]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
PR 5011
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
ea67f13b
DJ
81static int prepare_to_proceed (void);
82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
c906108c
SS
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
920d2a44
AC
91static void
92show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94{
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96}
5fbbeb29 97
43ff13b4 98/* In asynchronous mode, but simulating synchronous execution. */
96baa820 99
43ff13b4
JM
100int sync_execution = 0;
101
c906108c
SS
102/* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
96baa820
JM
104 running in. */
105
39f77062 106static ptid_t previous_inferior_ptid;
7a292a7a
SS
107
108/* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
c906108c
SS
113#endif
114
7a292a7a
SS
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
527159b7 117static int debug_infrun = 0;
920d2a44
AC
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
527159b7 124
d4f3574e
SS
125/* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
ca557f44
AC
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
d4f3574e
SS
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
c906108c 163
c906108c
SS
164/* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
c2c6d25f 176
7a292a7a
SS
177/* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
692590c1
MS
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
c906108c
SS
187/* Tables of how to react to signals; the user sets them. */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
39f77062
KB
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
212
213/* Command list pointer for the "stop" placeholder. */
214
215static struct cmd_list_element *stop_command;
216
217/* Nonzero if breakpoints are now inserted in the inferior. */
218
219static int breakpoints_inserted;
220
221/* Function inferior was in as of last step command. */
222
223static struct symbol *step_start_function;
224
225/* Nonzero if we are expecting a trace trap and should proceed from it. */
226
227static int trap_expected;
228
c906108c
SS
229/* Nonzero if we want to give control to the user when we're notified
230 of shared library events by the dynamic linker. */
231static int stop_on_solib_events;
920d2a44
AC
232static void
233show_stop_on_solib_events (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237 value);
238}
c906108c 239
c906108c
SS
240/* Nonzero means expecting a trace trap
241 and should stop the inferior and return silently when it happens. */
242
243int stop_after_trap;
244
245/* Nonzero means expecting a trap and caller will handle it themselves.
246 It is used after attach, due to attaching to a process;
247 when running in the shell before the child program has been exec'd;
248 and when running some kinds of remote stuff (FIXME?). */
249
c0236d92 250enum stop_kind stop_soon;
c906108c
SS
251
252/* Nonzero if proceed is being used for a "finish" command or a similar
253 situation when stop_registers should be saved. */
254
255int proceed_to_finish;
256
257/* Save register contents here when about to pop a stack dummy frame,
258 if-and-only-if proceed_to_finish is set.
259 Thus this contains the return value from the called function (assuming
260 values are returned in a register). */
261
72cec141 262struct regcache *stop_registers;
c906108c 263
c906108c
SS
264/* Nonzero after stop if current stack frame should be printed. */
265
266static int stop_print_frame;
267
268static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 269
e02bc4cc 270/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
271 returned by target_wait()/deprecated_target_wait_hook(). This
272 information is returned by get_last_target_status(). */
39f77062 273static ptid_t target_last_wait_ptid;
e02bc4cc
DS
274static struct target_waitstatus target_last_waitstatus;
275
c906108c
SS
276/* This is used to remember when a fork, vfork or exec event
277 was caught by a catchpoint, and thus the event is to be
278 followed at the next resume of the inferior, and not
279 immediately. */
280static struct
488f131b
JB
281{
282 enum target_waitkind kind;
283 struct
c906108c 284 {
488f131b 285 int parent_pid;
488f131b 286 int child_pid;
c906108c 287 }
488f131b
JB
288 fork_event;
289 char *execd_pathname;
290}
c906108c
SS
291pending_follow;
292
53904c9e
AC
293static const char follow_fork_mode_child[] = "child";
294static const char follow_fork_mode_parent[] = "parent";
295
488f131b 296static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
297 follow_fork_mode_child,
298 follow_fork_mode_parent,
299 NULL
ef346e04 300};
c906108c 301
53904c9e 302static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
303static void
304show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306{
307 fprintf_filtered (file, _("\
308Debugger response to a program call of fork or vfork is \"%s\".\n"),
309 value);
310}
c906108c
SS
311\f
312
6604731b 313static int
4ef3f3be 314follow_fork (void)
c906108c 315{
ea1dd7bc 316 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 317
6604731b 318 return target_follow_fork (follow_child);
c906108c
SS
319}
320
6604731b
DJ
321void
322follow_inferior_reset_breakpoints (void)
c906108c 323{
6604731b
DJ
324 /* Was there a step_resume breakpoint? (There was if the user
325 did a "next" at the fork() call.) If so, explicitly reset its
326 thread number.
327
328 step_resumes are a form of bp that are made to be per-thread.
329 Since we created the step_resume bp when the parent process
330 was being debugged, and now are switching to the child process,
331 from the breakpoint package's viewpoint, that's a switch of
332 "threads". We must update the bp's notion of which thread
333 it is for, or it'll be ignored when it triggers. */
334
335 if (step_resume_breakpoint)
336 breakpoint_re_set_thread (step_resume_breakpoint);
337
338 /* Reinsert all breakpoints in the child. The user may have set
339 breakpoints after catching the fork, in which case those
340 were never set in the child, but only in the parent. This makes
341 sure the inserted breakpoints match the breakpoint list. */
342
343 breakpoint_re_set ();
344 insert_breakpoints ();
c906108c 345}
c906108c 346
1adeb98a
FN
347/* EXECD_PATHNAME is assumed to be non-NULL. */
348
c906108c 349static void
96baa820 350follow_exec (int pid, char *execd_pathname)
c906108c 351{
c906108c 352 int saved_pid = pid;
7a292a7a
SS
353 struct target_ops *tgt;
354
355 if (!may_follow_exec)
356 return;
c906108c 357
c906108c
SS
358 /* This is an exec event that we actually wish to pay attention to.
359 Refresh our symbol table to the newly exec'd program, remove any
360 momentary bp's, etc.
361
362 If there are breakpoints, they aren't really inserted now,
363 since the exec() transformed our inferior into a fresh set
364 of instructions.
365
366 We want to preserve symbolic breakpoints on the list, since
367 we have hopes that they can be reset after the new a.out's
368 symbol table is read.
369
370 However, any "raw" breakpoints must be removed from the list
371 (e.g., the solib bp's), since their address is probably invalid
372 now.
373
374 And, we DON'T want to call delete_breakpoints() here, since
375 that may write the bp's "shadow contents" (the instruction
376 value that was overwritten witha TRAP instruction). Since
377 we now have a new a.out, those shadow contents aren't valid. */
378 update_breakpoints_after_exec ();
379
380 /* If there was one, it's gone now. We cannot truly step-to-next
381 statement through an exec(). */
382 step_resume_breakpoint = NULL;
383 step_range_start = 0;
384 step_range_end = 0;
385
c906108c 386 /* What is this a.out's name? */
a3f17187 387 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
388
389 /* We've followed the inferior through an exec. Therefore, the
390 inferior has essentially been killed & reborn. */
7a292a7a
SS
391
392 /* First collect the run target in effect. */
393 tgt = find_run_target ();
394 /* If we can't find one, things are in a very strange state... */
395 if (tgt == NULL)
8a3fe4f8 396 error (_("Could find run target to save before following exec"));
7a292a7a 397
c906108c
SS
398 gdb_flush (gdb_stdout);
399 target_mourn_inferior ();
39f77062 400 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 401 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 402 push_target (tgt);
c906108c
SS
403
404 /* That a.out is now the one to use. */
405 exec_file_attach (execd_pathname, 0);
406
407 /* And also is where symbols can be found. */
1adeb98a 408 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
409
410 /* Reset the shared library package. This ensures that we get
411 a shlib event when the child reaches "_start", at which point
412 the dld will have had a chance to initialize the child. */
7a292a7a 413#if defined(SOLIB_RESTART)
c906108c 414 SOLIB_RESTART ();
7a292a7a
SS
415#endif
416#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 417 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
418#else
419 solib_create_inferior_hook ();
7a292a7a 420#endif
c906108c
SS
421
422 /* Reinsert all breakpoints. (Those which were symbolic have
423 been reset to the proper address in the new a.out, thanks
424 to symbol_file_command...) */
425 insert_breakpoints ();
426
427 /* The next resume of this inferior should bring it to the shlib
428 startup breakpoints. (If the user had also set bp's on
429 "main" from the old (parent) process, then they'll auto-
430 matically get reset there in the new process.) */
c906108c
SS
431}
432
433/* Non-zero if we just simulating a single-step. This is needed
434 because we cannot remove the breakpoints in the inferior process
435 until after the `wait' in `wait_for_inferior'. */
436static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
437
438/* The thread we inserted single-step breakpoints for. */
439static ptid_t singlestep_ptid;
440
fd48f117
DJ
441/* PC when we started this single-step. */
442static CORE_ADDR singlestep_pc;
443
9f976b41
DJ
444/* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446static ptid_t saved_singlestep_ptid;
447static int stepping_past_singlestep_breakpoint;
c906108c
SS
448\f
449
450/* Things to clean up if we QUIT out of resume (). */
c906108c 451static void
74b7792f 452resume_cleanups (void *ignore)
c906108c
SS
453{
454 normal_stop ();
455}
456
53904c9e
AC
457static const char schedlock_off[] = "off";
458static const char schedlock_on[] = "on";
459static const char schedlock_step[] = "step";
488f131b 460static const char *scheduler_enums[] = {
ef346e04
AC
461 schedlock_off,
462 schedlock_on,
463 schedlock_step,
464 NULL
465};
920d2a44
AC
466static const char *scheduler_mode = schedlock_off;
467static void
468show_scheduler_mode (struct ui_file *file, int from_tty,
469 struct cmd_list_element *c, const char *value)
470{
471 fprintf_filtered (file, _("\
472Mode for locking scheduler during execution is \"%s\".\n"),
473 value);
474}
c906108c
SS
475
476static void
96baa820 477set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 478{
eefe576e
AC
479 if (!target_can_lock_scheduler)
480 {
481 scheduler_mode = schedlock_off;
482 error (_("Target '%s' cannot support this command."), target_shortname);
483 }
c906108c
SS
484}
485
486
487/* Resume the inferior, but allow a QUIT. This is useful if the user
488 wants to interrupt some lengthy single-stepping operation
489 (for child processes, the SIGINT goes to the inferior, and so
490 we get a SIGINT random_signal, but for remote debugging and perhaps
491 other targets, that's not true).
492
493 STEP nonzero if we should step (zero to continue instead).
494 SIG is the signal to give the inferior (zero for none). */
495void
96baa820 496resume (int step, enum target_signal sig)
c906108c
SS
497{
498 int should_resume = 1;
74b7792f 499 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
500 QUIT;
501
527159b7 502 if (debug_infrun)
8a9de0e4
AC
503 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
504 step, sig);
527159b7 505
ef5cf84e
MS
506 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
507
c906108c 508
692590c1
MS
509 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
510 over an instruction that causes a page fault without triggering
511 a hardware watchpoint. The kernel properly notices that it shouldn't
512 stop, because the hardware watchpoint is not triggered, but it forgets
513 the step request and continues the program normally.
514 Work around the problem by removing hardware watchpoints if a step is
515 requested, GDB will check for a hardware watchpoint trigger after the
516 step anyway. */
517 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
518 remove_hw_watchpoints ();
488f131b 519
692590c1 520
c2c6d25f
JM
521 /* Normally, by the time we reach `resume', the breakpoints are either
522 removed or inserted, as appropriate. The exception is if we're sitting
523 at a permanent breakpoint; we need to step over it, but permanent
524 breakpoints can't be removed. So we have to test for it here. */
525 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
526 {
527 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
528 gdbarch_skip_permanent_breakpoint (current_gdbarch,
529 get_current_regcache ());
6d350bb5
UW
530 else
531 error (_("\
532The program is stopped at a permanent breakpoint, but GDB does not know\n\
533how to step past a permanent breakpoint on this architecture. Try using\n\
534a command like `return' or `jump' to continue execution."));
535 }
c2c6d25f 536
1c0fdd0e 537 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
538 {
539 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 540 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
541 {
542 /* ...and don't ask hardware to do it. */
543 step = 0;
544 /* and do not pull these breakpoints until after a `wait' in
545 `wait_for_inferior' */
546 singlestep_breakpoints_inserted_p = 1;
547 singlestep_ptid = inferior_ptid;
548 singlestep_pc = read_pc ();
549 }
c906108c
SS
550 }
551
c906108c 552 /* If there were any forks/vforks/execs that were caught and are
6604731b 553 now to be followed, then do so. */
c906108c
SS
554 switch (pending_follow.kind)
555 {
6604731b
DJ
556 case TARGET_WAITKIND_FORKED:
557 case TARGET_WAITKIND_VFORKED:
c906108c 558 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
559 if (follow_fork ())
560 should_resume = 0;
c906108c
SS
561 break;
562
6604731b 563 case TARGET_WAITKIND_EXECD:
c906108c 564 /* follow_exec is called as soon as the exec event is seen. */
6604731b 565 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
566 break;
567
568 default:
569 break;
570 }
c906108c
SS
571
572 /* Install inferior's terminal modes. */
573 target_terminal_inferior ();
574
575 if (should_resume)
576 {
39f77062 577 ptid_t resume_ptid;
dfcd3bfb 578
488f131b 579 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 580
8fb3e588
AC
581 if ((step || singlestep_breakpoints_inserted_p)
582 && (stepping_past_singlestep_breakpoint
583 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 584 {
ef5cf84e
MS
585 /* Stepping past a breakpoint without inserting breakpoints.
586 Make sure only the current thread gets to step, so that
587 other threads don't sneak past breakpoints while they are
588 not inserted. */
c906108c 589
ef5cf84e 590 resume_ptid = inferior_ptid;
c906108c 591 }
ef5cf84e 592
8fb3e588
AC
593 if ((scheduler_mode == schedlock_on)
594 || (scheduler_mode == schedlock_step
595 && (step || singlestep_breakpoints_inserted_p)))
c906108c 596 {
ef5cf84e 597 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 598 resume_ptid = inferior_ptid;
c906108c 599 }
ef5cf84e 600
e6cf7916 601 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
602 {
603 /* Most targets can step a breakpoint instruction, thus
604 executing it normally. But if this one cannot, just
605 continue and we will hit it anyway. */
606 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
607 step = 0;
608 }
39f77062 609 target_resume (resume_ptid, step, sig);
c906108c
SS
610 }
611
612 discard_cleanups (old_cleanups);
613}
614\f
615
616/* Clear out all variables saying what to do when inferior is continued.
617 First do this, then set the ones you want, then call `proceed'. */
618
619void
96baa820 620clear_proceed_status (void)
c906108c
SS
621{
622 trap_expected = 0;
623 step_range_start = 0;
624 step_range_end = 0;
aa0cd9c1 625 step_frame_id = null_frame_id;
5fbbeb29 626 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 627 stop_after_trap = 0;
c0236d92 628 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
629 proceed_to_finish = 0;
630 breakpoint_proceeded = 1; /* We're about to proceed... */
631
d5c31457
UW
632 if (stop_registers)
633 {
634 regcache_xfree (stop_registers);
635 stop_registers = NULL;
636 }
637
c906108c
SS
638 /* Discard any remaining commands or status from previous stop. */
639 bpstat_clear (&stop_bpstat);
640}
641
ea67f13b
DJ
642/* This should be suitable for any targets that support threads. */
643
644static int
645prepare_to_proceed (void)
646{
647 ptid_t wait_ptid;
648 struct target_waitstatus wait_status;
649
650 /* Get the last target status returned by target_wait(). */
651 get_last_target_status (&wait_ptid, &wait_status);
652
653 /* Make sure we were stopped either at a breakpoint, or because
654 of a Ctrl-C. */
655 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
656 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
657 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
658 {
659 return 0;
660 }
661
662 if (!ptid_equal (wait_ptid, minus_one_ptid)
663 && !ptid_equal (inferior_ptid, wait_ptid))
664 {
665 /* Switched over from WAIT_PID. */
666 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
667
668 if (wait_pc != read_pc ())
669 {
670 /* Switch back to WAIT_PID thread. */
671 inferior_ptid = wait_ptid;
672
673 /* FIXME: This stuff came from switch_to_thread() in
674 thread.c (which should probably be a public function). */
35f196d9 675 reinit_frame_cache ();
ea67f13b
DJ
676 registers_changed ();
677 stop_pc = wait_pc;
ea67f13b
DJ
678 }
679
8fb3e588
AC
680 /* We return 1 to indicate that there is a breakpoint here,
681 so we need to step over it before continuing to avoid
682 hitting it straight away. */
683 if (breakpoint_here_p (wait_pc))
684 return 1;
ea67f13b
DJ
685 }
686
687 return 0;
8fb3e588 688
ea67f13b 689}
e4846b08
JJ
690
691/* Record the pc of the program the last time it stopped. This is
692 just used internally by wait_for_inferior, but need to be preserved
693 over calls to it and cleared when the inferior is started. */
694static CORE_ADDR prev_pc;
695
c906108c
SS
696/* Basic routine for continuing the program in various fashions.
697
698 ADDR is the address to resume at, or -1 for resume where stopped.
699 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 700 or -1 for act according to how it stopped.
c906108c 701 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
702 -1 means return after that and print nothing.
