]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
daily update
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
4e1c45ea 75static int currently_stepping (struct thread_info *tp);
96baa820 76
a7212384
UW
77static int currently_stepping_callback (struct thread_info *tp, void *data);
78
96baa820
JM
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
920d2a44
AC
89static void
90show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92{
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94}
5fbbeb29 95
43ff13b4 96/* In asynchronous mode, but simulating synchronous execution. */
96baa820 97
43ff13b4
JM
98int sync_execution = 0;
99
c906108c
SS
100/* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
96baa820
JM
102 running in. */
103
39f77062 104static ptid_t previous_inferior_ptid;
7a292a7a 105
237fc4c9
PA
106int debug_displaced = 0;
107static void
108show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112}
113
527159b7 114static int debug_infrun = 0;
920d2a44
AC
115static void
116show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120}
527159b7 121
d4f3574e
SS
122/* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
ca557f44
AC
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
d4f3574e 141
cfd8ab24 142 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
cfd8ab24 148 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
c906108c 160
c906108c
SS
161/* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169#ifndef SOLIB_IN_DYNAMIC_LINKER
170#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171#endif
172
c2c6d25f 173
7a292a7a
SS
174/* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
692590c1
MS
177#ifndef CANNOT_STEP_HW_WATCHPOINTS
178#define CANNOT_STEP_HW_WATCHPOINTS 0
179#else
180#undef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 1
182#endif
183
c906108c
SS
184/* Tables of how to react to signals; the user sets them. */
185
186static unsigned char *signal_stop;
187static unsigned char *signal_print;
188static unsigned char *signal_program;
189
190#define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198#define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
39f77062
KB
206/* Value to pass to target_resume() to cause all threads to resume */
207
208#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
209
210/* Command list pointer for the "stop" placeholder. */
211
212static struct cmd_list_element *stop_command;
213
c906108c
SS
214/* Function inferior was in as of last step command. */
215
216static struct symbol *step_start_function;
217
c906108c
SS
218/* Nonzero if we want to give control to the user when we're notified
219 of shared library events by the dynamic linker. */
220static int stop_on_solib_events;
920d2a44
AC
221static void
222show_stop_on_solib_events (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224{
225 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
226 value);
227}
c906108c 228
c906108c
SS
229/* Nonzero means expecting a trace trap
230 and should stop the inferior and return silently when it happens. */
231
232int stop_after_trap;
233
642fd101
DE
234/* Save register contents here when executing a "finish" command or are
235 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
236 Thus this contains the return value from the called function (assuming
237 values are returned in a register). */
238
72cec141 239struct regcache *stop_registers;
c906108c 240
c906108c
SS
241/* Nonzero after stop if current stack frame should be printed. */
242
243static int stop_print_frame;
244
e02bc4cc 245/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
246 returned by target_wait()/deprecated_target_wait_hook(). This
247 information is returned by get_last_target_status(). */
39f77062 248static ptid_t target_last_wait_ptid;
e02bc4cc
DS
249static struct target_waitstatus target_last_waitstatus;
250
0d1e5fa7
PA
251static void context_switch (ptid_t ptid);
252
4e1c45ea 253void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
254
255void init_infwait_state (void);
a474d7c2 256
c906108c
SS
257/* This is used to remember when a fork, vfork or exec event
258 was caught by a catchpoint, and thus the event is to be
259 followed at the next resume of the inferior, and not
260 immediately. */
261static struct
488f131b
JB
262{
263 enum target_waitkind kind;
264 struct
c906108c 265 {
3a3e9ee3
PA
266 ptid_t parent_pid;
267 ptid_t child_pid;
c906108c 268 }
488f131b
JB
269 fork_event;
270 char *execd_pathname;
271}
c906108c
SS
272pending_follow;
273
53904c9e
AC
274static const char follow_fork_mode_child[] = "child";
275static const char follow_fork_mode_parent[] = "parent";
276
488f131b 277static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
278 follow_fork_mode_child,
279 follow_fork_mode_parent,
280 NULL
ef346e04 281};
c906108c 282
53904c9e 283static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
284static void
285show_follow_fork_mode_string (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("\
289Debugger response to a program call of fork or vfork is \"%s\".\n"),
290 value);
291}
c906108c
SS
292\f
293
6604731b 294static int
4ef3f3be 295follow_fork (void)
c906108c 296{
ea1dd7bc 297 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 298
6604731b 299 return target_follow_fork (follow_child);
c906108c
SS
300}
301
6604731b
DJ
302void
303follow_inferior_reset_breakpoints (void)
c906108c 304{
4e1c45ea
PA
305 struct thread_info *tp = inferior_thread ();
306
6604731b
DJ
307 /* Was there a step_resume breakpoint? (There was if the user
308 did a "next" at the fork() call.) If so, explicitly reset its
309 thread number.
310
311 step_resumes are a form of bp that are made to be per-thread.
312 Since we created the step_resume bp when the parent process
313 was being debugged, and now are switching to the child process,
314 from the breakpoint package's viewpoint, that's a switch of
315 "threads". We must update the bp's notion of which thread
316 it is for, or it'll be ignored when it triggers. */
317
4e1c45ea
PA
318 if (tp->step_resume_breakpoint)
319 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
320
321 /* Reinsert all breakpoints in the child. The user may have set
322 breakpoints after catching the fork, in which case those
323 were never set in the child, but only in the parent. This makes
324 sure the inserted breakpoints match the breakpoint list. */
325
326 breakpoint_re_set ();
327 insert_breakpoints ();
c906108c 328}
c906108c 329
1adeb98a
FN
330/* EXECD_PATHNAME is assumed to be non-NULL. */
331
c906108c 332static void
3a3e9ee3 333follow_exec (ptid_t pid, char *execd_pathname)
c906108c 334{
7a292a7a 335 struct target_ops *tgt;
4e1c45ea 336 struct thread_info *th = inferior_thread ();
7a292a7a 337
c906108c
SS
338 /* This is an exec event that we actually wish to pay attention to.
339 Refresh our symbol table to the newly exec'd program, remove any
340 momentary bp's, etc.
341
342 If there are breakpoints, they aren't really inserted now,
343 since the exec() transformed our inferior into a fresh set
344 of instructions.
345
346 We want to preserve symbolic breakpoints on the list, since
347 we have hopes that they can be reset after the new a.out's
348 symbol table is read.
349
350 However, any "raw" breakpoints must be removed from the list
351 (e.g., the solib bp's), since their address is probably invalid
352 now.
353
354 And, we DON'T want to call delete_breakpoints() here, since
355 that may write the bp's "shadow contents" (the instruction
356 value that was overwritten witha TRAP instruction). Since
357 we now have a new a.out, those shadow contents aren't valid. */
358 update_breakpoints_after_exec ();
359
360 /* If there was one, it's gone now. We cannot truly step-to-next
361 statement through an exec(). */
4e1c45ea
PA
362 th->step_resume_breakpoint = NULL;
363 th->step_range_start = 0;
364 th->step_range_end = 0;
c906108c 365
c906108c 366 /* What is this a.out's name? */
a3f17187 367 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
368
369 /* We've followed the inferior through an exec. Therefore, the
370 inferior has essentially been killed & reborn. */
7a292a7a 371
c906108c 372 gdb_flush (gdb_stdout);
6ca15a4b
PA
373
374 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
375
376 if (gdb_sysroot && *gdb_sysroot)
377 {
378 char *name = alloca (strlen (gdb_sysroot)
379 + strlen (execd_pathname)
380 + 1);
381 strcpy (name, gdb_sysroot);
382 strcat (name, execd_pathname);
383 execd_pathname = name;
384 }
c906108c
SS
385
386 /* That a.out is now the one to use. */
387 exec_file_attach (execd_pathname, 0);
388
cce9b6bf
PA
389 /* Reset the shared library package. This ensures that we get a
390 shlib event when the child reaches "_start", at which point the
391 dld will have had a chance to initialize the child. */
392 /* Also, loading a symbol file below may trigger symbol lookups, and
393 we don't want those to be satisfied by the libraries of the
394 previous incarnation of this process. */
395 no_shared_libraries (NULL, 0);
396
397 /* Load the main file's symbols. */
1adeb98a 398 symbol_file_add_main (execd_pathname, 0);
c906108c 399
7a292a7a 400#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 401 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
402#else
403 solib_create_inferior_hook ();
7a292a7a 404#endif
c906108c
SS
405
406 /* Reinsert all breakpoints. (Those which were symbolic have
407 been reset to the proper address in the new a.out, thanks
408 to symbol_file_command...) */
409 insert_breakpoints ();
410
411 /* The next resume of this inferior should bring it to the shlib
412 startup breakpoints. (If the user had also set bp's on
413 "main" from the old (parent) process, then they'll auto-
414 matically get reset there in the new process.) */
c906108c
SS
415}
416
417/* Non-zero if we just simulating a single-step. This is needed
418 because we cannot remove the breakpoints in the inferior process
419 until after the `wait' in `wait_for_inferior'. */
420static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
421
422/* The thread we inserted single-step breakpoints for. */
423static ptid_t singlestep_ptid;
424
fd48f117
DJ
425/* PC when we started this single-step. */
426static CORE_ADDR singlestep_pc;
427
9f976b41
DJ
428/* If another thread hit the singlestep breakpoint, we save the original
429 thread here so that we can resume single-stepping it later. */
430static ptid_t saved_singlestep_ptid;
431static int stepping_past_singlestep_breakpoint;
6a6b96b9 432
ca67fcb8
VP
433/* If not equal to null_ptid, this means that after stepping over breakpoint
434 is finished, we need to switch to deferred_step_ptid, and step it.
435
436 The use case is when one thread has hit a breakpoint, and then the user
437 has switched to another thread and issued 'step'. We need to step over
438 breakpoint in the thread which hit the breakpoint, but then continue
439 stepping the thread user has selected. */
440static ptid_t deferred_step_ptid;
c906108c 441\f
237fc4c9
PA
442/* Displaced stepping. */
443
444/* In non-stop debugging mode, we must take special care to manage
445 breakpoints properly; in particular, the traditional strategy for
446 stepping a thread past a breakpoint it has hit is unsuitable.
447 'Displaced stepping' is a tactic for stepping one thread past a
448 breakpoint it has hit while ensuring that other threads running
449 concurrently will hit the breakpoint as they should.
450
451 The traditional way to step a thread T off a breakpoint in a
452 multi-threaded program in all-stop mode is as follows:
453
454 a0) Initially, all threads are stopped, and breakpoints are not
455 inserted.
456 a1) We single-step T, leaving breakpoints uninserted.
457 a2) We insert breakpoints, and resume all threads.
458
459 In non-stop debugging, however, this strategy is unsuitable: we
460 don't want to have to stop all threads in the system in order to
461 continue or step T past a breakpoint. Instead, we use displaced
462 stepping:
463
464 n0) Initially, T is stopped, other threads are running, and
465 breakpoints are inserted.
466 n1) We copy the instruction "under" the breakpoint to a separate
467 location, outside the main code stream, making any adjustments
468 to the instruction, register, and memory state as directed by
469 T's architecture.
470 n2) We single-step T over the instruction at its new location.
471 n3) We adjust the resulting register and memory state as directed
472 by T's architecture. This includes resetting T's PC to point
473 back into the main instruction stream.
474 n4) We resume T.
475
476 This approach depends on the following gdbarch methods:
477
478 - gdbarch_max_insn_length and gdbarch_displaced_step_location
479 indicate where to copy the instruction, and how much space must
480 be reserved there. We use these in step n1.
481
482 - gdbarch_displaced_step_copy_insn copies a instruction to a new
483 address, and makes any necessary adjustments to the instruction,
484 register contents, and memory. We use this in step n1.
485
486 - gdbarch_displaced_step_fixup adjusts registers and memory after
487 we have successfuly single-stepped the instruction, to yield the
488 same effect the instruction would have had if we had executed it
489 at its original address. We use this in step n3.
490
491 - gdbarch_displaced_step_free_closure provides cleanup.
492
493 The gdbarch_displaced_step_copy_insn and
494 gdbarch_displaced_step_fixup functions must be written so that
495 copying an instruction with gdbarch_displaced_step_copy_insn,
496 single-stepping across the copied instruction, and then applying
497 gdbarch_displaced_insn_fixup should have the same effects on the
498 thread's memory and registers as stepping the instruction in place
499 would have. Exactly which responsibilities fall to the copy and
500 which fall to the fixup is up to the author of those functions.
