]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
PR21294, Binary size regression on PPC embedded
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
11db9430 73static void info_signals_command (char *, int);
c906108c 74
96baa820 75static void handle_command (char *, int);
c906108c 76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
74b7792f 81static void resume_cleanups (void *);
c906108c 82
96baa820 83static int hook_stop_stub (void *);
c906108c 84
96baa820
JM
85static int restore_selected_frame (void *);
86
4ef3f3be 87static int follow_fork (void);
96baa820 88
d83ad864
DB
89static int follow_fork_inferior (int follow_child, int detach_fork);
90
91static void follow_inferior_reset_breakpoints (void);
92
96baa820 93static void set_schedlock_func (char *args, int from_tty,
488f131b 94 struct cmd_list_element *c);
96baa820 95
a289b8f6
JK
96static int currently_stepping (struct thread_info *tp);
97
e58b0e63
PA
98void nullify_last_target_wait_ptid (void);
99
2c03e5be 100static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
101
102static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
103
2484c66b
UW
104static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
105
8550d3b3
YQ
106static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
107
372316f1
PA
108/* Asynchronous signal handler registered as event loop source for
109 when we have pending events ready to be passed to the core. */
110static struct async_event_handler *infrun_async_inferior_event_token;
111
112/* Stores whether infrun_async was previously enabled or disabled.
113 Starts off as -1, indicating "never enabled/disabled". */
114static int infrun_is_async = -1;
115
116/* See infrun.h. */
117
118void
119infrun_async (int enable)
120{
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 if (debug_infrun)
126 fprintf_unfiltered (gdb_stdlog,
127 "infrun: infrun_async(%d)\n",
128 enable);
129
130 if (enable)
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 else
133 clear_async_event_handler (infrun_async_inferior_event_token);
134 }
135}
136
0b333c5e
PA
137/* See infrun.h. */
138
139void
140mark_infrun_async_event_handler (void)
141{
142 mark_async_event_handler (infrun_async_inferior_event_token);
143}
144
5fbbeb29
CF
145/* When set, stop the 'step' command if we enter a function which has
146 no line number information. The normal behavior is that we step
147 over such function. */
148int step_stop_if_no_debug = 0;
920d2a44
AC
149static void
150show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
153 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154}
5fbbeb29 155
b9f437de
PA
156/* proceed and normal_stop use this to notify the user when the
157 inferior stopped in a different thread than it had been running
158 in. */
96baa820 159
39f77062 160static ptid_t previous_inferior_ptid;
7a292a7a 161
07107ca6
LM
162/* If set (default for legacy reasons), when following a fork, GDB
163 will detach from one of the fork branches, child or parent.
164 Exactly which branch is detached depends on 'set follow-fork-mode'
165 setting. */
166
167static int detach_fork = 1;
6c95b8df 168
237fc4c9
PA
169int debug_displaced = 0;
170static void
171show_debug_displaced (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173{
174 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175}
176
ccce17b0 177unsigned int debug_infrun = 0;
920d2a44
AC
178static void
179show_debug_infrun (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183}
527159b7 184
03583c20
UW
185
186/* Support for disabling address space randomization. */
187
188int disable_randomization = 1;
189
190static void
191show_disable_randomization (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193{
194 if (target_supports_disable_randomization ())
195 fprintf_filtered (file,
196 _("Disabling randomization of debuggee's "
197 "virtual address space is %s.\n"),
198 value);
199 else
200 fputs_filtered (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform.\n"), file);
203}
204
205static void
206set_disable_randomization (char *args, int from_tty,
207 struct cmd_list_element *c)
208{
209 if (!target_supports_disable_randomization ())
210 error (_("Disabling randomization of debuggee's "
211 "virtual address space is unsupported on\n"
212 "this platform."));
213}
214
d32dc48e
PA
215/* User interface for non-stop mode. */
216
217int non_stop = 0;
218static int non_stop_1 = 0;
219
220static void
221set_non_stop (char *args, int from_tty,
222 struct cmd_list_element *c)
223{
224 if (target_has_execution)
225 {
226 non_stop_1 = non_stop;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 non_stop = non_stop_1;
231}
232
233static void
234show_non_stop (struct ui_file *file, int from_tty,
235 struct cmd_list_element *c, const char *value)
236{
237 fprintf_filtered (file,
238 _("Controlling the inferior in non-stop mode is %s.\n"),
239 value);
240}
241
d914c394
SS
242/* "Observer mode" is somewhat like a more extreme version of
243 non-stop, in which all GDB operations that might affect the
244 target's execution have been disabled. */
245
d914c394
SS
246int observer_mode = 0;
247static int observer_mode_1 = 0;
248
249static void
250set_observer_mode (char *args, int from_tty,
251 struct cmd_list_element *c)
252{
d914c394
SS
253 if (target_has_execution)
254 {
255 observer_mode_1 = observer_mode;
256 error (_("Cannot change this setting while the inferior is running."));
257 }
258
259 observer_mode = observer_mode_1;
260
261 may_write_registers = !observer_mode;
262 may_write_memory = !observer_mode;
263 may_insert_breakpoints = !observer_mode;
264 may_insert_tracepoints = !observer_mode;
265 /* We can insert fast tracepoints in or out of observer mode,
266 but enable them if we're going into this mode. */
267 if (observer_mode)
268 may_insert_fast_tracepoints = 1;
269 may_stop = !observer_mode;
270 update_target_permissions ();
271
272 /* Going *into* observer mode we must force non-stop, then
273 going out we leave it that way. */
274 if (observer_mode)
275 {
d914c394
SS
276 pagination_enabled = 0;
277 non_stop = non_stop_1 = 1;
278 }
279
280 if (from_tty)
281 printf_filtered (_("Observer mode is now %s.\n"),
282 (observer_mode ? "on" : "off"));
283}
284
285static void
286show_observer_mode (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288{
289 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290}
291
292/* This updates the value of observer mode based on changes in
293 permissions. Note that we are deliberately ignoring the values of
294 may-write-registers and may-write-memory, since the user may have
295 reason to enable these during a session, for instance to turn on a
296 debugging-related global. */
297
298void
299update_observer_mode (void)
300{
301 int newval;
302
303 newval = (!may_insert_breakpoints
304 && !may_insert_tracepoints
305 && may_insert_fast_tracepoints
306 && !may_stop
307 && non_stop);
308
309 /* Let the user know if things change. */
310 if (newval != observer_mode)
311 printf_filtered (_("Observer mode is now %s.\n"),
312 (newval ? "on" : "off"));
313
314 observer_mode = observer_mode_1 = newval;
315}
c2c6d25f 316
c906108c
SS
317/* Tables of how to react to signals; the user sets them. */
318
319static unsigned char *signal_stop;
320static unsigned char *signal_print;
321static unsigned char *signal_program;
322
ab04a2af
TT
323/* Table of signals that are registered with "catch signal". A
324 non-zero entry indicates that the signal is caught by some "catch
325 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
326 signals. */
327static unsigned char *signal_catch;
328
2455069d
UW
329/* Table of signals that the target may silently handle.
330 This is automatically determined from the flags above,
331 and simply cached here. */
332static unsigned char *signal_pass;
333
c906108c
SS
334#define SET_SIGS(nsigs,sigs,flags) \
335 do { \
336 int signum = (nsigs); \
337 while (signum-- > 0) \
338 if ((sigs)[signum]) \
339 (flags)[signum] = 1; \
340 } while (0)
341
342#define UNSET_SIGS(nsigs,sigs,flags) \
343 do { \
344 int signum = (nsigs); \
345 while (signum-- > 0) \
346 if ((sigs)[signum]) \
347 (flags)[signum] = 0; \
348 } while (0)
349
9b224c5e
PA
350/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
351 this function is to avoid exporting `signal_program'. */
352
353void
354update_signals_program_target (void)
355{
a493e3e2 356 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
357}
358
1777feb0 359/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 360
edb3359d 361#define RESUME_ALL minus_one_ptid
c906108c
SS
362
363/* Command list pointer for the "stop" placeholder. */
364
365static struct cmd_list_element *stop_command;
366
c906108c
SS
367/* Nonzero if we want to give control to the user when we're notified
368 of shared library events by the dynamic linker. */
628fe4e4 369int stop_on_solib_events;
f9e14852
GB
370
371/* Enable or disable optional shared library event breakpoints
372 as appropriate when the above flag is changed. */
373
374static void
375set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
376{
377 update_solib_breakpoints ();
378}
379
920d2a44
AC
380static void
381show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383{
384 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 value);
386}
c906108c 387
c906108c
SS
388/* Nonzero after stop if current stack frame should be printed. */
389
390static int stop_print_frame;
391
e02bc4cc 392/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
393 returned by target_wait()/deprecated_target_wait_hook(). This
394 information is returned by get_last_target_status(). */
39f77062 395static ptid_t target_last_wait_ptid;
e02bc4cc
DS
396static struct target_waitstatus target_last_waitstatus;
397
0d1e5fa7
PA
398static void context_switch (ptid_t ptid);
399
4e1c45ea 400void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 401
53904c9e
AC
402static const char follow_fork_mode_child[] = "child";
403static const char follow_fork_mode_parent[] = "parent";
404
40478521 405static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
406 follow_fork_mode_child,
407 follow_fork_mode_parent,
408 NULL
ef346e04 409};
c906108c 410
53904c9e 411static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
412static void
413show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c, const char *value)
415{
3e43a32a
MS
416 fprintf_filtered (file,
417 _("Debugger response to a program "
418 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
419 value);
420}
c906108c
SS
421\f
422
d83ad864
DB
423/* Handle changes to the inferior list based on the type of fork,
424 which process is being followed, and whether the other process
425 should be detached. On entry inferior_ptid must be the ptid of
426 the fork parent. At return inferior_ptid is the ptid of the
427 followed inferior. */
428
429static int
430follow_fork_inferior (int follow_child, int detach_fork)
431{
432 int has_vforked;
79639e11 433 ptid_t parent_ptid, child_ptid;
d83ad864
DB
434
435 has_vforked = (inferior_thread ()->pending_follow.kind
436 == TARGET_WAITKIND_VFORKED);
79639e11
PA
437 parent_ptid = inferior_ptid;
438 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
439
440 if (has_vforked
441 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 442 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
443 && !(follow_child || detach_fork || sched_multi))
444 {
445 /* The parent stays blocked inside the vfork syscall until the
446 child execs or exits. If we don't let the child run, then
447 the parent stays blocked. If we're telling the parent to run
448 in the foreground, the user will not be able to ctrl-c to get
449 back the terminal, effectively hanging the debug session. */
450 fprintf_filtered (gdb_stderr, _("\
451Can not resume the parent process over vfork in the foreground while\n\
452holding the child stopped. Try \"set detach-on-fork\" or \
453\"set schedule-multiple\".\n"));
454 /* FIXME output string > 80 columns. */
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
8dd06f7a
DB
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
79639e11 483 _("Detaching after %s from child %s.\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
8dd06f7a 485 target_pid_to_str (process_ptid));
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
79639e11 503 inferior_ptid = child_ptid;
d83ad864 504 add_thread (inferior_ptid);
2a00d7ce 505 set_current_inferior (child_inf);
d83ad864
DB
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
d83ad864
DB
539 }
540
541 if (has_vforked)
542 {
543 struct inferior *parent_inf;
544
545 parent_inf = current_inferior ();
546
547 /* If we detached from the child, then we have to be careful
548 to not insert breakpoints in the parent until the child
549 is done with the shared memory region. However, if we're
550 staying attached to the child, then we can and should
551 insert breakpoints, so that we can debug it. A
552 subsequent child exec or exit is enough to know when does
553 the child stops using the parent's address space. */
554 parent_inf->waiting_for_vfork_done = detach_fork;
555 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
556 }
557 }
558 else
559 {
560 /* Follow the child. */
561 struct inferior *parent_inf, *child_inf;
562 struct program_space *parent_pspace;
563
564 if (info_verbose || debug_infrun)
565 {
223ffa71 566 target_terminal::ours_for_output ();
6f259a23 567 fprintf_filtered (gdb_stdlog,
79639e11
PA
568 _("Attaching after %s %s to child %s.\n"),
569 target_pid_to_str (parent_ptid),
6f259a23 570 has_vforked ? "vfork" : "fork",
79639e11 571 target_pid_to_str (child_ptid));
d83ad864
DB
572 }
573
574 /* Add the new inferior first, so that the target_detach below
575 doesn't unpush the target. */
576
79639e11 577 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
578
579 parent_inf = current_inferior ();
580 child_inf->attach_flag = parent_inf->attach_flag;
581 copy_terminal_info (child_inf, parent_inf);
582 child_inf->gdbarch = parent_inf->gdbarch;
583 copy_inferior_target_desc_info (child_inf, parent_inf);
584
585 parent_pspace = parent_inf->pspace;
586
587 /* If we're vforking, we want to hold on to the parent until the
588 child exits or execs. At child exec or exit time we can
589 remove the old breakpoints from the parent and detach or
590 resume debugging it. Otherwise, detach the parent now; we'll
591 want to reuse it's program/address spaces, but we can't set
592 them to the child before removing breakpoints from the
593 parent, otherwise, the breakpoints module could decide to
594 remove breakpoints from the wrong process (since they'd be
595 assigned to the same address space). */
596
597 if (has_vforked)
598 {
599 gdb_assert (child_inf->vfork_parent == NULL);
600 gdb_assert (parent_inf->vfork_child == NULL);
601 child_inf->vfork_parent = parent_inf;
602 child_inf->pending_detach = 0;
603 parent_inf->vfork_child = child_inf;
604 parent_inf->pending_detach = detach_fork;
605 parent_inf->waiting_for_vfork_done = 0;
606 }
607 else if (detach_fork)
6f259a23
DB
608 {
609 if (info_verbose || debug_infrun)
610 {
8dd06f7a
DB
611 /* Ensure that we have a process ptid. */
612 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
613
223ffa71 614 target_terminal::ours_for_output ();
6f259a23
DB
615 fprintf_filtered (gdb_stdlog,
616 _("Detaching after fork from "
79639e11 617 "child %s.\n"),
8dd06f7a 618 target_pid_to_str (process_ptid));
6f259a23
DB
619 }
620
621 target_detach (NULL, 0);
622 }
d83ad864
DB
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch to
627 this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
79639e11 630 inferior_ptid = child_ptid;
d83ad864 631 add_thread (inferior_ptid);
2a00d7ce 632 set_current_inferior (child_inf);
d83ad864
DB
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641 }
642 else
643 {
644 child_inf->aspace = new_address_space ();
645 child_inf->pspace = add_program_space (child_inf->aspace);
646 child_inf->removable = 1;
647 child_inf->symfile_flags = SYMFILE_NO_READ;
648 set_current_program_space (child_inf->pspace);
649 clone_program_space (child_inf->pspace, parent_pspace);
650
651 /* Let the shared library layer (e.g., solib-svr4) learn
652 about this new process, relocate the cloned exec, pull in
653 shared libraries, and install the solib event breakpoint.
654 If a "cloned-VM" event was propagated better throughout
655 the core, this wouldn't be required. */
656 solib_create_inferior_hook (0);
657 }
658 }
659
660 return target_follow_fork (follow_child, detach_fork);
661}
662
e58b0e63
PA
663/* Tell the target to follow the fork we're stopped at. Returns true
664 if the inferior should be resumed; false, if the target for some
665 reason decided it's best not to resume. */
666
6604731b 667static int
4ef3f3be 668follow_fork (void)
c906108c 669{
ea1dd7bc 670 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
671 int should_resume = 1;
672 struct thread_info *tp;
673
674 /* Copy user stepping state to the new inferior thread. FIXME: the
675 followed fork child thread should have a copy of most of the
4e3990f4
DE
676 parent thread structure's run control related fields, not just these.
677 Initialized to avoid "may be used uninitialized" warnings from gcc. */
678 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 679 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
680 CORE_ADDR step_range_start = 0;
681 CORE_ADDR step_range_end = 0;
682 struct frame_id step_frame_id = { 0 };
8980e177 683 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
684
685 if (!non_stop)
686 {
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
693 /* If not stopped at a fork event, then there's nothing else to
694 do. */
695 if (wait_status.kind != TARGET_WAITKIND_FORKED
696 && wait_status.kind != TARGET_WAITKIND_VFORKED)
697 return 1;
698
699 /* Check if we switched over from WAIT_PTID, since the event was
700 reported. */
701 if (!ptid_equal (wait_ptid, minus_one_ptid)
702 && !ptid_equal (inferior_ptid, wait_ptid))
703 {
704 /* We did. Switch back to WAIT_PTID thread, to tell the
705 target to follow it (in either direction). We'll
706 afterwards refuse to resume, and inform the user what
707 happened. */
708 switch_to_thread (wait_ptid);
709 should_resume = 0;
710 }
711 }
712
713 tp = inferior_thread ();
714
715 /* If there were any forks/vforks that were caught and are now to be
716 followed, then do so now. */
717 switch (tp->pending_follow.kind)
718 {
719 case TARGET_WAITKIND_FORKED:
720 case TARGET_WAITKIND_VFORKED:
721 {
722 ptid_t parent, child;
723
724 /* If the user did a next/step, etc, over a fork call,
725 preserve the stepping state in the fork child. */
726 if (follow_child && should_resume)
727 {
8358c15c
JK
728 step_resume_breakpoint = clone_momentary_breakpoint
729 (tp->control.step_resume_breakpoint);
16c381f0
JK
730 step_range_start = tp->control.step_range_start;
731 step_range_end = tp->control.step_range_end;
732 step_frame_id = tp->control.step_frame_id;
186c406b
TT
733 exception_resume_breakpoint
734 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 735 thread_fsm = tp->thread_fsm;
e58b0e63
PA
736
737 /* For now, delete the parent's sr breakpoint, otherwise,
738 parent/child sr breakpoints are considered duplicates,
739 and the child version will not be installed. Remove
740 this when the breakpoints module becomes aware of
741 inferiors and address spaces. */
742 delete_step_resume_breakpoint (tp);
16c381f0
JK
743 tp->control.step_range_start = 0;
744 tp->control.step_range_end = 0;
745 tp->control.step_frame_id = null_frame_id;
186c406b 746 delete_exception_resume_breakpoint (tp);
8980e177 747 tp->thread_fsm = NULL;
e58b0e63
PA
748 }
749
750 parent = inferior_ptid;
751 child = tp->pending_follow.value.related_pid;
752
d83ad864
DB
753 /* Set up inferior(s) as specified by the caller, and tell the
754 target to do whatever is necessary to follow either parent
755 or child. */
756 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
757 {
758 /* Target refused to follow, or there's some other reason
759 we shouldn't resume. */
760 should_resume = 0;
761 }
762 else
763 {
764 /* This pending follow fork event is now handled, one way
765 or another. The previous selected thread may be gone
766 from the lists by now, but if it is still around, need
767 to clear the pending follow request. */
e09875d4 768 tp = find_thread_ptid (parent);
e58b0e63
PA
769 if (tp)
770 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
771
772 /* This makes sure we don't try to apply the "Switched
773 over from WAIT_PID" logic above. */
774 nullify_last_target_wait_ptid ();
775
1777feb0 776 /* If we followed the child, switch to it... */
e58b0e63
PA
777 if (follow_child)
778 {
779 switch_to_thread (child);
780
781 /* ... and preserve the stepping state, in case the
782 user was stepping over the fork call. */
783 if (should_resume)
784 {
785 tp = inferior_thread ();
8358c15c
JK
786 tp->control.step_resume_breakpoint
787 = step_resume_breakpoint;
16c381f0
JK
788 tp->control.step_range_start = step_range_start;
789 tp->control.step_range_end = step_range_end;
790 tp->control.step_frame_id = step_frame_id;
186c406b
TT
791 tp->control.exception_resume_breakpoint
792 = exception_resume_breakpoint;
8980e177 793 tp->thread_fsm = thread_fsm;
e58b0e63
PA
794 }
795 else
796 {
797 /* If we get here, it was because we're trying to
798 resume from a fork catchpoint, but, the user
799 has switched threads away from the thread that
800 forked. In that case, the resume command
801 issued is most likely not applicable to the
802 child, so just warn, and refuse to resume. */
3e43a32a 803 warning (_("Not resuming: switched threads "
fd7dcb94 804 "before following fork child."));
e58b0e63
PA
805 }
806
807 /* Reset breakpoints in the child as appropriate. */
808 follow_inferior_reset_breakpoints ();
809 }
810 else
811 switch_to_thread (parent);
812 }
813 }
814 break;
815 case TARGET_WAITKIND_SPURIOUS:
816 /* Nothing to follow. */
817 break;
818 default:
819 internal_error (__FILE__, __LINE__,
820 "Unexpected pending_follow.kind %d\n",
821 tp->pending_follow.kind);
822 break;
823 }
c906108c 824
e58b0e63 825 return should_resume;
c906108c
SS
826}
827
d83ad864 828static void
6604731b 829follow_inferior_reset_breakpoints (void)
c906108c 830{
4e1c45ea
PA
831 struct thread_info *tp = inferior_thread ();
832
6604731b
DJ
833 /* Was there a step_resume breakpoint? (There was if the user
834 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
835 thread number. Cloned step_resume breakpoints are disabled on
836 creation, so enable it here now that it is associated with the
837 correct thread.
6604731b
DJ
838
839 step_resumes are a form of bp that are made to be per-thread.
840 Since we created the step_resume bp when the parent process
841 was being debugged, and now are switching to the child process,
842 from the breakpoint package's viewpoint, that's a switch of
843 "threads". We must update the bp's notion of which thread
844 it is for, or it'll be ignored when it triggers. */
845
8358c15c 846 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
849 tp->control.step_resume_breakpoint->loc->enabled = 1;
850 }
6604731b 851
a1aa2221 852 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 853 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
856 tp->control.exception_resume_breakpoint->loc->enabled = 1;
857 }
186c406b 858
6604731b
DJ
859 /* Reinsert all breakpoints in the child. The user may have set
860 breakpoints after catching the fork, in which case those
861 were never set in the child, but only in the parent. This makes
862 sure the inserted breakpoints match the breakpoint list. */
863
864 breakpoint_re_set ();
865 insert_breakpoints ();
c906108c 866}
c906108c 867
6c95b8df
PA
868/* The child has exited or execed: resume threads of the parent the
869 user wanted to be executing. */
870
871static int
872proceed_after_vfork_done (struct thread_info *thread,
873 void *arg)
874{
875 int pid = * (int *) arg;
876
877 if (ptid_get_pid (thread->ptid) == pid
878 && is_running (thread->ptid)
879 && !is_executing (thread->ptid)
880 && !thread->stop_requested
a493e3e2 881 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
882 {
883 if (debug_infrun)
884 fprintf_unfiltered (gdb_stdlog,
885 "infrun: resuming vfork parent thread %s\n",
886 target_pid_to_str (thread->ptid));
887
888 switch_to_thread (thread->ptid);
70509625 889 clear_proceed_status (0);
64ce06e4 890 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
891 }
892
893 return 0;
894}
895
5ed8105e
PA
896/* Save/restore inferior_ptid, current program space and current
897 inferior. Only use this if the current context points at an exited
898 inferior (and therefore there's no current thread to save). */
899class scoped_restore_exited_inferior
900{
901public:
902 scoped_restore_exited_inferior ()
903 : m_saved_ptid (&inferior_ptid)
904 {}
905
906private:
907 scoped_restore_tmpl<ptid_t> m_saved_ptid;
908 scoped_restore_current_program_space m_pspace;
909 scoped_restore_current_inferior m_inferior;
910};
911
6c95b8df
PA
912/* Called whenever we notice an exec or exit event, to handle
913 detaching or resuming a vfork parent. */
914
915static void
916handle_vfork_child_exec_or_exit (int exec)
917{
918 struct inferior *inf = current_inferior ();
919
920 if (inf->vfork_parent)
921 {
922 int resume_parent = -1;
923
924 /* This exec or exit marks the end of the shared memory region
925 between the parent and the child. If the user wanted to
926 detach from the parent, now is the time. */
927
928 if (inf->vfork_parent->pending_detach)
929 {
930 struct thread_info *tp;
6c95b8df
PA
931 struct program_space *pspace;
932 struct address_space *aspace;
933
1777feb0 934 /* follow-fork child, detach-on-fork on. */
6c95b8df 935
68c9da30
PA
936 inf->vfork_parent->pending_detach = 0;
937
5ed8105e
PA
938 gdb::optional<scoped_restore_exited_inferior>
939 maybe_restore_inferior;
940 gdb::optional<scoped_restore_current_pspace_and_thread>
941 maybe_restore_thread;
942
943 /* If we're handling a child exit, then inferior_ptid points
944 at the inferior's pid, not to a thread. */
f50f4e56 945 if (!exec)
5ed8105e 946 maybe_restore_inferior.emplace ();
f50f4e56 947 else
5ed8105e 948 maybe_restore_thread.emplace ();
6c95b8df
PA
949
950 /* We're letting loose of the parent. */
951 tp = any_live_thread_of_process (inf->vfork_parent->pid);
952 switch_to_thread (tp->ptid);
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
971 if (debug_infrun || info_verbose)
972 {
223ffa71 973 target_terminal::ours_for_output ();
6c95b8df
PA
974
975 if (exec)
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("Detaching vfork parent process "
979 "%d after child exec.\n"),
980 inf->vfork_parent->pid);
981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
985 _("Detaching vfork parent process "
986 "%d after child exit.\n"),
987 inf->vfork_parent->pid);
988 }
6c95b8df
PA
989 }
990
991 target_detach (NULL, 0);
992
993 /* Put it back. */
994 inf->pspace = pspace;
995 inf->aspace = aspace;
6c95b8df
PA
996 }
997 else if (exec)
998 {
999 /* We're staying attached to the parent, so, really give the
1000 child a new address space. */
1001 inf->pspace = add_program_space (maybe_new_address_space ());
1002 inf->aspace = inf->pspace->aspace;
1003 inf->removable = 1;
1004 set_current_program_space (inf->pspace);
1005
1006 resume_parent = inf->vfork_parent->pid;
1007
1008 /* Break the bonds. */
1009 inf->vfork_parent->vfork_child = NULL;
1010 }
1011 else
1012 {
6c95b8df
PA
1013 struct program_space *pspace;
1014
1015 /* If this is a vfork child exiting, then the pspace and
1016 aspaces were shared with the parent. Since we're
1017 reporting the process exit, we'll be mourning all that is
1018 found in the address space, and switching to null_ptid,
1019 preparing to start a new inferior. But, since we don't
1020 want to clobber the parent's address/program spaces, we
1021 go ahead and create a new one for this exiting
1022 inferior. */
1023
5ed8105e
PA
1024 /* Switch to null_ptid while running clone_program_space, so
1025 that clone_program_space doesn't want to read the
1026 selected frame of a dead process. */
1027 scoped_restore restore_ptid
1028 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1029
1030 /* This inferior is dead, so avoid giving the breakpoints
1031 module the option to write through to it (cloning a
1032 program space resets breakpoints). */
1033 inf->aspace = NULL;
1034 inf->pspace = NULL;
1035 pspace = add_program_space (maybe_new_address_space ());
1036 set_current_program_space (pspace);
1037 inf->removable = 1;
7dcd53a0 1038 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1039 clone_program_space (pspace, inf->vfork_parent->pspace);
1040 inf->pspace = pspace;
1041 inf->aspace = pspace->aspace;
1042
6c95b8df
PA
1043 resume_parent = inf->vfork_parent->pid;
1044 /* Break the bonds. */
1045 inf->vfork_parent->vfork_child = NULL;
1046 }
1047
1048 inf->vfork_parent = NULL;
1049
1050 gdb_assert (current_program_space == inf->pspace);
1051
1052 if (non_stop && resume_parent != -1)
1053 {
1054 /* If the user wanted the parent to be running, let it go
1055 free now. */
5ed8105e 1056 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1057
1058 if (debug_infrun)
3e43a32a
MS
1059 fprintf_unfiltered (gdb_stdlog,
1060 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1061 resume_parent);
1062
1063 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1064 }
1065 }
1066}
1067
eb6c553b 1068/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1069
1070static const char follow_exec_mode_new[] = "new";
1071static const char follow_exec_mode_same[] = "same";
40478521 1072static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1073{
1074 follow_exec_mode_new,
1075 follow_exec_mode_same,
1076 NULL,
1077};
1078
1079static const char *follow_exec_mode_string = follow_exec_mode_same;
1080static void
1081show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1082 struct cmd_list_element *c, const char *value)
1083{
1084 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1085}
1086
ecf45d2c 1087/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1088
c906108c 1089static void
ecf45d2c 1090follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1091{
95e50b27 1092 struct thread_info *th, *tmp;
6c95b8df 1093 struct inferior *inf = current_inferior ();
95e50b27 1094 int pid = ptid_get_pid (ptid);
94585166 1095 ptid_t process_ptid;
ecf45d2c
SL
1096 char *exec_file_host;
1097 struct cleanup *old_chain;
7a292a7a 1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten witha TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
8a06aea7 1141 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1142 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1143 delete_thread (th->ptid);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
94585166 1164 process_ptid = pid_to_ptid (pid);
6c95b8df 1165 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1166 target_pid_to_str (process_ptid),
ecf45d2c 1167 exec_file_target);
c906108c
SS
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1170 inferior has essentially been killed & reborn. */
7a292a7a 1171
c906108c 1172 gdb_flush (gdb_stdout);
6ca15a4b
PA
1173
1174 breakpoint_init_inferior (inf_execd);
e85a822c 1175
ecf45d2c
SL
1176 exec_file_host = exec_file_find (exec_file_target, NULL);
1177 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1178
ecf45d2c
SL
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
c906108c 1187
cce9b6bf
PA
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
6c95b8df
PA
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
6c95b8df
PA
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
17d8546e
DB
1201 /* Do exit processing for the original inferior before adding
1202 the new inferior so we don't have two active inferiors with
1203 the same ptid, which can confuse find_inferior_ptid. */
1204 exit_inferior_num_silent (current_inferior ()->num);
1205
94585166
DB
1206 inf = add_inferior_with_spaces ();
1207 inf->pid = pid;
ecf45d2c 1208 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1209
1210 set_current_inferior (inf);
94585166 1211 set_current_program_space (inf->pspace);
6c95b8df 1212 }
9107fc8d
PA
1213 else
1214 {
1215 /* The old description may no longer be fit for the new image.
1216 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1217 old description; we'll read a new one below. No need to do
1218 this on "follow-exec-mode new", as the old inferior stays
1219 around (its description is later cleared/refetched on
1220 restart). */
1221 target_clear_description ();
1222 }
6c95b8df
PA
1223
1224 gdb_assert (current_program_space == inf->pspace);
1225
ecf45d2c
SL
1226 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1227 because the proper displacement for a PIE (Position Independent
1228 Executable) main symbol file will only be computed by
1229 solib_create_inferior_hook below. breakpoint_re_set would fail
1230 to insert the breakpoints with the zero displacement. */
1231 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1232
ecf45d2c 1233 do_cleanups (old_chain);
c906108c 1234
9107fc8d
PA
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
bf93d7ba
SM
1243 /* The add_thread call ends up reading registers, so do it after updating the
1244 target description. */
1245 if (follow_exec_mode_string == follow_exec_mode_new)
1246 add_thread (ptid);
1247
268a4a75 1248 solib_create_inferior_hook (0);
c906108c 1249
4efc6507
DE
1250 jit_inferior_created_hook ();
1251
c1e56572
JK
1252 breakpoint_re_set ();
1253
c906108c
SS
1254 /* Reinsert all breakpoints. (Those which were symbolic have
1255 been reset to the proper address in the new a.out, thanks
1777feb0 1256 to symbol_file_command...). */
c906108c
SS
1257 insert_breakpoints ();
1258
1259 /* The next resume of this inferior should bring it to the shlib
1260 startup breakpoints. (If the user had also set bp's on
1261 "main" from the old (parent) process, then they'll auto-
1777feb0 1262 matically get reset there in the new process.). */
c906108c
SS
1263}
1264
c2829269
PA
1265/* The queue of threads that need to do a step-over operation to get
1266 past e.g., a breakpoint. What technique is used to step over the
1267 breakpoint/watchpoint does not matter -- all threads end up in the
1268 same queue, to maintain rough temporal order of execution, in order
1269 to avoid starvation, otherwise, we could e.g., find ourselves
1270 constantly stepping the same couple threads past their breakpoints
1271 over and over, if the single-step finish fast enough. */
1272struct thread_info *step_over_queue_head;
1273
6c4cfb24
PA
1274/* Bit flags indicating what the thread needs to step over. */
1275
8d297bbf 1276enum step_over_what_flag
6c4cfb24
PA
1277 {
1278 /* Step over a breakpoint. */
1279 STEP_OVER_BREAKPOINT = 1,
1280
1281 /* Step past a non-continuable watchpoint, in order to let the
1282 instruction execute so we can evaluate the watchpoint
1283 expression. */
1284 STEP_OVER_WATCHPOINT = 2
1285 };
8d297bbf 1286DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
21edc42f
YQ
1302
1303 /* The thread's global number. */
1304 int thread;
31e77af2
PA
1305};
1306
1307/* The step-over info of the location that is being stepped over.
1308
1309 Note that with async/breakpoint always-inserted mode, a user might
1310 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1311 being stepped over. As setting a new breakpoint inserts all
1312 breakpoints, we need to make sure the breakpoint being stepped over
1313 isn't inserted then. We do that by only clearing the step-over
1314 info when the step-over is actually finished (or aborted).
1315
1316 Presently GDB can only step over one breakpoint at any given time.
1317 Given threads that can't run code in the same address space as the
1318 breakpoint's can't really miss the breakpoint, GDB could be taught
1319 to step-over at most one breakpoint per address space (so this info
1320 could move to the address space object if/when GDB is extended).
1321 The set of breakpoints being stepped over will normally be much
1322 smaller than the set of all breakpoints, so a flag in the
1323 breakpoint location structure would be wasteful. A separate list
1324 also saves complexity and run-time, as otherwise we'd have to go
1325 through all breakpoint locations clearing their flag whenever we
1326 start a new sequence. Similar considerations weigh against storing
1327 this info in the thread object. Plus, not all step overs actually
1328 have breakpoint locations -- e.g., stepping past a single-step
1329 breakpoint, or stepping to complete a non-continuable
1330 watchpoint. */
1331static struct step_over_info step_over_info;
1332
1333/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1334 stepping over.
1335 N.B. We record the aspace and address now, instead of say just the thread,
1336 because when we need the info later the thread may be running. */
31e77af2
PA
1337
1338static void
963f9c80 1339set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1340 int nonsteppable_watchpoint_p,
1341 int thread)
31e77af2
PA
1342{
1343 step_over_info.aspace = aspace;
1344 step_over_info.address = address;
963f9c80 1345 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1346 step_over_info.thread = thread;
31e77af2
PA
1347}
1348
1349/* Called when we're not longer stepping over a breakpoint / an
1350 instruction, so all breakpoints are free to be (re)inserted. */
1351
1352static void
1353clear_step_over_info (void)
1354{
372316f1
PA
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog,
1357 "infrun: clear_step_over_info\n");
31e77af2
PA
1358 step_over_info.aspace = NULL;
1359 step_over_info.address = 0;
963f9c80 1360 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1361 step_over_info.thread = -1;
31e77af2
PA
1362}
1363
7f89fd65 1364/* See infrun.h. */
31e77af2
PA
1365
1366int
1367stepping_past_instruction_at (struct address_space *aspace,
1368 CORE_ADDR address)
1369{
1370 return (step_over_info.aspace != NULL
1371 && breakpoint_address_match (aspace, address,
1372 step_over_info.aspace,
1373 step_over_info.address));
1374}
1375
963f9c80
PA
1376/* See infrun.h. */
1377
21edc42f
YQ
1378int
1379thread_is_stepping_over_breakpoint (int thread)
1380{
1381 return (step_over_info.thread != -1
1382 && thread == step_over_info.thread);
1383}
1384
1385/* See infrun.h. */
1386
963f9c80
PA
1387int
1388stepping_past_nonsteppable_watchpoint (void)
1389{
1390 return step_over_info.nonsteppable_watchpoint_p;
1391}
1392
6cc83d2a
PA
1393/* Returns true if step-over info is valid. */
1394
1395static int
1396step_over_info_valid_p (void)
1397{
963f9c80
PA
1398 return (step_over_info.aspace != NULL
1399 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1400}
1401
c906108c 1402\f
237fc4c9
PA
1403/* Displaced stepping. */
1404
1405/* In non-stop debugging mode, we must take special care to manage
1406 breakpoints properly; in particular, the traditional strategy for
1407 stepping a thread past a breakpoint it has hit is unsuitable.
