]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Make thread_still_needs_step_over consider stepping_over_watchpoint too
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
c906108c
SS
64
65/* Prototypes for local functions */
66
96baa820 67static void signals_info (char *, int);
c906108c 68
96baa820 69static void handle_command (char *, int);
c906108c 70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
74b7792f 75static void resume_cleanups (void *);
c906108c 76
96baa820 77static int hook_stop_stub (void *);
c906108c 78
96baa820
JM
79static int restore_selected_frame (void *);
80
4ef3f3be 81static int follow_fork (void);
96baa820 82
d83ad864
DB
83static int follow_fork_inferior (int follow_child, int detach_fork);
84
85static void follow_inferior_reset_breakpoints (void);
86
96baa820 87static void set_schedlock_func (char *args, int from_tty,
488f131b 88 struct cmd_list_element *c);
96baa820 89
a289b8f6
JK
90static int currently_stepping (struct thread_info *tp);
91
96baa820 92void _initialize_infrun (void);
43ff13b4 93
e58b0e63
PA
94void nullify_last_target_wait_ptid (void);
95
2c03e5be 96static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
97
98static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
2484c66b
UW
100static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
8550d3b3
YQ
102static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
5fbbeb29
CF
104/* When set, stop the 'step' command if we enter a function which has
105 no line number information. The normal behavior is that we step
106 over such function. */
107int step_stop_if_no_debug = 0;
920d2a44
AC
108static void
109show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
113}
5fbbeb29 114
1777feb0 115/* In asynchronous mode, but simulating synchronous execution. */
96baa820 116
43ff13b4
JM
117int sync_execution = 0;
118
b9f437de
PA
119/* proceed and normal_stop use this to notify the user when the
120 inferior stopped in a different thread than it had been running
121 in. */
96baa820 122
39f77062 123static ptid_t previous_inferior_ptid;
7a292a7a 124
07107ca6
LM
125/* If set (default for legacy reasons), when following a fork, GDB
126 will detach from one of the fork branches, child or parent.
127 Exactly which branch is detached depends on 'set follow-fork-mode'
128 setting. */
129
130static int detach_fork = 1;
6c95b8df 131
237fc4c9
PA
132int debug_displaced = 0;
133static void
134show_debug_displaced (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c, const char *value)
136{
137 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
138}
139
ccce17b0 140unsigned int debug_infrun = 0;
920d2a44
AC
141static void
142show_debug_infrun (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144{
145 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
146}
527159b7 147
03583c20
UW
148
149/* Support for disabling address space randomization. */
150
151int disable_randomization = 1;
152
153static void
154show_disable_randomization (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 if (target_supports_disable_randomization ())
158 fprintf_filtered (file,
159 _("Disabling randomization of debuggee's "
160 "virtual address space is %s.\n"),
161 value);
162 else
163 fputs_filtered (_("Disabling randomization of debuggee's "
164 "virtual address space is unsupported on\n"
165 "this platform.\n"), file);
166}
167
168static void
169set_disable_randomization (char *args, int from_tty,
170 struct cmd_list_element *c)
171{
172 if (!target_supports_disable_randomization ())
173 error (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform."));
176}
177
d32dc48e
PA
178/* User interface for non-stop mode. */
179
180int non_stop = 0;
181static int non_stop_1 = 0;
182
183static void
184set_non_stop (char *args, int from_tty,
185 struct cmd_list_element *c)
186{
187 if (target_has_execution)
188 {
189 non_stop_1 = non_stop;
190 error (_("Cannot change this setting while the inferior is running."));
191 }
192
193 non_stop = non_stop_1;
194}
195
196static void
197show_non_stop (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199{
200 fprintf_filtered (file,
201 _("Controlling the inferior in non-stop mode is %s.\n"),
202 value);
203}
204
d914c394
SS
205/* "Observer mode" is somewhat like a more extreme version of
206 non-stop, in which all GDB operations that might affect the
207 target's execution have been disabled. */
208
d914c394
SS
209int observer_mode = 0;
210static int observer_mode_1 = 0;
211
212static void
213set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215{
d914c394
SS
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
d914c394
SS
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246}
247
248static void
249show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253}
254
255/* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261void
262update_observer_mode (void)
263{
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278}
c2c6d25f 279
c906108c
SS
280/* Tables of how to react to signals; the user sets them. */
281
282static unsigned char *signal_stop;
283static unsigned char *signal_print;
284static unsigned char *signal_program;
285
ab04a2af
TT
286/* Table of signals that are registered with "catch signal". A
287 non-zero entry indicates that the signal is caught by some "catch
288 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
289 signals. */
290static unsigned char *signal_catch;
291
2455069d
UW
292/* Table of signals that the target may silently handle.
293 This is automatically determined from the flags above,
294 and simply cached here. */
295static unsigned char *signal_pass;
296
c906108c
SS
297#define SET_SIGS(nsigs,sigs,flags) \
298 do { \
299 int signum = (nsigs); \
300 while (signum-- > 0) \
301 if ((sigs)[signum]) \
302 (flags)[signum] = 1; \
303 } while (0)
304
305#define UNSET_SIGS(nsigs,sigs,flags) \
306 do { \
307 int signum = (nsigs); \
308 while (signum-- > 0) \
309 if ((sigs)[signum]) \
310 (flags)[signum] = 0; \
311 } while (0)
312
9b224c5e
PA
313/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
314 this function is to avoid exporting `signal_program'. */
315
316void
317update_signals_program_target (void)
318{
a493e3e2 319 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
320}
321
1777feb0 322/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 323
edb3359d 324#define RESUME_ALL minus_one_ptid
c906108c
SS
325
326/* Command list pointer for the "stop" placeholder. */
327
328static struct cmd_list_element *stop_command;
329
c906108c
SS
330/* Nonzero if we want to give control to the user when we're notified
331 of shared library events by the dynamic linker. */
628fe4e4 332int stop_on_solib_events;
f9e14852
GB
333
334/* Enable or disable optional shared library event breakpoints
335 as appropriate when the above flag is changed. */
336
337static void
338set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
339{
340 update_solib_breakpoints ();
341}
342
920d2a44
AC
343static void
344show_stop_on_solib_events (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346{
347 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
348 value);
349}
c906108c 350
c906108c
SS
351/* Nonzero means expecting a trace trap
352 and should stop the inferior and return silently when it happens. */
353
354int stop_after_trap;
355
c906108c
SS
356/* Nonzero after stop if current stack frame should be printed. */
357
358static int stop_print_frame;
359
e02bc4cc 360/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
361 returned by target_wait()/deprecated_target_wait_hook(). This
362 information is returned by get_last_target_status(). */
39f77062 363static ptid_t target_last_wait_ptid;
e02bc4cc
DS
364static struct target_waitstatus target_last_waitstatus;
365
0d1e5fa7
PA
366static void context_switch (ptid_t ptid);
367
4e1c45ea 368void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 369
53904c9e
AC
370static const char follow_fork_mode_child[] = "child";
371static const char follow_fork_mode_parent[] = "parent";
372
40478521 373static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
374 follow_fork_mode_child,
375 follow_fork_mode_parent,
376 NULL
ef346e04 377};
c906108c 378
53904c9e 379static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
380static void
381show_follow_fork_mode_string (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383{
3e43a32a
MS
384 fprintf_filtered (file,
385 _("Debugger response to a program "
386 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
387 value);
388}
c906108c
SS
389\f
390
d83ad864
DB
391/* Handle changes to the inferior list based on the type of fork,
392 which process is being followed, and whether the other process
393 should be detached. On entry inferior_ptid must be the ptid of
394 the fork parent. At return inferior_ptid is the ptid of the
395 followed inferior. */
396
397static int
398follow_fork_inferior (int follow_child, int detach_fork)
399{
400 int has_vforked;
79639e11 401 ptid_t parent_ptid, child_ptid;
d83ad864
DB
402
403 has_vforked = (inferior_thread ()->pending_follow.kind
404 == TARGET_WAITKIND_VFORKED);
79639e11
PA
405 parent_ptid = inferior_ptid;
406 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
407
408 if (has_vforked
409 && !non_stop /* Non-stop always resumes both branches. */
410 && (!target_is_async_p () || sync_execution)
411 && !(follow_child || detach_fork || sched_multi))
412 {
413 /* The parent stays blocked inside the vfork syscall until the
414 child execs or exits. If we don't let the child run, then
415 the parent stays blocked. If we're telling the parent to run
416 in the foreground, the user will not be able to ctrl-c to get
417 back the terminal, effectively hanging the debug session. */
418 fprintf_filtered (gdb_stderr, _("\
419Can not resume the parent process over vfork in the foreground while\n\
420holding the child stopped. Try \"set detach-on-fork\" or \
421\"set schedule-multiple\".\n"));
422 /* FIXME output string > 80 columns. */
423 return 1;
424 }
425
426 if (!follow_child)
427 {
428 /* Detach new forked process? */
429 if (detach_fork)
430 {
431 struct cleanup *old_chain;
432
433 /* Before detaching from the child, remove all breakpoints
434 from it. If we forked, then this has already been taken
435 care of by infrun.c. If we vforked however, any
436 breakpoint inserted in the parent is visible in the
437 child, even those added while stopped in a vfork
438 catchpoint. This will remove the breakpoints from the
439 parent also, but they'll be reinserted below. */
440 if (has_vforked)
441 {
442 /* Keep breakpoints list in sync. */
443 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
444 }
445
446 if (info_verbose || debug_infrun)
447 {
8dd06f7a
DB
448 /* Ensure that we have a process ptid. */
449 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
450
6f259a23 451 target_terminal_ours_for_output ();
d83ad864 452 fprintf_filtered (gdb_stdlog,
79639e11 453 _("Detaching after %s from child %s.\n"),
6f259a23 454 has_vforked ? "vfork" : "fork",
8dd06f7a 455 target_pid_to_str (process_ptid));
d83ad864
DB
456 }
457 }
458 else
459 {
460 struct inferior *parent_inf, *child_inf;
461 struct cleanup *old_chain;
462
463 /* Add process to GDB's tables. */
79639e11 464 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
465
466 parent_inf = current_inferior ();
467 child_inf->attach_flag = parent_inf->attach_flag;
468 copy_terminal_info (child_inf, parent_inf);
469 child_inf->gdbarch = parent_inf->gdbarch;
470 copy_inferior_target_desc_info (child_inf, parent_inf);
471
472 old_chain = save_inferior_ptid ();
473 save_current_program_space ();
474
79639e11 475 inferior_ptid = child_ptid;
d83ad864
DB
476 add_thread (inferior_ptid);
477 child_inf->symfile_flags = SYMFILE_NO_READ;
478
479 /* If this is a vfork child, then the address-space is
480 shared with the parent. */
481 if (has_vforked)
482 {
483 child_inf->pspace = parent_inf->pspace;
484 child_inf->aspace = parent_inf->aspace;
485
486 /* The parent will be frozen until the child is done
487 with the shared region. Keep track of the
488 parent. */
489 child_inf->vfork_parent = parent_inf;
490 child_inf->pending_detach = 0;
491 parent_inf->vfork_child = child_inf;
492 parent_inf->pending_detach = 0;
493 }
494 else
495 {
496 child_inf->aspace = new_address_space ();
497 child_inf->pspace = add_program_space (child_inf->aspace);
498 child_inf->removable = 1;
499 set_current_program_space (child_inf->pspace);
500 clone_program_space (child_inf->pspace, parent_inf->pspace);
501
502 /* Let the shared library layer (e.g., solib-svr4) learn
503 about this new process, relocate the cloned exec, pull
504 in shared libraries, and install the solib event
505 breakpoint. If a "cloned-VM" event was propagated
506 better throughout the core, this wouldn't be
507 required. */
508 solib_create_inferior_hook (0);
509 }
510
511 do_cleanups (old_chain);
512 }
513
514 if (has_vforked)
515 {
516 struct inferior *parent_inf;
517
518 parent_inf = current_inferior ();
519
520 /* If we detached from the child, then we have to be careful
521 to not insert breakpoints in the parent until the child
522 is done with the shared memory region. However, if we're
523 staying attached to the child, then we can and should
524 insert breakpoints, so that we can debug it. A
525 subsequent child exec or exit is enough to know when does
526 the child stops using the parent's address space. */
527 parent_inf->waiting_for_vfork_done = detach_fork;
528 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
529 }
530 }
531 else
532 {
533 /* Follow the child. */
534 struct inferior *parent_inf, *child_inf;
535 struct program_space *parent_pspace;
536
537 if (info_verbose || debug_infrun)
538 {
6f259a23
DB
539 target_terminal_ours_for_output ();
540 fprintf_filtered (gdb_stdlog,
79639e11
PA
541 _("Attaching after %s %s to child %s.\n"),
542 target_pid_to_str (parent_ptid),
6f259a23 543 has_vforked ? "vfork" : "fork",
79639e11 544 target_pid_to_str (child_ptid));
d83ad864
DB
545 }
546
547 /* Add the new inferior first, so that the target_detach below
548 doesn't unpush the target. */
549
79639e11 550 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
551
552 parent_inf = current_inferior ();
553 child_inf->attach_flag = parent_inf->attach_flag;
554 copy_terminal_info (child_inf, parent_inf);
555 child_inf->gdbarch = parent_inf->gdbarch;
556 copy_inferior_target_desc_info (child_inf, parent_inf);
557
558 parent_pspace = parent_inf->pspace;
559
560 /* If we're vforking, we want to hold on to the parent until the
561 child exits or execs. At child exec or exit time we can
562 remove the old breakpoints from the parent and detach or
563 resume debugging it. Otherwise, detach the parent now; we'll
564 want to reuse it's program/address spaces, but we can't set
565 them to the child before removing breakpoints from the
566 parent, otherwise, the breakpoints module could decide to
567 remove breakpoints from the wrong process (since they'd be
568 assigned to the same address space). */
569
570 if (has_vforked)
571 {
572 gdb_assert (child_inf->vfork_parent == NULL);
573 gdb_assert (parent_inf->vfork_child == NULL);
574 child_inf->vfork_parent = parent_inf;
575 child_inf->pending_detach = 0;
576 parent_inf->vfork_child = child_inf;
577 parent_inf->pending_detach = detach_fork;
578 parent_inf->waiting_for_vfork_done = 0;
579 }
580 else if (detach_fork)
6f259a23
DB
581 {
582 if (info_verbose || debug_infrun)
583 {
8dd06f7a
DB
584 /* Ensure that we have a process ptid. */
585 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
586
6f259a23
DB
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
79639e11 590 "child %s.\n"),
8dd06f7a 591 target_pid_to_str (process_ptid));
6f259a23
DB
592 }
593
594 target_detach (NULL, 0);
595 }
d83ad864
DB
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
79639e11 603 inferior_ptid = child_ptid;
d83ad864
DB
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633}
634
e58b0e63
PA
635/* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
6604731b 639static int
4ef3f3be 640follow_fork (void)
c906108c 641{
ea1dd7bc 642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
4e3990f4
DE
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 651 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
17b2616c 655 struct interp *command_interp = NULL;
e58b0e63
PA
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
8358c15c
JK
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
16c381f0
JK
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
186c406b
TT
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 707 command_interp = tp->control.command_interp;
e58b0e63
PA
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
16c381f0
JK
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
186c406b 718 delete_exception_resume_breakpoint (tp);
17b2616c 719 tp->control.command_interp = NULL;
e58b0e63
PA
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
d83ad864
DB
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
e09875d4 740 tp = find_thread_ptid (parent);
e58b0e63
PA
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
1777feb0 748 /* If we followed the child, switch to it... */
e58b0e63
PA
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
8358c15c
JK
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
16c381f0
JK
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
186c406b
TT
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
17b2616c 765 tp->control.command_interp = command_interp;
e58b0e63
PA
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
3e43a32a
MS
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
e58b0e63
PA
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
c906108c 796
e58b0e63 797 return should_resume;
c906108c
SS
798}
799
d83ad864 800static void
6604731b 801follow_inferior_reset_breakpoints (void)
c906108c 802{
4e1c45ea
PA
803 struct thread_info *tp = inferior_thread ();
804
6604731b
DJ
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
6604731b
DJ
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
8358c15c 818 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
6604731b 823
a1aa2221 824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 825 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
186c406b 830
6604731b
DJ
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
c906108c 838}
c906108c 839
6c95b8df
PA
840/* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843static int
844proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846{
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
a493e3e2 853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
70509625 861 clear_proceed_status (0);
64ce06e4 862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
863 }
864
865 return 0;
866}
867
868/* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871static void
872handle_vfork_child_exec_or_exit (int exec)
873{
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
1777feb0 891 /* follow-fork child, detach-on-fork on. */
6c95b8df 892
68c9da30
PA
893 inf->vfork_parent->pending_detach = 0;
894
f50f4e56
PA
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
6c95b8df
PA
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
6f259a23 929 target_terminal_ours_for_output ();
6c95b8df
PA
930
931 if (exec)
6f259a23
DB
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
6c95b8df 938 else
6f259a23
DB
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
6c95b8df
PA
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
7dcd53a0 996 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1002 inferior. */
6c95b8df
PA
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
3e43a32a
MS
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030}
1031
eb6c553b 1032/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1033
1034static const char follow_exec_mode_new[] = "new";
1035static const char follow_exec_mode_same[] = "same";
40478521 1036static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1037{
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041};
1042
1043static const char *follow_exec_mode_string = follow_exec_mode_same;
1044static void
1045show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047{
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049}
1050
1777feb0 1051/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1052
c906108c 1053static void
95e50b27 1054follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1055{
95e50b27 1056 struct thread_info *th, *tmp;
6c95b8df 1057 struct inferior *inf = current_inferior ();
95e50b27 1058 int pid = ptid_get_pid (ptid);
7a292a7a 1059
c906108c
SS
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1777feb0 1079 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1080
1081 mark_breakpoints_out ();
1082
95e50b27
PA
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
8a06aea7 1102 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
8358c15c 1111 th->control.step_resume_breakpoint = NULL;
186c406b 1112 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1113 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
c906108c 1116
95e50b27
PA
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
a75724bc
PA
1120 th->stop_requested = 0;
1121
95e50b27
PA
1122 update_breakpoints_after_exec ();
1123
1777feb0 1124 /* What is this a.out's name? */
6c95b8df
PA
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
c906108c
SS
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1130 inferior has essentially been killed & reborn. */
7a292a7a 1131
c906108c 1132 gdb_flush (gdb_stdout);
6ca15a4b
PA
1133
1134 breakpoint_init_inferior (inf_execd);
e85a822c 1135
a3be80c3 1136 if (*gdb_sysroot != '\0')
e85a822c 1137 {
998d2a3e 1138 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1139
1140 execd_pathname = alloca (strlen (name) + 1);
1141 strcpy (execd_pathname, name);
1142 xfree (name);
e85a822c 1143 }
c906108c 1144
cce9b6bf
PA
1145 /* Reset the shared library package. This ensures that we get a
1146 shlib event when the child reaches "_start", at which point the
1147 dld will have had a chance to initialize the child. */
1148 /* Also, loading a symbol file below may trigger symbol lookups, and
1149 we don't want those to be satisfied by the libraries of the
1150 previous incarnation of this process. */
1151 no_shared_libraries (NULL, 0);
1152
6c95b8df
PA
1153 if (follow_exec_mode_string == follow_exec_mode_new)
1154 {
1155 struct program_space *pspace;
6c95b8df
PA
1156
1157 /* The user wants to keep the old inferior and program spaces
1158 around. Create a new fresh one, and switch to it. */
1159
1160 inf = add_inferior (current_inferior ()->pid);
1161 pspace = add_program_space (maybe_new_address_space ());
1162 inf->pspace = pspace;
1163 inf->aspace = pspace->aspace;
1164
1165 exit_inferior_num_silent (current_inferior ()->num);
1166
1167 set_current_inferior (inf);
1168 set_current_program_space (pspace);
1169 }
9107fc8d
PA
1170 else
1171 {
1172 /* The old description may no longer be fit for the new image.
1173 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1174 old description; we'll read a new one below. No need to do
1175 this on "follow-exec-mode new", as the old inferior stays
1176 around (its description is later cleared/refetched on
1177 restart). */
1178 target_clear_description ();
1179 }
6c95b8df
PA
1180
1181 gdb_assert (current_program_space == inf->pspace);
1182
1777feb0 1183 /* That a.out is now the one to use. */
6c95b8df
PA
1184 exec_file_attach (execd_pathname, 0);
1185
c1e56572
JK
1186 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1187 (Position Independent Executable) main symbol file will get applied by
1188 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1189 the breakpoints with the zero displacement. */
1190
7dcd53a0
TT
1191 symbol_file_add (execd_pathname,
1192 (inf->symfile_flags
1193 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1194 NULL, 0);
1195
7dcd53a0
TT
1196 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1197 set_initial_language ();
c906108c 1198
9107fc8d
PA
1199 /* If the target can specify a description, read it. Must do this
1200 after flipping to the new executable (because the target supplied
1201 description must be compatible with the executable's
1202 architecture, and the old executable may e.g., be 32-bit, while
1203 the new one 64-bit), and before anything involving memory or
1204 registers. */
1205 target_find_description ();
1206
268a4a75 1207 solib_create_inferior_hook (0);
c906108c 1208
4efc6507
DE
1209 jit_inferior_created_hook ();
1210
c1e56572
JK
1211 breakpoint_re_set ();
1212
c906108c
SS
1213 /* Reinsert all breakpoints. (Those which were symbolic have
1214 been reset to the proper address in the new a.out, thanks
1777feb0 1215 to symbol_file_command...). */
c906108c
SS
1216 insert_breakpoints ();
1217
1218 /* The next resume of this inferior should bring it to the shlib
1219 startup breakpoints. (If the user had also set bp's on
1220 "main" from the old (parent) process, then they'll auto-
1777feb0 1221 matically get reset there in the new process.). */
c906108c
SS
1222}
1223
6c4cfb24
PA
1224/* Bit flags indicating what the thread needs to step over. */
1225
1226enum step_over_what
1227 {
1228 /* Step over a breakpoint. */
1229 STEP_OVER_BREAKPOINT = 1,
1230
1231 /* Step past a non-continuable watchpoint, in order to let the
1232 instruction execute so we can evaluate the watchpoint
1233 expression. */
1234 STEP_OVER_WATCHPOINT = 2
1235 };
1236
963f9c80 1237/* Info about an instruction that is being stepped over. */
31e77af2
PA
1238
1239struct step_over_info
1240{
963f9c80
PA
1241 /* If we're stepping past a breakpoint, this is the address space
1242 and address of the instruction the breakpoint is set at. We'll
1243 skip inserting all breakpoints here. Valid iff ASPACE is
1244 non-NULL. */
31e77af2 1245 struct address_space *aspace;
31e77af2 1246 CORE_ADDR address;
963f9c80
PA
1247
1248 /* The instruction being stepped over triggers a nonsteppable
1249 watchpoint. If true, we'll skip inserting watchpoints. */
1250 int nonsteppable_watchpoint_p;
31e77af2
PA
1251};
1252
1253/* The step-over info of the location that is being stepped over.
1254
1255 Note that with async/breakpoint always-inserted mode, a user might
1256 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1257 being stepped over. As setting a new breakpoint inserts all
1258 breakpoints, we need to make sure the breakpoint being stepped over
1259 isn't inserted then. We do that by only clearing the step-over
1260 info when the step-over is actually finished (or aborted).
1261
1262 Presently GDB can only step over one breakpoint at any given time.
1263 Given threads that can't run code in the same address space as the
1264 breakpoint's can't really miss the breakpoint, GDB could be taught
1265 to step-over at most one breakpoint per address space (so this info
1266 could move to the address space object if/when GDB is extended).
1267 The set of breakpoints being stepped over will normally be much
1268 smaller than the set of all breakpoints, so a flag in the
1269 breakpoint location structure would be wasteful. A separate list
1270 also saves complexity and run-time, as otherwise we'd have to go
1271 through all breakpoint locations clearing their flag whenever we
1272 start a new sequence. Similar considerations weigh against storing
1273 this info in the thread object. Plus, not all step overs actually
1274 have breakpoint locations -- e.g., stepping past a single-step
1275 breakpoint, or stepping to complete a non-continuable
1276 watchpoint. */
1277static struct step_over_info step_over_info;
1278
1279/* Record the address of the breakpoint/instruction we're currently
1280 stepping over. */
1281
1282static void
963f9c80
PA
1283set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1284 int nonsteppable_watchpoint_p)
31e77af2
PA
1285{
1286 step_over_info.aspace = aspace;
1287 step_over_info.address = address;
963f9c80 1288 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1289}
1290
1291/* Called when we're not longer stepping over a breakpoint / an
1292 instruction, so all breakpoints are free to be (re)inserted. */
1293
1294static void
1295clear_step_over_info (void)
1296{
1297 step_over_info.aspace = NULL;
1298 step_over_info.address = 0;
963f9c80 1299 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1300}
1301
7f89fd65 1302/* See infrun.h. */
31e77af2
PA
1303
1304int
1305stepping_past_instruction_at (struct address_space *aspace,
1306 CORE_ADDR address)
1307{
1308 return (step_over_info.aspace != NULL
1309 && breakpoint_address_match (aspace, address,
1310 step_over_info.aspace,
1311 step_over_info.address));
1312}
1313
963f9c80
PA
1314/* See infrun.h. */
1315
1316int
1317stepping_past_nonsteppable_watchpoint (void)
1318{
1319 return step_over_info.nonsteppable_watchpoint_p;
1320}
1321
6cc83d2a
PA
1322/* Returns true if step-over info is valid. */
1323
1324static int
1325step_over_info_valid_p (void)
1326{
963f9c80
PA
1327 return (step_over_info.aspace != NULL
1328 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1329}
1330
c906108c 1331\f
237fc4c9
PA
1332/* Displaced stepping. */
1333
1334/* In non-stop debugging mode, we must take special care to manage
1335 breakpoints properly; in particular, the traditional strategy for
1336 stepping a thread past a breakpoint it has hit is unsuitable.
1337 'Displaced stepping' is a tactic for stepping one thread past a
1338 breakpoint it has hit while ensuring that other threads running
1339 concurrently will hit the breakpoint as they should.
1340
1341 The traditional way to step a thread T off a breakpoint in a
1342 multi-threaded program in all-stop mode is as follows:
1343
1344 a0) Initially, all threads are stopped, and breakpoints are not
1345 inserted.
1346 a1) We single-step T, leaving breakpoints uninserted.
1347 a2) We insert breakpoints, and resume all threads.
1348
1349 In non-stop debugging, however, this strategy is unsuitable: we
1350 don't want to have to stop all threads in the system in order to
1351 continue or step T past a breakpoint. Instead, we use displaced
1352 stepping:
1353
1354 n0) Initially, T is stopped, other threads are running, and
1355 breakpoints are inserted.
1356 n1) We copy the instruction "under" the breakpoint to a separate
1357 location, outside the main code stream, making any adjustments
1358 to the instruction, register, and memory state as directed by
1359 T's architecture.
1360 n2) We single-step T over the instruction at its new location.
1361 n3) We adjust the resulting register and memory state as directed
1362 by T's architecture. This includes resetting T's PC to point
1363 back into the main instruction stream.
1364 n4) We resume T.
1365
1366 This approach depends on the following gdbarch methods:
1367
1368 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1369 indicate where to copy the instruction, and how much space must
1370 be reserved there. We use these in step n1.
1371
1372 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1373 address, and makes any necessary adjustments to the instruction,
1374 register contents, and memory. We use this in step n1.
1375
1376 - gdbarch_displaced_step_fixup adjusts registers and memory after
1377 we have successfuly single-stepped the instruction, to yield the
1378 same effect the instruction would have had if we had executed it
1379 at its original address. We use this in step n3.
1380
1381 - gdbarch_displaced_step_free_closure provides cleanup.
1382
1383 The gdbarch_displaced_step_copy_insn and
1384 gdbarch_displaced_step_fixup functions must be written so that
1385 copying an instruction with gdbarch_displaced_step_copy_insn,
1386 single-stepping across the copied instruction, and then applying
1387 gdbarch_displaced_insn_fixup should have the same effects on the
1388 thread's memory and registers as stepping the instruction in place
1389 would have. Exactly which responsibilities fall to the copy and
1390 which fall to the fixup is up to the author of those functions.
1391
1392 See the comments in gdbarch.sh for details.
1393
1394 Note that displaced stepping and software single-step cannot
1395 currently be used in combination, although with some care I think
1396 they could be made to. Software single-step works by placing
1397 breakpoints on all possible subsequent instructions; if the
1398 displaced instruction is a PC-relative jump, those breakpoints
1399 could fall in very strange places --- on pages that aren't
1400 executable, or at addresses that are not proper instruction
1401 boundaries. (We do generally let other threads run while we wait
1402 to hit the software single-step breakpoint, and they might
1403 encounter such a corrupted instruction.) One way to work around
1404 this would be to have gdbarch_displaced_step_copy_insn fully
1405 simulate the effect of PC-relative instructions (and return NULL)
1406 on architectures that use software single-stepping.
