]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
PR ld/6766
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
c906108c
SS
54
55/* Prototypes for local functions */
56
96baa820 57static void signals_info (char *, int);
c906108c 58
96baa820 59static void handle_command (char *, int);
c906108c 60
96baa820 61static void sig_print_info (enum target_signal);
c906108c 62
96baa820 63static void sig_print_header (void);
c906108c 64
74b7792f 65static void resume_cleanups (void *);
c906108c 66
96baa820 67static int hook_stop_stub (void *);
c906108c 68
96baa820
JM
69static int restore_selected_frame (void *);
70
71static void build_infrun (void);
72
4ef3f3be 73static int follow_fork (void);
96baa820
JM
74
75static void set_schedlock_func (char *args, int from_tty,
488f131b 76 struct cmd_list_element *c);
96baa820 77
4e1c45ea 78static int currently_stepping (struct thread_info *tp);
96baa820 79
b3444185
PA
80static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
a7212384 82
96baa820
JM
83static void xdb_handle_command (char *args, int from_tty);
84
6a6b96b9 85static int prepare_to_proceed (int);
ea67f13b 86
96baa820 87void _initialize_infrun (void);
43ff13b4 88
e58b0e63
PA
89void nullify_last_target_wait_ptid (void);
90
5fbbeb29
CF
91/* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94int step_stop_if_no_debug = 0;
920d2a44
AC
95static void
96show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98{
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100}
5fbbeb29 101
43ff13b4 102/* In asynchronous mode, but simulating synchronous execution. */
96baa820 103
43ff13b4
JM
104int sync_execution = 0;
105
c906108c
SS
106/* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
96baa820
JM
108 running in. */
109
39f77062 110static ptid_t previous_inferior_ptid;
7a292a7a 111
237fc4c9
PA
112int debug_displaced = 0;
113static void
114show_debug_displaced (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
118}
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e 147
cfd8ab24 148 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
cfd8ab24 154 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f 179
7a292a7a
SS
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
692590c1
MS
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
c906108c
SS
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
39f77062
KB
212/* Value to pass to target_resume() to cause all threads to resume */
213
edb3359d 214#define RESUME_ALL minus_one_ptid
c906108c
SS
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
c906108c
SS
220/* Function inferior was in as of last step command. */
221
222static struct symbol *step_start_function;
223
c906108c
SS
224/* Nonzero if we want to give control to the user when we're notified
225 of shared library events by the dynamic linker. */
226static int stop_on_solib_events;
920d2a44
AC
227static void
228show_stop_on_solib_events (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230{
231 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
232 value);
233}
c906108c 234
c906108c
SS
235/* Nonzero means expecting a trace trap
236 and should stop the inferior and return silently when it happens. */
237
238int stop_after_trap;
239
642fd101
DE
240/* Save register contents here when executing a "finish" command or are
241 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
72cec141 245struct regcache *stop_registers;
c906108c 246
c906108c
SS
247/* Nonzero after stop if current stack frame should be printed. */
248
249static int stop_print_frame;
250
e02bc4cc 251/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
39f77062 254static ptid_t target_last_wait_ptid;
e02bc4cc
DS
255static struct target_waitstatus target_last_waitstatus;
256
0d1e5fa7
PA
257static void context_switch (ptid_t ptid);
258
4e1c45ea 259void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
260
261void init_infwait_state (void);
a474d7c2 262
53904c9e
AC
263static const char follow_fork_mode_child[] = "child";
264static const char follow_fork_mode_parent[] = "parent";
265
488f131b 266static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
267 follow_fork_mode_child,
268 follow_fork_mode_parent,
269 NULL
ef346e04 270};
c906108c 271
53904c9e 272static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
273static void
274show_follow_fork_mode_string (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("\
278Debugger response to a program call of fork or vfork is \"%s\".\n"),
279 value);
280}
c906108c
SS
281\f
282
e58b0e63
PA
283/* Tell the target to follow the fork we're stopped at. Returns true
284 if the inferior should be resumed; false, if the target for some
285 reason decided it's best not to resume. */
286
6604731b 287static int
4ef3f3be 288follow_fork (void)
c906108c 289{
ea1dd7bc 290 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
291 int should_resume = 1;
292 struct thread_info *tp;
293
294 /* Copy user stepping state to the new inferior thread. FIXME: the
295 followed fork child thread should have a copy of most of the
4e3990f4
DE
296 parent thread structure's run control related fields, not just these.
297 Initialized to avoid "may be used uninitialized" warnings from gcc. */
298 struct breakpoint *step_resume_breakpoint = NULL;
299 CORE_ADDR step_range_start = 0;
300 CORE_ADDR step_range_end = 0;
301 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
302
303 if (!non_stop)
304 {
305 ptid_t wait_ptid;
306 struct target_waitstatus wait_status;
307
308 /* Get the last target status returned by target_wait(). */
309 get_last_target_status (&wait_ptid, &wait_status);
310
311 /* If not stopped at a fork event, then there's nothing else to
312 do. */
313 if (wait_status.kind != TARGET_WAITKIND_FORKED
314 && wait_status.kind != TARGET_WAITKIND_VFORKED)
315 return 1;
316
317 /* Check if we switched over from WAIT_PTID, since the event was
318 reported. */
319 if (!ptid_equal (wait_ptid, minus_one_ptid)
320 && !ptid_equal (inferior_ptid, wait_ptid))
321 {
322 /* We did. Switch back to WAIT_PTID thread, to tell the
323 target to follow it (in either direction). We'll
324 afterwards refuse to resume, and inform the user what
325 happened. */
326 switch_to_thread (wait_ptid);
327 should_resume = 0;
328 }
329 }
330
331 tp = inferior_thread ();
332
333 /* If there were any forks/vforks that were caught and are now to be
334 followed, then do so now. */
335 switch (tp->pending_follow.kind)
336 {
337 case TARGET_WAITKIND_FORKED:
338 case TARGET_WAITKIND_VFORKED:
339 {
340 ptid_t parent, child;
341
342 /* If the user did a next/step, etc, over a fork call,
343 preserve the stepping state in the fork child. */
344 if (follow_child && should_resume)
345 {
346 step_resume_breakpoint
347 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
348 step_range_start = tp->step_range_start;
349 step_range_end = tp->step_range_end;
350 step_frame_id = tp->step_frame_id;
351
352 /* For now, delete the parent's sr breakpoint, otherwise,
353 parent/child sr breakpoints are considered duplicates,
354 and the child version will not be installed. Remove
355 this when the breakpoints module becomes aware of
356 inferiors and address spaces. */
357 delete_step_resume_breakpoint (tp);
358 tp->step_range_start = 0;
359 tp->step_range_end = 0;
360 tp->step_frame_id = null_frame_id;
361 }
362
363 parent = inferior_ptid;
364 child = tp->pending_follow.value.related_pid;
365
366 /* Tell the target to do whatever is necessary to follow
367 either parent or child. */
368 if (target_follow_fork (follow_child))
369 {
370 /* Target refused to follow, or there's some other reason
371 we shouldn't resume. */
372 should_resume = 0;
373 }
374 else
375 {
376 /* This pending follow fork event is now handled, one way
377 or another. The previous selected thread may be gone
378 from the lists by now, but if it is still around, need
379 to clear the pending follow request. */
e09875d4 380 tp = find_thread_ptid (parent);
e58b0e63
PA
381 if (tp)
382 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
383
384 /* This makes sure we don't try to apply the "Switched
385 over from WAIT_PID" logic above. */
386 nullify_last_target_wait_ptid ();
387
388 /* If we followed the child, switch to it... */
389 if (follow_child)
390 {
391 switch_to_thread (child);
392
393 /* ... and preserve the stepping state, in case the
394 user was stepping over the fork call. */
395 if (should_resume)
396 {
397 tp = inferior_thread ();
398 tp->step_resume_breakpoint = step_resume_breakpoint;
399 tp->step_range_start = step_range_start;
400 tp->step_range_end = step_range_end;
401 tp->step_frame_id = step_frame_id;
402 }
403 else
404 {
405 /* If we get here, it was because we're trying to
406 resume from a fork catchpoint, but, the user
407 has switched threads away from the thread that
408 forked. In that case, the resume command
409 issued is most likely not applicable to the
410 child, so just warn, and refuse to resume. */
411 warning (_("\
412Not resuming: switched threads before following fork child.\n"));
413 }
414
415 /* Reset breakpoints in the child as appropriate. */
416 follow_inferior_reset_breakpoints ();
417 }
418 else
419 switch_to_thread (parent);
420 }
421 }
422 break;
423 case TARGET_WAITKIND_SPURIOUS:
424 /* Nothing to follow. */
425 break;
426 default:
427 internal_error (__FILE__, __LINE__,
428 "Unexpected pending_follow.kind %d\n",
429 tp->pending_follow.kind);
430 break;
431 }
c906108c 432
e58b0e63 433 return should_resume;
c906108c
SS
434}
435
6604731b
DJ
436void
437follow_inferior_reset_breakpoints (void)
c906108c 438{
4e1c45ea
PA
439 struct thread_info *tp = inferior_thread ();
440
6604731b
DJ
441 /* Was there a step_resume breakpoint? (There was if the user
442 did a "next" at the fork() call.) If so, explicitly reset its
443 thread number.
444
445 step_resumes are a form of bp that are made to be per-thread.
446 Since we created the step_resume bp when the parent process
447 was being debugged, and now are switching to the child process,
448 from the breakpoint package's viewpoint, that's a switch of
449 "threads". We must update the bp's notion of which thread
450 it is for, or it'll be ignored when it triggers. */
451
4e1c45ea
PA
452 if (tp->step_resume_breakpoint)
453 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
454
455 /* Reinsert all breakpoints in the child. The user may have set
456 breakpoints after catching the fork, in which case those
457 were never set in the child, but only in the parent. This makes
458 sure the inserted breakpoints match the breakpoint list. */
459
460 breakpoint_re_set ();
461 insert_breakpoints ();
c906108c 462}
c906108c 463
1adeb98a
FN
464/* EXECD_PATHNAME is assumed to be non-NULL. */
465
c906108c 466static void
3a3e9ee3 467follow_exec (ptid_t pid, char *execd_pathname)
c906108c 468{
7a292a7a 469 struct target_ops *tgt;
4e1c45ea 470 struct thread_info *th = inferior_thread ();
7a292a7a 471
c906108c
SS
472 /* This is an exec event that we actually wish to pay attention to.
473 Refresh our symbol table to the newly exec'd program, remove any
474 momentary bp's, etc.
475
476 If there are breakpoints, they aren't really inserted now,
477 since the exec() transformed our inferior into a fresh set
478 of instructions.
479
480 We want to preserve symbolic breakpoints on the list, since
481 we have hopes that they can be reset after the new a.out's
482 symbol table is read.
483
484 However, any "raw" breakpoints must be removed from the list
485 (e.g., the solib bp's), since their address is probably invalid
486 now.
487
488 And, we DON'T want to call delete_breakpoints() here, since
489 that may write the bp's "shadow contents" (the instruction
490 value that was overwritten witha TRAP instruction). Since
491 we now have a new a.out, those shadow contents aren't valid. */
492 update_breakpoints_after_exec ();
493
494 /* If there was one, it's gone now. We cannot truly step-to-next
495 statement through an exec(). */
4e1c45ea
PA
496 th->step_resume_breakpoint = NULL;
497 th->step_range_start = 0;
498 th->step_range_end = 0;
c906108c 499
a75724bc
PA
500 /* The target reports the exec event to the main thread, even if
501 some other thread does the exec, and even if the main thread was
502 already stopped --- if debugging in non-stop mode, it's possible
503 the user had the main thread held stopped in the previous image
504 --- release it now. This is the same behavior as step-over-exec
505 with scheduler-locking on in all-stop mode. */
506 th->stop_requested = 0;
507
c906108c 508 /* What is this a.out's name? */
a3f17187 509 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
510
511 /* We've followed the inferior through an exec. Therefore, the
512 inferior has essentially been killed & reborn. */
7a292a7a 513
c906108c 514 gdb_flush (gdb_stdout);
6ca15a4b
PA
515
516 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
517
518 if (gdb_sysroot && *gdb_sysroot)
519 {
520 char *name = alloca (strlen (gdb_sysroot)
521 + strlen (execd_pathname)
522 + 1);
523 strcpy (name, gdb_sysroot);
524 strcat (name, execd_pathname);
525 execd_pathname = name;
526 }
c906108c
SS
527
528 /* That a.out is now the one to use. */
529 exec_file_attach (execd_pathname, 0);
530
cce9b6bf
PA
531 /* Reset the shared library package. This ensures that we get a
532 shlib event when the child reaches "_start", at which point the
533 dld will have had a chance to initialize the child. */
534 /* Also, loading a symbol file below may trigger symbol lookups, and
535 we don't want those to be satisfied by the libraries of the
536 previous incarnation of this process. */
537 no_shared_libraries (NULL, 0);
538
539 /* Load the main file's symbols. */
1adeb98a 540 symbol_file_add_main (execd_pathname, 0);
c906108c 541
7a292a7a 542#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 543 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
544#else
545 solib_create_inferior_hook ();
7a292a7a 546#endif
c906108c 547
4efc6507
DE
548 jit_inferior_created_hook ();
549
c906108c
SS
550 /* Reinsert all breakpoints. (Those which were symbolic have
551 been reset to the proper address in the new a.out, thanks
552 to symbol_file_command...) */
553 insert_breakpoints ();
554
555 /* The next resume of this inferior should bring it to the shlib
556 startup breakpoints. (If the user had also set bp's on
557 "main" from the old (parent) process, then they'll auto-
558 matically get reset there in the new process.) */
c906108c
SS
559}
560
561/* Non-zero if we just simulating a single-step. This is needed
562 because we cannot remove the breakpoints in the inferior process
563 until after the `wait' in `wait_for_inferior'. */
564static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
565
566/* The thread we inserted single-step breakpoints for. */
567static ptid_t singlestep_ptid;
568
fd48f117
DJ
569/* PC when we started this single-step. */
570static CORE_ADDR singlestep_pc;
571
9f976b41
DJ
572/* If another thread hit the singlestep breakpoint, we save the original
573 thread here so that we can resume single-stepping it later. */
574static ptid_t saved_singlestep_ptid;
575static int stepping_past_singlestep_breakpoint;
6a6b96b9 576
ca67fcb8
VP
577/* If not equal to null_ptid, this means that after stepping over breakpoint
578 is finished, we need to switch to deferred_step_ptid, and step it.
579
580 The use case is when one thread has hit a breakpoint, and then the user
581 has switched to another thread and issued 'step'. We need to step over
582 breakpoint in the thread which hit the breakpoint, but then continue
583 stepping the thread user has selected. */
584static ptid_t deferred_step_ptid;
c906108c 585\f
237fc4c9
PA
586/* Displaced stepping. */
587
588/* In non-stop debugging mode, we must take special care to manage
589 breakpoints properly; in particular, the traditional strategy for
590 stepping a thread past a breakpoint it has hit is unsuitable.
591 'Displaced stepping' is a tactic for stepping one thread past a
592 breakpoint it has hit while ensuring that other threads running
593 concurrently will hit the breakpoint as they should.
594
595 The traditional way to step a thread T off a breakpoint in a
596 multi-threaded program in all-stop mode is as follows:
597
598 a0) Initially, all threads are stopped, and breakpoints are not
599 inserted.
600 a1) We single-step T, leaving breakpoints uninserted.
601 a2) We insert breakpoints, and resume all threads.
602
603 In non-stop debugging, however, this strategy is unsuitable: we
604 don't want to have to stop all threads in the system in order to
605 continue or step T past a breakpoint. Instead, we use displaced
606 stepping:
607
608 n0) Initially, T is stopped, other threads are running, and
609 breakpoints are inserted.
610 n1) We copy the instruction "under" the breakpoint to a separate
611 location, outside the main code stream, making any adjustments
612 to the instruction, register, and memory state as directed by
613 T's architecture.
614 n2) We single-step T over the instruction at its new location.
615 n3) We adjust the resulting register and memory state as directed
616 by T's architecture. This includes resetting T's PC to point
617 back into the main instruction stream.
618 n4) We resume T.
619
620 This approach depends on the following gdbarch methods:
621
622 - gdbarch_max_insn_length and gdbarch_displaced_step_location
623 indicate where to copy the instruction, and how much space must
624 be reserved there. We use these in step n1.
625
626 - gdbarch_displaced_step_copy_insn copies a instruction to a new
627 address, and makes any necessary adjustments to the instruction,
628 register contents, and memory. We use this in step n1.
629
630 - gdbarch_displaced_step_fixup adjusts registers and memory after
631 we have successfuly single-stepped the instruction, to yield the
632 same effect the instruction would have had if we had executed it
633 at its original address. We use this in step n3.
634
635 - gdbarch_displaced_step_free_closure provides cleanup.
636
637 The gdbarch_displaced_step_copy_insn and
638 gdbarch_displaced_step_fixup functions must be written so that
639 copying an instruction with gdbarch_displaced_step_copy_insn,
640 single-stepping across the copied instruction, and then applying
641 gdbarch_displaced_insn_fixup should have the same effects on the
642 thread's memory and registers as stepping the instruction in place
643 would have. Exactly which responsibilities fall to the copy and
644 which fall to the fixup is up to the author of those functions.
645
646 See the comments in gdbarch.sh for details.
647
648 Note that displaced stepping and software single-step cannot
649 currently be used in combination, although with some care I think
650 they could be made to. Software single-step works by placing
651 breakpoints on all possible subsequent instructions; if the
652 displaced instruction is a PC-relative jump, those breakpoints
653 could fall in very strange places --- on pages that aren't
654 executable, or at addresses that are not proper instruction
655 boundaries. (We do generally let other threads run while we wait
656 to hit the software single-step breakpoint, and they might
657 encounter such a corrupted instruction.) One way to work around
658 this would be to have gdbarch_displaced_step_copy_insn fully
659 simulate the effect of PC-relative instructions (and return NULL)
660 on architectures that use software single-stepping.
661
662 In non-stop mode, we can have independent and simultaneous step
663 requests, so more than one thread may need to simultaneously step
664 over a breakpoint. The current implementation assumes there is
665 only one scratch space per process. In this case, we have to
666 serialize access to the scratch space. If thread A wants to step
667 over a breakpoint, but we are currently waiting for some other
668 thread to complete a displaced step, we leave thread A stopped and
669 place it in the displaced_step_request_queue. Whenever a displaced
670 step finishes, we pick the next thread in the queue and start a new
671 displaced step operation on it. See displaced_step_prepare and
672 displaced_step_fixup for details. */
673
674/* If this is not null_ptid, this is the thread carrying out a
675 displaced single-step. This thread's state will require fixing up
676 once it has completed its step. */
677static ptid_t displaced_step_ptid;
678
679struct displaced_step_request
680{
681 ptid_t ptid;
682 struct displaced_step_request *next;
683};
684
685/* A queue of pending displaced stepping requests. */
686struct displaced_step_request *displaced_step_request_queue;
687
688/* The architecture the thread had when we stepped it. */
689static struct gdbarch *displaced_step_gdbarch;
690
691/* The closure provided gdbarch_displaced_step_copy_insn, to be used
692 for post-step cleanup. */
693static struct displaced_step_closure *displaced_step_closure;
694
695/* The address of the original instruction, and the copy we made. */
696static CORE_ADDR displaced_step_original, displaced_step_copy;
697
698/* Saved contents of copy area. */
699static gdb_byte *displaced_step_saved_copy;
700
fff08868
HZ
701/* Enum strings for "set|show displaced-stepping". */
702
703static const char can_use_displaced_stepping_auto[] = "auto";
704static const char can_use_displaced_stepping_on[] = "on";
705static const char can_use_displaced_stepping_off[] = "off";
706static const char *can_use_displaced_stepping_enum[] =
707{
708 can_use_displaced_stepping_auto,
709 can_use_displaced_stepping_on,
710 can_use_displaced_stepping_off,
711 NULL,
712};
713
714/* If ON, and the architecture supports it, GDB will use displaced
715 stepping to step over breakpoints. If OFF, or if the architecture
716 doesn't support it, GDB will instead use the traditional
717 hold-and-step approach. If AUTO (which is the default), GDB will
718 decide which technique to use to step over breakpoints depending on
719 which of all-stop or non-stop mode is active --- displaced stepping
720 in non-stop mode; hold-and-step in all-stop mode. */
721
722static const char *can_use_displaced_stepping =
723 can_use_displaced_stepping_auto;
724
237fc4c9
PA
725static void
726show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
727 struct cmd_list_element *c,
728 const char *value)
729{
fff08868
HZ
730 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
731 fprintf_filtered (file, _("\
732Debugger's willingness to use displaced stepping to step over \
733breakpoints is %s (currently %s).\n"),
734 value, non_stop ? "on" : "off");
735 else
736 fprintf_filtered (file, _("\
737Debugger's willingness to use displaced stepping to step over \
738breakpoints is %s.\n"), value);
237fc4c9
PA
739}
740
fff08868
HZ
741/* Return non-zero if displaced stepping can/should be used to step
742 over breakpoints. */
743
237fc4c9
PA
744static int
745use_displaced_stepping (struct gdbarch *gdbarch)
746{
fff08868
HZ
747 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
748 && non_stop)
749 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
750 && gdbarch_displaced_step_copy_insn_p (gdbarch)
751 && !RECORD_IS_USED);
237fc4c9
PA
752}
753
754/* Clean out any stray displaced stepping state. */
755static void
756displaced_step_clear (void)
757{
758 /* Indicate that there is no cleanup pending. */
759 displaced_step_ptid = null_ptid;
760
761 if (displaced_step_closure)
762 {
763 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
764 displaced_step_closure);
765 displaced_step_closure = NULL;
766 }
767}
768
769static void
9f5a595d 770displaced_step_clear_cleanup (void *ignore)
237fc4c9 771{
9f5a595d 772 displaced_step_clear ();
237fc4c9
PA
773}
774
775/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
776void
777displaced_step_dump_bytes (struct ui_file *file,
778 const gdb_byte *buf,
779 size_t len)
780{
781 int i;
782
783 for (i = 0; i < len; i++)
784 fprintf_unfiltered (file, "%02x ", buf[i]);
785 fputs_unfiltered ("\n", file);
786}
787
788/* Prepare to single-step, using displaced stepping.
789
790 Note that we cannot use displaced stepping when we have a signal to
791 deliver. If we have a signal to deliver and an instruction to step
792 over, then after the step, there will be no indication from the
793 target whether the thread entered a signal handler or ignored the
794 signal and stepped over the instruction successfully --- both cases
795 result in a simple SIGTRAP. In the first case we mustn't do a
796 fixup, and in the second case we must --- but we can't tell which.
797 Comments in the code for 'random signals' in handle_inferior_event
798 explain how we handle this case instead.
