]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
bfd/
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
c906108c
SS
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
920d2a44
AC
91static void
92show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94{
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96}
5fbbeb29 97
43ff13b4 98/* In asynchronous mode, but simulating synchronous execution. */
96baa820 99
43ff13b4
JM
100int sync_execution = 0;
101
c906108c
SS
102/* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
96baa820
JM
104 running in. */
105
39f77062 106static ptid_t previous_inferior_ptid;
7a292a7a
SS
107
108/* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
c906108c
SS
113#endif
114
7a292a7a
SS
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
527159b7 117static int debug_infrun = 0;
920d2a44
AC
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
527159b7 124
d4f3574e
SS
125/* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
ca557f44
AC
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
d4f3574e
SS
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
c906108c 163
c906108c
SS
164/* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
c2c6d25f 176
7a292a7a
SS
177/* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
692590c1
MS
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
c906108c
SS
187/* Tables of how to react to signals; the user sets them. */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
39f77062
KB
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
212
213/* Command list pointer for the "stop" placeholder. */
214
215static struct cmd_list_element *stop_command;
216
c906108c
SS
217/* Function inferior was in as of last step command. */
218
219static struct symbol *step_start_function;
220
221/* Nonzero if we are expecting a trace trap and should proceed from it. */
222
223static int trap_expected;
224
c906108c
SS
225/* Nonzero if we want to give control to the user when we're notified
226 of shared library events by the dynamic linker. */
227static int stop_on_solib_events;
920d2a44
AC
228static void
229show_stop_on_solib_events (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231{
232 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
233 value);
234}
c906108c 235
c906108c
SS
236/* Nonzero means expecting a trace trap
237 and should stop the inferior and return silently when it happens. */
238
239int stop_after_trap;
240
241/* Nonzero means expecting a trap and caller will handle it themselves.
242 It is used after attach, due to attaching to a process;
243 when running in the shell before the child program has been exec'd;
244 and when running some kinds of remote stuff (FIXME?). */
245
c0236d92 246enum stop_kind stop_soon;
c906108c
SS
247
248/* Nonzero if proceed is being used for a "finish" command or a similar
249 situation when stop_registers should be saved. */
250
251int proceed_to_finish;
252
253/* Save register contents here when about to pop a stack dummy frame,
254 if-and-only-if proceed_to_finish is set.
255 Thus this contains the return value from the called function (assuming
256 values are returned in a register). */
257
72cec141 258struct regcache *stop_registers;
c906108c 259
c906108c
SS
260/* Nonzero after stop if current stack frame should be printed. */
261
262static int stop_print_frame;
263
264static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 265
e02bc4cc 266/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
267 returned by target_wait()/deprecated_target_wait_hook(). This
268 information is returned by get_last_target_status(). */
39f77062 269static ptid_t target_last_wait_ptid;
e02bc4cc
DS
270static struct target_waitstatus target_last_waitstatus;
271
c906108c
SS
272/* This is used to remember when a fork, vfork or exec event
273 was caught by a catchpoint, and thus the event is to be
274 followed at the next resume of the inferior, and not
275 immediately. */
276static struct
488f131b
JB
277{
278 enum target_waitkind kind;
279 struct
c906108c 280 {
488f131b 281 int parent_pid;
488f131b 282 int child_pid;
c906108c 283 }
488f131b
JB
284 fork_event;
285 char *execd_pathname;
286}
c906108c
SS
287pending_follow;
288
53904c9e
AC
289static const char follow_fork_mode_child[] = "child";
290static const char follow_fork_mode_parent[] = "parent";
291
488f131b 292static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
293 follow_fork_mode_child,
294 follow_fork_mode_parent,
295 NULL
ef346e04 296};
c906108c 297
53904c9e 298static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
299static void
300show_follow_fork_mode_string (struct ui_file *file, int from_tty,
301 struct cmd_list_element *c, const char *value)
302{
303 fprintf_filtered (file, _("\
304Debugger response to a program call of fork or vfork is \"%s\".\n"),
305 value);
306}
c906108c
SS
307\f
308
6604731b 309static int
4ef3f3be 310follow_fork (void)
c906108c 311{
ea1dd7bc 312 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 313
6604731b 314 return target_follow_fork (follow_child);
c906108c
SS
315}
316
6604731b
DJ
317void
318follow_inferior_reset_breakpoints (void)
c906108c 319{
6604731b
DJ
320 /* Was there a step_resume breakpoint? (There was if the user
321 did a "next" at the fork() call.) If so, explicitly reset its
322 thread number.
323
324 step_resumes are a form of bp that are made to be per-thread.
325 Since we created the step_resume bp when the parent process
326 was being debugged, and now are switching to the child process,
327 from the breakpoint package's viewpoint, that's a switch of
328 "threads". We must update the bp's notion of which thread
329 it is for, or it'll be ignored when it triggers. */
330
331 if (step_resume_breakpoint)
332 breakpoint_re_set_thread (step_resume_breakpoint);
333
334 /* Reinsert all breakpoints in the child. The user may have set
335 breakpoints after catching the fork, in which case those
336 were never set in the child, but only in the parent. This makes
337 sure the inserted breakpoints match the breakpoint list. */
338
339 breakpoint_re_set ();
340 insert_breakpoints ();
c906108c 341}
c906108c 342
1adeb98a
FN
343/* EXECD_PATHNAME is assumed to be non-NULL. */
344
c906108c 345static void
96baa820 346follow_exec (int pid, char *execd_pathname)
c906108c 347{
c906108c 348 int saved_pid = pid;
7a292a7a
SS
349 struct target_ops *tgt;
350
351 if (!may_follow_exec)
352 return;
c906108c 353
c906108c
SS
354 /* This is an exec event that we actually wish to pay attention to.
355 Refresh our symbol table to the newly exec'd program, remove any
356 momentary bp's, etc.
357
358 If there are breakpoints, they aren't really inserted now,
359 since the exec() transformed our inferior into a fresh set
360 of instructions.
361
362 We want to preserve symbolic breakpoints on the list, since
363 we have hopes that they can be reset after the new a.out's
364 symbol table is read.
365
366 However, any "raw" breakpoints must be removed from the list
367 (e.g., the solib bp's), since their address is probably invalid
368 now.
369
370 And, we DON'T want to call delete_breakpoints() here, since
371 that may write the bp's "shadow contents" (the instruction
372 value that was overwritten witha TRAP instruction). Since
373 we now have a new a.out, those shadow contents aren't valid. */
374 update_breakpoints_after_exec ();
375
376 /* If there was one, it's gone now. We cannot truly step-to-next
377 statement through an exec(). */
378 step_resume_breakpoint = NULL;
379 step_range_start = 0;
380 step_range_end = 0;
381
c906108c 382 /* What is this a.out's name? */
a3f17187 383 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
384
385 /* We've followed the inferior through an exec. Therefore, the
386 inferior has essentially been killed & reborn. */
7a292a7a
SS
387
388 /* First collect the run target in effect. */
389 tgt = find_run_target ();
390 /* If we can't find one, things are in a very strange state... */
391 if (tgt == NULL)
8a3fe4f8 392 error (_("Could find run target to save before following exec"));
7a292a7a 393
c906108c
SS
394 gdb_flush (gdb_stdout);
395 target_mourn_inferior ();
39f77062 396 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 397 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 398 push_target (tgt);
c906108c
SS
399
400 /* That a.out is now the one to use. */
401 exec_file_attach (execd_pathname, 0);
402
403 /* And also is where symbols can be found. */
1adeb98a 404 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
405
406 /* Reset the shared library package. This ensures that we get
407 a shlib event when the child reaches "_start", at which point
408 the dld will have had a chance to initialize the child. */
7a292a7a 409#if defined(SOLIB_RESTART)
c906108c 410 SOLIB_RESTART ();
7a292a7a
SS
411#endif
412#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 413 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
414#else
415 solib_create_inferior_hook ();
7a292a7a 416#endif
c906108c
SS
417
418 /* Reinsert all breakpoints. (Those which were symbolic have
419 been reset to the proper address in the new a.out, thanks
420 to symbol_file_command...) */
421 insert_breakpoints ();
422
423 /* The next resume of this inferior should bring it to the shlib
424 startup breakpoints. (If the user had also set bp's on
425 "main" from the old (parent) process, then they'll auto-
426 matically get reset there in the new process.) */
c906108c
SS
427}
428
429/* Non-zero if we just simulating a single-step. This is needed
430 because we cannot remove the breakpoints in the inferior process
431 until after the `wait' in `wait_for_inferior'. */
432static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
433
434/* The thread we inserted single-step breakpoints for. */
435static ptid_t singlestep_ptid;
436
fd48f117
DJ
437/* PC when we started this single-step. */
438static CORE_ADDR singlestep_pc;
439
9f976b41
DJ
440/* If another thread hit the singlestep breakpoint, we save the original
441 thread here so that we can resume single-stepping it later. */
442static ptid_t saved_singlestep_ptid;
443static int stepping_past_singlestep_breakpoint;
6a6b96b9
UW
444
445/* Similarly, if we are stepping another thread past a breakpoint,
446 save the original thread here so that we can resume stepping it later. */
447static ptid_t stepping_past_breakpoint_ptid;
448static int stepping_past_breakpoint;
c906108c
SS
449\f
450
451/* Things to clean up if we QUIT out of resume (). */
c906108c 452static void
74b7792f 453resume_cleanups (void *ignore)
c906108c
SS
454{
455 normal_stop ();
456}
457
53904c9e
AC
458static const char schedlock_off[] = "off";
459static const char schedlock_on[] = "on";
460static const char schedlock_step[] = "step";
488f131b 461static const char *scheduler_enums[] = {
ef346e04
AC
462 schedlock_off,
463 schedlock_on,
464 schedlock_step,
465 NULL
466};
920d2a44
AC
467static const char *scheduler_mode = schedlock_off;
468static void
469show_scheduler_mode (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471{
472 fprintf_filtered (file, _("\
473Mode for locking scheduler during execution is \"%s\".\n"),
474 value);
475}
c906108c
SS
476
477static void
96baa820 478set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 479{
eefe576e
AC
480 if (!target_can_lock_scheduler)
481 {
482 scheduler_mode = schedlock_off;
483 error (_("Target '%s' cannot support this command."), target_shortname);
484 }
c906108c
SS
485}
486
487
488/* Resume the inferior, but allow a QUIT. This is useful if the user
489 wants to interrupt some lengthy single-stepping operation
490 (for child processes, the SIGINT goes to the inferior, and so
491 we get a SIGINT random_signal, but for remote debugging and perhaps
492 other targets, that's not true).
493
494 STEP nonzero if we should step (zero to continue instead).
495 SIG is the signal to give the inferior (zero for none). */
496void
96baa820 497resume (int step, enum target_signal sig)
c906108c
SS
498{
499 int should_resume = 1;
74b7792f 500 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
501 QUIT;
502
527159b7 503 if (debug_infrun)
8a9de0e4
AC
504 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
505 step, sig);
527159b7 506
ef5cf84e
MS
507 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
508
c906108c 509
692590c1
MS
510 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
511 over an instruction that causes a page fault without triggering
512 a hardware watchpoint. The kernel properly notices that it shouldn't
513 stop, because the hardware watchpoint is not triggered, but it forgets
514 the step request and continues the program normally.
515 Work around the problem by removing hardware watchpoints if a step is
516 requested, GDB will check for a hardware watchpoint trigger after the
517 step anyway. */
c36b740a 518 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 519 remove_hw_watchpoints ();
488f131b 520
692590c1 521
c2c6d25f
JM
522 /* Normally, by the time we reach `resume', the breakpoints are either
523 removed or inserted, as appropriate. The exception is if we're sitting
524 at a permanent breakpoint; we need to step over it, but permanent
525 breakpoints can't be removed. So we have to test for it here. */
526 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
527 {
528 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
529 gdbarch_skip_permanent_breakpoint (current_gdbarch,
530 get_current_regcache ());
6d350bb5
UW
531 else
532 error (_("\
533The program is stopped at a permanent breakpoint, but GDB does not know\n\
534how to step past a permanent breakpoint on this architecture. Try using\n\
535a command like `return' or `jump' to continue execution."));
536 }
c2c6d25f 537
1c0fdd0e 538 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
539 {
540 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 541 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
542 {
543 /* ...and don't ask hardware to do it. */
544 step = 0;
545 /* and do not pull these breakpoints until after a `wait' in
546 `wait_for_inferior' */
547 singlestep_breakpoints_inserted_p = 1;
548 singlestep_ptid = inferior_ptid;
549 singlestep_pc = read_pc ();
550 }
c906108c
SS
551 }
552
c906108c 553 /* If there were any forks/vforks/execs that were caught and are
6604731b 554 now to be followed, then do so. */
c906108c
SS
555 switch (pending_follow.kind)
556 {
6604731b
DJ
557 case TARGET_WAITKIND_FORKED:
558 case TARGET_WAITKIND_VFORKED:
c906108c 559 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
560 if (follow_fork ())
561 should_resume = 0;
c906108c
SS
562 break;
563
6604731b 564 case TARGET_WAITKIND_EXECD:
c906108c 565 /* follow_exec is called as soon as the exec event is seen. */
6604731b 566 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
567 break;
568
569 default:
570 break;
571 }
c906108c
SS
572
573 /* Install inferior's terminal modes. */
574 target_terminal_inferior ();
575
576 if (should_resume)
577 {
39f77062 578 ptid_t resume_ptid;
dfcd3bfb 579
488f131b 580 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 581
cd76b0b7
VP
582 /* If STEP is set, it's a request to use hardware stepping
583 facilities. But in that case, we should never
584 use singlestep breakpoint. */
585 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
586
587 if (singlestep_breakpoints_inserted_p
588 && stepping_past_singlestep_breakpoint)
c906108c 589 {
cd76b0b7
VP
590 /* The situation here is as follows. In thread T1 we wanted to
591 single-step. Lacking hardware single-stepping we've
592 set breakpoint at the PC of the next instruction -- call it
593 P. After resuming, we've hit that breakpoint in thread T2.
594 Now we've removed original breakpoint, inserted breakpoint
595 at P+1, and try to step to advance T2 past breakpoint.
596 We need to step only T2, as if T1 is allowed to freely run,
597 it can run past P, and if other threads are allowed to run,
598 they can hit breakpoint at P+1, and nested hits of single-step
599 breakpoints is not something we'd want -- that's complicated
600 to support, and has no value. */
601 resume_ptid = inferior_ptid;
602 }
c906108c 603
e842223a
VP
604 if ((step || singlestep_breakpoints_inserted_p)
605 && breakpoint_here_p (read_pc ())
cd76b0b7
VP
606 && !breakpoint_inserted_here_p (read_pc ()))
607 {
608 /* We're stepping, have breakpoint at PC, and it's
609 not inserted. Most likely, proceed has noticed that
610 we have breakpoint and tries to single-step over it,
611 so that it's not hit. In which case, we need to
612 single-step only this thread, and keep others stopped,
613 as they can miss this breakpoint if allowed to run.
614
615 The current code either has all breakpoints inserted,
616 or all removed, so if we let other threads run,
617 we can actually miss any breakpoint, not the one at PC. */
ef5cf84e 618 resume_ptid = inferior_ptid;
c906108c 619 }
ef5cf84e 620
8fb3e588
AC
621 if ((scheduler_mode == schedlock_on)
622 || (scheduler_mode == schedlock_step
623 && (step || singlestep_breakpoints_inserted_p)))
c906108c 624 {
ef5cf84e 625 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 626 resume_ptid = inferior_ptid;
c906108c 627 }
ef5cf84e 628
e6cf7916 629 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
630 {
631 /* Most targets can step a breakpoint instruction, thus
632 executing it normally. But if this one cannot, just
633 continue and we will hit it anyway. */
c36b740a 634 if (step && breakpoint_inserted_here_p (read_pc ()))
c4ed33b9
AC
635 step = 0;
636 }
39f77062 637 target_resume (resume_ptid, step, sig);
c906108c
SS
638 }
639
640 discard_cleanups (old_cleanups);
641}
642\f
643
644/* Clear out all variables saying what to do when inferior is continued.
645 First do this, then set the ones you want, then call `proceed'. */
646
647void
96baa820 648clear_proceed_status (void)
c906108c
SS
649{
650 trap_expected = 0;
651 step_range_start = 0;
652 step_range_end = 0;
aa0cd9c1 653 step_frame_id = null_frame_id;
5fbbeb29 654 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 655 stop_after_trap = 0;
c0236d92 656 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
657 proceed_to_finish = 0;
658 breakpoint_proceeded = 1; /* We're about to proceed... */
659
d5c31457
UW
660 if (stop_registers)
661 {
662 regcache_xfree (stop_registers);
663 stop_registers = NULL;
664 }
665
c906108c
SS
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668}
669
ea67f13b
DJ
670/* This should be suitable for any targets that support threads. */
671
672static int
6a6b96b9 673prepare_to_proceed (int step)
ea67f13b
DJ
674{
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
6a6b96b9 681 /* Make sure we were stopped at a breakpoint. */
ea67f13b 682 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 683 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
684 {
685 return 0;
686 }
687
6a6b96b9 688 /* Switched over from WAIT_PID. */
ea67f13b 689 if (!ptid_equal (wait_ptid, minus_one_ptid)
6a6b96b9
UW
690 && !ptid_equal (inferior_ptid, wait_ptid)
691 && breakpoint_here_p (read_pc_pid (wait_ptid)))
ea67f13b 692 {
6a6b96b9
UW
693 /* If stepping, remember current thread to switch back to. */
694 if (step)
ea67f13b 695 {
6a6b96b9
UW
696 stepping_past_breakpoint = 1;
697 stepping_past_breakpoint_ptid = inferior_ptid;
ea67f13b
DJ
698 }
699
6a6b96b9
UW
700 /* Switch back to WAIT_PID thread. */
701 switch_to_thread (wait_ptid);
702
8fb3e588 703 /* We return 1 to indicate that there is a breakpoint here,
6a6b96b9
UW
704 so we need to step over it before continuing to avoid
705 hitting it straight away. */
706 return 1;
ea67f13b
DJ
707 }
708
709 return 0;
ea67f13b 710}
e4846b08
JJ
711
712/* Record the pc of the program the last time it stopped. This is
713 just used internally by wait_for_inferior, but need to be preserved
714 over calls to it and cleared when the inferior is started. */
715static CORE_ADDR prev_pc;
716
c906108c
SS
717/* Basic routine for continuing the program in various fashions.