1408 'Displaced stepping' is a tactic for stepping one thread past a
1409 breakpoint it has hit while ensuring that other threads running
1410 concurrently will hit the breakpoint as they should.
1411
1412 The traditional way to step a thread T off a breakpoint in a
1413 multi-threaded program in all-stop mode is as follows:
1414
1415 a0) Initially, all threads are stopped, and breakpoints are not
1416 inserted.
1417 a1) We single-step T, leaving breakpoints uninserted.
1418 a2) We insert breakpoints, and resume all threads.
1419
1420 In non-stop debugging, however, this strategy is unsuitable: we
1421 don't want to have to stop all threads in the system in order to
1422 continue or step T past a breakpoint. Instead, we use displaced
1423 stepping:
1424
1425 n0) Initially, T is stopped, other threads are running, and
1426 breakpoints are inserted.
1427 n1) We copy the instruction "under" the breakpoint to a separate
1428 location, outside the main code stream, making any adjustments
1429 to the instruction, register, and memory state as directed by
1430 T's architecture.
1431 n2) We single-step T over the instruction at its new location.
1432 n3) We adjust the resulting register and memory state as directed
1433 by T's architecture. This includes resetting T's PC to point
1434 back into the main instruction stream.
1435 n4) We resume T.
1436
1437 This approach depends on the following gdbarch methods:
1438
1439 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1440 indicate where to copy the instruction, and how much space must
1441 be reserved there. We use these in step n1.
1442
1443 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1444 address, and makes any necessary adjustments to the instruction,
1445 register contents, and memory. We use this in step n1.
1446
1447 - gdbarch_displaced_step_fixup adjusts registers and memory after
1448 we have successfuly single-stepped the instruction, to yield the
1449 same effect the instruction would have had if we had executed it
1450 at its original address. We use this in step n3.
1451
1452 - gdbarch_displaced_step_free_closure provides cleanup.
1453
1454 The gdbarch_displaced_step_copy_insn and
1455 gdbarch_displaced_step_fixup functions must be written so that
1456 copying an instruction with gdbarch_displaced_step_copy_insn,
1457 single-stepping across the copied instruction, and then applying
1458 gdbarch_displaced_insn_fixup should have the same effects on the
1459 thread's memory and registers as stepping the instruction in place
1460 would have. Exactly which responsibilities fall to the copy and
1461 which fall to the fixup is up to the author of those functions.
1462
1463 See the comments in gdbarch.sh for details.
1464
1465 Note that displaced stepping and software single-step cannot
1466 currently be used in combination, although with some care I think
1467 they could be made to. Software single-step works by placing
1468 breakpoints on all possible subsequent instructions; if the
1469 displaced instruction is a PC-relative jump, those breakpoints
1470 could fall in very strange places --- on pages that aren't
1471 executable, or at addresses that are not proper instruction
1472 boundaries. (We do generally let other threads run while we wait
1473 to hit the software single-step breakpoint, and they might
1474 encounter such a corrupted instruction.) One way to work around
1475 this would be to have gdbarch_displaced_step_copy_insn fully
1476 simulate the effect of PC-relative instructions (and return NULL)
1477 on architectures that use software single-stepping.
1478
1479 In non-stop mode, we can have independent and simultaneous step
1480 requests, so more than one thread may need to simultaneously step
1481 over a breakpoint. The current implementation assumes there is
1482 only one scratch space per process. In this case, we have to
1483 serialize access to the scratch space. If thread A wants to step
1484 over a breakpoint, but we are currently waiting for some other
1485 thread to complete a displaced step, we leave thread A stopped and
1486 place it in the displaced_step_request_queue. Whenever a displaced
1487 step finishes, we pick the next thread in the queue and start a new
1488 displaced step operation on it. See displaced_step_prepare and
1489 displaced_step_fixup for details. */
1490
fc1cf338
PA
1491/* Per-inferior displaced stepping state. */
1492struct displaced_step_inferior_state
1493{
1494 /* Pointer to next in linked list. */
1495 struct displaced_step_inferior_state *next;
1496
1497 /* The process this displaced step state refers to. */
1498 int pid;
1499
3fc8eb30
PA
1500 /* True if preparing a displaced step ever failed. If so, we won't
1501 try displaced stepping for this inferior again. */
1502 int failed_before;
1503
fc1cf338
PA
1504 /* If this is not null_ptid, this is the thread carrying out a
1505 displaced single-step in process PID. This thread's state will
1506 require fixing up once it has completed its step. */
1507 ptid_t step_ptid;
1508
1509 /* The architecture the thread had when we stepped it. */
1510 struct gdbarch *step_gdbarch;
1511
1512 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1513 for post-step cleanup. */
1514 struct displaced_step_closure *step_closure;
1515
1516 /* The address of the original instruction, and the copy we
1517 made. */
1518 CORE_ADDR step_original, step_copy;
1519
1520 /* Saved contents of copy area. */
1521 gdb_byte *step_saved_copy;
1522};
1523
1524/* The list of states of processes involved in displaced stepping
1525 presently. */
1526static struct displaced_step_inferior_state *displaced_step_inferior_states;
1527
1528/* Get the displaced stepping state of process PID. */
1529
1530static struct displaced_step_inferior_state *
1531get_displaced_stepping_state (int pid)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (state->pid == pid)
1539 return state;
1540
1541 return NULL;
1542}
1543
372316f1
PA
1544/* Returns true if any inferior has a thread doing a displaced
1545 step. */
1546
1547static int
1548displaced_step_in_progress_any_inferior (void)
1549{
1550 struct displaced_step_inferior_state *state;
1551
1552 for (state = displaced_step_inferior_states;
1553 state != NULL;
1554 state = state->next)
1555 if (!ptid_equal (state->step_ptid, null_ptid))
1556 return 1;
1557
1558 return 0;
1559}
1560
c0987663
YQ
1561/* Return true if thread represented by PTID is doing a displaced
1562 step. */
1563
1564static int
1565displaced_step_in_progress_thread (ptid_t ptid)
1566{
1567 struct displaced_step_inferior_state *displaced;
1568
1569 gdb_assert (!ptid_equal (ptid, null_ptid));
1570
1571 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1572
1573 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1574}
1575
8f572e5c
PA
1576/* Return true if process PID has a thread doing a displaced step. */
1577
1578static int
1579displaced_step_in_progress (int pid)
1580{
1581 struct displaced_step_inferior_state *displaced;
1582
1583 displaced = get_displaced_stepping_state (pid);
1584 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1585 return 1;
1586
1587 return 0;
1588}
1589
fc1cf338
PA
1590/* Add a new displaced stepping state for process PID to the displaced
1591 stepping state list, or return a pointer to an already existing
1592 entry, if it already exists. Never returns NULL. */
1593
1594static struct displaced_step_inferior_state *
1595add_displaced_stepping_state (int pid)
1596{
1597 struct displaced_step_inferior_state *state;
1598
1599 for (state = displaced_step_inferior_states;
1600 state != NULL;
1601 state = state->next)
1602 if (state->pid == pid)
1603 return state;
237fc4c9 1604
8d749320 1605 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1606 state->pid = pid;
1607 state->next = displaced_step_inferior_states;
1608 displaced_step_inferior_states = state;
237fc4c9 1609
fc1cf338
PA
1610 return state;
1611}
1612
a42244db
YQ
1613/* If inferior is in displaced stepping, and ADDR equals to starting address
1614 of copy area, return corresponding displaced_step_closure. Otherwise,
1615 return NULL. */
1616
1617struct displaced_step_closure*
1618get_displaced_step_closure_by_addr (CORE_ADDR addr)
1619{
1620 struct displaced_step_inferior_state *displaced
1621 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1622
1623 /* If checking the mode of displaced instruction in copy area. */
1624 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1625 && (displaced->step_copy == addr))
1626 return displaced->step_closure;
1627
1628 return NULL;
1629}
1630
fc1cf338 1631/* Remove the displaced stepping state of process PID. */
237fc4c9 1632
fc1cf338
PA
1633static void
1634remove_displaced_stepping_state (int pid)
1635{
1636 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1637
fc1cf338
PA
1638 gdb_assert (pid != 0);
1639
1640 it = displaced_step_inferior_states;
1641 prev_next_p = &displaced_step_inferior_states;
1642 while (it)
1643 {
1644 if (it->pid == pid)
1645 {
1646 *prev_next_p = it->next;
1647 xfree (it);
1648 return;
1649 }
1650
1651 prev_next_p = &it->next;
1652 it = *prev_next_p;
1653 }
1654}
1655
1656static void
1657infrun_inferior_exit (struct inferior *inf)
1658{
1659 remove_displaced_stepping_state (inf->pid);
1660}
237fc4c9 1661
fff08868
HZ
1662/* If ON, and the architecture supports it, GDB will use displaced
1663 stepping to step over breakpoints. If OFF, or if the architecture
1664 doesn't support it, GDB will instead use the traditional
1665 hold-and-step approach. If AUTO (which is the default), GDB will
1666 decide which technique to use to step over breakpoints depending on
1667 which of all-stop or non-stop mode is active --- displaced stepping
1668 in non-stop mode; hold-and-step in all-stop mode. */
1669
72d0e2c5 1670static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1671
237fc4c9
PA
1672static void
1673show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1674 struct cmd_list_element *c,
1675 const char *value)
1676{
72d0e2c5 1677 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1678 fprintf_filtered (file,
1679 _("Debugger's willingness to use displaced stepping "
1680 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1681 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1682 else
3e43a32a
MS
1683 fprintf_filtered (file,
1684 _("Debugger's willingness to use displaced stepping "
1685 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1686}
1687
fff08868 1688/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1689 over breakpoints of thread TP. */
fff08868 1690
237fc4c9 1691static int
3fc8eb30 1692use_displaced_stepping (struct thread_info *tp)
237fc4c9 1693{
3fc8eb30
PA
1694 struct regcache *regcache = get_thread_regcache (tp->ptid);
1695 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1696 struct displaced_step_inferior_state *displaced_state;
1697
1698 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1699
fbea99ea
PA
1700 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1701 && target_is_non_stop_p ())
72d0e2c5 1702 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1703 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1704 && find_record_target () == NULL
1705 && (displaced_state == NULL
1706 || !displaced_state->failed_before));
237fc4c9
PA
1707}
1708
1709/* Clean out any stray displaced stepping state. */
1710static void
fc1cf338 1711displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1712{
1713 /* Indicate that there is no cleanup pending. */
fc1cf338 1714 displaced->step_ptid = null_ptid;
237fc4c9 1715
6d45d4b4
SM
1716 xfree (displaced->step_closure);
1717 displaced->step_closure = NULL;
237fc4c9
PA
1718}
1719
1720static void
fc1cf338 1721displaced_step_clear_cleanup (void *arg)
237fc4c9 1722{
9a3c8263
SM
1723 struct displaced_step_inferior_state *state
1724 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1725
1726 displaced_step_clear (state);
237fc4c9
PA
1727}
1728
1729/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1730void
1731displaced_step_dump_bytes (struct ui_file *file,
1732 const gdb_byte *buf,
1733 size_t len)
1734{
1735 int i;
1736
1737 for (i = 0; i < len; i++)
1738 fprintf_unfiltered (file, "%02x ", buf[i]);
1739 fputs_unfiltered ("\n", file);
1740}
1741
1742/* Prepare to single-step, using displaced stepping.
1743
1744 Note that we cannot use displaced stepping when we have a signal to
1745 deliver. If we have a signal to deliver and an instruction to step
1746 over, then after the step, there will be no indication from the
1747 target whether the thread entered a signal handler or ignored the
1748 signal and stepped over the instruction successfully --- both cases
1749 result in a simple SIGTRAP. In the first case we mustn't do a
1750 fixup, and in the second case we must --- but we can't tell which.
1751 Comments in the code for 'random signals' in handle_inferior_event
1752 explain how we handle this case instead.
1753
1754 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1755 stepped now; 0 if displaced stepping this thread got queued; or -1
1756 if this instruction can't be displaced stepped. */
1757
237fc4c9 1758static int
3fc8eb30 1759displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1760{
2989a365 1761 struct cleanup *ignore_cleanups;
c1e36e3e 1762 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1763 struct regcache *regcache = get_thread_regcache (ptid);
1764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1765 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1766 CORE_ADDR original, copy;
1767 ULONGEST len;
1768 struct displaced_step_closure *closure;
fc1cf338 1769 struct displaced_step_inferior_state *displaced;
9e529e1d 1770 int status;
237fc4c9
PA
1771
1772 /* We should never reach this function if the architecture does not
1773 support displaced stepping. */
1774 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1775
c2829269
PA
1776 /* Nor if the thread isn't meant to step over a breakpoint. */
1777 gdb_assert (tp->control.trap_expected);
1778
c1e36e3e
PA
1779 /* Disable range stepping while executing in the scratch pad. We
1780 want a single-step even if executing the displaced instruction in
1781 the scratch buffer lands within the stepping range (e.g., a
1782 jump/branch). */
1783 tp->control.may_range_step = 0;
1784
fc1cf338
PA
1785 /* We have to displaced step one thread at a time, as we only have
1786 access to a single scratch space per inferior. */
237fc4c9 1787
fc1cf338
PA
1788 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1789
1790 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1791 {
1792 /* Already waiting for a displaced step to finish. Defer this
1793 request and place in queue. */
237fc4c9
PA
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
c2829269 1797 "displaced: deferring step of %s\n",
237fc4c9
PA
1798 target_pid_to_str (ptid));
1799
c2829269 1800 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1801 return 0;
1802 }
1803 else
1804 {
1805 if (debug_displaced)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "displaced: stepping %s now\n",
1808 target_pid_to_str (ptid));
1809 }
1810
fc1cf338 1811 displaced_step_clear (displaced);
237fc4c9 1812
2989a365 1813 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1814 inferior_ptid = ptid;
1815
515630c5 1816 original = regcache_read_pc (regcache);
237fc4c9
PA
1817
1818 copy = gdbarch_displaced_step_location (gdbarch);
1819 len = gdbarch_max_insn_length (gdbarch);
1820
d35ae833
PA
1821 if (breakpoint_in_range_p (aspace, copy, len))
1822 {
1823 /* There's a breakpoint set in the scratch pad location range
1824 (which is usually around the entry point). We'd either
1825 install it before resuming, which would overwrite/corrupt the
1826 scratch pad, or if it was already inserted, this displaced
1827 step would overwrite it. The latter is OK in the sense that
1828 we already assume that no thread is going to execute the code
1829 in the scratch pad range (after initial startup) anyway, but
1830 the former is unacceptable. Simply punt and fallback to
1831 stepping over this breakpoint in-line. */
1832 if (debug_displaced)
1833 {
1834 fprintf_unfiltered (gdb_stdlog,
1835 "displaced: breakpoint set in scratch pad. "
1836 "Stepping over breakpoint in-line instead.\n");
1837 }
1838
d35ae833
PA
1839 return -1;
1840 }
1841
237fc4c9 1842 /* Save the original contents of the copy area. */
224c3ddb 1843 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1844 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1845 &displaced->step_saved_copy);
9e529e1d
JK
1846 status = target_read_memory (copy, displaced->step_saved_copy, len);
1847 if (status != 0)
1848 throw_error (MEMORY_ERROR,
1849 _("Error accessing memory address %s (%s) for "
1850 "displaced-stepping scratch space."),
1851 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1852 if (debug_displaced)
1853 {
5af949e3
UW
1854 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 paddress (gdbarch, copy));
fc1cf338
PA
1856 displaced_step_dump_bytes (gdb_stdlog,
1857 displaced->step_saved_copy,
1858 len);
237fc4c9
PA
1859 };
1860
1861 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1862 original, copy, regcache);
7f03bd92
PA
1863 if (closure == NULL)
1864 {
1865 /* The architecture doesn't know how or want to displaced step
1866 this instruction or instruction sequence. Fallback to
1867 stepping over the breakpoint in-line. */
2989a365 1868 do_cleanups (ignore_cleanups);
7f03bd92
PA
1869 return -1;
1870 }
237fc4c9 1871
9f5a595d
UW
1872 /* Save the information we need to fix things up if the step
1873 succeeds. */
fc1cf338
PA
1874 displaced->step_ptid = ptid;
1875 displaced->step_gdbarch = gdbarch;
1876 displaced->step_closure = closure;
1877 displaced->step_original = original;
1878 displaced->step_copy = copy;
9f5a595d 1879
fc1cf338 1880 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1881
1882 /* Resume execution at the copy. */
515630c5 1883 regcache_write_pc (regcache, copy);
237fc4c9 1884
ad53cd71
PA
1885 discard_cleanups (ignore_cleanups);
1886
237fc4c9 1887 if (debug_displaced)
5af949e3
UW
1888 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1889 paddress (gdbarch, copy));
237fc4c9 1890
237fc4c9
PA
1891 return 1;
1892}
1893
3fc8eb30
PA
1894/* Wrapper for displaced_step_prepare_throw that disabled further
1895 attempts at displaced stepping if we get a memory error. */
1896
1897static int
1898displaced_step_prepare (ptid_t ptid)
1899{
1900 int prepared = -1;
1901
1902 TRY
1903 {
1904 prepared = displaced_step_prepare_throw (ptid);
1905 }
1906 CATCH (ex, RETURN_MASK_ERROR)
1907 {
1908 struct displaced_step_inferior_state *displaced_state;
1909
16b41842
PA
1910 if (ex.error != MEMORY_ERROR
1911 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1912 throw_exception (ex);
1913
1914 if (debug_infrun)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "infrun: disabling displaced stepping: %s\n",
1918 ex.message);
1919 }
1920
1921 /* Be verbose if "set displaced-stepping" is "on", silent if
1922 "auto". */
1923 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1924 {
fd7dcb94 1925 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1926 ex.message);
1927 }
1928
1929 /* Disable further displaced stepping attempts. */
1930 displaced_state
1931 = get_displaced_stepping_state (ptid_get_pid (ptid));
1932 displaced_state->failed_before = 1;
1933 }
1934 END_CATCH
1935
1936 return prepared;
1937}
1938
237fc4c9 1939static void
3e43a32a
MS
1940write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1941 const gdb_byte *myaddr, int len)
237fc4c9 1942{
2989a365 1943 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1944
237fc4c9
PA
1945 inferior_ptid = ptid;
1946 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1947}
1948
e2d96639
YQ
1949/* Restore the contents of the copy area for thread PTID. */
1950
1951static void
1952displaced_step_restore (struct displaced_step_inferior_state *displaced,
1953 ptid_t ptid)
1954{
1955 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1956
1957 write_memory_ptid (ptid, displaced->step_copy,
1958 displaced->step_saved_copy, len);
1959 if (debug_displaced)
1960 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1961 target_pid_to_str (ptid),
1962 paddress (displaced->step_gdbarch,
1963 displaced->step_copy));
1964}
1965
372316f1
PA
1966/* If we displaced stepped an instruction successfully, adjust
1967 registers and memory to yield the same effect the instruction would
1968 have had if we had executed it at its original address, and return
1969 1. If the instruction didn't complete, relocate the PC and return
1970 -1. If the thread wasn't displaced stepping, return 0. */
1971
1972static int
2ea28649 1973displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1974{
1975 struct cleanup *old_cleanups;
fc1cf338
PA
1976 struct displaced_step_inferior_state *displaced
1977 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1978 int ret;
fc1cf338
PA
1979
1980 /* Was any thread of this process doing a displaced step? */
1981 if (displaced == NULL)
372316f1 1982 return 0;
237fc4c9
PA
1983
1984 /* Was this event for the pid we displaced? */
fc1cf338
PA
1985 if (ptid_equal (displaced->step_ptid, null_ptid)
1986 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1987 return 0;
237fc4c9 1988
fc1cf338 1989 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1990
e2d96639 1991 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1992
cb71640d
PA
1993 /* Fixup may need to read memory/registers. Switch to the thread
1994 that we're fixing up. Also, target_stopped_by_watchpoint checks
1995 the current thread. */
1996 switch_to_thread (event_ptid);
1997
237fc4c9 1998 /* Did the instruction complete successfully? */
cb71640d
PA
1999 if (signal == GDB_SIGNAL_TRAP
2000 && !(target_stopped_by_watchpoint ()
2001 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2002 || target_have_steppable_watchpoint)))
237fc4c9
PA
2003 {
2004 /* Fix up the resulting state. */
fc1cf338
PA
2005 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2006 displaced->step_closure,
2007 displaced->step_original,
2008 displaced->step_copy,
2009 get_thread_regcache (displaced->step_ptid));
372316f1 2010 ret = 1;
237fc4c9
PA
2011 }
2012 else
2013 {
2014 /* Since the instruction didn't complete, all we can do is
2015 relocate the PC. */
515630c5
UW
2016 struct regcache *regcache = get_thread_regcache (event_ptid);
2017 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2018
fc1cf338 2019 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2020 regcache_write_pc (regcache, pc);
372316f1 2021 ret = -1;
237fc4c9
PA
2022 }
2023
2024 do_cleanups (old_cleanups);
2025
fc1cf338 2026 displaced->step_ptid = null_ptid;
372316f1
PA
2027
2028 return ret;
c2829269 2029}
1c5cfe86 2030
4d9d9d04
PA
2031/* Data to be passed around while handling an event. This data is
2032 discarded between events. */
2033struct execution_control_state
2034{
2035 ptid_t ptid;
2036 /* The thread that got the event, if this was a thread event; NULL
2037 otherwise. */
2038 struct thread_info *event_thread;
2039
2040 struct target_waitstatus ws;
2041 int stop_func_filled_in;
2042 CORE_ADDR stop_func_start;
2043 CORE_ADDR stop_func_end;
2044 const char *stop_func_name;
2045 int wait_some_more;
2046
2047 /* True if the event thread hit the single-step breakpoint of
2048 another thread. Thus the event doesn't cause a stop, the thread
2049 needs to be single-stepped past the single-step breakpoint before
2050 we can switch back to the original stepping thread. */
2051 int hit_singlestep_breakpoint;
2052};
2053
2054/* Clear ECS and set it to point at TP. */
c2829269
PA
2055
2056static void
4d9d9d04
PA
2057reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2058{
2059 memset (ecs, 0, sizeof (*ecs));
2060 ecs->event_thread = tp;
2061 ecs->ptid = tp->ptid;
2062}
2063
2064static void keep_going_pass_signal (struct execution_control_state *ecs);
2065static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2066static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2067static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2068
2069/* Are there any pending step-over requests? If so, run all we can
2070 now and return true. Otherwise, return false. */
2071
2072static int
c2829269
PA
2073start_step_over (void)
2074{
2075 struct thread_info *tp, *next;
2076
372316f1
PA
2077 /* Don't start a new step-over if we already have an in-line
2078 step-over operation ongoing. */
2079 if (step_over_info_valid_p ())
2080 return 0;
2081
c2829269 2082 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2083 {
4d9d9d04
PA
2084 struct execution_control_state ecss;
2085 struct execution_control_state *ecs = &ecss;
8d297bbf 2086 step_over_what step_what;
372316f1 2087 int must_be_in_line;
c2829269 2088
c65d6b55
PA
2089 gdb_assert (!tp->stop_requested);
2090
c2829269 2091 next = thread_step_over_chain_next (tp);
237fc4c9 2092
c2829269
PA
2093 /* If this inferior already has a displaced step in process,
2094 don't start a new one. */
4d9d9d04 2095 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2096 continue;
2097
372316f1
PA
2098 step_what = thread_still_needs_step_over (tp);
2099 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2100 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2101 && !use_displaced_stepping (tp)));
372316f1
PA
2102
2103 /* We currently stop all threads of all processes to step-over
2104 in-line. If we need to start a new in-line step-over, let
2105 any pending displaced steps finish first. */
2106 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2107 return 0;
2108
c2829269
PA
2109 thread_step_over_chain_remove (tp);
2110
2111 if (step_over_queue_head == NULL)
2112 {
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: step-over queue now empty\n");
2116 }
2117
372316f1
PA
2118 if (tp->control.trap_expected
2119 || tp->resumed
2120 || tp->executing)
ad53cd71 2121 {
4d9d9d04
PA
2122 internal_error (__FILE__, __LINE__,
2123 "[%s] has inconsistent state: "
372316f1 2124 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2125 target_pid_to_str (tp->ptid),
2126 tp->control.trap_expected,
372316f1 2127 tp->resumed,
4d9d9d04 2128 tp->executing);
ad53cd71 2129 }
1c5cfe86 2130
4d9d9d04
PA
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog,
2133 "infrun: resuming [%s] for step-over\n",
2134 target_pid_to_str (tp->ptid));
2135
2136 /* keep_going_pass_signal skips the step-over if the breakpoint
2137 is no longer inserted. In all-stop, we want to keep looking
2138 for a thread that needs a step-over instead of resuming TP,
2139 because we wouldn't be able to resume anything else until the
2140 target stops again. In non-stop, the resume always resumes
2141 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2142 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2143 continue;
8550d3b3 2144
4d9d9d04
PA
2145 switch_to_thread (tp->ptid);
2146 reset_ecs (ecs, tp);
2147 keep_going_pass_signal (ecs);
1c5cfe86 2148
4d9d9d04
PA
2149 if (!ecs->wait_some_more)
2150 error (_("Command aborted."));
1c5cfe86 2151
372316f1
PA
2152 gdb_assert (tp->resumed);
2153
2154 /* If we started a new in-line step-over, we're done. */
2155 if (step_over_info_valid_p ())
2156 {
2157 gdb_assert (tp->control.trap_expected);
2158 return 1;
2159 }
2160
fbea99ea 2161 if (!target_is_non_stop_p ())
4d9d9d04
PA
2162 {
2163 /* On all-stop, shouldn't have resumed unless we needed a
2164 step over. */
2165 gdb_assert (tp->control.trap_expected
2166 || tp->step_after_step_resume_breakpoint);
2167
2168 /* With remote targets (at least), in all-stop, we can't
2169 issue any further remote commands until the program stops
2170 again. */
2171 return 1;
1c5cfe86 2172 }
c2829269 2173
4d9d9d04
PA
2174 /* Either the thread no longer needed a step-over, or a new
2175 displaced stepping sequence started. Even in the latter
2176 case, continue looking. Maybe we can also start another
2177 displaced step on a thread of other process. */
237fc4c9 2178 }
4d9d9d04
PA
2179
2180 return 0;
237fc4c9
PA
2181}
2182
5231c1fd
PA
2183/* Update global variables holding ptids to hold NEW_PTID if they were
2184 holding OLD_PTID. */
2185static void
2186infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2187{
fc1cf338 2188 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2189
2190 if (ptid_equal (inferior_ptid, old_ptid))
2191 inferior_ptid = new_ptid;
2192
fc1cf338
PA
2193 for (displaced = displaced_step_inferior_states;
2194 displaced;
2195 displaced = displaced->next)
2196 {
2197 if (ptid_equal (displaced->step_ptid, old_ptid))
2198 displaced->step_ptid = new_ptid;
fc1cf338 2199 }
5231c1fd
PA
2200}
2201
237fc4c9
PA
2202\f
2203/* Resuming. */
c906108c
SS
2204
2205/* Things to clean up if we QUIT out of resume (). */
c906108c 2206static void
74b7792f 2207resume_cleanups (void *ignore)
c906108c 2208{
34b7e8a6
PA
2209 if (!ptid_equal (inferior_ptid, null_ptid))
2210 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2211
c906108c
SS
2212 normal_stop ();
2213}
2214
53904c9e
AC
2215static const char schedlock_off[] = "off";
2216static const char schedlock_on[] = "on";
2217static const char schedlock_step[] = "step";
f2665db5 2218static const char schedlock_replay[] = "replay";
40478521 2219static const char *const scheduler_enums[] = {
ef346e04
AC
2220 schedlock_off,
2221 schedlock_on,
2222 schedlock_step,
f2665db5 2223 schedlock_replay,
ef346e04
AC
2224 NULL
2225};
f2665db5 2226static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2227static void
2228show_scheduler_mode (struct ui_file *file, int from_tty,
2229 struct cmd_list_element *c, const char *value)
2230{
3e43a32a
MS
2231 fprintf_filtered (file,
2232 _("Mode for locking scheduler "
2233 "during execution is \"%s\".\n"),
920d2a44
AC
2234 value);
2235}
c906108c
SS
2236
2237static void
96baa820 2238set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2239{
eefe576e
AC
2240 if (!target_can_lock_scheduler)
2241 {
2242 scheduler_mode = schedlock_off;
2243 error (_("Target '%s' cannot support this command."), target_shortname);
2244 }
c906108c
SS
2245}
2246
d4db2f36
PA
2247/* True if execution commands resume all threads of all processes by
2248 default; otherwise, resume only threads of the current inferior
2249 process. */
2250int sched_multi = 0;
2251
2facfe5c
DD
2252/* Try to setup for software single stepping over the specified location.
2253 Return 1 if target_resume() should use hardware single step.
2254
2255 GDBARCH the current gdbarch.
2256 PC the location to step over. */
2257
2258static int
2259maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2260{
2261 int hw_step = 1;
2262
f02253f1 2263 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2264 && gdbarch_software_single_step_p (gdbarch))
2265 hw_step = !insert_single_step_breakpoints (gdbarch);
2266
2facfe5c
DD
2267 return hw_step;
2268}
c906108c 2269
f3263aa4
PA
2270/* See infrun.h. */
2271
09cee04b
PA
2272ptid_t
2273user_visible_resume_ptid (int step)
2274{
f3263aa4 2275 ptid_t resume_ptid;
09cee04b 2276
09cee04b
PA
2277 if (non_stop)
2278 {
2279 /* With non-stop mode on, threads are always handled
2280 individually. */
2281 resume_ptid = inferior_ptid;
2282 }
2283 else if ((scheduler_mode == schedlock_on)
03d46957 2284 || (scheduler_mode == schedlock_step && step))
09cee04b 2285 {
f3263aa4
PA
2286 /* User-settable 'scheduler' mode requires solo thread
2287 resume. */
09cee04b
PA
2288 resume_ptid = inferior_ptid;
2289 }
f2665db5
MM
2290 else if ((scheduler_mode == schedlock_replay)
2291 && target_record_will_replay (minus_one_ptid, execution_direction))
2292 {
2293 /* User-settable 'scheduler' mode requires solo thread resume in replay
2294 mode. */
2295 resume_ptid = inferior_ptid;
2296 }
f3263aa4
PA
2297 else if (!sched_multi && target_supports_multi_process ())
2298 {
2299 /* Resume all threads of the current process (and none of other
2300 processes). */
2301 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2302 }
2303 else
2304 {
2305 /* Resume all threads of all processes. */
2306 resume_ptid = RESUME_ALL;
2307 }
09cee04b
PA
2308
2309 return resume_ptid;
2310}
2311
fbea99ea
PA
2312/* Return a ptid representing the set of threads that we will resume,
2313 in the perspective of the target, assuming run control handling
2314 does not require leaving some threads stopped (e.g., stepping past
2315 breakpoint). USER_STEP indicates whether we're about to start the
2316 target for a stepping command. */
2317
2318static ptid_t
2319internal_resume_ptid (int user_step)
2320{
2321 /* In non-stop, we always control threads individually. Note that
2322 the target may always work in non-stop mode even with "set
2323 non-stop off", in which case user_visible_resume_ptid could
2324 return a wildcard ptid. */
2325 if (target_is_non_stop_p ())
2326 return inferior_ptid;
2327 else
2328 return user_visible_resume_ptid (user_step);
2329}
2330
64ce06e4
PA
2331/* Wrapper for target_resume, that handles infrun-specific
2332 bookkeeping. */
2333
2334static void
2335do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2336{
2337 struct thread_info *tp = inferior_thread ();
2338
c65d6b55
PA
2339 gdb_assert (!tp->stop_requested);
2340
64ce06e4 2341 /* Install inferior's terminal modes. */
223ffa71 2342 target_terminal::inferior ();
64ce06e4
PA
2343
2344 /* Avoid confusing the next resume, if the next stop/resume
2345 happens to apply to another thread. */
2346 tp->suspend.stop_signal = GDB_SIGNAL_0;
2347
8f572e5c
PA
2348 /* Advise target which signals may be handled silently.
2349
2350 If we have removed breakpoints because we are stepping over one
2351 in-line (in any thread), we need to receive all signals to avoid
2352 accidentally skipping a breakpoint during execution of a signal
2353 handler.
2354
2355 Likewise if we're displaced stepping, otherwise a trap for a
2356 breakpoint in a signal handler might be confused with the
2357 displaced step finishing. We don't make the displaced_step_fixup
2358 step distinguish the cases instead, because:
2359
2360 - a backtrace while stopped in the signal handler would show the
2361 scratch pad as frame older than the signal handler, instead of
2362 the real mainline code.
2363
2364 - when the thread is later resumed, the signal handler would
2365 return to the scratch pad area, which would no longer be
2366 valid. */
2367 if (step_over_info_valid_p ()
2368 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2369 target_pass_signals (0, NULL);
2370 else
2371 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2372
2373 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2374
2375 target_commit_resume ();
64ce06e4
PA
2376}
2377
c906108c
SS
2378/* Resume the inferior, but allow a QUIT. This is useful if the user
2379 wants to interrupt some lengthy single-stepping operation
2380 (for child processes, the SIGINT goes to the inferior, and so
2381 we get a SIGINT random_signal, but for remote debugging and perhaps
2382 other targets, that's not true).
2383
c906108c
SS
2384 SIG is the signal to give the inferior (zero for none). */
2385void
64ce06e4 2386resume (enum gdb_signal sig)
c906108c 2387{
74b7792f 2388 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2389 struct regcache *regcache = get_current_regcache ();
2390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2391 struct thread_info *tp = inferior_thread ();
515630c5 2392 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2393 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2394 ptid_t resume_ptid;
856e7dd6
PA
2395 /* This represents the user's step vs continue request. When
2396 deciding whether "set scheduler-locking step" applies, it's the
2397 user's intention that counts. */
2398 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2399 /* This represents what we'll actually request the target to do.
2400 This can decay from a step to a continue, if e.g., we need to
2401 implement single-stepping with breakpoints (software
2402 single-step). */
6b403daa 2403 int step;
c7e8a53c 2404
c65d6b55 2405 gdb_assert (!tp->stop_requested);
c2829269
PA
2406 gdb_assert (!thread_is_in_step_over_chain (tp));
2407
c906108c
SS
2408 QUIT;
2409
372316f1
PA
2410 if (tp->suspend.waitstatus_pending_p)
2411 {
2412 if (debug_infrun)
2413 {
23fdd69e
SM
2414 std::string statstr
2415 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2416
372316f1 2417 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2418 "infrun: resume: thread %s has pending wait "
2419 "status %s (currently_stepping=%d).\n",
2420 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2421 currently_stepping (tp));
372316f1
PA
2422 }
2423
2424 tp->resumed = 1;
2425
2426 /* FIXME: What should we do if we are supposed to resume this
2427 thread with a signal? Maybe we should maintain a queue of
2428 pending signals to deliver. */
2429 if (sig != GDB_SIGNAL_0)
2430 {
fd7dcb94 2431 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2432 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2433 }
2434
2435 tp->suspend.stop_signal = GDB_SIGNAL_0;
2436 discard_cleanups (old_cleanups);
2437
2438 if (target_can_async_p ())
2439 target_async (1);
2440 return;
2441 }
2442
2443 tp->stepped_breakpoint = 0;
2444
6b403daa
PA
2445 /* Depends on stepped_breakpoint. */
2446 step = currently_stepping (tp);
2447
74609e71
YQ
2448 if (current_inferior ()->waiting_for_vfork_done)
2449 {
48f9886d
PA
2450 /* Don't try to single-step a vfork parent that is waiting for
2451 the child to get out of the shared memory region (by exec'ing
2452 or exiting). This is particularly important on software
2453 single-step archs, as the child process would trip on the
2454 software single step breakpoint inserted for the parent
2455 process. Since the parent will not actually execute any
2456 instruction until the child is out of the shared region (such
2457 are vfork's semantics), it is safe to simply continue it.
