]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
2012-02-02 Pedro Alves <palves@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
03583c20
UW
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
d4f3574e
SS
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
ca557f44
AC
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
d4f3574e 199
cfd8ab24 200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
cfd8ab24 206 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
c906108c 218
c906108c
SS
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
c2c6d25f 310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
2455069d
UW
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
c906108c
SS
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
1777feb0 338/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 339
edb3359d 340#define RESUME_ALL minus_one_ptid
c906108c
SS
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
c906108c
SS
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
920d2a44
AC
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
c906108c 360
c906108c
SS
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
642fd101
DE
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
72cec141 371struct regcache *stop_registers;
c906108c 372
c906108c
SS
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
e02bc4cc 377/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
39f77062 380static ptid_t target_last_wait_ptid;
e02bc4cc
DS
381static struct target_waitstatus target_last_waitstatus;
382
0d1e5fa7
PA
383static void context_switch (ptid_t ptid);
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
386
387void init_infwait_state (void);
a474d7c2 388
53904c9e
AC
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
40478521 392static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
ef346e04 396};
c906108c 397
53904c9e 398static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
3e43a32a
MS
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
406 value);
407}
c906108c
SS
408\f
409
e58b0e63
PA
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
6604731b 414static int
4ef3f3be 415follow_fork (void)
c906108c 416{
ea1dd7bc 417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
4e3990f4
DE
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 426 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
8358c15c
JK
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
16c381f0
JK
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
186c406b
TT
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
16c381f0
JK
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
186c406b 491 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
e09875d4 511 tp = find_thread_ptid (parent);
e58b0e63
PA
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
1777feb0 519 /* If we followed the child, switch to it... */
e58b0e63
PA
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
8358c15c
JK
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
16c381f0
JK
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
186c406b
TT
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
e58b0e63
PA
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
3e43a32a
MS
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
e58b0e63
PA
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
c906108c 566
e58b0e63 567 return should_resume;
c906108c
SS
568}
569
6604731b
DJ
570void
571follow_inferior_reset_breakpoints (void)
c906108c 572{
4e1c45ea
PA
573 struct thread_info *tp = inferior_thread ();
574
6604731b
DJ
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
8358c15c
JK
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 588
186c406b
TT
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
6604731b
DJ
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
c906108c 599}
c906108c 600
6c95b8df
PA
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
16c381f0 614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
1777feb0 652 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
6c95b8df
PA
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
6c95b8df
PA
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 clone_program_space (pspace, inf->vfork_parent->pspace);
743 inf->pspace = pspace;
744 inf->aspace = pspace->aspace;
745
746 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 747 inferior. */
6c95b8df
PA
748 do_cleanups (old_chain);
749
750 resume_parent = inf->vfork_parent->pid;
751 /* Break the bonds. */
752 inf->vfork_parent->vfork_child = NULL;
753 }
754
755 inf->vfork_parent = NULL;
756
757 gdb_assert (current_program_space == inf->pspace);
758
759 if (non_stop && resume_parent != -1)
760 {
761 /* If the user wanted the parent to be running, let it go
762 free now. */
763 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
764
765 if (debug_infrun)
3e43a32a
MS
766 fprintf_unfiltered (gdb_stdlog,
767 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
768 resume_parent);
769
770 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
771
772 do_cleanups (old_chain);
773 }
774 }
775}
776
777/* Enum strings for "set|show displaced-stepping". */
778
779static const char follow_exec_mode_new[] = "new";
780static const char follow_exec_mode_same[] = "same";
40478521 781static const char *const follow_exec_mode_names[] =
6c95b8df
PA
782{
783 follow_exec_mode_new,
784 follow_exec_mode_same,
785 NULL,
786};
787
788static const char *follow_exec_mode_string = follow_exec_mode_same;
789static void
790show_follow_exec_mode_string (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c, const char *value)
792{
793 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
794}
795
1777feb0 796/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 797
c906108c 798static void
3a3e9ee3 799follow_exec (ptid_t pid, char *execd_pathname)
c906108c 800{
4e1c45ea 801 struct thread_info *th = inferior_thread ();
6c95b8df 802 struct inferior *inf = current_inferior ();
7a292a7a 803
c906108c
SS
804 /* This is an exec event that we actually wish to pay attention to.
805 Refresh our symbol table to the newly exec'd program, remove any
806 momentary bp's, etc.
807
808 If there are breakpoints, they aren't really inserted now,
809 since the exec() transformed our inferior into a fresh set
810 of instructions.
811
812 We want to preserve symbolic breakpoints on the list, since
813 we have hopes that they can be reset after the new a.out's
814 symbol table is read.
815
816 However, any "raw" breakpoints must be removed from the list
817 (e.g., the solib bp's), since their address is probably invalid
818 now.
819
820 And, we DON'T want to call delete_breakpoints() here, since
821 that may write the bp's "shadow contents" (the instruction
822 value that was overwritten witha TRAP instruction). Since
1777feb0 823 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
824
825 mark_breakpoints_out ();
826
c906108c
SS
827 update_breakpoints_after_exec ();
828
829 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 830 statement through an exec(). */
8358c15c 831 th->control.step_resume_breakpoint = NULL;
186c406b 832 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
833 th->control.step_range_start = 0;
834 th->control.step_range_end = 0;
c906108c 835
a75724bc
PA
836 /* The target reports the exec event to the main thread, even if
837 some other thread does the exec, and even if the main thread was
838 already stopped --- if debugging in non-stop mode, it's possible
839 the user had the main thread held stopped in the previous image
840 --- release it now. This is the same behavior as step-over-exec
841 with scheduler-locking on in all-stop mode. */
842 th->stop_requested = 0;
843
1777feb0 844 /* What is this a.out's name? */
6c95b8df
PA
845 printf_unfiltered (_("%s is executing new program: %s\n"),
846 target_pid_to_str (inferior_ptid),
847 execd_pathname);
c906108c
SS
848
849 /* We've followed the inferior through an exec. Therefore, the
1777feb0 850 inferior has essentially been killed & reborn. */
7a292a7a 851
c906108c 852 gdb_flush (gdb_stdout);
6ca15a4b
PA
853
854 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
855
856 if (gdb_sysroot && *gdb_sysroot)
857 {
858 char *name = alloca (strlen (gdb_sysroot)
859 + strlen (execd_pathname)
860 + 1);
abbb1732 861
e85a822c
DJ
862 strcpy (name, gdb_sysroot);
863 strcat (name, execd_pathname);
864 execd_pathname = name;
865 }
c906108c 866
cce9b6bf
PA
867 /* Reset the shared library package. This ensures that we get a
868 shlib event when the child reaches "_start", at which point the
869 dld will have had a chance to initialize the child. */
870 /* Also, loading a symbol file below may trigger symbol lookups, and
871 we don't want those to be satisfied by the libraries of the
872 previous incarnation of this process. */
873 no_shared_libraries (NULL, 0);
874
6c95b8df
PA
875 if (follow_exec_mode_string == follow_exec_mode_new)
876 {
877 struct program_space *pspace;
6c95b8df
PA
878
879 /* The user wants to keep the old inferior and program spaces
880 around. Create a new fresh one, and switch to it. */
881
882 inf = add_inferior (current_inferior ()->pid);
883 pspace = add_program_space (maybe_new_address_space ());
884 inf->pspace = pspace;
885 inf->aspace = pspace->aspace;
886
887 exit_inferior_num_silent (current_inferior ()->num);
888
889 set_current_inferior (inf);
890 set_current_program_space (pspace);
891 }
892
893 gdb_assert (current_program_space == inf->pspace);
894
1777feb0 895 /* That a.out is now the one to use. */
6c95b8df
PA
896 exec_file_attach (execd_pathname, 0);
897
c1e56572
JK
898 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
899 (Position Independent Executable) main symbol file will get applied by
900 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
901 the breakpoints with the zero displacement. */
902
903 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
904 NULL, 0);
905
906 set_initial_language ();
c906108c 907
7a292a7a 908#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 909 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 910#else
268a4a75 911 solib_create_inferior_hook (0);
7a292a7a 912#endif
c906108c 913
4efc6507
DE
914 jit_inferior_created_hook ();
915
c1e56572
JK
916 breakpoint_re_set ();
917
c906108c
SS
918 /* Reinsert all breakpoints. (Those which were symbolic have
919 been reset to the proper address in the new a.out, thanks
1777feb0 920 to symbol_file_command...). */
c906108c
SS
921 insert_breakpoints ();
922
923 /* The next resume of this inferior should bring it to the shlib
924 startup breakpoints. (If the user had also set bp's on
925 "main" from the old (parent) process, then they'll auto-
1777feb0 926 matically get reset there in the new process.). */
c906108c
SS
927}
928
929/* Non-zero if we just simulating a single-step. This is needed
930 because we cannot remove the breakpoints in the inferior process
931 until after the `wait' in `wait_for_inferior'. */
932static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
933
934/* The thread we inserted single-step breakpoints for. */
935static ptid_t singlestep_ptid;
936
fd48f117
DJ
937/* PC when we started this single-step. */
938static CORE_ADDR singlestep_pc;
939
9f976b41
DJ
940/* If another thread hit the singlestep breakpoint, we save the original
941 thread here so that we can resume single-stepping it later. */
942static ptid_t saved_singlestep_ptid;
943static int stepping_past_singlestep_breakpoint;
6a6b96b9 944
ca67fcb8
VP
945/* If not equal to null_ptid, this means that after stepping over breakpoint
946 is finished, we need to switch to deferred_step_ptid, and step it.
947
948 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 949 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
950 breakpoint in the thread which hit the breakpoint, but then continue
951 stepping the thread user has selected. */
952static ptid_t deferred_step_ptid;
c906108c 953\f
237fc4c9
PA
954/* Displaced stepping. */
955
956/* In non-stop debugging mode, we must take special care to manage
957 breakpoints properly; in particular, the traditional strategy for
958 stepping a thread past a breakpoint it has hit is unsuitable.
959 'Displaced stepping' is a tactic for stepping one thread past a
960 breakpoint it has hit while ensuring that other threads running
961 concurrently will hit the breakpoint as they should.
962
963 The traditional way to step a thread T off a breakpoint in a
964 multi-threaded program in all-stop mode is as follows:
965
966 a0) Initially, all threads are stopped, and breakpoints are not
967 inserted.
968 a1) We single-step T, leaving breakpoints uninserted.
969 a2) We insert breakpoints, and resume all threads.
970
971 In non-stop debugging, however, this strategy is unsuitable: we
972 don't want to have to stop all threads in the system in order to
973 continue or step T past a breakpoint. Instead, we use displaced
974 stepping:
975
976 n0) Initially, T is stopped, other threads are running, and
977 breakpoints are inserted.
978 n1) We copy the instruction "under" the breakpoint to a separate
979 location, outside the main code stream, making any adjustments
980 to the instruction, register, and memory state as directed by
981 T's architecture.
982 n2) We single-step T over the instruction at its new location.
983 n3) We adjust the resulting register and memory state as directed
984 by T's architecture. This includes resetting T's PC to point
985 back into the main instruction stream.
986 n4) We resume T.
987
988 This approach depends on the following gdbarch methods:
989
990 - gdbarch_max_insn_length and gdbarch_displaced_step_location
991 indicate where to copy the instruction, and how much space must
992 be reserved there. We use these in step n1.
993
994 - gdbarch_displaced_step_copy_insn copies a instruction to a new
995 address, and makes any necessary adjustments to the instruction,
996 register contents, and memory. We use this in step n1.
997
998 - gdbarch_displaced_step_fixup adjusts registers and memory after
999 we have successfuly single-stepped the instruction, to yield the
1000 same effect the instruction would have had if we had executed it
1001 at its original address. We use this in step n3.
1002
1003 - gdbarch_displaced_step_free_closure provides cleanup.
1004
1005 The gdbarch_displaced_step_copy_insn and
1006 gdbarch_displaced_step_fixup functions must be written so that
1007 copying an instruction with gdbarch_displaced_step_copy_insn,
1008 single-stepping across the copied instruction, and then applying
1009 gdbarch_displaced_insn_fixup should have the same effects on the
1010 thread's memory and registers as stepping the instruction in place
1011 would have. Exactly which responsibilities fall to the copy and
1012 which fall to the fixup is up to the author of those functions.
1013
1014 See the comments in gdbarch.sh for details.
1015
1016 Note that displaced stepping and software single-step cannot
1017 currently be used in combination, although with some care I think
1018 they could be made to. Software single-step works by placing
1019 breakpoints on all possible subsequent instructions; if the
1020 displaced instruction is a PC-relative jump, those breakpoints
1021 could fall in very strange places --- on pages that aren't
1022 executable, or at addresses that are not proper instruction
1023 boundaries. (We do generally let other threads run while we wait
1024 to hit the software single-step breakpoint, and they might
1025 encounter such a corrupted instruction.) One way to work around
1026 this would be to have gdbarch_displaced_step_copy_insn fully
1027 simulate the effect of PC-relative instructions (and return NULL)
1028 on architectures that use software single-stepping.
1029
1030 In non-stop mode, we can have independent and simultaneous step
1031 requests, so more than one thread may need to simultaneously step
1032 over a breakpoint. The current implementation assumes there is
1033 only one scratch space per process. In this case, we have to
1034 serialize access to the scratch space. If thread A wants to step
1035 over a breakpoint, but we are currently waiting for some other
1036 thread to complete a displaced step, we leave thread A stopped and
1037 place it in the displaced_step_request_queue. Whenever a displaced
1038 step finishes, we pick the next thread in the queue and start a new
1039 displaced step operation on it. See displaced_step_prepare and
1040 displaced_step_fixup for details. */
1041
237fc4c9
PA
1042struct displaced_step_request
1043{
1044 ptid_t ptid;
1045 struct displaced_step_request *next;
1046};
1047
fc1cf338
PA
1048/* Per-inferior displaced stepping state. */
1049struct displaced_step_inferior_state
1050{
1051 /* Pointer to next in linked list. */
1052 struct displaced_step_inferior_state *next;
1053
1054 /* The process this displaced step state refers to. */
1055 int pid;
1056
1057 /* A queue of pending displaced stepping requests. One entry per
1058 thread that needs to do a displaced step. */
1059 struct displaced_step_request *step_request_queue;
1060
1061 /* If this is not null_ptid, this is the thread carrying out a
1062 displaced single-step in process PID. This thread's state will
1063 require fixing up once it has completed its step. */
1064 ptid_t step_ptid;
1065
1066 /* The architecture the thread had when we stepped it. */
1067 struct gdbarch *step_gdbarch;
1068
1069 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1070 for post-step cleanup. */
1071 struct displaced_step_closure *step_closure;
1072
1073 /* The address of the original instruction, and the copy we
1074 made. */
1075 CORE_ADDR step_original, step_copy;
1076
1077 /* Saved contents of copy area. */
1078 gdb_byte *step_saved_copy;
1079};
1080
1081/* The list of states of processes involved in displaced stepping
1082 presently. */
1083static struct displaced_step_inferior_state *displaced_step_inferior_states;
1084
1085/* Get the displaced stepping state of process PID. */
1086
1087static struct displaced_step_inferior_state *
1088get_displaced_stepping_state (int pid)
1089{
1090 struct displaced_step_inferior_state *state;
1091
1092 for (state = displaced_step_inferior_states;
1093 state != NULL;
1094 state = state->next)
1095 if (state->pid == pid)
1096 return state;
1097
1098 return NULL;
1099}
1100
1101/* Add a new displaced stepping state for process PID to the displaced
1102 stepping state list, or return a pointer to an already existing
1103 entry, if it already exists. Never returns NULL. */
1104
1105static struct displaced_step_inferior_state *
1106add_displaced_stepping_state (int pid)
1107{
1108 struct displaced_step_inferior_state *state;
1109
1110 for (state = displaced_step_inferior_states;
1111 state != NULL;
1112 state = state->next)
1113 if (state->pid == pid)
1114 return state;
237fc4c9 1115
fc1cf338
PA
1116 state = xcalloc (1, sizeof (*state));
1117 state->pid = pid;
1118 state->next = displaced_step_inferior_states;
1119 displaced_step_inferior_states = state;
237fc4c9 1120
fc1cf338
PA
1121 return state;
1122}
1123
a42244db
YQ
1124/* If inferior is in displaced stepping, and ADDR equals to starting address
1125 of copy area, return corresponding displaced_step_closure. Otherwise,
1126 return NULL. */
1127
1128struct displaced_step_closure*
1129get_displaced_step_closure_by_addr (CORE_ADDR addr)
1130{
1131 struct displaced_step_inferior_state *displaced
1132 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1133
1134 /* If checking the mode of displaced instruction in copy area. */
1135 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1136 && (displaced->step_copy == addr))
1137 return displaced->step_closure;
1138
1139 return NULL;
1140}
1141
fc1cf338 1142/* Remove the displaced stepping state of process PID. */
237fc4c9 1143
fc1cf338
PA
1144static void
1145remove_displaced_stepping_state (int pid)
1146{
1147 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1148
fc1cf338
PA
1149 gdb_assert (pid != 0);
1150
1151 it = displaced_step_inferior_states;
1152 prev_next_p = &displaced_step_inferior_states;
1153 while (it)
1154 {
1155 if (it->pid == pid)
1156 {
1157 *prev_next_p = it->next;
1158 xfree (it);
1159 return;
1160 }
1161
1162 prev_next_p = &it->next;
1163 it = *prev_next_p;
1164 }
1165}
1166
1167static void
1168infrun_inferior_exit (struct inferior *inf)
1169{
1170 remove_displaced_stepping_state (inf->pid);
1171}
237fc4c9 1172
fff08868
HZ
1173/* Enum strings for "set|show displaced-stepping". */
1174
1175static const char can_use_displaced_stepping_auto[] = "auto";
1176static const char can_use_displaced_stepping_on[] = "on";
1177static const char can_use_displaced_stepping_off[] = "off";
40478521 1178static const char *const can_use_displaced_stepping_enum[] =
fff08868
HZ
1179{
1180 can_use_displaced_stepping_auto,
1181 can_use_displaced_stepping_on,
1182 can_use_displaced_stepping_off,
1183 NULL,
1184};
1185
1186/* If ON, and the architecture supports it, GDB will use displaced
1187 stepping to step over breakpoints. If OFF, or if the architecture
1188 doesn't support it, GDB will instead use the traditional
1189 hold-and-step approach. If AUTO (which is the default), GDB will
1190 decide which technique to use to step over breakpoints depending on
1191 which of all-stop or non-stop mode is active --- displaced stepping
1192 in non-stop mode; hold-and-step in all-stop mode. */
1193
1194static const char *can_use_displaced_stepping =
1195 can_use_displaced_stepping_auto;
1196
237fc4c9
PA
1197static void
1198show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c,
1200 const char *value)
1201{
fff08868 1202 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1203 fprintf_filtered (file,
1204 _("Debugger's willingness to use displaced stepping "
1205 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1206 value, non_stop ? "on" : "off");
1207 else
3e43a32a
MS
1208 fprintf_filtered (file,
1209 _("Debugger's willingness to use displaced stepping "
1210 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1211}
1212
fff08868
HZ
1213/* Return non-zero if displaced stepping can/should be used to step
1214 over breakpoints. */
1215
237fc4c9
PA
1216static int
1217use_displaced_stepping (struct gdbarch *gdbarch)
1218{
fff08868
HZ
1219 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1220 && non_stop)
1221 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
237fc4c9
PA
1224}
1225
1226/* Clean out any stray displaced stepping state. */
1227static void
fc1cf338 1228displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1229{
1230 /* Indicate that there is no cleanup pending. */
fc1cf338 1231 displaced->step_ptid = null_ptid;
237fc4c9 1232
fc1cf338 1233 if (displaced->step_closure)
237fc4c9 1234 {
fc1cf338
PA
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
237fc4c9
PA
1238 }
1239}
1240
1241static void
fc1cf338 1242displaced_step_clear_cleanup (void *arg)
237fc4c9 1243{
fc1cf338
PA
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
237fc4c9
PA
1247}
1248
1249/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250void
1251displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254{
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260}
1261
1262/* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276static int
1277displaced_step_prepare (ptid_t ptid)
1278{
ad53cd71 1279 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
fc1cf338 1285 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1286
1287 /* We should never reach this function if the architecture does not
1288 support displaced stepping. */
1289 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1290
fc1cf338
PA
1291 /* We have to displaced step one thread at a time, as we only have
1292 access to a single scratch space per inferior. */
237fc4c9 1293
fc1cf338
PA
1294 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1295
1296 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1297 {
1298 /* Already waiting for a displaced step to finish. Defer this
1299 request and place in queue. */
1300 struct displaced_step_request *req, *new_req;
1301
1302 if (debug_displaced)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "displaced: defering step of %s\n",
1305 target_pid_to_str (ptid));
1306
1307 new_req = xmalloc (sizeof (*new_req));
1308 new_req->ptid = ptid;
1309 new_req->next = NULL;
1310
fc1cf338 1311 if (displaced->step_request_queue)
237fc4c9 1312 {
fc1cf338 1313 for (req = displaced->step_request_queue;
237fc4c9
PA
1314 req && req->next;
1315 req = req->next)
1316 ;
1317 req->next = new_req;
1318 }
1319 else
fc1cf338 1320 displaced->step_request_queue = new_req;
237fc4c9
PA
1321
1322 return 0;
1323 }
1324 else
1325 {
1326 if (debug_displaced)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "displaced: stepping %s now\n",
1329 target_pid_to_str (ptid));
1330 }
1331
fc1cf338 1332 displaced_step_clear (displaced);
237fc4c9 1333
ad53cd71
PA
1334 old_cleanups = save_inferior_ptid ();
1335 inferior_ptid = ptid;
1336
515630c5 1337 original = regcache_read_pc (regcache);
237fc4c9
PA
1338
1339 copy = gdbarch_displaced_step_location (gdbarch);
1340 len = gdbarch_max_insn_length (gdbarch);
1341
1342 /* Save the original contents of the copy area. */
fc1cf338 1343 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1344 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1345 &displaced->step_saved_copy);
1346 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1347 if (debug_displaced)
1348 {
5af949e3
UW
1349 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1350 paddress (gdbarch, copy));
fc1cf338
PA
1351 displaced_step_dump_bytes (gdb_stdlog,
1352 displaced->step_saved_copy,
1353 len);
237fc4c9
PA
1354 };
1355
1356 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1357 original, copy, regcache);
237fc4c9
PA
1358
1359 /* We don't support the fully-simulated case at present. */
1360 gdb_assert (closure);
1361
9f5a595d
UW
1362 /* Save the information we need to fix things up if the step
1363 succeeds. */
fc1cf338
PA
1364 displaced->step_ptid = ptid;
1365 displaced->step_gdbarch = gdbarch;
1366 displaced->step_closure = closure;
1367 displaced->step_original = original;
1368 displaced->step_copy = copy;
9f5a595d 1369
fc1cf338 1370 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1371
1372 /* Resume execution at the copy. */
515630c5 1373 regcache_write_pc (regcache, copy);
237fc4c9 1374
ad53cd71
PA
1375 discard_cleanups (ignore_cleanups);
1376
1377 do_cleanups (old_cleanups);
237fc4c9
PA
1378
1379 if (debug_displaced)
5af949e3
UW
1380 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1381 paddress (gdbarch, copy));
237fc4c9 1382
237fc4c9
PA
1383 return 1;
1384}
1385
237fc4c9 1386static void
3e43a32a
MS
1387write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1388 const gdb_byte *myaddr, int len)
237fc4c9
PA
1389{
1390 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1391
237fc4c9
PA
1392 inferior_ptid = ptid;
1393 write_memory (memaddr, myaddr, len);
1394 do_cleanups (ptid_cleanup);
1395}
1396
e2d96639
YQ
1397/* Restore the contents of the copy area for thread PTID. */
1398
1399static void
1400displaced_step_restore (struct displaced_step_inferior_state *displaced,
1401 ptid_t ptid)
1402{
1403 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1404
1405 write_memory_ptid (ptid, displaced->step_copy,
1406 displaced->step_saved_copy, len);
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1409 target_pid_to_str (ptid),
1410 paddress (displaced->step_gdbarch,
1411 displaced->step_copy));
1412}
1413
237fc4c9
PA
1414static void
1415displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1416{
1417 struct cleanup *old_cleanups;
fc1cf338
PA
1418 struct displaced_step_inferior_state *displaced
1419 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1420
1421 /* Was any thread of this process doing a displaced step? */
1422 if (displaced == NULL)
1423 return;
237fc4c9
PA
1424
1425 /* Was this event for the pid we displaced? */
fc1cf338
PA
1426 if (ptid_equal (displaced->step_ptid, null_ptid)
1427 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1428 return;
1429
fc1cf338 1430 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1431
e2d96639 1432 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1433
1434 /* Did the instruction complete successfully? */
1435 if (signal == TARGET_SIGNAL_TRAP)
1436 {
1437 /* Fix up the resulting state. */
fc1cf338
PA
1438 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1439 displaced->step_closure,
1440 displaced->step_original,
1441 displaced->step_copy,
1442 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1443 }
1444 else
1445 {
1446 /* Since the instruction didn't complete, all we can do is
1447 relocate the PC. */
515630c5
UW
1448 struct regcache *regcache = get_thread_regcache (event_ptid);
1449 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1450
fc1cf338 1451 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1452 regcache_write_pc (regcache, pc);
237fc4c9
PA
1453 }
1454
1455 do_cleanups (old_cleanups);
1456
fc1cf338 1457 displaced->step_ptid = null_ptid;
1c5cfe86 1458
237fc4c9 1459 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1460 one now. Leave the state object around, since we're likely to
1461 need it again soon. */
1462 while (displaced->step_request_queue)
237fc4c9
PA
1463 {
1464 struct displaced_step_request *head;
1465 ptid_t ptid;
5af949e3 1466 struct regcache *regcache;
929dfd4f 1467 struct gdbarch *gdbarch;
1c5cfe86 1468 CORE_ADDR actual_pc;
6c95b8df 1469 struct address_space *aspace;
237fc4c9 1470
fc1cf338 1471 head = displaced->step_request_queue;
237fc4c9 1472 ptid = head->ptid;
fc1cf338 1473 displaced->step_request_queue = head->next;
237fc4c9
PA
1474 xfree (head);
1475
ad53cd71
PA
1476 context_switch (ptid);
1477
5af949e3
UW
1478 regcache = get_thread_regcache (ptid);
1479 actual_pc = regcache_read_pc (regcache);
6c95b8df 1480 aspace = get_regcache_aspace (regcache);
1c5cfe86 1481
6c95b8df 1482 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1483 {
1c5cfe86
PA
1484 if (debug_displaced)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "displaced: stepping queued %s now\n",
1487 target_pid_to_str (ptid));
1488
1489 displaced_step_prepare (ptid);
1490
929dfd4f
JB
1491 gdbarch = get_regcache_arch (regcache);
1492
1c5cfe86
PA
1493 if (debug_displaced)
1494 {
929dfd4f 1495 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1496 gdb_byte buf[4];
1497
5af949e3
UW
1498 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1499 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1500 read_memory (actual_pc, buf, sizeof (buf));
1501 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1502 }
1503
fc1cf338
PA
1504 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1505 displaced->step_closure))
929dfd4f 1506 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1507 else
1508 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1509
1510 /* Done, we're stepping a thread. */
1511 break;
ad53cd71 1512 }
1c5cfe86
PA
1513 else
1514 {
1515 int step;
1516 struct thread_info *tp = inferior_thread ();
1517
1518 /* The breakpoint we were sitting under has since been
1519 removed. */
16c381f0 1520 tp->control.trap_expected = 0;
1c5cfe86
PA
1521
1522 /* Go back to what we were trying to do. */
1523 step = currently_stepping (tp);
ad53cd71 1524
1c5cfe86 1525 if (debug_displaced)
3e43a32a
MS
1526 fprintf_unfiltered (gdb_stdlog,
1527 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1528 target_pid_to_str (tp->ptid), step);
1529
1530 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1531 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1532
1533 /* This request was discarded. See if there's any other
1534 thread waiting for its turn. */
1535 }
237fc4c9
PA
1536 }
1537}
1538
5231c1fd
PA
1539/* Update global variables holding ptids to hold NEW_PTID if they were
1540 holding OLD_PTID. */
1541static void
1542infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1543{
1544 struct displaced_step_request *it;
fc1cf338 1545 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1546
1547 if (ptid_equal (inferior_ptid, old_ptid))
1548 inferior_ptid = new_ptid;
1549
1550 if (ptid_equal (singlestep_ptid, old_ptid))
1551 singlestep_ptid = new_ptid;
1552
5231c1fd
PA
1553 if (ptid_equal (deferred_step_ptid, old_ptid))
1554 deferred_step_ptid = new_ptid;
1555
fc1cf338
PA
1556 for (displaced = displaced_step_inferior_states;
1557 displaced;
1558 displaced = displaced->next)
1559 {
1560 if (ptid_equal (displaced->step_ptid, old_ptid))
1561 displaced->step_ptid = new_ptid;
1562
1563 for (it = displaced->step_request_queue; it; it = it->next)
1564 if (ptid_equal (it->ptid, old_ptid))
1565 it->ptid = new_ptid;
1566 }
5231c1fd
PA
1567}
1568
237fc4c9
PA
1569\f
1570/* Resuming. */
c906108c
SS
1571
1572/* Things to clean up if we QUIT out of resume (). */
c906108c 1573static void
74b7792f 1574resume_cleanups (void *ignore)
c906108c
SS
1575{
1576 normal_stop ();
1577}
1578
53904c9e
AC
1579static const char schedlock_off[] = "off";
1580static const char schedlock_on[] = "on";
1581static const char schedlock_step[] = "step";
40478521 1582static const char *const scheduler_enums[] = {
ef346e04
AC
1583 schedlock_off,
1584 schedlock_on,
1585 schedlock_step,
1586 NULL
1587};
920d2a44
AC
1588static const char *scheduler_mode = schedlock_off;
1589static void
1590show_scheduler_mode (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c, const char *value)
1592{
3e43a32a
MS
1593 fprintf_filtered (file,
1594 _("Mode for locking scheduler "
1595 "during execution is \"%s\".\n"),
920d2a44
AC
1596 value);
1597}
c906108c
SS
1598
1599static void
96baa820 1600set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1601{
eefe576e
AC
1602 if (!target_can_lock_scheduler)
1603 {
1604 scheduler_mode = schedlock_off;
1605 error (_("Target '%s' cannot support this command."), target_shortname);
1606 }
c906108c
SS
1607}
1608
d4db2f36
PA
1609/* True if execution commands resume all threads of all processes by
1610 default; otherwise, resume only threads of the current inferior
1611 process. */
1612int sched_multi = 0;
1613
2facfe5c
DD
1614/* Try to setup for software single stepping over the specified location.