1407
1408 In non-stop mode, we can have independent and simultaneous step
1409 requests, so more than one thread may need to simultaneously step
1410 over a breakpoint. The current implementation assumes there is
1411 only one scratch space per process. In this case, we have to
1412 serialize access to the scratch space. If thread A wants to step
1413 over a breakpoint, but we are currently waiting for some other
1414 thread to complete a displaced step, we leave thread A stopped and
1415 place it in the displaced_step_request_queue. Whenever a displaced
1416 step finishes, we pick the next thread in the queue and start a new
1417 displaced step operation on it. See displaced_step_prepare and
1418 displaced_step_fixup for details. */
1419
237fc4c9
PA
1420struct displaced_step_request
1421{
1422 ptid_t ptid;
1423 struct displaced_step_request *next;
1424};
1425
fc1cf338
PA
1426/* Per-inferior displaced stepping state. */
1427struct displaced_step_inferior_state
1428{
1429 /* Pointer to next in linked list. */
1430 struct displaced_step_inferior_state *next;
1431
1432 /* The process this displaced step state refers to. */
1433 int pid;
1434
1435 /* A queue of pending displaced stepping requests. One entry per
1436 thread that needs to do a displaced step. */
1437 struct displaced_step_request *step_request_queue;
1438
1439 /* If this is not null_ptid, this is the thread carrying out a
1440 displaced single-step in process PID. This thread's state will
1441 require fixing up once it has completed its step. */
1442 ptid_t step_ptid;
1443
1444 /* The architecture the thread had when we stepped it. */
1445 struct gdbarch *step_gdbarch;
1446
1447 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1448 for post-step cleanup. */
1449 struct displaced_step_closure *step_closure;
1450
1451 /* The address of the original instruction, and the copy we
1452 made. */
1453 CORE_ADDR step_original, step_copy;
1454
1455 /* Saved contents of copy area. */
1456 gdb_byte *step_saved_copy;
1457};
1458
1459/* The list of states of processes involved in displaced stepping
1460 presently. */
1461static struct displaced_step_inferior_state *displaced_step_inferior_states;
1462
1463/* Get the displaced stepping state of process PID. */
1464
1465static struct displaced_step_inferior_state *
1466get_displaced_stepping_state (int pid)
1467{
1468 struct displaced_step_inferior_state *state;
1469
1470 for (state = displaced_step_inferior_states;
1471 state != NULL;
1472 state = state->next)
1473 if (state->pid == pid)
1474 return state;
1475
1476 return NULL;
1477}
1478
8f572e5c
PA
1479/* Return true if process PID has a thread doing a displaced step. */
1480
1481static int
1482displaced_step_in_progress (int pid)
1483{
1484 struct displaced_step_inferior_state *displaced;
1485
1486 displaced = get_displaced_stepping_state (pid);
1487 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1488 return 1;
1489
1490 return 0;
1491}
1492
fc1cf338
PA
1493/* Add a new displaced stepping state for process PID to the displaced
1494 stepping state list, or return a pointer to an already existing
1495 entry, if it already exists. Never returns NULL. */
1496
1497static struct displaced_step_inferior_state *
1498add_displaced_stepping_state (int pid)
1499{
1500 struct displaced_step_inferior_state *state;
1501
1502 for (state = displaced_step_inferior_states;
1503 state != NULL;
1504 state = state->next)
1505 if (state->pid == pid)
1506 return state;
237fc4c9 1507
fc1cf338
PA
1508 state = xcalloc (1, sizeof (*state));
1509 state->pid = pid;
1510 state->next = displaced_step_inferior_states;
1511 displaced_step_inferior_states = state;
237fc4c9 1512
fc1cf338
PA
1513 return state;
1514}
1515
a42244db
YQ
1516/* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520struct displaced_step_closure*
1521get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522{
1523 struct displaced_step_inferior_state *displaced
1524 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1525
1526 /* If checking the mode of displaced instruction in copy area. */
1527 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1528 && (displaced->step_copy == addr))
1529 return displaced->step_closure;
1530
1531 return NULL;
1532}
1533
fc1cf338 1534/* Remove the displaced stepping state of process PID. */
237fc4c9 1535
fc1cf338
PA
1536static void
1537remove_displaced_stepping_state (int pid)
1538{
1539 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1540
fc1cf338
PA
1541 gdb_assert (pid != 0);
1542
1543 it = displaced_step_inferior_states;
1544 prev_next_p = &displaced_step_inferior_states;
1545 while (it)
1546 {
1547 if (it->pid == pid)
1548 {
1549 *prev_next_p = it->next;
1550 xfree (it);
1551 return;
1552 }
1553
1554 prev_next_p = &it->next;
1555 it = *prev_next_p;
1556 }
1557}
1558
1559static void
1560infrun_inferior_exit (struct inferior *inf)
1561{
1562 remove_displaced_stepping_state (inf->pid);
1563}
237fc4c9 1564
fff08868
HZ
1565/* If ON, and the architecture supports it, GDB will use displaced
1566 stepping to step over breakpoints. If OFF, or if the architecture
1567 doesn't support it, GDB will instead use the traditional
1568 hold-and-step approach. If AUTO (which is the default), GDB will
1569 decide which technique to use to step over breakpoints depending on
1570 which of all-stop or non-stop mode is active --- displaced stepping
1571 in non-stop mode; hold-and-step in all-stop mode. */
1572
72d0e2c5 1573static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1574
237fc4c9
PA
1575static void
1576show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c,
1578 const char *value)
1579{
72d0e2c5 1580 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1581 fprintf_filtered (file,
1582 _("Debugger's willingness to use displaced stepping "
1583 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1584 value, non_stop ? "on" : "off");
1585 else
3e43a32a
MS
1586 fprintf_filtered (file,
1587 _("Debugger's willingness to use displaced stepping "
1588 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1589}
1590
fff08868
HZ
1591/* Return non-zero if displaced stepping can/should be used to step
1592 over breakpoints. */
1593
237fc4c9
PA
1594static int
1595use_displaced_stepping (struct gdbarch *gdbarch)
1596{
72d0e2c5
YQ
1597 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1598 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1599 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1600 && find_record_target () == NULL);
237fc4c9
PA
1601}
1602
1603/* Clean out any stray displaced stepping state. */
1604static void
fc1cf338 1605displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1606{
1607 /* Indicate that there is no cleanup pending. */
fc1cf338 1608 displaced->step_ptid = null_ptid;
237fc4c9 1609
fc1cf338 1610 if (displaced->step_closure)
237fc4c9 1611 {
fc1cf338
PA
1612 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1613 displaced->step_closure);
1614 displaced->step_closure = NULL;
237fc4c9
PA
1615 }
1616}
1617
1618static void
fc1cf338 1619displaced_step_clear_cleanup (void *arg)
237fc4c9 1620{
fc1cf338
PA
1621 struct displaced_step_inferior_state *state = arg;
1622
1623 displaced_step_clear (state);
237fc4c9
PA
1624}
1625
1626/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1627void
1628displaced_step_dump_bytes (struct ui_file *file,
1629 const gdb_byte *buf,
1630 size_t len)
1631{
1632 int i;
1633
1634 for (i = 0; i < len; i++)
1635 fprintf_unfiltered (file, "%02x ", buf[i]);
1636 fputs_unfiltered ("\n", file);
1637}
1638
1639/* Prepare to single-step, using displaced stepping.
1640
1641 Note that we cannot use displaced stepping when we have a signal to
1642 deliver. If we have a signal to deliver and an instruction to step
1643 over, then after the step, there will be no indication from the
1644 target whether the thread entered a signal handler or ignored the
1645 signal and stepped over the instruction successfully --- both cases
1646 result in a simple SIGTRAP. In the first case we mustn't do a
1647 fixup, and in the second case we must --- but we can't tell which.
1648 Comments in the code for 'random signals' in handle_inferior_event
1649 explain how we handle this case instead.
1650
1651 Returns 1 if preparing was successful -- this thread is going to be
1652 stepped now; or 0 if displaced stepping this thread got queued. */
1653static int
1654displaced_step_prepare (ptid_t ptid)
1655{
ad53cd71 1656 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1657 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1658 struct regcache *regcache = get_thread_regcache (ptid);
1659 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1660 CORE_ADDR original, copy;
1661 ULONGEST len;
1662 struct displaced_step_closure *closure;
fc1cf338 1663 struct displaced_step_inferior_state *displaced;
9e529e1d 1664 int status;
237fc4c9
PA
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
1668 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1669
c1e36e3e
PA
1670 /* Disable range stepping while executing in the scratch pad. We
1671 want a single-step even if executing the displaced instruction in
1672 the scratch buffer lands within the stepping range (e.g., a
1673 jump/branch). */
1674 tp->control.may_range_step = 0;
1675
fc1cf338
PA
1676 /* We have to displaced step one thread at a time, as we only have
1677 access to a single scratch space per inferior. */
237fc4c9 1678
fc1cf338
PA
1679 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1680
1681 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1682 {
1683 /* Already waiting for a displaced step to finish. Defer this
1684 request and place in queue. */
1685 struct displaced_step_request *req, *new_req;
1686
1687 if (debug_displaced)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "displaced: defering step of %s\n",
1690 target_pid_to_str (ptid));
1691
1692 new_req = xmalloc (sizeof (*new_req));
1693 new_req->ptid = ptid;
1694 new_req->next = NULL;
1695
fc1cf338 1696 if (displaced->step_request_queue)
237fc4c9 1697 {
fc1cf338 1698 for (req = displaced->step_request_queue;
237fc4c9
PA
1699 req && req->next;
1700 req = req->next)
1701 ;
1702 req->next = new_req;
1703 }
1704 else
fc1cf338 1705 displaced->step_request_queue = new_req;
237fc4c9
PA
1706
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
1714 target_pid_to_str (ptid));
1715 }
1716
fc1cf338 1717 displaced_step_clear (displaced);
237fc4c9 1718
ad53cd71
PA
1719 old_cleanups = save_inferior_ptid ();
1720 inferior_ptid = ptid;
1721
515630c5 1722 original = regcache_read_pc (regcache);
237fc4c9
PA
1723
1724 copy = gdbarch_displaced_step_location (gdbarch);
1725 len = gdbarch_max_insn_length (gdbarch);
1726
1727 /* Save the original contents of the copy area. */
fc1cf338 1728 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1729 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1730 &displaced->step_saved_copy);
9e529e1d
JK
1731 status = target_read_memory (copy, displaced->step_saved_copy, len);
1732 if (status != 0)
1733 throw_error (MEMORY_ERROR,
1734 _("Error accessing memory address %s (%s) for "
1735 "displaced-stepping scratch space."),
1736 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1737 if (debug_displaced)
1738 {
5af949e3
UW
1739 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1740 paddress (gdbarch, copy));
fc1cf338
PA
1741 displaced_step_dump_bytes (gdb_stdlog,
1742 displaced->step_saved_copy,
1743 len);
237fc4c9
PA
1744 };
1745
1746 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1747 original, copy, regcache);
237fc4c9
PA
1748
1749 /* We don't support the fully-simulated case at present. */
1750 gdb_assert (closure);
1751
9f5a595d
UW
1752 /* Save the information we need to fix things up if the step
1753 succeeds. */
fc1cf338
PA
1754 displaced->step_ptid = ptid;
1755 displaced->step_gdbarch = gdbarch;
1756 displaced->step_closure = closure;
1757 displaced->step_original = original;
1758 displaced->step_copy = copy;
9f5a595d 1759
fc1cf338 1760 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1761
1762 /* Resume execution at the copy. */
515630c5 1763 regcache_write_pc (regcache, copy);
237fc4c9 1764
ad53cd71
PA
1765 discard_cleanups (ignore_cleanups);
1766
1767 do_cleanups (old_cleanups);
237fc4c9
PA
1768
1769 if (debug_displaced)
5af949e3
UW
1770 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1771 paddress (gdbarch, copy));
237fc4c9 1772
237fc4c9
PA
1773 return 1;
1774}
1775
237fc4c9 1776static void
3e43a32a
MS
1777write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1778 const gdb_byte *myaddr, int len)
237fc4c9
PA
1779{
1780 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1781
237fc4c9
PA
1782 inferior_ptid = ptid;
1783 write_memory (memaddr, myaddr, len);
1784 do_cleanups (ptid_cleanup);
1785}
1786
e2d96639
YQ
1787/* Restore the contents of the copy area for thread PTID. */
1788
1789static void
1790displaced_step_restore (struct displaced_step_inferior_state *displaced,
1791 ptid_t ptid)
1792{
1793 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1794
1795 write_memory_ptid (ptid, displaced->step_copy,
1796 displaced->step_saved_copy, len);
1797 if (debug_displaced)
1798 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1799 target_pid_to_str (ptid),
1800 paddress (displaced->step_gdbarch,
1801 displaced->step_copy));
1802}
1803
237fc4c9 1804static void
2ea28649 1805displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1806{
1807 struct cleanup *old_cleanups;
fc1cf338
PA
1808 struct displaced_step_inferior_state *displaced
1809 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1810
1811 /* Was any thread of this process doing a displaced step? */
1812 if (displaced == NULL)
1813 return;
237fc4c9
PA
1814
1815 /* Was this event for the pid we displaced? */
fc1cf338
PA
1816 if (ptid_equal (displaced->step_ptid, null_ptid)
1817 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1818 return;
1819
fc1cf338 1820 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1821
e2d96639 1822 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1823
cb71640d
PA
1824 /* Fixup may need to read memory/registers. Switch to the thread
1825 that we're fixing up. Also, target_stopped_by_watchpoint checks
1826 the current thread. */
1827 switch_to_thread (event_ptid);
1828
237fc4c9 1829 /* Did the instruction complete successfully? */
cb71640d
PA
1830 if (signal == GDB_SIGNAL_TRAP
1831 && !(target_stopped_by_watchpoint ()
1832 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1833 || target_have_steppable_watchpoint)))
237fc4c9
PA
1834 {
1835 /* Fix up the resulting state. */
fc1cf338
PA
1836 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1837 displaced->step_closure,
1838 displaced->step_original,
1839 displaced->step_copy,
1840 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1841 }
1842 else
1843 {
1844 /* Since the instruction didn't complete, all we can do is
1845 relocate the PC. */
515630c5
UW
1846 struct regcache *regcache = get_thread_regcache (event_ptid);
1847 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1848
fc1cf338 1849 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1850 regcache_write_pc (regcache, pc);
237fc4c9
PA
1851 }
1852
1853 do_cleanups (old_cleanups);
1854
fc1cf338 1855 displaced->step_ptid = null_ptid;
1c5cfe86 1856
237fc4c9 1857 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1858 one now. Leave the state object around, since we're likely to
1859 need it again soon. */
1860 while (displaced->step_request_queue)
237fc4c9
PA
1861 {
1862 struct displaced_step_request *head;
1863 ptid_t ptid;
5af949e3 1864 struct regcache *regcache;
929dfd4f 1865 struct gdbarch *gdbarch;
1c5cfe86 1866 CORE_ADDR actual_pc;
6c95b8df 1867 struct address_space *aspace;
237fc4c9 1868
fc1cf338 1869 head = displaced->step_request_queue;
237fc4c9 1870 ptid = head->ptid;
fc1cf338 1871 displaced->step_request_queue = head->next;
237fc4c9
PA
1872 xfree (head);
1873
ad53cd71
PA
1874 context_switch (ptid);
1875
5af949e3
UW
1876 regcache = get_thread_regcache (ptid);
1877 actual_pc = regcache_read_pc (regcache);
6c95b8df 1878 aspace = get_regcache_aspace (regcache);
8550d3b3 1879 gdbarch = get_regcache_arch (regcache);
1c5cfe86 1880
6c95b8df 1881 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1882 {
1c5cfe86
PA
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "displaced: stepping queued %s now\n",
1886 target_pid_to_str (ptid));
1887
1888 displaced_step_prepare (ptid);
1889
1890 if (debug_displaced)
1891 {
929dfd4f 1892 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1893 gdb_byte buf[4];
1894
5af949e3
UW
1895 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1896 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1897 read_memory (actual_pc, buf, sizeof (buf));
1898 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1899 }
1900
fc1cf338
PA
1901 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1902 displaced->step_closure))
a493e3e2 1903 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1904 else
a493e3e2 1905 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1906
1907 /* Done, we're stepping a thread. */
1908 break;
ad53cd71 1909 }
1c5cfe86
PA
1910 else
1911 {
1912 int step;
1913 struct thread_info *tp = inferior_thread ();
1914
1915 /* The breakpoint we were sitting under has since been
1916 removed. */
16c381f0 1917 tp->control.trap_expected = 0;
1c5cfe86
PA
1918
1919 /* Go back to what we were trying to do. */
1920 step = currently_stepping (tp);
ad53cd71 1921
8550d3b3
YQ
1922 if (step)
1923 step = maybe_software_singlestep (gdbarch, actual_pc);
1924
1c5cfe86 1925 if (debug_displaced)
3e43a32a 1926 fprintf_unfiltered (gdb_stdlog,
27d2932e 1927 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1928 target_pid_to_str (tp->ptid), step);
1929
a493e3e2
PA
1930 target_resume (ptid, step, GDB_SIGNAL_0);
1931 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1932
1933 /* This request was discarded. See if there's any other
1934 thread waiting for its turn. */
1935 }
237fc4c9
PA
1936 }
1937}
1938
5231c1fd
PA
1939/* Update global variables holding ptids to hold NEW_PTID if they were
1940 holding OLD_PTID. */
1941static void
1942infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1943{
1944 struct displaced_step_request *it;
fc1cf338 1945 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1946
1947 if (ptid_equal (inferior_ptid, old_ptid))
1948 inferior_ptid = new_ptid;
1949
fc1cf338
PA
1950 for (displaced = displaced_step_inferior_states;
1951 displaced;
1952 displaced = displaced->next)
1953 {
1954 if (ptid_equal (displaced->step_ptid, old_ptid))
1955 displaced->step_ptid = new_ptid;
1956
1957 for (it = displaced->step_request_queue; it; it = it->next)
1958 if (ptid_equal (it->ptid, old_ptid))
1959 it->ptid = new_ptid;
1960 }
5231c1fd
PA
1961}
1962
237fc4c9
PA
1963\f
1964/* Resuming. */
c906108c
SS
1965
1966/* Things to clean up if we QUIT out of resume (). */
c906108c 1967static void
74b7792f 1968resume_cleanups (void *ignore)
c906108c 1969{
34b7e8a6
PA
1970 if (!ptid_equal (inferior_ptid, null_ptid))
1971 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1972
c906108c
SS
1973 normal_stop ();
1974}
1975
53904c9e
AC
1976static const char schedlock_off[] = "off";
1977static const char schedlock_on[] = "on";
1978static const char schedlock_step[] = "step";
40478521 1979static const char *const scheduler_enums[] = {
ef346e04
AC
1980 schedlock_off,
1981 schedlock_on,
1982 schedlock_step,
1983 NULL
1984};
920d2a44
AC
1985static const char *scheduler_mode = schedlock_off;
1986static void
1987show_scheduler_mode (struct ui_file *file, int from_tty,
1988 struct cmd_list_element *c, const char *value)
1989{
3e43a32a
MS
1990 fprintf_filtered (file,
1991 _("Mode for locking scheduler "
1992 "during execution is \"%s\".\n"),
920d2a44
AC
1993 value);
1994}
c906108c
SS
1995
1996static void
96baa820 1997set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1998{
eefe576e
AC
1999 if (!target_can_lock_scheduler)
2000 {
2001 scheduler_mode = schedlock_off;
2002 error (_("Target '%s' cannot support this command."), target_shortname);
2003 }
c906108c
SS
2004}
2005
d4db2f36
PA
2006/* True if execution commands resume all threads of all processes by
2007 default; otherwise, resume only threads of the current inferior
2008 process. */
2009int sched_multi = 0;
2010
2facfe5c
DD
2011/* Try to setup for software single stepping over the specified location.
2012 Return 1 if target_resume() should use hardware single step.
2013
2014 GDBARCH the current gdbarch.
2015 PC the location to step over. */
2016
2017static int
2018maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2019{
2020 int hw_step = 1;
2021
f02253f1
HZ
2022 if (execution_direction == EXEC_FORWARD
2023 && gdbarch_software_single_step_p (gdbarch)
99e40580 2024 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2025 {
99e40580 2026 hw_step = 0;
2facfe5c
DD
2027 }
2028 return hw_step;
2029}
c906108c 2030
f3263aa4
PA
2031/* See infrun.h. */
2032
09cee04b
PA
2033ptid_t
2034user_visible_resume_ptid (int step)
2035{
f3263aa4 2036 ptid_t resume_ptid;
09cee04b 2037
09cee04b
PA
2038 if (non_stop)
2039 {
2040 /* With non-stop mode on, threads are always handled
2041 individually. */
2042 resume_ptid = inferior_ptid;
2043 }
2044 else if ((scheduler_mode == schedlock_on)
03d46957 2045 || (scheduler_mode == schedlock_step && step))
09cee04b 2046 {
f3263aa4
PA
2047 /* User-settable 'scheduler' mode requires solo thread
2048 resume. */
09cee04b
PA
2049 resume_ptid = inferior_ptid;
2050 }
f3263aa4
PA
2051 else if (!sched_multi && target_supports_multi_process ())
2052 {
2053 /* Resume all threads of the current process (and none of other
2054 processes). */
2055 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2056 }
2057 else
2058 {
2059 /* Resume all threads of all processes. */
2060 resume_ptid = RESUME_ALL;
2061 }
09cee04b
PA
2062
2063 return resume_ptid;
2064}
2065
64ce06e4
PA
2066/* Wrapper for target_resume, that handles infrun-specific
2067 bookkeeping. */
2068
2069static void
2070do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2071{
2072 struct thread_info *tp = inferior_thread ();
2073
2074 /* Install inferior's terminal modes. */
2075 target_terminal_inferior ();
2076
2077 /* Avoid confusing the next resume, if the next stop/resume
2078 happens to apply to another thread. */
2079 tp->suspend.stop_signal = GDB_SIGNAL_0;
2080
8f572e5c
PA
2081 /* Advise target which signals may be handled silently.
2082
2083 If we have removed breakpoints because we are stepping over one
2084 in-line (in any thread), we need to receive all signals to avoid
2085 accidentally skipping a breakpoint during execution of a signal
2086 handler.
2087
2088 Likewise if we're displaced stepping, otherwise a trap for a
2089 breakpoint in a signal handler might be confused with the
2090 displaced step finishing. We don't make the displaced_step_fixup
2091 step distinguish the cases instead, because:
2092
2093 - a backtrace while stopped in the signal handler would show the
2094 scratch pad as frame older than the signal handler, instead of
2095 the real mainline code.
2096
2097 - when the thread is later resumed, the signal handler would
2098 return to the scratch pad area, which would no longer be
2099 valid. */
2100 if (step_over_info_valid_p ()
2101 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2102 target_pass_signals (0, NULL);
2103 else
2104 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2105
2106 target_resume (resume_ptid, step, sig);
2107}
2108
c906108c
SS
2109/* Resume the inferior, but allow a QUIT. This is useful if the user
2110 wants to interrupt some lengthy single-stepping operation
2111 (for child processes, the SIGINT goes to the inferior, and so
2112 we get a SIGINT random_signal, but for remote debugging and perhaps
2113 other targets, that's not true).
2114
c906108c
SS
2115 SIG is the signal to give the inferior (zero for none). */
2116void
64ce06e4 2117resume (enum gdb_signal sig)
c906108c 2118{
74b7792f 2119 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2120 struct regcache *regcache = get_current_regcache ();
2121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2122 struct thread_info *tp = inferior_thread ();
515630c5 2123 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2124 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2125 ptid_t resume_ptid;
856e7dd6
PA
2126 /* This represents the user's step vs continue request. When
2127 deciding whether "set scheduler-locking step" applies, it's the
2128 user's intention that counts. */
2129 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2130 /* This represents what we'll actually request the target to do.
2131 This can decay from a step to a continue, if e.g., we need to
2132 implement single-stepping with breakpoints (software
2133 single-step). */
6b403daa 2134 int step;
c7e8a53c 2135
af48d08f
PA
2136 tp->stepped_breakpoint = 0;
2137
c906108c
SS
2138 QUIT;
2139
6b403daa
PA
2140 /* Depends on stepped_breakpoint. */
2141 step = currently_stepping (tp);
2142
74609e71
YQ
2143 if (current_inferior ()->waiting_for_vfork_done)
2144 {
48f9886d
PA
2145 /* Don't try to single-step a vfork parent that is waiting for
2146 the child to get out of the shared memory region (by exec'ing
2147 or exiting). This is particularly important on software
2148 single-step archs, as the child process would trip on the
2149 software single step breakpoint inserted for the parent
2150 process. Since the parent will not actually execute any
2151 instruction until the child is out of the shared region (such
2152 are vfork's semantics), it is safe to simply continue it.
2153 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2154 the parent, and tell it to `keep_going', which automatically
2155 re-sets it stepping. */
74609e71
YQ
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog,
2158 "infrun: resume : clear step\n");
a09dd441 2159 step = 0;
74609e71
YQ
2160 }
2161
527159b7 2162 if (debug_infrun)
237fc4c9 2163 fprintf_unfiltered (gdb_stdlog,
c9737c08 2164 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2165 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2166 step, gdb_signal_to_symbol_string (sig),
2167 tp->control.trap_expected,
0d9a9a5f
PA
2168 target_pid_to_str (inferior_ptid),
2169 paddress (gdbarch, pc));
c906108c 2170
c2c6d25f
JM
2171 /* Normally, by the time we reach `resume', the breakpoints are either
2172 removed or inserted, as appropriate. The exception is if we're sitting
2173 at a permanent breakpoint; we need to step over it, but permanent
2174 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2175 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2176 {
af48d08f
PA
2177 if (sig != GDB_SIGNAL_0)
2178 {
2179 /* We have a signal to pass to the inferior. The resume
2180 may, or may not take us to the signal handler. If this
2181 is a step, we'll need to stop in the signal handler, if
2182 there's one, (if the target supports stepping into
2183 handlers), or in the next mainline instruction, if
2184 there's no handler. If this is a continue, we need to be
2185 sure to run the handler with all breakpoints inserted.
2186 In all cases, set a breakpoint at the current address
2187 (where the handler returns to), and once that breakpoint
2188 is hit, resume skipping the permanent breakpoint. If
2189 that breakpoint isn't hit, then we've stepped into the
2190 signal handler (or hit some other event). We'll delete
2191 the step-resume breakpoint then. */
2192
2193 if (debug_infrun)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "infrun: resume: skipping permanent breakpoint, "
2196 "deliver signal first\n");
2197
2198 clear_step_over_info ();
2199 tp->control.trap_expected = 0;
2200
2201 if (tp->control.step_resume_breakpoint == NULL)
2202 {
2203 /* Set a "high-priority" step-resume, as we don't want
2204 user breakpoints at PC to trigger (again) when this
2205 hits. */
2206 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2207 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2208
2209 tp->step_after_step_resume_breakpoint = step;
2210 }
2211
2212 insert_breakpoints ();
2213 }
2214 else
2215 {
2216 /* There's no signal to pass, we can go ahead and skip the
2217 permanent breakpoint manually. */
2218 if (debug_infrun)
2219 fprintf_unfiltered (gdb_stdlog,
2220 "infrun: resume: skipping permanent breakpoint\n");
2221 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2222 /* Update pc to reflect the new address from which we will
2223 execute instructions. */
2224 pc = regcache_read_pc (regcache);
2225
2226 if (step)
2227 {
2228 /* We've already advanced the PC, so the stepping part
2229 is done. Now we need to arrange for a trap to be
2230 reported to handle_inferior_event. Set a breakpoint
2231 at the current PC, and run to it. Don't update
2232 prev_pc, because if we end in
44a1ee51
PA
2233 switch_back_to_stepped_thread, we want the "expected
2234 thread advanced also" branch to be taken. IOW, we
2235 don't want this thread to step further from PC
af48d08f 2236 (overstep). */
1ac806b8 2237 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2238 insert_single_step_breakpoint (gdbarch, aspace, pc);
2239 insert_breakpoints ();
2240
856e7dd6 2241 resume_ptid = user_visible_resume_ptid (user_step);
1ac806b8 2242 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f
PA
2243 discard_cleanups (old_cleanups);
2244 return;
2245 }
2246 }
6d350bb5 2247 }
c2c6d25f 2248
c1e36e3e
PA
2249 /* If we have a breakpoint to step over, make sure to do a single
2250 step only. Same if we have software watchpoints. */
2251 if (tp->control.trap_expected || bpstat_should_step ())
2252 tp->control.may_range_step = 0;
2253
237fc4c9
PA
2254 /* If enabled, step over breakpoints by executing a copy of the
2255 instruction at a different address.
2256
2257 We can't use displaced stepping when we have a signal to deliver;
2258 the comments for displaced_step_prepare explain why. The
2259 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2260 signals' explain what we do instead.
2261
2262 We can't use displaced stepping when we are waiting for vfork_done
2263 event, displaced stepping breaks the vfork child similarly as single
2264 step software breakpoint. */
515630c5 2265 if (use_displaced_stepping (gdbarch)
36728e82 2266 && tp->control.trap_expected
cb71640d 2267 && !step_over_info_valid_p ()
a493e3e2 2268 && sig == GDB_SIGNAL_0
74609e71 2269 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2270 {
fc1cf338
PA
2271 struct displaced_step_inferior_state *displaced;
2272
237fc4c9 2273 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2274 {
2275 /* Got placed in displaced stepping queue. Will be resumed
2276 later when all the currently queued displaced stepping
251bde03
PA
2277 requests finish. The thread is not executing at this
2278 point, and the call to set_executing will be made later.
2279 But we need to call set_running here, since from the
28bf096c
PA
2280 user/frontend's point of view, threads were set running. */
2281 set_running (user_visible_resume_ptid (user_step), 1);
d56b7306
VP
2282 discard_cleanups (old_cleanups);
2283 return;
2284 }
99e40580 2285
ca7781d2
LM
2286 /* Update pc to reflect the new address from which we will execute
2287 instructions due to displaced stepping. */
2288 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2289
fc1cf338 2290 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2291 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2292 displaced->step_closure);
237fc4c9
PA
2293 }
2294
2facfe5c 2295 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2296 else if (step)
2facfe5c 2297 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2298
30852783
UW
2299 /* Currently, our software single-step implementation leads to different
2300 results than hardware single-stepping in one situation: when stepping
2301 into delivering a signal which has an associated signal handler,
2302 hardware single-step will stop at the first instruction of the handler,
2303 while software single-step will simply skip execution of the handler.
2304
2305 For now, this difference in behavior is accepted since there is no
2306 easy way to actually implement single-stepping into a signal handler
2307 without kernel support.
2308
2309 However, there is one scenario where this difference leads to follow-on
2310 problems: if we're stepping off a breakpoint by removing all breakpoints
2311 and then single-stepping. In this case, the software single-step
2312 behavior means that even if there is a *breakpoint* in the signal
2313 handler, GDB still would not stop.
2314
2315 Fortunately, we can at least fix this particular issue. We detect
2316 here the case where we are about to deliver a signal while software
2317 single-stepping with breakpoints removed. In this situation, we
2318 revert the decisions to remove all breakpoints and insert single-
2319 step breakpoints, and instead we install a step-resume breakpoint
2320 at the current address, deliver the signal without stepping, and
2321 once we arrive back at the step-resume breakpoint, actually step
2322 over the breakpoint we originally wanted to step over. */
34b7e8a6 2323 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2324 && sig != GDB_SIGNAL_0
2325 && step_over_info_valid_p ())
30852783
UW
2326 {
2327 /* If we have nested signals or a pending signal is delivered
2328 immediately after a handler returns, might might already have
2329 a step-resume breakpoint set on the earlier handler. We cannot
2330 set another step-resume breakpoint; just continue on until the
2331 original breakpoint is hit. */
2332 if (tp->control.step_resume_breakpoint == NULL)
2333 {
2c03e5be 2334 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2335 tp->step_after_step_resume_breakpoint = 1;
2336 }
2337
34b7e8a6 2338 delete_single_step_breakpoints (tp);
30852783 2339
31e77af2 2340 clear_step_over_info ();
30852783 2341 tp->control.trap_expected = 0;
31e77af2
PA
2342
2343 insert_breakpoints ();
30852783
UW
2344 }
2345
b0f16a3e
SM
2346 /* If STEP is set, it's a request to use hardware stepping
2347 facilities. But in that case, we should never
2348 use singlestep breakpoint. */
34b7e8a6 2349 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2350
b0f16a3e
SM
2351 /* Decide the set of threads to ask the target to resume. Start
2352 by assuming everything will be resumed, than narrow the set
2353 by applying increasingly restricting conditions. */
856e7dd6 2354 resume_ptid = user_visible_resume_ptid (user_step);
cd76b0b7 2355
251bde03
PA
2356 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2357 (e.g., we might need to step over a breakpoint), from the
2358 user/frontend's point of view, all threads in RESUME_PTID are now
28bf096c
PA
2359 running. */
2360 set_running (resume_ptid, 1);
251bde03 2361
b0f16a3e 2362 /* Maybe resume a single thread after all. */
34b7e8a6 2363 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2364 && tp->control.trap_expected)
2365 {
2366 /* We're allowing a thread to run past a breakpoint it has
2367 hit, by single-stepping the thread with the breakpoint
2368 removed. In which case, we need to single-step only this
2369 thread, and keep others stopped, as they can miss this
2370 breakpoint if allowed to run. */
2371 resume_ptid = inferior_ptid;
2372 }
d4db2f36 2373
7f5ef605
PA
2374 if (execution_direction != EXEC_REVERSE
2375 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2376 {
7f5ef605
PA
2377 /* The only case we currently need to step a breakpoint
2378 instruction is when we have a signal to deliver. See
2379 handle_signal_stop where we handle random signals that could
2380 take out us out of the stepping range. Normally, in that
2381 case we end up continuing (instead of stepping) over the
2382 signal handler with a breakpoint at PC, but there are cases
2383 where we should _always_ single-step, even if we have a
2384 step-resume breakpoint, like when a software watchpoint is
2385 set. Assuming single-stepping and delivering a signal at the
2386 same time would takes us to the signal handler, then we could
2387 have removed the breakpoint at PC to step over it. However,
2388 some hardware step targets (like e.g., Mac OS) can't step
2389 into signal handlers, and for those, we need to leave the
2390 breakpoint at PC inserted, as otherwise if the handler
2391 recurses and executes PC again, it'll miss the breakpoint.
2392 So we leave the breakpoint inserted anyway, but we need to
2393 record that we tried to step a breakpoint instruction, so
2394 that adjust_pc_after_break doesn't end up confused. */
2395 gdb_assert (sig != GDB_SIGNAL_0);
2396
2397 tp->stepped_breakpoint = 1;
2398
b0f16a3e
SM
2399 /* Most targets can step a breakpoint instruction, thus
2400 executing it normally. But if this one cannot, just
2401 continue and we will hit it anyway. */
7f5ef605 2402 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2403 step = 0;
2404 }
ef5cf84e 2405
b0f16a3e
SM
2406 if (debug_displaced
2407 && use_displaced_stepping (gdbarch)
cb71640d
PA
2408 && tp->control.trap_expected
2409 && !step_over_info_valid_p ())
b0f16a3e 2410 {
d9b67d9f 2411 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2412 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2413 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2414 gdb_byte buf[4];
2415
2416 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2417 paddress (resume_gdbarch, actual_pc));
2418 read_memory (actual_pc, buf, sizeof (buf));
2419 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2420 }
237fc4c9 2421
b0f16a3e
SM
2422 if (tp->control.may_range_step)
2423 {
2424 /* If we're resuming a thread with the PC out of the step
2425 range, then we're doing some nested/finer run control
2426 operation, like stepping the thread out of the dynamic
2427 linker or the displaced stepping scratch pad. We
2428 shouldn't have allowed a range step then. */
2429 gdb_assert (pc_in_thread_step_range (pc, tp));
2430 }
c1e36e3e 2431
64ce06e4 2432 do_target_resume (resume_ptid, step, sig);
c906108c
SS
2433 discard_cleanups (old_cleanups);
2434}
2435\f
237fc4c9 2436/* Proceeding. */
c906108c
SS
2437
2438/* Clear out all variables saying what to do when inferior is continued.
