]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* m68kbsd-tdep.c (m68kbsd_elf_init_abi): Call m68k_svr4_init_abi.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
265#ifdef HP_OS_BUG
266/* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270static int trap_expected_after_continue;
271#endif
272
273/* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276int stop_after_trap;
277
278/* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
c0236d92 283enum stop_kind stop_soon;
c906108c
SS
284
285/* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288int proceed_to_finish;
289
290/* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
72cec141 295struct regcache *stop_registers;
c906108c
SS
296
297/* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299static int breakpoints_failed;
300
301/* Nonzero after stop if current stack frame should be printed. */
302
303static int stop_print_frame;
304
305static struct breakpoint *step_resume_breakpoint = NULL;
d303a6c7
AC
306/* NOTE: cagney/2004-05-08: This variable needs to be garbage
307 collected, it isn't used. */
c906108c
SS
308static struct breakpoint *through_sigtramp_breakpoint = NULL;
309
310/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
311 interactions with an inferior that is running a kernel function
312 (aka, a system call or "syscall"). wait_for_inferior therefore
313 may have a need to know when the inferior is in a syscall. This
314 is a count of the number of inferior threads which are known to
315 currently be running in a syscall. */
316static int number_of_threads_in_syscalls;
317
e02bc4cc 318/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
319 returned by target_wait()/deprecated_target_wait_hook(). This
320 information is returned by get_last_target_status(). */
39f77062 321static ptid_t target_last_wait_ptid;
e02bc4cc
DS
322static struct target_waitstatus target_last_waitstatus;
323
c906108c
SS
324/* This is used to remember when a fork, vfork or exec event
325 was caught by a catchpoint, and thus the event is to be
326 followed at the next resume of the inferior, and not
327 immediately. */
328static struct
488f131b
JB
329{
330 enum target_waitkind kind;
331 struct
c906108c 332 {
488f131b 333 int parent_pid;
488f131b 334 int child_pid;
c906108c 335 }
488f131b
JB
336 fork_event;
337 char *execd_pathname;
338}
c906108c
SS
339pending_follow;
340
53904c9e
AC
341static const char follow_fork_mode_child[] = "child";
342static const char follow_fork_mode_parent[] = "parent";
343
488f131b 344static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
345 follow_fork_mode_child,
346 follow_fork_mode_parent,
347 NULL
ef346e04 348};
c906108c 349
53904c9e 350static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
351\f
352
6604731b 353static int
4ef3f3be 354follow_fork (void)
c906108c 355{
ea1dd7bc 356 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 357
6604731b 358 return target_follow_fork (follow_child);
c906108c
SS
359}
360
6604731b
DJ
361void
362follow_inferior_reset_breakpoints (void)
c906108c 363{
6604731b
DJ
364 /* Was there a step_resume breakpoint? (There was if the user
365 did a "next" at the fork() call.) If so, explicitly reset its
366 thread number.
367
368 step_resumes are a form of bp that are made to be per-thread.
369 Since we created the step_resume bp when the parent process
370 was being debugged, and now are switching to the child process,
371 from the breakpoint package's viewpoint, that's a switch of
372 "threads". We must update the bp's notion of which thread
373 it is for, or it'll be ignored when it triggers. */
374
375 if (step_resume_breakpoint)
376 breakpoint_re_set_thread (step_resume_breakpoint);
377
378 /* Reinsert all breakpoints in the child. The user may have set
379 breakpoints after catching the fork, in which case those
380 were never set in the child, but only in the parent. This makes
381 sure the inserted breakpoints match the breakpoint list. */
382
383 breakpoint_re_set ();
384 insert_breakpoints ();
c906108c 385}
c906108c 386
1adeb98a
FN
387/* EXECD_PATHNAME is assumed to be non-NULL. */
388
c906108c 389static void
96baa820 390follow_exec (int pid, char *execd_pathname)
c906108c 391{
c906108c 392 int saved_pid = pid;
7a292a7a
SS
393 struct target_ops *tgt;
394
395 if (!may_follow_exec)
396 return;
c906108c 397
c906108c
SS
398 /* This is an exec event that we actually wish to pay attention to.
399 Refresh our symbol table to the newly exec'd program, remove any
400 momentary bp's, etc.
401
402 If there are breakpoints, they aren't really inserted now,
403 since the exec() transformed our inferior into a fresh set
404 of instructions.
405
406 We want to preserve symbolic breakpoints on the list, since
407 we have hopes that they can be reset after the new a.out's
408 symbol table is read.
409
410 However, any "raw" breakpoints must be removed from the list
411 (e.g., the solib bp's), since their address is probably invalid
412 now.
413
414 And, we DON'T want to call delete_breakpoints() here, since
415 that may write the bp's "shadow contents" (the instruction
416 value that was overwritten witha TRAP instruction). Since
417 we now have a new a.out, those shadow contents aren't valid. */
418 update_breakpoints_after_exec ();
419
420 /* If there was one, it's gone now. We cannot truly step-to-next
421 statement through an exec(). */
422 step_resume_breakpoint = NULL;
423 step_range_start = 0;
424 step_range_end = 0;
425
c906108c
SS
426 /* What is this a.out's name? */
427 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
428
429 /* We've followed the inferior through an exec. Therefore, the
430 inferior has essentially been killed & reborn. */
7a292a7a
SS
431
432 /* First collect the run target in effect. */
433 tgt = find_run_target ();
434 /* If we can't find one, things are in a very strange state... */
435 if (tgt == NULL)
436 error ("Could find run target to save before following exec");
437
c906108c
SS
438 gdb_flush (gdb_stdout);
439 target_mourn_inferior ();
39f77062 440 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 441 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 442 push_target (tgt);
c906108c
SS
443
444 /* That a.out is now the one to use. */
445 exec_file_attach (execd_pathname, 0);
446
447 /* And also is where symbols can be found. */
1adeb98a 448 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
449
450 /* Reset the shared library package. This ensures that we get
451 a shlib event when the child reaches "_start", at which point
452 the dld will have had a chance to initialize the child. */
7a292a7a 453#if defined(SOLIB_RESTART)
c906108c 454 SOLIB_RESTART ();
7a292a7a
SS
455#endif
456#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 458#endif
c906108c
SS
459
460 /* Reinsert all breakpoints. (Those which were symbolic have
461 been reset to the proper address in the new a.out, thanks
462 to symbol_file_command...) */
463 insert_breakpoints ();
464
465 /* The next resume of this inferior should bring it to the shlib
466 startup breakpoints. (If the user had also set bp's on
467 "main" from the old (parent) process, then they'll auto-
468 matically get reset there in the new process.) */
c906108c
SS
469}
470
471/* Non-zero if we just simulating a single-step. This is needed
472 because we cannot remove the breakpoints in the inferior process
473 until after the `wait' in `wait_for_inferior'. */
474static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
475
476/* The thread we inserted single-step breakpoints for. */
477static ptid_t singlestep_ptid;
478
479/* If another thread hit the singlestep breakpoint, we save the original
480 thread here so that we can resume single-stepping it later. */
481static ptid_t saved_singlestep_ptid;
482static int stepping_past_singlestep_breakpoint;
c906108c
SS
483\f
484
485/* Things to clean up if we QUIT out of resume (). */
c906108c 486static void
74b7792f 487resume_cleanups (void *ignore)
c906108c
SS
488{
489 normal_stop ();
490}
491
53904c9e
AC
492static const char schedlock_off[] = "off";
493static const char schedlock_on[] = "on";
494static const char schedlock_step[] = "step";
495static const char *scheduler_mode = schedlock_off;
488f131b 496static const char *scheduler_enums[] = {
ef346e04
AC
497 schedlock_off,
498 schedlock_on,
499 schedlock_step,
500 NULL
501};
c906108c
SS
502
503static void
96baa820 504set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 505{
1868c04e
AC
506 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
507 the set command passed as a parameter. The clone operation will
508 include (BUG?) any ``set'' command callback, if present.
509 Commands like ``info set'' call all the ``show'' command
ce2826aa 510 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
511 ``set'', this includes callbacks belonging to ``set'' commands.
512 Making this worse, this only occures if add_show_from_set() is
513 called after add_cmd_sfunc() (BUG?). */
514 if (cmd_type (c) == set_cmd)
c906108c
SS
515 if (!target_can_lock_scheduler)
516 {
517 scheduler_mode = schedlock_off;
488f131b 518 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
519 }
520}
521
522
523/* Resume the inferior, but allow a QUIT. This is useful if the user
524 wants to interrupt some lengthy single-stepping operation
525 (for child processes, the SIGINT goes to the inferior, and so
526 we get a SIGINT random_signal, but for remote debugging and perhaps
527 other targets, that's not true).
528
529 STEP nonzero if we should step (zero to continue instead).
530 SIG is the signal to give the inferior (zero for none). */
531void
96baa820 532resume (int step, enum target_signal sig)
c906108c
SS
533{
534 int should_resume = 1;
74b7792f 535 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
536 QUIT;
537
ef5cf84e
MS
538 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
539
c906108c 540
692590c1
MS
541 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
542 over an instruction that causes a page fault without triggering
543 a hardware watchpoint. The kernel properly notices that it shouldn't
544 stop, because the hardware watchpoint is not triggered, but it forgets
545 the step request and continues the program normally.
546 Work around the problem by removing hardware watchpoints if a step is
547 requested, GDB will check for a hardware watchpoint trigger after the
548 step anyway. */
549 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
550 remove_hw_watchpoints ();
488f131b 551
692590c1 552
c2c6d25f
JM
553 /* Normally, by the time we reach `resume', the breakpoints are either
554 removed or inserted, as appropriate. The exception is if we're sitting
555 at a permanent breakpoint; we need to step over it, but permanent
556 breakpoints can't be removed. So we have to test for it here. */
557 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
558 SKIP_PERMANENT_BREAKPOINT ();
559
b0ed3589 560 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
561 {
562 /* Do it the hard way, w/temp breakpoints */
c5aa993b 563 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
564 /* ...and don't ask hardware to do it. */
565 step = 0;
566 /* and do not pull these breakpoints until after a `wait' in
567 `wait_for_inferior' */
568 singlestep_breakpoints_inserted_p = 1;
9f976b41 569 singlestep_ptid = inferior_ptid;
c906108c
SS
570 }
571
c906108c 572 /* If there were any forks/vforks/execs that were caught and are
6604731b 573 now to be followed, then do so. */
c906108c
SS
574 switch (pending_follow.kind)
575 {
6604731b
DJ
576 case TARGET_WAITKIND_FORKED:
577 case TARGET_WAITKIND_VFORKED:
c906108c 578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
579 if (follow_fork ())
580 should_resume = 0;
c906108c
SS
581 break;
582
6604731b 583 case TARGET_WAITKIND_EXECD:
c906108c 584 /* follow_exec is called as soon as the exec event is seen. */
6604731b 585 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
586 break;
587
588 default:
589 break;
590 }
c906108c
SS
591
592 /* Install inferior's terminal modes. */
593 target_terminal_inferior ();
594
595 if (should_resume)
596 {
39f77062 597 ptid_t resume_ptid;
dfcd3bfb 598
488f131b 599 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
600
601 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
602 (stepping_past_singlestep_breakpoint
603 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 604 {
ef5cf84e
MS
605 /* Stepping past a breakpoint without inserting breakpoints.
606 Make sure only the current thread gets to step, so that
607 other threads don't sneak past breakpoints while they are
608 not inserted. */
c906108c 609
ef5cf84e 610 resume_ptid = inferior_ptid;
c906108c 611 }
ef5cf84e
MS
612
613 if ((scheduler_mode == schedlock_on) ||
488f131b 614 (scheduler_mode == schedlock_step &&
ef5cf84e 615 (step || singlestep_breakpoints_inserted_p)))
c906108c 616 {
ef5cf84e 617 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 618 resume_ptid = inferior_ptid;
c906108c 619 }
ef5cf84e 620
c4ed33b9
AC
621 if (CANNOT_STEP_BREAKPOINT)
622 {
623 /* Most targets can step a breakpoint instruction, thus
624 executing it normally. But if this one cannot, just
625 continue and we will hit it anyway. */
626 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
627 step = 0;
628 }
39f77062 629 target_resume (resume_ptid, step, sig);
c906108c
SS
630 }
631
632 discard_cleanups (old_cleanups);
633}
634\f
635
636/* Clear out all variables saying what to do when inferior is continued.
637 First do this, then set the ones you want, then call `proceed'. */
638
639void
96baa820 640clear_proceed_status (void)
c906108c
SS
641{
642 trap_expected = 0;
643 step_range_start = 0;
644 step_range_end = 0;
aa0cd9c1 645 step_frame_id = null_frame_id;
5fbbeb29 646 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 647 stop_after_trap = 0;
c0236d92 648 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
649 proceed_to_finish = 0;
650 breakpoint_proceeded = 1; /* We're about to proceed... */
651
652 /* Discard any remaining commands or status from previous stop. */
653 bpstat_clear (&stop_bpstat);
654}
655
ea67f13b
DJ
656/* This should be suitable for any targets that support threads. */
657
658static int
659prepare_to_proceed (void)
660{
661 ptid_t wait_ptid;
662 struct target_waitstatus wait_status;
663
664 /* Get the last target status returned by target_wait(). */
665 get_last_target_status (&wait_ptid, &wait_status);
666
667 /* Make sure we were stopped either at a breakpoint, or because
668 of a Ctrl-C. */
669 if (wait_status.kind != TARGET_WAITKIND_STOPPED
670 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
671 wait_status.value.sig != TARGET_SIGNAL_INT))
672 {
673 return 0;
674 }
675
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* Switched over from WAIT_PID. */
680 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
681
682 if (wait_pc != read_pc ())
683 {
684 /* Switch back to WAIT_PID thread. */
685 inferior_ptid = wait_ptid;
686
687 /* FIXME: This stuff came from switch_to_thread() in
688 thread.c (which should probably be a public function). */
689 flush_cached_frames ();
690 registers_changed ();
691 stop_pc = wait_pc;
692 select_frame (get_current_frame ());
693 }
694
695 /* We return 1 to indicate that there is a breakpoint here,
696 so we need to step over it before continuing to avoid
697 hitting it straight away. */
698 if (breakpoint_here_p (wait_pc))
699 return 1;
700 }
701
702 return 0;
703
704}
e4846b08
JJ
705
706/* Record the pc of the program the last time it stopped. This is
707 just used internally by wait_for_inferior, but need to be preserved
708 over calls to it and cleared when the inferior is started. */
709static CORE_ADDR prev_pc;
710
c906108c
SS
711/* Basic routine for continuing the program in various fashions.
712
713 ADDR is the address to resume at, or -1 for resume where stopped.
714 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 715 or -1 for act according to how it stopped.
c906108c 716 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
717 -1 means return after that and print nothing.
718 You should probably set various step_... variables
719 before calling here, if you are stepping.
c906108c
SS
720
721 You should call clear_proceed_status before calling proceed. */
722
723void
96baa820 724proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
725{
726 int oneproc = 0;
727
728 if (step > 0)
729 step_start_function = find_pc_function (read_pc ());
730 if (step < 0)
731 stop_after_trap = 1;
732
2acceee2 733 if (addr == (CORE_ADDR) -1)
c906108c
SS
734 {
735 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
736 step one instruction before inserting breakpoints
737 so that we do not stop right away (and report a second
c906108c
SS
738 hit at this breakpoint). */
739
740 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
741 oneproc = 1;
742
743#ifndef STEP_SKIPS_DELAY
744#define STEP_SKIPS_DELAY(pc) (0)
745#define STEP_SKIPS_DELAY_P (0)
746#endif
747 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
748 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
749 is slow (it needs to read memory from the target). */
c906108c
SS
750 if (STEP_SKIPS_DELAY_P
751 && breakpoint_here_p (read_pc () + 4)
752 && STEP_SKIPS_DELAY (read_pc ()))
753 oneproc = 1;
754 }
755 else
756 {
757 write_pc (addr);
c906108c
SS
758 }
759
c906108c
SS
760 /* In a multi-threaded task we may select another thread
761 and then continue or step.
762
763 But if the old thread was stopped at a breakpoint, it
764 will immediately cause another breakpoint stop without
765 any execution (i.e. it will report a breakpoint hit
766 incorrectly). So we must step over it first.