501
502 See the comments in gdbarch.sh for details.
503
504 Note that displaced stepping and software single-step cannot
505 currently be used in combination, although with some care I think
506 they could be made to. Software single-step works by placing
507 breakpoints on all possible subsequent instructions; if the
508 displaced instruction is a PC-relative jump, those breakpoints
509 could fall in very strange places --- on pages that aren't
510 executable, or at addresses that are not proper instruction
511 boundaries. (We do generally let other threads run while we wait
512 to hit the software single-step breakpoint, and they might
513 encounter such a corrupted instruction.) One way to work around
514 this would be to have gdbarch_displaced_step_copy_insn fully
515 simulate the effect of PC-relative instructions (and return NULL)
516 on architectures that use software single-stepping.
517
518 In non-stop mode, we can have independent and simultaneous step
519 requests, so more than one thread may need to simultaneously step
520 over a breakpoint. The current implementation assumes there is
521 only one scratch space per process. In this case, we have to
522 serialize access to the scratch space. If thread A wants to step
523 over a breakpoint, but we are currently waiting for some other
524 thread to complete a displaced step, we leave thread A stopped and
525 place it in the displaced_step_request_queue. Whenever a displaced
526 step finishes, we pick the next thread in the queue and start a new
527 displaced step operation on it. See displaced_step_prepare and
528 displaced_step_fixup for details. */
529
530/* If this is not null_ptid, this is the thread carrying out a
531 displaced single-step. This thread's state will require fixing up
532 once it has completed its step. */
533static ptid_t displaced_step_ptid;
534
535struct displaced_step_request
536{
537 ptid_t ptid;
538 struct displaced_step_request *next;
539};
540
541/* A queue of pending displaced stepping requests. */
542struct displaced_step_request *displaced_step_request_queue;
543
544/* The architecture the thread had when we stepped it. */
545static struct gdbarch *displaced_step_gdbarch;
546
547/* The closure provided gdbarch_displaced_step_copy_insn, to be used
548 for post-step cleanup. */
549static struct displaced_step_closure *displaced_step_closure;
550
551/* The address of the original instruction, and the copy we made. */
552static CORE_ADDR displaced_step_original, displaced_step_copy;
553
554/* Saved contents of copy area. */
555static gdb_byte *displaced_step_saved_copy;
556
fff08868
HZ
557/* Enum strings for "set|show displaced-stepping". */
558
559static const char can_use_displaced_stepping_auto[] = "auto";
560static const char can_use_displaced_stepping_on[] = "on";
561static const char can_use_displaced_stepping_off[] = "off";
562static const char *can_use_displaced_stepping_enum[] =
563{
564 can_use_displaced_stepping_auto,
565 can_use_displaced_stepping_on,
566 can_use_displaced_stepping_off,
567 NULL,
568};
569
570/* If ON, and the architecture supports it, GDB will use displaced
571 stepping to step over breakpoints. If OFF, or if the architecture
572 doesn't support it, GDB will instead use the traditional
573 hold-and-step approach. If AUTO (which is the default), GDB will
574 decide which technique to use to step over breakpoints depending on
575 which of all-stop or non-stop mode is active --- displaced stepping
576 in non-stop mode; hold-and-step in all-stop mode. */
577
578static const char *can_use_displaced_stepping =
579 can_use_displaced_stepping_auto;
580
237fc4c9
PA
581static void
582show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
583 struct cmd_list_element *c,
584 const char *value)
585{
fff08868
HZ
586 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
587 fprintf_filtered (file, _("\
588Debugger's willingness to use displaced stepping to step over \
589breakpoints is %s (currently %s).\n"),
590 value, non_stop ? "on" : "off");
591 else
592 fprintf_filtered (file, _("\
593Debugger's willingness to use displaced stepping to step over \
594breakpoints is %s.\n"), value);
237fc4c9
PA
595}
596
fff08868
HZ
597/* Return non-zero if displaced stepping can/should be used to step
598 over breakpoints. */
599
237fc4c9
PA
600static int
601use_displaced_stepping (struct gdbarch *gdbarch)
602{
fff08868
HZ
603 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
604 && non_stop)
605 || can_use_displaced_stepping == can_use_displaced_stepping_on)
237fc4c9
PA
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607}
608
609/* Clean out any stray displaced stepping state. */
610static void
611displaced_step_clear (void)
612{
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622}
623
624static void
625cleanup_displaced_step_closure (void *ptr)
626{
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630}
631
632/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633void
634displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637{
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643}
644
645/* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659static int
660displaced_step_prepare (ptid_t ptid)
661{
ad53cd71 662 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
ad53cd71
PA
714 old_cleanups = save_inferior_ptid ();
715 inferior_ptid = ptid;
716
515630c5 717 original = regcache_read_pc (regcache);
237fc4c9
PA
718
719 copy = gdbarch_displaced_step_location (gdbarch);
720 len = gdbarch_max_insn_length (gdbarch);
721
722 /* Save the original contents of the copy area. */
723 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
724 ignore_cleanups = make_cleanup (free_current_contents,
725 &displaced_step_saved_copy);
237fc4c9
PA
726 read_memory (copy, displaced_step_saved_copy, len);
727 if (debug_displaced)
728 {
729 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
730 paddr_nz (copy));
731 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
732 };
733
734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 735 original, copy, regcache);
237fc4c9
PA
736
737 /* We don't support the fully-simulated case at present. */
738 gdb_assert (closure);
739
740 make_cleanup (cleanup_displaced_step_closure, closure);
741
742 /* Resume execution at the copy. */
515630c5 743 regcache_write_pc (regcache, copy);
237fc4c9 744
ad53cd71
PA
745 discard_cleanups (ignore_cleanups);
746
747 do_cleanups (old_cleanups);
237fc4c9
PA
748
749 if (debug_displaced)
750 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 751 paddr_nz (copy));
237fc4c9
PA
752
753 /* Save the information we need to fix things up if the step
754 succeeds. */
755 displaced_step_ptid = ptid;
756 displaced_step_gdbarch = gdbarch;
757 displaced_step_closure = closure;
758 displaced_step_original = original;
759 displaced_step_copy = copy;
760 return 1;
761}
762
763static void
764displaced_step_clear_cleanup (void *ignore)
765{
766 displaced_step_clear ();
767}
768
769static void
770write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
771{
772 struct cleanup *ptid_cleanup = save_inferior_ptid ();
773 inferior_ptid = ptid;
774 write_memory (memaddr, myaddr, len);
775 do_cleanups (ptid_cleanup);
776}
777
778static void
779displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
780{
781 struct cleanup *old_cleanups;
782
783 /* Was this event for the pid we displaced? */
784 if (ptid_equal (displaced_step_ptid, null_ptid)
785 || ! ptid_equal (displaced_step_ptid, event_ptid))
786 return;
787
788 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
789
790 /* Restore the contents of the copy area. */
791 {
792 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
793 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
794 displaced_step_saved_copy, len);
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
797 paddr_nz (displaced_step_copy));
798 }
799
800 /* Did the instruction complete successfully? */
801 if (signal == TARGET_SIGNAL_TRAP)
802 {
803 /* Fix up the resulting state. */
804 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
805 displaced_step_closure,
806 displaced_step_original,
807 displaced_step_copy,
808 get_thread_regcache (displaced_step_ptid));
809 }
810 else
811 {
812 /* Since the instruction didn't complete, all we can do is
813 relocate the PC. */
515630c5
UW
814 struct regcache *regcache = get_thread_regcache (event_ptid);
815 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 816 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 817 regcache_write_pc (regcache, pc);
237fc4c9
PA
818 }
819
820 do_cleanups (old_cleanups);
821
1c5cfe86
PA
822 displaced_step_ptid = null_ptid;
823
237fc4c9
PA
824 /* Are there any pending displaced stepping requests? If so, run
825 one now. */
1c5cfe86 826 while (displaced_step_request_queue)
237fc4c9
PA
827 {
828 struct displaced_step_request *head;
829 ptid_t ptid;
1c5cfe86 830 CORE_ADDR actual_pc;
237fc4c9
PA
831
832 head = displaced_step_request_queue;
833 ptid = head->ptid;
834 displaced_step_request_queue = head->next;
835 xfree (head);
836
ad53cd71
PA
837 context_switch (ptid);
838
1c5cfe86
PA
839 actual_pc = read_pc ();
840
841 if (breakpoint_here_p (actual_pc))
ad53cd71 842 {
1c5cfe86
PA
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: stepping queued %s now\n",
846 target_pid_to_str (ptid));
847
848 displaced_step_prepare (ptid);
849
850 if (debug_displaced)
851 {
852 gdb_byte buf[4];
853
854 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
855 paddr_nz (actual_pc));
856 read_memory (actual_pc, buf, sizeof (buf));
857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
858 }
859
860 target_resume (ptid, 1, TARGET_SIGNAL_0);
861
862 /* Done, we're stepping a thread. */
863 break;
ad53cd71 864 }
1c5cfe86
PA
865 else
866 {
867 int step;
868 struct thread_info *tp = inferior_thread ();
869
870 /* The breakpoint we were sitting under has since been
871 removed. */
872 tp->trap_expected = 0;
873
874 /* Go back to what we were trying to do. */
875 step = currently_stepping (tp);
ad53cd71 876
1c5cfe86
PA
877 if (debug_displaced)
878 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
879 target_pid_to_str (tp->ptid), step);
880
881 target_resume (ptid, step, TARGET_SIGNAL_0);
882 tp->stop_signal = TARGET_SIGNAL_0;
883
884 /* This request was discarded. See if there's any other
885 thread waiting for its turn. */
886 }
237fc4c9
PA
887 }
888}
889
5231c1fd
PA
890/* Update global variables holding ptids to hold NEW_PTID if they were
891 holding OLD_PTID. */
892static void
893infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
894{
895 struct displaced_step_request *it;
896
897 if (ptid_equal (inferior_ptid, old_ptid))
898 inferior_ptid = new_ptid;
899
900 if (ptid_equal (singlestep_ptid, old_ptid))
901 singlestep_ptid = new_ptid;
902
903 if (ptid_equal (displaced_step_ptid, old_ptid))
904 displaced_step_ptid = new_ptid;
905
906 if (ptid_equal (deferred_step_ptid, old_ptid))
907 deferred_step_ptid = new_ptid;
908
909 for (it = displaced_step_request_queue; it; it = it->next)
910 if (ptid_equal (it->ptid, old_ptid))
911 it->ptid = new_ptid;
912}
913
237fc4c9
PA
914\f
915/* Resuming. */
c906108c
SS
916
917/* Things to clean up if we QUIT out of resume (). */
c906108c 918static void
74b7792f 919resume_cleanups (void *ignore)
c906108c
SS
920{
921 normal_stop ();
922}
923
53904c9e
AC
924static const char schedlock_off[] = "off";
925static const char schedlock_on[] = "on";
926static const char schedlock_step[] = "step";
488f131b 927static const char *scheduler_enums[] = {
ef346e04
AC
928 schedlock_off,
929 schedlock_on,
930 schedlock_step,
931 NULL
932};
920d2a44
AC
933static const char *scheduler_mode = schedlock_off;
934static void
935show_scheduler_mode (struct ui_file *file, int from_tty,
936 struct cmd_list_element *c, const char *value)
937{
938 fprintf_filtered (file, _("\
939Mode for locking scheduler during execution is \"%s\".\n"),
940 value);
941}
c906108c
SS
942
943static void
96baa820 944set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 945{
eefe576e
AC
946 if (!target_can_lock_scheduler)
947 {
948 scheduler_mode = schedlock_off;
949 error (_("Target '%s' cannot support this command."), target_shortname);
950 }
c906108c
SS
951}
952
953
954/* Resume the inferior, but allow a QUIT. This is useful if the user
955 wants to interrupt some lengthy single-stepping operation
956 (for child processes, the SIGINT goes to the inferior, and so
957 we get a SIGINT random_signal, but for remote debugging and perhaps
958 other targets, that's not true).
959
960 STEP nonzero if we should step (zero to continue instead).
961 SIG is the signal to give the inferior (zero for none). */
962void
96baa820 963resume (int step, enum target_signal sig)
c906108c
SS
964{
965 int should_resume = 1;
74b7792f 966 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c7e8a53c
PA
967
968 /* Note that these must be reset if we follow a fork below. */
515630c5
UW
969 struct regcache *regcache = get_current_regcache ();
970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 971 struct thread_info *tp = inferior_thread ();
515630c5 972 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 973
c906108c
SS
974 QUIT;
975
527159b7 976 if (debug_infrun)
237fc4c9
PA
977 fprintf_unfiltered (gdb_stdlog,
978 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
979 "trap_expected=%d\n",
980 step, sig, tp->trap_expected);
c906108c 981
692590c1
MS
982 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
983 over an instruction that causes a page fault without triggering
984 a hardware watchpoint. The kernel properly notices that it shouldn't
985 stop, because the hardware watchpoint is not triggered, but it forgets
986 the step request and continues the program normally.