703 You should probably set various step_... variables
704 before calling here, if you are stepping.
c906108c
SS
705
706 You should call clear_proceed_status before calling proceed. */
707
708void
96baa820 709proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
710{
711 int oneproc = 0;
712
713 if (step > 0)
714 step_start_function = find_pc_function (read_pc ());
715 if (step < 0)
716 stop_after_trap = 1;
717
2acceee2 718 if (addr == (CORE_ADDR) -1)
c906108c 719 {
c906108c 720 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
721 /* There is a breakpoint at the address we will resume at,
722 step one instruction before inserting breakpoints so that
723 we do not stop right away (and report a second hit at this
724 breakpoint). */
c906108c 725 oneproc = 1;
3352ef37
AC
726 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
727 && gdbarch_single_step_through_delay (current_gdbarch,
728 get_current_frame ()))
729 /* We stepped onto an instruction that needs to be stepped
730 again before re-inserting the breakpoint, do so. */
c906108c
SS
731 oneproc = 1;
732 }
733 else
734 {
735 write_pc (addr);
c906108c
SS
736 }
737
527159b7 738 if (debug_infrun)
8a9de0e4
AC
739 fprintf_unfiltered (gdb_stdlog,
740 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
741 paddr_nz (addr), siggnal, step);
527159b7 742
c906108c
SS
743 /* In a multi-threaded task we may select another thread
744 and then continue or step.
745
746 But if the old thread was stopped at a breakpoint, it
747 will immediately cause another breakpoint stop without
748 any execution (i.e. it will report a breakpoint hit
749 incorrectly). So we must step over it first.
750
ea67f13b 751 prepare_to_proceed checks the current thread against the thread
c906108c
SS
752 that reported the most recent event. If a step-over is required
753 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
754 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
755 oneproc = 1;
c906108c 756
c906108c
SS
757 if (oneproc)
758 /* We will get a trace trap after one instruction.
759 Continue it automatically and insert breakpoints then. */
760 trap_expected = 1;
761 else
762 {
81d0cc19
GS
763 insert_breakpoints ();
764 /* If we get here there was no call to error() in
8fb3e588 765 insert breakpoints -- so they were inserted. */
c906108c
SS
766 breakpoints_inserted = 1;
767 }
768
769 if (siggnal != TARGET_SIGNAL_DEFAULT)
770 stop_signal = siggnal;
771 /* If this signal should not be seen by program,
772 give it zero. Used for debugging signals. */
773 else if (!signal_program[stop_signal])
774 stop_signal = TARGET_SIGNAL_0;
775
776 annotate_starting ();
777
778 /* Make sure that output from GDB appears before output from the
779 inferior. */
780 gdb_flush (gdb_stdout);
781
e4846b08
JJ
782 /* Refresh prev_pc value just prior to resuming. This used to be
783 done in stop_stepping, however, setting prev_pc there did not handle
784 scenarios such as inferior function calls or returning from
785 a function via the return command. In those cases, the prev_pc
786 value was not set properly for subsequent commands. The prev_pc value
787 is used to initialize the starting line number in the ecs. With an
788 invalid value, the gdb next command ends up stopping at the position
789 represented by the next line table entry past our start position.
790 On platforms that generate one line table entry per line, this
791 is not a problem. However, on the ia64, the compiler generates
792 extraneous line table entries that do not increase the line number.
793 When we issue the gdb next command on the ia64 after an inferior call
794 or a return command, we often end up a few instructions forward, still
795 within the original line we started.
796
797 An attempt was made to have init_execution_control_state () refresh
798 the prev_pc value before calculating the line number. This approach
799 did not work because on platforms that use ptrace, the pc register
800 cannot be read unless the inferior is stopped. At that point, we
801 are not guaranteed the inferior is stopped and so the read_pc ()
802 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 803 updated correctly when the inferior is stopped. */
e4846b08
JJ
804 prev_pc = read_pc ();
805
c906108c
SS
806 /* Resume inferior. */
807 resume (oneproc || step || bpstat_should_step (), stop_signal);
808
809 /* Wait for it to stop (if not standalone)
810 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
811 /* Do this only if we are not using the event loop, or if the target
812 does not support asynchronous execution. */
362646f5 813 if (!target_can_async_p ())
43ff13b4
JM
814 {
815 wait_for_inferior ();
816 normal_stop ();
817 }
c906108c 818}
c906108c
SS
819\f
820
821/* Start remote-debugging of a machine over a serial link. */
96baa820 822
c906108c 823void
8621d6a9 824start_remote (int from_tty)
c906108c
SS
825{
826 init_thread_list ();
827 init_wait_for_inferior ();
b0f4b84b 828 stop_soon = STOP_QUIETLY_REMOTE;
c906108c 829 trap_expected = 0;
43ff13b4 830
6426a772
JM
831 /* Always go on waiting for the target, regardless of the mode. */
832 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 833 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
834 nothing is returned (instead of just blocking). Because of this,
835 targets expecting an immediate response need to, internally, set
836 things up so that the target_wait() is forced to eventually
837 timeout. */
838 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
839 differentiate to its caller what the state of the target is after
840 the initial open has been performed. Here we're assuming that
841 the target has stopped. It should be possible to eventually have
842 target_open() return to the caller an indication that the target
843 is currently running and GDB state should be set to the same as
844 for an async run. */
845 wait_for_inferior ();
8621d6a9
DJ
846
847 /* Now that the inferior has stopped, do any bookkeeping like
848 loading shared libraries. We want to do this before normal_stop,
849 so that the displayed frame is up to date. */
850 post_create_inferior (&current_target, from_tty);
851
6426a772 852 normal_stop ();
c906108c
SS
853}
854
855/* Initialize static vars when a new inferior begins. */
856
857void
96baa820 858init_wait_for_inferior (void)
c906108c
SS
859{
860 /* These are meaningless until the first time through wait_for_inferior. */
861 prev_pc = 0;
c906108c 862
c906108c
SS
863 breakpoints_inserted = 0;
864 breakpoint_init_inferior (inf_starting);
865
866 /* Don't confuse first call to proceed(). */
867 stop_signal = TARGET_SIGNAL_0;
868
869 /* The first resume is not following a fork/vfork/exec. */
870 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 871
c906108c 872 clear_proceed_status ();
9f976b41
DJ
873
874 stepping_past_singlestep_breakpoint = 0;
c906108c 875}
c906108c 876\f
b83266a0
SS
877/* This enum encodes possible reasons for doing a target_wait, so that
878 wfi can call target_wait in one place. (Ultimately the call will be
879 moved out of the infinite loop entirely.) */
880
c5aa993b
JM
881enum infwait_states
882{
cd0fc7c3
SS
883 infwait_normal_state,
884 infwait_thread_hop_state,
cd0fc7c3 885 infwait_nonstep_watch_state
b83266a0
SS
886};
887
11cf8741
JM
888/* Why did the inferior stop? Used to print the appropriate messages
889 to the interface from within handle_inferior_event(). */
890enum inferior_stop_reason
891{
11cf8741
JM
892 /* Step, next, nexti, stepi finished. */
893 END_STEPPING_RANGE,
11cf8741
JM
894 /* Inferior terminated by signal. */
895 SIGNAL_EXITED,
896 /* Inferior exited. */
897 EXITED,
898 /* Inferior received signal, and user asked to be notified. */
899 SIGNAL_RECEIVED
900};
901
cd0fc7c3
SS
902/* This structure contains what used to be local variables in
903 wait_for_inferior. Probably many of them can return to being
904 locals in handle_inferior_event. */
905
c5aa993b 906struct execution_control_state
488f131b
JB
907{
908 struct target_waitstatus ws;
909 struct target_waitstatus *wp;
910 int another_trap;
911 int random_signal;
912 CORE_ADDR stop_func_start;
913 CORE_ADDR stop_func_end;
914 char *stop_func_name;
915 struct symtab_and_line sal;
488f131b
JB
916 int current_line;
917 struct symtab *current_symtab;
918 int handling_longjmp; /* FIXME */
919 ptid_t ptid;
920 ptid_t saved_inferior_ptid;
68f53502 921 int step_after_step_resume_breakpoint;
488f131b
JB
922 int stepping_through_solib_after_catch;
923 bpstat stepping_through_solib_catchpoints;
488f131b
JB
924 int new_thread_event;
925 struct target_waitstatus tmpstatus;
926 enum infwait_states infwait_state;
927 ptid_t waiton_ptid;
928 int wait_some_more;
929};
930
931void init_execution_control_state (struct execution_control_state *ecs);
932
933void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 934
c2c6d25f 935static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 936static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 937static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
938static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
939 struct frame_id sr_id);
104c1213
JM
940static void stop_stepping (struct execution_control_state *ecs);
941static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 942static void keep_going (struct execution_control_state *ecs);
488f131b
JB
943static void print_stop_reason (enum inferior_stop_reason stop_reason,
944 int stop_info);
104c1213 945
cd0fc7c3
SS
946/* Wait for control to return from inferior to debugger.
947 If inferior gets a signal, we may decide to start it up again
948 instead of returning. That is why there is a loop in this function.
949 When this function actually returns it means the inferior
950 should be left stopped and GDB should read more commands. */
951
952void
96baa820 953wait_for_inferior (void)
cd0fc7c3
SS
954{
955 struct cleanup *old_cleanups;
956 struct execution_control_state ecss;
957 struct execution_control_state *ecs;
c906108c 958
527159b7 959 if (debug_infrun)
8a9de0e4 960 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 961
8601f500 962 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 963 &step_resume_breakpoint);
cd0fc7c3
SS
964
965 /* wfi still stays in a loop, so it's OK just to take the address of
966 a local to get the ecs pointer. */
967 ecs = &ecss;
968
969 /* Fill in with reasonable starting values. */
970 init_execution_control_state (ecs);
971
c906108c 972 /* We'll update this if & when we switch to a new thread. */
39f77062 973 previous_inferior_ptid = inferior_ptid;
c906108c 974
cd0fc7c3
SS
975 overlay_cache_invalid = 1;
976
977 /* We have to invalidate the registers BEFORE calling target_wait
978 because they can be loaded from the target while in target_wait.
979 This makes remote debugging a bit more efficient for those
980 targets that provide critical registers as part of their normal
981 status mechanism. */
982
983 registers_changed ();
b83266a0 984
c906108c
SS
985 while (1)
986 {
9a4105ab
AC
987 if (deprecated_target_wait_hook)
988 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 989 else
39f77062 990 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 991
cd0fc7c3
SS
992 /* Now figure out what to do with the result of the result. */
993 handle_inferior_event (ecs);
c906108c 994
cd0fc7c3
SS
995 if (!ecs->wait_some_more)
996 break;
997 }
998 do_cleanups (old_cleanups);
999}
c906108c 1000
43ff13b4
JM
1001/* Asynchronous version of wait_for_inferior. It is called by the
1002 event loop whenever a change of state is detected on the file
1003 descriptor corresponding to the target. It can be called more than
1004 once to complete a single execution command. In such cases we need
1005 to keep the state in a global variable ASYNC_ECSS. If it is the
1006 last time that this function is called for a single execution
1007 command, then report to the user that the inferior has stopped, and
1008 do the necessary cleanups. */
1009
1010struct execution_control_state async_ecss;
1011struct execution_control_state *async_ecs;
1012
1013void
fba45db2 1014fetch_inferior_event (void *client_data)
43ff13b4
JM
1015{
1016 static struct cleanup *old_cleanups;
1017
c5aa993b 1018 async_ecs = &async_ecss;
43ff13b4
JM
1019
1020 if (!async_ecs->wait_some_more)
1021 {
488f131b 1022 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1023 &step_resume_breakpoint);
43ff13b4
JM
1024
1025 /* Fill in with reasonable starting values. */
1026 init_execution_control_state (async_ecs);
1027
43ff13b4 1028 /* We'll update this if & when we switch to a new thread. */
39f77062 1029 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1030
1031 overlay_cache_invalid = 1;
1032
1033 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1034 because they can be loaded from the target while in target_wait.
1035 This makes remote debugging a bit more efficient for those
1036 targets that provide critical registers as part of their normal
1037 status mechanism. */
43ff13b4
JM
1038
1039 registers_changed ();
1040 }
1041
9a4105ab 1042 if (deprecated_target_wait_hook)
488f131b 1043 async_ecs->ptid =
9a4105ab 1044 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1045 else
39f77062 1046 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1047
1048 /* Now figure out what to do with the result of the result. */
1049 handle_inferior_event (async_ecs);
1050
1051 if (!async_ecs->wait_some_more)
1052 {
adf40b2e 1053 /* Do only the cleanups that have been added by this
488f131b
JB
1054 function. Let the continuations for the commands do the rest,
1055 if there are any. */
43ff13b4
JM
1056 do_exec_cleanups (old_cleanups);
1057 normal_stop ();
c2d11a7d
JM
1058 if (step_multi && stop_step)
1059 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1060 else
1061 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1062 }
1063}
1064
cd0fc7c3
SS
1065/* Prepare an execution control state for looping through a
1066 wait_for_inferior-type loop. */
1067
1068void
96baa820 1069init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1070{
6ad80df0 1071 ecs->another_trap = 0;
cd0fc7c3 1072 ecs->random_signal = 0;
68f53502 1073 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1074 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1075 ecs->stepping_through_solib_after_catch = 0;
1076 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1077 ecs->sal = find_pc_line (prev_pc, 0);
1078 ecs->current_line = ecs->sal.line;
1079 ecs->current_symtab = ecs->sal.symtab;
1080 ecs->infwait_state = infwait_normal_state;
39f77062 1081 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1082 ecs->wp = &(ecs->ws);
1083}
1084
e02bc4cc 1085/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1086 target_wait()/deprecated_target_wait_hook(). The data is actually
1087 cached by handle_inferior_event(), which gets called immediately
1088 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1089
1090void
488f131b 1091get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1092{
39f77062 1093 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1094 *status = target_last_waitstatus;
1095}
1096
ac264b3b
MS
1097void
1098nullify_last_target_wait_ptid (void)
1099{
1100 target_last_wait_ptid = minus_one_ptid;
1101}
1102
dd80620e
MS
1103/* Switch thread contexts, maintaining "infrun state". */
1104
1105static void
1106context_switch (struct execution_control_state *ecs)
1107{
1108 /* Caution: it may happen that the new thread (or the old one!)
1109 is not in the thread list. In this case we must not attempt
1110 to "switch context", or we run the risk that our context may
1111 be lost. This may happen as a result of the target module
1112 mishandling thread creation. */
1113
fd48f117
DJ
1114 if (debug_infrun)
1115 {
1116 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1117 target_pid_to_str (inferior_ptid));
1118 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1119 target_pid_to_str (ecs->ptid));
1120 }
1121
dd80620e 1122 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1123 { /* Perform infrun state context switch: */
dd80620e 1124 /* Save infrun state for the old thread. */
0ce3d317 1125 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1126 trap_expected, step_resume_breakpoint,
15960608 1127 step_range_start,
aa0cd9c1 1128 step_range_end, &step_frame_id,
dd80620e
MS
1129 ecs->handling_longjmp, ecs->another_trap,
1130 ecs->stepping_through_solib_after_catch,
1131 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1132 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1133
1134 /* Load infrun state for the new thread. */
0ce3d317 1135 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1136 &trap_expected, &step_resume_breakpoint,
15960608 1137 &step_range_start,
aa0cd9c1 1138 &step_range_end, &step_frame_id,
dd80620e
MS
1139 &ecs->handling_longjmp, &ecs->another_trap,
1140 &ecs->stepping_through_solib_after_catch,
1141 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1142 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1143 }
1144 inferior_ptid = ecs->ptid;
35f196d9 1145 reinit_frame_cache ();
dd80620e
MS
1146}
1147
4fa8626c
DJ
1148static void
1149adjust_pc_after_break (struct execution_control_state *ecs)
1150{
8aad930b 1151 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1152
1153 /* If this target does not decrement the PC after breakpoints, then
1154 we have nothing to do. */
b798847d 1155 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1156 return;
1157
1158 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1159 we aren't, just return.
9709f61c
DJ
1160
1161 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1162 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1163 implemented by software breakpoints should be handled through the normal
1164 breakpoint layer.
8fb3e588 1165
4fa8626c
DJ
1166 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167 different signals (SIGILL or SIGEMT for instance), but it is less
1168 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1169 gdbarch_decr_pc_after_break. I don't know any specific target that
1170 generates these signals at breakpoints (the code has been in GDB since at
1171 least 1992) so I can not guess how to handle them here.
8fb3e588 1172
e6cf7916
UW
1173 In earlier versions of GDB, a target with
1174 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1175 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1176 target with both of these set in GDB history, and it seems unlikely to be
1177 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1178
1179 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180 return;
1181
1182 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183 return;
1184
8aad930b
AC
1185 /* Find the location where (if we've hit a breakpoint) the
1186 breakpoint would be. */
b798847d
UW
1187 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1188 (current_gdbarch);
8aad930b 1189
1c0fdd0e
UW
1190 /* Check whether there actually is a software breakpoint inserted
1191 at that location. */
1192 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1193 {
1c0fdd0e
UW
1194 /* When using hardware single-step, a SIGTRAP is reported for both
1195 a completed single-step and a software breakpoint. Need to
1196 differentiate between the two, as the latter needs adjusting
1197 but the former does not.