767
ea67f13b 768 prepare_to_proceed checks the current thread against the thread
c906108c
SS
769 that reported the most recent event. If a step-over is required
770 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
771 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
772 oneproc = 1;
c906108c
SS
773
774#ifdef HP_OS_BUG
775 if (trap_expected_after_continue)
776 {
777 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
778 the first instruction is executed. Force step one
779 instruction to clear this condition. This should not occur
780 if step is nonzero, but it is harmless in that case. */
c906108c
SS
781 oneproc = 1;
782 trap_expected_after_continue = 0;
783 }
784#endif /* HP_OS_BUG */
785
786 if (oneproc)
787 /* We will get a trace trap after one instruction.
788 Continue it automatically and insert breakpoints then. */
789 trap_expected = 1;
790 else
791 {
81d0cc19
GS
792 insert_breakpoints ();
793 /* If we get here there was no call to error() in
794 insert breakpoints -- so they were inserted. */
c906108c
SS
795 breakpoints_inserted = 1;
796 }
797
798 if (siggnal != TARGET_SIGNAL_DEFAULT)
799 stop_signal = siggnal;
800 /* If this signal should not be seen by program,
801 give it zero. Used for debugging signals. */
802 else if (!signal_program[stop_signal])
803 stop_signal = TARGET_SIGNAL_0;
804
805 annotate_starting ();
806
807 /* Make sure that output from GDB appears before output from the
808 inferior. */
809 gdb_flush (gdb_stdout);
810
e4846b08
JJ
811 /* Refresh prev_pc value just prior to resuming. This used to be
812 done in stop_stepping, however, setting prev_pc there did not handle
813 scenarios such as inferior function calls or returning from
814 a function via the return command. In those cases, the prev_pc
815 value was not set properly for subsequent commands. The prev_pc value
816 is used to initialize the starting line number in the ecs. With an
817 invalid value, the gdb next command ends up stopping at the position
818 represented by the next line table entry past our start position.
819 On platforms that generate one line table entry per line, this
820 is not a problem. However, on the ia64, the compiler generates
821 extraneous line table entries that do not increase the line number.
822 When we issue the gdb next command on the ia64 after an inferior call
823 or a return command, we often end up a few instructions forward, still
824 within the original line we started.
825
826 An attempt was made to have init_execution_control_state () refresh
827 the prev_pc value before calculating the line number. This approach
828 did not work because on platforms that use ptrace, the pc register
829 cannot be read unless the inferior is stopped. At that point, we
830 are not guaranteed the inferior is stopped and so the read_pc ()
831 call can fail. Setting the prev_pc value here ensures the value is
832 updated correctly when the inferior is stopped. */
833 prev_pc = read_pc ();
834
c906108c
SS
835 /* Resume inferior. */
836 resume (oneproc || step || bpstat_should_step (), stop_signal);
837
838 /* Wait for it to stop (if not standalone)
839 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
840 /* Do this only if we are not using the event loop, or if the target
841 does not support asynchronous execution. */
6426a772 842 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
843 {
844 wait_for_inferior ();
845 normal_stop ();
846 }
c906108c 847}
c906108c
SS
848\f
849
850/* Start remote-debugging of a machine over a serial link. */
96baa820 851
c906108c 852void
96baa820 853start_remote (void)
c906108c
SS
854{
855 init_thread_list ();
856 init_wait_for_inferior ();
c0236d92 857 stop_soon = STOP_QUIETLY;
c906108c 858 trap_expected = 0;
43ff13b4 859
6426a772
JM
860 /* Always go on waiting for the target, regardless of the mode. */
861 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 862 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
863 nothing is returned (instead of just blocking). Because of this,
864 targets expecting an immediate response need to, internally, set
865 things up so that the target_wait() is forced to eventually
866 timeout. */
867 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
868 differentiate to its caller what the state of the target is after
869 the initial open has been performed. Here we're assuming that
870 the target has stopped. It should be possible to eventually have
871 target_open() return to the caller an indication that the target
872 is currently running and GDB state should be set to the same as
873 for an async run. */
874 wait_for_inferior ();
875 normal_stop ();
c906108c
SS
876}
877
878/* Initialize static vars when a new inferior begins. */
879
880void
96baa820 881init_wait_for_inferior (void)
c906108c
SS
882{
883 /* These are meaningless until the first time through wait_for_inferior. */
884 prev_pc = 0;
c906108c
SS
885
886#ifdef HP_OS_BUG
887 trap_expected_after_continue = 0;
888#endif
889 breakpoints_inserted = 0;
890 breakpoint_init_inferior (inf_starting);
891
892 /* Don't confuse first call to proceed(). */
893 stop_signal = TARGET_SIGNAL_0;
894
895 /* The first resume is not following a fork/vfork/exec. */
896 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
897
898 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
899 number_of_threads_in_syscalls = 0;
900
901 clear_proceed_status ();
9f976b41
DJ
902
903 stepping_past_singlestep_breakpoint = 0;
c906108c 904}
c906108c 905\f
b83266a0
SS
906/* This enum encodes possible reasons for doing a target_wait, so that
907 wfi can call target_wait in one place. (Ultimately the call will be
908 moved out of the infinite loop entirely.) */
909
c5aa993b
JM
910enum infwait_states
911{
cd0fc7c3
SS
912 infwait_normal_state,
913 infwait_thread_hop_state,
914 infwait_nullified_state,
915 infwait_nonstep_watch_state
b83266a0
SS
916};
917
11cf8741
JM
918/* Why did the inferior stop? Used to print the appropriate messages
919 to the interface from within handle_inferior_event(). */
920enum inferior_stop_reason
921{
922 /* We don't know why. */
923 STOP_UNKNOWN,
924 /* Step, next, nexti, stepi finished. */
925 END_STEPPING_RANGE,
926 /* Found breakpoint. */
927 BREAKPOINT_HIT,
928 /* Inferior terminated by signal. */
929 SIGNAL_EXITED,
930 /* Inferior exited. */
931 EXITED,
932 /* Inferior received signal, and user asked to be notified. */
933 SIGNAL_RECEIVED
934};
935
cd0fc7c3
SS
936/* This structure contains what used to be local variables in
937 wait_for_inferior. Probably many of them can return to being
938 locals in handle_inferior_event. */
939
c5aa993b 940struct execution_control_state
488f131b
JB
941{
942 struct target_waitstatus ws;
943 struct target_waitstatus *wp;
944 int another_trap;
945 int random_signal;
946 CORE_ADDR stop_func_start;
947 CORE_ADDR stop_func_end;
948 char *stop_func_name;
949 struct symtab_and_line sal;
950 int remove_breakpoints_on_following_step;
951 int current_line;
952 struct symtab *current_symtab;
953 int handling_longjmp; /* FIXME */
954 ptid_t ptid;
955 ptid_t saved_inferior_ptid;
956 int update_step_sp;
957 int stepping_through_solib_after_catch;
958 bpstat stepping_through_solib_catchpoints;
959 int enable_hw_watchpoints_after_wait;
960 int stepping_through_sigtramp;
961 int new_thread_event;
962 struct target_waitstatus tmpstatus;
963 enum infwait_states infwait_state;
964 ptid_t waiton_ptid;
965 int wait_some_more;
966};
967
968void init_execution_control_state (struct execution_control_state *ecs);
969
1af510a8 970static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 971void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 972
c2c6d25f 973static void step_into_function (struct execution_control_state *ecs);
d4f3574e 974static void step_over_function (struct execution_control_state *ecs);
d303a6c7
AC
975static void insert_step_resume_breakpoint (struct frame_info *step_frame,
976 struct execution_control_state *ecs);
104c1213
JM
977static void stop_stepping (struct execution_control_state *ecs);
978static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 979static void keep_going (struct execution_control_state *ecs);
488f131b
JB
980static void print_stop_reason (enum inferior_stop_reason stop_reason,
981 int stop_info);
104c1213 982
cd0fc7c3
SS
983/* Wait for control to return from inferior to debugger.
984 If inferior gets a signal, we may decide to start it up again
985 instead of returning. That is why there is a loop in this function.
986 When this function actually returns it means the inferior
987 should be left stopped and GDB should read more commands. */
988
989void
96baa820 990wait_for_inferior (void)
cd0fc7c3
SS
991{
992 struct cleanup *old_cleanups;
993 struct execution_control_state ecss;
994 struct execution_control_state *ecs;
c906108c 995
8601f500 996 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 997 &step_resume_breakpoint);
cd0fc7c3
SS
998
999 /* wfi still stays in a loop, so it's OK just to take the address of
1000 a local to get the ecs pointer. */
1001 ecs = &ecss;
1002
1003 /* Fill in with reasonable starting values. */
1004 init_execution_control_state (ecs);
1005
c906108c 1006 /* We'll update this if & when we switch to a new thread. */
39f77062 1007 previous_inferior_ptid = inferior_ptid;
c906108c 1008
cd0fc7c3
SS
1009 overlay_cache_invalid = 1;
1010
1011 /* We have to invalidate the registers BEFORE calling target_wait
1012 because they can be loaded from the target while in target_wait.
1013 This makes remote debugging a bit more efficient for those
1014 targets that provide critical registers as part of their normal
1015 status mechanism. */
1016
1017 registers_changed ();
b83266a0 1018
c906108c
SS
1019 while (1)
1020 {
9a4105ab
AC
1021 if (deprecated_target_wait_hook)
1022 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1023 else
39f77062 1024 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1025
cd0fc7c3
SS
1026 /* Now figure out what to do with the result of the result. */
1027 handle_inferior_event (ecs);
c906108c 1028
cd0fc7c3
SS
1029 if (!ecs->wait_some_more)
1030 break;
1031 }
1032 do_cleanups (old_cleanups);
1033}
c906108c 1034
43ff13b4
JM
1035/* Asynchronous version of wait_for_inferior. It is called by the
1036 event loop whenever a change of state is detected on the file
1037 descriptor corresponding to the target. It can be called more than
1038 once to complete a single execution command. In such cases we need
1039 to keep the state in a global variable ASYNC_ECSS. If it is the
1040 last time that this function is called for a single execution
1041 command, then report to the user that the inferior has stopped, and
1042 do the necessary cleanups. */
1043
1044struct execution_control_state async_ecss;
1045struct execution_control_state *async_ecs;
1046
1047void
fba45db2 1048fetch_inferior_event (void *client_data)
43ff13b4
JM
1049{
1050 static struct cleanup *old_cleanups;
1051
c5aa993b 1052 async_ecs = &async_ecss;
43ff13b4
JM
1053
1054 if (!async_ecs->wait_some_more)
1055 {
488f131b 1056 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1057 &step_resume_breakpoint);
43ff13b4
JM
1058
1059 /* Fill in with reasonable starting values. */
1060 init_execution_control_state (async_ecs);
1061
43ff13b4 1062 /* We'll update this if & when we switch to a new thread. */
39f77062 1063 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1064
1065 overlay_cache_invalid = 1;
1066
1067 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1068 because they can be loaded from the target while in target_wait.
1069 This makes remote debugging a bit more efficient for those
1070 targets that provide critical registers as part of their normal
1071 status mechanism. */
43ff13b4
JM
1072
1073 registers_changed ();
1074 }
1075
9a4105ab 1076 if (deprecated_target_wait_hook)
488f131b 1077 async_ecs->ptid =
9a4105ab 1078 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1079 else
39f77062 1080 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1081
1082 /* Now figure out what to do with the result of the result. */
1083 handle_inferior_event (async_ecs);
1084
1085 if (!async_ecs->wait_some_more)
1086 {
adf40b2e 1087 /* Do only the cleanups that have been added by this
488f131b
JB
1088 function. Let the continuations for the commands do the rest,
1089 if there are any. */
43ff13b4
JM
1090 do_exec_cleanups (old_cleanups);
1091 normal_stop ();
c2d11a7d
JM
1092 if (step_multi && stop_step)
1093 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1094 else
1095 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1096 }
1097}
1098
cd0fc7c3
SS
1099/* Prepare an execution control state for looping through a
1100 wait_for_inferior-type loop. */
1101
1102void
96baa820 1103init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1104{
c2d11a7d 1105 /* ecs->another_trap? */
cd0fc7c3
SS
1106 ecs->random_signal = 0;
1107 ecs->remove_breakpoints_on_following_step = 0;
1108 ecs->handling_longjmp = 0; /* FIXME */
1109 ecs->update_step_sp = 0;
1110 ecs->stepping_through_solib_after_catch = 0;
1111 ecs->stepping_through_solib_catchpoints = NULL;
1112 ecs->enable_hw_watchpoints_after_wait = 0;
1113 ecs->stepping_through_sigtramp = 0;
1114 ecs->sal = find_pc_line (prev_pc, 0);
1115 ecs->current_line = ecs->sal.line;
1116 ecs->current_symtab = ecs->sal.symtab;
1117 ecs->infwait_state = infwait_normal_state;
39f77062 1118 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1119 ecs->wp = &(ecs->ws);
1120}
1121
a0b3c4fd 1122/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1123 sanity check. There should never be more than one step-resume
1124 breakpoint per thread, so we should never be setting a new
1125 step_resume_breakpoint when one is already active. */
a0b3c4fd 1126static void
96baa820 1127check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1128{
1129 if (step_resume_breakpoint)
488f131b
JB
1130 warning
1131 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1132}
1133
e02bc4cc 1134/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1135 target_wait()/deprecated_target_wait_hook(). The data is actually
1136 cached by handle_inferior_event(), which gets called immediately
1137 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1138
1139void
488f131b 1140get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1141{
39f77062 1142 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1143 *status = target_last_waitstatus;
1144}
1145
dd80620e
MS
1146/* Switch thread contexts, maintaining "infrun state". */
1147
1148static void
1149context_switch (struct execution_control_state *ecs)
1150{
1151 /* Caution: it may happen that the new thread (or the old one!)
1152 is not in the thread list. In this case we must not attempt
1153 to "switch context", or we run the risk that our context may
1154 be lost. This may happen as a result of the target module
1155 mishandling thread creation. */
1156
1157 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1158 { /* Perform infrun state context switch: */
dd80620e 1159 /* Save infrun state for the old thread. */
0ce3d317 1160 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1161 trap_expected, step_resume_breakpoint,
488f131b 1162 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1163 step_range_end, &step_frame_id,
dd80620e
MS
1164 ecs->handling_longjmp, ecs->another_trap,
1165 ecs->stepping_through_solib_after_catch,
1166 ecs->stepping_through_solib_catchpoints,
1167 ecs->stepping_through_sigtramp,
488f131b 1168 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1169
1170 /* Load infrun state for the new thread. */
0ce3d317 1171 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1172 &trap_expected, &step_resume_breakpoint,
488f131b 1173 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1174 &step_range_end, &step_frame_id,
dd80620e
MS
1175 &ecs->handling_longjmp, &ecs->another_trap,
1176 &ecs->stepping_through_solib_after_catch,
1177 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1178 &ecs->stepping_through_sigtramp,
1179 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1180 }
1181 inferior_ptid = ecs->ptid;
1182}
1183
1af510a8
JB
1184/* Handle the inferior event in the cases when we just stepped
1185 into a function. */
1186
1187static void
1188handle_step_into_function (struct execution_control_state *ecs)
1189{
1190 CORE_ADDR real_stop_pc;
1191
1192 if ((step_over_calls == STEP_OVER_NONE)
1193 || ((step_range_end == 1)
1194 && in_prologue (prev_pc, ecs->stop_func_start)))
1195 {
1196 /* I presume that step_over_calls is only 0 when we're
1197 supposed to be stepping at the assembly language level
1198 ("stepi"). Just stop. */
1199 /* Also, maybe we just did a "nexti" inside a prolog,
1200 so we thought it was a subroutine call but it was not.
1201 Stop as well. FENN */
1202 stop_step = 1;
1203 print_stop_reason (END_STEPPING_RANGE, 0);
1204 stop_stepping (ecs);
1205 return;
1206 }
1207
1208 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1209 {
1210 /* We're doing a "next". */
1af510a8
JB
1211 step_over_function (ecs);
1212 keep_going (ecs);
1213 return;
1214 }
1215
1216 /* If we are in a function call trampoline (a stub between
1217 the calling routine and the real function), locate the real
1218 function. That's what tells us (a) whether we want to step
1219 into it at all, and (b) what prologue we want to run to
1220 the end of, if we do step into it. */
1221 real_stop_pc = skip_language_trampoline (stop_pc);
1222 if (real_stop_pc == 0)
1223 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1224 if (real_stop_pc != 0)
1225 ecs->stop_func_start = real_stop_pc;
1226
1227 /* If we have line number information for the function we
1228 are thinking of stepping into, step into it.