1615 Return 1 if target_resume() should use hardware single step.
1616
1617 GDBARCH the current gdbarch.
1618 PC the location to step over. */
1619
1620static int
1621maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1622{
1623 int hw_step = 1;
1624
f02253f1
HZ
1625 if (execution_direction == EXEC_FORWARD
1626 && gdbarch_software_single_step_p (gdbarch)
99e40580 1627 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1628 {
99e40580
UW
1629 hw_step = 0;
1630 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1631 `wait_for_inferior'. */
99e40580
UW
1632 singlestep_breakpoints_inserted_p = 1;
1633 singlestep_ptid = inferior_ptid;
1634 singlestep_pc = pc;
2facfe5c
DD
1635 }
1636 return hw_step;
1637}
c906108c 1638
09cee04b
PA
1639/* Return a ptid representing the set of threads that we will proceed,
1640 in the perspective of the user/frontend. We may actually resume
1641 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1642 breakpoint that needs stepping-off, but that should not be visible
1643 to the user/frontend, and neither should the frontend/user be
1644 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1645 internal run control handling, if a previous command wanted them
1646 resumed. */
1647
1648ptid_t
1649user_visible_resume_ptid (int step)
1650{
1651 /* By default, resume all threads of all processes. */
1652 ptid_t resume_ptid = RESUME_ALL;
1653
1654 /* Maybe resume only all threads of the current process. */
1655 if (!sched_multi && target_supports_multi_process ())
1656 {
1657 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1658 }
1659
1660 /* Maybe resume a single thread after all. */
1661 if (non_stop)
1662 {
1663 /* With non-stop mode on, threads are always handled
1664 individually. */
1665 resume_ptid = inferior_ptid;
1666 }
1667 else if ((scheduler_mode == schedlock_on)
1668 || (scheduler_mode == schedlock_step
1669 && (step || singlestep_breakpoints_inserted_p)))
1670 {
1671 /* User-settable 'scheduler' mode requires solo thread resume. */
1672 resume_ptid = inferior_ptid;
1673 }
1674
1675 return resume_ptid;
1676}
1677
c906108c
SS
1678/* Resume the inferior, but allow a QUIT. This is useful if the user
1679 wants to interrupt some lengthy single-stepping operation
1680 (for child processes, the SIGINT goes to the inferior, and so
1681 we get a SIGINT random_signal, but for remote debugging and perhaps
1682 other targets, that's not true).
1683
1684 STEP nonzero if we should step (zero to continue instead).
1685 SIG is the signal to give the inferior (zero for none). */
1686void
96baa820 1687resume (int step, enum target_signal sig)
c906108c
SS
1688{
1689 int should_resume = 1;
74b7792f 1690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1691 struct regcache *regcache = get_current_regcache ();
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1693 struct thread_info *tp = inferior_thread ();
515630c5 1694 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1695 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1696
c906108c
SS
1697 QUIT;
1698
74609e71
YQ
1699 if (current_inferior ()->waiting_for_vfork_done)
1700 {
48f9886d
PA
1701 /* Don't try to single-step a vfork parent that is waiting for
1702 the child to get out of the shared memory region (by exec'ing
1703 or exiting). This is particularly important on software
1704 single-step archs, as the child process would trip on the
1705 software single step breakpoint inserted for the parent
1706 process. Since the parent will not actually execute any
1707 instruction until the child is out of the shared region (such
1708 are vfork's semantics), it is safe to simply continue it.
1709 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1710 the parent, and tell it to `keep_going', which automatically
1711 re-sets it stepping. */
74609e71
YQ
1712 if (debug_infrun)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "infrun: resume : clear step\n");
1715 step = 0;
1716 }
1717
527159b7 1718 if (debug_infrun)
237fc4c9
PA
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1721 "trap_expected=%d, current thread [%s] at %s\n",
1722 step, sig, tp->control.trap_expected,
1723 target_pid_to_str (inferior_ptid),
1724 paddress (gdbarch, pc));
c906108c 1725
c2c6d25f
JM
1726 /* Normally, by the time we reach `resume', the breakpoints are either
1727 removed or inserted, as appropriate. The exception is if we're sitting
1728 at a permanent breakpoint; we need to step over it, but permanent
1729 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1730 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1731 {
515630c5
UW
1732 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1733 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1734 else
ac74f770
MS
1735 error (_("\
1736The program is stopped at a permanent breakpoint, but GDB does not know\n\
1737how to step past a permanent breakpoint on this architecture. Try using\n\
1738a command like `return' or `jump' to continue execution."));
6d350bb5 1739 }
c2c6d25f 1740
237fc4c9
PA
1741 /* If enabled, step over breakpoints by executing a copy of the
1742 instruction at a different address.
1743
1744 We can't use displaced stepping when we have a signal to deliver;
1745 the comments for displaced_step_prepare explain why. The
1746 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1747 signals' explain what we do instead.
1748
1749 We can't use displaced stepping when we are waiting for vfork_done
1750 event, displaced stepping breaks the vfork child similarly as single
1751 step software breakpoint. */
515630c5 1752 if (use_displaced_stepping (gdbarch)
16c381f0 1753 && (tp->control.trap_expected
929dfd4f 1754 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1755 && sig == TARGET_SIGNAL_0
1756 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1757 {
fc1cf338
PA
1758 struct displaced_step_inferior_state *displaced;
1759
237fc4c9 1760 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1761 {
1762 /* Got placed in displaced stepping queue. Will be resumed
1763 later when all the currently queued displaced stepping
7f7efbd9
VP
1764 requests finish. The thread is not executing at this point,
1765 and the call to set_executing will be made later. But we
1766 need to call set_running here, since from frontend point of view,
1767 the thread is running. */
1768 set_running (inferior_ptid, 1);
d56b7306
VP
1769 discard_cleanups (old_cleanups);
1770 return;
1771 }
99e40580 1772
fc1cf338
PA
1773 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1774 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1775 displaced->step_closure);
237fc4c9
PA
1776 }
1777
2facfe5c 1778 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1779 else if (step)
2facfe5c 1780 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1781
30852783
UW
1782 /* Currently, our software single-step implementation leads to different
1783 results than hardware single-stepping in one situation: when stepping
1784 into delivering a signal which has an associated signal handler,
1785 hardware single-step will stop at the first instruction of the handler,
1786 while software single-step will simply skip execution of the handler.
1787
1788 For now, this difference in behavior is accepted since there is no
1789 easy way to actually implement single-stepping into a signal handler
1790 without kernel support.
1791
1792 However, there is one scenario where this difference leads to follow-on
1793 problems: if we're stepping off a breakpoint by removing all breakpoints
1794 and then single-stepping. In this case, the software single-step
1795 behavior means that even if there is a *breakpoint* in the signal
1796 handler, GDB still would not stop.
1797
1798 Fortunately, we can at least fix this particular issue. We detect
1799 here the case where we are about to deliver a signal while software
1800 single-stepping with breakpoints removed. In this situation, we
1801 revert the decisions to remove all breakpoints and insert single-
1802 step breakpoints, and instead we install a step-resume breakpoint
1803 at the current address, deliver the signal without stepping, and
1804 once we arrive back at the step-resume breakpoint, actually step
1805 over the breakpoint we originally wanted to step over. */
1806 if (singlestep_breakpoints_inserted_p
1807 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1808 {
1809 /* If we have nested signals or a pending signal is delivered
1810 immediately after a handler returns, might might already have
1811 a step-resume breakpoint set on the earlier handler. We cannot
1812 set another step-resume breakpoint; just continue on until the
1813 original breakpoint is hit. */
1814 if (tp->control.step_resume_breakpoint == NULL)
1815 {
2c03e5be 1816 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1817 tp->step_after_step_resume_breakpoint = 1;
1818 }
1819
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822
1823 insert_breakpoints ();
1824 tp->control.trap_expected = 0;
1825 }
1826
c906108c
SS
1827 if (should_resume)
1828 {
39f77062 1829 ptid_t resume_ptid;
dfcd3bfb 1830
cd76b0b7
VP
1831 /* If STEP is set, it's a request to use hardware stepping
1832 facilities. But in that case, we should never
1833 use singlestep breakpoint. */
1834 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1835
d4db2f36
PA
1836 /* Decide the set of threads to ask the target to resume. Start
1837 by assuming everything will be resumed, than narrow the set
1838 by applying increasingly restricting conditions. */
09cee04b 1839 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1840
1841 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1842 if (singlestep_breakpoints_inserted_p
1843 && stepping_past_singlestep_breakpoint)
c906108c 1844 {
cd76b0b7
VP
1845 /* The situation here is as follows. In thread T1 we wanted to
1846 single-step. Lacking hardware single-stepping we've
1847 set breakpoint at the PC of the next instruction -- call it
1848 P. After resuming, we've hit that breakpoint in thread T2.
1849 Now we've removed original breakpoint, inserted breakpoint
1850 at P+1, and try to step to advance T2 past breakpoint.
1851 We need to step only T2, as if T1 is allowed to freely run,
1852 it can run past P, and if other threads are allowed to run,
1853 they can hit breakpoint at P+1, and nested hits of single-step
1854 breakpoints is not something we'd want -- that's complicated
1855 to support, and has no value. */
1856 resume_ptid = inferior_ptid;
1857 }
d4db2f36 1858 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1859 && tp->control.trap_expected)
cd76b0b7 1860 {
74960c60
VP
1861 /* We're allowing a thread to run past a breakpoint it has
1862 hit, by single-stepping the thread with the breakpoint
1863 removed. In which case, we need to single-step only this
1864 thread, and keep others stopped, as they can miss this
1865 breakpoint if allowed to run.
1866
1867 The current code actually removes all breakpoints when
1868 doing this, not just the one being stepped over, so if we
1869 let other threads run, we can actually miss any
1870 breakpoint, not just the one at PC. */
ef5cf84e 1871 resume_ptid = inferior_ptid;
c906108c 1872 }
ef5cf84e 1873
515630c5 1874 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1875 {
1876 /* Most targets can step a breakpoint instruction, thus
1877 executing it normally. But if this one cannot, just
1878 continue and we will hit it anyway. */
6c95b8df 1879 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1880 step = 0;
1881 }
237fc4c9
PA
1882
1883 if (debug_displaced
515630c5 1884 && use_displaced_stepping (gdbarch)
16c381f0 1885 && tp->control.trap_expected)
237fc4c9 1886 {
515630c5 1887 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1888 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1889 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1890 gdb_byte buf[4];
1891
5af949e3
UW
1892 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1893 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1894 read_memory (actual_pc, buf, sizeof (buf));
1895 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1896 }
1897
e58b0e63
PA
1898 /* Install inferior's terminal modes. */
1899 target_terminal_inferior ();
1900
2020b7ab
PA
1901 /* Avoid confusing the next resume, if the next stop/resume
1902 happens to apply to another thread. */
16c381f0 1903 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1904
2455069d
UW
1905 /* Advise target which signals may be handled silently. If we have
1906 removed breakpoints because we are stepping over one (which can
1907 happen only if we are not using displaced stepping), we need to
1908 receive all signals to avoid accidentally skipping a breakpoint
1909 during execution of a signal handler. */
1910 if ((step || singlestep_breakpoints_inserted_p)
1911 && tp->control.trap_expected
1912 && !use_displaced_stepping (gdbarch))
1913 target_pass_signals (0, NULL);
1914 else
1915 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1916
607cecd2 1917 target_resume (resume_ptid, step, sig);
c906108c
SS
1918 }
1919
1920 discard_cleanups (old_cleanups);
1921}
1922\f
237fc4c9 1923/* Proceeding. */
c906108c
SS
1924
1925/* Clear out all variables saying what to do when inferior is continued.
1926 First do this, then set the ones you want, then call `proceed'. */
1927
a7212384
UW
1928static void
1929clear_proceed_status_thread (struct thread_info *tp)
c906108c 1930{
a7212384
UW
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "infrun: clear_proceed_status_thread (%s)\n",
1934 target_pid_to_str (tp->ptid));
d6b48e9c 1935
16c381f0
JK
1936 tp->control.trap_expected = 0;
1937 tp->control.step_range_start = 0;
1938 tp->control.step_range_end = 0;
1939 tp->control.step_frame_id = null_frame_id;
1940 tp->control.step_stack_frame_id = null_frame_id;
1941 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1942 tp->stop_requested = 0;
4e1c45ea 1943
16c381f0 1944 tp->control.stop_step = 0;
32400beb 1945
16c381f0 1946 tp->control.proceed_to_finish = 0;
414c69f7 1947
a7212384 1948 /* Discard any remaining commands or status from previous stop. */
16c381f0 1949 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1950}
32400beb 1951
a7212384
UW
1952static int
1953clear_proceed_status_callback (struct thread_info *tp, void *data)
1954{
1955 if (is_exited (tp->ptid))
1956 return 0;
d6b48e9c 1957
a7212384
UW
1958 clear_proceed_status_thread (tp);
1959 return 0;
1960}
1961
1962void
1963clear_proceed_status (void)
1964{
6c95b8df
PA
1965 if (!non_stop)
1966 {
1967 /* In all-stop mode, delete the per-thread status of all
1968 threads, even if inferior_ptid is null_ptid, there may be
1969 threads on the list. E.g., we may be launching a new
1970 process, while selecting the executable. */
1971 iterate_over_threads (clear_proceed_status_callback, NULL);
1972 }
1973
a7212384
UW
1974 if (!ptid_equal (inferior_ptid, null_ptid))
1975 {
1976 struct inferior *inferior;
1977
1978 if (non_stop)
1979 {
6c95b8df
PA
1980 /* If in non-stop mode, only delete the per-thread status of
1981 the current thread. */
a7212384
UW
1982 clear_proceed_status_thread (inferior_thread ());
1983 }
6c95b8df 1984
d6b48e9c 1985 inferior = current_inferior ();
16c381f0 1986 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1987 }
1988
c906108c 1989 stop_after_trap = 0;
f3b1572e
PA
1990
1991 observer_notify_about_to_proceed ();
c906108c 1992
d5c31457
UW
1993 if (stop_registers)
1994 {
1995 regcache_xfree (stop_registers);
1996 stop_registers = NULL;
1997 }
c906108c
SS
1998}
1999
5a437975
DE
2000/* Check the current thread against the thread that reported the most recent
2001 event. If a step-over is required return TRUE and set the current thread
2002 to the old thread. Otherwise return FALSE.
2003
1777feb0 2004 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2005
2006static int
6a6b96b9 2007prepare_to_proceed (int step)
ea67f13b
DJ
2008{
2009 ptid_t wait_ptid;
2010 struct target_waitstatus wait_status;
5a437975
DE
2011 int schedlock_enabled;
2012
2013 /* With non-stop mode on, threads are always handled individually. */
2014 gdb_assert (! non_stop);
ea67f13b
DJ
2015
2016 /* Get the last target status returned by target_wait(). */
2017 get_last_target_status (&wait_ptid, &wait_status);
2018
6a6b96b9 2019 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2020 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2021 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2022 && wait_status.value.sig != TARGET_SIGNAL_ILL
2023 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2024 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2025 {
2026 return 0;
2027 }
2028
5a437975
DE
2029 schedlock_enabled = (scheduler_mode == schedlock_on
2030 || (scheduler_mode == schedlock_step
2031 && step));
2032
d4db2f36
PA
2033 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2034 if (schedlock_enabled)
2035 return 0;
2036
2037 /* Don't switch over if we're about to resume some other process
2038 other than WAIT_PTID's, and schedule-multiple is off. */
2039 if (!sched_multi
2040 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2041 return 0;
2042
6a6b96b9 2043 /* Switched over from WAIT_PID. */
ea67f13b 2044 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2045 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2046 {
515630c5
UW
2047 struct regcache *regcache = get_thread_regcache (wait_ptid);
2048
6c95b8df
PA
2049 if (breakpoint_here_p (get_regcache_aspace (regcache),
2050 regcache_read_pc (regcache)))
ea67f13b 2051 {
515630c5
UW
2052 /* If stepping, remember current thread to switch back to. */
2053 if (step)
2054 deferred_step_ptid = inferior_ptid;
ea67f13b 2055
515630c5
UW
2056 /* Switch back to WAIT_PID thread. */
2057 switch_to_thread (wait_ptid);
6a6b96b9 2058
0d9a9a5f
PA
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: prepare_to_proceed (step=%d), "
2062 "switched to [%s]\n",
2063 step, target_pid_to_str (inferior_ptid));
2064
515630c5
UW
2065 /* We return 1 to indicate that there is a breakpoint here,
2066 so we need to step over it before continuing to avoid
1777feb0 2067 hitting it straight away. */
515630c5
UW
2068 return 1;
2069 }
ea67f13b
DJ
2070 }
2071
2072 return 0;
ea67f13b 2073}
e4846b08 2074
c906108c
SS
2075/* Basic routine for continuing the program in various fashions.
2076
2077 ADDR is the address to resume at, or -1 for resume where stopped.
2078 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2079 or -1 for act according to how it stopped.
c906108c 2080 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2081 -1 means return after that and print nothing.
2082 You should probably set various step_... variables
2083 before calling here, if you are stepping.
c906108c
SS
2084
2085 You should call clear_proceed_status before calling proceed. */
2086
2087void
96baa820 2088proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2089{
e58b0e63
PA
2090 struct regcache *regcache;
2091 struct gdbarch *gdbarch;
4e1c45ea 2092 struct thread_info *tp;
e58b0e63 2093 CORE_ADDR pc;
6c95b8df 2094 struct address_space *aspace;
c906108c
SS
2095 int oneproc = 0;
2096
e58b0e63
PA
2097 /* If we're stopped at a fork/vfork, follow the branch set by the
2098 "set follow-fork-mode" command; otherwise, we'll just proceed
2099 resuming the current thread. */
2100 if (!follow_fork ())
2101 {
2102 /* The target for some reason decided not to resume. */
2103 normal_stop ();
f148b27e
PA
2104 if (target_can_async_p ())
2105 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2106 return;
2107 }
2108
842951eb
PA
2109 /* We'll update this if & when we switch to a new thread. */
2110 previous_inferior_ptid = inferior_ptid;
2111
e58b0e63
PA
2112 regcache = get_current_regcache ();
2113 gdbarch = get_regcache_arch (regcache);
6c95b8df 2114 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2115 pc = regcache_read_pc (regcache);
2116
c906108c 2117 if (step > 0)
515630c5 2118 step_start_function = find_pc_function (pc);
c906108c
SS
2119 if (step < 0)
2120 stop_after_trap = 1;
2121
2acceee2 2122 if (addr == (CORE_ADDR) -1)
c906108c 2123 {
6c95b8df 2124 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2125 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2126 /* There is a breakpoint at the address we will resume at,
2127 step one instruction before inserting breakpoints so that
2128 we do not stop right away (and report a second hit at this
b2175913
MS
2129 breakpoint).
2130
2131 Note, we don't do this in reverse, because we won't
2132 actually be executing the breakpoint insn anyway.
2133 We'll be (un-)executing the previous instruction. */
2134
c906108c 2135 oneproc = 1;
515630c5
UW
2136 else if (gdbarch_single_step_through_delay_p (gdbarch)
2137 && gdbarch_single_step_through_delay (gdbarch,
2138 get_current_frame ()))
3352ef37
AC
2139 /* We stepped onto an instruction that needs to be stepped
2140 again before re-inserting the breakpoint, do so. */
c906108c
SS
2141 oneproc = 1;
2142 }
2143 else
2144 {
515630c5 2145 regcache_write_pc (regcache, addr);
c906108c
SS
2146 }
2147
527159b7 2148 if (debug_infrun)
8a9de0e4 2149 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2150 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2151 paddress (gdbarch, addr), siggnal, step);
527159b7 2152
94cc34af
PA
2153 if (non_stop)
2154 /* In non-stop, each thread is handled individually. The context
2155 must already be set to the right thread here. */
2156 ;
2157 else
2158 {
2159 /* In a multi-threaded task we may select another thread and
2160 then continue or step.
c906108c 2161
94cc34af
PA
2162 But if the old thread was stopped at a breakpoint, it will
2163 immediately cause another breakpoint stop without any
2164 execution (i.e. it will report a breakpoint hit incorrectly).
2165 So we must step over it first.
c906108c 2166
94cc34af
PA
2167 prepare_to_proceed checks the current thread against the
2168 thread that reported the most recent event. If a step-over
2169 is required it returns TRUE and sets the current thread to
1777feb0 2170 the old thread. */
94cc34af
PA
2171 if (prepare_to_proceed (step))
2172 oneproc = 1;
2173 }
c906108c 2174
4e1c45ea
PA
2175 /* prepare_to_proceed may change the current thread. */
2176 tp = inferior_thread ();
2177
30852783
UW
2178 if (oneproc)
2179 {
2180 tp->control.trap_expected = 1;
2181 /* If displaced stepping is enabled, we can step over the
2182 breakpoint without hitting it, so leave all breakpoints
2183 inserted. Otherwise we need to disable all breakpoints, step
2184 one instruction, and then re-add them when that step is
2185 finished. */
2186 if (!use_displaced_stepping (gdbarch))
2187 remove_breakpoints ();
2188 }
2189
2190 /* We can insert breakpoints if we're not trying to step over one,
2191 or if we are stepping over one but we're using displaced stepping
2192 to do so. */
2193 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2194 insert_breakpoints ();
2195
2020b7ab
PA
2196 if (!non_stop)
2197 {
2198 /* Pass the last stop signal to the thread we're resuming,
2199 irrespective of whether the current thread is the thread that
2200 got the last event or not. This was historically GDB's
2201 behaviour before keeping a stop_signal per thread. */
2202
2203 struct thread_info *last_thread;
2204 ptid_t last_ptid;
2205 struct target_waitstatus last_status;
2206
2207 get_last_target_status (&last_ptid, &last_status);
2208 if (!ptid_equal (inferior_ptid, last_ptid)
2209 && !ptid_equal (last_ptid, null_ptid)
2210 && !ptid_equal (last_ptid, minus_one_ptid))
2211 {
e09875d4 2212 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2213 if (last_thread)
2214 {
16c381f0
JK
2215 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2216 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2217 }
2218 }
2219 }
2220
c906108c 2221 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2222 tp->suspend.stop_signal = siggnal;
c906108c
SS
2223 /* If this signal should not be seen by program,
2224 give it zero. Used for debugging signals. */
16c381f0
JK
2225 else if (!signal_program[tp->suspend.stop_signal])
2226 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2227
2228 annotate_starting ();
2229
2230 /* Make sure that output from GDB appears before output from the
2231 inferior. */
2232 gdb_flush (gdb_stdout);
2233
e4846b08
JJ
2234 /* Refresh prev_pc value just prior to resuming. This used to be
2235 done in stop_stepping, however, setting prev_pc there did not handle
2236 scenarios such as inferior function calls or returning from
2237 a function via the return command. In those cases, the prev_pc
2238 value was not set properly for subsequent commands. The prev_pc value
2239 is used to initialize the starting line number in the ecs. With an
2240 invalid value, the gdb next command ends up stopping at the position
2241 represented by the next line table entry past our start position.
2242 On platforms that generate one line table entry per line, this
2243 is not a problem. However, on the ia64, the compiler generates
2244 extraneous line table entries that do not increase the line number.
2245 When we issue the gdb next command on the ia64 after an inferior call
2246 or a return command, we often end up a few instructions forward, still
2247 within the original line we started.