2439 First do this, then set the ones you want, then call `proceed'. */
2440
a7212384
UW
2441static void
2442clear_proceed_status_thread (struct thread_info *tp)
c906108c 2443{
a7212384
UW
2444 if (debug_infrun)
2445 fprintf_unfiltered (gdb_stdlog,
2446 "infrun: clear_proceed_status_thread (%s)\n",
2447 target_pid_to_str (tp->ptid));
d6b48e9c 2448
70509625
PA
2449 /* If this signal should not be seen by program, give it zero.
2450 Used for debugging signals. */
2451 if (!signal_pass_state (tp->suspend.stop_signal))
2452 tp->suspend.stop_signal = GDB_SIGNAL_0;
2453
16c381f0
JK
2454 tp->control.trap_expected = 0;
2455 tp->control.step_range_start = 0;
2456 tp->control.step_range_end = 0;
c1e36e3e 2457 tp->control.may_range_step = 0;
16c381f0
JK
2458 tp->control.step_frame_id = null_frame_id;
2459 tp->control.step_stack_frame_id = null_frame_id;
2460 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2461 tp->control.step_start_function = NULL;
a7212384 2462 tp->stop_requested = 0;
4e1c45ea 2463
16c381f0 2464 tp->control.stop_step = 0;
32400beb 2465
16c381f0 2466 tp->control.proceed_to_finish = 0;
414c69f7 2467
17b2616c 2468 tp->control.command_interp = NULL;
856e7dd6 2469 tp->control.stepping_command = 0;
17b2616c 2470
a7212384 2471 /* Discard any remaining commands or status from previous stop. */
16c381f0 2472 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2473}
32400beb 2474
a7212384 2475void
70509625 2476clear_proceed_status (int step)
a7212384 2477{
6c95b8df
PA
2478 if (!non_stop)
2479 {
70509625
PA
2480 struct thread_info *tp;
2481 ptid_t resume_ptid;
2482
2483 resume_ptid = user_visible_resume_ptid (step);
2484
2485 /* In all-stop mode, delete the per-thread status of all threads
2486 we're about to resume, implicitly and explicitly. */
2487 ALL_NON_EXITED_THREADS (tp)
2488 {
2489 if (!ptid_match (tp->ptid, resume_ptid))
2490 continue;
2491 clear_proceed_status_thread (tp);
2492 }
6c95b8df
PA
2493 }
2494
a7212384
UW
2495 if (!ptid_equal (inferior_ptid, null_ptid))
2496 {
2497 struct inferior *inferior;
2498
2499 if (non_stop)
2500 {
6c95b8df
PA
2501 /* If in non-stop mode, only delete the per-thread status of
2502 the current thread. */
a7212384
UW
2503 clear_proceed_status_thread (inferior_thread ());
2504 }
6c95b8df 2505
d6b48e9c 2506 inferior = current_inferior ();
16c381f0 2507 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2508 }
2509
c906108c 2510 stop_after_trap = 0;
f3b1572e 2511
31e77af2
PA
2512 clear_step_over_info ();
2513
f3b1572e 2514 observer_notify_about_to_proceed ();
c906108c
SS
2515}
2516
99619bea
PA
2517/* Returns true if TP is still stopped at a breakpoint that needs
2518 stepping-over in order to make progress. If the breakpoint is gone
2519 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2520
2521static int
6c4cfb24 2522thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2523{
2524 if (tp->stepping_over_breakpoint)
2525 {
2526 struct regcache *regcache = get_thread_regcache (tp->ptid);
2527
2528 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2529 regcache_read_pc (regcache))
2530 == ordinary_breakpoint_here)
99619bea
PA
2531 return 1;
2532
2533 tp->stepping_over_breakpoint = 0;
2534 }
2535
2536 return 0;
2537}
2538
6c4cfb24
PA
2539/* Check whether thread TP still needs to start a step-over in order
2540 to make progress when resumed. Returns an bitwise or of enum
2541 step_over_what bits, indicating what needs to be stepped over. */
2542
2543static int
2544thread_still_needs_step_over (struct thread_info *tp)
2545{
2546 struct inferior *inf = find_inferior_ptid (tp->ptid);
2547 int what = 0;
2548
2549 if (thread_still_needs_step_over_bp (tp))
2550 what |= STEP_OVER_BREAKPOINT;
2551
2552 if (tp->stepping_over_watchpoint
2553 && !target_have_steppable_watchpoint)
2554 what |= STEP_OVER_WATCHPOINT;
2555
2556 return what;
2557}
2558
483805cf
PA
2559/* Returns true if scheduler locking applies. STEP indicates whether
2560 we're about to do a step/next-like command to a thread. */
2561
2562static int
856e7dd6 2563schedlock_applies (struct thread_info *tp)
483805cf
PA
2564{
2565 return (scheduler_mode == schedlock_on
2566 || (scheduler_mode == schedlock_step
856e7dd6 2567 && tp->control.stepping_command));
483805cf
PA
2568}
2569
99619bea
PA
2570/* Look a thread other than EXCEPT that has previously reported a
2571 breakpoint event, and thus needs a step-over in order to make
856e7dd6 2572 progress. Returns NULL is none is found. */
99619bea
PA
2573
2574static struct thread_info *
856e7dd6 2575find_thread_needs_step_over (struct thread_info *except)
ea67f13b 2576{
99619bea 2577 struct thread_info *tp, *current;
5a437975
DE
2578
2579 /* With non-stop mode on, threads are always handled individually. */
2580 gdb_assert (! non_stop);
ea67f13b 2581
99619bea 2582 current = inferior_thread ();
d4db2f36 2583
99619bea
PA
2584 /* If scheduler locking applies, we can avoid iterating over all
2585 threads. */
856e7dd6 2586 if (schedlock_applies (except))
ea67f13b 2587 {
99619bea
PA
2588 if (except != current
2589 && thread_still_needs_step_over (current))
2590 return current;
515630c5 2591
99619bea
PA
2592 return NULL;
2593 }
0d9a9a5f 2594
034f788c 2595 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2596 {
2597 /* Ignore the EXCEPT thread. */
2598 if (tp == except)
2599 continue;
2600 /* Ignore threads of processes we're not resuming. */
2601 if (!sched_multi
2602 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2603 continue;
2604
2605 if (thread_still_needs_step_over (tp))
2606 return tp;
ea67f13b
DJ
2607 }
2608
99619bea 2609 return NULL;
ea67f13b 2610}
e4846b08 2611
c906108c
SS
2612/* Basic routine for continuing the program in various fashions.
2613
2614 ADDR is the address to resume at, or -1 for resume where stopped.
2615 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2616 or -1 for act according to how it stopped.
c906108c 2617 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2618 -1 means return after that and print nothing.
2619 You should probably set various step_... variables
2620 before calling here, if you are stepping.
c906108c
SS
2621
2622 You should call clear_proceed_status before calling proceed. */
2623
2624void
64ce06e4 2625proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2626{
e58b0e63
PA
2627 struct regcache *regcache;
2628 struct gdbarch *gdbarch;
4e1c45ea 2629 struct thread_info *tp;
e58b0e63 2630 CORE_ADDR pc;
6c95b8df 2631 struct address_space *aspace;
c906108c 2632
e58b0e63
PA
2633 /* If we're stopped at a fork/vfork, follow the branch set by the
2634 "set follow-fork-mode" command; otherwise, we'll just proceed
2635 resuming the current thread. */
2636 if (!follow_fork ())
2637 {
2638 /* The target for some reason decided not to resume. */
2639 normal_stop ();
f148b27e
PA
2640 if (target_can_async_p ())
2641 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2642 return;
2643 }
2644
842951eb
PA
2645 /* We'll update this if & when we switch to a new thread. */
2646 previous_inferior_ptid = inferior_ptid;
2647
e58b0e63
PA
2648 regcache = get_current_regcache ();
2649 gdbarch = get_regcache_arch (regcache);
6c95b8df 2650 aspace = get_regcache_aspace (regcache);
e58b0e63 2651 pc = regcache_read_pc (regcache);
2adfaa28 2652 tp = inferior_thread ();
e58b0e63 2653
99619bea
PA
2654 /* Fill in with reasonable starting values. */
2655 init_thread_stepping_state (tp);
2656
2acceee2 2657 if (addr == (CORE_ADDR) -1)
c906108c 2658 {
af48d08f
PA
2659 if (pc == stop_pc
2660 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2661 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2662 /* There is a breakpoint at the address we will resume at,
2663 step one instruction before inserting breakpoints so that
2664 we do not stop right away (and report a second hit at this
b2175913
MS
2665 breakpoint).
2666
2667 Note, we don't do this in reverse, because we won't
2668 actually be executing the breakpoint insn anyway.
2669 We'll be (un-)executing the previous instruction. */
99619bea 2670 tp->stepping_over_breakpoint = 1;
515630c5
UW
2671 else if (gdbarch_single_step_through_delay_p (gdbarch)
2672 && gdbarch_single_step_through_delay (gdbarch,
2673 get_current_frame ()))
3352ef37
AC
2674 /* We stepped onto an instruction that needs to be stepped
2675 again before re-inserting the breakpoint, do so. */
99619bea 2676 tp->stepping_over_breakpoint = 1;
c906108c
SS
2677 }
2678 else
2679 {
515630c5 2680 regcache_write_pc (regcache, addr);
c906108c
SS
2681 }
2682
70509625
PA
2683 if (siggnal != GDB_SIGNAL_DEFAULT)
2684 tp->suspend.stop_signal = siggnal;
2685
17b2616c
PA
2686 /* Record the interpreter that issued the execution command that
2687 caused this thread to resume. If the top level interpreter is
2688 MI/async, and the execution command was a CLI command
2689 (next/step/etc.), we'll want to print stop event output to the MI
2690 console channel (the stepped-to line, etc.), as if the user
2691 entered the execution command on a real GDB console. */
2692 inferior_thread ()->control.command_interp = command_interp ();
2693
527159b7 2694 if (debug_infrun)
8a9de0e4 2695 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2696 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2697 paddress (gdbarch, addr),
64ce06e4 2698 gdb_signal_to_symbol_string (siggnal));
527159b7 2699
94cc34af
PA
2700 if (non_stop)
2701 /* In non-stop, each thread is handled individually. The context
2702 must already be set to the right thread here. */
2703 ;
2704 else
2705 {
99619bea
PA
2706 struct thread_info *step_over;
2707
94cc34af
PA
2708 /* In a multi-threaded task we may select another thread and
2709 then continue or step.
c906108c 2710
94cc34af
PA
2711 But if the old thread was stopped at a breakpoint, it will
2712 immediately cause another breakpoint stop without any
2713 execution (i.e. it will report a breakpoint hit incorrectly).
2714 So we must step over it first.
c906108c 2715
99619bea
PA
2716 Look for a thread other than the current (TP) that reported a
2717 breakpoint hit and hasn't been resumed yet since. */
856e7dd6 2718 step_over = find_thread_needs_step_over (tp);
99619bea 2719 if (step_over != NULL)
2adfaa28 2720 {
99619bea
PA
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: need to step-over [%s] first\n",
2724 target_pid_to_str (step_over->ptid));
2725
2726 /* Store the prev_pc for the stepping thread too, needed by
44a1ee51 2727 switch_back_to_stepped_thread. */
99619bea
PA
2728 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2729 switch_to_thread (step_over->ptid);
2730 tp = step_over;
2adfaa28 2731 }
94cc34af 2732 }
c906108c 2733
31e77af2
PA
2734 /* If we need to step over a breakpoint, and we're not using
2735 displaced stepping to do so, insert all breakpoints (watchpoints,
2736 etc.) but the one we're stepping over, step one instruction, and
2737 then re-insert the breakpoint when that step is finished. */
99619bea 2738 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2739 {
31e77af2
PA
2740 struct regcache *regcache = get_current_regcache ();
2741
2742 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2743 regcache_read_pc (regcache), 0);
30852783 2744 }
31e77af2
PA
2745 else
2746 clear_step_over_info ();
30852783 2747
31e77af2 2748 insert_breakpoints ();
30852783 2749
99619bea
PA
2750 tp->control.trap_expected = tp->stepping_over_breakpoint;
2751
c906108c
SS
2752 annotate_starting ();
2753
2754 /* Make sure that output from GDB appears before output from the
2755 inferior. */
2756 gdb_flush (gdb_stdout);
2757
e4846b08 2758 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2759 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2760 scenarios such as inferior function calls or returning from
2761 a function via the return command. In those cases, the prev_pc
2762 value was not set properly for subsequent commands. The prev_pc value
2763 is used to initialize the starting line number in the ecs. With an
2764 invalid value, the gdb next command ends up stopping at the position
2765 represented by the next line table entry past our start position.
2766 On platforms that generate one line table entry per line, this
2767 is not a problem. However, on the ia64, the compiler generates
2768 extraneous line table entries that do not increase the line number.
2769 When we issue the gdb next command on the ia64 after an inferior call
2770 or a return command, we often end up a few instructions forward, still
2771 within the original line we started.
2772
d5cd6034
JB
2773 An attempt was made to refresh the prev_pc at the same time the
2774 execution_control_state is initialized (for instance, just before
2775 waiting for an inferior event). But this approach did not work
2776 because of platforms that use ptrace, where the pc register cannot
2777 be read unless the inferior is stopped. At that point, we are not
2778 guaranteed the inferior is stopped and so the regcache_read_pc() call
2779 can fail. Setting the prev_pc value here ensures the value is updated
2780 correctly when the inferior is stopped. */
4e1c45ea 2781 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2782
c906108c 2783 /* Resume inferior. */
64ce06e4 2784 resume (tp->suspend.stop_signal);
c906108c
SS
2785
2786 /* Wait for it to stop (if not standalone)
2787 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2788 /* Do this only if we are not using the event loop, or if the target
1777feb0 2789 does not support asynchronous execution. */
362646f5 2790 if (!target_can_async_p ())
43ff13b4 2791 {
e4c8541f 2792 wait_for_inferior ();
43ff13b4
JM
2793 normal_stop ();
2794 }
c906108c 2795}
c906108c
SS
2796\f
2797
2798/* Start remote-debugging of a machine over a serial link. */
96baa820 2799
c906108c 2800void
8621d6a9 2801start_remote (int from_tty)
c906108c 2802{
d6b48e9c 2803 struct inferior *inferior;
d6b48e9c
PA
2804
2805 inferior = current_inferior ();
16c381f0 2806 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2807
1777feb0 2808 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2809 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2810 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2811 nothing is returned (instead of just blocking). Because of this,
2812 targets expecting an immediate response need to, internally, set
2813 things up so that the target_wait() is forced to eventually
1777feb0 2814 timeout. */
6426a772
JM
2815 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2816 differentiate to its caller what the state of the target is after
2817 the initial open has been performed. Here we're assuming that
2818 the target has stopped. It should be possible to eventually have
2819 target_open() return to the caller an indication that the target
2820 is currently running and GDB state should be set to the same as
1777feb0 2821 for an async run. */
e4c8541f 2822 wait_for_inferior ();
8621d6a9
DJ
2823
2824 /* Now that the inferior has stopped, do any bookkeeping like
2825 loading shared libraries. We want to do this before normal_stop,
2826 so that the displayed frame is up to date. */
2827 post_create_inferior (&current_target, from_tty);
2828
6426a772 2829 normal_stop ();
c906108c
SS
2830}
2831
2832/* Initialize static vars when a new inferior begins. */
2833
2834void
96baa820 2835init_wait_for_inferior (void)
c906108c
SS
2836{
2837 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2838
c906108c
SS
2839 breakpoint_init_inferior (inf_starting);
2840
70509625 2841 clear_proceed_status (0);
9f976b41 2842
ca005067 2843 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2844
842951eb 2845 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2846
edb3359d
DJ
2847 /* Discard any skipped inlined frames. */
2848 clear_inline_frame_state (minus_one_ptid);
c906108c 2849}
237fc4c9 2850
c906108c 2851\f
0d1e5fa7
PA
2852/* Data to be passed around while handling an event. This data is
2853 discarded between events. */
c5aa993b 2854struct execution_control_state
488f131b 2855{
0d1e5fa7 2856 ptid_t ptid;
4e1c45ea
PA
2857 /* The thread that got the event, if this was a thread event; NULL
2858 otherwise. */
2859 struct thread_info *event_thread;
2860
488f131b 2861 struct target_waitstatus ws;
7e324e48 2862 int stop_func_filled_in;
488f131b
JB
2863 CORE_ADDR stop_func_start;
2864 CORE_ADDR stop_func_end;
2c02bd72 2865 const char *stop_func_name;
488f131b 2866 int wait_some_more;
4f5d7f63 2867
2adfaa28
PA
2868 /* True if the event thread hit the single-step breakpoint of
2869 another thread. Thus the event doesn't cause a stop, the thread
2870 needs to be single-stepped past the single-step breakpoint before
2871 we can switch back to the original stepping thread. */
2872 int hit_singlestep_breakpoint;
488f131b
JB
2873};
2874
ec9499be 2875static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2876
568d6575
UW
2877static void handle_step_into_function (struct gdbarch *gdbarch,
2878 struct execution_control_state *ecs);
2879static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2880 struct execution_control_state *ecs);
4f5d7f63 2881static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2882static void check_exception_resume (struct execution_control_state *,
28106bc2 2883 struct frame_info *);
611c83ae 2884
bdc36728 2885static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2886static void stop_waiting (struct execution_control_state *ecs);
104c1213 2887static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2888static void keep_going (struct execution_control_state *ecs);
94c57d6a 2889static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2890static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2891
252fbfc8
PA
2892/* Callback for iterate over threads. If the thread is stopped, but
2893 the user/frontend doesn't know about that yet, go through
2894 normal_stop, as if the thread had just stopped now. ARG points at
2895 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2896 ptid_is_pid(PTID) is true, applies to all threads of the process
2897 pointed at by PTID. Otherwise, apply only to the thread pointed by
2898 PTID. */
2899
2900static int
2901infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2902{
2903 ptid_t ptid = * (ptid_t *) arg;
2904
2905 if ((ptid_equal (info->ptid, ptid)
2906 || ptid_equal (minus_one_ptid, ptid)
2907 || (ptid_is_pid (ptid)
2908 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2909 && is_running (info->ptid)
2910 && !is_executing (info->ptid))
2911 {
2912 struct cleanup *old_chain;
2913 struct execution_control_state ecss;
2914 struct execution_control_state *ecs = &ecss;
2915
2916 memset (ecs, 0, sizeof (*ecs));
2917
2918 old_chain = make_cleanup_restore_current_thread ();
2919
f15cb84a
YQ
2920 overlay_cache_invalid = 1;
2921 /* Flush target cache before starting to handle each event.
2922 Target was running and cache could be stale. This is just a
2923 heuristic. Running threads may modify target memory, but we
2924 don't get any event. */
2925 target_dcache_invalidate ();
2926
252fbfc8
PA
2927 /* Go through handle_inferior_event/normal_stop, so we always
2928 have consistent output as if the stop event had been
2929 reported. */
2930 ecs->ptid = info->ptid;
e09875d4 2931 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2932 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2933 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2934
2935 handle_inferior_event (ecs);
2936
2937 if (!ecs->wait_some_more)
2938 {
2939 struct thread_info *tp;
2940
2941 normal_stop ();
2942
fa4cd53f 2943 /* Finish off the continuations. */
252fbfc8 2944 tp = inferior_thread ();
fa4cd53f
PA
2945 do_all_intermediate_continuations_thread (tp, 1);
2946 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2947 }
2948
2949 do_cleanups (old_chain);
2950 }
2951
2952 return 0;
2953}
2954
2955/* This function is attached as a "thread_stop_requested" observer.
2956 Cleanup local state that assumed the PTID was to be resumed, and
2957 report the stop to the frontend. */
2958
2c0b251b 2959static void
252fbfc8
PA
2960infrun_thread_stop_requested (ptid_t ptid)
2961{
fc1cf338 2962 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2963
2964 /* PTID was requested to stop. Remove it from the displaced
2965 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2966
2967 for (displaced = displaced_step_inferior_states;
2968 displaced;
2969 displaced = displaced->next)
252fbfc8 2970 {
fc1cf338 2971 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2972
fc1cf338
PA
2973 it = displaced->step_request_queue;
2974 prev_next_p = &displaced->step_request_queue;
2975 while (it)
252fbfc8 2976 {
fc1cf338
PA
2977 if (ptid_match (it->ptid, ptid))
2978 {
2979 *prev_next_p = it->next;
2980 it->next = NULL;
2981 xfree (it);
2982 }
252fbfc8 2983 else
fc1cf338
PA
2984 {
2985 prev_next_p = &it->next;
2986 }
252fbfc8 2987
fc1cf338 2988 it = *prev_next_p;
252fbfc8 2989 }
252fbfc8
PA
2990 }
2991
2992 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2993}
2994
a07daef3
PA
2995static void
2996infrun_thread_thread_exit (struct thread_info *tp, int silent)
2997{
2998 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2999 nullify_last_target_wait_ptid ();
3000}
3001
0cbcdb96
PA
3002/* Delete the step resume, single-step and longjmp/exception resume
3003 breakpoints of TP. */
4e1c45ea 3004
0cbcdb96
PA
3005static void
3006delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3007{
0cbcdb96
PA
3008 delete_step_resume_breakpoint (tp);
3009 delete_exception_resume_breakpoint (tp);
34b7e8a6 3010 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3011}
3012
0cbcdb96
PA
3013/* If the target still has execution, call FUNC for each thread that
3014 just stopped. In all-stop, that's all the non-exited threads; in
3015 non-stop, that's the current thread, only. */
3016
3017typedef void (*for_each_just_stopped_thread_callback_func)
3018 (struct thread_info *tp);
4e1c45ea
PA
3019
3020static void
0cbcdb96 3021for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3022{
0cbcdb96 3023 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3024 return;
3025
3026 if (non_stop)
3027 {
0cbcdb96
PA
3028 /* If in non-stop mode, only the current thread stopped. */
3029 func (inferior_thread ());
4e1c45ea
PA
3030 }
3031 else
0cbcdb96
PA
3032 {
3033 struct thread_info *tp;
3034
3035 /* In all-stop mode, all threads have stopped. */
3036 ALL_NON_EXITED_THREADS (tp)
3037 {
3038 func (tp);
3039 }
3040 }
3041}
3042
3043/* Delete the step resume and longjmp/exception resume breakpoints of
3044 the threads that just stopped. */
3045
3046static void
3047delete_just_stopped_threads_infrun_breakpoints (void)
3048{
3049 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3050}
3051
3052/* Delete the single-step breakpoints of the threads that just
3053 stopped. */
7c16b83e 3054
34b7e8a6
PA
3055static void
3056delete_just_stopped_threads_single_step_breakpoints (void)
3057{
3058 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3059}
3060
1777feb0 3061/* A cleanup wrapper. */
4e1c45ea
PA
3062
3063static void
0cbcdb96 3064delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3065{
0cbcdb96 3066 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3067}
3068
223698f8
DE
3069/* Pretty print the results of target_wait, for debugging purposes. */
3070
3071static void
3072print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3073 const struct target_waitstatus *ws)
3074{
3075 char *status_string = target_waitstatus_to_string (ws);
3076 struct ui_file *tmp_stream = mem_fileopen ();
3077 char *text;
223698f8
DE
3078
3079 /* The text is split over several lines because it was getting too long.
3080 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3081 output as a unit; we want only one timestamp printed if debug_timestamp
3082 is set. */
3083
3084 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3085 "infrun: target_wait (%d.%ld.%ld",
3086 ptid_get_pid (waiton_ptid),
3087 ptid_get_lwp (waiton_ptid),
3088 ptid_get_tid (waiton_ptid));
dfd4cc63 3089 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3090 fprintf_unfiltered (tmp_stream,
3091 " [%s]", target_pid_to_str (waiton_ptid));
3092 fprintf_unfiltered (tmp_stream, ", status) =\n");
3093 fprintf_unfiltered (tmp_stream,
1176ecec 3094 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3095 ptid_get_pid (result_ptid),
1176ecec
PA
3096 ptid_get_lwp (result_ptid),
3097 ptid_get_tid (result_ptid),
dfd4cc63 3098 target_pid_to_str (result_ptid));
223698f8
DE
3099 fprintf_unfiltered (tmp_stream,
3100 "infrun: %s\n",
3101 status_string);
3102
759ef836 3103 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3104
3105 /* This uses %s in part to handle %'s in the text, but also to avoid
3106 a gcc error: the format attribute requires a string literal. */
3107 fprintf_unfiltered (gdb_stdlog, "%s", text);
3108
3109 xfree (status_string);
3110 xfree (text);
3111 ui_file_delete (tmp_stream);
3112}
3113
24291992
PA
3114/* Prepare and stabilize the inferior for detaching it. E.g.,
3115 detaching while a thread is displaced stepping is a recipe for
3116 crashing it, as nothing would readjust the PC out of the scratch
3117 pad. */
3118
3119void
3120prepare_for_detach (void)
3121{
3122 struct inferior *inf = current_inferior ();
3123 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3124 struct cleanup *old_chain_1;
3125 struct displaced_step_inferior_state *displaced;
3126
3127 displaced = get_displaced_stepping_state (inf->pid);
3128
3129 /* Is any thread of this process displaced stepping? If not,
3130 there's nothing else to do. */
3131 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3132 return;
3133
3134 if (debug_infrun)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "displaced-stepping in-process while detaching");
3137
3138 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3139 inf->detaching = 1;
3140
3141 while (!ptid_equal (displaced->step_ptid, null_ptid))
3142 {
3143 struct cleanup *old_chain_2;
3144 struct execution_control_state ecss;
3145 struct execution_control_state *ecs;
3146
3147 ecs = &ecss;
3148 memset (ecs, 0, sizeof (*ecs));
3149
3150 overlay_cache_invalid = 1;
f15cb84a
YQ
3151 /* Flush target cache before starting to handle each event.
3152 Target was running and cache could be stale. This is just a
3153 heuristic. Running threads may modify target memory, but we
3154 don't get any event. */
3155 target_dcache_invalidate ();
24291992 3156
24291992
PA
3157 if (deprecated_target_wait_hook)
3158 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3159 else
3160 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3161
3162 if (debug_infrun)
3163 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3164
3165 /* If an error happens while handling the event, propagate GDB's
3166 knowledge of the executing state to the frontend/user running
3167 state. */
3e43a32a
MS
3168 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3169 &minus_one_ptid);
24291992
PA
3170
3171 /* Now figure out what to do with the result of the result. */
3172 handle_inferior_event (ecs);
3173
3174 /* No error, don't finish the state yet. */
3175 discard_cleanups (old_chain_2);
3176
3177 /* Breakpoints and watchpoints are not installed on the target
3178 at this point, and signals are passed directly to the
3179 inferior, so this must mean the process is gone. */
3180 if (!ecs->wait_some_more)
3181 {
3182 discard_cleanups (old_chain_1);
3183 error (_("Program exited while detaching"));
3184 }
3185 }
3186
3187 discard_cleanups (old_chain_1);
3188}
3189
cd0fc7c3 3190/* Wait for control to return from inferior to debugger.
ae123ec6 3191
cd0fc7c3
SS
3192 If inferior gets a signal, we may decide to start it up again
3193 instead of returning. That is why there is a loop in this function.
3194 When this function actually returns it means the inferior
3195 should be left stopped and GDB should read more commands. */
3196
3197void
e4c8541f 3198wait_for_inferior (void)
cd0fc7c3
SS
3199{
3200 struct cleanup *old_cleanups;
e6f5c25b 3201 struct cleanup *thread_state_chain;
c906108c 3202
527159b7 3203 if (debug_infrun)
ae123ec6 3204 fprintf_unfiltered
e4c8541f 3205 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3206
0cbcdb96
PA
3207 old_cleanups
3208 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3209 NULL);
cd0fc7c3 3210
e6f5c25b
PA
3211 /* If an error happens while handling the event, propagate GDB's
3212 knowledge of the executing state to the frontend/user running
3213 state. */
3214 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3215
c906108c
SS
3216 while (1)
3217 {
ae25568b
PA
3218 struct execution_control_state ecss;
3219 struct execution_control_state *ecs = &ecss;
963f9c80 3220 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3221
ae25568b
PA
3222 memset (ecs, 0, sizeof (*ecs));
3223
ec9499be 3224 overlay_cache_invalid = 1;
ec9499be 3225
f15cb84a
YQ
3226 /* Flush target cache before starting to handle each event.
3227 Target was running and cache could be stale. This is just a
3228 heuristic. Running threads may modify target memory, but we
3229 don't get any event. */
3230 target_dcache_invalidate ();
3231
9a4105ab 3232 if (deprecated_target_wait_hook)
47608cb1 3233 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3234 else
47608cb1 3235 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3236
f00150c9 3237 if (debug_infrun)
223698f8 3238 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3239
cd0fc7c3
SS
3240 /* Now figure out what to do with the result of the result. */
3241 handle_inferior_event (ecs);
c906108c 3242
cd0fc7c3
SS
3243 if (!ecs->wait_some_more)
3244 break;
3245 }
4e1c45ea 3246
e6f5c25b
PA
3247 /* No error, don't finish the state yet. */
3248 discard_cleanups (thread_state_chain);
3249
cd0fc7c3
SS
3250 do_cleanups (old_cleanups);
3251}
c906108c 3252
d3d4baed
PA
3253/* Cleanup that reinstalls the readline callback handler, if the
3254 target is running in the background. If while handling the target
3255 event something triggered a secondary prompt, like e.g., a
3256 pagination prompt, we'll have removed the callback handler (see
3257 gdb_readline_wrapper_line). Need to do this as we go back to the
3258 event loop, ready to process further input. Note this has no
3259 effect if the handler hasn't actually been removed, because calling
3260 rl_callback_handler_install resets the line buffer, thus losing
3261 input. */
3262
3263static void
3264reinstall_readline_callback_handler_cleanup (void *arg)
3265{
6c400b59
PA
3266 if (!interpreter_async)
3267 {
3268 /* We're not going back to the top level event loop yet. Don't
3269 install the readline callback, as it'd prep the terminal,
3270 readline-style (raw, noecho) (e.g., --batch). We'll install
3271 it the next time the prompt is displayed, when we're ready
3272 for input. */
3273 return;
3274 }
3275
d3d4baed
PA
3276 if (async_command_editing_p && !sync_execution)
3277 gdb_rl_callback_handler_reinstall ();
3278}
3279
1777feb0 3280/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3281 event loop whenever a change of state is detected on the file
1777feb0
MS
3282 descriptor corresponding to the target. It can be called more than
3283 once to complete a single execution command. In such cases we need
3284 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3285 that this function is called for a single execution command, then
3286 report to the user that the inferior has stopped, and do the
1777feb0 3287 necessary cleanups. */
43ff13b4
JM
3288
3289void
fba45db2 3290fetch_inferior_event (void *client_data)
43ff13b4 3291{
0d1e5fa7 3292 struct execution_control_state ecss;
a474d7c2 3293 struct execution_control_state *ecs = &ecss;
4f8d22e3 3294 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3295 struct cleanup *ts_old_chain;
4f8d22e3 3296 int was_sync = sync_execution;
0f641c01 3297 int cmd_done = 0;
963f9c80 3298 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3299
0d1e5fa7
PA
3300 memset (ecs, 0, sizeof (*ecs));
3301
d3d4baed
PA
3302 /* End up with readline processing input, if necessary. */
3303 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3304
c5187ac6
PA
3305 /* We're handling a live event, so make sure we're doing live
3306 debugging. If we're looking at traceframes while the target is
3307 running, we're going to need to get back to that mode after
3308 handling the event. */
3309 if (non_stop)
3310 {
3311 make_cleanup_restore_current_traceframe ();
e6e4e701 3312 set_current_traceframe (-1);
c5187ac6
PA
3313 }
3314
4f8d22e3
PA
3315 if (non_stop)
3316 /* In non-stop mode, the user/frontend should not notice a thread
3317 switch due to internal events. Make sure we reverse to the
3318 user selected thread and frame after handling the event and
3319 running any breakpoint commands. */
3320 make_cleanup_restore_current_thread ();
3321
ec9499be 3322 overlay_cache_invalid = 1;
f15cb84a
YQ
3323 /* Flush target cache before starting to handle each event. Target
3324 was running and cache could be stale. This is just a heuristic.