799
800 Returns 1 if preparing was successful -- this thread is going to be
801 stepped now; or 0 if displaced stepping this thread got queued. */
802static int
803displaced_step_prepare (ptid_t ptid)
804{
ad53cd71 805 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
806 struct regcache *regcache = get_thread_regcache (ptid);
807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
808 CORE_ADDR original, copy;
809 ULONGEST len;
810 struct displaced_step_closure *closure;
811
812 /* We should never reach this function if the architecture does not
813 support displaced stepping. */
814 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
815
816 /* For the first cut, we're displaced stepping one thread at a
817 time. */
818
819 if (!ptid_equal (displaced_step_ptid, null_ptid))
820 {
821 /* Already waiting for a displaced step to finish. Defer this
822 request and place in queue. */
823 struct displaced_step_request *req, *new_req;
824
825 if (debug_displaced)
826 fprintf_unfiltered (gdb_stdlog,
827 "displaced: defering step of %s\n",
828 target_pid_to_str (ptid));
829
830 new_req = xmalloc (sizeof (*new_req));
831 new_req->ptid = ptid;
832 new_req->next = NULL;
833
834 if (displaced_step_request_queue)
835 {
836 for (req = displaced_step_request_queue;
837 req && req->next;
838 req = req->next)
839 ;
840 req->next = new_req;
841 }
842 else
843 displaced_step_request_queue = new_req;
844
845 return 0;
846 }
847 else
848 {
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "displaced: stepping %s now\n",
852 target_pid_to_str (ptid));
853 }
854
855 displaced_step_clear ();
856
ad53cd71
PA
857 old_cleanups = save_inferior_ptid ();
858 inferior_ptid = ptid;
859
515630c5 860 original = regcache_read_pc (regcache);
237fc4c9
PA
861
862 copy = gdbarch_displaced_step_location (gdbarch);
863 len = gdbarch_max_insn_length (gdbarch);
864
865 /* Save the original contents of the copy area. */
866 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
867 ignore_cleanups = make_cleanup (free_current_contents,
868 &displaced_step_saved_copy);
237fc4c9
PA
869 read_memory (copy, displaced_step_saved_copy, len);
870 if (debug_displaced)
871 {
5af949e3
UW
872 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
873 paddress (gdbarch, copy));
237fc4c9
PA
874 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
875 };
876
877 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 878 original, copy, regcache);
237fc4c9
PA
879
880 /* We don't support the fully-simulated case at present. */
881 gdb_assert (closure);
882
9f5a595d
UW
883 /* Save the information we need to fix things up if the step
884 succeeds. */
885 displaced_step_ptid = ptid;
886 displaced_step_gdbarch = gdbarch;
887 displaced_step_closure = closure;
888 displaced_step_original = original;
889 displaced_step_copy = copy;
890
891 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
892
893 /* Resume execution at the copy. */
515630c5 894 regcache_write_pc (regcache, copy);
237fc4c9 895
ad53cd71
PA
896 discard_cleanups (ignore_cleanups);
897
898 do_cleanups (old_cleanups);
237fc4c9
PA
899
900 if (debug_displaced)
5af949e3
UW
901 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
902 paddress (gdbarch, copy));
237fc4c9 903
237fc4c9
PA
904 return 1;
905}
906
237fc4c9
PA
907static void
908write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
909{
910 struct cleanup *ptid_cleanup = save_inferior_ptid ();
911 inferior_ptid = ptid;
912 write_memory (memaddr, myaddr, len);
913 do_cleanups (ptid_cleanup);
914}
915
916static void
917displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
918{
919 struct cleanup *old_cleanups;
920
921 /* Was this event for the pid we displaced? */
922 if (ptid_equal (displaced_step_ptid, null_ptid)
923 || ! ptid_equal (displaced_step_ptid, event_ptid))
924 return;
925
926 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
927
928 /* Restore the contents of the copy area. */
929 {
930 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
931 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
932 displaced_step_saved_copy, len);
933 if (debug_displaced)
5af949e3
UW
934 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
935 paddress (displaced_step_gdbarch,
936 displaced_step_copy));
237fc4c9
PA
937 }
938
939 /* Did the instruction complete successfully? */
940 if (signal == TARGET_SIGNAL_TRAP)
941 {
942 /* Fix up the resulting state. */
943 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
944 displaced_step_closure,
945 displaced_step_original,
946 displaced_step_copy,
947 get_thread_regcache (displaced_step_ptid));
948 }
949 else
950 {
951 /* Since the instruction didn't complete, all we can do is
952 relocate the PC. */
515630c5
UW
953 struct regcache *regcache = get_thread_regcache (event_ptid);
954 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 955 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 956 regcache_write_pc (regcache, pc);
237fc4c9
PA
957 }
958
959 do_cleanups (old_cleanups);
960
1c5cfe86
PA
961 displaced_step_ptid = null_ptid;
962
237fc4c9
PA
963 /* Are there any pending displaced stepping requests? If so, run
964 one now. */
1c5cfe86 965 while (displaced_step_request_queue)
237fc4c9
PA
966 {
967 struct displaced_step_request *head;
968 ptid_t ptid;
5af949e3 969 struct regcache *regcache;
929dfd4f 970 struct gdbarch *gdbarch;
1c5cfe86 971 CORE_ADDR actual_pc;
237fc4c9
PA
972
973 head = displaced_step_request_queue;
974 ptid = head->ptid;
975 displaced_step_request_queue = head->next;
976 xfree (head);
977
ad53cd71
PA
978 context_switch (ptid);
979
5af949e3
UW
980 regcache = get_thread_regcache (ptid);
981 actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
982
983 if (breakpoint_here_p (actual_pc))
ad53cd71 984 {
1c5cfe86
PA
985 if (debug_displaced)
986 fprintf_unfiltered (gdb_stdlog,
987 "displaced: stepping queued %s now\n",
988 target_pid_to_str (ptid));
989
990 displaced_step_prepare (ptid);
991
929dfd4f
JB
992 gdbarch = get_regcache_arch (regcache);
993
1c5cfe86
PA
994 if (debug_displaced)
995 {
929dfd4f 996 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
997 gdb_byte buf[4];
998
5af949e3
UW
999 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1000 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1001 read_memory (actual_pc, buf, sizeof (buf));
1002 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1003 }
1004
929dfd4f
JB
1005 if (gdbarch_software_single_step_p (gdbarch))
1006 target_resume (ptid, 0, TARGET_SIGNAL_0);
1007 else
1008 target_resume (ptid, 1, TARGET_SIGNAL_0);
1c5cfe86
PA
1009
1010 /* Done, we're stepping a thread. */
1011 break;
ad53cd71 1012 }
1c5cfe86
PA
1013 else
1014 {
1015 int step;
1016 struct thread_info *tp = inferior_thread ();
1017
1018 /* The breakpoint we were sitting under has since been
1019 removed. */
1020 tp->trap_expected = 0;
1021
1022 /* Go back to what we were trying to do. */
1023 step = currently_stepping (tp);
ad53cd71 1024
1c5cfe86
PA
1025 if (debug_displaced)
1026 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1027 target_pid_to_str (tp->ptid), step);
1028
1029 target_resume (ptid, step, TARGET_SIGNAL_0);
1030 tp->stop_signal = TARGET_SIGNAL_0;
1031
1032 /* This request was discarded. See if there's any other
1033 thread waiting for its turn. */
1034 }
237fc4c9
PA
1035 }
1036}
1037
5231c1fd
PA
1038/* Update global variables holding ptids to hold NEW_PTID if they were
1039 holding OLD_PTID. */
1040static void
1041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1042{
1043 struct displaced_step_request *it;
1044
1045 if (ptid_equal (inferior_ptid, old_ptid))
1046 inferior_ptid = new_ptid;
1047
1048 if (ptid_equal (singlestep_ptid, old_ptid))
1049 singlestep_ptid = new_ptid;
1050
1051 if (ptid_equal (displaced_step_ptid, old_ptid))
1052 displaced_step_ptid = new_ptid;
1053
1054 if (ptid_equal (deferred_step_ptid, old_ptid))
1055 deferred_step_ptid = new_ptid;
1056
1057 for (it = displaced_step_request_queue; it; it = it->next)
1058 if (ptid_equal (it->ptid, old_ptid))
1059 it->ptid = new_ptid;
1060}
1061
237fc4c9
PA
1062\f
1063/* Resuming. */
c906108c
SS
1064
1065/* Things to clean up if we QUIT out of resume (). */
c906108c 1066static void
74b7792f 1067resume_cleanups (void *ignore)
c906108c
SS
1068{
1069 normal_stop ();
1070}
1071
53904c9e
AC
1072static const char schedlock_off[] = "off";
1073static const char schedlock_on[] = "on";
1074static const char schedlock_step[] = "step";
488f131b 1075static const char *scheduler_enums[] = {
ef346e04
AC
1076 schedlock_off,
1077 schedlock_on,
1078 schedlock_step,
1079 NULL
1080};
920d2a44
AC
1081static const char *scheduler_mode = schedlock_off;
1082static void
1083show_scheduler_mode (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085{
1086 fprintf_filtered (file, _("\
1087Mode for locking scheduler during execution is \"%s\".\n"),
1088 value);
1089}
c906108c
SS
1090
1091static void
96baa820 1092set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1093{
eefe576e
AC
1094 if (!target_can_lock_scheduler)
1095 {
1096 scheduler_mode = schedlock_off;
1097 error (_("Target '%s' cannot support this command."), target_shortname);
1098 }
c906108c
SS
1099}
1100
d4db2f36
PA
1101/* True if execution commands resume all threads of all processes by
1102 default; otherwise, resume only threads of the current inferior
1103 process. */
1104int sched_multi = 0;
1105
2facfe5c
DD
1106/* Try to setup for software single stepping over the specified location.
1107 Return 1 if target_resume() should use hardware single step.
1108
1109 GDBARCH the current gdbarch.
1110 PC the location to step over. */
1111
1112static int
1113maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1114{
1115 int hw_step = 1;
1116
929dfd4f 1117 if (gdbarch_software_single_step_p (gdbarch))
2facfe5c 1118 {
929dfd4f
JB
1119 if (use_displaced_stepping (gdbarch))
1120 hw_step = 0;
1121 else if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1122 {
1123 hw_step = 0;
1124 /* Do not pull these breakpoints until after a `wait' in
1125 `wait_for_inferior' */
1126 singlestep_breakpoints_inserted_p = 1;
1127 singlestep_ptid = inferior_ptid;
1128 singlestep_pc = pc;
1129 }
2facfe5c
DD
1130 }
1131 return hw_step;
1132}
c906108c
SS
1133
1134/* Resume the inferior, but allow a QUIT. This is useful if the user
1135 wants to interrupt some lengthy single-stepping operation
1136 (for child processes, the SIGINT goes to the inferior, and so
1137 we get a SIGINT random_signal, but for remote debugging and perhaps
1138 other targets, that's not true).
1139
1140 STEP nonzero if we should step (zero to continue instead).
1141 SIG is the signal to give the inferior (zero for none). */
1142void
96baa820 1143resume (int step, enum target_signal sig)
c906108c
SS
1144{
1145 int should_resume = 1;
74b7792f 1146 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1147 struct regcache *regcache = get_current_regcache ();
1148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1149 struct thread_info *tp = inferior_thread ();
515630c5 1150 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1151
c906108c
SS
1152 QUIT;
1153
527159b7 1154 if (debug_infrun)
237fc4c9
PA
1155 fprintf_unfiltered (gdb_stdlog,
1156 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1157 "trap_expected=%d\n",
1158 step, sig, tp->trap_expected);
c906108c 1159
692590c1
MS
1160 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1161 over an instruction that causes a page fault without triggering
1162 a hardware watchpoint. The kernel properly notices that it shouldn't
1163 stop, because the hardware watchpoint is not triggered, but it forgets
1164 the step request and continues the program normally.
1165 Work around the problem by removing hardware watchpoints if a step is
1166 requested, GDB will check for a hardware watchpoint trigger after the
1167 step anyway. */
c36b740a 1168 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1169 remove_hw_watchpoints ();
488f131b 1170
692590c1 1171
c2c6d25f
JM
1172 /* Normally, by the time we reach `resume', the breakpoints are either
1173 removed or inserted, as appropriate. The exception is if we're sitting
1174 at a permanent breakpoint; we need to step over it, but permanent
1175 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1176 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1177 {
515630c5
UW
1178 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1179 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1180 else
1181 error (_("\
1182The program is stopped at a permanent breakpoint, but GDB does not know\n\
1183how to step past a permanent breakpoint on this architecture. Try using\n\
1184a command like `return' or `jump' to continue execution."));
1185 }
c2c6d25f 1186
237fc4c9
PA
1187 /* If enabled, step over breakpoints by executing a copy of the
1188 instruction at a different address.
1189
1190 We can't use displaced stepping when we have a signal to deliver;
1191 the comments for displaced_step_prepare explain why. The
1192 comments in the handle_inferior event for dealing with 'random
1193 signals' explain what we do instead. */
515630c5 1194 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1195 && (tp->trap_expected
1196 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1197 && sig == TARGET_SIGNAL_0)
1198 {
1199 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1200 {
1201 /* Got placed in displaced stepping queue. Will be resumed
1202 later when all the currently queued displaced stepping
7f7efbd9
VP
1203 requests finish. The thread is not executing at this point,
1204 and the call to set_executing will be made later. But we
1205 need to call set_running here, since from frontend point of view,
1206 the thread is running. */
1207 set_running (inferior_ptid, 1);
d56b7306
VP
1208 discard_cleanups (old_cleanups);
1209 return;
1210 }
237fc4c9
PA
1211 }
1212
2facfe5c
DD
1213 /* Do we need to do it the hard way, w/temp breakpoints? */
1214 if (step)
1215 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1216
c906108c
SS
1217 if (should_resume)
1218 {
39f77062 1219 ptid_t resume_ptid;
dfcd3bfb 1220
cd76b0b7
VP
1221 /* If STEP is set, it's a request to use hardware stepping
1222 facilities. But in that case, we should never
1223 use singlestep breakpoint. */
1224 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1225
d4db2f36
PA
1226 /* Decide the set of threads to ask the target to resume. Start
1227 by assuming everything will be resumed, than narrow the set
1228 by applying increasingly restricting conditions. */
1229
1230 /* By default, resume all threads of all processes. */
1231 resume_ptid = RESUME_ALL;
1232
1233 /* Maybe resume only all threads of the current process. */
1234 if (!sched_multi && target_supports_multi_process ())
1235 {
1236 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1237 }
1238
1239 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1240 if (singlestep_breakpoints_inserted_p
1241 && stepping_past_singlestep_breakpoint)
c906108c 1242 {
cd76b0b7
VP
1243 /* The situation here is as follows. In thread T1 we wanted to
1244 single-step. Lacking hardware single-stepping we've
1245 set breakpoint at the PC of the next instruction -- call it
1246 P. After resuming, we've hit that breakpoint in thread T2.
1247 Now we've removed original breakpoint, inserted breakpoint
1248 at P+1, and try to step to advance T2 past breakpoint.
1249 We need to step only T2, as if T1 is allowed to freely run,
1250 it can run past P, and if other threads are allowed to run,
1251 they can hit breakpoint at P+1, and nested hits of single-step
1252 breakpoints is not something we'd want -- that's complicated
1253 to support, and has no value. */
1254 resume_ptid = inferior_ptid;
1255 }
d4db2f36
PA
1256 else if ((step || singlestep_breakpoints_inserted_p)
1257 && tp->trap_expected)
cd76b0b7 1258 {
74960c60
VP
1259 /* We're allowing a thread to run past a breakpoint it has
1260 hit, by single-stepping the thread with the breakpoint
1261 removed. In which case, we need to single-step only this
1262 thread, and keep others stopped, as they can miss this
1263 breakpoint if allowed to run.
1264
1265 The current code actually removes all breakpoints when
1266 doing this, not just the one being stepped over, so if we
1267 let other threads run, we can actually miss any
1268 breakpoint, not just the one at PC. */
ef5cf84e 1269 resume_ptid = inferior_ptid;
c906108c 1270 }
d4db2f36 1271 else if (non_stop)
94cc34af
PA
1272 {
1273 /* With non-stop mode on, threads are always handled
1274 individually. */
1275 resume_ptid = inferior_ptid;
1276 }
1277 else if ((scheduler_mode == schedlock_on)
1278 || (scheduler_mode == schedlock_step
1279 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1280 {
ef5cf84e 1281 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1282 resume_ptid = inferior_ptid;
c906108c 1283 }
ef5cf84e 1284
515630c5 1285 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1286 {
1287 /* Most targets can step a breakpoint instruction, thus
1288 executing it normally. But if this one cannot, just
1289 continue and we will hit it anyway. */
237fc4c9 1290 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1291 step = 0;
1292 }
237fc4c9
PA
1293
1294 if (debug_displaced
515630c5 1295 && use_displaced_stepping (gdbarch)
4e1c45ea 1296 && tp->trap_expected)
237fc4c9 1297 {
515630c5 1298 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1299 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1300 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1301 gdb_byte buf[4];
1302
5af949e3
UW
1303 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1304 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1305 read_memory (actual_pc, buf, sizeof (buf));
1306 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1307 }
1308
e58b0e63
PA
1309 /* Install inferior's terminal modes. */
1310 target_terminal_inferior ();
1311
2020b7ab
PA
1312 /* Avoid confusing the next resume, if the next stop/resume
1313 happens to apply to another thread. */
1314 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1315
1316 target_resume (resume_ptid, step, sig);
c906108c
SS
1317 }
1318
1319 discard_cleanups (old_cleanups);
1320}
1321\f
237fc4c9 1322/* Proceeding. */
c906108c
SS
1323
1324/* Clear out all variables saying what to do when inferior is continued.
1325 First do this, then set the ones you want, then call `proceed'. */
1326
a7212384
UW
1327static void
1328clear_proceed_status_thread (struct thread_info *tp)
c906108c 1329{
a7212384
UW
1330 if (debug_infrun)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "infrun: clear_proceed_status_thread (%s)\n",
1333 target_pid_to_str (tp->ptid));
d6b48e9c 1334
a7212384
UW
1335 tp->trap_expected = 0;
1336 tp->step_range_start = 0;
1337 tp->step_range_end = 0;
1338 tp->step_frame_id = null_frame_id;
edb3359d 1339 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1340 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1341 tp->stop_requested = 0;
4e1c45ea 1342
a7212384 1343 tp->stop_step = 0;
32400beb 1344
a7212384 1345 tp->proceed_to_finish = 0;
414c69f7 1346
a7212384
UW
1347 /* Discard any remaining commands or status from previous stop. */
1348 bpstat_clear (&tp->stop_bpstat);
1349}
32400beb 1350
a7212384
UW
1351static int
1352clear_proceed_status_callback (struct thread_info *tp, void *data)
1353{
1354 if (is_exited (tp->ptid))
1355 return 0;
d6b48e9c 1356
a7212384
UW
1357 clear_proceed_status_thread (tp);
1358 return 0;
1359}
1360
1361void
1362clear_proceed_status (void)
1363{
1364 if (!ptid_equal (inferior_ptid, null_ptid))
1365 {
1366 struct inferior *inferior;
1367
1368 if (non_stop)
1369 {
1370 /* If in non-stop mode, only delete the per-thread status
1371 of the current thread. */
1372 clear_proceed_status_thread (inferior_thread ());
1373 }
1374 else
1375 {
1376 /* In all-stop mode, delete the per-thread status of
1377 *all* threads. */
1378 iterate_over_threads (clear_proceed_status_callback, NULL);
1379 }
1380
d6b48e9c
PA
1381 inferior = current_inferior ();
1382 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1383 }
1384
c906108c 1385 stop_after_trap = 0;
f3b1572e
PA
1386
1387 observer_notify_about_to_proceed ();
c906108c 1388
d5c31457
UW
1389 if (stop_registers)
1390 {
1391 regcache_xfree (stop_registers);
1392 stop_registers = NULL;
1393 }
c906108c
SS
1394}
1395
5a437975
DE
1396/* Check the current thread against the thread that reported the most recent
1397 event. If a step-over is required return TRUE and set the current thread
1398 to the old thread. Otherwise return FALSE.
1399
1400 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1401
1402static int
6a6b96b9 1403prepare_to_proceed (int step)
ea67f13b
DJ
1404{
1405 ptid_t wait_ptid;
1406 struct target_waitstatus wait_status;
5a437975
DE
1407 int schedlock_enabled;
1408
1409 /* With non-stop mode on, threads are always handled individually. */
1410 gdb_assert (! non_stop);
ea67f13b
DJ
1411
1412 /* Get the last target status returned by target_wait(). */
1413 get_last_target_status (&wait_ptid, &wait_status);
1414
6a6b96b9 1415 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1416 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1417 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1418 {
1419 return 0;
1420 }
1421
5a437975
DE
1422 schedlock_enabled = (scheduler_mode == schedlock_on
1423 || (scheduler_mode == schedlock_step
1424 && step));
1425
d4db2f36
PA
1426 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1427 if (schedlock_enabled)
1428 return 0;
1429
1430 /* Don't switch over if we're about to resume some other process
1431 other than WAIT_PTID's, and schedule-multiple is off. */
1432 if (!sched_multi
1433 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1434 return 0;
1435
6a6b96b9 1436 /* Switched over from WAIT_PID. */
ea67f13b 1437 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1438 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1439 {
515630c5
UW
1440 struct regcache *regcache = get_thread_regcache (wait_ptid);
1441
1442 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1443 {
515630c5
UW
1444 /* If stepping, remember current thread to switch back to. */
1445 if (step)
1446 deferred_step_ptid = inferior_ptid;
ea67f13b 1447
515630c5
UW
1448 /* Switch back to WAIT_PID thread. */
1449 switch_to_thread (wait_ptid);
6a6b96b9 1450
515630c5
UW
1451 /* We return 1 to indicate that there is a breakpoint here,
1452 so we need to step over it before continuing to avoid
1453 hitting it straight away. */
1454 return 1;
1455 }
ea67f13b
DJ
1456 }
1457
1458 return 0;
ea67f13b 1459}
e4846b08 1460
c906108c
SS
1461/* Basic routine for continuing the program in various fashions.
1462
1463 ADDR is the address to resume at, or -1 for resume where stopped.
1464 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1465 or -1 for act according to how it stopped.
c906108c 1466 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1467 -1 means return after that and print nothing.
1468 You should probably set various step_... variables
1469 before calling here, if you are stepping.
c906108c
SS
1470
1471 You should call clear_proceed_status before calling proceed. */
1472
1473void
96baa820 1474proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1475{
e58b0e63
PA
1476 struct regcache *regcache;
1477 struct gdbarch *gdbarch;
4e1c45ea 1478 struct thread_info *tp;
e58b0e63 1479 CORE_ADDR pc;
c906108c
SS
1480 int oneproc = 0;
1481
e58b0e63
PA
1482 /* If we're stopped at a fork/vfork, follow the branch set by the
1483 "set follow-fork-mode" command; otherwise, we'll just proceed
1484 resuming the current thread. */
1485 if (!follow_fork ())
1486 {
1487 /* The target for some reason decided not to resume. */
1488 normal_stop ();
1489 return;
1490 }
1491
1492 regcache = get_current_regcache ();
1493 gdbarch = get_regcache_arch (regcache);
1494 pc = regcache_read_pc (regcache);
1495
c906108c 1496 if (step > 0)
515630c5 1497 step_start_function = find_pc_function (pc);
c906108c
SS
1498 if (step < 0)
1499 stop_after_trap = 1;
1500
2acceee2 1501 if (addr == (CORE_ADDR) -1)
c906108c 1502 {
b2175913
MS
1503 if (pc == stop_pc && breakpoint_here_p (pc)
1504 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1505 /* There is a breakpoint at the address we will resume at,
1506 step one instruction before inserting breakpoints so that
1507 we do not stop right away (and report a second hit at this
b2175913
MS
1508 breakpoint).
1509
1510 Note, we don't do this in reverse, because we won't
1511 actually be executing the breakpoint insn anyway.
1512 We'll be (un-)executing the previous instruction. */
1513
c906108c 1514 oneproc = 1;
515630c5
UW
1515 else if (gdbarch_single_step_through_delay_p (gdbarch)
1516 && gdbarch_single_step_through_delay (gdbarch,
1517 get_current_frame ()))
3352ef37
AC
1518 /* We stepped onto an instruction that needs to be stepped
1519 again before re-inserting the breakpoint, do so. */
c906108c
SS
1520 oneproc = 1;
1521 }
1522 else
1523 {
515630c5 1524 regcache_write_pc (regcache, addr);
c906108c
SS
1525 }
1526
527159b7 1527 if (debug_infrun)
8a9de0e4 1528 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1529 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1530 paddress (gdbarch, addr), siggnal, step);
527159b7 1531
94cc34af
PA
1532 if (non_stop)
1533 /* In non-stop, each thread is handled individually. The context
1534 must already be set to the right thread here. */
1535 ;
1536 else
1537 {
1538 /* In a multi-threaded task we may select another thread and
1539 then continue or step.
c906108c 1540
94cc34af
PA
1541 But if the old thread was stopped at a breakpoint, it will
1542 immediately cause another breakpoint stop without any
1543 execution (i.e. it will report a breakpoint hit incorrectly).
1544 So we must step over it first.
c906108c 1545
94cc34af
PA
1546 prepare_to_proceed checks the current thread against the
1547 thread that reported the most recent event. If a step-over
1548 is required it returns TRUE and sets the current thread to
1549 the old thread. */
1550 if (prepare_to_proceed (step))
1551 oneproc = 1;
1552 }
c906108c 1553
4e1c45ea
PA
1554 /* prepare_to_proceed may change the current thread. */
1555 tp = inferior_thread ();
1556
c906108c 1557 if (oneproc)
74960c60 1558 {
4e1c45ea 1559 tp->trap_expected = 1;
237fc4c9
PA
1560 /* If displaced stepping is enabled, we can step over the
1561 breakpoint without hitting it, so leave all breakpoints
1562 inserted. Otherwise we need to disable all breakpoints, step
1563 one instruction, and then re-add them when that step is
1564 finished. */
515630c5 1565 if (!use_displaced_stepping (gdbarch))
237fc4c9 1566 remove_breakpoints ();
74960c60 1567 }
237fc4c9
PA
1568
1569 /* We can insert breakpoints if we're not trying to step over one,
1570 or if we are stepping over one but we're using displaced stepping
1571 to do so. */
4e1c45ea 1572 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1573 insert_breakpoints ();
c906108c 1574
2020b7ab
PA
1575 if (!non_stop)
1576 {
1577 /* Pass the last stop signal to the thread we're resuming,
1578 irrespective of whether the current thread is the thread that
1579 got the last event or not. This was historically GDB's
1580 behaviour before keeping a stop_signal per thread. */
1581
1582 struct thread_info *last_thread;
1583 ptid_t last_ptid;
1584 struct target_waitstatus last_status;
1585
1586 get_last_target_status (&last_ptid, &last_status);
1587 if (!ptid_equal (inferior_ptid, last_ptid)
1588 && !ptid_equal (last_ptid, null_ptid)
1589 && !ptid_equal (last_ptid, minus_one_ptid))
1590 {
e09875d4 1591 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1592 if (last_thread)
1593 {
1594 tp->stop_signal = last_thread->stop_signal;
1595 last_thread->stop_signal = TARGET_SIGNAL_0;
1596 }
1597 }
1598 }
1599
c906108c 1600 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1601 tp->stop_signal = siggnal;
c906108c
SS
1602 /* If this signal should not be seen by program,
1603 give it zero. Used for debugging signals. */
2020b7ab
PA
1604 else if (!signal_program[tp->stop_signal])
1605 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1606
1607 annotate_starting ();
1608
1609 /* Make sure that output from GDB appears before output from the
1610 inferior. */
1611 gdb_flush (gdb_stdout);
1612
e4846b08
JJ
1613 /* Refresh prev_pc value just prior to resuming. This used to be
1614 done in stop_stepping, however, setting prev_pc there did not handle
1615 scenarios such as inferior function calls or returning from
1616 a function via the return command. In those cases, the prev_pc
1617 value was not set properly for subsequent commands. The prev_pc value
1618 is used to initialize the starting line number in the ecs. With an
1619 invalid value, the gdb next command ends up stopping at the position
1620 represented by the next line table entry past our start position.