2458 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2459 the parent, and tell it to `keep_going', which automatically
2460 re-sets it stepping. */
74609e71
YQ
2461 if (debug_infrun)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "infrun: resume : clear step\n");
a09dd441 2464 step = 0;
74609e71
YQ
2465 }
2466
527159b7 2467 if (debug_infrun)
237fc4c9 2468 fprintf_unfiltered (gdb_stdlog,
c9737c08 2469 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2470 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2471 step, gdb_signal_to_symbol_string (sig),
2472 tp->control.trap_expected,
0d9a9a5f
PA
2473 target_pid_to_str (inferior_ptid),
2474 paddress (gdbarch, pc));
c906108c 2475
c2c6d25f
JM
2476 /* Normally, by the time we reach `resume', the breakpoints are either
2477 removed or inserted, as appropriate. The exception is if we're sitting
2478 at a permanent breakpoint; we need to step over it, but permanent
2479 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2480 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2481 {
af48d08f
PA
2482 if (sig != GDB_SIGNAL_0)
2483 {
2484 /* We have a signal to pass to the inferior. The resume
2485 may, or may not take us to the signal handler. If this
2486 is a step, we'll need to stop in the signal handler, if
2487 there's one, (if the target supports stepping into
2488 handlers), or in the next mainline instruction, if
2489 there's no handler. If this is a continue, we need to be
2490 sure to run the handler with all breakpoints inserted.
2491 In all cases, set a breakpoint at the current address
2492 (where the handler returns to), and once that breakpoint
2493 is hit, resume skipping the permanent breakpoint. If
2494 that breakpoint isn't hit, then we've stepped into the
2495 signal handler (or hit some other event). We'll delete
2496 the step-resume breakpoint then. */
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog,
2500 "infrun: resume: skipping permanent breakpoint, "
2501 "deliver signal first\n");
2502
2503 clear_step_over_info ();
2504 tp->control.trap_expected = 0;
2505
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 /* Set a "high-priority" step-resume, as we don't want
2509 user breakpoints at PC to trigger (again) when this
2510 hits. */
2511 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2512 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2513
2514 tp->step_after_step_resume_breakpoint = step;
2515 }
2516
2517 insert_breakpoints ();
2518 }
2519 else
2520 {
2521 /* There's no signal to pass, we can go ahead and skip the
2522 permanent breakpoint manually. */
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: resume: skipping permanent breakpoint\n");
2526 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2527 /* Update pc to reflect the new address from which we will
2528 execute instructions. */
2529 pc = regcache_read_pc (regcache);
2530
2531 if (step)
2532 {
2533 /* We've already advanced the PC, so the stepping part
2534 is done. Now we need to arrange for a trap to be
2535 reported to handle_inferior_event. Set a breakpoint
2536 at the current PC, and run to it. Don't update
2537 prev_pc, because if we end in
44a1ee51
PA
2538 switch_back_to_stepped_thread, we want the "expected
2539 thread advanced also" branch to be taken. IOW, we
2540 don't want this thread to step further from PC
af48d08f 2541 (overstep). */
1ac806b8 2542 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2543 insert_single_step_breakpoint (gdbarch, aspace, pc);
2544 insert_breakpoints ();
2545
fbea99ea 2546 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2547 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2548 discard_cleanups (old_cleanups);
372316f1 2549 tp->resumed = 1;
af48d08f
PA
2550 return;
2551 }
2552 }
6d350bb5 2553 }
c2c6d25f 2554
c1e36e3e
PA
2555 /* If we have a breakpoint to step over, make sure to do a single
2556 step only. Same if we have software watchpoints. */
2557 if (tp->control.trap_expected || bpstat_should_step ())
2558 tp->control.may_range_step = 0;
2559
237fc4c9
PA
2560 /* If enabled, step over breakpoints by executing a copy of the
2561 instruction at a different address.
2562
2563 We can't use displaced stepping when we have a signal to deliver;
2564 the comments for displaced_step_prepare explain why. The
2565 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2566 signals' explain what we do instead.
2567
2568 We can't use displaced stepping when we are waiting for vfork_done
2569 event, displaced stepping breaks the vfork child similarly as single
2570 step software breakpoint. */
3fc8eb30
PA
2571 if (tp->control.trap_expected
2572 && use_displaced_stepping (tp)
cb71640d 2573 && !step_over_info_valid_p ()
a493e3e2 2574 && sig == GDB_SIGNAL_0
74609e71 2575 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2576 {
3fc8eb30 2577 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2578
3fc8eb30 2579 if (prepared == 0)
d56b7306 2580 {
4d9d9d04
PA
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "Got placed in step-over queue\n");
2584
2585 tp->control.trap_expected = 0;
d56b7306
VP
2586 discard_cleanups (old_cleanups);
2587 return;
2588 }
3fc8eb30
PA
2589 else if (prepared < 0)
2590 {
2591 /* Fallback to stepping over the breakpoint in-line. */
2592
2593 if (target_is_non_stop_p ())
2594 stop_all_threads ();
2595
2596 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2597 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2598
2599 step = maybe_software_singlestep (gdbarch, pc);
2600
2601 insert_breakpoints ();
2602 }
2603 else if (prepared > 0)
2604 {
2605 struct displaced_step_inferior_state *displaced;
99e40580 2606
3fc8eb30
PA
2607 /* Update pc to reflect the new address from which we will
2608 execute instructions due to displaced stepping. */
2609 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2610
3fc8eb30
PA
2611 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2612 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2613 displaced->step_closure);
2614 }
237fc4c9
PA
2615 }
2616
2facfe5c 2617 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2618 else if (step)
2facfe5c 2619 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2620
30852783
UW
2621 /* Currently, our software single-step implementation leads to different
2622 results than hardware single-stepping in one situation: when stepping
2623 into delivering a signal which has an associated signal handler,
2624 hardware single-step will stop at the first instruction of the handler,
2625 while software single-step will simply skip execution of the handler.
2626
2627 For now, this difference in behavior is accepted since there is no
2628 easy way to actually implement single-stepping into a signal handler
2629 without kernel support.
2630
2631 However, there is one scenario where this difference leads to follow-on
2632 problems: if we're stepping off a breakpoint by removing all breakpoints
2633 and then single-stepping. In this case, the software single-step
2634 behavior means that even if there is a *breakpoint* in the signal
2635 handler, GDB still would not stop.
2636
2637 Fortunately, we can at least fix this particular issue. We detect
2638 here the case where we are about to deliver a signal while software
2639 single-stepping with breakpoints removed. In this situation, we
2640 revert the decisions to remove all breakpoints and insert single-
2641 step breakpoints, and instead we install a step-resume breakpoint
2642 at the current address, deliver the signal without stepping, and
2643 once we arrive back at the step-resume breakpoint, actually step
2644 over the breakpoint we originally wanted to step over. */
34b7e8a6 2645 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2646 && sig != GDB_SIGNAL_0
2647 && step_over_info_valid_p ())
30852783
UW
2648 {
2649 /* If we have nested signals or a pending signal is delivered
2650 immediately after a handler returns, might might already have
2651 a step-resume breakpoint set on the earlier handler. We cannot
2652 set another step-resume breakpoint; just continue on until the
2653 original breakpoint is hit. */
2654 if (tp->control.step_resume_breakpoint == NULL)
2655 {
2c03e5be 2656 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2657 tp->step_after_step_resume_breakpoint = 1;
2658 }
2659
34b7e8a6 2660 delete_single_step_breakpoints (tp);
30852783 2661
31e77af2 2662 clear_step_over_info ();
30852783 2663 tp->control.trap_expected = 0;
31e77af2
PA
2664
2665 insert_breakpoints ();
30852783
UW
2666 }
2667
b0f16a3e
SM
2668 /* If STEP is set, it's a request to use hardware stepping
2669 facilities. But in that case, we should never
2670 use singlestep breakpoint. */
34b7e8a6 2671 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2672
fbea99ea 2673 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2674 if (tp->control.trap_expected)
b0f16a3e
SM
2675 {
2676 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2677 hit, either by single-stepping the thread with the breakpoint
2678 removed, or by displaced stepping, with the breakpoint inserted.
2679 In the former case, we need to single-step only this thread,
2680 and keep others stopped, as they can miss this breakpoint if
2681 allowed to run. That's not really a problem for displaced
2682 stepping, but, we still keep other threads stopped, in case
2683 another thread is also stopped for a breakpoint waiting for
2684 its turn in the displaced stepping queue. */
b0f16a3e
SM
2685 resume_ptid = inferior_ptid;
2686 }
fbea99ea
PA
2687 else
2688 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2689
7f5ef605
PA
2690 if (execution_direction != EXEC_REVERSE
2691 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2692 {
372316f1
PA
2693 /* There are two cases where we currently need to step a
2694 breakpoint instruction when we have a signal to deliver:
2695
2696 - See handle_signal_stop where we handle random signals that
2697 could take out us out of the stepping range. Normally, in
2698 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2699 signal handler with a breakpoint at PC, but there are cases
2700 where we should _always_ single-step, even if we have a
2701 step-resume breakpoint, like when a software watchpoint is
2702 set. Assuming single-stepping and delivering a signal at the
2703 same time would takes us to the signal handler, then we could
2704 have removed the breakpoint at PC to step over it. However,
2705 some hardware step targets (like e.g., Mac OS) can't step
2706 into signal handlers, and for those, we need to leave the
2707 breakpoint at PC inserted, as otherwise if the handler
2708 recurses and executes PC again, it'll miss the breakpoint.
2709 So we leave the breakpoint inserted anyway, but we need to
2710 record that we tried to step a breakpoint instruction, so
372316f1
PA
2711 that adjust_pc_after_break doesn't end up confused.
2712
2713 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2714 in one thread after another thread that was stepping had been
2715 momentarily paused for a step-over. When we re-resume the
2716 stepping thread, it may be resumed from that address with a
2717 breakpoint that hasn't trapped yet. Seen with
2718 gdb.threads/non-stop-fair-events.exp, on targets that don't
2719 do displaced stepping. */
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: resume: [%s] stepped breakpoint\n",
2724 target_pid_to_str (tp->ptid));
7f5ef605
PA
2725
2726 tp->stepped_breakpoint = 1;
2727
b0f16a3e
SM
2728 /* Most targets can step a breakpoint instruction, thus
2729 executing it normally. But if this one cannot, just
2730 continue and we will hit it anyway. */
7f5ef605 2731 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2732 step = 0;
2733 }
ef5cf84e 2734
b0f16a3e 2735 if (debug_displaced
cb71640d 2736 && tp->control.trap_expected
3fc8eb30 2737 && use_displaced_stepping (tp)
cb71640d 2738 && !step_over_info_valid_p ())
b0f16a3e 2739 {
d9b67d9f 2740 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2741 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2742 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2743 gdb_byte buf[4];
2744
2745 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2746 paddress (resume_gdbarch, actual_pc));
2747 read_memory (actual_pc, buf, sizeof (buf));
2748 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2749 }
237fc4c9 2750
b0f16a3e
SM
2751 if (tp->control.may_range_step)
2752 {
2753 /* If we're resuming a thread with the PC out of the step
2754 range, then we're doing some nested/finer run control
2755 operation, like stepping the thread out of the dynamic
2756 linker or the displaced stepping scratch pad. We
2757 shouldn't have allowed a range step then. */
2758 gdb_assert (pc_in_thread_step_range (pc, tp));
2759 }
c1e36e3e 2760
64ce06e4 2761 do_target_resume (resume_ptid, step, sig);
372316f1 2762 tp->resumed = 1;
c906108c
SS
2763 discard_cleanups (old_cleanups);
2764}
2765\f
237fc4c9 2766/* Proceeding. */
c906108c 2767
4c2f2a79
PA
2768/* See infrun.h. */
2769
2770/* Counter that tracks number of user visible stops. This can be used
2771 to tell whether a command has proceeded the inferior past the
2772 current location. This allows e.g., inferior function calls in
2773 breakpoint commands to not interrupt the command list. When the
2774 call finishes successfully, the inferior is standing at the same
2775 breakpoint as if nothing happened (and so we don't call
2776 normal_stop). */
2777static ULONGEST current_stop_id;
2778
2779/* See infrun.h. */
2780
2781ULONGEST
2782get_stop_id (void)
2783{
2784 return current_stop_id;
2785}
2786
2787/* Called when we report a user visible stop. */
2788
2789static void
2790new_stop_id (void)
2791{
2792 current_stop_id++;
2793}
2794
c906108c
SS
2795/* Clear out all variables saying what to do when inferior is continued.
2796 First do this, then set the ones you want, then call `proceed'. */
2797
a7212384
UW
2798static void
2799clear_proceed_status_thread (struct thread_info *tp)
c906108c 2800{
a7212384
UW
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: clear_proceed_status_thread (%s)\n",
2804 target_pid_to_str (tp->ptid));
d6b48e9c 2805
372316f1
PA
2806 /* If we're starting a new sequence, then the previous finished
2807 single-step is no longer relevant. */
2808 if (tp->suspend.waitstatus_pending_p)
2809 {
2810 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "infrun: clear_proceed_status: pending "
2815 "event of %s was a finished step. "
2816 "Discarding.\n",
2817 target_pid_to_str (tp->ptid));
2818
2819 tp->suspend.waitstatus_pending_p = 0;
2820 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2821 }
2822 else if (debug_infrun)
2823 {
23fdd69e
SM
2824 std::string statstr
2825 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2826
372316f1
PA
2827 fprintf_unfiltered (gdb_stdlog,
2828 "infrun: clear_proceed_status_thread: thread %s "
2829 "has pending wait status %s "
2830 "(currently_stepping=%d).\n",
23fdd69e 2831 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2832 currently_stepping (tp));
372316f1
PA
2833 }
2834 }
2835
70509625
PA
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
243a9253
PA
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
16c381f0
JK
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
c1e36e3e 2847 tp->control.may_range_step = 0;
16c381f0
JK
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2851 tp->control.step_start_function = NULL;
a7212384 2852 tp->stop_requested = 0;
4e1c45ea 2853
16c381f0 2854 tp->control.stop_step = 0;
32400beb 2855
16c381f0 2856 tp->control.proceed_to_finish = 0;
414c69f7 2857
856e7dd6 2858 tp->control.stepping_command = 0;
17b2616c 2859
a7212384 2860 /* Discard any remaining commands or status from previous stop. */
16c381f0 2861 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2862}
32400beb 2863
a7212384 2864void
70509625 2865clear_proceed_status (int step)
a7212384 2866{
f2665db5
MM
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
6c95b8df
PA
2879 if (!non_stop)
2880 {
70509625
PA
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
6c95b8df
PA
2894 }
2895
a7212384
UW
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
6c95b8df
PA
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
a7212384
UW
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
6c95b8df 2906
d6b48e9c 2907 inferior = current_inferior ();
16c381f0 2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2909 }
2910
f3b1572e 2911 observer_notify_about_to_proceed ();
c906108c
SS
2912}
2913
99619bea
PA
2914/* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2917
2918static int
6c4cfb24 2919thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2920{
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
99619bea
PA
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934}
2935
6c4cfb24
PA
2936/* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
8d297bbf 2940static step_over_what
6c4cfb24
PA
2941thread_still_needs_step_over (struct thread_info *tp)
2942{
8d297bbf 2943 step_over_what what = 0;
6c4cfb24
PA
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953}
2954
483805cf
PA
2955/* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958static int
856e7dd6 2959schedlock_applies (struct thread_info *tp)
483805cf
PA
2960{
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
f2665db5
MM
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
483805cf
PA
2967}
2968
c906108c
SS
2969/* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2973 or -1 for act according to how it stopped.
c906108c 2974 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
c906108c
SS
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981void
64ce06e4 2982proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2983{
e58b0e63
PA
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
4e1c45ea 2986 struct thread_info *tp;
e58b0e63 2987 CORE_ADDR pc;
6c95b8df 2988 struct address_space *aspace;
4d9d9d04
PA
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 int started;
c906108c 2994
e58b0e63
PA
2995 /* If we're stopped at a fork/vfork, follow the branch set by the
2996 "set follow-fork-mode" command; otherwise, we'll just proceed
2997 resuming the current thread. */
2998 if (!follow_fork ())
2999 {
3000 /* The target for some reason decided not to resume. */
3001 normal_stop ();
f148b27e
PA
3002 if (target_can_async_p ())
3003 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3004 return;
3005 }
3006
842951eb
PA
3007 /* We'll update this if & when we switch to a new thread. */
3008 previous_inferior_ptid = inferior_ptid;
3009
e58b0e63
PA
3010 regcache = get_current_regcache ();
3011 gdbarch = get_regcache_arch (regcache);
6c95b8df 3012 aspace = get_regcache_aspace (regcache);
e58b0e63 3013 pc = regcache_read_pc (regcache);
2adfaa28 3014 tp = inferior_thread ();
e58b0e63 3015
99619bea
PA
3016 /* Fill in with reasonable starting values. */
3017 init_thread_stepping_state (tp);
3018
c2829269
PA
3019 gdb_assert (!thread_is_in_step_over_chain (tp));
3020
2acceee2 3021 if (addr == (CORE_ADDR) -1)
c906108c 3022 {
af48d08f
PA
3023 if (pc == stop_pc
3024 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3025 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3026 /* There is a breakpoint at the address we will resume at,
3027 step one instruction before inserting breakpoints so that
3028 we do not stop right away (and report a second hit at this
b2175913
MS
3029 breakpoint).
3030
3031 Note, we don't do this in reverse, because we won't
3032 actually be executing the breakpoint insn anyway.
3033 We'll be (un-)executing the previous instruction. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
515630c5
UW
3035 else if (gdbarch_single_step_through_delay_p (gdbarch)
3036 && gdbarch_single_step_through_delay (gdbarch,
3037 get_current_frame ()))
3352ef37
AC
3038 /* We stepped onto an instruction that needs to be stepped
3039 again before re-inserting the breakpoint, do so. */
99619bea 3040 tp->stepping_over_breakpoint = 1;
c906108c
SS
3041 }
3042 else
3043 {
515630c5 3044 regcache_write_pc (regcache, addr);
c906108c
SS
3045 }
3046
70509625
PA
3047 if (siggnal != GDB_SIGNAL_DEFAULT)
3048 tp->suspend.stop_signal = siggnal;
3049
4d9d9d04
PA
3050 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3051
3052 /* If an exception is thrown from this point on, make sure to
3053 propagate GDB's knowledge of the executing state to the
3054 frontend/user running state. */
3055 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3056
3057 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3058 threads (e.g., we might need to set threads stepping over
3059 breakpoints first), from the user/frontend's point of view, all
3060 threads in RESUME_PTID are now running. Unless we're calling an
3061 inferior function, as in that case we pretend the inferior
3062 doesn't run at all. */
3063 if (!tp->control.in_infcall)
3064 set_running (resume_ptid, 1);
17b2616c 3065
527159b7 3066 if (debug_infrun)
8a9de0e4 3067 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3068 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3069 paddress (gdbarch, addr),
64ce06e4 3070 gdb_signal_to_symbol_string (siggnal));
527159b7 3071
4d9d9d04
PA
3072 annotate_starting ();
3073
3074 /* Make sure that output from GDB appears before output from the
3075 inferior. */
3076 gdb_flush (gdb_stdout);
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
94cc34af 3092 {
4d9d9d04
PA
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
99619bea 3101
4d9d9d04
PA
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
c906108c 3105
4d9d9d04
PA
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3110
99619bea
PA
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
4d9d9d04 3114 target_pid_to_str (tp->ptid));
99619bea 3115
4d9d9d04 3116 thread_step_over_chain_enqueue (tp);
2adfaa28 3117 }
31e77af2 3118
4d9d9d04 3119 tp = current;
30852783
UW
3120 }
3121
4d9d9d04
PA
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
30852783 3126
4d9d9d04
PA
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3133
a9bc57b9
TT
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3136
a9bc57b9 3137 started = start_step_over ();
c906108c 3138
a9bc57b9
TT
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
fd7dcb94 3188 error (_("Command aborted."));
fbea99ea 3189 }
a9bc57b9
TT
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
c906108c 3201
85ad3aaf
PA
3202 target_commit_resume ();
3203
4d9d9d04 3204 discard_cleanups (old_chain);
c906108c 3205
0b333c5e
PA
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
362646f5 3209 if (!target_can_async_p ())
0b333c5e 3210 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3211}
c906108c
SS
3212\f
3213
3214/* Start remote-debugging of a machine over a serial link. */
96baa820 3215
c906108c 3216void
8621d6a9 3217start_remote (int from_tty)
c906108c 3218{
d6b48e9c 3219 struct inferior *inferior;
d6b48e9c
PA
3220
3221 inferior = current_inferior ();
16c381f0 3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3223
1777feb0 3224 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3226 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
1777feb0 3230 timeout. */
6426a772
JM
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
1777feb0 3237 for an async run. */
e4c8541f 3238 wait_for_inferior ();
8621d6a9
DJ
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
6426a772 3245 normal_stop ();
c906108c
SS
3246}
3247
3248/* Initialize static vars when a new inferior begins. */
3249
3250void
96baa820 3251init_wait_for_inferior (void)
c906108c
SS
3252{
3253 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3254
c906108c
SS
3255 breakpoint_init_inferior (inf_starting);
3256
70509625 3257 clear_proceed_status (0);
9f976b41 3258
ca005067 3259 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3260
842951eb 3261 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3262
edb3359d
DJ
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
c906108c 3265}
237fc4c9 3266
c906108c 3267\f
488f131b 3268
ec9499be 3269static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3270
568d6575
UW
3271static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
4f5d7f63 3275static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3276static void check_exception_resume (struct execution_control_state *,
28106bc2 3277 struct frame_info *);
611c83ae 3278
bdc36728 3279static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3280static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3281static void keep_going (struct execution_control_state *ecs);
94c57d6a 3282static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3283static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3284
252fbfc8
PA
3285/* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
2c0b251b 3289static void
252fbfc8
PA
3290infrun_thread_stop_requested (ptid_t ptid)
3291{
c2829269 3292 struct thread_info *tp;
252fbfc8 3293
c65d6b55
PA
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
c2829269
PA
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
c65d6b55
PA
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
c2829269
PA
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
252fbfc8 3311
c65d6b55
PA
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
252fbfc8
PA
3339}
3340
a07daef3
PA
3341static void
3342infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343{
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346}
3347
0cbcdb96
PA
3348/* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
4e1c45ea 3350
0cbcdb96
PA
3351static void
3352delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3353{
0cbcdb96
PA
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
34b7e8a6 3356 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3357}
3358
0cbcdb96
PA
3359/* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
4e1c45ea
PA
3365
3366static void
0cbcdb96 3367for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3368{
0cbcdb96 3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3370 return;
3371
fbea99ea 3372 if (target_is_non_stop_p ())
4e1c45ea 3373 {
0cbcdb96
PA
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
4e1c45ea
PA
3376 }
3377 else
0cbcdb96
PA
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387}
3388
3389/* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392static void
3393delete_just_stopped_threads_infrun_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3396}
3397
3398/* Delete the single-step breakpoints of the threads that just
3399 stopped. */
7c16b83e 3400
34b7e8a6
PA
3401static void
3402delete_just_stopped_threads_single_step_breakpoints (void)
3403{
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3405}
3406
1777feb0 3407/* A cleanup wrapper. */
4e1c45ea
PA
3408
3409static void
0cbcdb96 3410delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3411{
0cbcdb96 3412 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3413}
3414
221e1a37 3415/* See infrun.h. */
223698f8 3416
221e1a37 3417void
223698f8
DE
3418print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420{
23fdd69e 3421 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3422 string_file stb;
223698f8
DE
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
d7e74731
PA
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
dfd4cc63 3433 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
23fdd69e 3441 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
d7e74731 3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3446}
3447
372316f1
PA
3448/* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451static struct thread_info *
3452random_pending_event_thread (ptid_t waiton_ptid)
3453{
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487}
3488
3489/* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493static ptid_t
3494do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495{
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
3524 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
3540 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
23fdd69e
SM
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3569
372316f1
PA
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3572 statstr.c_str (),
372316f1 3573 target_pid_to_str (tp->ptid));
372316f1
PA
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
3587 gdbarch = get_regcache_arch (regcache);
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618}
3619
24291992
PA
3620/* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625void
3626prepare_for_detach (void)
3627{
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
9bcb1f16 3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
3647 struct cleanup *old_chain_2;
3648 struct execution_control_state ecss;
3649 struct execution_control_state *ecs;
3650
3651 ecs = &ecss;
3652 memset (ecs, 0, sizeof (*ecs));
3653
3654 overlay_cache_invalid = 1;
f15cb84a
YQ
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
24291992 3660
372316f1 3661 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3662
3663 if (debug_infrun)
3664 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3665
3666 /* If an error happens while handling the event, propagate GDB's
3667 knowledge of the executing state to the frontend/user running
3668 state. */
3e43a32a
MS
3669 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3670 &minus_one_ptid);
24291992
PA
3671
3672 /* Now figure out what to do with the result of the result. */
3673 handle_inferior_event (ecs);
3674
3675 /* No error, don't finish the state yet. */
3676 discard_cleanups (old_chain_2);
3677
3678 /* Breakpoints and watchpoints are not installed on the target
3679 at this point, and signals are passed directly to the
3680 inferior, so this must mean the process is gone. */
3681 if (!ecs->wait_some_more)
3682 {
9bcb1f16 3683 restore_detaching.release ();
24291992
PA
3684 error (_("Program exited while detaching"));
3685 }
3686 }
3687
9bcb1f16 3688 restore_detaching.release ();
24291992
PA
3689}
3690
cd0fc7c3 3691/* Wait for control to return from inferior to debugger.
ae123ec6 3692
cd0fc7c3
SS
3693 If inferior gets a signal, we may decide to start it up again
3694 instead of returning. That is why there is a loop in this function.
3695 When this function actually returns it means the inferior
3696 should be left stopped and GDB should read more commands. */
3697
3698void
e4c8541f 3699wait_for_inferior (void)
cd0fc7c3
SS
3700{
3701 struct cleanup *old_cleanups;
e6f5c25b 3702 struct cleanup *thread_state_chain;
c906108c 3703
527159b7 3704 if (debug_infrun)
ae123ec6 3705 fprintf_unfiltered
e4c8541f 3706 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3707
0cbcdb96
PA
3708 old_cleanups
3709 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3710 NULL);
cd0fc7c3 3711
e6f5c25b
PA
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3716
c906108c
SS
3717 while (1)
3718 {
ae25568b
PA
3719 struct execution_control_state ecss;
3720 struct execution_control_state *ecs = &ecss;
963f9c80 3721 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3722
ae25568b
PA
3723 memset (ecs, 0, sizeof (*ecs));
3724
ec9499be 3725 overlay_cache_invalid = 1;
ec9499be 3726
f15cb84a
YQ
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
372316f1 3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3734
f00150c9 3735 if (debug_infrun)
223698f8 3736 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3737
cd0fc7c3
SS
3738 /* Now figure out what to do with the result of the result. */
3739 handle_inferior_event (ecs);
c906108c 3740
cd0fc7c3
SS
3741 if (!ecs->wait_some_more)
3742 break;
3743 }
4e1c45ea 3744
e6f5c25b
PA
3745 /* No error, don't finish the state yet. */
3746 discard_cleanups (thread_state_chain);
3747
cd0fc7c3
SS
3748 do_cleanups (old_cleanups);
3749}
c906108c 3750
d3d4baed
PA
3751/* Cleanup that reinstalls the readline callback handler, if the
3752 target is running in the background. If while handling the target
3753 event something triggered a secondary prompt, like e.g., a
3754 pagination prompt, we'll have removed the callback handler (see
3755 gdb_readline_wrapper_line). Need to do this as we go back to the
3756 event loop, ready to process further input. Note this has no
3757 effect if the handler hasn't actually been removed, because calling
3758 rl_callback_handler_install resets the line buffer, thus losing
3759 input. */
3760
3761static void
3762reinstall_readline_callback_handler_cleanup (void *arg)
3763{
3b12939d
PA
3764 struct ui *ui = current_ui;
3765
3766 if (!ui->async)
6c400b59
PA
3767 {
3768 /* We're not going back to the top level event loop yet. Don't
3769 install the readline callback, as it'd prep the terminal,
3770 readline-style (raw, noecho) (e.g., --batch). We'll install
3771 it the next time the prompt is displayed, when we're ready
3772 for input. */
3773 return;
3774 }
3775
3b12939d 3776 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3777 gdb_rl_callback_handler_reinstall ();
3778}
3779
243a9253
PA
3780/* Clean up the FSMs of threads that are now stopped. In non-stop,
3781 that's just the event thread. In all-stop, that's all threads. */
3782
3783static void
3784clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3785{
3786 struct thread_info *thr = ecs->event_thread;
3787
3788 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3789 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3790
3791 if (!non_stop)
3792 {
3793 ALL_NON_EXITED_THREADS (thr)
3794 {
3795 if (thr->thread_fsm == NULL)
3796 continue;
3797 if (thr == ecs->event_thread)
3798 continue;
3799
3800 switch_to_thread (thr->ptid);
8980e177 3801 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3802 }
3803
3804 if (ecs->event_thread != NULL)
3805 switch_to_thread (ecs->event_thread->ptid);
3806 }
3807}
3808
3b12939d
PA
3809/* Helper for all_uis_check_sync_execution_done that works on the
3810 current UI. */
3811
3812static void
3813check_curr_ui_sync_execution_done (void)
3814{
3815 struct ui *ui = current_ui;
3816
3817 if (ui->prompt_state == PROMPT_NEEDED
3818 && ui->async
3819 && !gdb_in_secondary_prompt_p (ui))
3820 {
223ffa71 3821 target_terminal::ours ();
3b12939d 3822 observer_notify_sync_execution_done ();
3eb7562a 3823 ui_register_input_event_handler (ui);
3b12939d
PA
3824 }
3825}
3826
3827/* See infrun.h. */
3828
3829void
3830all_uis_check_sync_execution_done (void)
3831{
0e454242 3832 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3833 {
3834 check_curr_ui_sync_execution_done ();
3835 }
3836}
3837
a8836c93
PA
3838/* See infrun.h. */
3839
3840void
3841all_uis_on_sync_execution_starting (void)
3842{
0e454242 3843 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3844 {
3845 if (current_ui->prompt_state == PROMPT_NEEDED)
3846 async_disable_stdin ();
3847 }
3848}
3849
1777feb0 3850/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3851 event loop whenever a change of state is detected on the file
1777feb0
MS
3852 descriptor corresponding to the target. It can be called more than
3853 once to complete a single execution command. In such cases we need
3854 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3855 that this function is called for a single execution command, then
3856 report to the user that the inferior has stopped, and do the
1777feb0 3857 necessary cleanups. */
43ff13b4
JM
3858
3859void
fba45db2 3860fetch_inferior_event (void *client_data)
43ff13b4 3861{
0d1e5fa7 3862 struct execution_control_state ecss;
a474d7c2 3863 struct execution_control_state *ecs = &ecss;
4f8d22e3 3864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3865 struct cleanup *ts_old_chain;
0f641c01 3866 int cmd_done = 0;
963f9c80 3867 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3868
0d1e5fa7
PA
3869 memset (ecs, 0, sizeof (*ecs));
3870
c61db772
PA
3871 /* Events are always processed with the main UI as current UI. This
3872 way, warnings, debug output, etc. are always consistently sent to
3873 the main console. */
4b6749b9 3874 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3875
d3d4baed
PA
3876 /* End up with readline processing input, if necessary. */
3877 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3878
c5187ac6
PA
3879 /* We're handling a live event, so make sure we're doing live
3880 debugging. If we're looking at traceframes while the target is
3881 running, we're going to need to get back to that mode after
3882 handling the event. */
3883 if (non_stop)
3884 {
3885 make_cleanup_restore_current_traceframe ();
e6e4e701 3886 set_current_traceframe (-1);
c5187ac6
PA
3887 }
3888
5ed8105e
PA
3889 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3890
4f8d22e3
PA
3891 if (non_stop)
3892 /* In non-stop mode, the user/frontend should not notice a thread
3893 switch due to internal events. Make sure we reverse to the
3894 user selected thread and frame after handling the event and
3895 running any breakpoint commands. */
5ed8105e 3896 maybe_restore_thread.emplace ();
4f8d22e3 3897
ec9499be 3898 overlay_cache_invalid = 1;
f15cb84a
YQ
3899 /* Flush target cache before starting to handle each event. Target
3900 was running and cache could be stale. This is just a heuristic.
3901 Running threads may modify target memory, but we don't get any
3902 event. */
3903 target_dcache_invalidate ();
3dd5b83d 3904
b7b633e9
TT
3905 scoped_restore save_exec_dir
3906 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3907
0b333c5e
PA
3908 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3909 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3910
f00150c9 3911 if (debug_infrun)
223698f8 3912 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3913
29f49a6a
PA
3914 /* If an error happens while handling the event, propagate GDB's
3915 knowledge of the executing state to the frontend/user running
3916 state. */
fbea99ea 3917 if (!target_is_non_stop_p ())
29f49a6a
PA
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3919 else
3920 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3921
353d1d73
JK
3922 /* Get executed before make_cleanup_restore_current_thread above to apply
3923 still for the thread which has thrown the exception. */
3924 make_bpstat_clear_actions_cleanup ();
3925
7c16b83e
PA
3926 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3927
43ff13b4 3928 /* Now figure out what to do with the result of the result. */
a474d7c2 3929 handle_inferior_event (ecs);
43ff13b4 3930
a474d7c2 3931 if (!ecs->wait_some_more)
43ff13b4 3932 {
c9657e70 3933 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3934 int should_stop = 1;
3935 struct thread_info *thr = ecs->event_thread;
388a7084 3936 int should_notify_stop = 1;
d6b48e9c 3937
0cbcdb96 3938 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3939
243a9253
PA
3940 if (thr != NULL)
3941 {
3942 struct thread_fsm *thread_fsm = thr->thread_fsm;
3943
3944 if (thread_fsm != NULL)
8980e177 3945 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3946 }
3947
3948 if (!should_stop)
3949 {
3950 keep_going (ecs);
3951 }
c2d11a7d 3952 else
0f641c01 3953 {
243a9253
PA
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
388a7084
PA
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 {
3958 should_notify_stop
3959 = thread_fsm_should_notify_stop (thr->thread_fsm);
3960 }
3961
3962 if (should_notify_stop)
3963 {
4c2f2a79
PA
3964 int proceeded = 0;
3965
388a7084
PA
3966 /* We may not find an inferior if this was a process exit. */
3967 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3968 proceeded = normal_stop ();
243a9253 3969
4c2f2a79
PA
3970 if (!proceeded)
3971 {
3972 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3973 cmd_done = 1;
3974 }
388a7084 3975 }
0f641c01 3976 }
43ff13b4 3977 }
4f8d22e3 3978
29f49a6a
PA
3979 /* No error, don't finish the thread states yet. */
3980 discard_cleanups (ts_old_chain);
3981
4f8d22e3
PA
3982 /* Revert thread and frame. */
3983 do_cleanups (old_chain);
3984
3b12939d
PA
3985 /* If a UI was in sync execution mode, and now isn't, restore its
3986 prompt (a synchronous execution command has finished, and we're
3987 ready for input). */
3988 all_uis_check_sync_execution_done ();
0f641c01
PA
3989
3990 if (cmd_done
0f641c01
PA
3991 && exec_done_display_p
3992 && (ptid_equal (inferior_ptid, null_ptid)
3993 || !is_running (inferior_ptid)))
3994 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3995}
3996
edb3359d
DJ
3997/* Record the frame and location we're currently stepping through. */
3998void
3999set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4000{
4001 struct thread_info *tp = inferior_thread ();
4002
16c381f0
JK
4003 tp->control.step_frame_id = get_frame_id (frame);
4004 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4005
4006 tp->current_symtab = sal.symtab;
4007 tp->current_line = sal.line;
4008}
4009
0d1e5fa7
PA
4010/* Clear context switchable stepping state. */
4011
4012void
4e1c45ea 4013init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4014{
7f5ef605 4015 tss->stepped_breakpoint = 0;
0d1e5fa7 4016 tss->stepping_over_breakpoint = 0;
963f9c80 4017 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4018 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4019}
4020
c32c64b7
DE
4021/* Set the cached copy of the last ptid/waitstatus. */
4022
6efcd9a8 4023void
c32c64b7
DE
4024set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4025{
4026 target_last_wait_ptid = ptid;
4027 target_last_waitstatus = status;
4028}
4029
e02bc4cc 4030/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4031 target_wait()/deprecated_target_wait_hook(). The data is actually
4032 cached by handle_inferior_event(), which gets called immediately
4033 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4034
4035void
488f131b 4036get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4037{
39f77062 4038 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4039 *status = target_last_waitstatus;
4040}
4041
ac264b3b
MS
4042void
4043nullify_last_target_wait_ptid (void)
4044{
4045 target_last_wait_ptid = minus_one_ptid;
4046}
4047
dcf4fbde 4048/* Switch thread contexts. */
dd80620e
MS
4049
4050static void
0d1e5fa7 4051context_switch (ptid_t ptid)
dd80620e 4052{
4b51d87b 4053 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4054 {
4055 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4056 target_pid_to_str (inferior_ptid));
4057 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4058 target_pid_to_str (ptid));
fd48f117
DJ
4059 }
4060
0d1e5fa7 4061 switch_to_thread (ptid);
dd80620e
MS
4062}
4063
d8dd4d5f
PA
4064/* If the target can't tell whether we've hit breakpoints
4065 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4066 check whether that could have been caused by a breakpoint. If so,
4067 adjust the PC, per gdbarch_decr_pc_after_break. */
4068
4fa8626c 4069static void
d8dd4d5f
PA
4070adjust_pc_after_break (struct thread_info *thread,
4071 struct target_waitstatus *ws)
4fa8626c 4072{
24a73cce
UW
4073 struct regcache *regcache;
4074 struct gdbarch *gdbarch;
6c95b8df 4075 struct address_space *aspace;
118e6252 4076 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4077
4fa8626c
DJ
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
9709f61c
DJ
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
8fb3e588 4085
4fa8626c
DJ
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
8fb3e588 4092
e6cf7916
UW
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4098
d8dd4d5f 4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4100 return;
4101
d8dd4d5f 4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4103 return;
4104
4058b839
PA
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
1cf4d951
PA
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
24a73cce
UW
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
d8dd4d5f 4148 regcache = get_thread_regcache (thread->ptid);
24a73cce 4149 gdbarch = get_regcache_arch (regcache);
118e6252 4150
527a273a 4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4152 if (decr_pc == 0)
24a73cce
UW
4153 return;
4154
6c95b8df
PA
4155 aspace = get_regcache_aspace (regcache);
4156
8aad930b
AC
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
118e6252 4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4160
1cf4d951
PA
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
1c5cfe86
PA
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
6c95b8df 4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4180 {
77f9e713 4181 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4182
8213266a 4183 if (record_full_is_used ())
77f9e713 4184 record_full_gdb_operation_disable_set ();
96429cc8 4185
1c0fdd0e
UW
4186 /* When using hardware single-step, a SIGTRAP is reported for both
4187 a completed single-step and a software breakpoint. Need to
4188 differentiate between the two, as the latter needs adjusting
4189 but the former does not.