3325 Running threads may modify target memory, but we don't get any
3326 event. */
3327 target_dcache_invalidate ();
3dd5b83d 3328
32231432
PA
3329 make_cleanup_restore_integer (&execution_direction);
3330 execution_direction = target_execution_direction ();
3331
9a4105ab 3332 if (deprecated_target_wait_hook)
a474d7c2 3333 ecs->ptid =
47608cb1 3334 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3335 else
47608cb1 3336 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3337
f00150c9 3338 if (debug_infrun)
223698f8 3339 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3340
29f49a6a
PA
3341 /* If an error happens while handling the event, propagate GDB's
3342 knowledge of the executing state to the frontend/user running
3343 state. */
3344 if (!non_stop)
3345 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3346 else
3347 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3348
353d1d73
JK
3349 /* Get executed before make_cleanup_restore_current_thread above to apply
3350 still for the thread which has thrown the exception. */
3351 make_bpstat_clear_actions_cleanup ();
3352
7c16b83e
PA
3353 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3354
43ff13b4 3355 /* Now figure out what to do with the result of the result. */
a474d7c2 3356 handle_inferior_event (ecs);
43ff13b4 3357
a474d7c2 3358 if (!ecs->wait_some_more)
43ff13b4 3359 {
c9657e70 3360 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3361
0cbcdb96 3362 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3363
d6b48e9c 3364 /* We may not find an inferior if this was a process exit. */
16c381f0 3365 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3366 normal_stop ();
3367
af679fd0 3368 if (target_has_execution
0e5bf2a8 3369 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3370 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3371 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3372 && ecs->event_thread->step_multi
16c381f0 3373 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3374 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3375 else
0f641c01
PA
3376 {
3377 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3378 cmd_done = 1;
3379 }
43ff13b4 3380 }
4f8d22e3 3381
29f49a6a
PA
3382 /* No error, don't finish the thread states yet. */
3383 discard_cleanups (ts_old_chain);
3384
4f8d22e3
PA
3385 /* Revert thread and frame. */
3386 do_cleanups (old_chain);
3387
3388 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3389 restore the prompt (a synchronous execution command has finished,
3390 and we're ready for input). */
b4a14fd0 3391 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3392 observer_notify_sync_execution_done ();
0f641c01
PA
3393
3394 if (cmd_done
3395 && !was_sync
3396 && exec_done_display_p
3397 && (ptid_equal (inferior_ptid, null_ptid)
3398 || !is_running (inferior_ptid)))
3399 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3400}
3401
edb3359d
DJ
3402/* Record the frame and location we're currently stepping through. */
3403void
3404set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3405{
3406 struct thread_info *tp = inferior_thread ();
3407
16c381f0
JK
3408 tp->control.step_frame_id = get_frame_id (frame);
3409 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3410
3411 tp->current_symtab = sal.symtab;
3412 tp->current_line = sal.line;
3413}
3414
0d1e5fa7
PA
3415/* Clear context switchable stepping state. */
3416
3417void
4e1c45ea 3418init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3419{
7f5ef605 3420 tss->stepped_breakpoint = 0;
0d1e5fa7 3421 tss->stepping_over_breakpoint = 0;
963f9c80 3422 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3423 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3424}
3425
c32c64b7
DE
3426/* Set the cached copy of the last ptid/waitstatus. */
3427
3428static void
3429set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3430{
3431 target_last_wait_ptid = ptid;
3432 target_last_waitstatus = status;
3433}
3434
e02bc4cc 3435/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3436 target_wait()/deprecated_target_wait_hook(). The data is actually
3437 cached by handle_inferior_event(), which gets called immediately
3438 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3439
3440void
488f131b 3441get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3442{
39f77062 3443 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3444 *status = target_last_waitstatus;
3445}
3446
ac264b3b
MS
3447void
3448nullify_last_target_wait_ptid (void)
3449{
3450 target_last_wait_ptid = minus_one_ptid;
3451}
3452
dcf4fbde 3453/* Switch thread contexts. */
dd80620e
MS
3454
3455static void
0d1e5fa7 3456context_switch (ptid_t ptid)
dd80620e 3457{
4b51d87b 3458 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3459 {
3460 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3461 target_pid_to_str (inferior_ptid));
3462 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3463 target_pid_to_str (ptid));
fd48f117
DJ
3464 }
3465
0d1e5fa7 3466 switch_to_thread (ptid);
dd80620e
MS
3467}
3468
d8dd4d5f
PA
3469/* If the target can't tell whether we've hit breakpoints
3470 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3471 check whether that could have been caused by a breakpoint. If so,
3472 adjust the PC, per gdbarch_decr_pc_after_break. */
3473
4fa8626c 3474static void
d8dd4d5f
PA
3475adjust_pc_after_break (struct thread_info *thread,
3476 struct target_waitstatus *ws)
4fa8626c 3477{
24a73cce
UW
3478 struct regcache *regcache;
3479 struct gdbarch *gdbarch;
6c95b8df 3480 struct address_space *aspace;
118e6252 3481 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3482
4fa8626c
DJ
3483 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3484 we aren't, just return.
9709f61c
DJ
3485
3486 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3487 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3488 implemented by software breakpoints should be handled through the normal
3489 breakpoint layer.
8fb3e588 3490
4fa8626c
DJ
3491 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3492 different signals (SIGILL or SIGEMT for instance), but it is less
3493 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3494 gdbarch_decr_pc_after_break. I don't know any specific target that
3495 generates these signals at breakpoints (the code has been in GDB since at
3496 least 1992) so I can not guess how to handle them here.
8fb3e588 3497
e6cf7916
UW
3498 In earlier versions of GDB, a target with
3499 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3500 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3501 target with both of these set in GDB history, and it seems unlikely to be
3502 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3503
d8dd4d5f 3504 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3505 return;
3506
d8dd4d5f 3507 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3508 return;
3509
4058b839
PA
3510 /* In reverse execution, when a breakpoint is hit, the instruction
3511 under it has already been de-executed. The reported PC always
3512 points at the breakpoint address, so adjusting it further would
3513 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3514 architecture:
3515
3516 B1 0x08000000 : INSN1
3517 B2 0x08000001 : INSN2
3518 0x08000002 : INSN3
3519 PC -> 0x08000003 : INSN4
3520
3521 Say you're stopped at 0x08000003 as above. Reverse continuing
3522 from that point should hit B2 as below. Reading the PC when the
3523 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3524 been de-executed already.
3525
3526 B1 0x08000000 : INSN1
3527 B2 PC -> 0x08000001 : INSN2
3528 0x08000002 : INSN3
3529 0x08000003 : INSN4
3530
3531 We can't apply the same logic as for forward execution, because
3532 we would wrongly adjust the PC to 0x08000000, since there's a
3533 breakpoint at PC - 1. We'd then report a hit on B1, although
3534 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3535 behaviour. */
3536 if (execution_direction == EXEC_REVERSE)
3537 return;
3538
1cf4d951
PA
3539 /* If the target can tell whether the thread hit a SW breakpoint,
3540 trust it. Targets that can tell also adjust the PC
3541 themselves. */
3542 if (target_supports_stopped_by_sw_breakpoint ())
3543 return;
3544
3545 /* Note that relying on whether a breakpoint is planted in memory to
3546 determine this can fail. E.g,. the breakpoint could have been
3547 removed since. Or the thread could have been told to step an
3548 instruction the size of a breakpoint instruction, and only
3549 _after_ was a breakpoint inserted at its address. */
3550
24a73cce
UW
3551 /* If this target does not decrement the PC after breakpoints, then
3552 we have nothing to do. */
d8dd4d5f 3553 regcache = get_thread_regcache (thread->ptid);
24a73cce 3554 gdbarch = get_regcache_arch (regcache);
118e6252 3555
527a273a 3556 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3557 if (decr_pc == 0)
24a73cce
UW
3558 return;
3559
6c95b8df
PA
3560 aspace = get_regcache_aspace (regcache);
3561
8aad930b
AC
3562 /* Find the location where (if we've hit a breakpoint) the
3563 breakpoint would be. */
118e6252 3564 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3565
1cf4d951
PA
3566 /* If the target can't tell whether a software breakpoint triggered,
3567 fallback to figuring it out based on breakpoints we think were
3568 inserted in the target, and on whether the thread was stepped or
3569 continued. */
3570
1c5cfe86
PA
3571 /* Check whether there actually is a software breakpoint inserted at
3572 that location.
3573
3574 If in non-stop mode, a race condition is possible where we've
3575 removed a breakpoint, but stop events for that breakpoint were
3576 already queued and arrive later. To suppress those spurious
3577 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3578 and retire them after a number of stop events are reported. Note
3579 this is an heuristic and can thus get confused. The real fix is
3580 to get the "stopped by SW BP and needs adjustment" info out of
3581 the target/kernel (and thus never reach here; see above). */
6c95b8df
PA
3582 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3583 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3584 {
77f9e713 3585 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3586
8213266a 3587 if (record_full_is_used ())
77f9e713 3588 record_full_gdb_operation_disable_set ();
96429cc8 3589
1c0fdd0e
UW
3590 /* When using hardware single-step, a SIGTRAP is reported for both
3591 a completed single-step and a software breakpoint. Need to
3592 differentiate between the two, as the latter needs adjusting
3593 but the former does not.
3594
3595 The SIGTRAP can be due to a completed hardware single-step only if
3596 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
3597 - this thread is currently being stepped
3598
3599 If any of these events did not occur, we must have stopped due
3600 to hitting a software breakpoint, and have to back up to the
3601 breakpoint address.
3602
3603 As a special case, we could have hardware single-stepped a
3604 software breakpoint. In this case (prev_pc == breakpoint_pc),
3605 we also need to back up to the breakpoint address. */
3606
d8dd4d5f
PA
3607 if (thread_has_single_step_breakpoints_set (thread)
3608 || !currently_stepping (thread)
3609 || (thread->stepped_breakpoint
3610 && thread->prev_pc == breakpoint_pc))
515630c5 3611 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3612
77f9e713 3613 do_cleanups (old_cleanups);
8aad930b 3614 }
4fa8626c
DJ
3615}
3616
edb3359d
DJ
3617static int
3618stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3619{
3620 for (frame = get_prev_frame (frame);
3621 frame != NULL;
3622 frame = get_prev_frame (frame))
3623 {
3624 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3625 return 1;
3626 if (get_frame_type (frame) != INLINE_FRAME)
3627 break;
3628 }
3629
3630 return 0;
3631}
3632
a96d9b2e
SDJ
3633/* Auxiliary function that handles syscall entry/return events.
3634 It returns 1 if the inferior should keep going (and GDB
3635 should ignore the event), or 0 if the event deserves to be
3636 processed. */
ca2163eb 3637
a96d9b2e 3638static int
ca2163eb 3639handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3640{
ca2163eb 3641 struct regcache *regcache;
ca2163eb
PA
3642 int syscall_number;
3643
3644 if (!ptid_equal (ecs->ptid, inferior_ptid))
3645 context_switch (ecs->ptid);
3646
3647 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3648 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3649 stop_pc = regcache_read_pc (regcache);
3650
a96d9b2e
SDJ
3651 if (catch_syscall_enabled () > 0
3652 && catching_syscall_number (syscall_number) > 0)
3653 {
3654 if (debug_infrun)
3655 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3656 syscall_number);
a96d9b2e 3657
16c381f0 3658 ecs->event_thread->control.stop_bpstat
6c95b8df 3659 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3660 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3661
ce12b012 3662 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3663 {
3664 /* Catchpoint hit. */
ca2163eb
PA
3665 return 0;
3666 }
a96d9b2e 3667 }
ca2163eb
PA
3668
3669 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3670 keep_going (ecs);
3671 return 1;
a96d9b2e
SDJ
3672}
3673
7e324e48
GB
3674/* Lazily fill in the execution_control_state's stop_func_* fields. */
3675
3676static void
3677fill_in_stop_func (struct gdbarch *gdbarch,
3678 struct execution_control_state *ecs)
3679{
3680 if (!ecs->stop_func_filled_in)
3681 {
3682 /* Don't care about return value; stop_func_start and stop_func_name
3683 will both be 0 if it doesn't work. */
3684 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3685 &ecs->stop_func_start, &ecs->stop_func_end);
3686 ecs->stop_func_start
3687 += gdbarch_deprecated_function_start_offset (gdbarch);
3688
591a12a1
UW
3689 if (gdbarch_skip_entrypoint_p (gdbarch))
3690 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3691 ecs->stop_func_start);
3692
7e324e48
GB
3693 ecs->stop_func_filled_in = 1;
3694 }
3695}
3696
4f5d7f63
PA
3697
3698/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3699
3700static enum stop_kind
3701get_inferior_stop_soon (ptid_t ptid)
3702{
c9657e70 3703 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3704
3705 gdb_assert (inf != NULL);
3706 return inf->control.stop_soon;
3707}
3708
05ba8510
PA
3709/* Given an execution control state that has been freshly filled in by
3710 an event from the inferior, figure out what it means and take
3711 appropriate action.
3712
3713 The alternatives are:
3714
22bcd14b 3715 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3716 debugger.
3717
3718 2) keep_going and return; to wait for the next event (set
3719 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3720 once). */
c906108c 3721
ec9499be 3722static void
0b6e5e10 3723handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 3724{
d6b48e9c
PA
3725 enum stop_kind stop_soon;
3726
28736962
PA
3727 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3728 {
3729 /* We had an event in the inferior, but we are not interested in
3730 handling it at this level. The lower layers have already
3731 done what needs to be done, if anything.
3732
3733 One of the possible circumstances for this is when the
3734 inferior produces output for the console. The inferior has
3735 not stopped, and we are ignoring the event. Another possible
3736 circumstance is any event which the lower level knows will be
3737 reported multiple times without an intervening resume. */
3738 if (debug_infrun)
3739 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3740 prepare_to_wait (ecs);
3741 return;
3742 }
3743
0e5bf2a8
PA
3744 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3745 && target_can_async_p () && !sync_execution)
3746 {
3747 /* There were no unwaited-for children left in the target, but,
3748 we're not synchronously waiting for events either. Just
3749 ignore. Otherwise, if we were running a synchronous
3750 execution command, we need to cancel it and give the user
3751 back the terminal. */
3752 if (debug_infrun)
3753 fprintf_unfiltered (gdb_stdlog,
3754 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3755 prepare_to_wait (ecs);
3756 return;
3757 }
3758
1777feb0 3759 /* Cache the last pid/waitstatus. */
c32c64b7 3760 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3761
ca005067 3762 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3763 stop_stack_dummy = STOP_NONE;
ca005067 3764
0e5bf2a8
PA
3765 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3766 {
3767 /* No unwaited-for children left. IOW, all resumed children
3768 have exited. */
3769 if (debug_infrun)
3770 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3771
3772 stop_print_frame = 0;
22bcd14b 3773 stop_waiting (ecs);
0e5bf2a8
PA
3774 return;
3775 }
3776
8c90c137 3777 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3778 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3779 {
3780 ecs->event_thread = find_thread_ptid (ecs->ptid);
3781 /* If it's a new thread, add it to the thread database. */
3782 if (ecs->event_thread == NULL)
3783 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3784
3785 /* Disable range stepping. If the next step request could use a
3786 range, this will be end up re-enabled then. */
3787 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3788 }
88ed393a
JK
3789
3790 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 3791 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
3792
3793 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3794 reinit_frame_cache ();
3795
28736962
PA
3796 breakpoint_retire_moribund ();
3797
2b009048
DJ
3798 /* First, distinguish signals caused by the debugger from signals
3799 that have to do with the program's own actions. Note that
3800 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3801 on the operating system version. Here we detect when a SIGILL or
3802 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3803 something similar for SIGSEGV, since a SIGSEGV will be generated
3804 when we're trying to execute a breakpoint instruction on a
3805 non-executable stack. This happens for call dummy breakpoints
3806 for architectures like SPARC that place call dummies on the
3807 stack. */
2b009048 3808 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3809 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3810 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3811 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3812 {
de0a0249
UW
3813 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3814
3815 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3816 regcache_read_pc (regcache)))
3817 {
3818 if (debug_infrun)
3819 fprintf_unfiltered (gdb_stdlog,
3820 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3821 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3822 }
2b009048
DJ
3823 }
3824
28736962
PA
3825 /* Mark the non-executing threads accordingly. In all-stop, all
3826 threads of all processes are stopped when we get any event
e1316e60 3827 reported. In non-stop mode, only the event thread stops. */
28736962
PA
3828 if (!non_stop)
3829 set_executing (minus_one_ptid, 0);
e1316e60
PA
3830 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
3831 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
3832 {
3833 ptid_t pid_ptid;
3834
3835 /* If we're handling a process exit in non-stop mode, even
3836 though threads haven't been deleted yet, one would think that
3837 there is nothing to do, as threads of the dead process will
3838 be soon deleted, and threads of any other process were left
3839 running. However, on some targets, threads survive a process
3840 exit event. E.g., for the "checkpoint" command, when the
3841 current checkpoint/fork exits, linux-fork.c automatically
3842 switches to another fork from within target_mourn_inferior,
3843 by associating the same inferior/thread to another fork. We
3844 haven't mourned yet at this point, but we must mark any
3845 threads left in the process as not-executing so that
3846 finish_thread_state marks them stopped (in the user's
3847 perspective) if/when we present the stop to the user. */
3848 pid_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
3849 set_executing (pid_ptid, 0);
3850 }
3851 else
7aee8dc2 3852 set_executing (ecs->ptid, 0);
8c90c137 3853
488f131b
JB
3854 switch (ecs->ws.kind)
3855 {
3856 case TARGET_WAITKIND_LOADED:
527159b7 3857 if (debug_infrun)
8a9de0e4 3858 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3859 if (!ptid_equal (ecs->ptid, inferior_ptid))
3860 context_switch (ecs->ptid);
b0f4b84b
DJ
3861 /* Ignore gracefully during startup of the inferior, as it might
3862 be the shell which has just loaded some objects, otherwise
3863 add the symbols for the newly loaded objects. Also ignore at
3864 the beginning of an attach or remote session; we will query
3865 the full list of libraries once the connection is
3866 established. */
4f5d7f63
PA
3867
3868 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3869 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3870 {
edcc5120
TT
3871 struct regcache *regcache;
3872
edcc5120
TT
3873 regcache = get_thread_regcache (ecs->ptid);
3874
3875 handle_solib_event ();
3876
3877 ecs->event_thread->control.stop_bpstat
3878 = bpstat_stop_status (get_regcache_aspace (regcache),
3879 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3880
ce12b012 3881 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3882 {
3883 /* A catchpoint triggered. */
94c57d6a
PA
3884 process_event_stop_test (ecs);
3885 return;
edcc5120 3886 }
488f131b 3887
b0f4b84b
DJ
3888 /* If requested, stop when the dynamic linker notifies
3889 gdb of events. This allows the user to get control
3890 and place breakpoints in initializer routines for
3891 dynamically loaded objects (among other things). */
a493e3e2 3892 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3893 if (stop_on_solib_events)
3894 {
55409f9d
DJ
3895 /* Make sure we print "Stopped due to solib-event" in
3896 normal_stop. */
3897 stop_print_frame = 1;
3898
22bcd14b 3899 stop_waiting (ecs);
b0f4b84b
DJ
3900 return;
3901 }
488f131b 3902 }
b0f4b84b
DJ
3903
3904 /* If we are skipping through a shell, or through shared library
3905 loading that we aren't interested in, resume the program. If
5c09a2c5 3906 we're running the program normally, also resume. */
b0f4b84b
DJ
3907 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3908 {
74960c60
VP
3909 /* Loading of shared libraries might have changed breakpoint
3910 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3911 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3912 insert_breakpoints ();
64ce06e4 3913 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
3914 prepare_to_wait (ecs);
3915 return;
3916 }
3917
5c09a2c5
PA
3918 /* But stop if we're attaching or setting up a remote
3919 connection. */
3920 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3921 || stop_soon == STOP_QUIETLY_REMOTE)
3922 {
3923 if (debug_infrun)
3924 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3925 stop_waiting (ecs);
5c09a2c5
PA
3926 return;
3927 }
3928
3929 internal_error (__FILE__, __LINE__,
3930 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3931
488f131b 3932 case TARGET_WAITKIND_SPURIOUS:
527159b7 3933 if (debug_infrun)
8a9de0e4 3934 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3935 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3936 context_switch (ecs->ptid);
64ce06e4 3937 resume (GDB_SIGNAL_0);
488f131b
JB
3938 prepare_to_wait (ecs);
3939 return;
c5aa993b 3940
488f131b 3941 case TARGET_WAITKIND_EXITED:
940c3c06 3942 case TARGET_WAITKIND_SIGNALLED:
527159b7 3943 if (debug_infrun)
940c3c06
PA
3944 {
3945 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3946 fprintf_unfiltered (gdb_stdlog,
3947 "infrun: TARGET_WAITKIND_EXITED\n");
3948 else
3949 fprintf_unfiltered (gdb_stdlog,
3950 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3951 }
3952
fb66883a 3953 inferior_ptid = ecs->ptid;
c9657e70 3954 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3955 set_current_program_space (current_inferior ()->pspace);
3956 handle_vfork_child_exec_or_exit (0);
1777feb0 3957 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3958
0c557179
SDJ
3959 /* Clearing any previous state of convenience variables. */
3960 clear_exit_convenience_vars ();
3961
940c3c06
PA
3962 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3963 {
3964 /* Record the exit code in the convenience variable $_exitcode, so
3965 that the user can inspect this again later. */
3966 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3967 (LONGEST) ecs->ws.value.integer);
3968
3969 /* Also record this in the inferior itself. */
3970 current_inferior ()->has_exit_code = 1;
3971 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3972
98eb56a4
PA
3973 /* Support the --return-child-result option. */
3974 return_child_result_value = ecs->ws.value.integer;
3975
fd664c91 3976 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3977 }
3978 else
0c557179
SDJ
3979 {
3980 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3981 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3982
3983 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3984 {
3985 /* Set the value of the internal variable $_exitsignal,
3986 which holds the signal uncaught by the inferior. */
3987 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3988 gdbarch_gdb_signal_to_target (gdbarch,
3989 ecs->ws.value.sig));
3990 }
3991 else
3992 {
3993 /* We don't have access to the target's method used for
3994 converting between signal numbers (GDB's internal
3995 representation <-> target's representation).
3996 Therefore, we cannot do a good job at displaying this
3997 information to the user. It's better to just warn
3998 her about it (if infrun debugging is enabled), and
3999 give up. */
4000 if (debug_infrun)
4001 fprintf_filtered (gdb_stdlog, _("\
4002Cannot fill $_exitsignal with the correct signal number.\n"));
4003 }
4004
fd664c91 4005 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4006 }
8cf64490 4007
488f131b
JB
4008 gdb_flush (gdb_stdout);
4009 target_mourn_inferior ();
488f131b 4010 stop_print_frame = 0;
22bcd14b 4011 stop_waiting (ecs);
488f131b 4012 return;
c5aa993b 4013
488f131b 4014 /* The following are the only cases in which we keep going;
1777feb0 4015 the above cases end in a continue or goto. */
488f131b 4016 case TARGET_WAITKIND_FORKED:
deb3b17b 4017 case TARGET_WAITKIND_VFORKED:
527159b7 4018 if (debug_infrun)
fed708ed
PA
4019 {
4020 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4021 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4022 else
4023 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4024 }
c906108c 4025
e2d96639
YQ
4026 /* Check whether the inferior is displaced stepping. */
4027 {
4028 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4030 struct displaced_step_inferior_state *displaced
4031 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4032
4033 /* If checking displaced stepping is supported, and thread
4034 ecs->ptid is displaced stepping. */
4035 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4036 {
4037 struct inferior *parent_inf
c9657e70 4038 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4039 struct regcache *child_regcache;
4040 CORE_ADDR parent_pc;
4041
4042 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4043 indicating that the displaced stepping of syscall instruction
4044 has been done. Perform cleanup for parent process here. Note
4045 that this operation also cleans up the child process for vfork,
4046 because their pages are shared. */
a493e3e2 4047 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
4048
4049 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4050 {
4051 /* Restore scratch pad for child process. */
4052 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4053 }
4054
4055 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4056 the child's PC is also within the scratchpad. Set the child's PC
4057 to the parent's PC value, which has already been fixed up.
4058 FIXME: we use the parent's aspace here, although we're touching
4059 the child, because the child hasn't been added to the inferior
4060 list yet at this point. */
4061
4062 child_regcache
4063 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4064 gdbarch,
4065 parent_inf->aspace);
4066 /* Read PC value of parent process. */
4067 parent_pc = regcache_read_pc (regcache);
4068
4069 if (debug_displaced)
4070 fprintf_unfiltered (gdb_stdlog,
4071 "displaced: write child pc from %s to %s\n",
4072 paddress (gdbarch,
4073 regcache_read_pc (child_regcache)),
4074 paddress (gdbarch, parent_pc));
4075
4076 regcache_write_pc (child_regcache, parent_pc);
4077 }
4078 }
4079
5a2901d9 4080 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4081 context_switch (ecs->ptid);
5a2901d9 4082
b242c3c2
PA
4083 /* Immediately detach breakpoints from the child before there's
4084 any chance of letting the user delete breakpoints from the
4085 breakpoint lists. If we don't do this early, it's easy to
4086 leave left over traps in the child, vis: "break foo; catch
4087 fork; c; <fork>; del; c; <child calls foo>". We only follow
4088 the fork on the last `continue', and by that time the
4089 breakpoint at "foo" is long gone from the breakpoint table.
4090 If we vforked, then we don't need to unpatch here, since both
4091 parent and child are sharing the same memory pages; we'll
4092 need to unpatch at follow/detach time instead to be certain
4093 that new breakpoints added between catchpoint hit time and
4094 vfork follow are detached. */
4095 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4096 {
b242c3c2
PA
4097 /* This won't actually modify the breakpoint list, but will
4098 physically remove the breakpoints from the child. */
d80ee84f 4099 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4100 }
4101
34b7e8a6 4102 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4103
e58b0e63
PA
4104 /* In case the event is caught by a catchpoint, remember that
4105 the event is to be followed at the next resume of the thread,
4106 and not immediately. */
4107 ecs->event_thread->pending_follow = ecs->ws;
4108
fb14de7b 4109 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4110
16c381f0 4111 ecs->event_thread->control.stop_bpstat
6c95b8df 4112 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4113 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4114
ce12b012
PA
4115 /* If no catchpoint triggered for this, then keep going. Note
4116 that we're interested in knowing the bpstat actually causes a
4117 stop, not just if it may explain the signal. Software
4118 watchpoints, for example, always appear in the bpstat. */
4119 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4120 {
6c95b8df
PA
4121 ptid_t parent;
4122 ptid_t child;
e58b0e63 4123 int should_resume;
3e43a32a
MS
4124 int follow_child
4125 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4126
a493e3e2 4127 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4128
4129 should_resume = follow_fork ();
4130
6c95b8df
PA
4131 parent = ecs->ptid;
4132 child = ecs->ws.value.related_pid;
4133
4134 /* In non-stop mode, also resume the other branch. */
4135 if (non_stop && !detach_fork)
4136 {
4137 if (follow_child)
4138 switch_to_thread (parent);
4139 else
4140 switch_to_thread (child);
4141
4142 ecs->event_thread = inferior_thread ();
4143 ecs->ptid = inferior_ptid;
4144 keep_going (ecs);
4145 }
4146
4147 if (follow_child)
4148 switch_to_thread (child);
4149 else
4150 switch_to_thread (parent);
4151
e58b0e63
PA
4152 ecs->event_thread = inferior_thread ();
4153 ecs->ptid = inferior_ptid;
4154
4155 if (should_resume)
4156 keep_going (ecs);
4157 else
22bcd14b 4158 stop_waiting (ecs);
04e68871
DJ
4159 return;
4160 }
94c57d6a
PA
4161 process_event_stop_test (ecs);
4162 return;
488f131b 4163
6c95b8df
PA
4164 case TARGET_WAITKIND_VFORK_DONE:
4165 /* Done with the shared memory region. Re-insert breakpoints in
4166 the parent, and keep going. */
4167
4168 if (debug_infrun)
3e43a32a
MS
4169 fprintf_unfiltered (gdb_stdlog,
4170 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4171
4172 if (!ptid_equal (ecs->ptid, inferior_ptid))
4173 context_switch (ecs->ptid);
4174
4175 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4176 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4177 /* This also takes care of reinserting breakpoints in the
4178 previously locked inferior. */
4179 keep_going (ecs);
4180 return;
4181
488f131b 4182 case TARGET_WAITKIND_EXECD:
527159b7 4183 if (debug_infrun)
fc5261f2 4184 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4185
5a2901d9 4186 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4187 context_switch (ecs->ptid);
5a2901d9 4188
fb14de7b 4189 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4190
6c95b8df
PA
4191 /* Do whatever is necessary to the parent branch of the vfork. */
4192 handle_vfork_child_exec_or_exit (1);
4193
795e548f
PA
4194 /* This causes the eventpoints and symbol table to be reset.
4195 Must do this now, before trying to determine whether to
4196 stop. */
71b43ef8 4197 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4198
16c381f0 4199 ecs->event_thread->control.stop_bpstat
6c95b8df 4200 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4201 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4202
71b43ef8
PA
4203 /* Note that this may be referenced from inside
4204 bpstat_stop_status above, through inferior_has_execd. */
4205 xfree (ecs->ws.value.execd_pathname);
4206 ecs->ws.value.execd_pathname = NULL;
4207
04e68871 4208 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4209 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4210 {
a493e3e2 4211 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4212 keep_going (ecs);
4213 return;
4214 }
94c57d6a
PA
4215 process_event_stop_test (ecs);
4216 return;
488f131b 4217
b4dc5ffa
MK
4218 /* Be careful not to try to gather much state about a thread
4219 that's in a syscall. It's frequently a losing proposition. */
488f131b 4220 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4221 if (debug_infrun)
3e43a32a
MS
4222 fprintf_unfiltered (gdb_stdlog,
4223 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4224 /* Getting the current syscall number. */
94c57d6a
PA
4225 if (handle_syscall_event (ecs) == 0)
4226 process_event_stop_test (ecs);
4227 return;
c906108c 4228
488f131b
JB
4229 /* Before examining the threads further, step this thread to
4230 get it entirely out of the syscall. (We get notice of the
4231 event when the thread is just on the verge of exiting a
4232 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4233 into user code.) */
488f131b 4234 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4235 if (debug_infrun)
3e43a32a
MS
4236 fprintf_unfiltered (gdb_stdlog,
4237 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4238 if (handle_syscall_event (ecs) == 0)
4239 process_event_stop_test (ecs);
4240 return;
c906108c 4241
488f131b 4242 case TARGET_WAITKIND_STOPPED:
527159b7 4243 if (debug_infrun)
8a9de0e4 4244 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4245 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4246 handle_signal_stop (ecs);
4247 return;
c906108c 4248
b2175913 4249 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4250 if (debug_infrun)
4251 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4252 /* Reverse execution: target ran out of history info. */
eab402df 4253
34b7e8a6 4254 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4255 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4256 observer_notify_no_history ();
22bcd14b 4257 stop_waiting (ecs);
b2175913 4258 return;
488f131b 4259 }
4f5d7f63
PA
4260}
4261
0b6e5e10
JB
4262/* A wrapper around handle_inferior_event_1, which also makes sure
4263 that all temporary struct value objects that were created during
4264 the handling of the event get deleted at the end. */
4265
4266static void
4267handle_inferior_event (struct execution_control_state *ecs)
4268{
4269 struct value *mark = value_mark ();
4270
4271 handle_inferior_event_1 (ecs);
4272 /* Purge all temporary values created during the event handling,
4273 as it could be a long time before we return to the command level
4274 where such values would otherwise be purged. */
4275 value_free_to_mark (mark);
4276}
4277
4f5d7f63
PA
4278/* Come here when the program has stopped with a signal. */
4279
4280static void
4281handle_signal_stop (struct execution_control_state *ecs)
4282{
4283 struct frame_info *frame;
4284 struct gdbarch *gdbarch;
4285 int stopped_by_watchpoint;
4286 enum stop_kind stop_soon;
4287 int random_signal;
c906108c 4288
f0407826
DE
4289 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4290
4291 /* Do we need to clean up the state of a thread that has
4292 completed a displaced single-step? (Doing so usually affects
4293 the PC, so do it here, before we set stop_pc.) */
4294 displaced_step_fixup (ecs->ptid,
4295 ecs->event_thread->suspend.stop_signal);
4296
4297 /* If we either finished a single-step or hit a breakpoint, but
4298 the user wanted this thread to be stopped, pretend we got a
4299 SIG0 (generic unsignaled stop). */
4300 if (ecs->event_thread->stop_requested
4301 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4302 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4303
515630c5 4304 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4305
527159b7 4306 if (debug_infrun)
237fc4c9 4307 {
5af949e3
UW
4308 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4309 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4310 struct cleanup *old_chain = save_inferior_ptid ();
4311
4312 inferior_ptid = ecs->ptid;
5af949e3
UW
4313
4314 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4315 paddress (gdbarch, stop_pc));
d92524f1 4316 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4317 {
4318 CORE_ADDR addr;
abbb1732 4319
237fc4c9
PA
4320 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4321
4322 if (target_stopped_data_address (&current_target, &addr))
4323 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4324 "infrun: stopped data address = %s\n",
4325 paddress (gdbarch, addr));
237fc4c9
PA
4326 else
4327 fprintf_unfiltered (gdb_stdlog,
4328 "infrun: (no data address available)\n");
4329 }
7f82dfc7
JK
4330
4331 do_cleanups (old_chain);
237fc4c9 4332 }
527159b7 4333
36fa8042
PA
4334 /* This is originated from start_remote(), start_inferior() and
4335 shared libraries hook functions. */
4336 stop_soon = get_inferior_stop_soon (ecs->ptid);
4337 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4338 {
4339 if (!ptid_equal (ecs->ptid, inferior_ptid))
4340 context_switch (ecs->ptid);
4341 if (debug_infrun)
4342 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4343 stop_print_frame = 1;
22bcd14b 4344 stop_waiting (ecs);
36fa8042
PA
4345 return;
4346 }
4347
4348 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4349 && stop_after_trap)
4350 {
4351 if (!ptid_equal (ecs->ptid, inferior_ptid))
4352 context_switch (ecs->ptid);
4353 if (debug_infrun)
4354 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4355 stop_print_frame = 0;
22bcd14b 4356 stop_waiting (ecs);
36fa8042
PA
4357 return;
4358 }
4359
4360 /* This originates from attach_command(). We need to overwrite
4361 the stop_signal here, because some kernels don't ignore a
4362 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4363 See more comments in inferior.h. On the other hand, if we
4364 get a non-SIGSTOP, report it to the user - assume the backend
4365 will handle the SIGSTOP if it should show up later.