1621 On platforms that generate one line table entry per line, this
1622 is not a problem. However, on the ia64, the compiler generates
1623 extraneous line table entries that do not increase the line number.
1624 When we issue the gdb next command on the ia64 after an inferior call
1625 or a return command, we often end up a few instructions forward, still
1626 within the original line we started.
1627
1628 An attempt was made to have init_execution_control_state () refresh
1629 the prev_pc value before calculating the line number. This approach
1630 did not work because on platforms that use ptrace, the pc register
1631 cannot be read unless the inferior is stopped. At that point, we
515630c5 1632 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1633 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1634 updated correctly when the inferior is stopped. */
4e1c45ea 1635 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1636
59f0d5d9 1637 /* Fill in with reasonable starting values. */
4e1c45ea 1638 init_thread_stepping_state (tp);
59f0d5d9 1639
59f0d5d9
PA
1640 /* Reset to normal state. */
1641 init_infwait_state ();
1642
c906108c 1643 /* Resume inferior. */
2020b7ab 1644 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1645
1646 /* Wait for it to stop (if not standalone)
1647 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1648 /* Do this only if we are not using the event loop, or if the target
1649 does not support asynchronous execution. */
362646f5 1650 if (!target_can_async_p ())
43ff13b4 1651 {
ae123ec6 1652 wait_for_inferior (0);
43ff13b4
JM
1653 normal_stop ();
1654 }
c906108c 1655}
c906108c
SS
1656\f
1657
1658/* Start remote-debugging of a machine over a serial link. */
96baa820 1659
c906108c 1660void
8621d6a9 1661start_remote (int from_tty)
c906108c 1662{
d6b48e9c 1663 struct inferior *inferior;
c906108c 1664 init_wait_for_inferior ();
d6b48e9c
PA
1665
1666 inferior = current_inferior ();
1667 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1668
6426a772
JM
1669 /* Always go on waiting for the target, regardless of the mode. */
1670 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1671 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1672 nothing is returned (instead of just blocking). Because of this,
1673 targets expecting an immediate response need to, internally, set
1674 things up so that the target_wait() is forced to eventually
1675 timeout. */
1676 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1677 differentiate to its caller what the state of the target is after
1678 the initial open has been performed. Here we're assuming that
1679 the target has stopped. It should be possible to eventually have
1680 target_open() return to the caller an indication that the target
1681 is currently running and GDB state should be set to the same as
1682 for an async run. */
ae123ec6 1683 wait_for_inferior (0);
8621d6a9
DJ
1684
1685 /* Now that the inferior has stopped, do any bookkeeping like
1686 loading shared libraries. We want to do this before normal_stop,
1687 so that the displayed frame is up to date. */
1688 post_create_inferior (&current_target, from_tty);
1689
6426a772 1690 normal_stop ();
c906108c
SS
1691}
1692
1693/* Initialize static vars when a new inferior begins. */
1694
1695void
96baa820 1696init_wait_for_inferior (void)
c906108c
SS
1697{
1698 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1699
c906108c
SS
1700 breakpoint_init_inferior (inf_starting);
1701
c906108c 1702 clear_proceed_status ();
9f976b41
DJ
1703
1704 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1705 deferred_step_ptid = null_ptid;
ca005067
DJ
1706
1707 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1708
0d1e5fa7
PA
1709 previous_inferior_ptid = null_ptid;
1710 init_infwait_state ();
1711
237fc4c9 1712 displaced_step_clear ();
edb3359d
DJ
1713
1714 /* Discard any skipped inlined frames. */
1715 clear_inline_frame_state (minus_one_ptid);
c906108c 1716}
237fc4c9 1717
c906108c 1718\f
b83266a0
SS
1719/* This enum encodes possible reasons for doing a target_wait, so that
1720 wfi can call target_wait in one place. (Ultimately the call will be
1721 moved out of the infinite loop entirely.) */
1722
c5aa993b
JM
1723enum infwait_states
1724{
cd0fc7c3
SS
1725 infwait_normal_state,
1726 infwait_thread_hop_state,
d983da9c 1727 infwait_step_watch_state,
cd0fc7c3 1728 infwait_nonstep_watch_state
b83266a0
SS
1729};
1730
11cf8741
JM
1731/* Why did the inferior stop? Used to print the appropriate messages
1732 to the interface from within handle_inferior_event(). */
1733enum inferior_stop_reason
1734{
11cf8741
JM
1735 /* Step, next, nexti, stepi finished. */
1736 END_STEPPING_RANGE,
11cf8741
JM
1737 /* Inferior terminated by signal. */
1738 SIGNAL_EXITED,
1739 /* Inferior exited. */
1740 EXITED,
1741 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1742 SIGNAL_RECEIVED,
1743 /* Reverse execution -- target ran out of history info. */
1744 NO_HISTORY
11cf8741
JM
1745};
1746
0d1e5fa7
PA
1747/* The PTID we'll do a target_wait on.*/
1748ptid_t waiton_ptid;
1749
1750/* Current inferior wait state. */
1751enum infwait_states infwait_state;
cd0fc7c3 1752
0d1e5fa7
PA
1753/* Data to be passed around while handling an event. This data is
1754 discarded between events. */
c5aa993b 1755struct execution_control_state
488f131b 1756{
0d1e5fa7 1757 ptid_t ptid;
4e1c45ea
PA
1758 /* The thread that got the event, if this was a thread event; NULL
1759 otherwise. */
1760 struct thread_info *event_thread;
1761
488f131b 1762 struct target_waitstatus ws;
488f131b
JB
1763 int random_signal;
1764 CORE_ADDR stop_func_start;
1765 CORE_ADDR stop_func_end;
1766 char *stop_func_name;
488f131b 1767 int new_thread_event;
488f131b
JB
1768 int wait_some_more;
1769};
1770
edb3359d 1771static void init_execution_control_state (struct execution_control_state *ecs);
488f131b 1772
ec9499be 1773static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1774
568d6575
UW
1775static void handle_step_into_function (struct gdbarch *gdbarch,
1776 struct execution_control_state *ecs);
1777static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1778 struct execution_control_state *ecs);
44cbf7b5 1779static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1780static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
1781static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1782 struct symtab_and_line sr_sal,
44cbf7b5 1783 struct frame_id sr_id);
a6d9a66e 1784static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 1785
104c1213
JM
1786static void stop_stepping (struct execution_control_state *ecs);
1787static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1788static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1789static void print_stop_reason (enum inferior_stop_reason stop_reason,
1790 int stop_info);
104c1213 1791
252fbfc8
PA
1792/* Callback for iterate over threads. If the thread is stopped, but
1793 the user/frontend doesn't know about that yet, go through
1794 normal_stop, as if the thread had just stopped now. ARG points at
1795 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1796 ptid_is_pid(PTID) is true, applies to all threads of the process
1797 pointed at by PTID. Otherwise, apply only to the thread pointed by
1798 PTID. */
1799
1800static int
1801infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1802{
1803 ptid_t ptid = * (ptid_t *) arg;
1804
1805 if ((ptid_equal (info->ptid, ptid)
1806 || ptid_equal (minus_one_ptid, ptid)
1807 || (ptid_is_pid (ptid)
1808 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1809 && is_running (info->ptid)
1810 && !is_executing (info->ptid))
1811 {
1812 struct cleanup *old_chain;
1813 struct execution_control_state ecss;
1814 struct execution_control_state *ecs = &ecss;
1815
1816 memset (ecs, 0, sizeof (*ecs));
1817
1818 old_chain = make_cleanup_restore_current_thread ();
1819
1820 switch_to_thread (info->ptid);
1821
1822 /* Go through handle_inferior_event/normal_stop, so we always
1823 have consistent output as if the stop event had been
1824 reported. */
1825 ecs->ptid = info->ptid;
e09875d4 1826 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1827 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1828 ecs->ws.value.sig = TARGET_SIGNAL_0;
1829
1830 handle_inferior_event (ecs);
1831
1832 if (!ecs->wait_some_more)
1833 {
1834 struct thread_info *tp;
1835
1836 normal_stop ();
1837
1838 /* Finish off the continuations. The continations
1839 themselves are responsible for realising the thread
1840 didn't finish what it was supposed to do. */
1841 tp = inferior_thread ();
1842 do_all_intermediate_continuations_thread (tp);
1843 do_all_continuations_thread (tp);
1844 }
1845
1846 do_cleanups (old_chain);
1847 }
1848
1849 return 0;
1850}
1851
1852/* This function is attached as a "thread_stop_requested" observer.
1853 Cleanup local state that assumed the PTID was to be resumed, and
1854 report the stop to the frontend. */
1855
2c0b251b 1856static void
252fbfc8
PA
1857infrun_thread_stop_requested (ptid_t ptid)
1858{
1859 struct displaced_step_request *it, *next, *prev = NULL;
1860
1861 /* PTID was requested to stop. Remove it from the displaced
1862 stepping queue, so we don't try to resume it automatically. */
1863 for (it = displaced_step_request_queue; it; it = next)
1864 {
1865 next = it->next;
1866
1867 if (ptid_equal (it->ptid, ptid)
1868 || ptid_equal (minus_one_ptid, ptid)
1869 || (ptid_is_pid (ptid)
1870 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1871 {
1872 if (displaced_step_request_queue == it)
1873 displaced_step_request_queue = it->next;
1874 else
1875 prev->next = it->next;
1876
1877 xfree (it);
1878 }
1879 else
1880 prev = it;
1881 }
1882
1883 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1884}
1885
a07daef3
PA
1886static void
1887infrun_thread_thread_exit (struct thread_info *tp, int silent)
1888{
1889 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1890 nullify_last_target_wait_ptid ();
1891}
1892
4e1c45ea
PA
1893/* Callback for iterate_over_threads. */
1894
1895static int
1896delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1897{
1898 if (is_exited (info->ptid))
1899 return 0;
1900
1901 delete_step_resume_breakpoint (info);
1902 return 0;
1903}
1904
1905/* In all-stop, delete the step resume breakpoint of any thread that
1906 had one. In non-stop, delete the step resume breakpoint of the
1907 thread that just stopped. */
1908
1909static void
1910delete_step_thread_step_resume_breakpoint (void)
1911{
1912 if (!target_has_execution
1913 || ptid_equal (inferior_ptid, null_ptid))
1914 /* If the inferior has exited, we have already deleted the step
1915 resume breakpoints out of GDB's lists. */
1916 return;
1917
1918 if (non_stop)
1919 {
1920 /* If in non-stop mode, only delete the step-resume or
1921 longjmp-resume breakpoint of the thread that just stopped
1922 stepping. */
1923 struct thread_info *tp = inferior_thread ();
1924 delete_step_resume_breakpoint (tp);
1925 }
1926 else
1927 /* In all-stop mode, delete all step-resume and longjmp-resume
1928 breakpoints of any thread that had them. */
1929 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1930}
1931
1932/* A cleanup wrapper. */
1933
1934static void
1935delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1936{
1937 delete_step_thread_step_resume_breakpoint ();
1938}
1939
223698f8
DE
1940/* Pretty print the results of target_wait, for debugging purposes. */
1941
1942static void
1943print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1944 const struct target_waitstatus *ws)
1945{
1946 char *status_string = target_waitstatus_to_string (ws);
1947 struct ui_file *tmp_stream = mem_fileopen ();
1948 char *text;
223698f8
DE
1949
1950 /* The text is split over several lines because it was getting too long.
1951 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1952 output as a unit; we want only one timestamp printed if debug_timestamp
1953 is set. */
1954
1955 fprintf_unfiltered (tmp_stream,
1956 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1957 if (PIDGET (waiton_ptid) != -1)
1958 fprintf_unfiltered (tmp_stream,
1959 " [%s]", target_pid_to_str (waiton_ptid));
1960 fprintf_unfiltered (tmp_stream, ", status) =\n");
1961 fprintf_unfiltered (tmp_stream,
1962 "infrun: %d [%s],\n",
1963 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1964 fprintf_unfiltered (tmp_stream,
1965 "infrun: %s\n",
1966 status_string);
1967
759ef836 1968 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
1969
1970 /* This uses %s in part to handle %'s in the text, but also to avoid
1971 a gcc error: the format attribute requires a string literal. */
1972 fprintf_unfiltered (gdb_stdlog, "%s", text);
1973
1974 xfree (status_string);
1975 xfree (text);
1976 ui_file_delete (tmp_stream);
1977}
1978
cd0fc7c3 1979/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1980
1981 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1982 as if they were SIGTRAP signals. This can be useful during
1983 the startup sequence on some targets such as HP/UX, where
1984 we receive an EXEC event instead of the expected SIGTRAP.
1985
cd0fc7c3
SS
1986 If inferior gets a signal, we may decide to start it up again
1987 instead of returning. That is why there is a loop in this function.
1988 When this function actually returns it means the inferior
1989 should be left stopped and GDB should read more commands. */
1990
1991void
ae123ec6 1992wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1993{
1994 struct cleanup *old_cleanups;
0d1e5fa7 1995 struct execution_control_state ecss;
cd0fc7c3 1996 struct execution_control_state *ecs;
c906108c 1997
527159b7 1998 if (debug_infrun)
ae123ec6
JB
1999 fprintf_unfiltered
2000 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2001 treat_exec_as_sigtrap);
527159b7 2002
4e1c45ea
PA
2003 old_cleanups =
2004 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2005
cd0fc7c3 2006 ecs = &ecss;
0d1e5fa7
PA
2007 memset (ecs, 0, sizeof (*ecs));
2008
e0bb1c1c
PA
2009 /* We'll update this if & when we switch to a new thread. */
2010 previous_inferior_ptid = inferior_ptid;
2011
c906108c
SS
2012 while (1)
2013 {
29f49a6a
PA
2014 struct cleanup *old_chain;
2015
ec9499be
UW
2016 /* We have to invalidate the registers BEFORE calling target_wait
2017 because they can be loaded from the target while in target_wait.
2018 This makes remote debugging a bit more efficient for those
2019 targets that provide critical registers as part of their normal
2020 status mechanism. */
2021
2022 overlay_cache_invalid = 1;
2023 registers_changed ();
2024
9a4105ab 2025 if (deprecated_target_wait_hook)
47608cb1 2026 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2027 else
47608cb1 2028 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2029
f00150c9 2030 if (debug_infrun)
223698f8 2031 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2032
ae123ec6
JB
2033 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2034 {
2035 xfree (ecs->ws.value.execd_pathname);
2036 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2037 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2038 }
2039
29f49a6a
PA
2040 /* If an error happens while handling the event, propagate GDB's
2041 knowledge of the executing state to the frontend/user running
2042 state. */
2043 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2044
cd0fc7c3
SS
2045 /* Now figure out what to do with the result of the result. */
2046 handle_inferior_event (ecs);
c906108c 2047
29f49a6a
PA
2048 /* No error, don't finish the state yet. */
2049 discard_cleanups (old_chain);
2050
cd0fc7c3
SS
2051 if (!ecs->wait_some_more)
2052 break;
2053 }
4e1c45ea 2054
cd0fc7c3
SS
2055 do_cleanups (old_cleanups);
2056}
c906108c 2057
43ff13b4
JM
2058/* Asynchronous version of wait_for_inferior. It is called by the
2059 event loop whenever a change of state is detected on the file
2060 descriptor corresponding to the target. It can be called more than
2061 once to complete a single execution command. In such cases we need
a474d7c2
PA
2062 to keep the state in a global variable ECSS. If it is the last time
2063 that this function is called for a single execution command, then
2064 report to the user that the inferior has stopped, and do the
2065 necessary cleanups. */
43ff13b4
JM
2066
2067void
fba45db2 2068fetch_inferior_event (void *client_data)
43ff13b4 2069{
0d1e5fa7 2070 struct execution_control_state ecss;
a474d7c2 2071 struct execution_control_state *ecs = &ecss;
4f8d22e3 2072 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2073 struct cleanup *ts_old_chain;
4f8d22e3 2074 int was_sync = sync_execution;
43ff13b4 2075
0d1e5fa7
PA
2076 memset (ecs, 0, sizeof (*ecs));
2077
ec9499be
UW
2078 /* We'll update this if & when we switch to a new thread. */
2079 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2080
4f8d22e3
PA
2081 if (non_stop)
2082 /* In non-stop mode, the user/frontend should not notice a thread
2083 switch due to internal events. Make sure we reverse to the
2084 user selected thread and frame after handling the event and
2085 running any breakpoint commands. */
2086 make_cleanup_restore_current_thread ();
2087
59f0d5d9
PA
2088 /* We have to invalidate the registers BEFORE calling target_wait
2089 because they can be loaded from the target while in target_wait.
2090 This makes remote debugging a bit more efficient for those
2091 targets that provide critical registers as part of their normal
2092 status mechanism. */
43ff13b4 2093
ec9499be 2094 overlay_cache_invalid = 1;
59f0d5d9 2095 registers_changed ();
43ff13b4 2096
9a4105ab 2097 if (deprecated_target_wait_hook)
a474d7c2 2098 ecs->ptid =
47608cb1 2099 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2100 else
47608cb1 2101 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2102
f00150c9 2103 if (debug_infrun)
223698f8 2104 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2105
94cc34af
PA
2106 if (non_stop
2107 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2108 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2109 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2110 /* In non-stop mode, each thread is handled individually. Switch
2111 early, so the global state is set correctly for this
2112 thread. */
2113 context_switch (ecs->ptid);
2114
29f49a6a
PA
2115 /* If an error happens while handling the event, propagate GDB's
2116 knowledge of the executing state to the frontend/user running
2117 state. */
2118 if (!non_stop)
2119 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2120 else
2121 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2122
43ff13b4 2123 /* Now figure out what to do with the result of the result. */
a474d7c2 2124 handle_inferior_event (ecs);
43ff13b4 2125
a474d7c2 2126 if (!ecs->wait_some_more)
43ff13b4 2127 {
d6b48e9c
PA
2128 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2129
4e1c45ea 2130 delete_step_thread_step_resume_breakpoint ();
f107f563 2131
d6b48e9c
PA
2132 /* We may not find an inferior if this was a process exit. */
2133 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2134 normal_stop ();
2135
af679fd0
PA
2136 if (target_has_execution
2137 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2138 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2139 && ecs->event_thread->step_multi
414c69f7 2140 && ecs->event_thread->stop_step)
c2d11a7d
JM
2141 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2142 else
2143 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2144 }
4f8d22e3 2145
29f49a6a
PA
2146 /* No error, don't finish the thread states yet. */
2147 discard_cleanups (ts_old_chain);
2148
4f8d22e3
PA
2149 /* Revert thread and frame. */
2150 do_cleanups (old_chain);
2151
2152 /* If the inferior was in sync execution mode, and now isn't,
2153 restore the prompt. */
2154 if (was_sync && !sync_execution)
2155 display_gdb_prompt (0);
43ff13b4
JM
2156}
2157
edb3359d
DJ
2158/* Record the frame and location we're currently stepping through. */
2159void
2160set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2161{
2162 struct thread_info *tp = inferior_thread ();
2163
2164 tp->step_frame_id = get_frame_id (frame);
2165 tp->step_stack_frame_id = get_stack_frame_id (frame);
2166
2167 tp->current_symtab = sal.symtab;
2168 tp->current_line = sal.line;
2169}
2170
cd0fc7c3
SS
2171/* Prepare an execution control state for looping through a
2172 wait_for_inferior-type loop. */
2173
edb3359d 2174static void
96baa820 2175init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2176{
2177 ecs->random_signal = 0;
0d1e5fa7
PA
2178}
2179
2180/* Clear context switchable stepping state. */
2181
2182void
4e1c45ea 2183init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2184{
2185 tss->stepping_over_breakpoint = 0;
2186 tss->step_after_step_resume_breakpoint = 0;
2187 tss->stepping_through_solib_after_catch = 0;
2188 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2189}
2190
e02bc4cc 2191/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2192 target_wait()/deprecated_target_wait_hook(). The data is actually
2193 cached by handle_inferior_event(), which gets called immediately
2194 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2195
2196void
488f131b 2197get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2198{
39f77062 2199 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2200 *status = target_last_waitstatus;
2201}
2202
ac264b3b
MS
2203void
2204nullify_last_target_wait_ptid (void)
2205{
2206 target_last_wait_ptid = minus_one_ptid;
2207}
2208
dcf4fbde 2209/* Switch thread contexts. */
dd80620e
MS
2210
2211static void
0d1e5fa7 2212context_switch (ptid_t ptid)
dd80620e 2213{
fd48f117
DJ
2214 if (debug_infrun)
2215 {
2216 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2217 target_pid_to_str (inferior_ptid));
2218 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2219 target_pid_to_str (ptid));
fd48f117
DJ
2220 }
2221
0d1e5fa7 2222 switch_to_thread (ptid);
dd80620e
MS
2223}
2224
4fa8626c
DJ
2225static void
2226adjust_pc_after_break (struct execution_control_state *ecs)
2227{
24a73cce
UW
2228 struct regcache *regcache;
2229 struct gdbarch *gdbarch;
8aad930b 2230 CORE_ADDR breakpoint_pc;
4fa8626c 2231
4fa8626c
DJ
2232 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2233 we aren't, just return.
9709f61c
DJ
2234
2235 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2236 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2237 implemented by software breakpoints should be handled through the normal
2238 breakpoint layer.
8fb3e588 2239
4fa8626c
DJ
2240 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2241 different signals (SIGILL or SIGEMT for instance), but it is less
2242 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2243 gdbarch_decr_pc_after_break. I don't know any specific target that
2244 generates these signals at breakpoints (the code has been in GDB since at
2245 least 1992) so I can not guess how to handle them here.
8fb3e588 2246
e6cf7916
UW
2247 In earlier versions of GDB, a target with
2248 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2249 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2250 target with both of these set in GDB history, and it seems unlikely to be
2251 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2252
2253 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2254 return;
2255
2256 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2257 return;
2258
4058b839
PA
2259 /* In reverse execution, when a breakpoint is hit, the instruction
2260 under it has already been de-executed. The reported PC always
2261 points at the breakpoint address, so adjusting it further would
2262 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2263 architecture:
2264
2265 B1 0x08000000 : INSN1
2266 B2 0x08000001 : INSN2
2267 0x08000002 : INSN3
2268 PC -> 0x08000003 : INSN4
2269
2270 Say you're stopped at 0x08000003 as above. Reverse continuing
2271 from that point should hit B2 as below. Reading the PC when the
2272 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2273 been de-executed already.
2274
2275 B1 0x08000000 : INSN1
2276 B2 PC -> 0x08000001 : INSN2
2277 0x08000002 : INSN3
2278 0x08000003 : INSN4
2279
2280 We can't apply the same logic as for forward execution, because
2281 we would wrongly adjust the PC to 0x08000000, since there's a
2282 breakpoint at PC - 1. We'd then report a hit on B1, although
2283 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2284 behaviour. */
2285 if (execution_direction == EXEC_REVERSE)
2286 return;
2287
24a73cce
UW
2288 /* If this target does not decrement the PC after breakpoints, then
2289 we have nothing to do. */
2290 regcache = get_thread_regcache (ecs->ptid);
2291 gdbarch = get_regcache_arch (regcache);
2292 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2293 return;
2294
8aad930b
AC
2295 /* Find the location where (if we've hit a breakpoint) the
2296 breakpoint would be. */
515630c5
UW
2297 breakpoint_pc = regcache_read_pc (regcache)
2298 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2299
1c5cfe86
PA
2300 /* Check whether there actually is a software breakpoint inserted at
2301 that location.
2302
2303 If in non-stop mode, a race condition is possible where we've
2304 removed a breakpoint, but stop events for that breakpoint were
2305 already queued and arrive later. To suppress those spurious
2306 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2307 and retire them after a number of stop events are reported. */
2308 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2309 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2310 {
96429cc8
HZ
2311 struct cleanup *old_cleanups = NULL;
2312 if (RECORD_IS_USED)
2313 old_cleanups = record_gdb_operation_disable_set ();
2314
1c0fdd0e
UW
2315 /* When using hardware single-step, a SIGTRAP is reported for both
2316 a completed single-step and a software breakpoint. Need to
2317 differentiate between the two, as the latter needs adjusting
2318 but the former does not.
2319
2320 The SIGTRAP can be due to a completed hardware single-step only if
2321 - we didn't insert software single-step breakpoints
2322 - the thread to be examined is still the current thread
2323 - this thread is currently being stepped
2324
2325 If any of these events did not occur, we must have stopped due
2326 to hitting a software breakpoint, and have to back up to the
2327 breakpoint address.