4190
4191 The SIGTRAP can be due to a completed hardware single-step only if
4192 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4193 - this thread is currently being stepped
4194
4195 If any of these events did not occur, we must have stopped due
4196 to hitting a software breakpoint, and have to back up to the
4197 breakpoint address.
4198
4199 As a special case, we could have hardware single-stepped a
4200 software breakpoint. In this case (prev_pc == breakpoint_pc),
4201 we also need to back up to the breakpoint address. */
4202
d8dd4d5f
PA
4203 if (thread_has_single_step_breakpoints_set (thread)
4204 || !currently_stepping (thread)
4205 || (thread->stepped_breakpoint
4206 && thread->prev_pc == breakpoint_pc))
515630c5 4207 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4208
77f9e713 4209 do_cleanups (old_cleanups);
8aad930b 4210 }
4fa8626c
DJ
4211}
4212
edb3359d
DJ
4213static int
4214stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4215{
4216 for (frame = get_prev_frame (frame);
4217 frame != NULL;
4218 frame = get_prev_frame (frame))
4219 {
4220 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4221 return 1;
4222 if (get_frame_type (frame) != INLINE_FRAME)
4223 break;
4224 }
4225
4226 return 0;
4227}
4228
c65d6b55
PA
4229/* If the event thread has the stop requested flag set, pretend it
4230 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4231 target_stop). */
4232
4233static bool
4234handle_stop_requested (struct execution_control_state *ecs)
4235{
4236 if (ecs->event_thread->stop_requested)
4237 {
4238 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4239 ecs->ws.value.sig = GDB_SIGNAL_0;
4240 handle_signal_stop (ecs);
4241 return true;
4242 }
4243 return false;
4244}
4245
a96d9b2e
SDJ
4246/* Auxiliary function that handles syscall entry/return events.
4247 It returns 1 if the inferior should keep going (and GDB
4248 should ignore the event), or 0 if the event deserves to be
4249 processed. */
ca2163eb 4250
a96d9b2e 4251static int
ca2163eb 4252handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4253{
ca2163eb 4254 struct regcache *regcache;
ca2163eb
PA
4255 int syscall_number;
4256
4257 if (!ptid_equal (ecs->ptid, inferior_ptid))
4258 context_switch (ecs->ptid);
4259
4260 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4261 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4262 stop_pc = regcache_read_pc (regcache);
4263
a96d9b2e
SDJ
4264 if (catch_syscall_enabled () > 0
4265 && catching_syscall_number (syscall_number) > 0)
4266 {
4267 if (debug_infrun)
4268 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4269 syscall_number);
a96d9b2e 4270
16c381f0 4271 ecs->event_thread->control.stop_bpstat
6c95b8df 4272 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4273 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4274
c65d6b55
PA
4275 if (handle_stop_requested (ecs))
4276 return 0;
4277
ce12b012 4278 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4279 {
4280 /* Catchpoint hit. */
ca2163eb
PA
4281 return 0;
4282 }
a96d9b2e 4283 }
ca2163eb 4284
c65d6b55
PA
4285 if (handle_stop_requested (ecs))
4286 return 0;
4287
ca2163eb 4288 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4289 keep_going (ecs);
4290 return 1;
a96d9b2e
SDJ
4291}
4292
7e324e48
GB
4293/* Lazily fill in the execution_control_state's stop_func_* fields. */
4294
4295static void
4296fill_in_stop_func (struct gdbarch *gdbarch,
4297 struct execution_control_state *ecs)
4298{
4299 if (!ecs->stop_func_filled_in)
4300 {
4301 /* Don't care about return value; stop_func_start and stop_func_name
4302 will both be 0 if it doesn't work. */
4303 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4304 &ecs->stop_func_start, &ecs->stop_func_end);
4305 ecs->stop_func_start
4306 += gdbarch_deprecated_function_start_offset (gdbarch);
4307
591a12a1
UW
4308 if (gdbarch_skip_entrypoint_p (gdbarch))
4309 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4310 ecs->stop_func_start);
4311
7e324e48
GB
4312 ecs->stop_func_filled_in = 1;
4313 }
4314}
4315
4f5d7f63
PA
4316
4317/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4318
4319static enum stop_kind
4320get_inferior_stop_soon (ptid_t ptid)
4321{
c9657e70 4322 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4323
4324 gdb_assert (inf != NULL);
4325 return inf->control.stop_soon;
4326}
4327
372316f1
PA
4328/* Wait for one event. Store the resulting waitstatus in WS, and
4329 return the event ptid. */
4330
4331static ptid_t
4332wait_one (struct target_waitstatus *ws)
4333{
4334 ptid_t event_ptid;
4335 ptid_t wait_ptid = minus_one_ptid;
4336
4337 overlay_cache_invalid = 1;
4338
4339 /* Flush target cache before starting to handle each event.
4340 Target was running and cache could be stale. This is just a
4341 heuristic. Running threads may modify target memory, but we
4342 don't get any event. */
4343 target_dcache_invalidate ();
4344
4345 if (deprecated_target_wait_hook)
4346 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4347 else
4348 event_ptid = target_wait (wait_ptid, ws, 0);
4349
4350 if (debug_infrun)
4351 print_target_wait_results (wait_ptid, event_ptid, ws);
4352
4353 return event_ptid;
4354}
4355
4356/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4357 instead of the current thread. */
4358#define THREAD_STOPPED_BY(REASON) \
4359static int \
4360thread_stopped_by_ ## REASON (ptid_t ptid) \
4361{ \
2989a365 4362 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4363 inferior_ptid = ptid; \
4364 \
2989a365 4365 return target_stopped_by_ ## REASON (); \
372316f1
PA
4366}
4367
4368/* Generate thread_stopped_by_watchpoint. */
4369THREAD_STOPPED_BY (watchpoint)
4370/* Generate thread_stopped_by_sw_breakpoint. */
4371THREAD_STOPPED_BY (sw_breakpoint)
4372/* Generate thread_stopped_by_hw_breakpoint. */
4373THREAD_STOPPED_BY (hw_breakpoint)
4374
4375/* Cleanups that switches to the PTID pointed at by PTID_P. */
4376
4377static void
4378switch_to_thread_cleanup (void *ptid_p)
4379{
4380 ptid_t ptid = *(ptid_t *) ptid_p;
4381
4382 switch_to_thread (ptid);
4383}
4384
4385/* Save the thread's event and stop reason to process it later. */
4386
4387static void
4388save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4389{
4390 struct regcache *regcache;
4391 struct address_space *aspace;
4392
4393 if (debug_infrun)
4394 {
23fdd69e 4395 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4396
372316f1
PA
4397 fprintf_unfiltered (gdb_stdlog,
4398 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4399 statstr.c_str (),
372316f1
PA
4400 ptid_get_pid (tp->ptid),
4401 ptid_get_lwp (tp->ptid),
4402 ptid_get_tid (tp->ptid));
372316f1
PA
4403 }
4404
4405 /* Record for later. */
4406 tp->suspend.waitstatus = *ws;
4407 tp->suspend.waitstatus_pending_p = 1;
4408
4409 regcache = get_thread_regcache (tp->ptid);
4410 aspace = get_regcache_aspace (regcache);
4411
4412 if (ws->kind == TARGET_WAITKIND_STOPPED
4413 && ws->value.sig == GDB_SIGNAL_TRAP)
4414 {
4415 CORE_ADDR pc = regcache_read_pc (regcache);
4416
4417 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4418
4419 if (thread_stopped_by_watchpoint (tp->ptid))
4420 {
4421 tp->suspend.stop_reason
4422 = TARGET_STOPPED_BY_WATCHPOINT;
4423 }
4424 else if (target_supports_stopped_by_sw_breakpoint ()
4425 && thread_stopped_by_sw_breakpoint (tp->ptid))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4429 }
4430 else if (target_supports_stopped_by_hw_breakpoint ()
4431 && thread_stopped_by_hw_breakpoint (tp->ptid))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4435 }
4436 else if (!target_supports_stopped_by_hw_breakpoint ()
4437 && hardware_breakpoint_inserted_here_p (aspace,
4438 pc))
4439 {
4440 tp->suspend.stop_reason
4441 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4442 }
4443 else if (!target_supports_stopped_by_sw_breakpoint ()
4444 && software_breakpoint_inserted_here_p (aspace,
4445 pc))
4446 {
4447 tp->suspend.stop_reason
4448 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4449 }
4450 else if (!thread_has_single_step_breakpoints_set (tp)
4451 && currently_stepping (tp))
4452 {
4453 tp->suspend.stop_reason
4454 = TARGET_STOPPED_BY_SINGLE_STEP;
4455 }
4456 }
4457}
4458
65706a29
PA
4459/* A cleanup that disables thread create/exit events. */
4460
4461static void
4462disable_thread_events (void *arg)
4463{
4464 target_thread_events (0);
4465}
4466
6efcd9a8 4467/* See infrun.h. */
372316f1 4468
6efcd9a8 4469void
372316f1
PA
4470stop_all_threads (void)
4471{
4472 /* We may need multiple passes to discover all threads. */
4473 int pass;
4474 int iterations = 0;
4475 ptid_t entry_ptid;
4476 struct cleanup *old_chain;
4477
fbea99ea 4478 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4479
4480 if (debug_infrun)
4481 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4482
4483 entry_ptid = inferior_ptid;
4484 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4485
65706a29
PA
4486 target_thread_events (1);
4487 make_cleanup (disable_thread_events, NULL);
4488
372316f1
PA
4489 /* Request threads to stop, and then wait for the stops. Because
4490 threads we already know about can spawn more threads while we're
4491 trying to stop them, and we only learn about new threads when we
4492 update the thread list, do this in a loop, and keep iterating
4493 until two passes find no threads that need to be stopped. */
4494 for (pass = 0; pass < 2; pass++, iterations++)
4495 {
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: stop_all_threads, pass=%d, "
4499 "iterations=%d\n", pass, iterations);
4500 while (1)
4501 {
4502 ptid_t event_ptid;
4503 struct target_waitstatus ws;
4504 int need_wait = 0;
4505 struct thread_info *t;
4506
4507 update_thread_list ();
4508
4509 /* Go through all threads looking for threads that we need
4510 to tell the target to stop. */
4511 ALL_NON_EXITED_THREADS (t)
4512 {
4513 if (t->executing)
4514 {
4515 /* If already stopping, don't request a stop again.
4516 We just haven't seen the notification yet. */
4517 if (!t->stop_requested)
4518 {
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: %s executing, "
4522 "need stop\n",
4523 target_pid_to_str (t->ptid));
4524 target_stop (t->ptid);
4525 t->stop_requested = 1;
4526 }
4527 else
4528 {
4529 if (debug_infrun)
4530 fprintf_unfiltered (gdb_stdlog,
4531 "infrun: %s executing, "
4532 "already stopping\n",
4533 target_pid_to_str (t->ptid));
4534 }
4535
4536 if (t->stop_requested)
4537 need_wait = 1;
4538 }
4539 else
4540 {
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s not executing\n",
4544 target_pid_to_str (t->ptid));
4545
4546 /* The thread may be not executing, but still be
4547 resumed with a pending status to process. */
4548 t->resumed = 0;
4549 }
4550 }
4551
4552 if (!need_wait)
4553 break;
4554
4555 /* If we find new threads on the second iteration, restart
4556 over. We want to see two iterations in a row with all
4557 threads stopped. */
4558 if (pass > 0)
4559 pass = -1;
4560
4561 event_ptid = wait_one (&ws);
4562 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4563 {
4564 /* All resumed threads exited. */
4565 }
65706a29
PA
4566 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4567 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4568 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4569 {
4570 if (debug_infrun)
4571 {
4572 ptid_t ptid = pid_to_ptid (ws.value.integer);
4573
4574 fprintf_unfiltered (gdb_stdlog,
4575 "infrun: %s exited while "
4576 "stopping threads\n",
4577 target_pid_to_str (ptid));
4578 }
4579 }
4580 else
4581 {
6efcd9a8
PA
4582 struct inferior *inf;
4583
372316f1
PA
4584 t = find_thread_ptid (event_ptid);
4585 if (t == NULL)
4586 t = add_thread (event_ptid);
4587
4588 t->stop_requested = 0;
4589 t->executing = 0;
4590 t->resumed = 0;
4591 t->control.may_range_step = 0;
4592
6efcd9a8
PA
4593 /* This may be the first time we see the inferior report
4594 a stop. */
4595 inf = find_inferior_ptid (event_ptid);
4596 if (inf->needs_setup)
4597 {
4598 switch_to_thread_no_regs (t);
4599 setup_inferior (0);
4600 }
4601
372316f1
PA
4602 if (ws.kind == TARGET_WAITKIND_STOPPED
4603 && ws.value.sig == GDB_SIGNAL_0)
4604 {
4605 /* We caught the event that we intended to catch, so
4606 there's no event pending. */
4607 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4608 t->suspend.waitstatus_pending_p = 0;
4609
4610 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4611 {
4612 /* Add it back to the step-over queue. */
4613 if (debug_infrun)
4614 {
4615 fprintf_unfiltered (gdb_stdlog,
4616 "infrun: displaced-step of %s "
4617 "canceled: adding back to the "
4618 "step-over queue\n",
4619 target_pid_to_str (t->ptid));
4620 }
4621 t->control.trap_expected = 0;
4622 thread_step_over_chain_enqueue (t);
4623 }
4624 }
4625 else
4626 {
4627 enum gdb_signal sig;
4628 struct regcache *regcache;
372316f1
PA
4629
4630 if (debug_infrun)
4631 {
23fdd69e 4632 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4633
372316f1
PA
4634 fprintf_unfiltered (gdb_stdlog,
4635 "infrun: target_wait %s, saving "
4636 "status for %d.%ld.%ld\n",
23fdd69e 4637 statstr.c_str (),
372316f1
PA
4638 ptid_get_pid (t->ptid),
4639 ptid_get_lwp (t->ptid),
4640 ptid_get_tid (t->ptid));
372316f1
PA
4641 }
4642
4643 /* Record for later. */
4644 save_waitstatus (t, &ws);
4645
4646 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4647 ? ws.value.sig : GDB_SIGNAL_0);
4648
4649 if (displaced_step_fixup (t->ptid, sig) < 0)
4650 {
4651 /* Add it back to the step-over queue. */
4652 t->control.trap_expected = 0;
4653 thread_step_over_chain_enqueue (t);
4654 }
4655
4656 regcache = get_thread_regcache (t->ptid);
4657 t->suspend.stop_pc = regcache_read_pc (regcache);
4658
4659 if (debug_infrun)
4660 {
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: saved stop_pc=%s for %s "
4663 "(currently_stepping=%d)\n",
4664 paddress (target_gdbarch (),
4665 t->suspend.stop_pc),
4666 target_pid_to_str (t->ptid),
4667 currently_stepping (t));
4668 }
4669 }
4670 }
4671 }
4672 }
4673
4674 do_cleanups (old_chain);
4675
4676 if (debug_infrun)
4677 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4678}
4679
f4836ba9
PA
4680/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4681
4682static int
4683handle_no_resumed (struct execution_control_state *ecs)
4684{
4685 struct inferior *inf;
4686 struct thread_info *thread;
4687
3b12939d 4688 if (target_can_async_p ())
f4836ba9 4689 {
3b12939d
PA
4690 struct ui *ui;
4691 int any_sync = 0;
f4836ba9 4692
3b12939d
PA
4693 ALL_UIS (ui)
4694 {
4695 if (ui->prompt_state == PROMPT_BLOCKED)
4696 {
4697 any_sync = 1;
4698 break;
4699 }
4700 }
4701 if (!any_sync)
4702 {
4703 /* There were no unwaited-for children left in the target, but,
4704 we're not synchronously waiting for events either. Just
4705 ignore. */
4706
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog,
4709 "infrun: TARGET_WAITKIND_NO_RESUMED "
4710 "(ignoring: bg)\n");
4711 prepare_to_wait (ecs);
4712 return 1;
4713 }
f4836ba9
PA
4714 }
4715
4716 /* Otherwise, if we were running a synchronous execution command, we
4717 may need to cancel it and give the user back the terminal.
4718
4719 In non-stop mode, the target can't tell whether we've already
4720 consumed previous stop events, so it can end up sending us a
4721 no-resumed event like so:
4722
4723 #0 - thread 1 is left stopped
4724
4725 #1 - thread 2 is resumed and hits breakpoint
4726 -> TARGET_WAITKIND_STOPPED
4727
4728 #2 - thread 3 is resumed and exits
4729 this is the last resumed thread, so
4730 -> TARGET_WAITKIND_NO_RESUMED
4731
4732 #3 - gdb processes stop for thread 2 and decides to re-resume
4733 it.
4734
4735 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4736 thread 2 is now resumed, so the event should be ignored.
4737
4738 IOW, if the stop for thread 2 doesn't end a foreground command,
4739 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4740 event. But it could be that the event meant that thread 2 itself
4741 (or whatever other thread was the last resumed thread) exited.
4742
4743 To address this we refresh the thread list and check whether we
4744 have resumed threads _now_. In the example above, this removes
4745 thread 3 from the thread list. If thread 2 was re-resumed, we
4746 ignore this event. If we find no thread resumed, then we cancel
4747 the synchronous command show "no unwaited-for " to the user. */
4748 update_thread_list ();
4749
4750 ALL_NON_EXITED_THREADS (thread)
4751 {
4752 if (thread->executing
4753 || thread->suspend.waitstatus_pending_p)
4754 {
4755 /* There were no unwaited-for children left in the target at
4756 some point, but there are now. Just ignore. */
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog,
4759 "infrun: TARGET_WAITKIND_NO_RESUMED "
4760 "(ignoring: found resumed)\n");
4761 prepare_to_wait (ecs);
4762 return 1;
4763 }
4764 }
4765
4766 /* Note however that we may find no resumed thread because the whole
4767 process exited meanwhile (thus updating the thread list results
4768 in an empty thread list). In this case we know we'll be getting
4769 a process exit event shortly. */
4770 ALL_INFERIORS (inf)
4771 {
4772 if (inf->pid == 0)
4773 continue;
4774
4775 thread = any_live_thread_of_process (inf->pid);
4776 if (thread == NULL)
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: TARGET_WAITKIND_NO_RESUMED "
4781 "(expect process exit)\n");
4782 prepare_to_wait (ecs);
4783 return 1;
4784 }
4785 }
4786
4787 /* Go ahead and report the event. */
4788 return 0;
4789}
4790
05ba8510
PA
4791/* Given an execution control state that has been freshly filled in by
4792 an event from the inferior, figure out what it means and take
4793 appropriate action.
4794
4795 The alternatives are:
4796
22bcd14b 4797 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4798 debugger.
4799
4800 2) keep_going and return; to wait for the next event (set
4801 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4802 once). */
c906108c 4803
ec9499be 4804static void
0b6e5e10 4805handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4806{
d6b48e9c
PA
4807 enum stop_kind stop_soon;
4808
28736962
PA
4809 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4810 {
4811 /* We had an event in the inferior, but we are not interested in
4812 handling it at this level. The lower layers have already
4813 done what needs to be done, if anything.
4814
4815 One of the possible circumstances for this is when the
4816 inferior produces output for the console. The inferior has
4817 not stopped, and we are ignoring the event. Another possible
4818 circumstance is any event which the lower level knows will be
4819 reported multiple times without an intervening resume. */
4820 if (debug_infrun)
4821 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4822 prepare_to_wait (ecs);
4823 return;
4824 }
4825
65706a29
PA
4826 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4827 {
4828 if (debug_infrun)
4829 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4830 prepare_to_wait (ecs);
4831 return;
4832 }
4833
0e5bf2a8 4834 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4835 && handle_no_resumed (ecs))
4836 return;
0e5bf2a8 4837
1777feb0 4838 /* Cache the last pid/waitstatus. */
c32c64b7 4839 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4840
ca005067 4841 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4842 stop_stack_dummy = STOP_NONE;
ca005067 4843
0e5bf2a8
PA
4844 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4845 {
4846 /* No unwaited-for children left. IOW, all resumed children
4847 have exited. */
4848 if (debug_infrun)
4849 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4850
4851 stop_print_frame = 0;
22bcd14b 4852 stop_waiting (ecs);
0e5bf2a8
PA
4853 return;
4854 }
4855
8c90c137 4856 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4857 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4858 {
4859 ecs->event_thread = find_thread_ptid (ecs->ptid);
4860 /* If it's a new thread, add it to the thread database. */
4861 if (ecs->event_thread == NULL)
4862 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4863
4864 /* Disable range stepping. If the next step request could use a
4865 range, this will be end up re-enabled then. */
4866 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4867 }
88ed393a
JK
4868
4869 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4870 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4871
4872 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4873 reinit_frame_cache ();
4874
28736962
PA
4875 breakpoint_retire_moribund ();
4876
2b009048
DJ
4877 /* First, distinguish signals caused by the debugger from signals
4878 that have to do with the program's own actions. Note that
4879 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4880 on the operating system version. Here we detect when a SIGILL or
4881 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4882 something similar for SIGSEGV, since a SIGSEGV will be generated
4883 when we're trying to execute a breakpoint instruction on a
4884 non-executable stack. This happens for call dummy breakpoints
4885 for architectures like SPARC that place call dummies on the
4886 stack. */
2b009048 4887 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4888 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4889 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4890 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4891 {
de0a0249
UW
4892 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4893
4894 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4895 regcache_read_pc (regcache)))
4896 {
4897 if (debug_infrun)
4898 fprintf_unfiltered (gdb_stdlog,
4899 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4900 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4901 }
2b009048
DJ
4902 }
4903
28736962
PA
4904 /* Mark the non-executing threads accordingly. In all-stop, all
4905 threads of all processes are stopped when we get any event
e1316e60 4906 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4907 {
4908 ptid_t mark_ptid;
4909
fbea99ea 4910 if (!target_is_non_stop_p ())
372316f1
PA
4911 mark_ptid = minus_one_ptid;
4912 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4913 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4914 {
4915 /* If we're handling a process exit in non-stop mode, even
4916 though threads haven't been deleted yet, one would think
4917 that there is nothing to do, as threads of the dead process
4918 will be soon deleted, and threads of any other process were
4919 left running. However, on some targets, threads survive a
4920 process exit event. E.g., for the "checkpoint" command,
4921 when the current checkpoint/fork exits, linux-fork.c
4922 automatically switches to another fork from within
4923 target_mourn_inferior, by associating the same
4924 inferior/thread to another fork. We haven't mourned yet at
4925 this point, but we must mark any threads left in the
4926 process as not-executing so that finish_thread_state marks
4927 them stopped (in the user's perspective) if/when we present
4928 the stop to the user. */
4929 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4930 }
4931 else
4932 mark_ptid = ecs->ptid;
4933
4934 set_executing (mark_ptid, 0);
4935
4936 /* Likewise the resumed flag. */
4937 set_resumed (mark_ptid, 0);
4938 }
8c90c137 4939
488f131b
JB
4940 switch (ecs->ws.kind)
4941 {
4942 case TARGET_WAITKIND_LOADED:
527159b7 4943 if (debug_infrun)
8a9de0e4 4944 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4945 if (!ptid_equal (ecs->ptid, inferior_ptid))
4946 context_switch (ecs->ptid);
b0f4b84b
DJ
4947 /* Ignore gracefully during startup of the inferior, as it might
4948 be the shell which has just loaded some objects, otherwise
4949 add the symbols for the newly loaded objects. Also ignore at
4950 the beginning of an attach or remote session; we will query
4951 the full list of libraries once the connection is
4952 established. */
4f5d7f63
PA
4953
4954 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4955 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4956 {
edcc5120
TT
4957 struct regcache *regcache;
4958
edcc5120
TT
4959 regcache = get_thread_regcache (ecs->ptid);
4960
4961 handle_solib_event ();
4962
4963 ecs->event_thread->control.stop_bpstat
4964 = bpstat_stop_status (get_regcache_aspace (regcache),
4965 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4966
c65d6b55
PA
4967 if (handle_stop_requested (ecs))
4968 return;
4969
ce12b012 4970 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4971 {
4972 /* A catchpoint triggered. */
94c57d6a
PA
4973 process_event_stop_test (ecs);
4974 return;
edcc5120 4975 }
488f131b 4976
b0f4b84b
DJ
4977 /* If requested, stop when the dynamic linker notifies
4978 gdb of events. This allows the user to get control
4979 and place breakpoints in initializer routines for
4980 dynamically loaded objects (among other things). */
a493e3e2 4981 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4982 if (stop_on_solib_events)
4983 {
55409f9d
DJ
4984 /* Make sure we print "Stopped due to solib-event" in
4985 normal_stop. */
4986 stop_print_frame = 1;
4987
22bcd14b 4988 stop_waiting (ecs);
b0f4b84b
DJ
4989 return;
4990 }
488f131b 4991 }
b0f4b84b
DJ
4992
4993 /* If we are skipping through a shell, or through shared library
4994 loading that we aren't interested in, resume the program. If
5c09a2c5 4995 we're running the program normally, also resume. */
b0f4b84b
DJ
4996 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4997 {
74960c60
VP
4998 /* Loading of shared libraries might have changed breakpoint
4999 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5000 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5001 insert_breakpoints ();
64ce06e4 5002 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5003 prepare_to_wait (ecs);
5004 return;
5005 }
5006
5c09a2c5
PA
5007 /* But stop if we're attaching or setting up a remote
5008 connection. */
5009 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5010 || stop_soon == STOP_QUIETLY_REMOTE)
5011 {
5012 if (debug_infrun)
5013 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5014 stop_waiting (ecs);
5c09a2c5
PA
5015 return;
5016 }
5017
5018 internal_error (__FILE__, __LINE__,
5019 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5020
488f131b 5021 case TARGET_WAITKIND_SPURIOUS:
527159b7 5022 if (debug_infrun)
8a9de0e4 5023 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5024 if (handle_stop_requested (ecs))
5025 return;
64776a0b 5026 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5027 context_switch (ecs->ptid);
64ce06e4 5028 resume (GDB_SIGNAL_0);
488f131b
JB
5029 prepare_to_wait (ecs);
5030 return;
c5aa993b 5031
65706a29
PA
5032 case TARGET_WAITKIND_THREAD_CREATED:
5033 if (debug_infrun)
5034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5035 if (handle_stop_requested (ecs))
5036 return;
65706a29
PA
5037 if (!ptid_equal (ecs->ptid, inferior_ptid))
5038 context_switch (ecs->ptid);
5039 if (!switch_back_to_stepped_thread (ecs))
5040 keep_going (ecs);
5041 return;
5042
488f131b 5043 case TARGET_WAITKIND_EXITED:
940c3c06 5044 case TARGET_WAITKIND_SIGNALLED:
527159b7 5045 if (debug_infrun)
940c3c06
PA
5046 {
5047 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5048 fprintf_unfiltered (gdb_stdlog,
5049 "infrun: TARGET_WAITKIND_EXITED\n");
5050 else
5051 fprintf_unfiltered (gdb_stdlog,
5052 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5053 }
5054
fb66883a 5055 inferior_ptid = ecs->ptid;
c9657e70 5056 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5057 set_current_program_space (current_inferior ()->pspace);
5058 handle_vfork_child_exec_or_exit (0);
223ffa71 5059 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5060
0c557179
SDJ
5061 /* Clearing any previous state of convenience variables. */
5062 clear_exit_convenience_vars ();
5063
940c3c06
PA
5064 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5065 {
5066 /* Record the exit code in the convenience variable $_exitcode, so
5067 that the user can inspect this again later. */
5068 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5069 (LONGEST) ecs->ws.value.integer);
5070
5071 /* Also record this in the inferior itself. */
5072 current_inferior ()->has_exit_code = 1;
5073 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5074
98eb56a4
PA
5075 /* Support the --return-child-result option. */
5076 return_child_result_value = ecs->ws.value.integer;
5077
fd664c91 5078 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5079 }
5080 else
0c557179
SDJ
5081 {
5082 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5083 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5084
5085 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5086 {
5087 /* Set the value of the internal variable $_exitsignal,
5088 which holds the signal uncaught by the inferior. */
5089 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5090 gdbarch_gdb_signal_to_target (gdbarch,
5091 ecs->ws.value.sig));
5092 }
5093 else
5094 {
5095 /* We don't have access to the target's method used for
5096 converting between signal numbers (GDB's internal
5097 representation <-> target's representation).
5098 Therefore, we cannot do a good job at displaying this
5099 information to the user. It's better to just warn
5100 her about it (if infrun debugging is enabled), and
5101 give up. */
5102 if (debug_infrun)
5103 fprintf_filtered (gdb_stdlog, _("\
5104Cannot fill $_exitsignal with the correct signal number.\n"));
5105 }
5106
fd664c91 5107 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5108 }
8cf64490 5109
488f131b 5110 gdb_flush (gdb_stdout);
bc1e6c81 5111 target_mourn_inferior (inferior_ptid);
488f131b 5112 stop_print_frame = 0;
22bcd14b 5113 stop_waiting (ecs);
488f131b 5114 return;
c5aa993b 5115
488f131b 5116 /* The following are the only cases in which we keep going;
1777feb0 5117 the above cases end in a continue or goto. */
488f131b 5118 case TARGET_WAITKIND_FORKED:
deb3b17b 5119 case TARGET_WAITKIND_VFORKED:
527159b7 5120 if (debug_infrun)
fed708ed
PA
5121 {
5122 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5123 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5124 else
5125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5126 }
c906108c 5127
e2d96639
YQ
5128 /* Check whether the inferior is displaced stepping. */
5129 {
5130 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5131 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5132
5133 /* If checking displaced stepping is supported, and thread
5134 ecs->ptid is displaced stepping. */
c0987663 5135 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5136 {
5137 struct inferior *parent_inf
c9657e70 5138 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5139 struct regcache *child_regcache;
5140 CORE_ADDR parent_pc;
5141
5142 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5143 indicating that the displaced stepping of syscall instruction
5144 has been done. Perform cleanup for parent process here. Note
5145 that this operation also cleans up the child process for vfork,
5146 because their pages are shared. */
a493e3e2 5147 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5148 /* Start a new step-over in another thread if there's one
5149 that needs it. */
5150 start_step_over ();
e2d96639
YQ
5151
5152 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5153 {
c0987663
YQ
5154 struct displaced_step_inferior_state *displaced
5155 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5156
e2d96639
YQ
5157 /* Restore scratch pad for child process. */
5158 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5159 }
5160
5161 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5162 the child's PC is also within the scratchpad. Set the child's PC
5163 to the parent's PC value, which has already been fixed up.
5164 FIXME: we use the parent's aspace here, although we're touching
5165 the child, because the child hasn't been added to the inferior
5166 list yet at this point. */
5167
5168 child_regcache
5169 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5170 gdbarch,
5171 parent_inf->aspace);
5172 /* Read PC value of parent process. */
5173 parent_pc = regcache_read_pc (regcache);
5174
5175 if (debug_displaced)
5176 fprintf_unfiltered (gdb_stdlog,
5177 "displaced: write child pc from %s to %s\n",
5178 paddress (gdbarch,
5179 regcache_read_pc (child_regcache)),
5180 paddress (gdbarch, parent_pc));
5181
5182 regcache_write_pc (child_regcache, parent_pc);
5183 }
5184 }
5185
5a2901d9 5186 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5187 context_switch (ecs->ptid);
5a2901d9 5188
b242c3c2
PA
5189 /* Immediately detach breakpoints from the child before there's
5190 any chance of letting the user delete breakpoints from the
5191 breakpoint lists. If we don't do this early, it's easy to
5192 leave left over traps in the child, vis: "break foo; catch
5193 fork; c; <fork>; del; c; <child calls foo>". We only follow
5194 the fork on the last `continue', and by that time the
5195 breakpoint at "foo" is long gone from the breakpoint table.