4366
4367 Also consider that the attach is complete when we see a
4368 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4369 target extended-remote report it instead of a SIGSTOP
4370 (e.g. gdbserver). We already rely on SIGTRAP being our
4371 signal, so this is no exception.
4372
4373 Also consider that the attach is complete when we see a
4374 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4375 the target to stop all threads of the inferior, in case the
4376 low level attach operation doesn't stop them implicitly. If
4377 they weren't stopped implicitly, then the stub will report a
4378 GDB_SIGNAL_0, meaning: stopped for no particular reason
4379 other than GDB's request. */
4380 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4381 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4382 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4383 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4384 {
4385 stop_print_frame = 1;
22bcd14b 4386 stop_waiting (ecs);
36fa8042
PA
4387 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4388 return;
4389 }
4390
488f131b 4391 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4392 so, then switch to that thread. */
4393 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4394 {
527159b7 4395 if (debug_infrun)
8a9de0e4 4396 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4397
0d1e5fa7 4398 context_switch (ecs->ptid);
c5aa993b 4399
9a4105ab
AC
4400 if (deprecated_context_hook)
4401 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4402 }
c906108c 4403
568d6575
UW
4404 /* At this point, get hold of the now-current thread's frame. */
4405 frame = get_current_frame ();
4406 gdbarch = get_frame_arch (frame);
4407
2adfaa28 4408 /* Pull the single step breakpoints out of the target. */
af48d08f 4409 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4410 {
af48d08f
PA
4411 struct regcache *regcache;
4412 struct address_space *aspace;
4413 CORE_ADDR pc;
2adfaa28 4414
af48d08f
PA
4415 regcache = get_thread_regcache (ecs->ptid);
4416 aspace = get_regcache_aspace (regcache);
4417 pc = regcache_read_pc (regcache);
34b7e8a6 4418
af48d08f
PA
4419 /* However, before doing so, if this single-step breakpoint was
4420 actually for another thread, set this thread up for moving
4421 past it. */
4422 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4423 aspace, pc))
4424 {
4425 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4426 {
4427 if (debug_infrun)
4428 {
4429 fprintf_unfiltered (gdb_stdlog,
af48d08f 4430 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4431 "single-step breakpoint\n",
4432 target_pid_to_str (ecs->ptid));
2adfaa28 4433 }
af48d08f
PA
4434 ecs->hit_singlestep_breakpoint = 1;
4435 }
4436 }
4437 else
4438 {
4439 if (debug_infrun)
4440 {
4441 fprintf_unfiltered (gdb_stdlog,
4442 "infrun: [%s] hit its "
4443 "single-step breakpoint\n",
4444 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4445 }
4446 }
488f131b 4447 }
af48d08f 4448 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4449
963f9c80
PA
4450 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4451 && ecs->event_thread->control.trap_expected
4452 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4453 stopped_by_watchpoint = 0;
4454 else
4455 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4456
4457 /* If necessary, step over this watchpoint. We'll be back to display
4458 it in a moment. */
4459 if (stopped_by_watchpoint
d92524f1 4460 && (target_have_steppable_watchpoint
568d6575 4461 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4462 {
488f131b
JB
4463 /* At this point, we are stopped at an instruction which has
4464 attempted to write to a piece of memory under control of
4465 a watchpoint. The instruction hasn't actually executed
4466 yet. If we were to evaluate the watchpoint expression
4467 now, we would get the old value, and therefore no change
4468 would seem to have occurred.
4469
4470 In order to make watchpoints work `right', we really need
4471 to complete the memory write, and then evaluate the
d983da9c
DJ
4472 watchpoint expression. We do this by single-stepping the
4473 target.
4474
7f89fd65 4475 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4476 it. For example, the PA can (with some kernel cooperation)
4477 single step over a watchpoint without disabling the watchpoint.
4478
4479 It is far more common to need to disable a watchpoint to step
4480 the inferior over it. If we have non-steppable watchpoints,
4481 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4482 disable all watchpoints.
4483
4484 Any breakpoint at PC must also be stepped over -- if there's
4485 one, it will have already triggered before the watchpoint
4486 triggered, and we either already reported it to the user, or
4487 it didn't cause a stop and we called keep_going. In either
4488 case, if there was a breakpoint at PC, we must be trying to
4489 step past it. */
4490 ecs->event_thread->stepping_over_watchpoint = 1;
4491 keep_going (ecs);
488f131b
JB
4492 return;
4493 }
4494
4e1c45ea 4495 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4496 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4497 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4498 ecs->event_thread->control.stop_step = 0;
488f131b 4499 stop_print_frame = 1;
488f131b 4500 stopped_by_random_signal = 0;
488f131b 4501
edb3359d
DJ
4502 /* Hide inlined functions starting here, unless we just performed stepi or
4503 nexti. After stepi and nexti, always show the innermost frame (not any
4504 inline function call sites). */
16c381f0 4505 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4506 {
4507 struct address_space *aspace =
4508 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4509
4510 /* skip_inline_frames is expensive, so we avoid it if we can
4511 determine that the address is one where functions cannot have
4512 been inlined. This improves performance with inferiors that
4513 load a lot of shared libraries, because the solib event
4514 breakpoint is defined as the address of a function (i.e. not
4515 inline). Note that we have to check the previous PC as well
4516 as the current one to catch cases when we have just
4517 single-stepped off a breakpoint prior to reinstating it.
4518 Note that we're assuming that the code we single-step to is
4519 not inline, but that's not definitive: there's nothing
4520 preventing the event breakpoint function from containing
4521 inlined code, and the single-step ending up there. If the
4522 user had set a breakpoint on that inlined code, the missing
4523 skip_inline_frames call would break things. Fortunately
4524 that's an extremely unlikely scenario. */
09ac7c10 4525 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4526 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4527 && ecs->event_thread->control.trap_expected
4528 && pc_at_non_inline_function (aspace,
4529 ecs->event_thread->prev_pc,
09ac7c10 4530 &ecs->ws)))
1c5a993e
MR
4531 {
4532 skip_inline_frames (ecs->ptid);
4533
4534 /* Re-fetch current thread's frame in case that invalidated
4535 the frame cache. */
4536 frame = get_current_frame ();
4537 gdbarch = get_frame_arch (frame);
4538 }
0574c78f 4539 }
edb3359d 4540
a493e3e2 4541 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4542 && ecs->event_thread->control.trap_expected
568d6575 4543 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4544 && currently_stepping (ecs->event_thread))
3352ef37 4545 {
b50d7442 4546 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4547 also on an instruction that needs to be stepped multiple
1777feb0 4548 times before it's been fully executing. E.g., architectures
3352ef37
AC
4549 with a delay slot. It needs to be stepped twice, once for
4550 the instruction and once for the delay slot. */
4551 int step_through_delay
568d6575 4552 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4553
527159b7 4554 if (debug_infrun && step_through_delay)
8a9de0e4 4555 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4556 if (ecs->event_thread->control.step_range_end == 0
4557 && step_through_delay)
3352ef37
AC
4558 {
4559 /* The user issued a continue when stopped at a breakpoint.
4560 Set up for another trap and get out of here. */
4e1c45ea 4561 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4562 keep_going (ecs);
4563 return;
4564 }
4565 else if (step_through_delay)
4566 {
4567 /* The user issued a step when stopped at a breakpoint.
4568 Maybe we should stop, maybe we should not - the delay
4569 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4570 case, don't decide that here, just set
4571 ecs->stepping_over_breakpoint, making sure we
4572 single-step again before breakpoints are re-inserted. */
4e1c45ea 4573 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4574 }
4575 }
4576
ab04a2af
TT
4577 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4578 handles this event. */
4579 ecs->event_thread->control.stop_bpstat
4580 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4581 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4582
ab04a2af
TT
4583 /* Following in case break condition called a
4584 function. */
4585 stop_print_frame = 1;
73dd234f 4586
ab04a2af
TT
4587 /* This is where we handle "moribund" watchpoints. Unlike
4588 software breakpoints traps, hardware watchpoint traps are
4589 always distinguishable from random traps. If no high-level
4590 watchpoint is associated with the reported stop data address
4591 anymore, then the bpstat does not explain the signal ---
4592 simply make sure to ignore it if `stopped_by_watchpoint' is
4593 set. */
4594
4595 if (debug_infrun
4596 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4597 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4598 GDB_SIGNAL_TRAP)
ab04a2af
TT
4599 && stopped_by_watchpoint)
4600 fprintf_unfiltered (gdb_stdlog,
4601 "infrun: no user watchpoint explains "
4602 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4603
bac7d97b 4604 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4605 at one stage in the past included checks for an inferior
4606 function call's call dummy's return breakpoint. The original
4607 comment, that went with the test, read:
03cebad2 4608
ab04a2af
TT
4609 ``End of a stack dummy. Some systems (e.g. Sony news) give
4610 another signal besides SIGTRAP, so check here as well as
4611 above.''
73dd234f 4612
ab04a2af
TT
4613 If someone ever tries to get call dummys on a
4614 non-executable stack to work (where the target would stop
4615 with something like a SIGSEGV), then those tests might need
4616 to be re-instated. Given, however, that the tests were only
4617 enabled when momentary breakpoints were not being used, I
4618 suspect that it won't be the case.
488f131b 4619
ab04a2af
TT
4620 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4621 be necessary for call dummies on a non-executable stack on
4622 SPARC. */
488f131b 4623
bac7d97b 4624 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4625 random_signal
4626 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4627 ecs->event_thread->suspend.stop_signal);
bac7d97b 4628
1cf4d951
PA
4629 /* Maybe this was a trap for a software breakpoint that has since
4630 been removed. */
4631 if (random_signal && target_stopped_by_sw_breakpoint ())
4632 {
4633 if (program_breakpoint_here_p (gdbarch, stop_pc))
4634 {
4635 struct regcache *regcache;
4636 int decr_pc;
4637
4638 /* Re-adjust PC to what the program would see if GDB was not
4639 debugging it. */
4640 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 4641 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
4642 if (decr_pc != 0)
4643 {
4644 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4645
4646 if (record_full_is_used ())
4647 record_full_gdb_operation_disable_set ();
4648
4649 regcache_write_pc (regcache, stop_pc + decr_pc);
4650
4651 do_cleanups (old_cleanups);
4652 }
4653 }
4654 else
4655 {
4656 /* A delayed software breakpoint event. Ignore the trap. */
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: delayed software breakpoint "
4660 "trap, ignoring\n");
4661 random_signal = 0;
4662 }
4663 }
4664
4665 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4666 has since been removed. */
4667 if (random_signal && target_stopped_by_hw_breakpoint ())
4668 {
4669 /* A delayed hardware breakpoint event. Ignore the trap. */
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog,
4672 "infrun: delayed hardware breakpoint/watchpoint "
4673 "trap, ignoring\n");
4674 random_signal = 0;
4675 }
4676
bac7d97b
PA
4677 /* If not, perhaps stepping/nexting can. */
4678 if (random_signal)
4679 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4680 && currently_stepping (ecs->event_thread));
ab04a2af 4681
2adfaa28
PA
4682 /* Perhaps the thread hit a single-step breakpoint of _another_
4683 thread. Single-step breakpoints are transparent to the
4684 breakpoints module. */
4685 if (random_signal)
4686 random_signal = !ecs->hit_singlestep_breakpoint;
4687
bac7d97b
PA
4688 /* No? Perhaps we got a moribund watchpoint. */
4689 if (random_signal)
4690 random_signal = !stopped_by_watchpoint;
ab04a2af 4691
488f131b
JB
4692 /* For the program's own signals, act according to
4693 the signal handling tables. */
4694
ce12b012 4695 if (random_signal)
488f131b
JB
4696 {
4697 /* Signal not for debugging purposes. */
c9657e70 4698 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4699 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4700
527159b7 4701 if (debug_infrun)
c9737c08
PA
4702 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4703 gdb_signal_to_symbol_string (stop_signal));
527159b7 4704
488f131b
JB
4705 stopped_by_random_signal = 1;
4706
252fbfc8
PA
4707 /* Always stop on signals if we're either just gaining control
4708 of the program, or the user explicitly requested this thread
4709 to remain stopped. */
d6b48e9c 4710 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4711 || ecs->event_thread->stop_requested
24291992 4712 || (!inf->detaching
16c381f0 4713 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4714 {
22bcd14b 4715 stop_waiting (ecs);
488f131b
JB
4716 return;
4717 }
b57bacec
PA
4718
4719 /* Notify observers the signal has "handle print" set. Note we
4720 returned early above if stopping; normal_stop handles the
4721 printing in that case. */
4722 if (signal_print[ecs->event_thread->suspend.stop_signal])
4723 {
4724 /* The signal table tells us to print about this signal. */
4725 target_terminal_ours_for_output ();
4726 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4727 target_terminal_inferior ();
4728 }
488f131b
JB
4729
4730 /* Clear the signal if it should not be passed. */
16c381f0 4731 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4732 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4733
fb14de7b 4734 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4735 && ecs->event_thread->control.trap_expected
8358c15c 4736 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4737 {
4738 /* We were just starting a new sequence, attempting to
4739 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4740 Instead this signal arrives. This signal will take us out
68f53502
AC
4741 of the stepping range so GDB needs to remember to, when
4742 the signal handler returns, resume stepping off that
4743 breakpoint. */
4744 /* To simplify things, "continue" is forced to use the same
4745 code paths as single-step - set a breakpoint at the
4746 signal return address and then, once hit, step off that
4747 breakpoint. */
237fc4c9
PA
4748 if (debug_infrun)
4749 fprintf_unfiltered (gdb_stdlog,
4750 "infrun: signal arrived while stepping over "
4751 "breakpoint\n");
d3169d93 4752
2c03e5be 4753 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4754 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4755 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4756 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4757
4758 /* If we were nexting/stepping some other thread, switch to
4759 it, so that we don't continue it, losing control. */
4760 if (!switch_back_to_stepped_thread (ecs))
4761 keep_going (ecs);
9d799f85 4762 return;
68f53502 4763 }
9d799f85 4764
e5f8a7cc
PA
4765 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4766 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4767 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4768 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4769 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4770 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4771 {
4772 /* The inferior is about to take a signal that will take it
4773 out of the single step range. Set a breakpoint at the
4774 current PC (which is presumably where the signal handler
4775 will eventually return) and then allow the inferior to
4776 run free.
4777
4778 Note that this is only needed for a signal delivered
4779 while in the single-step range. Nested signals aren't a
4780 problem as they eventually all return. */
237fc4c9
PA
4781 if (debug_infrun)
4782 fprintf_unfiltered (gdb_stdlog,
4783 "infrun: signal may take us out of "
4784 "single-step range\n");
4785
2c03e5be 4786 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4787 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4788 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4789 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4790 keep_going (ecs);
4791 return;
d303a6c7 4792 }
9d799f85
AC
4793
4794 /* Note: step_resume_breakpoint may be non-NULL. This occures
4795 when either there's a nested signal, or when there's a
4796 pending signal enabled just as the signal handler returns
4797 (leaving the inferior at the step-resume-breakpoint without
4798 actually executing it). Either way continue until the
4799 breakpoint is really hit. */
c447ac0b
PA
4800
4801 if (!switch_back_to_stepped_thread (ecs))
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: random signal, keep going\n");
4806
4807 keep_going (ecs);
4808 }
4809 return;
488f131b 4810 }
94c57d6a
PA
4811
4812 process_event_stop_test (ecs);
4813}
4814
4815/* Come here when we've got some debug event / signal we can explain
4816 (IOW, not a random signal), and test whether it should cause a
4817 stop, or whether we should resume the inferior (transparently).
4818 E.g., could be a breakpoint whose condition evaluates false; we
4819 could be still stepping within the line; etc. */
4820
4821static void
4822process_event_stop_test (struct execution_control_state *ecs)
4823{
4824 struct symtab_and_line stop_pc_sal;
4825 struct frame_info *frame;
4826 struct gdbarch *gdbarch;
cdaa5b73
PA
4827 CORE_ADDR jmp_buf_pc;
4828 struct bpstat_what what;
94c57d6a 4829
cdaa5b73 4830 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4831
cdaa5b73
PA
4832 frame = get_current_frame ();
4833 gdbarch = get_frame_arch (frame);
fcf3daef 4834
cdaa5b73 4835 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4836
cdaa5b73
PA
4837 if (what.call_dummy)
4838 {
4839 stop_stack_dummy = what.call_dummy;
4840 }
186c406b 4841
cdaa5b73
PA
4842 /* If we hit an internal event that triggers symbol changes, the
4843 current frame will be invalidated within bpstat_what (e.g., if we
4844 hit an internal solib event). Re-fetch it. */
4845 frame = get_current_frame ();
4846 gdbarch = get_frame_arch (frame);
e2e4d78b 4847
cdaa5b73
PA
4848 switch (what.main_action)
4849 {
4850 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4851 /* If we hit the breakpoint at longjmp while stepping, we
4852 install a momentary breakpoint at the target of the
4853 jmp_buf. */
186c406b 4854
cdaa5b73
PA
4855 if (debug_infrun)
4856 fprintf_unfiltered (gdb_stdlog,
4857 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4858
cdaa5b73 4859 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4860
cdaa5b73
PA
4861 if (what.is_longjmp)
4862 {
4863 struct value *arg_value;
4864
4865 /* If we set the longjmp breakpoint via a SystemTap probe,
4866 then use it to extract the arguments. The destination PC
4867 is the third argument to the probe. */
4868 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4869 if (arg_value)
8fa0c4f8
AA
4870 {
4871 jmp_buf_pc = value_as_address (arg_value);
4872 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4873 }
cdaa5b73
PA
4874 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4875 || !gdbarch_get_longjmp_target (gdbarch,
4876 frame, &jmp_buf_pc))
e2e4d78b 4877 {
cdaa5b73
PA
4878 if (debug_infrun)
4879 fprintf_unfiltered (gdb_stdlog,
4880 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4881 "(!gdbarch_get_longjmp_target)\n");
4882 keep_going (ecs);
4883 return;
e2e4d78b 4884 }
e2e4d78b 4885
cdaa5b73
PA
4886 /* Insert a breakpoint at resume address. */
4887 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4888 }
4889 else
4890 check_exception_resume (ecs, frame);
4891 keep_going (ecs);
4892 return;
e81a37f7 4893
cdaa5b73
PA
4894 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4895 {
4896 struct frame_info *init_frame;
e81a37f7 4897
cdaa5b73 4898 /* There are several cases to consider.
c906108c 4899
cdaa5b73
PA
4900 1. The initiating frame no longer exists. In this case we
4901 must stop, because the exception or longjmp has gone too
4902 far.
2c03e5be 4903
cdaa5b73
PA
4904 2. The initiating frame exists, and is the same as the
4905 current frame. We stop, because the exception or longjmp
4906 has been caught.
2c03e5be 4907
cdaa5b73
PA
4908 3. The initiating frame exists and is different from the
4909 current frame. This means the exception or longjmp has
4910 been caught beneath the initiating frame, so keep going.
c906108c 4911
cdaa5b73
PA
4912 4. longjmp breakpoint has been placed just to protect
4913 against stale dummy frames and user is not interested in
4914 stopping around longjmps. */
c5aa993b 4915
cdaa5b73
PA
4916 if (debug_infrun)
4917 fprintf_unfiltered (gdb_stdlog,
4918 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4919
cdaa5b73
PA
4920 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4921 != NULL);
4922 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4923
cdaa5b73
PA
4924 if (what.is_longjmp)
4925 {
b67a2c6f 4926 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4927
cdaa5b73 4928 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4929 {
cdaa5b73
PA
4930 /* Case 4. */
4931 keep_going (ecs);
4932 return;
e5ef252a 4933 }
cdaa5b73 4934 }
c5aa993b 4935
cdaa5b73 4936 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4937
cdaa5b73
PA
4938 if (init_frame)
4939 {
4940 struct frame_id current_id
4941 = get_frame_id (get_current_frame ());
4942 if (frame_id_eq (current_id,
4943 ecs->event_thread->initiating_frame))
4944 {
4945 /* Case 2. Fall through. */
4946 }
4947 else
4948 {
4949 /* Case 3. */
4950 keep_going (ecs);
4951 return;
4952 }
68f53502 4953 }
488f131b 4954
cdaa5b73
PA
4955 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4956 exists. */
4957 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4958
bdc36728 4959 end_stepping_range (ecs);
cdaa5b73
PA
4960 }
4961 return;
e5ef252a 4962
cdaa5b73
PA
4963 case BPSTAT_WHAT_SINGLE:
4964 if (debug_infrun)
4965 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4966 ecs->event_thread->stepping_over_breakpoint = 1;
4967 /* Still need to check other stuff, at least the case where we
4968 are stepping and step out of the right range. */
4969 break;
e5ef252a 4970
cdaa5b73
PA
4971 case BPSTAT_WHAT_STEP_RESUME:
4972 if (debug_infrun)
4973 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4974
cdaa5b73
PA
4975 delete_step_resume_breakpoint (ecs->event_thread);
4976 if (ecs->event_thread->control.proceed_to_finish
4977 && execution_direction == EXEC_REVERSE)
4978 {
4979 struct thread_info *tp = ecs->event_thread;
4980
4981 /* We are finishing a function in reverse, and just hit the
4982 step-resume breakpoint at the start address of the
4983 function, and we're almost there -- just need to back up
4984 by one more single-step, which should take us back to the
4985 function call. */
4986 tp->control.step_range_start = tp->control.step_range_end = 1;
4987 keep_going (ecs);
e5ef252a 4988 return;
cdaa5b73
PA
4989 }
4990 fill_in_stop_func (gdbarch, ecs);
4991 if (stop_pc == ecs->stop_func_start
4992 && execution_direction == EXEC_REVERSE)
4993 {
4994 /* We are stepping over a function call in reverse, and just
4995 hit the step-resume breakpoint at the start address of
4996 the function. Go back to single-stepping, which should
4997 take us back to the function call. */
4998 ecs->event_thread->stepping_over_breakpoint = 1;
4999 keep_going (ecs);
5000 return;
5001 }
5002 break;
e5ef252a 5003
cdaa5b73
PA
5004 case BPSTAT_WHAT_STOP_NOISY:
5005 if (debug_infrun)
5006 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
5007 stop_print_frame = 1;
e5ef252a 5008
99619bea
PA
5009 /* Assume the thread stopped for a breapoint. We'll still check
5010 whether a/the breakpoint is there when the thread is next
5011 resumed. */
5012 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 5013
22bcd14b 5014 stop_waiting (ecs);
cdaa5b73 5015 return;
e5ef252a 5016
cdaa5b73
PA
5017 case BPSTAT_WHAT_STOP_SILENT:
5018 if (debug_infrun)
5019 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
5020 stop_print_frame = 0;
e5ef252a 5021
99619bea
PA
5022 /* Assume the thread stopped for a breapoint. We'll still check
5023 whether a/the breakpoint is there when the thread is next
5024 resumed. */
5025 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 5026 stop_waiting (ecs);
cdaa5b73
PA
5027 return;
5028
5029 case BPSTAT_WHAT_HP_STEP_RESUME:
5030 if (debug_infrun)
5031 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
5032
5033 delete_step_resume_breakpoint (ecs->event_thread);
5034 if (ecs->event_thread->step_after_step_resume_breakpoint)
5035 {
5036 /* Back when the step-resume breakpoint was inserted, we
5037 were trying to single-step off a breakpoint. Go back to
5038 doing that. */
5039 ecs->event_thread->step_after_step_resume_breakpoint = 0;
5040 ecs->event_thread->stepping_over_breakpoint = 1;
5041 keep_going (ecs);
5042 return;
e5ef252a 5043 }
cdaa5b73
PA
5044 break;
5045
5046 case BPSTAT_WHAT_KEEP_CHECKING:
5047 break;
e5ef252a 5048 }
c906108c 5049
af48d08f
PA
5050 /* If we stepped a permanent breakpoint and we had a high priority
5051 step-resume breakpoint for the address we stepped, but we didn't
5052 hit it, then we must have stepped into the signal handler. The
5053 step-resume was only necessary to catch the case of _not_
5054 stepping into the handler, so delete it, and fall through to
5055 checking whether the step finished. */
5056 if (ecs->event_thread->stepped_breakpoint)
5057 {
5058 struct breakpoint *sr_bp
5059 = ecs->event_thread->control.step_resume_breakpoint;
5060
8d707a12
PA
5061 if (sr_bp != NULL
5062 && sr_bp->loc->permanent
af48d08f
PA
5063 && sr_bp->type == bp_hp_step_resume
5064 && sr_bp->loc->address == ecs->event_thread->prev_pc)
5065 {
5066 if (debug_infrun)
5067 fprintf_unfiltered (gdb_stdlog,
5068 "infrun: stepped permanent breakpoint, stopped in "
5069 "handler\n");
5070 delete_step_resume_breakpoint (ecs->event_thread);
5071 ecs->event_thread->step_after_step_resume_breakpoint = 0;
5072 }
5073 }
5074
cdaa5b73
PA
5075 /* We come here if we hit a breakpoint but should not stop for it.
5076 Possibly we also were stepping and should stop for that. So fall
5077 through and test for stepping. But, if not stepping, do not
5078 stop. */
c906108c 5079
a7212384
UW
5080 /* In all-stop mode, if we're currently stepping but have stopped in
5081 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
5082 if (switch_back_to_stepped_thread (ecs))
5083 return;
776f04fa 5084
8358c15c 5085 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 5086 {
527159b7 5087 if (debug_infrun)
d3169d93
DJ
5088 fprintf_unfiltered (gdb_stdlog,
5089 "infrun: step-resume breakpoint is inserted\n");
527159b7 5090
488f131b
JB
5091 /* Having a step-resume breakpoint overrides anything
5092 else having to do with stepping commands until
5093 that breakpoint is reached. */
488f131b
JB
5094 keep_going (ecs);
5095 return;
5096 }
c5aa993b 5097
16c381f0 5098 if (ecs->event_thread->control.step_range_end == 0)
488f131b 5099 {
527159b7 5100 if (debug_infrun)
8a9de0e4 5101 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 5102 /* Likewise if we aren't even stepping. */
488f131b
JB
5103 keep_going (ecs);
5104 return;
5105 }
c5aa993b 5106
4b7703ad
JB
5107 /* Re-fetch current thread's frame in case the code above caused
5108 the frame cache to be re-initialized, making our FRAME variable
5109 a dangling pointer. */
5110 frame = get_current_frame ();
628fe4e4 5111 gdbarch = get_frame_arch (frame);
7e324e48 5112 fill_in_stop_func (gdbarch, ecs);
4b7703ad 5113
488f131b 5114 /* If stepping through a line, keep going if still within it.
c906108c 5115
488f131b
JB
5116 Note that step_range_end is the address of the first instruction
5117 beyond the step range, and NOT the address of the last instruction
31410e84
MS
5118 within it!
5119
5120 Note also that during reverse execution, we may be stepping
5121 through a function epilogue and therefore must detect when
5122 the current-frame changes in the middle of a line. */
5123
ce4c476a 5124 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 5125 && (execution_direction != EXEC_REVERSE
388a8562 5126 || frame_id_eq (get_frame_id (frame),
16c381f0 5127 ecs->event_thread->control.step_frame_id)))
488f131b 5128 {
527159b7 5129 if (debug_infrun)
5af949e3
UW
5130 fprintf_unfiltered
5131 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
5132 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5133 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 5134
c1e36e3e
PA
5135 /* Tentatively re-enable range stepping; `resume' disables it if
5136 necessary (e.g., if we're stepping over a breakpoint or we
5137 have software watchpoints). */
5138 ecs->event_thread->control.may_range_step = 1;
5139
b2175913
MS
5140 /* When stepping backward, stop at beginning of line range
5141 (unless it's the function entry point, in which case
5142 keep going back to the call point). */
16c381f0 5143 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
5144 && stop_pc != ecs->stop_func_start
5145 && execution_direction == EXEC_REVERSE)
bdc36728 5146 end_stepping_range (ecs);
b2175913
MS
5147 else
5148 keep_going (ecs);
5149
488f131b
JB
5150 return;
5151 }
c5aa993b 5152
488f131b 5153 /* We stepped out of the stepping range. */
c906108c 5154
488f131b 5155 /* If we are stepping at the source level and entered the runtime
388a8562
MS
5156 loader dynamic symbol resolution code...
5157
5158 EXEC_FORWARD: we keep on single stepping until we exit the run
5159 time loader code and reach the callee's address.