987 Work around the problem by removing hardware watchpoints if a step is
988 requested, GDB will check for a hardware watchpoint trigger after the
989 step anyway. */
c36b740a 990 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 991 remove_hw_watchpoints ();
488f131b 992
692590c1 993
c2c6d25f
JM
994 /* Normally, by the time we reach `resume', the breakpoints are either
995 removed or inserted, as appropriate. The exception is if we're sitting
996 at a permanent breakpoint; we need to step over it, but permanent
997 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 998 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 999 {
515630c5
UW
1000 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1001 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1002 else
1003 error (_("\
1004The program is stopped at a permanent breakpoint, but GDB does not know\n\
1005how to step past a permanent breakpoint on this architecture. Try using\n\
1006a command like `return' or `jump' to continue execution."));
1007 }
c2c6d25f 1008
237fc4c9
PA
1009 /* If enabled, step over breakpoints by executing a copy of the
1010 instruction at a different address.
1011
1012 We can't use displaced stepping when we have a signal to deliver;
1013 the comments for displaced_step_prepare explain why. The
1014 comments in the handle_inferior event for dealing with 'random
1015 signals' explain what we do instead. */
515630c5 1016 if (use_displaced_stepping (gdbarch)
4e1c45ea 1017 && tp->trap_expected
237fc4c9
PA
1018 && sig == TARGET_SIGNAL_0)
1019 {
1020 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1021 {
1022 /* Got placed in displaced stepping queue. Will be resumed
1023 later when all the currently queued displaced stepping
7f7efbd9
VP
1024 requests finish. The thread is not executing at this point,
1025 and the call to set_executing will be made later. But we
1026 need to call set_running here, since from frontend point of view,
1027 the thread is running. */
1028 set_running (inferior_ptid, 1);
d56b7306
VP
1029 discard_cleanups (old_cleanups);
1030 return;
1031 }
237fc4c9
PA
1032 }
1033
515630c5 1034 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1035 {
1036 /* Do it the hard way, w/temp breakpoints */
515630c5 1037 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1038 {
1039 /* ...and don't ask hardware to do it. */
1040 step = 0;
1041 /* and do not pull these breakpoints until after a `wait' in
1042 `wait_for_inferior' */
1043 singlestep_breakpoints_inserted_p = 1;
1044 singlestep_ptid = inferior_ptid;
237fc4c9 1045 singlestep_pc = pc;
e6590a1b 1046 }
c906108c
SS
1047 }
1048
c906108c 1049 /* If there were any forks/vforks/execs that were caught and are
6604731b 1050 now to be followed, then do so. */
c906108c
SS
1051 switch (pending_follow.kind)
1052 {
6604731b
DJ
1053 case TARGET_WAITKIND_FORKED:
1054 case TARGET_WAITKIND_VFORKED:
c906108c 1055 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1056 if (follow_fork ())
1057 should_resume = 0;
607cecd2
PA
1058
1059 /* Following a child fork will change our notion of current
1060 thread. */
1061 tp = inferior_thread ();
c7e8a53c
PA
1062 regcache = get_current_regcache ();
1063 gdbarch = get_regcache_arch (regcache);
1064 pc = regcache_read_pc (regcache);
c906108c
SS
1065 break;
1066
6604731b 1067 case TARGET_WAITKIND_EXECD:
c906108c 1068 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1069 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1070 break;
1071
1072 default:
1073 break;
1074 }
c906108c
SS
1075
1076 /* Install inferior's terminal modes. */
1077 target_terminal_inferior ();
1078
1079 if (should_resume)
1080 {
39f77062 1081 ptid_t resume_ptid;
dfcd3bfb 1082
488f131b 1083 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1084
cd76b0b7
VP
1085 /* If STEP is set, it's a request to use hardware stepping
1086 facilities. But in that case, we should never
1087 use singlestep breakpoint. */
1088 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1089
1090 if (singlestep_breakpoints_inserted_p
1091 && stepping_past_singlestep_breakpoint)
c906108c 1092 {
cd76b0b7
VP
1093 /* The situation here is as follows. In thread T1 we wanted to
1094 single-step. Lacking hardware single-stepping we've
1095 set breakpoint at the PC of the next instruction -- call it
1096 P. After resuming, we've hit that breakpoint in thread T2.
1097 Now we've removed original breakpoint, inserted breakpoint
1098 at P+1, and try to step to advance T2 past breakpoint.
1099 We need to step only T2, as if T1 is allowed to freely run,
1100 it can run past P, and if other threads are allowed to run,
1101 they can hit breakpoint at P+1, and nested hits of single-step
1102 breakpoints is not something we'd want -- that's complicated
1103 to support, and has no value. */
1104 resume_ptid = inferior_ptid;
1105 }
c906108c 1106
e842223a 1107 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1108 && tp->trap_expected)
cd76b0b7 1109 {
74960c60
VP
1110 /* We're allowing a thread to run past a breakpoint it has
1111 hit, by single-stepping the thread with the breakpoint
1112 removed. In which case, we need to single-step only this
1113 thread, and keep others stopped, as they can miss this
1114 breakpoint if allowed to run.
1115
1116 The current code actually removes all breakpoints when
1117 doing this, not just the one being stepped over, so if we
1118 let other threads run, we can actually miss any
1119 breakpoint, not just the one at PC. */
ef5cf84e 1120 resume_ptid = inferior_ptid;
c906108c 1121 }
ef5cf84e 1122
94cc34af
PA
1123 if (non_stop)
1124 {
1125 /* With non-stop mode on, threads are always handled
1126 individually. */
1127 resume_ptid = inferior_ptid;
1128 }
1129 else if ((scheduler_mode == schedlock_on)
1130 || (scheduler_mode == schedlock_step
1131 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1132 {
ef5cf84e 1133 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1134 resume_ptid = inferior_ptid;
c906108c 1135 }
ef5cf84e 1136
515630c5 1137 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1138 {
1139 /* Most targets can step a breakpoint instruction, thus
1140 executing it normally. But if this one cannot, just
1141 continue and we will hit it anyway. */
237fc4c9 1142 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1143 step = 0;
1144 }
237fc4c9
PA
1145
1146 if (debug_displaced
515630c5 1147 && use_displaced_stepping (gdbarch)
4e1c45ea 1148 && tp->trap_expected)
237fc4c9 1149 {
515630c5
UW
1150 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1151 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1152 gdb_byte buf[4];
1153
1154 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1155 paddr_nz (actual_pc));
1156 read_memory (actual_pc, buf, sizeof (buf));
1157 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1158 }
1159
2020b7ab
PA
1160 /* Avoid confusing the next resume, if the next stop/resume
1161 happens to apply to another thread. */
1162 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1163
1164 target_resume (resume_ptid, step, sig);
c906108c
SS
1165 }
1166
1167 discard_cleanups (old_cleanups);
1168}
1169\f
237fc4c9 1170/* Proceeding. */
c906108c
SS
1171
1172/* Clear out all variables saying what to do when inferior is continued.
1173 First do this, then set the ones you want, then call `proceed'. */
1174
a7212384
UW
1175static void
1176clear_proceed_status_thread (struct thread_info *tp)
c906108c 1177{
a7212384
UW
1178 if (debug_infrun)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "infrun: clear_proceed_status_thread (%s)\n",
1181 target_pid_to_str (tp->ptid));
d6b48e9c 1182
a7212384
UW
1183 tp->trap_expected = 0;
1184 tp->step_range_start = 0;
1185 tp->step_range_end = 0;
1186 tp->step_frame_id = null_frame_id;
1187 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1188 tp->stop_requested = 0;
4e1c45ea 1189
a7212384 1190 tp->stop_step = 0;
32400beb 1191
a7212384 1192 tp->proceed_to_finish = 0;
414c69f7 1193
a7212384
UW
1194 /* Discard any remaining commands or status from previous stop. */
1195 bpstat_clear (&tp->stop_bpstat);
1196}
32400beb 1197
a7212384
UW
1198static int
1199clear_proceed_status_callback (struct thread_info *tp, void *data)
1200{
1201 if (is_exited (tp->ptid))
1202 return 0;
d6b48e9c 1203
a7212384
UW
1204 clear_proceed_status_thread (tp);
1205 return 0;
1206}
1207
1208void
1209clear_proceed_status (void)
1210{
1211 if (!ptid_equal (inferior_ptid, null_ptid))
1212 {
1213 struct inferior *inferior;
1214
1215 if (non_stop)
1216 {
1217 /* If in non-stop mode, only delete the per-thread status
1218 of the current thread. */
1219 clear_proceed_status_thread (inferior_thread ());
1220 }
1221 else
1222 {
1223 /* In all-stop mode, delete the per-thread status of
1224 *all* threads. */
1225 iterate_over_threads (clear_proceed_status_callback, NULL);
1226 }
1227
d6b48e9c
PA
1228 inferior = current_inferior ();
1229 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1230 }
1231
c906108c 1232 stop_after_trap = 0;
c906108c
SS
1233 breakpoint_proceeded = 1; /* We're about to proceed... */
1234
d5c31457
UW
1235 if (stop_registers)
1236 {
1237 regcache_xfree (stop_registers);
1238 stop_registers = NULL;
1239 }
c906108c
SS
1240}
1241
ea67f13b
DJ
1242/* This should be suitable for any targets that support threads. */
1243
1244static int
6a6b96b9 1245prepare_to_proceed (int step)
ea67f13b
DJ
1246{
1247 ptid_t wait_ptid;
1248 struct target_waitstatus wait_status;
1249
1250 /* Get the last target status returned by target_wait(). */
1251 get_last_target_status (&wait_ptid, &wait_status);
1252
6a6b96b9 1253 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1254 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1255 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1256 {
1257 return 0;
1258 }
1259
6a6b96b9 1260 /* Switched over from WAIT_PID. */
ea67f13b 1261 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1262 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1263 {
515630c5
UW
1264 struct regcache *regcache = get_thread_regcache (wait_ptid);
1265
1266 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1267 {
515630c5
UW
1268 /* If stepping, remember current thread to switch back to. */
1269 if (step)
1270 deferred_step_ptid = inferior_ptid;
ea67f13b 1271
515630c5
UW
1272 /* Switch back to WAIT_PID thread. */
1273 switch_to_thread (wait_ptid);
6a6b96b9 1274
515630c5
UW
1275 /* We return 1 to indicate that there is a breakpoint here,
1276 so we need to step over it before continuing to avoid
1277 hitting it straight away. */
1278 return 1;
1279 }
ea67f13b
DJ
1280 }
1281
1282 return 0;
ea67f13b 1283}
e4846b08 1284
c906108c
SS
1285/* Basic routine for continuing the program in various fashions.
1286
1287 ADDR is the address to resume at, or -1 for resume where stopped.
1288 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1289 or -1 for act according to how it stopped.
c906108c 1290 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1291 -1 means return after that and print nothing.
1292 You should probably set various step_... variables
1293 before calling here, if you are stepping.
c906108c
SS
1294
1295 You should call clear_proceed_status before calling proceed. */
1296
1297void
96baa820 1298proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1299{
515630c5
UW
1300 struct regcache *regcache = get_current_regcache ();
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1302 struct thread_info *tp;
515630c5 1303 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1304 int oneproc = 0;
1305
1306 if (step > 0)
515630c5 1307 step_start_function = find_pc_function (pc);
c906108c
SS
1308 if (step < 0)
1309 stop_after_trap = 1;
1310
2acceee2 1311 if (addr == (CORE_ADDR) -1)
c906108c 1312 {
b2175913
MS
1313 if (pc == stop_pc && breakpoint_here_p (pc)
1314 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1315 /* There is a breakpoint at the address we will resume at,
1316 step one instruction before inserting breakpoints so that
1317 we do not stop right away (and report a second hit at this
b2175913
MS
1318 breakpoint).
1319
1320 Note, we don't do this in reverse, because we won't
1321 actually be executing the breakpoint insn anyway.
1322 We'll be (un-)executing the previous instruction. */
1323
c906108c 1324 oneproc = 1;
515630c5
UW
1325 else if (gdbarch_single_step_through_delay_p (gdbarch)
1326 && gdbarch_single_step_through_delay (gdbarch,
1327 get_current_frame ()))
3352ef37
AC
1328 /* We stepped onto an instruction that needs to be stepped
1329 again before re-inserting the breakpoint, do so. */
c906108c
SS
1330 oneproc = 1;
1331 }
1332 else
1333 {
515630c5 1334 regcache_write_pc (regcache, addr);
c906108c
SS
1335 }
1336
527159b7 1337 if (debug_infrun)
8a9de0e4
AC
1338 fprintf_unfiltered (gdb_stdlog,
1339 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1340 paddr_nz (addr), siggnal, step);
527159b7 1341
94cc34af
PA
1342 if (non_stop)
1343 /* In non-stop, each thread is handled individually. The context
1344 must already be set to the right thread here. */
1345 ;
1346 else
1347 {
1348 /* In a multi-threaded task we may select another thread and
1349 then continue or step.
c906108c 1350
94cc34af
PA
1351 But if the old thread was stopped at a breakpoint, it will
1352 immediately cause another breakpoint stop without any
1353 execution (i.e. it will report a breakpoint hit incorrectly).