718
719 ADDR is the address to resume at, or -1 for resume where stopped.
720 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 721 or -1 for act according to how it stopped.
c906108c 722 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
723 -1 means return after that and print nothing.
724 You should probably set various step_... variables
725 before calling here, if you are stepping.
c906108c
SS
726
727 You should call clear_proceed_status before calling proceed. */
728
729void
96baa820 730proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
731{
732 int oneproc = 0;
733
734 if (step > 0)
735 step_start_function = find_pc_function (read_pc ());
736 if (step < 0)
737 stop_after_trap = 1;
738
2acceee2 739 if (addr == (CORE_ADDR) -1)
c906108c 740 {
c906108c 741 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
742 /* There is a breakpoint at the address we will resume at,
743 step one instruction before inserting breakpoints so that
744 we do not stop right away (and report a second hit at this
745 breakpoint). */
c906108c 746 oneproc = 1;
3352ef37
AC
747 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
748 && gdbarch_single_step_through_delay (current_gdbarch,
749 get_current_frame ()))
750 /* We stepped onto an instruction that needs to be stepped
751 again before re-inserting the breakpoint, do so. */
c906108c
SS
752 oneproc = 1;
753 }
754 else
755 {
756 write_pc (addr);
c906108c
SS
757 }
758
527159b7 759 if (debug_infrun)
8a9de0e4
AC
760 fprintf_unfiltered (gdb_stdlog,
761 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
762 paddr_nz (addr), siggnal, step);
527159b7 763
c906108c
SS
764 /* In a multi-threaded task we may select another thread
765 and then continue or step.
766
767 But if the old thread was stopped at a breakpoint, it
768 will immediately cause another breakpoint stop without
769 any execution (i.e. it will report a breakpoint hit
770 incorrectly). So we must step over it first.
771
ea67f13b 772 prepare_to_proceed checks the current thread against the thread
c906108c
SS
773 that reported the most recent event. If a step-over is required
774 it returns TRUE and sets the current thread to the old thread. */
6a6b96b9 775 if (prepare_to_proceed (step))
ea67f13b 776 oneproc = 1;
c906108c 777
c906108c
SS
778 if (oneproc)
779 /* We will get a trace trap after one instruction.
780 Continue it automatically and insert breakpoints then. */
781 trap_expected = 1;
782 else
c36b740a 783 insert_breakpoints ();
c906108c
SS
784
785 if (siggnal != TARGET_SIGNAL_DEFAULT)
786 stop_signal = siggnal;
787 /* If this signal should not be seen by program,
788 give it zero. Used for debugging signals. */
789 else if (!signal_program[stop_signal])
790 stop_signal = TARGET_SIGNAL_0;
791
792 annotate_starting ();
793
794 /* Make sure that output from GDB appears before output from the
795 inferior. */
796 gdb_flush (gdb_stdout);
797
e4846b08
JJ
798 /* Refresh prev_pc value just prior to resuming. This used to be
799 done in stop_stepping, however, setting prev_pc there did not handle
800 scenarios such as inferior function calls or returning from
801 a function via the return command. In those cases, the prev_pc
802 value was not set properly for subsequent commands. The prev_pc value
803 is used to initialize the starting line number in the ecs. With an
804 invalid value, the gdb next command ends up stopping at the position
805 represented by the next line table entry past our start position.
806 On platforms that generate one line table entry per line, this
807 is not a problem. However, on the ia64, the compiler generates
808 extraneous line table entries that do not increase the line number.
809 When we issue the gdb next command on the ia64 after an inferior call
810 or a return command, we often end up a few instructions forward, still
811 within the original line we started.
812
813 An attempt was made to have init_execution_control_state () refresh
814 the prev_pc value before calculating the line number. This approach
815 did not work because on platforms that use ptrace, the pc register
816 cannot be read unless the inferior is stopped. At that point, we
817 are not guaranteed the inferior is stopped and so the read_pc ()
818 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 819 updated correctly when the inferior is stopped. */
e4846b08
JJ
820 prev_pc = read_pc ();
821
c906108c
SS
822 /* Resume inferior. */
823 resume (oneproc || step || bpstat_should_step (), stop_signal);
824
825 /* Wait for it to stop (if not standalone)
826 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
827 /* Do this only if we are not using the event loop, or if the target
828 does not support asynchronous execution. */
362646f5 829 if (!target_can_async_p ())
43ff13b4
JM
830 {
831 wait_for_inferior ();
832 normal_stop ();
833 }
c906108c 834}
c906108c
SS
835\f
836
837/* Start remote-debugging of a machine over a serial link. */
96baa820 838
c906108c 839void
8621d6a9 840start_remote (int from_tty)
c906108c
SS
841{
842 init_thread_list ();
843 init_wait_for_inferior ();
b0f4b84b 844 stop_soon = STOP_QUIETLY_REMOTE;
c906108c 845 trap_expected = 0;
43ff13b4 846
6426a772
JM
847 /* Always go on waiting for the target, regardless of the mode. */
848 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 849 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
850 nothing is returned (instead of just blocking). Because of this,
851 targets expecting an immediate response need to, internally, set
852 things up so that the target_wait() is forced to eventually
853 timeout. */
854 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
855 differentiate to its caller what the state of the target is after
856 the initial open has been performed. Here we're assuming that
857 the target has stopped. It should be possible to eventually have
858 target_open() return to the caller an indication that the target
859 is currently running and GDB state should be set to the same as
860 for an async run. */
861 wait_for_inferior ();
8621d6a9
DJ
862
863 /* Now that the inferior has stopped, do any bookkeeping like
864 loading shared libraries. We want to do this before normal_stop,
865 so that the displayed frame is up to date. */
866 post_create_inferior (&current_target, from_tty);
867
6426a772 868 normal_stop ();
c906108c
SS
869}
870
871/* Initialize static vars when a new inferior begins. */
872
873void
96baa820 874init_wait_for_inferior (void)
c906108c
SS
875{
876 /* These are meaningless until the first time through wait_for_inferior. */
877 prev_pc = 0;
c906108c 878
c906108c
SS
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 886
c906108c 887 clear_proceed_status ();
9f976b41
DJ
888
889 stepping_past_singlestep_breakpoint = 0;
6a6b96b9 890 stepping_past_breakpoint = 0;
c906108c 891}
c906108c 892\f
b83266a0
SS
893/* This enum encodes possible reasons for doing a target_wait, so that
894 wfi can call target_wait in one place. (Ultimately the call will be
895 moved out of the infinite loop entirely.) */
896
c5aa993b
JM
897enum infwait_states
898{
cd0fc7c3
SS
899 infwait_normal_state,
900 infwait_thread_hop_state,
d983da9c 901 infwait_step_watch_state,
cd0fc7c3 902 infwait_nonstep_watch_state
b83266a0
SS
903};
904
11cf8741
JM
905/* Why did the inferior stop? Used to print the appropriate messages
906 to the interface from within handle_inferior_event(). */
907enum inferior_stop_reason
908{
11cf8741
JM
909 /* Step, next, nexti, stepi finished. */
910 END_STEPPING_RANGE,
11cf8741
JM
911 /* Inferior terminated by signal. */
912 SIGNAL_EXITED,
913 /* Inferior exited. */
914 EXITED,
915 /* Inferior received signal, and user asked to be notified. */
916 SIGNAL_RECEIVED
917};
918
cd0fc7c3
SS
919/* This structure contains what used to be local variables in
920 wait_for_inferior. Probably many of them can return to being
921 locals in handle_inferior_event. */
922
c5aa993b 923struct execution_control_state
488f131b
JB
924{
925 struct target_waitstatus ws;
926 struct target_waitstatus *wp;
927 int another_trap;
928 int random_signal;
929 CORE_ADDR stop_func_start;
930 CORE_ADDR stop_func_end;
931 char *stop_func_name;
932 struct symtab_and_line sal;
488f131b
JB
933 int current_line;
934 struct symtab *current_symtab;
935 int handling_longjmp; /* FIXME */
936 ptid_t ptid;
937 ptid_t saved_inferior_ptid;
68f53502 938 int step_after_step_resume_breakpoint;
488f131b
JB
939 int stepping_through_solib_after_catch;
940 bpstat stepping_through_solib_catchpoints;
488f131b
JB
941 int new_thread_event;
942 struct target_waitstatus tmpstatus;
943 enum infwait_states infwait_state;
944 ptid_t waiton_ptid;
945 int wait_some_more;
946};
947
948void init_execution_control_state (struct execution_control_state *ecs);
949
950void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 951
c2c6d25f 952static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 953static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 954static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
955static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
956 struct frame_id sr_id);
104c1213
JM
957static void stop_stepping (struct execution_control_state *ecs);
958static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 959static void keep_going (struct execution_control_state *ecs);
488f131b
JB
960static void print_stop_reason (enum inferior_stop_reason stop_reason,
961 int stop_info);
104c1213 962
cd0fc7c3
SS
963/* Wait for control to return from inferior to debugger.
964 If inferior gets a signal, we may decide to start it up again
965 instead of returning. That is why there is a loop in this function.
966 When this function actually returns it means the inferior
967 should be left stopped and GDB should read more commands. */
968
969void
96baa820 970wait_for_inferior (void)
cd0fc7c3
SS
971{
972 struct cleanup *old_cleanups;
973 struct execution_control_state ecss;
974 struct execution_control_state *ecs;
c906108c 975
527159b7 976 if (debug_infrun)
8a9de0e4 977 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 978
8601f500 979 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 980 &step_resume_breakpoint);
cd0fc7c3
SS
981
982 /* wfi still stays in a loop, so it's OK just to take the address of
983 a local to get the ecs pointer. */
984 ecs = &ecss;
985
986 /* Fill in with reasonable starting values. */
987 init_execution_control_state (ecs);
988
c906108c 989 /* We'll update this if & when we switch to a new thread. */
39f77062 990 previous_inferior_ptid = inferior_ptid;
c906108c 991
cd0fc7c3
SS
992 overlay_cache_invalid = 1;
993
994 /* We have to invalidate the registers BEFORE calling target_wait
995 because they can be loaded from the target while in target_wait.
996 This makes remote debugging a bit more efficient for those
997 targets that provide critical registers as part of their normal
998 status mechanism. */
999
1000 registers_changed ();
b83266a0 1001
c906108c
SS
1002 while (1)
1003 {
9a4105ab
AC
1004 if (deprecated_target_wait_hook)
1005 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1006 else
39f77062 1007 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1008
cd0fc7c3
SS
1009 /* Now figure out what to do with the result of the result. */
1010 handle_inferior_event (ecs);
c906108c 1011
cd0fc7c3
SS
1012 if (!ecs->wait_some_more)
1013 break;
1014 }
1015 do_cleanups (old_cleanups);
1016}
c906108c 1017
43ff13b4
JM
1018/* Asynchronous version of wait_for_inferior. It is called by the
1019 event loop whenever a change of state is detected on the file
1020 descriptor corresponding to the target. It can be called more than
1021 once to complete a single execution command. In such cases we need
1022 to keep the state in a global variable ASYNC_ECSS. If it is the
1023 last time that this function is called for a single execution
1024 command, then report to the user that the inferior has stopped, and
1025 do the necessary cleanups. */
1026
1027struct execution_control_state async_ecss;
1028struct execution_control_state *async_ecs;
1029
1030void
fba45db2 1031fetch_inferior_event (void *client_data)
43ff13b4
JM
1032{
1033 static struct cleanup *old_cleanups;
1034
c5aa993b 1035 async_ecs = &async_ecss;
43ff13b4
JM
1036
1037 if (!async_ecs->wait_some_more)
1038 {
488f131b 1039 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1040 &step_resume_breakpoint);
43ff13b4
JM
1041
1042 /* Fill in with reasonable starting values. */
1043 init_execution_control_state (async_ecs);
1044
43ff13b4 1045 /* We'll update this if & when we switch to a new thread. */
39f77062 1046 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1047
1048 overlay_cache_invalid = 1;
1049
1050 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1051 because they can be loaded from the target while in target_wait.
1052 This makes remote debugging a bit more efficient for those
1053 targets that provide critical registers as part of their normal
1054 status mechanism. */
43ff13b4
JM
1055
1056 registers_changed ();
1057 }
1058
9a4105ab 1059 if (deprecated_target_wait_hook)
488f131b 1060 async_ecs->ptid =
9a4105ab 1061 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1062 else
39f77062 1063 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1064
1065 /* Now figure out what to do with the result of the result. */
1066 handle_inferior_event (async_ecs);
1067
1068 if (!async_ecs->wait_some_more)
1069 {
adf40b2e 1070 /* Do only the cleanups that have been added by this
488f131b
JB
1071 function. Let the continuations for the commands do the rest,
1072 if there are any. */
43ff13b4
JM
1073 do_exec_cleanups (old_cleanups);
1074 normal_stop ();
c2d11a7d
JM
1075 if (step_multi && stop_step)
1076 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1077 else
1078 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1079 }
1080}
1081
cd0fc7c3
SS
1082/* Prepare an execution control state for looping through a
1083 wait_for_inferior-type loop. */
1084
1085void
96baa820 1086init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1087{
6ad80df0 1088 ecs->another_trap = 0;
cd0fc7c3 1089 ecs->random_signal = 0;
68f53502 1090 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1091 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1092 ecs->stepping_through_solib_after_catch = 0;
1093 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1094 ecs->sal = find_pc_line (prev_pc, 0);
1095 ecs->current_line = ecs->sal.line;
1096 ecs->current_symtab = ecs->sal.symtab;
1097 ecs->infwait_state = infwait_normal_state;
39f77062 1098 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1099 ecs->wp = &(ecs->ws);
1100}
1101
e02bc4cc 1102/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1103 target_wait()/deprecated_target_wait_hook(). The data is actually
1104 cached by handle_inferior_event(), which gets called immediately
1105 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1106
1107void
488f131b 1108get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1109{
39f77062 1110 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1111 *status = target_last_waitstatus;
1112}
1113
ac264b3b
MS
1114void
1115nullify_last_target_wait_ptid (void)
1116{
1117 target_last_wait_ptid = minus_one_ptid;
1118}
1119
dd80620e
MS
1120/* Switch thread contexts, maintaining "infrun state". */
1121
1122static void
1123context_switch (struct execution_control_state *ecs)
1124{
1125 /* Caution: it may happen that the new thread (or the old one!)
1126 is not in the thread list. In this case we must not attempt
1127 to "switch context", or we run the risk that our context may
1128 be lost. This may happen as a result of the target module
1129 mishandling thread creation. */
1130
fd48f117
DJ
1131 if (debug_infrun)
1132 {
1133 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1134 target_pid_to_str (inferior_ptid));
1135 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1136 target_pid_to_str (ecs->ptid));
1137 }
1138
dd80620e 1139 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1140 { /* Perform infrun state context switch: */
dd80620e 1141 /* Save infrun state for the old thread. */
0ce3d317 1142 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1143 trap_expected, step_resume_breakpoint,
15960608 1144 step_range_start,
aa0cd9c1 1145 step_range_end, &step_frame_id,
dd80620e
MS
1146 ecs->handling_longjmp, ecs->another_trap,
1147 ecs->stepping_through_solib_after_catch,
1148 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1149 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1150
1151 /* Load infrun state for the new thread. */
0ce3d317 1152 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1153 &trap_expected, &step_resume_breakpoint,
15960608 1154 &step_range_start,
aa0cd9c1 1155 &step_range_end, &step_frame_id,
dd80620e
MS
1156 &ecs->handling_longjmp, &ecs->another_trap,
1157 &ecs->stepping_through_solib_after_catch,
1158 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1159 &ecs->current_line, &ecs->current_symtab);
dd80620e 1160 }
6a6b96b9
UW
1161
1162 switch_to_thread (ecs->ptid);
dd80620e
MS
1163}
1164
4fa8626c
DJ
1165static void
1166adjust_pc_after_break (struct execution_control_state *ecs)
1167{
8aad930b 1168 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1169
1170 /* If this target does not decrement the PC after breakpoints, then
1171 we have nothing to do. */
b798847d 1172 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1173 return;
1174
1175 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1176 we aren't, just return.
9709f61c
DJ
1177
1178 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1179 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1180 implemented by software breakpoints should be handled through the normal
1181 breakpoint layer.