2248
d5cd6034
JB
2249 An attempt was made to refresh the prev_pc at the same time the
2250 execution_control_state is initialized (for instance, just before
2251 waiting for an inferior event). But this approach did not work
2252 because of platforms that use ptrace, where the pc register cannot
2253 be read unless the inferior is stopped. At that point, we are not
2254 guaranteed the inferior is stopped and so the regcache_read_pc() call
2255 can fail. Setting the prev_pc value here ensures the value is updated
2256 correctly when the inferior is stopped. */
4e1c45ea 2257 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2258
59f0d5d9 2259 /* Fill in with reasonable starting values. */
4e1c45ea 2260 init_thread_stepping_state (tp);
59f0d5d9 2261
59f0d5d9
PA
2262 /* Reset to normal state. */
2263 init_infwait_state ();
2264
c906108c 2265 /* Resume inferior. */
16c381f0 2266 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2267
2268 /* Wait for it to stop (if not standalone)
2269 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2270 /* Do this only if we are not using the event loop, or if the target
1777feb0 2271 does not support asynchronous execution. */
362646f5 2272 if (!target_can_async_p ())
43ff13b4 2273 {
e4c8541f 2274 wait_for_inferior ();
43ff13b4
JM
2275 normal_stop ();
2276 }
c906108c 2277}
c906108c
SS
2278\f
2279
2280/* Start remote-debugging of a machine over a serial link. */
96baa820 2281
c906108c 2282void
8621d6a9 2283start_remote (int from_tty)
c906108c 2284{
d6b48e9c 2285 struct inferior *inferior;
d6b48e9c
PA
2286
2287 inferior = current_inferior ();
16c381f0 2288 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2289
1777feb0 2290 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2291 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2292 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2293 nothing is returned (instead of just blocking). Because of this,
2294 targets expecting an immediate response need to, internally, set
2295 things up so that the target_wait() is forced to eventually
1777feb0 2296 timeout. */
6426a772
JM
2297 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2298 differentiate to its caller what the state of the target is after
2299 the initial open has been performed. Here we're assuming that
2300 the target has stopped. It should be possible to eventually have
2301 target_open() return to the caller an indication that the target
2302 is currently running and GDB state should be set to the same as
1777feb0 2303 for an async run. */
e4c8541f 2304 wait_for_inferior ();
8621d6a9
DJ
2305
2306 /* Now that the inferior has stopped, do any bookkeeping like
2307 loading shared libraries. We want to do this before normal_stop,
2308 so that the displayed frame is up to date. */
2309 post_create_inferior (&current_target, from_tty);
2310
6426a772 2311 normal_stop ();
c906108c
SS
2312}
2313
2314/* Initialize static vars when a new inferior begins. */
2315
2316void
96baa820 2317init_wait_for_inferior (void)
c906108c
SS
2318{
2319 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2320
c906108c
SS
2321 breakpoint_init_inferior (inf_starting);
2322
c906108c 2323 clear_proceed_status ();
9f976b41
DJ
2324
2325 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2326 deferred_step_ptid = null_ptid;
ca005067
DJ
2327
2328 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2329
842951eb 2330 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2331 init_infwait_state ();
2332
edb3359d
DJ
2333 /* Discard any skipped inlined frames. */
2334 clear_inline_frame_state (minus_one_ptid);
c906108c 2335}
237fc4c9 2336
c906108c 2337\f
b83266a0
SS
2338/* This enum encodes possible reasons for doing a target_wait, so that
2339 wfi can call target_wait in one place. (Ultimately the call will be
2340 moved out of the infinite loop entirely.) */
2341
c5aa993b
JM
2342enum infwait_states
2343{
cd0fc7c3
SS
2344 infwait_normal_state,
2345 infwait_thread_hop_state,
d983da9c 2346 infwait_step_watch_state,
cd0fc7c3 2347 infwait_nonstep_watch_state
b83266a0
SS
2348};
2349
0d1e5fa7
PA
2350/* The PTID we'll do a target_wait on.*/
2351ptid_t waiton_ptid;
2352
2353/* Current inferior wait state. */
2354enum infwait_states infwait_state;
cd0fc7c3 2355
0d1e5fa7
PA
2356/* Data to be passed around while handling an event. This data is
2357 discarded between events. */
c5aa993b 2358struct execution_control_state
488f131b 2359{
0d1e5fa7 2360 ptid_t ptid;
4e1c45ea
PA
2361 /* The thread that got the event, if this was a thread event; NULL
2362 otherwise. */
2363 struct thread_info *event_thread;
2364
488f131b 2365 struct target_waitstatus ws;
488f131b 2366 int random_signal;
7e324e48 2367 int stop_func_filled_in;
488f131b
JB
2368 CORE_ADDR stop_func_start;
2369 CORE_ADDR stop_func_end;
2370 char *stop_func_name;
488f131b 2371 int new_thread_event;
488f131b
JB
2372 int wait_some_more;
2373};
2374
ec9499be 2375static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2376
568d6575
UW
2377static void handle_step_into_function (struct gdbarch *gdbarch,
2378 struct execution_control_state *ecs);
2379static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
186c406b
TT
2381static void check_exception_resume (struct execution_control_state *,
2382 struct frame_info *, struct symbol *);
611c83ae 2383
104c1213
JM
2384static void stop_stepping (struct execution_control_state *ecs);
2385static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2386static void keep_going (struct execution_control_state *ecs);
104c1213 2387
252fbfc8
PA
2388/* Callback for iterate over threads. If the thread is stopped, but
2389 the user/frontend doesn't know about that yet, go through
2390 normal_stop, as if the thread had just stopped now. ARG points at
2391 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2392 ptid_is_pid(PTID) is true, applies to all threads of the process
2393 pointed at by PTID. Otherwise, apply only to the thread pointed by
2394 PTID. */
2395
2396static int
2397infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2398{
2399 ptid_t ptid = * (ptid_t *) arg;
2400
2401 if ((ptid_equal (info->ptid, ptid)
2402 || ptid_equal (minus_one_ptid, ptid)
2403 || (ptid_is_pid (ptid)
2404 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2405 && is_running (info->ptid)
2406 && !is_executing (info->ptid))
2407 {
2408 struct cleanup *old_chain;
2409 struct execution_control_state ecss;
2410 struct execution_control_state *ecs = &ecss;
2411
2412 memset (ecs, 0, sizeof (*ecs));
2413
2414 old_chain = make_cleanup_restore_current_thread ();
2415
2416 switch_to_thread (info->ptid);
2417
2418 /* Go through handle_inferior_event/normal_stop, so we always
2419 have consistent output as if the stop event had been
2420 reported. */
2421 ecs->ptid = info->ptid;
e09875d4 2422 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2423 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2424 ecs->ws.value.sig = TARGET_SIGNAL_0;
2425
2426 handle_inferior_event (ecs);
2427
2428 if (!ecs->wait_some_more)
2429 {
2430 struct thread_info *tp;
2431
2432 normal_stop ();
2433
fa4cd53f 2434 /* Finish off the continuations. */
252fbfc8 2435 tp = inferior_thread ();
fa4cd53f
PA
2436 do_all_intermediate_continuations_thread (tp, 1);
2437 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2438 }
2439
2440 do_cleanups (old_chain);
2441 }
2442
2443 return 0;
2444}
2445
2446/* This function is attached as a "thread_stop_requested" observer.
2447 Cleanup local state that assumed the PTID was to be resumed, and
2448 report the stop to the frontend. */
2449
2c0b251b 2450static void
252fbfc8
PA
2451infrun_thread_stop_requested (ptid_t ptid)
2452{
fc1cf338 2453 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2454
2455 /* PTID was requested to stop. Remove it from the displaced
2456 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2457
2458 for (displaced = displaced_step_inferior_states;
2459 displaced;
2460 displaced = displaced->next)
252fbfc8 2461 {
fc1cf338 2462 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2463
fc1cf338
PA
2464 it = displaced->step_request_queue;
2465 prev_next_p = &displaced->step_request_queue;
2466 while (it)
252fbfc8 2467 {
fc1cf338
PA
2468 if (ptid_match (it->ptid, ptid))
2469 {
2470 *prev_next_p = it->next;
2471 it->next = NULL;
2472 xfree (it);
2473 }
252fbfc8 2474 else
fc1cf338
PA
2475 {
2476 prev_next_p = &it->next;
2477 }
252fbfc8 2478
fc1cf338 2479 it = *prev_next_p;
252fbfc8 2480 }
252fbfc8
PA
2481 }
2482
2483 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2484}
2485
a07daef3
PA
2486static void
2487infrun_thread_thread_exit (struct thread_info *tp, int silent)
2488{
2489 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2490 nullify_last_target_wait_ptid ();
2491}
2492
4e1c45ea
PA
2493/* Callback for iterate_over_threads. */
2494
2495static int
2496delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2497{
2498 if (is_exited (info->ptid))
2499 return 0;
2500
2501 delete_step_resume_breakpoint (info);
186c406b 2502 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2503 return 0;
2504}
2505
2506/* In all-stop, delete the step resume breakpoint of any thread that
2507 had one. In non-stop, delete the step resume breakpoint of the
2508 thread that just stopped. */
2509
2510static void
2511delete_step_thread_step_resume_breakpoint (void)
2512{
2513 if (!target_has_execution
2514 || ptid_equal (inferior_ptid, null_ptid))
2515 /* If the inferior has exited, we have already deleted the step
2516 resume breakpoints out of GDB's lists. */
2517 return;
2518
2519 if (non_stop)
2520 {
2521 /* If in non-stop mode, only delete the step-resume or
2522 longjmp-resume breakpoint of the thread that just stopped
2523 stepping. */
2524 struct thread_info *tp = inferior_thread ();
abbb1732 2525
4e1c45ea 2526 delete_step_resume_breakpoint (tp);
186c406b 2527 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2528 }
2529 else
2530 /* In all-stop mode, delete all step-resume and longjmp-resume
2531 breakpoints of any thread that had them. */
2532 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2533}
2534
1777feb0 2535/* A cleanup wrapper. */
4e1c45ea
PA
2536
2537static void
2538delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2539{
2540 delete_step_thread_step_resume_breakpoint ();
2541}
2542
223698f8
DE
2543/* Pretty print the results of target_wait, for debugging purposes. */
2544
2545static void
2546print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2547 const struct target_waitstatus *ws)
2548{
2549 char *status_string = target_waitstatus_to_string (ws);
2550 struct ui_file *tmp_stream = mem_fileopen ();
2551 char *text;
223698f8
DE
2552
2553 /* The text is split over several lines because it was getting too long.
2554 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2555 output as a unit; we want only one timestamp printed if debug_timestamp
2556 is set. */
2557
2558 fprintf_unfiltered (tmp_stream,
2559 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2560 if (PIDGET (waiton_ptid) != -1)
2561 fprintf_unfiltered (tmp_stream,
2562 " [%s]", target_pid_to_str (waiton_ptid));
2563 fprintf_unfiltered (tmp_stream, ", status) =\n");
2564 fprintf_unfiltered (tmp_stream,
2565 "infrun: %d [%s],\n",
2566 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2567 fprintf_unfiltered (tmp_stream,
2568 "infrun: %s\n",
2569 status_string);
2570
759ef836 2571 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2572
2573 /* This uses %s in part to handle %'s in the text, but also to avoid
2574 a gcc error: the format attribute requires a string literal. */
2575 fprintf_unfiltered (gdb_stdlog, "%s", text);
2576
2577 xfree (status_string);
2578 xfree (text);
2579 ui_file_delete (tmp_stream);
2580}
2581
24291992
PA
2582/* Prepare and stabilize the inferior for detaching it. E.g.,
2583 detaching while a thread is displaced stepping is a recipe for
2584 crashing it, as nothing would readjust the PC out of the scratch
2585 pad. */
2586
2587void
2588prepare_for_detach (void)
2589{
2590 struct inferior *inf = current_inferior ();
2591 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2592 struct cleanup *old_chain_1;
2593 struct displaced_step_inferior_state *displaced;
2594
2595 displaced = get_displaced_stepping_state (inf->pid);
2596
2597 /* Is any thread of this process displaced stepping? If not,
2598 there's nothing else to do. */
2599 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2600 return;
2601
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "displaced-stepping in-process while detaching");
2605
2606 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2607 inf->detaching = 1;
2608
2609 while (!ptid_equal (displaced->step_ptid, null_ptid))
2610 {
2611 struct cleanup *old_chain_2;
2612 struct execution_control_state ecss;
2613 struct execution_control_state *ecs;
2614
2615 ecs = &ecss;
2616 memset (ecs, 0, sizeof (*ecs));
2617
2618 overlay_cache_invalid = 1;
2619
24291992
PA
2620 if (deprecated_target_wait_hook)
2621 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2622 else
2623 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2624
2625 if (debug_infrun)
2626 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2627
2628 /* If an error happens while handling the event, propagate GDB's
2629 knowledge of the executing state to the frontend/user running
2630 state. */
3e43a32a
MS
2631 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2632 &minus_one_ptid);
24291992 2633
4d533103
PA
2634 /* In non-stop mode, each thread is handled individually.
2635 Switch early, so the global state is set correctly for this
2636 thread. */
2637 if (non_stop
2638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2640 context_switch (ecs->ptid);
2641
24291992
PA
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
cd0fc7c3 2661/* Wait for control to return from inferior to debugger.
ae123ec6 2662
cd0fc7c3
SS
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
e4c8541f 2669wait_for_inferior (void)
cd0fc7c3
SS
2670{
2671 struct cleanup *old_cleanups;
0d1e5fa7 2672 struct execution_control_state ecss;
cd0fc7c3 2673 struct execution_control_state *ecs;
c906108c 2674
527159b7 2675 if (debug_infrun)
ae123ec6 2676 fprintf_unfiltered
e4c8541f 2677 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2678
4e1c45ea
PA
2679 old_cleanups =
2680 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2681
cd0fc7c3 2682 ecs = &ecss;
0d1e5fa7
PA
2683 memset (ecs, 0, sizeof (*ecs));
2684
c906108c
SS
2685 while (1)
2686 {
29f49a6a
PA
2687 struct cleanup *old_chain;
2688
ec9499be 2689 overlay_cache_invalid = 1;
ec9499be 2690
9a4105ab 2691 if (deprecated_target_wait_hook)
47608cb1 2692 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2693 else
47608cb1 2694 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2695
f00150c9 2696 if (debug_infrun)
223698f8 2697 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2698
29f49a6a
PA
2699 /* If an error happens while handling the event, propagate GDB's
2700 knowledge of the executing state to the frontend/user running
2701 state. */
2702 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2703
cd0fc7c3
SS
2704 /* Now figure out what to do with the result of the result. */
2705 handle_inferior_event (ecs);
c906108c 2706
29f49a6a
PA
2707 /* No error, don't finish the state yet. */
2708 discard_cleanups (old_chain);
2709
cd0fc7c3
SS
2710 if (!ecs->wait_some_more)
2711 break;
2712 }
4e1c45ea 2713
cd0fc7c3
SS
2714 do_cleanups (old_cleanups);
2715}
c906108c 2716
1777feb0 2717/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2718 event loop whenever a change of state is detected on the file
1777feb0
MS
2719 descriptor corresponding to the target. It can be called more than
2720 once to complete a single execution command. In such cases we need
2721 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2722 that this function is called for a single execution command, then
2723 report to the user that the inferior has stopped, and do the
1777feb0 2724 necessary cleanups. */
43ff13b4
JM
2725
2726void
fba45db2 2727fetch_inferior_event (void *client_data)
43ff13b4 2728{
0d1e5fa7 2729 struct execution_control_state ecss;
a474d7c2 2730 struct execution_control_state *ecs = &ecss;
4f8d22e3 2731 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2732 struct cleanup *ts_old_chain;
4f8d22e3 2733 int was_sync = sync_execution;
0f641c01 2734 int cmd_done = 0;
43ff13b4 2735
0d1e5fa7
PA
2736 memset (ecs, 0, sizeof (*ecs));
2737
c5187ac6
PA
2738 /* We're handling a live event, so make sure we're doing live
2739 debugging. If we're looking at traceframes while the target is
2740 running, we're going to need to get back to that mode after
2741 handling the event. */
2742 if (non_stop)
2743 {
2744 make_cleanup_restore_current_traceframe ();
e6e4e701 2745 set_current_traceframe (-1);
c5187ac6
PA
2746 }
2747
4f8d22e3
PA
2748 if (non_stop)
2749 /* In non-stop mode, the user/frontend should not notice a thread
2750 switch due to internal events. Make sure we reverse to the
2751 user selected thread and frame after handling the event and
2752 running any breakpoint commands. */
2753 make_cleanup_restore_current_thread ();
2754
ec9499be 2755 overlay_cache_invalid = 1;
3dd5b83d 2756
32231432
PA
2757 make_cleanup_restore_integer (&execution_direction);
2758 execution_direction = target_execution_direction ();
2759
9a4105ab 2760 if (deprecated_target_wait_hook)
a474d7c2 2761 ecs->ptid =
47608cb1 2762 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2763 else
47608cb1 2764 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2765
f00150c9 2766 if (debug_infrun)
223698f8 2767 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2768
94cc34af
PA
2769 if (non_stop
2770 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2771 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2772 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2773 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2774 /* In non-stop mode, each thread is handled individually. Switch
2775 early, so the global state is set correctly for this
2776 thread. */
2777 context_switch (ecs->ptid);
2778
29f49a6a
PA
2779 /* If an error happens while handling the event, propagate GDB's
2780 knowledge of the executing state to the frontend/user running
2781 state. */
2782 if (!non_stop)
2783 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2784 else
2785 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2786
353d1d73
JK
2787 /* Get executed before make_cleanup_restore_current_thread above to apply
2788 still for the thread which has thrown the exception. */
2789 make_bpstat_clear_actions_cleanup ();
2790
43ff13b4 2791 /* Now figure out what to do with the result of the result. */
a474d7c2 2792 handle_inferior_event (ecs);
43ff13b4 2793
a474d7c2 2794 if (!ecs->wait_some_more)
43ff13b4 2795 {
d6b48e9c
PA
2796 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2797
4e1c45ea 2798 delete_step_thread_step_resume_breakpoint ();
f107f563 2799
d6b48e9c 2800 /* We may not find an inferior if this was a process exit. */
16c381f0 2801 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2802 normal_stop ();
2803
af679fd0 2804 if (target_has_execution
0e5bf2a8 2805 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2806 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2807 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2808 && ecs->event_thread->step_multi
16c381f0 2809 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2810 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2811 else
0f641c01
PA
2812 {
2813 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2814 cmd_done = 1;
2815 }
43ff13b4 2816 }
4f8d22e3 2817
29f49a6a
PA
2818 /* No error, don't finish the thread states yet. */
2819 discard_cleanups (ts_old_chain);
2820
4f8d22e3
PA
2821 /* Revert thread and frame. */
2822 do_cleanups (old_chain);
2823
2824 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2825 restore the prompt (a synchronous execution command has finished,
2826 and we're ready for input). */
b4a14fd0 2827 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2828 display_gdb_prompt (0);
0f641c01
PA
2829
2830 if (cmd_done
2831 && !was_sync
2832 && exec_done_display_p
2833 && (ptid_equal (inferior_ptid, null_ptid)
2834 || !is_running (inferior_ptid)))
2835 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2836}
2837
edb3359d
DJ
2838/* Record the frame and location we're currently stepping through. */
2839void
2840set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2841{
2842 struct thread_info *tp = inferior_thread ();
2843
16c381f0
JK
2844 tp->control.step_frame_id = get_frame_id (frame);
2845 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2846
2847 tp->current_symtab = sal.symtab;
2848 tp->current_line = sal.line;
2849}
2850
0d1e5fa7
PA
2851/* Clear context switchable stepping state. */
2852
2853void
4e1c45ea 2854init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2855{
2856 tss->stepping_over_breakpoint = 0;
2857 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2858}
2859
e02bc4cc 2860/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2861 target_wait()/deprecated_target_wait_hook(). The data is actually
2862 cached by handle_inferior_event(), which gets called immediately
2863 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2864
2865void
488f131b 2866get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2867{
39f77062 2868 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2869 *status = target_last_waitstatus;
2870}
2871
ac264b3b
MS
2872void
2873nullify_last_target_wait_ptid (void)
2874{
2875 target_last_wait_ptid = minus_one_ptid;
2876}
2877
dcf4fbde 2878/* Switch thread contexts. */
dd80620e
MS
2879
2880static void
0d1e5fa7 2881context_switch (ptid_t ptid)
dd80620e 2882{
4b51d87b 2883 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2884 {
2885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2886 target_pid_to_str (inferior_ptid));
2887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2888 target_pid_to_str (ptid));
fd48f117
DJ
2889 }
2890
0d1e5fa7 2891 switch_to_thread (ptid);
dd80620e
MS
2892}
2893
4fa8626c
DJ
2894static void
2895adjust_pc_after_break (struct execution_control_state *ecs)
2896{
24a73cce
UW
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
6c95b8df 2899 struct address_space *aspace;
8aad930b 2900 CORE_ADDR breakpoint_pc;
4fa8626c 2901
4fa8626c
DJ
2902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2903 we aren't, just return.
9709f61c
DJ
2904
2905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2907 implemented by software breakpoints should be handled through the normal
2908 breakpoint layer.
8fb3e588 2909
4fa8626c
DJ
2910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2911 different signals (SIGILL or SIGEMT for instance), but it is less
2912 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2913 gdbarch_decr_pc_after_break. I don't know any specific target that
2914 generates these signals at breakpoints (the code has been in GDB since at
2915 least 1992) so I can not guess how to handle them here.
8fb3e588 2916
e6cf7916
UW
2917 In earlier versions of GDB, a target with
2918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2920 target with both of these set in GDB history, and it seems unlikely to be
2921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2922
2923 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2924 return;
2925
2926 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2927 return;
2928
4058b839
PA
2929 /* In reverse execution, when a breakpoint is hit, the instruction
2930 under it has already been de-executed. The reported PC always
2931 points at the breakpoint address, so adjusting it further would
2932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2933 architecture:
2934
2935 B1 0x08000000 : INSN1
2936 B2 0x08000001 : INSN2
2937 0x08000002 : INSN3
2938 PC -> 0x08000003 : INSN4
2939
2940 Say you're stopped at 0x08000003 as above. Reverse continuing
2941 from that point should hit B2 as below. Reading the PC when the
2942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2943 been de-executed already.
2944
2945 B1 0x08000000 : INSN1
2946 B2 PC -> 0x08000001 : INSN2
2947 0x08000002 : INSN3
2948 0x08000003 : INSN4
2949
2950 We can't apply the same logic as for forward execution, because
2951 we would wrongly adjust the PC to 0x08000000, since there's a
2952 breakpoint at PC - 1. We'd then report a hit on B1, although
2953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2954 behaviour. */
2955 if (execution_direction == EXEC_REVERSE)
2956 return;
2957
24a73cce
UW
2958 /* If this target does not decrement the PC after breakpoints, then
2959 we have nothing to do. */
2960 regcache = get_thread_regcache (ecs->ptid);
2961 gdbarch = get_regcache_arch (regcache);
2962 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2963 return;
2964
6c95b8df
PA
2965 aspace = get_regcache_aspace (regcache);
2966
8aad930b
AC
2967 /* Find the location where (if we've hit a breakpoint) the
2968 breakpoint would be. */
515630c5
UW
2969 breakpoint_pc = regcache_read_pc (regcache)
2970 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2971
1c5cfe86
PA
2972 /* Check whether there actually is a software breakpoint inserted at
2973 that location.
2974
2975 If in non-stop mode, a race condition is possible where we've
2976 removed a breakpoint, but stop events for that breakpoint were
2977 already queued and arrive later. To suppress those spurious
2978 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2979 and retire them after a number of stop events are reported. */
6c95b8df
PA
2980 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2981 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2982 {
96429cc8 2983 struct cleanup *old_cleanups = NULL;
abbb1732 2984
96429cc8
HZ
2985 if (RECORD_IS_USED)
2986 old_cleanups = record_gdb_operation_disable_set ();
2987
1c0fdd0e
UW
2988 /* When using hardware single-step, a SIGTRAP is reported for both
2989 a completed single-step and a software breakpoint. Need to
2990 differentiate between the two, as the latter needs adjusting
2991 but the former does not.
2992
2993 The SIGTRAP can be due to a completed hardware single-step only if
2994 - we didn't insert software single-step breakpoints
2995 - the thread to be examined is still the current thread
2996 - this thread is currently being stepped
2997
2998 If any of these events did not occur, we must have stopped due
2999 to hitting a software breakpoint, and have to back up to the
3000 breakpoint address.
3001
3002 As a special case, we could have hardware single-stepped a
3003 software breakpoint. In this case (prev_pc == breakpoint_pc),
3004 we also need to back up to the breakpoint address. */
3005
3006 if (singlestep_breakpoints_inserted_p
3007 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3008 || !currently_stepping (ecs->event_thread)
3009 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3010 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3011
3012 if (RECORD_IS_USED)
3013 do_cleanups (old_cleanups);
8aad930b 3014 }
4fa8626c
DJ
3015}
3016
0d1e5fa7
PA
3017void
3018init_infwait_state (void)
3019{
3020 waiton_ptid = pid_to_ptid (-1);
3021 infwait_state = infwait_normal_state;
3022}
3023
94cc34af
PA
3024void
3025error_is_running (void)
3026{
3e43a32a
MS
3027 error (_("Cannot execute this command while "
3028 "the selected thread is running."));
94cc34af
PA
3029}
3030
3031void
3032ensure_not_running (void)
3033{
3034 if (is_running (inferior_ptid))
3035 error_is_running ();
3036}
3037
edb3359d
DJ
3038static int
3039stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3040{
3041 for (frame = get_prev_frame (frame);
3042 frame != NULL;
3043 frame = get_prev_frame (frame))
3044 {
3045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3046 return 1;
3047 if (get_frame_type (frame) != INLINE_FRAME)
3048 break;
3049 }
3050
3051 return 0;
3052}
3053
a96d9b2e
SDJ
3054/* Auxiliary function that handles syscall entry/return events.
3055 It returns 1 if the inferior should keep going (and GDB
3056 should ignore the event), or 0 if the event deserves to be
3057 processed. */
ca2163eb 3058
a96d9b2e 3059static int
ca2163eb 3060handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3061{
ca2163eb
PA
3062 struct regcache *regcache;
3063 struct gdbarch *gdbarch;
3064 int syscall_number;
3065
3066 if (!ptid_equal (ecs->ptid, inferior_ptid))
3067 context_switch (ecs->ptid);
3068
3069 regcache = get_thread_regcache (ecs->ptid);
3070 gdbarch = get_regcache_arch (regcache);
f90263c1 3071 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3072 stop_pc = regcache_read_pc (regcache);
3073
a96d9b2e
SDJ
3074 if (catch_syscall_enabled () > 0
3075 && catching_syscall_number (syscall_number) > 0)
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3079 syscall_number);
a96d9b2e 3080
16c381f0 3081 ecs->event_thread->control.stop_bpstat
6c95b8df 3082 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3083 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3084 ecs->random_signal
3085 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3086
ca2163eb
PA
3087 if (!ecs->random_signal)
3088 {
3089 /* Catchpoint hit. */
16c381f0 3090 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3091 return 0;
3092 }
a96d9b2e 3093 }
ca2163eb
PA
3094
3095 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3097 keep_going (ecs);
3098 return 1;
a96d9b2e
SDJ
3099}
3100
7e324e48
GB
3101/* Clear the supplied execution_control_state's stop_func_* fields. */
3102
3103static void
3104clear_stop_func (struct execution_control_state *ecs)
3105{
3106 ecs->stop_func_filled_in = 0;
3107 ecs->stop_func_start = 0;
3108 ecs->stop_func_end = 0;
3109 ecs->stop_func_name = NULL;
3110}
3111
3112/* Lazily fill in the execution_control_state's stop_func_* fields. */
3113
3114static void
3115fill_in_stop_func (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs)
3117{
3118 if (!ecs->stop_func_filled_in)
3119 {
3120 /* Don't care about return value; stop_func_start and stop_func_name
3121 will both be 0 if it doesn't work. */
3122 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3123 &ecs->stop_func_start, &ecs->stop_func_end);
3124 ecs->stop_func_start
3125 += gdbarch_deprecated_function_start_offset (gdbarch);
3126
3127 ecs->stop_func_filled_in = 1;
3128 }
3129}
3130
cd0fc7c3
SS
3131/* Given an execution control state that has been freshly filled in
3132 by an event from the inferior, figure out what it means and take
3133 appropriate action. */
c906108c 3134
ec9499be 3135static void
96baa820 3136handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3137{
568d6575
UW
3138 struct frame_info *frame;
3139 struct gdbarch *gdbarch;
d983da9c
DJ
3140 int stopped_by_watchpoint;
3141 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3142 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3143 enum stop_kind stop_soon;
3144
28736962
PA
3145 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3146 {
3147 /* We had an event in the inferior, but we are not interested in
3148 handling it at this level. The lower layers have already
3149 done what needs to be done, if anything.