1354 So we must step over it first.
c906108c 1355
94cc34af
PA
1356 prepare_to_proceed checks the current thread against the
1357 thread that reported the most recent event. If a step-over
1358 is required it returns TRUE and sets the current thread to
1359 the old thread. */
1360 if (prepare_to_proceed (step))
1361 oneproc = 1;
1362 }
c906108c 1363
4e1c45ea
PA
1364 /* prepare_to_proceed may change the current thread. */
1365 tp = inferior_thread ();
1366
c906108c 1367 if (oneproc)
74960c60 1368 {
4e1c45ea 1369 tp->trap_expected = 1;
237fc4c9
PA
1370 /* If displaced stepping is enabled, we can step over the
1371 breakpoint without hitting it, so leave all breakpoints
1372 inserted. Otherwise we need to disable all breakpoints, step
1373 one instruction, and then re-add them when that step is
1374 finished. */
515630c5 1375 if (!use_displaced_stepping (gdbarch))
237fc4c9 1376 remove_breakpoints ();
74960c60 1377 }
237fc4c9
PA
1378
1379 /* We can insert breakpoints if we're not trying to step over one,
1380 or if we are stepping over one but we're using displaced stepping
1381 to do so. */
4e1c45ea 1382 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1383 insert_breakpoints ();
c906108c 1384
2020b7ab
PA
1385 if (!non_stop)
1386 {
1387 /* Pass the last stop signal to the thread we're resuming,
1388 irrespective of whether the current thread is the thread that
1389 got the last event or not. This was historically GDB's
1390 behaviour before keeping a stop_signal per thread. */
1391
1392 struct thread_info *last_thread;
1393 ptid_t last_ptid;
1394 struct target_waitstatus last_status;
1395
1396 get_last_target_status (&last_ptid, &last_status);
1397 if (!ptid_equal (inferior_ptid, last_ptid)
1398 && !ptid_equal (last_ptid, null_ptid)
1399 && !ptid_equal (last_ptid, minus_one_ptid))
1400 {
1401 last_thread = find_thread_pid (last_ptid);
1402 if (last_thread)
1403 {
1404 tp->stop_signal = last_thread->stop_signal;
1405 last_thread->stop_signal = TARGET_SIGNAL_0;
1406 }
1407 }
1408 }
1409
c906108c 1410 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1411 tp->stop_signal = siggnal;
c906108c
SS
1412 /* If this signal should not be seen by program,
1413 give it zero. Used for debugging signals. */
2020b7ab
PA
1414 else if (!signal_program[tp->stop_signal])
1415 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1416
1417 annotate_starting ();
1418
1419 /* Make sure that output from GDB appears before output from the
1420 inferior. */
1421 gdb_flush (gdb_stdout);
1422
e4846b08
JJ
1423 /* Refresh prev_pc value just prior to resuming. This used to be
1424 done in stop_stepping, however, setting prev_pc there did not handle
1425 scenarios such as inferior function calls or returning from
1426 a function via the return command. In those cases, the prev_pc
1427 value was not set properly for subsequent commands. The prev_pc value
1428 is used to initialize the starting line number in the ecs. With an
1429 invalid value, the gdb next command ends up stopping at the position
1430 represented by the next line table entry past our start position.
1431 On platforms that generate one line table entry per line, this
1432 is not a problem. However, on the ia64, the compiler generates
1433 extraneous line table entries that do not increase the line number.
1434 When we issue the gdb next command on the ia64 after an inferior call
1435 or a return command, we often end up a few instructions forward, still
1436 within the original line we started.
1437
1438 An attempt was made to have init_execution_control_state () refresh
1439 the prev_pc value before calculating the line number. This approach
1440 did not work because on platforms that use ptrace, the pc register
1441 cannot be read unless the inferior is stopped. At that point, we
515630c5 1442 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1443 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1444 updated correctly when the inferior is stopped. */
4e1c45ea 1445 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1446
59f0d5d9 1447 /* Fill in with reasonable starting values. */
4e1c45ea 1448 init_thread_stepping_state (tp);
59f0d5d9 1449
59f0d5d9
PA
1450 /* Reset to normal state. */
1451 init_infwait_state ();
1452
c906108c 1453 /* Resume inferior. */
2020b7ab 1454 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1455
1456 /* Wait for it to stop (if not standalone)
1457 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1458 /* Do this only if we are not using the event loop, or if the target
1459 does not support asynchronous execution. */
362646f5 1460 if (!target_can_async_p ())
43ff13b4 1461 {
ae123ec6 1462 wait_for_inferior (0);
43ff13b4
JM
1463 normal_stop ();
1464 }
c906108c 1465}
c906108c
SS
1466\f
1467
1468/* Start remote-debugging of a machine over a serial link. */
96baa820 1469
c906108c 1470void
8621d6a9 1471start_remote (int from_tty)
c906108c 1472{
d6b48e9c 1473 struct inferior *inferior;
c906108c 1474 init_wait_for_inferior ();
d6b48e9c
PA
1475
1476 inferior = current_inferior ();
1477 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1478
6426a772
JM
1479 /* Always go on waiting for the target, regardless of the mode. */
1480 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1481 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1482 nothing is returned (instead of just blocking). Because of this,
1483 targets expecting an immediate response need to, internally, set
1484 things up so that the target_wait() is forced to eventually
1485 timeout. */
1486 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1487 differentiate to its caller what the state of the target is after
1488 the initial open has been performed. Here we're assuming that
1489 the target has stopped. It should be possible to eventually have
1490 target_open() return to the caller an indication that the target
1491 is currently running and GDB state should be set to the same as
1492 for an async run. */
ae123ec6 1493 wait_for_inferior (0);
8621d6a9
DJ
1494
1495 /* Now that the inferior has stopped, do any bookkeeping like
1496 loading shared libraries. We want to do this before normal_stop,
1497 so that the displayed frame is up to date. */
1498 post_create_inferior (&current_target, from_tty);
1499
6426a772 1500 normal_stop ();
c906108c
SS
1501}
1502
1503/* Initialize static vars when a new inferior begins. */
1504
1505void
96baa820 1506init_wait_for_inferior (void)
c906108c
SS
1507{
1508 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1509
c906108c
SS
1510 breakpoint_init_inferior (inf_starting);
1511
c906108c
SS
1512 /* The first resume is not following a fork/vfork/exec. */
1513 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1514
c906108c 1515 clear_proceed_status ();
9f976b41
DJ
1516
1517 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1518 deferred_step_ptid = null_ptid;
ca005067
DJ
1519
1520 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1521
0d1e5fa7
PA
1522 previous_inferior_ptid = null_ptid;
1523 init_infwait_state ();
1524
237fc4c9 1525 displaced_step_clear ();
c906108c 1526}
237fc4c9 1527
c906108c 1528\f
b83266a0
SS
1529/* This enum encodes possible reasons for doing a target_wait, so that
1530 wfi can call target_wait in one place. (Ultimately the call will be
1531 moved out of the infinite loop entirely.) */
1532
c5aa993b
JM
1533enum infwait_states
1534{
cd0fc7c3
SS
1535 infwait_normal_state,
1536 infwait_thread_hop_state,
d983da9c 1537 infwait_step_watch_state,
cd0fc7c3 1538 infwait_nonstep_watch_state
b83266a0
SS
1539};
1540
11cf8741
JM
1541/* Why did the inferior stop? Used to print the appropriate messages
1542 to the interface from within handle_inferior_event(). */
1543enum inferior_stop_reason
1544{
11cf8741
JM
1545 /* Step, next, nexti, stepi finished. */
1546 END_STEPPING_RANGE,
11cf8741
JM
1547 /* Inferior terminated by signal. */
1548 SIGNAL_EXITED,
1549 /* Inferior exited. */
1550 EXITED,
1551 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1552 SIGNAL_RECEIVED,
1553 /* Reverse execution -- target ran out of history info. */
1554 NO_HISTORY
11cf8741
JM
1555};
1556
0d1e5fa7
PA
1557/* The PTID we'll do a target_wait on.*/
1558ptid_t waiton_ptid;
1559
1560/* Current inferior wait state. */
1561enum infwait_states infwait_state;
cd0fc7c3 1562
0d1e5fa7
PA
1563/* Data to be passed around while handling an event. This data is
1564 discarded between events. */
c5aa993b 1565struct execution_control_state
488f131b 1566{
0d1e5fa7 1567 ptid_t ptid;
4e1c45ea
PA
1568 /* The thread that got the event, if this was a thread event; NULL
1569 otherwise. */
1570 struct thread_info *event_thread;
1571
488f131b 1572 struct target_waitstatus ws;
488f131b
JB
1573 int random_signal;
1574 CORE_ADDR stop_func_start;
1575 CORE_ADDR stop_func_end;
1576 char *stop_func_name;
488f131b 1577 int new_thread_event;
488f131b
JB
1578 int wait_some_more;
1579};
1580
1581void init_execution_control_state (struct execution_control_state *ecs);
1582
1583void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1584
b2175913
MS
1585static void handle_step_into_function (struct execution_control_state *ecs);
1586static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1587static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1588static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1589static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1590 struct frame_id sr_id);
611c83ae
PA
1591static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1592
104c1213
JM
1593static void stop_stepping (struct execution_control_state *ecs);
1594static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1595static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1596static void print_stop_reason (enum inferior_stop_reason stop_reason,
1597 int stop_info);
104c1213 1598
252fbfc8
PA
1599/* Callback for iterate over threads. If the thread is stopped, but
1600 the user/frontend doesn't know about that yet, go through
1601 normal_stop, as if the thread had just stopped now. ARG points at
1602 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1603 ptid_is_pid(PTID) is true, applies to all threads of the process
1604 pointed at by PTID. Otherwise, apply only to the thread pointed by
1605 PTID. */
1606
1607static int
1608infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1609{
1610 ptid_t ptid = * (ptid_t *) arg;
1611
1612 if ((ptid_equal (info->ptid, ptid)
1613 || ptid_equal (minus_one_ptid, ptid)
1614 || (ptid_is_pid (ptid)
1615 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1616 && is_running (info->ptid)
1617 && !is_executing (info->ptid))
1618 {
1619 struct cleanup *old_chain;
1620 struct execution_control_state ecss;
1621 struct execution_control_state *ecs = &ecss;
1622
1623 memset (ecs, 0, sizeof (*ecs));
1624
1625 old_chain = make_cleanup_restore_current_thread ();
1626
1627 switch_to_thread (info->ptid);
1628
1629 /* Go through handle_inferior_event/normal_stop, so we always
1630 have consistent output as if the stop event had been
1631 reported. */
1632 ecs->ptid = info->ptid;
1633 ecs->event_thread = find_thread_pid (info->ptid);
1634 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1635 ecs->ws.value.sig = TARGET_SIGNAL_0;
1636
1637 handle_inferior_event (ecs);
1638
1639 if (!ecs->wait_some_more)
1640 {
1641 struct thread_info *tp;
1642
1643 normal_stop ();
1644
1645 /* Finish off the continuations. The continations
1646 themselves are responsible for realising the thread
1647 didn't finish what it was supposed to do. */
1648 tp = inferior_thread ();
1649 do_all_intermediate_continuations_thread (tp);
1650 do_all_continuations_thread (tp);
1651 }
1652
1653 do_cleanups (old_chain);
1654 }
1655
1656 return 0;
1657}
1658
1659/* This function is attached as a "thread_stop_requested" observer.