1229
1230 If there are several symtabs at that PC (e.g. with include
1231 files), just want to know whether *any* of them have line
1232 numbers. find_pc_line handles this. */
1233 {
1234 struct symtab_and_line tmp_sal;
1235
1236 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1237 if (tmp_sal.line != 0)
1238 {
1239 step_into_function (ecs);
1240 return;
1241 }
1242 }
1243
1244 /* If we have no line number and the step-stop-if-no-debug
1245 is set, we stop the step so that the user has a chance to
1246 switch in assembly mode. */
1247 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1248 {
1249 stop_step = 1;
1250 print_stop_reason (END_STEPPING_RANGE, 0);
1251 stop_stepping (ecs);
1252 return;
1253 }
1254
1255 step_over_function (ecs);
1256 keep_going (ecs);
1257 return;
1258}
dd80620e 1259
4fa8626c
DJ
1260static void
1261adjust_pc_after_break (struct execution_control_state *ecs)
1262{
1263 CORE_ADDR stop_pc;
1264
1265 /* If this target does not decrement the PC after breakpoints, then
1266 we have nothing to do. */
1267 if (DECR_PC_AFTER_BREAK == 0)
1268 return;
1269
1270 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1271 we aren't, just return.
9709f61c
DJ
1272
1273 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1274 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1275 by software breakpoints should be handled through the normal breakpoint
1276 layer.
4fa8626c
DJ
1277
1278 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1279 different signals (SIGILL or SIGEMT for instance), but it is less
1280 clear where the PC is pointing afterwards. It may not match
1281 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1282 these signals at breakpoints (the code has been in GDB since at least
1283 1992) so I can not guess how to handle them here.
1284
1285 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1286 would have the PC after hitting a watchpoint affected by
1287 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1288 in GDB history, and it seems unlikely to be correct, so
1289 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1290
1291 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1292 return;
1293
1294 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1295 return;
1296
1297 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1298 be. */
1299 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1300
1301 /* If we're software-single-stepping, then assume this is a breakpoint.
1302 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1303 we're even in the right thread. The software-single-step code needs
1304 some modernization.
1305
1306 If we're not software-single-stepping, then we first check that there
1307 is an enabled software breakpoint at this address. If there is, and
1308 we weren't using hardware-single-step, then we've hit the breakpoint.
1309
1310 If we were using hardware-single-step, we check prev_pc; if we just
1311 stepped over an inserted software breakpoint, then we should decrement
1312 the PC and eventually report hitting the breakpoint. The prev_pc check
1313 prevents us from decrementing the PC if we just stepped over a jump
1314 instruction and landed on the instruction after a breakpoint.
1315
1316 The last bit checks that we didn't hit a breakpoint in a signal handler
1317 without an intervening stop in sigtramp, which is detected by a new
1318 stack pointer value below any usual function calling stack adjustments.
1319
1320 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1321 predates checking for software single step at the same time. Also,
1322 if we've moved into a signal handler we should have seen the
1323 signal. */
1324
1325 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1326 || (software_breakpoint_inserted_here_p (stop_pc)
1327 && !(currently_stepping (ecs)
1328 && prev_pc != stop_pc
1329 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1330 write_pc_pid (stop_pc, ecs->ptid);
1331}
1332
cd0fc7c3
SS
1333/* Given an execution control state that has been freshly filled in
1334 by an event from the inferior, figure out what it means and take
1335 appropriate action. */
c906108c 1336
7270d8f2
OF
1337int stepped_after_stopped_by_watchpoint;
1338
cd0fc7c3 1339void
96baa820 1340handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1341{
65e82032
AC
1342 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1343 thinking that the variable stepped_after_stopped_by_watchpoint
1344 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1345 defined in the file "config/pa/nm-hppah.h", accesses the variable
1346 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1347 int sw_single_step_trap_p = 0;
cd0fc7c3 1348
e02bc4cc 1349 /* Cache the last pid/waitstatus. */
39f77062 1350 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1351 target_last_waitstatus = *ecs->wp;
1352
4fa8626c
DJ
1353 adjust_pc_after_break (ecs);
1354
488f131b
JB
1355 switch (ecs->infwait_state)
1356 {
1357 case infwait_thread_hop_state:
1358 /* Cancel the waiton_ptid. */
1359 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1360 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1361 is serviced in this loop, below. */
1362 if (ecs->enable_hw_watchpoints_after_wait)
1363 {
1364 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1365 ecs->enable_hw_watchpoints_after_wait = 0;
1366 }
1367 stepped_after_stopped_by_watchpoint = 0;
1368 break;
b83266a0 1369
488f131b
JB
1370 case infwait_normal_state:
1371 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1372 is serviced in this loop, below. */
1373 if (ecs->enable_hw_watchpoints_after_wait)
1374 {
1375 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1376 ecs->enable_hw_watchpoints_after_wait = 0;
1377 }
1378 stepped_after_stopped_by_watchpoint = 0;
1379 break;
b83266a0 1380
488f131b 1381 case infwait_nullified_state:
65e82032 1382 stepped_after_stopped_by_watchpoint = 0;
488f131b 1383 break;
b83266a0 1384
488f131b
JB
1385 case infwait_nonstep_watch_state:
1386 insert_breakpoints ();
c906108c 1387
488f131b
JB
1388 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1389 handle things like signals arriving and other things happening
1390 in combination correctly? */
1391 stepped_after_stopped_by_watchpoint = 1;
1392 break;
65e82032
AC
1393
1394 default:
1395 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1396 }
1397 ecs->infwait_state = infwait_normal_state;
c906108c 1398
488f131b 1399 flush_cached_frames ();
c906108c 1400
488f131b 1401 /* If it's a new process, add it to the thread database */
c906108c 1402
488f131b
JB
1403 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1404 && !in_thread_list (ecs->ptid));
1405
1406 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1407 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1408 {
1409 add_thread (ecs->ptid);
c906108c 1410
488f131b
JB
1411 ui_out_text (uiout, "[New ");
1412 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1413 ui_out_text (uiout, "]\n");
c906108c
SS
1414
1415#if 0
488f131b
JB
1416 /* NOTE: This block is ONLY meant to be invoked in case of a
1417 "thread creation event"! If it is invoked for any other
1418 sort of event (such as a new thread landing on a breakpoint),
1419 the event will be discarded, which is almost certainly
1420 a bad thing!
1421
1422 To avoid this, the low-level module (eg. target_wait)
1423 should call in_thread_list and add_thread, so that the
1424 new thread is known by the time we get here. */
1425
1426 /* We may want to consider not doing a resume here in order
1427 to give the user a chance to play with the new thread.
1428 It might be good to make that a user-settable option. */
1429
1430 /* At this point, all threads are stopped (happens
1431 automatically in either the OS or the native code).
1432 Therefore we need to continue all threads in order to
1433 make progress. */
1434
1435 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1436 prepare_to_wait (ecs);
1437 return;
c906108c 1438#endif
488f131b 1439 }
c906108c 1440
488f131b
JB
1441 switch (ecs->ws.kind)
1442 {
1443 case TARGET_WAITKIND_LOADED:
1444 /* Ignore gracefully during startup of the inferior, as it
1445 might be the shell which has just loaded some objects,
1446 otherwise add the symbols for the newly loaded objects. */
c906108c 1447#ifdef SOLIB_ADD
c0236d92 1448 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1449 {
1450 /* Remove breakpoints, SOLIB_ADD might adjust
1451 breakpoint addresses via breakpoint_re_set. */
1452 if (breakpoints_inserted)
1453 remove_breakpoints ();
c906108c 1454
488f131b
JB
1455 /* Check for any newly added shared libraries if we're
1456 supposed to be adding them automatically. Switch
1457 terminal for any messages produced by
1458 breakpoint_re_set. */
1459 target_terminal_ours_for_output ();
aff6338a
AC
1460 /* NOTE: cagney/2003-11-25: Make certain that the target
1461 stack's section table is kept up-to-date. Architectures,
1462 (e.g., PPC64), use the section table to perform
1463 operations such as address => section name and hence
1464 require the table to contain all sections (including
1465 those found in shared libraries). */
1466 /* NOTE: cagney/2003-11-25: Pass current_target and not
1467 exec_ops to SOLIB_ADD. This is because current GDB is
1468 only tooled to propagate section_table changes out from
1469 the "current_target" (see target_resize_to_sections), and
1470 not up from the exec stratum. This, of course, isn't
1471 right. "infrun.c" should only interact with the
1472 exec/process stratum, instead relying on the target stack
1473 to propagate relevant changes (stop, section table
1474 changed, ...) up to other layers. */
1475 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1476 target_terminal_inferior ();
1477
1478 /* Reinsert breakpoints and continue. */
1479 if (breakpoints_inserted)
1480 insert_breakpoints ();
1481 }
c906108c 1482#endif
488f131b
JB
1483 resume (0, TARGET_SIGNAL_0);
1484 prepare_to_wait (ecs);
1485 return;
c5aa993b 1486
488f131b
JB
1487 case TARGET_WAITKIND_SPURIOUS:
1488 resume (0, TARGET_SIGNAL_0);
1489 prepare_to_wait (ecs);
1490 return;
c5aa993b 1491
488f131b
JB
1492 case TARGET_WAITKIND_EXITED:
1493 target_terminal_ours (); /* Must do this before mourn anyway */
1494 print_stop_reason (EXITED, ecs->ws.value.integer);
1495
1496 /* Record the exit code in the convenience variable $_exitcode, so
1497 that the user can inspect this again later. */
1498 set_internalvar (lookup_internalvar ("_exitcode"),
1499 value_from_longest (builtin_type_int,
1500 (LONGEST) ecs->ws.value.integer));
1501 gdb_flush (gdb_stdout);
1502 target_mourn_inferior ();
1503 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1504 stop_print_frame = 0;
1505 stop_stepping (ecs);
1506 return;
c5aa993b 1507
488f131b
JB
1508 case TARGET_WAITKIND_SIGNALLED:
1509 stop_print_frame = 0;
1510 stop_signal = ecs->ws.value.sig;
1511 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1512
488f131b
JB
1513 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1514 reach here unless the inferior is dead. However, for years
1515 target_kill() was called here, which hints that fatal signals aren't
1516 really fatal on some systems. If that's true, then some changes
1517 may be needed. */
1518 target_mourn_inferior ();
c906108c 1519
488f131b
JB
1520 print_stop_reason (SIGNAL_EXITED, stop_signal);
1521 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1522 stop_stepping (ecs);
1523 return;
c906108c 1524
488f131b
JB
1525 /* The following are the only cases in which we keep going;
1526 the above cases end in a continue or goto. */
1527 case TARGET_WAITKIND_FORKED:
deb3b17b 1528 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1529 stop_signal = TARGET_SIGNAL_TRAP;
1530 pending_follow.kind = ecs->ws.kind;
1531
8e7d2c16
DJ
1532 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1533 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1534
488f131b 1535 stop_pc = read_pc ();
675bf4cb 1536
fa5281d0 1537 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1538
488f131b 1539 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1540
1541 /* If no catchpoint triggered for this, then keep going. */
1542 if (ecs->random_signal)
1543 {
1544 stop_signal = TARGET_SIGNAL_0;
1545 keep_going (ecs);
1546 return;
1547 }
488f131b
JB
1548 goto process_event_stop_test;
1549
1550 case TARGET_WAITKIND_EXECD:
1551 stop_signal = TARGET_SIGNAL_TRAP;
1552
7d2830a3
DJ
1553 /* NOTE drow/2002-12-05: This code should be pushed down into the
1554 target_wait function. Until then following vfork on HP/UX 10.20
1555 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1556 /* Is this a target which reports multiple exec events per actual
1557 call to exec()? (HP-UX using ptrace does, for example.) If so,
1558 ignore all but the last one. Just resume the exec'r, and wait
1559 for the next exec event. */
1560 if (inferior_ignoring_leading_exec_events)
1561 {
1562 inferior_ignoring_leading_exec_events--;
1563 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1564 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1565 parent_pid);
1566 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1567 prepare_to_wait (ecs);
1568 return;
1569 }
1570 inferior_ignoring_leading_exec_events =
1571 target_reported_exec_events_per_exec_call () - 1;
1572
1573 pending_follow.execd_pathname =
1574 savestring (ecs->ws.value.execd_pathname,
1575 strlen (ecs->ws.value.execd_pathname));
1576
488f131b
JB
1577 /* This causes the eventpoints and symbol table to be reset. Must
1578 do this now, before trying to determine whether to stop. */
1579 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1580 xfree (pending_follow.execd_pathname);
c906108c 1581
488f131b
JB
1582 stop_pc = read_pc_pid (ecs->ptid);
1583 ecs->saved_inferior_ptid = inferior_ptid;
1584 inferior_ptid = ecs->ptid;
675bf4cb 1585
fa5281d0 1586 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1587
488f131b
JB
1588 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1589 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1590
1591 /* If no catchpoint triggered for this, then keep going. */
1592 if (ecs->random_signal)
1593 {
1594 stop_signal = TARGET_SIGNAL_0;
1595 keep_going (ecs);
1596 return;
1597 }
488f131b
JB
1598 goto process_event_stop_test;
1599
1600 /* These syscall events are returned on HP-UX, as part of its
1601 implementation of page-protection-based "hardware" watchpoints.
1602 HP-UX has unfortunate interactions between page-protections and
1603 some system calls. Our solution is to disable hardware watches
1604 when a system call is entered, and reenable them when the syscall
1605 completes. The downside of this is that we may miss the precise
1606 point at which a watched piece of memory is modified. "Oh well."
1607
1608 Note that we may have multiple threads running, which may each
1609 enter syscalls at roughly the same time. Since we don't have a
1610 good notion currently of whether a watched piece of memory is
1611 thread-private, we'd best not have any page-protections active
1612 when any thread is in a syscall. Thus, we only want to reenable
1613 hardware watches when no threads are in a syscall.
1614
1615 Also, be careful not to try to gather much state about a thread
1616 that's in a syscall. It's frequently a losing proposition. */
1617 case TARGET_WAITKIND_SYSCALL_ENTRY:
1618 number_of_threads_in_syscalls++;
1619 if (number_of_threads_in_syscalls == 1)
1620 {
1621 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1622 }
1623 resume (0, TARGET_SIGNAL_0);
1624 prepare_to_wait (ecs);
1625 return;
c906108c 1626
488f131b
JB
1627 /* Before examining the threads further, step this thread to
1628 get it entirely out of the syscall. (We get notice of the
1629 event when the thread is just on the verge of exiting a
1630 syscall. Stepping one instruction seems to get it back
1631 into user code.)
c906108c 1632
488f131b
JB
1633 Note that although the logical place to reenable h/w watches
1634 is here, we cannot. We cannot reenable them before stepping
1635 the thread (this causes the next wait on the thread to hang).
c4093a6a 1636
488f131b
JB
1637 Nor can we enable them after stepping until we've done a wait.
1638 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1639 here, which will be serviced immediately after the target
1640 is waited on. */
1641 case TARGET_WAITKIND_SYSCALL_RETURN:
1642 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1643
1644 if (number_of_threads_in_syscalls > 0)
1645 {
1646 number_of_threads_in_syscalls--;
1647 ecs->enable_hw_watchpoints_after_wait =
1648 (number_of_threads_in_syscalls == 0);
1649 }
1650 prepare_to_wait (ecs);
1651 return;
c906108c 1652
488f131b
JB
1653 case TARGET_WAITKIND_STOPPED:
1654 stop_signal = ecs->ws.value.sig;
1655 break;
c906108c 1656
488f131b
JB
1657 /* We had an event in the inferior, but we are not interested
1658 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1659 done what needs to be done, if anything.