5160
5161 EXEC_REVERSE: we've already executed the callee (backward), and
5162 the runtime loader code is handled just like any other
5163 undebuggable function call. Now we need only keep stepping
5164 backward through the trampoline code, and that's handled further
5165 down, so there is nothing for us to do here. */
5166
5167 if (execution_direction != EXEC_REVERSE
16c381f0 5168 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 5169 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 5170 {
4c8c40e6 5171 CORE_ADDR pc_after_resolver =
568d6575 5172 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 5173
527159b7 5174 if (debug_infrun)
3e43a32a
MS
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: stepped into dynsym resolve code\n");
527159b7 5177
488f131b
JB
5178 if (pc_after_resolver)
5179 {
5180 /* Set up a step-resume breakpoint at the address
5181 indicated by SKIP_SOLIB_RESOLVER. */
5182 struct symtab_and_line sr_sal;
abbb1732 5183
fe39c653 5184 init_sal (&sr_sal);
488f131b 5185 sr_sal.pc = pc_after_resolver;
6c95b8df 5186 sr_sal.pspace = get_frame_program_space (frame);
488f131b 5187
a6d9a66e
UW
5188 insert_step_resume_breakpoint_at_sal (gdbarch,
5189 sr_sal, null_frame_id);
c5aa993b 5190 }
c906108c 5191
488f131b
JB
5192 keep_going (ecs);
5193 return;
5194 }
c906108c 5195
16c381f0
JK
5196 if (ecs->event_thread->control.step_range_end != 1
5197 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5198 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5199 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5200 {
527159b7 5201 if (debug_infrun)
3e43a32a
MS
5202 fprintf_unfiltered (gdb_stdlog,
5203 "infrun: stepped into signal trampoline\n");
42edda50 5204 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5205 a signal trampoline (either by a signal being delivered or by
5206 the signal handler returning). Just single-step until the
5207 inferior leaves the trampoline (either by calling the handler
5208 or returning). */
488f131b
JB
5209 keep_going (ecs);
5210 return;
5211 }
c906108c 5212
14132e89
MR
5213 /* If we're in the return path from a shared library trampoline,
5214 we want to proceed through the trampoline when stepping. */
5215 /* macro/2012-04-25: This needs to come before the subroutine
5216 call check below as on some targets return trampolines look
5217 like subroutine calls (MIPS16 return thunks). */
5218 if (gdbarch_in_solib_return_trampoline (gdbarch,
5219 stop_pc, ecs->stop_func_name)
5220 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5221 {
5222 /* Determine where this trampoline returns. */
5223 CORE_ADDR real_stop_pc;
5224
5225 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5226
5227 if (debug_infrun)
5228 fprintf_unfiltered (gdb_stdlog,
5229 "infrun: stepped into solib return tramp\n");
5230
5231 /* Only proceed through if we know where it's going. */
5232 if (real_stop_pc)
5233 {
5234 /* And put the step-breakpoint there and go until there. */
5235 struct symtab_and_line sr_sal;
5236
5237 init_sal (&sr_sal); /* initialize to zeroes */
5238 sr_sal.pc = real_stop_pc;
5239 sr_sal.section = find_pc_overlay (sr_sal.pc);
5240 sr_sal.pspace = get_frame_program_space (frame);
5241
5242 /* Do not specify what the fp should be when we stop since
5243 on some machines the prologue is where the new fp value
5244 is established. */
5245 insert_step_resume_breakpoint_at_sal (gdbarch,
5246 sr_sal, null_frame_id);
5247
5248 /* Restart without fiddling with the step ranges or
5249 other state. */
5250 keep_going (ecs);
5251 return;
5252 }
5253 }
5254
c17eaafe
DJ
5255 /* Check for subroutine calls. The check for the current frame
5256 equalling the step ID is not necessary - the check of the
5257 previous frame's ID is sufficient - but it is a common case and
5258 cheaper than checking the previous frame's ID.
14e60db5
DJ
5259
5260 NOTE: frame_id_eq will never report two invalid frame IDs as
5261 being equal, so to get into this block, both the current and
5262 previous frame must have valid frame IDs. */
005ca36a
JB
5263 /* The outer_frame_id check is a heuristic to detect stepping
5264 through startup code. If we step over an instruction which
5265 sets the stack pointer from an invalid value to a valid value,
5266 we may detect that as a subroutine call from the mythical
5267 "outermost" function. This could be fixed by marking
5268 outermost frames as !stack_p,code_p,special_p. Then the
5269 initial outermost frame, before sp was valid, would
ce6cca6d 5270 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5271 for more. */
edb3359d 5272 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5273 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5274 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5275 ecs->event_thread->control.step_stack_frame_id)
5276 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 5277 outer_frame_id)
885eeb5b
PA
5278 || (ecs->event_thread->control.step_start_function
5279 != find_pc_function (stop_pc)))))
488f131b 5280 {
95918acb 5281 CORE_ADDR real_stop_pc;
8fb3e588 5282
527159b7 5283 if (debug_infrun)
8a9de0e4 5284 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5285
b7a084be 5286 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5287 {
5288 /* I presume that step_over_calls is only 0 when we're
5289 supposed to be stepping at the assembly language level
5290 ("stepi"). Just stop. */
388a8562 5291 /* And this works the same backward as frontward. MVS */
bdc36728 5292 end_stepping_range (ecs);
95918acb
AC
5293 return;
5294 }
8fb3e588 5295
388a8562
MS
5296 /* Reverse stepping through solib trampolines. */
5297
5298 if (execution_direction == EXEC_REVERSE
16c381f0 5299 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5300 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5301 || (ecs->stop_func_start == 0
5302 && in_solib_dynsym_resolve_code (stop_pc))))
5303 {
5304 /* Any solib trampoline code can be handled in reverse
5305 by simply continuing to single-step. We have already
5306 executed the solib function (backwards), and a few
5307 steps will take us back through the trampoline to the
5308 caller. */
5309 keep_going (ecs);
5310 return;
5311 }
5312
16c381f0 5313 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5314 {
b2175913
MS
5315 /* We're doing a "next".
5316
5317 Normal (forward) execution: set a breakpoint at the
5318 callee's return address (the address at which the caller
5319 will resume).
5320
5321 Reverse (backward) execution. set the step-resume
5322 breakpoint at the start of the function that we just
5323 stepped into (backwards), and continue to there. When we
6130d0b7 5324 get there, we'll need to single-step back to the caller. */
b2175913
MS
5325
5326 if (execution_direction == EXEC_REVERSE)
5327 {
acf9414f
JK
5328 /* If we're already at the start of the function, we've either
5329 just stepped backward into a single instruction function,
5330 or stepped back out of a signal handler to the first instruction
5331 of the function. Just keep going, which will single-step back
5332 to the caller. */
58c48e72 5333 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5334 {
5335 struct symtab_and_line sr_sal;
5336
5337 /* Normal function call return (static or dynamic). */
5338 init_sal (&sr_sal);
5339 sr_sal.pc = ecs->stop_func_start;
5340 sr_sal.pspace = get_frame_program_space (frame);
5341 insert_step_resume_breakpoint_at_sal (gdbarch,
5342 sr_sal, null_frame_id);
5343 }
b2175913
MS
5344 }
5345 else
568d6575 5346 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5347
8567c30f
AC
5348 keep_going (ecs);
5349 return;
5350 }
a53c66de 5351
95918acb 5352 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5353 calling routine and the real function), locate the real
5354 function. That's what tells us (a) whether we want to step
5355 into it at all, and (b) what prologue we want to run to the
5356 end of, if we do step into it. */
568d6575 5357 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5358 if (real_stop_pc == 0)
568d6575 5359 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5360 if (real_stop_pc != 0)
5361 ecs->stop_func_start = real_stop_pc;
8fb3e588 5362
db5f024e 5363 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5364 {
5365 struct symtab_and_line sr_sal;
abbb1732 5366
1b2bfbb9
RC
5367 init_sal (&sr_sal);
5368 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5369 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5370
a6d9a66e
UW
5371 insert_step_resume_breakpoint_at_sal (gdbarch,
5372 sr_sal, null_frame_id);
8fb3e588
AC
5373 keep_going (ecs);
5374 return;
1b2bfbb9
RC
5375 }
5376
95918acb 5377 /* If we have line number information for the function we are
1bfeeb0f
JL
5378 thinking of stepping into and the function isn't on the skip
5379 list, step into it.
95918acb 5380
8fb3e588
AC
5381 If there are several symtabs at that PC (e.g. with include
5382 files), just want to know whether *any* of them have line
5383 numbers. find_pc_line handles this. */
95918acb
AC
5384 {
5385 struct symtab_and_line tmp_sal;
8fb3e588 5386
95918acb 5387 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5388 if (tmp_sal.line != 0
85817405
JK
5389 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5390 &tmp_sal))
95918acb 5391 {
b2175913 5392 if (execution_direction == EXEC_REVERSE)
568d6575 5393 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5394 else
568d6575 5395 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5396 return;
5397 }
5398 }
5399
5400 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5401 set, we stop the step so that the user has a chance to switch
5402 in assembly mode. */
16c381f0 5403 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5404 && step_stop_if_no_debug)
95918acb 5405 {
bdc36728 5406 end_stepping_range (ecs);
95918acb
AC
5407 return;
5408 }
5409
b2175913
MS
5410 if (execution_direction == EXEC_REVERSE)
5411 {
acf9414f
JK
5412 /* If we're already at the start of the function, we've either just
5413 stepped backward into a single instruction function without line
5414 number info, or stepped back out of a signal handler to the first
5415 instruction of the function without line number info. Just keep
5416 going, which will single-step back to the caller. */
5417 if (ecs->stop_func_start != stop_pc)
5418 {
5419 /* Set a breakpoint at callee's start address.
5420 From there we can step once and be back in the caller. */
5421 struct symtab_and_line sr_sal;
abbb1732 5422
acf9414f
JK
5423 init_sal (&sr_sal);
5424 sr_sal.pc = ecs->stop_func_start;
5425 sr_sal.pspace = get_frame_program_space (frame);
5426 insert_step_resume_breakpoint_at_sal (gdbarch,
5427 sr_sal, null_frame_id);
5428 }
b2175913
MS
5429 }
5430 else
5431 /* Set a breakpoint at callee's return address (the address
5432 at which the caller will resume). */
568d6575 5433 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5434
95918acb 5435 keep_going (ecs);
488f131b 5436 return;
488f131b 5437 }
c906108c 5438
fdd654f3
MS
5439 /* Reverse stepping through solib trampolines. */
5440
5441 if (execution_direction == EXEC_REVERSE
16c381f0 5442 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5443 {
5444 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5445 || (ecs->stop_func_start == 0
5446 && in_solib_dynsym_resolve_code (stop_pc)))
5447 {
5448 /* Any solib trampoline code can be handled in reverse
5449 by simply continuing to single-step. We have already
5450 executed the solib function (backwards), and a few
5451 steps will take us back through the trampoline to the
5452 caller. */
5453 keep_going (ecs);
5454 return;
5455 }
5456 else if (in_solib_dynsym_resolve_code (stop_pc))
5457 {
5458 /* Stepped backward into the solib dynsym resolver.
5459 Set a breakpoint at its start and continue, then
5460 one more step will take us out. */
5461 struct symtab_and_line sr_sal;
abbb1732 5462
fdd654f3
MS
5463 init_sal (&sr_sal);
5464 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5465 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5466 insert_step_resume_breakpoint_at_sal (gdbarch,
5467 sr_sal, null_frame_id);
5468 keep_going (ecs);
5469 return;
5470 }
5471 }
5472
2afb61aa 5473 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5474
1b2bfbb9
RC
5475 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5476 the trampoline processing logic, however, there are some trampolines
5477 that have no names, so we should do trampoline handling first. */
16c381f0 5478 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5479 && ecs->stop_func_name == NULL
2afb61aa 5480 && stop_pc_sal.line == 0)
1b2bfbb9 5481 {
527159b7 5482 if (debug_infrun)
3e43a32a
MS
5483 fprintf_unfiltered (gdb_stdlog,
5484 "infrun: stepped into undebuggable function\n");
527159b7 5485
1b2bfbb9 5486 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5487 undebuggable function (where there is no debugging information
5488 and no line number corresponding to the address where the
1b2bfbb9
RC
5489 inferior stopped). Since we want to skip this kind of code,
5490 we keep going until the inferior returns from this
14e60db5
DJ
5491 function - unless the user has asked us not to (via
5492 set step-mode) or we no longer know how to get back
5493 to the call site. */
5494 if (step_stop_if_no_debug
c7ce8faa 5495 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5496 {
5497 /* If we have no line number and the step-stop-if-no-debug
5498 is set, we stop the step so that the user has a chance to
5499 switch in assembly mode. */
bdc36728 5500 end_stepping_range (ecs);
1b2bfbb9
RC
5501 return;
5502 }
5503 else
5504 {
5505 /* Set a breakpoint at callee's return address (the address
5506 at which the caller will resume). */
568d6575 5507 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5508 keep_going (ecs);
5509 return;
5510 }
5511 }
5512
16c381f0 5513 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5514 {
5515 /* It is stepi or nexti. We always want to stop stepping after
5516 one instruction. */
527159b7 5517 if (debug_infrun)
8a9de0e4 5518 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5519 end_stepping_range (ecs);
1b2bfbb9
RC
5520 return;
5521 }
5522
2afb61aa 5523 if (stop_pc_sal.line == 0)
488f131b
JB
5524 {
5525 /* We have no line number information. That means to stop
5526 stepping (does this always happen right after one instruction,
5527 when we do "s" in a function with no line numbers,
5528 or can this happen as a result of a return or longjmp?). */
527159b7 5529 if (debug_infrun)
8a9de0e4 5530 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5531 end_stepping_range (ecs);
488f131b
JB
5532 return;
5533 }
c906108c 5534
edb3359d
DJ
5535 /* Look for "calls" to inlined functions, part one. If the inline
5536 frame machinery detected some skipped call sites, we have entered
5537 a new inline function. */
5538
5539 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5540 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5541 && inline_skipped_frames (ecs->ptid))
5542 {
5543 struct symtab_and_line call_sal;
5544
5545 if (debug_infrun)
5546 fprintf_unfiltered (gdb_stdlog,
5547 "infrun: stepped into inlined function\n");
5548
5549 find_frame_sal (get_current_frame (), &call_sal);
5550
16c381f0 5551 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5552 {
5553 /* For "step", we're going to stop. But if the call site
5554 for this inlined function is on the same source line as
5555 we were previously stepping, go down into the function
5556 first. Otherwise stop at the call site. */
5557
5558 if (call_sal.line == ecs->event_thread->current_line
5559 && call_sal.symtab == ecs->event_thread->current_symtab)
5560 step_into_inline_frame (ecs->ptid);
5561
bdc36728 5562 end_stepping_range (ecs);
edb3359d
DJ
5563 return;
5564 }
5565 else
5566 {
5567 /* For "next", we should stop at the call site if it is on a
5568 different source line. Otherwise continue through the
5569 inlined function. */
5570 if (call_sal.line == ecs->event_thread->current_line
5571 && call_sal.symtab == ecs->event_thread->current_symtab)
5572 keep_going (ecs);
5573 else
bdc36728 5574 end_stepping_range (ecs);
edb3359d
DJ
5575 return;
5576 }
5577 }
5578
5579 /* Look for "calls" to inlined functions, part two. If we are still
5580 in the same real function we were stepping through, but we have
5581 to go further up to find the exact frame ID, we are stepping
5582 through a more inlined call beyond its call site. */
5583
5584 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5585 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5586 ecs->event_thread->control.step_frame_id)
edb3359d 5587 && stepped_in_from (get_current_frame (),
16c381f0 5588 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5589 {
5590 if (debug_infrun)
5591 fprintf_unfiltered (gdb_stdlog,
5592 "infrun: stepping through inlined function\n");
5593
16c381f0 5594 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5595 keep_going (ecs);
5596 else
bdc36728 5597 end_stepping_range (ecs);
edb3359d
DJ
5598 return;
5599 }
5600
2afb61aa 5601 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5602 && (ecs->event_thread->current_line != stop_pc_sal.line
5603 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5604 {
5605 /* We are at the start of a different line. So stop. Note that
5606 we don't stop if we step into the middle of a different line.
5607 That is said to make things like for (;;) statements work
5608 better. */
527159b7 5609 if (debug_infrun)
3e43a32a
MS
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: stepped to a different line\n");
bdc36728 5612 end_stepping_range (ecs);
488f131b
JB
5613 return;
5614 }
c906108c 5615
488f131b 5616 /* We aren't done stepping.
c906108c 5617
488f131b
JB
5618 Optimize by setting the stepping range to the line.
5619 (We might not be in the original line, but if we entered a
5620 new line in mid-statement, we continue stepping. This makes
5621 things like for(;;) statements work better.) */
c906108c 5622
16c381f0
JK
5623 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5624 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5625 ecs->event_thread->control.may_range_step = 1;
edb3359d 5626 set_step_info (frame, stop_pc_sal);
488f131b 5627
527159b7 5628 if (debug_infrun)
8a9de0e4 5629 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5630 keep_going (ecs);
104c1213
JM
5631}
5632
c447ac0b
PA
5633/* In all-stop mode, if we're currently stepping but have stopped in
5634 some other thread, we may need to switch back to the stepped
5635 thread. Returns true we set the inferior running, false if we left
5636 it stopped (and the event needs further processing). */
5637
5638static int
5639switch_back_to_stepped_thread (struct execution_control_state *ecs)
5640{
5641 if (!non_stop)
5642 {
5643 struct thread_info *tp;
99619bea 5644 struct thread_info *stepping_thread;
483805cf 5645 struct thread_info *step_over;
99619bea
PA
5646
5647 /* If any thread is blocked on some internal breakpoint, and we
5648 simply need to step over that breakpoint to get it going
5649 again, do that first. */
5650
5651 /* However, if we see an event for the stepping thread, then we
5652 know all other threads have been moved past their breakpoints
5653 already. Let the caller check whether the step is finished,
5654 etc., before deciding to move it past a breakpoint. */
5655 if (ecs->event_thread->control.step_range_end != 0)
5656 return 0;
5657
5658 /* Check if the current thread is blocked on an incomplete
5659 step-over, interrupted by a random signal. */
5660 if (ecs->event_thread->control.trap_expected
5661 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5662 {
99619bea
PA
5663 if (debug_infrun)
5664 {
5665 fprintf_unfiltered (gdb_stdlog,
5666 "infrun: need to finish step-over of [%s]\n",
5667 target_pid_to_str (ecs->event_thread->ptid));
5668 }
5669 keep_going (ecs);
5670 return 1;
5671 }
2adfaa28 5672
99619bea
PA
5673 /* Check if the current thread is blocked by a single-step
5674 breakpoint of another thread. */
5675 if (ecs->hit_singlestep_breakpoint)
5676 {
5677 if (debug_infrun)
5678 {
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: need to step [%s] over single-step "
5681 "breakpoint\n",
5682 target_pid_to_str (ecs->ptid));
5683 }
5684 keep_going (ecs);
5685 return 1;
5686 }
5687
483805cf
PA
5688 /* Otherwise, we no longer expect a trap in the current thread.
5689 Clear the trap_expected flag before switching back -- this is
5690 what keep_going does as well, if we call it. */
5691 ecs->event_thread->control.trap_expected = 0;
5692
70509625
PA
5693 /* Likewise, clear the signal if it should not be passed. */
5694 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5695 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5696
483805cf
PA
5697 /* If scheduler locking applies even if not stepping, there's no
5698 need to walk over threads. Above we've checked whether the
5699 current thread is stepping. If some other thread not the
5700 event thread is stepping, then it must be that scheduler
5701 locking is not in effect. */
856e7dd6 5702 if (schedlock_applies (ecs->event_thread))
483805cf
PA
5703 return 0;
5704
5705 /* Look for the stepping/nexting thread, and check if any other
5706 thread other than the stepping thread needs to start a
5707 step-over. Do all step-overs before actually proceeding with
5708 step/next/etc. */
5709 stepping_thread = NULL;
5710 step_over = NULL;
034f788c 5711 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5712 {
5713 /* Ignore threads of processes we're not resuming. */
5714 if (!sched_multi
5715 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5716 continue;
5717
5718 /* When stepping over a breakpoint, we lock all threads
5719 except the one that needs to move past the breakpoint.
5720 If a non-event thread has this set, the "incomplete
5721 step-over" check above should have caught it earlier. */
5722 gdb_assert (!tp->control.trap_expected);
5723
5724 /* Did we find the stepping thread? */
5725 if (tp->control.step_range_end)
5726 {
5727 /* Yep. There should only one though. */
5728 gdb_assert (stepping_thread == NULL);
5729
5730 /* The event thread is handled at the top, before we
5731 enter this loop. */
5732 gdb_assert (tp != ecs->event_thread);
5733
5734 /* If some thread other than the event thread is
5735 stepping, then scheduler locking can't be in effect,
5736 otherwise we wouldn't have resumed the current event
5737 thread in the first place. */
856e7dd6 5738 gdb_assert (!schedlock_applies (tp));
483805cf
PA
5739
5740 stepping_thread = tp;
5741 }
5742 else if (thread_still_needs_step_over (tp))
5743 {
5744 step_over = tp;
5745
5746 /* At the top we've returned early if the event thread
5747 is stepping. If some other thread not the event
5748 thread is stepping, then scheduler locking can't be
5749 in effect, and we can resume this thread. No need to
5750 keep looking for the stepping thread then. */
5751 break;
5752 }
5753 }
99619bea 5754
483805cf 5755 if (step_over != NULL)
99619bea 5756 {
483805cf 5757 tp = step_over;
99619bea 5758 if (debug_infrun)
c447ac0b 5759 {
99619bea
PA
5760 fprintf_unfiltered (gdb_stdlog,
5761 "infrun: need to step-over [%s]\n",
5762 target_pid_to_str (tp->ptid));
c447ac0b
PA
5763 }
5764
483805cf 5765 /* Only the stepping thread should have this set. */
99619bea
PA
5766 gdb_assert (tp->control.step_range_end == 0);
5767
99619bea
PA
5768 ecs->ptid = tp->ptid;
5769 ecs->event_thread = tp;
5770 switch_to_thread (ecs->ptid);
5771 keep_going (ecs);
5772 return 1;
5773 }
5774
483805cf 5775 if (stepping_thread != NULL)
99619bea
PA
5776 {
5777 struct frame_info *frame;
5778 struct gdbarch *gdbarch;
5779
483805cf
PA
5780 tp = stepping_thread;
5781
c447ac0b
PA
5782 /* If the stepping thread exited, then don't try to switch
5783 back and resume it, which could fail in several different
5784 ways depending on the target. Instead, just keep going.
5785
5786 We can find a stepping dead thread in the thread list in
5787 two cases:
5788
5789 - The target supports thread exit events, and when the
5790 target tries to delete the thread from the thread list,
5791 inferior_ptid pointed at the exiting thread. In such
5792 case, calling delete_thread does not really remove the
5793 thread from the list; instead, the thread is left listed,
5794 with 'exited' state.
5795
5796 - The target's debug interface does not support thread
5797 exit events, and so we have no idea whatsoever if the
5798 previously stepping thread is still alive. For that
5799 reason, we need to synchronously query the target
5800 now. */
5801 if (is_exited (tp->ptid)
5802 || !target_thread_alive (tp->ptid))
5803 {
5804 if (debug_infrun)
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: not switching back to "
5807 "stepped thread, it has vanished\n");
5808
5809 delete_thread (tp->ptid);
5810 keep_going (ecs);
5811 return 1;
5812 }
5813
c447ac0b
PA
5814 if (debug_infrun)
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: switching back to stepped thread\n");
5817
5818 ecs->event_thread = tp;
5819 ecs->ptid = tp->ptid;
5820 context_switch (ecs->ptid);
2adfaa28
PA
5821
5822 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5823 frame = get_current_frame ();
5824 gdbarch = get_frame_arch (frame);
5825
5826 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5827 changed, then that thread has trapped or been signaled,
5828 but the event has not been reported to GDB yet. Re-poll
5829 the target looking for this particular thread's event
5830 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5831
5832 - setting a break at the current PC
5833 - resuming that particular thread, only (by setting
5834 trap expected)
5835
5836 This prevents us continuously moving the single-step
5837 breakpoint forward, one instruction at a time,
5838 overstepping. */
5839
af48d08f 5840 if (stop_pc != tp->prev_pc)
2adfaa28 5841 {
64ce06e4
PA
5842 ptid_t resume_ptid;
5843
2adfaa28
PA
5844 if (debug_infrun)
5845 fprintf_unfiltered (gdb_stdlog,
5846 "infrun: expected thread advanced also\n");
5847
7c16b83e
PA
5848 /* Clear the info of the previous step-over, as it's no
5849 longer valid. It's what keep_going would do too, if
5850 we called it. Must do this before trying to insert
5851 the sss breakpoint, otherwise if we were previously
5852 trying to step over this exact address in another
5853 thread, the breakpoint ends up not installed. */
5854 clear_step_over_info ();
5855
2adfaa28
PA
5856 insert_single_step_breakpoint (get_frame_arch (frame),
5857 get_frame_address_space (frame),
5858 stop_pc);
2adfaa28 5859
64ce06e4
PA
5860 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5861 do_target_resume (resume_ptid,
5862 currently_stepping (tp), GDB_SIGNAL_0);
2adfaa28
PA
5863 prepare_to_wait (ecs);
5864 }
5865 else
5866 {
5867 if (debug_infrun)
5868 fprintf_unfiltered (gdb_stdlog,
5869 "infrun: expected thread still "
5870 "hasn't advanced\n");
5871 keep_going (ecs);
5872 }
5873
c447ac0b
PA
5874 return 1;
5875 }
5876 }
5877 return 0;
5878}
5879
b3444185 5880/* Is thread TP in the middle of single-stepping? */
104c1213 5881
a289b8f6 5882static int
b3444185 5883currently_stepping (struct thread_info *tp)
a7212384 5884{
8358c15c
JK
5885 return ((tp->control.step_range_end
5886 && tp->control.step_resume_breakpoint == NULL)
5887 || tp->control.trap_expected
af48d08f 5888 || tp->stepped_breakpoint
8358c15c 5889 || bpstat_should_step ());
a7212384
UW
5890}
5891
b2175913
MS
5892/* Inferior has stepped into a subroutine call with source code that
5893 we should not step over. Do step to the first line of code in
5894 it. */
c2c6d25f
JM
5895
5896static void
568d6575
UW
5897handle_step_into_function (struct gdbarch *gdbarch,
5898 struct execution_control_state *ecs)
c2c6d25f 5899{
43f3e411 5900 struct compunit_symtab *cust;
2afb61aa 5901 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5902
7e324e48
GB
5903 fill_in_stop_func (gdbarch, ecs);
5904
43f3e411
DE
5905 cust = find_pc_compunit_symtab (stop_pc);
5906 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5907 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5908 ecs->stop_func_start);
c2c6d25f 5909
2afb61aa 5910 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5911 /* Use the step_resume_break to step until the end of the prologue,
5912 even if that involves jumps (as it seems to on the vax under
5913 4.2). */
5914 /* If the prologue ends in the middle of a source line, continue to
5915 the end of that source line (if it is still within the function).
5916 Otherwise, just go to end of prologue. */
2afb61aa
PA
5917 if (stop_func_sal.end
5918 && stop_func_sal.pc != ecs->stop_func_start
5919 && stop_func_sal.end < ecs->stop_func_end)
5920 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5921
2dbd5e30
KB
5922 /* Architectures which require breakpoint adjustment might not be able
5923 to place a breakpoint at the computed address. If so, the test
5924 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5925 ecs->stop_func_start to an address at which a breakpoint may be
5926 legitimately placed.
8fb3e588 5927
2dbd5e30
KB
5928 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5929 made, GDB will enter an infinite loop when stepping through
5930 optimized code consisting of VLIW instructions which contain
5931 subinstructions corresponding to different source lines. On
5932 FR-V, it's not permitted to place a breakpoint on any but the
5933 first subinstruction of a VLIW instruction. When a breakpoint is
5934 set, GDB will adjust the breakpoint address to the beginning of
5935 the VLIW instruction. Thus, we need to make the corresponding
5936 adjustment here when computing the stop address. */
8fb3e588 5937
568d6575 5938 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5939 {
5940 ecs->stop_func_start
568d6575 5941 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5942 ecs->stop_func_start);
2dbd5e30
KB
5943 }
5944
c2c6d25f
JM
5945 if (ecs->stop_func_start == stop_pc)
5946 {
5947 /* We are already there: stop now. */
bdc36728 5948 end_stepping_range (ecs);
c2c6d25f
JM
5949 return;
5950 }
5951 else
5952 {
5953 /* Put the step-breakpoint there and go until there. */
fe39c653 5954 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5955 sr_sal.pc = ecs->stop_func_start;
5956 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5957 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5958
c2c6d25f 5959 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5960 some machines the prologue is where the new fp value is
5961 established. */
a6d9a66e 5962 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5963
5964 /* And make sure stepping stops right away then. */
16c381f0
JK
5965 ecs->event_thread->control.step_range_end
5966 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5967 }
5968 keep_going (ecs);
5969}
d4f3574e 5970
b2175913
MS
5971/* Inferior has stepped backward into a subroutine call with source
5972 code that we should not step over. Do step to the beginning of the
5973 last line of code in it. */
5974
5975static void
568d6575
UW
5976handle_step_into_function_backward (struct gdbarch *gdbarch,
5977 struct execution_control_state *ecs)
b2175913 5978{
43f3e411 5979 struct compunit_symtab *cust;
167e4384 5980 struct symtab_and_line stop_func_sal;
b2175913 5981
7e324e48
GB
5982 fill_in_stop_func (gdbarch, ecs);
5983
43f3e411
DE
5984 cust = find_pc_compunit_symtab (stop_pc);
5985 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5986 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5987 ecs->stop_func_start);
5988
5989 stop_func_sal = find_pc_line (stop_pc, 0);
5990
5991 /* OK, we're just going to keep stepping here. */
5992 if (stop_func_sal.pc == stop_pc)
5993 {
5994 /* We're there already. Just stop stepping now. */
bdc36728 5995 end_stepping_range (ecs);
b2175913
MS
5996 }
5997 else
5998 {
5999 /* Else just reset the step range and keep going.
6000 No step-resume breakpoint, they don't work for
6001 epilogues, which can have multiple entry paths. */
16c381f0
JK
6002 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
6003 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
6004 keep_going (ecs);
6005 }
6006 return;
6007}
6008
d3169d93 6009/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
6010 This is used to both functions and to skip over code. */
6011
6012static void
2c03e5be
PA
6013insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
6014 struct symtab_and_line sr_sal,
6015 struct frame_id sr_id,
6016 enum bptype sr_type)
44cbf7b5 6017{
611c83ae
PA
6018 /* There should never be more than one step-resume or longjmp-resume
6019 breakpoint per thread, so we should never be setting a new
44cbf7b5 6020 step_resume_breakpoint when one is already active. */
8358c15c 6021 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 6022 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
6023
6024 if (debug_infrun)
6025 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6026 "infrun: inserting step-resume breakpoint at %s\n",
6027 paddress (gdbarch, sr_sal.pc));
d3169d93 6028
8358c15c 6029 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
6030 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
6031}
6032
9da8c2a0 6033void
2c03e5be
PA
6034insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
6035 struct symtab_and_line sr_sal,
6036 struct frame_id sr_id)
6037{
6038 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
6039 sr_sal, sr_id,
6040 bp_step_resume);
44cbf7b5 6041}
7ce450bd 6042
2c03e5be
PA
6043/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
6044 This is used to skip a potential signal handler.
7ce450bd 6045
14e60db5
DJ
6046 This is called with the interrupted function's frame. The signal
6047 handler, when it returns, will resume the interrupted function at
6048 RETURN_FRAME.pc. */
d303a6c7
AC
6049
6050static void
2c03e5be 6051insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
6052{
6053 struct symtab_and_line sr_sal;
a6d9a66e 6054 struct gdbarch *gdbarch;
d303a6c7 6055
f4c1edd8 6056 gdb_assert (return_frame != NULL);
d303a6c7
AC
6057 init_sal (&sr_sal); /* initialize to zeros */
6058
a6d9a66e 6059 gdbarch = get_frame_arch (return_frame);
568d6575 6060 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 6061 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 6062 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 6063
2c03e5be
PA
6064 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
6065 get_stack_frame_id (return_frame),
6066 bp_hp_step_resume);
d303a6c7
AC
6067}
6068
2c03e5be
PA
6069/* Insert a "step-resume breakpoint" at the previous frame's PC. This
6070 is used to skip a function after stepping into it (for "next" or if
6071 the called function has no debugging information).
14e60db5
DJ
6072
6073 The current function has almost always been reached by single
6074 stepping a call or return instruction. NEXT_FRAME belongs to the
6075 current function, and the breakpoint will be set at the caller's
6076 resume address.