1198
1199 The SIGTRAP can be due to a completed hardware single-step only if
1200 - we didn't insert software single-step breakpoints
1201 - the thread to be examined is still the current thread
1202 - this thread is currently being stepped
1203
1204 If any of these events did not occur, we must have stopped due
1205 to hitting a software breakpoint, and have to back up to the
1206 breakpoint address.
1207
1208 As a special case, we could have hardware single-stepped a
1209 software breakpoint. In this case (prev_pc == breakpoint_pc),
1210 we also need to back up to the breakpoint address. */
1211
1212 if (singlestep_breakpoints_inserted_p
1213 || !ptid_equal (ecs->ptid, inferior_ptid)
1214 || !currently_stepping (ecs)
1215 || prev_pc == breakpoint_pc)
8aad930b
AC
1216 write_pc_pid (breakpoint_pc, ecs->ptid);
1217 }
4fa8626c
DJ
1218}
1219
cd0fc7c3
SS
1220/* Given an execution control state that has been freshly filled in
1221 by an event from the inferior, figure out what it means and take
1222 appropriate action. */
c906108c 1223
7270d8f2
OF
1224int stepped_after_stopped_by_watchpoint;
1225
cd0fc7c3 1226void
96baa820 1227handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1228{
8bbde302
BE
1229 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1230 that the variable stepped_after_stopped_by_watchpoint isn't used,
1231 then you're wrong! See remote.c:remote_stopped_data_address. */
1232
c8edd8b4 1233 int sw_single_step_trap_p = 0;
8fb3e588 1234 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1235
e02bc4cc 1236 /* Cache the last pid/waitstatus. */
39f77062 1237 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1238 target_last_waitstatus = *ecs->wp;
1239
4fa8626c
DJ
1240 adjust_pc_after_break (ecs);
1241
488f131b
JB
1242 switch (ecs->infwait_state)
1243 {
1244 case infwait_thread_hop_state:
527159b7 1245 if (debug_infrun)
8a9de0e4 1246 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1247 /* Cancel the waiton_ptid. */
1248 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1249 break;
b83266a0 1250
488f131b 1251 case infwait_normal_state:
527159b7 1252 if (debug_infrun)
8a9de0e4 1253 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1254 stepped_after_stopped_by_watchpoint = 0;
1255 break;
b83266a0 1256
488f131b 1257 case infwait_nonstep_watch_state:
527159b7 1258 if (debug_infrun)
8a9de0e4
AC
1259 fprintf_unfiltered (gdb_stdlog,
1260 "infrun: infwait_nonstep_watch_state\n");
488f131b 1261 insert_breakpoints ();
c906108c 1262
488f131b
JB
1263 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1264 handle things like signals arriving and other things happening
1265 in combination correctly? */
1266 stepped_after_stopped_by_watchpoint = 1;
1267 break;
65e82032
AC
1268
1269 default:
e2e0b3e5 1270 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1271 }
1272 ecs->infwait_state = infwait_normal_state;
c906108c 1273
35f196d9 1274 reinit_frame_cache ();
c906108c 1275
488f131b 1276 /* If it's a new process, add it to the thread database */
c906108c 1277
488f131b 1278 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1279 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1280 && !in_thread_list (ecs->ptid));
1281
1282 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1283 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1284 {
1285 add_thread (ecs->ptid);
c906108c 1286
488f131b
JB
1287 ui_out_text (uiout, "[New ");
1288 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1289 ui_out_text (uiout, "]\n");
488f131b 1290 }
c906108c 1291
488f131b
JB
1292 switch (ecs->ws.kind)
1293 {
1294 case TARGET_WAITKIND_LOADED:
527159b7 1295 if (debug_infrun)
8a9de0e4 1296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1297 /* Ignore gracefully during startup of the inferior, as it might
1298 be the shell which has just loaded some objects, otherwise
1299 add the symbols for the newly loaded objects. Also ignore at
1300 the beginning of an attach or remote session; we will query
1301 the full list of libraries once the connection is
1302 established. */
c0236d92 1303 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1304 {
b0f4b84b
DJ
1305 int breakpoints_were_inserted;
1306
488f131b
JB
1307 /* Remove breakpoints, SOLIB_ADD might adjust
1308 breakpoint addresses via breakpoint_re_set. */
b0f4b84b 1309 breakpoints_were_inserted = breakpoints_inserted;
488f131b
JB
1310 if (breakpoints_inserted)
1311 remove_breakpoints ();
b0f4b84b 1312 breakpoints_inserted = 0;
c906108c 1313
488f131b
JB
1314 /* Check for any newly added shared libraries if we're
1315 supposed to be adding them automatically. Switch
1316 terminal for any messages produced by
1317 breakpoint_re_set. */
1318 target_terminal_ours_for_output ();
aff6338a 1319 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1320 stack's section table is kept up-to-date. Architectures,
1321 (e.g., PPC64), use the section table to perform
1322 operations such as address => section name and hence
1323 require the table to contain all sections (including
1324 those found in shared libraries). */
aff6338a 1325 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1326 exec_ops to SOLIB_ADD. This is because current GDB is
1327 only tooled to propagate section_table changes out from
1328 the "current_target" (see target_resize_to_sections), and
1329 not up from the exec stratum. This, of course, isn't
1330 right. "infrun.c" should only interact with the
1331 exec/process stratum, instead relying on the target stack
1332 to propagate relevant changes (stop, section table
1333 changed, ...) up to other layers. */
b0f4b84b 1334#ifdef SOLIB_ADD
aff6338a 1335 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1336#else
1337 solib_add (NULL, 0, &current_target, auto_solib_add);
1338#endif
488f131b
JB
1339 target_terminal_inferior ();
1340
b0f4b84b
DJ
1341 /* Try to reenable shared library breakpoints, additional
1342 code segments in shared libraries might be mapped in now. */
1343 re_enable_breakpoints_in_shlibs ();
1344
1345 /* If requested, stop when the dynamic linker notifies
1346 gdb of events. This allows the user to get control
1347 and place breakpoints in initializer routines for
1348 dynamically loaded objects (among other things). */
1349 if (stop_on_solib_events)
1350 {
1351 stop_stepping (ecs);
1352 return;
1353 }
1354
1355 /* NOTE drow/2007-05-11: This might be a good place to check
1356 for "catch load". */
1357
488f131b 1358 /* Reinsert breakpoints and continue. */
b0f4b84b
DJ
1359 if (breakpoints_were_inserted)
1360 {
1361 insert_breakpoints ();
1362 breakpoints_inserted = 1;
1363 }
488f131b 1364 }
b0f4b84b
DJ
1365
1366 /* If we are skipping through a shell, or through shared library
1367 loading that we aren't interested in, resume the program. If
1368 we're running the program normally, also resume. But stop if
1369 we're attaching or setting up a remote connection. */
1370 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1371 {
1372 resume (0, TARGET_SIGNAL_0);
1373 prepare_to_wait (ecs);
1374 return;
1375 }
1376
1377 break;
c5aa993b 1378
488f131b 1379 case TARGET_WAITKIND_SPURIOUS:
527159b7 1380 if (debug_infrun)
8a9de0e4 1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1382 resume (0, TARGET_SIGNAL_0);
1383 prepare_to_wait (ecs);
1384 return;
c5aa993b 1385
488f131b 1386 case TARGET_WAITKIND_EXITED:
527159b7 1387 if (debug_infrun)
8a9de0e4 1388 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1389 target_terminal_ours (); /* Must do this before mourn anyway */
1390 print_stop_reason (EXITED, ecs->ws.value.integer);
1391
1392 /* Record the exit code in the convenience variable $_exitcode, so
1393 that the user can inspect this again later. */
1394 set_internalvar (lookup_internalvar ("_exitcode"),
1395 value_from_longest (builtin_type_int,
1396 (LONGEST) ecs->ws.value.integer));
1397 gdb_flush (gdb_stdout);
1398 target_mourn_inferior ();
1c0fdd0e 1399 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1400 stop_print_frame = 0;
1401 stop_stepping (ecs);
1402 return;
c5aa993b 1403
488f131b 1404 case TARGET_WAITKIND_SIGNALLED:
527159b7 1405 if (debug_infrun)
8a9de0e4 1406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1407 stop_print_frame = 0;
1408 stop_signal = ecs->ws.value.sig;
1409 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1410
488f131b
JB
1411 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1412 reach here unless the inferior is dead. However, for years
1413 target_kill() was called here, which hints that fatal signals aren't
1414 really fatal on some systems. If that's true, then some changes
1415 may be needed. */
1416 target_mourn_inferior ();
c906108c 1417
488f131b 1418 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1419 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1420 stop_stepping (ecs);
1421 return;
c906108c 1422
488f131b
JB
1423 /* The following are the only cases in which we keep going;
1424 the above cases end in a continue or goto. */
1425 case TARGET_WAITKIND_FORKED:
deb3b17b 1426 case TARGET_WAITKIND_VFORKED:
527159b7 1427 if (debug_infrun)
8a9de0e4 1428 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1429 stop_signal = TARGET_SIGNAL_TRAP;
1430 pending_follow.kind = ecs->ws.kind;
1431
8e7d2c16
DJ
1432 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1433 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1434
5a2901d9
DJ
1435 if (!ptid_equal (ecs->ptid, inferior_ptid))
1436 {
1437 context_switch (ecs);
35f196d9 1438 reinit_frame_cache ();
5a2901d9
DJ
1439 }
1440
488f131b 1441 stop_pc = read_pc ();
675bf4cb 1442
00d4360e 1443 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1444
488f131b 1445 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1446
1447 /* If no catchpoint triggered for this, then keep going. */
1448 if (ecs->random_signal)
1449 {
1450 stop_signal = TARGET_SIGNAL_0;
1451 keep_going (ecs);
1452 return;
1453 }
488f131b
JB
1454 goto process_event_stop_test;
1455
1456 case TARGET_WAITKIND_EXECD:
527159b7 1457 if (debug_infrun)
fc5261f2 1458 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1459 stop_signal = TARGET_SIGNAL_TRAP;
1460
7d2830a3 1461 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1462 target_wait function. Until then following vfork on HP/UX 10.20
1463 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1464 /* Is this a target which reports multiple exec events per actual
1465 call to exec()? (HP-UX using ptrace does, for example.) If so,
1466 ignore all but the last one. Just resume the exec'r, and wait
1467 for the next exec event. */
1468 if (inferior_ignoring_leading_exec_events)
1469 {
1470 inferior_ignoring_leading_exec_events--;
488f131b
JB
1471 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1472 prepare_to_wait (ecs);
1473 return;
1474 }
1475 inferior_ignoring_leading_exec_events =
1476 target_reported_exec_events_per_exec_call () - 1;
1477
1478 pending_follow.execd_pathname =
1479 savestring (ecs->ws.value.execd_pathname,
1480 strlen (ecs->ws.value.execd_pathname));
1481
488f131b
JB
1482 /* This causes the eventpoints and symbol table to be reset. Must
1483 do this now, before trying to determine whether to stop. */
1484 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1485 xfree (pending_follow.execd_pathname);
c906108c 1486
488f131b
JB
1487 stop_pc = read_pc_pid (ecs->ptid);
1488 ecs->saved_inferior_ptid = inferior_ptid;
1489 inferior_ptid = ecs->ptid;
675bf4cb 1490
00d4360e 1491 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1492
488f131b
JB
1493 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1494 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1495
5a2901d9
DJ
1496 if (!ptid_equal (ecs->ptid, inferior_ptid))
1497 {
1498 context_switch (ecs);
35f196d9 1499 reinit_frame_cache ();
5a2901d9
DJ
1500 }
1501
04e68871
DJ
1502 /* If no catchpoint triggered for this, then keep going. */
1503 if (ecs->random_signal)
1504 {
1505 stop_signal = TARGET_SIGNAL_0;
1506 keep_going (ecs);
1507 return;
1508 }
488f131b
JB
1509 goto process_event_stop_test;
1510
b4dc5ffa
MK
1511 /* Be careful not to try to gather much state about a thread
1512 that's in a syscall. It's frequently a losing proposition. */
488f131b 1513 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1514 if (debug_infrun)
8a9de0e4 1515 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1516 resume (0, TARGET_SIGNAL_0);
1517 prepare_to_wait (ecs);
1518 return;
c906108c 1519
488f131b
JB
1520 /* Before examining the threads further, step this thread to
1521 get it entirely out of the syscall. (We get notice of the
1522 event when the thread is just on the verge of exiting a
1523 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1524 into user code.) */
488f131b 1525 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1526 if (debug_infrun)
8a9de0e4 1527 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1528 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1529 prepare_to_wait (ecs);
1530 return;
c906108c 1531
488f131b 1532 case TARGET_WAITKIND_STOPPED:
527159b7 1533 if (debug_infrun)
8a9de0e4 1534 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1535 stop_signal = ecs->ws.value.sig;
1536 break;
c906108c 1537
488f131b
JB
1538 /* We had an event in the inferior, but we are not interested
1539 in handling it at this level. The lower layers have already
8e7d2c16 1540 done what needs to be done, if anything.
8fb3e588
AC
1541
1542 One of the possible circumstances for this is when the
1543 inferior produces output for the console. The inferior has
1544 not stopped, and we are ignoring the event. Another possible
1545 circumstance is any event which the lower level knows will be
1546 reported multiple times without an intervening resume. */
488f131b 1547 case TARGET_WAITKIND_IGNORE:
527159b7 1548 if (debug_infrun)
8a9de0e4 1549 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1550 prepare_to_wait (ecs);
488f131b
JB
1551 return;
1552 }
c906108c 1553
488f131b
JB
1554 /* We may want to consider not doing a resume here in order to give
1555 the user a chance to play with the new thread. It might be good
1556 to make that a user-settable option. */
c906108c 1557
488f131b
JB
1558 /* At this point, all threads are stopped (happens automatically in
1559 either the OS or the native code). Therefore we need to continue
1560 all threads in order to make progress. */
1561 if (ecs->new_thread_event)
1562 {
1563 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
c906108c 1567
488f131b
JB
1568 stop_pc = read_pc_pid (ecs->ptid);
1569
527159b7 1570 if (debug_infrun)
8a9de0e4 1571 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1572
9f976b41
DJ
1573 if (stepping_past_singlestep_breakpoint)
1574 {
1c0fdd0e 1575 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1576 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1577 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1578
1579 stepping_past_singlestep_breakpoint = 0;
1580
1581 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1582 breakpoint, or stopped for some other reason. It would be nice if
1583 we could tell, but we can't reliably. */
9f976b41 1584 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1585 {
527159b7 1586 if (debug_infrun)
8a9de0e4 1587 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1588 /* Pull the single step breakpoints out of the target. */
e0cd558a 1589 remove_single_step_breakpoints ();
9f976b41
DJ
1590 singlestep_breakpoints_inserted_p = 0;
1591
1592 ecs->random_signal = 0;
1593
1594 ecs->ptid = saved_singlestep_ptid;
1595 context_switch (ecs);
9a4105ab
AC
1596 if (deprecated_context_hook)
1597 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1598
1599 resume (1, TARGET_SIGNAL_0);
1600 prepare_to_wait (ecs);
1601 return;
1602 }
1603 }
1604
1605 stepping_past_singlestep_breakpoint = 0;
1606
488f131b
JB
1607 /* See if a thread hit a thread-specific breakpoint that was meant for
1608 another thread. If so, then step that thread past the breakpoint,
1609 and continue it. */
1610
1611 if (stop_signal == TARGET_SIGNAL_TRAP)
1612 {
9f976b41
DJ
1613 int thread_hop_needed = 0;
1614
f8d40ec8
JB
1615 /* Check if a regular breakpoint has been hit before checking
1616 for a potential single step breakpoint. Otherwise, GDB will
1617 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1618 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1619 {
c5aa993b 1620 ecs->random_signal = 0;
4fa8626c 1621 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1622 thread_hop_needed = 1;
1623 }
1c0fdd0e 1624 else if (singlestep_breakpoints_inserted_p)
9f976b41 1625 {
fd48f117
DJ
1626 /* We have not context switched yet, so this should be true
1627 no matter which thread hit the singlestep breakpoint. */
1628 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1629 if (debug_infrun)
1630 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1631 "trap for %s\n",
1632 target_pid_to_str (ecs->ptid));
1633
9f976b41
DJ
1634 ecs->random_signal = 0;
1635 /* The call to in_thread_list is necessary because PTIDs sometimes
1636 change when we go from single-threaded to multi-threaded. If
1637 the singlestep_ptid is still in the list, assume that it is
1638 really different from ecs->ptid. */
1639 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1640 && in_thread_list (singlestep_ptid))
1641 {
fd48f117
DJ
1642 /* If the PC of the thread we were trying to single-step
1643 has changed, discard this event (which we were going
1644 to ignore anyway), and pretend we saw that thread
1645 trap. This prevents us continuously moving the
1646 single-step breakpoint forward, one instruction at a
1647 time. If the PC has changed, then the thread we were
1648 trying to single-step has trapped or been signalled,
1649 but the event has not been reported to GDB yet.