2328
2329 As a special case, we could have hardware single-stepped a
2330 software breakpoint. In this case (prev_pc == breakpoint_pc),
2331 we also need to back up to the breakpoint address. */
2332
2333 if (singlestep_breakpoints_inserted_p
2334 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2335 || !currently_stepping (ecs->event_thread)
2336 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2337 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2338
2339 if (RECORD_IS_USED)
2340 do_cleanups (old_cleanups);
8aad930b 2341 }
4fa8626c
DJ
2342}
2343
0d1e5fa7
PA
2344void
2345init_infwait_state (void)
2346{
2347 waiton_ptid = pid_to_ptid (-1);
2348 infwait_state = infwait_normal_state;
2349}
2350
94cc34af
PA
2351void
2352error_is_running (void)
2353{
2354 error (_("\
2355Cannot execute this command while the selected thread is running."));
2356}
2357
2358void
2359ensure_not_running (void)
2360{
2361 if (is_running (inferior_ptid))
2362 error_is_running ();
2363}
2364
edb3359d
DJ
2365static int
2366stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2367{
2368 for (frame = get_prev_frame (frame);
2369 frame != NULL;
2370 frame = get_prev_frame (frame))
2371 {
2372 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2373 return 1;
2374 if (get_frame_type (frame) != INLINE_FRAME)
2375 break;
2376 }
2377
2378 return 0;
2379}
2380
cd0fc7c3
SS
2381/* Given an execution control state that has been freshly filled in
2382 by an event from the inferior, figure out what it means and take
2383 appropriate action. */
c906108c 2384
ec9499be 2385static void
96baa820 2386handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2387{
568d6575
UW
2388 struct frame_info *frame;
2389 struct gdbarch *gdbarch;
c8edd8b4 2390 int sw_single_step_trap_p = 0;
d983da9c
DJ
2391 int stopped_by_watchpoint;
2392 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2393 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2394 enum stop_kind stop_soon;
2395
2396 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2397 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2398 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2399 {
2400 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2401 gdb_assert (inf);
2402 stop_soon = inf->stop_soon;
2403 }
2404 else
2405 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2406
e02bc4cc 2407 /* Cache the last pid/waitstatus. */
39f77062 2408 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2409 target_last_waitstatus = ecs->ws;
e02bc4cc 2410
ca005067
DJ
2411 /* Always clear state belonging to the previous time we stopped. */
2412 stop_stack_dummy = 0;
2413
8c90c137
LM
2414 /* If it's a new process, add it to the thread database */
2415
2416 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2417 && !ptid_equal (ecs->ptid, minus_one_ptid)
2418 && !in_thread_list (ecs->ptid));
2419
2420 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2421 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2422 add_thread (ecs->ptid);
2423
e09875d4 2424 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2425
2426 /* Dependent on valid ECS->EVENT_THREAD. */
2427 adjust_pc_after_break (ecs);
2428
2429 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2430 reinit_frame_cache ();
2431
8c90c137
LM
2432 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2433 {
1c5cfe86
PA
2434 breakpoint_retire_moribund ();
2435
48844aa6
PA
2436 /* Mark the non-executing threads accordingly. In all-stop, all
2437 threads of all processes are stopped when we get any event
2438 reported. In non-stop mode, only the event thread stops. If
2439 we're handling a process exit in non-stop mode, there's
2440 nothing to do, as threads of the dead process are gone, and
2441 threads of any other process were left running. */
2442 if (!non_stop)
2443 set_executing (minus_one_ptid, 0);
2444 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2445 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2446 set_executing (inferior_ptid, 0);
8c90c137
LM
2447 }
2448
0d1e5fa7 2449 switch (infwait_state)
488f131b
JB
2450 {
2451 case infwait_thread_hop_state:
527159b7 2452 if (debug_infrun)
8a9de0e4 2453 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2454 break;
b83266a0 2455
488f131b 2456 case infwait_normal_state:
527159b7 2457 if (debug_infrun)
8a9de0e4 2458 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2459 break;
2460
2461 case infwait_step_watch_state:
2462 if (debug_infrun)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "infrun: infwait_step_watch_state\n");
2465
2466 stepped_after_stopped_by_watchpoint = 1;
488f131b 2467 break;
b83266a0 2468
488f131b 2469 case infwait_nonstep_watch_state:
527159b7 2470 if (debug_infrun)
8a9de0e4
AC
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: infwait_nonstep_watch_state\n");
488f131b 2473 insert_breakpoints ();
c906108c 2474
488f131b
JB
2475 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2476 handle things like signals arriving and other things happening
2477 in combination correctly? */
2478 stepped_after_stopped_by_watchpoint = 1;
2479 break;
65e82032
AC
2480
2481 default:
e2e0b3e5 2482 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2483 }
ec9499be 2484
0d1e5fa7 2485 infwait_state = infwait_normal_state;
ec9499be 2486 waiton_ptid = pid_to_ptid (-1);
c906108c 2487
488f131b
JB
2488 switch (ecs->ws.kind)
2489 {
2490 case TARGET_WAITKIND_LOADED:
527159b7 2491 if (debug_infrun)
8a9de0e4 2492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2493 /* Ignore gracefully during startup of the inferior, as it might
2494 be the shell which has just loaded some objects, otherwise
2495 add the symbols for the newly loaded objects. Also ignore at
2496 the beginning of an attach or remote session; we will query
2497 the full list of libraries once the connection is
2498 established. */
c0236d92 2499 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2500 {
488f131b
JB
2501 /* Check for any newly added shared libraries if we're
2502 supposed to be adding them automatically. Switch
2503 terminal for any messages produced by
2504 breakpoint_re_set. */
2505 target_terminal_ours_for_output ();
aff6338a 2506 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2507 stack's section table is kept up-to-date. Architectures,
2508 (e.g., PPC64), use the section table to perform
2509 operations such as address => section name and hence
2510 require the table to contain all sections (including
2511 those found in shared libraries). */
b0f4b84b 2512#ifdef SOLIB_ADD
aff6338a 2513 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2514#else
2515 solib_add (NULL, 0, &current_target, auto_solib_add);
2516#endif
488f131b
JB
2517 target_terminal_inferior ();
2518
b0f4b84b
DJ
2519 /* If requested, stop when the dynamic linker notifies
2520 gdb of events. This allows the user to get control
2521 and place breakpoints in initializer routines for
2522 dynamically loaded objects (among other things). */
2523 if (stop_on_solib_events)
2524 {
2525 stop_stepping (ecs);
2526 return;
2527 }
2528
2529 /* NOTE drow/2007-05-11: This might be a good place to check
2530 for "catch load". */
488f131b 2531 }
b0f4b84b
DJ
2532
2533 /* If we are skipping through a shell, or through shared library
2534 loading that we aren't interested in, resume the program. If
2535 we're running the program normally, also resume. But stop if
2536 we're attaching or setting up a remote connection. */
2537 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2538 {
74960c60
VP
2539 /* Loading of shared libraries might have changed breakpoint
2540 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2541 if (stop_soon == NO_STOP_QUIETLY
2542 && !breakpoints_always_inserted_mode ())
74960c60 2543 insert_breakpoints ();
b0f4b84b
DJ
2544 resume (0, TARGET_SIGNAL_0);
2545 prepare_to_wait (ecs);
2546 return;
2547 }
2548
2549 break;
c5aa993b 2550
488f131b 2551 case TARGET_WAITKIND_SPURIOUS:
527159b7 2552 if (debug_infrun)
8a9de0e4 2553 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2554 resume (0, TARGET_SIGNAL_0);
2555 prepare_to_wait (ecs);
2556 return;
c5aa993b 2557
488f131b 2558 case TARGET_WAITKIND_EXITED:
527159b7 2559 if (debug_infrun)
8a9de0e4 2560 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2561 inferior_ptid = ecs->ptid;
488f131b
JB
2562 target_terminal_ours (); /* Must do this before mourn anyway */
2563 print_stop_reason (EXITED, ecs->ws.value.integer);
2564
2565 /* Record the exit code in the convenience variable $_exitcode, so
2566 that the user can inspect this again later. */
4fa62494
UW
2567 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2568 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2569 gdb_flush (gdb_stdout);
2570 target_mourn_inferior ();
1c0fdd0e 2571 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2572 stop_print_frame = 0;
2573 stop_stepping (ecs);
2574 return;
c5aa993b 2575
488f131b 2576 case TARGET_WAITKIND_SIGNALLED:
527159b7 2577 if (debug_infrun)
8a9de0e4 2578 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2579 inferior_ptid = ecs->ptid;
488f131b 2580 stop_print_frame = 0;
488f131b 2581 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2582
488f131b
JB
2583 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2584 reach here unless the inferior is dead. However, for years
2585 target_kill() was called here, which hints that fatal signals aren't
2586 really fatal on some systems. If that's true, then some changes
2587 may be needed. */
2588 target_mourn_inferior ();
c906108c 2589
2020b7ab 2590 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2591 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2592 stop_stepping (ecs);
2593 return;
c906108c 2594
488f131b
JB
2595 /* The following are the only cases in which we keep going;
2596 the above cases end in a continue or goto. */
2597 case TARGET_WAITKIND_FORKED:
deb3b17b 2598 case TARGET_WAITKIND_VFORKED:
527159b7 2599 if (debug_infrun)
8a9de0e4 2600 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2601
5a2901d9
DJ
2602 if (!ptid_equal (ecs->ptid, inferior_ptid))
2603 {
0d1e5fa7 2604 context_switch (ecs->ptid);
35f196d9 2605 reinit_frame_cache ();
5a2901d9
DJ
2606 }
2607
b242c3c2
PA
2608 /* Immediately detach breakpoints from the child before there's
2609 any chance of letting the user delete breakpoints from the
2610 breakpoint lists. If we don't do this early, it's easy to
2611 leave left over traps in the child, vis: "break foo; catch
2612 fork; c; <fork>; del; c; <child calls foo>". We only follow
2613 the fork on the last `continue', and by that time the
2614 breakpoint at "foo" is long gone from the breakpoint table.
2615 If we vforked, then we don't need to unpatch here, since both
2616 parent and child are sharing the same memory pages; we'll
2617 need to unpatch at follow/detach time instead to be certain
2618 that new breakpoints added between catchpoint hit time and
2619 vfork follow are detached. */
2620 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2621 {
2622 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2623
2624 /* This won't actually modify the breakpoint list, but will
2625 physically remove the breakpoints from the child. */
2626 detach_breakpoints (child_pid);
2627 }
2628
e58b0e63
PA
2629 /* In case the event is caught by a catchpoint, remember that
2630 the event is to be followed at the next resume of the thread,
2631 and not immediately. */
2632 ecs->event_thread->pending_follow = ecs->ws;
2633
fb14de7b 2634 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2635
347bddb7 2636 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2637
347bddb7 2638 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2639
2640 /* If no catchpoint triggered for this, then keep going. */
2641 if (ecs->random_signal)
2642 {
e58b0e63
PA
2643 int should_resume;
2644
2020b7ab 2645 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2646
2647 should_resume = follow_fork ();
2648
2649 ecs->event_thread = inferior_thread ();
2650 ecs->ptid = inferior_ptid;
2651
2652 if (should_resume)
2653 keep_going (ecs);
2654 else
2655 stop_stepping (ecs);
04e68871
DJ
2656 return;
2657 }
2020b7ab 2658 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2659 goto process_event_stop_test;
2660
2661 case TARGET_WAITKIND_EXECD:
527159b7 2662 if (debug_infrun)
fc5261f2 2663 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2664
5a2901d9
DJ
2665 if (!ptid_equal (ecs->ptid, inferior_ptid))
2666 {
0d1e5fa7 2667 context_switch (ecs->ptid);
35f196d9 2668 reinit_frame_cache ();
5a2901d9
DJ
2669 }
2670
fb14de7b 2671 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2672
2673 /* This causes the eventpoints and symbol table to be reset.
2674 Must do this now, before trying to determine whether to
2675 stop. */
71b43ef8 2676 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2677
2678 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2679 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2680
71b43ef8
PA
2681 /* Note that this may be referenced from inside
2682 bpstat_stop_status above, through inferior_has_execd. */
2683 xfree (ecs->ws.value.execd_pathname);
2684 ecs->ws.value.execd_pathname = NULL;
2685
04e68871
DJ
2686 /* If no catchpoint triggered for this, then keep going. */
2687 if (ecs->random_signal)
2688 {
2020b7ab 2689 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2690 keep_going (ecs);
2691 return;
2692 }
2020b7ab 2693 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2694 goto process_event_stop_test;
2695
b4dc5ffa
MK
2696 /* Be careful not to try to gather much state about a thread
2697 that's in a syscall. It's frequently a losing proposition. */
488f131b 2698 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2699 if (debug_infrun)
8a9de0e4 2700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2701 resume (0, TARGET_SIGNAL_0);
2702 prepare_to_wait (ecs);
2703 return;
c906108c 2704
488f131b
JB
2705 /* Before examining the threads further, step this thread to
2706 get it entirely out of the syscall. (We get notice of the
2707 event when the thread is just on the verge of exiting a
2708 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2709 into user code.) */
488f131b 2710 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2711 if (debug_infrun)
8a9de0e4 2712 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2713 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2714 prepare_to_wait (ecs);
2715 return;
c906108c 2716
488f131b 2717 case TARGET_WAITKIND_STOPPED:
527159b7 2718 if (debug_infrun)
8a9de0e4 2719 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2720 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2721 break;
c906108c 2722
b2175913
MS
2723 case TARGET_WAITKIND_NO_HISTORY:
2724 /* Reverse execution: target ran out of history info. */
fb14de7b 2725 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2726 print_stop_reason (NO_HISTORY, 0);
2727 stop_stepping (ecs);
2728 return;
2729
488f131b
JB
2730 /* We had an event in the inferior, but we are not interested
2731 in handling it at this level. The lower layers have already
8e7d2c16 2732 done what needs to be done, if anything.
8fb3e588
AC
2733
2734 One of the possible circumstances for this is when the
2735 inferior produces output for the console. The inferior has
2736 not stopped, and we are ignoring the event. Another possible
2737 circumstance is any event which the lower level knows will be
2738 reported multiple times without an intervening resume. */
488f131b 2739 case TARGET_WAITKIND_IGNORE:
527159b7 2740 if (debug_infrun)
8a9de0e4 2741 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2742 prepare_to_wait (ecs);
488f131b
JB
2743 return;
2744 }
c906108c 2745
488f131b
JB
2746 if (ecs->new_thread_event)
2747 {
94cc34af
PA
2748 if (non_stop)
2749 /* Non-stop assumes that the target handles adding new threads
2750 to the thread list. */
2751 internal_error (__FILE__, __LINE__, "\
2752targets should add new threads to the thread list themselves in non-stop mode.");
2753
2754 /* We may want to consider not doing a resume here in order to
2755 give the user a chance to play with the new thread. It might
2756 be good to make that a user-settable option. */
2757
2758 /* At this point, all threads are stopped (happens automatically
2759 in either the OS or the native code). Therefore we need to
2760 continue all threads in order to make progress. */
2761
173853dc
PA
2762 if (!ptid_equal (ecs->ptid, inferior_ptid))
2763 context_switch (ecs->ptid);
488f131b
JB
2764 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2765 prepare_to_wait (ecs);
2766 return;
2767 }
c906108c 2768
2020b7ab 2769 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2770 {
2771 /* Do we need to clean up the state of a thread that has
2772 completed a displaced single-step? (Doing so usually affects
2773 the PC, so do it here, before we set stop_pc.) */
2774 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2775
2776 /* If we either finished a single-step or hit a breakpoint, but
2777 the user wanted this thread to be stopped, pretend we got a
2778 SIG0 (generic unsignaled stop). */
2779
2780 if (ecs->event_thread->stop_requested
2781 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2782 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2783 }
237fc4c9 2784
515630c5 2785 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2786
527159b7 2787 if (debug_infrun)
237fc4c9 2788 {
5af949e3
UW
2789 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2790 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2791
2792 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2793 paddress (gdbarch, stop_pc));
d92524f1 2794 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2795 {
2796 CORE_ADDR addr;
2797 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2798
2799 if (target_stopped_data_address (&current_target, &addr))
2800 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2801 "infrun: stopped data address = %s\n",
2802 paddress (gdbarch, addr));
237fc4c9
PA
2803 else
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: (no data address available)\n");
2806 }
2807 }
527159b7 2808
9f976b41
DJ
2809 if (stepping_past_singlestep_breakpoint)
2810 {
1c0fdd0e 2811 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2812 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2813 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2814
2815 stepping_past_singlestep_breakpoint = 0;
2816
2817 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2818 breakpoint, or stopped for some other reason. It would be nice if
2819 we could tell, but we can't reliably. */
2020b7ab 2820 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2821 {
527159b7 2822 if (debug_infrun)
8a9de0e4 2823 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2824 /* Pull the single step breakpoints out of the target. */
e0cd558a 2825 remove_single_step_breakpoints ();
9f976b41
DJ
2826 singlestep_breakpoints_inserted_p = 0;
2827
2828 ecs->random_signal = 0;
79626f8a 2829 ecs->event_thread->trap_expected = 0;
9f976b41 2830
0d1e5fa7 2831 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2832 if (deprecated_context_hook)
2833 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2834
2835 resume (1, TARGET_SIGNAL_0);
2836 prepare_to_wait (ecs);
2837 return;
2838 }
2839 }
2840
ca67fcb8 2841 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2842 {
94cc34af
PA
2843 /* In non-stop mode, there's never a deferred_step_ptid set. */
2844 gdb_assert (!non_stop);
2845
6a6b96b9
UW
2846 /* If we stopped for some other reason than single-stepping, ignore
2847 the fact that we were supposed to switch back. */
2020b7ab 2848 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2849 {
2850 if (debug_infrun)
2851 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2852 "infrun: handling deferred step\n");
6a6b96b9
UW
2853
2854 /* Pull the single step breakpoints out of the target. */
2855 if (singlestep_breakpoints_inserted_p)
2856 {
2857 remove_single_step_breakpoints ();
2858 singlestep_breakpoints_inserted_p = 0;
2859 }
2860
2861 /* Note: We do not call context_switch at this point, as the
2862 context is already set up for stepping the original thread. */
ca67fcb8
VP
2863 switch_to_thread (deferred_step_ptid);
2864 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2865 /* Suppress spurious "Switching to ..." message. */
2866 previous_inferior_ptid = inferior_ptid;
2867
2868 resume (1, TARGET_SIGNAL_0);
2869 prepare_to_wait (ecs);
2870 return;
2871 }
ca67fcb8
VP
2872
2873 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2874 }
2875
488f131b
JB
2876 /* See if a thread hit a thread-specific breakpoint that was meant for
2877 another thread. If so, then step that thread past the breakpoint,
2878 and continue it. */
2879
2020b7ab 2880 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2881 {
9f976b41
DJ
2882 int thread_hop_needed = 0;
2883
f8d40ec8
JB
2884 /* Check if a regular breakpoint has been hit before checking
2885 for a potential single step breakpoint. Otherwise, GDB will
2886 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2887 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2888 {
c5aa993b 2889 ecs->random_signal = 0;
4fa8626c 2890 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2891 thread_hop_needed = 1;
2892 }
1c0fdd0e 2893 else if (singlestep_breakpoints_inserted_p)
9f976b41 2894 {
fd48f117
DJ
2895 /* We have not context switched yet, so this should be true
2896 no matter which thread hit the singlestep breakpoint. */
2897 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2898 if (debug_infrun)
2899 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2900 "trap for %s\n",
2901 target_pid_to_str (ecs->ptid));
2902
9f976b41
DJ
2903 ecs->random_signal = 0;
2904 /* The call to in_thread_list is necessary because PTIDs sometimes
2905 change when we go from single-threaded to multi-threaded. If
2906 the singlestep_ptid is still in the list, assume that it is
2907 really different from ecs->ptid. */
2908 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2909 && in_thread_list (singlestep_ptid))
2910 {
fd48f117
DJ
2911 /* If the PC of the thread we were trying to single-step
2912 has changed, discard this event (which we were going
2913 to ignore anyway), and pretend we saw that thread
2914 trap. This prevents us continuously moving the
2915 single-step breakpoint forward, one instruction at a
2916 time. If the PC has changed, then the thread we were
2917 trying to single-step has trapped or been signalled,
2918 but the event has not been reported to GDB yet.
2919
2920 There might be some cases where this loses signal
2921 information, if a signal has arrived at exactly the
2922 same time that the PC changed, but this is the best
2923 we can do with the information available. Perhaps we
2924 should arrange to report all events for all threads
2925 when they stop, or to re-poll the remote looking for
2926 this particular thread (i.e. temporarily enable
2927 schedlock). */
515630c5
UW
2928
2929 CORE_ADDR new_singlestep_pc
2930 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2931
2932 if (new_singlestep_pc != singlestep_pc)
fd48f117 2933 {
2020b7ab
PA
2934 enum target_signal stop_signal;
2935
fd48f117
DJ
2936 if (debug_infrun)
2937 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2938 " but expected thread advanced also\n");
2939
2940 /* The current context still belongs to
2941 singlestep_ptid. Don't swap here, since that's
2942 the context we want to use. Just fudge our
2943 state and continue. */
2020b7ab
PA
2944 stop_signal = ecs->event_thread->stop_signal;
2945 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2946 ecs->ptid = singlestep_ptid;
e09875d4 2947 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2948 ecs->event_thread->stop_signal = stop_signal;
515630c5 2949 stop_pc = new_singlestep_pc;
fd48f117
DJ
2950 }
2951 else
2952 {
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: unexpected thread\n");
2956
2957 thread_hop_needed = 1;
2958 stepping_past_singlestep_breakpoint = 1;
2959 saved_singlestep_ptid = singlestep_ptid;
2960 }
9f976b41
DJ
2961 }
2962 }
2963
2964 if (thread_hop_needed)
8fb3e588 2965 {
9f5a595d 2966 struct regcache *thread_regcache;
237fc4c9 2967 int remove_status = 0;
8fb3e588 2968
527159b7 2969 if (debug_infrun)
8a9de0e4 2970 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2971
b3444185
PA
2972 /* Switch context before touching inferior memory, the
2973 previous thread may have exited. */
2974 if (!ptid_equal (inferior_ptid, ecs->ptid))
2975 context_switch (ecs->ptid);
2976
8fb3e588
AC
2977 /* Saw a breakpoint, but it was hit by the wrong thread.
2978 Just continue. */
2979
1c0fdd0e 2980 if (singlestep_breakpoints_inserted_p)
488f131b 2981 {
8fb3e588 2982 /* Pull the single step breakpoints out of the target. */
e0cd558a 2983 remove_single_step_breakpoints ();
8fb3e588
AC
2984 singlestep_breakpoints_inserted_p = 0;
2985 }
2986
237fc4c9
PA
2987 /* If the arch can displace step, don't remove the
2988 breakpoints. */
9f5a595d
UW
2989 thread_regcache = get_thread_regcache (ecs->ptid);
2990 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2991 remove_status = remove_breakpoints ();
2992
8fb3e588
AC
2993 /* Did we fail to remove breakpoints? If so, try
2994 to set the PC past the bp. (There's at least
2995 one situation in which we can fail to remove
2996 the bp's: On HP-UX's that use ttrace, we can't
2997 change the address space of a vforking child
2998 process until the child exits (well, okay, not
2999 then either :-) or execs. */
3000 if (remove_status != 0)
9d9cd7ac 3001 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3002 else
3003 { /* Single step */
94cc34af
PA
3004 if (!non_stop)
3005 {
3006 /* Only need to require the next event from this
3007 thread in all-stop mode. */
3008 waiton_ptid = ecs->ptid;
3009 infwait_state = infwait_thread_hop_state;
3010 }
8fb3e588 3011
4e1c45ea 3012 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3013 keep_going (ecs);
8fb3e588
AC
3014 return;
3015 }
488f131b 3016 }
1c0fdd0e 3017 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3018 {
3019 sw_single_step_trap_p = 1;
3020 ecs->random_signal = 0;
3021 }
488f131b
JB
3022 }
3023 else
3024 ecs->random_signal = 1;
c906108c 3025
488f131b 3026 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3027 so, then switch to that thread. */
3028 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3029 {
527159b7 3030 if (debug_infrun)
8a9de0e4 3031 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3032
0d1e5fa7 3033 context_switch (ecs->ptid);
c5aa993b 3034
9a4105ab
AC
3035 if (deprecated_context_hook)
3036 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3037 }
c906108c 3038
568d6575
UW
3039 /* At this point, get hold of the now-current thread's frame. */
3040 frame = get_current_frame ();
3041 gdbarch = get_frame_arch (frame);
3042
1c0fdd0e 3043 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3044 {
3045 /* Pull the single step breakpoints out of the target. */
e0cd558a 3046 remove_single_step_breakpoints ();
488f131b
JB
3047 singlestep_breakpoints_inserted_p = 0;
3048 }
c906108c 3049
d983da9c
DJ
3050 if (stepped_after_stopped_by_watchpoint)
3051 stopped_by_watchpoint = 0;
3052 else
3053 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3054
3055 /* If necessary, step over this watchpoint. We'll be back to display
3056 it in a moment. */
3057 if (stopped_by_watchpoint
d92524f1 3058 && (target_have_steppable_watchpoint
568d6575 3059 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3060 {
488f131b
JB
3061 /* At this point, we are stopped at an instruction which has
3062 attempted to write to a piece of memory under control of
3063 a watchpoint. The instruction hasn't actually executed
3064 yet. If we were to evaluate the watchpoint expression
3065 now, we would get the old value, and therefore no change
3066 would seem to have occurred.
3067
3068 In order to make watchpoints work `right', we really need
3069 to complete the memory write, and then evaluate the
d983da9c
DJ
3070 watchpoint expression. We do this by single-stepping the
3071 target.