3150
3151 One of the possible circumstances for this is when the
3152 inferior produces output for the console. The inferior has
3153 not stopped, and we are ignoring the event. Another possible
3154 circumstance is any event which the lower level knows will be
3155 reported multiple times without an intervening resume. */
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3158 prepare_to_wait (ecs);
3159 return;
3160 }
3161
0e5bf2a8
PA
3162 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3163 && target_can_async_p () && !sync_execution)
3164 {
3165 /* There were no unwaited-for children left in the target, but,
3166 we're not synchronously waiting for events either. Just
3167 ignore. Otherwise, if we were running a synchronous
3168 execution command, we need to cancel it and give the user
3169 back the terminal. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3173 prepare_to_wait (ecs);
3174 return;
3175 }
3176
d6b48e9c 3177 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3178 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3179 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3180 {
3181 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3182
d6b48e9c 3183 gdb_assert (inf);
16c381f0 3184 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3185 }
3186 else
3187 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3188
1777feb0 3189 /* Cache the last pid/waitstatus. */
39f77062 3190 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3191 target_last_waitstatus = ecs->ws;
e02bc4cc 3192
ca005067 3193 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3194 stop_stack_dummy = STOP_NONE;
ca005067 3195
0e5bf2a8
PA
3196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3197 {
3198 /* No unwaited-for children left. IOW, all resumed children
3199 have exited. */
3200 if (debug_infrun)
3201 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3202
3203 stop_print_frame = 0;
3204 stop_stepping (ecs);
3205 return;
3206 }
3207
1777feb0 3208 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3209
3210 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3211 && !ptid_equal (ecs->ptid, minus_one_ptid)
3212 && !in_thread_list (ecs->ptid));
3213
3214 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3215 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3216 add_thread (ecs->ptid);
3217
e09875d4 3218 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3219
3220 /* Dependent on valid ECS->EVENT_THREAD. */
3221 adjust_pc_after_break (ecs);
3222
3223 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3224 reinit_frame_cache ();
3225
28736962
PA
3226 breakpoint_retire_moribund ();
3227
2b009048
DJ
3228 /* First, distinguish signals caused by the debugger from signals
3229 that have to do with the program's own actions. Note that
3230 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3231 on the operating system version. Here we detect when a SIGILL or
3232 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3233 something similar for SIGSEGV, since a SIGSEGV will be generated
3234 when we're trying to execute a breakpoint instruction on a
3235 non-executable stack. This happens for call dummy breakpoints
3236 for architectures like SPARC that place call dummies on the
3237 stack. */
2b009048
DJ
3238 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3239 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3240 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3241 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3242 {
de0a0249
UW
3243 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3244
3245 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3246 regcache_read_pc (regcache)))
3247 {
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "infrun: Treating signal as SIGTRAP\n");
3251 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3252 }
2b009048
DJ
3253 }
3254
28736962
PA
3255 /* Mark the non-executing threads accordingly. In all-stop, all
3256 threads of all processes are stopped when we get any event
3257 reported. In non-stop mode, only the event thread stops. If
3258 we're handling a process exit in non-stop mode, there's nothing
3259 to do, as threads of the dead process are gone, and threads of
3260 any other process were left running. */
3261 if (!non_stop)
3262 set_executing (minus_one_ptid, 0);
3263 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3264 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3265 set_executing (ecs->ptid, 0);
8c90c137 3266
0d1e5fa7 3267 switch (infwait_state)
488f131b
JB
3268 {
3269 case infwait_thread_hop_state:
527159b7 3270 if (debug_infrun)
8a9de0e4 3271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3272 break;
b83266a0 3273
488f131b 3274 case infwait_normal_state:
527159b7 3275 if (debug_infrun)
8a9de0e4 3276 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3277 break;
3278
3279 case infwait_step_watch_state:
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "infrun: infwait_step_watch_state\n");
3283
3284 stepped_after_stopped_by_watchpoint = 1;
488f131b 3285 break;
b83266a0 3286
488f131b 3287 case infwait_nonstep_watch_state:
527159b7 3288 if (debug_infrun)
8a9de0e4
AC
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_nonstep_watch_state\n");
488f131b 3291 insert_breakpoints ();
c906108c 3292
488f131b
JB
3293 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3294 handle things like signals arriving and other things happening
3295 in combination correctly? */
3296 stepped_after_stopped_by_watchpoint = 1;
3297 break;
65e82032
AC
3298
3299 default:
e2e0b3e5 3300 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3301 }
ec9499be 3302
0d1e5fa7 3303 infwait_state = infwait_normal_state;
ec9499be 3304 waiton_ptid = pid_to_ptid (-1);
c906108c 3305
488f131b
JB
3306 switch (ecs->ws.kind)
3307 {
3308 case TARGET_WAITKIND_LOADED:
527159b7 3309 if (debug_infrun)
8a9de0e4 3310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3311 /* Ignore gracefully during startup of the inferior, as it might
3312 be the shell which has just loaded some objects, otherwise
3313 add the symbols for the newly loaded objects. Also ignore at
3314 the beginning of an attach or remote session; we will query
3315 the full list of libraries once the connection is
3316 established. */
c0236d92 3317 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3318 {
edcc5120
TT
3319 struct regcache *regcache;
3320
3321 if (!ptid_equal (ecs->ptid, inferior_ptid))
3322 context_switch (ecs->ptid);
3323 regcache = get_thread_regcache (ecs->ptid);
3324
3325 handle_solib_event ();
3326
3327 ecs->event_thread->control.stop_bpstat
3328 = bpstat_stop_status (get_regcache_aspace (regcache),
3329 stop_pc, ecs->ptid, &ecs->ws);
3330 ecs->random_signal
3331 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3332
3333 if (!ecs->random_signal)
3334 {
3335 /* A catchpoint triggered. */
3336 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3337 goto process_event_stop_test;
3338 }
488f131b 3339
b0f4b84b
DJ
3340 /* If requested, stop when the dynamic linker notifies
3341 gdb of events. This allows the user to get control
3342 and place breakpoints in initializer routines for
3343 dynamically loaded objects (among other things). */
edcc5120 3344 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
b0f4b84b
DJ
3345 if (stop_on_solib_events)
3346 {
55409f9d
DJ
3347 /* Make sure we print "Stopped due to solib-event" in
3348 normal_stop. */
3349 stop_print_frame = 1;
3350
b0f4b84b
DJ
3351 stop_stepping (ecs);
3352 return;
3353 }
488f131b 3354 }
b0f4b84b
DJ
3355
3356 /* If we are skipping through a shell, or through shared library
3357 loading that we aren't interested in, resume the program. If
3358 we're running the program normally, also resume. But stop if
3359 we're attaching or setting up a remote connection. */
3360 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3361 {
74960c60
VP
3362 /* Loading of shared libraries might have changed breakpoint
3363 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3364 if (stop_soon == NO_STOP_QUIETLY
3365 && !breakpoints_always_inserted_mode ())
74960c60 3366 insert_breakpoints ();
b0f4b84b
DJ
3367 resume (0, TARGET_SIGNAL_0);
3368 prepare_to_wait (ecs);
3369 return;
3370 }
3371
3372 break;
c5aa993b 3373
488f131b 3374 case TARGET_WAITKIND_SPURIOUS:
527159b7 3375 if (debug_infrun)
8a9de0e4 3376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3377 resume (0, TARGET_SIGNAL_0);
3378 prepare_to_wait (ecs);
3379 return;
c5aa993b 3380
488f131b 3381 case TARGET_WAITKIND_EXITED:
527159b7 3382 if (debug_infrun)
8a9de0e4 3383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3384 inferior_ptid = ecs->ptid;
6c95b8df
PA
3385 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3386 set_current_program_space (current_inferior ()->pspace);
3387 handle_vfork_child_exec_or_exit (0);
1777feb0 3388 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3389 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3390
3391 /* Record the exit code in the convenience variable $_exitcode, so
3392 that the user can inspect this again later. */
4fa62494
UW
3393 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3394 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3395
3396 /* Also record this in the inferior itself. */
3397 current_inferior ()->has_exit_code = 1;
3398 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3399
488f131b
JB
3400 gdb_flush (gdb_stdout);
3401 target_mourn_inferior ();
1c0fdd0e 3402 singlestep_breakpoints_inserted_p = 0;
d03285ec 3403 cancel_single_step_breakpoints ();
488f131b
JB
3404 stop_print_frame = 0;
3405 stop_stepping (ecs);
3406 return;
c5aa993b 3407
488f131b 3408 case TARGET_WAITKIND_SIGNALLED:
527159b7 3409 if (debug_infrun)
8a9de0e4 3410 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3411 inferior_ptid = ecs->ptid;
6c95b8df
PA
3412 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3413 set_current_program_space (current_inferior ()->pspace);
3414 handle_vfork_child_exec_or_exit (0);
488f131b 3415 stop_print_frame = 0;
1777feb0 3416 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3417
488f131b
JB
3418 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3419 reach here unless the inferior is dead. However, for years
3420 target_kill() was called here, which hints that fatal signals aren't
3421 really fatal on some systems. If that's true, then some changes
1777feb0 3422 may be needed. */
488f131b 3423 target_mourn_inferior ();
c906108c 3424
33d62d64 3425 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3426 singlestep_breakpoints_inserted_p = 0;
d03285ec 3427 cancel_single_step_breakpoints ();
488f131b
JB
3428 stop_stepping (ecs);
3429 return;
c906108c 3430
488f131b 3431 /* The following are the only cases in which we keep going;
1777feb0 3432 the above cases end in a continue or goto. */
488f131b 3433 case TARGET_WAITKIND_FORKED:
deb3b17b 3434 case TARGET_WAITKIND_VFORKED:
527159b7 3435 if (debug_infrun)
8a9de0e4 3436 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3437
e2d96639
YQ
3438 /* Check whether the inferior is displaced stepping. */
3439 {
3440 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3442 struct displaced_step_inferior_state *displaced
3443 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3444
3445 /* If checking displaced stepping is supported, and thread
3446 ecs->ptid is displaced stepping. */
3447 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3448 {
3449 struct inferior *parent_inf
3450 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3451 struct regcache *child_regcache;
3452 CORE_ADDR parent_pc;
3453
3454 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3455 indicating that the displaced stepping of syscall instruction
3456 has been done. Perform cleanup for parent process here. Note
3457 that this operation also cleans up the child process for vfork,
3458 because their pages are shared. */
3459 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3460
3461 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3462 {
3463 /* Restore scratch pad for child process. */
3464 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3465 }
3466
3467 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3468 the child's PC is also within the scratchpad. Set the child's PC
3469 to the parent's PC value, which has already been fixed up.
3470 FIXME: we use the parent's aspace here, although we're touching
3471 the child, because the child hasn't been added to the inferior
3472 list yet at this point. */
3473
3474 child_regcache
3475 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3476 gdbarch,
3477 parent_inf->aspace);
3478 /* Read PC value of parent process. */
3479 parent_pc = regcache_read_pc (regcache);
3480
3481 if (debug_displaced)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "displaced: write child pc from %s to %s\n",
3484 paddress (gdbarch,
3485 regcache_read_pc (child_regcache)),
3486 paddress (gdbarch, parent_pc));
3487
3488 regcache_write_pc (child_regcache, parent_pc);
3489 }
3490 }
3491
5a2901d9
DJ
3492 if (!ptid_equal (ecs->ptid, inferior_ptid))
3493 {
0d1e5fa7 3494 context_switch (ecs->ptid);
35f196d9 3495 reinit_frame_cache ();
5a2901d9
DJ
3496 }
3497
b242c3c2
PA
3498 /* Immediately detach breakpoints from the child before there's
3499 any chance of letting the user delete breakpoints from the
3500 breakpoint lists. If we don't do this early, it's easy to
3501 leave left over traps in the child, vis: "break foo; catch
3502 fork; c; <fork>; del; c; <child calls foo>". We only follow
3503 the fork on the last `continue', and by that time the
3504 breakpoint at "foo" is long gone from the breakpoint table.
3505 If we vforked, then we don't need to unpatch here, since both
3506 parent and child are sharing the same memory pages; we'll
3507 need to unpatch at follow/detach time instead to be certain
3508 that new breakpoints added between catchpoint hit time and
3509 vfork follow are detached. */
3510 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3511 {
3512 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3513
3514 /* This won't actually modify the breakpoint list, but will
3515 physically remove the breakpoints from the child. */
3516 detach_breakpoints (child_pid);
3517 }
3518
d03285ec
UW
3519 if (singlestep_breakpoints_inserted_p)
3520 {
1777feb0 3521 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3522 remove_single_step_breakpoints ();
3523 singlestep_breakpoints_inserted_p = 0;
3524 }
3525
e58b0e63
PA
3526 /* In case the event is caught by a catchpoint, remember that
3527 the event is to be followed at the next resume of the thread,
3528 and not immediately. */
3529 ecs->event_thread->pending_follow = ecs->ws;
3530
fb14de7b 3531 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3532
16c381f0 3533 ecs->event_thread->control.stop_bpstat
6c95b8df 3534 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3535 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3536
67822962
PA
3537 /* Note that we're interested in knowing the bpstat actually
3538 causes a stop, not just if it may explain the signal.
3539 Software watchpoints, for example, always appear in the
3540 bpstat. */
16c381f0
JK
3541 ecs->random_signal
3542 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3543
3544 /* If no catchpoint triggered for this, then keep going. */
3545 if (ecs->random_signal)
3546 {
6c95b8df
PA
3547 ptid_t parent;
3548 ptid_t child;
e58b0e63 3549 int should_resume;
3e43a32a
MS
3550 int follow_child
3551 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3552
16c381f0 3553 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3554
3555 should_resume = follow_fork ();
3556
6c95b8df
PA
3557 parent = ecs->ptid;
3558 child = ecs->ws.value.related_pid;
3559
3560 /* In non-stop mode, also resume the other branch. */
3561 if (non_stop && !detach_fork)
3562 {
3563 if (follow_child)
3564 switch_to_thread (parent);
3565 else
3566 switch_to_thread (child);
3567
3568 ecs->event_thread = inferior_thread ();
3569 ecs->ptid = inferior_ptid;
3570 keep_going (ecs);
3571 }
3572
3573 if (follow_child)
3574 switch_to_thread (child);
3575 else
3576 switch_to_thread (parent);
3577
e58b0e63
PA
3578 ecs->event_thread = inferior_thread ();
3579 ecs->ptid = inferior_ptid;
3580
3581 if (should_resume)
3582 keep_going (ecs);
3583 else
3584 stop_stepping (ecs);
04e68871
DJ
3585 return;
3586 }
16c381f0 3587 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3588 goto process_event_stop_test;
3589
6c95b8df
PA
3590 case TARGET_WAITKIND_VFORK_DONE:
3591 /* Done with the shared memory region. Re-insert breakpoints in
3592 the parent, and keep going. */
3593
3594 if (debug_infrun)
3e43a32a
MS
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3597
3598 if (!ptid_equal (ecs->ptid, inferior_ptid))
3599 context_switch (ecs->ptid);
3600
3601 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3602 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3603 /* This also takes care of reinserting breakpoints in the
3604 previously locked inferior. */
3605 keep_going (ecs);
3606 return;
3607
488f131b 3608 case TARGET_WAITKIND_EXECD:
527159b7 3609 if (debug_infrun)
fc5261f2 3610 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3611
5a2901d9
DJ
3612 if (!ptid_equal (ecs->ptid, inferior_ptid))
3613 {
0d1e5fa7 3614 context_switch (ecs->ptid);
35f196d9 3615 reinit_frame_cache ();
5a2901d9
DJ
3616 }
3617
d03285ec
UW
3618 singlestep_breakpoints_inserted_p = 0;
3619 cancel_single_step_breakpoints ();
3620
fb14de7b 3621 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3622
6c95b8df
PA
3623 /* Do whatever is necessary to the parent branch of the vfork. */
3624 handle_vfork_child_exec_or_exit (1);
3625
795e548f
PA
3626 /* This causes the eventpoints and symbol table to be reset.
3627 Must do this now, before trying to determine whether to
3628 stop. */
71b43ef8 3629 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3630
16c381f0 3631 ecs->event_thread->control.stop_bpstat
6c95b8df 3632 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3633 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3634 ecs->random_signal
3635 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3636
71b43ef8
PA
3637 /* Note that this may be referenced from inside
3638 bpstat_stop_status above, through inferior_has_execd. */
3639 xfree (ecs->ws.value.execd_pathname);
3640 ecs->ws.value.execd_pathname = NULL;
3641
04e68871
DJ
3642 /* If no catchpoint triggered for this, then keep going. */
3643 if (ecs->random_signal)
3644 {
16c381f0 3645 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3646 keep_going (ecs);
3647 return;
3648 }
16c381f0 3649 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3650 goto process_event_stop_test;
3651
b4dc5ffa
MK
3652 /* Be careful not to try to gather much state about a thread
3653 that's in a syscall. It's frequently a losing proposition. */
488f131b 3654 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3655 if (debug_infrun)
3e43a32a
MS
3656 fprintf_unfiltered (gdb_stdlog,
3657 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3658 /* Getting the current syscall number. */
ca2163eb 3659 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3660 return;
3661 goto process_event_stop_test;
c906108c 3662
488f131b
JB
3663 /* Before examining the threads further, step this thread to
3664 get it entirely out of the syscall. (We get notice of the
3665 event when the thread is just on the verge of exiting a
3666 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3667 into user code.) */
488f131b 3668 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3669 if (debug_infrun)
3e43a32a
MS
3670 fprintf_unfiltered (gdb_stdlog,
3671 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3672 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3673 return;
3674 goto process_event_stop_test;
c906108c 3675
488f131b 3676 case TARGET_WAITKIND_STOPPED:
527159b7 3677 if (debug_infrun)
8a9de0e4 3678 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3679 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3680 break;
c906108c 3681
b2175913 3682 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3685 /* Reverse execution: target ran out of history info. */
fb14de7b 3686 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3687 print_no_history_reason ();
b2175913
MS
3688 stop_stepping (ecs);
3689 return;
488f131b 3690 }
c906108c 3691
488f131b
JB
3692 if (ecs->new_thread_event)
3693 {
94cc34af
PA
3694 if (non_stop)
3695 /* Non-stop assumes that the target handles adding new threads
3696 to the thread list. */
3e43a32a
MS
3697 internal_error (__FILE__, __LINE__,
3698 "targets should add new threads to the thread "
3699 "list themselves in non-stop mode.");
94cc34af
PA
3700
3701 /* We may want to consider not doing a resume here in order to
3702 give the user a chance to play with the new thread. It might
3703 be good to make that a user-settable option. */
3704
3705 /* At this point, all threads are stopped (happens automatically
3706 in either the OS or the native code). Therefore we need to
3707 continue all threads in order to make progress. */
3708
173853dc
PA
3709 if (!ptid_equal (ecs->ptid, inferior_ptid))
3710 context_switch (ecs->ptid);
488f131b
JB
3711 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3712 prepare_to_wait (ecs);
3713 return;
3714 }
c906108c 3715
2020b7ab 3716 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3717 {
3718 /* Do we need to clean up the state of a thread that has
3719 completed a displaced single-step? (Doing so usually affects
3720 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3721 displaced_step_fixup (ecs->ptid,
3722 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3723
3724 /* If we either finished a single-step or hit a breakpoint, but
3725 the user wanted this thread to be stopped, pretend we got a
3726 SIG0 (generic unsignaled stop). */
3727
3728 if (ecs->event_thread->stop_requested
16c381f0
JK
3729 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3730 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3731 }
237fc4c9 3732
515630c5 3733 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3734
527159b7 3735 if (debug_infrun)
237fc4c9 3736 {
5af949e3
UW
3737 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3738 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3739 struct cleanup *old_chain = save_inferior_ptid ();
3740
3741 inferior_ptid = ecs->ptid;
5af949e3
UW
3742
3743 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3744 paddress (gdbarch, stop_pc));
d92524f1 3745 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3746 {
3747 CORE_ADDR addr;
abbb1732 3748
237fc4c9
PA
3749 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3750
3751 if (target_stopped_data_address (&current_target, &addr))
3752 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3753 "infrun: stopped data address = %s\n",
3754 paddress (gdbarch, addr));
237fc4c9
PA
3755 else
3756 fprintf_unfiltered (gdb_stdlog,
3757 "infrun: (no data address available)\n");
3758 }
7f82dfc7
JK
3759
3760 do_cleanups (old_chain);
237fc4c9 3761 }
527159b7 3762
9f976b41
DJ
3763 if (stepping_past_singlestep_breakpoint)
3764 {
1c0fdd0e 3765 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3766 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3767 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3768
3769 stepping_past_singlestep_breakpoint = 0;
3770
3771 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3772 breakpoint, or stopped for some other reason. It would be nice if
3773 we could tell, but we can't reliably. */
16c381f0 3774 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3775 {
527159b7 3776 if (debug_infrun)
3e43a32a
MS
3777 fprintf_unfiltered (gdb_stdlog,
3778 "infrun: stepping_past_"
3779 "singlestep_breakpoint\n");
9f976b41 3780 /* Pull the single step breakpoints out of the target. */
e0cd558a 3781 remove_single_step_breakpoints ();
9f976b41
DJ
3782 singlestep_breakpoints_inserted_p = 0;
3783
3784 ecs->random_signal = 0;
16c381f0 3785 ecs->event_thread->control.trap_expected = 0;
9f976b41 3786
0d1e5fa7 3787 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3788 if (deprecated_context_hook)
3789 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3790
3791 resume (1, TARGET_SIGNAL_0);
3792 prepare_to_wait (ecs);
3793 return;
3794 }
3795 }
3796
ca67fcb8 3797 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3798 {
94cc34af
PA
3799 /* In non-stop mode, there's never a deferred_step_ptid set. */
3800 gdb_assert (!non_stop);
3801
6a6b96b9
UW
3802 /* If we stopped for some other reason than single-stepping, ignore
3803 the fact that we were supposed to switch back. */
16c381f0 3804 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3805 {
3806 if (debug_infrun)
3807 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3808 "infrun: handling deferred step\n");
6a6b96b9
UW
3809
3810 /* Pull the single step breakpoints out of the target. */
3811 if (singlestep_breakpoints_inserted_p)
3812 {
3813 remove_single_step_breakpoints ();
3814 singlestep_breakpoints_inserted_p = 0;
3815 }
3816
cd3da28e
PA
3817 ecs->event_thread->control.trap_expected = 0;
3818
6a6b96b9
UW
3819 /* Note: We do not call context_switch at this point, as the
3820 context is already set up for stepping the original thread. */
ca67fcb8
VP
3821 switch_to_thread (deferred_step_ptid);
3822 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3823 /* Suppress spurious "Switching to ..." message. */
3824 previous_inferior_ptid = inferior_ptid;
3825
3826 resume (1, TARGET_SIGNAL_0);
3827 prepare_to_wait (ecs);
3828 return;
3829 }
ca67fcb8
VP
3830
3831 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3832 }
3833
488f131b
JB
3834 /* See if a thread hit a thread-specific breakpoint that was meant for
3835 another thread. If so, then step that thread past the breakpoint,
3836 and continue it. */
3837
16c381f0 3838 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3839 {
9f976b41 3840 int thread_hop_needed = 0;
cf00dfa7
VP
3841 struct address_space *aspace =
3842 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3843
f8d40ec8 3844 /* Check if a regular breakpoint has been hit before checking
1777feb0 3845 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3846 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3847 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3848 {
c5aa993b 3849 ecs->random_signal = 0;
6c95b8df 3850 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3851 thread_hop_needed = 1;
3852 }
1c0fdd0e 3853 else if (singlestep_breakpoints_inserted_p)
9f976b41 3854 {
fd48f117
DJ
3855 /* We have not context switched yet, so this should be true
3856 no matter which thread hit the singlestep breakpoint. */
3857 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3858 if (debug_infrun)
3859 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3860 "trap for %s\n",
3861 target_pid_to_str (ecs->ptid));
3862
9f976b41
DJ
3863 ecs->random_signal = 0;
3864 /* The call to in_thread_list is necessary because PTIDs sometimes
3865 change when we go from single-threaded to multi-threaded. If
3866 the singlestep_ptid is still in the list, assume that it is
3867 really different from ecs->ptid. */
3868 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3869 && in_thread_list (singlestep_ptid))
3870 {
fd48f117
DJ
3871 /* If the PC of the thread we were trying to single-step
3872 has changed, discard this event (which we were going
3873 to ignore anyway), and pretend we saw that thread
3874 trap. This prevents us continuously moving the
3875 single-step breakpoint forward, one instruction at a
3876 time. If the PC has changed, then the thread we were
3877 trying to single-step has trapped or been signalled,
3878 but the event has not been reported to GDB yet.
3879
3880 There might be some cases where this loses signal
3881 information, if a signal has arrived at exactly the
3882 same time that the PC changed, but this is the best
3883 we can do with the information available. Perhaps we
3884 should arrange to report all events for all threads
3885 when they stop, or to re-poll the remote looking for
3886 this particular thread (i.e. temporarily enable
3887 schedlock). */
515630c5
UW
3888
3889 CORE_ADDR new_singlestep_pc
3890 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3891
3892 if (new_singlestep_pc != singlestep_pc)
fd48f117 3893 {
2020b7ab
PA
3894 enum target_signal stop_signal;
3895
fd48f117
DJ
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3898 " but expected thread advanced also\n");
3899
3900 /* The current context still belongs to
3901 singlestep_ptid. Don't swap here, since that's
3902 the context we want to use. Just fudge our
3903 state and continue. */
16c381f0
JK
3904 stop_signal = ecs->event_thread->suspend.stop_signal;
3905 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3906 ecs->ptid = singlestep_ptid;
e09875d4 3907 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3908 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3909 stop_pc = new_singlestep_pc;
fd48f117
DJ
3910 }
3911 else
3912 {
3913 if (debug_infrun)
3914 fprintf_unfiltered (gdb_stdlog,
3915 "infrun: unexpected thread\n");
3916
3917 thread_hop_needed = 1;
3918 stepping_past_singlestep_breakpoint = 1;
3919 saved_singlestep_ptid = singlestep_ptid;
3920 }
9f976b41
DJ
3921 }
3922 }
3923
3924 if (thread_hop_needed)
8fb3e588 3925 {
9f5a595d 3926 struct regcache *thread_regcache;
237fc4c9 3927 int remove_status = 0;
8fb3e588 3928
527159b7 3929 if (debug_infrun)
8a9de0e4 3930 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3931
b3444185
PA
3932 /* Switch context before touching inferior memory, the
3933 previous thread may have exited. */
3934 if (!ptid_equal (inferior_ptid, ecs->ptid))
3935 context_switch (ecs->ptid);
3936
8fb3e588 3937 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3938 Just continue. */
8fb3e588 3939
1c0fdd0e 3940 if (singlestep_breakpoints_inserted_p)
488f131b 3941 {
1777feb0 3942 /* Pull the single step breakpoints out of the target. */
e0cd558a 3943 remove_single_step_breakpoints ();
8fb3e588
AC
3944 singlestep_breakpoints_inserted_p = 0;
3945 }
3946
237fc4c9
PA
3947 /* If the arch can displace step, don't remove the
3948 breakpoints. */
9f5a595d
UW
3949 thread_regcache = get_thread_regcache (ecs->ptid);
3950 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3951 remove_status = remove_breakpoints ();
3952
8fb3e588
AC
3953 /* Did we fail to remove breakpoints? If so, try
3954 to set the PC past the bp. (There's at least
3955 one situation in which we can fail to remove
3956 the bp's: On HP-UX's that use ttrace, we can't
3957 change the address space of a vforking child
3958 process until the child exits (well, okay, not
1777feb0 3959 then either :-) or execs. */
8fb3e588 3960 if (remove_status != 0)
9d9cd7ac 3961 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3962 else
3963 { /* Single step */
94cc34af
PA
3964 if (!non_stop)
3965 {
3966 /* Only need to require the next event from this
3967 thread in all-stop mode. */
3968 waiton_ptid = ecs->ptid;
3969 infwait_state = infwait_thread_hop_state;
3970 }
8fb3e588 3971
4e1c45ea 3972 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3973 keep_going (ecs);
8fb3e588
AC
3974 return;
3975 }
488f131b 3976 }
1c0fdd0e 3977 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3978 {
8fb3e588
AC
3979 ecs->random_signal = 0;
3980 }
488f131b
JB
3981 }
3982 else
3983 ecs->random_signal = 1;
c906108c 3984
488f131b 3985 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3986 so, then switch to that thread. */
3987 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3988 {
527159b7 3989 if (debug_infrun)
8a9de0e4 3990 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3991
0d1e5fa7 3992 context_switch (ecs->ptid);
c5aa993b 3993
9a4105ab
AC
3994 if (deprecated_context_hook)
3995 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3996 }
c906108c 3997
568d6575
UW
3998 /* At this point, get hold of the now-current thread's frame. */
3999 frame = get_current_frame ();
4000 gdbarch = get_frame_arch (frame);
4001
1c0fdd0e 4002 if (singlestep_breakpoints_inserted_p)
488f131b 4003 {
1777feb0 4004 /* Pull the single step breakpoints out of the target. */
e0cd558a 4005 remove_single_step_breakpoints ();
488f131b
JB
4006 singlestep_breakpoints_inserted_p = 0;
4007 }
c906108c 4008
d983da9c
DJ
4009 if (stepped_after_stopped_by_watchpoint)
4010 stopped_by_watchpoint = 0;
4011 else
4012 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4013
4014 /* If necessary, step over this watchpoint. We'll be back to display
4015 it in a moment. */
4016 if (stopped_by_watchpoint
d92524f1 4017 && (target_have_steppable_watchpoint
568d6575 4018 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4019 {
488f131b
JB
4020 /* At this point, we are stopped at an instruction which has
4021 attempted to write to a piece of memory under control of
4022 a watchpoint. The instruction hasn't actually executed
4023 yet. If we were to evaluate the watchpoint expression
4024 now, we would get the old value, and therefore no change
4025 would seem to have occurred.
4026
4027 In order to make watchpoints work `right', we really need
4028 to complete the memory write, and then evaluate the
d983da9c
DJ
4029 watchpoint expression. We do this by single-stepping the
4030 target.