1660
1661 One of the possible circumstances for this is when the
1662 inferior produces output for the console. The inferior has
1663 not stopped, and we are ignoring the event. Another possible
1664 circumstance is any event which the lower level knows will be
1665 reported multiple times without an intervening resume. */
488f131b 1666 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1667 prepare_to_wait (ecs);
488f131b
JB
1668 return;
1669 }
c906108c 1670
488f131b
JB
1671 /* We may want to consider not doing a resume here in order to give
1672 the user a chance to play with the new thread. It might be good
1673 to make that a user-settable option. */
c906108c 1674
488f131b
JB
1675 /* At this point, all threads are stopped (happens automatically in
1676 either the OS or the native code). Therefore we need to continue
1677 all threads in order to make progress. */
1678 if (ecs->new_thread_event)
1679 {
1680 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1681 prepare_to_wait (ecs);
1682 return;
1683 }
c906108c 1684
488f131b
JB
1685 stop_pc = read_pc_pid (ecs->ptid);
1686
9f976b41
DJ
1687 if (stepping_past_singlestep_breakpoint)
1688 {
1689 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1690 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1691 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1692
1693 stepping_past_singlestep_breakpoint = 0;
1694
1695 /* We've either finished single-stepping past the single-step
1696 breakpoint, or stopped for some other reason. It would be nice if
1697 we could tell, but we can't reliably. */
1698 if (stop_signal == TARGET_SIGNAL_TRAP)
1699 {
1700 /* Pull the single step breakpoints out of the target. */
1701 SOFTWARE_SINGLE_STEP (0, 0);
1702 singlestep_breakpoints_inserted_p = 0;
1703
1704 ecs->random_signal = 0;
1705
1706 ecs->ptid = saved_singlestep_ptid;
1707 context_switch (ecs);
9a4105ab
AC
1708 if (deprecated_context_hook)
1709 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1710
1711 resume (1, TARGET_SIGNAL_0);
1712 prepare_to_wait (ecs);
1713 return;
1714 }
1715 }
1716
1717 stepping_past_singlestep_breakpoint = 0;
1718
488f131b
JB
1719 /* See if a thread hit a thread-specific breakpoint that was meant for
1720 another thread. If so, then step that thread past the breakpoint,
1721 and continue it. */
1722
1723 if (stop_signal == TARGET_SIGNAL_TRAP)
1724 {
9f976b41
DJ
1725 int thread_hop_needed = 0;
1726
f8d40ec8
JB
1727 /* Check if a regular breakpoint has been hit before checking
1728 for a potential single step breakpoint. Otherwise, GDB will
1729 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1730 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1731 {
c5aa993b 1732 ecs->random_signal = 0;
4fa8626c 1733 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1734 thread_hop_needed = 1;
1735 }
1736 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1737 {
1738 ecs->random_signal = 0;
1739 /* The call to in_thread_list is necessary because PTIDs sometimes
1740 change when we go from single-threaded to multi-threaded. If
1741 the singlestep_ptid is still in the list, assume that it is
1742 really different from ecs->ptid. */
1743 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1744 && in_thread_list (singlestep_ptid))
1745 {
1746 thread_hop_needed = 1;
1747 stepping_past_singlestep_breakpoint = 1;
1748 saved_singlestep_ptid = singlestep_ptid;
1749 }
1750 }
1751
1752 if (thread_hop_needed)
488f131b
JB
1753 {
1754 int remove_status;
1755
1756 /* Saw a breakpoint, but it was hit by the wrong thread.
1757 Just continue. */
488f131b 1758
9f976b41
DJ
1759 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1760 {
1761 /* Pull the single step breakpoints out of the target. */
1762 SOFTWARE_SINGLE_STEP (0, 0);
1763 singlestep_breakpoints_inserted_p = 0;
1764 }
1765
488f131b
JB
1766 remove_status = remove_breakpoints ();
1767 /* Did we fail to remove breakpoints? If so, try
1768 to set the PC past the bp. (There's at least
1769 one situation in which we can fail to remove
1770 the bp's: On HP-UX's that use ttrace, we can't
1771 change the address space of a vforking child
1772 process until the child exits (well, okay, not
1773 then either :-) or execs. */
1774 if (remove_status != 0)
1775 {
1776 /* FIXME! This is obviously non-portable! */
4fa8626c 1777 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1778 /* We need to restart all the threads now,
1779 * unles we're running in scheduler-locked mode.
1780 * Use currently_stepping to determine whether to
1781 * step or continue.
1782 */
1783 /* FIXME MVS: is there any reason not to call resume()? */
1784 if (scheduler_mode == schedlock_on)
1785 target_resume (ecs->ptid,
1786 currently_stepping (ecs), TARGET_SIGNAL_0);
1787 else
1788 target_resume (RESUME_ALL,
1789 currently_stepping (ecs), TARGET_SIGNAL_0);
1790 prepare_to_wait (ecs);
1791 return;
1792 }
1793 else
1794 { /* Single step */
1795 breakpoints_inserted = 0;
1796 if (!ptid_equal (inferior_ptid, ecs->ptid))
1797 context_switch (ecs);
1798 ecs->waiton_ptid = ecs->ptid;
1799 ecs->wp = &(ecs->ws);
1800 ecs->another_trap = 1;
1801
1802 ecs->infwait_state = infwait_thread_hop_state;
1803 keep_going (ecs);
1804 registers_changed ();
1805 return;
1806 }
488f131b 1807 }
f8d40ec8
JB
1808 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1809 {
c8edd8b4 1810 sw_single_step_trap_p = 1;
f8d40ec8
JB
1811 ecs->random_signal = 0;
1812 }
488f131b
JB
1813 }
1814 else
1815 ecs->random_signal = 1;
c906108c 1816
488f131b 1817 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1818 so, then switch to that thread. */
1819 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1820 {
488f131b 1821 context_switch (ecs);
c5aa993b 1822
9a4105ab
AC
1823 if (deprecated_context_hook)
1824 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1825
488f131b
JB
1826 flush_cached_frames ();
1827 }
c906108c 1828
488f131b
JB
1829 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1830 {
1831 /* Pull the single step breakpoints out of the target. */
1832 SOFTWARE_SINGLE_STEP (0, 0);
1833 singlestep_breakpoints_inserted_p = 0;
1834 }
c906108c 1835
488f131b
JB
1836 /* If PC is pointing at a nullified instruction, then step beyond
1837 it so that the user won't be confused when GDB appears to be ready
1838 to execute it. */
c906108c 1839
488f131b
JB
1840 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1841 if (INSTRUCTION_NULLIFIED)
1842 {
1843 registers_changed ();
1844 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1845
488f131b
JB
1846 /* We may have received a signal that we want to pass to
1847 the inferior; therefore, we must not clobber the waitstatus
1848 in WS. */
c906108c 1849
488f131b
JB
1850 ecs->infwait_state = infwait_nullified_state;
1851 ecs->waiton_ptid = ecs->ptid;
1852 ecs->wp = &(ecs->tmpstatus);
1853 prepare_to_wait (ecs);
1854 return;
1855 }
c906108c 1856
488f131b
JB
1857 /* It may not be necessary to disable the watchpoint to stop over
1858 it. For example, the PA can (with some kernel cooperation)
1859 single step over a watchpoint without disabling the watchpoint. */
1860 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1861 {
1862 resume (1, 0);
1863 prepare_to_wait (ecs);
1864 return;
1865 }
c906108c 1866
488f131b
JB
1867 /* It is far more common to need to disable a watchpoint to step
1868 the inferior over it. FIXME. What else might a debug
1869 register or page protection watchpoint scheme need here? */
1870 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1871 {
1872 /* At this point, we are stopped at an instruction which has
1873 attempted to write to a piece of memory under control of
1874 a watchpoint. The instruction hasn't actually executed
1875 yet. If we were to evaluate the watchpoint expression
1876 now, we would get the old value, and therefore no change
1877 would seem to have occurred.
1878
1879 In order to make watchpoints work `right', we really need
1880 to complete the memory write, and then evaluate the
1881 watchpoint expression. The following code does that by
1882 removing the watchpoint (actually, all watchpoints and
1883 breakpoints), single-stepping the target, re-inserting
1884 watchpoints, and then falling through to let normal
1885 single-step processing handle proceed. Since this
1886 includes evaluating watchpoints, things will come to a
1887 stop in the correct manner. */
1888
488f131b
JB
1889 remove_breakpoints ();
1890 registers_changed ();
1891 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1892
488f131b
JB
1893 ecs->waiton_ptid = ecs->ptid;
1894 ecs->wp = &(ecs->ws);
1895 ecs->infwait_state = infwait_nonstep_watch_state;
1896 prepare_to_wait (ecs);
1897 return;
1898 }
1899
1900 /* It may be possible to simply continue after a watchpoint. */
1901 if (HAVE_CONTINUABLE_WATCHPOINT)
1902 STOPPED_BY_WATCHPOINT (ecs->ws);
1903
1904 ecs->stop_func_start = 0;
1905 ecs->stop_func_end = 0;
1906 ecs->stop_func_name = 0;
1907 /* Don't care about return value; stop_func_start and stop_func_name
1908 will both be 0 if it doesn't work. */
1909 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1910 &ecs->stop_func_start, &ecs->stop_func_end);
1911 ecs->stop_func_start += FUNCTION_START_OFFSET;
1912 ecs->another_trap = 0;
1913 bpstat_clear (&stop_bpstat);
1914 stop_step = 0;
1915 stop_stack_dummy = 0;
1916 stop_print_frame = 1;
1917 ecs->random_signal = 0;
1918 stopped_by_random_signal = 0;
1919 breakpoints_failed = 0;
1920
1921 /* Look at the cause of the stop, and decide what to do.
1922 The alternatives are:
1923 1) break; to really stop and return to the debugger,
1924 2) drop through to start up again
1925 (set ecs->another_trap to 1 to single step once)
1926 3) set ecs->random_signal to 1, and the decision between 1 and 2
1927 will be made according to the signal handling tables. */
1928
1929 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1930 that have to do with the program's own actions. Note that
1931 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1932 on the operating system version. Here we detect when a SIGILL or
1933 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1934 something similar for SIGSEGV, since a SIGSEGV will be generated
1935 when we're trying to execute a breakpoint instruction on a
1936 non-executable stack. This happens for call dummy breakpoints
1937 for architectures like SPARC that place call dummies on the
1938 stack. */
488f131b
JB
1939
1940 if (stop_signal == TARGET_SIGNAL_TRAP
1941 || (breakpoints_inserted &&
1942 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1943 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1944 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1945 || stop_soon == STOP_QUIETLY
1946 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1947 {
1948 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1949 {
1950 stop_print_frame = 0;
1951 stop_stepping (ecs);
1952 return;
1953 }
c54cfec8
EZ
1954
1955 /* This is originated from start_remote(), start_inferior() and
1956 shared libraries hook functions. */
c0236d92 1957 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1958 {
1959 stop_stepping (ecs);
1960 return;
1961 }
1962
c54cfec8
EZ
1963 /* This originates from attach_command(). We need to overwrite
1964 the stop_signal here, because some kernels don't ignore a
1965 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1966 See more comments in inferior.h. */
c0236d92 1967 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1968 {
1969 stop_stepping (ecs);
1970 if (stop_signal == TARGET_SIGNAL_STOP)
1971 stop_signal = TARGET_SIGNAL_0;
1972 return;
1973 }
1974
d303a6c7
AC
1975 /* Don't even think about breakpoints if just proceeded over a
1976 breakpoint. */
1977 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1978 bpstat_clear (&stop_bpstat);
1979 else
1980 {
1981 /* See if there is a breakpoint at the current PC. */
fa5281d0 1982 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 1983
488f131b
JB
1984 /* Following in case break condition called a
1985 function. */
1986 stop_print_frame = 1;
1987 }
1988
73dd234f
AC
1989 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1990 at one stage in the past included checks for an inferior
1991 function call's call dummy's return breakpoint. The original
1992 comment, that went with the test, read:
1993
1994 ``End of a stack dummy. Some systems (e.g. Sony news) give
1995 another signal besides SIGTRAP, so check here as well as
1996 above.''
1997
1998 If someone ever tries to get get call dummys on a
1999 non-executable stack to work (where the target would stop
03cebad2
MK
2000 with something like a SIGSEGV), then those tests might need
2001 to be re-instated. Given, however, that the tests were only
73dd234f 2002 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2003 suspect that it won't be the case.
2004
2005 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2006 be necessary for call dummies on a non-executable stack on
2007 SPARC. */
73dd234f 2008
488f131b
JB
2009 if (stop_signal == TARGET_SIGNAL_TRAP)
2010 ecs->random_signal
2011 = !(bpstat_explains_signal (stop_bpstat)
2012 || trap_expected
488f131b 2013 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2014 else
2015 {
73dd234f 2016 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2017 if (!ecs->random_signal)
2018 stop_signal = TARGET_SIGNAL_TRAP;
2019 }
2020 }
2021
2022 /* When we reach this point, we've pretty much decided
2023 that the reason for stopping must've been a random
2024 (unexpected) signal. */
2025
2026 else
2027 ecs->random_signal = 1;
488f131b 2028
04e68871 2029process_event_stop_test:
488f131b
JB
2030 /* For the program's own signals, act according to
2031 the signal handling tables. */
2032
2033 if (ecs->random_signal)
2034 {
2035 /* Signal not for debugging purposes. */
2036 int printed = 0;
2037
2038 stopped_by_random_signal = 1;
2039
2040 if (signal_print[stop_signal])
2041 {
2042 printed = 1;
2043 target_terminal_ours_for_output ();
2044 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2045 }
2046 if (signal_stop[stop_signal])
2047 {
2048 stop_stepping (ecs);
2049 return;
2050 }
2051 /* If not going to stop, give terminal back
2052 if we took it away. */
2053 else if (printed)
2054 target_terminal_inferior ();
2055
2056 /* Clear the signal if it should not be passed. */
2057 if (signal_program[stop_signal] == 0)
2058 stop_signal = TARGET_SIGNAL_0;
2059
d303a6c7
AC
2060 if (step_range_end != 0
2061 && stop_signal != TARGET_SIGNAL_0
2062 && stop_pc >= step_range_start && stop_pc < step_range_end
2063 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2064 {
2065 /* The inferior is about to take a signal that will take it
2066 out of the single step range. Set a breakpoint at the
2067 current PC (which is presumably where the signal handler
2068 will eventually return) and then allow the inferior to
2069 run free.
2070
2071 Note that this is only needed for a signal delivered
2072 while in the single-step range. Nested signals aren't a
2073 problem as they eventually all return. */
2074 insert_step_resume_breakpoint (get_current_frame (), ecs);
2075 }
488f131b
JB
2076 keep_going (ecs);
2077 return;
2078 }
2079
2080 /* Handle cases caused by hitting a breakpoint. */
2081 {
2082 CORE_ADDR jmp_buf_pc;
2083 struct bpstat_what what;
2084
2085 what = bpstat_what (stop_bpstat);
2086
2087 if (what.call_dummy)
2088 {
2089 stop_stack_dummy = 1;
2090#ifdef HP_OS_BUG
2091 trap_expected_after_continue = 1;
2092#endif
c5aa993b 2093 }
c906108c 2094
488f131b 2095 switch (what.main_action)
c5aa993b 2096 {
488f131b
JB
2097 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2098 /* If we hit the breakpoint at longjmp, disable it for the
2099 duration of this command. Then, install a temporary
2100 breakpoint at the target of the jmp_buf. */
2101 disable_longjmp_breakpoint ();
2102 remove_breakpoints ();
2103 breakpoints_inserted = 0;
2104 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2105 {
488f131b 2106 keep_going (ecs);
104c1213 2107 return;
c5aa993b 2108 }
488f131b
JB
2109
2110 /* Need to blow away step-resume breakpoint, as it
2111 interferes with us */
2112 if (step_resume_breakpoint != NULL)
104c1213 2113 {
488f131b 2114 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2115 }
c906108c 2116
488f131b
JB
2117#if 0
2118 /* FIXME - Need to implement nested temporary breakpoints */
2119 if (step_over_calls > 0)
2120 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2121 else
488f131b 2122#endif /* 0 */
818dd999 2123 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2124 ecs->handling_longjmp = 1; /* FIXME */
2125 keep_going (ecs);
2126 return;
c906108c 2127
488f131b
JB
2128 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2129 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2130 remove_breakpoints ();
2131 breakpoints_inserted = 0;
2132#if 0
2133 /* FIXME - Need to implement nested temporary breakpoints */
2134 if (step_over_calls
aa0cd9c1
AC
2135 && (frame_id_inner (get_frame_id (get_current_frame ()),
2136 step_frame_id)))
c5aa993b 2137 {
488f131b 2138 ecs->another_trap = 1;
d4f3574e
SS
2139 keep_going (ecs);
2140 return;
c5aa993b 2141 }
488f131b
JB
2142#endif /* 0 */
2143 disable_longjmp_breakpoint ();
2144 ecs->handling_longjmp = 0; /* FIXME */
2145 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2146 break;
2147 /* else fallthrough */
2148
2149 case BPSTAT_WHAT_SINGLE:
2150 if (breakpoints_inserted)
c5aa993b 2151 {
488f131b 2152 remove_breakpoints ();
c5aa993b 2153 }
488f131b
JB
2154 breakpoints_inserted = 0;
2155 ecs->another_trap = 1;
2156 /* Still need to check other stuff, at least the case
2157 where we are stepping and step out of the right range. */
2158 break;
c906108c 2159
488f131b
JB
2160 case BPSTAT_WHAT_STOP_NOISY:
2161 stop_print_frame = 1;
c906108c 2162
d303a6c7
AC
2163 /* We are about to nuke the step_resume_breakpointt via the
2164 cleanup chain, so no need to worry about it here. */
c5aa993b 2165
488f131b
JB
2166 stop_stepping (ecs);
2167 return;
c5aa993b 2168
488f131b
JB
2169 case BPSTAT_WHAT_STOP_SILENT:
2170 stop_print_frame = 0;
c5aa993b 2171
d303a6c7
AC
2172 /* We are about to nuke the step_resume_breakpoin via the
2173 cleanup chain, so no need to worry about it here. */
c5aa993b 2174
488f131b 2175 stop_stepping (ecs);
e441088d 2176 return;
c5aa993b 2177
488f131b
JB
2178 case BPSTAT_WHAT_STEP_RESUME:
2179 /* This proably demands a more elegant solution, but, yeah
2180 right...
c5aa993b 2181
488f131b
JB
2182 This function's use of the simple variable
2183 step_resume_breakpoint doesn't seem to accomodate
2184 simultaneously active step-resume bp's, although the
2185 breakpoint list certainly can.
c5aa993b 2186
488f131b
JB
2187 If we reach here and step_resume_breakpoint is already
2188 NULL, then apparently we have multiple active
2189 step-resume bp's. We'll just delete the breakpoint we
2190 stopped at, and carry on.