3072
3073 It may not be necessary to disable the watchpoint to stop over
3074 it. For example, the PA can (with some kernel cooperation)
3075 single step over a watchpoint without disabling the watchpoint.
3076
3077 It is far more common to need to disable a watchpoint to step
3078 the inferior over it. If we have non-steppable watchpoints,
3079 we must disable the current watchpoint; it's simplest to
3080 disable all watchpoints and breakpoints. */
2facfe5c
DD
3081 int hw_step = 1;
3082
d92524f1 3083 if (!target_have_steppable_watchpoint)
d983da9c 3084 remove_breakpoints ();
2facfe5c 3085 /* Single step */
568d6575 3086 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3087 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3088 waiton_ptid = ecs->ptid;
d92524f1 3089 if (target_have_steppable_watchpoint)
0d1e5fa7 3090 infwait_state = infwait_step_watch_state;
d983da9c 3091 else
0d1e5fa7 3092 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3093 prepare_to_wait (ecs);
3094 return;
3095 }
3096
488f131b
JB
3097 ecs->stop_func_start = 0;
3098 ecs->stop_func_end = 0;
3099 ecs->stop_func_name = 0;
3100 /* Don't care about return value; stop_func_start and stop_func_name
3101 will both be 0 if it doesn't work. */
3102 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3103 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3104 ecs->stop_func_start
568d6575 3105 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3106 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3107 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3108 ecs->event_thread->stop_step = 0;
488f131b
JB
3109 stop_print_frame = 1;
3110 ecs->random_signal = 0;
3111 stopped_by_random_signal = 0;
488f131b 3112
edb3359d
DJ
3113 /* Hide inlined functions starting here, unless we just performed stepi or
3114 nexti. After stepi and nexti, always show the innermost frame (not any
3115 inline function call sites). */
3116 if (ecs->event_thread->step_range_end != 1)
3117 skip_inline_frames (ecs->ptid);
3118
2020b7ab 3119 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3120 && ecs->event_thread->trap_expected
568d6575 3121 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3122 && currently_stepping (ecs->event_thread))
3352ef37 3123 {
b50d7442 3124 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3125 also on an instruction that needs to be stepped multiple
3126 times before it's been fully executing. E.g., architectures
3127 with a delay slot. It needs to be stepped twice, once for
3128 the instruction and once for the delay slot. */
3129 int step_through_delay
568d6575 3130 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3131 if (debug_infrun && step_through_delay)
8a9de0e4 3132 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3133 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3134 {
3135 /* The user issued a continue when stopped at a breakpoint.
3136 Set up for another trap and get out of here. */
4e1c45ea 3137 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3138 keep_going (ecs);
3139 return;
3140 }
3141 else if (step_through_delay)
3142 {
3143 /* The user issued a step when stopped at a breakpoint.
3144 Maybe we should stop, maybe we should not - the delay
3145 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3146 case, don't decide that here, just set
3147 ecs->stepping_over_breakpoint, making sure we
3148 single-step again before breakpoints are re-inserted. */
4e1c45ea 3149 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3150 }
3151 }
3152
488f131b
JB
3153 /* Look at the cause of the stop, and decide what to do.
3154 The alternatives are:
0d1e5fa7
PA
3155 1) stop_stepping and return; to really stop and return to the debugger,
3156 2) keep_going and return to start up again
4e1c45ea 3157 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3158 3) set ecs->random_signal to 1, and the decision between 1 and 2
3159 will be made according to the signal handling tables. */
3160
3161 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3162 that have to do with the program's own actions. Note that
3163 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3164 on the operating system version. Here we detect when a SIGILL or
3165 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3166 something similar for SIGSEGV, since a SIGSEGV will be generated
3167 when we're trying to execute a breakpoint instruction on a
3168 non-executable stack. This happens for call dummy breakpoints
3169 for architectures like SPARC that place call dummies on the
237fc4c9 3170 stack.
488f131b 3171
237fc4c9
PA
3172 If we're doing a displaced step past a breakpoint, then the
3173 breakpoint is always inserted at the original instruction;
3174 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3175 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3176 || (! ecs->event_thread->trap_expected
237fc4c9 3177 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3178 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3179 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3180 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3181 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3182 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3183 {
2020b7ab 3184 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3185 {
527159b7 3186 if (debug_infrun)
8a9de0e4 3187 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3188 stop_print_frame = 0;
3189 stop_stepping (ecs);
3190 return;
3191 }
c54cfec8
EZ
3192
3193 /* This is originated from start_remote(), start_inferior() and
3194 shared libraries hook functions. */
b0f4b84b 3195 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3196 {
527159b7 3197 if (debug_infrun)
8a9de0e4 3198 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3199 stop_stepping (ecs);
3200 return;
3201 }
3202
c54cfec8 3203 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3204 the stop_signal here, because some kernels don't ignore a
3205 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3206 See more comments in inferior.h. On the other hand, if we
a0ef4274 3207 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3208 will handle the SIGSTOP if it should show up later.
3209
3210 Also consider that the attach is complete when we see a
3211 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3212 target extended-remote report it instead of a SIGSTOP
3213 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3214 signal, so this is no exception.
3215
3216 Also consider that the attach is complete when we see a
3217 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3218 the target to stop all threads of the inferior, in case the
3219 low level attach operation doesn't stop them implicitly. If
3220 they weren't stopped implicitly, then the stub will report a
3221 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3222 other than GDB's request. */
a0ef4274 3223 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3224 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3225 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3226 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3227 {
3228 stop_stepping (ecs);
2020b7ab 3229 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3230 return;
3231 }
3232
fba57f8f 3233 /* See if there is a breakpoint at the current PC. */
347bddb7 3234 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3235
3236 /* Following in case break condition called a
3237 function. */
3238 stop_print_frame = 1;
488f131b 3239
73dd234f 3240 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3241 at one stage in the past included checks for an inferior
3242 function call's call dummy's return breakpoint. The original
3243 comment, that went with the test, read:
73dd234f 3244
8fb3e588
AC
3245 ``End of a stack dummy. Some systems (e.g. Sony news) give
3246 another signal besides SIGTRAP, so check here as well as
3247 above.''
73dd234f 3248
8002d778 3249 If someone ever tries to get call dummys on a
73dd234f 3250 non-executable stack to work (where the target would stop
03cebad2
MK
3251 with something like a SIGSEGV), then those tests might need
3252 to be re-instated. Given, however, that the tests were only
73dd234f 3253 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3254 suspect that it won't be the case.
3255
8fb3e588
AC
3256 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3257 be necessary for call dummies on a non-executable stack on
3258 SPARC. */
73dd234f 3259
2020b7ab 3260 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3261 ecs->random_signal
347bddb7 3262 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3263 || ecs->event_thread->trap_expected
3264 || (ecs->event_thread->step_range_end
3265 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3266 else
3267 {
347bddb7 3268 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3269 if (!ecs->random_signal)
2020b7ab 3270 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3271 }
3272 }
3273
3274 /* When we reach this point, we've pretty much decided
3275 that the reason for stopping must've been a random
3276 (unexpected) signal. */
3277
3278 else
3279 ecs->random_signal = 1;
488f131b 3280
04e68871 3281process_event_stop_test:
568d6575
UW
3282
3283 /* Re-fetch current thread's frame in case we did a
3284 "goto process_event_stop_test" above. */
3285 frame = get_current_frame ();
3286 gdbarch = get_frame_arch (frame);
3287
488f131b
JB
3288 /* For the program's own signals, act according to
3289 the signal handling tables. */
3290
3291 if (ecs->random_signal)
3292 {
3293 /* Signal not for debugging purposes. */
3294 int printed = 0;
3295
527159b7 3296 if (debug_infrun)
2020b7ab
PA
3297 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3298 ecs->event_thread->stop_signal);
527159b7 3299
488f131b
JB
3300 stopped_by_random_signal = 1;
3301
2020b7ab 3302 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3303 {
3304 printed = 1;
3305 target_terminal_ours_for_output ();
2020b7ab 3306 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3307 }
252fbfc8
PA
3308 /* Always stop on signals if we're either just gaining control
3309 of the program, or the user explicitly requested this thread
3310 to remain stopped. */
d6b48e9c 3311 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3312 || ecs->event_thread->stop_requested
d6b48e9c 3313 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3314 {
3315 stop_stepping (ecs);
3316 return;
3317 }
3318 /* If not going to stop, give terminal back
3319 if we took it away. */
3320 else if (printed)
3321 target_terminal_inferior ();
3322
3323 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3324 if (signal_program[ecs->event_thread->stop_signal] == 0)
3325 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3326
fb14de7b 3327 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3328 && ecs->event_thread->trap_expected
3329 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3330 {
3331 /* We were just starting a new sequence, attempting to
3332 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3333 Instead this signal arrives. This signal will take us out
68f53502
AC
3334 of the stepping range so GDB needs to remember to, when
3335 the signal handler returns, resume stepping off that
3336 breakpoint. */
3337 /* To simplify things, "continue" is forced to use the same
3338 code paths as single-step - set a breakpoint at the
3339 signal return address and then, once hit, step off that
3340 breakpoint. */
237fc4c9
PA
3341 if (debug_infrun)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "infrun: signal arrived while stepping over "
3344 "breakpoint\n");
d3169d93 3345
568d6575 3346 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3347 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3348 keep_going (ecs);
3349 return;
68f53502 3350 }
9d799f85 3351
4e1c45ea 3352 if (ecs->event_thread->step_range_end != 0
2020b7ab 3353 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3354 && (ecs->event_thread->step_range_start <= stop_pc
3355 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3356 && frame_id_eq (get_stack_frame_id (frame),
3357 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3358 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3359 {
3360 /* The inferior is about to take a signal that will take it
3361 out of the single step range. Set a breakpoint at the
3362 current PC (which is presumably where the signal handler
3363 will eventually return) and then allow the inferior to
3364 run free.
3365
3366 Note that this is only needed for a signal delivered
3367 while in the single-step range. Nested signals aren't a
3368 problem as they eventually all return. */
237fc4c9
PA
3369 if (debug_infrun)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "infrun: signal may take us out of "
3372 "single-step range\n");
3373
568d6575 3374 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3375 keep_going (ecs);
3376 return;
d303a6c7 3377 }
9d799f85
AC
3378
3379 /* Note: step_resume_breakpoint may be non-NULL. This occures
3380 when either there's a nested signal, or when there's a
3381 pending signal enabled just as the signal handler returns
3382 (leaving the inferior at the step-resume-breakpoint without
3383 actually executing it). Either way continue until the
3384 breakpoint is really hit. */
488f131b
JB
3385 keep_going (ecs);
3386 return;
3387 }
3388
3389 /* Handle cases caused by hitting a breakpoint. */
3390 {
3391 CORE_ADDR jmp_buf_pc;
3392 struct bpstat_what what;
3393
347bddb7 3394 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3395
3396 if (what.call_dummy)
3397 {
3398 stop_stack_dummy = 1;
c5aa993b 3399 }
c906108c 3400
488f131b 3401 switch (what.main_action)
c5aa993b 3402 {
488f131b 3403 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3404 /* If we hit the breakpoint at longjmp while stepping, we
3405 install a momentary breakpoint at the target of the
3406 jmp_buf. */
3407
3408 if (debug_infrun)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3411
4e1c45ea 3412 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3413
568d6575
UW
3414 if (!gdbarch_get_longjmp_target_p (gdbarch)
3415 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3416 {
611c83ae
PA
3417 if (debug_infrun)
3418 fprintf_unfiltered (gdb_stdlog, "\
3419infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3420 keep_going (ecs);
104c1213 3421 return;
c5aa993b 3422 }
488f131b 3423
611c83ae
PA
3424 /* We're going to replace the current step-resume breakpoint
3425 with a longjmp-resume breakpoint. */
4e1c45ea 3426 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3427
3428 /* Insert a breakpoint at resume address. */
a6d9a66e 3429 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3430
488f131b
JB
3431 keep_going (ecs);
3432 return;
c906108c 3433
488f131b 3434 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3435 if (debug_infrun)
611c83ae
PA
3436 fprintf_unfiltered (gdb_stdlog,
3437 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3438
4e1c45ea
PA
3439 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3440 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3441
414c69f7 3442 ecs->event_thread->stop_step = 1;
611c83ae
PA
3443 print_stop_reason (END_STEPPING_RANGE, 0);
3444 stop_stepping (ecs);
3445 return;
488f131b
JB
3446
3447 case BPSTAT_WHAT_SINGLE:
527159b7 3448 if (debug_infrun)
8802d8ed 3449 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3450 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3451 /* Still need to check other stuff, at least the case
3452 where we are stepping and step out of the right range. */
3453 break;
c906108c 3454
488f131b 3455 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3456 if (debug_infrun)
8802d8ed 3457 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3458 stop_print_frame = 1;
c906108c 3459
d303a6c7
AC
3460 /* We are about to nuke the step_resume_breakpointt via the
3461 cleanup chain, so no need to worry about it here. */
c5aa993b 3462
488f131b
JB
3463 stop_stepping (ecs);
3464 return;
c5aa993b 3465
488f131b 3466 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3467 if (debug_infrun)
8802d8ed 3468 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3469 stop_print_frame = 0;
c5aa993b 3470
d303a6c7
AC
3471 /* We are about to nuke the step_resume_breakpoin via the
3472 cleanup chain, so no need to worry about it here. */
c5aa993b 3473
488f131b 3474 stop_stepping (ecs);
e441088d 3475 return;
c5aa993b 3476
488f131b 3477 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3478 if (debug_infrun)
8802d8ed 3479 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3480
4e1c45ea
PA
3481 delete_step_resume_breakpoint (ecs->event_thread);
3482 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3483 {
3484 /* Back when the step-resume breakpoint was inserted, we
3485 were trying to single-step off a breakpoint. Go back
3486 to doing that. */
4e1c45ea
PA
3487 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3488 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3489 keep_going (ecs);
3490 return;
3491 }
b2175913
MS
3492 if (stop_pc == ecs->stop_func_start
3493 && execution_direction == EXEC_REVERSE)
3494 {
3495 /* We are stepping over a function call in reverse, and
3496 just hit the step-resume breakpoint at the start
3497 address of the function. Go back to single-stepping,
3498 which should take us back to the function call. */
3499 ecs->event_thread->stepping_over_breakpoint = 1;
3500 keep_going (ecs);
3501 return;
3502 }
488f131b
JB
3503 break;
3504
488f131b 3505 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3506 {
527159b7 3507 if (debug_infrun)
8802d8ed 3508 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3509
3510 /* Check for any newly added shared libraries if we're
3511 supposed to be adding them automatically. Switch
3512 terminal for any messages produced by
3513 breakpoint_re_set. */
3514 target_terminal_ours_for_output ();
aff6338a 3515 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3516 stack's section table is kept up-to-date. Architectures,
3517 (e.g., PPC64), use the section table to perform
3518 operations such as address => section name and hence
3519 require the table to contain all sections (including
3520 those found in shared libraries). */
a77053c2 3521#ifdef SOLIB_ADD
aff6338a 3522 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3523#else
3524 solib_add (NULL, 0, &current_target, auto_solib_add);
3525#endif
488f131b
JB
3526 target_terminal_inferior ();
3527
488f131b
JB
3528 /* If requested, stop when the dynamic linker notifies
3529 gdb of events. This allows the user to get control
3530 and place breakpoints in initializer routines for
3531 dynamically loaded objects (among other things). */
877522db 3532 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3533 {
488f131b 3534 stop_stepping (ecs);
d4f3574e
SS
3535 return;
3536 }
c5aa993b 3537 else
c5aa993b 3538 {
488f131b 3539 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3540 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3541 break;
c5aa993b 3542 }
488f131b 3543 }
488f131b 3544 break;
4efc6507
DE
3545
3546 case BPSTAT_WHAT_CHECK_JIT:
3547 if (debug_infrun)
3548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3549
3550 /* Switch terminal for any messages produced by breakpoint_re_set. */
3551 target_terminal_ours_for_output ();
3552
0756c555 3553 jit_event_handler (gdbarch);
4efc6507
DE
3554
3555 target_terminal_inferior ();
3556
3557 /* We want to step over this breakpoint, then keep going. */
3558 ecs->event_thread->stepping_over_breakpoint = 1;
3559
3560 break;
c906108c 3561
488f131b
JB
3562 case BPSTAT_WHAT_LAST:
3563 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3564
488f131b
JB
3565 case BPSTAT_WHAT_KEEP_CHECKING:
3566 break;
3567 }
3568 }
c906108c 3569
488f131b
JB
3570 /* We come here if we hit a breakpoint but should not
3571 stop for it. Possibly we also were stepping
3572 and should stop for that. So fall through and
3573 test for stepping. But, if not stepping,
3574 do not stop. */
c906108c 3575
a7212384
UW
3576 /* In all-stop mode, if we're currently stepping but have stopped in
3577 some other thread, we need to switch back to the stepped thread. */
3578 if (!non_stop)
3579 {
3580 struct thread_info *tp;
b3444185 3581 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3582 ecs->event_thread);
3583 if (tp)
3584 {
3585 /* However, if the current thread is blocked on some internal
3586 breakpoint, and we simply need to step over that breakpoint
3587 to get it going again, do that first. */
3588 if ((ecs->event_thread->trap_expected
3589 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3590 || ecs->event_thread->stepping_over_breakpoint)
3591 {
3592 keep_going (ecs);
3593 return;
3594 }
3595
66852e9c
PA
3596 /* If the stepping thread exited, then don't try to switch
3597 back and resume it, which could fail in several different
3598 ways depending on the target. Instead, just keep going.
3599
3600 We can find a stepping dead thread in the thread list in
3601 two cases:
3602
3603 - The target supports thread exit events, and when the
3604 target tries to delete the thread from the thread list,
3605 inferior_ptid pointed at the exiting thread. In such
3606 case, calling delete_thread does not really remove the
3607 thread from the list; instead, the thread is left listed,
3608 with 'exited' state.
3609
3610 - The target's debug interface does not support thread
3611 exit events, and so we have no idea whatsoever if the
3612 previously stepping thread is still alive. For that
3613 reason, we need to synchronously query the target
3614 now. */
b3444185
PA
3615 if (is_exited (tp->ptid)
3616 || !target_thread_alive (tp->ptid))
3617 {
3618 if (debug_infrun)
3619 fprintf_unfiltered (gdb_stdlog, "\
3620infrun: not switching back to stepped thread, it has vanished\n");
3621
3622 delete_thread (tp->ptid);
3623 keep_going (ecs);
3624 return;
3625 }
3626
a7212384
UW
3627 /* Otherwise, we no longer expect a trap in the current thread.
3628 Clear the trap_expected flag before switching back -- this is
3629 what keep_going would do as well, if we called it. */
3630 ecs->event_thread->trap_expected = 0;
3631
3632 if (debug_infrun)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "infrun: switching back to stepped thread\n");
3635
3636 ecs->event_thread = tp;
3637 ecs->ptid = tp->ptid;
3638 context_switch (ecs->ptid);
3639 keep_going (ecs);
3640 return;
3641 }
3642 }
3643
9d1ff73f
MS
3644 /* Are we stepping to get the inferior out of the dynamic linker's
3645 hook (and possibly the dld itself) after catching a shlib
3646 event? */
4e1c45ea 3647 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3648 {
3649#if defined(SOLIB_ADD)
3650 /* Have we reached our destination? If not, keep going. */
3651 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3652 {
527159b7 3653 if (debug_infrun)
8a9de0e4 3654 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3655 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3656 keep_going (ecs);
104c1213 3657 return;
488f131b
JB
3658 }
3659#endif
527159b7 3660 if (debug_infrun)
8a9de0e4 3661 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3662 /* Else, stop and report the catchpoint(s) whose triggering
3663 caused us to begin stepping. */
4e1c45ea 3664 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3665 bpstat_clear (&ecs->event_thread->stop_bpstat);
3666 ecs->event_thread->stop_bpstat
3667 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3668 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3669 stop_print_frame = 1;
3670 stop_stepping (ecs);
3671 return;
3672 }
c906108c 3673
4e1c45ea 3674 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3675 {
527159b7 3676 if (debug_infrun)
d3169d93
DJ
3677 fprintf_unfiltered (gdb_stdlog,
3678 "infrun: step-resume breakpoint is inserted\n");
527159b7 3679
488f131b
JB
3680 /* Having a step-resume breakpoint overrides anything
3681 else having to do with stepping commands until
3682 that breakpoint is reached. */
488f131b
JB
3683 keep_going (ecs);
3684 return;
3685 }
c5aa993b 3686
4e1c45ea 3687 if (ecs->event_thread->step_range_end == 0)
488f131b 3688 {
527159b7 3689 if (debug_infrun)
8a9de0e4 3690 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3691 /* Likewise if we aren't even stepping. */
488f131b
JB
3692 keep_going (ecs);
3693 return;
3694 }
c5aa993b 3695
488f131b 3696 /* If stepping through a line, keep going if still within it.
c906108c 3697
488f131b
JB
3698 Note that step_range_end is the address of the first instruction
3699 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3700 within it!
3701
3702 Note also that during reverse execution, we may be stepping
3703 through a function epilogue and therefore must detect when
3704 the current-frame changes in the middle of a line. */
3705
4e1c45ea 3706 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3707 && stop_pc < ecs->event_thread->step_range_end
3708 && (execution_direction != EXEC_REVERSE
388a8562 3709 || frame_id_eq (get_frame_id (frame),
31410e84 3710 ecs->event_thread->step_frame_id)))
488f131b 3711 {
527159b7 3712 if (debug_infrun)
5af949e3
UW
3713 fprintf_unfiltered
3714 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3715 paddress (gdbarch, ecs->event_thread->step_range_start),
3716 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
3717
3718 /* When stepping backward, stop at beginning of line range
3719 (unless it's the function entry point, in which case
3720 keep going back to the call point). */
3721 if (stop_pc == ecs->event_thread->step_range_start
3722 && stop_pc != ecs->stop_func_start
3723 && execution_direction == EXEC_REVERSE)
3724 {
3725 ecs->event_thread->stop_step = 1;
3726 print_stop_reason (END_STEPPING_RANGE, 0);
3727 stop_stepping (ecs);
3728 }
3729 else
3730 keep_going (ecs);
3731
488f131b
JB
3732 return;
3733 }
c5aa993b 3734
488f131b 3735 /* We stepped out of the stepping range. */
c906108c 3736
488f131b 3737 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3738 loader dynamic symbol resolution code...
3739
3740 EXEC_FORWARD: we keep on single stepping until we exit the run
3741 time loader code and reach the callee's address.
3742
3743 EXEC_REVERSE: we've already executed the callee (backward), and
3744 the runtime loader code is handled just like any other
3745 undebuggable function call. Now we need only keep stepping
3746 backward through the trampoline code, and that's handled further
3747 down, so there is nothing for us to do here. */
3748
3749 if (execution_direction != EXEC_REVERSE
3750 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3751 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3752 {
4c8c40e6 3753 CORE_ADDR pc_after_resolver =
568d6575 3754 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3755
527159b7 3756 if (debug_infrun)
8a9de0e4 3757 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3758
488f131b
JB
3759 if (pc_after_resolver)
3760 {
3761 /* Set up a step-resume breakpoint at the address
3762 indicated by SKIP_SOLIB_RESOLVER. */
3763 struct symtab_and_line sr_sal;
fe39c653 3764 init_sal (&sr_sal);
488f131b
JB
3765 sr_sal.pc = pc_after_resolver;
3766
a6d9a66e
UW
3767 insert_step_resume_breakpoint_at_sal (gdbarch,
3768 sr_sal, null_frame_id);
c5aa993b 3769 }
c906108c 3770
488f131b
JB
3771 keep_going (ecs);
3772 return;
3773 }
c906108c 3774
4e1c45ea 3775 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3776 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3777 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3778 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3779 {
527159b7 3780 if (debug_infrun)
8a9de0e4 3781 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3782 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3783 a signal trampoline (either by a signal being delivered or by
3784 the signal handler returning). Just single-step until the
3785 inferior leaves the trampoline (either by calling the handler
3786 or returning). */
488f131b
JB
3787 keep_going (ecs);
3788 return;
3789 }
c906108c 3790
c17eaafe
DJ
3791 /* Check for subroutine calls. The check for the current frame
3792 equalling the step ID is not necessary - the check of the
3793 previous frame's ID is sufficient - but it is a common case and
3794 cheaper than checking the previous frame's ID.