1650
1651 There might be some cases where this loses signal
1652 information, if a signal has arrived at exactly the
1653 same time that the PC changed, but this is the best
1654 we can do with the information available. Perhaps we
1655 should arrange to report all events for all threads
1656 when they stop, or to re-poll the remote looking for
1657 this particular thread (i.e. temporarily enable
1658 schedlock). */
1659 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1660 {
1661 if (debug_infrun)
1662 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1663 " but expected thread advanced also\n");
1664
1665 /* The current context still belongs to
1666 singlestep_ptid. Don't swap here, since that's
1667 the context we want to use. Just fudge our
1668 state and continue. */
1669 ecs->ptid = singlestep_ptid;
1670 stop_pc = read_pc_pid (ecs->ptid);
1671 }
1672 else
1673 {
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "infrun: unexpected thread\n");
1677
1678 thread_hop_needed = 1;
1679 stepping_past_singlestep_breakpoint = 1;
1680 saved_singlestep_ptid = singlestep_ptid;
1681 }
9f976b41
DJ
1682 }
1683 }
1684
1685 if (thread_hop_needed)
8fb3e588
AC
1686 {
1687 int remove_status;
1688
527159b7 1689 if (debug_infrun)
8a9de0e4 1690 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1691
8fb3e588
AC
1692 /* Saw a breakpoint, but it was hit by the wrong thread.
1693 Just continue. */
1694
1c0fdd0e 1695 if (singlestep_breakpoints_inserted_p)
488f131b 1696 {
8fb3e588 1697 /* Pull the single step breakpoints out of the target. */
e0cd558a 1698 remove_single_step_breakpoints ();
8fb3e588
AC
1699 singlestep_breakpoints_inserted_p = 0;
1700 }
1701
1702 remove_status = remove_breakpoints ();
1703 /* Did we fail to remove breakpoints? If so, try
1704 to set the PC past the bp. (There's at least
1705 one situation in which we can fail to remove
1706 the bp's: On HP-UX's that use ttrace, we can't
1707 change the address space of a vforking child
1708 process until the child exits (well, okay, not
1709 then either :-) or execs. */
1710 if (remove_status != 0)
1711 {
1712 /* FIXME! This is obviously non-portable! */
1713 write_pc_pid (stop_pc + 4, ecs->ptid);
1714 /* We need to restart all the threads now,
1715 * unles we're running in scheduler-locked mode.
1716 * Use currently_stepping to determine whether to
1717 * step or continue.
1718 */
1719 /* FIXME MVS: is there any reason not to call resume()? */
1720 if (scheduler_mode == schedlock_on)
1721 target_resume (ecs->ptid,
1722 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1723 else
8fb3e588
AC
1724 target_resume (RESUME_ALL,
1725 currently_stepping (ecs), TARGET_SIGNAL_0);
1726 prepare_to_wait (ecs);
1727 return;
1728 }
1729 else
1730 { /* Single step */
1731 breakpoints_inserted = 0;
1732 if (!ptid_equal (inferior_ptid, ecs->ptid))
1733 context_switch (ecs);
1734 ecs->waiton_ptid = ecs->ptid;
1735 ecs->wp = &(ecs->ws);
1736 ecs->another_trap = 1;
1737
1738 ecs->infwait_state = infwait_thread_hop_state;
1739 keep_going (ecs);
1740 registers_changed ();
1741 return;
1742 }
488f131b 1743 }
1c0fdd0e 1744 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1745 {
1746 sw_single_step_trap_p = 1;
1747 ecs->random_signal = 0;
1748 }
488f131b
JB
1749 }
1750 else
1751 ecs->random_signal = 1;
c906108c 1752
488f131b 1753 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1754 so, then switch to that thread. */
1755 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1756 {
527159b7 1757 if (debug_infrun)
8a9de0e4 1758 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1759
488f131b 1760 context_switch (ecs);
c5aa993b 1761
9a4105ab
AC
1762 if (deprecated_context_hook)
1763 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1764 }
c906108c 1765
1c0fdd0e 1766 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1767 {
1768 /* Pull the single step breakpoints out of the target. */
e0cd558a 1769 remove_single_step_breakpoints ();
488f131b
JB
1770 singlestep_breakpoints_inserted_p = 0;
1771 }
c906108c 1772
488f131b
JB
1773 /* It may not be necessary to disable the watchpoint to stop over
1774 it. For example, the PA can (with some kernel cooperation)
1775 single step over a watchpoint without disabling the watchpoint. */
1776 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1777 {
527159b7 1778 if (debug_infrun)
8a9de0e4 1779 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1780 resume (1, 0);
1781 prepare_to_wait (ecs);
1782 return;
1783 }
c906108c 1784
488f131b
JB
1785 /* It is far more common to need to disable a watchpoint to step
1786 the inferior over it. FIXME. What else might a debug
1787 register or page protection watchpoint scheme need here? */
e6cf7916
UW
1788 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1789 && STOPPED_BY_WATCHPOINT (ecs->ws))
488f131b
JB
1790 {
1791 /* At this point, we are stopped at an instruction which has
1792 attempted to write to a piece of memory under control of
1793 a watchpoint. The instruction hasn't actually executed
1794 yet. If we were to evaluate the watchpoint expression
1795 now, we would get the old value, and therefore no change
1796 would seem to have occurred.
1797
1798 In order to make watchpoints work `right', we really need
1799 to complete the memory write, and then evaluate the
1800 watchpoint expression. The following code does that by
1801 removing the watchpoint (actually, all watchpoints and
1802 breakpoints), single-stepping the target, re-inserting
1803 watchpoints, and then falling through to let normal
1804 single-step processing handle proceed. Since this
1805 includes evaluating watchpoints, things will come to a
1806 stop in the correct manner. */
1807
527159b7 1808 if (debug_infrun)
8a9de0e4 1809 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1810 remove_breakpoints ();
1811 registers_changed ();
1812 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1813
488f131b
JB
1814 ecs->waiton_ptid = ecs->ptid;
1815 ecs->wp = &(ecs->ws);
1816 ecs->infwait_state = infwait_nonstep_watch_state;
1817 prepare_to_wait (ecs);
1818 return;
1819 }
1820
1821 /* It may be possible to simply continue after a watchpoint. */
1822 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1823 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1824
1825 ecs->stop_func_start = 0;
1826 ecs->stop_func_end = 0;
1827 ecs->stop_func_name = 0;
1828 /* Don't care about return value; stop_func_start and stop_func_name
1829 will both be 0 if it doesn't work. */
1830 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1831 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1832 ecs->stop_func_start
1833 += gdbarch_deprecated_function_start_offset (current_gdbarch);
488f131b
JB
1834 ecs->another_trap = 0;
1835 bpstat_clear (&stop_bpstat);
1836 stop_step = 0;
1837 stop_stack_dummy = 0;
1838 stop_print_frame = 1;
1839 ecs->random_signal = 0;
1840 stopped_by_random_signal = 0;
488f131b 1841
3352ef37
AC
1842 if (stop_signal == TARGET_SIGNAL_TRAP
1843 && trap_expected
1844 && gdbarch_single_step_through_delay_p (current_gdbarch)
1845 && currently_stepping (ecs))
1846 {
1847 /* We're trying to step of a breakpoint. Turns out that we're
1848 also on an instruction that needs to be stepped multiple
1849 times before it's been fully executing. E.g., architectures
1850 with a delay slot. It needs to be stepped twice, once for
1851 the instruction and once for the delay slot. */
1852 int step_through_delay
1853 = gdbarch_single_step_through_delay (current_gdbarch,
1854 get_current_frame ());
527159b7 1855 if (debug_infrun && step_through_delay)
8a9de0e4 1856 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1857 if (step_range_end == 0 && step_through_delay)
1858 {
1859 /* The user issued a continue when stopped at a breakpoint.
1860 Set up for another trap and get out of here. */
1861 ecs->another_trap = 1;
1862 keep_going (ecs);
1863 return;
1864 }
1865 else if (step_through_delay)
1866 {
1867 /* The user issued a step when stopped at a breakpoint.
1868 Maybe we should stop, maybe we should not - the delay
1869 slot *might* correspond to a line of source. In any
1870 case, don't decide that here, just set ecs->another_trap,
1871 making sure we single-step again before breakpoints are
1872 re-inserted. */
1873 ecs->another_trap = 1;
1874 }
1875 }
1876
488f131b
JB
1877 /* Look at the cause of the stop, and decide what to do.
1878 The alternatives are:
1879 1) break; to really stop and return to the debugger,
1880 2) drop through to start up again
1881 (set ecs->another_trap to 1 to single step once)
1882 3) set ecs->random_signal to 1, and the decision between 1 and 2
1883 will be made according to the signal handling tables. */
1884
1885 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1886 that have to do with the program's own actions. Note that
1887 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1888 on the operating system version. Here we detect when a SIGILL or
1889 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1890 something similar for SIGSEGV, since a SIGSEGV will be generated
1891 when we're trying to execute a breakpoint instruction on a
1892 non-executable stack. This happens for call dummy breakpoints
1893 for architectures like SPARC that place call dummies on the
1894 stack. */
488f131b
JB
1895
1896 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1897 || (breakpoints_inserted
1898 && (stop_signal == TARGET_SIGNAL_ILL
1899 || stop_signal == TARGET_SIGNAL_SEGV
1900 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1901 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1902 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1903 {
1904 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1905 {
527159b7 1906 if (debug_infrun)
8a9de0e4 1907 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1908 stop_print_frame = 0;
1909 stop_stepping (ecs);
1910 return;
1911 }
c54cfec8
EZ
1912
1913 /* This is originated from start_remote(), start_inferior() and
1914 shared libraries hook functions. */
b0f4b84b 1915 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1916 {
527159b7 1917 if (debug_infrun)
8a9de0e4 1918 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1919 stop_stepping (ecs);
1920 return;
1921 }
1922
c54cfec8
EZ
1923 /* This originates from attach_command(). We need to overwrite
1924 the stop_signal here, because some kernels don't ignore a
1925 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1926 See more comments in inferior.h. */
c0236d92 1927 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1928 {
1929 stop_stepping (ecs);
1930 if (stop_signal == TARGET_SIGNAL_STOP)
1931 stop_signal = TARGET_SIGNAL_0;
1932 return;
1933 }
1934
d303a6c7
AC
1935 /* Don't even think about breakpoints if just proceeded over a
1936 breakpoint. */
1937 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1938 {
1939 if (debug_infrun)
8a9de0e4 1940 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1941 bpstat_clear (&stop_bpstat);
1942 }
488f131b
JB
1943 else
1944 {
1945 /* See if there is a breakpoint at the current PC. */
8fb3e588 1946 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1947 stopped_by_watchpoint);
488f131b 1948
488f131b
JB
1949 /* Following in case break condition called a
1950 function. */
1951 stop_print_frame = 1;
1952 }
1953
73dd234f 1954 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1955 at one stage in the past included checks for an inferior
1956 function call's call dummy's return breakpoint. The original
1957 comment, that went with the test, read:
73dd234f 1958
8fb3e588
AC
1959 ``End of a stack dummy. Some systems (e.g. Sony news) give
1960 another signal besides SIGTRAP, so check here as well as
1961 above.''
73dd234f
AC
1962
1963 If someone ever tries to get get call dummys on a
1964 non-executable stack to work (where the target would stop
03cebad2
MK
1965 with something like a SIGSEGV), then those tests might need
1966 to be re-instated. Given, however, that the tests were only
73dd234f 1967 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1968 suspect that it won't be the case.
1969
8fb3e588
AC
1970 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1971 be necessary for call dummies on a non-executable stack on
1972 SPARC. */
73dd234f 1973
488f131b
JB
1974 if (stop_signal == TARGET_SIGNAL_TRAP)
1975 ecs->random_signal
1976 = !(bpstat_explains_signal (stop_bpstat)
1977 || trap_expected
488f131b 1978 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1979 else
1980 {
73dd234f 1981 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1982 if (!ecs->random_signal)
1983 stop_signal = TARGET_SIGNAL_TRAP;
1984 }
1985 }
1986
1987 /* When we reach this point, we've pretty much decided
1988 that the reason for stopping must've been a random
1989 (unexpected) signal. */
1990
1991 else
1992 ecs->random_signal = 1;
488f131b 1993
04e68871 1994process_event_stop_test:
488f131b
JB
1995 /* For the program's own signals, act according to
1996 the signal handling tables. */
1997
1998 if (ecs->random_signal)
1999 {
2000 /* Signal not for debugging purposes. */
2001 int printed = 0;
2002
527159b7 2003 if (debug_infrun)
8a9de0e4 2004 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2005
488f131b
JB
2006 stopped_by_random_signal = 1;
2007
2008 if (signal_print[stop_signal])
2009 {
2010 printed = 1;
2011 target_terminal_ours_for_output ();
2012 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2013 }
2014 if (signal_stop[stop_signal])
2015 {
2016 stop_stepping (ecs);
2017 return;
2018 }
2019 /* If not going to stop, give terminal back
2020 if we took it away. */
2021 else if (printed)
2022 target_terminal_inferior ();
2023
2024 /* Clear the signal if it should not be passed. */
2025 if (signal_program[stop_signal] == 0)
2026 stop_signal = TARGET_SIGNAL_0;
2027
68f53502
AC
2028 if (prev_pc == read_pc ()
2029 && !breakpoints_inserted
2030 && breakpoint_here_p (read_pc ())
2031 && step_resume_breakpoint == NULL)
2032 {
2033 /* We were just starting a new sequence, attempting to
2034 single-step off of a breakpoint and expecting a SIGTRAP.
2035 Intead this signal arrives. This signal will take us out
2036 of the stepping range so GDB needs to remember to, when
2037 the signal handler returns, resume stepping off that
2038 breakpoint. */
2039 /* To simplify things, "continue" is forced to use the same
2040 code paths as single-step - set a breakpoint at the
2041 signal return address and then, once hit, step off that
2042 breakpoint. */
d3169d93 2043
44cbf7b5 2044 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2045 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2046 keep_going (ecs);
2047 return;
68f53502 2048 }
9d799f85
AC
2049
2050 if (step_range_end != 0
2051 && stop_signal != TARGET_SIGNAL_0
2052 && stop_pc >= step_range_start && stop_pc < step_range_end
2053 && frame_id_eq (get_frame_id (get_current_frame ()),
2054 step_frame_id)
2055 && step_resume_breakpoint == NULL)
d303a6c7
AC
2056 {
2057 /* The inferior is about to take a signal that will take it
2058 out of the single step range. Set a breakpoint at the
2059 current PC (which is presumably where the signal handler
2060 will eventually return) and then allow the inferior to
2061 run free.
2062
2063 Note that this is only needed for a signal delivered
2064 while in the single-step range. Nested signals aren't a
2065 problem as they eventually all return. */
44cbf7b5 2066 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2067 keep_going (ecs);
2068 return;
d303a6c7 2069 }
9d799f85
AC
2070
2071 /* Note: step_resume_breakpoint may be non-NULL. This occures
2072 when either there's a nested signal, or when there's a
2073 pending signal enabled just as the signal handler returns
2074 (leaving the inferior at the step-resume-breakpoint without
2075 actually executing it). Either way continue until the
2076 breakpoint is really hit. */
488f131b
JB
2077 keep_going (ecs);
2078 return;
2079 }
2080
2081 /* Handle cases caused by hitting a breakpoint. */
2082 {
2083 CORE_ADDR jmp_buf_pc;
2084 struct bpstat_what what;
2085
2086 what = bpstat_what (stop_bpstat);
2087
2088 if (what.call_dummy)
2089 {
2090 stop_stack_dummy = 1;
c5aa993b 2091 }
c906108c 2092
488f131b 2093 switch (what.main_action)
c5aa993b 2094 {
488f131b
JB
2095 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2096 /* If we hit the breakpoint at longjmp, disable it for the
2097 duration of this command. Then, install a temporary
2098 breakpoint at the target of the jmp_buf. */
527159b7 2099 if (debug_infrun)
8802d8ed 2100 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2101 disable_longjmp_breakpoint ();
2102 remove_breakpoints ();
2103 breakpoints_inserted = 0;
91104499 2104 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2105 || !gdbarch_get_longjmp_target (current_gdbarch,
2106 get_current_frame (), &jmp_buf_pc))
c5aa993b 2107 {
488f131b 2108 keep_going (ecs);
104c1213 2109 return;
c5aa993b 2110 }
488f131b
JB
2111
2112 /* Need to blow away step-resume breakpoint, as it
2113 interferes with us */
2114 if (step_resume_breakpoint != NULL)
104c1213 2115 {
488f131b 2116 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2117 }
c906108c 2118
8fb3e588 2119 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2120 ecs->handling_longjmp = 1; /* FIXME */
2121 keep_going (ecs);
2122 return;
c906108c 2123
488f131b
JB
2124 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2125 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2126 if (debug_infrun)
8802d8ed 2127 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2128 remove_breakpoints ();
2129 breakpoints_inserted = 0;
488f131b
JB
2130 disable_longjmp_breakpoint ();
2131 ecs->handling_longjmp = 0; /* FIXME */
2132 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2133 break;
2134 /* else fallthrough */
2135
2136 case BPSTAT_WHAT_SINGLE:
527159b7 2137 if (debug_infrun)
8802d8ed 2138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2139 if (breakpoints_inserted)
569631c6 2140 remove_breakpoints ();
488f131b
JB
2141 breakpoints_inserted = 0;
2142 ecs->another_trap = 1;
2143 /* Still need to check other stuff, at least the case
2144 where we are stepping and step out of the right range. */
2145 break;
c906108c 2146
488f131b 2147 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2148 if (debug_infrun)
8802d8ed 2149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2150 stop_print_frame = 1;
c906108c 2151
d303a6c7
AC
2152 /* We are about to nuke the step_resume_breakpointt via the
2153 cleanup chain, so no need to worry about it here. */
c5aa993b 2154
488f131b
JB
2155 stop_stepping (ecs);
2156 return;
c5aa993b 2157
488f131b 2158 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2159 if (debug_infrun)
8802d8ed 2160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2161 stop_print_frame = 0;
c5aa993b 2162
d303a6c7
AC
2163 /* We are about to nuke the step_resume_breakpoin via the
2164 cleanup chain, so no need to worry about it here. */
c5aa993b 2165
488f131b 2166 stop_stepping (ecs);
e441088d 2167 return;
c5aa993b 2168
488f131b
JB
2169 case BPSTAT_WHAT_STEP_RESUME:
2170 /* This proably demands a more elegant solution, but, yeah
2171 right...
c5aa993b 2172
488f131b
JB
2173 This function's use of the simple variable
2174 step_resume_breakpoint doesn't seem to accomodate
2175 simultaneously active step-resume bp's, although the
2176 breakpoint list certainly can.
c5aa993b 2177
488f131b
JB
2178 If we reach here and step_resume_breakpoint is already
2179 NULL, then apparently we have multiple active
2180 step-resume bp's. We'll just delete the breakpoint we
2181 stopped at, and carry on.