5196 If we vforked, then we don't need to unpatch here, since both
5197 parent and child are sharing the same memory pages; we'll
5198 need to unpatch at follow/detach time instead to be certain
5199 that new breakpoints added between catchpoint hit time and
5200 vfork follow are detached. */
5201 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5202 {
b242c3c2
PA
5203 /* This won't actually modify the breakpoint list, but will
5204 physically remove the breakpoints from the child. */
d80ee84f 5205 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5206 }
5207
34b7e8a6 5208 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5209
e58b0e63
PA
5210 /* In case the event is caught by a catchpoint, remember that
5211 the event is to be followed at the next resume of the thread,
5212 and not immediately. */
5213 ecs->event_thread->pending_follow = ecs->ws;
5214
fb14de7b 5215 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5216
16c381f0 5217 ecs->event_thread->control.stop_bpstat
6c95b8df 5218 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5219 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5220
c65d6b55
PA
5221 if (handle_stop_requested (ecs))
5222 return;
5223
ce12b012
PA
5224 /* If no catchpoint triggered for this, then keep going. Note
5225 that we're interested in knowing the bpstat actually causes a
5226 stop, not just if it may explain the signal. Software
5227 watchpoints, for example, always appear in the bpstat. */
5228 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5229 {
6c95b8df
PA
5230 ptid_t parent;
5231 ptid_t child;
e58b0e63 5232 int should_resume;
3e43a32a
MS
5233 int follow_child
5234 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5235
a493e3e2 5236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5237
5238 should_resume = follow_fork ();
5239
6c95b8df
PA
5240 parent = ecs->ptid;
5241 child = ecs->ws.value.related_pid;
5242
a2077e25
PA
5243 /* At this point, the parent is marked running, and the
5244 child is marked stopped. */
5245
5246 /* If not resuming the parent, mark it stopped. */
5247 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5248 set_running (parent, 0);
5249
5250 /* If resuming the child, mark it running. */
5251 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5252 set_running (child, 1);
5253
6c95b8df 5254 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5255 if (!detach_fork && (non_stop
5256 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5257 {
5258 if (follow_child)
5259 switch_to_thread (parent);
5260 else
5261 switch_to_thread (child);
5262
5263 ecs->event_thread = inferior_thread ();
5264 ecs->ptid = inferior_ptid;
5265 keep_going (ecs);
5266 }
5267
5268 if (follow_child)
5269 switch_to_thread (child);
5270 else
5271 switch_to_thread (parent);
5272
e58b0e63
PA
5273 ecs->event_thread = inferior_thread ();
5274 ecs->ptid = inferior_ptid;
5275
5276 if (should_resume)
5277 keep_going (ecs);
5278 else
22bcd14b 5279 stop_waiting (ecs);
04e68871
DJ
5280 return;
5281 }
94c57d6a
PA
5282 process_event_stop_test (ecs);
5283 return;
488f131b 5284
6c95b8df
PA
5285 case TARGET_WAITKIND_VFORK_DONE:
5286 /* Done with the shared memory region. Re-insert breakpoints in
5287 the parent, and keep going. */
5288
5289 if (debug_infrun)
3e43a32a
MS
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5292
5293 if (!ptid_equal (ecs->ptid, inferior_ptid))
5294 context_switch (ecs->ptid);
5295
5296 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5297 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5298
5299 if (handle_stop_requested (ecs))
5300 return;
5301
6c95b8df
PA
5302 /* This also takes care of reinserting breakpoints in the
5303 previously locked inferior. */
5304 keep_going (ecs);
5305 return;
5306
488f131b 5307 case TARGET_WAITKIND_EXECD:
527159b7 5308 if (debug_infrun)
fc5261f2 5309 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5310
5a2901d9 5311 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5312 context_switch (ecs->ptid);
5a2901d9 5313
6c95b8df
PA
5314 /* Do whatever is necessary to the parent branch of the vfork. */
5315 handle_vfork_child_exec_or_exit (1);
5316
795e548f
PA
5317 /* This causes the eventpoints and symbol table to be reset.
5318 Must do this now, before trying to determine whether to
5319 stop. */
71b43ef8 5320 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5321
1bb7c059
SM
5322 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5323
17d8546e
DB
5324 /* In follow_exec we may have deleted the original thread and
5325 created a new one. Make sure that the event thread is the
5326 execd thread for that case (this is a nop otherwise). */
5327 ecs->event_thread = inferior_thread ();
5328
16c381f0 5329 ecs->event_thread->control.stop_bpstat
6c95b8df 5330 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5331 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5332
71b43ef8
PA
5333 /* Note that this may be referenced from inside
5334 bpstat_stop_status above, through inferior_has_execd. */
5335 xfree (ecs->ws.value.execd_pathname);
5336 ecs->ws.value.execd_pathname = NULL;
5337
c65d6b55
PA
5338 if (handle_stop_requested (ecs))
5339 return;
5340
04e68871 5341 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5342 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5343 {
a493e3e2 5344 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5345 keep_going (ecs);
5346 return;
5347 }
94c57d6a
PA
5348 process_event_stop_test (ecs);
5349 return;
488f131b 5350
b4dc5ffa
MK
5351 /* Be careful not to try to gather much state about a thread
5352 that's in a syscall. It's frequently a losing proposition. */
488f131b 5353 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5354 if (debug_infrun)
3e43a32a
MS
5355 fprintf_unfiltered (gdb_stdlog,
5356 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5357 /* Getting the current syscall number. */
94c57d6a
PA
5358 if (handle_syscall_event (ecs) == 0)
5359 process_event_stop_test (ecs);
5360 return;
c906108c 5361
488f131b
JB
5362 /* Before examining the threads further, step this thread to
5363 get it entirely out of the syscall. (We get notice of the
5364 event when the thread is just on the verge of exiting a
5365 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5366 into user code.) */
488f131b 5367 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5368 if (debug_infrun)
3e43a32a
MS
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5371 if (handle_syscall_event (ecs) == 0)
5372 process_event_stop_test (ecs);
5373 return;
c906108c 5374
488f131b 5375 case TARGET_WAITKIND_STOPPED:
527159b7 5376 if (debug_infrun)
8a9de0e4 5377 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5378 handle_signal_stop (ecs);
5379 return;
c906108c 5380
b2175913 5381 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5384 /* Reverse execution: target ran out of history info. */
eab402df 5385
d1988021
MM
5386 /* Switch to the stopped thread. */
5387 if (!ptid_equal (ecs->ptid, inferior_ptid))
5388 context_switch (ecs->ptid);
5389 if (debug_infrun)
5390 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5391
34b7e8a6 5392 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5393 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5394
5395 if (handle_stop_requested (ecs))
5396 return;
5397
fd664c91 5398 observer_notify_no_history ();
22bcd14b 5399 stop_waiting (ecs);
b2175913 5400 return;
488f131b 5401 }
4f5d7f63
PA
5402}
5403
0b6e5e10
JB
5404/* A wrapper around handle_inferior_event_1, which also makes sure
5405 that all temporary struct value objects that were created during
5406 the handling of the event get deleted at the end. */
5407
5408static void
5409handle_inferior_event (struct execution_control_state *ecs)
5410{
5411 struct value *mark = value_mark ();
5412
5413 handle_inferior_event_1 (ecs);
5414 /* Purge all temporary values created during the event handling,
5415 as it could be a long time before we return to the command level
5416 where such values would otherwise be purged. */
5417 value_free_to_mark (mark);
5418}
5419
372316f1
PA
5420/* Restart threads back to what they were trying to do back when we
5421 paused them for an in-line step-over. The EVENT_THREAD thread is
5422 ignored. */
4d9d9d04
PA
5423
5424static void
372316f1
PA
5425restart_threads (struct thread_info *event_thread)
5426{
5427 struct thread_info *tp;
372316f1
PA
5428
5429 /* In case the instruction just stepped spawned a new thread. */
5430 update_thread_list ();
5431
5432 ALL_NON_EXITED_THREADS (tp)
5433 {
5434 if (tp == event_thread)
5435 {
5436 if (debug_infrun)
5437 fprintf_unfiltered (gdb_stdlog,
5438 "infrun: restart threads: "
5439 "[%s] is event thread\n",
5440 target_pid_to_str (tp->ptid));
5441 continue;
5442 }
5443
5444 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: "
5449 "[%s] not meant to be running\n",
5450 target_pid_to_str (tp->ptid));
5451 continue;
5452 }
5453
5454 if (tp->resumed)
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: [%s] resumed\n",
5459 target_pid_to_str (tp->ptid));
5460 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5461 continue;
5462 }
5463
5464 if (thread_is_in_step_over_chain (tp))
5465 {
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: restart threads: "
5469 "[%s] needs step-over\n",
5470 target_pid_to_str (tp->ptid));
5471 gdb_assert (!tp->resumed);
5472 continue;
5473 }
5474
5475
5476 if (tp->suspend.waitstatus_pending_p)
5477 {
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: restart threads: "
5481 "[%s] has pending status\n",
5482 target_pid_to_str (tp->ptid));
5483 tp->resumed = 1;
5484 continue;
5485 }
5486
c65d6b55
PA
5487 gdb_assert (!tp->stop_requested);
5488
372316f1
PA
5489 /* If some thread needs to start a step-over at this point, it
5490 should still be in the step-over queue, and thus skipped
5491 above. */
5492 if (thread_still_needs_step_over (tp))
5493 {
5494 internal_error (__FILE__, __LINE__,
5495 "thread [%s] needs a step-over, but not in "
5496 "step-over queue\n",
5497 target_pid_to_str (tp->ptid));
5498 }
5499
5500 if (currently_stepping (tp))
5501 {
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog,
5504 "infrun: restart threads: [%s] was stepping\n",
5505 target_pid_to_str (tp->ptid));
5506 keep_going_stepped_thread (tp);
5507 }
5508 else
5509 {
5510 struct execution_control_state ecss;
5511 struct execution_control_state *ecs = &ecss;
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog,
5515 "infrun: restart threads: [%s] continuing\n",
5516 target_pid_to_str (tp->ptid));
5517 reset_ecs (ecs, tp);
5518 switch_to_thread (tp->ptid);
5519 keep_going_pass_signal (ecs);
5520 }
5521 }
5522}
5523
5524/* Callback for iterate_over_threads. Find a resumed thread that has
5525 a pending waitstatus. */
5526
5527static int
5528resumed_thread_with_pending_status (struct thread_info *tp,
5529 void *arg)
5530{
5531 return (tp->resumed
5532 && tp->suspend.waitstatus_pending_p);
5533}
5534
5535/* Called when we get an event that may finish an in-line or
5536 out-of-line (displaced stepping) step-over started previously.
5537 Return true if the event is processed and we should go back to the
5538 event loop; false if the caller should continue processing the
5539 event. */
5540
5541static int
4d9d9d04
PA
5542finish_step_over (struct execution_control_state *ecs)
5543{
372316f1
PA
5544 int had_step_over_info;
5545
4d9d9d04
PA
5546 displaced_step_fixup (ecs->ptid,
5547 ecs->event_thread->suspend.stop_signal);
5548
372316f1
PA
5549 had_step_over_info = step_over_info_valid_p ();
5550
5551 if (had_step_over_info)
4d9d9d04
PA
5552 {
5553 /* If we're stepping over a breakpoint with all threads locked,
5554 then only the thread that was stepped should be reporting
5555 back an event. */
5556 gdb_assert (ecs->event_thread->control.trap_expected);
5557
c65d6b55 5558 clear_step_over_info ();
4d9d9d04
PA
5559 }
5560
fbea99ea 5561 if (!target_is_non_stop_p ())
372316f1 5562 return 0;
4d9d9d04
PA
5563
5564 /* Start a new step-over in another thread if there's one that
5565 needs it. */
5566 start_step_over ();
372316f1
PA
5567
5568 /* If we were stepping over a breakpoint before, and haven't started
5569 a new in-line step-over sequence, then restart all other threads
5570 (except the event thread). We can't do this in all-stop, as then
5571 e.g., we wouldn't be able to issue any other remote packet until
5572 these other threads stop. */
5573 if (had_step_over_info && !step_over_info_valid_p ())
5574 {
5575 struct thread_info *pending;
5576
5577 /* If we only have threads with pending statuses, the restart
5578 below won't restart any thread and so nothing re-inserts the
5579 breakpoint we just stepped over. But we need it inserted
5580 when we later process the pending events, otherwise if
5581 another thread has a pending event for this breakpoint too,
5582 we'd discard its event (because the breakpoint that
5583 originally caused the event was no longer inserted). */
5584 context_switch (ecs->ptid);
5585 insert_breakpoints ();
5586
5587 restart_threads (ecs->event_thread);
5588
5589 /* If we have events pending, go through handle_inferior_event
5590 again, picking up a pending event at random. This avoids
5591 thread starvation. */
5592
5593 /* But not if we just stepped over a watchpoint in order to let
5594 the instruction execute so we can evaluate its expression.
5595 The set of watchpoints that triggered is recorded in the
5596 breakpoint objects themselves (see bp->watchpoint_triggered).
5597 If we processed another event first, that other event could
5598 clobber this info. */
5599 if (ecs->event_thread->stepping_over_watchpoint)
5600 return 0;
5601
5602 pending = iterate_over_threads (resumed_thread_with_pending_status,
5603 NULL);
5604 if (pending != NULL)
5605 {
5606 struct thread_info *tp = ecs->event_thread;
5607 struct regcache *regcache;
5608
5609 if (debug_infrun)
5610 {
5611 fprintf_unfiltered (gdb_stdlog,
5612 "infrun: found resumed threads with "
5613 "pending events, saving status\n");
5614 }
5615
5616 gdb_assert (pending != tp);
5617
5618 /* Record the event thread's event for later. */
5619 save_waitstatus (tp, &ecs->ws);
5620 /* This was cleared early, by handle_inferior_event. Set it
5621 so this pending event is considered by
5622 do_target_wait. */
5623 tp->resumed = 1;
5624
5625 gdb_assert (!tp->executing);
5626
5627 regcache = get_thread_regcache (tp->ptid);
5628 tp->suspend.stop_pc = regcache_read_pc (regcache);
5629
5630 if (debug_infrun)
5631 {
5632 fprintf_unfiltered (gdb_stdlog,
5633 "infrun: saved stop_pc=%s for %s "
5634 "(currently_stepping=%d)\n",
5635 paddress (target_gdbarch (),
5636 tp->suspend.stop_pc),
5637 target_pid_to_str (tp->ptid),
5638 currently_stepping (tp));
5639 }
5640
5641 /* This in-line step-over finished; clear this so we won't
5642 start a new one. This is what handle_signal_stop would
5643 do, if we returned false. */
5644 tp->stepping_over_breakpoint = 0;
5645
5646 /* Wake up the event loop again. */
5647 mark_async_event_handler (infrun_async_inferior_event_token);
5648
5649 prepare_to_wait (ecs);
5650 return 1;
5651 }
5652 }
5653
5654 return 0;
4d9d9d04
PA
5655}
5656
4f5d7f63
PA
5657/* Come here when the program has stopped with a signal. */
5658
5659static void
5660handle_signal_stop (struct execution_control_state *ecs)
5661{
5662 struct frame_info *frame;
5663 struct gdbarch *gdbarch;
5664 int stopped_by_watchpoint;
5665 enum stop_kind stop_soon;
5666 int random_signal;
c906108c 5667
f0407826
DE
5668 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5669
c65d6b55
PA
5670 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5671
f0407826
DE
5672 /* Do we need to clean up the state of a thread that has
5673 completed a displaced single-step? (Doing so usually affects
5674 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5675 if (finish_step_over (ecs))
5676 return;
f0407826
DE
5677
5678 /* If we either finished a single-step or hit a breakpoint, but
5679 the user wanted this thread to be stopped, pretend we got a
5680 SIG0 (generic unsignaled stop). */
5681 if (ecs->event_thread->stop_requested
5682 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5683 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5684
515630c5 5685 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5686
527159b7 5687 if (debug_infrun)
237fc4c9 5688 {
5af949e3
UW
5689 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2989a365 5691 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5692
5693 inferior_ptid = ecs->ptid;
5af949e3
UW
5694
5695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5696 paddress (gdbarch, stop_pc));
d92524f1 5697 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5698 {
5699 CORE_ADDR addr;
abbb1732 5700
237fc4c9
PA
5701 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5702
5703 if (target_stopped_data_address (&current_target, &addr))
5704 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5705 "infrun: stopped data address = %s\n",
5706 paddress (gdbarch, addr));
237fc4c9
PA
5707 else
5708 fprintf_unfiltered (gdb_stdlog,
5709 "infrun: (no data address available)\n");
5710 }
5711 }
527159b7 5712
36fa8042
PA
5713 /* This is originated from start_remote(), start_inferior() and
5714 shared libraries hook functions. */
5715 stop_soon = get_inferior_stop_soon (ecs->ptid);
5716 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5717 {
5718 if (!ptid_equal (ecs->ptid, inferior_ptid))
5719 context_switch (ecs->ptid);
5720 if (debug_infrun)
5721 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5722 stop_print_frame = 1;
22bcd14b 5723 stop_waiting (ecs);
36fa8042
PA
5724 return;
5725 }
5726
36fa8042
PA
5727 /* This originates from attach_command(). We need to overwrite
5728 the stop_signal here, because some kernels don't ignore a
5729 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5730 See more comments in inferior.h. On the other hand, if we
5731 get a non-SIGSTOP, report it to the user - assume the backend
5732 will handle the SIGSTOP if it should show up later.
5733
5734 Also consider that the attach is complete when we see a
5735 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5736 target extended-remote report it instead of a SIGSTOP
5737 (e.g. gdbserver). We already rely on SIGTRAP being our
5738 signal, so this is no exception.
5739
5740 Also consider that the attach is complete when we see a
5741 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5742 the target to stop all threads of the inferior, in case the
5743 low level attach operation doesn't stop them implicitly. If
5744 they weren't stopped implicitly, then the stub will report a
5745 GDB_SIGNAL_0, meaning: stopped for no particular reason
5746 other than GDB's request. */
5747 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5748 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5749 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5750 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5751 {
5752 stop_print_frame = 1;
22bcd14b 5753 stop_waiting (ecs);
36fa8042
PA
5754 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5755 return;
5756 }
5757
488f131b 5758 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5759 so, then switch to that thread. */
5760 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5761 {
527159b7 5762 if (debug_infrun)
8a9de0e4 5763 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5764
0d1e5fa7 5765 context_switch (ecs->ptid);
c5aa993b 5766
9a4105ab 5767 if (deprecated_context_hook)
5d5658a1 5768 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5769 }
c906108c 5770
568d6575
UW
5771 /* At this point, get hold of the now-current thread's frame. */
5772 frame = get_current_frame ();
5773 gdbarch = get_frame_arch (frame);
5774
2adfaa28 5775 /* Pull the single step breakpoints out of the target. */
af48d08f 5776 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5777 {
af48d08f
PA
5778 struct regcache *regcache;
5779 struct address_space *aspace;
5780 CORE_ADDR pc;
2adfaa28 5781
af48d08f
PA
5782 regcache = get_thread_regcache (ecs->ptid);
5783 aspace = get_regcache_aspace (regcache);
5784 pc = regcache_read_pc (regcache);
34b7e8a6 5785
af48d08f
PA
5786 /* However, before doing so, if this single-step breakpoint was
5787 actually for another thread, set this thread up for moving
5788 past it. */
5789 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5790 aspace, pc))
5791 {
5792 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5793 {
5794 if (debug_infrun)
5795 {
5796 fprintf_unfiltered (gdb_stdlog,
af48d08f 5797 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5798 "single-step breakpoint\n",
5799 target_pid_to_str (ecs->ptid));
2adfaa28 5800 }
af48d08f
PA
5801 ecs->hit_singlestep_breakpoint = 1;
5802 }
5803 }
5804 else
5805 {
5806 if (debug_infrun)
5807 {
5808 fprintf_unfiltered (gdb_stdlog,
5809 "infrun: [%s] hit its "
5810 "single-step breakpoint\n",
5811 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5812 }
5813 }
488f131b 5814 }
af48d08f 5815 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5816
963f9c80
PA
5817 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5818 && ecs->event_thread->control.trap_expected
5819 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5820 stopped_by_watchpoint = 0;
5821 else
5822 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5823
5824 /* If necessary, step over this watchpoint. We'll be back to display
5825 it in a moment. */
5826 if (stopped_by_watchpoint
d92524f1 5827 && (target_have_steppable_watchpoint
568d6575 5828 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5829 {
488f131b
JB
5830 /* At this point, we are stopped at an instruction which has
5831 attempted to write to a piece of memory under control of
5832 a watchpoint. The instruction hasn't actually executed
5833 yet. If we were to evaluate the watchpoint expression
5834 now, we would get the old value, and therefore no change
5835 would seem to have occurred.
5836
5837 In order to make watchpoints work `right', we really need
5838 to complete the memory write, and then evaluate the
d983da9c
DJ
5839 watchpoint expression. We do this by single-stepping the
5840 target.
5841
7f89fd65 5842 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5843 it. For example, the PA can (with some kernel cooperation)
5844 single step over a watchpoint without disabling the watchpoint.
5845
5846 It is far more common to need to disable a watchpoint to step
5847 the inferior over it. If we have non-steppable watchpoints,
5848 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5849 disable all watchpoints.
5850
5851 Any breakpoint at PC must also be stepped over -- if there's
5852 one, it will have already triggered before the watchpoint
5853 triggered, and we either already reported it to the user, or
5854 it didn't cause a stop and we called keep_going. In either
5855 case, if there was a breakpoint at PC, we must be trying to
5856 step past it. */
5857 ecs->event_thread->stepping_over_watchpoint = 1;
5858 keep_going (ecs);
488f131b
JB
5859 return;
5860 }
5861
4e1c45ea 5862 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5863 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5864 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5865 ecs->event_thread->control.stop_step = 0;
488f131b 5866 stop_print_frame = 1;
488f131b 5867 stopped_by_random_signal = 0;
488f131b 5868
edb3359d
DJ
5869 /* Hide inlined functions starting here, unless we just performed stepi or
5870 nexti. After stepi and nexti, always show the innermost frame (not any
5871 inline function call sites). */
16c381f0 5872 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5873 {
5874 struct address_space *aspace =
5875 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5876
5877 /* skip_inline_frames is expensive, so we avoid it if we can
5878 determine that the address is one where functions cannot have
5879 been inlined. This improves performance with inferiors that
5880 load a lot of shared libraries, because the solib event
5881 breakpoint is defined as the address of a function (i.e. not
5882 inline). Note that we have to check the previous PC as well
5883 as the current one to catch cases when we have just
5884 single-stepped off a breakpoint prior to reinstating it.
5885 Note that we're assuming that the code we single-step to is
5886 not inline, but that's not definitive: there's nothing
5887 preventing the event breakpoint function from containing
5888 inlined code, and the single-step ending up there. If the
5889 user had set a breakpoint on that inlined code, the missing
5890 skip_inline_frames call would break things. Fortunately
5891 that's an extremely unlikely scenario. */
09ac7c10 5892 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5893 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5894 && ecs->event_thread->control.trap_expected
5895 && pc_at_non_inline_function (aspace,
5896 ecs->event_thread->prev_pc,
09ac7c10 5897 &ecs->ws)))
1c5a993e
MR
5898 {
5899 skip_inline_frames (ecs->ptid);
5900
5901 /* Re-fetch current thread's frame in case that invalidated
5902 the frame cache. */
5903 frame = get_current_frame ();
5904 gdbarch = get_frame_arch (frame);
5905 }
0574c78f 5906 }
edb3359d 5907
a493e3e2 5908 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5909 && ecs->event_thread->control.trap_expected
568d6575 5910 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5911 && currently_stepping (ecs->event_thread))
3352ef37 5912 {
b50d7442 5913 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5914 also on an instruction that needs to be stepped multiple
1777feb0 5915 times before it's been fully executing. E.g., architectures
3352ef37
AC
5916 with a delay slot. It needs to be stepped twice, once for
5917 the instruction and once for the delay slot. */
5918 int step_through_delay
568d6575 5919 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5920
527159b7 5921 if (debug_infrun && step_through_delay)
8a9de0e4 5922 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5923 if (ecs->event_thread->control.step_range_end == 0
5924 && step_through_delay)
3352ef37
AC
5925 {
5926 /* The user issued a continue when stopped at a breakpoint.
5927 Set up for another trap and get out of here. */
4e1c45ea 5928 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5929 keep_going (ecs);
5930 return;
5931 }
5932 else if (step_through_delay)
5933 {
5934 /* The user issued a step when stopped at a breakpoint.
5935 Maybe we should stop, maybe we should not - the delay
5936 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5937 case, don't decide that here, just set
5938 ecs->stepping_over_breakpoint, making sure we
5939 single-step again before breakpoints are re-inserted. */
4e1c45ea 5940 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5941 }
5942 }
5943
ab04a2af
TT
5944 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5945 handles this event. */
5946 ecs->event_thread->control.stop_bpstat
5947 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5948 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5949
ab04a2af
TT
5950 /* Following in case break condition called a
5951 function. */
5952 stop_print_frame = 1;
73dd234f 5953
ab04a2af
TT
5954 /* This is where we handle "moribund" watchpoints. Unlike
5955 software breakpoints traps, hardware watchpoint traps are
5956 always distinguishable from random traps. If no high-level
5957 watchpoint is associated with the reported stop data address
5958 anymore, then the bpstat does not explain the signal ---
5959 simply make sure to ignore it if `stopped_by_watchpoint' is
5960 set. */
5961
5962 if (debug_infrun
5963 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5964 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5965 GDB_SIGNAL_TRAP)
ab04a2af
TT
5966 && stopped_by_watchpoint)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: no user watchpoint explains "
5969 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5970
bac7d97b 5971 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5972 at one stage in the past included checks for an inferior
5973 function call's call dummy's return breakpoint. The original
5974 comment, that went with the test, read:
03cebad2 5975
ab04a2af
TT
5976 ``End of a stack dummy. Some systems (e.g. Sony news) give
5977 another signal besides SIGTRAP, so check here as well as
5978 above.''
73dd234f 5979
ab04a2af
TT
5980 If someone ever tries to get call dummys on a
5981 non-executable stack to work (where the target would stop
5982 with something like a SIGSEGV), then those tests might need
5983 to be re-instated. Given, however, that the tests were only
5984 enabled when momentary breakpoints were not being used, I
5985 suspect that it won't be the case.
488f131b 5986
ab04a2af
TT
5987 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5988 be necessary for call dummies on a non-executable stack on
5989 SPARC. */
488f131b 5990
bac7d97b 5991 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5992 random_signal
5993 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5994 ecs->event_thread->suspend.stop_signal);
bac7d97b 5995
1cf4d951
PA
5996 /* Maybe this was a trap for a software breakpoint that has since
5997 been removed. */
5998 if (random_signal && target_stopped_by_sw_breakpoint ())
5999 {
6000 if (program_breakpoint_here_p (gdbarch, stop_pc))
6001 {
6002 struct regcache *regcache;
6003 int decr_pc;
6004
6005 /* Re-adjust PC to what the program would see if GDB was not
6006 debugging it. */
6007 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6008 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6009 if (decr_pc != 0)
6010 {
6011 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6012
6013 if (record_full_is_used ())
6014 record_full_gdb_operation_disable_set ();
6015
6016 regcache_write_pc (regcache, stop_pc + decr_pc);
6017
6018 do_cleanups (old_cleanups);
6019 }
6020 }
6021 else
6022 {
6023 /* A delayed software breakpoint event. Ignore the trap. */
6024 if (debug_infrun)
6025 fprintf_unfiltered (gdb_stdlog,
6026 "infrun: delayed software breakpoint "
6027 "trap, ignoring\n");
6028 random_signal = 0;
6029 }
6030 }
6031
6032 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6033 has since been removed. */
6034 if (random_signal && target_stopped_by_hw_breakpoint ())
6035 {
6036 /* A delayed hardware breakpoint event. Ignore the trap. */
6037 if (debug_infrun)
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: delayed hardware breakpoint/watchpoint "
6040 "trap, ignoring\n");
6041 random_signal = 0;
6042 }
6043
bac7d97b
PA
6044 /* If not, perhaps stepping/nexting can. */
6045 if (random_signal)
6046 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6047 && currently_stepping (ecs->event_thread));
ab04a2af 6048
2adfaa28
PA
6049 /* Perhaps the thread hit a single-step breakpoint of _another_
6050 thread. Single-step breakpoints are transparent to the
6051 breakpoints module. */
6052 if (random_signal)
6053 random_signal = !ecs->hit_singlestep_breakpoint;
6054
bac7d97b
PA
6055 /* No? Perhaps we got a moribund watchpoint. */
6056 if (random_signal)
6057 random_signal = !stopped_by_watchpoint;
ab04a2af 6058
c65d6b55
PA
6059 /* Always stop if the user explicitly requested this thread to
6060 remain stopped. */
6061 if (ecs->event_thread->stop_requested)
6062 {
6063 random_signal = 1;
6064 if (debug_infrun)
6065 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6066 }
6067
488f131b
JB
6068 /* For the program's own signals, act according to
6069 the signal handling tables. */
6070
ce12b012 6071 if (random_signal)
488f131b
JB
6072 {
6073 /* Signal not for debugging purposes. */
c9657e70 6074 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6075 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6076
527159b7 6077 if (debug_infrun)
c9737c08
PA
6078 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6079 gdb_signal_to_symbol_string (stop_signal));
527159b7 6080
488f131b
JB
6081 stopped_by_random_signal = 1;
6082
252fbfc8
PA
6083 /* Always stop on signals if we're either just gaining control
6084 of the program, or the user explicitly requested this thread
6085 to remain stopped. */
d6b48e9c 6086 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6087 || ecs->event_thread->stop_requested
24291992 6088 || (!inf->detaching
16c381f0 6089 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6090 {
22bcd14b 6091 stop_waiting (ecs);
488f131b
JB
6092 return;
6093 }
b57bacec
PA
6094
6095 /* Notify observers the signal has "handle print" set. Note we
6096 returned early above if stopping; normal_stop handles the
6097 printing in that case. */
6098 if (signal_print[ecs->event_thread->suspend.stop_signal])
6099 {
6100 /* The signal table tells us to print about this signal. */
223ffa71 6101 target_terminal::ours_for_output ();
b57bacec 6102 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6103 target_terminal::inferior ();
b57bacec 6104 }
488f131b
JB
6105
6106 /* Clear the signal if it should not be passed. */
16c381f0 6107 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6108 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6109
fb14de7b 6110 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6111 && ecs->event_thread->control.trap_expected
8358c15c 6112 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6113 {
6114 /* We were just starting a new sequence, attempting to
6115 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6116 Instead this signal arrives. This signal will take us out
68f53502
AC
6117 of the stepping range so GDB needs to remember to, when
6118 the signal handler returns, resume stepping off that
6119 breakpoint. */
6120 /* To simplify things, "continue" is forced to use the same
6121 code paths as single-step - set a breakpoint at the
6122 signal return address and then, once hit, step off that
6123 breakpoint. */
237fc4c9
PA
6124 if (debug_infrun)
6125 fprintf_unfiltered (gdb_stdlog,
6126 "infrun: signal arrived while stepping over "
6127 "breakpoint\n");
d3169d93 6128
2c03e5be 6129 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6130 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6131 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6132 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6133
6134 /* If we were nexting/stepping some other thread, switch to
6135 it, so that we don't continue it, losing control. */
6136 if (!switch_back_to_stepped_thread (ecs))
6137 keep_going (ecs);
9d799f85 6138 return;
68f53502 6139 }
9d799f85 6140
e5f8a7cc
PA
6141 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6142 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6143 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6144 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6145 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6146 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6147 {
6148 /* The inferior is about to take a signal that will take it
6149 out of the single step range. Set a breakpoint at the
6150 current PC (which is presumably where the signal handler
6151 will eventually return) and then allow the inferior to
6152 run free.
6153
6154 Note that this is only needed for a signal delivered
6155 while in the single-step range. Nested signals aren't a
6156 problem as they eventually all return. */
237fc4c9
PA
6157 if (debug_infrun)
6158 fprintf_unfiltered (gdb_stdlog,
6159 "infrun: signal may take us out of "
6160 "single-step range\n");
6161
372316f1 6162 clear_step_over_info ();
2c03e5be 6163 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6164 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6165 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6166 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6167 keep_going (ecs);
6168 return;
d303a6c7 6169 }
9d799f85
AC
6170
6171 /* Note: step_resume_breakpoint may be non-NULL. This occures
6172 when either there's a nested signal, or when there's a
6173 pending signal enabled just as the signal handler returns
6174 (leaving the inferior at the step-resume-breakpoint without
6175 actually executing it). Either way continue until the
6176 breakpoint is really hit. */
c447ac0b
PA
6177
6178 if (!switch_back_to_stepped_thread (ecs))
6179 {
6180 if (debug_infrun)
6181 fprintf_unfiltered (gdb_stdlog,
6182 "infrun: random signal, keep going\n");
6183
6184 keep_going (ecs);
6185 }
6186 return;
488f131b 6187 }
94c57d6a
PA
6188
6189 process_event_stop_test (ecs);
6190}
6191
6192/* Come here when we've got some debug event / signal we can explain
6193 (IOW, not a random signal), and test whether it should cause a
6194 stop, or whether we should resume the inferior (transparently).
6195 E.g., could be a breakpoint whose condition evaluates false; we
6196 could be still stepping within the line; etc. */
6197
6198static void
6199process_event_stop_test (struct execution_control_state *ecs)
6200{
6201 struct symtab_and_line stop_pc_sal;
6202 struct frame_info *frame;
6203 struct gdbarch *gdbarch;
cdaa5b73
PA
6204 CORE_ADDR jmp_buf_pc;
6205 struct bpstat_what what;
94c57d6a 6206
cdaa5b73 6207 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6208
cdaa5b73
PA
6209 frame = get_current_frame ();
6210 gdbarch = get_frame_arch (frame);
fcf3daef 6211
cdaa5b73 6212 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6213
cdaa5b73
PA
6214 if (what.call_dummy)
6215 {
6216 stop_stack_dummy = what.call_dummy;
6217 }
186c406b 6218
243a9253
PA
6219 /* A few breakpoint types have callbacks associated (e.g.,
6220 bp_jit_event). Run them now. */
6221 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6222
cdaa5b73
PA
6223 /* If we hit an internal event that triggers symbol changes, the
6224 current frame will be invalidated within bpstat_what (e.g., if we
6225 hit an internal solib event). Re-fetch it. */
6226 frame = get_current_frame ();
6227 gdbarch = get_frame_arch (frame);
e2e4d78b 6228
cdaa5b73
PA
6229 switch (what.main_action)
6230 {
6231 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6232 /* If we hit the breakpoint at longjmp while stepping, we
6233 install a momentary breakpoint at the target of the
6234 jmp_buf. */
186c406b 6235
cdaa5b73
PA
6236 if (debug_infrun)
6237 fprintf_unfiltered (gdb_stdlog,
6238 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6239
cdaa5b73 6240 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6241
cdaa5b73
PA
6242 if (what.is_longjmp)
6243 {
6244 struct value *arg_value;
6245
6246 /* If we set the longjmp breakpoint via a SystemTap probe,
6247 then use it to extract the arguments. The destination PC
6248 is the third argument to the probe. */
6249 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6250 if (arg_value)
8fa0c4f8
AA
6251 {
6252 jmp_buf_pc = value_as_address (arg_value);
6253 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6254 }
cdaa5b73
PA
6255 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6256 || !gdbarch_get_longjmp_target (gdbarch,
6257 frame, &jmp_buf_pc))
e2e4d78b 6258 {
cdaa5b73
PA
6259 if (debug_infrun)
6260 fprintf_unfiltered (gdb_stdlog,
6261 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6262 "(!gdbarch_get_longjmp_target)\n");
6263 keep_going (ecs);
6264 return;
e2e4d78b 6265 }
e2e4d78b 6266
cdaa5b73
PA
6267 /* Insert a breakpoint at resume address. */
6268 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6269 }
6270 else
6271 check_exception_resume (ecs, frame);
6272 keep_going (ecs);
6273 return;
e81a37f7 6274
cdaa5b73
PA
6275 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6276 {
6277 struct frame_info *init_frame;
e81a37f7 6278
cdaa5b73 6279 /* There are several cases to consider.
c906108c 6280
cdaa5b73
PA
6281 1. The initiating frame no longer exists. In this case we
6282 must stop, because the exception or longjmp has gone too
6283 far.
2c03e5be 6284
cdaa5b73
PA
6285 2. The initiating frame exists, and is the same as the
6286 current frame. We stop, because the exception or longjmp
6287 has been caught.