8fb3e588 1182
4fa8626c
DJ
1183 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1184 different signals (SIGILL or SIGEMT for instance), but it is less
1185 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1186 gdbarch_decr_pc_after_break. I don't know any specific target that
1187 generates these signals at breakpoints (the code has been in GDB since at
1188 least 1992) so I can not guess how to handle them here.
8fb3e588 1189
e6cf7916
UW
1190 In earlier versions of GDB, a target with
1191 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1192 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1193 target with both of these set in GDB history, and it seems unlikely to be
1194 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1195
1196 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1197 return;
1198
1199 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1200 return;
1201
8aad930b
AC
1202 /* Find the location where (if we've hit a breakpoint) the
1203 breakpoint would be. */
b798847d
UW
1204 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1205 (current_gdbarch);
8aad930b 1206
1c0fdd0e
UW
1207 /* Check whether there actually is a software breakpoint inserted
1208 at that location. */
1209 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1210 {
1c0fdd0e
UW
1211 /* When using hardware single-step, a SIGTRAP is reported for both
1212 a completed single-step and a software breakpoint. Need to
1213 differentiate between the two, as the latter needs adjusting
1214 but the former does not.
1215
1216 The SIGTRAP can be due to a completed hardware single-step only if
1217 - we didn't insert software single-step breakpoints
1218 - the thread to be examined is still the current thread
1219 - this thread is currently being stepped
1220
1221 If any of these events did not occur, we must have stopped due
1222 to hitting a software breakpoint, and have to back up to the
1223 breakpoint address.
1224
1225 As a special case, we could have hardware single-stepped a
1226 software breakpoint. In this case (prev_pc == breakpoint_pc),
1227 we also need to back up to the breakpoint address. */
1228
1229 if (singlestep_breakpoints_inserted_p
1230 || !ptid_equal (ecs->ptid, inferior_ptid)
1231 || !currently_stepping (ecs)
1232 || prev_pc == breakpoint_pc)
8aad930b
AC
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
4fa8626c
DJ
1235}
1236
cd0fc7c3
SS
1237/* Given an execution control state that has been freshly filled in
1238 by an event from the inferior, figure out what it means and take
1239 appropriate action. */
c906108c 1240
cd0fc7c3 1241void
96baa820 1242handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1243{
c8edd8b4 1244 int sw_single_step_trap_p = 0;
d983da9c
DJ
1245 int stopped_by_watchpoint;
1246 int stepped_after_stopped_by_watchpoint = 0;
cd0fc7c3 1247
e02bc4cc 1248 /* Cache the last pid/waitstatus. */
39f77062 1249 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1250 target_last_waitstatus = *ecs->wp;
1251
4fa8626c
DJ
1252 adjust_pc_after_break (ecs);
1253
488f131b
JB
1254 switch (ecs->infwait_state)
1255 {
1256 case infwait_thread_hop_state:
527159b7 1257 if (debug_infrun)
8a9de0e4 1258 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1259 /* Cancel the waiton_ptid. */
1260 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1261 break;
b83266a0 1262
488f131b 1263 case infwait_normal_state:
527159b7 1264 if (debug_infrun)
8a9de0e4 1265 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1266 break;
1267
1268 case infwait_step_watch_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: infwait_step_watch_state\n");
1272
1273 stepped_after_stopped_by_watchpoint = 1;
488f131b 1274 break;
b83266a0 1275
488f131b 1276 case infwait_nonstep_watch_state:
527159b7 1277 if (debug_infrun)
8a9de0e4
AC
1278 fprintf_unfiltered (gdb_stdlog,
1279 "infrun: infwait_nonstep_watch_state\n");
488f131b 1280 insert_breakpoints ();
c906108c 1281
488f131b
JB
1282 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1283 handle things like signals arriving and other things happening
1284 in combination correctly? */
1285 stepped_after_stopped_by_watchpoint = 1;
1286 break;
65e82032
AC
1287
1288 default:
e2e0b3e5 1289 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1290 }
1291 ecs->infwait_state = infwait_normal_state;
c906108c 1292
35f196d9 1293 reinit_frame_cache ();
c906108c 1294
488f131b 1295 /* If it's a new process, add it to the thread database */
c906108c 1296
488f131b 1297 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1298 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1299 && !in_thread_list (ecs->ptid));
1300
1301 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1302 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1303 {
1304 add_thread (ecs->ptid);
c906108c 1305
488f131b
JB
1306 ui_out_text (uiout, "[New ");
1307 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1308 ui_out_text (uiout, "]\n");
488f131b 1309 }
c906108c 1310
488f131b
JB
1311 switch (ecs->ws.kind)
1312 {
1313 case TARGET_WAITKIND_LOADED:
527159b7 1314 if (debug_infrun)
8a9de0e4 1315 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1316 /* Ignore gracefully during startup of the inferior, as it might
1317 be the shell which has just loaded some objects, otherwise
1318 add the symbols for the newly loaded objects. Also ignore at
1319 the beginning of an attach or remote session; we will query
1320 the full list of libraries once the connection is
1321 established. */
c0236d92 1322 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1323 {
1324 /* Remove breakpoints, SOLIB_ADD might adjust
1325 breakpoint addresses via breakpoint_re_set. */
c36b740a 1326 remove_breakpoints ();
c906108c 1327
488f131b
JB
1328 /* Check for any newly added shared libraries if we're
1329 supposed to be adding them automatically. Switch
1330 terminal for any messages produced by
1331 breakpoint_re_set. */
1332 target_terminal_ours_for_output ();
aff6338a 1333 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1334 stack's section table is kept up-to-date. Architectures,
1335 (e.g., PPC64), use the section table to perform
1336 operations such as address => section name and hence
1337 require the table to contain all sections (including
1338 those found in shared libraries). */
aff6338a 1339 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1340 exec_ops to SOLIB_ADD. This is because current GDB is
1341 only tooled to propagate section_table changes out from
1342 the "current_target" (see target_resize_to_sections), and
1343 not up from the exec stratum. This, of course, isn't
1344 right. "infrun.c" should only interact with the
1345 exec/process stratum, instead relying on the target stack
1346 to propagate relevant changes (stop, section table
1347 changed, ...) up to other layers. */
b0f4b84b 1348#ifdef SOLIB_ADD
aff6338a 1349 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1350#else
1351 solib_add (NULL, 0, &current_target, auto_solib_add);
1352#endif
488f131b
JB
1353 target_terminal_inferior ();
1354
b0f4b84b
DJ
1355 /* If requested, stop when the dynamic linker notifies
1356 gdb of events. This allows the user to get control
1357 and place breakpoints in initializer routines for
1358 dynamically loaded objects (among other things). */
1359 if (stop_on_solib_events)
1360 {
1361 stop_stepping (ecs);
1362 return;
1363 }
1364
1365 /* NOTE drow/2007-05-11: This might be a good place to check
1366 for "catch load". */
1367
488f131b 1368 /* Reinsert breakpoints and continue. */
c36b740a 1369 insert_breakpoints ();
488f131b 1370 }
b0f4b84b
DJ
1371
1372 /* If we are skipping through a shell, or through shared library
1373 loading that we aren't interested in, resume the program. If
1374 we're running the program normally, also resume. But stop if
1375 we're attaching or setting up a remote connection. */
1376 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1377 {
1378 resume (0, TARGET_SIGNAL_0);
1379 prepare_to_wait (ecs);
1380 return;
1381 }
1382
1383 break;
c5aa993b 1384
488f131b 1385 case TARGET_WAITKIND_SPURIOUS:
527159b7 1386 if (debug_infrun)
8a9de0e4 1387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1388 resume (0, TARGET_SIGNAL_0);
1389 prepare_to_wait (ecs);
1390 return;
c5aa993b 1391
488f131b 1392 case TARGET_WAITKIND_EXITED:
527159b7 1393 if (debug_infrun)
8a9de0e4 1394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1395 target_terminal_ours (); /* Must do this before mourn anyway */
1396 print_stop_reason (EXITED, ecs->ws.value.integer);
1397
1398 /* Record the exit code in the convenience variable $_exitcode, so
1399 that the user can inspect this again later. */
1400 set_internalvar (lookup_internalvar ("_exitcode"),
1401 value_from_longest (builtin_type_int,
1402 (LONGEST) ecs->ws.value.integer));
1403 gdb_flush (gdb_stdout);
1404 target_mourn_inferior ();
1c0fdd0e 1405 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1406 stop_print_frame = 0;
1407 stop_stepping (ecs);
1408 return;
c5aa993b 1409
488f131b 1410 case TARGET_WAITKIND_SIGNALLED:
527159b7 1411 if (debug_infrun)
8a9de0e4 1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1413 stop_print_frame = 0;
1414 stop_signal = ecs->ws.value.sig;
1415 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1416
488f131b
JB
1417 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1418 reach here unless the inferior is dead. However, for years
1419 target_kill() was called here, which hints that fatal signals aren't
1420 really fatal on some systems. If that's true, then some changes
1421 may be needed. */
1422 target_mourn_inferior ();
c906108c 1423
488f131b 1424 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1425 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1426 stop_stepping (ecs);
1427 return;
c906108c 1428
488f131b
JB
1429 /* The following are the only cases in which we keep going;
1430 the above cases end in a continue or goto. */
1431 case TARGET_WAITKIND_FORKED:
deb3b17b 1432 case TARGET_WAITKIND_VFORKED:
527159b7 1433 if (debug_infrun)
8a9de0e4 1434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1435 stop_signal = TARGET_SIGNAL_TRAP;
1436 pending_follow.kind = ecs->ws.kind;
1437
8e7d2c16
DJ
1438 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1439 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1440
5a2901d9
DJ
1441 if (!ptid_equal (ecs->ptid, inferior_ptid))
1442 {
1443 context_switch (ecs);
35f196d9 1444 reinit_frame_cache ();
5a2901d9
DJ
1445 }
1446
488f131b 1447 stop_pc = read_pc ();
675bf4cb 1448
d983da9c 1449 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1450
488f131b 1451 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1452
1453 /* If no catchpoint triggered for this, then keep going. */
1454 if (ecs->random_signal)
1455 {
1456 stop_signal = TARGET_SIGNAL_0;
1457 keep_going (ecs);
1458 return;
1459 }
488f131b
JB
1460 goto process_event_stop_test;
1461
1462 case TARGET_WAITKIND_EXECD:
527159b7 1463 if (debug_infrun)
fc5261f2 1464 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1465 stop_signal = TARGET_SIGNAL_TRAP;
1466
7d2830a3 1467 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1468 target_wait function. Until then following vfork on HP/UX 10.20
1469 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1470 /* Is this a target which reports multiple exec events per actual
1471 call to exec()? (HP-UX using ptrace does, for example.) If so,
1472 ignore all but the last one. Just resume the exec'r, and wait
1473 for the next exec event. */
1474 if (inferior_ignoring_leading_exec_events)
1475 {
1476 inferior_ignoring_leading_exec_events--;
488f131b
JB
1477 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1478 prepare_to_wait (ecs);
1479 return;
1480 }
1481 inferior_ignoring_leading_exec_events =
1482 target_reported_exec_events_per_exec_call () - 1;
1483
1484 pending_follow.execd_pathname =
1485 savestring (ecs->ws.value.execd_pathname,
1486 strlen (ecs->ws.value.execd_pathname));
1487
488f131b
JB
1488 /* This causes the eventpoints and symbol table to be reset. Must
1489 do this now, before trying to determine whether to stop. */
1490 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1491 xfree (pending_follow.execd_pathname);
c906108c 1492
488f131b
JB
1493 stop_pc = read_pc_pid (ecs->ptid);
1494 ecs->saved_inferior_ptid = inferior_ptid;
1495 inferior_ptid = ecs->ptid;
675bf4cb 1496
d983da9c 1497 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1498
488f131b
JB
1499 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1500 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1501
5a2901d9
DJ
1502 if (!ptid_equal (ecs->ptid, inferior_ptid))
1503 {
1504 context_switch (ecs);
35f196d9 1505 reinit_frame_cache ();
5a2901d9
DJ
1506 }
1507
04e68871
DJ
1508 /* If no catchpoint triggered for this, then keep going. */
1509 if (ecs->random_signal)
1510 {
1511 stop_signal = TARGET_SIGNAL_0;
1512 keep_going (ecs);
1513 return;
1514 }
488f131b
JB
1515 goto process_event_stop_test;
1516
b4dc5ffa
MK
1517 /* Be careful not to try to gather much state about a thread
1518 that's in a syscall. It's frequently a losing proposition. */
488f131b 1519 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1520 if (debug_infrun)
8a9de0e4 1521 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1522 resume (0, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
c906108c 1525
488f131b
JB
1526 /* Before examining the threads further, step this thread to
1527 get it entirely out of the syscall. (We get notice of the
1528 event when the thread is just on the verge of exiting a
1529 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1530 into user code.) */
488f131b 1531 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1532 if (debug_infrun)
8a9de0e4 1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1534 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1535 prepare_to_wait (ecs);
1536 return;
c906108c 1537
488f131b 1538 case TARGET_WAITKIND_STOPPED:
527159b7 1539 if (debug_infrun)
8a9de0e4 1540 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1541 stop_signal = ecs->ws.value.sig;
1542 break;
c906108c 1543
488f131b
JB
1544 /* We had an event in the inferior, but we are not interested
1545 in handling it at this level. The lower layers have already
8e7d2c16 1546 done what needs to be done, if anything.
8fb3e588
AC
1547
1548 One of the possible circumstances for this is when the
1549 inferior produces output for the console. The inferior has
1550 not stopped, and we are ignoring the event. Another possible
1551 circumstance is any event which the lower level knows will be
1552 reported multiple times without an intervening resume. */
488f131b 1553 case TARGET_WAITKIND_IGNORE:
527159b7 1554 if (debug_infrun)
8a9de0e4 1555 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1556 prepare_to_wait (ecs);
488f131b
JB
1557 return;
1558 }
c906108c 1559
488f131b
JB
1560 /* We may want to consider not doing a resume here in order to give
1561 the user a chance to play with the new thread. It might be good
1562 to make that a user-settable option. */
c906108c 1563
488f131b
JB
1564 /* At this point, all threads are stopped (happens automatically in
1565 either the OS or the native code). Therefore we need to continue
1566 all threads in order to make progress. */
1567 if (ecs->new_thread_event)
1568 {
1569 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1570 prepare_to_wait (ecs);
1571 return;
1572 }
c906108c 1573
488f131b
JB
1574 stop_pc = read_pc_pid (ecs->ptid);
1575
527159b7 1576 if (debug_infrun)
8a9de0e4 1577 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1578
9f976b41
DJ
1579 if (stepping_past_singlestep_breakpoint)
1580 {
1c0fdd0e 1581 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1582 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1583 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1584
1585 stepping_past_singlestep_breakpoint = 0;
1586
1587 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1588 breakpoint, or stopped for some other reason. It would be nice if
1589 we could tell, but we can't reliably. */
9f976b41 1590 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1591 {
527159b7 1592 if (debug_infrun)
8a9de0e4 1593 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1594 /* Pull the single step breakpoints out of the target. */
e0cd558a 1595 remove_single_step_breakpoints ();
9f976b41
DJ
1596 singlestep_breakpoints_inserted_p = 0;
1597
1598 ecs->random_signal = 0;
1599
1600 ecs->ptid = saved_singlestep_ptid;
1601 context_switch (ecs);
9a4105ab
AC
1602 if (deprecated_context_hook)
1603 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1604
1605 resume (1, TARGET_SIGNAL_0);
1606 prepare_to_wait (ecs);
1607 return;
1608 }
1609 }
1610
1611 stepping_past_singlestep_breakpoint = 0;
1612
6a6b96b9
UW
1613 if (stepping_past_breakpoint)
1614 {
1615 stepping_past_breakpoint = 0;
1616
1617 /* If we stopped for some other reason than single-stepping, ignore
1618 the fact that we were supposed to switch back. */
1619 if (stop_signal == TARGET_SIGNAL_TRAP)
1620 {
1621 if (debug_infrun)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "infrun: stepping_past_breakpoint\n");
1624
1625 /* Pull the single step breakpoints out of the target. */
1626 if (singlestep_breakpoints_inserted_p)
1627 {
1628 remove_single_step_breakpoints ();
1629 singlestep_breakpoints_inserted_p = 0;
1630 }
1631
1632 /* Note: We do not call context_switch at this point, as the
1633 context is already set up for stepping the original thread. */
1634 switch_to_thread (stepping_past_breakpoint_ptid);
1635 /* Suppress spurious "Switching to ..." message. */
1636 previous_inferior_ptid = inferior_ptid;
1637
1638 resume (1, TARGET_SIGNAL_0);
1639 prepare_to_wait (ecs);
1640 return;
1641 }
1642 }
1643
488f131b
JB
1644 /* See if a thread hit a thread-specific breakpoint that was meant for
1645 another thread. If so, then step that thread past the breakpoint,
1646 and continue it. */
1647
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
9f976b41
DJ
1650 int thread_hop_needed = 0;
1651
f8d40ec8
JB
1652 /* Check if a regular breakpoint has been hit before checking
1653 for a potential single step breakpoint. Otherwise, GDB will
1654 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 1655 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 1656 {
c5aa993b 1657 ecs->random_signal = 0;
4fa8626c 1658 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1659 thread_hop_needed = 1;
1660 }
1c0fdd0e 1661 else if (singlestep_breakpoints_inserted_p)
9f976b41 1662 {
fd48f117
DJ
1663 /* We have not context switched yet, so this should be true
1664 no matter which thread hit the singlestep breakpoint. */
1665 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1666 if (debug_infrun)
1667 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1668 "trap for %s\n",
1669 target_pid_to_str (ecs->ptid));
1670
9f976b41
DJ
1671 ecs->random_signal = 0;
1672 /* The call to in_thread_list is necessary because PTIDs sometimes
1673 change when we go from single-threaded to multi-threaded. If
1674 the singlestep_ptid is still in the list, assume that it is
1675 really different from ecs->ptid. */
1676 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1677 && in_thread_list (singlestep_ptid))
1678 {
fd48f117
DJ
1679 /* If the PC of the thread we were trying to single-step
1680 has changed, discard this event (which we were going
1681 to ignore anyway), and pretend we saw that thread
1682 trap. This prevents us continuously moving the
1683 single-step breakpoint forward, one instruction at a
1684 time. If the PC has changed, then the thread we were
1685 trying to single-step has trapped or been signalled,
1686 but the event has not been reported to GDB yet.