14e60db5
DJ
3795
3796 NOTE: frame_id_eq will never report two invalid frame IDs as
3797 being equal, so to get into this block, both the current and
3798 previous frame must have valid frame IDs. */
edb3359d
DJ
3799 if (!frame_id_eq (get_stack_frame_id (frame),
3800 ecs->event_thread->step_stack_frame_id)
fdd654f3
MS
3801 && frame_id_eq (frame_unwind_caller_id (frame),
3802 ecs->event_thread->step_stack_frame_id))
488f131b 3803 {
95918acb 3804 CORE_ADDR real_stop_pc;
8fb3e588 3805
527159b7 3806 if (debug_infrun)
8a9de0e4 3807 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3808
078130d0 3809 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3810 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3811 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3812 ecs->stop_func_start)))
95918acb
AC
3813 {
3814 /* I presume that step_over_calls is only 0 when we're
3815 supposed to be stepping at the assembly language level
3816 ("stepi"). Just stop. */
3817 /* Also, maybe we just did a "nexti" inside a prolog, so we
3818 thought it was a subroutine call but it was not. Stop as
3819 well. FENN */
388a8562 3820 /* And this works the same backward as frontward. MVS */
414c69f7 3821 ecs->event_thread->stop_step = 1;
95918acb
AC
3822 print_stop_reason (END_STEPPING_RANGE, 0);
3823 stop_stepping (ecs);
3824 return;
3825 }
8fb3e588 3826
388a8562
MS
3827 /* Reverse stepping through solib trampolines. */
3828
3829 if (execution_direction == EXEC_REVERSE
fdd654f3 3830 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
3831 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3832 || (ecs->stop_func_start == 0
3833 && in_solib_dynsym_resolve_code (stop_pc))))
3834 {
3835 /* Any solib trampoline code can be handled in reverse
3836 by simply continuing to single-step. We have already
3837 executed the solib function (backwards), and a few
3838 steps will take us back through the trampoline to the
3839 caller. */
3840 keep_going (ecs);
3841 return;
3842 }
3843
078130d0 3844 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3845 {
b2175913
MS
3846 /* We're doing a "next".
3847
3848 Normal (forward) execution: set a breakpoint at the
3849 callee's return address (the address at which the caller
3850 will resume).
3851
3852 Reverse (backward) execution. set the step-resume
3853 breakpoint at the start of the function that we just
3854 stepped into (backwards), and continue to there. When we
6130d0b7 3855 get there, we'll need to single-step back to the caller. */
b2175913
MS
3856
3857 if (execution_direction == EXEC_REVERSE)
3858 {
3859 struct symtab_and_line sr_sal;
3067f6e5 3860
388a8562
MS
3861 /* Normal function call return (static or dynamic). */
3862 init_sal (&sr_sal);
3863 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3864 insert_step_resume_breakpoint_at_sal (gdbarch,
3865 sr_sal, null_frame_id);
b2175913
MS
3866 }
3867 else
568d6575 3868 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3869
8567c30f
AC
3870 keep_going (ecs);
3871 return;
3872 }
a53c66de 3873
95918acb 3874 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3875 calling routine and the real function), locate the real
3876 function. That's what tells us (a) whether we want to step
3877 into it at all, and (b) what prologue we want to run to the
3878 end of, if we do step into it. */
568d6575 3879 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3880 if (real_stop_pc == 0)
568d6575 3881 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3882 if (real_stop_pc != 0)
3883 ecs->stop_func_start = real_stop_pc;
8fb3e588 3884
db5f024e 3885 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3886 {
3887 struct symtab_and_line sr_sal;
3888 init_sal (&sr_sal);
3889 sr_sal.pc = ecs->stop_func_start;
3890
a6d9a66e
UW
3891 insert_step_resume_breakpoint_at_sal (gdbarch,
3892 sr_sal, null_frame_id);
8fb3e588
AC
3893 keep_going (ecs);
3894 return;
1b2bfbb9
RC
3895 }
3896
95918acb 3897 /* If we have line number information for the function we are
8fb3e588 3898 thinking of stepping into, step into it.
95918acb 3899
8fb3e588
AC
3900 If there are several symtabs at that PC (e.g. with include
3901 files), just want to know whether *any* of them have line
3902 numbers. find_pc_line handles this. */
95918acb
AC
3903 {
3904 struct symtab_and_line tmp_sal;
8fb3e588 3905
95918acb
AC
3906 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3907 if (tmp_sal.line != 0)
3908 {
b2175913 3909 if (execution_direction == EXEC_REVERSE)
568d6575 3910 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3911 else
568d6575 3912 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3913 return;
3914 }
3915 }
3916
3917 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3918 set, we stop the step so that the user has a chance to switch
3919 in assembly mode. */
078130d0
PA
3920 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3921 && step_stop_if_no_debug)
95918acb 3922 {
414c69f7 3923 ecs->event_thread->stop_step = 1;
95918acb
AC
3924 print_stop_reason (END_STEPPING_RANGE, 0);
3925 stop_stepping (ecs);
3926 return;
3927 }
3928
b2175913
MS
3929 if (execution_direction == EXEC_REVERSE)
3930 {
3931 /* Set a breakpoint at callee's start address.
3932 From there we can step once and be back in the caller. */
3933 struct symtab_and_line sr_sal;
3934 init_sal (&sr_sal);
3935 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3936 insert_step_resume_breakpoint_at_sal (gdbarch,
3937 sr_sal, null_frame_id);
b2175913
MS
3938 }
3939 else
3940 /* Set a breakpoint at callee's return address (the address
3941 at which the caller will resume). */
568d6575 3942 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3943
95918acb 3944 keep_going (ecs);
488f131b 3945 return;
488f131b 3946 }
c906108c 3947
fdd654f3
MS
3948 /* Reverse stepping through solib trampolines. */
3949
3950 if (execution_direction == EXEC_REVERSE
3951 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
3952 {
3953 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3954 || (ecs->stop_func_start == 0
3955 && in_solib_dynsym_resolve_code (stop_pc)))
3956 {
3957 /* Any solib trampoline code can be handled in reverse
3958 by simply continuing to single-step. We have already
3959 executed the solib function (backwards), and a few
3960 steps will take us back through the trampoline to the
3961 caller. */
3962 keep_going (ecs);
3963 return;
3964 }
3965 else if (in_solib_dynsym_resolve_code (stop_pc))
3966 {
3967 /* Stepped backward into the solib dynsym resolver.
3968 Set a breakpoint at its start and continue, then
3969 one more step will take us out. */
3970 struct symtab_and_line sr_sal;
3971 init_sal (&sr_sal);
3972 sr_sal.pc = ecs->stop_func_start;
3973 insert_step_resume_breakpoint_at_sal (gdbarch,
3974 sr_sal, null_frame_id);
3975 keep_going (ecs);
3976 return;
3977 }
3978 }
3979
488f131b
JB
3980 /* If we're in the return path from a shared library trampoline,
3981 we want to proceed through the trampoline when stepping. */
568d6575 3982 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3983 stop_pc, ecs->stop_func_name))
488f131b 3984 {
488f131b 3985 /* Determine where this trampoline returns. */
52f729a7 3986 CORE_ADDR real_stop_pc;
568d6575 3987 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 3988
527159b7 3989 if (debug_infrun)
8a9de0e4 3990 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3991
488f131b 3992 /* Only proceed through if we know where it's going. */
d764a824 3993 if (real_stop_pc)
488f131b
JB
3994 {
3995 /* And put the step-breakpoint there and go until there. */
3996 struct symtab_and_line sr_sal;
3997
fe39c653 3998 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3999 sr_sal.pc = real_stop_pc;
488f131b 4000 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
4001
4002 /* Do not specify what the fp should be when we stop since
4003 on some machines the prologue is where the new fp value
4004 is established. */
a6d9a66e
UW
4005 insert_step_resume_breakpoint_at_sal (gdbarch,
4006 sr_sal, null_frame_id);
c906108c 4007
488f131b
JB
4008 /* Restart without fiddling with the step ranges or
4009 other state. */
4010 keep_going (ecs);
4011 return;
4012 }
4013 }
c906108c 4014
2afb61aa 4015 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4016
1b2bfbb9
RC
4017 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4018 the trampoline processing logic, however, there are some trampolines
4019 that have no names, so we should do trampoline handling first. */
078130d0 4020 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4021 && ecs->stop_func_name == NULL
2afb61aa 4022 && stop_pc_sal.line == 0)
1b2bfbb9 4023 {
527159b7 4024 if (debug_infrun)
8a9de0e4 4025 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4026
1b2bfbb9 4027 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4028 undebuggable function (where there is no debugging information
4029 and no line number corresponding to the address where the
1b2bfbb9
RC
4030 inferior stopped). Since we want to skip this kind of code,
4031 we keep going until the inferior returns from this
14e60db5
DJ
4032 function - unless the user has asked us not to (via
4033 set step-mode) or we no longer know how to get back
4034 to the call site. */
4035 if (step_stop_if_no_debug
c7ce8faa 4036 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4037 {
4038 /* If we have no line number and the step-stop-if-no-debug
4039 is set, we stop the step so that the user has a chance to
4040 switch in assembly mode. */
414c69f7 4041 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4042 print_stop_reason (END_STEPPING_RANGE, 0);
4043 stop_stepping (ecs);
4044 return;
4045 }
4046 else
4047 {
4048 /* Set a breakpoint at callee's return address (the address
4049 at which the caller will resume). */
568d6575 4050 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4051 keep_going (ecs);
4052 return;
4053 }
4054 }
4055
4e1c45ea 4056 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4057 {
4058 /* It is stepi or nexti. We always want to stop stepping after
4059 one instruction. */
527159b7 4060 if (debug_infrun)
8a9de0e4 4061 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4062 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4063 print_stop_reason (END_STEPPING_RANGE, 0);
4064 stop_stepping (ecs);
4065 return;
4066 }
4067
2afb61aa 4068 if (stop_pc_sal.line == 0)
488f131b
JB
4069 {
4070 /* We have no line number information. That means to stop
4071 stepping (does this always happen right after one instruction,
4072 when we do "s" in a function with no line numbers,
4073 or can this happen as a result of a return or longjmp?). */
527159b7 4074 if (debug_infrun)
8a9de0e4 4075 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4076 ecs->event_thread->stop_step = 1;
488f131b
JB
4077 print_stop_reason (END_STEPPING_RANGE, 0);
4078 stop_stepping (ecs);
4079 return;
4080 }
c906108c 4081
edb3359d
DJ
4082 /* Look for "calls" to inlined functions, part one. If the inline
4083 frame machinery detected some skipped call sites, we have entered
4084 a new inline function. */
4085
4086 if (frame_id_eq (get_frame_id (get_current_frame ()),
4087 ecs->event_thread->step_frame_id)
4088 && inline_skipped_frames (ecs->ptid))
4089 {
4090 struct symtab_and_line call_sal;
4091
4092 if (debug_infrun)
4093 fprintf_unfiltered (gdb_stdlog,
4094 "infrun: stepped into inlined function\n");
4095
4096 find_frame_sal (get_current_frame (), &call_sal);
4097
4098 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4099 {
4100 /* For "step", we're going to stop. But if the call site
4101 for this inlined function is on the same source line as
4102 we were previously stepping, go down into the function
4103 first. Otherwise stop at the call site. */
4104
4105 if (call_sal.line == ecs->event_thread->current_line
4106 && call_sal.symtab == ecs->event_thread->current_symtab)
4107 step_into_inline_frame (ecs->ptid);
4108
4109 ecs->event_thread->stop_step = 1;
4110 print_stop_reason (END_STEPPING_RANGE, 0);
4111 stop_stepping (ecs);
4112 return;
4113 }
4114 else
4115 {
4116 /* For "next", we should stop at the call site if it is on a
4117 different source line. Otherwise continue through the
4118 inlined function. */
4119 if (call_sal.line == ecs->event_thread->current_line
4120 && call_sal.symtab == ecs->event_thread->current_symtab)
4121 keep_going (ecs);
4122 else
4123 {
4124 ecs->event_thread->stop_step = 1;
4125 print_stop_reason (END_STEPPING_RANGE, 0);
4126 stop_stepping (ecs);
4127 }
4128 return;
4129 }
4130 }
4131
4132 /* Look for "calls" to inlined functions, part two. If we are still
4133 in the same real function we were stepping through, but we have
4134 to go further up to find the exact frame ID, we are stepping
4135 through a more inlined call beyond its call site. */
4136
4137 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4138 && !frame_id_eq (get_frame_id (get_current_frame ()),
4139 ecs->event_thread->step_frame_id)
4140 && stepped_in_from (get_current_frame (),
4141 ecs->event_thread->step_frame_id))
4142 {
4143 if (debug_infrun)
4144 fprintf_unfiltered (gdb_stdlog,
4145 "infrun: stepping through inlined function\n");
4146
4147 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4148 keep_going (ecs);
4149 else
4150 {
4151 ecs->event_thread->stop_step = 1;
4152 print_stop_reason (END_STEPPING_RANGE, 0);
4153 stop_stepping (ecs);
4154 }
4155 return;
4156 }
4157
2afb61aa 4158 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4159 && (ecs->event_thread->current_line != stop_pc_sal.line
4160 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4161 {
4162 /* We are at the start of a different line. So stop. Note that
4163 we don't stop if we step into the middle of a different line.
4164 That is said to make things like for (;;) statements work
4165 better. */
527159b7 4166 if (debug_infrun)
8a9de0e4 4167 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4168 ecs->event_thread->stop_step = 1;
488f131b
JB
4169 print_stop_reason (END_STEPPING_RANGE, 0);
4170 stop_stepping (ecs);
4171 return;
4172 }
c906108c 4173
488f131b 4174 /* We aren't done stepping.
c906108c 4175
488f131b
JB
4176 Optimize by setting the stepping range to the line.
4177 (We might not be in the original line, but if we entered a
4178 new line in mid-statement, we continue stepping. This makes
4179 things like for(;;) statements work better.) */
c906108c 4180
4e1c45ea
PA
4181 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4182 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4183 set_step_info (frame, stop_pc_sal);
488f131b 4184
527159b7 4185 if (debug_infrun)
8a9de0e4 4186 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4187 keep_going (ecs);
104c1213
JM
4188}
4189
b3444185 4190/* Is thread TP in the middle of single-stepping? */
104c1213 4191
a7212384 4192static int
b3444185 4193currently_stepping (struct thread_info *tp)
a7212384 4194{
b3444185
PA
4195 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4196 || tp->trap_expected
4197 || tp->stepping_through_solib_after_catch
4198 || bpstat_should_step ());
a7212384
UW
4199}
4200
b3444185
PA
4201/* Returns true if any thread *but* the one passed in "data" is in the
4202 middle of stepping or of handling a "next". */
a7212384 4203
104c1213 4204static int
b3444185 4205currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4206{
b3444185
PA
4207 if (tp == data)
4208 return 0;
4209
4210 return (tp->step_range_end
4211 || tp->trap_expected
4212 || tp->stepping_through_solib_after_catch);
104c1213 4213}
c906108c 4214
b2175913
MS
4215/* Inferior has stepped into a subroutine call with source code that
4216 we should not step over. Do step to the first line of code in
4217 it. */
c2c6d25f
JM
4218
4219static void
568d6575
UW
4220handle_step_into_function (struct gdbarch *gdbarch,
4221 struct execution_control_state *ecs)
c2c6d25f
JM
4222{
4223 struct symtab *s;
2afb61aa 4224 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4225
4226 s = find_pc_symtab (stop_pc);
4227 if (s && s->language != language_asm)
568d6575 4228 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4229 ecs->stop_func_start);
c2c6d25f 4230
2afb61aa 4231 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4232 /* Use the step_resume_break to step until the end of the prologue,
4233 even if that involves jumps (as it seems to on the vax under
4234 4.2). */
4235 /* If the prologue ends in the middle of a source line, continue to
4236 the end of that source line (if it is still within the function).
4237 Otherwise, just go to end of prologue. */
2afb61aa
PA
4238 if (stop_func_sal.end
4239 && stop_func_sal.pc != ecs->stop_func_start
4240 && stop_func_sal.end < ecs->stop_func_end)
4241 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4242
2dbd5e30
KB
4243 /* Architectures which require breakpoint adjustment might not be able
4244 to place a breakpoint at the computed address. If so, the test
4245 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4246 ecs->stop_func_start to an address at which a breakpoint may be
4247 legitimately placed.
8fb3e588 4248
2dbd5e30
KB
4249 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4250 made, GDB will enter an infinite loop when stepping through
4251 optimized code consisting of VLIW instructions which contain
4252 subinstructions corresponding to different source lines. On
4253 FR-V, it's not permitted to place a breakpoint on any but the
4254 first subinstruction of a VLIW instruction. When a breakpoint is
4255 set, GDB will adjust the breakpoint address to the beginning of
4256 the VLIW instruction. Thus, we need to make the corresponding
4257 adjustment here when computing the stop address. */
8fb3e588 4258
568d6575 4259 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4260 {
4261 ecs->stop_func_start
568d6575 4262 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4263 ecs->stop_func_start);
2dbd5e30
KB
4264 }
4265
c2c6d25f
JM
4266 if (ecs->stop_func_start == stop_pc)
4267 {
4268 /* We are already there: stop now. */
414c69f7 4269 ecs->event_thread->stop_step = 1;
488f131b 4270 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4271 stop_stepping (ecs);
4272 return;
4273 }
4274 else
4275 {
4276 /* Put the step-breakpoint there and go until there. */
fe39c653 4277 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4278 sr_sal.pc = ecs->stop_func_start;
4279 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4280
c2c6d25f 4281 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4282 some machines the prologue is where the new fp value is
4283 established. */
a6d9a66e 4284 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4285
4286 /* And make sure stepping stops right away then. */
4e1c45ea 4287 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4288 }
4289 keep_going (ecs);
4290}
d4f3574e 4291
b2175913
MS
4292/* Inferior has stepped backward into a subroutine call with source
4293 code that we should not step over. Do step to the beginning of the
4294 last line of code in it. */
4295
4296static void
568d6575
UW
4297handle_step_into_function_backward (struct gdbarch *gdbarch,
4298 struct execution_control_state *ecs)
b2175913
MS
4299{
4300 struct symtab *s;
4301 struct symtab_and_line stop_func_sal, sr_sal;
4302
4303 s = find_pc_symtab (stop_pc);
4304 if (s && s->language != language_asm)
568d6575 4305 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4306 ecs->stop_func_start);
4307
4308 stop_func_sal = find_pc_line (stop_pc, 0);
4309
4310 /* OK, we're just going to keep stepping here. */
4311 if (stop_func_sal.pc == stop_pc)
4312 {
4313 /* We're there already. Just stop stepping now. */
4314 ecs->event_thread->stop_step = 1;
4315 print_stop_reason (END_STEPPING_RANGE, 0);
4316 stop_stepping (ecs);
4317 }
4318 else
4319 {
4320 /* Else just reset the step range and keep going.
4321 No step-resume breakpoint, they don't work for
4322 epilogues, which can have multiple entry paths. */
4323 ecs->event_thread->step_range_start = stop_func_sal.pc;
4324 ecs->event_thread->step_range_end = stop_func_sal.end;
4325 keep_going (ecs);
4326 }
4327 return;
4328}
4329
d3169d93 4330/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4331 This is used to both functions and to skip over code. */
4332
4333static void
a6d9a66e
UW
4334insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4335 struct symtab_and_line sr_sal,
44cbf7b5
AC
4336 struct frame_id sr_id)
4337{
611c83ae
PA
4338 /* There should never be more than one step-resume or longjmp-resume
4339 breakpoint per thread, so we should never be setting a new
44cbf7b5 4340 step_resume_breakpoint when one is already active. */
4e1c45ea 4341 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4342
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4345 "infrun: inserting step-resume breakpoint at %s\n",
4346 paddress (gdbarch, sr_sal.pc));
d3169d93 4347
4e1c45ea 4348 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4349 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4350}
7ce450bd 4351
d3169d93 4352/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4353 to skip a potential signal handler.
7ce450bd 4354
14e60db5
DJ
4355 This is called with the interrupted function's frame. The signal
4356 handler, when it returns, will resume the interrupted function at
4357 RETURN_FRAME.pc. */
d303a6c7
AC
4358
4359static void
44cbf7b5 4360insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4361{
4362 struct symtab_and_line sr_sal;
a6d9a66e 4363 struct gdbarch *gdbarch;
d303a6c7 4364
f4c1edd8 4365 gdb_assert (return_frame != NULL);
d303a6c7
AC
4366 init_sal (&sr_sal); /* initialize to zeros */
4367
a6d9a66e 4368 gdbarch = get_frame_arch (return_frame);
568d6575 4369 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4370 sr_sal.section = find_pc_overlay (sr_sal.pc);
4371
a6d9a66e
UW
4372 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4373 get_stack_frame_id (return_frame));
d303a6c7
AC
4374}
4375
14e60db5
DJ
4376/* Similar to insert_step_resume_breakpoint_at_frame, except
4377 but a breakpoint at the previous frame's PC. This is used to
4378 skip a function after stepping into it (for "next" or if the called
4379 function has no debugging information).
4380
4381 The current function has almost always been reached by single
4382 stepping a call or return instruction. NEXT_FRAME belongs to the
4383 current function, and the breakpoint will be set at the caller's
4384 resume address.
4385
4386 This is a separate function rather than reusing
4387 insert_step_resume_breakpoint_at_frame in order to avoid
4388 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4389 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4390
4391static void
4392insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4393{
4394 struct symtab_and_line sr_sal;
a6d9a66e 4395 struct gdbarch *gdbarch;
14e60db5
DJ
4396
4397 /* We shouldn't have gotten here if we don't know where the call site
4398 is. */
c7ce8faa 4399 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4400
4401 init_sal (&sr_sal); /* initialize to zeros */
4402
a6d9a66e 4403 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4404 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4405 frame_unwind_caller_pc (next_frame));
14e60db5
DJ
4406 sr_sal.section = find_pc_overlay (sr_sal.pc);
4407
a6d9a66e 4408 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4409 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4410}
4411
611c83ae
PA
4412/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4413 new breakpoint at the target of a jmp_buf. The handling of
4414 longjmp-resume uses the same mechanisms used for handling
4415 "step-resume" breakpoints. */
4416
4417static void
a6d9a66e 4418insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4419{
4420 /* There should never be more than one step-resume or longjmp-resume
4421 breakpoint per thread, so we should never be setting a new
4422 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4423 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4424
4425 if (debug_infrun)
4426 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4427 "infrun: inserting longjmp-resume breakpoint at %s\n",
4428 paddress (gdbarch, pc));
611c83ae 4429
4e1c45ea 4430 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4431 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4432}
4433
104c1213
JM
4434static void
4435stop_stepping (struct execution_control_state *ecs)
4436{
527159b7 4437 if (debug_infrun)
8a9de0e4 4438 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4439
cd0fc7c3
SS
4440 /* Let callers know we don't want to wait for the inferior anymore. */
4441 ecs->wait_some_more = 0;
4442}
4443
d4f3574e
SS
4444/* This function handles various cases where we need to continue
4445 waiting for the inferior. */
4446/* (Used to be the keep_going: label in the old wait_for_inferior) */
4447
4448static void
4449keep_going (struct execution_control_state *ecs)
4450{
d4f3574e 4451 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4452 ecs->event_thread->prev_pc
4453 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4454
d4f3574e
SS
4455 /* If we did not do break;, it means we should keep running the
4456 inferior and not return to debugger. */
4457
2020b7ab
PA
4458 if (ecs->event_thread->trap_expected
4459 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4460 {
4461 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4462 the inferior, else we'd not get here) and we haven't yet
4463 gotten our trap. Simply continue. */
2020b7ab
PA
4464 resume (currently_stepping (ecs->event_thread),
4465 ecs->event_thread->stop_signal);
d4f3574e
SS
4466 }
4467 else
4468 {
4469 /* Either the trap was not expected, but we are continuing
488f131b
JB
4470 anyway (the user asked that this signal be passed to the
4471 child)
4472 -- or --
4473 The signal was SIGTRAP, e.g. it was our signal, but we
4474 decided we should resume from it.
d4f3574e 4475
c36b740a 4476 We're going to run this baby now!
d4f3574e 4477
c36b740a
VP
4478 Note that insert_breakpoints won't try to re-insert
4479 already inserted breakpoints. Therefore, we don't
4480 care if breakpoints were already inserted, or not. */
4481
4e1c45ea 4482 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4483 {
9f5a595d
UW
4484 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4485 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4486 /* Since we can't do a displaced step, we have to remove
4487 the breakpoint while we step it. To keep things
4488 simple, we remove them all. */
4489 remove_breakpoints ();
45e8c884
VP
4490 }
4491 else
d4f3574e 4492 {
e236ba44 4493 struct gdb_exception e;
569631c6
UW
4494 /* Stop stepping when inserting breakpoints
4495 has failed. */
e236ba44
VP
4496 TRY_CATCH (e, RETURN_MASK_ERROR)
4497 {
4498 insert_breakpoints ();
4499 }
4500 if (e.reason < 0)
d4f3574e
SS
4501 {
4502 stop_stepping (ecs);
4503 return;
4504 }
d4f3574e
SS
4505 }
4506
4e1c45ea 4507 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4508
4509 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4510 specifies that such a signal should be delivered to the
4511 target program).