2c03e5be 6288
cdaa5b73
PA
6289 3. The initiating frame exists and is different from the
6290 current frame. This means the exception or longjmp has
6291 been caught beneath the initiating frame, so keep going.
c906108c 6292
cdaa5b73
PA
6293 4. longjmp breakpoint has been placed just to protect
6294 against stale dummy frames and user is not interested in
6295 stopping around longjmps. */
c5aa993b 6296
cdaa5b73
PA
6297 if (debug_infrun)
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6300
cdaa5b73
PA
6301 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6302 != NULL);
6303 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6304
cdaa5b73
PA
6305 if (what.is_longjmp)
6306 {
b67a2c6f 6307 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6308
cdaa5b73 6309 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6310 {
cdaa5b73
PA
6311 /* Case 4. */
6312 keep_going (ecs);
6313 return;
e5ef252a 6314 }
cdaa5b73 6315 }
c5aa993b 6316
cdaa5b73 6317 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6318
cdaa5b73
PA
6319 if (init_frame)
6320 {
6321 struct frame_id current_id
6322 = get_frame_id (get_current_frame ());
6323 if (frame_id_eq (current_id,
6324 ecs->event_thread->initiating_frame))
6325 {
6326 /* Case 2. Fall through. */
6327 }
6328 else
6329 {
6330 /* Case 3. */
6331 keep_going (ecs);
6332 return;
6333 }
68f53502 6334 }
488f131b 6335
cdaa5b73
PA
6336 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6337 exists. */
6338 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6339
bdc36728 6340 end_stepping_range (ecs);
cdaa5b73
PA
6341 }
6342 return;
e5ef252a 6343
cdaa5b73
PA
6344 case BPSTAT_WHAT_SINGLE:
6345 if (debug_infrun)
6346 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6347 ecs->event_thread->stepping_over_breakpoint = 1;
6348 /* Still need to check other stuff, at least the case where we
6349 are stepping and step out of the right range. */
6350 break;
e5ef252a 6351
cdaa5b73
PA
6352 case BPSTAT_WHAT_STEP_RESUME:
6353 if (debug_infrun)
6354 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6355
cdaa5b73
PA
6356 delete_step_resume_breakpoint (ecs->event_thread);
6357 if (ecs->event_thread->control.proceed_to_finish
6358 && execution_direction == EXEC_REVERSE)
6359 {
6360 struct thread_info *tp = ecs->event_thread;
6361
6362 /* We are finishing a function in reverse, and just hit the
6363 step-resume breakpoint at the start address of the
6364 function, and we're almost there -- just need to back up
6365 by one more single-step, which should take us back to the
6366 function call. */
6367 tp->control.step_range_start = tp->control.step_range_end = 1;
6368 keep_going (ecs);
e5ef252a 6369 return;
cdaa5b73
PA
6370 }
6371 fill_in_stop_func (gdbarch, ecs);
6372 if (stop_pc == ecs->stop_func_start
6373 && execution_direction == EXEC_REVERSE)
6374 {
6375 /* We are stepping over a function call in reverse, and just
6376 hit the step-resume breakpoint at the start address of
6377 the function. Go back to single-stepping, which should
6378 take us back to the function call. */
6379 ecs->event_thread->stepping_over_breakpoint = 1;
6380 keep_going (ecs);
6381 return;
6382 }
6383 break;
e5ef252a 6384
cdaa5b73
PA
6385 case BPSTAT_WHAT_STOP_NOISY:
6386 if (debug_infrun)
6387 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6388 stop_print_frame = 1;
e5ef252a 6389
99619bea
PA
6390 /* Assume the thread stopped for a breapoint. We'll still check
6391 whether a/the breakpoint is there when the thread is next
6392 resumed. */
6393 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6394
22bcd14b 6395 stop_waiting (ecs);
cdaa5b73 6396 return;
e5ef252a 6397
cdaa5b73
PA
6398 case BPSTAT_WHAT_STOP_SILENT:
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6401 stop_print_frame = 0;
e5ef252a 6402
99619bea
PA
6403 /* Assume the thread stopped for a breapoint. We'll still check
6404 whether a/the breakpoint is there when the thread is next
6405 resumed. */
6406 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6407 stop_waiting (ecs);
cdaa5b73
PA
6408 return;
6409
6410 case BPSTAT_WHAT_HP_STEP_RESUME:
6411 if (debug_infrun)
6412 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6413
6414 delete_step_resume_breakpoint (ecs->event_thread);
6415 if (ecs->event_thread->step_after_step_resume_breakpoint)
6416 {
6417 /* Back when the step-resume breakpoint was inserted, we
6418 were trying to single-step off a breakpoint. Go back to
6419 doing that. */
6420 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6421 ecs->event_thread->stepping_over_breakpoint = 1;
6422 keep_going (ecs);
6423 return;
e5ef252a 6424 }
cdaa5b73
PA
6425 break;
6426
6427 case BPSTAT_WHAT_KEEP_CHECKING:
6428 break;
e5ef252a 6429 }
c906108c 6430
af48d08f
PA
6431 /* If we stepped a permanent breakpoint and we had a high priority
6432 step-resume breakpoint for the address we stepped, but we didn't
6433 hit it, then we must have stepped into the signal handler. The
6434 step-resume was only necessary to catch the case of _not_
6435 stepping into the handler, so delete it, and fall through to
6436 checking whether the step finished. */
6437 if (ecs->event_thread->stepped_breakpoint)
6438 {
6439 struct breakpoint *sr_bp
6440 = ecs->event_thread->control.step_resume_breakpoint;
6441
8d707a12
PA
6442 if (sr_bp != NULL
6443 && sr_bp->loc->permanent
af48d08f
PA
6444 && sr_bp->type == bp_hp_step_resume
6445 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6446 {
6447 if (debug_infrun)
6448 fprintf_unfiltered (gdb_stdlog,
6449 "infrun: stepped permanent breakpoint, stopped in "
6450 "handler\n");
6451 delete_step_resume_breakpoint (ecs->event_thread);
6452 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6453 }
6454 }
6455
cdaa5b73
PA
6456 /* We come here if we hit a breakpoint but should not stop for it.
6457 Possibly we also were stepping and should stop for that. So fall
6458 through and test for stepping. But, if not stepping, do not
6459 stop. */
c906108c 6460
a7212384
UW
6461 /* In all-stop mode, if we're currently stepping but have stopped in
6462 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6463 if (switch_back_to_stepped_thread (ecs))
6464 return;
776f04fa 6465
8358c15c 6466 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6467 {
527159b7 6468 if (debug_infrun)
d3169d93
DJ
6469 fprintf_unfiltered (gdb_stdlog,
6470 "infrun: step-resume breakpoint is inserted\n");
527159b7 6471
488f131b
JB
6472 /* Having a step-resume breakpoint overrides anything
6473 else having to do with stepping commands until
6474 that breakpoint is reached. */
488f131b
JB
6475 keep_going (ecs);
6476 return;
6477 }
c5aa993b 6478
16c381f0 6479 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6480 {
527159b7 6481 if (debug_infrun)
8a9de0e4 6482 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6483 /* Likewise if we aren't even stepping. */
488f131b
JB
6484 keep_going (ecs);
6485 return;
6486 }
c5aa993b 6487
4b7703ad
JB
6488 /* Re-fetch current thread's frame in case the code above caused
6489 the frame cache to be re-initialized, making our FRAME variable
6490 a dangling pointer. */
6491 frame = get_current_frame ();
628fe4e4 6492 gdbarch = get_frame_arch (frame);
7e324e48 6493 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6494
488f131b 6495 /* If stepping through a line, keep going if still within it.
c906108c 6496
488f131b
JB
6497 Note that step_range_end is the address of the first instruction
6498 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6499 within it!
6500
6501 Note also that during reverse execution, we may be stepping
6502 through a function epilogue and therefore must detect when
6503 the current-frame changes in the middle of a line. */
6504
ce4c476a 6505 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6506 && (execution_direction != EXEC_REVERSE
388a8562 6507 || frame_id_eq (get_frame_id (frame),
16c381f0 6508 ecs->event_thread->control.step_frame_id)))
488f131b 6509 {
527159b7 6510 if (debug_infrun)
5af949e3
UW
6511 fprintf_unfiltered
6512 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6513 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6514 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6515
c1e36e3e
PA
6516 /* Tentatively re-enable range stepping; `resume' disables it if
6517 necessary (e.g., if we're stepping over a breakpoint or we
6518 have software watchpoints). */
6519 ecs->event_thread->control.may_range_step = 1;
6520
b2175913
MS
6521 /* When stepping backward, stop at beginning of line range
6522 (unless it's the function entry point, in which case
6523 keep going back to the call point). */
16c381f0 6524 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6525 && stop_pc != ecs->stop_func_start
6526 && execution_direction == EXEC_REVERSE)
bdc36728 6527 end_stepping_range (ecs);
b2175913
MS
6528 else
6529 keep_going (ecs);
6530
488f131b
JB
6531 return;
6532 }
c5aa993b 6533
488f131b 6534 /* We stepped out of the stepping range. */
c906108c 6535
488f131b 6536 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6537 loader dynamic symbol resolution code...
6538
6539 EXEC_FORWARD: we keep on single stepping until we exit the run
6540 time loader code and reach the callee's address.
6541
6542 EXEC_REVERSE: we've already executed the callee (backward), and
6543 the runtime loader code is handled just like any other
6544 undebuggable function call. Now we need only keep stepping
6545 backward through the trampoline code, and that's handled further
6546 down, so there is nothing for us to do here. */
6547
6548 if (execution_direction != EXEC_REVERSE
16c381f0 6549 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6550 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6551 {
4c8c40e6 6552 CORE_ADDR pc_after_resolver =
568d6575 6553 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6554
527159b7 6555 if (debug_infrun)
3e43a32a
MS
6556 fprintf_unfiltered (gdb_stdlog,
6557 "infrun: stepped into dynsym resolve code\n");
527159b7 6558
488f131b
JB
6559 if (pc_after_resolver)
6560 {
6561 /* Set up a step-resume breakpoint at the address
6562 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6563 symtab_and_line sr_sal;
488f131b 6564 sr_sal.pc = pc_after_resolver;
6c95b8df 6565 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6566
a6d9a66e
UW
6567 insert_step_resume_breakpoint_at_sal (gdbarch,
6568 sr_sal, null_frame_id);
c5aa993b 6569 }
c906108c 6570
488f131b
JB
6571 keep_going (ecs);
6572 return;
6573 }
c906108c 6574
16c381f0
JK
6575 if (ecs->event_thread->control.step_range_end != 1
6576 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6577 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6578 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6579 {
527159b7 6580 if (debug_infrun)
3e43a32a
MS
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into signal trampoline\n");
42edda50 6583 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6584 a signal trampoline (either by a signal being delivered or by
6585 the signal handler returning). Just single-step until the
6586 inferior leaves the trampoline (either by calling the handler
6587 or returning). */
488f131b
JB
6588 keep_going (ecs);
6589 return;
6590 }
c906108c 6591
14132e89
MR
6592 /* If we're in the return path from a shared library trampoline,
6593 we want to proceed through the trampoline when stepping. */
6594 /* macro/2012-04-25: This needs to come before the subroutine
6595 call check below as on some targets return trampolines look
6596 like subroutine calls (MIPS16 return thunks). */
6597 if (gdbarch_in_solib_return_trampoline (gdbarch,
6598 stop_pc, ecs->stop_func_name)
6599 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6600 {
6601 /* Determine where this trampoline returns. */
6602 CORE_ADDR real_stop_pc;
6603
6604 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6605
6606 if (debug_infrun)
6607 fprintf_unfiltered (gdb_stdlog,
6608 "infrun: stepped into solib return tramp\n");
6609
6610 /* Only proceed through if we know where it's going. */
6611 if (real_stop_pc)
6612 {
6613 /* And put the step-breakpoint there and go until there. */
51abb421 6614 symtab_and_line sr_sal;
14132e89
MR
6615 sr_sal.pc = real_stop_pc;
6616 sr_sal.section = find_pc_overlay (sr_sal.pc);
6617 sr_sal.pspace = get_frame_program_space (frame);
6618
6619 /* Do not specify what the fp should be when we stop since
6620 on some machines the prologue is where the new fp value
6621 is established. */
6622 insert_step_resume_breakpoint_at_sal (gdbarch,
6623 sr_sal, null_frame_id);
6624
6625 /* Restart without fiddling with the step ranges or
6626 other state. */
6627 keep_going (ecs);
6628 return;
6629 }
6630 }
6631
c17eaafe
DJ
6632 /* Check for subroutine calls. The check for the current frame
6633 equalling the step ID is not necessary - the check of the
6634 previous frame's ID is sufficient - but it is a common case and
6635 cheaper than checking the previous frame's ID.
14e60db5
DJ
6636
6637 NOTE: frame_id_eq will never report two invalid frame IDs as
6638 being equal, so to get into this block, both the current and
6639 previous frame must have valid frame IDs. */
005ca36a
JB
6640 /* The outer_frame_id check is a heuristic to detect stepping
6641 through startup code. If we step over an instruction which
6642 sets the stack pointer from an invalid value to a valid value,
6643 we may detect that as a subroutine call from the mythical
6644 "outermost" function. This could be fixed by marking
6645 outermost frames as !stack_p,code_p,special_p. Then the
6646 initial outermost frame, before sp was valid, would
ce6cca6d 6647 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6648 for more. */
edb3359d 6649 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6650 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6651 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6652 ecs->event_thread->control.step_stack_frame_id)
6653 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6654 outer_frame_id)
885eeb5b
PA
6655 || (ecs->event_thread->control.step_start_function
6656 != find_pc_function (stop_pc)))))
488f131b 6657 {
95918acb 6658 CORE_ADDR real_stop_pc;
8fb3e588 6659
527159b7 6660 if (debug_infrun)
8a9de0e4 6661 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6662
b7a084be 6663 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6664 {
6665 /* I presume that step_over_calls is only 0 when we're
6666 supposed to be stepping at the assembly language level
6667 ("stepi"). Just stop. */
388a8562 6668 /* And this works the same backward as frontward. MVS */
bdc36728 6669 end_stepping_range (ecs);
95918acb
AC
6670 return;
6671 }
8fb3e588 6672
388a8562
MS
6673 /* Reverse stepping through solib trampolines. */
6674
6675 if (execution_direction == EXEC_REVERSE
16c381f0 6676 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6677 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6678 || (ecs->stop_func_start == 0
6679 && in_solib_dynsym_resolve_code (stop_pc))))
6680 {
6681 /* Any solib trampoline code can be handled in reverse
6682 by simply continuing to single-step. We have already
6683 executed the solib function (backwards), and a few
6684 steps will take us back through the trampoline to the
6685 caller. */
6686 keep_going (ecs);
6687 return;
6688 }
6689
16c381f0 6690 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6691 {
b2175913
MS
6692 /* We're doing a "next".
6693
6694 Normal (forward) execution: set a breakpoint at the
6695 callee's return address (the address at which the caller
6696 will resume).
6697
6698 Reverse (backward) execution. set the step-resume
6699 breakpoint at the start of the function that we just
6700 stepped into (backwards), and continue to there. When we
6130d0b7 6701 get there, we'll need to single-step back to the caller. */
b2175913
MS
6702
6703 if (execution_direction == EXEC_REVERSE)
6704 {
acf9414f
JK
6705 /* If we're already at the start of the function, we've either
6706 just stepped backward into a single instruction function,
6707 or stepped back out of a signal handler to the first instruction
6708 of the function. Just keep going, which will single-step back
6709 to the caller. */
58c48e72 6710 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6711 {
acf9414f 6712 /* Normal function call return (static or dynamic). */
51abb421 6713 symtab_and_line sr_sal;
acf9414f
JK
6714 sr_sal.pc = ecs->stop_func_start;
6715 sr_sal.pspace = get_frame_program_space (frame);
6716 insert_step_resume_breakpoint_at_sal (gdbarch,
6717 sr_sal, null_frame_id);
6718 }
b2175913
MS
6719 }
6720 else
568d6575 6721 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6722
8567c30f
AC
6723 keep_going (ecs);
6724 return;
6725 }
a53c66de 6726
95918acb 6727 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6728 calling routine and the real function), locate the real
6729 function. That's what tells us (a) whether we want to step
6730 into it at all, and (b) what prologue we want to run to the
6731 end of, if we do step into it. */
568d6575 6732 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6733 if (real_stop_pc == 0)
568d6575 6734 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6735 if (real_stop_pc != 0)
6736 ecs->stop_func_start = real_stop_pc;
8fb3e588 6737
db5f024e 6738 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6739 {
51abb421 6740 symtab_and_line sr_sal;
1b2bfbb9 6741 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6742 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6743
a6d9a66e
UW
6744 insert_step_resume_breakpoint_at_sal (gdbarch,
6745 sr_sal, null_frame_id);
8fb3e588
AC
6746 keep_going (ecs);
6747 return;
1b2bfbb9
RC
6748 }
6749
95918acb 6750 /* If we have line number information for the function we are
1bfeeb0f
JL
6751 thinking of stepping into and the function isn't on the skip
6752 list, step into it.
95918acb 6753
8fb3e588
AC
6754 If there are several symtabs at that PC (e.g. with include
6755 files), just want to know whether *any* of them have line
6756 numbers. find_pc_line handles this. */
95918acb
AC
6757 {
6758 struct symtab_and_line tmp_sal;
8fb3e588 6759
95918acb 6760 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6761 if (tmp_sal.line != 0
85817405 6762 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6763 tmp_sal))
95918acb 6764 {
b2175913 6765 if (execution_direction == EXEC_REVERSE)
568d6575 6766 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6767 else
568d6575 6768 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6769 return;
6770 }
6771 }
6772
6773 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6774 set, we stop the step so that the user has a chance to switch
6775 in assembly mode. */
16c381f0 6776 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6777 && step_stop_if_no_debug)
95918acb 6778 {
bdc36728 6779 end_stepping_range (ecs);
95918acb
AC
6780 return;
6781 }
6782
b2175913
MS
6783 if (execution_direction == EXEC_REVERSE)
6784 {
acf9414f
JK
6785 /* If we're already at the start of the function, we've either just
6786 stepped backward into a single instruction function without line
6787 number info, or stepped back out of a signal handler to the first
6788 instruction of the function without line number info. Just keep
6789 going, which will single-step back to the caller. */
6790 if (ecs->stop_func_start != stop_pc)
6791 {
6792 /* Set a breakpoint at callee's start address.
6793 From there we can step once and be back in the caller. */
51abb421 6794 symtab_and_line sr_sal;
acf9414f
JK
6795 sr_sal.pc = ecs->stop_func_start;
6796 sr_sal.pspace = get_frame_program_space (frame);
6797 insert_step_resume_breakpoint_at_sal (gdbarch,
6798 sr_sal, null_frame_id);
6799 }
b2175913
MS
6800 }
6801 else
6802 /* Set a breakpoint at callee's return address (the address
6803 at which the caller will resume). */
568d6575 6804 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6805
95918acb 6806 keep_going (ecs);
488f131b 6807 return;
488f131b 6808 }
c906108c 6809
fdd654f3
MS
6810 /* Reverse stepping through solib trampolines. */
6811
6812 if (execution_direction == EXEC_REVERSE
16c381f0 6813 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6814 {
6815 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6816 || (ecs->stop_func_start == 0
6817 && in_solib_dynsym_resolve_code (stop_pc)))
6818 {
6819 /* Any solib trampoline code can be handled in reverse
6820 by simply continuing to single-step. We have already
6821 executed the solib function (backwards), and a few
6822 steps will take us back through the trampoline to the
6823 caller. */
6824 keep_going (ecs);
6825 return;
6826 }
6827 else if (in_solib_dynsym_resolve_code (stop_pc))
6828 {
6829 /* Stepped backward into the solib dynsym resolver.
6830 Set a breakpoint at its start and continue, then
6831 one more step will take us out. */
51abb421 6832 symtab_and_line sr_sal;
fdd654f3 6833 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6834 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6835 insert_step_resume_breakpoint_at_sal (gdbarch,
6836 sr_sal, null_frame_id);
6837 keep_going (ecs);
6838 return;
6839 }
6840 }
6841
2afb61aa 6842 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6843
1b2bfbb9
RC
6844 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6845 the trampoline processing logic, however, there are some trampolines
6846 that have no names, so we should do trampoline handling first. */
16c381f0 6847 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6848 && ecs->stop_func_name == NULL
2afb61aa 6849 && stop_pc_sal.line == 0)
1b2bfbb9 6850 {
527159b7 6851 if (debug_infrun)
3e43a32a
MS
6852 fprintf_unfiltered (gdb_stdlog,
6853 "infrun: stepped into undebuggable function\n");
527159b7 6854
1b2bfbb9 6855 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6856 undebuggable function (where there is no debugging information
6857 and no line number corresponding to the address where the
1b2bfbb9
RC
6858 inferior stopped). Since we want to skip this kind of code,
6859 we keep going until the inferior returns from this
14e60db5
DJ
6860 function - unless the user has asked us not to (via
6861 set step-mode) or we no longer know how to get back
6862 to the call site. */
6863 if (step_stop_if_no_debug
c7ce8faa 6864 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6865 {
6866 /* If we have no line number and the step-stop-if-no-debug
6867 is set, we stop the step so that the user has a chance to
6868 switch in assembly mode. */
bdc36728 6869 end_stepping_range (ecs);
1b2bfbb9
RC
6870 return;
6871 }
6872 else
6873 {
6874 /* Set a breakpoint at callee's return address (the address
6875 at which the caller will resume). */
568d6575 6876 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6877 keep_going (ecs);
6878 return;
6879 }
6880 }
6881
16c381f0 6882 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6883 {
6884 /* It is stepi or nexti. We always want to stop stepping after
6885 one instruction. */
527159b7 6886 if (debug_infrun)
8a9de0e4 6887 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6888 end_stepping_range (ecs);
1b2bfbb9
RC
6889 return;
6890 }
6891
2afb61aa 6892 if (stop_pc_sal.line == 0)
488f131b
JB
6893 {
6894 /* We have no line number information. That means to stop
6895 stepping (does this always happen right after one instruction,
6896 when we do "s" in a function with no line numbers,
6897 or can this happen as a result of a return or longjmp?). */
527159b7 6898 if (debug_infrun)
8a9de0e4 6899 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6900 end_stepping_range (ecs);
488f131b
JB
6901 return;
6902 }
c906108c 6903
edb3359d
DJ
6904 /* Look for "calls" to inlined functions, part one. If the inline
6905 frame machinery detected some skipped call sites, we have entered
6906 a new inline function. */
6907
6908 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6909 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6910 && inline_skipped_frames (ecs->ptid))
6911 {
edb3359d
DJ
6912 if (debug_infrun)
6913 fprintf_unfiltered (gdb_stdlog,
6914 "infrun: stepped into inlined function\n");
6915
51abb421 6916 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6917
16c381f0 6918 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6919 {
6920 /* For "step", we're going to stop. But if the call site
6921 for this inlined function is on the same source line as
6922 we were previously stepping, go down into the function
6923 first. Otherwise stop at the call site. */
6924
6925 if (call_sal.line == ecs->event_thread->current_line
6926 && call_sal.symtab == ecs->event_thread->current_symtab)
6927 step_into_inline_frame (ecs->ptid);
6928
bdc36728 6929 end_stepping_range (ecs);
edb3359d
DJ
6930 return;
6931 }
6932 else
6933 {
6934 /* For "next", we should stop at the call site if it is on a
6935 different source line. Otherwise continue through the
6936 inlined function. */
6937 if (call_sal.line == ecs->event_thread->current_line
6938 && call_sal.symtab == ecs->event_thread->current_symtab)
6939 keep_going (ecs);
6940 else
bdc36728 6941 end_stepping_range (ecs);
edb3359d
DJ
6942 return;
6943 }
6944 }
6945
6946 /* Look for "calls" to inlined functions, part two. If we are still
6947 in the same real function we were stepping through, but we have
6948 to go further up to find the exact frame ID, we are stepping
6949 through a more inlined call beyond its call site. */
6950
6951 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6952 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6953 ecs->event_thread->control.step_frame_id)
edb3359d 6954 && stepped_in_from (get_current_frame (),
16c381f0 6955 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6956 {
6957 if (debug_infrun)
6958 fprintf_unfiltered (gdb_stdlog,
6959 "infrun: stepping through inlined function\n");
6960
16c381f0 6961 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6962 keep_going (ecs);
6963 else
bdc36728 6964 end_stepping_range (ecs);
edb3359d
DJ
6965 return;
6966 }
6967
2afb61aa 6968 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6969 && (ecs->event_thread->current_line != stop_pc_sal.line
6970 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6971 {
6972 /* We are at the start of a different line. So stop. Note that
6973 we don't stop if we step into the middle of a different line.
6974 That is said to make things like for (;;) statements work
6975 better. */
527159b7 6976 if (debug_infrun)
3e43a32a
MS
6977 fprintf_unfiltered (gdb_stdlog,
6978 "infrun: stepped to a different line\n");
bdc36728 6979 end_stepping_range (ecs);
488f131b
JB
6980 return;
6981 }
c906108c 6982
488f131b 6983 /* We aren't done stepping.
c906108c 6984
488f131b
JB
6985 Optimize by setting the stepping range to the line.
6986 (We might not be in the original line, but if we entered a
6987 new line in mid-statement, we continue stepping. This makes
6988 things like for(;;) statements work better.) */
c906108c 6989
16c381f0
JK
6990 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6991 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6992 ecs->event_thread->control.may_range_step = 1;
edb3359d 6993 set_step_info (frame, stop_pc_sal);
488f131b 6994
527159b7 6995 if (debug_infrun)
8a9de0e4 6996 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6997 keep_going (ecs);
104c1213
JM
6998}
6999
c447ac0b
PA
7000/* In all-stop mode, if we're currently stepping but have stopped in
7001 some other thread, we may need to switch back to the stepped
7002 thread. Returns true we set the inferior running, false if we left
7003 it stopped (and the event needs further processing). */
7004
7005static int
7006switch_back_to_stepped_thread (struct execution_control_state *ecs)
7007{
fbea99ea 7008 if (!target_is_non_stop_p ())
c447ac0b
PA
7009 {
7010 struct thread_info *tp;
99619bea
PA
7011 struct thread_info *stepping_thread;
7012
7013 /* If any thread is blocked on some internal breakpoint, and we
7014 simply need to step over that breakpoint to get it going
7015 again, do that first. */
7016
7017 /* However, if we see an event for the stepping thread, then we
7018 know all other threads have been moved past their breakpoints
7019 already. Let the caller check whether the step is finished,
7020 etc., before deciding to move it past a breakpoint. */
7021 if (ecs->event_thread->control.step_range_end != 0)
7022 return 0;
7023
7024 /* Check if the current thread is blocked on an incomplete
7025 step-over, interrupted by a random signal. */
7026 if (ecs->event_thread->control.trap_expected
7027 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7028 {
99619bea
PA
7029 if (debug_infrun)
7030 {
7031 fprintf_unfiltered (gdb_stdlog,
7032 "infrun: need to finish step-over of [%s]\n",
7033 target_pid_to_str (ecs->event_thread->ptid));
7034 }
7035 keep_going (ecs);
7036 return 1;
7037 }
2adfaa28 7038
99619bea
PA
7039 /* Check if the current thread is blocked by a single-step
7040 breakpoint of another thread. */
7041 if (ecs->hit_singlestep_breakpoint)
7042 {
7043 if (debug_infrun)
7044 {
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: need to step [%s] over single-step "
7047 "breakpoint\n",
7048 target_pid_to_str (ecs->ptid));
7049 }
7050 keep_going (ecs);
7051 return 1;
7052 }
7053
4d9d9d04
PA
7054 /* If this thread needs yet another step-over (e.g., stepping
7055 through a delay slot), do it first before moving on to
7056 another thread. */
7057 if (thread_still_needs_step_over (ecs->event_thread))
7058 {
7059 if (debug_infrun)
7060 {
7061 fprintf_unfiltered (gdb_stdlog,
7062 "infrun: thread [%s] still needs step-over\n",
7063 target_pid_to_str (ecs->event_thread->ptid));
7064 }
7065 keep_going (ecs);
7066 return 1;
7067 }
70509625 7068
483805cf
PA
7069 /* If scheduler locking applies even if not stepping, there's no
7070 need to walk over threads. Above we've checked whether the
7071 current thread is stepping. If some other thread not the
7072 event thread is stepping, then it must be that scheduler
7073 locking is not in effect. */
856e7dd6 7074 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7075 return 0;
7076
4d9d9d04
PA
7077 /* Otherwise, we no longer expect a trap in the current thread.
7078 Clear the trap_expected flag before switching back -- this is
7079 what keep_going does as well, if we call it. */
7080 ecs->event_thread->control.trap_expected = 0;
7081
7082 /* Likewise, clear the signal if it should not be passed. */
7083 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7084 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7085
7086 /* Do all pending step-overs before actually proceeding with
483805cf 7087 step/next/etc. */
4d9d9d04
PA
7088 if (start_step_over ())
7089 {
7090 prepare_to_wait (ecs);
7091 return 1;
7092 }
7093
7094 /* Look for the stepping/nexting thread. */
483805cf 7095 stepping_thread = NULL;
4d9d9d04 7096
034f788c 7097 ALL_NON_EXITED_THREADS (tp)
483805cf 7098 {
fbea99ea
PA
7099 /* Ignore threads of processes the caller is not
7100 resuming. */
483805cf 7101 if (!sched_multi
1afd5965 7102 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7103 continue;
7104
7105 /* When stepping over a breakpoint, we lock all threads
7106 except the one that needs to move past the breakpoint.
7107 If a non-event thread has this set, the "incomplete
7108 step-over" check above should have caught it earlier. */
372316f1
PA
7109 if (tp->control.trap_expected)
7110 {
7111 internal_error (__FILE__, __LINE__,
7112 "[%s] has inconsistent state: "
7113 "trap_expected=%d\n",
7114 target_pid_to_str (tp->ptid),
7115 tp->control.trap_expected);
7116 }
483805cf
PA
7117
7118 /* Did we find the stepping thread? */
7119 if (tp->control.step_range_end)
7120 {
7121 /* Yep. There should only one though. */
7122 gdb_assert (stepping_thread == NULL);
7123
7124 /* The event thread is handled at the top, before we
7125 enter this loop. */
7126 gdb_assert (tp != ecs->event_thread);
7127
7128 /* If some thread other than the event thread is
7129 stepping, then scheduler locking can't be in effect,
7130 otherwise we wouldn't have resumed the current event
7131 thread in the first place. */
856e7dd6 7132 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7133
7134 stepping_thread = tp;
7135 }
99619bea
PA
7136 }
7137
483805cf 7138 if (stepping_thread != NULL)
99619bea 7139 {
c447ac0b
PA
7140 if (debug_infrun)
7141 fprintf_unfiltered (gdb_stdlog,
7142 "infrun: switching back to stepped thread\n");
7143
2ac7589c
PA
7144 if (keep_going_stepped_thread (stepping_thread))
7145 {
7146 prepare_to_wait (ecs);
7147 return 1;
7148 }
7149 }
7150 }
2adfaa28 7151
2ac7589c
PA
7152 return 0;
7153}
2adfaa28 7154
2ac7589c
PA
7155/* Set a previously stepped thread back to stepping. Returns true on
7156 success, false if the resume is not possible (e.g., the thread
7157 vanished). */
7158
7159static int
7160keep_going_stepped_thread (struct thread_info *tp)
7161{
7162 struct frame_info *frame;
2ac7589c
PA
7163 struct execution_control_state ecss;
7164 struct execution_control_state *ecs = &ecss;
2adfaa28 7165
2ac7589c
PA
7166 /* If the stepping thread exited, then don't try to switch back and
7167 resume it, which could fail in several different ways depending
7168 on the target. Instead, just keep going.
2adfaa28 7169
2ac7589c
PA
7170 We can find a stepping dead thread in the thread list in two
7171 cases:
2adfaa28 7172
2ac7589c
PA
7173 - The target supports thread exit events, and when the target
7174 tries to delete the thread from the thread list, inferior_ptid
7175 pointed at the exiting thread. In such case, calling
7176 delete_thread does not really remove the thread from the list;
7177 instead, the thread is left listed, with 'exited' state.
64ce06e4 7178
2ac7589c
PA
7179 - The target's debug interface does not support thread exit
7180 events, and so we have no idea whatsoever if the previously
7181 stepping thread is still alive. For that reason, we need to
7182 synchronously query the target now. */
2adfaa28 7183
2ac7589c
PA
7184 if (is_exited (tp->ptid)
7185 || !target_thread_alive (tp->ptid))
7186 {
7187 if (debug_infrun)
7188 fprintf_unfiltered (gdb_stdlog,
7189 "infrun: not resuming previously "
7190 "stepped thread, it has vanished\n");
7191
7192 delete_thread (tp->ptid);
7193 return 0;
c447ac0b 7194 }
2ac7589c
PA
7195
7196 if (debug_infrun)
7197 fprintf_unfiltered (gdb_stdlog,
7198 "infrun: resuming previously stepped thread\n");
7199
7200 reset_ecs (ecs, tp);
7201 switch_to_thread (tp->ptid);
7202
7203 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7204 frame = get_current_frame ();
2ac7589c
PA
7205
7206 /* If the PC of the thread we were trying to single-step has
7207 changed, then that thread has trapped or been signaled, but the
7208 event has not been reported to GDB yet. Re-poll the target
7209 looking for this particular thread's event (i.e. temporarily
7210 enable schedlock) by:
7211
7212 - setting a break at the current PC
7213 - resuming that particular thread, only (by setting trap
7214 expected)
7215
7216 This prevents us continuously moving the single-step breakpoint
7217 forward, one instruction at a time, overstepping. */
7218
7219 if (stop_pc != tp->prev_pc)
7220 {
7221 ptid_t resume_ptid;
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: expected thread advanced also (%s -> %s)\n",
7226 paddress (target_gdbarch (), tp->prev_pc),
7227 paddress (target_gdbarch (), stop_pc));
7228
7229 /* Clear the info of the previous step-over, as it's no longer
7230 valid (if the thread was trying to step over a breakpoint, it
7231 has already succeeded). It's what keep_going would do too,
7232 if we called it. Do this before trying to insert the sss
7233 breakpoint, otherwise if we were previously trying to step
7234 over this exact address in another thread, the breakpoint is
7235 skipped. */
7236 clear_step_over_info ();
7237 tp->control.trap_expected = 0;
7238
7239 insert_single_step_breakpoint (get_frame_arch (frame),
7240 get_frame_address_space (frame),
7241 stop_pc);
7242
372316f1 7243 tp->resumed = 1;
fbea99ea 7244 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7245 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7246 }
7247 else
7248 {
7249 if (debug_infrun)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "infrun: expected thread still hasn't advanced\n");
7252
7253 keep_going_pass_signal (ecs);
7254 }
7255 return 1;
c447ac0b
PA
7256}
7257
8b061563
PA
7258/* Is thread TP in the middle of (software or hardware)
7259 single-stepping? (Note the result of this function must never be
7260 passed directly as target_resume's STEP parameter.) */
104c1213 7261
a289b8f6 7262static int
b3444185 7263currently_stepping (struct thread_info *tp)
a7212384 7264{
8358c15c
JK
7265 return ((tp->control.step_range_end
7266 && tp->control.step_resume_breakpoint == NULL)
7267 || tp->control.trap_expected
af48d08f 7268 || tp->stepped_breakpoint
8358c15c 7269 || bpstat_should_step ());
a7212384
UW
7270}
7271
b2175913
MS
7272/* Inferior has stepped into a subroutine call with source code that
7273 we should not step over. Do step to the first line of code in
7274 it. */
c2c6d25f
JM
7275
7276static void
568d6575
UW
7277handle_step_into_function (struct gdbarch *gdbarch,
7278 struct execution_control_state *ecs)
c2c6d25f 7279{
7e324e48
GB
7280 fill_in_stop_func (gdbarch, ecs);
7281
51abb421 7282 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7283 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7284 ecs->stop_func_start
7285 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7286
51abb421 7287 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7288 /* Use the step_resume_break to step until the end of the prologue,
7289 even if that involves jumps (as it seems to on the vax under
7290 4.2). */
7291 /* If the prologue ends in the middle of a source line, continue to
7292 the end of that source line (if it is still within the function).
7293 Otherwise, just go to end of prologue. */
2afb61aa
PA
7294 if (stop_func_sal.end
7295 && stop_func_sal.pc != ecs->stop_func_start
7296 && stop_func_sal.end < ecs->stop_func_end)
7297 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7298
2dbd5e30
KB
7299 /* Architectures which require breakpoint adjustment might not be able
7300 to place a breakpoint at the computed address. If so, the test
7301 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7302 ecs->stop_func_start to an address at which a breakpoint may be
7303 legitimately placed.