1687
1688 There might be some cases where this loses signal
1689 information, if a signal has arrived at exactly the
1690 same time that the PC changed, but this is the best
1691 we can do with the information available. Perhaps we
1692 should arrange to report all events for all threads
1693 when they stop, or to re-poll the remote looking for
1694 this particular thread (i.e. temporarily enable
1695 schedlock). */
1696 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1697 {
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1700 " but expected thread advanced also\n");
1701
1702 /* The current context still belongs to
1703 singlestep_ptid. Don't swap here, since that's
1704 the context we want to use. Just fudge our
1705 state and continue. */
1706 ecs->ptid = singlestep_ptid;
1707 stop_pc = read_pc_pid (ecs->ptid);
1708 }
1709 else
1710 {
1711 if (debug_infrun)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "infrun: unexpected thread\n");
1714
1715 thread_hop_needed = 1;
1716 stepping_past_singlestep_breakpoint = 1;
1717 saved_singlestep_ptid = singlestep_ptid;
1718 }
9f976b41
DJ
1719 }
1720 }
1721
1722 if (thread_hop_needed)
8fb3e588
AC
1723 {
1724 int remove_status;
1725
527159b7 1726 if (debug_infrun)
8a9de0e4 1727 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1728
8fb3e588
AC
1729 /* Saw a breakpoint, but it was hit by the wrong thread.
1730 Just continue. */
1731
1c0fdd0e 1732 if (singlestep_breakpoints_inserted_p)
488f131b 1733 {
8fb3e588 1734 /* Pull the single step breakpoints out of the target. */
e0cd558a 1735 remove_single_step_breakpoints ();
8fb3e588
AC
1736 singlestep_breakpoints_inserted_p = 0;
1737 }
1738
1739 remove_status = remove_breakpoints ();
1740 /* Did we fail to remove breakpoints? If so, try
1741 to set the PC past the bp. (There's at least
1742 one situation in which we can fail to remove
1743 the bp's: On HP-UX's that use ttrace, we can't
1744 change the address space of a vforking child
1745 process until the child exits (well, okay, not
1746 then either :-) or execs. */
1747 if (remove_status != 0)
1748 {
1749 /* FIXME! This is obviously non-portable! */
1750 write_pc_pid (stop_pc + 4, ecs->ptid);
1751 /* We need to restart all the threads now,
1752 * unles we're running in scheduler-locked mode.
1753 * Use currently_stepping to determine whether to
1754 * step or continue.
1755 */
1756 /* FIXME MVS: is there any reason not to call resume()? */
1757 if (scheduler_mode == schedlock_on)
1758 target_resume (ecs->ptid,
1759 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1760 else
8fb3e588
AC
1761 target_resume (RESUME_ALL,
1762 currently_stepping (ecs), TARGET_SIGNAL_0);
1763 prepare_to_wait (ecs);
1764 return;
1765 }
1766 else
1767 { /* Single step */
8fb3e588
AC
1768 if (!ptid_equal (inferior_ptid, ecs->ptid))
1769 context_switch (ecs);
1770 ecs->waiton_ptid = ecs->ptid;
1771 ecs->wp = &(ecs->ws);
1772 ecs->another_trap = 1;
1773
1774 ecs->infwait_state = infwait_thread_hop_state;
1775 keep_going (ecs);
1776 registers_changed ();
1777 return;
1778 }
488f131b 1779 }
1c0fdd0e 1780 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1781 {
1782 sw_single_step_trap_p = 1;
1783 ecs->random_signal = 0;
1784 }
488f131b
JB
1785 }
1786 else
1787 ecs->random_signal = 1;
c906108c 1788
488f131b 1789 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1790 so, then switch to that thread. */
1791 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1792 {
527159b7 1793 if (debug_infrun)
8a9de0e4 1794 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1795
488f131b 1796 context_switch (ecs);
c5aa993b 1797
9a4105ab
AC
1798 if (deprecated_context_hook)
1799 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1800 }
c906108c 1801
1c0fdd0e 1802 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1803 {
1804 /* Pull the single step breakpoints out of the target. */
e0cd558a 1805 remove_single_step_breakpoints ();
488f131b
JB
1806 singlestep_breakpoints_inserted_p = 0;
1807 }
c906108c 1808
d983da9c
DJ
1809 if (stepped_after_stopped_by_watchpoint)
1810 stopped_by_watchpoint = 0;
1811 else
1812 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1813
1814 /* If necessary, step over this watchpoint. We'll be back to display
1815 it in a moment. */
1816 if (stopped_by_watchpoint
1817 && (HAVE_STEPPABLE_WATCHPOINT
1818 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 1819 {
527159b7 1820 if (debug_infrun)
8a9de0e4 1821 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
c906108c 1822
488f131b
JB
1823 /* At this point, we are stopped at an instruction which has
1824 attempted to write to a piece of memory under control of
1825 a watchpoint. The instruction hasn't actually executed
1826 yet. If we were to evaluate the watchpoint expression
1827 now, we would get the old value, and therefore no change
1828 would seem to have occurred.
1829
1830 In order to make watchpoints work `right', we really need
1831 to complete the memory write, and then evaluate the
d983da9c
DJ
1832 watchpoint expression. We do this by single-stepping the
1833 target.
1834
1835 It may not be necessary to disable the watchpoint to stop over
1836 it. For example, the PA can (with some kernel cooperation)
1837 single step over a watchpoint without disabling the watchpoint.
1838
1839 It is far more common to need to disable a watchpoint to step
1840 the inferior over it. If we have non-steppable watchpoints,
1841 we must disable the current watchpoint; it's simplest to
1842 disable all watchpoints and breakpoints. */
1843
1844 if (!HAVE_STEPPABLE_WATCHPOINT)
1845 remove_breakpoints ();
488f131b
JB
1846 registers_changed ();
1847 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
488f131b 1848 ecs->waiton_ptid = ecs->ptid;
d983da9c
DJ
1849 if (HAVE_STEPPABLE_WATCHPOINT)
1850 ecs->infwait_state = infwait_step_watch_state;
1851 else
1852 ecs->infwait_state = infwait_nonstep_watch_state;
488f131b
JB
1853 prepare_to_wait (ecs);
1854 return;
1855 }
1856
488f131b
JB
1857 ecs->stop_func_start = 0;
1858 ecs->stop_func_end = 0;
1859 ecs->stop_func_name = 0;
1860 /* Don't care about return value; stop_func_start and stop_func_name
1861 will both be 0 if it doesn't work. */
1862 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1863 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1864 ecs->stop_func_start
1865 += gdbarch_deprecated_function_start_offset (current_gdbarch);
488f131b
JB
1866 ecs->another_trap = 0;
1867 bpstat_clear (&stop_bpstat);
1868 stop_step = 0;
1869 stop_stack_dummy = 0;
1870 stop_print_frame = 1;
1871 ecs->random_signal = 0;
1872 stopped_by_random_signal = 0;
488f131b 1873
3352ef37
AC
1874 if (stop_signal == TARGET_SIGNAL_TRAP
1875 && trap_expected
1876 && gdbarch_single_step_through_delay_p (current_gdbarch)
1877 && currently_stepping (ecs))
1878 {
1879 /* We're trying to step of a breakpoint. Turns out that we're
1880 also on an instruction that needs to be stepped multiple
1881 times before it's been fully executing. E.g., architectures
1882 with a delay slot. It needs to be stepped twice, once for
1883 the instruction and once for the delay slot. */
1884 int step_through_delay
1885 = gdbarch_single_step_through_delay (current_gdbarch,
1886 get_current_frame ());
527159b7 1887 if (debug_infrun && step_through_delay)
8a9de0e4 1888 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1889 if (step_range_end == 0 && step_through_delay)
1890 {
1891 /* The user issued a continue when stopped at a breakpoint.
1892 Set up for another trap and get out of here. */
1893 ecs->another_trap = 1;
1894 keep_going (ecs);
1895 return;
1896 }
1897 else if (step_through_delay)
1898 {
1899 /* The user issued a step when stopped at a breakpoint.
1900 Maybe we should stop, maybe we should not - the delay
1901 slot *might* correspond to a line of source. In any
1902 case, don't decide that here, just set ecs->another_trap,
1903 making sure we single-step again before breakpoints are
1904 re-inserted. */
1905 ecs->another_trap = 1;
1906 }
1907 }
1908
488f131b
JB
1909 /* Look at the cause of the stop, and decide what to do.
1910 The alternatives are:
1911 1) break; to really stop and return to the debugger,
1912 2) drop through to start up again
1913 (set ecs->another_trap to 1 to single step once)
1914 3) set ecs->random_signal to 1, and the decision between 1 and 2
1915 will be made according to the signal handling tables. */
1916
1917 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1918 that have to do with the program's own actions. Note that
1919 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1920 on the operating system version. Here we detect when a SIGILL or
1921 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1922 something similar for SIGSEGV, since a SIGSEGV will be generated
1923 when we're trying to execute a breakpoint instruction on a
1924 non-executable stack. This happens for call dummy breakpoints
1925 for architectures like SPARC that place call dummies on the
1926 stack. */
488f131b
JB
1927
1928 if (stop_signal == TARGET_SIGNAL_TRAP
c36b740a 1929 || (breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
1930 && (stop_signal == TARGET_SIGNAL_ILL
1931 || stop_signal == TARGET_SIGNAL_SEGV
1932 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1933 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1934 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1935 {
1936 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1937 {
527159b7 1938 if (debug_infrun)
8a9de0e4 1939 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1940 stop_print_frame = 0;
1941 stop_stepping (ecs);
1942 return;
1943 }
c54cfec8
EZ
1944
1945 /* This is originated from start_remote(), start_inferior() and
1946 shared libraries hook functions. */
b0f4b84b 1947 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1948 {
527159b7 1949 if (debug_infrun)
8a9de0e4 1950 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1951 stop_stepping (ecs);
1952 return;
1953 }
1954
c54cfec8
EZ
1955 /* This originates from attach_command(). We need to overwrite
1956 the stop_signal here, because some kernels don't ignore a
1957 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1958 See more comments in inferior.h. */
c0236d92 1959 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1960 {
1961 stop_stepping (ecs);
1962 if (stop_signal == TARGET_SIGNAL_STOP)
1963 stop_signal = TARGET_SIGNAL_0;
1964 return;
1965 }
1966
d303a6c7
AC
1967 /* Don't even think about breakpoints if just proceeded over a
1968 breakpoint. */
1969 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1970 {
1971 if (debug_infrun)
8a9de0e4 1972 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1973 bpstat_clear (&stop_bpstat);
1974 }
488f131b
JB
1975 else
1976 {
1977 /* See if there is a breakpoint at the current PC. */
d983da9c 1978 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 1979
488f131b
JB
1980 /* Following in case break condition called a
1981 function. */
1982 stop_print_frame = 1;
1983 }
1984
73dd234f 1985 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1986 at one stage in the past included checks for an inferior
1987 function call's call dummy's return breakpoint. The original
1988 comment, that went with the test, read:
73dd234f 1989
8fb3e588
AC
1990 ``End of a stack dummy. Some systems (e.g. Sony news) give
1991 another signal besides SIGTRAP, so check here as well as
1992 above.''
73dd234f
AC
1993
1994 If someone ever tries to get get call dummys on a
1995 non-executable stack to work (where the target would stop
03cebad2
MK
1996 with something like a SIGSEGV), then those tests might need
1997 to be re-instated. Given, however, that the tests were only
73dd234f 1998 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1999 suspect that it won't be the case.
2000
8fb3e588
AC
2001 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2002 be necessary for call dummies on a non-executable stack on
2003 SPARC. */
73dd234f 2004
488f131b
JB
2005 if (stop_signal == TARGET_SIGNAL_TRAP)
2006 ecs->random_signal
2007 = !(bpstat_explains_signal (stop_bpstat)
2008 || trap_expected
488f131b 2009 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2010 else
2011 {
73dd234f 2012 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2013 if (!ecs->random_signal)
2014 stop_signal = TARGET_SIGNAL_TRAP;
2015 }
2016 }
2017
2018 /* When we reach this point, we've pretty much decided
2019 that the reason for stopping must've been a random
2020 (unexpected) signal. */
2021
2022 else
2023 ecs->random_signal = 1;
488f131b 2024
04e68871 2025process_event_stop_test:
488f131b
JB
2026 /* For the program's own signals, act according to
2027 the signal handling tables. */
2028
2029 if (ecs->random_signal)
2030 {
2031 /* Signal not for debugging purposes. */
2032 int printed = 0;
2033
527159b7 2034 if (debug_infrun)
8a9de0e4 2035 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2036
488f131b
JB
2037 stopped_by_random_signal = 1;
2038
2039 if (signal_print[stop_signal])
2040 {
2041 printed = 1;
2042 target_terminal_ours_for_output ();
2043 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2044 }
2045 if (signal_stop[stop_signal])
2046 {
2047 stop_stepping (ecs);
2048 return;
2049 }
2050 /* If not going to stop, give terminal back
2051 if we took it away. */
2052 else if (printed)
2053 target_terminal_inferior ();
2054
2055 /* Clear the signal if it should not be passed. */
2056 if (signal_program[stop_signal] == 0)
2057 stop_signal = TARGET_SIGNAL_0;
2058
68f53502 2059 if (prev_pc == read_pc ()
68f53502 2060 && breakpoint_here_p (read_pc ())
c36b740a 2061 && !breakpoint_inserted_here_p (read_pc ())
68f53502
AC
2062 && step_resume_breakpoint == NULL)
2063 {
2064 /* We were just starting a new sequence, attempting to
2065 single-step off of a breakpoint and expecting a SIGTRAP.
2066 Intead this signal arrives. This signal will take us out
2067 of the stepping range so GDB needs to remember to, when
2068 the signal handler returns, resume stepping off that
2069 breakpoint. */
2070 /* To simplify things, "continue" is forced to use the same
2071 code paths as single-step - set a breakpoint at the
2072 signal return address and then, once hit, step off that
2073 breakpoint. */
d3169d93 2074
44cbf7b5 2075 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2076 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2077 keep_going (ecs);
2078 return;
68f53502 2079 }
9d799f85
AC
2080
2081 if (step_range_end != 0
2082 && stop_signal != TARGET_SIGNAL_0
2083 && stop_pc >= step_range_start && stop_pc < step_range_end
2084 && frame_id_eq (get_frame_id (get_current_frame ()),
2085 step_frame_id)
2086 && step_resume_breakpoint == NULL)
d303a6c7
AC
2087 {
2088 /* The inferior is about to take a signal that will take it
2089 out of the single step range. Set a breakpoint at the
2090 current PC (which is presumably where the signal handler
2091 will eventually return) and then allow the inferior to
2092 run free.