4031
4032 It may not be necessary to disable the watchpoint to stop over
4033 it. For example, the PA can (with some kernel cooperation)
4034 single step over a watchpoint without disabling the watchpoint.
4035
4036 It is far more common to need to disable a watchpoint to step
4037 the inferior over it. If we have non-steppable watchpoints,
4038 we must disable the current watchpoint; it's simplest to
4039 disable all watchpoints and breakpoints. */
2facfe5c
DD
4040 int hw_step = 1;
4041
d92524f1 4042 if (!target_have_steppable_watchpoint)
2455069d
UW
4043 {
4044 remove_breakpoints ();
4045 /* See comment in resume why we need to stop bypassing signals
4046 while breakpoints have been removed. */
4047 target_pass_signals (0, NULL);
4048 }
2facfe5c 4049 /* Single step */
568d6575 4050 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4051 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4052 waiton_ptid = ecs->ptid;
d92524f1 4053 if (target_have_steppable_watchpoint)
0d1e5fa7 4054 infwait_state = infwait_step_watch_state;
d983da9c 4055 else
0d1e5fa7 4056 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4057 prepare_to_wait (ecs);
4058 return;
4059 }
4060
7e324e48 4061 clear_stop_func (ecs);
4e1c45ea 4062 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4063 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4064 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4065 stop_print_frame = 1;
4066 ecs->random_signal = 0;
4067 stopped_by_random_signal = 0;
488f131b 4068
edb3359d
DJ
4069 /* Hide inlined functions starting here, unless we just performed stepi or
4070 nexti. After stepi and nexti, always show the innermost frame (not any
4071 inline function call sites). */
16c381f0 4072 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4073 {
4074 struct address_space *aspace =
4075 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4076
4077 /* skip_inline_frames is expensive, so we avoid it if we can
4078 determine that the address is one where functions cannot have
4079 been inlined. This improves performance with inferiors that
4080 load a lot of shared libraries, because the solib event
4081 breakpoint is defined as the address of a function (i.e. not
4082 inline). Note that we have to check the previous PC as well
4083 as the current one to catch cases when we have just
4084 single-stepped off a breakpoint prior to reinstating it.
4085 Note that we're assuming that the code we single-step to is
4086 not inline, but that's not definitive: there's nothing
4087 preventing the event breakpoint function from containing
4088 inlined code, and the single-step ending up there. If the
4089 user had set a breakpoint on that inlined code, the missing
4090 skip_inline_frames call would break things. Fortunately
4091 that's an extremely unlikely scenario. */
09ac7c10 4092 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
0574c78f
GB
4093 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4094 && ecs->event_thread->control.trap_expected
4095 && pc_at_non_inline_function (aspace,
09ac7c10
TT
4096 ecs->event_thread->prev_pc,
4097 &ecs->ws)))
0574c78f
GB
4098 skip_inline_frames (ecs->ptid);
4099 }
edb3359d 4100
16c381f0
JK
4101 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4102 && ecs->event_thread->control.trap_expected
568d6575 4103 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4104 && currently_stepping (ecs->event_thread))
3352ef37 4105 {
b50d7442 4106 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4107 also on an instruction that needs to be stepped multiple
1777feb0 4108 times before it's been fully executing. E.g., architectures
3352ef37
AC
4109 with a delay slot. It needs to be stepped twice, once for
4110 the instruction and once for the delay slot. */
4111 int step_through_delay
568d6575 4112 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4113
527159b7 4114 if (debug_infrun && step_through_delay)
8a9de0e4 4115 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4116 if (ecs->event_thread->control.step_range_end == 0
4117 && step_through_delay)
3352ef37
AC
4118 {
4119 /* The user issued a continue when stopped at a breakpoint.
4120 Set up for another trap and get out of here. */
4e1c45ea 4121 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4122 keep_going (ecs);
4123 return;
4124 }
4125 else if (step_through_delay)
4126 {
4127 /* The user issued a step when stopped at a breakpoint.
4128 Maybe we should stop, maybe we should not - the delay
4129 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4130 case, don't decide that here, just set
4131 ecs->stepping_over_breakpoint, making sure we
4132 single-step again before breakpoints are re-inserted. */
4e1c45ea 4133 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4134 }
4135 }
4136
488f131b
JB
4137 /* Look at the cause of the stop, and decide what to do.
4138 The alternatives are:
0d1e5fa7
PA
4139 1) stop_stepping and return; to really stop and return to the debugger,
4140 2) keep_going and return to start up again
4e1c45ea 4141 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4142 3) set ecs->random_signal to 1, and the decision between 1 and 2
4143 will be made according to the signal handling tables. */
4144
16c381f0 4145 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4146 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4147 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4148 {
16c381f0
JK
4149 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4150 && stop_after_trap)
488f131b 4151 {
527159b7 4152 if (debug_infrun)
8a9de0e4 4153 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4154 stop_print_frame = 0;
4155 stop_stepping (ecs);
4156 return;
4157 }
c54cfec8
EZ
4158
4159 /* This is originated from start_remote(), start_inferior() and
4160 shared libraries hook functions. */
b0f4b84b 4161 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4162 {
527159b7 4163 if (debug_infrun)
8a9de0e4 4164 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4165 stop_stepping (ecs);
4166 return;
4167 }
4168
c54cfec8 4169 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4170 the stop_signal here, because some kernels don't ignore a
4171 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4172 See more comments in inferior.h. On the other hand, if we
a0ef4274 4173 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4174 will handle the SIGSTOP if it should show up later.
4175
4176 Also consider that the attach is complete when we see a
4177 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4178 target extended-remote report it instead of a SIGSTOP
4179 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4180 signal, so this is no exception.
4181
4182 Also consider that the attach is complete when we see a
4183 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4184 the target to stop all threads of the inferior, in case the
4185 low level attach operation doesn't stop them implicitly. If
4186 they weren't stopped implicitly, then the stub will report a
4187 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4188 other than GDB's request. */
a0ef4274 4189 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4190 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4191 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4192 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4193 {
4194 stop_stepping (ecs);
16c381f0 4195 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4196 return;
4197 }
4198
09ac7c10
TT
4199 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4200 handles this event. */
16c381f0 4201 ecs->event_thread->control.stop_bpstat
6c95b8df 4202 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4203 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4204
fba57f8f
VP
4205 /* Following in case break condition called a
4206 function. */
4207 stop_print_frame = 1;
488f131b 4208
db82e815
PA
4209 /* This is where we handle "moribund" watchpoints. Unlike
4210 software breakpoints traps, hardware watchpoint traps are
4211 always distinguishable from random traps. If no high-level
4212 watchpoint is associated with the reported stop data address
4213 anymore, then the bpstat does not explain the signal ---
4214 simply make sure to ignore it if `stopped_by_watchpoint' is
4215 set. */
4216
4217 if (debug_infrun
16c381f0
JK
4218 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4219 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4220 && stopped_by_watchpoint)
3e43a32a
MS
4221 fprintf_unfiltered (gdb_stdlog,
4222 "infrun: no user watchpoint explains "
4223 "watchpoint SIGTRAP, ignoring\n");
db82e815 4224
73dd234f 4225 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4226 at one stage in the past included checks for an inferior
4227 function call's call dummy's return breakpoint. The original
4228 comment, that went with the test, read:
73dd234f 4229
8fb3e588
AC
4230 ``End of a stack dummy. Some systems (e.g. Sony news) give
4231 another signal besides SIGTRAP, so check here as well as
4232 above.''
73dd234f 4233
8002d778 4234 If someone ever tries to get call dummys on a
73dd234f 4235 non-executable stack to work (where the target would stop
03cebad2
MK
4236 with something like a SIGSEGV), then those tests might need
4237 to be re-instated. Given, however, that the tests were only
73dd234f 4238 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4239 suspect that it won't be the case.
4240
8fb3e588
AC
4241 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4242 be necessary for call dummies on a non-executable stack on
4243 SPARC. */
73dd234f 4244
16c381f0 4245 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4246 ecs->random_signal
16c381f0 4247 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4248 || stopped_by_watchpoint
16c381f0
JK
4249 || ecs->event_thread->control.trap_expected
4250 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4251 && (ecs->event_thread->control.step_resume_breakpoint
4252 == NULL)));
488f131b
JB
4253 else
4254 {
16c381f0
JK
4255 ecs->random_signal = !bpstat_explains_signal
4256 (ecs->event_thread->control.stop_bpstat);
488f131b 4257 if (!ecs->random_signal)
16c381f0 4258 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4259 }
4260 }
4261
4262 /* When we reach this point, we've pretty much decided
4263 that the reason for stopping must've been a random
1777feb0 4264 (unexpected) signal. */
488f131b
JB
4265
4266 else
4267 ecs->random_signal = 1;
488f131b 4268
04e68871 4269process_event_stop_test:
568d6575
UW
4270
4271 /* Re-fetch current thread's frame in case we did a
4272 "goto process_event_stop_test" above. */
4273 frame = get_current_frame ();
4274 gdbarch = get_frame_arch (frame);
4275
488f131b
JB
4276 /* For the program's own signals, act according to
4277 the signal handling tables. */
4278
4279 if (ecs->random_signal)
4280 {
4281 /* Signal not for debugging purposes. */
4282 int printed = 0;
24291992 4283 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4284
527159b7 4285 if (debug_infrun)
2020b7ab 4286 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4287 ecs->event_thread->suspend.stop_signal);
527159b7 4288
488f131b
JB
4289 stopped_by_random_signal = 1;
4290
16c381f0 4291 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4292 {
4293 printed = 1;
4294 target_terminal_ours_for_output ();
16c381f0
JK
4295 print_signal_received_reason
4296 (ecs->event_thread->suspend.stop_signal);
488f131b 4297 }
252fbfc8
PA
4298 /* Always stop on signals if we're either just gaining control
4299 of the program, or the user explicitly requested this thread
4300 to remain stopped. */
d6b48e9c 4301 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4302 || ecs->event_thread->stop_requested
24291992 4303 || (!inf->detaching
16c381f0 4304 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4305 {
4306 stop_stepping (ecs);
4307 return;
4308 }
4309 /* If not going to stop, give terminal back
4310 if we took it away. */
4311 else if (printed)
4312 target_terminal_inferior ();
4313
4314 /* Clear the signal if it should not be passed. */
16c381f0
JK
4315 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4316 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4317
fb14de7b 4318 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4319 && ecs->event_thread->control.trap_expected
8358c15c 4320 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4321 {
4322 /* We were just starting a new sequence, attempting to
4323 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4324 Instead this signal arrives. This signal will take us out
68f53502
AC
4325 of the stepping range so GDB needs to remember to, when
4326 the signal handler returns, resume stepping off that
4327 breakpoint. */
4328 /* To simplify things, "continue" is forced to use the same
4329 code paths as single-step - set a breakpoint at the
4330 signal return address and then, once hit, step off that
4331 breakpoint. */
237fc4c9
PA
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "infrun: signal arrived while stepping over "
4335 "breakpoint\n");
d3169d93 4336
2c03e5be 4337 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4338 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4339 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4340 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4341 keep_going (ecs);
4342 return;
68f53502 4343 }
9d799f85 4344
16c381f0
JK
4345 if (ecs->event_thread->control.step_range_end != 0
4346 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4347 && (ecs->event_thread->control.step_range_start <= stop_pc
4348 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4349 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4350 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4351 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4352 {
4353 /* The inferior is about to take a signal that will take it
4354 out of the single step range. Set a breakpoint at the
4355 current PC (which is presumably where the signal handler
4356 will eventually return) and then allow the inferior to
4357 run free.
4358
4359 Note that this is only needed for a signal delivered
4360 while in the single-step range. Nested signals aren't a
4361 problem as they eventually all return. */
237fc4c9
PA
4362 if (debug_infrun)
4363 fprintf_unfiltered (gdb_stdlog,
4364 "infrun: signal may take us out of "
4365 "single-step range\n");
4366
2c03e5be 4367 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4368 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4369 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4370 keep_going (ecs);
4371 return;
d303a6c7 4372 }
9d799f85
AC
4373
4374 /* Note: step_resume_breakpoint may be non-NULL. This occures
4375 when either there's a nested signal, or when there's a
4376 pending signal enabled just as the signal handler returns
4377 (leaving the inferior at the step-resume-breakpoint without
4378 actually executing it). Either way continue until the
4379 breakpoint is really hit. */
488f131b
JB
4380 keep_going (ecs);
4381 return;
4382 }
4383
4384 /* Handle cases caused by hitting a breakpoint. */
4385 {
4386 CORE_ADDR jmp_buf_pc;
4387 struct bpstat_what what;
4388
16c381f0 4389 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4390
4391 if (what.call_dummy)
4392 {
aa7d318d 4393 stop_stack_dummy = what.call_dummy;
c5aa993b 4394 }
c906108c 4395
628fe4e4
JK
4396 /* If we hit an internal event that triggers symbol changes, the
4397 current frame will be invalidated within bpstat_what (e.g., if
4398 we hit an internal solib event). Re-fetch it. */
4399 frame = get_current_frame ();
4400 gdbarch = get_frame_arch (frame);
4401
488f131b 4402 switch (what.main_action)
c5aa993b 4403 {
488f131b 4404 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4405 /* If we hit the breakpoint at longjmp while stepping, we
4406 install a momentary breakpoint at the target of the
4407 jmp_buf. */
4408
4409 if (debug_infrun)
4410 fprintf_unfiltered (gdb_stdlog,
4411 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4412
4e1c45ea 4413 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4414
186c406b 4415 if (what.is_longjmp)
c5aa993b 4416 {
186c406b
TT
4417 if (!gdbarch_get_longjmp_target_p (gdbarch)
4418 || !gdbarch_get_longjmp_target (gdbarch,
4419 frame, &jmp_buf_pc))
4420 {
4421 if (debug_infrun)
3e43a32a
MS
4422 fprintf_unfiltered (gdb_stdlog,
4423 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4424 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4425 keep_going (ecs);
4426 return;
4427 }
488f131b 4428
186c406b
TT
4429 /* We're going to replace the current step-resume breakpoint
4430 with a longjmp-resume breakpoint. */
4431 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4432
186c406b
TT
4433 /* Insert a breakpoint at resume address. */
4434 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4435 }
4436 else
4437 {
4438 struct symbol *func = get_frame_function (frame);
c906108c 4439
186c406b
TT
4440 if (func)
4441 check_exception_resume (ecs, frame, func);
4442 }
488f131b
JB
4443 keep_going (ecs);
4444 return;
c906108c 4445
488f131b 4446 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4447 if (debug_infrun)
611c83ae
PA
4448 fprintf_unfiltered (gdb_stdlog,
4449 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4450
186c406b
TT
4451 if (what.is_longjmp)
4452 {
4453 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4454 != NULL);
4455 delete_step_resume_breakpoint (ecs->event_thread);
4456 }
4457 else
4458 {
4459 /* There are several cases to consider.
4460
4461 1. The initiating frame no longer exists. In this case
4462 we must stop, because the exception has gone too far.
4463
4464 2. The initiating frame exists, and is the same as the
4465 current frame. We stop, because the exception has been
4466 caught.
4467
4468 3. The initiating frame exists and is different from
4469 the current frame. This means the exception has been
4470 caught beneath the initiating frame, so keep going. */
4471 struct frame_info *init_frame
4472 = frame_find_by_id (ecs->event_thread->initiating_frame);
4473
4474 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4475 != NULL);
4476 delete_exception_resume_breakpoint (ecs->event_thread);
4477
4478 if (init_frame)
4479 {
4480 struct frame_id current_id
4481 = get_frame_id (get_current_frame ());
4482 if (frame_id_eq (current_id,
4483 ecs->event_thread->initiating_frame))
4484 {
4485 /* Case 2. Fall through. */
4486 }
4487 else
4488 {
4489 /* Case 3. */
4490 keep_going (ecs);
4491 return;
4492 }
4493 }
4494
4495 /* For Cases 1 and 2, remove the step-resume breakpoint,
4496 if it exists. */
4497 delete_step_resume_breakpoint (ecs->event_thread);
4498 }
611c83ae 4499
16c381f0 4500 ecs->event_thread->control.stop_step = 1;
33d62d64 4501 print_end_stepping_range_reason ();
611c83ae
PA
4502 stop_stepping (ecs);
4503 return;
488f131b
JB
4504
4505 case BPSTAT_WHAT_SINGLE:
527159b7 4506 if (debug_infrun)
8802d8ed 4507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4508 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4509 /* Still need to check other stuff, at least the case
4510 where we are stepping and step out of the right range. */
4511 break;
c906108c 4512
2c03e5be
PA
4513 case BPSTAT_WHAT_STEP_RESUME:
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4516
4517 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4518 if (ecs->event_thread->control.proceed_to_finish
4519 && execution_direction == EXEC_REVERSE)
4520 {
4521 struct thread_info *tp = ecs->event_thread;
4522
4523 /* We are finishing a function in reverse, and just hit
4524 the step-resume breakpoint at the start address of the
4525 function, and we're almost there -- just need to back
4526 up by one more single-step, which should take us back
4527 to the function call. */
4528 tp->control.step_range_start = tp->control.step_range_end = 1;
4529 keep_going (ecs);
4530 return;
4531 }
7e324e48 4532 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4533 if (stop_pc == ecs->stop_func_start
4534 && execution_direction == EXEC_REVERSE)
4535 {
4536 /* We are stepping over a function call in reverse, and
4537 just hit the step-resume breakpoint at the start
4538 address of the function. Go back to single-stepping,
4539 which should take us back to the function call. */
4540 ecs->event_thread->stepping_over_breakpoint = 1;
4541 keep_going (ecs);
4542 return;
4543 }
4544 break;
4545
488f131b 4546 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4547 if (debug_infrun)
8802d8ed 4548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4549 stop_print_frame = 1;
c906108c 4550
d303a6c7
AC
4551 /* We are about to nuke the step_resume_breakpointt via the
4552 cleanup chain, so no need to worry about it here. */
c5aa993b 4553
488f131b
JB
4554 stop_stepping (ecs);
4555 return;
c5aa993b 4556
488f131b 4557 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4558 if (debug_infrun)
8802d8ed 4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4560 stop_print_frame = 0;
c5aa993b 4561
d303a6c7
AC
4562 /* We are about to nuke the step_resume_breakpoin via the
4563 cleanup chain, so no need to worry about it here. */
c5aa993b 4564
488f131b 4565 stop_stepping (ecs);
e441088d 4566 return;
c5aa993b 4567
2c03e5be 4568 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4569 if (debug_infrun)
2c03e5be 4570 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4571
4e1c45ea
PA
4572 delete_step_resume_breakpoint (ecs->event_thread);
4573 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4574 {
4575 /* Back when the step-resume breakpoint was inserted, we
4576 were trying to single-step off a breakpoint. Go back
4577 to doing that. */
4e1c45ea
PA
4578 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4579 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4580 keep_going (ecs);
4581 return;
4582 }
488f131b
JB
4583 break;
4584
488f131b
JB
4585 case BPSTAT_WHAT_KEEP_CHECKING:
4586 break;
4587 }
4588 }
c906108c 4589
488f131b
JB
4590 /* We come here if we hit a breakpoint but should not
4591 stop for it. Possibly we also were stepping
4592 and should stop for that. So fall through and
4593 test for stepping. But, if not stepping,
4594 do not stop. */
c906108c 4595
a7212384
UW
4596 /* In all-stop mode, if we're currently stepping but have stopped in
4597 some other thread, we need to switch back to the stepped thread. */
4598 if (!non_stop)
4599 {
4600 struct thread_info *tp;
abbb1732 4601
b3444185 4602 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4603 ecs->event_thread);
4604 if (tp)
4605 {
4606 /* However, if the current thread is blocked on some internal
4607 breakpoint, and we simply need to step over that breakpoint
4608 to get it going again, do that first. */
16c381f0
JK
4609 if ((ecs->event_thread->control.trap_expected
4610 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4611 || ecs->event_thread->stepping_over_breakpoint)
4612 {
4613 keep_going (ecs);
4614 return;
4615 }
4616
66852e9c
PA
4617 /* If the stepping thread exited, then don't try to switch
4618 back and resume it, which could fail in several different
4619 ways depending on the target. Instead, just keep going.
4620
4621 We can find a stepping dead thread in the thread list in
4622 two cases:
4623
4624 - The target supports thread exit events, and when the
4625 target tries to delete the thread from the thread list,
4626 inferior_ptid pointed at the exiting thread. In such
4627 case, calling delete_thread does not really remove the
4628 thread from the list; instead, the thread is left listed,
4629 with 'exited' state.
4630
4631 - The target's debug interface does not support thread
4632 exit events, and so we have no idea whatsoever if the
4633 previously stepping thread is still alive. For that
4634 reason, we need to synchronously query the target
4635 now. */
b3444185
PA
4636 if (is_exited (tp->ptid)
4637 || !target_thread_alive (tp->ptid))
4638 {
4639 if (debug_infrun)
3e43a32a
MS
4640 fprintf_unfiltered (gdb_stdlog,
4641 "infrun: not switching back to "
4642 "stepped thread, it has vanished\n");
b3444185
PA
4643
4644 delete_thread (tp->ptid);
4645 keep_going (ecs);
4646 return;
4647 }
4648
a7212384
UW
4649 /* Otherwise, we no longer expect a trap in the current thread.
4650 Clear the trap_expected flag before switching back -- this is
4651 what keep_going would do as well, if we called it. */
16c381f0 4652 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4653
4654 if (debug_infrun)
4655 fprintf_unfiltered (gdb_stdlog,
4656 "infrun: switching back to stepped thread\n");
4657
4658 ecs->event_thread = tp;
4659 ecs->ptid = tp->ptid;
4660 context_switch (ecs->ptid);
4661 keep_going (ecs);
4662 return;
4663 }
4664 }
4665
8358c15c 4666 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4667 {
527159b7 4668 if (debug_infrun)
d3169d93
DJ
4669 fprintf_unfiltered (gdb_stdlog,
4670 "infrun: step-resume breakpoint is inserted\n");
527159b7 4671
488f131b
JB
4672 /* Having a step-resume breakpoint overrides anything
4673 else having to do with stepping commands until
4674 that breakpoint is reached. */
488f131b
JB
4675 keep_going (ecs);
4676 return;
4677 }
c5aa993b 4678
16c381f0 4679 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4680 {
527159b7 4681 if (debug_infrun)
8a9de0e4 4682 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4683 /* Likewise if we aren't even stepping. */
488f131b
JB
4684 keep_going (ecs);
4685 return;
4686 }
c5aa993b 4687
4b7703ad
JB
4688 /* Re-fetch current thread's frame in case the code above caused
4689 the frame cache to be re-initialized, making our FRAME variable
4690 a dangling pointer. */
4691 frame = get_current_frame ();
628fe4e4 4692 gdbarch = get_frame_arch (frame);
7e324e48 4693 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4694
488f131b 4695 /* If stepping through a line, keep going if still within it.
c906108c 4696
488f131b
JB
4697 Note that step_range_end is the address of the first instruction
4698 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4699 within it!
4700
4701 Note also that during reverse execution, we may be stepping
4702 through a function epilogue and therefore must detect when
4703 the current-frame changes in the middle of a line. */
4704
16c381f0
JK
4705 if (stop_pc >= ecs->event_thread->control.step_range_start
4706 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4707 && (execution_direction != EXEC_REVERSE
388a8562 4708 || frame_id_eq (get_frame_id (frame),
16c381f0 4709 ecs->event_thread->control.step_frame_id)))
488f131b 4710 {
527159b7 4711 if (debug_infrun)
5af949e3
UW
4712 fprintf_unfiltered
4713 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4714 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4715 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4716
4717 /* When stepping backward, stop at beginning of line range
4718 (unless it's the function entry point, in which case
4719 keep going back to the call point). */
16c381f0 4720 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4721 && stop_pc != ecs->stop_func_start
4722 && execution_direction == EXEC_REVERSE)
4723 {
16c381f0 4724 ecs->event_thread->control.stop_step = 1;
33d62d64 4725 print_end_stepping_range_reason ();
b2175913
MS
4726 stop_stepping (ecs);
4727 }
4728 else
4729 keep_going (ecs);
4730
488f131b
JB
4731 return;
4732 }
c5aa993b 4733
488f131b 4734 /* We stepped out of the stepping range. */
c906108c 4735
488f131b 4736 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4737 loader dynamic symbol resolution code...
4738
4739 EXEC_FORWARD: we keep on single stepping until we exit the run
4740 time loader code and reach the callee's address.
4741
4742 EXEC_REVERSE: we've already executed the callee (backward), and
4743 the runtime loader code is handled just like any other
4744 undebuggable function call. Now we need only keep stepping
4745 backward through the trampoline code, and that's handled further
4746 down, so there is nothing for us to do here. */
4747
4748 if (execution_direction != EXEC_REVERSE
16c381f0 4749 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4750 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4751 {
4c8c40e6 4752 CORE_ADDR pc_after_resolver =
568d6575 4753 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4754
527159b7 4755 if (debug_infrun)
3e43a32a
MS
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: stepped into dynsym resolve code\n");
527159b7 4758
488f131b
JB
4759 if (pc_after_resolver)
4760 {
4761 /* Set up a step-resume breakpoint at the address
4762 indicated by SKIP_SOLIB_RESOLVER. */
4763 struct symtab_and_line sr_sal;
abbb1732 4764
fe39c653 4765 init_sal (&sr_sal);
488f131b 4766 sr_sal.pc = pc_after_resolver;
6c95b8df 4767 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4768
a6d9a66e
UW
4769 insert_step_resume_breakpoint_at_sal (gdbarch,
4770 sr_sal, null_frame_id);
c5aa993b 4771 }
c906108c 4772
488f131b
JB
4773 keep_going (ecs);
4774 return;
4775 }
c906108c 4776
16c381f0
JK
4777 if (ecs->event_thread->control.step_range_end != 1
4778 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4779 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4780 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4781 {
527159b7 4782 if (debug_infrun)
3e43a32a
MS
4783 fprintf_unfiltered (gdb_stdlog,
4784 "infrun: stepped into signal trampoline\n");
42edda50 4785 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4786 a signal trampoline (either by a signal being delivered or by
4787 the signal handler returning). Just single-step until the
4788 inferior leaves the trampoline (either by calling the handler
4789 or returning). */
488f131b
JB
4790 keep_going (ecs);
4791 return;
4792 }
c906108c 4793
c17eaafe
DJ
4794 /* Check for subroutine calls. The check for the current frame
4795 equalling the step ID is not necessary - the check of the
4796 previous frame's ID is sufficient - but it is a common case and
4797 cheaper than checking the previous frame's ID.
14e60db5
DJ
4798
4799 NOTE: frame_id_eq will never report two invalid frame IDs as
4800 being equal, so to get into this block, both the current and
4801 previous frame must have valid frame IDs. */
005ca36a
JB
4802 /* The outer_frame_id check is a heuristic to detect stepping
4803 through startup code. If we step over an instruction which
4804 sets the stack pointer from an invalid value to a valid value,
4805 we may detect that as a subroutine call from the mythical
4806 "outermost" function. This could be fixed by marking
4807 outermost frames as !stack_p,code_p,special_p. Then the
4808 initial outermost frame, before sp was valid, would
ce6cca6d 4809 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4810 for more. */
edb3359d 4811 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4812 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4813 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4814 ecs->event_thread->control.step_stack_frame_id)
4815 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4816 outer_frame_id)
4817 || step_start_function != find_pc_function (stop_pc))))
488f131b 4818 {
95918acb 4819 CORE_ADDR real_stop_pc;
8fb3e588 4820
527159b7 4821 if (debug_infrun)
8a9de0e4 4822 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4823
16c381f0
JK
4824 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4825 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4826 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4827 ecs->stop_func_start)))
95918acb
AC
4828 {
4829 /* I presume that step_over_calls is only 0 when we're
4830 supposed to be stepping at the assembly language level
4831 ("stepi"). Just stop. */
4832 /* Also, maybe we just did a "nexti" inside a prolog, so we
4833 thought it was a subroutine call but it was not. Stop as
4834 well. FENN */
388a8562 4835 /* And this works the same backward as frontward. MVS */
16c381f0 4836 ecs->event_thread->control.stop_step = 1;
33d62d64 4837 print_end_stepping_range_reason ();
95918acb
AC
4838 stop_stepping (ecs);
4839 return;
4840 }
8fb3e588 4841
388a8562
MS
4842 /* Reverse stepping through solib trampolines. */
4843
4844 if (execution_direction == EXEC_REVERSE
16c381f0 4845 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4846 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4847 || (ecs->stop_func_start == 0
4848 && in_solib_dynsym_resolve_code (stop_pc))))
4849 {
4850 /* Any solib trampoline code can be handled in reverse
4851 by simply continuing to single-step. We have already
4852 executed the solib function (backwards), and a few
4853 steps will take us back through the trampoline to the
4854 caller. */
4855 keep_going (ecs);
4856 return;
4857 }
4858
16c381f0 4859 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4860 {
b2175913
MS
4861 /* We're doing a "next".