2191
2192 Correction: what the code currently does is delete a
2193 step-resume bp, but it makes no effort to ensure that
2194 the one deleted is the one currently stopped at. MVS */
c5aa993b 2195
488f131b
JB
2196 if (step_resume_breakpoint == NULL)
2197 {
2198 step_resume_breakpoint =
2199 bpstat_find_step_resume_breakpoint (stop_bpstat);
2200 }
2201 delete_step_resume_breakpoint (&step_resume_breakpoint);
2202 break;
2203
2204 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2205 /* If were waiting for a trap, hitting the step_resume_break
2206 doesn't count as getting it. */
2207 if (trap_expected)
2208 ecs->another_trap = 1;
2209 break;
2210
2211 case BPSTAT_WHAT_CHECK_SHLIBS:
2212 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2213#ifdef SOLIB_ADD
c906108c 2214 {
488f131b
JB
2215 /* Remove breakpoints, we eventually want to step over the
2216 shlib event breakpoint, and SOLIB_ADD might adjust
2217 breakpoint addresses via breakpoint_re_set. */
2218 if (breakpoints_inserted)
2219 remove_breakpoints ();
c5aa993b 2220 breakpoints_inserted = 0;
488f131b
JB
2221
2222 /* Check for any newly added shared libraries if we're
2223 supposed to be adding them automatically. Switch
2224 terminal for any messages produced by
2225 breakpoint_re_set. */
2226 target_terminal_ours_for_output ();
aff6338a
AC
2227 /* NOTE: cagney/2003-11-25: Make certain that the target
2228 stack's section table is kept up-to-date. Architectures,
2229 (e.g., PPC64), use the section table to perform
2230 operations such as address => section name and hence
2231 require the table to contain all sections (including
2232 those found in shared libraries). */
2233 /* NOTE: cagney/2003-11-25: Pass current_target and not
2234 exec_ops to SOLIB_ADD. This is because current GDB is
2235 only tooled to propagate section_table changes out from
2236 the "current_target" (see target_resize_to_sections), and
2237 not up from the exec stratum. This, of course, isn't
2238 right. "infrun.c" should only interact with the
2239 exec/process stratum, instead relying on the target stack
2240 to propagate relevant changes (stop, section table
2241 changed, ...) up to other layers. */
2242 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2243 target_terminal_inferior ();
2244
2245 /* Try to reenable shared library breakpoints, additional
2246 code segments in shared libraries might be mapped in now. */
2247 re_enable_breakpoints_in_shlibs ();
2248
2249 /* If requested, stop when the dynamic linker notifies
2250 gdb of events. This allows the user to get control
2251 and place breakpoints in initializer routines for
2252 dynamically loaded objects (among other things). */
877522db 2253 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2254 {
488f131b 2255 stop_stepping (ecs);
d4f3574e
SS
2256 return;
2257 }
c5aa993b 2258
488f131b
JB
2259 /* If we stopped due to an explicit catchpoint, then the
2260 (see above) call to SOLIB_ADD pulled in any symbols
2261 from a newly-loaded library, if appropriate.
2262
2263 We do want the inferior to stop, but not where it is
2264 now, which is in the dynamic linker callback. Rather,
2265 we would like it stop in the user's program, just after
2266 the call that caused this catchpoint to trigger. That
2267 gives the user a more useful vantage from which to
2268 examine their program's state. */
2269 else if (what.main_action ==
2270 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2271 {
488f131b
JB
2272 /* ??rehrauer: If I could figure out how to get the
2273 right return PC from here, we could just set a temp
2274 breakpoint and resume. I'm not sure we can without
2275 cracking open the dld's shared libraries and sniffing
2276 their unwind tables and text/data ranges, and that's
2277 not a terribly portable notion.
2278
2279 Until that time, we must step the inferior out of the
2280 dld callback, and also out of the dld itself (and any
2281 code or stubs in libdld.sl, such as "shl_load" and
2282 friends) until we reach non-dld code. At that point,
2283 we can stop stepping. */
2284 bpstat_get_triggered_catchpoints (stop_bpstat,
2285 &ecs->
2286 stepping_through_solib_catchpoints);
2287 ecs->stepping_through_solib_after_catch = 1;
2288
2289 /* Be sure to lift all breakpoints, so the inferior does
2290 actually step past this point... */
2291 ecs->another_trap = 1;
2292 break;
c906108c 2293 }
c5aa993b 2294 else
c5aa993b 2295 {
488f131b 2296 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2297 ecs->another_trap = 1;
488f131b 2298 break;
c5aa993b 2299 }
488f131b
JB
2300 }
2301#endif
2302 break;
c906108c 2303
488f131b
JB
2304 case BPSTAT_WHAT_LAST:
2305 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2306
488f131b
JB
2307 case BPSTAT_WHAT_KEEP_CHECKING:
2308 break;
2309 }
2310 }
c906108c 2311
488f131b
JB
2312 /* We come here if we hit a breakpoint but should not
2313 stop for it. Possibly we also were stepping
2314 and should stop for that. So fall through and
2315 test for stepping. But, if not stepping,
2316 do not stop. */
c906108c 2317
488f131b
JB
2318 /* Are we stepping to get the inferior out of the dynamic
2319 linker's hook (and possibly the dld itself) after catching
2320 a shlib event? */
2321 if (ecs->stepping_through_solib_after_catch)
2322 {
2323#if defined(SOLIB_ADD)
2324 /* Have we reached our destination? If not, keep going. */
2325 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2326 {
2327 ecs->another_trap = 1;
2328 keep_going (ecs);
104c1213 2329 return;
488f131b
JB
2330 }
2331#endif
2332 /* Else, stop and report the catchpoint(s) whose triggering
2333 caused us to begin stepping. */
2334 ecs->stepping_through_solib_after_catch = 0;
2335 bpstat_clear (&stop_bpstat);
2336 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2337 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2338 stop_print_frame = 1;
2339 stop_stepping (ecs);
2340 return;
2341 }
c906108c 2342
488f131b
JB
2343 if (step_resume_breakpoint)
2344 {
2345 /* Having a step-resume breakpoint overrides anything
2346 else having to do with stepping commands until
2347 that breakpoint is reached. */
488f131b
JB
2348 keep_going (ecs);
2349 return;
2350 }
c5aa993b 2351
488f131b
JB
2352 if (step_range_end == 0)
2353 {
2354 /* Likewise if we aren't even stepping. */
488f131b
JB
2355 keep_going (ecs);
2356 return;
2357 }
c5aa993b 2358
488f131b 2359 /* If stepping through a line, keep going if still within it.
c906108c 2360
488f131b
JB
2361 Note that step_range_end is the address of the first instruction
2362 beyond the step range, and NOT the address of the last instruction
2363 within it! */
2364 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2365 {
488f131b
JB
2366 keep_going (ecs);
2367 return;
2368 }
c5aa993b 2369
488f131b 2370 /* We stepped out of the stepping range. */
c906108c 2371
488f131b
JB
2372 /* If we are stepping at the source level and entered the runtime
2373 loader dynamic symbol resolution code, we keep on single stepping
2374 until we exit the run time loader code and reach the callee's
2375 address. */
2376 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2377 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2378 {
4c8c40e6
MK
2379 CORE_ADDR pc_after_resolver =
2380 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2381
488f131b
JB
2382 if (pc_after_resolver)
2383 {
2384 /* Set up a step-resume breakpoint at the address
2385 indicated by SKIP_SOLIB_RESOLVER. */
2386 struct symtab_and_line sr_sal;
fe39c653 2387 init_sal (&sr_sal);
488f131b
JB
2388 sr_sal.pc = pc_after_resolver;
2389
2390 check_for_old_step_resume_breakpoint ();
2391 step_resume_breakpoint =
818dd999 2392 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2393 if (breakpoints_inserted)
2394 insert_breakpoints ();
c5aa993b 2395 }
c906108c 2396
488f131b
JB
2397 keep_going (ecs);
2398 return;
2399 }
c906108c 2400
a587af0b
AC
2401 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2402 && ecs->stop_func_name == NULL)
2403 {
2404 /* There is no symbol, not even a minimal symbol, corresponding
2405 to the address where we just stopped. So we just stepped
2406 inside undebuggable code. Since we want to step over this
2407 kind of code, we keep going until the inferior returns from
2408 the current function. */
2409 handle_step_into_function (ecs);
2410 return;
2411 }
2412
488f131b
JB
2413 /* We can't update step_sp every time through the loop, because
2414 reading the stack pointer would slow down stepping too much.
2415 But we can update it every time we leave the step range. */
2416 ecs->update_step_sp = 1;
c906108c 2417
ca4bb888
AC
2418 /* Did we just step into a singal trampoline (either by stepping out
2419 of a handler, or by taking a signal)? */
08e69816
AC
2420 if (get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME
2421 && !frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
488f131b 2422 {
c5aa993b 2423 {
aa0cd9c1 2424 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2425
aa0cd9c1 2426 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2427 {
2428 /* We have just taken a signal; go until we are back to
2429 the point where we took it and one more. */
c906108c 2430
488f131b
JB
2431 /* This code is needed at least in the following case:
2432 The user types "next" and then a signal arrives (before
2433 the "next" is done). */
d4f3574e 2434
488f131b
JB
2435 /* Note that if we are stopped at a breakpoint, then we need
2436 the step_resume breakpoint to override any breakpoints at
2437 the same location, so that we will still step over the
2438 breakpoint even though the signal happened. */
d4f3574e 2439 struct symtab_and_line sr_sal;
d4f3574e 2440
fe39c653 2441 init_sal (&sr_sal);
488f131b
JB
2442 sr_sal.symtab = NULL;
2443 sr_sal.line = 0;
2444 sr_sal.pc = prev_pc;
2445 /* We could probably be setting the frame to
aa0cd9c1 2446 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2447 check_for_old_step_resume_breakpoint ();
2448 step_resume_breakpoint =
818dd999 2449 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2450 if (breakpoints_inserted)
2451 insert_breakpoints ();
2452 }
488f131b
JB
2453 else
2454 {
2455 /* We just stepped out of a signal handler and into
2456 its calling trampoline.
2457
2458 Normally, we'd call step_over_function from
2459 here, but for some reason GDB can't unwind the
2460 stack correctly to find the real PC for the point
2461 user code where the signal trampoline will return
2462 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2463 But signal trampolines are pretty small stubs of
2464 code, anyway, so it's OK instead to just
2465 single-step out. Note: assuming such trampolines
2466 don't exhibit recursion on any platform... */
2467 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2468 &ecs->stop_func_start,
2469 &ecs->stop_func_end);
2470 /* Readjust stepping range */
2471 step_range_start = ecs->stop_func_start;
2472 step_range_end = ecs->stop_func_end;
2473 ecs->stepping_through_sigtramp = 1;
2474 }
d4f3574e 2475 }
c906108c 2476
c906108c 2477
488f131b
JB
2478 /* If this is stepi or nexti, make sure that the stepping range
2479 gets us past that instruction. */
2480 if (step_range_end == 1)
2481 /* FIXME: Does this run afoul of the code below which, if
2482 we step into the middle of a line, resets the stepping
2483 range? */
2484 step_range_end = (step_range_start = prev_pc) + 1;
2485
2486 ecs->remove_breakpoints_on_following_step = 1;
2487 keep_going (ecs);
2488 return;
2489 }
c906108c 2490
a587af0b
AC
2491 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2492 step_frame_id))
488f131b
JB
2493 {
2494 /* It's a subroutine call. */
1af510a8 2495 handle_step_into_function (ecs);
488f131b 2496 return;
488f131b 2497 }
c906108c 2498
488f131b 2499 /* We've wandered out of the step range. */
c906108c 2500
488f131b 2501 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2502
488f131b
JB
2503 if (step_range_end == 1)
2504 {
2505 /* It is stepi or nexti. We always want to stop stepping after
2506 one instruction. */
2507 stop_step = 1;
2508 print_stop_reason (END_STEPPING_RANGE, 0);
2509 stop_stepping (ecs);
2510 return;
2511 }
c906108c 2512
488f131b
JB
2513 /* If we're in the return path from a shared library trampoline,
2514 we want to proceed through the trampoline when stepping. */
2515 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2516 {
488f131b 2517 /* Determine where this trampoline returns. */
5cf4d23a 2518 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2519
488f131b 2520 /* Only proceed through if we know where it's going. */
d764a824 2521 if (real_stop_pc)
488f131b
JB
2522 {
2523 /* And put the step-breakpoint there and go until there. */
2524 struct symtab_and_line sr_sal;
2525
fe39c653 2526 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2527 sr_sal.pc = real_stop_pc;
488f131b
JB
2528 sr_sal.section = find_pc_overlay (sr_sal.pc);
2529 /* Do not specify what the fp should be when we stop
2530 since on some machines the prologue
2531 is where the new fp value is established. */
2532 check_for_old_step_resume_breakpoint ();
2533 step_resume_breakpoint =
818dd999 2534 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2535 if (breakpoints_inserted)
2536 insert_breakpoints ();
c906108c 2537
488f131b
JB
2538 /* Restart without fiddling with the step ranges or
2539 other state. */
2540 keep_going (ecs);
2541 return;
2542 }
2543 }
c906108c 2544
488f131b
JB
2545 if (ecs->sal.line == 0)
2546 {
2547 /* We have no line number information. That means to stop
2548 stepping (does this always happen right after one instruction,
2549 when we do "s" in a function with no line numbers,
2550 or can this happen as a result of a return or longjmp?). */
2551 stop_step = 1;
2552 print_stop_reason (END_STEPPING_RANGE, 0);
2553 stop_stepping (ecs);
2554 return;
2555 }
c906108c 2556
488f131b
JB
2557 if ((stop_pc == ecs->sal.pc)
2558 && (ecs->current_line != ecs->sal.line
2559 || ecs->current_symtab != ecs->sal.symtab))
2560 {
2561 /* We are at the start of a different line. So stop. Note that
2562 we don't stop if we step into the middle of a different line.
2563 That is said to make things like for (;;) statements work
2564 better. */
2565 stop_step = 1;
2566 print_stop_reason (END_STEPPING_RANGE, 0);
2567 stop_stepping (ecs);
2568 return;
2569 }
c906108c 2570
488f131b 2571 /* We aren't done stepping.
c906108c 2572
488f131b
JB
2573 Optimize by setting the stepping range to the line.
2574 (We might not be in the original line, but if we entered a
2575 new line in mid-statement, we continue stepping. This makes
2576 things like for(;;) statements work better.) */
c906108c 2577
488f131b 2578 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2579 {
488f131b
JB
2580 /* If this is the last line of the function, don't keep stepping
2581 (it would probably step us out of the function).