6077
6078 This is a separate function rather than reusing
2c03e5be 6079 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 6080 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 6081 of frame_unwind_caller_id for an example). */
14e60db5
DJ
6082
6083static void
6084insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
6085{
6086 struct symtab_and_line sr_sal;
a6d9a66e 6087 struct gdbarch *gdbarch;
14e60db5
DJ
6088
6089 /* We shouldn't have gotten here if we don't know where the call site
6090 is. */
c7ce8faa 6091 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
6092
6093 init_sal (&sr_sal); /* initialize to zeros */
6094
a6d9a66e 6095 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
6096 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
6097 frame_unwind_caller_pc (next_frame));
14e60db5 6098 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 6099 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 6100
a6d9a66e 6101 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 6102 frame_unwind_caller_id (next_frame));
14e60db5
DJ
6103}
6104
611c83ae
PA
6105/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6106 new breakpoint at the target of a jmp_buf. The handling of
6107 longjmp-resume uses the same mechanisms used for handling
6108 "step-resume" breakpoints. */
6109
6110static void
a6d9a66e 6111insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 6112{
e81a37f7
TT
6113 /* There should never be more than one longjmp-resume breakpoint per
6114 thread, so we should never be setting a new
611c83ae 6115 longjmp_resume_breakpoint when one is already active. */
e81a37f7 6116 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
6117
6118 if (debug_infrun)
6119 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6120 "infrun: inserting longjmp-resume breakpoint at %s\n",
6121 paddress (gdbarch, pc));
611c83ae 6122
e81a37f7 6123 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 6124 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
6125}
6126
186c406b
TT
6127/* Insert an exception resume breakpoint. TP is the thread throwing
6128 the exception. The block B is the block of the unwinder debug hook
6129 function. FRAME is the frame corresponding to the call to this
6130 function. SYM is the symbol of the function argument holding the
6131 target PC of the exception. */
6132
6133static void
6134insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 6135 const struct block *b,
186c406b
TT
6136 struct frame_info *frame,
6137 struct symbol *sym)
6138{
492d29ea 6139 TRY
186c406b
TT
6140 {
6141 struct symbol *vsym;
6142 struct value *value;
6143 CORE_ADDR handler;
6144 struct breakpoint *bp;
6145
d12307c1
PMR
6146 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN,
6147 NULL).symbol;
186c406b
TT
6148 value = read_var_value (vsym, frame);
6149 /* If the value was optimized out, revert to the old behavior. */
6150 if (! value_optimized_out (value))
6151 {
6152 handler = value_as_address (value);
6153
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog,
6156 "infrun: exception resume at %lx\n",
6157 (unsigned long) handler);
6158
6159 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6160 handler, bp_exception_resume);
c70a6932
JK
6161
6162 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6163 frame = NULL;
6164
186c406b
TT
6165 bp->thread = tp->num;
6166 inferior_thread ()->control.exception_resume_breakpoint = bp;
6167 }
6168 }
492d29ea
PA
6169 CATCH (e, RETURN_MASK_ERROR)
6170 {
6171 /* We want to ignore errors here. */
6172 }
6173 END_CATCH
186c406b
TT
6174}
6175
28106bc2
SDJ
6176/* A helper for check_exception_resume that sets an
6177 exception-breakpoint based on a SystemTap probe. */
6178
6179static void
6180insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 6181 const struct bound_probe *probe,
28106bc2
SDJ
6182 struct frame_info *frame)
6183{
6184 struct value *arg_value;
6185 CORE_ADDR handler;
6186 struct breakpoint *bp;
6187
6188 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6189 if (!arg_value)
6190 return;
6191
6192 handler = value_as_address (arg_value);
6193
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog,
6196 "infrun: exception resume at %s\n",
6bac7473 6197 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6198 handler));
6199
6200 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6201 handler, bp_exception_resume);
6202 bp->thread = tp->num;
6203 inferior_thread ()->control.exception_resume_breakpoint = bp;
6204}
6205
186c406b
TT
6206/* This is called when an exception has been intercepted. Check to
6207 see whether the exception's destination is of interest, and if so,
6208 set an exception resume breakpoint there. */
6209
6210static void
6211check_exception_resume (struct execution_control_state *ecs,
28106bc2 6212 struct frame_info *frame)
186c406b 6213{
729662a5 6214 struct bound_probe probe;
28106bc2
SDJ
6215 struct symbol *func;
6216
6217 /* First see if this exception unwinding breakpoint was set via a
6218 SystemTap probe point. If so, the probe has two arguments: the
6219 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6220 set a breakpoint there. */
6bac7473 6221 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6222 if (probe.probe)
28106bc2 6223 {
729662a5 6224 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6225 return;
6226 }
6227
6228 func = get_frame_function (frame);
6229 if (!func)
6230 return;
186c406b 6231
492d29ea 6232 TRY
186c406b 6233 {
3977b71f 6234 const struct block *b;
8157b174 6235 struct block_iterator iter;
186c406b
TT
6236 struct symbol *sym;
6237 int argno = 0;
6238
6239 /* The exception breakpoint is a thread-specific breakpoint on
6240 the unwinder's debug hook, declared as:
6241
6242 void _Unwind_DebugHook (void *cfa, void *handler);
6243
6244 The CFA argument indicates the frame to which control is
6245 about to be transferred. HANDLER is the destination PC.
6246
6247 We ignore the CFA and set a temporary breakpoint at HANDLER.
6248 This is not extremely efficient but it avoids issues in gdb
6249 with computing the DWARF CFA, and it also works even in weird
6250 cases such as throwing an exception from inside a signal
6251 handler. */
6252
6253 b = SYMBOL_BLOCK_VALUE (func);
6254 ALL_BLOCK_SYMBOLS (b, iter, sym)
6255 {
6256 if (!SYMBOL_IS_ARGUMENT (sym))
6257 continue;
6258
6259 if (argno == 0)
6260 ++argno;
6261 else
6262 {
6263 insert_exception_resume_breakpoint (ecs->event_thread,
6264 b, frame, sym);
6265 break;
6266 }
6267 }
6268 }
492d29ea
PA
6269 CATCH (e, RETURN_MASK_ERROR)
6270 {
6271 }
6272 END_CATCH
186c406b
TT
6273}
6274
104c1213 6275static void
22bcd14b 6276stop_waiting (struct execution_control_state *ecs)
104c1213 6277{
527159b7 6278 if (debug_infrun)
22bcd14b 6279 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6280
31e77af2
PA
6281 clear_step_over_info ();
6282
cd0fc7c3
SS
6283 /* Let callers know we don't want to wait for the inferior anymore. */
6284 ecs->wait_some_more = 0;
6285}
6286
a9ba6bae
PA
6287/* Called when we should continue running the inferior, because the
6288 current event doesn't cause a user visible stop. This does the
6289 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6290
6291static void
6292keep_going (struct execution_control_state *ecs)
6293{
c4dbc9af
PA
6294 /* Make sure normal_stop is called if we get a QUIT handled before
6295 reaching resume. */
6296 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6297
d4f3574e 6298 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6299 ecs->event_thread->prev_pc
6300 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6301
16c381f0 6302 if (ecs->event_thread->control.trap_expected
a493e3e2 6303 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6304 {
a9ba6bae
PA
6305 /* We haven't yet gotten our trap, and either: intercepted a
6306 non-signal event (e.g., a fork); or took a signal which we
6307 are supposed to pass through to the inferior. Simply
6308 continue. */
c4dbc9af 6309 discard_cleanups (old_cleanups);
64ce06e4 6310 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6311 }
6312 else
6313 {
31e77af2 6314 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6315 int remove_bp;
6316 int remove_wps;
6c4cfb24 6317 enum step_over_what step_what;
31e77af2 6318
d4f3574e 6319 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6320 anyway (if we got a signal, the user asked it be passed to
6321 the child)
6322 -- or --
6323 We got our expected trap, but decided we should resume from
6324 it.
d4f3574e 6325
a9ba6bae 6326 We're going to run this baby now!
d4f3574e 6327
c36b740a
VP
6328 Note that insert_breakpoints won't try to re-insert
6329 already inserted breakpoints. Therefore, we don't
6330 care if breakpoints were already inserted, or not. */
a9ba6bae 6331
31e77af2
PA
6332 /* If we need to step over a breakpoint, and we're not using
6333 displaced stepping to do so, insert all breakpoints
6334 (watchpoints, etc.) but the one we're stepping over, step one
6335 instruction, and then re-insert the breakpoint when that step
6336 is finished. */
963f9c80 6337
6c4cfb24
PA
6338 step_what = thread_still_needs_step_over (ecs->event_thread);
6339
963f9c80 6340 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
6341 || (step_what & STEP_OVER_BREAKPOINT));
6342 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 6343
cb71640d
PA
6344 /* We can't use displaced stepping if we need to step past a
6345 watchpoint. The instruction copied to the scratch pad would
6346 still trigger the watchpoint. */
6347 if (remove_bp
6348 && (remove_wps
6349 || !use_displaced_stepping (get_regcache_arch (regcache))))
45e8c884 6350 {
31e77af2 6351 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6352 regcache_read_pc (regcache), remove_wps);
45e8c884 6353 }
963f9c80
PA
6354 else if (remove_wps)
6355 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6356 else
31e77af2 6357 clear_step_over_info ();
abbb1732 6358
31e77af2 6359 /* Stop stepping if inserting breakpoints fails. */
492d29ea 6360 TRY
31e77af2
PA
6361 {
6362 insert_breakpoints ();
6363 }
492d29ea 6364 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
6365 {
6366 exception_print (gdb_stderr, e);
22bcd14b 6367 stop_waiting (ecs);
de1fe8c8 6368 discard_cleanups (old_cleanups);
31e77af2 6369 return;
d4f3574e 6370 }
492d29ea 6371 END_CATCH
d4f3574e 6372
963f9c80 6373 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6374
a9ba6bae
PA
6375 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6376 explicitly specifies that such a signal should be delivered
6377 to the target program). Typically, that would occur when a
6378 user is debugging a target monitor on a simulator: the target
6379 monitor sets a breakpoint; the simulator encounters this
6380 breakpoint and halts the simulation handing control to GDB;
6381 GDB, noting that the stop address doesn't map to any known
6382 breakpoint, returns control back to the simulator; the
6383 simulator then delivers the hardware equivalent of a
6384 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6385 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6386 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6387 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6388
c4dbc9af 6389 discard_cleanups (old_cleanups);
64ce06e4 6390 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6391 }
6392
488f131b 6393 prepare_to_wait (ecs);
d4f3574e
SS
6394}
6395
104c1213
JM
6396/* This function normally comes after a resume, before
6397 handle_inferior_event exits. It takes care of any last bits of
6398 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6399
104c1213
JM
6400static void
6401prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6402{
527159b7 6403 if (debug_infrun)
8a9de0e4 6404 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6405
104c1213
JM
6406 /* This is the old end of the while loop. Let everybody know we
6407 want to wait for the inferior some more and get called again
6408 soon. */
6409 ecs->wait_some_more = 1;
c906108c 6410}
11cf8741 6411
fd664c91 6412/* We are done with the step range of a step/next/si/ni command.
b57bacec 6413 Called once for each n of a "step n" operation. */
fd664c91
PA
6414
6415static void
bdc36728 6416end_stepping_range (struct execution_control_state *ecs)
fd664c91 6417{
bdc36728 6418 ecs->event_thread->control.stop_step = 1;
bdc36728 6419 stop_waiting (ecs);
fd664c91
PA
6420}
6421
33d62d64
JK
6422/* Several print_*_reason functions to print why the inferior has stopped.
6423 We always print something when the inferior exits, or receives a signal.
6424 The rest of the cases are dealt with later on in normal_stop and
6425 print_it_typical. Ideally there should be a call to one of these
6426 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6427 stop_waiting is called.
33d62d64 6428
fd664c91
PA
6429 Note that we don't call these directly, instead we delegate that to
6430 the interpreters, through observers. Interpreters then call these
6431 with whatever uiout is right. */
33d62d64 6432
fd664c91
PA
6433void
6434print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6435{
fd664c91 6436 /* For CLI-like interpreters, print nothing. */
33d62d64 6437
fd664c91
PA
6438 if (ui_out_is_mi_like_p (uiout))
6439 {
6440 ui_out_field_string (uiout, "reason",
6441 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6442 }
6443}
33d62d64 6444
fd664c91
PA
6445void
6446print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6447{
33d62d64
JK
6448 annotate_signalled ();
6449 if (ui_out_is_mi_like_p (uiout))
6450 ui_out_field_string
6451 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6452 ui_out_text (uiout, "\nProgram terminated with signal ");
6453 annotate_signal_name ();
6454 ui_out_field_string (uiout, "signal-name",
2ea28649 6455 gdb_signal_to_name (siggnal));
33d62d64
JK
6456 annotate_signal_name_end ();
6457 ui_out_text (uiout, ", ");
6458 annotate_signal_string ();
6459 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6460 gdb_signal_to_string (siggnal));
33d62d64
JK
6461 annotate_signal_string_end ();
6462 ui_out_text (uiout, ".\n");
6463 ui_out_text (uiout, "The program no longer exists.\n");
6464}
6465
fd664c91
PA
6466void
6467print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6468{
fda326dd
TT
6469 struct inferior *inf = current_inferior ();
6470 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6471
33d62d64
JK
6472 annotate_exited (exitstatus);
6473 if (exitstatus)
6474 {
6475 if (ui_out_is_mi_like_p (uiout))
6476 ui_out_field_string (uiout, "reason",
6477 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6478 ui_out_text (uiout, "[Inferior ");
6479 ui_out_text (uiout, plongest (inf->num));
6480 ui_out_text (uiout, " (");
6481 ui_out_text (uiout, pidstr);
6482 ui_out_text (uiout, ") exited with code ");
33d62d64 6483 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6484 ui_out_text (uiout, "]\n");
33d62d64
JK
6485 }
6486 else
11cf8741 6487 {
9dc5e2a9 6488 if (ui_out_is_mi_like_p (uiout))
034dad6f 6489 ui_out_field_string
33d62d64 6490 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6491 ui_out_text (uiout, "[Inferior ");
6492 ui_out_text (uiout, plongest (inf->num));
6493 ui_out_text (uiout, " (");
6494 ui_out_text (uiout, pidstr);
6495 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6496 }
33d62d64
JK
6497}
6498
fd664c91
PA
6499void
6500print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6501{
6502 annotate_signal ();
6503
a493e3e2 6504 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6505 {
6506 struct thread_info *t = inferior_thread ();
6507
6508 ui_out_text (uiout, "\n[");
6509 ui_out_field_string (uiout, "thread-name",
6510 target_pid_to_str (t->ptid));
6511 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6512 ui_out_text (uiout, " stopped");
6513 }
6514 else
6515 {
6516 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6517 annotate_signal_name ();
33d62d64
JK
6518 if (ui_out_is_mi_like_p (uiout))
6519 ui_out_field_string
6520 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6521 ui_out_field_string (uiout, "signal-name",
2ea28649 6522 gdb_signal_to_name (siggnal));
8b93c638
JM
6523 annotate_signal_name_end ();
6524 ui_out_text (uiout, ", ");
6525 annotate_signal_string ();
488f131b 6526 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6527 gdb_signal_to_string (siggnal));
8b93c638 6528 annotate_signal_string_end ();
33d62d64
JK
6529 }
6530 ui_out_text (uiout, ".\n");
6531}
252fbfc8 6532
fd664c91
PA
6533void
6534print_no_history_reason (struct ui_out *uiout)
33d62d64 6535{
fd664c91 6536 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6537}
43ff13b4 6538
0c7e1a46
PA
6539/* Print current location without a level number, if we have changed
6540 functions or hit a breakpoint. Print source line if we have one.
6541 bpstat_print contains the logic deciding in detail what to print,
6542 based on the event(s) that just occurred. */
6543
6544void
6545print_stop_event (struct target_waitstatus *ws)
6546{
6547 int bpstat_ret;
f486487f 6548 enum print_what source_flag;
0c7e1a46
PA
6549 int do_frame_printing = 1;
6550 struct thread_info *tp = inferior_thread ();
6551
6552 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6553 switch (bpstat_ret)
6554 {
6555 case PRINT_UNKNOWN:
6556 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6557 should) carry around the function and does (or should) use
6558 that when doing a frame comparison. */
6559 if (tp->control.stop_step
6560 && frame_id_eq (tp->control.step_frame_id,
6561 get_frame_id (get_current_frame ()))
885eeb5b 6562 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
6563 {
6564 /* Finished step, just print source line. */
6565 source_flag = SRC_LINE;
6566 }
6567 else
6568 {
6569 /* Print location and source line. */
6570 source_flag = SRC_AND_LOC;
6571 }
6572 break;
6573 case PRINT_SRC_AND_LOC:
6574 /* Print location and source line. */
6575 source_flag = SRC_AND_LOC;
6576 break;
6577 case PRINT_SRC_ONLY:
6578 source_flag = SRC_LINE;
6579 break;
6580 case PRINT_NOTHING:
6581 /* Something bogus. */
6582 source_flag = SRC_LINE;
6583 do_frame_printing = 0;
6584 break;
6585 default:
6586 internal_error (__FILE__, __LINE__, _("Unknown value."));
6587 }
6588
6589 /* The behavior of this routine with respect to the source
6590 flag is:
6591 SRC_LINE: Print only source line
6592 LOCATION: Print only location
6593 SRC_AND_LOC: Print location and source line. */
6594 if (do_frame_printing)
6595 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6596
6597 /* Display the auto-display expressions. */
6598 do_displays ();
6599}
6600
c906108c
SS
6601/* Here to return control to GDB when the inferior stops for real.
6602 Print appropriate messages, remove breakpoints, give terminal our modes.
6603
6604 STOP_PRINT_FRAME nonzero means print the executing frame
6605 (pc, function, args, file, line number and line text).
6606 BREAKPOINTS_FAILED nonzero means stop was due to error
6607 attempting to insert breakpoints. */
6608
6609void
96baa820 6610normal_stop (void)
c906108c 6611{
73b65bb0
DJ
6612 struct target_waitstatus last;
6613 ptid_t last_ptid;
29f49a6a 6614 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 6615 ptid_t pid_ptid;
73b65bb0
DJ
6616
6617 get_last_target_status (&last_ptid, &last);
6618
29f49a6a
PA
6619 /* If an exception is thrown from this point on, make sure to
6620 propagate GDB's knowledge of the executing state to the
6621 frontend/user running state. A QUIT is an easy exception to see
6622 here, so do this before any filtered output. */
c35b1492
PA
6623 if (!non_stop)
6624 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
6625 else if (last.kind == TARGET_WAITKIND_SIGNALLED
6626 || last.kind == TARGET_WAITKIND_EXITED)
6627 {
6628 /* On some targets, we may still have live threads in the
6629 inferior when we get a process exit event. E.g., for
6630 "checkpoint", when the current checkpoint/fork exits,
6631 linux-fork.c automatically switches to another fork from
6632 within target_mourn_inferior. */
6633 if (!ptid_equal (inferior_ptid, null_ptid))
6634 {
6635 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
6636 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
6637 }
6638 }
6639 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6640 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6641
b57bacec
PA
6642 /* As we're presenting a stop, and potentially removing breakpoints,
6643 update the thread list so we can tell whether there are threads
6644 running on the target. With target remote, for example, we can
6645 only learn about new threads when we explicitly update the thread
6646 list. Do this before notifying the interpreters about signal
6647 stops, end of stepping ranges, etc., so that the "new thread"
6648 output is emitted before e.g., "Program received signal FOO",
6649 instead of after. */
6650 update_thread_list ();
6651
6652 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6653 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6654
c906108c
SS
6655 /* As with the notification of thread events, we want to delay
6656 notifying the user that we've switched thread context until
6657 the inferior actually stops.
6658
73b65bb0
DJ
6659 There's no point in saying anything if the inferior has exited.
6660 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6661 "received a signal".
6662
6663 Also skip saying anything in non-stop mode. In that mode, as we
6664 don't want GDB to switch threads behind the user's back, to avoid
6665 races where the user is typing a command to apply to thread x,
6666 but GDB switches to thread y before the user finishes entering
6667 the command, fetch_inferior_event installs a cleanup to restore
6668 the current thread back to the thread the user had selected right
6669 after this event is handled, so we're not really switching, only
6670 informing of a stop. */
4f8d22e3
PA
6671 if (!non_stop
6672 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6673 && target_has_execution
6674 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6675 && last.kind != TARGET_WAITKIND_EXITED
6676 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6677 {
6678 target_terminal_ours_for_output ();
a3f17187 6679 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6680 target_pid_to_str (inferior_ptid));
b8fa951a 6681 annotate_thread_changed ();
39f77062 6682 previous_inferior_ptid = inferior_ptid;
c906108c 6683 }
c906108c 6684
0e5bf2a8
PA
6685 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6686 {
6687 gdb_assert (sync_execution || !target_can_async_p ());
6688
6689 target_terminal_ours_for_output ();
6690 printf_filtered (_("No unwaited-for children left.\n"));
6691 }
6692
b57bacec 6693 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6694 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6695 {
6696 if (remove_breakpoints ())
6697 {
6698 target_terminal_ours_for_output ();
3e43a32a
MS
6699 printf_filtered (_("Cannot remove breakpoints because "
6700 "program is no longer writable.\nFurther "
6701 "execution is probably impossible.\n"));
c906108c
SS
6702 }
6703 }
c906108c 6704
c906108c
SS
6705 /* If an auto-display called a function and that got a signal,
6706 delete that auto-display to avoid an infinite recursion. */
6707
6708 if (stopped_by_random_signal)
6709 disable_current_display ();
6710
b57bacec 6711 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6712 if (target_has_execution
6713 && last.kind != TARGET_WAITKIND_SIGNALLED
6714 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6715 && inferior_thread ()->control.stop_step)
b57bacec 6716 {
31cc0b80 6717 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6718 n > 1 */
6719 if (inferior_thread ()->step_multi)
6720 goto done;
6721
6722 observer_notify_end_stepping_range ();
6723 }
c906108c
SS
6724
6725 target_terminal_ours ();
0f641c01 6726 async_enable_stdin ();
c906108c 6727
7abfe014
DJ
6728 /* Set the current source location. This will also happen if we
6729 display the frame below, but the current SAL will be incorrect
6730 during a user hook-stop function. */
d729566a 6731 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6732 set_current_sal_from_frame (get_current_frame ());
7abfe014 6733
28bf096c
PA
6734 /* Let the user/frontend see the threads as stopped, but defer to
6735 call_function_by_hand if the thread finished an infcall
6736 successfully. We may be e.g., evaluating a breakpoint condition.
6737 In that case, the thread had state THREAD_RUNNING before the
6738 infcall, and shall remain marked running, all without informing
6739 the user/frontend about state transition changes. */
6740 if (target_has_execution
6741 && inferior_thread ()->control.in_infcall
6742 && stop_stack_dummy == STOP_STACK_DUMMY)
251bde03
PA
6743 discard_cleanups (old_chain);
6744 else
6745 do_cleanups (old_chain);
dd7e2d2b
PA
6746
6747 /* Look up the hook_stop and run it (CLI internally handles problem
6748 of stop_command's pre-hook not existing). */
6749 if (stop_command)
6750 catch_errors (hook_stop_stub, stop_command,
6751 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6752
d729566a 6753 if (!has_stack_frames ())
d51fd4c8 6754 goto done;
c906108c 6755
32400beb
PA
6756 if (last.kind == TARGET_WAITKIND_SIGNALLED
6757 || last.kind == TARGET_WAITKIND_EXITED)
6758 goto done;
6759
c906108c
SS
6760 /* Select innermost stack frame - i.e., current frame is frame 0,
6761 and current location is based on that.
6762 Don't do this on return from a stack dummy routine,
1777feb0 6763 or if the program has exited. */
c906108c
SS
6764
6765 if (!stop_stack_dummy)
6766 {
0f7d239c 6767 select_frame (get_current_frame ());
c906108c 6768
d01a8610
AS
6769 /* If --batch-silent is enabled then there's no need to print the current
6770 source location, and to try risks causing an error message about
6771 missing source files. */
6772 if (stop_print_frame && !batch_silent)
0c7e1a46 6773 print_stop_event (&last);
c906108c
SS
6774 }
6775
aa7d318d 6776 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6777 {
b89667eb
DE
6778 /* Pop the empty frame that contains the stack dummy.
6779 This also restores inferior state prior to the call
16c381f0 6780 (struct infcall_suspend_state). */
b89667eb 6781 struct frame_info *frame = get_current_frame ();
abbb1732 6782
b89667eb
DE
6783 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6784 frame_pop (frame);
3e43a32a
MS
6785 /* frame_pop() calls reinit_frame_cache as the last thing it
6786 does which means there's currently no selected frame. We
6787 don't need to re-establish a selected frame if the dummy call
6788 returns normally, that will be done by
6789 restore_infcall_control_state. However, we do have to handle
6790 the case where the dummy call is returning after being
6791 stopped (e.g. the dummy call previously hit a breakpoint).
6792 We can't know which case we have so just always re-establish
6793 a selected frame here. */
0f7d239c 6794 select_frame (get_current_frame ());
c906108c
SS
6795 }
6796
c906108c
SS
6797done:
6798 annotate_stopped ();
41d2bdb4
PA
6799
6800 /* Suppress the stop observer if we're in the middle of:
6801
6802 - a step n (n > 1), as there still more steps to be done.
6803
6804 - a "finish" command, as the observer will be called in
6805 finish_command_continuation, so it can include the inferior
6806 function's return value.
6807
6808 - calling an inferior function, as we pretend we inferior didn't
6809 run at all. The return value of the call is handled by the
6810 expression evaluator, through call_function_by_hand. */
6811
6812 if (!target_has_execution
6813 || last.kind == TARGET_WAITKIND_SIGNALLED
6814 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6815 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6816 || (!(inferior_thread ()->step_multi
6817 && inferior_thread ()->control.stop_step)
16c381f0
JK
6818 && !(inferior_thread ()->control.stop_bpstat
6819 && inferior_thread ()->control.proceed_to_finish)
6820 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6821 {
6822 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6823 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6824 stop_print_frame);
347bddb7 6825 else
1d33d6ba 6826 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6827 }
347bddb7 6828
48844aa6
PA
6829 if (target_has_execution)
6830 {
6831 if (last.kind != TARGET_WAITKIND_SIGNALLED
6832 && last.kind != TARGET_WAITKIND_EXITED)
6833 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6834 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6835 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6836 }
6c95b8df
PA
6837
6838 /* Try to get rid of automatically added inferiors that are no
6839 longer needed. Keeping those around slows down things linearly.
6840 Note that this never removes the current inferior. */
6841 prune_inferiors ();
c906108c
SS
6842}
6843
6844static int
96baa820 6845hook_stop_stub (void *cmd)
c906108c 6846{
5913bcb0 6847 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6848 return (0);
6849}
6850\f
c5aa993b 6851int
96baa820 6852signal_stop_state (int signo)
c906108c 6853{
d6b48e9c 6854 return signal_stop[signo];
c906108c
SS
6855}
6856
c5aa993b 6857int
96baa820 6858signal_print_state (int signo)
c906108c
SS
6859{
6860 return signal_print[signo];
6861}
6862
c5aa993b 6863int
96baa820 6864signal_pass_state (int signo)
c906108c
SS
6865{
6866 return signal_program[signo];
6867}
6868
2455069d
UW
6869static void
6870signal_cache_update (int signo)
6871{
6872 if (signo == -1)
6873 {
a493e3e2 6874 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6875 signal_cache_update (signo);
6876
6877 return;
6878 }
6879
6880 signal_pass[signo] = (signal_stop[signo] == 0
6881 && signal_print[signo] == 0
ab04a2af
TT
6882 && signal_program[signo] == 1
6883 && signal_catch[signo] == 0);
2455069d
UW
6884}
6885
488f131b 6886int
7bda5e4a 6887signal_stop_update (int signo, int state)
d4f3574e
SS
6888{
6889 int ret = signal_stop[signo];
abbb1732 6890
d4f3574e 6891 signal_stop[signo] = state;
2455069d 6892 signal_cache_update (signo);
d4f3574e
SS
6893 return ret;
6894}
6895
488f131b 6896int
7bda5e4a 6897signal_print_update (int signo, int state)
d4f3574e
SS
6898{
6899 int ret = signal_print[signo];
abbb1732 6900
d4f3574e 6901 signal_print[signo] = state;
2455069d 6902 signal_cache_update (signo);
d4f3574e
SS
6903 return ret;
6904}
6905
488f131b 6906int
7bda5e4a 6907signal_pass_update (int signo, int state)
d4f3574e
SS
6908{
6909 int ret = signal_program[signo];
abbb1732 6910
d4f3574e 6911 signal_program[signo] = state;
2455069d 6912 signal_cache_update (signo);
d4f3574e
SS
6913 return ret;
6914}
6915
ab04a2af
TT
6916/* Update the global 'signal_catch' from INFO and notify the
6917 target. */
6918
6919void
6920signal_catch_update (const unsigned int *info)
6921{
6922 int i;
6923
6924 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6925 signal_catch[i] = info[i] > 0;
6926 signal_cache_update (-1);
6927 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6928}
6929
c906108c 6930static void
96baa820 6931sig_print_header (void)
c906108c 6932{
3e43a32a
MS
6933 printf_filtered (_("Signal Stop\tPrint\tPass "
6934 "to program\tDescription\n"));
c906108c
SS
6935}
6936
6937static void
2ea28649 6938sig_print_info (enum gdb_signal oursig)
c906108c 6939{
2ea28649 6940 const char *name = gdb_signal_to_name (oursig);
c906108c 6941 int name_padding = 13 - strlen (name);
96baa820 6942
c906108c
SS
6943 if (name_padding <= 0)
6944 name_padding = 0;
6945
6946 printf_filtered ("%s", name);
488f131b 6947 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6948 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6949 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6950 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6951 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6952}
6953
6954/* Specify how various signals in the inferior should be handled. */
6955
6956static void
96baa820 6957handle_command (char *args, int from_tty)
c906108c
SS
6958{
6959 char **argv;
6960 int digits, wordlen;
6961 int sigfirst, signum, siglast;
2ea28649 6962 enum gdb_signal oursig;
c906108c
SS
6963 int allsigs;
6964 int nsigs;
6965 unsigned char *sigs;
6966 struct cleanup *old_chain;
6967
6968 if (args == NULL)
6969 {
e2e0b3e5 6970 error_no_arg (_("signal to handle"));
c906108c
SS
6971 }
6972
1777feb0 6973 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6974
a493e3e2 6975 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6976 sigs = (unsigned char *) alloca (nsigs);
6977 memset (sigs, 0, nsigs);
6978
1777feb0 6979 /* Break the command line up into args. */
c906108c 6980
d1a41061 6981 argv = gdb_buildargv (args);
7a292a7a 6982 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6983
6984 /* Walk through the args, looking for signal oursigs, signal names, and
6985 actions. Signal numbers and signal names may be interspersed with
6986 actions, with the actions being performed for all signals cumulatively
1777feb0 6987 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6988
6989 while (*argv != NULL)
6990 {
6991 wordlen = strlen (*argv);
6992 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6993 {;
6994 }
6995 allsigs = 0;
6996 sigfirst = siglast = -1;
6997
6998 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6999 {
7000 /* Apply action to all signals except those used by the
1777feb0 7001 debugger. Silently skip those. */
c906108c
SS
7002 allsigs = 1;
7003 sigfirst = 0;
7004 siglast = nsigs - 1;
7005 }
7006 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
7007 {
7008 SET_SIGS (nsigs, sigs, signal_stop);
7009 SET_SIGS (nsigs, sigs, signal_print);
7010 }
7011 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
7012 {
7013 UNSET_SIGS (nsigs, sigs, signal_program);
7014 }
7015 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
7016 {
7017 SET_SIGS (nsigs, sigs, signal_print);
7018 }
7019 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
7020 {
7021 SET_SIGS (nsigs, sigs, signal_program);
7022 }
7023 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
7024 {
7025 UNSET_SIGS (nsigs, sigs, signal_stop);
7026 }
7027 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
7028 {
7029 SET_SIGS (nsigs, sigs, signal_program);
7030 }
7031 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
7032 {
7033 UNSET_SIGS (nsigs, sigs, signal_print);
7034 UNSET_SIGS (nsigs, sigs, signal_stop);
7035 }
7036 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
7037 {
7038 UNSET_SIGS (nsigs, sigs, signal_program);
7039 }
7040 else if (digits > 0)
7041 {
7042 /* It is numeric. The numeric signal refers to our own
7043 internal signal numbering from target.h, not to host/target
7044 signal number. This is a feature; users really should be
7045 using symbolic names anyway, and the common ones like
7046 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
7047
7048 sigfirst = siglast = (int)
2ea28649 7049 gdb_signal_from_command (atoi (*argv));
c906108c
SS
7050 if ((*argv)[digits] == '-')
7051 {
7052 siglast = (int)
2ea28649 7053 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
7054 }
7055 if (sigfirst > siglast)
7056 {
1777feb0 7057 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
7058 signum = sigfirst;
7059 sigfirst = siglast;
7060 siglast = signum;
7061 }
7062 }
7063 else
7064 {
2ea28649 7065 oursig = gdb_signal_from_name (*argv);
a493e3e2 7066 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
7067 {
7068 sigfirst = siglast = (int) oursig;
7069 }
7070 else
7071 {
7072 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 7073 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
7074 }
7075 }
7076
7077 /* If any signal numbers or symbol names were found, set flags for
1777feb0 7078 which signals to apply actions to. */
c906108c
SS
7079
7080 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
7081 {
2ea28649 7082 switch ((enum gdb_signal) signum)
c906108c 7083 {
a493e3e2
PA
7084 case GDB_SIGNAL_TRAP:
7085 case GDB_SIGNAL_INT:
c906108c
SS
7086 if (!allsigs && !sigs[signum])
7087 {
9e2f0ad4 7088 if (query (_("%s is used by the debugger.\n\
3e43a32a 7089Are you sure you want to change it? "),
2ea28649 7090 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
7091 {
7092 sigs[signum] = 1;
7093 }
7094 else
7095 {
a3f17187 7096 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
7097 gdb_flush (gdb_stdout);
7098 }
7099 }
7100 break;
a493e3e2
PA
7101 case GDB_SIGNAL_0:
7102 case GDB_SIGNAL_DEFAULT:
7103 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
7104 /* Make sure that "all" doesn't print these. */
7105 break;
7106 default:
7107 sigs[signum] = 1;
7108 break;
7109 }
7110 }
7111
7112 argv++;
7113 }
7114
3a031f65
PA
7115 for (signum = 0; signum < nsigs; signum++)
7116 if (sigs[signum])
7117 {
2455069d 7118 signal_cache_update (-1);
a493e3e2
PA
7119 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7120 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 7121
3a031f65
PA
7122 if (from_tty)
7123 {
7124 /* Show the results. */
7125 sig_print_header ();
7126 for (; signum < nsigs; signum++)
7127 if (sigs[signum])
aead7601 7128 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
7129 }
7130
7131 break;
7132 }
c906108c
SS
7133
7134 do_cleanups (old_chain);
7135}
7136
de0bea00
MF
7137/* Complete the "handle" command. */
7138
7139static VEC (char_ptr) *
7140handle_completer (struct cmd_list_element *ignore,
6f937416 7141 const char *text, const char *word)
de0bea00
MF
7142{
7143 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7144 static const char * const keywords[] =
7145 {
7146 "all",
7147 "stop",
7148 "ignore",
7149 "print",
7150 "pass",
7151 "nostop",
7152 "noignore",
7153 "noprint",
7154 "nopass",
7155 NULL,
7156 };
7157
7158 vec_signals = signal_completer (ignore, text, word);
7159 vec_keywords = complete_on_enum (keywords, word, word);
7160
7161 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7162 VEC_free (char_ptr, vec_signals);
7163 VEC_free (char_ptr, vec_keywords);
7164 return return_val;
7165}
7166
2ea28649
PA
7167enum gdb_signal
7168gdb_signal_from_command (int num)
ed01b82c
PA
7169{
7170 if (num >= 1 && num <= 15)
2ea28649 7171 return (enum gdb_signal) num;
ed01b82c
PA
7172 error (_("Only signals 1-15 are valid as numeric signals.\n\
7173Use \"info signals\" for a list of symbolic signals."));
7174}
7175
c906108c
SS
7176/* Print current contents of the tables set by the handle command.