4862
4863 Normal (forward) execution: set a breakpoint at the
4864 callee's return address (the address at which the caller
4865 will resume).
4866
4867 Reverse (backward) execution. set the step-resume
4868 breakpoint at the start of the function that we just
4869 stepped into (backwards), and continue to there. When we
6130d0b7 4870 get there, we'll need to single-step back to the caller. */
b2175913
MS
4871
4872 if (execution_direction == EXEC_REVERSE)
4873 {
4874 struct symtab_and_line sr_sal;
3067f6e5 4875
388a8562
MS
4876 /* Normal function call return (static or dynamic). */
4877 init_sal (&sr_sal);
4878 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4879 sr_sal.pspace = get_frame_program_space (frame);
4880 insert_step_resume_breakpoint_at_sal (gdbarch,
4881 sr_sal, null_frame_id);
b2175913
MS
4882 }
4883 else
568d6575 4884 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4885
8567c30f
AC
4886 keep_going (ecs);
4887 return;
4888 }
a53c66de 4889
95918acb 4890 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4891 calling routine and the real function), locate the real
4892 function. That's what tells us (a) whether we want to step
4893 into it at all, and (b) what prologue we want to run to the
4894 end of, if we do step into it. */
568d6575 4895 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4896 if (real_stop_pc == 0)
568d6575 4897 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4898 if (real_stop_pc != 0)
4899 ecs->stop_func_start = real_stop_pc;
8fb3e588 4900
db5f024e 4901 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4902 {
4903 struct symtab_and_line sr_sal;
abbb1732 4904
1b2bfbb9
RC
4905 init_sal (&sr_sal);
4906 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4907 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4908
a6d9a66e
UW
4909 insert_step_resume_breakpoint_at_sal (gdbarch,
4910 sr_sal, null_frame_id);
8fb3e588
AC
4911 keep_going (ecs);
4912 return;
1b2bfbb9
RC
4913 }
4914
95918acb 4915 /* If we have line number information for the function we are
1bfeeb0f
JL
4916 thinking of stepping into and the function isn't on the skip
4917 list, step into it.
95918acb 4918
8fb3e588
AC
4919 If there are several symtabs at that PC (e.g. with include
4920 files), just want to know whether *any* of them have line
4921 numbers. find_pc_line handles this. */
95918acb
AC
4922 {
4923 struct symtab_and_line tmp_sal;
8fb3e588 4924
95918acb 4925 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4926 if (tmp_sal.line != 0
4927 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4928 {
b2175913 4929 if (execution_direction == EXEC_REVERSE)
568d6575 4930 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4931 else
568d6575 4932 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4933 return;
4934 }
4935 }
4936
4937 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4938 set, we stop the step so that the user has a chance to switch
4939 in assembly mode. */
16c381f0 4940 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4941 && step_stop_if_no_debug)
95918acb 4942 {
16c381f0 4943 ecs->event_thread->control.stop_step = 1;
33d62d64 4944 print_end_stepping_range_reason ();
95918acb
AC
4945 stop_stepping (ecs);
4946 return;
4947 }
4948
b2175913
MS
4949 if (execution_direction == EXEC_REVERSE)
4950 {
4951 /* Set a breakpoint at callee's start address.
4952 From there we can step once and be back in the caller. */
4953 struct symtab_and_line sr_sal;
abbb1732 4954
b2175913
MS
4955 init_sal (&sr_sal);
4956 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4957 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4958 insert_step_resume_breakpoint_at_sal (gdbarch,
4959 sr_sal, null_frame_id);
b2175913
MS
4960 }
4961 else
4962 /* Set a breakpoint at callee's return address (the address
4963 at which the caller will resume). */
568d6575 4964 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4965
95918acb 4966 keep_going (ecs);
488f131b 4967 return;
488f131b 4968 }
c906108c 4969
fdd654f3
MS
4970 /* Reverse stepping through solib trampolines. */
4971
4972 if (execution_direction == EXEC_REVERSE
16c381f0 4973 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4974 {
4975 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4976 || (ecs->stop_func_start == 0
4977 && in_solib_dynsym_resolve_code (stop_pc)))
4978 {
4979 /* Any solib trampoline code can be handled in reverse
4980 by simply continuing to single-step. We have already
4981 executed the solib function (backwards), and a few
4982 steps will take us back through the trampoline to the
4983 caller. */
4984 keep_going (ecs);
4985 return;
4986 }
4987 else if (in_solib_dynsym_resolve_code (stop_pc))
4988 {
4989 /* Stepped backward into the solib dynsym resolver.
4990 Set a breakpoint at its start and continue, then
4991 one more step will take us out. */
4992 struct symtab_and_line sr_sal;
abbb1732 4993
fdd654f3
MS
4994 init_sal (&sr_sal);
4995 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4996 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4997 insert_step_resume_breakpoint_at_sal (gdbarch,
4998 sr_sal, null_frame_id);
4999 keep_going (ecs);
5000 return;
5001 }
5002 }
5003
488f131b
JB
5004 /* If we're in the return path from a shared library trampoline,
5005 we want to proceed through the trampoline when stepping. */
568d6575 5006 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 5007 stop_pc, ecs->stop_func_name))
488f131b 5008 {
488f131b 5009 /* Determine where this trampoline returns. */
52f729a7 5010 CORE_ADDR real_stop_pc;
abbb1732 5011
568d6575 5012 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5013
527159b7 5014 if (debug_infrun)
3e43a32a
MS
5015 fprintf_unfiltered (gdb_stdlog,
5016 "infrun: stepped into solib return tramp\n");
527159b7 5017
488f131b 5018 /* Only proceed through if we know where it's going. */
d764a824 5019 if (real_stop_pc)
488f131b 5020 {
1777feb0 5021 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5022 struct symtab_and_line sr_sal;
5023
fe39c653 5024 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5025 sr_sal.pc = real_stop_pc;
488f131b 5026 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5027 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5028
5029 /* Do not specify what the fp should be when we stop since
5030 on some machines the prologue is where the new fp value
5031 is established. */
a6d9a66e
UW
5032 insert_step_resume_breakpoint_at_sal (gdbarch,
5033 sr_sal, null_frame_id);
c906108c 5034
488f131b
JB
5035 /* Restart without fiddling with the step ranges or
5036 other state. */
5037 keep_going (ecs);
5038 return;
5039 }
5040 }
c906108c 5041
2afb61aa 5042 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5043
1b2bfbb9
RC
5044 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5045 the trampoline processing logic, however, there are some trampolines
5046 that have no names, so we should do trampoline handling first. */
16c381f0 5047 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5048 && ecs->stop_func_name == NULL
2afb61aa 5049 && stop_pc_sal.line == 0)
1b2bfbb9 5050 {
527159b7 5051 if (debug_infrun)
3e43a32a
MS
5052 fprintf_unfiltered (gdb_stdlog,
5053 "infrun: stepped into undebuggable function\n");
527159b7 5054
1b2bfbb9 5055 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5056 undebuggable function (where there is no debugging information
5057 and no line number corresponding to the address where the
1b2bfbb9
RC
5058 inferior stopped). Since we want to skip this kind of code,
5059 we keep going until the inferior returns from this
14e60db5
DJ
5060 function - unless the user has asked us not to (via
5061 set step-mode) or we no longer know how to get back
5062 to the call site. */
5063 if (step_stop_if_no_debug
c7ce8faa 5064 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5065 {
5066 /* If we have no line number and the step-stop-if-no-debug
5067 is set, we stop the step so that the user has a chance to
5068 switch in assembly mode. */
16c381f0 5069 ecs->event_thread->control.stop_step = 1;
33d62d64 5070 print_end_stepping_range_reason ();
1b2bfbb9
RC
5071 stop_stepping (ecs);
5072 return;
5073 }
5074 else
5075 {
5076 /* Set a breakpoint at callee's return address (the address
5077 at which the caller will resume). */
568d6575 5078 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5079 keep_going (ecs);
5080 return;
5081 }
5082 }
5083
16c381f0 5084 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5085 {
5086 /* It is stepi or nexti. We always want to stop stepping after
5087 one instruction. */
527159b7 5088 if (debug_infrun)
8a9de0e4 5089 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5090 ecs->event_thread->control.stop_step = 1;
33d62d64 5091 print_end_stepping_range_reason ();
1b2bfbb9
RC
5092 stop_stepping (ecs);
5093 return;
5094 }
5095
2afb61aa 5096 if (stop_pc_sal.line == 0)
488f131b
JB
5097 {
5098 /* We have no line number information. That means to stop
5099 stepping (does this always happen right after one instruction,
5100 when we do "s" in a function with no line numbers,
5101 or can this happen as a result of a return or longjmp?). */
527159b7 5102 if (debug_infrun)
8a9de0e4 5103 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5104 ecs->event_thread->control.stop_step = 1;
33d62d64 5105 print_end_stepping_range_reason ();
488f131b
JB
5106 stop_stepping (ecs);
5107 return;
5108 }
c906108c 5109
edb3359d
DJ
5110 /* Look for "calls" to inlined functions, part one. If the inline
5111 frame machinery detected some skipped call sites, we have entered
5112 a new inline function. */
5113
5114 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5115 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5116 && inline_skipped_frames (ecs->ptid))
5117 {
5118 struct symtab_and_line call_sal;
5119
5120 if (debug_infrun)
5121 fprintf_unfiltered (gdb_stdlog,
5122 "infrun: stepped into inlined function\n");
5123
5124 find_frame_sal (get_current_frame (), &call_sal);
5125
16c381f0 5126 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5127 {
5128 /* For "step", we're going to stop. But if the call site
5129 for this inlined function is on the same source line as
5130 we were previously stepping, go down into the function
5131 first. Otherwise stop at the call site. */
5132
5133 if (call_sal.line == ecs->event_thread->current_line
5134 && call_sal.symtab == ecs->event_thread->current_symtab)
5135 step_into_inline_frame (ecs->ptid);
5136
16c381f0 5137 ecs->event_thread->control.stop_step = 1;
33d62d64 5138 print_end_stepping_range_reason ();
edb3359d
DJ
5139 stop_stepping (ecs);
5140 return;
5141 }
5142 else
5143 {
5144 /* For "next", we should stop at the call site if it is on a
5145 different source line. Otherwise continue through the
5146 inlined function. */
5147 if (call_sal.line == ecs->event_thread->current_line
5148 && call_sal.symtab == ecs->event_thread->current_symtab)
5149 keep_going (ecs);
5150 else
5151 {
16c381f0 5152 ecs->event_thread->control.stop_step = 1;
33d62d64 5153 print_end_stepping_range_reason ();
edb3359d
DJ
5154 stop_stepping (ecs);
5155 }
5156 return;
5157 }
5158 }
5159
5160 /* Look for "calls" to inlined functions, part two. If we are still
5161 in the same real function we were stepping through, but we have
5162 to go further up to find the exact frame ID, we are stepping
5163 through a more inlined call beyond its call site. */
5164
5165 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5166 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5167 ecs->event_thread->control.step_frame_id)
edb3359d 5168 && stepped_in_from (get_current_frame (),
16c381f0 5169 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5170 {
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog,
5173 "infrun: stepping through inlined function\n");
5174
16c381f0 5175 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5176 keep_going (ecs);
5177 else
5178 {
16c381f0 5179 ecs->event_thread->control.stop_step = 1;
33d62d64 5180 print_end_stepping_range_reason ();
edb3359d
DJ
5181 stop_stepping (ecs);
5182 }
5183 return;
5184 }
5185
2afb61aa 5186 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5187 && (ecs->event_thread->current_line != stop_pc_sal.line
5188 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5189 {
5190 /* We are at the start of a different line. So stop. Note that
5191 we don't stop if we step into the middle of a different line.
5192 That is said to make things like for (;;) statements work
5193 better. */
527159b7 5194 if (debug_infrun)
3e43a32a
MS
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: stepped to a different line\n");
16c381f0 5197 ecs->event_thread->control.stop_step = 1;
33d62d64 5198 print_end_stepping_range_reason ();
488f131b
JB
5199 stop_stepping (ecs);
5200 return;
5201 }
c906108c 5202
488f131b 5203 /* We aren't done stepping.
c906108c 5204
488f131b
JB
5205 Optimize by setting the stepping range to the line.
5206 (We might not be in the original line, but if we entered a
5207 new line in mid-statement, we continue stepping. This makes
5208 things like for(;;) statements work better.) */
c906108c 5209
16c381f0
JK
5210 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5211 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5212 set_step_info (frame, stop_pc_sal);
488f131b 5213
527159b7 5214 if (debug_infrun)
8a9de0e4 5215 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5216 keep_going (ecs);
104c1213
JM
5217}
5218
b3444185 5219/* Is thread TP in the middle of single-stepping? */
104c1213 5220
a289b8f6 5221static int
b3444185 5222currently_stepping (struct thread_info *tp)
a7212384 5223{
8358c15c
JK
5224 return ((tp->control.step_range_end
5225 && tp->control.step_resume_breakpoint == NULL)
5226 || tp->control.trap_expected
8358c15c 5227 || bpstat_should_step ());
a7212384
UW
5228}
5229
b3444185
PA
5230/* Returns true if any thread *but* the one passed in "data" is in the
5231 middle of stepping or of handling a "next". */
a7212384 5232
104c1213 5233static int
b3444185 5234currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5235{
b3444185
PA
5236 if (tp == data)
5237 return 0;
5238
16c381f0 5239 return (tp->control.step_range_end
ede1849f 5240 || tp->control.trap_expected);
104c1213 5241}
c906108c 5242
b2175913
MS
5243/* Inferior has stepped into a subroutine call with source code that
5244 we should not step over. Do step to the first line of code in
5245 it. */
c2c6d25f
JM
5246
5247static void
568d6575
UW
5248handle_step_into_function (struct gdbarch *gdbarch,
5249 struct execution_control_state *ecs)
c2c6d25f
JM
5250{
5251 struct symtab *s;
2afb61aa 5252 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5253
7e324e48
GB
5254 fill_in_stop_func (gdbarch, ecs);
5255
c2c6d25f
JM
5256 s = find_pc_symtab (stop_pc);
5257 if (s && s->language != language_asm)
568d6575 5258 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5259 ecs->stop_func_start);
c2c6d25f 5260
2afb61aa 5261 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5262 /* Use the step_resume_break to step until the end of the prologue,
5263 even if that involves jumps (as it seems to on the vax under
5264 4.2). */
5265 /* If the prologue ends in the middle of a source line, continue to
5266 the end of that source line (if it is still within the function).
5267 Otherwise, just go to end of prologue. */
2afb61aa
PA
5268 if (stop_func_sal.end
5269 && stop_func_sal.pc != ecs->stop_func_start
5270 && stop_func_sal.end < ecs->stop_func_end)
5271 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5272
2dbd5e30
KB
5273 /* Architectures which require breakpoint adjustment might not be able
5274 to place a breakpoint at the computed address. If so, the test
5275 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5276 ecs->stop_func_start to an address at which a breakpoint may be
5277 legitimately placed.
8fb3e588 5278
2dbd5e30
KB
5279 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5280 made, GDB will enter an infinite loop when stepping through
5281 optimized code consisting of VLIW instructions which contain
5282 subinstructions corresponding to different source lines. On
5283 FR-V, it's not permitted to place a breakpoint on any but the
5284 first subinstruction of a VLIW instruction. When a breakpoint is
5285 set, GDB will adjust the breakpoint address to the beginning of
5286 the VLIW instruction. Thus, we need to make the corresponding
5287 adjustment here when computing the stop address. */
8fb3e588 5288
568d6575 5289 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5290 {
5291 ecs->stop_func_start
568d6575 5292 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5293 ecs->stop_func_start);
2dbd5e30
KB
5294 }
5295
c2c6d25f
JM
5296 if (ecs->stop_func_start == stop_pc)
5297 {
5298 /* We are already there: stop now. */
16c381f0 5299 ecs->event_thread->control.stop_step = 1;
33d62d64 5300 print_end_stepping_range_reason ();
c2c6d25f
JM
5301 stop_stepping (ecs);
5302 return;
5303 }
5304 else
5305 {
5306 /* Put the step-breakpoint there and go until there. */
fe39c653 5307 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5308 sr_sal.pc = ecs->stop_func_start;
5309 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5310 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5311
c2c6d25f 5312 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5313 some machines the prologue is where the new fp value is
5314 established. */
a6d9a66e 5315 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5316
5317 /* And make sure stepping stops right away then. */
16c381f0
JK
5318 ecs->event_thread->control.step_range_end
5319 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5320 }
5321 keep_going (ecs);
5322}
d4f3574e 5323
b2175913
MS
5324/* Inferior has stepped backward into a subroutine call with source
5325 code that we should not step over. Do step to the beginning of the
5326 last line of code in it. */
5327
5328static void
568d6575
UW
5329handle_step_into_function_backward (struct gdbarch *gdbarch,
5330 struct execution_control_state *ecs)
b2175913
MS
5331{
5332 struct symtab *s;
167e4384 5333 struct symtab_and_line stop_func_sal;
b2175913 5334
7e324e48
GB
5335 fill_in_stop_func (gdbarch, ecs);
5336
b2175913
MS
5337 s = find_pc_symtab (stop_pc);
5338 if (s && s->language != language_asm)
568d6575 5339 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5340 ecs->stop_func_start);
5341
5342 stop_func_sal = find_pc_line (stop_pc, 0);
5343
5344 /* OK, we're just going to keep stepping here. */
5345 if (stop_func_sal.pc == stop_pc)
5346 {
5347 /* We're there already. Just stop stepping now. */
16c381f0 5348 ecs->event_thread->control.stop_step = 1;
33d62d64 5349 print_end_stepping_range_reason ();
b2175913
MS
5350 stop_stepping (ecs);
5351 }
5352 else
5353 {
5354 /* Else just reset the step range and keep going.
5355 No step-resume breakpoint, they don't work for
5356 epilogues, which can have multiple entry paths. */
16c381f0
JK
5357 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5358 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5359 keep_going (ecs);
5360 }
5361 return;
5362}
5363
d3169d93 5364/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5365 This is used to both functions and to skip over code. */
5366
5367static void
2c03e5be
PA
5368insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5369 struct symtab_and_line sr_sal,
5370 struct frame_id sr_id,
5371 enum bptype sr_type)
44cbf7b5 5372{
611c83ae
PA
5373 /* There should never be more than one step-resume or longjmp-resume
5374 breakpoint per thread, so we should never be setting a new
44cbf7b5 5375 step_resume_breakpoint when one is already active. */
8358c15c 5376 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5377 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5378
5379 if (debug_infrun)
5380 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5381 "infrun: inserting step-resume breakpoint at %s\n",
5382 paddress (gdbarch, sr_sal.pc));
d3169d93 5383
8358c15c 5384 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5385 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5386}
5387
9da8c2a0 5388void
2c03e5be
PA
5389insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5390 struct symtab_and_line sr_sal,
5391 struct frame_id sr_id)
5392{
5393 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5394 sr_sal, sr_id,
5395 bp_step_resume);
44cbf7b5 5396}
7ce450bd 5397
2c03e5be
PA
5398/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5399 This is used to skip a potential signal handler.
7ce450bd 5400
14e60db5
DJ
5401 This is called with the interrupted function's frame. The signal
5402 handler, when it returns, will resume the interrupted function at
5403 RETURN_FRAME.pc. */
d303a6c7
AC
5404
5405static void
2c03e5be 5406insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5407{
5408 struct symtab_and_line sr_sal;
a6d9a66e 5409 struct gdbarch *gdbarch;
d303a6c7 5410
f4c1edd8 5411 gdb_assert (return_frame != NULL);
d303a6c7
AC
5412 init_sal (&sr_sal); /* initialize to zeros */
5413
a6d9a66e 5414 gdbarch = get_frame_arch (return_frame);
568d6575 5415 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5416 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5417 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5418
2c03e5be
PA
5419 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5420 get_stack_frame_id (return_frame),
5421 bp_hp_step_resume);
d303a6c7
AC
5422}
5423
2c03e5be
PA
5424/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5425 is used to skip a function after stepping into it (for "next" or if
5426 the called function has no debugging information).
14e60db5
DJ
5427
5428 The current function has almost always been reached by single
5429 stepping a call or return instruction. NEXT_FRAME belongs to the
5430 current function, and the breakpoint will be set at the caller's
5431 resume address.
5432
5433 This is a separate function rather than reusing
2c03e5be 5434 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5435 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5436 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5437
5438static void
5439insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5440{
5441 struct symtab_and_line sr_sal;
a6d9a66e 5442 struct gdbarch *gdbarch;
14e60db5
DJ
5443
5444 /* We shouldn't have gotten here if we don't know where the call site
5445 is. */
c7ce8faa 5446 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5447
5448 init_sal (&sr_sal); /* initialize to zeros */
5449
a6d9a66e 5450 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5451 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5452 frame_unwind_caller_pc (next_frame));
14e60db5 5453 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5454 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5455
a6d9a66e 5456 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5457 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5458}
5459
611c83ae
PA
5460/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5461 new breakpoint at the target of a jmp_buf. The handling of
5462 longjmp-resume uses the same mechanisms used for handling
5463 "step-resume" breakpoints. */
5464
5465static void
a6d9a66e 5466insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5467{
5468 /* There should never be more than one step-resume or longjmp-resume
5469 breakpoint per thread, so we should never be setting a new
5470 longjmp_resume_breakpoint when one is already active. */
8358c15c 5471 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5472
5473 if (debug_infrun)
5474 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5475 "infrun: inserting longjmp-resume breakpoint at %s\n",
5476 paddress (gdbarch, pc));
611c83ae 5477
8358c15c 5478 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5479 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5480}
5481
186c406b
TT
5482/* Insert an exception resume breakpoint. TP is the thread throwing
5483 the exception. The block B is the block of the unwinder debug hook
5484 function. FRAME is the frame corresponding to the call to this
5485 function. SYM is the symbol of the function argument holding the
5486 target PC of the exception. */
5487
5488static void
5489insert_exception_resume_breakpoint (struct thread_info *tp,
5490 struct block *b,
5491 struct frame_info *frame,
5492 struct symbol *sym)
5493{
bfd189b1 5494 volatile struct gdb_exception e;
186c406b
TT
5495
5496 /* We want to ignore errors here. */
5497 TRY_CATCH (e, RETURN_MASK_ERROR)
5498 {
5499 struct symbol *vsym;
5500 struct value *value;
5501 CORE_ADDR handler;
5502 struct breakpoint *bp;
5503
5504 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5505 value = read_var_value (vsym, frame);
5506 /* If the value was optimized out, revert to the old behavior. */
5507 if (! value_optimized_out (value))
5508 {
5509 handler = value_as_address (value);
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: exception resume at %lx\n",
5514 (unsigned long) handler);
5515
5516 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5517 handler, bp_exception_resume);
5518 bp->thread = tp->num;
5519 inferior_thread ()->control.exception_resume_breakpoint = bp;
5520 }
5521 }
5522}
5523
5524/* This is called when an exception has been intercepted. Check to
5525 see whether the exception's destination is of interest, and if so,
5526 set an exception resume breakpoint there. */
5527
5528static void
5529check_exception_resume (struct execution_control_state *ecs,
5530 struct frame_info *frame, struct symbol *func)
5531{
bfd189b1 5532 volatile struct gdb_exception e;
186c406b
TT
5533
5534 TRY_CATCH (e, RETURN_MASK_ERROR)
5535 {
5536 struct block *b;
5537 struct dict_iterator iter;
5538 struct symbol *sym;
5539 int argno = 0;
5540
5541 /* The exception breakpoint is a thread-specific breakpoint on
5542 the unwinder's debug hook, declared as:
5543
5544 void _Unwind_DebugHook (void *cfa, void *handler);
5545
5546 The CFA argument indicates the frame to which control is
5547 about to be transferred. HANDLER is the destination PC.
5548
5549 We ignore the CFA and set a temporary breakpoint at HANDLER.
5550 This is not extremely efficient but it avoids issues in gdb
5551 with computing the DWARF CFA, and it also works even in weird
5552 cases such as throwing an exception from inside a signal
5553 handler. */
5554
5555 b = SYMBOL_BLOCK_VALUE (func);
5556 ALL_BLOCK_SYMBOLS (b, iter, sym)
5557 {
5558 if (!SYMBOL_IS_ARGUMENT (sym))
5559 continue;
5560
5561 if (argno == 0)
5562 ++argno;
5563 else
5564 {
5565 insert_exception_resume_breakpoint (ecs->event_thread,
5566 b, frame, sym);
5567 break;
5568 }
5569 }
5570 }
5571}
5572
104c1213
JM
5573static void
5574stop_stepping (struct execution_control_state *ecs)
5575{
527159b7 5576 if (debug_infrun)
8a9de0e4 5577 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5578
cd0fc7c3
SS
5579 /* Let callers know we don't want to wait for the inferior anymore. */
5580 ecs->wait_some_more = 0;
5581}
5582
d4f3574e
SS
5583/* This function handles various cases where we need to continue
5584 waiting for the inferior. */
1777feb0 5585/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5586
5587static void
5588keep_going (struct execution_control_state *ecs)
5589{
c4dbc9af
PA
5590 /* Make sure normal_stop is called if we get a QUIT handled before
5591 reaching resume. */
5592 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5593
d4f3574e 5594 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5595 ecs->event_thread->prev_pc
5596 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5597
d4f3574e
SS
5598 /* If we did not do break;, it means we should keep running the
5599 inferior and not return to debugger. */
5600
16c381f0
JK
5601 if (ecs->event_thread->control.trap_expected
5602 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5603 {
5604 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5605 the inferior, else we'd not get here) and we haven't yet
5606 gotten our trap. Simply continue. */
c4dbc9af
PA
5607
5608 discard_cleanups (old_cleanups);
2020b7ab 5609 resume (currently_stepping (ecs->event_thread),
16c381f0 5610 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5611 }
5612 else
5613 {
5614 /* Either the trap was not expected, but we are continuing
488f131b
JB
5615 anyway (the user asked that this signal be passed to the
5616 child)
5617 -- or --
5618 The signal was SIGTRAP, e.g. it was our signal, but we
5619 decided we should resume from it.
d4f3574e 5620
c36b740a 5621 We're going to run this baby now!
d4f3574e 5622
c36b740a
VP
5623 Note that insert_breakpoints won't try to re-insert
5624 already inserted breakpoints. Therefore, we don't
5625 care if breakpoints were already inserted, or not. */
5626
4e1c45ea 5627 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5628 {
9f5a595d 5629 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5630
9f5a595d 5631 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5632 /* Since we can't do a displaced step, we have to remove
5633 the breakpoint while we step it. To keep things
5634 simple, we remove them all. */
5635 remove_breakpoints ();
45e8c884
VP
5636 }
5637 else
d4f3574e 5638 {
bfd189b1 5639 volatile struct gdb_exception e;
abbb1732 5640
569631c6
UW
5641 /* Stop stepping when inserting breakpoints
5642 has failed. */
e236ba44
VP
5643 TRY_CATCH (e, RETURN_MASK_ERROR)
5644 {
5645 insert_breakpoints ();
5646 }
5647 if (e.reason < 0)
d4f3574e 5648 {
97bd5475 5649 exception_print (gdb_stderr, e);
d4f3574e
SS
5650 stop_stepping (ecs);
5651 return;
5652 }
d4f3574e
SS
5653 }
5654
16c381f0
JK
5655 ecs->event_thread->control.trap_expected
5656 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5657
5658 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5659 specifies that such a signal should be delivered to the
5660 target program).