2582 This is particularly necessary for a one-line function,
2583 in which after skipping the prologue we better stop even though
2584 we will be in mid-line. */
2585 stop_step = 1;
2586 print_stop_reason (END_STEPPING_RANGE, 0);
2587 stop_stepping (ecs);
2588 return;
c5aa993b 2589 }
488f131b
JB
2590 step_range_start = ecs->sal.pc;
2591 step_range_end = ecs->sal.end;
aa0cd9c1 2592 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2593 ecs->current_line = ecs->sal.line;
2594 ecs->current_symtab = ecs->sal.symtab;
2595
aa0cd9c1
AC
2596 /* In the case where we just stepped out of a function into the
2597 middle of a line of the caller, continue stepping, but
2598 step_frame_id must be modified to current frame */
65815ea1
AC
2599#if 0
2600 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2601 generous. It will trigger on things like a step into a frameless
2602 stackless leaf function. I think the logic should instead look
2603 at the unwound frame ID has that should give a more robust
2604 indication of what happened. */
2605 if (step-ID == current-ID)
2606 still stepping in same function;
2607 else if (step-ID == unwind (current-ID))
2608 stepped into a function;
2609 else
2610 stepped out of a function;
2611 /* Of course this assumes that the frame ID unwind code is robust
2612 and we're willing to introduce frame unwind logic into this
ce2826aa 2613 function. Fortunately, those days are nearly upon us. */
65815ea1 2614#endif
488f131b 2615 {
aa0cd9c1
AC
2616 struct frame_id current_frame = get_frame_id (get_current_frame ());
2617 if (!(frame_id_inner (current_frame, step_frame_id)))
2618 step_frame_id = current_frame;
488f131b 2619 }
c906108c 2620
488f131b 2621 keep_going (ecs);
104c1213
JM
2622}
2623
2624/* Are we in the middle of stepping? */
2625
2626static int
2627currently_stepping (struct execution_control_state *ecs)
2628{
d303a6c7 2629 return ((!ecs->handling_longjmp
104c1213
JM
2630 && ((step_range_end && step_resume_breakpoint == NULL)
2631 || trap_expected))
2632 || ecs->stepping_through_solib_after_catch
2633 || bpstat_should_step ());
2634}
c906108c 2635
c2c6d25f
JM
2636/* Subroutine call with source code we should not step over. Do step
2637 to the first line of code in it. */
2638
2639static void
2640step_into_function (struct execution_control_state *ecs)
2641{
2642 struct symtab *s;
2643 struct symtab_and_line sr_sal;
2644
2645 s = find_pc_symtab (stop_pc);
2646 if (s && s->language != language_asm)
2647 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2648
2649 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2650 /* Use the step_resume_break to step until the end of the prologue,
2651 even if that involves jumps (as it seems to on the vax under
2652 4.2). */
2653 /* If the prologue ends in the middle of a source line, continue to
2654 the end of that source line (if it is still within the function).
2655 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2656 if (ecs->sal.end
2657 && ecs->sal.pc != ecs->stop_func_start
2658 && ecs->sal.end < ecs->stop_func_end)
2659 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2660
2dbd5e30
KB
2661 /* Architectures which require breakpoint adjustment might not be able
2662 to place a breakpoint at the computed address. If so, the test
2663 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2664 ecs->stop_func_start to an address at which a breakpoint may be
2665 legitimately placed.
2666
2667 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2668 made, GDB will enter an infinite loop when stepping through
2669 optimized code consisting of VLIW instructions which contain
2670 subinstructions corresponding to different source lines. On
2671 FR-V, it's not permitted to place a breakpoint on any but the
2672 first subinstruction of a VLIW instruction. When a breakpoint is
2673 set, GDB will adjust the breakpoint address to the beginning of
2674 the VLIW instruction. Thus, we need to make the corresponding
2675 adjustment here when computing the stop address. */
2676
2677 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2678 {
2679 ecs->stop_func_start
2680 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2681 ecs->stop_func_start);
2682 }
2683
c2c6d25f
JM
2684 if (ecs->stop_func_start == stop_pc)
2685 {
2686 /* We are already there: stop now. */
2687 stop_step = 1;
488f131b 2688 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2689 stop_stepping (ecs);
2690 return;
2691 }
2692 else
2693 {
2694 /* Put the step-breakpoint there and go until there. */
fe39c653 2695 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2696 sr_sal.pc = ecs->stop_func_start;
2697 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2698 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2699 some machines the prologue is where the new fp value is
2700 established. */
c2c6d25f
JM
2701 check_for_old_step_resume_breakpoint ();
2702 step_resume_breakpoint =
818dd999 2703 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2704 if (breakpoints_inserted)
2705 insert_breakpoints ();
2706
2707 /* And make sure stepping stops right away then. */
2708 step_range_end = step_range_start;
2709 }
2710 keep_going (ecs);
2711}
d4f3574e 2712
d303a6c7
AC
2713/* The inferior, as a result of a function call (has left) or signal
2714 (about to leave) the single-step range. Set a momentary breakpoint
2715 within the step range where the inferior is expected to later
2716 return. */
2717
2718static void
2719insert_step_resume_breakpoint (struct frame_info *step_frame,
2720 struct execution_control_state *ecs)
2721{
2722 struct symtab_and_line sr_sal;
2723
2724 /* This is only used within the step-resume range/frame. */
2725 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2726 gdb_assert (step_range_end != 0);
2727 gdb_assert (get_frame_pc (step_frame) >= step_range_start
2728 && get_frame_pc (step_frame) < step_range_end);
2729
2730 init_sal (&sr_sal); /* initialize to zeros */
2731
2732 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2733 sr_sal.section = find_pc_overlay (sr_sal.pc);
2734
2735 check_for_old_step_resume_breakpoint ();
2736
2737 step_resume_breakpoint
2738 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2739 bp_step_resume);
2740
2741 if (breakpoints_inserted)
2742 insert_breakpoints ();
2743}
2744
d4f3574e
SS
2745/* We've just entered a callee, and we wish to resume until it returns
2746 to the caller. Setting a step_resume breakpoint on the return
2747 address will catch a return from the callee.
2748
2749 However, if the callee is recursing, we want to be careful not to
2750 catch returns of those recursive calls, but only of THIS instance
4fdf6121 2751 of the caller.
d4f3574e
SS
2752
2753 To do this, we set the step_resume bp's frame to our current
4fdf6121 2754 caller's frame (obtained by doing a frame ID unwind). */
d4f3574e
SS
2755
2756static void
2757step_over_function (struct execution_control_state *ecs)
2758{
2759 struct symtab_and_line sr_sal;
c107cc1b 2760 struct frame_id sr_id;
d4f3574e 2761
fe39c653 2762 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2763
2764 /* NOTE: cagney/2003-04-06:
2765
2766 At this point the equality get_frame_pc() == get_frame_func()
2767 should hold. This may make it possible for this code to tell the
2768 frame where it's function is, instead of the reverse. This would
2769 avoid the need to search for the frame's function, which can get
2770 very messy when there is no debug info available (look at the
2771 heuristic find pc start code found in targets like the MIPS). */
2772
6913c89a 2773 /* NOTE: cagney/2003-04-06:
4443bd83 2774
6913c89a 2775 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2776
2777 - provide a very light weight equivalent to frame_unwind_pc()
2778 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2779
2780 - avoid handling the case where the PC hasn't been saved in the
2781 prologue analyzer
2782
ce2826aa 2783 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2784 get_frame_id() and that is guarenteed to trigger the prologue
2785 analyzer.
2786
2787 The `correct fix' is for the prologe analyzer to handle the case
2788 where the prologue is incomplete (PC in prologue) and,
2789 consequently, the return pc has not yet been saved. It should be
2790 noted that the prologue analyzer needs to handle this case
2791 anyway: frameless leaf functions that don't save the return PC;
2792 single stepping through a prologue.
2793
2794 The d10v handles all this by bailing out of the prologue analsis
2795 when it reaches the current instruction. */
2796
6913c89a
AC
2797 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2798 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2799 else
2800 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2801 sr_sal.section = find_pc_overlay (sr_sal.pc);
2802
2803 check_for_old_step_resume_breakpoint ();
d4f3574e 2804
08e69816
AC
2805 /* NOTE: cagney/2004-03-31: Code using the current value of
2806 "step_frame_id", instead of unwinding that frame ID, removed. On
2807 s390 GNU/Linux, after taking a signal, the program is directly
2808 resumed at the signal handler and, consequently, the PC would
2809 point at at the first instruction of that signal handler but
2810 STEP_FRAME_ID would [incorrectly] at the interrupted code when it
2811 should point at the signal trampoline. By always and locally
2812 doing a frame ID unwind, it's possible to assert that the code is
2813 always using the correct ID. */
2814 sr_id = frame_unwind_id (get_current_frame ());
c107cc1b
AC
2815
2816 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
d4f3574e
SS
2817
2818 if (breakpoints_inserted)
2819 insert_breakpoints ();
2820}
2821
104c1213
JM
2822static void
2823stop_stepping (struct execution_control_state *ecs)
2824{
cd0fc7c3
SS
2825 /* Let callers know we don't want to wait for the inferior anymore. */
2826 ecs->wait_some_more = 0;
2827}
2828
d4f3574e
SS
2829/* This function handles various cases where we need to continue
2830 waiting for the inferior. */
2831/* (Used to be the keep_going: label in the old wait_for_inferior) */
2832
2833static void
2834keep_going (struct execution_control_state *ecs)
2835{
d4f3574e 2836 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2837 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2838
2839 if (ecs->update_step_sp)
2840 step_sp = read_sp ();
2841 ecs->update_step_sp = 0;
2842
2843 /* If we did not do break;, it means we should keep running the
2844 inferior and not return to debugger. */
2845
2846 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2847 {
2848 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2849 the inferior, else we'd have done a break above) and we
2850 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2851 resume (currently_stepping (ecs), stop_signal);
2852 }
2853 else
2854 {
2855 /* Either the trap was not expected, but we are continuing
488f131b
JB
2856 anyway (the user asked that this signal be passed to the
2857 child)
2858 -- or --
2859 The signal was SIGTRAP, e.g. it was our signal, but we
2860 decided we should resume from it.
d4f3574e 2861
488f131b 2862 We're going to run this baby now!
d4f3574e 2863
488f131b
JB
2864 Insert breakpoints now, unless we are trying to one-proceed
2865 past a breakpoint. */
d4f3574e 2866 /* If we've just finished a special step resume and we don't
488f131b 2867 want to hit a breakpoint, pull em out. */
d4f3574e 2868 if (step_resume_breakpoint == NULL
d4f3574e
SS
2869 && ecs->remove_breakpoints_on_following_step)
2870 {
2871 ecs->remove_breakpoints_on_following_step = 0;
2872 remove_breakpoints ();
2873 breakpoints_inserted = 0;
2874 }
d303a6c7 2875 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2876 {
2877 breakpoints_failed = insert_breakpoints ();
2878 if (breakpoints_failed)
2879 {
2880 stop_stepping (ecs);
2881 return;
2882 }
2883 breakpoints_inserted = 1;
2884 }
2885
2886 trap_expected = ecs->another_trap;
2887
2888 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2889 specifies that such a signal should be delivered to the
2890 target program).
2891
2892 Typically, this would occure when a user is debugging a
2893 target monitor on a simulator: the target monitor sets a
2894 breakpoint; the simulator encounters this break-point and
2895 halts the simulation handing control to GDB; GDB, noteing
2896 that the break-point isn't valid, returns control back to the
2897 simulator; the simulator then delivers the hardware
2898 equivalent of a SIGNAL_TRAP to the program being debugged. */
2899
2900 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2901 stop_signal = TARGET_SIGNAL_0;
2902
d4f3574e
SS
2903
2904 resume (currently_stepping (ecs), stop_signal);
2905 }
2906
488f131b 2907 prepare_to_wait (ecs);
d4f3574e
SS
2908}
2909
104c1213
JM
2910/* This function normally comes after a resume, before
2911 handle_inferior_event exits. It takes care of any last bits of
2912 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2913
104c1213
JM
2914static void
2915prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2916{
104c1213
JM
2917 if (ecs->infwait_state == infwait_normal_state)
2918 {
2919 overlay_cache_invalid = 1;
2920
2921 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2922 target_wait because they can be loaded from the target while
2923 in target_wait. This makes remote debugging a bit more
2924 efficient for those targets that provide critical registers
2925 as part of their normal status mechanism. */
104c1213
JM
2926
2927 registers_changed ();
39f77062 2928 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2929 ecs->wp = &(ecs->ws);
2930 }
2931 /* This is the old end of the while loop. Let everybody know we
2932 want to wait for the inferior some more and get called again
2933 soon. */
2934 ecs->wait_some_more = 1;
c906108c 2935}
11cf8741
JM
2936
2937/* Print why the inferior has stopped. We always print something when
2938 the inferior exits, or receives a signal. The rest of the cases are
2939 dealt with later on in normal_stop() and print_it_typical(). Ideally
2940 there should be a call to this function from handle_inferior_event()
2941 each time stop_stepping() is called.*/
2942static void
2943print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2944{
2945 switch (stop_reason)
2946 {
2947 case STOP_UNKNOWN:
2948 /* We don't deal with these cases from handle_inferior_event()
2949 yet. */
2950 break;
2951 case END_STEPPING_RANGE:
2952 /* We are done with a step/next/si/ni command. */
2953 /* For now print nothing. */
fb40c209 2954 /* Print a message only if not in the middle of doing a "step n"
488f131b 2955 operation for n > 1 */
fb40c209 2956 if (!step_multi || !stop_step)
9dc5e2a9 2957 if (ui_out_is_mi_like_p (uiout))
fb40c209 2958 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2959 break;
2960 case BREAKPOINT_HIT:
2961 /* We found a breakpoint. */
2962 /* For now print nothing. */
2963 break;
2964 case SIGNAL_EXITED:
2965 /* The inferior was terminated by a signal. */
8b93c638 2966 annotate_signalled ();
9dc5e2a9 2967 if (ui_out_is_mi_like_p (uiout))
fb40c209 2968 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2969 ui_out_text (uiout, "\nProgram terminated with signal ");
2970 annotate_signal_name ();
488f131b
JB
2971 ui_out_field_string (uiout, "signal-name",
2972 target_signal_to_name (stop_info));
8b93c638
JM
2973 annotate_signal_name_end ();
2974 ui_out_text (uiout, ", ");
2975 annotate_signal_string ();
488f131b
JB
2976 ui_out_field_string (uiout, "signal-meaning",
2977 target_signal_to_string (stop_info));
8b93c638
JM
2978 annotate_signal_string_end ();
2979 ui_out_text (uiout, ".\n");
2980 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2981 break;
2982 case EXITED:
2983 /* The inferior program is finished. */
8b93c638
JM
2984 annotate_exited (stop_info);
2985 if (stop_info)
2986 {
9dc5e2a9 2987 if (ui_out_is_mi_like_p (uiout))
fb40c209 2988 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2989 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2990 ui_out_field_fmt (uiout, "exit-code", "0%o",
2991 (unsigned int) stop_info);
8b93c638
JM
2992 ui_out_text (uiout, ".\n");
2993 }
2994 else
2995 {
9dc5e2a9 2996 if (ui_out_is_mi_like_p (uiout))
fb40c209 2997 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2998 ui_out_text (uiout, "\nProgram exited normally.\n");
2999 }
11cf8741
JM
3000 break;
3001 case SIGNAL_RECEIVED:
3002 /* Signal received. The signal table tells us to print about
3003 it. */
8b93c638
JM
3004 annotate_signal ();
3005 ui_out_text (uiout, "\nProgram received signal ");
3006 annotate_signal_name ();
84c6c83c
KS
3007 if (ui_out_is_mi_like_p (uiout))
3008 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3009 ui_out_field_string (uiout, "signal-name",
3010 target_signal_to_name (stop_info));
8b93c638
JM
3011 annotate_signal_name_end ();
3012 ui_out_text (uiout, ", ");
3013 annotate_signal_string ();
488f131b
JB
3014 ui_out_field_string (uiout, "signal-meaning",
3015 target_signal_to_string (stop_info));
8b93c638
JM
3016 annotate_signal_string_end ();
3017 ui_out_text (uiout, ".\n");
11cf8741
JM
3018 break;
3019 default:
8e65ff28
AC
3020 internal_error (__FILE__, __LINE__,
3021 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3022 break;
3023 }
3024}
c906108c 3025\f
43ff13b4 3026
c906108c
SS
3027/* Here to return control to GDB when the inferior stops for real.
3028 Print appropriate messages, remove breakpoints, give terminal our modes.
3029
3030 STOP_PRINT_FRAME nonzero means print the executing frame
3031 (pc, function, args, file, line number and line text).
3032 BREAKPOINTS_FAILED nonzero means stop was due to error
3033 attempting to insert breakpoints. */
3034
3035void
96baa820 3036normal_stop (void)
c906108c 3037{
73b65bb0
DJ
3038 struct target_waitstatus last;
3039 ptid_t last_ptid;
3040
3041 get_last_target_status (&last_ptid, &last);
3042
c906108c
SS
3043 /* As with the notification of thread events, we want to delay
3044 notifying the user that we've switched thread context until
3045 the inferior actually stops.