4512
4513 Typically, this would occure when a user is debugging a
4514 target monitor on a simulator: the target monitor sets a
4515 breakpoint; the simulator encounters this break-point and
4516 halts the simulation handing control to GDB; GDB, noteing
4517 that the break-point isn't valid, returns control back to the
4518 simulator; the simulator then delivers the hardware
4519 equivalent of a SIGNAL_TRAP to the program being debugged. */
4520
2020b7ab
PA
4521 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4522 && !signal_program[ecs->event_thread->stop_signal])
4523 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4524
2020b7ab
PA
4525 resume (currently_stepping (ecs->event_thread),
4526 ecs->event_thread->stop_signal);
d4f3574e
SS
4527 }
4528
488f131b 4529 prepare_to_wait (ecs);
d4f3574e
SS
4530}
4531
104c1213
JM
4532/* This function normally comes after a resume, before
4533 handle_inferior_event exits. It takes care of any last bits of
4534 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4535
104c1213
JM
4536static void
4537prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4538{
527159b7 4539 if (debug_infrun)
8a9de0e4 4540 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4541
104c1213
JM
4542 /* This is the old end of the while loop. Let everybody know we
4543 want to wait for the inferior some more and get called again
4544 soon. */
4545 ecs->wait_some_more = 1;
c906108c 4546}
11cf8741
JM
4547
4548/* Print why the inferior has stopped. We always print something when
4549 the inferior exits, or receives a signal. The rest of the cases are
4550 dealt with later on in normal_stop() and print_it_typical(). Ideally
4551 there should be a call to this function from handle_inferior_event()
4552 each time stop_stepping() is called.*/
4553static void
4554print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4555{
4556 switch (stop_reason)
4557 {
11cf8741
JM
4558 case END_STEPPING_RANGE:
4559 /* We are done with a step/next/si/ni command. */
4560 /* For now print nothing. */
fb40c209 4561 /* Print a message only if not in the middle of doing a "step n"
488f131b 4562 operation for n > 1 */
414c69f7
PA
4563 if (!inferior_thread ()->step_multi
4564 || !inferior_thread ()->stop_step)
9dc5e2a9 4565 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4566 ui_out_field_string
4567 (uiout, "reason",
4568 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4569 break;
11cf8741
JM
4570 case SIGNAL_EXITED:
4571 /* The inferior was terminated by a signal. */
8b93c638 4572 annotate_signalled ();
9dc5e2a9 4573 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4574 ui_out_field_string
4575 (uiout, "reason",
4576 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4577 ui_out_text (uiout, "\nProgram terminated with signal ");
4578 annotate_signal_name ();
488f131b
JB
4579 ui_out_field_string (uiout, "signal-name",
4580 target_signal_to_name (stop_info));
8b93c638
JM
4581 annotate_signal_name_end ();
4582 ui_out_text (uiout, ", ");
4583 annotate_signal_string ();
488f131b
JB
4584 ui_out_field_string (uiout, "signal-meaning",
4585 target_signal_to_string (stop_info));
8b93c638
JM
4586 annotate_signal_string_end ();
4587 ui_out_text (uiout, ".\n");
4588 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4589 break;
4590 case EXITED:
4591 /* The inferior program is finished. */
8b93c638
JM
4592 annotate_exited (stop_info);
4593 if (stop_info)
4594 {
9dc5e2a9 4595 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4596 ui_out_field_string (uiout, "reason",
4597 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4598 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4599 ui_out_field_fmt (uiout, "exit-code", "0%o",
4600 (unsigned int) stop_info);
8b93c638
JM
4601 ui_out_text (uiout, ".\n");
4602 }
4603 else
4604 {
9dc5e2a9 4605 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4606 ui_out_field_string
4607 (uiout, "reason",
4608 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4609 ui_out_text (uiout, "\nProgram exited normally.\n");
4610 }
f17517ea
AS
4611 /* Support the --return-child-result option. */
4612 return_child_result_value = stop_info;
11cf8741
JM
4613 break;
4614 case SIGNAL_RECEIVED:
252fbfc8
PA
4615 /* Signal received. The signal table tells us to print about
4616 it. */
8b93c638 4617 annotate_signal ();
252fbfc8
PA
4618
4619 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4620 {
4621 struct thread_info *t = inferior_thread ();
4622
4623 ui_out_text (uiout, "\n[");
4624 ui_out_field_string (uiout, "thread-name",
4625 target_pid_to_str (t->ptid));
4626 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4627 ui_out_text (uiout, " stopped");
4628 }
4629 else
4630 {
4631 ui_out_text (uiout, "\nProgram received signal ");
4632 annotate_signal_name ();
4633 if (ui_out_is_mi_like_p (uiout))
4634 ui_out_field_string
4635 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4636 ui_out_field_string (uiout, "signal-name",
4637 target_signal_to_name (stop_info));
4638 annotate_signal_name_end ();
4639 ui_out_text (uiout, ", ");
4640 annotate_signal_string ();
4641 ui_out_field_string (uiout, "signal-meaning",
4642 target_signal_to_string (stop_info));
4643 annotate_signal_string_end ();
4644 }
8b93c638 4645 ui_out_text (uiout, ".\n");
11cf8741 4646 break;
b2175913
MS
4647 case NO_HISTORY:
4648 /* Reverse execution: target ran out of history info. */
4649 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4650 break;
11cf8741 4651 default:
8e65ff28 4652 internal_error (__FILE__, __LINE__,
e2e0b3e5 4653 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4654 break;
4655 }
4656}
c906108c 4657\f
43ff13b4 4658
c906108c
SS
4659/* Here to return control to GDB when the inferior stops for real.
4660 Print appropriate messages, remove breakpoints, give terminal our modes.
4661
4662 STOP_PRINT_FRAME nonzero means print the executing frame
4663 (pc, function, args, file, line number and line text).
4664 BREAKPOINTS_FAILED nonzero means stop was due to error
4665 attempting to insert breakpoints. */
4666
4667void
96baa820 4668normal_stop (void)
c906108c 4669{
73b65bb0
DJ
4670 struct target_waitstatus last;
4671 ptid_t last_ptid;
29f49a6a 4672 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4673
4674 get_last_target_status (&last_ptid, &last);
4675
29f49a6a
PA
4676 /* If an exception is thrown from this point on, make sure to
4677 propagate GDB's knowledge of the executing state to the
4678 frontend/user running state. A QUIT is an easy exception to see
4679 here, so do this before any filtered output. */
c35b1492
PA
4680 if (!non_stop)
4681 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4682 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4683 && last.kind != TARGET_WAITKIND_EXITED)
4684 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4685
4f8d22e3
PA
4686 /* In non-stop mode, we don't want GDB to switch threads behind the
4687 user's back, to avoid races where the user is typing a command to
4688 apply to thread x, but GDB switches to thread y before the user
4689 finishes entering the command. */
4690
c906108c
SS
4691 /* As with the notification of thread events, we want to delay
4692 notifying the user that we've switched thread context until
4693 the inferior actually stops.
4694
73b65bb0
DJ
4695 There's no point in saying anything if the inferior has exited.
4696 Note that SIGNALLED here means "exited with a signal", not
4697 "received a signal". */
4f8d22e3
PA
4698 if (!non_stop
4699 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4700 && target_has_execution
4701 && last.kind != TARGET_WAITKIND_SIGNALLED
4702 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4703 {
4704 target_terminal_ours_for_output ();
a3f17187 4705 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4706 target_pid_to_str (inferior_ptid));
b8fa951a 4707 annotate_thread_changed ();
39f77062 4708 previous_inferior_ptid = inferior_ptid;
c906108c 4709 }
c906108c 4710
74960c60 4711 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4712 {
4713 if (remove_breakpoints ())
4714 {
4715 target_terminal_ours_for_output ();
a3f17187
AC
4716 printf_filtered (_("\
4717Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4718Further execution is probably impossible.\n"));
c906108c
SS
4719 }
4720 }
c906108c 4721
c906108c
SS
4722 /* If an auto-display called a function and that got a signal,
4723 delete that auto-display to avoid an infinite recursion. */
4724
4725 if (stopped_by_random_signal)
4726 disable_current_display ();
4727
4728 /* Don't print a message if in the middle of doing a "step n"
4729 operation for n > 1 */
af679fd0
PA
4730 if (target_has_execution
4731 && last.kind != TARGET_WAITKIND_SIGNALLED
4732 && last.kind != TARGET_WAITKIND_EXITED
4733 && inferior_thread ()->step_multi
414c69f7 4734 && inferior_thread ()->stop_step)
c906108c
SS
4735 goto done;
4736
4737 target_terminal_ours ();
4738
7abfe014
DJ
4739 /* Set the current source location. This will also happen if we
4740 display the frame below, but the current SAL will be incorrect
4741 during a user hook-stop function. */
d729566a 4742 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4743 set_current_sal_from_frame (get_current_frame (), 1);
4744
dd7e2d2b
PA
4745 /* Let the user/frontend see the threads as stopped. */
4746 do_cleanups (old_chain);
4747
4748 /* Look up the hook_stop and run it (CLI internally handles problem
4749 of stop_command's pre-hook not existing). */
4750 if (stop_command)
4751 catch_errors (hook_stop_stub, stop_command,
4752 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4753
d729566a 4754 if (!has_stack_frames ())
d51fd4c8 4755 goto done;
c906108c 4756
32400beb
PA
4757 if (last.kind == TARGET_WAITKIND_SIGNALLED
4758 || last.kind == TARGET_WAITKIND_EXITED)
4759 goto done;
4760
c906108c
SS
4761 /* Select innermost stack frame - i.e., current frame is frame 0,
4762 and current location is based on that.
4763 Don't do this on return from a stack dummy routine,
4764 or if the program has exited. */
4765
4766 if (!stop_stack_dummy)
4767 {
0f7d239c 4768 select_frame (get_current_frame ());
c906108c
SS
4769
4770 /* Print current location without a level number, if
c5aa993b
JM
4771 we have changed functions or hit a breakpoint.
4772 Print source line if we have one.
4773 bpstat_print() contains the logic deciding in detail
4774 what to print, based on the event(s) that just occurred. */
c906108c 4775
d01a8610
AS
4776 /* If --batch-silent is enabled then there's no need to print the current
4777 source location, and to try risks causing an error message about
4778 missing source files. */
4779 if (stop_print_frame && !batch_silent)
c906108c
SS
4780 {
4781 int bpstat_ret;
4782 int source_flag;
917317f4 4783 int do_frame_printing = 1;
347bddb7 4784 struct thread_info *tp = inferior_thread ();
c906108c 4785
347bddb7 4786 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4787 switch (bpstat_ret)
4788 {
4789 case PRINT_UNKNOWN:
b0f4b84b
DJ
4790 /* If we had hit a shared library event breakpoint,
4791 bpstat_print would print out this message. If we hit
4792 an OS-level shared library event, do the same
4793 thing. */
4794 if (last.kind == TARGET_WAITKIND_LOADED)
4795 {
4796 printf_filtered (_("Stopped due to shared library event\n"));
4797 source_flag = SRC_LINE; /* something bogus */
4798 do_frame_printing = 0;
4799 break;
4800 }
4801
aa0cd9c1 4802 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4803 (or should) carry around the function and does (or
4804 should) use that when doing a frame comparison. */
414c69f7 4805 if (tp->stop_step
347bddb7 4806 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4807 get_frame_id (get_current_frame ()))
917317f4 4808 && step_start_function == find_pc_function (stop_pc))
488f131b 4809 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4810 else
488f131b 4811 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4812 break;
4813 case PRINT_SRC_AND_LOC:
488f131b 4814 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4815 break;
4816 case PRINT_SRC_ONLY:
c5394b80 4817 source_flag = SRC_LINE;
917317f4
JM
4818 break;
4819 case PRINT_NOTHING:
488f131b 4820 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4821 do_frame_printing = 0;
4822 break;
4823 default:
e2e0b3e5 4824 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4825 }
c906108c
SS
4826
4827 /* The behavior of this routine with respect to the source
4828 flag is:
c5394b80
JM
4829 SRC_LINE: Print only source line
4830 LOCATION: Print only location
4831 SRC_AND_LOC: Print location and source line */
917317f4 4832 if (do_frame_printing)
b04f3ab4 4833 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4834
4835 /* Display the auto-display expressions. */
4836 do_displays ();
4837 }
4838 }
4839
4840 /* Save the function value return registers, if we care.
4841 We might be about to restore their previous contents. */
32400beb 4842 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4843 {
4844 /* This should not be necessary. */
4845 if (stop_registers)
4846 regcache_xfree (stop_registers);
4847
4848 /* NB: The copy goes through to the target picking up the value of
4849 all the registers. */
4850 stop_registers = regcache_dup (get_current_regcache ());
4851 }
c906108c
SS
4852
4853 if (stop_stack_dummy)
4854 {
b89667eb
DE
4855 /* Pop the empty frame that contains the stack dummy.
4856 This also restores inferior state prior to the call
4857 (struct inferior_thread_state). */
4858 struct frame_info *frame = get_current_frame ();
4859 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4860 frame_pop (frame);
4861 /* frame_pop() calls reinit_frame_cache as the last thing it does
4862 which means there's currently no selected frame. We don't need
4863 to re-establish a selected frame if the dummy call returns normally,
4864 that will be done by restore_inferior_status. However, we do have
4865 to handle the case where the dummy call is returning after being
4866 stopped (e.g. the dummy call previously hit a breakpoint). We
4867 can't know which case we have so just always re-establish a
4868 selected frame here. */
0f7d239c 4869 select_frame (get_current_frame ());
c906108c
SS
4870 }
4871
c906108c
SS
4872done:
4873 annotate_stopped ();
41d2bdb4
PA
4874
4875 /* Suppress the stop observer if we're in the middle of:
4876
4877 - a step n (n > 1), as there still more steps to be done.
4878
4879 - a "finish" command, as the observer will be called in
4880 finish_command_continuation, so it can include the inferior
4881 function's return value.
4882
4883 - calling an inferior function, as we pretend we inferior didn't
4884 run at all. The return value of the call is handled by the
4885 expression evaluator, through call_function_by_hand. */
4886
4887 if (!target_has_execution
4888 || last.kind == TARGET_WAITKIND_SIGNALLED
4889 || last.kind == TARGET_WAITKIND_EXITED
4890 || (!inferior_thread ()->step_multi
4891 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4892 && inferior_thread ()->proceed_to_finish)
4893 && !inferior_thread ()->in_infcall))
347bddb7
PA
4894 {
4895 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4896 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4897 stop_print_frame);
347bddb7 4898 else
1d33d6ba 4899 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4900 }
347bddb7 4901
48844aa6
PA
4902 if (target_has_execution)
4903 {
4904 if (last.kind != TARGET_WAITKIND_SIGNALLED
4905 && last.kind != TARGET_WAITKIND_EXITED)
4906 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4907 Delete any breakpoint that is to be deleted at the next stop. */
4908 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4909 }
c906108c
SS
4910}
4911
4912static int
96baa820 4913hook_stop_stub (void *cmd)
c906108c 4914{
5913bcb0 4915 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4916 return (0);
4917}
4918\f
c5aa993b 4919int
96baa820 4920signal_stop_state (int signo)
c906108c 4921{
d6b48e9c 4922 return signal_stop[signo];
c906108c
SS
4923}
4924
c5aa993b 4925int
96baa820 4926signal_print_state (int signo)
c906108c
SS
4927{
4928 return signal_print[signo];
4929}
4930
c5aa993b 4931int
96baa820 4932signal_pass_state (int signo)
c906108c
SS
4933{
4934 return signal_program[signo];
4935}
4936
488f131b 4937int
7bda5e4a 4938signal_stop_update (int signo, int state)
d4f3574e
SS
4939{
4940 int ret = signal_stop[signo];
4941 signal_stop[signo] = state;
4942 return ret;
4943}
4944
488f131b 4945int
7bda5e4a 4946signal_print_update (int signo, int state)
d4f3574e
SS
4947{
4948 int ret = signal_print[signo];
4949 signal_print[signo] = state;
4950 return ret;
4951}
4952
488f131b 4953int
7bda5e4a 4954signal_pass_update (int signo, int state)
d4f3574e
SS
4955{
4956 int ret = signal_program[signo];
4957 signal_program[signo] = state;
4958 return ret;
4959}
4960
c906108c 4961static void
96baa820 4962sig_print_header (void)
c906108c 4963{
a3f17187
AC
4964 printf_filtered (_("\
4965Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4966}
4967
4968static void
96baa820 4969sig_print_info (enum target_signal oursig)
c906108c 4970{
54363045 4971 const char *name = target_signal_to_name (oursig);
c906108c 4972 int name_padding = 13 - strlen (name);
96baa820 4973
c906108c
SS
4974 if (name_padding <= 0)
4975 name_padding = 0;
4976
4977 printf_filtered ("%s", name);
488f131b 4978 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4979 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4980 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4981 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4982 printf_filtered ("%s\n", target_signal_to_string (oursig));
4983}
4984
4985/* Specify how various signals in the inferior should be handled. */
4986
4987static void
96baa820 4988handle_command (char *args, int from_tty)
c906108c
SS
4989{
4990 char **argv;
4991 int digits, wordlen;
4992 int sigfirst, signum, siglast;
4993 enum target_signal oursig;
4994 int allsigs;
4995 int nsigs;
4996 unsigned char *sigs;
4997 struct cleanup *old_chain;
4998
4999 if (args == NULL)
5000 {
e2e0b3e5 5001 error_no_arg (_("signal to handle"));
c906108c
SS
5002 }
5003
5004 /* Allocate and zero an array of flags for which signals to handle. */
5005
5006 nsigs = (int) TARGET_SIGNAL_LAST;
5007 sigs = (unsigned char *) alloca (nsigs);
5008 memset (sigs, 0, nsigs);
5009
5010 /* Break the command line up into args. */
5011
d1a41061 5012 argv = gdb_buildargv (args);
7a292a7a 5013 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5014
5015 /* Walk through the args, looking for signal oursigs, signal names, and
5016 actions. Signal numbers and signal names may be interspersed with
5017 actions, with the actions being performed for all signals cumulatively
5018 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5019
5020 while (*argv != NULL)
5021 {
5022 wordlen = strlen (*argv);
5023 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5024 {;
5025 }
5026 allsigs = 0;
5027 sigfirst = siglast = -1;
5028
5029 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5030 {
5031 /* Apply action to all signals except those used by the
5032 debugger. Silently skip those. */
5033 allsigs = 1;
5034 sigfirst = 0;
5035 siglast = nsigs - 1;
5036 }
5037 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5038 {
5039 SET_SIGS (nsigs, sigs, signal_stop);
5040 SET_SIGS (nsigs, sigs, signal_print);
5041 }
5042 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5043 {
5044 UNSET_SIGS (nsigs, sigs, signal_program);
5045 }
5046 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5047 {
5048 SET_SIGS (nsigs, sigs, signal_print);
5049 }
5050 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5051 {
5052 SET_SIGS (nsigs, sigs, signal_program);
5053 }
5054 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5055 {
5056 UNSET_SIGS (nsigs, sigs, signal_stop);
5057 }
5058 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5059 {
5060 SET_SIGS (nsigs, sigs, signal_program);
5061 }
5062 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5063 {
5064 UNSET_SIGS (nsigs, sigs, signal_print);
5065 UNSET_SIGS (nsigs, sigs, signal_stop);
5066 }
5067 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5068 {
5069 UNSET_SIGS (nsigs, sigs, signal_program);
5070 }
5071 else if (digits > 0)
5072 {
5073 /* It is numeric. The numeric signal refers to our own
5074 internal signal numbering from target.h, not to host/target
5075 signal number. This is a feature; users really should be
5076 using symbolic names anyway, and the common ones like
5077 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5078
5079 sigfirst = siglast = (int)
5080 target_signal_from_command (atoi (*argv));
5081 if ((*argv)[digits] == '-')
5082 {
5083 siglast = (int)
5084 target_signal_from_command (atoi ((*argv) + digits + 1));
5085 }
5086 if (sigfirst > siglast)
5087 {
5088 /* Bet he didn't figure we'd think of this case... */
5089 signum = sigfirst;
5090 sigfirst = siglast;
5091 siglast = signum;
5092 }
5093 }
5094 else
5095 {
5096 oursig = target_signal_from_name (*argv);
5097 if (oursig != TARGET_SIGNAL_UNKNOWN)
5098 {
5099 sigfirst = siglast = (int) oursig;
5100 }
5101 else
5102 {
5103 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5104 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5105 }
5106 }
5107
5108 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5109 which signals to apply actions to. */
c906108c
SS
5110
5111 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5112 {
5113 switch ((enum target_signal) signum)
5114 {
5115 case TARGET_SIGNAL_TRAP:
5116 case TARGET_SIGNAL_INT:
5117 if (!allsigs && !sigs[signum])
5118 {
9e2f0ad4
HZ
5119 if (query (_("%s is used by the debugger.\n\
5120Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5121 {
5122 sigs[signum] = 1;
5123 }
5124 else
5125 {
a3f17187 5126 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5127 gdb_flush (gdb_stdout);
5128 }
5129 }
5130 break;
5131 case TARGET_SIGNAL_0:
5132 case TARGET_SIGNAL_DEFAULT:
5133 case TARGET_SIGNAL_UNKNOWN:
5134 /* Make sure that "all" doesn't print these. */
5135 break;
5136 default:
5137 sigs[signum] = 1;
5138 break;
5139 }
5140 }
5141
5142 argv++;
5143 }
5144
3a031f65
PA
5145 for (signum = 0; signum < nsigs; signum++)
5146 if (sigs[signum])
5147 {
5148 target_notice_signals (inferior_ptid);
c906108c 5149
3a031f65
PA
5150 if (from_tty)
5151 {
5152 /* Show the results. */
5153 sig_print_header ();
5154 for (; signum < nsigs; signum++)
5155 if (sigs[signum])
5156 sig_print_info (signum);
5157 }
5158
5159 break;
5160 }
c906108c
SS
5161
5162 do_cleanups (old_chain);
5163}
5164
5165static void
96baa820 5166xdb_handle_command (char *args, int from_tty)
c906108c
SS
5167{
5168 char **argv;
5169 struct cleanup *old_chain;
5170
d1a41061
PP
5171 if (args == NULL)
5172 error_no_arg (_("xdb command"));
5173
c906108c
SS
5174 /* Break the command line up into args. */
5175
d1a41061 5176 argv = gdb_buildargv (args);
7a292a7a 5177 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5178 if (argv[1] != (char *) NULL)
5179 {
5180 char *argBuf;
5181 int bufLen;
5182
5183 bufLen = strlen (argv[0]) + 20;
5184 argBuf = (char *) xmalloc (bufLen);
5185 if (argBuf)
5186 {
5187 int validFlag = 1;
5188 enum target_signal oursig;
5189
5190 oursig = target_signal_from_name (argv[0]);
5191 memset (argBuf, 0, bufLen);
5192 if (strcmp (argv[1], "Q") == 0)
5193 sprintf (argBuf, "%s %s", argv[0], "noprint");
5194 else
5195 {
5196 if (strcmp (argv[1], "s") == 0)
5197 {
5198 if (!signal_stop[oursig])
5199 sprintf (argBuf, "%s %s", argv[0], "stop");
5200 else
5201 sprintf (argBuf, "%s %s", argv[0], "nostop");
5202 }
5203 else if (strcmp (argv[1], "i") == 0)
5204 {
5205 if (!signal_program[oursig])
5206 sprintf (argBuf, "%s %s", argv[0], "pass");
5207 else
5208 sprintf (argBuf, "%s %s", argv[0], "nopass");
5209 }
5210 else if (strcmp (argv[1], "r") == 0)
5211 {
5212 if (!signal_print[oursig])
5213 sprintf (argBuf, "%s %s", argv[0], "print");
5214 else
5215 sprintf (argBuf, "%s %s", argv[0], "noprint");
5216 }
5217 else
5218 validFlag = 0;
5219 }
5220 if (validFlag)
5221 handle_command (argBuf, from_tty);
5222 else
a3f17187 5223 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5224 if (argBuf)
b8c9b27d 5225 xfree (argBuf);
c906108c
SS
5226 }
5227 }
5228 do_cleanups (old_chain);
5229}
5230
5231/* Print current contents of the tables set by the handle command.
5232 It is possible we should just be printing signals actually used
5233 by the current target (but for things to work right when switching
5234 targets, all signals should be in the signal tables). */
5235
5236static void
96baa820 5237signals_info (char *signum_exp, int from_tty)
c906108c
SS
5238{
5239 enum target_signal oursig;
5240 sig_print_header ();
5241
5242 if (signum_exp)
5243 {
5244 /* First see if this is a symbol name. */
5245 oursig = target_signal_from_name (signum_exp);
5246 if (oursig == TARGET_SIGNAL_UNKNOWN)
5247 {
5248 /* No, try numeric. */
5249 oursig =
bb518678 5250 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5251 }
5252 sig_print_info (oursig);
5253 return;
5254 }
5255
5256 printf_filtered ("\n");
5257 /* These ugly casts brought to you by the native VAX compiler. */
5258 for (oursig = TARGET_SIGNAL_FIRST;
5259 (int) oursig < (int) TARGET_SIGNAL_LAST;
5260 oursig = (enum target_signal) ((int) oursig + 1))
5261 {
5262 QUIT;
5263
5264 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5265 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5266 sig_print_info (oursig);
5267 }
5268
a3f17187 5269 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5270}
4aa995e1
PA
5271
5272/* The $_siginfo convenience variable is a bit special. We don't know
5273 for sure the type of the value until we actually have a chance to
5274 fetch the data. The type can change depending on gdbarch, so it it
5275 also dependent on which thread you have selected.
5276
5277 1. making $_siginfo be an internalvar that creates a new value on
5278 access.