5661
5662 Typically, this would occure when a user is debugging a
5663 target monitor on a simulator: the target monitor sets a
5664 breakpoint; the simulator encounters this break-point and
5665 halts the simulation handing control to GDB; GDB, noteing
5666 that the break-point isn't valid, returns control back to the
5667 simulator; the simulator then delivers the hardware
1777feb0 5668 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5669
16c381f0
JK
5670 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5671 && !signal_program[ecs->event_thread->suspend.stop_signal])
5672 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5673
c4dbc9af 5674 discard_cleanups (old_cleanups);
2020b7ab 5675 resume (currently_stepping (ecs->event_thread),
16c381f0 5676 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5677 }
5678
488f131b 5679 prepare_to_wait (ecs);
d4f3574e
SS
5680}
5681
104c1213
JM
5682/* This function normally comes after a resume, before
5683 handle_inferior_event exits. It takes care of any last bits of
5684 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5685
104c1213
JM
5686static void
5687prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5688{
527159b7 5689 if (debug_infrun)
8a9de0e4 5690 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5691
104c1213
JM
5692 /* This is the old end of the while loop. Let everybody know we
5693 want to wait for the inferior some more and get called again
5694 soon. */
5695 ecs->wait_some_more = 1;
c906108c 5696}
11cf8741 5697
33d62d64
JK
5698/* Several print_*_reason functions to print why the inferior has stopped.
5699 We always print something when the inferior exits, or receives a signal.
5700 The rest of the cases are dealt with later on in normal_stop and
5701 print_it_typical. Ideally there should be a call to one of these
5702 print_*_reason functions functions from handle_inferior_event each time
5703 stop_stepping is called. */
5704
5705/* Print why the inferior has stopped.
5706 We are done with a step/next/si/ni command, print why the inferior has
5707 stopped. For now print nothing. Print a message only if not in the middle
5708 of doing a "step n" operation for n > 1. */
5709
5710static void
5711print_end_stepping_range_reason (void)
5712{
16c381f0
JK
5713 if ((!inferior_thread ()->step_multi
5714 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5715 && ui_out_is_mi_like_p (current_uiout))
5716 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5717 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5718}
5719
5720/* The inferior was terminated by a signal, print why it stopped. */
5721
11cf8741 5722static void
33d62d64 5723print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5724{
79a45e25
PA
5725 struct ui_out *uiout = current_uiout;
5726
33d62d64
JK
5727 annotate_signalled ();
5728 if (ui_out_is_mi_like_p (uiout))
5729 ui_out_field_string
5730 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5731 ui_out_text (uiout, "\nProgram terminated with signal ");
5732 annotate_signal_name ();
5733 ui_out_field_string (uiout, "signal-name",
5734 target_signal_to_name (siggnal));
5735 annotate_signal_name_end ();
5736 ui_out_text (uiout, ", ");
5737 annotate_signal_string ();
5738 ui_out_field_string (uiout, "signal-meaning",
5739 target_signal_to_string (siggnal));
5740 annotate_signal_string_end ();
5741 ui_out_text (uiout, ".\n");
5742 ui_out_text (uiout, "The program no longer exists.\n");
5743}
5744
5745/* The inferior program is finished, print why it stopped. */
5746
5747static void
5748print_exited_reason (int exitstatus)
5749{
fda326dd
TT
5750 struct inferior *inf = current_inferior ();
5751 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5752 struct ui_out *uiout = current_uiout;
fda326dd 5753
33d62d64
JK
5754 annotate_exited (exitstatus);
5755 if (exitstatus)
5756 {
5757 if (ui_out_is_mi_like_p (uiout))
5758 ui_out_field_string (uiout, "reason",
5759 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5760 ui_out_text (uiout, "[Inferior ");
5761 ui_out_text (uiout, plongest (inf->num));
5762 ui_out_text (uiout, " (");
5763 ui_out_text (uiout, pidstr);
5764 ui_out_text (uiout, ") exited with code ");
33d62d64 5765 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5766 ui_out_text (uiout, "]\n");
33d62d64
JK
5767 }
5768 else
11cf8741 5769 {
9dc5e2a9 5770 if (ui_out_is_mi_like_p (uiout))
034dad6f 5771 ui_out_field_string
33d62d64 5772 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5773 ui_out_text (uiout, "[Inferior ");
5774 ui_out_text (uiout, plongest (inf->num));
5775 ui_out_text (uiout, " (");
5776 ui_out_text (uiout, pidstr);
5777 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5778 }
5779 /* Support the --return-child-result option. */
5780 return_child_result_value = exitstatus;
5781}
5782
5783/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5784 tells us to print about it. */
33d62d64
JK
5785
5786static void
5787print_signal_received_reason (enum target_signal siggnal)
5788{
79a45e25
PA
5789 struct ui_out *uiout = current_uiout;
5790
33d62d64
JK
5791 annotate_signal ();
5792
5793 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5794 {
5795 struct thread_info *t = inferior_thread ();
5796
5797 ui_out_text (uiout, "\n[");
5798 ui_out_field_string (uiout, "thread-name",
5799 target_pid_to_str (t->ptid));
5800 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5801 ui_out_text (uiout, " stopped");
5802 }
5803 else
5804 {
5805 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5806 annotate_signal_name ();
33d62d64
JK
5807 if (ui_out_is_mi_like_p (uiout))
5808 ui_out_field_string
5809 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5810 ui_out_field_string (uiout, "signal-name",
33d62d64 5811 target_signal_to_name (siggnal));
8b93c638
JM
5812 annotate_signal_name_end ();
5813 ui_out_text (uiout, ", ");
5814 annotate_signal_string ();
488f131b 5815 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5816 target_signal_to_string (siggnal));
8b93c638 5817 annotate_signal_string_end ();
33d62d64
JK
5818 }
5819 ui_out_text (uiout, ".\n");
5820}
252fbfc8 5821
33d62d64
JK
5822/* Reverse execution: target ran out of history info, print why the inferior
5823 has stopped. */
252fbfc8 5824
33d62d64
JK
5825static void
5826print_no_history_reason (void)
5827{
79a45e25 5828 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5829}
43ff13b4 5830
c906108c
SS
5831/* Here to return control to GDB when the inferior stops for real.
5832 Print appropriate messages, remove breakpoints, give terminal our modes.
5833
5834 STOP_PRINT_FRAME nonzero means print the executing frame
5835 (pc, function, args, file, line number and line text).
5836 BREAKPOINTS_FAILED nonzero means stop was due to error
5837 attempting to insert breakpoints. */
5838
5839void
96baa820 5840normal_stop (void)
c906108c 5841{
73b65bb0
DJ
5842 struct target_waitstatus last;
5843 ptid_t last_ptid;
29f49a6a 5844 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5845
5846 get_last_target_status (&last_ptid, &last);
5847
29f49a6a
PA
5848 /* If an exception is thrown from this point on, make sure to
5849 propagate GDB's knowledge of the executing state to the
5850 frontend/user running state. A QUIT is an easy exception to see
5851 here, so do this before any filtered output. */
c35b1492
PA
5852 if (!non_stop)
5853 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5854 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5855 && last.kind != TARGET_WAITKIND_EXITED
5856 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5857 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5858
4f8d22e3
PA
5859 /* In non-stop mode, we don't want GDB to switch threads behind the
5860 user's back, to avoid races where the user is typing a command to
5861 apply to thread x, but GDB switches to thread y before the user
5862 finishes entering the command. */
5863
c906108c
SS
5864 /* As with the notification of thread events, we want to delay
5865 notifying the user that we've switched thread context until
5866 the inferior actually stops.
5867
73b65bb0
DJ
5868 There's no point in saying anything if the inferior has exited.
5869 Note that SIGNALLED here means "exited with a signal", not
5870 "received a signal". */
4f8d22e3
PA
5871 if (!non_stop
5872 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5873 && target_has_execution
5874 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5875 && last.kind != TARGET_WAITKIND_EXITED
5876 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5877 {
5878 target_terminal_ours_for_output ();
a3f17187 5879 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5880 target_pid_to_str (inferior_ptid));
b8fa951a 5881 annotate_thread_changed ();
39f77062 5882 previous_inferior_ptid = inferior_ptid;
c906108c 5883 }
c906108c 5884
0e5bf2a8
PA
5885 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5886 {
5887 gdb_assert (sync_execution || !target_can_async_p ());
5888
5889 target_terminal_ours_for_output ();
5890 printf_filtered (_("No unwaited-for children left.\n"));
5891 }
5892
74960c60 5893 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5894 {
5895 if (remove_breakpoints ())
5896 {
5897 target_terminal_ours_for_output ();
3e43a32a
MS
5898 printf_filtered (_("Cannot remove breakpoints because "
5899 "program is no longer writable.\nFurther "
5900 "execution is probably impossible.\n"));
c906108c
SS
5901 }
5902 }
c906108c 5903
c906108c
SS
5904 /* If an auto-display called a function and that got a signal,
5905 delete that auto-display to avoid an infinite recursion. */
5906
5907 if (stopped_by_random_signal)
5908 disable_current_display ();
5909
5910 /* Don't print a message if in the middle of doing a "step n"
5911 operation for n > 1 */
af679fd0
PA
5912 if (target_has_execution
5913 && last.kind != TARGET_WAITKIND_SIGNALLED
5914 && last.kind != TARGET_WAITKIND_EXITED
5915 && inferior_thread ()->step_multi
16c381f0 5916 && inferior_thread ()->control.stop_step)
c906108c
SS
5917 goto done;
5918
5919 target_terminal_ours ();
0f641c01 5920 async_enable_stdin ();
c906108c 5921
7abfe014
DJ
5922 /* Set the current source location. This will also happen if we
5923 display the frame below, but the current SAL will be incorrect
5924 during a user hook-stop function. */
d729566a 5925 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5926 set_current_sal_from_frame (get_current_frame (), 1);
5927
dd7e2d2b
PA
5928 /* Let the user/frontend see the threads as stopped. */
5929 do_cleanups (old_chain);
5930
5931 /* Look up the hook_stop and run it (CLI internally handles problem
5932 of stop_command's pre-hook not existing). */
5933 if (stop_command)
5934 catch_errors (hook_stop_stub, stop_command,
5935 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5936
d729566a 5937 if (!has_stack_frames ())
d51fd4c8 5938 goto done;
c906108c 5939
32400beb
PA
5940 if (last.kind == TARGET_WAITKIND_SIGNALLED
5941 || last.kind == TARGET_WAITKIND_EXITED)
5942 goto done;
5943
c906108c
SS
5944 /* Select innermost stack frame - i.e., current frame is frame 0,
5945 and current location is based on that.
5946 Don't do this on return from a stack dummy routine,
1777feb0 5947 or if the program has exited. */
c906108c
SS
5948
5949 if (!stop_stack_dummy)
5950 {
0f7d239c 5951 select_frame (get_current_frame ());
c906108c
SS
5952
5953 /* Print current location without a level number, if
c5aa993b
JM
5954 we have changed functions or hit a breakpoint.
5955 Print source line if we have one.
5956 bpstat_print() contains the logic deciding in detail
1777feb0 5957 what to print, based on the event(s) that just occurred. */
c906108c 5958
d01a8610
AS
5959 /* If --batch-silent is enabled then there's no need to print the current
5960 source location, and to try risks causing an error message about
5961 missing source files. */
5962 if (stop_print_frame && !batch_silent)
c906108c
SS
5963 {
5964 int bpstat_ret;
5965 int source_flag;
917317f4 5966 int do_frame_printing = 1;
347bddb7 5967 struct thread_info *tp = inferior_thread ();
c906108c 5968
36dfb11c 5969 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
5970 switch (bpstat_ret)
5971 {
5972 case PRINT_UNKNOWN:
aa0cd9c1 5973 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5974 (or should) carry around the function and does (or
5975 should) use that when doing a frame comparison. */
16c381f0
JK
5976 if (tp->control.stop_step
5977 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5978 get_frame_id (get_current_frame ()))
917317f4 5979 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5980 source_flag = SRC_LINE; /* Finished step, just
5981 print source line. */
917317f4 5982 else
1777feb0
MS
5983 source_flag = SRC_AND_LOC; /* Print location and
5984 source line. */
917317f4
JM
5985 break;
5986 case PRINT_SRC_AND_LOC:
1777feb0
MS
5987 source_flag = SRC_AND_LOC; /* Print location and
5988 source line. */
917317f4
JM
5989 break;
5990 case PRINT_SRC_ONLY:
c5394b80 5991 source_flag = SRC_LINE;
917317f4
JM
5992 break;
5993 case PRINT_NOTHING:
488f131b 5994 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5995 do_frame_printing = 0;
5996 break;
5997 default:
e2e0b3e5 5998 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5999 }
c906108c
SS
6000
6001 /* The behavior of this routine with respect to the source
6002 flag is:
c5394b80
JM
6003 SRC_LINE: Print only source line
6004 LOCATION: Print only location
1777feb0 6005 SRC_AND_LOC: Print location and source line. */
917317f4 6006 if (do_frame_printing)
b04f3ab4 6007 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6008
6009 /* Display the auto-display expressions. */
6010 do_displays ();
6011 }
6012 }
6013
6014 /* Save the function value return registers, if we care.
6015 We might be about to restore their previous contents. */
9da8c2a0
PA
6016 if (inferior_thread ()->control.proceed_to_finish
6017 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6018 {
6019 /* This should not be necessary. */
6020 if (stop_registers)
6021 regcache_xfree (stop_registers);
6022
6023 /* NB: The copy goes through to the target picking up the value of
6024 all the registers. */
6025 stop_registers = regcache_dup (get_current_regcache ());
6026 }
c906108c 6027
aa7d318d 6028 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6029 {
b89667eb
DE
6030 /* Pop the empty frame that contains the stack dummy.
6031 This also restores inferior state prior to the call
16c381f0 6032 (struct infcall_suspend_state). */
b89667eb 6033 struct frame_info *frame = get_current_frame ();
abbb1732 6034
b89667eb
DE
6035 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6036 frame_pop (frame);
3e43a32a
MS
6037 /* frame_pop() calls reinit_frame_cache as the last thing it
6038 does which means there's currently no selected frame. We
6039 don't need to re-establish a selected frame if the dummy call
6040 returns normally, that will be done by
6041 restore_infcall_control_state. However, we do have to handle
6042 the case where the dummy call is returning after being
6043 stopped (e.g. the dummy call previously hit a breakpoint).
6044 We can't know which case we have so just always re-establish
6045 a selected frame here. */
0f7d239c 6046 select_frame (get_current_frame ());
c906108c
SS
6047 }
6048
c906108c
SS
6049done:
6050 annotate_stopped ();
41d2bdb4
PA
6051
6052 /* Suppress the stop observer if we're in the middle of:
6053
6054 - a step n (n > 1), as there still more steps to be done.
6055
6056 - a "finish" command, as the observer will be called in
6057 finish_command_continuation, so it can include the inferior
6058 function's return value.
6059
6060 - calling an inferior function, as we pretend we inferior didn't
6061 run at all. The return value of the call is handled by the
6062 expression evaluator, through call_function_by_hand. */
6063
6064 if (!target_has_execution
6065 || last.kind == TARGET_WAITKIND_SIGNALLED
6066 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6067 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6068 || (!(inferior_thread ()->step_multi
6069 && inferior_thread ()->control.stop_step)
16c381f0
JK
6070 && !(inferior_thread ()->control.stop_bpstat
6071 && inferior_thread ()->control.proceed_to_finish)
6072 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6073 {
6074 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6075 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6076 stop_print_frame);
347bddb7 6077 else
1d33d6ba 6078 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6079 }
347bddb7 6080
48844aa6
PA
6081 if (target_has_execution)
6082 {
6083 if (last.kind != TARGET_WAITKIND_SIGNALLED
6084 && last.kind != TARGET_WAITKIND_EXITED)
6085 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6086 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6087 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6088 }
6c95b8df
PA
6089
6090 /* Try to get rid of automatically added inferiors that are no
6091 longer needed. Keeping those around slows down things linearly.
6092 Note that this never removes the current inferior. */
6093 prune_inferiors ();
c906108c
SS
6094}
6095
6096static int
96baa820 6097hook_stop_stub (void *cmd)
c906108c 6098{
5913bcb0 6099 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6100 return (0);
6101}
6102\f
c5aa993b 6103int
96baa820 6104signal_stop_state (int signo)
c906108c 6105{
d6b48e9c 6106 return signal_stop[signo];
c906108c
SS
6107}
6108
c5aa993b 6109int
96baa820 6110signal_print_state (int signo)
c906108c
SS
6111{
6112 return signal_print[signo];
6113}
6114
c5aa993b 6115int
96baa820 6116signal_pass_state (int signo)
c906108c
SS
6117{
6118 return signal_program[signo];
6119}
6120
2455069d
UW
6121static void
6122signal_cache_update (int signo)
6123{
6124 if (signo == -1)
6125 {
6126 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6127 signal_cache_update (signo);
6128
6129 return;
6130 }
6131
6132 signal_pass[signo] = (signal_stop[signo] == 0
6133 && signal_print[signo] == 0
6134 && signal_program[signo] == 1);
6135}
6136
488f131b 6137int
7bda5e4a 6138signal_stop_update (int signo, int state)
d4f3574e
SS
6139{
6140 int ret = signal_stop[signo];
abbb1732 6141
d4f3574e 6142 signal_stop[signo] = state;
2455069d 6143 signal_cache_update (signo);
d4f3574e
SS
6144 return ret;
6145}
6146
488f131b 6147int
7bda5e4a 6148signal_print_update (int signo, int state)
d4f3574e
SS
6149{
6150 int ret = signal_print[signo];
abbb1732 6151
d4f3574e 6152 signal_print[signo] = state;
2455069d 6153 signal_cache_update (signo);
d4f3574e
SS
6154 return ret;
6155}
6156
488f131b 6157int
7bda5e4a 6158signal_pass_update (int signo, int state)
d4f3574e
SS
6159{
6160 int ret = signal_program[signo];
abbb1732 6161
d4f3574e 6162 signal_program[signo] = state;
2455069d 6163 signal_cache_update (signo);
d4f3574e
SS
6164 return ret;
6165}
6166
c906108c 6167static void
96baa820 6168sig_print_header (void)
c906108c 6169{
3e43a32a
MS
6170 printf_filtered (_("Signal Stop\tPrint\tPass "
6171 "to program\tDescription\n"));
c906108c
SS
6172}
6173
6174static void
96baa820 6175sig_print_info (enum target_signal oursig)
c906108c 6176{
54363045 6177 const char *name = target_signal_to_name (oursig);
c906108c 6178 int name_padding = 13 - strlen (name);
96baa820 6179
c906108c
SS
6180 if (name_padding <= 0)
6181 name_padding = 0;
6182
6183 printf_filtered ("%s", name);
488f131b 6184 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6185 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6186 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6187 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6188 printf_filtered ("%s\n", target_signal_to_string (oursig));
6189}
6190
6191/* Specify how various signals in the inferior should be handled. */
6192
6193static void
96baa820 6194handle_command (char *args, int from_tty)
c906108c
SS
6195{
6196 char **argv;
6197 int digits, wordlen;
6198 int sigfirst, signum, siglast;
6199 enum target_signal oursig;
6200 int allsigs;
6201 int nsigs;
6202 unsigned char *sigs;
6203 struct cleanup *old_chain;
6204
6205 if (args == NULL)
6206 {
e2e0b3e5 6207 error_no_arg (_("signal to handle"));
c906108c
SS
6208 }
6209
1777feb0 6210 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6211
6212 nsigs = (int) TARGET_SIGNAL_LAST;
6213 sigs = (unsigned char *) alloca (nsigs);
6214 memset (sigs, 0, nsigs);
6215
1777feb0 6216 /* Break the command line up into args. */
c906108c 6217
d1a41061 6218 argv = gdb_buildargv (args);
7a292a7a 6219 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6220
6221 /* Walk through the args, looking for signal oursigs, signal names, and
6222 actions. Signal numbers and signal names may be interspersed with
6223 actions, with the actions being performed for all signals cumulatively
1777feb0 6224 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6225
6226 while (*argv != NULL)
6227 {
6228 wordlen = strlen (*argv);
6229 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6230 {;
6231 }
6232 allsigs = 0;
6233 sigfirst = siglast = -1;
6234
6235 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6236 {
6237 /* Apply action to all signals except those used by the
1777feb0 6238 debugger. Silently skip those. */
c906108c
SS
6239 allsigs = 1;
6240 sigfirst = 0;
6241 siglast = nsigs - 1;
6242 }
6243 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6244 {
6245 SET_SIGS (nsigs, sigs, signal_stop);
6246 SET_SIGS (nsigs, sigs, signal_print);
6247 }
6248 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6249 {
6250 UNSET_SIGS (nsigs, sigs, signal_program);
6251 }
6252 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6253 {
6254 SET_SIGS (nsigs, sigs, signal_print);
6255 }
6256 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6257 {
6258 SET_SIGS (nsigs, sigs, signal_program);
6259 }
6260 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6261 {
6262 UNSET_SIGS (nsigs, sigs, signal_stop);
6263 }
6264 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6265 {
6266 SET_SIGS (nsigs, sigs, signal_program);
6267 }
6268 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6269 {
6270 UNSET_SIGS (nsigs, sigs, signal_print);
6271 UNSET_SIGS (nsigs, sigs, signal_stop);
6272 }
6273 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6274 {
6275 UNSET_SIGS (nsigs, sigs, signal_program);
6276 }
6277 else if (digits > 0)
6278 {
6279 /* It is numeric. The numeric signal refers to our own
6280 internal signal numbering from target.h, not to host/target
6281 signal number. This is a feature; users really should be
6282 using symbolic names anyway, and the common ones like
6283 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6284
6285 sigfirst = siglast = (int)
6286 target_signal_from_command (atoi (*argv));
6287 if ((*argv)[digits] == '-')
6288 {
6289 siglast = (int)
6290 target_signal_from_command (atoi ((*argv) + digits + 1));
6291 }
6292 if (sigfirst > siglast)
6293 {
1777feb0 6294 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6295 signum = sigfirst;
6296 sigfirst = siglast;
6297 siglast = signum;
6298 }
6299 }
6300 else
6301 {
6302 oursig = target_signal_from_name (*argv);
6303 if (oursig != TARGET_SIGNAL_UNKNOWN)
6304 {
6305 sigfirst = siglast = (int) oursig;
6306 }
6307 else
6308 {
6309 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6310 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6311 }
6312 }
6313
6314 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6315 which signals to apply actions to. */
c906108c
SS
6316
6317 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6318 {
6319 switch ((enum target_signal) signum)
6320 {
6321 case TARGET_SIGNAL_TRAP:
6322 case TARGET_SIGNAL_INT:
6323 if (!allsigs && !sigs[signum])
6324 {
9e2f0ad4 6325 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6326Are you sure you want to change it? "),
6327 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6328 {
6329 sigs[signum] = 1;
6330 }
6331 else
6332 {
a3f17187 6333 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6334 gdb_flush (gdb_stdout);
6335 }
6336 }
6337 break;
6338 case TARGET_SIGNAL_0:
6339 case TARGET_SIGNAL_DEFAULT:
6340 case TARGET_SIGNAL_UNKNOWN:
6341 /* Make sure that "all" doesn't print these. */
6342 break;
6343 default:
6344 sigs[signum] = 1;
6345 break;
6346 }
6347 }
6348
6349 argv++;
6350 }
6351
3a031f65
PA
6352 for (signum = 0; signum < nsigs; signum++)
6353 if (sigs[signum])
6354 {
2455069d
UW
6355 signal_cache_update (-1);
6356 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6357
3a031f65
PA
6358 if (from_tty)
6359 {
6360 /* Show the results. */
6361 sig_print_header ();
6362 for (; signum < nsigs; signum++)
6363 if (sigs[signum])
6364 sig_print_info (signum);
6365 }
6366
6367 break;
6368 }
c906108c
SS
6369
6370 do_cleanups (old_chain);
6371}
6372
6373static void
96baa820 6374xdb_handle_command (char *args, int from_tty)
c906108c
SS
6375{
6376 char **argv;
6377 struct cleanup *old_chain;
6378
d1a41061
PP
6379 if (args == NULL)
6380 error_no_arg (_("xdb command"));
6381
1777feb0 6382 /* Break the command line up into args. */
c906108c 6383
d1a41061 6384 argv = gdb_buildargv (args);
7a292a7a 6385 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6386 if (argv[1] != (char *) NULL)
6387 {
6388 char *argBuf;
6389 int bufLen;
6390
6391 bufLen = strlen (argv[0]) + 20;
6392 argBuf = (char *) xmalloc (bufLen);
6393 if (argBuf)
6394 {
6395 int validFlag = 1;
6396 enum target_signal oursig;
6397
6398 oursig = target_signal_from_name (argv[0]);
6399 memset (argBuf, 0, bufLen);
6400 if (strcmp (argv[1], "Q") == 0)
6401 sprintf (argBuf, "%s %s", argv[0], "noprint");
6402 else
6403 {
6404 if (strcmp (argv[1], "s") == 0)
6405 {
6406 if (!signal_stop[oursig])
6407 sprintf (argBuf, "%s %s", argv[0], "stop");
6408 else
6409 sprintf (argBuf, "%s %s", argv[0], "nostop");
6410 }
6411 else if (strcmp (argv[1], "i") == 0)
6412 {
6413 if (!signal_program[oursig])
6414 sprintf (argBuf, "%s %s", argv[0], "pass");
6415 else
6416 sprintf (argBuf, "%s %s", argv[0], "nopass");
6417 }
6418 else if (strcmp (argv[1], "r") == 0)
6419 {
6420 if (!signal_print[oursig])
6421 sprintf (argBuf, "%s %s", argv[0], "print");
6422 else
6423 sprintf (argBuf, "%s %s", argv[0], "noprint");
6424 }
6425 else
6426 validFlag = 0;
6427 }
6428 if (validFlag)
6429 handle_command (argBuf, from_tty);
6430 else
a3f17187 6431 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6432 if (argBuf)
b8c9b27d 6433 xfree (argBuf);
c906108c
SS
6434 }
6435 }
6436 do_cleanups (old_chain);
6437}
6438
6439/* Print current contents of the tables set by the handle command.
6440 It is possible we should just be printing signals actually used
6441 by the current target (but for things to work right when switching
6442 targets, all signals should be in the signal tables). */
6443
6444static void
96baa820 6445signals_info (char *signum_exp, int from_tty)
c906108c
SS
6446{
6447 enum target_signal oursig;
abbb1732 6448
c906108c
SS
6449 sig_print_header ();
6450
6451 if (signum_exp)
6452 {
6453 /* First see if this is a symbol name. */
6454 oursig = target_signal_from_name (signum_exp);
6455 if (oursig == TARGET_SIGNAL_UNKNOWN)
6456 {
6457 /* No, try numeric. */
6458 oursig =
bb518678 6459 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6460 }
6461 sig_print_info (oursig);
6462 return;
6463 }
6464
6465 printf_filtered ("\n");
6466 /* These ugly casts brought to you by the native VAX compiler. */
6467 for (oursig = TARGET_SIGNAL_FIRST;
6468 (int) oursig < (int) TARGET_SIGNAL_LAST;
6469 oursig = (enum target_signal) ((int) oursig + 1))
6470 {
6471 QUIT;
6472
6473 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6474 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6475 sig_print_info (oursig);
6476 }
6477
3e43a32a
MS
6478 printf_filtered (_("\nUse the \"handle\" command "
6479 "to change these tables.\n"));
c906108c 6480}
4aa995e1 6481
c709acd1
PA
6482/* Check if it makes sense to read $_siginfo from the current thread
6483 at this point. If not, throw an error. */
6484
6485static void
6486validate_siginfo_access (void)
6487{
6488 /* No current inferior, no siginfo. */
6489 if (ptid_equal (inferior_ptid, null_ptid))
6490 error (_("No thread selected."));
6491
6492 /* Don't try to read from a dead thread. */
6493 if (is_exited (inferior_ptid))
6494 error (_("The current thread has terminated"));
6495
6496 /* ... or from a spinning thread. */
6497 if (is_running (inferior_ptid))
6498 error (_("Selected thread is running."));
6499}
6500
4aa995e1
PA
6501/* The $_siginfo convenience variable is a bit special. We don't know
6502 for sure the type of the value until we actually have a chance to
7a9dd1b2 6503 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6504 also dependent on which thread you have selected.
6505
6506 1. making $_siginfo be an internalvar that creates a new value on
6507 access.