1660 Cleanup local state that assumed the PTID was to be resumed, and
1661 report the stop to the frontend. */
1662
1663void
1664infrun_thread_stop_requested (ptid_t ptid)
1665{
1666 struct displaced_step_request *it, *next, *prev = NULL;
1667
1668 /* PTID was requested to stop. Remove it from the displaced
1669 stepping queue, so we don't try to resume it automatically. */
1670 for (it = displaced_step_request_queue; it; it = next)
1671 {
1672 next = it->next;
1673
1674 if (ptid_equal (it->ptid, ptid)
1675 || ptid_equal (minus_one_ptid, ptid)
1676 || (ptid_is_pid (ptid)
1677 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1678 {
1679 if (displaced_step_request_queue == it)
1680 displaced_step_request_queue = it->next;
1681 else
1682 prev->next = it->next;
1683
1684 xfree (it);
1685 }
1686 else
1687 prev = it;
1688 }
1689
1690 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1691}
1692
4e1c45ea
PA
1693/* Callback for iterate_over_threads. */
1694
1695static int
1696delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1697{
1698 if (is_exited (info->ptid))
1699 return 0;
1700
1701 delete_step_resume_breakpoint (info);
1702 return 0;
1703}
1704
1705/* In all-stop, delete the step resume breakpoint of any thread that
1706 had one. In non-stop, delete the step resume breakpoint of the
1707 thread that just stopped. */
1708
1709static void
1710delete_step_thread_step_resume_breakpoint (void)
1711{
1712 if (!target_has_execution
1713 || ptid_equal (inferior_ptid, null_ptid))
1714 /* If the inferior has exited, we have already deleted the step
1715 resume breakpoints out of GDB's lists. */
1716 return;
1717
1718 if (non_stop)
1719 {
1720 /* If in non-stop mode, only delete the step-resume or
1721 longjmp-resume breakpoint of the thread that just stopped
1722 stepping. */
1723 struct thread_info *tp = inferior_thread ();
1724 delete_step_resume_breakpoint (tp);
1725 }
1726 else
1727 /* In all-stop mode, delete all step-resume and longjmp-resume
1728 breakpoints of any thread that had them. */
1729 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1730}
1731
1732/* A cleanup wrapper. */
1733
1734static void
1735delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1736{
1737 delete_step_thread_step_resume_breakpoint ();
1738}
1739
cd0fc7c3 1740/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1741
1742 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1743 as if they were SIGTRAP signals. This can be useful during
1744 the startup sequence on some targets such as HP/UX, where
1745 we receive an EXEC event instead of the expected SIGTRAP.
1746
cd0fc7c3
SS
1747 If inferior gets a signal, we may decide to start it up again
1748 instead of returning. That is why there is a loop in this function.
1749 When this function actually returns it means the inferior
1750 should be left stopped and GDB should read more commands. */
1751
1752void
ae123ec6 1753wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1754{
1755 struct cleanup *old_cleanups;
0d1e5fa7 1756 struct execution_control_state ecss;
cd0fc7c3 1757 struct execution_control_state *ecs;
c906108c 1758
527159b7 1759 if (debug_infrun)
ae123ec6
JB
1760 fprintf_unfiltered
1761 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1762 treat_exec_as_sigtrap);
527159b7 1763
4e1c45ea
PA
1764 old_cleanups =
1765 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1766
cd0fc7c3 1767 ecs = &ecss;
0d1e5fa7
PA
1768 memset (ecs, 0, sizeof (*ecs));
1769
cd0fc7c3
SS
1770 overlay_cache_invalid = 1;
1771
e0bb1c1c
PA
1772 /* We'll update this if & when we switch to a new thread. */
1773 previous_inferior_ptid = inferior_ptid;
1774
cd0fc7c3
SS
1775 /* We have to invalidate the registers BEFORE calling target_wait
1776 because they can be loaded from the target while in target_wait.
1777 This makes remote debugging a bit more efficient for those
1778 targets that provide critical registers as part of their normal
1779 status mechanism. */
1780
1781 registers_changed ();
b83266a0 1782
c906108c
SS
1783 while (1)
1784 {
29f49a6a
PA
1785 struct cleanup *old_chain;
1786
9a4105ab 1787 if (deprecated_target_wait_hook)
0d1e5fa7 1788 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1789 else
0d1e5fa7 1790 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1791
f00150c9
DE
1792 if (debug_infrun)
1793 {
1794 char *status_string = target_waitstatus_to_string (&ecs->ws);
1795 fprintf_unfiltered (gdb_stdlog,
1796 "infrun: target_wait (%d, status) = %d, %s\n",
1797 PIDGET (waiton_ptid), PIDGET (ecs->ptid),
1798 status_string);
1799 xfree (status_string);
1800 }
1801
ae123ec6
JB
1802 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1803 {
1804 xfree (ecs->ws.value.execd_pathname);
1805 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1806 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1807 }
1808
29f49a6a
PA
1809 /* If an error happens while handling the event, propagate GDB's
1810 knowledge of the executing state to the frontend/user running
1811 state. */
1812 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1813
cd0fc7c3
SS
1814 /* Now figure out what to do with the result of the result. */
1815 handle_inferior_event (ecs);
c906108c 1816
29f49a6a
PA
1817 /* No error, don't finish the state yet. */
1818 discard_cleanups (old_chain);
1819
cd0fc7c3
SS
1820 if (!ecs->wait_some_more)
1821 break;
1822 }
4e1c45ea 1823
cd0fc7c3
SS
1824 do_cleanups (old_cleanups);
1825}
c906108c 1826
43ff13b4
JM
1827/* Asynchronous version of wait_for_inferior. It is called by the
1828 event loop whenever a change of state is detected on the file
1829 descriptor corresponding to the target. It can be called more than
1830 once to complete a single execution command. In such cases we need
a474d7c2
PA
1831 to keep the state in a global variable ECSS. If it is the last time
1832 that this function is called for a single execution command, then
1833 report to the user that the inferior has stopped, and do the
1834 necessary cleanups. */
43ff13b4
JM
1835
1836void
fba45db2 1837fetch_inferior_event (void *client_data)
43ff13b4 1838{
0d1e5fa7 1839 struct execution_control_state ecss;
a474d7c2 1840 struct execution_control_state *ecs = &ecss;
4f8d22e3 1841 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 1842 struct cleanup *ts_old_chain;
4f8d22e3 1843 int was_sync = sync_execution;
43ff13b4 1844
0d1e5fa7
PA
1845 memset (ecs, 0, sizeof (*ecs));
1846
59f0d5d9 1847 overlay_cache_invalid = 1;
43ff13b4 1848
e0bb1c1c
PA
1849 /* We can only rely on wait_for_more being correct before handling
1850 the event in all-stop, but previous_inferior_ptid isn't used in
1851 non-stop. */
1852 if (!ecs->wait_some_more)
1853 /* We'll update this if & when we switch to a new thread. */
1854 previous_inferior_ptid = inferior_ptid;
1855
4f8d22e3
PA
1856 if (non_stop)
1857 /* In non-stop mode, the user/frontend should not notice a thread
1858 switch due to internal events. Make sure we reverse to the
1859 user selected thread and frame after handling the event and
1860 running any breakpoint commands. */
1861 make_cleanup_restore_current_thread ();
1862
59f0d5d9
PA
1863 /* We have to invalidate the registers BEFORE calling target_wait
1864 because they can be loaded from the target while in target_wait.
1865 This makes remote debugging a bit more efficient for those
1866 targets that provide critical registers as part of their normal
1867 status mechanism. */
43ff13b4 1868
59f0d5d9 1869 registers_changed ();
43ff13b4 1870
9a4105ab 1871 if (deprecated_target_wait_hook)
a474d7c2 1872 ecs->ptid =
0d1e5fa7 1873 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1874 else
0d1e5fa7 1875 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1876
f00150c9
DE
1877 if (debug_infrun)
1878 {
1879 char *status_string = target_waitstatus_to_string (&ecs->ws);
1880 fprintf_unfiltered (gdb_stdlog,
1881 "infrun: target_wait (%d, status) = %d, %s\n",
1882 PIDGET (waiton_ptid), PIDGET (ecs->ptid),
1883 status_string);
1884 xfree (status_string);
1885 }
1886
94cc34af
PA
1887 if (non_stop
1888 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1889 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1890 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1891 /* In non-stop mode, each thread is handled individually. Switch
1892 early, so the global state is set correctly for this
1893 thread. */
1894 context_switch (ecs->ptid);
1895
29f49a6a
PA
1896 /* If an error happens while handling the event, propagate GDB's
1897 knowledge of the executing state to the frontend/user running
1898 state. */
1899 if (!non_stop)
1900 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1901 else
1902 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
1903
43ff13b4 1904 /* Now figure out what to do with the result of the result. */
a474d7c2 1905 handle_inferior_event (ecs);
43ff13b4 1906
a474d7c2 1907 if (!ecs->wait_some_more)
43ff13b4 1908 {
d6b48e9c
PA
1909 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1910
4e1c45ea 1911 delete_step_thread_step_resume_breakpoint ();
f107f563 1912
d6b48e9c
PA
1913 /* We may not find an inferior if this was a process exit. */
1914 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
1915 normal_stop ();
1916
af679fd0
PA
1917 if (target_has_execution
1918 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1919 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1920 && ecs->event_thread->step_multi
414c69f7 1921 && ecs->event_thread->stop_step)
c2d11a7d
JM
1922 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1923 else
1924 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1925 }
4f8d22e3 1926
29f49a6a
PA
1927 /* No error, don't finish the thread states yet. */
1928 discard_cleanups (ts_old_chain);
1929
4f8d22e3
PA
1930 /* Revert thread and frame. */
1931 do_cleanups (old_chain);
1932
1933 /* If the inferior was in sync execution mode, and now isn't,
1934 restore the prompt. */
1935 if (was_sync && !sync_execution)
1936 display_gdb_prompt (0);
43ff13b4
JM
1937}
1938
cd0fc7c3
SS
1939/* Prepare an execution control state for looping through a
1940 wait_for_inferior-type loop. */
1941
1942void
96baa820 1943init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1944{
1945 ecs->random_signal = 0;
0d1e5fa7
PA
1946}
1947
1948/* Clear context switchable stepping state. */
1949
1950void
4e1c45ea 1951init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1952{
2afb61aa
PA
1953 struct symtab_and_line sal;
1954
0d1e5fa7
PA
1955 tss->stepping_over_breakpoint = 0;
1956 tss->step_after_step_resume_breakpoint = 0;
1957 tss->stepping_through_solib_after_catch = 0;
1958 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1959
4e1c45ea 1960 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1961 tss->current_line = sal.line;
1962 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1963}
1964
e02bc4cc 1965/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1966 target_wait()/deprecated_target_wait_hook(). The data is actually
1967 cached by handle_inferior_event(), which gets called immediately
1968 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1969
1970void
488f131b 1971get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1972{
39f77062 1973 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1974 *status = target_last_waitstatus;
1975}
1976
ac264b3b
MS
1977void
1978nullify_last_target_wait_ptid (void)
1979{
1980 target_last_wait_ptid = minus_one_ptid;
1981}
1982
dcf4fbde 1983/* Switch thread contexts. */
dd80620e
MS
1984
1985static void
0d1e5fa7 1986context_switch (ptid_t ptid)
dd80620e 1987{
fd48f117
DJ
1988 if (debug_infrun)
1989 {
1990 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1991 target_pid_to_str (inferior_ptid));
1992 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1993 target_pid_to_str (ptid));
fd48f117
DJ
1994 }
1995
0d1e5fa7 1996 switch_to_thread (ptid);
dd80620e
MS
1997}
1998
4fa8626c
DJ
1999static void
2000adjust_pc_after_break (struct execution_control_state *ecs)
2001{
24a73cce
UW
2002 struct regcache *regcache;
2003 struct gdbarch *gdbarch;
8aad930b 2004 CORE_ADDR breakpoint_pc;
4fa8626c 2005
4fa8626c
DJ
2006 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2007 we aren't, just return.
9709f61c
DJ
2008
2009 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2010 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2011 implemented by software breakpoints should be handled through the normal
2012 breakpoint layer.
8fb3e588 2013
4fa8626c
DJ
2014 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2015 different signals (SIGILL or SIGEMT for instance), but it is less
2016 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2017 gdbarch_decr_pc_after_break. I don't know any specific target that
2018 generates these signals at breakpoints (the code has been in GDB since at
2019 least 1992) so I can not guess how to handle them here.
8fb3e588 2020
e6cf7916
UW
2021 In earlier versions of GDB, a target with
2022 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2023 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2024 target with both of these set in GDB history, and it seems unlikely to be
2025 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2026
2027 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2028 return;
2029
2030 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2031 return;
2032
4058b839
PA
2033 /* In reverse execution, when a breakpoint is hit, the instruction
2034 under it has already been de-executed. The reported PC always
2035 points at the breakpoint address, so adjusting it further would
2036 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2037 architecture:
2038
2039 B1 0x08000000 : INSN1
2040 B2 0x08000001 : INSN2
2041 0x08000002 : INSN3
2042 PC -> 0x08000003 : INSN4
2043
2044 Say you're stopped at 0x08000003 as above. Reverse continuing
2045 from that point should hit B2 as below. Reading the PC when the
2046 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2047 been de-executed already.