2182
2183 Correction: what the code currently does is delete a
2184 step-resume bp, but it makes no effort to ensure that
2185 the one deleted is the one currently stopped at. MVS */
c5aa993b 2186
527159b7 2187 if (debug_infrun)
8802d8ed 2188 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2189
488f131b
JB
2190 if (step_resume_breakpoint == NULL)
2191 {
2192 step_resume_breakpoint =
2193 bpstat_find_step_resume_breakpoint (stop_bpstat);
2194 }
2195 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2196 if (ecs->step_after_step_resume_breakpoint)
2197 {
2198 /* Back when the step-resume breakpoint was inserted, we
2199 were trying to single-step off a breakpoint. Go back
2200 to doing that. */
2201 ecs->step_after_step_resume_breakpoint = 0;
2202 remove_breakpoints ();
2203 breakpoints_inserted = 0;
2204 ecs->another_trap = 1;
2205 keep_going (ecs);
2206 return;
2207 }
488f131b
JB
2208 break;
2209
488f131b
JB
2210 case BPSTAT_WHAT_CHECK_SHLIBS:
2211 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2212 {
527159b7 2213 if (debug_infrun)
8802d8ed 2214 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2215 /* Remove breakpoints, we eventually want to step over the
2216 shlib event breakpoint, and SOLIB_ADD might adjust
2217 breakpoint addresses via breakpoint_re_set. */
2218 if (breakpoints_inserted)
2219 remove_breakpoints ();
c5aa993b 2220 breakpoints_inserted = 0;
488f131b
JB
2221
2222 /* Check for any newly added shared libraries if we're
2223 supposed to be adding them automatically. Switch
2224 terminal for any messages produced by
2225 breakpoint_re_set. */
2226 target_terminal_ours_for_output ();
aff6338a 2227 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2228 stack's section table is kept up-to-date. Architectures,
2229 (e.g., PPC64), use the section table to perform
2230 operations such as address => section name and hence
2231 require the table to contain all sections (including
2232 those found in shared libraries). */
aff6338a 2233 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2234 exec_ops to SOLIB_ADD. This is because current GDB is
2235 only tooled to propagate section_table changes out from
2236 the "current_target" (see target_resize_to_sections), and
2237 not up from the exec stratum. This, of course, isn't
2238 right. "infrun.c" should only interact with the
2239 exec/process stratum, instead relying on the target stack
2240 to propagate relevant changes (stop, section table
2241 changed, ...) up to other layers. */
a77053c2 2242#ifdef SOLIB_ADD
aff6338a 2243 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2244#else
2245 solib_add (NULL, 0, &current_target, auto_solib_add);
2246#endif
488f131b
JB
2247 target_terminal_inferior ();
2248
2249 /* Try to reenable shared library breakpoints, additional
2250 code segments in shared libraries might be mapped in now. */
2251 re_enable_breakpoints_in_shlibs ();
2252
2253 /* If requested, stop when the dynamic linker notifies
2254 gdb of events. This allows the user to get control
2255 and place breakpoints in initializer routines for
2256 dynamically loaded objects (among other things). */
877522db 2257 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2258 {
488f131b 2259 stop_stepping (ecs);
d4f3574e
SS
2260 return;
2261 }
c5aa993b 2262
488f131b
JB
2263 /* If we stopped due to an explicit catchpoint, then the
2264 (see above) call to SOLIB_ADD pulled in any symbols
2265 from a newly-loaded library, if appropriate.
2266
2267 We do want the inferior to stop, but not where it is
2268 now, which is in the dynamic linker callback. Rather,
2269 we would like it stop in the user's program, just after
2270 the call that caused this catchpoint to trigger. That
2271 gives the user a more useful vantage from which to
2272 examine their program's state. */
8fb3e588
AC
2273 else if (what.main_action
2274 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2275 {
488f131b
JB
2276 /* ??rehrauer: If I could figure out how to get the
2277 right return PC from here, we could just set a temp
2278 breakpoint and resume. I'm not sure we can without
2279 cracking open the dld's shared libraries and sniffing
2280 their unwind tables and text/data ranges, and that's
2281 not a terribly portable notion.
2282
2283 Until that time, we must step the inferior out of the
2284 dld callback, and also out of the dld itself (and any
2285 code or stubs in libdld.sl, such as "shl_load" and
2286 friends) until we reach non-dld code. At that point,
2287 we can stop stepping. */
2288 bpstat_get_triggered_catchpoints (stop_bpstat,
2289 &ecs->
2290 stepping_through_solib_catchpoints);
2291 ecs->stepping_through_solib_after_catch = 1;
2292
2293 /* Be sure to lift all breakpoints, so the inferior does
2294 actually step past this point... */
2295 ecs->another_trap = 1;
2296 break;
c906108c 2297 }
c5aa993b 2298 else
c5aa993b 2299 {
488f131b 2300 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2301 ecs->another_trap = 1;
488f131b 2302 break;
c5aa993b 2303 }
488f131b 2304 }
488f131b 2305 break;
c906108c 2306
488f131b
JB
2307 case BPSTAT_WHAT_LAST:
2308 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2309
488f131b
JB
2310 case BPSTAT_WHAT_KEEP_CHECKING:
2311 break;
2312 }
2313 }
c906108c 2314
488f131b
JB
2315 /* We come here if we hit a breakpoint but should not
2316 stop for it. Possibly we also were stepping
2317 and should stop for that. So fall through and
2318 test for stepping. But, if not stepping,
2319 do not stop. */
c906108c 2320
9d1ff73f
MS
2321 /* Are we stepping to get the inferior out of the dynamic linker's
2322 hook (and possibly the dld itself) after catching a shlib
2323 event? */
488f131b
JB
2324 if (ecs->stepping_through_solib_after_catch)
2325 {
2326#if defined(SOLIB_ADD)
2327 /* Have we reached our destination? If not, keep going. */
2328 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2329 {
527159b7 2330 if (debug_infrun)
8a9de0e4 2331 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2332 ecs->another_trap = 1;
2333 keep_going (ecs);
104c1213 2334 return;
488f131b
JB
2335 }
2336#endif
527159b7 2337 if (debug_infrun)
8a9de0e4 2338 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2339 /* Else, stop and report the catchpoint(s) whose triggering
2340 caused us to begin stepping. */
2341 ecs->stepping_through_solib_after_catch = 0;
2342 bpstat_clear (&stop_bpstat);
2343 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2344 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2345 stop_print_frame = 1;
2346 stop_stepping (ecs);
2347 return;
2348 }
c906108c 2349
488f131b
JB
2350 if (step_resume_breakpoint)
2351 {
527159b7 2352 if (debug_infrun)
d3169d93
DJ
2353 fprintf_unfiltered (gdb_stdlog,
2354 "infrun: step-resume breakpoint is inserted\n");
527159b7 2355
488f131b
JB
2356 /* Having a step-resume breakpoint overrides anything
2357 else having to do with stepping commands until
2358 that breakpoint is reached. */
488f131b
JB
2359 keep_going (ecs);
2360 return;
2361 }
c5aa993b 2362
488f131b
JB
2363 if (step_range_end == 0)
2364 {
527159b7 2365 if (debug_infrun)
8a9de0e4 2366 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2367 /* Likewise if we aren't even stepping. */
488f131b
JB
2368 keep_going (ecs);
2369 return;
2370 }
c5aa993b 2371
488f131b 2372 /* If stepping through a line, keep going if still within it.
c906108c 2373
488f131b
JB
2374 Note that step_range_end is the address of the first instruction
2375 beyond the step range, and NOT the address of the last instruction
2376 within it! */
2377 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2378 {
527159b7 2379 if (debug_infrun)
8a9de0e4 2380 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2381 paddr_nz (step_range_start),
2382 paddr_nz (step_range_end));
488f131b
JB
2383 keep_going (ecs);
2384 return;
2385 }
c5aa993b 2386
488f131b 2387 /* We stepped out of the stepping range. */
c906108c 2388
488f131b
JB
2389 /* If we are stepping at the source level and entered the runtime
2390 loader dynamic symbol resolution code, we keep on single stepping
2391 until we exit the run time loader code and reach the callee's
2392 address. */
2393 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2394#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2395 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2396#else
2397 && in_solib_dynsym_resolve_code (stop_pc)
2398#endif
2399 )
488f131b 2400 {
4c8c40e6
MK
2401 CORE_ADDR pc_after_resolver =
2402 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2403
527159b7 2404 if (debug_infrun)
8a9de0e4 2405 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2406
488f131b
JB
2407 if (pc_after_resolver)
2408 {
2409 /* Set up a step-resume breakpoint at the address
2410 indicated by SKIP_SOLIB_RESOLVER. */
2411 struct symtab_and_line sr_sal;
fe39c653 2412 init_sal (&sr_sal);
488f131b
JB
2413 sr_sal.pc = pc_after_resolver;
2414
44cbf7b5 2415 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2416 }
c906108c 2417
488f131b
JB
2418 keep_going (ecs);
2419 return;
2420 }
c906108c 2421
42edda50
AC
2422 if (step_range_end != 1
2423 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2424 || step_over_calls == STEP_OVER_ALL)
2425 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2426 {
527159b7 2427 if (debug_infrun)
8a9de0e4 2428 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2429 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2430 a signal trampoline (either by a signal being delivered or by
2431 the signal handler returning). Just single-step until the
2432 inferior leaves the trampoline (either by calling the handler
2433 or returning). */
488f131b
JB
2434 keep_going (ecs);
2435 return;
2436 }
c906108c 2437
c17eaafe
DJ
2438 /* Check for subroutine calls. The check for the current frame
2439 equalling the step ID is not necessary - the check of the
2440 previous frame's ID is sufficient - but it is a common case and
2441 cheaper than checking the previous frame's ID.
14e60db5
DJ
2442
2443 NOTE: frame_id_eq will never report two invalid frame IDs as
2444 being equal, so to get into this block, both the current and
2445 previous frame must have valid frame IDs. */
c17eaafe
DJ
2446 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2447 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2448 {
95918acb 2449 CORE_ADDR real_stop_pc;
8fb3e588 2450
527159b7 2451 if (debug_infrun)
8a9de0e4 2452 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2453
95918acb
AC
2454 if ((step_over_calls == STEP_OVER_NONE)
2455 || ((step_range_end == 1)
2456 && in_prologue (prev_pc, ecs->stop_func_start)))
2457 {
2458 /* I presume that step_over_calls is only 0 when we're
2459 supposed to be stepping at the assembly language level
2460 ("stepi"). Just stop. */
2461 /* Also, maybe we just did a "nexti" inside a prolog, so we
2462 thought it was a subroutine call but it was not. Stop as
2463 well. FENN */
2464 stop_step = 1;
2465 print_stop_reason (END_STEPPING_RANGE, 0);
2466 stop_stepping (ecs);
2467 return;
2468 }
8fb3e588 2469
8567c30f
AC
2470 if (step_over_calls == STEP_OVER_ALL)
2471 {
2472 /* We're doing a "next", set a breakpoint at callee's return
2473 address (the address at which the caller will
2474 resume). */
14e60db5 2475 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2476 keep_going (ecs);
2477 return;
2478 }
a53c66de 2479
95918acb 2480 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2481 calling routine and the real function), locate the real
2482 function. That's what tells us (a) whether we want to step
2483 into it at all, and (b) what prologue we want to run to the
2484 end of, if we do step into it. */
52f729a7 2485 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2486 if (real_stop_pc == 0)
52f729a7
UW
2487 real_stop_pc = gdbarch_skip_trampoline_code
2488 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2489 if (real_stop_pc != 0)
2490 ecs->stop_func_start = real_stop_pc;
8fb3e588 2491
a77053c2
MK
2492 if (
2493#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2494 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2495#else
2496 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2497#endif
2498)
1b2bfbb9
RC
2499 {
2500 struct symtab_and_line sr_sal;
2501 init_sal (&sr_sal);
2502 sr_sal.pc = ecs->stop_func_start;
2503
44cbf7b5 2504 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2505 keep_going (ecs);
2506 return;
1b2bfbb9
RC
2507 }
2508
95918acb 2509 /* If we have line number information for the function we are
8fb3e588 2510 thinking of stepping into, step into it.
95918acb 2511
8fb3e588
AC
2512 If there are several symtabs at that PC (e.g. with include
2513 files), just want to know whether *any* of them have line
2514 numbers. find_pc_line handles this. */
95918acb
AC
2515 {
2516 struct symtab_and_line tmp_sal;
8fb3e588 2517
95918acb
AC
2518 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2519 if (tmp_sal.line != 0)
2520 {
2521 step_into_function (ecs);
2522 return;
2523 }
2524 }
2525
2526 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2527 set, we stop the step so that the user has a chance to switch
2528 in assembly mode. */
95918acb
AC
2529 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2530 {
2531 stop_step = 1;
2532 print_stop_reason (END_STEPPING_RANGE, 0);
2533 stop_stepping (ecs);
2534 return;
2535 }
2536
2537 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2538 which the caller will resume). */
14e60db5 2539 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2540 keep_going (ecs);
488f131b 2541 return;
488f131b 2542 }
c906108c 2543
488f131b
JB
2544 /* If we're in the return path from a shared library trampoline,
2545 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2546 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2547 stop_pc, ecs->stop_func_name))
488f131b 2548 {
488f131b 2549 /* Determine where this trampoline returns. */
52f729a7
UW
2550 CORE_ADDR real_stop_pc;
2551 real_stop_pc = gdbarch_skip_trampoline_code
2552 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2553
527159b7 2554 if (debug_infrun)
8a9de0e4 2555 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2556
488f131b 2557 /* Only proceed through if we know where it's going. */
d764a824 2558 if (real_stop_pc)
488f131b
JB
2559 {
2560 /* And put the step-breakpoint there and go until there. */
2561 struct symtab_and_line sr_sal;
2562
fe39c653 2563 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2564 sr_sal.pc = real_stop_pc;
488f131b 2565 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2566
2567 /* Do not specify what the fp should be when we stop since
2568 on some machines the prologue is where the new fp value
2569 is established. */
2570 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2571
488f131b
JB
2572 /* Restart without fiddling with the step ranges or
2573 other state. */
2574 keep_going (ecs);
2575 return;
2576 }
2577 }
c906108c 2578
7ed0fe66
DJ
2579 ecs->sal = find_pc_line (stop_pc, 0);
2580
1b2bfbb9
RC
2581 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2582 the trampoline processing logic, however, there are some trampolines
2583 that have no names, so we should do trampoline handling first. */
2584 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2585 && ecs->stop_func_name == NULL
2586 && ecs->sal.line == 0)
1b2bfbb9 2587 {
527159b7 2588 if (debug_infrun)
8a9de0e4 2589 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2590
1b2bfbb9 2591 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2592 undebuggable function (where there is no debugging information
2593 and no line number corresponding to the address where the
1b2bfbb9
RC
2594 inferior stopped). Since we want to skip this kind of code,
2595 we keep going until the inferior returns from this
14e60db5
DJ
2596 function - unless the user has asked us not to (via
2597 set step-mode) or we no longer know how to get back
2598 to the call site. */
2599 if (step_stop_if_no_debug
2600 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2601 {
2602 /* If we have no line number and the step-stop-if-no-debug
2603 is set, we stop the step so that the user has a chance to
2604 switch in assembly mode. */
2605 stop_step = 1;
2606 print_stop_reason (END_STEPPING_RANGE, 0);
2607 stop_stepping (ecs);
2608 return;
2609 }
2610 else
2611 {
2612 /* Set a breakpoint at callee's return address (the address
2613 at which the caller will resume). */
14e60db5 2614 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2615 keep_going (ecs);
2616 return;
2617 }
2618 }
2619
2620 if (step_range_end == 1)
2621 {
2622 /* It is stepi or nexti. We always want to stop stepping after
2623 one instruction. */
527159b7 2624 if (debug_infrun)
8a9de0e4 2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2626 stop_step = 1;
2627 print_stop_reason (END_STEPPING_RANGE, 0);
2628 stop_stepping (ecs);
2629 return;
2630 }
2631
488f131b
JB
2632 if (ecs->sal.line == 0)
2633 {
2634 /* We have no line number information. That means to stop
2635 stepping (does this always happen right after one instruction,
2636 when we do "s" in a function with no line numbers,
2637 or can this happen as a result of a return or longjmp?). */
527159b7 2638 if (debug_infrun)
8a9de0e4 2639 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2640 stop_step = 1;
2641 print_stop_reason (END_STEPPING_RANGE, 0);
2642 stop_stepping (ecs);
2643 return;
2644 }
c906108c 2645
488f131b
JB
2646 if ((stop_pc == ecs->sal.pc)
2647 && (ecs->current_line != ecs->sal.line
2648 || ecs->current_symtab != ecs->sal.symtab))
2649 {
2650 /* We are at the start of a different line. So stop. Note that
2651 we don't stop if we step into the middle of a different line.