6508
6509 2. making the value of $_siginfo be an lval_computed value. */
6510
6511/* This function implements the lval_computed support for reading a
6512 $_siginfo value. */
6513
6514static void
6515siginfo_value_read (struct value *v)
6516{
6517 LONGEST transferred;
6518
c709acd1
PA
6519 validate_siginfo_access ();
6520
4aa995e1
PA
6521 transferred =
6522 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6523 NULL,
6524 value_contents_all_raw (v),
6525 value_offset (v),
6526 TYPE_LENGTH (value_type (v)));
6527
6528 if (transferred != TYPE_LENGTH (value_type (v)))
6529 error (_("Unable to read siginfo"));
6530}
6531
6532/* This function implements the lval_computed support for writing a
6533 $_siginfo value. */
6534
6535static void
6536siginfo_value_write (struct value *v, struct value *fromval)
6537{
6538 LONGEST transferred;
6539
c709acd1
PA
6540 validate_siginfo_access ();
6541
4aa995e1
PA
6542 transferred = target_write (&current_target,
6543 TARGET_OBJECT_SIGNAL_INFO,
6544 NULL,
6545 value_contents_all_raw (fromval),
6546 value_offset (v),
6547 TYPE_LENGTH (value_type (fromval)));
6548
6549 if (transferred != TYPE_LENGTH (value_type (fromval)))
6550 error (_("Unable to write siginfo"));
6551}
6552
c8f2448a 6553static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6554 {
6555 siginfo_value_read,
6556 siginfo_value_write
6557 };
6558
6559/* Return a new value with the correct type for the siginfo object of
78267919
UW
6560 the current thread using architecture GDBARCH. Return a void value
6561 if there's no object available. */
4aa995e1 6562
2c0b251b 6563static struct value *
78267919 6564siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6565{
4aa995e1 6566 if (target_has_stack
78267919
UW
6567 && !ptid_equal (inferior_ptid, null_ptid)
6568 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6569 {
78267919 6570 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6571
78267919 6572 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6573 }
6574
78267919 6575 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6576}
6577
c906108c 6578\f
16c381f0
JK
6579/* infcall_suspend_state contains state about the program itself like its
6580 registers and any signal it received when it last stopped.
6581 This state must be restored regardless of how the inferior function call
6582 ends (either successfully, or after it hits a breakpoint or signal)
6583 if the program is to properly continue where it left off. */
6584
6585struct infcall_suspend_state
7a292a7a 6586{
16c381f0
JK
6587 struct thread_suspend_state thread_suspend;
6588 struct inferior_suspend_state inferior_suspend;
6589
6590 /* Other fields: */
7a292a7a 6591 CORE_ADDR stop_pc;
b89667eb 6592 struct regcache *registers;
1736ad11 6593
35515841 6594 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6595 struct gdbarch *siginfo_gdbarch;
6596
6597 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6598 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6599 content would be invalid. */
6600 gdb_byte *siginfo_data;
b89667eb
DE
6601};
6602
16c381f0
JK
6603struct infcall_suspend_state *
6604save_infcall_suspend_state (void)
b89667eb 6605{
16c381f0 6606 struct infcall_suspend_state *inf_state;
b89667eb 6607 struct thread_info *tp = inferior_thread ();
16c381f0 6608 struct inferior *inf = current_inferior ();
1736ad11
JK
6609 struct regcache *regcache = get_current_regcache ();
6610 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6611 gdb_byte *siginfo_data = NULL;
6612
6613 if (gdbarch_get_siginfo_type_p (gdbarch))
6614 {
6615 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6616 size_t len = TYPE_LENGTH (type);
6617 struct cleanup *back_to;
6618
6619 siginfo_data = xmalloc (len);
6620 back_to = make_cleanup (xfree, siginfo_data);
6621
6622 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6623 siginfo_data, 0, len) == len)
6624 discard_cleanups (back_to);
6625 else
6626 {
6627 /* Errors ignored. */
6628 do_cleanups (back_to);
6629 siginfo_data = NULL;
6630 }
6631 }
6632
16c381f0 6633 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6634
6635 if (siginfo_data)
6636 {
6637 inf_state->siginfo_gdbarch = gdbarch;
6638 inf_state->siginfo_data = siginfo_data;
6639 }
b89667eb 6640
16c381f0
JK
6641 inf_state->thread_suspend = tp->suspend;
6642 inf_state->inferior_suspend = inf->suspend;
6643
35515841
JK
6644 /* run_inferior_call will not use the signal due to its `proceed' call with
6645 TARGET_SIGNAL_0 anyway. */
16c381f0 6646 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6647
b89667eb
DE
6648 inf_state->stop_pc = stop_pc;
6649
1736ad11 6650 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6651
6652 return inf_state;
6653}
6654
6655/* Restore inferior session state to INF_STATE. */
6656
6657void
16c381f0 6658restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6659{
6660 struct thread_info *tp = inferior_thread ();
16c381f0 6661 struct inferior *inf = current_inferior ();
1736ad11
JK
6662 struct regcache *regcache = get_current_regcache ();
6663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6664
16c381f0
JK
6665 tp->suspend = inf_state->thread_suspend;
6666 inf->suspend = inf_state->inferior_suspend;
6667
b89667eb
DE
6668 stop_pc = inf_state->stop_pc;
6669
1736ad11
JK
6670 if (inf_state->siginfo_gdbarch == gdbarch)
6671 {
6672 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6673 size_t len = TYPE_LENGTH (type);
6674
6675 /* Errors ignored. */
6676 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6677 inf_state->siginfo_data, 0, len);
6678 }
6679
b89667eb
DE
6680 /* The inferior can be gone if the user types "print exit(0)"
6681 (and perhaps other times). */
6682 if (target_has_execution)
6683 /* NB: The register write goes through to the target. */
1736ad11 6684 regcache_cpy (regcache, inf_state->registers);
803b5f95 6685
16c381f0 6686 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6687}
6688
6689static void
16c381f0 6690do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6691{
16c381f0 6692 restore_infcall_suspend_state (state);
b89667eb
DE
6693}
6694
6695struct cleanup *
16c381f0
JK
6696make_cleanup_restore_infcall_suspend_state
6697 (struct infcall_suspend_state *inf_state)
b89667eb 6698{
16c381f0 6699 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6700}
6701
6702void
16c381f0 6703discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6704{
6705 regcache_xfree (inf_state->registers);
803b5f95 6706 xfree (inf_state->siginfo_data);
b89667eb
DE
6707 xfree (inf_state);
6708}
6709
6710struct regcache *
16c381f0 6711get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6712{
6713 return inf_state->registers;
6714}
6715
16c381f0
JK
6716/* infcall_control_state contains state regarding gdb's control of the
6717 inferior itself like stepping control. It also contains session state like
6718 the user's currently selected frame. */
b89667eb 6719
16c381f0 6720struct infcall_control_state
b89667eb 6721{
16c381f0
JK
6722 struct thread_control_state thread_control;
6723 struct inferior_control_state inferior_control;
d82142e2
JK
6724
6725 /* Other fields: */
6726 enum stop_stack_kind stop_stack_dummy;
6727 int stopped_by_random_signal;
7a292a7a 6728 int stop_after_trap;
7a292a7a 6729
b89667eb 6730 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6731 struct frame_id selected_frame_id;
7a292a7a
SS
6732};
6733
c906108c 6734/* Save all of the information associated with the inferior<==>gdb
b89667eb 6735 connection. */
c906108c 6736
16c381f0
JK
6737struct infcall_control_state *
6738save_infcall_control_state (void)
c906108c 6739{
16c381f0 6740 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6741 struct thread_info *tp = inferior_thread ();
d6b48e9c 6742 struct inferior *inf = current_inferior ();
7a292a7a 6743
16c381f0
JK
6744 inf_status->thread_control = tp->control;
6745 inf_status->inferior_control = inf->control;
d82142e2 6746
8358c15c 6747 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6748 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6749
16c381f0
JK
6750 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6751 chain. If caller's caller is walking the chain, they'll be happier if we
6752 hand them back the original chain when restore_infcall_control_state is
6753 called. */
6754 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6755
6756 /* Other fields: */
6757 inf_status->stop_stack_dummy = stop_stack_dummy;
6758 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6759 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6760
206415a3 6761 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6762
7a292a7a 6763 return inf_status;
c906108c
SS
6764}
6765
c906108c 6766static int
96baa820 6767restore_selected_frame (void *args)
c906108c 6768{
488f131b 6769 struct frame_id *fid = (struct frame_id *) args;
c906108c 6770 struct frame_info *frame;
c906108c 6771
101dcfbe 6772 frame = frame_find_by_id (*fid);
c906108c 6773
aa0cd9c1
AC
6774 /* If inf_status->selected_frame_id is NULL, there was no previously
6775 selected frame. */
101dcfbe 6776 if (frame == NULL)
c906108c 6777 {
8a3fe4f8 6778 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6779 return 0;
6780 }
6781
0f7d239c 6782 select_frame (frame);
c906108c
SS
6783
6784 return (1);
6785}
6786
b89667eb
DE
6787/* Restore inferior session state to INF_STATUS. */
6788
c906108c 6789void
16c381f0 6790restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6791{
4e1c45ea 6792 struct thread_info *tp = inferior_thread ();
d6b48e9c 6793 struct inferior *inf = current_inferior ();
4e1c45ea 6794
8358c15c
JK
6795 if (tp->control.step_resume_breakpoint)
6796 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6797
5b79abe7
TT
6798 if (tp->control.exception_resume_breakpoint)
6799 tp->control.exception_resume_breakpoint->disposition
6800 = disp_del_at_next_stop;
6801
d82142e2 6802 /* Handle the bpstat_copy of the chain. */
16c381f0 6803 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6804
16c381f0
JK
6805 tp->control = inf_status->thread_control;
6806 inf->control = inf_status->inferior_control;
d82142e2
JK
6807
6808 /* Other fields: */
6809 stop_stack_dummy = inf_status->stop_stack_dummy;
6810 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6811 stop_after_trap = inf_status->stop_after_trap;
c906108c 6812
b89667eb 6813 if (target_has_stack)
c906108c 6814 {
c906108c 6815 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6816 walking the stack might encounter a garbage pointer and
6817 error() trying to dereference it. */
488f131b
JB
6818 if (catch_errors
6819 (restore_selected_frame, &inf_status->selected_frame_id,
6820 "Unable to restore previously selected frame:\n",
6821 RETURN_MASK_ERROR) == 0)
c906108c
SS
6822 /* Error in restoring the selected frame. Select the innermost
6823 frame. */
0f7d239c 6824 select_frame (get_current_frame ());
c906108c 6825 }
c906108c 6826
72cec141 6827 xfree (inf_status);
7a292a7a 6828}
c906108c 6829
74b7792f 6830static void
16c381f0 6831do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6832{
16c381f0 6833 restore_infcall_control_state (sts);
74b7792f
AC
6834}
6835
6836struct cleanup *
16c381f0
JK
6837make_cleanup_restore_infcall_control_state
6838 (struct infcall_control_state *inf_status)
74b7792f 6839{
16c381f0 6840 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6841}
6842
c906108c 6843void
16c381f0 6844discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6845{
8358c15c
JK
6846 if (inf_status->thread_control.step_resume_breakpoint)
6847 inf_status->thread_control.step_resume_breakpoint->disposition
6848 = disp_del_at_next_stop;
6849
5b79abe7
TT
6850 if (inf_status->thread_control.exception_resume_breakpoint)
6851 inf_status->thread_control.exception_resume_breakpoint->disposition
6852 = disp_del_at_next_stop;
6853
1777feb0 6854 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6855 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6856
72cec141 6857 xfree (inf_status);
7a292a7a 6858}
b89667eb 6859\f
0723dbf5
PA
6860int
6861ptid_match (ptid_t ptid, ptid_t filter)
6862{
0723dbf5
PA
6863 if (ptid_equal (filter, minus_one_ptid))
6864 return 1;
6865 if (ptid_is_pid (filter)
6866 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6867 return 1;
6868 else if (ptid_equal (ptid, filter))
6869 return 1;
6870
6871 return 0;
6872}
6873
ca6724c1
KB
6874/* restore_inferior_ptid() will be used by the cleanup machinery
6875 to restore the inferior_ptid value saved in a call to
6876 save_inferior_ptid(). */
ce696e05
KB
6877
6878static void
6879restore_inferior_ptid (void *arg)
6880{
6881 ptid_t *saved_ptid_ptr = arg;
abbb1732 6882
ce696e05
KB
6883 inferior_ptid = *saved_ptid_ptr;
6884 xfree (arg);
6885}
6886
6887/* Save the value of inferior_ptid so that it may be restored by a
6888 later call to do_cleanups(). Returns the struct cleanup pointer
6889 needed for later doing the cleanup. */
6890
6891struct cleanup *
6892save_inferior_ptid (void)
6893{
6894 ptid_t *saved_ptid_ptr;
6895
6896 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6897 *saved_ptid_ptr = inferior_ptid;
6898 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6899}
c5aa993b 6900\f
488f131b 6901
b2175913
MS
6902/* User interface for reverse debugging:
6903 Set exec-direction / show exec-direction commands
6904 (returns error unless target implements to_set_exec_direction method). */
6905
32231432 6906int execution_direction = EXEC_FORWARD;
b2175913
MS
6907static const char exec_forward[] = "forward";
6908static const char exec_reverse[] = "reverse";
6909static const char *exec_direction = exec_forward;
40478521 6910static const char *const exec_direction_names[] = {
b2175913
MS
6911 exec_forward,
6912 exec_reverse,
6913 NULL
6914};
6915
6916static void
6917set_exec_direction_func (char *args, int from_tty,
6918 struct cmd_list_element *cmd)
6919{
6920 if (target_can_execute_reverse)
6921 {
6922 if (!strcmp (exec_direction, exec_forward))
6923 execution_direction = EXEC_FORWARD;
6924 else if (!strcmp (exec_direction, exec_reverse))
6925 execution_direction = EXEC_REVERSE;
6926 }
8bbed405
MS
6927 else
6928 {
6929 exec_direction = exec_forward;
6930 error (_("Target does not support this operation."));
6931 }
b2175913
MS
6932}
6933
6934static void
6935show_exec_direction_func (struct ui_file *out, int from_tty,
6936 struct cmd_list_element *cmd, const char *value)
6937{
6938 switch (execution_direction) {
6939 case EXEC_FORWARD:
6940 fprintf_filtered (out, _("Forward.\n"));
6941 break;
6942 case EXEC_REVERSE:
6943 fprintf_filtered (out, _("Reverse.\n"));
6944 break;
b2175913 6945 default:
d8b34453
PA
6946 internal_error (__FILE__, __LINE__,
6947 _("bogus execution_direction value: %d"),
6948 (int) execution_direction);
b2175913
MS
6949 }
6950}
6951
6952/* User interface for non-stop mode. */
6953
ad52ddc6 6954int non_stop = 0;
ad52ddc6
PA
6955
6956static void
6957set_non_stop (char *args, int from_tty,
6958 struct cmd_list_element *c)
6959{
6960 if (target_has_execution)
6961 {
6962 non_stop_1 = non_stop;
6963 error (_("Cannot change this setting while the inferior is running."));
6964 }
6965
6966 non_stop = non_stop_1;
6967}
6968
6969static void
6970show_non_stop (struct ui_file *file, int from_tty,
6971 struct cmd_list_element *c, const char *value)
6972{
6973 fprintf_filtered (file,
6974 _("Controlling the inferior in non-stop mode is %s.\n"),
6975 value);
6976}
6977
d4db2f36
PA
6978static void
6979show_schedule_multiple (struct ui_file *file, int from_tty,
6980 struct cmd_list_element *c, const char *value)
6981{
3e43a32a
MS
6982 fprintf_filtered (file, _("Resuming the execution of threads "
6983 "of all processes is %s.\n"), value);
d4db2f36 6984}
ad52ddc6 6985
c906108c 6986void
96baa820 6987_initialize_infrun (void)
c906108c 6988{
52f0bd74
AC
6989 int i;
6990 int numsigs;
c906108c 6991
1bedd215
AC
6992 add_info ("signals", signals_info, _("\
6993What debugger does when program gets various signals.\n\
6994Specify a signal as argument to print info on that signal only."));
c906108c
SS
6995 add_info_alias ("handle", "signals", 0);
6996
1bedd215
AC
6997 add_com ("handle", class_run, handle_command, _("\
6998Specify how to handle a signal.\n\
c906108c
SS
6999Args are signals and actions to apply to those signals.\n\
7000Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7001from 1-15 are allowed for compatibility with old versions of GDB.\n\
7002Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7003The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7004used by the debugger, typically SIGTRAP and SIGINT.\n\
7005Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7006\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7007Stop means reenter debugger if this signal happens (implies print).\n\
7008Print means print a message if this signal happens.\n\
7009Pass means let program see this signal; otherwise program doesn't know.\n\
7010Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7011Pass and Stop may be combined."));
c906108c
SS
7012 if (xdb_commands)
7013 {
1bedd215
AC
7014 add_com ("lz", class_info, signals_info, _("\
7015What debugger does when program gets various signals.\n\
7016Specify a signal as argument to print info on that signal only."));
7017 add_com ("z", class_run, xdb_handle_command, _("\
7018Specify how to handle a signal.\n\
c906108c
SS
7019Args are signals and actions to apply to those signals.\n\
7020Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7021from 1-15 are allowed for compatibility with old versions of GDB.\n\
7022Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7023The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7024used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7025Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7026\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7027nopass), \"Q\" (noprint)\n\
7028Stop means reenter debugger if this signal happens (implies print).\n\
7029Print means print a message if this signal happens.\n\
7030Pass means let program see this signal; otherwise program doesn't know.\n\
7031Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7032Pass and Stop may be combined."));
c906108c
SS
7033 }
7034
7035 if (!dbx_commands)
1a966eab
AC
7036 stop_command = add_cmd ("stop", class_obscure,
7037 not_just_help_class_command, _("\
7038There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7039This allows you to set a list of commands to be run each time execution\n\
1a966eab 7040of the program stops."), &cmdlist);
c906108c 7041
85c07804
AC
7042 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7043Set inferior debugging."), _("\
7044Show inferior debugging."), _("\
7045When non-zero, inferior specific debugging is enabled."),
7046 NULL,
920d2a44 7047 show_debug_infrun,
85c07804 7048 &setdebuglist, &showdebuglist);
527159b7 7049
3e43a32a
MS
7050 add_setshow_boolean_cmd ("displaced", class_maintenance,
7051 &debug_displaced, _("\
237fc4c9
PA
7052Set displaced stepping debugging."), _("\
7053Show displaced stepping debugging."), _("\
7054When non-zero, displaced stepping specific debugging is enabled."),
7055 NULL,
7056 show_debug_displaced,
7057 &setdebuglist, &showdebuglist);
7058
ad52ddc6
PA
7059 add_setshow_boolean_cmd ("non-stop", no_class,
7060 &non_stop_1, _("\
7061Set whether gdb controls the inferior in non-stop mode."), _("\
7062Show whether gdb controls the inferior in non-stop mode."), _("\
7063When debugging a multi-threaded program and this setting is\n\
7064off (the default, also called all-stop mode), when one thread stops\n\
7065(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7066all other threads in the program while you interact with the thread of\n\
7067interest. When you continue or step a thread, you can allow the other\n\
7068threads to run, or have them remain stopped, but while you inspect any\n\
7069thread's state, all threads stop.\n\
7070\n\
7071In non-stop mode, when one thread stops, other threads can continue\n\
7072to run freely. You'll be able to step each thread independently,\n\
7073leave it stopped or free to run as needed."),
7074 set_non_stop,
7075 show_non_stop,
7076 &setlist,
7077 &showlist);
7078
c906108c 7079 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7080 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7081 signal_print = (unsigned char *)
7082 xmalloc (sizeof (signal_print[0]) * numsigs);
7083 signal_program = (unsigned char *)
7084 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7085 signal_pass = (unsigned char *)
7086 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7087 for (i = 0; i < numsigs; i++)
7088 {
7089 signal_stop[i] = 1;
7090 signal_print[i] = 1;
7091 signal_program[i] = 1;
7092 }
7093
7094 /* Signals caused by debugger's own actions
7095 should not be given to the program afterwards. */
7096 signal_program[TARGET_SIGNAL_TRAP] = 0;
7097 signal_program[TARGET_SIGNAL_INT] = 0;
7098
7099 /* Signals that are not errors should not normally enter the debugger. */
7100 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7101 signal_print[TARGET_SIGNAL_ALRM] = 0;
7102 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7103 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7104 signal_stop[TARGET_SIGNAL_PROF] = 0;
7105 signal_print[TARGET_SIGNAL_PROF] = 0;
7106 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7107 signal_print[TARGET_SIGNAL_CHLD] = 0;
7108 signal_stop[TARGET_SIGNAL_IO] = 0;
7109 signal_print[TARGET_SIGNAL_IO] = 0;
7110 signal_stop[TARGET_SIGNAL_POLL] = 0;
7111 signal_print[TARGET_SIGNAL_POLL] = 0;
7112 signal_stop[TARGET_SIGNAL_URG] = 0;
7113 signal_print[TARGET_SIGNAL_URG] = 0;
7114 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7115 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7116 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7117 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7118
cd0fc7c3
SS
7119 /* These signals are used internally by user-level thread
7120 implementations. (See signal(5) on Solaris.) Like the above
7121 signals, a healthy program receives and handles them as part of
7122 its normal operation. */
7123 signal_stop[TARGET_SIGNAL_LWP] = 0;
7124 signal_print[TARGET_SIGNAL_LWP] = 0;
7125 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7126 signal_print[TARGET_SIGNAL_WAITING] = 0;
7127 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7128 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7129
2455069d
UW
7130 /* Update cached state. */
7131 signal_cache_update (-1);
7132
85c07804
AC
7133 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7134 &stop_on_solib_events, _("\
7135Set stopping for shared library events."), _("\
7136Show stopping for shared library events."), _("\
c906108c
SS
7137If nonzero, gdb will give control to the user when the dynamic linker\n\
7138notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7139to the user would be loading/unloading of a new library."),
7140 NULL,
920d2a44 7141 show_stop_on_solib_events,
85c07804 7142 &setlist, &showlist);
c906108c 7143
7ab04401
AC
7144 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7145 follow_fork_mode_kind_names,
7146 &follow_fork_mode_string, _("\
7147Set debugger response to a program call of fork or vfork."), _("\
7148Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7149A fork or vfork creates a new process. follow-fork-mode can be:\n\
7150 parent - the original process is debugged after a fork\n\
7151 child - the new process is debugged after a fork\n\
ea1dd7bc 7152The unfollowed process will continue to run.\n\
7ab04401
AC
7153By default, the debugger will follow the parent process."),
7154 NULL,
920d2a44 7155 show_follow_fork_mode_string,
7ab04401
AC
7156 &setlist, &showlist);
7157
6c95b8df
PA
7158 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7159 follow_exec_mode_names,
7160 &follow_exec_mode_string, _("\
7161Set debugger response to a program call of exec."), _("\
7162Show debugger response to a program call of exec."), _("\
7163An exec call replaces the program image of a process.\n\
7164\n\
7165follow-exec-mode can be:\n\
7166\n\
cce7e648 7167 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7168to this new inferior. The program the process was running before\n\
7169the exec call can be restarted afterwards by restarting the original\n\
7170inferior.\n\
7171\n\
7172 same - the debugger keeps the process bound to the same inferior.\n\
7173The new executable image replaces the previous executable loaded in\n\
7174the inferior. Restarting the inferior after the exec call restarts\n\
7175the executable the process was running after the exec call.\n\
7176\n\
7177By default, the debugger will use the same inferior."),
7178 NULL,
7179 show_follow_exec_mode_string,
7180 &setlist, &showlist);
7181
7ab04401
AC
7182 add_setshow_enum_cmd ("scheduler-locking", class_run,
7183 scheduler_enums, &scheduler_mode, _("\
7184Set mode for locking scheduler during execution."), _("\
7185Show mode for locking scheduler during execution."), _("\
c906108c
SS
7186off == no locking (threads may preempt at any time)\n\
7187on == full locking (no thread except the current thread may run)\n\
7188step == scheduler locked during every single-step operation.\n\
7189 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7190 Other threads may run while stepping over a function call ('next')."),
7191 set_schedlock_func, /* traps on target vector */
920d2a44 7192 show_scheduler_mode,
7ab04401 7193 &setlist, &showlist);
5fbbeb29 7194
d4db2f36
PA
7195 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7196Set mode for resuming threads of all processes."), _("\
7197Show mode for resuming threads of all processes."), _("\
7198When on, execution commands (such as 'continue' or 'next') resume all\n\
7199threads of all processes. When off (which is the default), execution\n\
7200commands only resume the threads of the current process. The set of\n\
7201threads that are resumed is further refined by the scheduler-locking\n\
7202mode (see help set scheduler-locking)."),
7203 NULL,
7204 show_schedule_multiple,
7205 &setlist, &showlist);
7206
5bf193a2
AC
7207 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7208Set mode of the step operation."), _("\
7209Show mode of the step operation."), _("\
7210When set, doing a step over a function without debug line information\n\
7211will stop at the first instruction of that function. Otherwise, the\n\
7212function is skipped and the step command stops at a different source line."),
7213 NULL,
920d2a44 7214 show_step_stop_if_no_debug,
5bf193a2 7215 &setlist, &showlist);
ca6724c1 7216
fff08868
HZ
7217 add_setshow_enum_cmd ("displaced-stepping", class_run,
7218 can_use_displaced_stepping_enum,
7219 &can_use_displaced_stepping, _("\
237fc4c9
PA
7220Set debugger's willingness to use displaced stepping."), _("\
7221Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7222If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7223supported by the target architecture. If off, gdb will not use displaced\n\
7224stepping to step over breakpoints, even if such is supported by the target\n\
7225architecture. If auto (which is the default), gdb will use displaced stepping\n\
7226if the target architecture supports it and non-stop mode is active, but will not\n\
7227use it in all-stop mode (see help set non-stop)."),
7228 NULL,
7229 show_can_use_displaced_stepping,
7230 &setlist, &showlist);
237fc4c9 7231
b2175913
MS
7232 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7233 &exec_direction, _("Set direction of execution.\n\
7234Options are 'forward' or 'reverse'."),
7235 _("Show direction of execution (forward/reverse)."),
7236 _("Tells gdb whether to execute forward or backward."),
7237 set_exec_direction_func, show_exec_direction_func,
7238 &setlist, &showlist);
7239
6c95b8df
PA
7240 /* Set/show detach-on-fork: user-settable mode. */
7241
7242 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7243Set whether gdb will detach the child of a fork."), _("\
7244Show whether gdb will detach the child of a fork."), _("\
7245Tells gdb whether to detach the child of a fork."),
7246 NULL, NULL, &setlist, &showlist);
7247
03583c20
UW
7248 /* Set/show disable address space randomization mode. */
7249
7250 add_setshow_boolean_cmd ("disable-randomization", class_support,
7251 &disable_randomization, _("\
7252Set disabling of debuggee's virtual address space randomization."), _("\
7253Show disabling of debuggee's virtual address space randomization."), _("\
7254When this mode is on (which is the default), randomization of the virtual\n\
7255address space is disabled. Standalone programs run with the randomization\n\
7256enabled by default on some platforms."),
7257 &set_disable_randomization,
7258 &show_disable_randomization,
7259 &setlist, &showlist);
7260
ca6724c1 7261 /* ptid initializations */
ca6724c1
KB
7262 inferior_ptid = null_ptid;
7263 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7264
7265 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7266 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7267 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7268 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7269
7270 /* Explicitly create without lookup, since that tries to create a
7271 value with a void typed value, and when we get here, gdbarch
7272 isn't initialized yet. At this point, we're quite sure there
7273 isn't another convenience variable of the same name. */
7274 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7275
7276 add_setshow_boolean_cmd ("observer", no_class,
7277 &observer_mode_1, _("\
7278Set whether gdb controls the inferior in observer mode."), _("\
7279Show whether gdb controls the inferior in observer mode."), _("\
7280In observer mode, GDB can get data from the inferior, but not\n\
7281affect its execution. Registers and memory may not be changed,\n\
7282breakpoints may not be set, and the program cannot be interrupted\n\
7283or signalled."),
7284 set_observer_mode,
7285 show_observer_mode,
7286 &setlist,
7287 &showlist);
c906108c 7288}