2093
2094 Note that this is only needed for a signal delivered
2095 while in the single-step range. Nested signals aren't a
2096 problem as they eventually all return. */
44cbf7b5 2097 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2098 keep_going (ecs);
2099 return;
d303a6c7 2100 }
9d799f85
AC
2101
2102 /* Note: step_resume_breakpoint may be non-NULL. This occures
2103 when either there's a nested signal, or when there's a
2104 pending signal enabled just as the signal handler returns
2105 (leaving the inferior at the step-resume-breakpoint without
2106 actually executing it). Either way continue until the
2107 breakpoint is really hit. */
488f131b
JB
2108 keep_going (ecs);
2109 return;
2110 }
2111
2112 /* Handle cases caused by hitting a breakpoint. */
2113 {
2114 CORE_ADDR jmp_buf_pc;
2115 struct bpstat_what what;
2116
2117 what = bpstat_what (stop_bpstat);
2118
2119 if (what.call_dummy)
2120 {
2121 stop_stack_dummy = 1;
c5aa993b 2122 }
c906108c 2123
488f131b 2124 switch (what.main_action)
c5aa993b 2125 {
488f131b
JB
2126 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2127 /* If we hit the breakpoint at longjmp, disable it for the
2128 duration of this command. Then, install a temporary
2129 breakpoint at the target of the jmp_buf. */
527159b7 2130 if (debug_infrun)
8802d8ed 2131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2132 disable_longjmp_breakpoint ();
2133 remove_breakpoints ();
91104499 2134 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2135 || !gdbarch_get_longjmp_target (current_gdbarch,
2136 get_current_frame (), &jmp_buf_pc))
c5aa993b 2137 {
488f131b 2138 keep_going (ecs);
104c1213 2139 return;
c5aa993b 2140 }
488f131b
JB
2141
2142 /* Need to blow away step-resume breakpoint, as it
2143 interferes with us */
2144 if (step_resume_breakpoint != NULL)
104c1213 2145 {
488f131b 2146 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2147 }
c906108c 2148
8fb3e588 2149 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2150 ecs->handling_longjmp = 1; /* FIXME */
2151 keep_going (ecs);
2152 return;
c906108c 2153
488f131b
JB
2154 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2155 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2156 if (debug_infrun)
8802d8ed 2157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b 2158 remove_breakpoints ();
488f131b
JB
2159 disable_longjmp_breakpoint ();
2160 ecs->handling_longjmp = 0; /* FIXME */
2161 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2162 break;
2163 /* else fallthrough */
2164
2165 case BPSTAT_WHAT_SINGLE:
527159b7 2166 if (debug_infrun)
8802d8ed 2167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
c36b740a 2168 remove_breakpoints ();
488f131b
JB
2169 ecs->another_trap = 1;
2170 /* Still need to check other stuff, at least the case
2171 where we are stepping and step out of the right range. */
2172 break;
c906108c 2173
488f131b 2174 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2175 if (debug_infrun)
8802d8ed 2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2177 stop_print_frame = 1;
c906108c 2178
d303a6c7
AC
2179 /* We are about to nuke the step_resume_breakpointt via the
2180 cleanup chain, so no need to worry about it here. */
c5aa993b 2181
488f131b
JB
2182 stop_stepping (ecs);
2183 return;
c5aa993b 2184
488f131b 2185 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2186 if (debug_infrun)
8802d8ed 2187 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2188 stop_print_frame = 0;
c5aa993b 2189
d303a6c7
AC
2190 /* We are about to nuke the step_resume_breakpoin via the
2191 cleanup chain, so no need to worry about it here. */
c5aa993b 2192
488f131b 2193 stop_stepping (ecs);
e441088d 2194 return;
c5aa993b 2195
488f131b
JB
2196 case BPSTAT_WHAT_STEP_RESUME:
2197 /* This proably demands a more elegant solution, but, yeah
2198 right...
c5aa993b 2199
488f131b
JB
2200 This function's use of the simple variable
2201 step_resume_breakpoint doesn't seem to accomodate
2202 simultaneously active step-resume bp's, although the
2203 breakpoint list certainly can.
c5aa993b 2204
488f131b
JB
2205 If we reach here and step_resume_breakpoint is already
2206 NULL, then apparently we have multiple active
2207 step-resume bp's. We'll just delete the breakpoint we
2208 stopped at, and carry on.
2209
2210 Correction: what the code currently does is delete a
2211 step-resume bp, but it makes no effort to ensure that
2212 the one deleted is the one currently stopped at. MVS */
c5aa993b 2213
527159b7 2214 if (debug_infrun)
8802d8ed 2215 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2216
488f131b
JB
2217 if (step_resume_breakpoint == NULL)
2218 {
2219 step_resume_breakpoint =
2220 bpstat_find_step_resume_breakpoint (stop_bpstat);
2221 }
2222 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2223 if (ecs->step_after_step_resume_breakpoint)
2224 {
2225 /* Back when the step-resume breakpoint was inserted, we
2226 were trying to single-step off a breakpoint. Go back
2227 to doing that. */
2228 ecs->step_after_step_resume_breakpoint = 0;
2229 remove_breakpoints ();
68f53502
AC
2230 ecs->another_trap = 1;
2231 keep_going (ecs);
2232 return;
2233 }
488f131b
JB
2234 break;
2235
488f131b
JB
2236 case BPSTAT_WHAT_CHECK_SHLIBS:
2237 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2238 {
527159b7 2239 if (debug_infrun)
8802d8ed 2240 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2241 /* Remove breakpoints, we eventually want to step over the
2242 shlib event breakpoint, and SOLIB_ADD might adjust
2243 breakpoint addresses via breakpoint_re_set. */
c36b740a 2244 remove_breakpoints ();
488f131b
JB
2245
2246 /* Check for any newly added shared libraries if we're
2247 supposed to be adding them automatically. Switch
2248 terminal for any messages produced by
2249 breakpoint_re_set. */
2250 target_terminal_ours_for_output ();
aff6338a 2251 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2252 stack's section table is kept up-to-date. Architectures,
2253 (e.g., PPC64), use the section table to perform
2254 operations such as address => section name and hence
2255 require the table to contain all sections (including
2256 those found in shared libraries). */
aff6338a 2257 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2258 exec_ops to SOLIB_ADD. This is because current GDB is
2259 only tooled to propagate section_table changes out from
2260 the "current_target" (see target_resize_to_sections), and
2261 not up from the exec stratum. This, of course, isn't
2262 right. "infrun.c" should only interact with the
2263 exec/process stratum, instead relying on the target stack
2264 to propagate relevant changes (stop, section table
2265 changed, ...) up to other layers. */
a77053c2 2266#ifdef SOLIB_ADD
aff6338a 2267 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2268#else
2269 solib_add (NULL, 0, &current_target, auto_solib_add);
2270#endif
488f131b
JB
2271 target_terminal_inferior ();
2272
488f131b
JB
2273 /* If requested, stop when the dynamic linker notifies
2274 gdb of events. This allows the user to get control
2275 and place breakpoints in initializer routines for
2276 dynamically loaded objects (among other things). */
877522db 2277 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2278 {
488f131b 2279 stop_stepping (ecs);
d4f3574e
SS
2280 return;
2281 }
c5aa993b 2282
488f131b
JB
2283 /* If we stopped due to an explicit catchpoint, then the
2284 (see above) call to SOLIB_ADD pulled in any symbols
2285 from a newly-loaded library, if appropriate.
2286
2287 We do want the inferior to stop, but not where it is
2288 now, which is in the dynamic linker callback. Rather,
2289 we would like it stop in the user's program, just after
2290 the call that caused this catchpoint to trigger. That
2291 gives the user a more useful vantage from which to
2292 examine their program's state. */
8fb3e588
AC
2293 else if (what.main_action
2294 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2295 {
488f131b
JB
2296 /* ??rehrauer: If I could figure out how to get the
2297 right return PC from here, we could just set a temp
2298 breakpoint and resume. I'm not sure we can without
2299 cracking open the dld's shared libraries and sniffing
2300 their unwind tables and text/data ranges, and that's
2301 not a terribly portable notion.
2302
2303 Until that time, we must step the inferior out of the
2304 dld callback, and also out of the dld itself (and any
2305 code or stubs in libdld.sl, such as "shl_load" and
2306 friends) until we reach non-dld code. At that point,
2307 we can stop stepping. */
2308 bpstat_get_triggered_catchpoints (stop_bpstat,
2309 &ecs->
2310 stepping_through_solib_catchpoints);
2311 ecs->stepping_through_solib_after_catch = 1;
2312
2313 /* Be sure to lift all breakpoints, so the inferior does
2314 actually step past this point... */
2315 ecs->another_trap = 1;
2316 break;
c906108c 2317 }
c5aa993b 2318 else
c5aa993b 2319 {
488f131b 2320 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2321 ecs->another_trap = 1;
488f131b 2322 break;
c5aa993b 2323 }
488f131b 2324 }
488f131b 2325 break;
c906108c 2326
488f131b
JB
2327 case BPSTAT_WHAT_LAST:
2328 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2329
488f131b
JB
2330 case BPSTAT_WHAT_KEEP_CHECKING:
2331 break;
2332 }
2333 }
c906108c 2334
488f131b
JB
2335 /* We come here if we hit a breakpoint but should not
2336 stop for it. Possibly we also were stepping
2337 and should stop for that. So fall through and
2338 test for stepping. But, if not stepping,
2339 do not stop. */
c906108c 2340
9d1ff73f
MS
2341 /* Are we stepping to get the inferior out of the dynamic linker's
2342 hook (and possibly the dld itself) after catching a shlib
2343 event? */
488f131b
JB
2344 if (ecs->stepping_through_solib_after_catch)
2345 {
2346#if defined(SOLIB_ADD)
2347 /* Have we reached our destination? If not, keep going. */
2348 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2349 {
527159b7 2350 if (debug_infrun)
8a9de0e4 2351 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2352 ecs->another_trap = 1;
2353 keep_going (ecs);
104c1213 2354 return;
488f131b
JB
2355 }
2356#endif
527159b7 2357 if (debug_infrun)
8a9de0e4 2358 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2359 /* Else, stop and report the catchpoint(s) whose triggering
2360 caused us to begin stepping. */
2361 ecs->stepping_through_solib_after_catch = 0;
2362 bpstat_clear (&stop_bpstat);
2363 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2364 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2365 stop_print_frame = 1;
2366 stop_stepping (ecs);
2367 return;
2368 }
c906108c 2369
488f131b
JB
2370 if (step_resume_breakpoint)
2371 {
527159b7 2372 if (debug_infrun)
d3169d93
DJ
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: step-resume breakpoint is inserted\n");
527159b7 2375
488f131b
JB
2376 /* Having a step-resume breakpoint overrides anything
2377 else having to do with stepping commands until
2378 that breakpoint is reached. */
488f131b
JB
2379 keep_going (ecs);
2380 return;
2381 }
c5aa993b 2382
488f131b
JB
2383 if (step_range_end == 0)
2384 {
527159b7 2385 if (debug_infrun)
8a9de0e4 2386 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2387 /* Likewise if we aren't even stepping. */
488f131b
JB
2388 keep_going (ecs);
2389 return;
2390 }
c5aa993b 2391
488f131b 2392 /* If stepping through a line, keep going if still within it.
c906108c 2393
488f131b
JB
2394 Note that step_range_end is the address of the first instruction
2395 beyond the step range, and NOT the address of the last instruction
2396 within it! */
2397 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2398 {
527159b7 2399 if (debug_infrun)
8a9de0e4 2400 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2401 paddr_nz (step_range_start),
2402 paddr_nz (step_range_end));
488f131b
JB
2403 keep_going (ecs);
2404 return;
2405 }
c5aa993b 2406
488f131b 2407 /* We stepped out of the stepping range. */
c906108c 2408
488f131b
JB
2409 /* If we are stepping at the source level and entered the runtime
2410 loader dynamic symbol resolution code, we keep on single stepping
2411 until we exit the run time loader code and reach the callee's
2412 address. */
2413 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2414#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2415 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2416#else
2417 && in_solib_dynsym_resolve_code (stop_pc)
2418#endif
2419 )
488f131b 2420 {
4c8c40e6
MK
2421 CORE_ADDR pc_after_resolver =
2422 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2423
527159b7 2424 if (debug_infrun)
8a9de0e4 2425 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2426
488f131b
JB
2427 if (pc_after_resolver)
2428 {
2429 /* Set up a step-resume breakpoint at the address
2430 indicated by SKIP_SOLIB_RESOLVER. */
2431 struct symtab_and_line sr_sal;
fe39c653 2432 init_sal (&sr_sal);
488f131b
JB
2433 sr_sal.pc = pc_after_resolver;
2434
44cbf7b5 2435 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2436 }
c906108c 2437
488f131b
JB
2438 keep_going (ecs);
2439 return;
2440 }
c906108c 2441
42edda50
AC
2442 if (step_range_end != 1
2443 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2444 || step_over_calls == STEP_OVER_ALL)
2445 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2446 {
527159b7 2447 if (debug_infrun)
8a9de0e4 2448 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2449 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2450 a signal trampoline (either by a signal being delivered or by
2451 the signal handler returning). Just single-step until the
2452 inferior leaves the trampoline (either by calling the handler
2453 or returning). */
488f131b
JB
2454 keep_going (ecs);
2455 return;
2456 }
c906108c 2457
c17eaafe
DJ
2458 /* Check for subroutine calls. The check for the current frame
2459 equalling the step ID is not necessary - the check of the
2460 previous frame's ID is sufficient - but it is a common case and
2461 cheaper than checking the previous frame's ID.
14e60db5
DJ
2462
2463 NOTE: frame_id_eq will never report two invalid frame IDs as
2464 being equal, so to get into this block, both the current and
2465 previous frame must have valid frame IDs. */
c17eaafe
DJ
2466 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2467 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2468 {
95918acb 2469 CORE_ADDR real_stop_pc;
8fb3e588 2470
527159b7 2471 if (debug_infrun)
8a9de0e4 2472 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2473
95918acb
AC
2474 if ((step_over_calls == STEP_OVER_NONE)
2475 || ((step_range_end == 1)
2476 && in_prologue (prev_pc, ecs->stop_func_start)))
2477 {
2478 /* I presume that step_over_calls is only 0 when we're
2479 supposed to be stepping at the assembly language level
2480 ("stepi"). Just stop. */
2481 /* Also, maybe we just did a "nexti" inside a prolog, so we
2482 thought it was a subroutine call but it was not. Stop as
2483 well. FENN */
2484 stop_step = 1;
2485 print_stop_reason (END_STEPPING_RANGE, 0);
2486 stop_stepping (ecs);
2487 return;
2488 }
8fb3e588 2489
8567c30f
AC
2490 if (step_over_calls == STEP_OVER_ALL)
2491 {
2492 /* We're doing a "next", set a breakpoint at callee's return
2493 address (the address at which the caller will
2494 resume). */
14e60db5 2495 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2496 keep_going (ecs);
2497 return;
2498 }
a53c66de 2499
95918acb 2500 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2501 calling routine and the real function), locate the real
2502 function. That's what tells us (a) whether we want to step
2503 into it at all, and (b) what prologue we want to run to the
2504 end of, if we do step into it. */
52f729a7 2505 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2506 if (real_stop_pc == 0)
52f729a7
UW
2507 real_stop_pc = gdbarch_skip_trampoline_code
2508 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2509 if (real_stop_pc != 0)
2510 ecs->stop_func_start = real_stop_pc;
8fb3e588 2511
a77053c2
MK
2512 if (
2513#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2514 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2515#else
2516 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2517#endif
2518)
1b2bfbb9
RC
2519 {
2520 struct symtab_and_line sr_sal;
2521 init_sal (&sr_sal);
2522 sr_sal.pc = ecs->stop_func_start;
2523
44cbf7b5 2524 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2525 keep_going (ecs);
2526 return;
1b2bfbb9
RC
2527 }
2528
95918acb 2529 /* If we have line number information for the function we are
8fb3e588 2530 thinking of stepping into, step into it.
95918acb 2531
8fb3e588
AC
2532 If there are several symtabs at that PC (e.g. with include
2533 files), just want to know whether *any* of them have line
2534 numbers. find_pc_line handles this. */
95918acb
AC
2535 {
2536 struct symtab_and_line tmp_sal;
8fb3e588 2537
95918acb
AC
2538 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2539 if (tmp_sal.line != 0)
2540 {
2541 step_into_function (ecs);
2542 return;
2543 }
2544 }
2545
2546 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2547 set, we stop the step so that the user has a chance to switch
2548 in assembly mode. */
95918acb
AC
2549 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2550 {
2551 stop_step = 1;
2552 print_stop_reason (END_STEPPING_RANGE, 0);
2553 stop_stepping (ecs);
2554 return;
2555 }
2556
2557 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2558 which the caller will resume). */
14e60db5 2559 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2560 keep_going (ecs);
488f131b 2561 return;
488f131b 2562 }
c906108c 2563
488f131b
JB
2564 /* If we're in the return path from a shared library trampoline,
2565 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2566 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2567 stop_pc, ecs->stop_func_name))
488f131b 2568 {
488f131b 2569 /* Determine where this trampoline returns. */
52f729a7
UW
2570 CORE_ADDR real_stop_pc;
2571 real_stop_pc = gdbarch_skip_trampoline_code
2572 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2573
527159b7 2574 if (debug_infrun)
8a9de0e4 2575 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2576
488f131b 2577 /* Only proceed through if we know where it's going. */
d764a824 2578 if (real_stop_pc)
488f131b
JB
2579 {
2580 /* And put the step-breakpoint there and go until there. */
2581 struct symtab_and_line sr_sal;
2582
fe39c653 2583 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2584 sr_sal.pc = real_stop_pc;
488f131b 2585 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2586
2587 /* Do not specify what the fp should be when we stop since
2588 on some machines the prologue is where the new fp value
2589 is established. */
2590 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2591
488f131b
JB
2592 /* Restart without fiddling with the step ranges or
2593 other state. */
2594 keep_going (ecs);
2595 return;
2596 }
2597 }
c906108c 2598
7ed0fe66
DJ
2599 ecs->sal = find_pc_line (stop_pc, 0);
2600
1b2bfbb9
RC
2601 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2602 the trampoline processing logic, however, there are some trampolines
2603 that have no names, so we should do trampoline handling first. */
2604 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2605 && ecs->stop_func_name == NULL
2606 && ecs->sal.line == 0)
1b2bfbb9 2607 {
527159b7 2608 if (debug_infrun)
8a9de0e4 2609 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2610
1b2bfbb9 2611 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2612 undebuggable function (where there is no debugging information
2613 and no line number corresponding to the address where the
1b2bfbb9
RC
2614 inferior stopped). Since we want to skip this kind of code,
2615 we keep going until the inferior returns from this
14e60db5
DJ
2616 function - unless the user has asked us not to (via
2617 set step-mode) or we no longer know how to get back
2618 to the call site. */
2619 if (step_stop_if_no_debug
2620 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2621 {
2622 /* If we have no line number and the step-stop-if-no-debug
2623 is set, we stop the step so that the user has a chance to
2624 switch in assembly mode. */
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630 else
2631 {
2632 /* Set a breakpoint at callee's return address (the address
2633 at which the caller will resume). */
14e60db5 2634 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2635 keep_going (ecs);
2636 return;
2637 }
2638 }
2639
2640 if (step_range_end == 1)
2641 {
2642 /* It is stepi or nexti. We always want to stop stepping after
2643 one instruction. */
527159b7 2644 if (debug_infrun)
8a9de0e4 2645 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2646 stop_step = 1;
2647 print_stop_reason (END_STEPPING_RANGE, 0);
2648 stop_stepping (ecs);
2649 return;
2650 }
2651
488f131b
JB
2652 if (ecs->sal.line == 0)
2653 {
2654 /* We have no line number information. That means to stop
2655 stepping (does this always happen right after one instruction,
2656 when we do "s" in a function with no line numbers,
2657 or can this happen as a result of a return or longjmp?). */
527159b7 2658 if (debug_infrun)
8a9de0e4 2659 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2660 stop_step = 1;
2661 print_stop_reason (END_STEPPING_RANGE, 0);
2662 stop_stepping (ecs);
2663 return;
2664 }
c906108c 2665
488f131b
JB
2666 if ((stop_pc == ecs->sal.pc)
2667 && (ecs->current_line != ecs->sal.line
2668 || ecs->current_symtab != ecs->sal.symtab))
2669 {
2670 /* We are at the start of a different line. So stop. Note that
2671 we don't stop if we step into the middle of a different line.