8fb3e588 7304
2dbd5e30
KB
7305 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7306 made, GDB will enter an infinite loop when stepping through
7307 optimized code consisting of VLIW instructions which contain
7308 subinstructions corresponding to different source lines. On
7309 FR-V, it's not permitted to place a breakpoint on any but the
7310 first subinstruction of a VLIW instruction. When a breakpoint is
7311 set, GDB will adjust the breakpoint address to the beginning of
7312 the VLIW instruction. Thus, we need to make the corresponding
7313 adjustment here when computing the stop address. */
8fb3e588 7314
568d6575 7315 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7316 {
7317 ecs->stop_func_start
568d6575 7318 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7319 ecs->stop_func_start);
2dbd5e30
KB
7320 }
7321
c2c6d25f
JM
7322 if (ecs->stop_func_start == stop_pc)
7323 {
7324 /* We are already there: stop now. */
bdc36728 7325 end_stepping_range (ecs);
c2c6d25f
JM
7326 return;
7327 }
7328 else
7329 {
7330 /* Put the step-breakpoint there and go until there. */
51abb421 7331 symtab_and_line sr_sal;
c2c6d25f
JM
7332 sr_sal.pc = ecs->stop_func_start;
7333 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7334 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7335
c2c6d25f 7336 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7337 some machines the prologue is where the new fp value is
7338 established. */
a6d9a66e 7339 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7340
7341 /* And make sure stepping stops right away then. */
16c381f0
JK
7342 ecs->event_thread->control.step_range_end
7343 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7344 }
7345 keep_going (ecs);
7346}
d4f3574e 7347
b2175913
MS
7348/* Inferior has stepped backward into a subroutine call with source
7349 code that we should not step over. Do step to the beginning of the
7350 last line of code in it. */
7351
7352static void
568d6575
UW
7353handle_step_into_function_backward (struct gdbarch *gdbarch,
7354 struct execution_control_state *ecs)
b2175913 7355{
43f3e411 7356 struct compunit_symtab *cust;
167e4384 7357 struct symtab_and_line stop_func_sal;
b2175913 7358
7e324e48
GB
7359 fill_in_stop_func (gdbarch, ecs);
7360
43f3e411
DE
7361 cust = find_pc_compunit_symtab (stop_pc);
7362 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7363 ecs->stop_func_start
7364 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7365
7366 stop_func_sal = find_pc_line (stop_pc, 0);
7367
7368 /* OK, we're just going to keep stepping here. */
7369 if (stop_func_sal.pc == stop_pc)
7370 {
7371 /* We're there already. Just stop stepping now. */
bdc36728 7372 end_stepping_range (ecs);
b2175913
MS
7373 }
7374 else
7375 {
7376 /* Else just reset the step range and keep going.
7377 No step-resume breakpoint, they don't work for
7378 epilogues, which can have multiple entry paths. */
16c381f0
JK
7379 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7380 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7381 keep_going (ecs);
7382 }
7383 return;
7384}
7385
d3169d93 7386/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7387 This is used to both functions and to skip over code. */
7388
7389static void
2c03e5be
PA
7390insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7391 struct symtab_and_line sr_sal,
7392 struct frame_id sr_id,
7393 enum bptype sr_type)
44cbf7b5 7394{
611c83ae
PA
7395 /* There should never be more than one step-resume or longjmp-resume
7396 breakpoint per thread, so we should never be setting a new
44cbf7b5 7397 step_resume_breakpoint when one is already active. */
8358c15c 7398 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7399 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7400
7401 if (debug_infrun)
7402 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7403 "infrun: inserting step-resume breakpoint at %s\n",
7404 paddress (gdbarch, sr_sal.pc));
d3169d93 7405
8358c15c 7406 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7407 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7408}
7409
9da8c2a0 7410void
2c03e5be
PA
7411insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7412 struct symtab_and_line sr_sal,
7413 struct frame_id sr_id)
7414{
7415 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7416 sr_sal, sr_id,
7417 bp_step_resume);
44cbf7b5 7418}
7ce450bd 7419
2c03e5be
PA
7420/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7421 This is used to skip a potential signal handler.
7ce450bd 7422
14e60db5
DJ
7423 This is called with the interrupted function's frame. The signal
7424 handler, when it returns, will resume the interrupted function at
7425 RETURN_FRAME.pc. */
d303a6c7
AC
7426
7427static void
2c03e5be 7428insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7429{
f4c1edd8 7430 gdb_assert (return_frame != NULL);
d303a6c7 7431
51abb421
PA
7432 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7433
7434 symtab_and_line sr_sal;
568d6575 7435 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7436 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7437 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7438
2c03e5be
PA
7439 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7440 get_stack_frame_id (return_frame),
7441 bp_hp_step_resume);
d303a6c7
AC
7442}
7443
2c03e5be
PA
7444/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7445 is used to skip a function after stepping into it (for "next" or if
7446 the called function has no debugging information).
14e60db5
DJ
7447
7448 The current function has almost always been reached by single
7449 stepping a call or return instruction. NEXT_FRAME belongs to the
7450 current function, and the breakpoint will be set at the caller's
7451 resume address.
7452
7453 This is a separate function rather than reusing
2c03e5be 7454 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7455 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7456 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7457
7458static void
7459insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7460{
14e60db5
DJ
7461 /* We shouldn't have gotten here if we don't know where the call site
7462 is. */
c7ce8faa 7463 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7464
51abb421 7465 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7466
51abb421 7467 symtab_and_line sr_sal;
c7ce8faa
DJ
7468 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7469 frame_unwind_caller_pc (next_frame));
14e60db5 7470 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7471 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7472
a6d9a66e 7473 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7474 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7475}
7476
611c83ae
PA
7477/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7478 new breakpoint at the target of a jmp_buf. The handling of
7479 longjmp-resume uses the same mechanisms used for handling
7480 "step-resume" breakpoints. */
7481
7482static void
a6d9a66e 7483insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7484{
e81a37f7
TT
7485 /* There should never be more than one longjmp-resume breakpoint per
7486 thread, so we should never be setting a new
611c83ae 7487 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7488 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7489
7490 if (debug_infrun)
7491 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7492 "infrun: inserting longjmp-resume breakpoint at %s\n",
7493 paddress (gdbarch, pc));
611c83ae 7494
e81a37f7 7495 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7496 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7497}
7498
186c406b
TT
7499/* Insert an exception resume breakpoint. TP is the thread throwing
7500 the exception. The block B is the block of the unwinder debug hook
7501 function. FRAME is the frame corresponding to the call to this
7502 function. SYM is the symbol of the function argument holding the
7503 target PC of the exception. */
7504
7505static void
7506insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7507 const struct block *b,
186c406b
TT
7508 struct frame_info *frame,
7509 struct symbol *sym)
7510{
492d29ea 7511 TRY
186c406b 7512 {
63e43d3a 7513 struct block_symbol vsym;
186c406b
TT
7514 struct value *value;
7515 CORE_ADDR handler;
7516 struct breakpoint *bp;
7517
63e43d3a
PMR
7518 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7519 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7520 /* If the value was optimized out, revert to the old behavior. */
7521 if (! value_optimized_out (value))
7522 {
7523 handler = value_as_address (value);
7524
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: exception resume at %lx\n",
7528 (unsigned long) handler);
7529
7530 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7531 handler, bp_exception_resume);
c70a6932
JK
7532
7533 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7534 frame = NULL;
7535
5d5658a1 7536 bp->thread = tp->global_num;
186c406b
TT
7537 inferior_thread ()->control.exception_resume_breakpoint = bp;
7538 }
7539 }
492d29ea
PA
7540 CATCH (e, RETURN_MASK_ERROR)
7541 {
7542 /* We want to ignore errors here. */
7543 }
7544 END_CATCH
186c406b
TT
7545}
7546
28106bc2
SDJ
7547/* A helper for check_exception_resume that sets an
7548 exception-breakpoint based on a SystemTap probe. */
7549
7550static void
7551insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7552 const struct bound_probe *probe,
28106bc2
SDJ
7553 struct frame_info *frame)
7554{
7555 struct value *arg_value;
7556 CORE_ADDR handler;
7557 struct breakpoint *bp;
7558
7559 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7560 if (!arg_value)
7561 return;
7562
7563 handler = value_as_address (arg_value);
7564
7565 if (debug_infrun)
7566 fprintf_unfiltered (gdb_stdlog,
7567 "infrun: exception resume at %s\n",
6bac7473 7568 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7569 handler));
7570
7571 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7572 handler, bp_exception_resume);
5d5658a1 7573 bp->thread = tp->global_num;
28106bc2
SDJ
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575}
7576
186c406b
TT
7577/* This is called when an exception has been intercepted. Check to
7578 see whether the exception's destination is of interest, and if so,
7579 set an exception resume breakpoint there. */
7580
7581static void
7582check_exception_resume (struct execution_control_state *ecs,
28106bc2 7583 struct frame_info *frame)
186c406b 7584{
729662a5 7585 struct bound_probe probe;
28106bc2
SDJ
7586 struct symbol *func;
7587
7588 /* First see if this exception unwinding breakpoint was set via a
7589 SystemTap probe point. If so, the probe has two arguments: the
7590 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7591 set a breakpoint there. */
6bac7473 7592 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7593 if (probe.probe)
28106bc2 7594 {
729662a5 7595 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7596 return;
7597 }
7598
7599 func = get_frame_function (frame);
7600 if (!func)
7601 return;
186c406b 7602
492d29ea 7603 TRY
186c406b 7604 {
3977b71f 7605 const struct block *b;
8157b174 7606 struct block_iterator iter;
186c406b
TT
7607 struct symbol *sym;
7608 int argno = 0;
7609
7610 /* The exception breakpoint is a thread-specific breakpoint on
7611 the unwinder's debug hook, declared as:
7612
7613 void _Unwind_DebugHook (void *cfa, void *handler);
7614
7615 The CFA argument indicates the frame to which control is
7616 about to be transferred. HANDLER is the destination PC.
7617
7618 We ignore the CFA and set a temporary breakpoint at HANDLER.
7619 This is not extremely efficient but it avoids issues in gdb
7620 with computing the DWARF CFA, and it also works even in weird
7621 cases such as throwing an exception from inside a signal
7622 handler. */
7623
7624 b = SYMBOL_BLOCK_VALUE (func);
7625 ALL_BLOCK_SYMBOLS (b, iter, sym)
7626 {
7627 if (!SYMBOL_IS_ARGUMENT (sym))
7628 continue;
7629
7630 if (argno == 0)
7631 ++argno;
7632 else
7633 {
7634 insert_exception_resume_breakpoint (ecs->event_thread,
7635 b, frame, sym);
7636 break;
7637 }
7638 }
7639 }
492d29ea
PA
7640 CATCH (e, RETURN_MASK_ERROR)
7641 {
7642 }
7643 END_CATCH
186c406b
TT
7644}
7645
104c1213 7646static void
22bcd14b 7647stop_waiting (struct execution_control_state *ecs)
104c1213 7648{
527159b7 7649 if (debug_infrun)
22bcd14b 7650 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7651
cd0fc7c3
SS
7652 /* Let callers know we don't want to wait for the inferior anymore. */
7653 ecs->wait_some_more = 0;
fbea99ea
PA
7654
7655 /* If all-stop, but the target is always in non-stop mode, stop all
7656 threads now that we're presenting the stop to the user. */
7657 if (!non_stop && target_is_non_stop_p ())
7658 stop_all_threads ();
cd0fc7c3
SS
7659}
7660
4d9d9d04
PA
7661/* Like keep_going, but passes the signal to the inferior, even if the
7662 signal is set to nopass. */
d4f3574e
SS
7663
7664static void
4d9d9d04 7665keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7666{
c4dbc9af
PA
7667 /* Make sure normal_stop is called if we get a QUIT handled before
7668 reaching resume. */
7669 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7670
4d9d9d04 7671 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7672 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7673
d4f3574e 7674 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7675 ecs->event_thread->prev_pc
7676 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7677
4d9d9d04 7678 if (ecs->event_thread->control.trap_expected)
d4f3574e 7679 {
4d9d9d04
PA
7680 struct thread_info *tp = ecs->event_thread;
7681
7682 if (debug_infrun)
7683 fprintf_unfiltered (gdb_stdlog,
7684 "infrun: %s has trap_expected set, "
7685 "resuming to collect trap\n",
7686 target_pid_to_str (tp->ptid));
7687
a9ba6bae
PA
7688 /* We haven't yet gotten our trap, and either: intercepted a
7689 non-signal event (e.g., a fork); or took a signal which we
7690 are supposed to pass through to the inferior. Simply
7691 continue. */
c4dbc9af 7692 discard_cleanups (old_cleanups);
64ce06e4 7693 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7694 }
372316f1
PA
7695 else if (step_over_info_valid_p ())
7696 {
7697 /* Another thread is stepping over a breakpoint in-line. If
7698 this thread needs a step-over too, queue the request. In
7699 either case, this resume must be deferred for later. */
7700 struct thread_info *tp = ecs->event_thread;
7701
7702 if (ecs->hit_singlestep_breakpoint
7703 || thread_still_needs_step_over (tp))
7704 {
7705 if (debug_infrun)
7706 fprintf_unfiltered (gdb_stdlog,
7707 "infrun: step-over already in progress: "
7708 "step-over for %s deferred\n",
7709 target_pid_to_str (tp->ptid));
7710 thread_step_over_chain_enqueue (tp);
7711 }
7712 else
7713 {
7714 if (debug_infrun)
7715 fprintf_unfiltered (gdb_stdlog,
7716 "infrun: step-over in progress: "
7717 "resume of %s deferred\n",
7718 target_pid_to_str (tp->ptid));
7719 }
7720
7721 discard_cleanups (old_cleanups);
7722 }
d4f3574e
SS
7723 else
7724 {
31e77af2 7725 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7726 int remove_bp;
7727 int remove_wps;
8d297bbf 7728 step_over_what step_what;
31e77af2 7729
d4f3574e 7730 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7731 anyway (if we got a signal, the user asked it be passed to
7732 the child)
7733 -- or --
7734 We got our expected trap, but decided we should resume from
7735 it.
d4f3574e 7736
a9ba6bae 7737 We're going to run this baby now!
d4f3574e 7738
c36b740a
VP
7739 Note that insert_breakpoints won't try to re-insert
7740 already inserted breakpoints. Therefore, we don't
7741 care if breakpoints were already inserted, or not. */
a9ba6bae 7742
31e77af2
PA
7743 /* If we need to step over a breakpoint, and we're not using
7744 displaced stepping to do so, insert all breakpoints
7745 (watchpoints, etc.) but the one we're stepping over, step one
7746 instruction, and then re-insert the breakpoint when that step
7747 is finished. */
963f9c80 7748
6c4cfb24
PA
7749 step_what = thread_still_needs_step_over (ecs->event_thread);
7750
963f9c80 7751 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7752 || (step_what & STEP_OVER_BREAKPOINT));
7753 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7754
cb71640d
PA
7755 /* We can't use displaced stepping if we need to step past a
7756 watchpoint. The instruction copied to the scratch pad would
7757 still trigger the watchpoint. */
7758 if (remove_bp
3fc8eb30 7759 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7760 {
31e77af2 7761 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7762 regcache_read_pc (regcache), remove_wps,
7763 ecs->event_thread->global_num);
45e8c884 7764 }
963f9c80 7765 else if (remove_wps)
21edc42f 7766 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7767
7768 /* If we now need to do an in-line step-over, we need to stop
7769 all other threads. Note this must be done before
7770 insert_breakpoints below, because that removes the breakpoint
7771 we're about to step over, otherwise other threads could miss
7772 it. */
fbea99ea 7773 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7774 stop_all_threads ();
abbb1732 7775
31e77af2 7776 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7777 TRY
31e77af2
PA
7778 {
7779 insert_breakpoints ();
7780 }
492d29ea 7781 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7782 {
7783 exception_print (gdb_stderr, e);
22bcd14b 7784 stop_waiting (ecs);
de1fe8c8 7785 discard_cleanups (old_cleanups);
31e77af2 7786 return;
d4f3574e 7787 }
492d29ea 7788 END_CATCH
d4f3574e 7789
963f9c80 7790 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7791
c4dbc9af 7792 discard_cleanups (old_cleanups);
64ce06e4 7793 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7794 }
7795
488f131b 7796 prepare_to_wait (ecs);
d4f3574e
SS
7797}
7798
4d9d9d04
PA
7799/* Called when we should continue running the inferior, because the
7800 current event doesn't cause a user visible stop. This does the
7801 resuming part; waiting for the next event is done elsewhere. */
7802
7803static void
7804keep_going (struct execution_control_state *ecs)
7805{
7806 if (ecs->event_thread->control.trap_expected
7807 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7808 ecs->event_thread->control.trap_expected = 0;
7809
7810 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7812 keep_going_pass_signal (ecs);
7813}
7814
104c1213
JM
7815/* This function normally comes after a resume, before
7816 handle_inferior_event exits. It takes care of any last bits of
7817 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7818
104c1213
JM
7819static void
7820prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7821{
527159b7 7822 if (debug_infrun)
8a9de0e4 7823 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7824
104c1213 7825 ecs->wait_some_more = 1;
0b333c5e
PA
7826
7827 if (!target_is_async_p ())
7828 mark_infrun_async_event_handler ();
c906108c 7829}
11cf8741 7830
fd664c91 7831/* We are done with the step range of a step/next/si/ni command.
b57bacec 7832 Called once for each n of a "step n" operation. */
fd664c91
PA
7833
7834static void
bdc36728 7835end_stepping_range (struct execution_control_state *ecs)
fd664c91 7836{
bdc36728 7837 ecs->event_thread->control.stop_step = 1;
bdc36728 7838 stop_waiting (ecs);
fd664c91
PA
7839}
7840
33d62d64
JK
7841/* Several print_*_reason functions to print why the inferior has stopped.
7842 We always print something when the inferior exits, or receives a signal.
7843 The rest of the cases are dealt with later on in normal_stop and
7844 print_it_typical. Ideally there should be a call to one of these
7845 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7846 stop_waiting is called.
33d62d64 7847
fd664c91
PA
7848 Note that we don't call these directly, instead we delegate that to
7849 the interpreters, through observers. Interpreters then call these
7850 with whatever uiout is right. */
33d62d64 7851
fd664c91
PA
7852void
7853print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7854{
fd664c91 7855 /* For CLI-like interpreters, print nothing. */
33d62d64 7856
112e8700 7857 if (uiout->is_mi_like_p ())
fd664c91 7858 {
112e8700 7859 uiout->field_string ("reason",
fd664c91
PA
7860 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7861 }
7862}
33d62d64 7863
fd664c91
PA
7864void
7865print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7866{
33d62d64 7867 annotate_signalled ();
112e8700
SM
7868 if (uiout->is_mi_like_p ())
7869 uiout->field_string
7870 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7871 uiout->text ("\nProgram terminated with signal ");
33d62d64 7872 annotate_signal_name ();
112e8700 7873 uiout->field_string ("signal-name",
2ea28649 7874 gdb_signal_to_name (siggnal));
33d62d64 7875 annotate_signal_name_end ();
112e8700 7876 uiout->text (", ");
33d62d64 7877 annotate_signal_string ();
112e8700 7878 uiout->field_string ("signal-meaning",
2ea28649 7879 gdb_signal_to_string (siggnal));
33d62d64 7880 annotate_signal_string_end ();
112e8700
SM
7881 uiout->text (".\n");
7882 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7883}
7884
fd664c91
PA
7885void
7886print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7887{
fda326dd
TT
7888 struct inferior *inf = current_inferior ();
7889 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7890
33d62d64
JK
7891 annotate_exited (exitstatus);
7892 if (exitstatus)
7893 {
112e8700
SM
7894 if (uiout->is_mi_like_p ())
7895 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7896 uiout->text ("[Inferior ");
7897 uiout->text (plongest (inf->num));
7898 uiout->text (" (");
7899 uiout->text (pidstr);
7900 uiout->text (") exited with code ");
7901 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7902 uiout->text ("]\n");
33d62d64
JK
7903 }
7904 else
11cf8741 7905 {
112e8700
SM
7906 if (uiout->is_mi_like_p ())
7907 uiout->field_string
7908 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7909 uiout->text ("[Inferior ");
7910 uiout->text (plongest (inf->num));
7911 uiout->text (" (");
7912 uiout->text (pidstr);
7913 uiout->text (") exited normally]\n");
33d62d64 7914 }
33d62d64
JK
7915}
7916
012b3a21
WT
7917/* Some targets/architectures can do extra processing/display of
7918 segmentation faults. E.g., Intel MPX boundary faults.
7919 Call the architecture dependent function to handle the fault. */
7920
7921static void
7922handle_segmentation_fault (struct ui_out *uiout)
7923{
7924 struct regcache *regcache = get_current_regcache ();
7925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7926
7927 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7928 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7929}
7930
fd664c91
PA
7931void
7932print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7933{
f303dbd6
PA
7934 struct thread_info *thr = inferior_thread ();
7935
33d62d64
JK
7936 annotate_signal ();
7937
112e8700 7938 if (uiout->is_mi_like_p ())
f303dbd6
PA
7939 ;
7940 else if (show_thread_that_caused_stop ())
33d62d64 7941 {
f303dbd6 7942 const char *name;
33d62d64 7943
112e8700
SM
7944 uiout->text ("\nThread ");
7945 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7946
7947 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7948 if (name != NULL)
7949 {
112e8700
SM
7950 uiout->text (" \"");
7951 uiout->field_fmt ("name", "%s", name);
7952 uiout->text ("\"");
f303dbd6 7953 }
33d62d64 7954 }
f303dbd6 7955 else
112e8700 7956 uiout->text ("\nProgram");
f303dbd6 7957
112e8700
SM
7958 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7959 uiout->text (" stopped");
33d62d64
JK
7960 else
7961 {
112e8700 7962 uiout->text (" received signal ");
8b93c638 7963 annotate_signal_name ();
112e8700
SM
7964 if (uiout->is_mi_like_p ())
7965 uiout->field_string
7966 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7967 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7968 annotate_signal_name_end ();
112e8700 7969 uiout->text (", ");
8b93c638 7970 annotate_signal_string ();
112e8700 7971 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7972
7973 if (siggnal == GDB_SIGNAL_SEGV)
7974 handle_segmentation_fault (uiout);
7975
8b93c638 7976 annotate_signal_string_end ();
33d62d64 7977 }
112e8700 7978 uiout->text (".\n");
33d62d64 7979}
252fbfc8 7980
fd664c91
PA
7981void
7982print_no_history_reason (struct ui_out *uiout)
33d62d64 7983{
112e8700 7984 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7985}
43ff13b4 7986
0c7e1a46
PA
7987/* Print current location without a level number, if we have changed
7988 functions or hit a breakpoint. Print source line if we have one.
7989 bpstat_print contains the logic deciding in detail what to print,
7990 based on the event(s) that just occurred. */
7991
243a9253
PA
7992static void
7993print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7994{
7995 int bpstat_ret;
f486487f 7996 enum print_what source_flag;
0c7e1a46
PA
7997 int do_frame_printing = 1;
7998 struct thread_info *tp = inferior_thread ();
7999
8000 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8001 switch (bpstat_ret)
8002 {
8003 case PRINT_UNKNOWN:
8004 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8005 should) carry around the function and does (or should) use
8006 that when doing a frame comparison. */
8007 if (tp->control.stop_step
8008 && frame_id_eq (tp->control.step_frame_id,
8009 get_frame_id (get_current_frame ()))
885eeb5b 8010 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8011 {
8012 /* Finished step, just print source line. */
8013 source_flag = SRC_LINE;
8014 }
8015 else
8016 {
8017 /* Print location and source line. */
8018 source_flag = SRC_AND_LOC;
8019 }
8020 break;
8021 case PRINT_SRC_AND_LOC:
8022 /* Print location and source line. */
8023 source_flag = SRC_AND_LOC;
8024 break;
8025 case PRINT_SRC_ONLY:
8026 source_flag = SRC_LINE;
8027 break;
8028 case PRINT_NOTHING:
8029 /* Something bogus. */
8030 source_flag = SRC_LINE;
8031 do_frame_printing = 0;
8032 break;
8033 default:
8034 internal_error (__FILE__, __LINE__, _("Unknown value."));
8035 }
8036
8037 /* The behavior of this routine with respect to the source
8038 flag is:
8039 SRC_LINE: Print only source line
8040 LOCATION: Print only location
8041 SRC_AND_LOC: Print location and source line. */
8042 if (do_frame_printing)
8043 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8044}
8045
243a9253
PA
8046/* See infrun.h. */
8047
8048void
8049print_stop_event (struct ui_out *uiout)
8050{
243a9253
PA
8051 struct target_waitstatus last;
8052 ptid_t last_ptid;
8053 struct thread_info *tp;
8054
8055 get_last_target_status (&last_ptid, &last);
8056
67ad9399
TT
8057 {
8058 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8059
67ad9399 8060 print_stop_location (&last);
243a9253 8061
67ad9399
TT
8062 /* Display the auto-display expressions. */
8063 do_displays ();
8064 }
243a9253
PA
8065
8066 tp = inferior_thread ();
8067 if (tp->thread_fsm != NULL
8068 && thread_fsm_finished_p (tp->thread_fsm))
8069 {
8070 struct return_value_info *rv;
8071
8072 rv = thread_fsm_return_value (tp->thread_fsm);
8073 if (rv != NULL)
8074 print_return_value (uiout, rv);
8075 }
0c7e1a46
PA
8076}
8077
388a7084
PA
8078/* See infrun.h. */
8079
8080void
8081maybe_remove_breakpoints (void)
8082{
8083 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8084 {
8085 if (remove_breakpoints ())
8086 {
223ffa71 8087 target_terminal::ours_for_output ();
388a7084
PA
8088 printf_filtered (_("Cannot remove breakpoints because "
8089 "program is no longer writable.\nFurther "
8090 "execution is probably impossible.\n"));
8091 }
8092 }
8093}
8094
4c2f2a79
PA
8095/* The execution context that just caused a normal stop. */
8096
8097struct stop_context
8098{
8099 /* The stop ID. */
8100 ULONGEST stop_id;
c906108c 8101
4c2f2a79 8102 /* The event PTID. */
c906108c 8103
4c2f2a79
PA
8104 ptid_t ptid;
8105
8106 /* If stopp for a thread event, this is the thread that caused the
8107 stop. */
8108 struct thread_info *thread;
8109
8110 /* The inferior that caused the stop. */
8111 int inf_num;
8112};
8113
8114/* Returns a new stop context. If stopped for a thread event, this
8115 takes a strong reference to the thread. */
8116
8117static struct stop_context *
8118save_stop_context (void)
8119{
224c3ddb 8120 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8121
8122 sc->stop_id = get_stop_id ();
8123 sc->ptid = inferior_ptid;
8124 sc->inf_num = current_inferior ()->num;
8125
8126 if (!ptid_equal (inferior_ptid, null_ptid))
8127 {
8128 /* Take a strong reference so that the thread can't be deleted
8129 yet. */
8130 sc->thread = inferior_thread ();
803bdfe4 8131 sc->thread->incref ();
4c2f2a79
PA
8132 }
8133 else
8134 sc->thread = NULL;
8135
8136 return sc;
8137}
8138
8139/* Release a stop context previously created with save_stop_context.
8140 Releases the strong reference to the thread as well. */
8141
8142static void
8143release_stop_context_cleanup (void *arg)
8144{
9a3c8263 8145 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8146
8147 if (sc->thread != NULL)
803bdfe4 8148 sc->thread->decref ();
4c2f2a79
PA
8149 xfree (sc);
8150}
8151
8152/* Return true if the current context no longer matches the saved stop
8153 context. */
8154
8155static int
8156stop_context_changed (struct stop_context *prev)
8157{
8158 if (!ptid_equal (prev->ptid, inferior_ptid))
8159 return 1;
8160 if (prev->inf_num != current_inferior ()->num)
8161 return 1;
8162 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8163 return 1;
8164 if (get_stop_id () != prev->stop_id)
8165 return 1;
8166 return 0;
8167}
8168
8169/* See infrun.h. */
8170
8171int
96baa820 8172normal_stop (void)
c906108c 8173{
73b65bb0
DJ
8174 struct target_waitstatus last;
8175 ptid_t last_ptid;
29f49a6a 8176 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8177 ptid_t pid_ptid;
73b65bb0
DJ
8178
8179 get_last_target_status (&last_ptid, &last);
8180
4c2f2a79
PA
8181 new_stop_id ();
8182
29f49a6a
PA
8183 /* If an exception is thrown from this point on, make sure to
8184 propagate GDB's knowledge of the executing state to the
8185 frontend/user running state. A QUIT is an easy exception to see
8186 here, so do this before any filtered output. */
c35b1492
PA
8187 if (!non_stop)
8188 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8189 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8190 || last.kind == TARGET_WAITKIND_EXITED)
8191 {
8192 /* On some targets, we may still have live threads in the
8193 inferior when we get a process exit event. E.g., for
8194 "checkpoint", when the current checkpoint/fork exits,
8195 linux-fork.c automatically switches to another fork from
8196 within target_mourn_inferior. */
8197 if (!ptid_equal (inferior_ptid, null_ptid))
8198 {
8199 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8200 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8201 }
8202 }
8203 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8204 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8205
b57bacec
PA
8206 /* As we're presenting a stop, and potentially removing breakpoints,
8207 update the thread list so we can tell whether there are threads
8208 running on the target. With target remote, for example, we can
8209 only learn about new threads when we explicitly update the thread
8210 list. Do this before notifying the interpreters about signal
8211 stops, end of stepping ranges, etc., so that the "new thread"
8212 output is emitted before e.g., "Program received signal FOO",
8213 instead of after. */
8214 update_thread_list ();
8215
8216 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8217 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8218
c906108c
SS
8219 /* As with the notification of thread events, we want to delay
8220 notifying the user that we've switched thread context until
8221 the inferior actually stops.
8222
73b65bb0
DJ
8223 There's no point in saying anything if the inferior has exited.
8224 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8225 "received a signal".
8226
8227 Also skip saying anything in non-stop mode. In that mode, as we
8228 don't want GDB to switch threads behind the user's back, to avoid
8229 races where the user is typing a command to apply to thread x,
8230 but GDB switches to thread y before the user finishes entering
8231 the command, fetch_inferior_event installs a cleanup to restore
8232 the current thread back to the thread the user had selected right
8233 after this event is handled, so we're not really switching, only
8234 informing of a stop. */
4f8d22e3
PA
8235 if (!non_stop
8236 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8237 && target_has_execution
8238 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8239 && last.kind != TARGET_WAITKIND_EXITED
8240 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8241 {
0e454242 8242 SWITCH_THRU_ALL_UIS ()
3b12939d 8243 {
223ffa71 8244 target_terminal::ours_for_output ();
3b12939d
PA
8245 printf_filtered (_("[Switching to %s]\n"),
8246 target_pid_to_str (inferior_ptid));
8247 annotate_thread_changed ();
8248 }
39f77062 8249 previous_inferior_ptid = inferior_ptid;
c906108c 8250 }
c906108c 8251
0e5bf2a8
PA
8252 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8253 {
0e454242 8254 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8255 if (current_ui->prompt_state == PROMPT_BLOCKED)
8256 {
223ffa71 8257 target_terminal::ours_for_output ();
3b12939d
PA
8258 printf_filtered (_("No unwaited-for children left.\n"));
8259 }
0e5bf2a8
PA
8260 }
8261
b57bacec 8262 /* Note: this depends on the update_thread_list call above. */
388a7084 8263 maybe_remove_breakpoints ();
c906108c 8264
c906108c
SS
8265 /* If an auto-display called a function and that got a signal,
8266 delete that auto-display to avoid an infinite recursion. */
8267
8268 if (stopped_by_random_signal)
8269 disable_current_display ();
8270
0e454242 8271 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8272 {
8273 async_enable_stdin ();
8274 }
c906108c 8275
388a7084
PA
8276 /* Let the user/frontend see the threads as stopped. */
8277 do_cleanups (old_chain);
8278
8279 /* Select innermost stack frame - i.e., current frame is frame 0,
8280 and current location is based on that. Handle the case where the
8281 dummy call is returning after being stopped. E.g. the dummy call
8282 previously hit a breakpoint. (If the dummy call returns
8283 normally, we won't reach here.) Do this before the stop hook is
8284 run, so that it doesn't get to see the temporary dummy frame,
8285 which is not where we'll present the stop. */
8286 if (has_stack_frames ())
8287 {
8288 if (stop_stack_dummy == STOP_STACK_DUMMY)
8289 {
8290 /* Pop the empty frame that contains the stack dummy. This
8291 also restores inferior state prior to the call (struct
8292 infcall_suspend_state). */
8293 struct frame_info *frame = get_current_frame ();
8294
8295 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8296 frame_pop (frame);
8297 /* frame_pop calls reinit_frame_cache as the last thing it
8298 does which means there's now no selected frame. */
8299 }
8300
8301 select_frame (get_current_frame ());
8302
8303 /* Set the current source location. */
8304 set_current_sal_from_frame (get_current_frame ());
8305 }
dd7e2d2b
PA
8306
8307 /* Look up the hook_stop and run it (CLI internally handles problem
8308 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8309 if (stop_command != NULL)
8310 {
8311 struct stop_context *saved_context = save_stop_context ();
8312 struct cleanup *old_chain
8313 = make_cleanup (release_stop_context_cleanup, saved_context);
8314
8315 catch_errors (hook_stop_stub, stop_command,
8316 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8317
8318 /* If the stop hook resumes the target, then there's no point in
8319 trying to notify about the previous stop; its context is
8320 gone. Likewise if the command switches thread or inferior --
8321 the observers would print a stop for the wrong
8322 thread/inferior. */
8323 if (stop_context_changed (saved_context))
8324 {
8325 do_cleanups (old_chain);
8326 return 1;
8327 }
8328 do_cleanups (old_chain);
8329 }
dd7e2d2b 8330
388a7084
PA
8331 /* Notify observers about the stop. This is where the interpreters
8332 print the stop event. */
8333 if (!ptid_equal (inferior_ptid, null_ptid))
8334 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8335 stop_print_frame);
8336 else
8337 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8338
243a9253
PA
8339 annotate_stopped ();
8340
48844aa6
PA
8341 if (target_has_execution)
8342 {
8343 if (last.kind != TARGET_WAITKIND_SIGNALLED
8344 && last.kind != TARGET_WAITKIND_EXITED)
8345 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8346 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8347 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8348 }
6c95b8df
PA
8349
8350 /* Try to get rid of automatically added inferiors that are no
8351 longer needed. Keeping those around slows down things linearly.