2652 That is said to make things like for (;;) statements work
2653 better. */
527159b7 2654 if (debug_infrun)
8a9de0e4 2655 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2656 stop_step = 1;
2657 print_stop_reason (END_STEPPING_RANGE, 0);
2658 stop_stepping (ecs);
2659 return;
2660 }
c906108c 2661
488f131b 2662 /* We aren't done stepping.
c906108c 2663
488f131b
JB
2664 Optimize by setting the stepping range to the line.
2665 (We might not be in the original line, but if we entered a
2666 new line in mid-statement, we continue stepping. This makes
2667 things like for(;;) statements work better.) */
c906108c 2668
488f131b 2669 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2670 {
488f131b
JB
2671 /* If this is the last line of the function, don't keep stepping
2672 (it would probably step us out of the function).
2673 This is particularly necessary for a one-line function,
2674 in which after skipping the prologue we better stop even though
2675 we will be in mid-line. */
527159b7 2676 if (debug_infrun)
8a9de0e4 2677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2678 stop_step = 1;
2679 print_stop_reason (END_STEPPING_RANGE, 0);
2680 stop_stepping (ecs);
2681 return;
c5aa993b 2682 }
488f131b
JB
2683 step_range_start = ecs->sal.pc;
2684 step_range_end = ecs->sal.end;
aa0cd9c1 2685 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2686 ecs->current_line = ecs->sal.line;
2687 ecs->current_symtab = ecs->sal.symtab;
2688
aa0cd9c1
AC
2689 /* In the case where we just stepped out of a function into the
2690 middle of a line of the caller, continue stepping, but
2691 step_frame_id must be modified to current frame */
65815ea1
AC
2692#if 0
2693 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2694 generous. It will trigger on things like a step into a frameless
2695 stackless leaf function. I think the logic should instead look
2696 at the unwound frame ID has that should give a more robust
2697 indication of what happened. */
8fb3e588
AC
2698 if (step - ID == current - ID)
2699 still stepping in same function;
2700 else if (step - ID == unwind (current - ID))
2701 stepped into a function;
2702 else
2703 stepped out of a function;
2704 /* Of course this assumes that the frame ID unwind code is robust
2705 and we're willing to introduce frame unwind logic into this
2706 function. Fortunately, those days are nearly upon us. */
65815ea1 2707#endif
488f131b 2708 {
aa0cd9c1
AC
2709 struct frame_id current_frame = get_frame_id (get_current_frame ());
2710 if (!(frame_id_inner (current_frame, step_frame_id)))
2711 step_frame_id = current_frame;
488f131b 2712 }
c906108c 2713
527159b7 2714 if (debug_infrun)
8a9de0e4 2715 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2716 keep_going (ecs);
104c1213
JM
2717}
2718
2719/* Are we in the middle of stepping? */
2720
2721static int
2722currently_stepping (struct execution_control_state *ecs)
2723{
d303a6c7 2724 return ((!ecs->handling_longjmp
104c1213
JM
2725 && ((step_range_end && step_resume_breakpoint == NULL)
2726 || trap_expected))
2727 || ecs->stepping_through_solib_after_catch
2728 || bpstat_should_step ());
2729}
c906108c 2730
c2c6d25f
JM
2731/* Subroutine call with source code we should not step over. Do step
2732 to the first line of code in it. */
2733
2734static void
2735step_into_function (struct execution_control_state *ecs)
2736{
2737 struct symtab *s;
2738 struct symtab_and_line sr_sal;
2739
2740 s = find_pc_symtab (stop_pc);
2741 if (s && s->language != language_asm)
a433963d
UW
2742 ecs->stop_func_start = gdbarch_skip_prologue
2743 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2744
2745 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2746 /* Use the step_resume_break to step until the end of the prologue,
2747 even if that involves jumps (as it seems to on the vax under
2748 4.2). */
2749 /* If the prologue ends in the middle of a source line, continue to
2750 the end of that source line (if it is still within the function).
2751 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2752 if (ecs->sal.end
2753 && ecs->sal.pc != ecs->stop_func_start
2754 && ecs->sal.end < ecs->stop_func_end)
2755 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2756
2dbd5e30
KB
2757 /* Architectures which require breakpoint adjustment might not be able
2758 to place a breakpoint at the computed address. If so, the test
2759 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2760 ecs->stop_func_start to an address at which a breakpoint may be
2761 legitimately placed.
8fb3e588 2762
2dbd5e30
KB
2763 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2764 made, GDB will enter an infinite loop when stepping through
2765 optimized code consisting of VLIW instructions which contain
2766 subinstructions corresponding to different source lines. On
2767 FR-V, it's not permitted to place a breakpoint on any but the
2768 first subinstruction of a VLIW instruction. When a breakpoint is
2769 set, GDB will adjust the breakpoint address to the beginning of
2770 the VLIW instruction. Thus, we need to make the corresponding
2771 adjustment here when computing the stop address. */
8fb3e588 2772
2dbd5e30
KB
2773 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2774 {
2775 ecs->stop_func_start
2776 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2777 ecs->stop_func_start);
2dbd5e30
KB
2778 }
2779
c2c6d25f
JM
2780 if (ecs->stop_func_start == stop_pc)
2781 {
2782 /* We are already there: stop now. */
2783 stop_step = 1;
488f131b 2784 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2785 stop_stepping (ecs);
2786 return;
2787 }
2788 else
2789 {
2790 /* Put the step-breakpoint there and go until there. */
fe39c653 2791 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2792 sr_sal.pc = ecs->stop_func_start;
2793 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2794
c2c6d25f 2795 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2796 some machines the prologue is where the new fp value is
2797 established. */
44cbf7b5 2798 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2799
2800 /* And make sure stepping stops right away then. */
2801 step_range_end = step_range_start;
2802 }
2803 keep_going (ecs);
2804}
d4f3574e 2805
d3169d93 2806/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2807 This is used to both functions and to skip over code. */
2808
2809static void
2810insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2811 struct frame_id sr_id)
2812{
2813 /* There should never be more than one step-resume breakpoint per
2814 thread, so we should never be setting a new
2815 step_resume_breakpoint when one is already active. */
2816 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2817
2818 if (debug_infrun)
2819 fprintf_unfiltered (gdb_stdlog,
2820 "infrun: inserting step-resume breakpoint at 0x%s\n",
2821 paddr_nz (sr_sal.pc));
2822
44cbf7b5
AC
2823 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2824 bp_step_resume);
2825 if (breakpoints_inserted)
2826 insert_breakpoints ();
2827}
7ce450bd 2828
d3169d93 2829/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2830 to skip a potential signal handler.
7ce450bd 2831
14e60db5
DJ
2832 This is called with the interrupted function's frame. The signal
2833 handler, when it returns, will resume the interrupted function at
2834 RETURN_FRAME.pc. */
d303a6c7
AC
2835
2836static void
44cbf7b5 2837insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2838{
2839 struct symtab_and_line sr_sal;
2840
d303a6c7
AC
2841 init_sal (&sr_sal); /* initialize to zeros */
2842
bf6ae464
UW
2843 sr_sal.pc = gdbarch_addr_bits_remove
2844 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2845 sr_sal.section = find_pc_overlay (sr_sal.pc);
2846
44cbf7b5 2847 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2848}
2849
14e60db5
DJ
2850/* Similar to insert_step_resume_breakpoint_at_frame, except
2851 but a breakpoint at the previous frame's PC. This is used to
2852 skip a function after stepping into it (for "next" or if the called
2853 function has no debugging information).
2854
2855 The current function has almost always been reached by single
2856 stepping a call or return instruction. NEXT_FRAME belongs to the
2857 current function, and the breakpoint will be set at the caller's
2858 resume address.
2859
2860 This is a separate function rather than reusing
2861 insert_step_resume_breakpoint_at_frame in order to avoid
2862 get_prev_frame, which may stop prematurely (see the implementation
2863 of frame_unwind_id for an example). */
2864
2865static void
2866insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2867{
2868 struct symtab_and_line sr_sal;
2869
2870 /* We shouldn't have gotten here if we don't know where the call site
2871 is. */
2872 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2873
2874 init_sal (&sr_sal); /* initialize to zeros */
2875
bf6ae464
UW
2876 sr_sal.pc = gdbarch_addr_bits_remove
2877 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2878 sr_sal.section = find_pc_overlay (sr_sal.pc);
2879
2880 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2881}
2882
104c1213
JM
2883static void
2884stop_stepping (struct execution_control_state *ecs)
2885{
527159b7 2886 if (debug_infrun)
8a9de0e4 2887 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2888
cd0fc7c3
SS
2889 /* Let callers know we don't want to wait for the inferior anymore. */
2890 ecs->wait_some_more = 0;
2891}
2892
d4f3574e
SS
2893/* This function handles various cases where we need to continue
2894 waiting for the inferior. */
2895/* (Used to be the keep_going: label in the old wait_for_inferior) */
2896
2897static void
2898keep_going (struct execution_control_state *ecs)
2899{
d4f3574e 2900 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2901 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2902
d4f3574e
SS
2903 /* If we did not do break;, it means we should keep running the
2904 inferior and not return to debugger. */
2905
2906 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2907 {
2908 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2909 the inferior, else we'd have done a break above) and we
2910 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2911 resume (currently_stepping (ecs), stop_signal);
2912 }
2913 else
2914 {
2915 /* Either the trap was not expected, but we are continuing
488f131b
JB
2916 anyway (the user asked that this signal be passed to the
2917 child)
2918 -- or --
2919 The signal was SIGTRAP, e.g. it was our signal, but we
2920 decided we should resume from it.
d4f3574e 2921
68f53502 2922 We're going to run this baby now! */
d4f3574e 2923
68f53502 2924 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e 2925 {
569631c6
UW
2926 /* Stop stepping when inserting breakpoints
2927 has failed. */
2928 if (insert_breakpoints () != 0)
d4f3574e
SS
2929 {
2930 stop_stepping (ecs);
2931 return;
2932 }
2933 breakpoints_inserted = 1;
2934 }
2935
2936 trap_expected = ecs->another_trap;
2937
2938 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2939 specifies that such a signal should be delivered to the
2940 target program).
2941
2942 Typically, this would occure when a user is debugging a
2943 target monitor on a simulator: the target monitor sets a
2944 breakpoint; the simulator encounters this break-point and
2945 halts the simulation handing control to GDB; GDB, noteing
2946 that the break-point isn't valid, returns control back to the
2947 simulator; the simulator then delivers the hardware
2948 equivalent of a SIGNAL_TRAP to the program being debugged. */
2949
2950 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2951 stop_signal = TARGET_SIGNAL_0;
2952
d4f3574e
SS
2953
2954 resume (currently_stepping (ecs), stop_signal);
2955 }
2956
488f131b 2957 prepare_to_wait (ecs);
d4f3574e
SS
2958}
2959
104c1213
JM
2960/* This function normally comes after a resume, before
2961 handle_inferior_event exits. It takes care of any last bits of
2962 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2963
104c1213
JM
2964static void
2965prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2966{
527159b7 2967 if (debug_infrun)
8a9de0e4 2968 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2969 if (ecs->infwait_state == infwait_normal_state)
2970 {
2971 overlay_cache_invalid = 1;
2972
2973 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2974 target_wait because they can be loaded from the target while
2975 in target_wait. This makes remote debugging a bit more
2976 efficient for those targets that provide critical registers
2977 as part of their normal status mechanism. */
104c1213
JM
2978
2979 registers_changed ();
39f77062 2980 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2981 ecs->wp = &(ecs->ws);
2982 }
2983 /* This is the old end of the while loop. Let everybody know we
2984 want to wait for the inferior some more and get called again
2985 soon. */
2986 ecs->wait_some_more = 1;
c906108c 2987}
11cf8741
JM
2988
2989/* Print why the inferior has stopped. We always print something when
2990 the inferior exits, or receives a signal. The rest of the cases are
2991 dealt with later on in normal_stop() and print_it_typical(). Ideally
2992 there should be a call to this function from handle_inferior_event()
2993 each time stop_stepping() is called.*/
2994static void
2995print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2996{
2997 switch (stop_reason)
2998 {
11cf8741
JM
2999 case END_STEPPING_RANGE:
3000 /* We are done with a step/next/si/ni command. */
3001 /* For now print nothing. */
fb40c209 3002 /* Print a message only if not in the middle of doing a "step n"
488f131b 3003 operation for n > 1 */
fb40c209 3004 if (!step_multi || !stop_step)
9dc5e2a9 3005 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3006 ui_out_field_string
3007 (uiout, "reason",
3008 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3009 break;
11cf8741
JM
3010 case SIGNAL_EXITED:
3011 /* The inferior was terminated by a signal. */
8b93c638 3012 annotate_signalled ();
9dc5e2a9 3013 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3014 ui_out_field_string
3015 (uiout, "reason",
3016 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3017 ui_out_text (uiout, "\nProgram terminated with signal ");
3018 annotate_signal_name ();
488f131b
JB
3019 ui_out_field_string (uiout, "signal-name",
3020 target_signal_to_name (stop_info));
8b93c638
JM
3021 annotate_signal_name_end ();
3022 ui_out_text (uiout, ", ");
3023 annotate_signal_string ();
488f131b
JB
3024 ui_out_field_string (uiout, "signal-meaning",
3025 target_signal_to_string (stop_info));
8b93c638
JM
3026 annotate_signal_string_end ();
3027 ui_out_text (uiout, ".\n");
3028 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3029 break;
3030 case EXITED:
3031 /* The inferior program is finished. */
8b93c638
JM
3032 annotate_exited (stop_info);
3033 if (stop_info)
3034 {
9dc5e2a9 3035 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3036 ui_out_field_string (uiout, "reason",
3037 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3038 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3039 ui_out_field_fmt (uiout, "exit-code", "0%o",
3040 (unsigned int) stop_info);
8b93c638
JM
3041 ui_out_text (uiout, ".\n");
3042 }
3043 else
3044 {
9dc5e2a9 3045 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3046 ui_out_field_string
3047 (uiout, "reason",
3048 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3049 ui_out_text (uiout, "\nProgram exited normally.\n");
3050 }
f17517ea
AS
3051 /* Support the --return-child-result option. */
3052 return_child_result_value = stop_info;
11cf8741
JM
3053 break;
3054 case SIGNAL_RECEIVED:
3055 /* Signal received. The signal table tells us to print about
3056 it. */
8b93c638
JM
3057 annotate_signal ();
3058 ui_out_text (uiout, "\nProgram received signal ");
3059 annotate_signal_name ();
84c6c83c 3060 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3061 ui_out_field_string
3062 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3063 ui_out_field_string (uiout, "signal-name",
3064 target_signal_to_name (stop_info));
8b93c638
JM
3065 annotate_signal_name_end ();
3066 ui_out_text (uiout, ", ");
3067 annotate_signal_string ();
488f131b
JB
3068 ui_out_field_string (uiout, "signal-meaning",
3069 target_signal_to_string (stop_info));
8b93c638
JM
3070 annotate_signal_string_end ();
3071 ui_out_text (uiout, ".\n");
11cf8741
JM
3072 break;
3073 default:
8e65ff28 3074 internal_error (__FILE__, __LINE__,
e2e0b3e5 3075 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3076 break;
3077 }
3078}
c906108c 3079\f
43ff13b4 3080
c906108c
SS
3081/* Here to return control to GDB when the inferior stops for real.
3082 Print appropriate messages, remove breakpoints, give terminal our modes.
3083
3084 STOP_PRINT_FRAME nonzero means print the executing frame
3085 (pc, function, args, file, line number and line text).