3046
73b65bb0
DJ
3047 There's no point in saying anything if the inferior has exited.
3048 Note that SIGNALLED here means "exited with a signal", not
3049 "received a signal". */
488f131b 3050 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3051 && target_has_execution
3052 && last.kind != TARGET_WAITKIND_SIGNALLED
3053 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3054 {
3055 target_terminal_ours_for_output ();
c3f6f71d 3056 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3057 target_pid_or_tid_to_str (inferior_ptid));
3058 previous_inferior_ptid = inferior_ptid;
c906108c 3059 }
c906108c 3060
4fa8626c 3061 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3062 /* Make sure that the current_frame's pc is correct. This
3063 is a correction for setting up the frame info before doing
3064 DECR_PC_AFTER_BREAK */
b87efeee
AC
3065 if (target_has_execution)
3066 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3067 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3068 frame code to check for this and sort out any resultant mess.
3069 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3070 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3071
c906108c
SS
3072 if (target_has_execution && breakpoints_inserted)
3073 {
3074 if (remove_breakpoints ())
3075 {
3076 target_terminal_ours_for_output ();
3077 printf_filtered ("Cannot remove breakpoints because ");
3078 printf_filtered ("program is no longer writable.\n");
3079 printf_filtered ("It might be running in another process.\n");
3080 printf_filtered ("Further execution is probably impossible.\n");
3081 }
3082 }
3083 breakpoints_inserted = 0;
3084
3085 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3086 Delete any breakpoint that is to be deleted at the next stop. */
3087
3088 breakpoint_auto_delete (stop_bpstat);
3089
3090 /* If an auto-display called a function and that got a signal,
3091 delete that auto-display to avoid an infinite recursion. */
3092
3093 if (stopped_by_random_signal)
3094 disable_current_display ();
3095
3096 /* Don't print a message if in the middle of doing a "step n"
3097 operation for n > 1 */
3098 if (step_multi && stop_step)
3099 goto done;
3100
3101 target_terminal_ours ();
3102
5913bcb0
AC
3103 /* Look up the hook_stop and run it (CLI internally handles problem
3104 of stop_command's pre-hook not existing). */
3105 if (stop_command)
3106 catch_errors (hook_stop_stub, stop_command,
3107 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3108
3109 if (!target_has_stack)
3110 {
3111
3112 goto done;
3113 }
3114
3115 /* Select innermost stack frame - i.e., current frame is frame 0,
3116 and current location is based on that.
3117 Don't do this on return from a stack dummy routine,
3118 or if the program has exited. */
3119
3120 if (!stop_stack_dummy)
3121 {
0f7d239c 3122 select_frame (get_current_frame ());
c906108c
SS
3123
3124 /* Print current location without a level number, if
c5aa993b
JM
3125 we have changed functions or hit a breakpoint.
3126 Print source line if we have one.
3127 bpstat_print() contains the logic deciding in detail
3128 what to print, based on the event(s) that just occurred. */
c906108c 3129
6e7f8b9c 3130 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3131 {
3132 int bpstat_ret;
3133 int source_flag;
917317f4 3134 int do_frame_printing = 1;
c906108c
SS
3135
3136 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3137 switch (bpstat_ret)
3138 {
3139 case PRINT_UNKNOWN:
aa0cd9c1
AC
3140 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3141 (or should) carry around the function and does (or
3142 should) use that when doing a frame comparison. */
917317f4 3143 if (stop_step
aa0cd9c1
AC
3144 && frame_id_eq (step_frame_id,
3145 get_frame_id (get_current_frame ()))
917317f4 3146 && step_start_function == find_pc_function (stop_pc))
488f131b 3147 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3148 else
488f131b 3149 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3150 break;
3151 case PRINT_SRC_AND_LOC:
488f131b 3152 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3153 break;
3154 case PRINT_SRC_ONLY:
c5394b80 3155 source_flag = SRC_LINE;
917317f4
JM
3156 break;
3157 case PRINT_NOTHING:
488f131b 3158 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3159 do_frame_printing = 0;
3160 break;
3161 default:
488f131b 3162 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3163 }
fb40c209 3164 /* For mi, have the same behavior every time we stop:
488f131b 3165 print everything but the source line. */
9dc5e2a9 3166 if (ui_out_is_mi_like_p (uiout))
fb40c209 3167 source_flag = LOC_AND_ADDRESS;
c906108c 3168
9dc5e2a9 3169 if (ui_out_is_mi_like_p (uiout))
39f77062 3170 ui_out_field_int (uiout, "thread-id",
488f131b 3171 pid_to_thread_id (inferior_ptid));
c906108c
SS
3172 /* The behavior of this routine with respect to the source
3173 flag is:
c5394b80
JM
3174 SRC_LINE: Print only source line
3175 LOCATION: Print only location
3176 SRC_AND_LOC: Print location and source line */
917317f4 3177 if (do_frame_printing)
0faf0076 3178 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3179
3180 /* Display the auto-display expressions. */
3181 do_displays ();
3182 }
3183 }
3184
3185 /* Save the function value return registers, if we care.
3186 We might be about to restore their previous contents. */
3187 if (proceed_to_finish)
72cec141
AC
3188 /* NB: The copy goes through to the target picking up the value of
3189 all the registers. */
3190 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3191
3192 if (stop_stack_dummy)
3193 {
dbe9fe58
AC
3194 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3195 ends with a setting of the current frame, so we can use that
3196 next. */
3197 frame_pop (get_current_frame ());
c906108c 3198 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3199 Can't rely on restore_inferior_status because that only gets
3200 called if we don't stop in the called function. */
c906108c 3201 stop_pc = read_pc ();
0f7d239c 3202 select_frame (get_current_frame ());
c906108c
SS
3203 }
3204
c906108c
SS
3205done:
3206 annotate_stopped ();
7a464420 3207 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3208}
3209
3210static int
96baa820 3211hook_stop_stub (void *cmd)
c906108c 3212{
5913bcb0 3213 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3214 return (0);
3215}
3216\f
c5aa993b 3217int
96baa820 3218signal_stop_state (int signo)
c906108c
SS
3219{
3220 return signal_stop[signo];
3221}
3222
c5aa993b 3223int
96baa820 3224signal_print_state (int signo)
c906108c
SS
3225{
3226 return signal_print[signo];
3227}
3228
c5aa993b 3229int
96baa820 3230signal_pass_state (int signo)
c906108c
SS
3231{
3232 return signal_program[signo];
3233}
3234
488f131b 3235int
7bda5e4a 3236signal_stop_update (int signo, int state)
d4f3574e
SS
3237{
3238 int ret = signal_stop[signo];
3239 signal_stop[signo] = state;
3240 return ret;
3241}
3242
488f131b 3243int
7bda5e4a 3244signal_print_update (int signo, int state)
d4f3574e
SS
3245{
3246 int ret = signal_print[signo];
3247 signal_print[signo] = state;
3248 return ret;
3249}
3250
488f131b 3251int
7bda5e4a 3252signal_pass_update (int signo, int state)
d4f3574e
SS
3253{
3254 int ret = signal_program[signo];
3255 signal_program[signo] = state;
3256 return ret;
3257}
3258
c906108c 3259static void
96baa820 3260sig_print_header (void)
c906108c
SS
3261{
3262 printf_filtered ("\
3263Signal Stop\tPrint\tPass to program\tDescription\n");
3264}
3265
3266static void
96baa820 3267sig_print_info (enum target_signal oursig)
c906108c
SS
3268{
3269 char *name = target_signal_to_name (oursig);
3270 int name_padding = 13 - strlen (name);
96baa820 3271
c906108c
SS
3272 if (name_padding <= 0)
3273 name_padding = 0;
3274
3275 printf_filtered ("%s", name);
488f131b 3276 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3277 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3278 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3279 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3280 printf_filtered ("%s\n", target_signal_to_string (oursig));
3281}
3282
3283/* Specify how various signals in the inferior should be handled. */
3284
3285static void
96baa820 3286handle_command (char *args, int from_tty)
c906108c
SS
3287{
3288 char **argv;
3289 int digits, wordlen;
3290 int sigfirst, signum, siglast;
3291 enum target_signal oursig;
3292 int allsigs;
3293 int nsigs;
3294 unsigned char *sigs;
3295 struct cleanup *old_chain;
3296
3297 if (args == NULL)
3298 {
3299 error_no_arg ("signal to handle");
3300 }
3301
3302 /* Allocate and zero an array of flags for which signals to handle. */
3303
3304 nsigs = (int) TARGET_SIGNAL_LAST;
3305 sigs = (unsigned char *) alloca (nsigs);
3306 memset (sigs, 0, nsigs);
3307
3308 /* Break the command line up into args. */
3309
3310 argv = buildargv (args);
3311 if (argv == NULL)
3312 {
3313 nomem (0);
3314 }
7a292a7a 3315 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3316
3317 /* Walk through the args, looking for signal oursigs, signal names, and
3318 actions. Signal numbers and signal names may be interspersed with
3319 actions, with the actions being performed for all signals cumulatively
3320 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3321
3322 while (*argv != NULL)
3323 {
3324 wordlen = strlen (*argv);
3325 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3326 {;
3327 }
3328 allsigs = 0;
3329 sigfirst = siglast = -1;
3330
3331 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3332 {
3333 /* Apply action to all signals except those used by the
3334 debugger. Silently skip those. */
3335 allsigs = 1;
3336 sigfirst = 0;
3337 siglast = nsigs - 1;
3338 }
3339 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3340 {
3341 SET_SIGS (nsigs, sigs, signal_stop);
3342 SET_SIGS (nsigs, sigs, signal_print);
3343 }
3344 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3345 {
3346 UNSET_SIGS (nsigs, sigs, signal_program);
3347 }
3348 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3349 {
3350 SET_SIGS (nsigs, sigs, signal_print);
3351 }
3352 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3353 {
3354 SET_SIGS (nsigs, sigs, signal_program);
3355 }
3356 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3357 {
3358 UNSET_SIGS (nsigs, sigs, signal_stop);
3359 }
3360 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3361 {
3362 SET_SIGS (nsigs, sigs, signal_program);
3363 }
3364 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3365 {
3366 UNSET_SIGS (nsigs, sigs, signal_print);
3367 UNSET_SIGS (nsigs, sigs, signal_stop);
3368 }
3369 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3370 {
3371 UNSET_SIGS (nsigs, sigs, signal_program);
3372 }
3373 else if (digits > 0)
3374 {
3375 /* It is numeric. The numeric signal refers to our own
3376 internal signal numbering from target.h, not to host/target
3377 signal number. This is a feature; users really should be
3378 using symbolic names anyway, and the common ones like
3379 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3380
3381 sigfirst = siglast = (int)
3382 target_signal_from_command (atoi (*argv));
3383 if ((*argv)[digits] == '-')
3384 {
3385 siglast = (int)
3386 target_signal_from_command (atoi ((*argv) + digits + 1));
3387 }
3388 if (sigfirst > siglast)
3389 {
3390 /* Bet he didn't figure we'd think of this case... */
3391 signum = sigfirst;
3392 sigfirst = siglast;
3393 siglast = signum;
3394 }
3395 }
3396 else
3397 {
3398 oursig = target_signal_from_name (*argv);
3399 if (oursig != TARGET_SIGNAL_UNKNOWN)
3400 {
3401 sigfirst = siglast = (int) oursig;
3402 }
3403 else
3404 {
3405 /* Not a number and not a recognized flag word => complain. */
3406 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3407 }
3408 }
3409
3410 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3411 which signals to apply actions to. */
c906108c
SS
3412
3413 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3414 {
3415 switch ((enum target_signal) signum)
3416 {
3417 case TARGET_SIGNAL_TRAP:
3418 case TARGET_SIGNAL_INT:
3419 if (!allsigs && !sigs[signum])
3420 {
3421 if (query ("%s is used by the debugger.\n\
488f131b 3422Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3423 {
3424 sigs[signum] = 1;
3425 }
3426 else
3427 {
3428 printf_unfiltered ("Not confirmed, unchanged.\n");
3429 gdb_flush (gdb_stdout);
3430 }
3431 }
3432 break;
3433 case TARGET_SIGNAL_0:
3434 case TARGET_SIGNAL_DEFAULT:
3435 case TARGET_SIGNAL_UNKNOWN:
3436 /* Make sure that "all" doesn't print these. */
3437 break;
3438 default:
3439 sigs[signum] = 1;
3440 break;
3441 }
3442 }
3443
3444 argv++;
3445 }
3446
39f77062 3447 target_notice_signals (inferior_ptid);
c906108c
SS
3448
3449 if (from_tty)
3450 {
3451 /* Show the results. */
3452 sig_print_header ();
3453 for (signum = 0; signum < nsigs; signum++)
3454 {
3455 if (sigs[signum])
3456 {
3457 sig_print_info (signum);
3458 }
3459 }
3460 }
3461
3462 do_cleanups (old_chain);
3463}
3464
3465static void
96baa820 3466xdb_handle_command (char *args, int from_tty)
c906108c
SS
3467{
3468 char **argv;
3469 struct cleanup *old_chain;
3470
3471 /* Break the command line up into args. */
3472
3473 argv = buildargv (args);
3474 if (argv == NULL)
3475 {
3476 nomem (0);
3477 }
7a292a7a 3478 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3479 if (argv[1] != (char *) NULL)
3480 {
3481 char *argBuf;
3482 int bufLen;
3483
3484 bufLen = strlen (argv[0]) + 20;
3485 argBuf = (char *) xmalloc (bufLen);
3486 if (argBuf)
3487 {
3488 int validFlag = 1;
3489 enum target_signal oursig;
3490
3491 oursig = target_signal_from_name (argv[0]);
3492 memset (argBuf, 0, bufLen);
3493 if (strcmp (argv[1], "Q") == 0)
3494 sprintf (argBuf, "%s %s", argv[0], "noprint");
3495 else
3496 {
3497 if (strcmp (argv[1], "s") == 0)
3498 {
3499 if (!signal_stop[oursig])
3500 sprintf (argBuf, "%s %s", argv[0], "stop");
3501 else
3502 sprintf (argBuf, "%s %s", argv[0], "nostop");
3503 }
3504 else if (strcmp (argv[1], "i") == 0)
3505 {
3506 if (!signal_program[oursig])
3507 sprintf (argBuf, "%s %s", argv[0], "pass");
3508 else
3509 sprintf (argBuf, "%s %s", argv[0], "nopass");
3510 }
3511 else if (strcmp (argv[1], "r") == 0)
3512 {
3513 if (!signal_print[oursig])
3514 sprintf (argBuf, "%s %s", argv[0], "print");
3515 else
3516 sprintf (argBuf, "%s %s", argv[0], "noprint");
3517 }
3518 else
3519 validFlag = 0;
3520 }
3521 if (validFlag)
3522 handle_command (argBuf, from_tty);
3523 else
3524 printf_filtered ("Invalid signal handling flag.\n");
3525 if (argBuf)
b8c9b27d 3526 xfree (argBuf);
c906108c
SS
3527 }
3528 }
3529 do_cleanups (old_chain);
3530}
3531
3532/* Print current contents of the tables set by the handle command.