5279
5280 2. making the value of $_siginfo be an lval_computed value. */
5281
5282/* This function implements the lval_computed support for reading a
5283 $_siginfo value. */
5284
5285static void
5286siginfo_value_read (struct value *v)
5287{
5288 LONGEST transferred;
5289
5290 transferred =
5291 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5292 NULL,
5293 value_contents_all_raw (v),
5294 value_offset (v),
5295 TYPE_LENGTH (value_type (v)));
5296
5297 if (transferred != TYPE_LENGTH (value_type (v)))
5298 error (_("Unable to read siginfo"));
5299}
5300
5301/* This function implements the lval_computed support for writing a
5302 $_siginfo value. */
5303
5304static void
5305siginfo_value_write (struct value *v, struct value *fromval)
5306{
5307 LONGEST transferred;
5308
5309 transferred = target_write (&current_target,
5310 TARGET_OBJECT_SIGNAL_INFO,
5311 NULL,
5312 value_contents_all_raw (fromval),
5313 value_offset (v),
5314 TYPE_LENGTH (value_type (fromval)));
5315
5316 if (transferred != TYPE_LENGTH (value_type (fromval)))
5317 error (_("Unable to write siginfo"));
5318}
5319
5320static struct lval_funcs siginfo_value_funcs =
5321 {
5322 siginfo_value_read,
5323 siginfo_value_write
5324 };
5325
5326/* Return a new value with the correct type for the siginfo object of
78267919
UW
5327 the current thread using architecture GDBARCH. Return a void value
5328 if there's no object available. */
4aa995e1 5329
2c0b251b 5330static struct value *
78267919 5331siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5332{
4aa995e1 5333 if (target_has_stack
78267919
UW
5334 && !ptid_equal (inferior_ptid, null_ptid)
5335 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5336 {
78267919
UW
5337 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5338 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5339 }
5340
78267919 5341 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5342}
5343
c906108c 5344\f
b89667eb
DE
5345/* Inferior thread state.
5346 These are details related to the inferior itself, and don't include
5347 things like what frame the user had selected or what gdb was doing
5348 with the target at the time.
5349 For inferior function calls these are things we want to restore
5350 regardless of whether the function call successfully completes
5351 or the dummy frame has to be manually popped. */
5352
5353struct inferior_thread_state
7a292a7a
SS
5354{
5355 enum target_signal stop_signal;
5356 CORE_ADDR stop_pc;
b89667eb
DE
5357 struct regcache *registers;
5358};
5359
5360struct inferior_thread_state *
5361save_inferior_thread_state (void)
5362{
5363 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5364 struct thread_info *tp = inferior_thread ();
5365
5366 inf_state->stop_signal = tp->stop_signal;
5367 inf_state->stop_pc = stop_pc;
5368
5369 inf_state->registers = regcache_dup (get_current_regcache ());
5370
5371 return inf_state;
5372}
5373
5374/* Restore inferior session state to INF_STATE. */
5375
5376void
5377restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5378{
5379 struct thread_info *tp = inferior_thread ();
5380
5381 tp->stop_signal = inf_state->stop_signal;
5382 stop_pc = inf_state->stop_pc;
5383
5384 /* The inferior can be gone if the user types "print exit(0)"
5385 (and perhaps other times). */
5386 if (target_has_execution)
5387 /* NB: The register write goes through to the target. */
5388 regcache_cpy (get_current_regcache (), inf_state->registers);
5389 regcache_xfree (inf_state->registers);
5390 xfree (inf_state);
5391}
5392
5393static void
5394do_restore_inferior_thread_state_cleanup (void *state)
5395{
5396 restore_inferior_thread_state (state);
5397}
5398
5399struct cleanup *
5400make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5401{
5402 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5403}
5404
5405void
5406discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5407{
5408 regcache_xfree (inf_state->registers);
5409 xfree (inf_state);
5410}
5411
5412struct regcache *
5413get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5414{
5415 return inf_state->registers;
5416}
5417
5418/* Session related state for inferior function calls.
5419 These are the additional bits of state that need to be restored
5420 when an inferior function call successfully completes. */
5421
5422struct inferior_status
5423{
7a292a7a
SS
5424 bpstat stop_bpstat;
5425 int stop_step;
5426 int stop_stack_dummy;
5427 int stopped_by_random_signal;
ca67fcb8 5428 int stepping_over_breakpoint;
7a292a7a
SS
5429 CORE_ADDR step_range_start;
5430 CORE_ADDR step_range_end;
aa0cd9c1 5431 struct frame_id step_frame_id;
edb3359d 5432 struct frame_id step_stack_frame_id;
5fbbeb29 5433 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5434 CORE_ADDR step_resume_break_address;
5435 int stop_after_trap;
c0236d92 5436 int stop_soon;
7a292a7a 5437
b89667eb 5438 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5439 struct frame_id selected_frame_id;
5440
7a292a7a 5441 int proceed_to_finish;
c5a4d20b 5442 int in_infcall;
7a292a7a
SS
5443};
5444
c906108c 5445/* Save all of the information associated with the inferior<==>gdb
b89667eb 5446 connection. */
c906108c 5447
7a292a7a 5448struct inferior_status *
b89667eb 5449save_inferior_status (void)
c906108c 5450{
72cec141 5451 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5452 struct thread_info *tp = inferior_thread ();
d6b48e9c 5453 struct inferior *inf = current_inferior ();
7a292a7a 5454
414c69f7 5455 inf_status->stop_step = tp->stop_step;
c906108c
SS
5456 inf_status->stop_stack_dummy = stop_stack_dummy;
5457 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5458 inf_status->stepping_over_breakpoint = tp->trap_expected;
5459 inf_status->step_range_start = tp->step_range_start;
5460 inf_status->step_range_end = tp->step_range_end;
5461 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5462 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5463 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5464 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5465 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5466 /* Save original bpstat chain here; replace it with copy of chain.
5467 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5468 hand them back the original chain when restore_inferior_status is
5469 called. */
347bddb7
PA
5470 inf_status->stop_bpstat = tp->stop_bpstat;
5471 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5472 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5473 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5474
206415a3 5475 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5476
7a292a7a 5477 return inf_status;
c906108c
SS
5478}
5479
c906108c 5480static int
96baa820 5481restore_selected_frame (void *args)
c906108c 5482{
488f131b 5483 struct frame_id *fid = (struct frame_id *) args;
c906108c 5484 struct frame_info *frame;
c906108c 5485
101dcfbe 5486 frame = frame_find_by_id (*fid);
c906108c 5487
aa0cd9c1
AC
5488 /* If inf_status->selected_frame_id is NULL, there was no previously
5489 selected frame. */
101dcfbe 5490 if (frame == NULL)
c906108c 5491 {
8a3fe4f8 5492 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5493 return 0;
5494 }
5495
0f7d239c 5496 select_frame (frame);
c906108c
SS
5497
5498 return (1);
5499}
5500
b89667eb
DE
5501/* Restore inferior session state to INF_STATUS. */
5502
c906108c 5503void
96baa820 5504restore_inferior_status (struct inferior_status *inf_status)
c906108c 5505{
4e1c45ea 5506 struct thread_info *tp = inferior_thread ();
d6b48e9c 5507 struct inferior *inf = current_inferior ();
4e1c45ea 5508
414c69f7 5509 tp->stop_step = inf_status->stop_step;
c906108c
SS
5510 stop_stack_dummy = inf_status->stop_stack_dummy;
5511 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5512 tp->trap_expected = inf_status->stepping_over_breakpoint;
5513 tp->step_range_start = inf_status->step_range_start;
5514 tp->step_range_end = inf_status->step_range_end;
5515 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5516 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5517 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5518 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5519 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5520 bpstat_clear (&tp->stop_bpstat);
5521 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5522 inf_status->stop_bpstat = NULL;
32400beb 5523 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5524 tp->in_infcall = inf_status->in_infcall;
c906108c 5525
b89667eb 5526 if (target_has_stack)
c906108c 5527 {
c906108c 5528 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5529 walking the stack might encounter a garbage pointer and
5530 error() trying to dereference it. */
488f131b
JB
5531 if (catch_errors
5532 (restore_selected_frame, &inf_status->selected_frame_id,
5533 "Unable to restore previously selected frame:\n",
5534 RETURN_MASK_ERROR) == 0)
c906108c
SS
5535 /* Error in restoring the selected frame. Select the innermost
5536 frame. */
0f7d239c 5537 select_frame (get_current_frame ());
c906108c 5538 }
c906108c 5539
72cec141 5540 xfree (inf_status);
7a292a7a 5541}
c906108c 5542
74b7792f
AC
5543static void
5544do_restore_inferior_status_cleanup (void *sts)
5545{
5546 restore_inferior_status (sts);
5547}
5548
5549struct cleanup *
5550make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5551{
5552 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5553}
5554
c906108c 5555void
96baa820 5556discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5557{
5558 /* See save_inferior_status for info on stop_bpstat. */
5559 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5560 xfree (inf_status);
7a292a7a 5561}
b89667eb 5562\f
47932f85 5563int
3a3e9ee3 5564inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5565{
5566 struct target_waitstatus last;
5567 ptid_t last_ptid;
5568
5569 get_last_target_status (&last_ptid, &last);
5570
5571 if (last.kind != TARGET_WAITKIND_FORKED)
5572 return 0;
5573
3a3e9ee3 5574 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5575 return 0;
5576
5577 *child_pid = last.value.related_pid;
5578 return 1;
5579}
5580
5581int
3a3e9ee3 5582inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5583{
5584 struct target_waitstatus last;
5585 ptid_t last_ptid;
5586
5587 get_last_target_status (&last_ptid, &last);
5588
5589 if (last.kind != TARGET_WAITKIND_VFORKED)
5590 return 0;
5591
3a3e9ee3 5592 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5593 return 0;
5594
5595 *child_pid = last.value.related_pid;
5596 return 1;
5597}
5598
5599int
3a3e9ee3 5600inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5601{
5602 struct target_waitstatus last;
5603 ptid_t last_ptid;
5604
5605 get_last_target_status (&last_ptid, &last);
5606
5607 if (last.kind != TARGET_WAITKIND_EXECD)
5608 return 0;
5609
3a3e9ee3 5610 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5611 return 0;
5612
5613 *execd_pathname = xstrdup (last.value.execd_pathname);
5614 return 1;
5615}
5616
ca6724c1
KB
5617/* Oft used ptids */
5618ptid_t null_ptid;
5619ptid_t minus_one_ptid;
5620
5621/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5622
ca6724c1
KB
5623ptid_t
5624ptid_build (int pid, long lwp, long tid)
5625{
5626 ptid_t ptid;
5627
5628 ptid.pid = pid;
5629 ptid.lwp = lwp;
5630 ptid.tid = tid;
5631 return ptid;
5632}
5633
5634/* Create a ptid from just a pid. */
5635
5636ptid_t
5637pid_to_ptid (int pid)
5638{
5639 return ptid_build (pid, 0, 0);
5640}
5641
5642/* Fetch the pid (process id) component from a ptid. */
5643
5644int
5645ptid_get_pid (ptid_t ptid)
5646{
5647 return ptid.pid;
5648}
5649
5650/* Fetch the lwp (lightweight process) component from a ptid. */
5651
5652long
5653ptid_get_lwp (ptid_t ptid)
5654{
5655 return ptid.lwp;
5656}
5657
5658/* Fetch the tid (thread id) component from a ptid. */
5659
5660long
5661ptid_get_tid (ptid_t ptid)
5662{
5663 return ptid.tid;
5664}
5665
5666/* ptid_equal() is used to test equality of two ptids. */
5667
5668int
5669ptid_equal (ptid_t ptid1, ptid_t ptid2)
5670{
5671 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5672 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5673}
5674
252fbfc8
PA
5675/* Returns true if PTID represents a process. */
5676
5677int
5678ptid_is_pid (ptid_t ptid)
5679{
5680 if (ptid_equal (minus_one_ptid, ptid))
5681 return 0;
5682 if (ptid_equal (null_ptid, ptid))
5683 return 0;
5684
5685 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5686}
5687
ca6724c1
KB
5688/* restore_inferior_ptid() will be used by the cleanup machinery
5689 to restore the inferior_ptid value saved in a call to
5690 save_inferior_ptid(). */
ce696e05
KB
5691
5692static void
5693restore_inferior_ptid (void *arg)
5694{
5695 ptid_t *saved_ptid_ptr = arg;
5696 inferior_ptid = *saved_ptid_ptr;
5697 xfree (arg);
5698}
5699
5700/* Save the value of inferior_ptid so that it may be restored by a
5701 later call to do_cleanups(). Returns the struct cleanup pointer
5702 needed for later doing the cleanup. */
5703
5704struct cleanup *
5705save_inferior_ptid (void)
5706{
5707 ptid_t *saved_ptid_ptr;
5708
5709 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5710 *saved_ptid_ptr = inferior_ptid;
5711 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5712}
c5aa993b 5713\f
488f131b 5714
b2175913
MS
5715/* User interface for reverse debugging:
5716 Set exec-direction / show exec-direction commands
5717 (returns error unless target implements to_set_exec_direction method). */
5718
5719enum exec_direction_kind execution_direction = EXEC_FORWARD;
5720static const char exec_forward[] = "forward";
5721static const char exec_reverse[] = "reverse";
5722static const char *exec_direction = exec_forward;
5723static const char *exec_direction_names[] = {
5724 exec_forward,
5725 exec_reverse,
5726 NULL
5727};
5728
5729static void
5730set_exec_direction_func (char *args, int from_tty,
5731 struct cmd_list_element *cmd)
5732{
5733 if (target_can_execute_reverse)
5734 {
5735 if (!strcmp (exec_direction, exec_forward))
5736 execution_direction = EXEC_FORWARD;
5737 else if (!strcmp (exec_direction, exec_reverse))
5738 execution_direction = EXEC_REVERSE;
5739 }
5740}
5741
5742static void
5743show_exec_direction_func (struct ui_file *out, int from_tty,
5744 struct cmd_list_element *cmd, const char *value)
5745{
5746 switch (execution_direction) {
5747 case EXEC_FORWARD:
5748 fprintf_filtered (out, _("Forward.\n"));
5749 break;
5750 case EXEC_REVERSE:
5751 fprintf_filtered (out, _("Reverse.\n"));
5752 break;
5753 case EXEC_ERROR:
5754 default:
5755 fprintf_filtered (out,
5756 _("Forward (target `%s' does not support exec-direction).\n"),
5757 target_shortname);
5758 break;
5759 }
5760}
5761
5762/* User interface for non-stop mode. */
5763
ad52ddc6
PA
5764int non_stop = 0;
5765static int non_stop_1 = 0;
5766
5767static void
5768set_non_stop (char *args, int from_tty,
5769 struct cmd_list_element *c)
5770{
5771 if (target_has_execution)
5772 {
5773 non_stop_1 = non_stop;
5774 error (_("Cannot change this setting while the inferior is running."));
5775 }
5776
5777 non_stop = non_stop_1;
5778}
5779
5780static void
5781show_non_stop (struct ui_file *file, int from_tty,
5782 struct cmd_list_element *c, const char *value)
5783{
5784 fprintf_filtered (file,
5785 _("Controlling the inferior in non-stop mode is %s.\n"),
5786 value);
5787}
5788
d4db2f36
PA
5789static void
5790show_schedule_multiple (struct ui_file *file, int from_tty,
5791 struct cmd_list_element *c, const char *value)
5792{
5793 fprintf_filtered (file, _("\
5794Resuming the execution of threads of all processes is %s.\n"), value);
5795}
ad52ddc6 5796
c906108c 5797void
96baa820 5798_initialize_infrun (void)
c906108c 5799{
52f0bd74
AC
5800 int i;
5801 int numsigs;
c906108c
SS
5802 struct cmd_list_element *c;
5803
1bedd215
AC
5804 add_info ("signals", signals_info, _("\
5805What debugger does when program gets various signals.\n\
5806Specify a signal as argument to print info on that signal only."));
c906108c
SS
5807 add_info_alias ("handle", "signals", 0);
5808
1bedd215
AC
5809 add_com ("handle", class_run, handle_command, _("\
5810Specify how to handle a signal.\n\
c906108c
SS
5811Args are signals and actions to apply to those signals.\n\
5812Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5813from 1-15 are allowed for compatibility with old versions of GDB.\n\
5814Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5815The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5816used by the debugger, typically SIGTRAP and SIGINT.\n\
5817Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5818\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5819Stop means reenter debugger if this signal happens (implies print).\n\
5820Print means print a message if this signal happens.\n\
5821Pass means let program see this signal; otherwise program doesn't know.\n\
5822Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5823Pass and Stop may be combined."));
c906108c
SS
5824 if (xdb_commands)
5825 {
1bedd215
AC
5826 add_com ("lz", class_info, signals_info, _("\
5827What debugger does when program gets various signals.\n\
5828Specify a signal as argument to print info on that signal only."));
5829 add_com ("z", class_run, xdb_handle_command, _("\
5830Specify how to handle a signal.\n\
c906108c
SS
5831Args are signals and actions to apply to those signals.\n\
5832Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5833from 1-15 are allowed for compatibility with old versions of GDB.\n\
5834Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5835The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5836used by the debugger, typically SIGTRAP and SIGINT.\n\
5837Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5838\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5839nopass), \"Q\" (noprint)\n\
5840Stop means reenter debugger if this signal happens (implies print).\n\
5841Print means print a message if this signal happens.\n\
5842Pass means let program see this signal; otherwise program doesn't know.\n\
5843Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5844Pass and Stop may be combined."));
c906108c
SS
5845 }
5846
5847 if (!dbx_commands)
1a966eab
AC
5848 stop_command = add_cmd ("stop", class_obscure,
5849 not_just_help_class_command, _("\
5850There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5851This allows you to set a list of commands to be run each time execution\n\
1a966eab 5852of the program stops."), &cmdlist);
c906108c 5853
85c07804
AC
5854 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5855Set inferior debugging."), _("\
5856Show inferior debugging."), _("\
5857When non-zero, inferior specific debugging is enabled."),
5858 NULL,
920d2a44 5859 show_debug_infrun,
85c07804 5860 &setdebuglist, &showdebuglist);
527159b7 5861
237fc4c9
PA
5862 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5863Set displaced stepping debugging."), _("\
5864Show displaced stepping debugging."), _("\
5865When non-zero, displaced stepping specific debugging is enabled."),
5866 NULL,
5867 show_debug_displaced,
5868 &setdebuglist, &showdebuglist);
5869
ad52ddc6
PA
5870 add_setshow_boolean_cmd ("non-stop", no_class,
5871 &non_stop_1, _("\
5872Set whether gdb controls the inferior in non-stop mode."), _("\
5873Show whether gdb controls the inferior in non-stop mode."), _("\
5874When debugging a multi-threaded program and this setting is\n\
5875off (the default, also called all-stop mode), when one thread stops\n\
5876(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5877all other threads in the program while you interact with the thread of\n\
5878interest. When you continue or step a thread, you can allow the other\n\
5879threads to run, or have them remain stopped, but while you inspect any\n\
5880thread's state, all threads stop.\n\
5881\n\
5882In non-stop mode, when one thread stops, other threads can continue\n\
5883to run freely. You'll be able to step each thread independently,\n\
5884leave it stopped or free to run as needed."),
5885 set_non_stop,
5886 show_non_stop,
5887 &setlist,
5888 &showlist);
5889
c906108c 5890 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5891 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5892 signal_print = (unsigned char *)
5893 xmalloc (sizeof (signal_print[0]) * numsigs);
5894 signal_program = (unsigned char *)
5895 xmalloc (sizeof (signal_program[0]) * numsigs);
5896 for (i = 0; i < numsigs; i++)
5897 {
5898 signal_stop[i] = 1;
5899 signal_print[i] = 1;
5900 signal_program[i] = 1;
5901 }
5902
5903 /* Signals caused by debugger's own actions
5904 should not be given to the program afterwards. */
5905 signal_program[TARGET_SIGNAL_TRAP] = 0;
5906 signal_program[TARGET_SIGNAL_INT] = 0;
5907
5908 /* Signals that are not errors should not normally enter the debugger. */
5909 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5910 signal_print[TARGET_SIGNAL_ALRM] = 0;
5911 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5912 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5913 signal_stop[TARGET_SIGNAL_PROF] = 0;
5914 signal_print[TARGET_SIGNAL_PROF] = 0;
5915 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5916 signal_print[TARGET_SIGNAL_CHLD] = 0;
5917 signal_stop[TARGET_SIGNAL_IO] = 0;
5918 signal_print[TARGET_SIGNAL_IO] = 0;
5919 signal_stop[TARGET_SIGNAL_POLL] = 0;
5920 signal_print[TARGET_SIGNAL_POLL] = 0;
5921 signal_stop[TARGET_SIGNAL_URG] = 0;
5922 signal_print[TARGET_SIGNAL_URG] = 0;
5923 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5924 signal_print[TARGET_SIGNAL_WINCH] = 0;
5925
cd0fc7c3
SS
5926 /* These signals are used internally by user-level thread
5927 implementations. (See signal(5) on Solaris.) Like the above
5928 signals, a healthy program receives and handles them as part of
5929 its normal operation. */
5930 signal_stop[TARGET_SIGNAL_LWP] = 0;
5931 signal_print[TARGET_SIGNAL_LWP] = 0;
5932 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5933 signal_print[TARGET_SIGNAL_WAITING] = 0;
5934 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5935 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5936
85c07804
AC
5937 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5938 &stop_on_solib_events, _("\
5939Set stopping for shared library events."), _("\
5940Show stopping for shared library events."), _("\
c906108c
SS
5941If nonzero, gdb will give control to the user when the dynamic linker\n\
5942notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5943to the user would be loading/unloading of a new library."),
5944 NULL,
920d2a44 5945 show_stop_on_solib_events,
85c07804 5946 &setlist, &showlist);
c906108c 5947
7ab04401
AC
5948 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5949 follow_fork_mode_kind_names,
5950 &follow_fork_mode_string, _("\
5951Set debugger response to a program call of fork or vfork."), _("\
5952Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5953A fork or vfork creates a new process. follow-fork-mode can be:\n\
5954 parent - the original process is debugged after a fork\n\
5955 child - the new process is debugged after a fork\n\
ea1dd7bc 5956The unfollowed process will continue to run.\n\
7ab04401
AC
5957By default, the debugger will follow the parent process."),
5958 NULL,
920d2a44 5959 show_follow_fork_mode_string,
7ab04401
AC
5960 &setlist, &showlist);
5961
5962 add_setshow_enum_cmd ("scheduler-locking", class_run,
5963 scheduler_enums, &scheduler_mode, _("\
5964Set mode for locking scheduler during execution."), _("\
5965Show mode for locking scheduler during execution."), _("\
c906108c
SS
5966off == no locking (threads may preempt at any time)\n\
5967on == full locking (no thread except the current thread may run)\n\
5968step == scheduler locked during every single-step operation.\n\
5969 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5970 Other threads may run while stepping over a function call ('next')."),
5971 set_schedlock_func, /* traps on target vector */
920d2a44 5972 show_scheduler_mode,
7ab04401 5973 &setlist, &showlist);
5fbbeb29 5974
d4db2f36
PA
5975 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5976Set mode for resuming threads of all processes."), _("\
5977Show mode for resuming threads of all processes."), _("\
5978When on, execution commands (such as 'continue' or 'next') resume all\n\
5979threads of all processes. When off (which is the default), execution\n\
5980commands only resume the threads of the current process. The set of\n\
5981threads that are resumed is further refined by the scheduler-locking\n\
5982mode (see help set scheduler-locking)."),
5983 NULL,
5984 show_schedule_multiple,
5985 &setlist, &showlist);
5986
5bf193a2
AC
5987 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5988Set mode of the step operation."), _("\
5989Show mode of the step operation."), _("\
5990When set, doing a step over a function without debug line information\n\
5991will stop at the first instruction of that function. Otherwise, the\n\
5992function is skipped and the step command stops at a different source line."),
5993 NULL,
920d2a44 5994 show_step_stop_if_no_debug,
5bf193a2 5995 &setlist, &showlist);
ca6724c1 5996
fff08868
HZ
5997 add_setshow_enum_cmd ("displaced-stepping", class_run,
5998 can_use_displaced_stepping_enum,
5999 &can_use_displaced_stepping, _("\
237fc4c9
PA
6000Set debugger's willingness to use displaced stepping."), _("\
6001Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6002If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6003supported by the target architecture. If off, gdb will not use displaced\n\
6004stepping to step over breakpoints, even if such is supported by the target\n\
6005architecture. If auto (which is the default), gdb will use displaced stepping\n\
6006if the target architecture supports it and non-stop mode is active, but will not\n\
6007use it in all-stop mode (see help set non-stop)."),
6008 NULL,
6009 show_can_use_displaced_stepping,
6010 &setlist, &showlist);
237fc4c9 6011
b2175913
MS
6012 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6013 &exec_direction, _("Set direction of execution.\n\
6014Options are 'forward' or 'reverse'."),
6015 _("Show direction of execution (forward/reverse)."),
6016 _("Tells gdb whether to execute forward or backward."),
6017 set_exec_direction_func, show_exec_direction_func,
6018 &setlist, &showlist);
6019
ca6724c1
KB
6020 /* ptid initializations */
6021 null_ptid = ptid_build (0, 0, 0);
6022 minus_one_ptid = ptid_build (-1, 0, 0);
6023 inferior_ptid = null_ptid;
6024 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6025 displaced_step_ptid = null_ptid;
5231c1fd
PA
6026
6027 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6028 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6029 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6030
6031 /* Explicitly create without lookup, since that tries to create a
6032 value with a void typed value, and when we get here, gdbarch
6033 isn't initialized yet. At this point, we're quite sure there
6034 isn't another convenience variable of the same name. */
6035 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6036}