2048
2049 B1 0x08000000 : INSN1
2050 B2 PC -> 0x08000001 : INSN2
2051 0x08000002 : INSN3
2052 0x08000003 : INSN4
2053
2054 We can't apply the same logic as for forward execution, because
2055 we would wrongly adjust the PC to 0x08000000, since there's a
2056 breakpoint at PC - 1. We'd then report a hit on B1, although
2057 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2058 behaviour. */
2059 if (execution_direction == EXEC_REVERSE)
2060 return;
2061
24a73cce
UW
2062 /* If this target does not decrement the PC after breakpoints, then
2063 we have nothing to do. */
2064 regcache = get_thread_regcache (ecs->ptid);
2065 gdbarch = get_regcache_arch (regcache);
2066 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2067 return;
2068
8aad930b
AC
2069 /* Find the location where (if we've hit a breakpoint) the
2070 breakpoint would be. */
515630c5
UW
2071 breakpoint_pc = regcache_read_pc (regcache)
2072 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2073
1c5cfe86
PA
2074 /* Check whether there actually is a software breakpoint inserted at
2075 that location.
2076
2077 If in non-stop mode, a race condition is possible where we've
2078 removed a breakpoint, but stop events for that breakpoint were
2079 already queued and arrive later. To suppress those spurious
2080 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2081 and retire them after a number of stop events are reported. */
2082 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2083 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2084 {
1c0fdd0e
UW
2085 /* When using hardware single-step, a SIGTRAP is reported for both
2086 a completed single-step and a software breakpoint. Need to
2087 differentiate between the two, as the latter needs adjusting
2088 but the former does not.
2089
2090 The SIGTRAP can be due to a completed hardware single-step only if
2091 - we didn't insert software single-step breakpoints
2092 - the thread to be examined is still the current thread
2093 - this thread is currently being stepped
2094
2095 If any of these events did not occur, we must have stopped due
2096 to hitting a software breakpoint, and have to back up to the
2097 breakpoint address.
2098
2099 As a special case, we could have hardware single-stepped a
2100 software breakpoint. In this case (prev_pc == breakpoint_pc),
2101 we also need to back up to the breakpoint address. */
2102
2103 if (singlestep_breakpoints_inserted_p
2104 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2105 || !currently_stepping (ecs->event_thread)
2106 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2107 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 2108 }
4fa8626c
DJ
2109}
2110
0d1e5fa7
PA
2111void
2112init_infwait_state (void)
2113{
2114 waiton_ptid = pid_to_ptid (-1);
2115 infwait_state = infwait_normal_state;
2116}
2117
94cc34af
PA
2118void
2119error_is_running (void)
2120{
2121 error (_("\
2122Cannot execute this command while the selected thread is running."));
2123}
2124
2125void
2126ensure_not_running (void)
2127{
2128 if (is_running (inferior_ptid))
2129 error_is_running ();
2130}
2131
cd0fc7c3
SS
2132/* Given an execution control state that has been freshly filled in
2133 by an event from the inferior, figure out what it means and take
2134 appropriate action. */
c906108c 2135
cd0fc7c3 2136void
96baa820 2137handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2138{
c8edd8b4 2139 int sw_single_step_trap_p = 0;
d983da9c
DJ
2140 int stopped_by_watchpoint;
2141 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2142 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2143 enum stop_kind stop_soon;
2144
2145 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2146 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2147 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2148 {
2149 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2150 gdb_assert (inf);
2151 stop_soon = inf->stop_soon;
2152 }
2153 else
2154 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2155
e02bc4cc 2156 /* Cache the last pid/waitstatus. */
39f77062 2157 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2158 target_last_waitstatus = ecs->ws;
e02bc4cc 2159
ca005067
DJ
2160 /* Always clear state belonging to the previous time we stopped. */
2161 stop_stack_dummy = 0;
2162
8c90c137
LM
2163 /* If it's a new process, add it to the thread database */
2164
2165 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2166 && !ptid_equal (ecs->ptid, minus_one_ptid)
2167 && !in_thread_list (ecs->ptid));
2168
2169 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2170 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2171 add_thread (ecs->ptid);
2172
88ed393a
JK
2173 ecs->event_thread = find_thread_pid (ecs->ptid);
2174
2175 /* Dependent on valid ECS->EVENT_THREAD. */
2176 adjust_pc_after_break (ecs);
2177
2178 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2179 reinit_frame_cache ();
2180
8c90c137
LM
2181 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2182 {
1c5cfe86
PA
2183 breakpoint_retire_moribund ();
2184
48844aa6
PA
2185 /* Mark the non-executing threads accordingly. In all-stop, all
2186 threads of all processes are stopped when we get any event
2187 reported. In non-stop mode, only the event thread stops. If
2188 we're handling a process exit in non-stop mode, there's
2189 nothing to do, as threads of the dead process are gone, and
2190 threads of any other process were left running. */
2191 if (!non_stop)
2192 set_executing (minus_one_ptid, 0);
2193 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2194 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2195 set_executing (inferior_ptid, 0);
8c90c137
LM
2196 }
2197
0d1e5fa7 2198 switch (infwait_state)
488f131b
JB
2199 {
2200 case infwait_thread_hop_state:
527159b7 2201 if (debug_infrun)
8a9de0e4 2202 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2203 /* Cancel the waiton_ptid. */
0d1e5fa7 2204 waiton_ptid = pid_to_ptid (-1);
65e82032 2205 break;
b83266a0 2206
488f131b 2207 case infwait_normal_state:
527159b7 2208 if (debug_infrun)
8a9de0e4 2209 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2210 break;
2211
2212 case infwait_step_watch_state:
2213 if (debug_infrun)
2214 fprintf_unfiltered (gdb_stdlog,
2215 "infrun: infwait_step_watch_state\n");
2216
2217 stepped_after_stopped_by_watchpoint = 1;
488f131b 2218 break;
b83266a0 2219
488f131b 2220 case infwait_nonstep_watch_state:
527159b7 2221 if (debug_infrun)
8a9de0e4
AC
2222 fprintf_unfiltered (gdb_stdlog,
2223 "infrun: infwait_nonstep_watch_state\n");
488f131b 2224 insert_breakpoints ();
c906108c 2225
488f131b
JB
2226 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2227 handle things like signals arriving and other things happening
2228 in combination correctly? */
2229 stepped_after_stopped_by_watchpoint = 1;
2230 break;
65e82032
AC
2231
2232 default:
e2e0b3e5 2233 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2234 }
0d1e5fa7 2235 infwait_state = infwait_normal_state;
c906108c 2236
488f131b
JB
2237 switch (ecs->ws.kind)
2238 {
2239 case TARGET_WAITKIND_LOADED:
527159b7 2240 if (debug_infrun)
8a9de0e4 2241 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2242 /* Ignore gracefully during startup of the inferior, as it might
2243 be the shell which has just loaded some objects, otherwise
2244 add the symbols for the newly loaded objects. Also ignore at
2245 the beginning of an attach or remote session; we will query
2246 the full list of libraries once the connection is
2247 established. */
c0236d92 2248 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2249 {
488f131b
JB
2250 /* Check for any newly added shared libraries if we're
2251 supposed to be adding them automatically. Switch
2252 terminal for any messages produced by
2253 breakpoint_re_set. */
2254 target_terminal_ours_for_output ();
aff6338a 2255 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2256 stack's section table is kept up-to-date. Architectures,
2257 (e.g., PPC64), use the section table to perform
2258 operations such as address => section name and hence
2259 require the table to contain all sections (including
2260 those found in shared libraries). */
aff6338a 2261 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2262 exec_ops to SOLIB_ADD. This is because current GDB is
2263 only tooled to propagate section_table changes out from
2264 the "current_target" (see target_resize_to_sections), and
2265 not up from the exec stratum. This, of course, isn't
2266 right. "infrun.c" should only interact with the
2267 exec/process stratum, instead relying on the target stack
2268 to propagate relevant changes (stop, section table
2269 changed, ...) up to other layers. */
b0f4b84b 2270#ifdef SOLIB_ADD
aff6338a 2271 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2272#else
2273 solib_add (NULL, 0, &current_target, auto_solib_add);
2274#endif
488f131b
JB
2275 target_terminal_inferior ();
2276
b0f4b84b
DJ
2277 /* If requested, stop when the dynamic linker notifies
2278 gdb of events. This allows the user to get control
2279 and place breakpoints in initializer routines for
2280 dynamically loaded objects (among other things). */
2281 if (stop_on_solib_events)
2282 {
2283 stop_stepping (ecs);
2284 return;
2285 }
2286
2287 /* NOTE drow/2007-05-11: This might be a good place to check
2288 for "catch load". */
488f131b 2289 }
b0f4b84b
DJ
2290
2291 /* If we are skipping through a shell, or through shared library
2292 loading that we aren't interested in, resume the program. If
2293 we're running the program normally, also resume. But stop if
2294 we're attaching or setting up a remote connection. */
2295 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2296 {
74960c60
VP
2297 /* Loading of shared libraries might have changed breakpoint
2298 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2299 if (stop_soon == NO_STOP_QUIETLY
2300 && !breakpoints_always_inserted_mode ())
74960c60 2301 insert_breakpoints ();
b0f4b84b
DJ
2302 resume (0, TARGET_SIGNAL_0);
2303 prepare_to_wait (ecs);
2304 return;
2305 }
2306
2307 break;
c5aa993b 2308
488f131b 2309 case TARGET_WAITKIND_SPURIOUS:
527159b7 2310 if (debug_infrun)
8a9de0e4 2311 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2312 resume (0, TARGET_SIGNAL_0);
2313 prepare_to_wait (ecs);
2314 return;
c5aa993b 2315
488f131b 2316 case TARGET_WAITKIND_EXITED:
527159b7 2317 if (debug_infrun)
8a9de0e4 2318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2319 inferior_ptid = ecs->ptid;
488f131b
JB
2320 target_terminal_ours (); /* Must do this before mourn anyway */
2321 print_stop_reason (EXITED, ecs->ws.value.integer);
2322
2323 /* Record the exit code in the convenience variable $_exitcode, so
2324 that the user can inspect this again later. */
2325 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2326 value_from_longest (builtin_type_int32,
488f131b
JB
2327 (LONGEST) ecs->ws.value.integer));
2328 gdb_flush (gdb_stdout);
2329 target_mourn_inferior ();
1c0fdd0e 2330 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2331 stop_print_frame = 0;
2332 stop_stepping (ecs);
2333 return;
c5aa993b 2334
488f131b 2335 case TARGET_WAITKIND_SIGNALLED:
527159b7 2336 if (debug_infrun)
8a9de0e4 2337 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2338 inferior_ptid = ecs->ptid;
488f131b 2339 stop_print_frame = 0;
488f131b 2340 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2341
488f131b
JB
2342 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2343 reach here unless the inferior is dead. However, for years
2344 target_kill() was called here, which hints that fatal signals aren't
2345 really fatal on some systems. If that's true, then some changes
2346 may be needed. */
2347 target_mourn_inferior ();
c906108c 2348
2020b7ab 2349 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2350 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2351 stop_stepping (ecs);
2352 return;
c906108c 2353
488f131b
JB
2354 /* The following are the only cases in which we keep going;
2355 the above cases end in a continue or goto. */
2356 case TARGET_WAITKIND_FORKED:
deb3b17b 2357 case TARGET_WAITKIND_VFORKED:
527159b7 2358 if (debug_infrun)
8a9de0e4 2359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2360 pending_follow.kind = ecs->ws.kind;
2361
3a3e9ee3 2362 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2363 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2364
5a2901d9
DJ
2365 if (!ptid_equal (ecs->ptid, inferior_ptid))
2366 {
0d1e5fa7 2367 context_switch (ecs->ptid);
35f196d9 2368 reinit_frame_cache ();
5a2901d9
DJ
2369 }
2370
488f131b 2371 stop_pc = read_pc ();
675bf4cb 2372
347bddb7 2373 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2374
347bddb7 2375 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2376
2377 /* If no catchpoint triggered for this, then keep going. */
2378 if (ecs->random_signal)
2379 {
2020b7ab 2380 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2381 keep_going (ecs);
2382 return;
2383 }
2020b7ab 2384 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2385 goto process_event_stop_test;
2386
2387 case TARGET_WAITKIND_EXECD:
527159b7 2388 if (debug_infrun)
fc5261f2 2389 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2390 pending_follow.execd_pathname =
2391 savestring (ecs->ws.value.execd_pathname,
2392 strlen (ecs->ws.value.execd_pathname));
2393
5a2901d9
DJ
2394 if (!ptid_equal (ecs->ptid, inferior_ptid))
2395 {
0d1e5fa7 2396 context_switch (ecs->ptid);
35f196d9 2397 reinit_frame_cache ();
5a2901d9
DJ
2398 }
2399
795e548f
PA
2400 stop_pc = read_pc ();
2401
2402 /* This causes the eventpoints and symbol table to be reset.