8352 Note that this never removes the current inferior. */
8353 prune_inferiors ();
4c2f2a79
PA
8354
8355 return 0;
c906108c
SS
8356}
8357
8358static int
96baa820 8359hook_stop_stub (void *cmd)
c906108c 8360{
5913bcb0 8361 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8362 return (0);
8363}
8364\f
c5aa993b 8365int
96baa820 8366signal_stop_state (int signo)
c906108c 8367{
d6b48e9c 8368 return signal_stop[signo];
c906108c
SS
8369}
8370
c5aa993b 8371int
96baa820 8372signal_print_state (int signo)
c906108c
SS
8373{
8374 return signal_print[signo];
8375}
8376
c5aa993b 8377int
96baa820 8378signal_pass_state (int signo)
c906108c
SS
8379{
8380 return signal_program[signo];
8381}
8382
2455069d
UW
8383static void
8384signal_cache_update (int signo)
8385{
8386 if (signo == -1)
8387 {
a493e3e2 8388 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8389 signal_cache_update (signo);
8390
8391 return;
8392 }
8393
8394 signal_pass[signo] = (signal_stop[signo] == 0
8395 && signal_print[signo] == 0
ab04a2af
TT
8396 && signal_program[signo] == 1
8397 && signal_catch[signo] == 0);
2455069d
UW
8398}
8399
488f131b 8400int
7bda5e4a 8401signal_stop_update (int signo, int state)
d4f3574e
SS
8402{
8403 int ret = signal_stop[signo];
abbb1732 8404
d4f3574e 8405 signal_stop[signo] = state;
2455069d 8406 signal_cache_update (signo);
d4f3574e
SS
8407 return ret;
8408}
8409
488f131b 8410int
7bda5e4a 8411signal_print_update (int signo, int state)
d4f3574e
SS
8412{
8413 int ret = signal_print[signo];
abbb1732 8414
d4f3574e 8415 signal_print[signo] = state;
2455069d 8416 signal_cache_update (signo);
d4f3574e
SS
8417 return ret;
8418}
8419
488f131b 8420int
7bda5e4a 8421signal_pass_update (int signo, int state)
d4f3574e
SS
8422{
8423 int ret = signal_program[signo];
abbb1732 8424
d4f3574e 8425 signal_program[signo] = state;
2455069d 8426 signal_cache_update (signo);
d4f3574e
SS
8427 return ret;
8428}
8429
ab04a2af
TT
8430/* Update the global 'signal_catch' from INFO and notify the
8431 target. */
8432
8433void
8434signal_catch_update (const unsigned int *info)
8435{
8436 int i;
8437
8438 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8439 signal_catch[i] = info[i] > 0;
8440 signal_cache_update (-1);
8441 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8442}
8443
c906108c 8444static void
96baa820 8445sig_print_header (void)
c906108c 8446{
3e43a32a
MS
8447 printf_filtered (_("Signal Stop\tPrint\tPass "
8448 "to program\tDescription\n"));
c906108c
SS
8449}
8450
8451static void
2ea28649 8452sig_print_info (enum gdb_signal oursig)
c906108c 8453{
2ea28649 8454 const char *name = gdb_signal_to_name (oursig);
c906108c 8455 int name_padding = 13 - strlen (name);
96baa820 8456
c906108c
SS
8457 if (name_padding <= 0)
8458 name_padding = 0;
8459
8460 printf_filtered ("%s", name);
488f131b 8461 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8462 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8463 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8464 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8465 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8466}
8467
8468/* Specify how various signals in the inferior should be handled. */
8469
8470static void
96baa820 8471handle_command (char *args, int from_tty)
c906108c 8472{
c906108c
SS
8473 int digits, wordlen;
8474 int sigfirst, signum, siglast;
2ea28649 8475 enum gdb_signal oursig;
c906108c
SS
8476 int allsigs;
8477 int nsigs;
8478 unsigned char *sigs;
c906108c
SS
8479
8480 if (args == NULL)
8481 {
e2e0b3e5 8482 error_no_arg (_("signal to handle"));
c906108c
SS
8483 }
8484
1777feb0 8485 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8486
a493e3e2 8487 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8488 sigs = (unsigned char *) alloca (nsigs);
8489 memset (sigs, 0, nsigs);
8490
1777feb0 8491 /* Break the command line up into args. */
c906108c 8492
773a1edc 8493 gdb_argv built_argv (args);
c906108c
SS
8494
8495 /* Walk through the args, looking for signal oursigs, signal names, and
8496 actions. Signal numbers and signal names may be interspersed with
8497 actions, with the actions being performed for all signals cumulatively
1777feb0 8498 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8499
773a1edc 8500 for (char *arg : built_argv)
c906108c 8501 {
773a1edc
TT
8502 wordlen = strlen (arg);
8503 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8504 {;
8505 }
8506 allsigs = 0;
8507 sigfirst = siglast = -1;
8508
773a1edc 8509 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8510 {
8511 /* Apply action to all signals except those used by the
1777feb0 8512 debugger. Silently skip those. */
c906108c
SS
8513 allsigs = 1;
8514 sigfirst = 0;
8515 siglast = nsigs - 1;
8516 }
773a1edc 8517 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8518 {
8519 SET_SIGS (nsigs, sigs, signal_stop);
8520 SET_SIGS (nsigs, sigs, signal_print);
8521 }
773a1edc 8522 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8523 {
8524 UNSET_SIGS (nsigs, sigs, signal_program);
8525 }
773a1edc 8526 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8527 {
8528 SET_SIGS (nsigs, sigs, signal_print);
8529 }
773a1edc 8530 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8531 {
8532 SET_SIGS (nsigs, sigs, signal_program);
8533 }
773a1edc 8534 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8535 {
8536 UNSET_SIGS (nsigs, sigs, signal_stop);
8537 }
773a1edc 8538 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8539 {
8540 SET_SIGS (nsigs, sigs, signal_program);
8541 }
773a1edc 8542 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8543 {
8544 UNSET_SIGS (nsigs, sigs, signal_print);
8545 UNSET_SIGS (nsigs, sigs, signal_stop);
8546 }
773a1edc 8547 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8548 {
8549 UNSET_SIGS (nsigs, sigs, signal_program);
8550 }
8551 else if (digits > 0)
8552 {
8553 /* It is numeric. The numeric signal refers to our own
8554 internal signal numbering from target.h, not to host/target
8555 signal number. This is a feature; users really should be
8556 using symbolic names anyway, and the common ones like
8557 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8558
8559 sigfirst = siglast = (int)
773a1edc
TT
8560 gdb_signal_from_command (atoi (arg));
8561 if (arg[digits] == '-')
c906108c
SS
8562 {
8563 siglast = (int)
773a1edc 8564 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8565 }
8566 if (sigfirst > siglast)
8567 {
1777feb0 8568 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8569 signum = sigfirst;
8570 sigfirst = siglast;
8571 siglast = signum;
8572 }
8573 }
8574 else
8575 {
773a1edc 8576 oursig = gdb_signal_from_name (arg);
a493e3e2 8577 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8578 {
8579 sigfirst = siglast = (int) oursig;
8580 }
8581 else
8582 {
8583 /* Not a number and not a recognized flag word => complain. */
773a1edc 8584 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8585 }
8586 }
8587
8588 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8589 which signals to apply actions to. */
c906108c
SS
8590
8591 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8592 {
2ea28649 8593 switch ((enum gdb_signal) signum)
c906108c 8594 {
a493e3e2
PA
8595 case GDB_SIGNAL_TRAP:
8596 case GDB_SIGNAL_INT:
c906108c
SS
8597 if (!allsigs && !sigs[signum])
8598 {
9e2f0ad4 8599 if (query (_("%s is used by the debugger.\n\
3e43a32a 8600Are you sure you want to change it? "),
2ea28649 8601 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8602 {
8603 sigs[signum] = 1;
8604 }
8605 else
8606 {
a3f17187 8607 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8608 gdb_flush (gdb_stdout);
8609 }
8610 }
8611 break;
a493e3e2
PA
8612 case GDB_SIGNAL_0:
8613 case GDB_SIGNAL_DEFAULT:
8614 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8615 /* Make sure that "all" doesn't print these. */
8616 break;
8617 default:
8618 sigs[signum] = 1;
8619 break;
8620 }
8621 }
c906108c
SS
8622 }
8623
3a031f65
PA
8624 for (signum = 0; signum < nsigs; signum++)
8625 if (sigs[signum])
8626 {
2455069d 8627 signal_cache_update (-1);
a493e3e2
PA
8628 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8629 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8630
3a031f65
PA
8631 if (from_tty)
8632 {
8633 /* Show the results. */
8634 sig_print_header ();
8635 for (; signum < nsigs; signum++)
8636 if (sigs[signum])
aead7601 8637 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8638 }
8639
8640 break;
8641 }
c906108c
SS
8642}
8643
de0bea00
MF
8644/* Complete the "handle" command. */
8645
eb3ff9a5 8646static void
de0bea00 8647handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8648 completion_tracker &tracker,
6f937416 8649 const char *text, const char *word)
de0bea00 8650{
de0bea00
MF
8651 static const char * const keywords[] =
8652 {
8653 "all",
8654 "stop",
8655 "ignore",
8656 "print",
8657 "pass",
8658 "nostop",
8659 "noignore",
8660 "noprint",
8661 "nopass",
8662 NULL,
8663 };
8664
eb3ff9a5
PA
8665 signal_completer (ignore, tracker, text, word);
8666 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8667}
8668
2ea28649
PA
8669enum gdb_signal
8670gdb_signal_from_command (int num)
ed01b82c
PA
8671{
8672 if (num >= 1 && num <= 15)
2ea28649 8673 return (enum gdb_signal) num;
ed01b82c
PA
8674 error (_("Only signals 1-15 are valid as numeric signals.\n\
8675Use \"info signals\" for a list of symbolic signals."));
8676}
8677
c906108c
SS
8678/* Print current contents of the tables set by the handle command.
8679 It is possible we should just be printing signals actually used
8680 by the current target (but for things to work right when switching
8681 targets, all signals should be in the signal tables). */
8682
8683static void
11db9430 8684info_signals_command (char *signum_exp, int from_tty)
c906108c 8685{
2ea28649 8686 enum gdb_signal oursig;
abbb1732 8687
c906108c
SS
8688 sig_print_header ();
8689
8690 if (signum_exp)
8691 {
8692 /* First see if this is a symbol name. */
2ea28649 8693 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8694 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8695 {
8696 /* No, try numeric. */
8697 oursig =
2ea28649 8698 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8699 }
8700 sig_print_info (oursig);
8701 return;
8702 }
8703
8704 printf_filtered ("\n");
8705 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8706 for (oursig = GDB_SIGNAL_FIRST;
8707 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8708 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8709 {
8710 QUIT;
8711
a493e3e2
PA
8712 if (oursig != GDB_SIGNAL_UNKNOWN
8713 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8714 sig_print_info (oursig);
8715 }
8716
3e43a32a
MS
8717 printf_filtered (_("\nUse the \"handle\" command "
8718 "to change these tables.\n"));
c906108c 8719}
4aa995e1
PA
8720
8721/* The $_siginfo convenience variable is a bit special. We don't know
8722 for sure the type of the value until we actually have a chance to
7a9dd1b2 8723 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8724 also dependent on which thread you have selected.
8725
8726 1. making $_siginfo be an internalvar that creates a new value on
8727 access.
8728
8729 2. making the value of $_siginfo be an lval_computed value. */
8730
8731/* This function implements the lval_computed support for reading a
8732 $_siginfo value. */
8733
8734static void
8735siginfo_value_read (struct value *v)
8736{
8737 LONGEST transferred;
8738
a911d87a
PA
8739 /* If we can access registers, so can we access $_siginfo. Likewise
8740 vice versa. */
8741 validate_registers_access ();
c709acd1 8742
4aa995e1
PA
8743 transferred =
8744 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8745 NULL,
8746 value_contents_all_raw (v),
8747 value_offset (v),
8748 TYPE_LENGTH (value_type (v)));
8749
8750 if (transferred != TYPE_LENGTH (value_type (v)))
8751 error (_("Unable to read siginfo"));
8752}
8753
8754/* This function implements the lval_computed support for writing a
8755 $_siginfo value. */
8756
8757static void
8758siginfo_value_write (struct value *v, struct value *fromval)
8759{
8760 LONGEST transferred;
8761
a911d87a
PA
8762 /* If we can access registers, so can we access $_siginfo. Likewise
8763 vice versa. */
8764 validate_registers_access ();
c709acd1 8765
4aa995e1
PA
8766 transferred = target_write (&current_target,
8767 TARGET_OBJECT_SIGNAL_INFO,
8768 NULL,
8769 value_contents_all_raw (fromval),
8770 value_offset (v),
8771 TYPE_LENGTH (value_type (fromval)));
8772
8773 if (transferred != TYPE_LENGTH (value_type (fromval)))
8774 error (_("Unable to write siginfo"));
8775}
8776
c8f2448a 8777static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8778 {
8779 siginfo_value_read,
8780 siginfo_value_write
8781 };
8782
8783/* Return a new value with the correct type for the siginfo object of
78267919
UW
8784 the current thread using architecture GDBARCH. Return a void value
8785 if there's no object available. */
4aa995e1 8786
2c0b251b 8787static struct value *
22d2b532
SDJ
8788siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8789 void *ignore)
4aa995e1 8790{
4aa995e1 8791 if (target_has_stack
78267919
UW
8792 && !ptid_equal (inferior_ptid, null_ptid)
8793 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8794 {
78267919 8795 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8796
78267919 8797 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8798 }
8799
78267919 8800 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8801}
8802
c906108c 8803\f
16c381f0
JK
8804/* infcall_suspend_state contains state about the program itself like its
8805 registers and any signal it received when it last stopped.
8806 This state must be restored regardless of how the inferior function call
8807 ends (either successfully, or after it hits a breakpoint or signal)
8808 if the program is to properly continue where it left off. */
8809
8810struct infcall_suspend_state
7a292a7a 8811{
16c381f0 8812 struct thread_suspend_state thread_suspend;
16c381f0
JK
8813
8814 /* Other fields: */
7a292a7a 8815 CORE_ADDR stop_pc;
b89667eb 8816 struct regcache *registers;
1736ad11 8817
35515841 8818 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8819 struct gdbarch *siginfo_gdbarch;
8820
8821 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8822 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8823 content would be invalid. */
8824 gdb_byte *siginfo_data;
b89667eb
DE
8825};
8826
16c381f0
JK
8827struct infcall_suspend_state *
8828save_infcall_suspend_state (void)
b89667eb 8829{
16c381f0 8830 struct infcall_suspend_state *inf_state;
b89667eb 8831 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8832 struct regcache *regcache = get_current_regcache ();
8833 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8834 gdb_byte *siginfo_data = NULL;
8835
8836 if (gdbarch_get_siginfo_type_p (gdbarch))
8837 {
8838 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8839 size_t len = TYPE_LENGTH (type);
8840 struct cleanup *back_to;
8841
224c3ddb 8842 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8843 back_to = make_cleanup (xfree, siginfo_data);
8844
8845 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8846 siginfo_data, 0, len) == len)
8847 discard_cleanups (back_to);
8848 else
8849 {
8850 /* Errors ignored. */
8851 do_cleanups (back_to);
8852 siginfo_data = NULL;
8853 }
8854 }
8855
41bf6aca 8856 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8857
8858 if (siginfo_data)
8859 {
8860 inf_state->siginfo_gdbarch = gdbarch;
8861 inf_state->siginfo_data = siginfo_data;
8862 }
b89667eb 8863
16c381f0 8864 inf_state->thread_suspend = tp->suspend;
16c381f0 8865
35515841 8866 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8867 GDB_SIGNAL_0 anyway. */
8868 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8869
b89667eb
DE
8870 inf_state->stop_pc = stop_pc;
8871
1736ad11 8872 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8873
8874 return inf_state;
8875}
8876
8877/* Restore inferior session state to INF_STATE. */
8878
8879void
16c381f0 8880restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8881{
8882 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8883 struct regcache *regcache = get_current_regcache ();
8884 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8885
16c381f0 8886 tp->suspend = inf_state->thread_suspend;
16c381f0 8887
b89667eb
DE
8888 stop_pc = inf_state->stop_pc;
8889
1736ad11
JK
8890 if (inf_state->siginfo_gdbarch == gdbarch)
8891 {
8892 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8893
8894 /* Errors ignored. */
8895 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8896 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8897 }
8898
b89667eb
DE
8899 /* The inferior can be gone if the user types "print exit(0)"
8900 (and perhaps other times). */
8901 if (target_has_execution)
8902 /* NB: The register write goes through to the target. */
1736ad11 8903 regcache_cpy (regcache, inf_state->registers);
803b5f95 8904
16c381f0 8905 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8906}
8907
8908static void
16c381f0 8909do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8910{
9a3c8263 8911 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8912}
8913
8914struct cleanup *
16c381f0
JK
8915make_cleanup_restore_infcall_suspend_state
8916 (struct infcall_suspend_state *inf_state)
b89667eb 8917{
16c381f0 8918 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8919}
8920
8921void
16c381f0 8922discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8923{
c0e383c6 8924 delete inf_state->registers;
803b5f95 8925 xfree (inf_state->siginfo_data);
b89667eb
DE
8926 xfree (inf_state);
8927}
8928
8929struct regcache *
16c381f0 8930get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8931{
8932 return inf_state->registers;
8933}
8934
16c381f0
JK
8935/* infcall_control_state contains state regarding gdb's control of the
8936 inferior itself like stepping control. It also contains session state like
8937 the user's currently selected frame. */
b89667eb 8938
16c381f0 8939struct infcall_control_state
b89667eb 8940{
16c381f0
JK
8941 struct thread_control_state thread_control;
8942 struct inferior_control_state inferior_control;
d82142e2
JK
8943
8944 /* Other fields: */
8945 enum stop_stack_kind stop_stack_dummy;
8946 int stopped_by_random_signal;
7a292a7a 8947
b89667eb 8948 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8949 struct frame_id selected_frame_id;
7a292a7a
SS
8950};
8951
c906108c 8952/* Save all of the information associated with the inferior<==>gdb
b89667eb 8953 connection. */
c906108c 8954
16c381f0
JK
8955struct infcall_control_state *
8956save_infcall_control_state (void)
c906108c 8957{
8d749320
SM
8958 struct infcall_control_state *inf_status =
8959 XNEW (struct infcall_control_state);
4e1c45ea 8960 struct thread_info *tp = inferior_thread ();
d6b48e9c 8961 struct inferior *inf = current_inferior ();
7a292a7a 8962
16c381f0
JK
8963 inf_status->thread_control = tp->control;
8964 inf_status->inferior_control = inf->control;
d82142e2 8965
8358c15c 8966 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8967 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8968
16c381f0
JK
8969 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8970 chain. If caller's caller is walking the chain, they'll be happier if we
8971 hand them back the original chain when restore_infcall_control_state is
8972 called. */
8973 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8974
8975 /* Other fields: */
8976 inf_status->stop_stack_dummy = stop_stack_dummy;
8977 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8978
206415a3 8979 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8980
7a292a7a 8981 return inf_status;
c906108c
SS
8982}
8983
c906108c 8984static int
96baa820 8985restore_selected_frame (void *args)
c906108c 8986{
488f131b 8987 struct frame_id *fid = (struct frame_id *) args;
c906108c 8988 struct frame_info *frame;
c906108c 8989
101dcfbe 8990 frame = frame_find_by_id (*fid);
c906108c 8991
aa0cd9c1
AC
8992 /* If inf_status->selected_frame_id is NULL, there was no previously
8993 selected frame. */
101dcfbe 8994 if (frame == NULL)
c906108c 8995 {
8a3fe4f8 8996 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8997 return 0;
8998 }
8999
0f7d239c 9000 select_frame (frame);
c906108c
SS
9001
9002 return (1);
9003}
9004
b89667eb
DE
9005/* Restore inferior session state to INF_STATUS. */
9006
c906108c 9007void
16c381f0 9008restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9009{
4e1c45ea 9010 struct thread_info *tp = inferior_thread ();
d6b48e9c 9011 struct inferior *inf = current_inferior ();
4e1c45ea 9012
8358c15c
JK
9013 if (tp->control.step_resume_breakpoint)
9014 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9015
5b79abe7
TT
9016 if (tp->control.exception_resume_breakpoint)
9017 tp->control.exception_resume_breakpoint->disposition
9018 = disp_del_at_next_stop;
9019
d82142e2 9020 /* Handle the bpstat_copy of the chain. */
16c381f0 9021 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9022
16c381f0
JK
9023 tp->control = inf_status->thread_control;
9024 inf->control = inf_status->inferior_control;
d82142e2
JK
9025
9026 /* Other fields: */
9027 stop_stack_dummy = inf_status->stop_stack_dummy;
9028 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9029
b89667eb 9030 if (target_has_stack)
c906108c 9031 {
c906108c 9032 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9033 walking the stack might encounter a garbage pointer and
9034 error() trying to dereference it. */
488f131b
JB
9035 if (catch_errors
9036 (restore_selected_frame, &inf_status->selected_frame_id,
9037 "Unable to restore previously selected frame:\n",
9038 RETURN_MASK_ERROR) == 0)
c906108c
SS
9039 /* Error in restoring the selected frame. Select the innermost
9040 frame. */
0f7d239c 9041 select_frame (get_current_frame ());
c906108c 9042 }
c906108c 9043
72cec141 9044 xfree (inf_status);
7a292a7a 9045}
c906108c 9046
74b7792f 9047static void
16c381f0 9048do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9049{
9a3c8263 9050 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9051}
9052
9053struct cleanup *
16c381f0
JK
9054make_cleanup_restore_infcall_control_state
9055 (struct infcall_control_state *inf_status)
74b7792f 9056{
16c381f0 9057 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9058}
9059
c906108c 9060void
16c381f0 9061discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9062{
8358c15c
JK
9063 if (inf_status->thread_control.step_resume_breakpoint)
9064 inf_status->thread_control.step_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
5b79abe7
TT
9067 if (inf_status->thread_control.exception_resume_breakpoint)
9068 inf_status->thread_control.exception_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
1777feb0 9071 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9072 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9073
72cec141 9074 xfree (inf_status);
7a292a7a 9075}
b89667eb 9076\f
7f89fd65 9077/* See infrun.h. */
0c557179
SDJ
9078
9079void
9080clear_exit_convenience_vars (void)
9081{
9082 clear_internalvar (lookup_internalvar ("_exitsignal"));
9083 clear_internalvar (lookup_internalvar ("_exitcode"));
9084}
c5aa993b 9085\f
488f131b 9086
b2175913
MS
9087/* User interface for reverse debugging:
9088 Set exec-direction / show exec-direction commands
9089 (returns error unless target implements to_set_exec_direction method). */
9090
170742de 9091enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9092static const char exec_forward[] = "forward";
9093static const char exec_reverse[] = "reverse";
9094static const char *exec_direction = exec_forward;
40478521 9095static const char *const exec_direction_names[] = {
b2175913
MS
9096 exec_forward,
9097 exec_reverse,
9098 NULL
9099};
9100
9101static void
9102set_exec_direction_func (char *args, int from_tty,
9103 struct cmd_list_element *cmd)
9104{
9105 if (target_can_execute_reverse)
9106 {
9107 if (!strcmp (exec_direction, exec_forward))
9108 execution_direction = EXEC_FORWARD;
9109 else if (!strcmp (exec_direction, exec_reverse))
9110 execution_direction = EXEC_REVERSE;
9111 }
8bbed405
MS
9112 else
9113 {
9114 exec_direction = exec_forward;
9115 error (_("Target does not support this operation."));
9116 }
b2175913
MS
9117}
9118
9119static void
9120show_exec_direction_func (struct ui_file *out, int from_tty,
9121 struct cmd_list_element *cmd, const char *value)
9122{
9123 switch (execution_direction) {
9124 case EXEC_FORWARD:
9125 fprintf_filtered (out, _("Forward.\n"));
9126 break;
9127 case EXEC_REVERSE:
9128 fprintf_filtered (out, _("Reverse.\n"));
9129 break;
b2175913 9130 default:
d8b34453
PA
9131 internal_error (__FILE__, __LINE__,
9132 _("bogus execution_direction value: %d"),
9133 (int) execution_direction);
b2175913
MS
9134 }
9135}
9136
d4db2f36
PA
9137static void
9138show_schedule_multiple (struct ui_file *file, int from_tty,
9139 struct cmd_list_element *c, const char *value)
9140{
3e43a32a
MS
9141 fprintf_filtered (file, _("Resuming the execution of threads "
9142 "of all processes is %s.\n"), value);
d4db2f36 9143}
ad52ddc6 9144
22d2b532
SDJ
9145/* Implementation of `siginfo' variable. */
9146
9147static const struct internalvar_funcs siginfo_funcs =
9148{
9149 siginfo_make_value,
9150 NULL,
9151 NULL
9152};
9153
372316f1
PA
9154/* Callback for infrun's target events source. This is marked when a
9155 thread has a pending status to process. */
9156
9157static void
9158infrun_async_inferior_event_handler (gdb_client_data data)
9159{
372316f1
PA
9160 inferior_event_handler (INF_REG_EVENT, NULL);
9161}
9162
c906108c 9163void
96baa820 9164_initialize_infrun (void)
c906108c 9165{
52f0bd74
AC
9166 int i;
9167 int numsigs;
de0bea00 9168 struct cmd_list_element *c;
c906108c 9169
372316f1
PA
9170 /* Register extra event sources in the event loop. */
9171 infrun_async_inferior_event_token
9172 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9173
11db9430 9174 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9175What debugger does when program gets various signals.\n\
9176Specify a signal as argument to print info on that signal only."));
c906108c
SS
9177 add_info_alias ("handle", "signals", 0);
9178
de0bea00 9179 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9180Specify how to handle signals.\n\
486c7739 9181Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9182Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9183If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9184will be displayed instead.\n\
9185\n\
c906108c
SS
9186Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9187from 1-15 are allowed for compatibility with old versions of GDB.\n\
9188Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9189The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9190used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9191\n\
1bedd215 9192Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9193\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9194Stop means reenter debugger if this signal happens (implies print).\n\
9195Print means print a message if this signal happens.\n\
9196Pass means let program see this signal; otherwise program doesn't know.\n\
9197Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9198Pass and Stop may be combined.\n\
9199\n\
9200Multiple signals may be specified. Signal numbers and signal names\n\
9201may be interspersed with actions, with the actions being performed for\n\
9202all signals cumulatively specified."));
de0bea00 9203 set_cmd_completer (c, handle_completer);
486c7739 9204
c906108c 9205 if (!dbx_commands)
1a966eab
AC
9206 stop_command = add_cmd ("stop", class_obscure,
9207 not_just_help_class_command, _("\
9208There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9209This allows you to set a list of commands to be run each time execution\n\
1a966eab 9210of the program stops."), &cmdlist);
c906108c 9211
ccce17b0 9212 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9213Set inferior debugging."), _("\
9214Show inferior debugging."), _("\
9215When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9216 NULL,
9217 show_debug_infrun,
9218 &setdebuglist, &showdebuglist);
527159b7 9219
3e43a32a
MS
9220 add_setshow_boolean_cmd ("displaced", class_maintenance,
9221 &debug_displaced, _("\
237fc4c9
PA
9222Set displaced stepping debugging."), _("\
9223Show displaced stepping debugging."), _("\
9224When non-zero, displaced stepping specific debugging is enabled."),
9225 NULL,
9226 show_debug_displaced,
9227 &setdebuglist, &showdebuglist);
9228
ad52ddc6
PA
9229 add_setshow_boolean_cmd ("non-stop", no_class,
9230 &non_stop_1, _("\
9231Set whether gdb controls the inferior in non-stop mode."), _("\
9232Show whether gdb controls the inferior in non-stop mode."), _("\
9233When debugging a multi-threaded program and this setting is\n\
9234off (the default, also called all-stop mode), when one thread stops\n\
9235(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9236all other threads in the program while you interact with the thread of\n\
9237interest. When you continue or step a thread, you can allow the other\n\
9238threads to run, or have them remain stopped, but while you inspect any\n\
9239thread's state, all threads stop.\n\
9240\n\
9241In non-stop mode, when one thread stops, other threads can continue\n\
9242to run freely. You'll be able to step each thread independently,\n\
9243leave it stopped or free to run as needed."),
9244 set_non_stop,
9245 show_non_stop,
9246 &setlist,
9247 &showlist);
9248
a493e3e2 9249 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9250 signal_stop = XNEWVEC (unsigned char, numsigs);
9251 signal_print = XNEWVEC (unsigned char, numsigs);
9252 signal_program = XNEWVEC (unsigned char, numsigs);
9253 signal_catch = XNEWVEC (unsigned char, numsigs);
9254 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9255 for (i = 0; i < numsigs; i++)
9256 {
9257 signal_stop[i] = 1;
9258 signal_print[i] = 1;
9259 signal_program[i] = 1;
ab04a2af 9260 signal_catch[i] = 0;
c906108c
SS
9261 }
9262
4d9d9d04
PA
9263 /* Signals caused by debugger's own actions should not be given to
9264 the program afterwards.
9265
9266 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9267 explicitly specifies that it should be delivered to the target
9268 program. Typically, that would occur when a user is debugging a
9269 target monitor on a simulator: the target monitor sets a
9270 breakpoint; the simulator encounters this breakpoint and halts
9271 the simulation handing control to GDB; GDB, noting that the stop
9272 address doesn't map to any known breakpoint, returns control back
9273 to the simulator; the simulator then delivers the hardware
9274 equivalent of a GDB_SIGNAL_TRAP to the program being
9275 debugged. */
a493e3e2
PA
9276 signal_program[GDB_SIGNAL_TRAP] = 0;
9277 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9278
9279 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9280 signal_stop[GDB_SIGNAL_ALRM] = 0;
9281 signal_print[GDB_SIGNAL_ALRM] = 0;
9282 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9283 signal_print[GDB_SIGNAL_VTALRM] = 0;
9284 signal_stop[GDB_SIGNAL_PROF] = 0;
9285 signal_print[GDB_SIGNAL_PROF] = 0;
9286 signal_stop[GDB_SIGNAL_CHLD] = 0;
9287 signal_print[GDB_SIGNAL_CHLD] = 0;
9288 signal_stop[GDB_SIGNAL_IO] = 0;
9289 signal_print[GDB_SIGNAL_IO] = 0;
9290 signal_stop[GDB_SIGNAL_POLL] = 0;
9291 signal_print[GDB_SIGNAL_POLL] = 0;
9292 signal_stop[GDB_SIGNAL_URG] = 0;
9293 signal_print[GDB_SIGNAL_URG] = 0;
9294 signal_stop[GDB_SIGNAL_WINCH] = 0;
9295 signal_print[GDB_SIGNAL_WINCH] = 0;
9296 signal_stop[GDB_SIGNAL_PRIO] = 0;
9297 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9298
cd0fc7c3
SS
9299 /* These signals are used internally by user-level thread
9300 implementations. (See signal(5) on Solaris.) Like the above
9301 signals, a healthy program receives and handles them as part of
9302 its normal operation. */
a493e3e2
PA
9303 signal_stop[GDB_SIGNAL_LWP] = 0;
9304 signal_print[GDB_SIGNAL_LWP] = 0;
9305 signal_stop[GDB_SIGNAL_WAITING] = 0;
9306 signal_print[GDB_SIGNAL_WAITING] = 0;
9307 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9308 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9309 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9310 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9311
2455069d
UW
9312 /* Update cached state. */
9313 signal_cache_update (-1);
9314
85c07804
AC
9315 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9316 &stop_on_solib_events, _("\
9317Set stopping for shared library events."), _("\
9318Show stopping for shared library events."), _("\
c906108c
SS
9319If nonzero, gdb will give control to the user when the dynamic linker\n\
9320notifies gdb of shared library events. The most common event of interest\n\
85c07804 9321to the user would be loading/unloading of a new library."),
f9e14852 9322 set_stop_on_solib_events,
920d2a44 9323 show_stop_on_solib_events,
85c07804 9324 &setlist, &showlist);
c906108c 9325
7ab04401
AC
9326 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9327 follow_fork_mode_kind_names,
9328 &follow_fork_mode_string, _("\
9329Set debugger response to a program call of fork or vfork."), _("\
9330Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9331A fork or vfork creates a new process. follow-fork-mode can be:\n\
9332 parent - the original process is debugged after a fork\n\
9333 child - the new process is debugged after a fork\n\
ea1dd7bc 9334The unfollowed process will continue to run.\n\
7ab04401
AC
9335By default, the debugger will follow the parent process."),
9336 NULL,
920d2a44 9337 show_follow_fork_mode_string,
7ab04401
AC
9338 &setlist, &showlist);
9339
6c95b8df
PA
9340 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9341 follow_exec_mode_names,
9342 &follow_exec_mode_string, _("\
9343Set debugger response to a program call of exec."), _("\
9344Show debugger response to a program call of exec."), _("\
9345An exec call replaces the program image of a process.\n\
9346\n\
9347follow-exec-mode can be:\n\
9348\n\
cce7e648 9349 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9350to this new inferior. The program the process was running before\n\
9351the exec call can be restarted afterwards by restarting the original\n\
9352inferior.\n\
9353\n\
9354 same - the debugger keeps the process bound to the same inferior.\n\
9355The new executable image replaces the previous executable loaded in\n\
9356the inferior. Restarting the inferior after the exec call restarts\n\
9357the executable the process was running after the exec call.\n\
9358\n\
9359By default, the debugger will use the same inferior."),
9360 NULL,
9361 show_follow_exec_mode_string,
9362 &setlist, &showlist);
9363
7ab04401
AC
9364 add_setshow_enum_cmd ("scheduler-locking", class_run,
9365 scheduler_enums, &scheduler_mode, _("\
9366Set mode for locking scheduler during execution."), _("\
9367Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9368off == no locking (threads may preempt at any time)\n\
9369on == full locking (no thread except the current thread may run)\n\
9370 This applies to both normal execution and replay mode.\n\
9371step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9372 In this mode, other threads may run during other commands.\n\
9373 This applies to both normal execution and replay mode.\n\
9374replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9375 set_schedlock_func, /* traps on target vector */
920d2a44 9376 show_scheduler_mode,
7ab04401 9377 &setlist, &showlist);
5fbbeb29 9378
d4db2f36
PA
9379 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9380Set mode for resuming threads of all processes."), _("\
9381Show mode for resuming threads of all processes."), _("\
9382When on, execution commands (such as 'continue' or 'next') resume all\n\
9383threads of all processes. When off (which is the default), execution\n\
9384commands only resume the threads of the current process. The set of\n\
9385threads that are resumed is further refined by the scheduler-locking\n\
9386mode (see help set scheduler-locking)."),
9387 NULL,
9388 show_schedule_multiple,
9389 &setlist, &showlist);
9390
5bf193a2
AC
9391 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9392Set mode of the step operation."), _("\
9393Show mode of the step operation."), _("\
9394When set, doing a step over a function without debug line information\n\
9395will stop at the first instruction of that function. Otherwise, the\n\
9396function is skipped and the step command stops at a different source line."),
9397 NULL,
920d2a44 9398 show_step_stop_if_no_debug,
5bf193a2 9399 &setlist, &showlist);
ca6724c1 9400
72d0e2c5
YQ
9401 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9402 &can_use_displaced_stepping, _("\
237fc4c9
PA
9403Set debugger's willingness to use displaced stepping."), _("\
9404Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9405If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9406supported by the target architecture. If off, gdb will not use displaced\n\
9407stepping to step over breakpoints, even if such is supported by the target\n\
9408architecture. If auto (which is the default), gdb will use displaced stepping\n\
9409if the target architecture supports it and non-stop mode is active, but will not\n\
9410use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9411 NULL,
9412 show_can_use_displaced_stepping,
9413 &setlist, &showlist);
237fc4c9 9414
b2175913
MS
9415 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9416 &exec_direction, _("Set direction of execution.\n\
9417Options are 'forward' or 'reverse'."),
9418 _("Show direction of execution (forward/reverse)."),
9419 _("Tells gdb whether to execute forward or backward."),
9420 set_exec_direction_func, show_exec_direction_func,
9421 &setlist, &showlist);
9422
6c95b8df
PA
9423 /* Set/show detach-on-fork: user-settable mode. */
9424
9425 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9426Set whether gdb will detach the child of a fork."), _("\
9427Show whether gdb will detach the child of a fork."), _("\
9428Tells gdb whether to detach the child of a fork."),
9429 NULL, NULL, &setlist, &showlist);
9430
03583c20
UW
9431 /* Set/show disable address space randomization mode. */
9432
9433 add_setshow_boolean_cmd ("disable-randomization", class_support,
9434 &disable_randomization, _("\
9435Set disabling of debuggee's virtual address space randomization."), _("\
9436Show disabling of debuggee's virtual address space randomization."), _("\
9437When this mode is on (which is the default), randomization of the virtual\n\
9438address space is disabled. Standalone programs run with the randomization\n\
9439enabled by default on some platforms."),
9440 &set_disable_randomization,
9441 &show_disable_randomization,
9442 &setlist, &showlist);
9443
ca6724c1 9444 /* ptid initializations */
ca6724c1
KB
9445 inferior_ptid = null_ptid;
9446 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9447
9448 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9449 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9450 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9451 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9452
9453 /* Explicitly create without lookup, since that tries to create a
9454 value with a void typed value, and when we get here, gdbarch
9455 isn't initialized yet. At this point, we're quite sure there
9456 isn't another convenience variable of the same name. */
22d2b532 9457 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9458
9459 add_setshow_boolean_cmd ("observer", no_class,
9460 &observer_mode_1, _("\
9461Set whether gdb controls the inferior in observer mode."), _("\
9462Show whether gdb controls the inferior in observer mode."), _("\
9463In observer mode, GDB can get data from the inferior, but not\n\
9464affect its execution. Registers and memory may not be changed,\n\
9465breakpoints may not be set, and the program cannot be interrupted\n\
9466or signalled."),
9467 set_observer_mode,
9468 show_observer_mode,
9469 &setlist,
9470 &showlist);
c906108c 9471}