2672 That is said to make things like for (;;) statements work
2673 better. */
527159b7 2674 if (debug_infrun)
8a9de0e4 2675 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
c906108c 2681
488f131b 2682 /* We aren't done stepping.
c906108c 2683
488f131b
JB
2684 Optimize by setting the stepping range to the line.
2685 (We might not be in the original line, but if we entered a
2686 new line in mid-statement, we continue stepping. This makes
2687 things like for(;;) statements work better.) */
c906108c 2688
488f131b 2689 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2690 {
488f131b
JB
2691 /* If this is the last line of the function, don't keep stepping
2692 (it would probably step us out of the function).
2693 This is particularly necessary for a one-line function,
2694 in which after skipping the prologue we better stop even though
2695 we will be in mid-line. */
527159b7 2696 if (debug_infrun)
8a9de0e4 2697 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2698 stop_step = 1;
2699 print_stop_reason (END_STEPPING_RANGE, 0);
2700 stop_stepping (ecs);
2701 return;
c5aa993b 2702 }
488f131b
JB
2703 step_range_start = ecs->sal.pc;
2704 step_range_end = ecs->sal.end;
aa0cd9c1 2705 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2706 ecs->current_line = ecs->sal.line;
2707 ecs->current_symtab = ecs->sal.symtab;
2708
aa0cd9c1
AC
2709 /* In the case where we just stepped out of a function into the
2710 middle of a line of the caller, continue stepping, but
2711 step_frame_id must be modified to current frame */
65815ea1
AC
2712#if 0
2713 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2714 generous. It will trigger on things like a step into a frameless
2715 stackless leaf function. I think the logic should instead look
2716 at the unwound frame ID has that should give a more robust
2717 indication of what happened. */
8fb3e588
AC
2718 if (step - ID == current - ID)
2719 still stepping in same function;
2720 else if (step - ID == unwind (current - ID))
2721 stepped into a function;
2722 else
2723 stepped out of a function;
2724 /* Of course this assumes that the frame ID unwind code is robust
2725 and we're willing to introduce frame unwind logic into this
2726 function. Fortunately, those days are nearly upon us. */
65815ea1 2727#endif
488f131b 2728 {
09a7aba8
UW
2729 struct frame_info *frame = get_current_frame ();
2730 struct frame_id current_frame = get_frame_id (frame);
2731 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2732 step_frame_id)))
aa0cd9c1 2733 step_frame_id = current_frame;
488f131b 2734 }
c906108c 2735
527159b7 2736 if (debug_infrun)
8a9de0e4 2737 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2738 keep_going (ecs);
104c1213
JM
2739}
2740
2741/* Are we in the middle of stepping? */
2742
2743static int
2744currently_stepping (struct execution_control_state *ecs)
2745{
d303a6c7 2746 return ((!ecs->handling_longjmp
104c1213
JM
2747 && ((step_range_end && step_resume_breakpoint == NULL)
2748 || trap_expected))
2749 || ecs->stepping_through_solib_after_catch
2750 || bpstat_should_step ());
2751}
c906108c 2752
c2c6d25f
JM
2753/* Subroutine call with source code we should not step over. Do step
2754 to the first line of code in it. */
2755
2756static void
2757step_into_function (struct execution_control_state *ecs)
2758{
2759 struct symtab *s;
2760 struct symtab_and_line sr_sal;
2761
2762 s = find_pc_symtab (stop_pc);
2763 if (s && s->language != language_asm)
a433963d
UW
2764 ecs->stop_func_start = gdbarch_skip_prologue
2765 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2766
2767 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2768 /* Use the step_resume_break to step until the end of the prologue,
2769 even if that involves jumps (as it seems to on the vax under
2770 4.2). */
2771 /* If the prologue ends in the middle of a source line, continue to
2772 the end of that source line (if it is still within the function).
2773 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2774 if (ecs->sal.end
2775 && ecs->sal.pc != ecs->stop_func_start
2776 && ecs->sal.end < ecs->stop_func_end)
2777 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2778
2dbd5e30
KB
2779 /* Architectures which require breakpoint adjustment might not be able
2780 to place a breakpoint at the computed address. If so, the test
2781 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2782 ecs->stop_func_start to an address at which a breakpoint may be
2783 legitimately placed.
8fb3e588 2784
2dbd5e30
KB
2785 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2786 made, GDB will enter an infinite loop when stepping through
2787 optimized code consisting of VLIW instructions which contain
2788 subinstructions corresponding to different source lines. On
2789 FR-V, it's not permitted to place a breakpoint on any but the
2790 first subinstruction of a VLIW instruction. When a breakpoint is
2791 set, GDB will adjust the breakpoint address to the beginning of
2792 the VLIW instruction. Thus, we need to make the corresponding
2793 adjustment here when computing the stop address. */
8fb3e588 2794
2dbd5e30
KB
2795 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2796 {
2797 ecs->stop_func_start
2798 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2799 ecs->stop_func_start);
2dbd5e30
KB
2800 }
2801
c2c6d25f
JM
2802 if (ecs->stop_func_start == stop_pc)
2803 {
2804 /* We are already there: stop now. */
2805 stop_step = 1;
488f131b 2806 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2807 stop_stepping (ecs);
2808 return;
2809 }
2810 else
2811 {
2812 /* Put the step-breakpoint there and go until there. */
fe39c653 2813 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2814 sr_sal.pc = ecs->stop_func_start;
2815 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2816
c2c6d25f 2817 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2818 some machines the prologue is where the new fp value is
2819 established. */
44cbf7b5 2820 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2821
2822 /* And make sure stepping stops right away then. */
2823 step_range_end = step_range_start;
2824 }
2825 keep_going (ecs);
2826}
d4f3574e 2827
d3169d93 2828/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2829 This is used to both functions and to skip over code. */
2830
2831static void
2832insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2833 struct frame_id sr_id)
2834{
2835 /* There should never be more than one step-resume breakpoint per
2836 thread, so we should never be setting a new
2837 step_resume_breakpoint when one is already active. */
2838 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2839
2840 if (debug_infrun)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "infrun: inserting step-resume breakpoint at 0x%s\n",
2843 paddr_nz (sr_sal.pc));
2844
44cbf7b5
AC
2845 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2846 bp_step_resume);
44cbf7b5 2847}
7ce450bd 2848
d3169d93 2849/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2850 to skip a potential signal handler.
7ce450bd 2851
14e60db5
DJ
2852 This is called with the interrupted function's frame. The signal
2853 handler, when it returns, will resume the interrupted function at
2854 RETURN_FRAME.pc. */
d303a6c7
AC
2855
2856static void
44cbf7b5 2857insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2858{
2859 struct symtab_and_line sr_sal;
2860
f4c1edd8 2861 gdb_assert (return_frame != NULL);
d303a6c7
AC
2862 init_sal (&sr_sal); /* initialize to zeros */
2863
bf6ae464
UW
2864 sr_sal.pc = gdbarch_addr_bits_remove
2865 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2866 sr_sal.section = find_pc_overlay (sr_sal.pc);
2867
44cbf7b5 2868 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2869}
2870
14e60db5
DJ
2871/* Similar to insert_step_resume_breakpoint_at_frame, except
2872 but a breakpoint at the previous frame's PC. This is used to
2873 skip a function after stepping into it (for "next" or if the called
2874 function has no debugging information).
2875
2876 The current function has almost always been reached by single
2877 stepping a call or return instruction. NEXT_FRAME belongs to the
2878 current function, and the breakpoint will be set at the caller's
2879 resume address.
2880
2881 This is a separate function rather than reusing
2882 insert_step_resume_breakpoint_at_frame in order to avoid
2883 get_prev_frame, which may stop prematurely (see the implementation
2884 of frame_unwind_id for an example). */
2885
2886static void
2887insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2888{
2889 struct symtab_and_line sr_sal;
2890
2891 /* We shouldn't have gotten here if we don't know where the call site
2892 is. */
2893 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2894
2895 init_sal (&sr_sal); /* initialize to zeros */
2896
bf6ae464
UW
2897 sr_sal.pc = gdbarch_addr_bits_remove
2898 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2899 sr_sal.section = find_pc_overlay (sr_sal.pc);
2900
2901 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2902}
2903
104c1213
JM
2904static void
2905stop_stepping (struct execution_control_state *ecs)
2906{
527159b7 2907 if (debug_infrun)
8a9de0e4 2908 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2909
cd0fc7c3
SS
2910 /* Let callers know we don't want to wait for the inferior anymore. */
2911 ecs->wait_some_more = 0;
2912}
2913
d4f3574e
SS
2914/* This function handles various cases where we need to continue
2915 waiting for the inferior. */
2916/* (Used to be the keep_going: label in the old wait_for_inferior) */
2917
2918static void
2919keep_going (struct execution_control_state *ecs)
2920{
d4f3574e 2921 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2922 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2923
d4f3574e
SS
2924 /* If we did not do break;, it means we should keep running the
2925 inferior and not return to debugger. */
2926
2927 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2928 {
2929 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2930 the inferior, else we'd have done a break above) and we
2931 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2932 resume (currently_stepping (ecs), stop_signal);
2933 }
2934 else
2935 {
2936 /* Either the trap was not expected, but we are continuing
488f131b
JB
2937 anyway (the user asked that this signal be passed to the
2938 child)
2939 -- or --
2940 The signal was SIGTRAP, e.g. it was our signal, but we
2941 decided we should resume from it.
d4f3574e 2942
c36b740a 2943 We're going to run this baby now!
d4f3574e 2944
c36b740a
VP
2945 Note that insert_breakpoints won't try to re-insert
2946 already inserted breakpoints. Therefore, we don't
2947 care if breakpoints were already inserted, or not. */
2948
2949 if (!ecs->another_trap)
d4f3574e 2950 {
569631c6
UW
2951 /* Stop stepping when inserting breakpoints
2952 has failed. */
2953 if (insert_breakpoints () != 0)
d4f3574e
SS
2954 {
2955 stop_stepping (ecs);
2956 return;
2957 }
d4f3574e
SS
2958 }
2959
2960 trap_expected = ecs->another_trap;
2961
2962 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2963 specifies that such a signal should be delivered to the
2964 target program).
2965
2966 Typically, this would occure when a user is debugging a
2967 target monitor on a simulator: the target monitor sets a
2968 breakpoint; the simulator encounters this break-point and
2969 halts the simulation handing control to GDB; GDB, noteing
2970 that the break-point isn't valid, returns control back to the
2971 simulator; the simulator then delivers the hardware
2972 equivalent of a SIGNAL_TRAP to the program being debugged. */
2973
2974 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2975 stop_signal = TARGET_SIGNAL_0;
2976
d4f3574e
SS
2977
2978 resume (currently_stepping (ecs), stop_signal);
2979 }
2980
488f131b 2981 prepare_to_wait (ecs);
d4f3574e
SS
2982}
2983
104c1213
JM
2984/* This function normally comes after a resume, before
2985 handle_inferior_event exits. It takes care of any last bits of
2986 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2987
104c1213
JM
2988static void
2989prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2990{
527159b7 2991 if (debug_infrun)
8a9de0e4 2992 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2993 if (ecs->infwait_state == infwait_normal_state)
2994 {
2995 overlay_cache_invalid = 1;
2996
2997 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2998 target_wait because they can be loaded from the target while
2999 in target_wait. This makes remote debugging a bit more
3000 efficient for those targets that provide critical registers
3001 as part of their normal status mechanism. */
104c1213
JM
3002
3003 registers_changed ();
39f77062 3004 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3005 ecs->wp = &(ecs->ws);
3006 }
3007 /* This is the old end of the while loop. Let everybody know we
3008 want to wait for the inferior some more and get called again
3009 soon. */
3010 ecs->wait_some_more = 1;
c906108c 3011}
11cf8741
JM
3012
3013/* Print why the inferior has stopped. We always print something when
3014 the inferior exits, or receives a signal. The rest of the cases are
3015 dealt with later on in normal_stop() and print_it_typical(). Ideally
3016 there should be a call to this function from handle_inferior_event()
3017 each time stop_stepping() is called.*/
3018static void
3019print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3020{
3021 switch (stop_reason)
3022 {
11cf8741
JM
3023 case END_STEPPING_RANGE:
3024 /* We are done with a step/next/si/ni command. */
3025 /* For now print nothing. */
fb40c209 3026 /* Print a message only if not in the middle of doing a "step n"
488f131b 3027 operation for n > 1 */
fb40c209 3028 if (!step_multi || !stop_step)
9dc5e2a9 3029 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3030 ui_out_field_string
3031 (uiout, "reason",
3032 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3033 break;
11cf8741
JM
3034 case SIGNAL_EXITED:
3035 /* The inferior was terminated by a signal. */
8b93c638 3036 annotate_signalled ();
9dc5e2a9 3037 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3038 ui_out_field_string
3039 (uiout, "reason",
3040 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3041 ui_out_text (uiout, "\nProgram terminated with signal ");
3042 annotate_signal_name ();
488f131b
JB
3043 ui_out_field_string (uiout, "signal-name",
3044 target_signal_to_name (stop_info));
8b93c638
JM
3045 annotate_signal_name_end ();
3046 ui_out_text (uiout, ", ");
3047 annotate_signal_string ();
488f131b
JB
3048 ui_out_field_string (uiout, "signal-meaning",
3049 target_signal_to_string (stop_info));
8b93c638
JM
3050 annotate_signal_string_end ();
3051 ui_out_text (uiout, ".\n");
3052 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3053 break;
3054 case EXITED:
3055 /* The inferior program is finished. */
8b93c638
JM
3056 annotate_exited (stop_info);
3057 if (stop_info)
3058 {
9dc5e2a9 3059 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3060 ui_out_field_string (uiout, "reason",
3061 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3062 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3063 ui_out_field_fmt (uiout, "exit-code", "0%o",
3064 (unsigned int) stop_info);
8b93c638
JM
3065 ui_out_text (uiout, ".\n");
3066 }
3067 else
3068 {
9dc5e2a9 3069 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3070 ui_out_field_string
3071 (uiout, "reason",
3072 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3073 ui_out_text (uiout, "\nProgram exited normally.\n");
3074 }
f17517ea
AS
3075 /* Support the --return-child-result option. */
3076 return_child_result_value = stop_info;
11cf8741
JM
3077 break;
3078 case SIGNAL_RECEIVED:
3079 /* Signal received. The signal table tells us to print about
3080 it. */
8b93c638
JM
3081 annotate_signal ();
3082 ui_out_text (uiout, "\nProgram received signal ");
3083 annotate_signal_name ();
84c6c83c 3084 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3085 ui_out_field_string
3086 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3087 ui_out_field_string (uiout, "signal-name",
3088 target_signal_to_name (stop_info));
8b93c638
JM
3089 annotate_signal_name_end ();
3090 ui_out_text (uiout, ", ");
3091 annotate_signal_string ();
488f131b
JB
3092 ui_out_field_string (uiout, "signal-meaning",
3093 target_signal_to_string (stop_info));
8b93c638
JM
3094 annotate_signal_string_end ();
3095 ui_out_text (uiout, ".\n");
11cf8741
JM
3096 break;
3097 default:
8e65ff28 3098 internal_error (__FILE__, __LINE__,
e2e0b3e5 3099 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3100 break;
3101 }
3102}
c906108c 3103\f
43ff13b4 3104
c906108c
SS
3105/* Here to return control to GDB when the inferior stops for real.
3106 Print appropriate messages, remove breakpoints, give terminal our modes.
3107
3108 STOP_PRINT_FRAME nonzero means print the executing frame
3109 (pc, function, args, file, line number and line text).