2403 Must do this now, before trying to determine whether to
2404 stop. */
2405 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2406 xfree (pending_follow.execd_pathname);
2407
2408 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2409 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2410
04e68871
DJ
2411 /* If no catchpoint triggered for this, then keep going. */
2412 if (ecs->random_signal)
2413 {
2020b7ab 2414 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2415 keep_going (ecs);
2416 return;
2417 }
2020b7ab 2418 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2419 goto process_event_stop_test;
2420
b4dc5ffa
MK
2421 /* Be careful not to try to gather much state about a thread
2422 that's in a syscall. It's frequently a losing proposition. */
488f131b 2423 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2424 if (debug_infrun)
8a9de0e4 2425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2426 resume (0, TARGET_SIGNAL_0);
2427 prepare_to_wait (ecs);
2428 return;
c906108c 2429
488f131b
JB
2430 /* Before examining the threads further, step this thread to
2431 get it entirely out of the syscall. (We get notice of the
2432 event when the thread is just on the verge of exiting a
2433 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2434 into user code.) */
488f131b 2435 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2436 if (debug_infrun)
8a9de0e4 2437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2438 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2439 prepare_to_wait (ecs);
2440 return;
c906108c 2441
488f131b 2442 case TARGET_WAITKIND_STOPPED:
527159b7 2443 if (debug_infrun)
8a9de0e4 2444 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2445 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2446 break;
c906108c 2447
b2175913
MS
2448 case TARGET_WAITKIND_NO_HISTORY:
2449 /* Reverse execution: target ran out of history info. */
40e12b06 2450 stop_pc = read_pc ();
b2175913
MS
2451 print_stop_reason (NO_HISTORY, 0);
2452 stop_stepping (ecs);
2453 return;
2454
488f131b
JB
2455 /* We had an event in the inferior, but we are not interested
2456 in handling it at this level. The lower layers have already
8e7d2c16 2457 done what needs to be done, if anything.
8fb3e588
AC
2458
2459 One of the possible circumstances for this is when the
2460 inferior produces output for the console. The inferior has
2461 not stopped, and we are ignoring the event. Another possible
2462 circumstance is any event which the lower level knows will be
2463 reported multiple times without an intervening resume. */
488f131b 2464 case TARGET_WAITKIND_IGNORE:
527159b7 2465 if (debug_infrun)
8a9de0e4 2466 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2467 prepare_to_wait (ecs);
488f131b
JB
2468 return;
2469 }
c906108c 2470
488f131b
JB
2471 if (ecs->new_thread_event)
2472 {
94cc34af
PA
2473 if (non_stop)
2474 /* Non-stop assumes that the target handles adding new threads
2475 to the thread list. */
2476 internal_error (__FILE__, __LINE__, "\
2477targets should add new threads to the thread list themselves in non-stop mode.");
2478
2479 /* We may want to consider not doing a resume here in order to
2480 give the user a chance to play with the new thread. It might
2481 be good to make that a user-settable option. */
2482
2483 /* At this point, all threads are stopped (happens automatically
2484 in either the OS or the native code). Therefore we need to
2485 continue all threads in order to make progress. */
2486
488f131b
JB
2487 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2488 prepare_to_wait (ecs);
2489 return;
2490 }
c906108c 2491
2020b7ab 2492 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2493 {
2494 /* Do we need to clean up the state of a thread that has
2495 completed a displaced single-step? (Doing so usually affects
2496 the PC, so do it here, before we set stop_pc.) */
2497 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2498
2499 /* If we either finished a single-step or hit a breakpoint, but
2500 the user wanted this thread to be stopped, pretend we got a
2501 SIG0 (generic unsignaled stop). */
2502
2503 if (ecs->event_thread->stop_requested
2504 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2505 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2506 }
237fc4c9 2507
515630c5 2508 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2509
527159b7 2510 if (debug_infrun)
237fc4c9
PA
2511 {
2512 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2513 paddr_nz (stop_pc));
2514 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2515 {
2516 CORE_ADDR addr;
2517 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2518
2519 if (target_stopped_data_address (&current_target, &addr))
2520 fprintf_unfiltered (gdb_stdlog,
2521 "infrun: stopped data address = 0x%s\n",
2522 paddr_nz (addr));
2523 else
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: (no data address available)\n");
2526 }
2527 }
527159b7 2528
9f976b41
DJ
2529 if (stepping_past_singlestep_breakpoint)
2530 {
1c0fdd0e 2531 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2532 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2533 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2534
2535 stepping_past_singlestep_breakpoint = 0;
2536
2537 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2538 breakpoint, or stopped for some other reason. It would be nice if
2539 we could tell, but we can't reliably. */
2020b7ab 2540 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2541 {
527159b7 2542 if (debug_infrun)
8a9de0e4 2543 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2544 /* Pull the single step breakpoints out of the target. */
e0cd558a 2545 remove_single_step_breakpoints ();
9f976b41
DJ
2546 singlestep_breakpoints_inserted_p = 0;
2547
2548 ecs->random_signal = 0;
2549
0d1e5fa7 2550 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2551 if (deprecated_context_hook)
2552 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2553
2554 resume (1, TARGET_SIGNAL_0);
2555 prepare_to_wait (ecs);
2556 return;
2557 }
2558 }
2559
ca67fcb8 2560 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2561 {
94cc34af
PA
2562 /* In non-stop mode, there's never a deferred_step_ptid set. */
2563 gdb_assert (!non_stop);
2564
6a6b96b9
UW
2565 /* If we stopped for some other reason than single-stepping, ignore
2566 the fact that we were supposed to switch back. */
2020b7ab 2567 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2568 {
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2571 "infrun: handling deferred step\n");
6a6b96b9
UW
2572
2573 /* Pull the single step breakpoints out of the target. */
2574 if (singlestep_breakpoints_inserted_p)
2575 {
2576 remove_single_step_breakpoints ();
2577 singlestep_breakpoints_inserted_p = 0;
2578 }
2579
2580 /* Note: We do not call context_switch at this point, as the
2581 context is already set up for stepping the original thread. */
ca67fcb8
VP
2582 switch_to_thread (deferred_step_ptid);
2583 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2584 /* Suppress spurious "Switching to ..." message. */
2585 previous_inferior_ptid = inferior_ptid;
2586
2587 resume (1, TARGET_SIGNAL_0);
2588 prepare_to_wait (ecs);
2589 return;
2590 }
ca67fcb8
VP
2591
2592 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2593 }
2594
488f131b
JB
2595 /* See if a thread hit a thread-specific breakpoint that was meant for
2596 another thread. If so, then step that thread past the breakpoint,
2597 and continue it. */
2598
2020b7ab 2599 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2600 {
9f976b41
DJ
2601 int thread_hop_needed = 0;
2602
f8d40ec8
JB
2603 /* Check if a regular breakpoint has been hit before checking
2604 for a potential single step breakpoint. Otherwise, GDB will
2605 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2606 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2607 {
c5aa993b 2608 ecs->random_signal = 0;
4fa8626c 2609 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2610 thread_hop_needed = 1;
2611 }
1c0fdd0e 2612 else if (singlestep_breakpoints_inserted_p)
9f976b41 2613 {
fd48f117
DJ
2614 /* We have not context switched yet, so this should be true
2615 no matter which thread hit the singlestep breakpoint. */
2616 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2617 if (debug_infrun)
2618 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2619 "trap for %s\n",
2620 target_pid_to_str (ecs->ptid));
2621
9f976b41
DJ
2622 ecs->random_signal = 0;
2623 /* The call to in_thread_list is necessary because PTIDs sometimes
2624 change when we go from single-threaded to multi-threaded. If
2625 the singlestep_ptid is still in the list, assume that it is
2626 really different from ecs->ptid. */
2627 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2628 && in_thread_list (singlestep_ptid))
2629 {
fd48f117
DJ
2630 /* If the PC of the thread we were trying to single-step
2631 has changed, discard this event (which we were going
2632 to ignore anyway), and pretend we saw that thread
2633 trap. This prevents us continuously moving the
2634 single-step breakpoint forward, one instruction at a
2635 time. If the PC has changed, then the thread we were
2636 trying to single-step has trapped or been signalled,
2637 but the event has not been reported to GDB yet.
2638
2639 There might be some cases where this loses signal
2640 information, if a signal has arrived at exactly the
2641 same time that the PC changed, but this is the best
2642 we can do with the information available. Perhaps we
2643 should arrange to report all events for all threads
2644 when they stop, or to re-poll the remote looking for
2645 this particular thread (i.e. temporarily enable
2646 schedlock). */
515630c5
UW
2647
2648 CORE_ADDR new_singlestep_pc
2649 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2650
2651 if (new_singlestep_pc != singlestep_pc)
fd48f117 2652 {
2020b7ab
PA
2653 enum target_signal stop_signal;
2654
fd48f117
DJ
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2657 " but expected thread advanced also\n");
2658
2659 /* The current context still belongs to
2660 singlestep_ptid. Don't swap here, since that's
2661 the context we want to use. Just fudge our
2662 state and continue. */
2020b7ab
PA
2663 stop_signal = ecs->event_thread->stop_signal;
2664 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2665 ecs->ptid = singlestep_ptid;
4e1c45ea 2666 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2667 ecs->event_thread->stop_signal = stop_signal;
515630c5 2668 stop_pc = new_singlestep_pc;
fd48f117
DJ
2669 }
2670 else
2671 {
2672 if (debug_infrun)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "infrun: unexpected thread\n");
2675
2676 thread_hop_needed = 1;
2677 stepping_past_singlestep_breakpoint = 1;
2678 saved_singlestep_ptid = singlestep_ptid;
2679 }
9f976b41
DJ
2680 }
2681 }
2682
2683 if (thread_hop_needed)
8fb3e588 2684 {
237fc4c9 2685 int remove_status = 0;
8fb3e588 2686
527159b7 2687 if (debug_infrun)
8a9de0e4 2688 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2689
8fb3e588
AC
2690 /* Saw a breakpoint, but it was hit by the wrong thread.
2691 Just continue. */
2692
1c0fdd0e 2693 if (singlestep_breakpoints_inserted_p)
488f131b 2694 {
8fb3e588 2695 /* Pull the single step breakpoints out of the target. */
e0cd558a 2696 remove_single_step_breakpoints ();
8fb3e588
AC
2697 singlestep_breakpoints_inserted_p = 0;
2698 }
2699
237fc4c9
PA
2700 /* If the arch can displace step, don't remove the
2701 breakpoints. */
2702 if (!use_displaced_stepping (current_gdbarch))
2703 remove_status = remove_breakpoints ();
2704
8fb3e588
AC
2705 /* Did we fail to remove breakpoints? If so, try
2706 to set the PC past the bp. (There's at least
2707 one situation in which we can fail to remove
2708 the bp's: On HP-UX's that use ttrace, we can't
2709 change the address space of a vforking child
2710 process until the child exits (well, okay, not
2711 then either :-) or execs. */
2712 if (remove_status != 0)
9d9cd7ac 2713 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2714 else
2715 { /* Single step */
8fb3e588 2716 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2717 context_switch (ecs->ptid);
2718
94cc34af
PA
2719 if (!non_stop)
2720 {
2721 /* Only need to require the next event from this
2722 thread in all-stop mode. */
2723 waiton_ptid = ecs->ptid;
2724 infwait_state = infwait_thread_hop_state;
2725 }
8fb3e588 2726
4e1c45ea 2727 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2728 keep_going (ecs);
2729 registers_changed ();
2730 return;
2731 }
488f131b 2732 }
1c0fdd0e 2733 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2734 {
2735 sw_single_step_trap_p = 1;
2736 ecs->random_signal = 0;
2737 }
488f131b
JB
2738 }
2739 else
2740 ecs->random_signal = 1;
c906108c 2741
488f131b 2742 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2743 so, then switch to that thread. */
2744 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2745 {
527159b7 2746 if (debug_infrun)
8a9de0e4 2747 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2748
0d1e5fa7 2749 context_switch (ecs->ptid);
c5aa993b 2750
9a4105ab
AC
2751 if (deprecated_context_hook)
2752 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2753 }
c906108c 2754
1c0fdd0e 2755 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2756 {
2757 /* Pull the single step breakpoints out of the target. */
e0cd558a 2758 remove_single_step_breakpoints ();
488f131b
JB
2759 singlestep_breakpoints_inserted_p = 0;
2760 }
c906108c 2761
d983da9c
DJ
2762 if (stepped_after_stopped_by_watchpoint)
2763 stopped_by_watchpoint = 0;
2764 else
2765 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2766
2767 /* If necessary, step over this watchpoint. We'll be back to display
2768 it in a moment. */
2769 if (stopped_by_watchpoint
2770 && (HAVE_STEPPABLE_WATCHPOINT
2771 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2772 {
488f131b
JB
2773 /* At this point, we are stopped at an instruction which has
2774 attempted to write to a piece of memory under control of
2775 a watchpoint. The instruction hasn't actually executed
2776 yet. If we were to evaluate the watchpoint expression
2777 now, we would get the old value, and therefore no change
2778 would seem to have occurred.