7177 It is possible we should just be printing signals actually used
7178 by the current target (but for things to work right when switching
7179 targets, all signals should be in the signal tables). */
7180
7181static void
96baa820 7182signals_info (char *signum_exp, int from_tty)
c906108c 7183{
2ea28649 7184 enum gdb_signal oursig;
abbb1732 7185
c906108c
SS
7186 sig_print_header ();
7187
7188 if (signum_exp)
7189 {
7190 /* First see if this is a symbol name. */
2ea28649 7191 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7192 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7193 {
7194 /* No, try numeric. */
7195 oursig =
2ea28649 7196 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7197 }
7198 sig_print_info (oursig);
7199 return;
7200 }
7201
7202 printf_filtered ("\n");
7203 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7204 for (oursig = GDB_SIGNAL_FIRST;
7205 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7206 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7207 {
7208 QUIT;
7209
a493e3e2
PA
7210 if (oursig != GDB_SIGNAL_UNKNOWN
7211 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7212 sig_print_info (oursig);
7213 }
7214
3e43a32a
MS
7215 printf_filtered (_("\nUse the \"handle\" command "
7216 "to change these tables.\n"));
c906108c 7217}
4aa995e1 7218
c709acd1
PA
7219/* Check if it makes sense to read $_siginfo from the current thread
7220 at this point. If not, throw an error. */
7221
7222static void
7223validate_siginfo_access (void)
7224{
7225 /* No current inferior, no siginfo. */
7226 if (ptid_equal (inferior_ptid, null_ptid))
7227 error (_("No thread selected."));
7228
7229 /* Don't try to read from a dead thread. */
7230 if (is_exited (inferior_ptid))
7231 error (_("The current thread has terminated"));
7232
7233 /* ... or from a spinning thread. */
7234 if (is_running (inferior_ptid))
7235 error (_("Selected thread is running."));
7236}
7237
4aa995e1
PA
7238/* The $_siginfo convenience variable is a bit special. We don't know
7239 for sure the type of the value until we actually have a chance to
7a9dd1b2 7240 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7241 also dependent on which thread you have selected.
7242
7243 1. making $_siginfo be an internalvar that creates a new value on
7244 access.
7245
7246 2. making the value of $_siginfo be an lval_computed value. */
7247
7248/* This function implements the lval_computed support for reading a
7249 $_siginfo value. */
7250
7251static void
7252siginfo_value_read (struct value *v)
7253{
7254 LONGEST transferred;
7255
c709acd1
PA
7256 validate_siginfo_access ();
7257
4aa995e1
PA
7258 transferred =
7259 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7260 NULL,
7261 value_contents_all_raw (v),
7262 value_offset (v),
7263 TYPE_LENGTH (value_type (v)));
7264
7265 if (transferred != TYPE_LENGTH (value_type (v)))
7266 error (_("Unable to read siginfo"));
7267}
7268
7269/* This function implements the lval_computed support for writing a
7270 $_siginfo value. */
7271
7272static void
7273siginfo_value_write (struct value *v, struct value *fromval)
7274{
7275 LONGEST transferred;
7276
c709acd1
PA
7277 validate_siginfo_access ();
7278
4aa995e1
PA
7279 transferred = target_write (&current_target,
7280 TARGET_OBJECT_SIGNAL_INFO,
7281 NULL,
7282 value_contents_all_raw (fromval),
7283 value_offset (v),
7284 TYPE_LENGTH (value_type (fromval)));
7285
7286 if (transferred != TYPE_LENGTH (value_type (fromval)))
7287 error (_("Unable to write siginfo"));
7288}
7289
c8f2448a 7290static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7291 {
7292 siginfo_value_read,
7293 siginfo_value_write
7294 };
7295
7296/* Return a new value with the correct type for the siginfo object of
78267919
UW
7297 the current thread using architecture GDBARCH. Return a void value
7298 if there's no object available. */
4aa995e1 7299
2c0b251b 7300static struct value *
22d2b532
SDJ
7301siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7302 void *ignore)
4aa995e1 7303{
4aa995e1 7304 if (target_has_stack
78267919
UW
7305 && !ptid_equal (inferior_ptid, null_ptid)
7306 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7307 {
78267919 7308 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7309
78267919 7310 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7311 }
7312
78267919 7313 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7314}
7315
c906108c 7316\f
16c381f0
JK
7317/* infcall_suspend_state contains state about the program itself like its
7318 registers and any signal it received when it last stopped.
7319 This state must be restored regardless of how the inferior function call
7320 ends (either successfully, or after it hits a breakpoint or signal)
7321 if the program is to properly continue where it left off. */
7322
7323struct infcall_suspend_state
7a292a7a 7324{
16c381f0 7325 struct thread_suspend_state thread_suspend;
16c381f0
JK
7326
7327 /* Other fields: */
7a292a7a 7328 CORE_ADDR stop_pc;
b89667eb 7329 struct regcache *registers;
1736ad11 7330
35515841 7331 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7332 struct gdbarch *siginfo_gdbarch;
7333
7334 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7335 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7336 content would be invalid. */
7337 gdb_byte *siginfo_data;
b89667eb
DE
7338};
7339
16c381f0
JK
7340struct infcall_suspend_state *
7341save_infcall_suspend_state (void)
b89667eb 7342{
16c381f0 7343 struct infcall_suspend_state *inf_state;
b89667eb 7344 struct thread_info *tp = inferior_thread ();
1736ad11
JK
7345 struct regcache *regcache = get_current_regcache ();
7346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7347 gdb_byte *siginfo_data = NULL;
7348
7349 if (gdbarch_get_siginfo_type_p (gdbarch))
7350 {
7351 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7352 size_t len = TYPE_LENGTH (type);
7353 struct cleanup *back_to;
7354
7355 siginfo_data = xmalloc (len);
7356 back_to = make_cleanup (xfree, siginfo_data);
7357
7358 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7359 siginfo_data, 0, len) == len)
7360 discard_cleanups (back_to);
7361 else
7362 {
7363 /* Errors ignored. */
7364 do_cleanups (back_to);
7365 siginfo_data = NULL;
7366 }
7367 }
7368
41bf6aca 7369 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7370
7371 if (siginfo_data)
7372 {
7373 inf_state->siginfo_gdbarch = gdbarch;
7374 inf_state->siginfo_data = siginfo_data;
7375 }
b89667eb 7376
16c381f0 7377 inf_state->thread_suspend = tp->suspend;
16c381f0 7378
35515841 7379 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7380 GDB_SIGNAL_0 anyway. */
7381 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7382
b89667eb
DE
7383 inf_state->stop_pc = stop_pc;
7384
1736ad11 7385 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7386
7387 return inf_state;
7388}
7389
7390/* Restore inferior session state to INF_STATE. */
7391
7392void
16c381f0 7393restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7394{
7395 struct thread_info *tp = inferior_thread ();
1736ad11
JK
7396 struct regcache *regcache = get_current_regcache ();
7397 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7398
16c381f0 7399 tp->suspend = inf_state->thread_suspend;
16c381f0 7400
b89667eb
DE
7401 stop_pc = inf_state->stop_pc;
7402
1736ad11
JK
7403 if (inf_state->siginfo_gdbarch == gdbarch)
7404 {
7405 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7406
7407 /* Errors ignored. */
7408 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7409 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7410 }
7411
b89667eb
DE
7412 /* The inferior can be gone if the user types "print exit(0)"
7413 (and perhaps other times). */
7414 if (target_has_execution)
7415 /* NB: The register write goes through to the target. */
1736ad11 7416 regcache_cpy (regcache, inf_state->registers);
803b5f95 7417
16c381f0 7418 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7419}
7420
7421static void
16c381f0 7422do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7423{
16c381f0 7424 restore_infcall_suspend_state (state);
b89667eb
DE
7425}
7426
7427struct cleanup *
16c381f0
JK
7428make_cleanup_restore_infcall_suspend_state
7429 (struct infcall_suspend_state *inf_state)
b89667eb 7430{
16c381f0 7431 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7432}
7433
7434void
16c381f0 7435discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7436{
7437 regcache_xfree (inf_state->registers);
803b5f95 7438 xfree (inf_state->siginfo_data);
b89667eb
DE
7439 xfree (inf_state);
7440}
7441
7442struct regcache *
16c381f0 7443get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7444{
7445 return inf_state->registers;
7446}
7447
16c381f0
JK
7448/* infcall_control_state contains state regarding gdb's control of the
7449 inferior itself like stepping control. It also contains session state like
7450 the user's currently selected frame. */
b89667eb 7451
16c381f0 7452struct infcall_control_state
b89667eb 7453{
16c381f0
JK
7454 struct thread_control_state thread_control;
7455 struct inferior_control_state inferior_control;
d82142e2
JK
7456
7457 /* Other fields: */
7458 enum stop_stack_kind stop_stack_dummy;
7459 int stopped_by_random_signal;
7a292a7a 7460 int stop_after_trap;
7a292a7a 7461
b89667eb 7462 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7463 struct frame_id selected_frame_id;
7a292a7a
SS
7464};
7465
c906108c 7466/* Save all of the information associated with the inferior<==>gdb
b89667eb 7467 connection. */
c906108c 7468
16c381f0
JK
7469struct infcall_control_state *
7470save_infcall_control_state (void)
c906108c 7471{
16c381f0 7472 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7473 struct thread_info *tp = inferior_thread ();
d6b48e9c 7474 struct inferior *inf = current_inferior ();
7a292a7a 7475
16c381f0
JK
7476 inf_status->thread_control = tp->control;
7477 inf_status->inferior_control = inf->control;
d82142e2 7478
8358c15c 7479 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7480 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7481
16c381f0
JK
7482 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7483 chain. If caller's caller is walking the chain, they'll be happier if we
7484 hand them back the original chain when restore_infcall_control_state is
7485 called. */
7486 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7487
7488 /* Other fields: */
7489 inf_status->stop_stack_dummy = stop_stack_dummy;
7490 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7491 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7492
206415a3 7493 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7494
7a292a7a 7495 return inf_status;
c906108c
SS
7496}
7497
c906108c 7498static int
96baa820 7499restore_selected_frame (void *args)
c906108c 7500{
488f131b 7501 struct frame_id *fid = (struct frame_id *) args;
c906108c 7502 struct frame_info *frame;
c906108c 7503
101dcfbe 7504 frame = frame_find_by_id (*fid);
c906108c 7505
aa0cd9c1
AC
7506 /* If inf_status->selected_frame_id is NULL, there was no previously
7507 selected frame. */
101dcfbe 7508 if (frame == NULL)
c906108c 7509 {
8a3fe4f8 7510 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7511 return 0;
7512 }
7513
0f7d239c 7514 select_frame (frame);
c906108c
SS
7515
7516 return (1);
7517}
7518
b89667eb
DE
7519/* Restore inferior session state to INF_STATUS. */
7520
c906108c 7521void
16c381f0 7522restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7523{
4e1c45ea 7524 struct thread_info *tp = inferior_thread ();
d6b48e9c 7525 struct inferior *inf = current_inferior ();
4e1c45ea 7526
8358c15c
JK
7527 if (tp->control.step_resume_breakpoint)
7528 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7529
5b79abe7
TT
7530 if (tp->control.exception_resume_breakpoint)
7531 tp->control.exception_resume_breakpoint->disposition
7532 = disp_del_at_next_stop;
7533
d82142e2 7534 /* Handle the bpstat_copy of the chain. */
16c381f0 7535 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7536
16c381f0
JK
7537 tp->control = inf_status->thread_control;
7538 inf->control = inf_status->inferior_control;
d82142e2
JK
7539
7540 /* Other fields: */
7541 stop_stack_dummy = inf_status->stop_stack_dummy;
7542 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7543 stop_after_trap = inf_status->stop_after_trap;
c906108c 7544
b89667eb 7545 if (target_has_stack)
c906108c 7546 {
c906108c 7547 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7548 walking the stack might encounter a garbage pointer and
7549 error() trying to dereference it. */
488f131b
JB
7550 if (catch_errors
7551 (restore_selected_frame, &inf_status->selected_frame_id,
7552 "Unable to restore previously selected frame:\n",
7553 RETURN_MASK_ERROR) == 0)
c906108c
SS
7554 /* Error in restoring the selected frame. Select the innermost
7555 frame. */
0f7d239c 7556 select_frame (get_current_frame ());
c906108c 7557 }
c906108c 7558
72cec141 7559 xfree (inf_status);
7a292a7a 7560}
c906108c 7561
74b7792f 7562static void
16c381f0 7563do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7564{
16c381f0 7565 restore_infcall_control_state (sts);
74b7792f
AC
7566}
7567
7568struct cleanup *
16c381f0
JK
7569make_cleanup_restore_infcall_control_state
7570 (struct infcall_control_state *inf_status)
74b7792f 7571{
16c381f0 7572 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7573}
7574
c906108c 7575void
16c381f0 7576discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7577{
8358c15c
JK
7578 if (inf_status->thread_control.step_resume_breakpoint)
7579 inf_status->thread_control.step_resume_breakpoint->disposition
7580 = disp_del_at_next_stop;
7581
5b79abe7
TT
7582 if (inf_status->thread_control.exception_resume_breakpoint)
7583 inf_status->thread_control.exception_resume_breakpoint->disposition
7584 = disp_del_at_next_stop;
7585
1777feb0 7586 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7587 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7588
72cec141 7589 xfree (inf_status);
7a292a7a 7590}
b89667eb 7591\f
ca6724c1
KB
7592/* restore_inferior_ptid() will be used by the cleanup machinery
7593 to restore the inferior_ptid value saved in a call to
7594 save_inferior_ptid(). */
ce696e05
KB
7595
7596static void
7597restore_inferior_ptid (void *arg)
7598{
7599 ptid_t *saved_ptid_ptr = arg;
abbb1732 7600
ce696e05
KB
7601 inferior_ptid = *saved_ptid_ptr;
7602 xfree (arg);
7603}
7604
7605/* Save the value of inferior_ptid so that it may be restored by a
7606 later call to do_cleanups(). Returns the struct cleanup pointer
7607 needed for later doing the cleanup. */
7608
7609struct cleanup *
7610save_inferior_ptid (void)
7611{
7612 ptid_t *saved_ptid_ptr;
7613
7614 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7615 *saved_ptid_ptr = inferior_ptid;
7616 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7617}
0c557179 7618
7f89fd65 7619/* See infrun.h. */
0c557179
SDJ
7620
7621void
7622clear_exit_convenience_vars (void)
7623{
7624 clear_internalvar (lookup_internalvar ("_exitsignal"));
7625 clear_internalvar (lookup_internalvar ("_exitcode"));
7626}
c5aa993b 7627\f
488f131b 7628
b2175913
MS
7629/* User interface for reverse debugging:
7630 Set exec-direction / show exec-direction commands
7631 (returns error unless target implements to_set_exec_direction method). */
7632
32231432 7633int execution_direction = EXEC_FORWARD;
b2175913
MS
7634static const char exec_forward[] = "forward";
7635static const char exec_reverse[] = "reverse";
7636static const char *exec_direction = exec_forward;
40478521 7637static const char *const exec_direction_names[] = {
b2175913
MS
7638 exec_forward,
7639 exec_reverse,
7640 NULL
7641};
7642
7643static void
7644set_exec_direction_func (char *args, int from_tty,
7645 struct cmd_list_element *cmd)
7646{
7647 if (target_can_execute_reverse)
7648 {
7649 if (!strcmp (exec_direction, exec_forward))
7650 execution_direction = EXEC_FORWARD;
7651 else if (!strcmp (exec_direction, exec_reverse))
7652 execution_direction = EXEC_REVERSE;
7653 }
8bbed405
MS
7654 else
7655 {
7656 exec_direction = exec_forward;
7657 error (_("Target does not support this operation."));
7658 }
b2175913
MS
7659}
7660
7661static void
7662show_exec_direction_func (struct ui_file *out, int from_tty,
7663 struct cmd_list_element *cmd, const char *value)
7664{
7665 switch (execution_direction) {
7666 case EXEC_FORWARD:
7667 fprintf_filtered (out, _("Forward.\n"));
7668 break;
7669 case EXEC_REVERSE:
7670 fprintf_filtered (out, _("Reverse.\n"));
7671 break;
b2175913 7672 default:
d8b34453
PA
7673 internal_error (__FILE__, __LINE__,
7674 _("bogus execution_direction value: %d"),
7675 (int) execution_direction);
b2175913
MS
7676 }
7677}
7678
d4db2f36
PA
7679static void
7680show_schedule_multiple (struct ui_file *file, int from_tty,
7681 struct cmd_list_element *c, const char *value)
7682{
3e43a32a
MS
7683 fprintf_filtered (file, _("Resuming the execution of threads "
7684 "of all processes is %s.\n"), value);
d4db2f36 7685}
ad52ddc6 7686
22d2b532
SDJ
7687/* Implementation of `siginfo' variable. */
7688
7689static const struct internalvar_funcs siginfo_funcs =
7690{
7691 siginfo_make_value,
7692 NULL,
7693 NULL
7694};
7695
c906108c 7696void
96baa820 7697_initialize_infrun (void)
c906108c 7698{
52f0bd74
AC
7699 int i;
7700 int numsigs;
de0bea00 7701 struct cmd_list_element *c;
c906108c 7702
1bedd215
AC
7703 add_info ("signals", signals_info, _("\
7704What debugger does when program gets various signals.\n\
7705Specify a signal as argument to print info on that signal only."));
c906108c
SS
7706 add_info_alias ("handle", "signals", 0);
7707
de0bea00 7708 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7709Specify how to handle signals.\n\
486c7739 7710Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7711Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7712If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7713will be displayed instead.\n\
7714\n\
c906108c
SS
7715Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7716from 1-15 are allowed for compatibility with old versions of GDB.\n\
7717Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7718The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7719used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7720\n\
1bedd215 7721Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7722\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7723Stop means reenter debugger if this signal happens (implies print).\n\
7724Print means print a message if this signal happens.\n\
7725Pass means let program see this signal; otherwise program doesn't know.\n\
7726Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7727Pass and Stop may be combined.\n\
7728\n\
7729Multiple signals may be specified. Signal numbers and signal names\n\
7730may be interspersed with actions, with the actions being performed for\n\
7731all signals cumulatively specified."));
de0bea00 7732 set_cmd_completer (c, handle_completer);
486c7739 7733
c906108c 7734 if (!dbx_commands)
1a966eab
AC
7735 stop_command = add_cmd ("stop", class_obscure,
7736 not_just_help_class_command, _("\
7737There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7738This allows you to set a list of commands to be run each time execution\n\
1a966eab 7739of the program stops."), &cmdlist);
c906108c 7740
ccce17b0 7741 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7742Set inferior debugging."), _("\
7743Show inferior debugging."), _("\
7744When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7745 NULL,
7746 show_debug_infrun,
7747 &setdebuglist, &showdebuglist);
527159b7 7748
3e43a32a
MS
7749 add_setshow_boolean_cmd ("displaced", class_maintenance,
7750 &debug_displaced, _("\
237fc4c9
PA
7751Set displaced stepping debugging."), _("\
7752Show displaced stepping debugging."), _("\
7753When non-zero, displaced stepping specific debugging is enabled."),
7754 NULL,
7755 show_debug_displaced,
7756 &setdebuglist, &showdebuglist);
7757
ad52ddc6
PA
7758 add_setshow_boolean_cmd ("non-stop", no_class,
7759 &non_stop_1, _("\
7760Set whether gdb controls the inferior in non-stop mode."), _("\
7761Show whether gdb controls the inferior in non-stop mode."), _("\
7762When debugging a multi-threaded program and this setting is\n\
7763off (the default, also called all-stop mode), when one thread stops\n\
7764(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7765all other threads in the program while you interact with the thread of\n\
7766interest. When you continue or step a thread, you can allow the other\n\
7767threads to run, or have them remain stopped, but while you inspect any\n\
7768thread's state, all threads stop.\n\
7769\n\
7770In non-stop mode, when one thread stops, other threads can continue\n\
7771to run freely. You'll be able to step each thread independently,\n\
7772leave it stopped or free to run as needed."),
7773 set_non_stop,
7774 show_non_stop,
7775 &setlist,
7776 &showlist);
7777
a493e3e2 7778 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7779 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7780 signal_print = (unsigned char *)
7781 xmalloc (sizeof (signal_print[0]) * numsigs);
7782 signal_program = (unsigned char *)
7783 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7784 signal_catch = (unsigned char *)
7785 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7786 signal_pass = (unsigned char *)
4395285e 7787 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7788 for (i = 0; i < numsigs; i++)
7789 {
7790 signal_stop[i] = 1;
7791 signal_print[i] = 1;
7792 signal_program[i] = 1;
ab04a2af 7793 signal_catch[i] = 0;
c906108c
SS
7794 }
7795
7796 /* Signals caused by debugger's own actions
7797 should not be given to the program afterwards. */
a493e3e2
PA
7798 signal_program[GDB_SIGNAL_TRAP] = 0;
7799 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7800
7801 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7802 signal_stop[GDB_SIGNAL_ALRM] = 0;
7803 signal_print[GDB_SIGNAL_ALRM] = 0;
7804 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7805 signal_print[GDB_SIGNAL_VTALRM] = 0;
7806 signal_stop[GDB_SIGNAL_PROF] = 0;
7807 signal_print[GDB_SIGNAL_PROF] = 0;
7808 signal_stop[GDB_SIGNAL_CHLD] = 0;
7809 signal_print[GDB_SIGNAL_CHLD] = 0;
7810 signal_stop[GDB_SIGNAL_IO] = 0;
7811 signal_print[GDB_SIGNAL_IO] = 0;
7812 signal_stop[GDB_SIGNAL_POLL] = 0;
7813 signal_print[GDB_SIGNAL_POLL] = 0;
7814 signal_stop[GDB_SIGNAL_URG] = 0;
7815 signal_print[GDB_SIGNAL_URG] = 0;
7816 signal_stop[GDB_SIGNAL_WINCH] = 0;
7817 signal_print[GDB_SIGNAL_WINCH] = 0;
7818 signal_stop[GDB_SIGNAL_PRIO] = 0;
7819 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7820
cd0fc7c3
SS
7821 /* These signals are used internally by user-level thread
7822 implementations. (See signal(5) on Solaris.) Like the above
7823 signals, a healthy program receives and handles them as part of
7824 its normal operation. */
a493e3e2
PA
7825 signal_stop[GDB_SIGNAL_LWP] = 0;
7826 signal_print[GDB_SIGNAL_LWP] = 0;
7827 signal_stop[GDB_SIGNAL_WAITING] = 0;
7828 signal_print[GDB_SIGNAL_WAITING] = 0;
7829 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7830 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7831
2455069d
UW
7832 /* Update cached state. */
7833 signal_cache_update (-1);
7834
85c07804
AC
7835 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7836 &stop_on_solib_events, _("\
7837Set stopping for shared library events."), _("\
7838Show stopping for shared library events."), _("\
c906108c
SS
7839If nonzero, gdb will give control to the user when the dynamic linker\n\
7840notifies gdb of shared library events. The most common event of interest\n\
85c07804 7841to the user would be loading/unloading of a new library."),
f9e14852 7842 set_stop_on_solib_events,
920d2a44 7843 show_stop_on_solib_events,
85c07804 7844 &setlist, &showlist);
c906108c 7845
7ab04401
AC
7846 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7847 follow_fork_mode_kind_names,
7848 &follow_fork_mode_string, _("\
7849Set debugger response to a program call of fork or vfork."), _("\
7850Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7851A fork or vfork creates a new process. follow-fork-mode can be:\n\
7852 parent - the original process is debugged after a fork\n\
7853 child - the new process is debugged after a fork\n\
ea1dd7bc 7854The unfollowed process will continue to run.\n\
7ab04401
AC
7855By default, the debugger will follow the parent process."),
7856 NULL,
920d2a44 7857 show_follow_fork_mode_string,
7ab04401
AC
7858 &setlist, &showlist);
7859
6c95b8df
PA
7860 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7861 follow_exec_mode_names,
7862 &follow_exec_mode_string, _("\
7863Set debugger response to a program call of exec."), _("\
7864Show debugger response to a program call of exec."), _("\
7865An exec call replaces the program image of a process.\n\
7866\n\
7867follow-exec-mode can be:\n\
7868\n\
cce7e648 7869 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7870to this new inferior. The program the process was running before\n\
7871the exec call can be restarted afterwards by restarting the original\n\
7872inferior.\n\
7873\n\
7874 same - the debugger keeps the process bound to the same inferior.\n\
7875The new executable image replaces the previous executable loaded in\n\
7876the inferior. Restarting the inferior after the exec call restarts\n\
7877the executable the process was running after the exec call.\n\
7878\n\
7879By default, the debugger will use the same inferior."),
7880 NULL,
7881 show_follow_exec_mode_string,
7882 &setlist, &showlist);
7883
7ab04401
AC
7884 add_setshow_enum_cmd ("scheduler-locking", class_run,
7885 scheduler_enums, &scheduler_mode, _("\
7886Set mode for locking scheduler during execution."), _("\
7887Show mode for locking scheduler during execution."), _("\
c906108c
SS
7888off == no locking (threads may preempt at any time)\n\
7889on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
7890step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7891 In this mode, other threads may run during other commands."),
7ab04401 7892 set_schedlock_func, /* traps on target vector */
920d2a44 7893 show_scheduler_mode,
7ab04401 7894 &setlist, &showlist);
5fbbeb29 7895
d4db2f36
PA
7896 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7897Set mode for resuming threads of all processes."), _("\
7898Show mode for resuming threads of all processes."), _("\
7899When on, execution commands (such as 'continue' or 'next') resume all\n\
7900threads of all processes. When off (which is the default), execution\n\
7901commands only resume the threads of the current process. The set of\n\
7902threads that are resumed is further refined by the scheduler-locking\n\
7903mode (see help set scheduler-locking)."),
7904 NULL,
7905 show_schedule_multiple,
7906 &setlist, &showlist);
7907
5bf193a2
AC
7908 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7909Set mode of the step operation."), _("\
7910Show mode of the step operation."), _("\
7911When set, doing a step over a function without debug line information\n\
7912will stop at the first instruction of that function. Otherwise, the\n\
7913function is skipped and the step command stops at a different source line."),
7914 NULL,
920d2a44 7915 show_step_stop_if_no_debug,
5bf193a2 7916 &setlist, &showlist);
ca6724c1 7917
72d0e2c5
YQ
7918 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7919 &can_use_displaced_stepping, _("\
237fc4c9
PA
7920Set debugger's willingness to use displaced stepping."), _("\
7921Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7922If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7923supported by the target architecture. If off, gdb will not use displaced\n\
7924stepping to step over breakpoints, even if such is supported by the target\n\
7925architecture. If auto (which is the default), gdb will use displaced stepping\n\
7926if the target architecture supports it and non-stop mode is active, but will not\n\
7927use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7928 NULL,
7929 show_can_use_displaced_stepping,
7930 &setlist, &showlist);
237fc4c9 7931
b2175913
MS
7932 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7933 &exec_direction, _("Set direction of execution.\n\
7934Options are 'forward' or 'reverse'."),
7935 _("Show direction of execution (forward/reverse)."),
7936 _("Tells gdb whether to execute forward or backward."),
7937 set_exec_direction_func, show_exec_direction_func,
7938 &setlist, &showlist);
7939
6c95b8df
PA
7940 /* Set/show detach-on-fork: user-settable mode. */
7941
7942 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7943Set whether gdb will detach the child of a fork."), _("\
7944Show whether gdb will detach the child of a fork."), _("\
7945Tells gdb whether to detach the child of a fork."),
7946 NULL, NULL, &setlist, &showlist);
7947
03583c20
UW
7948 /* Set/show disable address space randomization mode. */
7949
7950 add_setshow_boolean_cmd ("disable-randomization", class_support,
7951 &disable_randomization, _("\
7952Set disabling of debuggee's virtual address space randomization."), _("\
7953Show disabling of debuggee's virtual address space randomization."), _("\
7954When this mode is on (which is the default), randomization of the virtual\n\
7955address space is disabled. Standalone programs run with the randomization\n\
7956enabled by default on some platforms."),
7957 &set_disable_randomization,
7958 &show_disable_randomization,
7959 &setlist, &showlist);
7960
ca6724c1 7961 /* ptid initializations */
ca6724c1
KB
7962 inferior_ptid = null_ptid;
7963 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7964
7965 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7966 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7967 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7968 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7969
7970 /* Explicitly create without lookup, since that tries to create a
7971 value with a void typed value, and when we get here, gdbarch
7972 isn't initialized yet. At this point, we're quite sure there
7973 isn't another convenience variable of the same name. */
22d2b532 7974 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7975
7976 add_setshow_boolean_cmd ("observer", no_class,
7977 &observer_mode_1, _("\
7978Set whether gdb controls the inferior in observer mode."), _("\
7979Show whether gdb controls the inferior in observer mode."), _("\
7980In observer mode, GDB can get data from the inferior, but not\n\
7981affect its execution. Registers and memory may not be changed,\n\
7982breakpoints may not be set, and the program cannot be interrupted\n\
7983or signalled."),
7984 set_observer_mode,
7985 show_observer_mode,
7986 &setlist,
7987 &showlist);
c906108c 7988}