3110 BREAKPOINTS_FAILED nonzero means stop was due to error
3111 attempting to insert breakpoints. */
3112
3113void
96baa820 3114normal_stop (void)
c906108c 3115{
73b65bb0
DJ
3116 struct target_waitstatus last;
3117 ptid_t last_ptid;
3118
3119 get_last_target_status (&last_ptid, &last);
3120
c906108c
SS
3121 /* As with the notification of thread events, we want to delay
3122 notifying the user that we've switched thread context until
3123 the inferior actually stops.
3124
73b65bb0
DJ
3125 There's no point in saying anything if the inferior has exited.
3126 Note that SIGNALLED here means "exited with a signal", not
3127 "received a signal". */
488f131b 3128 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3129 && target_has_execution
3130 && last.kind != TARGET_WAITKIND_SIGNALLED
3131 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3132 {
3133 target_terminal_ours_for_output ();
a3f17187 3134 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3135 target_pid_or_tid_to_str (inferior_ptid));
3136 previous_inferior_ptid = inferior_ptid;
c906108c 3137 }
c906108c 3138
4fa8626c 3139 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3140 /* Make sure that the current_frame's pc is correct. This
3141 is a correction for setting up the frame info before doing
b798847d 3142 gdbarch_decr_pc_after_break */
b87efeee
AC
3143 if (target_has_execution)
3144 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3145 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3146 frame code to check for this and sort out any resultant mess.
b798847d 3147 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3148 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3149
c36b740a 3150 if (target_has_execution)
c906108c
SS
3151 {
3152 if (remove_breakpoints ())
3153 {
3154 target_terminal_ours_for_output ();
a3f17187
AC
3155 printf_filtered (_("\
3156Cannot remove breakpoints because program is no longer writable.\n\
3157It might be running in another process.\n\
3158Further execution is probably impossible.\n"));
c906108c
SS
3159 }
3160 }
c906108c
SS
3161
3162 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3163 Delete any breakpoint that is to be deleted at the next stop. */
3164
3165 breakpoint_auto_delete (stop_bpstat);
3166
3167 /* If an auto-display called a function and that got a signal,
3168 delete that auto-display to avoid an infinite recursion. */
3169
3170 if (stopped_by_random_signal)
3171 disable_current_display ();
3172
3173 /* Don't print a message if in the middle of doing a "step n"
3174 operation for n > 1 */
3175 if (step_multi && stop_step)
3176 goto done;
3177
3178 target_terminal_ours ();
3179
7abfe014
DJ
3180 /* Set the current source location. This will also happen if we
3181 display the frame below, but the current SAL will be incorrect
3182 during a user hook-stop function. */
3183 if (target_has_stack && !stop_stack_dummy)
3184 set_current_sal_from_frame (get_current_frame (), 1);
3185
5913bcb0
AC
3186 /* Look up the hook_stop and run it (CLI internally handles problem
3187 of stop_command's pre-hook not existing). */
3188 if (stop_command)
3189 catch_errors (hook_stop_stub, stop_command,
3190 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3191
3192 if (!target_has_stack)
3193 {
3194
3195 goto done;
3196 }
3197
3198 /* Select innermost stack frame - i.e., current frame is frame 0,
3199 and current location is based on that.
3200 Don't do this on return from a stack dummy routine,
3201 or if the program has exited. */
3202
3203 if (!stop_stack_dummy)
3204 {
0f7d239c 3205 select_frame (get_current_frame ());
c906108c
SS
3206
3207 /* Print current location without a level number, if
c5aa993b
JM
3208 we have changed functions or hit a breakpoint.
3209 Print source line if we have one.
3210 bpstat_print() contains the logic deciding in detail
3211 what to print, based on the event(s) that just occurred. */
c906108c 3212
206415a3 3213 if (stop_print_frame)
c906108c
SS
3214 {
3215 int bpstat_ret;
3216 int source_flag;
917317f4 3217 int do_frame_printing = 1;
c906108c
SS
3218
3219 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3220 switch (bpstat_ret)
3221 {
3222 case PRINT_UNKNOWN:
b0f4b84b
DJ
3223 /* If we had hit a shared library event breakpoint,
3224 bpstat_print would print out this message. If we hit
3225 an OS-level shared library event, do the same
3226 thing. */
3227 if (last.kind == TARGET_WAITKIND_LOADED)
3228 {
3229 printf_filtered (_("Stopped due to shared library event\n"));
3230 source_flag = SRC_LINE; /* something bogus */
3231 do_frame_printing = 0;
3232 break;
3233 }
3234
aa0cd9c1 3235 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3236 (or should) carry around the function and does (or
3237 should) use that when doing a frame comparison. */
917317f4 3238 if (stop_step
aa0cd9c1
AC
3239 && frame_id_eq (step_frame_id,
3240 get_frame_id (get_current_frame ()))
917317f4 3241 && step_start_function == find_pc_function (stop_pc))
488f131b 3242 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3243 else
488f131b 3244 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3245 break;
3246 case PRINT_SRC_AND_LOC:
488f131b 3247 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3248 break;
3249 case PRINT_SRC_ONLY:
c5394b80 3250 source_flag = SRC_LINE;
917317f4
JM
3251 break;
3252 case PRINT_NOTHING:
488f131b 3253 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3254 do_frame_printing = 0;
3255 break;
3256 default:
e2e0b3e5 3257 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3258 }
c906108c 3259
9dc5e2a9 3260 if (ui_out_is_mi_like_p (uiout))
39f77062 3261 ui_out_field_int (uiout, "thread-id",
488f131b 3262 pid_to_thread_id (inferior_ptid));
c906108c
SS
3263 /* The behavior of this routine with respect to the source
3264 flag is:
c5394b80
JM
3265 SRC_LINE: Print only source line
3266 LOCATION: Print only location
3267 SRC_AND_LOC: Print location and source line */
917317f4 3268 if (do_frame_printing)
b04f3ab4 3269 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3270
3271 /* Display the auto-display expressions. */
3272 do_displays ();
3273 }
3274 }
3275
3276 /* Save the function value return registers, if we care.
3277 We might be about to restore their previous contents. */
3278 if (proceed_to_finish)
d5c31457
UW
3279 {
3280 /* This should not be necessary. */
3281 if (stop_registers)
3282 regcache_xfree (stop_registers);
3283
3284 /* NB: The copy goes through to the target picking up the value of
3285 all the registers. */
3286 stop_registers = regcache_dup (get_current_regcache ());
3287 }
c906108c
SS
3288
3289 if (stop_stack_dummy)
3290 {
dbe9fe58
AC
3291 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3292 ends with a setting of the current frame, so we can use that
3293 next. */
3294 frame_pop (get_current_frame ());
c906108c 3295 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3296 Can't rely on restore_inferior_status because that only gets
3297 called if we don't stop in the called function. */
c906108c 3298 stop_pc = read_pc ();
0f7d239c 3299 select_frame (get_current_frame ());
c906108c
SS
3300 }
3301
c906108c
SS
3302done:
3303 annotate_stopped ();
7a464420 3304 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3305}
3306
3307static int
96baa820 3308hook_stop_stub (void *cmd)
c906108c 3309{
5913bcb0 3310 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3311 return (0);
3312}
3313\f
c5aa993b 3314int
96baa820 3315signal_stop_state (int signo)
c906108c
SS
3316{
3317 return signal_stop[signo];
3318}
3319
c5aa993b 3320int
96baa820 3321signal_print_state (int signo)
c906108c
SS
3322{
3323 return signal_print[signo];
3324}
3325
c5aa993b 3326int
96baa820 3327signal_pass_state (int signo)
c906108c
SS
3328{
3329 return signal_program[signo];
3330}
3331
488f131b 3332int
7bda5e4a 3333signal_stop_update (int signo, int state)
d4f3574e
SS
3334{
3335 int ret = signal_stop[signo];
3336 signal_stop[signo] = state;
3337 return ret;
3338}
3339
488f131b 3340int
7bda5e4a 3341signal_print_update (int signo, int state)
d4f3574e
SS
3342{
3343 int ret = signal_print[signo];
3344 signal_print[signo] = state;
3345 return ret;
3346}
3347
488f131b 3348int
7bda5e4a 3349signal_pass_update (int signo, int state)
d4f3574e
SS
3350{
3351 int ret = signal_program[signo];
3352 signal_program[signo] = state;
3353 return ret;
3354}
3355
c906108c 3356static void
96baa820 3357sig_print_header (void)
c906108c 3358{
a3f17187
AC
3359 printf_filtered (_("\
3360Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3361}
3362
3363static void
96baa820 3364sig_print_info (enum target_signal oursig)
c906108c
SS
3365{
3366 char *name = target_signal_to_name (oursig);
3367 int name_padding = 13 - strlen (name);
96baa820 3368
c906108c
SS
3369 if (name_padding <= 0)
3370 name_padding = 0;
3371
3372 printf_filtered ("%s", name);
488f131b 3373 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3374 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3375 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3376 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3377 printf_filtered ("%s\n", target_signal_to_string (oursig));
3378}
3379
3380/* Specify how various signals in the inferior should be handled. */
3381
3382static void
96baa820 3383handle_command (char *args, int from_tty)
c906108c
SS
3384{
3385 char **argv;
3386 int digits, wordlen;
3387 int sigfirst, signum, siglast;
3388 enum target_signal oursig;
3389 int allsigs;
3390 int nsigs;
3391 unsigned char *sigs;
3392 struct cleanup *old_chain;
3393
3394 if (args == NULL)
3395 {
e2e0b3e5 3396 error_no_arg (_("signal to handle"));
c906108c
SS
3397 }
3398
3399 /* Allocate and zero an array of flags for which signals to handle. */
3400
3401 nsigs = (int) TARGET_SIGNAL_LAST;
3402 sigs = (unsigned char *) alloca (nsigs);
3403 memset (sigs, 0, nsigs);
3404
3405 /* Break the command line up into args. */
3406
3407 argv = buildargv (args);
3408 if (argv == NULL)
3409 {
3410 nomem (0);
3411 }
7a292a7a 3412 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3413
3414 /* Walk through the args, looking for signal oursigs, signal names, and
3415 actions. Signal numbers and signal names may be interspersed with
3416 actions, with the actions being performed for all signals cumulatively
3417 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3418
3419 while (*argv != NULL)
3420 {
3421 wordlen = strlen (*argv);
3422 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3423 {;
3424 }
3425 allsigs = 0;
3426 sigfirst = siglast = -1;
3427
3428 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3429 {
3430 /* Apply action to all signals except those used by the
3431 debugger. Silently skip those. */
3432 allsigs = 1;
3433 sigfirst = 0;
3434 siglast = nsigs - 1;
3435 }
3436 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3437 {
3438 SET_SIGS (nsigs, sigs, signal_stop);
3439 SET_SIGS (nsigs, sigs, signal_print);
3440 }
3441 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3442 {
3443 UNSET_SIGS (nsigs, sigs, signal_program);
3444 }
3445 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3446 {
3447 SET_SIGS (nsigs, sigs, signal_print);
3448 }
3449 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3450 {
3451 SET_SIGS (nsigs, sigs, signal_program);
3452 }
3453 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3454 {
3455 UNSET_SIGS (nsigs, sigs, signal_stop);
3456 }
3457 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3458 {
3459 SET_SIGS (nsigs, sigs, signal_program);
3460 }
3461 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3462 {
3463 UNSET_SIGS (nsigs, sigs, signal_print);
3464 UNSET_SIGS (nsigs, sigs, signal_stop);
3465 }
3466 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3467 {
3468 UNSET_SIGS (nsigs, sigs, signal_program);
3469 }
3470 else if (digits > 0)
3471 {
3472 /* It is numeric. The numeric signal refers to our own
3473 internal signal numbering from target.h, not to host/target
3474 signal number. This is a feature; users really should be
3475 using symbolic names anyway, and the common ones like
3476 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3477
3478 sigfirst = siglast = (int)
3479 target_signal_from_command (atoi (*argv));
3480 if ((*argv)[digits] == '-')
3481 {
3482 siglast = (int)
3483 target_signal_from_command (atoi ((*argv) + digits + 1));
3484 }
3485 if (sigfirst > siglast)
3486 {
3487 /* Bet he didn't figure we'd think of this case... */
3488 signum = sigfirst;
3489 sigfirst = siglast;
3490 siglast = signum;
3491 }
3492 }
3493 else
3494 {
3495 oursig = target_signal_from_name (*argv);
3496 if (oursig != TARGET_SIGNAL_UNKNOWN)
3497 {
3498 sigfirst = siglast = (int) oursig;
3499 }
3500 else
3501 {
3502 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3503 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3504 }
3505 }
3506
3507 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3508 which signals to apply actions to. */
c906108c
SS
3509
3510 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3511 {
3512 switch ((enum target_signal) signum)
3513 {
3514 case TARGET_SIGNAL_TRAP:
3515 case TARGET_SIGNAL_INT:
3516 if (!allsigs && !sigs[signum])
3517 {
3518 if (query ("%s is used by the debugger.\n\
488f131b 3519Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3520 {
3521 sigs[signum] = 1;
3522 }
3523 else
3524 {
a3f17187 3525 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3526 gdb_flush (gdb_stdout);
3527 }
3528 }
3529 break;
3530 case TARGET_SIGNAL_0:
3531 case TARGET_SIGNAL_DEFAULT:
3532 case TARGET_SIGNAL_UNKNOWN:
3533 /* Make sure that "all" doesn't print these. */
3534 break;
3535 default:
3536 sigs[signum] = 1;
3537 break;
3538 }
3539 }
3540
3541 argv++;
3542 }
3543
39f77062 3544 target_notice_signals (inferior_ptid);
c906108c
SS
3545
3546 if (from_tty)
3547 {
3548 /* Show the results. */
3549 sig_print_header ();
3550 for (signum = 0; signum < nsigs; signum++)
3551 {
3552 if (sigs[signum])
3553 {
3554 sig_print_info (signum);
3555 }
3556 }
3557 }
3558
3559 do_cleanups (old_chain);
3560}
3561
3562static void
96baa820 3563xdb_handle_command (char *args, int from_tty)
c906108c
SS
3564{
3565 char **argv;
3566 struct cleanup *old_chain;
3567
3568 /* Break the command line up into args. */
3569
3570 argv = buildargv (args);
3571 if (argv == NULL)
3572 {
3573 nomem (0);
3574 }
7a292a7a 3575 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3576 if (argv[1] != (char *) NULL)
3577 {
3578 char *argBuf;
3579 int bufLen;
3580
3581 bufLen = strlen (argv[0]) + 20;
3582 argBuf = (char *) xmalloc (bufLen);
3583 if (argBuf)
3584 {
3585 int validFlag = 1;
3586 enum target_signal oursig;
3587
3588 oursig = target_signal_from_name (argv[0]);
3589 memset (argBuf, 0, bufLen);
3590 if (strcmp (argv[1], "Q") == 0)
3591 sprintf (argBuf, "%s %s", argv[0], "noprint");
3592 else
3593 {
3594 if (strcmp (argv[1], "s") == 0)
3595 {
3596 if (!signal_stop[oursig])
3597 sprintf (argBuf, "%s %s", argv[0], "stop");
3598 else
3599 sprintf (argBuf, "%s %s", argv[0], "nostop");
3600 }
3601 else if (strcmp (argv[1], "i") == 0)
3602 {
3603 if (!signal_program[oursig])
3604 sprintf (argBuf, "%s %s", argv[0], "pass");
3605 else
3606 sprintf (argBuf, "%s %s", argv[0], "nopass");
3607 }
3608 else if (strcmp (argv[1], "r") == 0)
3609 {
3610 if (!signal_print[oursig])
3611 sprintf (argBuf, "%s %s", argv[0], "print");
3612 else
3613 sprintf (argBuf, "%s %s", argv[0], "noprint");
3614 }
3615 else
3616 validFlag = 0;
3617 }
3618 if (validFlag)
3619 handle_command (argBuf, from_tty);
3620 else
a3f17187 3621 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3622 if (argBuf)
b8c9b27d 3623 xfree (argBuf);
c906108c
SS
3624 }
3625 }
3626 do_cleanups (old_chain);
3627}
3628
3629/* Print current contents of the tables set by the handle command.