3533 It is possible we should just be printing signals actually used
3534 by the current target (but for things to work right when switching
3535 targets, all signals should be in the signal tables). */
3536
3537static void
96baa820 3538signals_info (char *signum_exp, int from_tty)
c906108c
SS
3539{
3540 enum target_signal oursig;
3541 sig_print_header ();
3542
3543 if (signum_exp)
3544 {
3545 /* First see if this is a symbol name. */
3546 oursig = target_signal_from_name (signum_exp);
3547 if (oursig == TARGET_SIGNAL_UNKNOWN)
3548 {
3549 /* No, try numeric. */
3550 oursig =
bb518678 3551 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3552 }
3553 sig_print_info (oursig);
3554 return;
3555 }
3556
3557 printf_filtered ("\n");
3558 /* These ugly casts brought to you by the native VAX compiler. */
3559 for (oursig = TARGET_SIGNAL_FIRST;
3560 (int) oursig < (int) TARGET_SIGNAL_LAST;
3561 oursig = (enum target_signal) ((int) oursig + 1))
3562 {
3563 QUIT;
3564
3565 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3566 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3567 sig_print_info (oursig);
3568 }
3569
3570 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3571}
3572\f
7a292a7a
SS
3573struct inferior_status
3574{
3575 enum target_signal stop_signal;
3576 CORE_ADDR stop_pc;
3577 bpstat stop_bpstat;
3578 int stop_step;
3579 int stop_stack_dummy;
3580 int stopped_by_random_signal;
3581 int trap_expected;
3582 CORE_ADDR step_range_start;
3583 CORE_ADDR step_range_end;
aa0cd9c1 3584 struct frame_id step_frame_id;
5fbbeb29 3585 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3586 CORE_ADDR step_resume_break_address;
3587 int stop_after_trap;
c0236d92 3588 int stop_soon;
72cec141 3589 struct regcache *stop_registers;
7a292a7a
SS
3590
3591 /* These are here because if call_function_by_hand has written some
3592 registers and then decides to call error(), we better not have changed
3593 any registers. */
72cec141 3594 struct regcache *registers;
7a292a7a 3595
101dcfbe
AC
3596 /* A frame unique identifier. */
3597 struct frame_id selected_frame_id;
3598
7a292a7a
SS
3599 int breakpoint_proceeded;
3600 int restore_stack_info;
3601 int proceed_to_finish;
3602};
3603
7a292a7a 3604void
96baa820
JM
3605write_inferior_status_register (struct inferior_status *inf_status, int regno,
3606 LONGEST val)
7a292a7a 3607{
12c266ea 3608 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3609 void *buf = alloca (size);
3610 store_signed_integer (buf, size, val);
0818c12a 3611 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3612}
3613
c906108c
SS
3614/* Save all of the information associated with the inferior<==>gdb
3615 connection. INF_STATUS is a pointer to a "struct inferior_status"
3616 (defined in inferior.h). */
3617
7a292a7a 3618struct inferior_status *
96baa820 3619save_inferior_status (int restore_stack_info)
c906108c 3620{
72cec141 3621 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3622
c906108c
SS
3623 inf_status->stop_signal = stop_signal;
3624 inf_status->stop_pc = stop_pc;
3625 inf_status->stop_step = stop_step;
3626 inf_status->stop_stack_dummy = stop_stack_dummy;
3627 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3628 inf_status->trap_expected = trap_expected;
3629 inf_status->step_range_start = step_range_start;
3630 inf_status->step_range_end = step_range_end;
aa0cd9c1 3631 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3632 inf_status->step_over_calls = step_over_calls;
3633 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3634 inf_status->stop_soon = stop_soon;
c906108c
SS
3635 /* Save original bpstat chain here; replace it with copy of chain.
3636 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3637 hand them back the original chain when restore_inferior_status is
3638 called. */
c906108c
SS
3639 inf_status->stop_bpstat = stop_bpstat;
3640 stop_bpstat = bpstat_copy (stop_bpstat);
3641 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3642 inf_status->restore_stack_info = restore_stack_info;
3643 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3644
72cec141 3645 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3646
72cec141 3647 inf_status->registers = regcache_dup (current_regcache);
c906108c 3648
7a424e99 3649 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3650 return inf_status;
c906108c
SS
3651}
3652
c906108c 3653static int
96baa820 3654restore_selected_frame (void *args)
c906108c 3655{
488f131b 3656 struct frame_id *fid = (struct frame_id *) args;
c906108c 3657 struct frame_info *frame;
c906108c 3658
101dcfbe 3659 frame = frame_find_by_id (*fid);
c906108c 3660
aa0cd9c1
AC
3661 /* If inf_status->selected_frame_id is NULL, there was no previously
3662 selected frame. */
101dcfbe 3663 if (frame == NULL)
c906108c
SS
3664 {
3665 warning ("Unable to restore previously selected frame.\n");
3666 return 0;
3667 }
3668
0f7d239c 3669 select_frame (frame);
c906108c
SS
3670
3671 return (1);
3672}
3673
3674void
96baa820 3675restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3676{
3677 stop_signal = inf_status->stop_signal;
3678 stop_pc = inf_status->stop_pc;
3679 stop_step = inf_status->stop_step;
3680 stop_stack_dummy = inf_status->stop_stack_dummy;
3681 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3682 trap_expected = inf_status->trap_expected;
3683 step_range_start = inf_status->step_range_start;
3684 step_range_end = inf_status->step_range_end;
aa0cd9c1 3685 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3686 step_over_calls = inf_status->step_over_calls;
3687 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3688 stop_soon = inf_status->stop_soon;
c906108c
SS
3689 bpstat_clear (&stop_bpstat);
3690 stop_bpstat = inf_status->stop_bpstat;
3691 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3692 proceed_to_finish = inf_status->proceed_to_finish;
3693
72cec141
AC
3694 /* FIXME: Is the restore of stop_registers always needed. */
3695 regcache_xfree (stop_registers);
3696 stop_registers = inf_status->stop_registers;
c906108c
SS
3697
3698 /* The inferior can be gone if the user types "print exit(0)"
3699 (and perhaps other times). */
3700 if (target_has_execution)
72cec141
AC
3701 /* NB: The register write goes through to the target. */
3702 regcache_cpy (current_regcache, inf_status->registers);
3703 regcache_xfree (inf_status->registers);
c906108c 3704
c906108c
SS
3705 /* FIXME: If we are being called after stopping in a function which
3706 is called from gdb, we should not be trying to restore the
3707 selected frame; it just prints a spurious error message (The
3708 message is useful, however, in detecting bugs in gdb (like if gdb
3709 clobbers the stack)). In fact, should we be restoring the
3710 inferior status at all in that case? . */
3711
3712 if (target_has_stack && inf_status->restore_stack_info)
3713 {
c906108c 3714 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3715 walking the stack might encounter a garbage pointer and
3716 error() trying to dereference it. */
488f131b
JB
3717 if (catch_errors
3718 (restore_selected_frame, &inf_status->selected_frame_id,
3719 "Unable to restore previously selected frame:\n",
3720 RETURN_MASK_ERROR) == 0)
c906108c
SS
3721 /* Error in restoring the selected frame. Select the innermost
3722 frame. */
0f7d239c 3723 select_frame (get_current_frame ());
c906108c
SS
3724
3725 }
c906108c 3726
72cec141 3727 xfree (inf_status);
7a292a7a 3728}
c906108c 3729
74b7792f
AC
3730static void
3731do_restore_inferior_status_cleanup (void *sts)
3732{
3733 restore_inferior_status (sts);
3734}
3735
3736struct cleanup *
3737make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3738{
3739 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3740}
3741
c906108c 3742void
96baa820 3743discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3744{
3745 /* See save_inferior_status for info on stop_bpstat. */
3746 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3747 regcache_xfree (inf_status->registers);
3748 regcache_xfree (inf_status->stop_registers);
3749 xfree (inf_status);
7a292a7a
SS
3750}
3751
47932f85
DJ
3752int
3753inferior_has_forked (int pid, int *child_pid)
3754{
3755 struct target_waitstatus last;
3756 ptid_t last_ptid;
3757
3758 get_last_target_status (&last_ptid, &last);
3759
3760 if (last.kind != TARGET_WAITKIND_FORKED)
3761 return 0;
3762
3763 if (ptid_get_pid (last_ptid) != pid)
3764 return 0;
3765
3766 *child_pid = last.value.related_pid;
3767 return 1;
3768}
3769
3770int
3771inferior_has_vforked (int pid, int *child_pid)
3772{
3773 struct target_waitstatus last;
3774 ptid_t last_ptid;
3775
3776 get_last_target_status (&last_ptid, &last);
3777
3778 if (last.kind != TARGET_WAITKIND_VFORKED)
3779 return 0;
3780
3781 if (ptid_get_pid (last_ptid) != pid)
3782 return 0;
3783
3784 *child_pid = last.value.related_pid;
3785 return 1;
3786}
3787
3788int
3789inferior_has_execd (int pid, char **execd_pathname)
3790{
3791 struct target_waitstatus last;
3792 ptid_t last_ptid;
3793
3794 get_last_target_status (&last_ptid, &last);
3795
3796 if (last.kind != TARGET_WAITKIND_EXECD)
3797 return 0;
3798
3799 if (ptid_get_pid (last_ptid) != pid)
3800 return 0;
3801
3802 *execd_pathname = xstrdup (last.value.execd_pathname);
3803 return 1;
3804}
3805
ca6724c1
KB
3806/* Oft used ptids */
3807ptid_t null_ptid;
3808ptid_t minus_one_ptid;
3809
3810/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3811
ca6724c1
KB
3812ptid_t
3813ptid_build (int pid, long lwp, long tid)
3814{
3815 ptid_t ptid;
3816
3817 ptid.pid = pid;
3818 ptid.lwp = lwp;
3819 ptid.tid = tid;
3820 return ptid;
3821}
3822
3823/* Create a ptid from just a pid. */
3824
3825ptid_t
3826pid_to_ptid (int pid)
3827{
3828 return ptid_build (pid, 0, 0);
3829}
3830
3831/* Fetch the pid (process id) component from a ptid. */
3832
3833int
3834ptid_get_pid (ptid_t ptid)
3835{
3836 return ptid.pid;
3837}
3838
3839/* Fetch the lwp (lightweight process) component from a ptid. */
3840
3841long
3842ptid_get_lwp (ptid_t ptid)
3843{
3844 return ptid.lwp;
3845}
3846
3847/* Fetch the tid (thread id) component from a ptid. */
3848
3849long
3850ptid_get_tid (ptid_t ptid)
3851{
3852 return ptid.tid;
3853}
3854
3855/* ptid_equal() is used to test equality of two ptids. */
3856
3857int
3858ptid_equal (ptid_t ptid1, ptid_t ptid2)
3859{
3860 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3861 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3862}
3863
3864/* restore_inferior_ptid() will be used by the cleanup machinery
3865 to restore the inferior_ptid value saved in a call to
3866 save_inferior_ptid(). */
ce696e05
KB
3867
3868static void
3869restore_inferior_ptid (void *arg)
3870{
3871 ptid_t *saved_ptid_ptr = arg;
3872 inferior_ptid = *saved_ptid_ptr;
3873 xfree (arg);
3874}
3875
3876/* Save the value of inferior_ptid so that it may be restored by a
3877 later call to do_cleanups(). Returns the struct cleanup pointer
3878 needed for later doing the cleanup. */
3879
3880struct cleanup *
3881save_inferior_ptid (void)
3882{
3883 ptid_t *saved_ptid_ptr;
3884
3885 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3886 *saved_ptid_ptr = inferior_ptid;
3887 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3888}
c5aa993b 3889\f
488f131b 3890
7a292a7a 3891static void
96baa820 3892build_infrun (void)
7a292a7a 3893{
72cec141 3894 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3895}
c906108c 3896
c906108c 3897void
96baa820 3898_initialize_infrun (void)
c906108c 3899{
52f0bd74
AC
3900 int i;
3901 int numsigs;
c906108c
SS
3902 struct cmd_list_element *c;
3903
046a4708
AC
3904 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3905 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3906
c906108c
SS
3907 add_info ("signals", signals_info,
3908 "What debugger does when program gets various signals.\n\
3909Specify a signal as argument to print info on that signal only.");
3910 add_info_alias ("handle", "signals", 0);
3911
3912 add_com ("handle", class_run, handle_command,
3913 concat ("Specify how to handle a signal.\n\
3914Args are signals and actions to apply to those signals.\n\
3915Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3916from 1-15 are allowed for compatibility with old versions of GDB.\n\
3917Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3918The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3919used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3920\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3921Stop means reenter debugger if this signal happens (implies print).\n\
3922Print means print a message if this signal happens.\n\
3923Pass means let program see this signal; otherwise program doesn't know.\n\
3924Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3925Pass and Stop may be combined.", NULL));
3926 if (xdb_commands)
3927 {
3928 add_com ("lz", class_info, signals_info,
3929 "What debugger does when program gets various signals.\n\
3930Specify a signal as argument to print info on that signal only.");
3931 add_com ("z", class_run, xdb_handle_command,
3932 concat ("Specify how to handle a signal.\n\
3933Args are signals and actions to apply to those signals.\n\
3934Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3935from 1-15 are allowed for compatibility with old versions of GDB.\n\
3936Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3937The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3938used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3939\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3940nopass), \"Q\" (noprint)\n\
3941Stop means reenter debugger if this signal happens (implies print).\n\
3942Print means print a message if this signal happens.\n\
3943Pass means let program see this signal; otherwise program doesn't know.\n\
3944Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3945Pass and Stop may be combined.", NULL));
3946 }
3947
3948 if (!dbx_commands)
488f131b
JB
3949 stop_command =
3950 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3951This allows you to set a list of commands to be run each time execution\n\
3952of the program stops.", &cmdlist);
3953
3954 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3955 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3956 signal_print = (unsigned char *)
3957 xmalloc (sizeof (signal_print[0]) * numsigs);
3958 signal_program = (unsigned char *)
3959 xmalloc (sizeof (signal_program[0]) * numsigs);
3960 for (i = 0; i < numsigs; i++)
3961 {
3962 signal_stop[i] = 1;
3963 signal_print[i] = 1;
3964 signal_program[i] = 1;
3965 }
3966
3967 /* Signals caused by debugger's own actions
3968 should not be given to the program afterwards. */
3969 signal_program[TARGET_SIGNAL_TRAP] = 0;
3970 signal_program[TARGET_SIGNAL_INT] = 0;
3971
3972 /* Signals that are not errors should not normally enter the debugger. */
3973 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3974 signal_print[TARGET_SIGNAL_ALRM] = 0;
3975 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3976 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3977 signal_stop[TARGET_SIGNAL_PROF] = 0;
3978 signal_print[TARGET_SIGNAL_PROF] = 0;
3979 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3980 signal_print[TARGET_SIGNAL_CHLD] = 0;
3981 signal_stop[TARGET_SIGNAL_IO] = 0;
3982 signal_print[TARGET_SIGNAL_IO] = 0;
3983 signal_stop[TARGET_SIGNAL_POLL] = 0;
3984 signal_print[TARGET_SIGNAL_POLL] = 0;
3985 signal_stop[TARGET_SIGNAL_URG] = 0;
3986 signal_print[TARGET_SIGNAL_URG] = 0;
3987 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3988 signal_print[TARGET_SIGNAL_WINCH] = 0;
3989
cd0fc7c3
SS
3990 /* These signals are used internally by user-level thread
3991 implementations. (See signal(5) on Solaris.) Like the above
3992 signals, a healthy program receives and handles them as part of
3993 its normal operation. */
3994 signal_stop[TARGET_SIGNAL_LWP] = 0;
3995 signal_print[TARGET_SIGNAL_LWP] = 0;
3996 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3997 signal_print[TARGET_SIGNAL_WAITING] = 0;
3998 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3999 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4000
c906108c
SS
4001#ifdef SOLIB_ADD
4002 add_show_from_set
4003 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4004 (char *) &stop_on_solib_events,
4005 "Set stopping for shared library events.\n\
4006If nonzero, gdb will give control to the user when the dynamic linker\n\
4007notifies gdb of shared library events. The most common event of interest\n\
488f131b 4008to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4009#endif
4010
4011 c = add_set_enum_cmd ("follow-fork-mode",
4012 class_run,
488f131b 4013 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4014 "Set debugger response to a program call of fork \
4015or vfork.\n\
4016A fork or vfork creates a new process. follow-fork-mode can be:\n\
4017 parent - the original process is debugged after a fork\n\
4018 child - the new process is debugged after a fork\n\
ea1dd7bc 4019The unfollowed process will continue to run.\n\
488f131b 4020By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4021 add_show_from_set (c, &showlist);
4022
488f131b 4023 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4024 &scheduler_mode, /* current mode */
c906108c
SS
4025 "Set mode for locking scheduler during execution.\n\
4026off == no locking (threads may preempt at any time)\n\
4027on == full locking (no thread except the current thread may run)\n\
4028step == scheduler locked during every single-step operation.\n\
4029 In this mode, no other thread may run during a step command.\n\
488f131b 4030 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4031
9f60d481 4032 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4033 add_show_from_set (c, &showlist);
5fbbeb29
CF
4034
4035 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4036 var_boolean, (char *) &step_stop_if_no_debug,
4037 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4038function without debug line information will stop at the first\n\
4039instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4040the step command stops at a different source line.", &setlist);
5fbbeb29 4041 add_show_from_set (c, &showlist);
ca6724c1
KB
4042
4043 /* ptid initializations */
4044 null_ptid = ptid_build (0, 0, 0);
4045 minus_one_ptid = ptid_build (-1, 0, 0);
4046 inferior_ptid = null_ptid;
4047 target_last_wait_ptid = minus_one_ptid;
c906108c 4048}