3086 BREAKPOINTS_FAILED nonzero means stop was due to error
3087 attempting to insert breakpoints. */
3088
3089void
96baa820 3090normal_stop (void)
c906108c 3091{
73b65bb0
DJ
3092 struct target_waitstatus last;
3093 ptid_t last_ptid;
3094
3095 get_last_target_status (&last_ptid, &last);
3096
c906108c
SS
3097 /* As with the notification of thread events, we want to delay
3098 notifying the user that we've switched thread context until
3099 the inferior actually stops.
3100
73b65bb0
DJ
3101 There's no point in saying anything if the inferior has exited.
3102 Note that SIGNALLED here means "exited with a signal", not
3103 "received a signal". */
488f131b 3104 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3105 && target_has_execution
3106 && last.kind != TARGET_WAITKIND_SIGNALLED
3107 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3108 {
3109 target_terminal_ours_for_output ();
a3f17187 3110 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3111 target_pid_or_tid_to_str (inferior_ptid));
3112 previous_inferior_ptid = inferior_ptid;
c906108c 3113 }
c906108c 3114
4fa8626c 3115 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3116 /* Make sure that the current_frame's pc is correct. This
3117 is a correction for setting up the frame info before doing
b798847d 3118 gdbarch_decr_pc_after_break */
b87efeee
AC
3119 if (target_has_execution)
3120 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3121 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3122 frame code to check for this and sort out any resultant mess.
b798847d 3123 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3124 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3125
c906108c
SS
3126 if (target_has_execution && breakpoints_inserted)
3127 {
3128 if (remove_breakpoints ())
3129 {
3130 target_terminal_ours_for_output ();
a3f17187
AC
3131 printf_filtered (_("\
3132Cannot remove breakpoints because program is no longer writable.\n\
3133It might be running in another process.\n\
3134Further execution is probably impossible.\n"));
c906108c
SS
3135 }
3136 }
3137 breakpoints_inserted = 0;
3138
3139 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3140 Delete any breakpoint that is to be deleted at the next stop. */
3141
3142 breakpoint_auto_delete (stop_bpstat);
3143
3144 /* If an auto-display called a function and that got a signal,
3145 delete that auto-display to avoid an infinite recursion. */
3146
3147 if (stopped_by_random_signal)
3148 disable_current_display ();
3149
3150 /* Don't print a message if in the middle of doing a "step n"
3151 operation for n > 1 */
3152 if (step_multi && stop_step)
3153 goto done;
3154
3155 target_terminal_ours ();
3156
7abfe014
DJ
3157 /* Set the current source location. This will also happen if we
3158 display the frame below, but the current SAL will be incorrect
3159 during a user hook-stop function. */
3160 if (target_has_stack && !stop_stack_dummy)
3161 set_current_sal_from_frame (get_current_frame (), 1);
3162
5913bcb0
AC
3163 /* Look up the hook_stop and run it (CLI internally handles problem
3164 of stop_command's pre-hook not existing). */
3165 if (stop_command)
3166 catch_errors (hook_stop_stub, stop_command,
3167 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3168
3169 if (!target_has_stack)
3170 {
3171
3172 goto done;
3173 }
3174
3175 /* Select innermost stack frame - i.e., current frame is frame 0,
3176 and current location is based on that.
3177 Don't do this on return from a stack dummy routine,
3178 or if the program has exited. */
3179
3180 if (!stop_stack_dummy)
3181 {
0f7d239c 3182 select_frame (get_current_frame ());
c906108c
SS
3183
3184 /* Print current location without a level number, if
c5aa993b
JM
3185 we have changed functions or hit a breakpoint.
3186 Print source line if we have one.
3187 bpstat_print() contains the logic deciding in detail
3188 what to print, based on the event(s) that just occurred. */
c906108c 3189
206415a3 3190 if (stop_print_frame)
c906108c
SS
3191 {
3192 int bpstat_ret;
3193 int source_flag;
917317f4 3194 int do_frame_printing = 1;
c906108c
SS
3195
3196 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3197 switch (bpstat_ret)
3198 {
3199 case PRINT_UNKNOWN:
b0f4b84b
DJ
3200 /* If we had hit a shared library event breakpoint,
3201 bpstat_print would print out this message. If we hit
3202 an OS-level shared library event, do the same
3203 thing. */
3204 if (last.kind == TARGET_WAITKIND_LOADED)
3205 {
3206 printf_filtered (_("Stopped due to shared library event\n"));
3207 source_flag = SRC_LINE; /* something bogus */
3208 do_frame_printing = 0;
3209 break;
3210 }
3211
aa0cd9c1 3212 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3213 (or should) carry around the function and does (or
3214 should) use that when doing a frame comparison. */
917317f4 3215 if (stop_step
aa0cd9c1
AC
3216 && frame_id_eq (step_frame_id,
3217 get_frame_id (get_current_frame ()))
917317f4 3218 && step_start_function == find_pc_function (stop_pc))
488f131b 3219 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3220 else
488f131b 3221 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3222 break;
3223 case PRINT_SRC_AND_LOC:
488f131b 3224 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3225 break;
3226 case PRINT_SRC_ONLY:
c5394b80 3227 source_flag = SRC_LINE;
917317f4
JM
3228 break;
3229 case PRINT_NOTHING:
488f131b 3230 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3231 do_frame_printing = 0;
3232 break;
3233 default:
e2e0b3e5 3234 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3235 }
c906108c 3236
9dc5e2a9 3237 if (ui_out_is_mi_like_p (uiout))
39f77062 3238 ui_out_field_int (uiout, "thread-id",
488f131b 3239 pid_to_thread_id (inferior_ptid));
c906108c
SS
3240 /* The behavior of this routine with respect to the source
3241 flag is:
c5394b80
JM
3242 SRC_LINE: Print only source line
3243 LOCATION: Print only location
3244 SRC_AND_LOC: Print location and source line */
917317f4 3245 if (do_frame_printing)
b04f3ab4 3246 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3247
3248 /* Display the auto-display expressions. */
3249 do_displays ();
3250 }
3251 }
3252
3253 /* Save the function value return registers, if we care.
3254 We might be about to restore their previous contents. */
3255 if (proceed_to_finish)
d5c31457
UW
3256 {
3257 /* This should not be necessary. */
3258 if (stop_registers)
3259 regcache_xfree (stop_registers);
3260
3261 /* NB: The copy goes through to the target picking up the value of
3262 all the registers. */
3263 stop_registers = regcache_dup (get_current_regcache ());
3264 }
c906108c
SS
3265
3266 if (stop_stack_dummy)
3267 {
dbe9fe58
AC
3268 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3269 ends with a setting of the current frame, so we can use that
3270 next. */
3271 frame_pop (get_current_frame ());
c906108c 3272 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3273 Can't rely on restore_inferior_status because that only gets
3274 called if we don't stop in the called function. */
c906108c 3275 stop_pc = read_pc ();
0f7d239c 3276 select_frame (get_current_frame ());
c906108c
SS
3277 }
3278
c906108c
SS
3279done:
3280 annotate_stopped ();
7a464420 3281 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3282}
3283
3284static int
96baa820 3285hook_stop_stub (void *cmd)
c906108c 3286{
5913bcb0 3287 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3288 return (0);
3289}
3290\f
c5aa993b 3291int
96baa820 3292signal_stop_state (int signo)
c906108c
SS
3293{
3294 return signal_stop[signo];
3295}
3296
c5aa993b 3297int
96baa820 3298signal_print_state (int signo)
c906108c
SS
3299{
3300 return signal_print[signo];
3301}
3302
c5aa993b 3303int
96baa820 3304signal_pass_state (int signo)
c906108c
SS
3305{
3306 return signal_program[signo];
3307}
3308
488f131b 3309int
7bda5e4a 3310signal_stop_update (int signo, int state)
d4f3574e
SS
3311{
3312 int ret = signal_stop[signo];
3313 signal_stop[signo] = state;
3314 return ret;
3315}
3316
488f131b 3317int
7bda5e4a 3318signal_print_update (int signo, int state)
d4f3574e
SS
3319{
3320 int ret = signal_print[signo];
3321 signal_print[signo] = state;
3322 return ret;
3323}
3324
488f131b 3325int
7bda5e4a 3326signal_pass_update (int signo, int state)
d4f3574e
SS
3327{
3328 int ret = signal_program[signo];
3329 signal_program[signo] = state;
3330 return ret;
3331}
3332
c906108c 3333static void
96baa820 3334sig_print_header (void)
c906108c 3335{
a3f17187
AC
3336 printf_filtered (_("\
3337Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3338}
3339
3340static void
96baa820 3341sig_print_info (enum target_signal oursig)
c906108c
SS
3342{
3343 char *name = target_signal_to_name (oursig);
3344 int name_padding = 13 - strlen (name);
96baa820 3345
c906108c
SS
3346 if (name_padding <= 0)
3347 name_padding = 0;
3348
3349 printf_filtered ("%s", name);
488f131b 3350 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3351 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3352 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3353 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3354 printf_filtered ("%s\n", target_signal_to_string (oursig));
3355}
3356
3357/* Specify how various signals in the inferior should be handled. */
3358
3359static void
96baa820 3360handle_command (char *args, int from_tty)
c906108c
SS
3361{
3362 char **argv;
3363 int digits, wordlen;
3364 int sigfirst, signum, siglast;
3365 enum target_signal oursig;
3366 int allsigs;
3367 int nsigs;
3368 unsigned char *sigs;
3369 struct cleanup *old_chain;
3370
3371 if (args == NULL)
3372 {
e2e0b3e5 3373 error_no_arg (_("signal to handle"));
c906108c
SS
3374 }
3375
3376 /* Allocate and zero an array of flags for which signals to handle. */
3377
3378 nsigs = (int) TARGET_SIGNAL_LAST;
3379 sigs = (unsigned char *) alloca (nsigs);
3380 memset (sigs, 0, nsigs);
3381
3382 /* Break the command line up into args. */
3383
3384 argv = buildargv (args);
3385 if (argv == NULL)
3386 {
3387 nomem (0);
3388 }
7a292a7a 3389 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3390
3391 /* Walk through the args, looking for signal oursigs, signal names, and
3392 actions. Signal numbers and signal names may be interspersed with
3393 actions, with the actions being performed for all signals cumulatively
3394 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3395
3396 while (*argv != NULL)
3397 {
3398 wordlen = strlen (*argv);
3399 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3400 {;
3401 }
3402 allsigs = 0;
3403 sigfirst = siglast = -1;
3404
3405 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3406 {
3407 /* Apply action to all signals except those used by the
3408 debugger. Silently skip those. */
3409 allsigs = 1;
3410 sigfirst = 0;
3411 siglast = nsigs - 1;
3412 }
3413 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3414 {
3415 SET_SIGS (nsigs, sigs, signal_stop);
3416 SET_SIGS (nsigs, sigs, signal_print);
3417 }
3418 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3419 {
3420 UNSET_SIGS (nsigs, sigs, signal_program);
3421 }
3422 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3423 {
3424 SET_SIGS (nsigs, sigs, signal_print);
3425 }
3426 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3427 {
3428 SET_SIGS (nsigs, sigs, signal_program);
3429 }
3430 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3431 {
3432 UNSET_SIGS (nsigs, sigs, signal_stop);
3433 }
3434 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3435 {
3436 SET_SIGS (nsigs, sigs, signal_program);
3437 }
3438 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3439 {
3440 UNSET_SIGS (nsigs, sigs, signal_print);
3441 UNSET_SIGS (nsigs, sigs, signal_stop);
3442 }
3443 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3444 {
3445 UNSET_SIGS (nsigs, sigs, signal_program);
3446 }
3447 else if (digits > 0)
3448 {
3449 /* It is numeric. The numeric signal refers to our own
3450 internal signal numbering from target.h, not to host/target
3451 signal number. This is a feature; users really should be
3452 using symbolic names anyway, and the common ones like
3453 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3454
3455 sigfirst = siglast = (int)
3456 target_signal_from_command (atoi (*argv));
3457 if ((*argv)[digits] == '-')
3458 {
3459 siglast = (int)
3460 target_signal_from_command (atoi ((*argv) + digits + 1));
3461 }
3462 if (sigfirst > siglast)
3463 {
3464 /* Bet he didn't figure we'd think of this case... */
3465 signum = sigfirst;
3466 sigfirst = siglast;
3467 siglast = signum;
3468 }
3469 }
3470 else
3471 {
3472 oursig = target_signal_from_name (*argv);
3473 if (oursig != TARGET_SIGNAL_UNKNOWN)
3474 {
3475 sigfirst = siglast = (int) oursig;
3476 }
3477 else
3478 {
3479 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3480 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3481 }
3482 }
3483
3484 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3485 which signals to apply actions to. */
c906108c
SS
3486
3487 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3488 {
3489 switch ((enum target_signal) signum)
3490 {
3491 case TARGET_SIGNAL_TRAP:
3492 case TARGET_SIGNAL_INT:
3493 if (!allsigs && !sigs[signum])
3494 {
3495 if (query ("%s is used by the debugger.\n\
488f131b 3496Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3497 {
3498 sigs[signum] = 1;
3499 }
3500 else
3501 {
a3f17187 3502 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3503 gdb_flush (gdb_stdout);
3504 }
3505 }
3506 break;
3507 case TARGET_SIGNAL_0:
3508 case TARGET_SIGNAL_DEFAULT:
3509 case TARGET_SIGNAL_UNKNOWN:
3510 /* Make sure that "all" doesn't print these. */
3511 break;
3512 default:
3513 sigs[signum] = 1;
3514 break;
3515 }
3516 }
3517
3518 argv++;
3519 }
3520
39f77062 3521 target_notice_signals (inferior_ptid);
c906108c
SS
3522
3523 if (from_tty)
3524 {
3525 /* Show the results. */
3526 sig_print_header ();
3527 for (signum = 0; signum < nsigs; signum++)
3528 {
3529 if (sigs[signum])
3530 {
3531 sig_print_info (signum);
3532 }
3533 }
3534 }
3535
3536 do_cleanups (old_chain);
3537}
3538
3539static void
96baa820 3540xdb_handle_command (char *args, int from_tty)
c906108c
SS
3541{
3542 char **argv;
3543 struct cleanup *old_chain;
3544
3545 /* Break the command line up into args. */
3546
3547 argv = buildargv (args);
3548 if (argv == NULL)
3549 {
3550 nomem (0);
3551 }
7a292a7a 3552 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3553 if (argv[1] != (char *) NULL)
3554 {
3555 char *argBuf;
3556 int bufLen;
3557
3558 bufLen = strlen (argv[0]) + 20;
3559 argBuf = (char *) xmalloc (bufLen);
3560 if (argBuf)
3561 {
3562 int validFlag = 1;
3563 enum target_signal oursig;
3564
3565 oursig = target_signal_from_name (argv[0]);
3566 memset (argBuf, 0, bufLen);
3567 if (strcmp (argv[1], "Q") == 0)
3568 sprintf (argBuf, "%s %s", argv[0], "noprint");
3569 else
3570 {
3571 if (strcmp (argv[1], "s") == 0)
3572 {
3573 if (!signal_stop[oursig])
3574 sprintf (argBuf, "%s %s", argv[0], "stop");
3575 else
3576 sprintf (argBuf, "%s %s", argv[0], "nostop");
3577 }
3578 else if (strcmp (argv[1], "i") == 0)
3579 {
3580 if (!signal_program[oursig])
3581 sprintf (argBuf, "%s %s", argv[0], "pass");
3582 else
3583 sprintf (argBuf, "%s %s", argv[0], "nopass");
3584 }
3585 else if (strcmp (argv[1], "r") == 0)
3586 {
3587 if (!signal_print[oursig])
3588 sprintf (argBuf, "%s %s", argv[0], "print");
3589 else
3590 sprintf (argBuf, "%s %s", argv[0], "noprint");
3591 }
3592 else
3593 validFlag = 0;
3594 }
3595 if (validFlag)
3596 handle_command (argBuf, from_tty);
3597 else
a3f17187 3598 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3599 if (argBuf)
b8c9b27d 3600 xfree (argBuf);
c906108c
SS
3601 }
3602 }
3603 do_cleanups (old_chain);
3604}
3605
3606/* Print current contents of the tables set by the handle command.