3630 It is possible we should just be printing signals actually used
3631 by the current target (but for things to work right when switching
3632 targets, all signals should be in the signal tables). */
3633
3634static void
96baa820 3635signals_info (char *signum_exp, int from_tty)
c906108c
SS
3636{
3637 enum target_signal oursig;
3638 sig_print_header ();
3639
3640 if (signum_exp)
3641 {
3642 /* First see if this is a symbol name. */
3643 oursig = target_signal_from_name (signum_exp);
3644 if (oursig == TARGET_SIGNAL_UNKNOWN)
3645 {
3646 /* No, try numeric. */
3647 oursig =
bb518678 3648 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3649 }
3650 sig_print_info (oursig);
3651 return;
3652 }
3653
3654 printf_filtered ("\n");
3655 /* These ugly casts brought to you by the native VAX compiler. */
3656 for (oursig = TARGET_SIGNAL_FIRST;
3657 (int) oursig < (int) TARGET_SIGNAL_LAST;
3658 oursig = (enum target_signal) ((int) oursig + 1))
3659 {
3660 QUIT;
3661
3662 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3663 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3664 sig_print_info (oursig);
3665 }
3666
a3f17187 3667 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3668}
3669\f
7a292a7a
SS
3670struct inferior_status
3671{
3672 enum target_signal stop_signal;
3673 CORE_ADDR stop_pc;
3674 bpstat stop_bpstat;
3675 int stop_step;
3676 int stop_stack_dummy;
3677 int stopped_by_random_signal;
3678 int trap_expected;
3679 CORE_ADDR step_range_start;
3680 CORE_ADDR step_range_end;
aa0cd9c1 3681 struct frame_id step_frame_id;
5fbbeb29 3682 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3683 CORE_ADDR step_resume_break_address;
3684 int stop_after_trap;
c0236d92 3685 int stop_soon;
7a292a7a
SS
3686
3687 /* These are here because if call_function_by_hand has written some
3688 registers and then decides to call error(), we better not have changed
3689 any registers. */
72cec141 3690 struct regcache *registers;
7a292a7a 3691
101dcfbe
AC
3692 /* A frame unique identifier. */
3693 struct frame_id selected_frame_id;
3694
7a292a7a
SS
3695 int breakpoint_proceeded;
3696 int restore_stack_info;
3697 int proceed_to_finish;
3698};
3699
7a292a7a 3700void
96baa820
JM
3701write_inferior_status_register (struct inferior_status *inf_status, int regno,
3702 LONGEST val)
7a292a7a 3703{
3acba339 3704 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3705 void *buf = alloca (size);
3706 store_signed_integer (buf, size, val);
0818c12a 3707 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3708}
3709
c906108c
SS
3710/* Save all of the information associated with the inferior<==>gdb
3711 connection. INF_STATUS is a pointer to a "struct inferior_status"
3712 (defined in inferior.h). */
3713
7a292a7a 3714struct inferior_status *
96baa820 3715save_inferior_status (int restore_stack_info)
c906108c 3716{
72cec141 3717 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3718
c906108c
SS
3719 inf_status->stop_signal = stop_signal;
3720 inf_status->stop_pc = stop_pc;
3721 inf_status->stop_step = stop_step;
3722 inf_status->stop_stack_dummy = stop_stack_dummy;
3723 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3724 inf_status->trap_expected = trap_expected;
3725 inf_status->step_range_start = step_range_start;
3726 inf_status->step_range_end = step_range_end;
aa0cd9c1 3727 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3728 inf_status->step_over_calls = step_over_calls;
3729 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3730 inf_status->stop_soon = stop_soon;
c906108c
SS
3731 /* Save original bpstat chain here; replace it with copy of chain.
3732 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3733 hand them back the original chain when restore_inferior_status is
3734 called. */
c906108c
SS
3735 inf_status->stop_bpstat = stop_bpstat;
3736 stop_bpstat = bpstat_copy (stop_bpstat);
3737 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3738 inf_status->restore_stack_info = restore_stack_info;
3739 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3740
594f7785 3741 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3742
206415a3 3743 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3744 return inf_status;
c906108c
SS
3745}
3746
c906108c 3747static int
96baa820 3748restore_selected_frame (void *args)
c906108c 3749{
488f131b 3750 struct frame_id *fid = (struct frame_id *) args;
c906108c 3751 struct frame_info *frame;
c906108c 3752
101dcfbe 3753 frame = frame_find_by_id (*fid);
c906108c 3754
aa0cd9c1
AC
3755 /* If inf_status->selected_frame_id is NULL, there was no previously
3756 selected frame. */
101dcfbe 3757 if (frame == NULL)
c906108c 3758 {
8a3fe4f8 3759 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3760 return 0;
3761 }
3762
0f7d239c 3763 select_frame (frame);
c906108c
SS
3764
3765 return (1);
3766}
3767
3768void
96baa820 3769restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3770{
3771 stop_signal = inf_status->stop_signal;
3772 stop_pc = inf_status->stop_pc;
3773 stop_step = inf_status->stop_step;
3774 stop_stack_dummy = inf_status->stop_stack_dummy;
3775 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3776 trap_expected = inf_status->trap_expected;
3777 step_range_start = inf_status->step_range_start;
3778 step_range_end = inf_status->step_range_end;
aa0cd9c1 3779 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3780 step_over_calls = inf_status->step_over_calls;
3781 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3782 stop_soon = inf_status->stop_soon;
c906108c
SS
3783 bpstat_clear (&stop_bpstat);
3784 stop_bpstat = inf_status->stop_bpstat;
3785 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3786 proceed_to_finish = inf_status->proceed_to_finish;
3787
c906108c
SS
3788 /* The inferior can be gone if the user types "print exit(0)"
3789 (and perhaps other times). */
3790 if (target_has_execution)
72cec141 3791 /* NB: The register write goes through to the target. */
594f7785 3792 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3793 regcache_xfree (inf_status->registers);
c906108c 3794
c906108c
SS
3795 /* FIXME: If we are being called after stopping in a function which
3796 is called from gdb, we should not be trying to restore the
3797 selected frame; it just prints a spurious error message (The
3798 message is useful, however, in detecting bugs in gdb (like if gdb
3799 clobbers the stack)). In fact, should we be restoring the
3800 inferior status at all in that case? . */
3801
3802 if (target_has_stack && inf_status->restore_stack_info)
3803 {
c906108c 3804 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3805 walking the stack might encounter a garbage pointer and
3806 error() trying to dereference it. */
488f131b
JB
3807 if (catch_errors
3808 (restore_selected_frame, &inf_status->selected_frame_id,
3809 "Unable to restore previously selected frame:\n",
3810 RETURN_MASK_ERROR) == 0)
c906108c
SS
3811 /* Error in restoring the selected frame. Select the innermost
3812 frame. */
0f7d239c 3813 select_frame (get_current_frame ());
c906108c
SS
3814
3815 }
c906108c 3816
72cec141 3817 xfree (inf_status);
7a292a7a 3818}
c906108c 3819
74b7792f
AC
3820static void
3821do_restore_inferior_status_cleanup (void *sts)
3822{
3823 restore_inferior_status (sts);
3824}
3825
3826struct cleanup *
3827make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3828{
3829 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3830}
3831
c906108c 3832void
96baa820 3833discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3834{
3835 /* See save_inferior_status for info on stop_bpstat. */
3836 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3837 regcache_xfree (inf_status->registers);
72cec141 3838 xfree (inf_status);
7a292a7a
SS
3839}
3840
47932f85
DJ
3841int
3842inferior_has_forked (int pid, int *child_pid)
3843{
3844 struct target_waitstatus last;
3845 ptid_t last_ptid;
3846
3847 get_last_target_status (&last_ptid, &last);
3848
3849 if (last.kind != TARGET_WAITKIND_FORKED)
3850 return 0;
3851
3852 if (ptid_get_pid (last_ptid) != pid)
3853 return 0;
3854
3855 *child_pid = last.value.related_pid;
3856 return 1;
3857}
3858
3859int
3860inferior_has_vforked (int pid, int *child_pid)
3861{
3862 struct target_waitstatus last;
3863 ptid_t last_ptid;
3864
3865 get_last_target_status (&last_ptid, &last);
3866
3867 if (last.kind != TARGET_WAITKIND_VFORKED)
3868 return 0;
3869
3870 if (ptid_get_pid (last_ptid) != pid)
3871 return 0;
3872
3873 *child_pid = last.value.related_pid;
3874 return 1;
3875}
3876
3877int
3878inferior_has_execd (int pid, char **execd_pathname)
3879{
3880 struct target_waitstatus last;
3881 ptid_t last_ptid;
3882
3883 get_last_target_status (&last_ptid, &last);
3884
3885 if (last.kind != TARGET_WAITKIND_EXECD)
3886 return 0;
3887
3888 if (ptid_get_pid (last_ptid) != pid)
3889 return 0;
3890
3891 *execd_pathname = xstrdup (last.value.execd_pathname);
3892 return 1;
3893}
3894
ca6724c1
KB
3895/* Oft used ptids */
3896ptid_t null_ptid;
3897ptid_t minus_one_ptid;
3898
3899/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3900
ca6724c1
KB
3901ptid_t
3902ptid_build (int pid, long lwp, long tid)
3903{
3904 ptid_t ptid;
3905
3906 ptid.pid = pid;
3907 ptid.lwp = lwp;
3908 ptid.tid = tid;
3909 return ptid;
3910}
3911
3912/* Create a ptid from just a pid. */
3913
3914ptid_t
3915pid_to_ptid (int pid)
3916{
3917 return ptid_build (pid, 0, 0);
3918}
3919
3920/* Fetch the pid (process id) component from a ptid. */
3921
3922int
3923ptid_get_pid (ptid_t ptid)
3924{
3925 return ptid.pid;
3926}
3927
3928/* Fetch the lwp (lightweight process) component from a ptid. */
3929
3930long
3931ptid_get_lwp (ptid_t ptid)
3932{
3933 return ptid.lwp;
3934}
3935
3936/* Fetch the tid (thread id) component from a ptid. */
3937
3938long
3939ptid_get_tid (ptid_t ptid)
3940{
3941 return ptid.tid;
3942}
3943
3944/* ptid_equal() is used to test equality of two ptids. */
3945
3946int
3947ptid_equal (ptid_t ptid1, ptid_t ptid2)
3948{
3949 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3950 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3951}
3952
3953/* restore_inferior_ptid() will be used by the cleanup machinery
3954 to restore the inferior_ptid value saved in a call to
3955 save_inferior_ptid(). */
ce696e05
KB
3956
3957static void
3958restore_inferior_ptid (void *arg)
3959{
3960 ptid_t *saved_ptid_ptr = arg;
3961 inferior_ptid = *saved_ptid_ptr;
3962 xfree (arg);
3963}
3964
3965/* Save the value of inferior_ptid so that it may be restored by a
3966 later call to do_cleanups(). Returns the struct cleanup pointer
3967 needed for later doing the cleanup. */
3968
3969struct cleanup *
3970save_inferior_ptid (void)
3971{
3972 ptid_t *saved_ptid_ptr;
3973
3974 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3975 *saved_ptid_ptr = inferior_ptid;
3976 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3977}
c5aa993b 3978\f
488f131b 3979
c906108c 3980void
96baa820 3981_initialize_infrun (void)
c906108c 3982{
52f0bd74
AC
3983 int i;
3984 int numsigs;
c906108c
SS
3985 struct cmd_list_element *c;
3986
1bedd215
AC
3987 add_info ("signals", signals_info, _("\
3988What debugger does when program gets various signals.\n\
3989Specify a signal as argument to print info on that signal only."));
c906108c
SS
3990 add_info_alias ("handle", "signals", 0);
3991
1bedd215
AC
3992 add_com ("handle", class_run, handle_command, _("\
3993Specify how to handle a signal.\n\
c906108c
SS
3994Args are signals and actions to apply to those signals.\n\
3995Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3996from 1-15 are allowed for compatibility with old versions of GDB.\n\
3997Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3998The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3999used by the debugger, typically SIGTRAP and SIGINT.\n\
4000Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4001\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4002Stop means reenter debugger if this signal happens (implies print).\n\
4003Print means print a message if this signal happens.\n\
4004Pass means let program see this signal; otherwise program doesn't know.\n\
4005Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4006Pass and Stop may be combined."));
c906108c
SS
4007 if (xdb_commands)
4008 {
1bedd215
AC
4009 add_com ("lz", class_info, signals_info, _("\
4010What debugger does when program gets various signals.\n\
4011Specify a signal as argument to print info on that signal only."));
4012 add_com ("z", class_run, xdb_handle_command, _("\
4013Specify how to handle a signal.\n\
c906108c
SS
4014Args are signals and actions to apply to those signals.\n\
4015Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4016from 1-15 are allowed for compatibility with old versions of GDB.\n\
4017Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4018The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4019used by the debugger, typically SIGTRAP and SIGINT.\n\
4020Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4021\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4022nopass), \"Q\" (noprint)\n\
4023Stop means reenter debugger if this signal happens (implies print).\n\
4024Print means print a message if this signal happens.\n\
4025Pass means let program see this signal; otherwise program doesn't know.\n\
4026Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4027Pass and Stop may be combined."));
c906108c
SS
4028 }
4029
4030 if (!dbx_commands)
1a966eab
AC
4031 stop_command = add_cmd ("stop", class_obscure,
4032 not_just_help_class_command, _("\
4033There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4034This allows you to set a list of commands to be run each time execution\n\
1a966eab 4035of the program stops."), &cmdlist);
c906108c 4036
85c07804
AC
4037 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4038Set inferior debugging."), _("\
4039Show inferior debugging."), _("\
4040When non-zero, inferior specific debugging is enabled."),
4041 NULL,
920d2a44 4042 show_debug_infrun,
85c07804 4043 &setdebuglist, &showdebuglist);
527159b7 4044
c906108c 4045 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4046 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4047 signal_print = (unsigned char *)
4048 xmalloc (sizeof (signal_print[0]) * numsigs);
4049 signal_program = (unsigned char *)
4050 xmalloc (sizeof (signal_program[0]) * numsigs);
4051 for (i = 0; i < numsigs; i++)
4052 {
4053 signal_stop[i] = 1;
4054 signal_print[i] = 1;
4055 signal_program[i] = 1;
4056 }
4057
4058 /* Signals caused by debugger's own actions
4059 should not be given to the program afterwards. */
4060 signal_program[TARGET_SIGNAL_TRAP] = 0;
4061 signal_program[TARGET_SIGNAL_INT] = 0;
4062
4063 /* Signals that are not errors should not normally enter the debugger. */
4064 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4065 signal_print[TARGET_SIGNAL_ALRM] = 0;
4066 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4067 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4068 signal_stop[TARGET_SIGNAL_PROF] = 0;
4069 signal_print[TARGET_SIGNAL_PROF] = 0;
4070 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4071 signal_print[TARGET_SIGNAL_CHLD] = 0;
4072 signal_stop[TARGET_SIGNAL_IO] = 0;
4073 signal_print[TARGET_SIGNAL_IO] = 0;
4074 signal_stop[TARGET_SIGNAL_POLL] = 0;
4075 signal_print[TARGET_SIGNAL_POLL] = 0;
4076 signal_stop[TARGET_SIGNAL_URG] = 0;
4077 signal_print[TARGET_SIGNAL_URG] = 0;
4078 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4079 signal_print[TARGET_SIGNAL_WINCH] = 0;
4080
cd0fc7c3
SS
4081 /* These signals are used internally by user-level thread
4082 implementations. (See signal(5) on Solaris.) Like the above
4083 signals, a healthy program receives and handles them as part of
4084 its normal operation. */
4085 signal_stop[TARGET_SIGNAL_LWP] = 0;
4086 signal_print[TARGET_SIGNAL_LWP] = 0;
4087 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4088 signal_print[TARGET_SIGNAL_WAITING] = 0;
4089 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4090 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4091
85c07804
AC
4092 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4093 &stop_on_solib_events, _("\
4094Set stopping for shared library events."), _("\
4095Show stopping for shared library events."), _("\
c906108c
SS
4096If nonzero, gdb will give control to the user when the dynamic linker\n\
4097notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4098to the user would be loading/unloading of a new library."),
4099 NULL,
920d2a44 4100 show_stop_on_solib_events,
85c07804 4101 &setlist, &showlist);
c906108c 4102
7ab04401
AC
4103 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4104 follow_fork_mode_kind_names,
4105 &follow_fork_mode_string, _("\
4106Set debugger response to a program call of fork or vfork."), _("\
4107Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4108A fork or vfork creates a new process. follow-fork-mode can be:\n\
4109 parent - the original process is debugged after a fork\n\
4110 child - the new process is debugged after a fork\n\
ea1dd7bc 4111The unfollowed process will continue to run.\n\
7ab04401
AC
4112By default, the debugger will follow the parent process."),
4113 NULL,
920d2a44 4114 show_follow_fork_mode_string,
7ab04401
AC
4115 &setlist, &showlist);
4116
4117 add_setshow_enum_cmd ("scheduler-locking", class_run,
4118 scheduler_enums, &scheduler_mode, _("\
4119Set mode for locking scheduler during execution."), _("\
4120Show mode for locking scheduler during execution."), _("\
c906108c
SS
4121off == no locking (threads may preempt at any time)\n\
4122on == full locking (no thread except the current thread may run)\n\
4123step == scheduler locked during every single-step operation.\n\
4124 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4125 Other threads may run while stepping over a function call ('next')."),
4126 set_schedlock_func, /* traps on target vector */
920d2a44 4127 show_scheduler_mode,
7ab04401 4128 &setlist, &showlist);
5fbbeb29 4129
5bf193a2
AC
4130 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4131Set mode of the step operation."), _("\
4132Show mode of the step operation."), _("\
4133When set, doing a step over a function without debug line information\n\
4134will stop at the first instruction of that function. Otherwise, the\n\
4135function is skipped and the step command stops at a different source line."),
4136 NULL,
920d2a44 4137 show_step_stop_if_no_debug,
5bf193a2 4138 &setlist, &showlist);
ca6724c1
KB
4139
4140 /* ptid initializations */
4141 null_ptid = ptid_build (0, 0, 0);
4142 minus_one_ptid = ptid_build (-1, 0, 0);
4143 inferior_ptid = null_ptid;
4144 target_last_wait_ptid = minus_one_ptid;
c906108c 4145}