("\
237fc4c9
PA
9463Set debugger's willingness to use displaced stepping."), _("\
9464Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9465If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9466supported by the target architecture. If off, gdb will not use displaced\n\
9467stepping to step over breakpoints, even if such is supported by the target\n\
9468architecture. If auto (which is the default), gdb will use displaced stepping\n\
9469if the target architecture supports it and non-stop mode is active, but will not\n\
9470use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9471 NULL,
9472 show_can_use_displaced_stepping,
9473 &setlist, &showlist);
237fc4c9 9474
b2175913
MS
9475 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9476 &exec_direction, _("Set direction of execution.\n\
9477Options are 'forward' or 'reverse'."),
9478 _("Show direction of execution (forward/reverse)."),
9479 _("Tells gdb whether to execute forward or backward."),
9480 set_exec_direction_func, show_exec_direction_func,
9481 &setlist, &showlist);
9482
6c95b8df
PA
9483 /* Set/show detach-on-fork: user-settable mode. */
9484
9485 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9486Set whether gdb will detach the child of a fork."), _("\
9487Show whether gdb will detach the child of a fork."), _("\
9488Tells gdb whether to detach the child of a fork."),
9489 NULL, NULL, &setlist, &showlist);
9490
03583c20
UW
9491 /* Set/show disable address space randomization mode. */
9492
9493 add_setshow_boolean_cmd ("disable-randomization", class_support,
9494 &disable_randomization, _("\
9495Set disabling of debuggee's virtual address space randomization."), _("\
9496Show disabling of debuggee's virtual address space randomization."), _("\
9497When this mode is on (which is the default), randomization of the virtual\n\
9498address space is disabled. Standalone programs run with the randomization\n\
9499enabled by default on some platforms."),
9500 &set_disable_randomization,
9501 &show_disable_randomization,
9502 &setlist, &showlist);
9503
ca6724c1 9504 /* ptid initializations */
ca6724c1
KB
9505 inferior_ptid = null_ptid;
9506 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9507
76727919
TT
9508 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9509 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9510 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9511 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9512
9513 /* Explicitly create without lookup, since that tries to create a
9514 value with a void typed value, and when we get here, gdbarch
9515 isn't initialized yet. At this point, we're quite sure there
9516 isn't another convenience variable of the same name. */
22d2b532 9517 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9518
9519 add_setshow_boolean_cmd ("observer", no_class,
9520 &observer_mode_1, _("\
9521Set whether gdb controls the inferior in observer mode."), _("\
9522Show whether gdb controls the inferior in observer mode."), _("\
9523In observer mode, GDB can get data from the inferior, but not\n\
9524affect its execution. Registers and memory may not be changed,\n\
9525breakpoints may not be set, and the program cannot be interrupted\n\
9526or signalled."),
9527 set_observer_mode,
9528 show_observer_mode,
9529 &setlist,
9530 &showlist);
b161a60d
SM
9531
9532#if GDB_SELF_TEST
9533 selftests::register_test ("infrun_thread_ptid_changed",
9534 selftests::infrun_thread_ptid_changed);
9535#endif
c906108c 9536}