3607 It is possible we should just be printing signals actually used
3608 by the current target (but for things to work right when switching
3609 targets, all signals should be in the signal tables). */
3610
3611static void
96baa820 3612signals_info (char *signum_exp, int from_tty)
c906108c
SS
3613{
3614 enum target_signal oursig;
3615 sig_print_header ();
3616
3617 if (signum_exp)
3618 {
3619 /* First see if this is a symbol name. */
3620 oursig = target_signal_from_name (signum_exp);
3621 if (oursig == TARGET_SIGNAL_UNKNOWN)
3622 {
3623 /* No, try numeric. */
3624 oursig =
bb518678 3625 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3626 }
3627 sig_print_info (oursig);
3628 return;
3629 }
3630
3631 printf_filtered ("\n");
3632 /* These ugly casts brought to you by the native VAX compiler. */
3633 for (oursig = TARGET_SIGNAL_FIRST;
3634 (int) oursig < (int) TARGET_SIGNAL_LAST;
3635 oursig = (enum target_signal) ((int) oursig + 1))
3636 {
3637 QUIT;
3638
3639 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3640 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3641 sig_print_info (oursig);
3642 }
3643
a3f17187 3644 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3645}
3646\f
7a292a7a
SS
3647struct inferior_status
3648{
3649 enum target_signal stop_signal;
3650 CORE_ADDR stop_pc;
3651 bpstat stop_bpstat;
3652 int stop_step;
3653 int stop_stack_dummy;
3654 int stopped_by_random_signal;
3655 int trap_expected;
3656 CORE_ADDR step_range_start;
3657 CORE_ADDR step_range_end;
aa0cd9c1 3658 struct frame_id step_frame_id;
5fbbeb29 3659 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3660 CORE_ADDR step_resume_break_address;
3661 int stop_after_trap;
c0236d92 3662 int stop_soon;
7a292a7a
SS
3663
3664 /* These are here because if call_function_by_hand has written some
3665 registers and then decides to call error(), we better not have changed
3666 any registers. */
72cec141 3667 struct regcache *registers;
7a292a7a 3668
101dcfbe
AC
3669 /* A frame unique identifier. */
3670 struct frame_id selected_frame_id;
3671
7a292a7a
SS
3672 int breakpoint_proceeded;
3673 int restore_stack_info;
3674 int proceed_to_finish;
3675};
3676
7a292a7a 3677void
96baa820
JM
3678write_inferior_status_register (struct inferior_status *inf_status, int regno,
3679 LONGEST val)
7a292a7a 3680{
3acba339 3681 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3682 void *buf = alloca (size);
3683 store_signed_integer (buf, size, val);
0818c12a 3684 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3685}
3686
c906108c
SS
3687/* Save all of the information associated with the inferior<==>gdb
3688 connection. INF_STATUS is a pointer to a "struct inferior_status"
3689 (defined in inferior.h). */
3690
7a292a7a 3691struct inferior_status *
96baa820 3692save_inferior_status (int restore_stack_info)
c906108c 3693{
72cec141 3694 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3695
c906108c
SS
3696 inf_status->stop_signal = stop_signal;
3697 inf_status->stop_pc = stop_pc;
3698 inf_status->stop_step = stop_step;
3699 inf_status->stop_stack_dummy = stop_stack_dummy;
3700 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3701 inf_status->trap_expected = trap_expected;
3702 inf_status->step_range_start = step_range_start;
3703 inf_status->step_range_end = step_range_end;
aa0cd9c1 3704 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3705 inf_status->step_over_calls = step_over_calls;
3706 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3707 inf_status->stop_soon = stop_soon;
c906108c
SS
3708 /* Save original bpstat chain here; replace it with copy of chain.
3709 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3710 hand them back the original chain when restore_inferior_status is
3711 called. */
c906108c
SS
3712 inf_status->stop_bpstat = stop_bpstat;
3713 stop_bpstat = bpstat_copy (stop_bpstat);
3714 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3715 inf_status->restore_stack_info = restore_stack_info;
3716 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3717
594f7785 3718 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3719
206415a3 3720 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3721 return inf_status;
c906108c
SS
3722}
3723
c906108c 3724static int
96baa820 3725restore_selected_frame (void *args)
c906108c 3726{
488f131b 3727 struct frame_id *fid = (struct frame_id *) args;
c906108c 3728 struct frame_info *frame;
c906108c 3729
101dcfbe 3730 frame = frame_find_by_id (*fid);
c906108c 3731
aa0cd9c1
AC
3732 /* If inf_status->selected_frame_id is NULL, there was no previously
3733 selected frame. */
101dcfbe 3734 if (frame == NULL)
c906108c 3735 {
8a3fe4f8 3736 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3737 return 0;
3738 }
3739
0f7d239c 3740 select_frame (frame);
c906108c
SS
3741
3742 return (1);
3743}
3744
3745void
96baa820 3746restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3747{
3748 stop_signal = inf_status->stop_signal;
3749 stop_pc = inf_status->stop_pc;
3750 stop_step = inf_status->stop_step;
3751 stop_stack_dummy = inf_status->stop_stack_dummy;
3752 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3753 trap_expected = inf_status->trap_expected;
3754 step_range_start = inf_status->step_range_start;
3755 step_range_end = inf_status->step_range_end;
aa0cd9c1 3756 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3757 step_over_calls = inf_status->step_over_calls;
3758 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3759 stop_soon = inf_status->stop_soon;
c906108c
SS
3760 bpstat_clear (&stop_bpstat);
3761 stop_bpstat = inf_status->stop_bpstat;
3762 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3763 proceed_to_finish = inf_status->proceed_to_finish;
3764
c906108c
SS
3765 /* The inferior can be gone if the user types "print exit(0)"
3766 (and perhaps other times). */
3767 if (target_has_execution)
72cec141 3768 /* NB: The register write goes through to the target. */
594f7785 3769 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3770 regcache_xfree (inf_status->registers);
c906108c 3771
c906108c
SS
3772 /* FIXME: If we are being called after stopping in a function which
3773 is called from gdb, we should not be trying to restore the
3774 selected frame; it just prints a spurious error message (The
3775 message is useful, however, in detecting bugs in gdb (like if gdb
3776 clobbers the stack)). In fact, should we be restoring the
3777 inferior status at all in that case? . */
3778
3779 if (target_has_stack && inf_status->restore_stack_info)
3780 {
c906108c 3781 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3782 walking the stack might encounter a garbage pointer and
3783 error() trying to dereference it. */
488f131b
JB
3784 if (catch_errors
3785 (restore_selected_frame, &inf_status->selected_frame_id,
3786 "Unable to restore previously selected frame:\n",
3787 RETURN_MASK_ERROR) == 0)
c906108c
SS
3788 /* Error in restoring the selected frame. Select the innermost
3789 frame. */
0f7d239c 3790 select_frame (get_current_frame ());
c906108c
SS
3791
3792 }
c906108c 3793
72cec141 3794 xfree (inf_status);
7a292a7a 3795}
c906108c 3796
74b7792f
AC
3797static void
3798do_restore_inferior_status_cleanup (void *sts)
3799{
3800 restore_inferior_status (sts);
3801}
3802
3803struct cleanup *
3804make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3805{
3806 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3807}
3808
c906108c 3809void
96baa820 3810discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3811{
3812 /* See save_inferior_status for info on stop_bpstat. */
3813 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3814 regcache_xfree (inf_status->registers);
72cec141 3815 xfree (inf_status);
7a292a7a
SS
3816}
3817
47932f85
DJ
3818int
3819inferior_has_forked (int pid, int *child_pid)
3820{
3821 struct target_waitstatus last;
3822 ptid_t last_ptid;
3823
3824 get_last_target_status (&last_ptid, &last);
3825
3826 if (last.kind != TARGET_WAITKIND_FORKED)
3827 return 0;
3828
3829 if (ptid_get_pid (last_ptid) != pid)
3830 return 0;
3831
3832 *child_pid = last.value.related_pid;
3833 return 1;
3834}
3835
3836int
3837inferior_has_vforked (int pid, int *child_pid)
3838{
3839 struct target_waitstatus last;
3840 ptid_t last_ptid;
3841
3842 get_last_target_status (&last_ptid, &last);
3843
3844 if (last.kind != TARGET_WAITKIND_VFORKED)
3845 return 0;
3846
3847 if (ptid_get_pid (last_ptid) != pid)
3848 return 0;
3849
3850 *child_pid = last.value.related_pid;
3851 return 1;
3852}
3853
3854int
3855inferior_has_execd (int pid, char **execd_pathname)
3856{
3857 struct target_waitstatus last;
3858 ptid_t last_ptid;
3859
3860 get_last_target_status (&last_ptid, &last);
3861
3862 if (last.kind != TARGET_WAITKIND_EXECD)
3863 return 0;
3864
3865 if (ptid_get_pid (last_ptid) != pid)
3866 return 0;
3867
3868 *execd_pathname = xstrdup (last.value.execd_pathname);
3869 return 1;
3870}
3871
ca6724c1
KB
3872/* Oft used ptids */
3873ptid_t null_ptid;
3874ptid_t minus_one_ptid;
3875
3876/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3877
ca6724c1
KB
3878ptid_t
3879ptid_build (int pid, long lwp, long tid)
3880{
3881 ptid_t ptid;
3882
3883 ptid.pid = pid;
3884 ptid.lwp = lwp;
3885 ptid.tid = tid;
3886 return ptid;
3887}
3888
3889/* Create a ptid from just a pid. */
3890
3891ptid_t
3892pid_to_ptid (int pid)
3893{
3894 return ptid_build (pid, 0, 0);
3895}
3896
3897/* Fetch the pid (process id) component from a ptid. */
3898
3899int
3900ptid_get_pid (ptid_t ptid)
3901{
3902 return ptid.pid;
3903}
3904
3905/* Fetch the lwp (lightweight process) component from a ptid. */
3906
3907long
3908ptid_get_lwp (ptid_t ptid)
3909{
3910 return ptid.lwp;
3911}
3912
3913/* Fetch the tid (thread id) component from a ptid. */
3914
3915long
3916ptid_get_tid (ptid_t ptid)
3917{
3918 return ptid.tid;
3919}
3920
3921/* ptid_equal() is used to test equality of two ptids. */
3922
3923int
3924ptid_equal (ptid_t ptid1, ptid_t ptid2)
3925{
3926 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3927 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3928}
3929
3930/* restore_inferior_ptid() will be used by the cleanup machinery
3931 to restore the inferior_ptid value saved in a call to
3932 save_inferior_ptid(). */
ce696e05
KB
3933
3934static void
3935restore_inferior_ptid (void *arg)
3936{
3937 ptid_t *saved_ptid_ptr = arg;
3938 inferior_ptid = *saved_ptid_ptr;
3939 xfree (arg);
3940}
3941
3942/* Save the value of inferior_ptid so that it may be restored by a
3943 later call to do_cleanups(). Returns the struct cleanup pointer
3944 needed for later doing the cleanup. */
3945
3946struct cleanup *
3947save_inferior_ptid (void)
3948{
3949 ptid_t *saved_ptid_ptr;
3950
3951 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3952 *saved_ptid_ptr = inferior_ptid;
3953 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3954}
c5aa993b 3955\f
488f131b 3956
c906108c 3957void
96baa820 3958_initialize_infrun (void)
c906108c 3959{
52f0bd74
AC
3960 int i;
3961 int numsigs;
c906108c
SS
3962 struct cmd_list_element *c;
3963
1bedd215
AC
3964 add_info ("signals", signals_info, _("\
3965What debugger does when program gets various signals.\n\
3966Specify a signal as argument to print info on that signal only."));
c906108c
SS
3967 add_info_alias ("handle", "signals", 0);
3968
1bedd215
AC
3969 add_com ("handle", class_run, handle_command, _("\
3970Specify how to handle a signal.\n\
c906108c
SS
3971Args are signals and actions to apply to those signals.\n\
3972Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3973from 1-15 are allowed for compatibility with old versions of GDB.\n\
3974Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3975The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3976used by the debugger, typically SIGTRAP and SIGINT.\n\
3977Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3978\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3979Stop means reenter debugger if this signal happens (implies print).\n\
3980Print means print a message if this signal happens.\n\
3981Pass means let program see this signal; otherwise program doesn't know.\n\
3982Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3983Pass and Stop may be combined."));
c906108c
SS
3984 if (xdb_commands)
3985 {
1bedd215
AC
3986 add_com ("lz", class_info, signals_info, _("\
3987What debugger does when program gets various signals.\n\
3988Specify a signal as argument to print info on that signal only."));
3989 add_com ("z", class_run, xdb_handle_command, _("\
3990Specify how to handle a signal.\n\
c906108c
SS
3991Args are signals and actions to apply to those signals.\n\
3992Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3993from 1-15 are allowed for compatibility with old versions of GDB.\n\
3994Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3995The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3996used by the debugger, typically SIGTRAP and SIGINT.\n\
3997Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3998\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3999nopass), \"Q\" (noprint)\n\
4000Stop means reenter debugger if this signal happens (implies print).\n\
4001Print means print a message if this signal happens.\n\
4002Pass means let program see this signal; otherwise program doesn't know.\n\
4003Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4004Pass and Stop may be combined."));
c906108c
SS
4005 }
4006
4007 if (!dbx_commands)
1a966eab
AC
4008 stop_command = add_cmd ("stop", class_obscure,
4009 not_just_help_class_command, _("\
4010There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4011This allows you to set a list of commands to be run each time execution\n\
1a966eab 4012of the program stops."), &cmdlist);
c906108c 4013
85c07804
AC
4014 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4015Set inferior debugging."), _("\
4016Show inferior debugging."), _("\
4017When non-zero, inferior specific debugging is enabled."),
4018 NULL,
920d2a44 4019 show_debug_infrun,
85c07804 4020 &setdebuglist, &showdebuglist);
527159b7 4021
c906108c 4022 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4023 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4024 signal_print = (unsigned char *)
4025 xmalloc (sizeof (signal_print[0]) * numsigs);
4026 signal_program = (unsigned char *)
4027 xmalloc (sizeof (signal_program[0]) * numsigs);
4028 for (i = 0; i < numsigs; i++)
4029 {
4030 signal_stop[i] = 1;
4031 signal_print[i] = 1;
4032 signal_program[i] = 1;
4033 }
4034
4035 /* Signals caused by debugger's own actions
4036 should not be given to the program afterwards. */
4037 signal_program[TARGET_SIGNAL_TRAP] = 0;
4038 signal_program[TARGET_SIGNAL_INT] = 0;
4039
4040 /* Signals that are not errors should not normally enter the debugger. */
4041 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4042 signal_print[TARGET_SIGNAL_ALRM] = 0;
4043 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4044 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4045 signal_stop[TARGET_SIGNAL_PROF] = 0;
4046 signal_print[TARGET_SIGNAL_PROF] = 0;
4047 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4048 signal_print[TARGET_SIGNAL_CHLD] = 0;
4049 signal_stop[TARGET_SIGNAL_IO] = 0;
4050 signal_print[TARGET_SIGNAL_IO] = 0;
4051 signal_stop[TARGET_SIGNAL_POLL] = 0;
4052 signal_print[TARGET_SIGNAL_POLL] = 0;
4053 signal_stop[TARGET_SIGNAL_URG] = 0;
4054 signal_print[TARGET_SIGNAL_URG] = 0;
4055 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4056 signal_print[TARGET_SIGNAL_WINCH] = 0;
4057
cd0fc7c3
SS
4058 /* These signals are used internally by user-level thread
4059 implementations. (See signal(5) on Solaris.) Like the above
4060 signals, a healthy program receives and handles them as part of
4061 its normal operation. */
4062 signal_stop[TARGET_SIGNAL_LWP] = 0;
4063 signal_print[TARGET_SIGNAL_LWP] = 0;
4064 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4065 signal_print[TARGET_SIGNAL_WAITING] = 0;
4066 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4067 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4068
85c07804
AC
4069 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4070 &stop_on_solib_events, _("\
4071Set stopping for shared library events."), _("\
4072Show stopping for shared library events."), _("\
c906108c
SS
4073If nonzero, gdb will give control to the user when the dynamic linker\n\
4074notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4075to the user would be loading/unloading of a new library."),
4076 NULL,
920d2a44 4077 show_stop_on_solib_events,
85c07804 4078 &setlist, &showlist);
c906108c 4079
7ab04401
AC
4080 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4081 follow_fork_mode_kind_names,
4082 &follow_fork_mode_string, _("\
4083Set debugger response to a program call of fork or vfork."), _("\
4084Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4085A fork or vfork creates a new process. follow-fork-mode can be:\n\
4086 parent - the original process is debugged after a fork\n\
4087 child - the new process is debugged after a fork\n\
ea1dd7bc 4088The unfollowed process will continue to run.\n\
7ab04401
AC
4089By default, the debugger will follow the parent process."),
4090 NULL,
920d2a44 4091 show_follow_fork_mode_string,
7ab04401
AC
4092 &setlist, &showlist);
4093
4094 add_setshow_enum_cmd ("scheduler-locking", class_run,
4095 scheduler_enums, &scheduler_mode, _("\
4096Set mode for locking scheduler during execution."), _("\
4097Show mode for locking scheduler during execution."), _("\
c906108c
SS
4098off == no locking (threads may preempt at any time)\n\
4099on == full locking (no thread except the current thread may run)\n\
4100step == scheduler locked during every single-step operation.\n\
4101 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4102 Other threads may run while stepping over a function call ('next')."),
4103 set_schedlock_func, /* traps on target vector */
920d2a44 4104 show_scheduler_mode,
7ab04401 4105 &setlist, &showlist);
5fbbeb29 4106
5bf193a2
AC
4107 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4108Set mode of the step operation."), _("\
4109Show mode of the step operation."), _("\
4110When set, doing a step over a function without debug line information\n\
4111will stop at the first instruction of that function. Otherwise, the\n\
4112function is skipped and the step command stops at a different source line."),
4113 NULL,
920d2a44 4114 show_step_stop_if_no_debug,
5bf193a2 4115 &setlist, &showlist);
ca6724c1
KB
4116
4117 /* ptid initializations */
4118 null_ptid = ptid_build (0, 0, 0);
4119 minus_one_ptid = ptid_build (-1, 0, 0);
4120 inferior_ptid = null_ptid;
4121 target_last_wait_ptid = minus_one_ptid;
c906108c 4122}