2779
2780 In order to make watchpoints work `right', we really need
2781 to complete the memory write, and then evaluate the
d983da9c
DJ
2782 watchpoint expression. We do this by single-stepping the
2783 target.
2784
2785 It may not be necessary to disable the watchpoint to stop over
2786 it. For example, the PA can (with some kernel cooperation)
2787 single step over a watchpoint without disabling the watchpoint.
2788
2789 It is far more common to need to disable a watchpoint to step
2790 the inferior over it. If we have non-steppable watchpoints,
2791 we must disable the current watchpoint; it's simplest to
2792 disable all watchpoints and breakpoints. */
2793
2794 if (!HAVE_STEPPABLE_WATCHPOINT)
2795 remove_breakpoints ();
488f131b
JB
2796 registers_changed ();
2797 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2798 waiton_ptid = ecs->ptid;
d983da9c 2799 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2800 infwait_state = infwait_step_watch_state;
d983da9c 2801 else
0d1e5fa7 2802 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2803 prepare_to_wait (ecs);
2804 return;
2805 }
2806
488f131b
JB
2807 ecs->stop_func_start = 0;
2808 ecs->stop_func_end = 0;
2809 ecs->stop_func_name = 0;
2810 /* Don't care about return value; stop_func_start and stop_func_name
2811 will both be 0 if it doesn't work. */
2812 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2813 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2814 ecs->stop_func_start
2815 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2816 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2817 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2818 ecs->event_thread->stop_step = 0;
488f131b
JB
2819 stop_print_frame = 1;
2820 ecs->random_signal = 0;
2821 stopped_by_random_signal = 0;
488f131b 2822
2020b7ab 2823 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2824 && ecs->event_thread->trap_expected
3352ef37 2825 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2826 && currently_stepping (ecs->event_thread))
3352ef37 2827 {
b50d7442 2828 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2829 also on an instruction that needs to be stepped multiple
2830 times before it's been fully executing. E.g., architectures
2831 with a delay slot. It needs to be stepped twice, once for
2832 the instruction and once for the delay slot. */
2833 int step_through_delay
2834 = gdbarch_single_step_through_delay (current_gdbarch,
2835 get_current_frame ());
527159b7 2836 if (debug_infrun && step_through_delay)
8a9de0e4 2837 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2838 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2839 {
2840 /* The user issued a continue when stopped at a breakpoint.
2841 Set up for another trap and get out of here. */
4e1c45ea 2842 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2843 keep_going (ecs);
2844 return;
2845 }
2846 else if (step_through_delay)
2847 {
2848 /* The user issued a step when stopped at a breakpoint.
2849 Maybe we should stop, maybe we should not - the delay
2850 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2851 case, don't decide that here, just set
2852 ecs->stepping_over_breakpoint, making sure we
2853 single-step again before breakpoints are re-inserted. */
4e1c45ea 2854 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2855 }
2856 }
2857
488f131b
JB
2858 /* Look at the cause of the stop, and decide what to do.
2859 The alternatives are:
0d1e5fa7
PA
2860 1) stop_stepping and return; to really stop and return to the debugger,
2861 2) keep_going and return to start up again
4e1c45ea 2862 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2863 3) set ecs->random_signal to 1, and the decision between 1 and 2
2864 will be made according to the signal handling tables. */
2865
2866 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2867 that have to do with the program's own actions. Note that
2868 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2869 on the operating system version. Here we detect when a SIGILL or
2870 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2871 something similar for SIGSEGV, since a SIGSEGV will be generated
2872 when we're trying to execute a breakpoint instruction on a
2873 non-executable stack. This happens for call dummy breakpoints
2874 for architectures like SPARC that place call dummies on the
237fc4c9 2875 stack.
488f131b 2876
237fc4c9
PA
2877 If we're doing a displaced step past a breakpoint, then the
2878 breakpoint is always inserted at the original instruction;
2879 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2880 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2881 || (! ecs->event_thread->trap_expected
237fc4c9 2882 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2883 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2884 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2885 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2886 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2887 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2888 {
2020b7ab 2889 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2890 {
527159b7 2891 if (debug_infrun)
8a9de0e4 2892 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2893 stop_print_frame = 0;
2894 stop_stepping (ecs);
2895 return;
2896 }
c54cfec8
EZ
2897
2898 /* This is originated from start_remote(), start_inferior() and
2899 shared libraries hook functions. */
b0f4b84b 2900 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2901 {
527159b7 2902 if (debug_infrun)
8a9de0e4 2903 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2904 stop_stepping (ecs);
2905 return;
2906 }
2907
c54cfec8 2908 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2909 the stop_signal here, because some kernels don't ignore a
2910 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2911 See more comments in inferior.h. On the other hand, if we
a0ef4274 2912 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2913 will handle the SIGSTOP if it should show up later.
2914
2915 Also consider that the attach is complete when we see a
2916 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2917 target extended-remote report it instead of a SIGSTOP
2918 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
2919 signal, so this is no exception.
2920
2921 Also consider that the attach is complete when we see a
2922 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2923 the target to stop all threads of the inferior, in case the
2924 low level attach operation doesn't stop them implicitly. If
2925 they weren't stopped implicitly, then the stub will report a
2926 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2927 other than GDB's request. */
a0ef4274 2928 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 2929 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
2930 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2931 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
2932 {
2933 stop_stepping (ecs);
2020b7ab 2934 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2935 return;
2936 }
2937
fba57f8f 2938 /* See if there is a breakpoint at the current PC. */
347bddb7 2939 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2940
2941 /* Following in case break condition called a
2942 function. */
2943 stop_print_frame = 1;
488f131b 2944
73dd234f 2945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2946 at one stage in the past included checks for an inferior
2947 function call's call dummy's return breakpoint. The original
2948 comment, that went with the test, read:
73dd234f 2949
8fb3e588
AC
2950 ``End of a stack dummy. Some systems (e.g. Sony news) give
2951 another signal besides SIGTRAP, so check here as well as
2952 above.''
73dd234f 2953
8002d778 2954 If someone ever tries to get call dummys on a
73dd234f 2955 non-executable stack to work (where the target would stop
03cebad2
MK
2956 with something like a SIGSEGV), then those tests might need
2957 to be re-instated. Given, however, that the tests were only
73dd234f 2958 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2959 suspect that it won't be the case.
2960
8fb3e588
AC
2961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2962 be necessary for call dummies on a non-executable stack on
2963 SPARC. */
73dd234f 2964
2020b7ab 2965 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2966 ecs->random_signal
347bddb7 2967 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2968 || ecs->event_thread->trap_expected
2969 || (ecs->event_thread->step_range_end
2970 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2971 else
2972 {
347bddb7 2973 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 2974 if (!ecs->random_signal)
2020b7ab 2975 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2976 }
2977 }
2978
2979 /* When we reach this point, we've pretty much decided
2980 that the reason for stopping must've been a random
2981 (unexpected) signal. */
2982
2983 else
2984 ecs->random_signal = 1;
488f131b 2985
04e68871 2986process_event_stop_test:
488f131b
JB
2987 /* For the program's own signals, act according to
2988 the signal handling tables. */
2989
2990 if (ecs->random_signal)
2991 {
2992 /* Signal not for debugging purposes. */
2993 int printed = 0;
2994
527159b7 2995 if (debug_infrun)
2020b7ab
PA
2996 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2997 ecs->event_thread->stop_signal);
527159b7 2998
488f131b
JB
2999 stopped_by_random_signal = 1;
3000
2020b7ab 3001 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3002 {
3003 printed = 1;
3004 target_terminal_ours_for_output ();
2020b7ab 3005 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3006 }
252fbfc8
PA
3007 /* Always stop on signals if we're either just gaining control
3008 of the program, or the user explicitly requested this thread
3009 to remain stopped. */
d6b48e9c 3010 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3011 || ecs->event_thread->stop_requested
d6b48e9c 3012 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3013 {
3014 stop_stepping (ecs);
3015 return;
3016 }
3017 /* If not going to stop, give terminal back
3018 if we took it away. */
3019 else if (printed)
3020 target_terminal_inferior ();
3021
3022 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3023 if (signal_program[ecs->event_thread->stop_signal] == 0)
3024 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3025
4e1c45ea
PA
3026 if (ecs->event_thread->prev_pc == read_pc ()
3027 && ecs->event_thread->trap_expected
3028 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3029 {
3030 /* We were just starting a new sequence, attempting to
3031 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3032 Instead this signal arrives. This signal will take us out
68f53502
AC
3033 of the stepping range so GDB needs to remember to, when
3034 the signal handler returns, resume stepping off that
3035 breakpoint. */
3036 /* To simplify things, "continue" is forced to use the same
3037 code paths as single-step - set a breakpoint at the
3038 signal return address and then, once hit, step off that
3039 breakpoint. */
237fc4c9
PA
3040 if (debug_infrun)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "infrun: signal arrived while stepping over "
3043 "breakpoint\n");
d3169d93 3044
44cbf7b5 3045 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 3046 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3047 keep_going (ecs);
3048 return;
68f53502 3049 }
9d799f85 3050
4e1c45ea 3051 if (ecs->event_thread->step_range_end != 0
2020b7ab 3052 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3053 && (ecs->event_thread->step_range_start <= stop_pc
3054 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 3055 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
3056 ecs->event_thread->step_frame_id)
3057 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3058 {
3059 /* The inferior is about to take a signal that will take it
3060 out of the single step range. Set a breakpoint at the
3061 current PC (which is presumably where the signal handler
3062 will eventually return) and then allow the inferior to
3063 run free.
3064
3065 Note that this is only needed for a signal delivered
3066 while in the single-step range. Nested signals aren't a
3067 problem as they eventually all return. */
237fc4c9
PA
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "infrun: signal may take us out of "
3071 "single-step range\n");
3072
44cbf7b5 3073 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
3074 keep_going (ecs);
3075 return;
d303a6c7 3076 }
9d799f85
AC
3077
3078 /* Note: step_resume_breakpoint may be non-NULL. This occures
3079 when either there's a nested signal, or when there's a
3080 pending signal enabled just as the signal handler returns
3081 (leaving the inferior at the step-resume-breakpoint without
3082 actually executing it). Either way continue until the
3083 breakpoint is really hit. */
488f131b
JB
3084 keep_going (ecs);
3085 return;
3086 }
3087
3088 /* Handle cases caused by hitting a breakpoint. */
3089 {
3090 CORE_ADDR jmp_buf_pc;
3091 struct bpstat_what what;
3092
347bddb7 3093 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3094
3095 if (what.call_dummy)
3096 {
3097 stop_stack_dummy = 1;
c5aa993b 3098 }
c906108c 3099
488f131b 3100 switch (what.main_action)
c5aa993b 3101 {
488f131b 3102 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3103 /* If we hit the breakpoint at longjmp while stepping, we
3104 install a momentary breakpoint at the target of the
3105 jmp_buf. */
3106
3107 if (debug_infrun)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3110
4e1c45ea 3111 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3112
91104499 3113 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3114 || !gdbarch_get_longjmp_target (current_gdbarch,
3115 get_current_frame (), &jmp_buf_pc))
c5aa993b 3116 {
611c83ae
PA
3117 if (debug_infrun)
3118 fprintf_unfiltered (gdb_stdlog, "\
3119infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3120 keep_going (ecs);
104c1213 3121 return;
c5aa993b 3122 }
488f131b 3123
611c83ae
PA
3124 /* We're going to replace the current step-resume breakpoint
3125 with a longjmp-resume breakpoint. */
4e1c45ea 3126 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3127
3128 /* Insert a breakpoint at resume address. */
3129 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3130
488f131b
JB
3131 keep_going (ecs);
3132 return;
c906108c 3133
488f131b 3134 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3135 if (debug_infrun)
611c83ae
PA
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3138
4e1c45ea
PA
3139 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3140 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3141
414c69f7 3142 ecs->event_thread->stop_step = 1;
611c83ae
PA
3143 print_stop_reason (END_STEPPING_RANGE, 0);
3144 stop_stepping (ecs);
3145 return;
488f131b
JB
3146
3147 case BPSTAT_WHAT_SINGLE:
527159b7 3148 if (debug_infrun)
8802d8ed 3149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3150 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3151 /* Still need to check other stuff, at least the case
3152 where we are stepping and step out of the right range. */
3153 break;
c906108c 3154
488f131b 3155 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3156 if (debug_infrun)
8802d8ed 3157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3158 stop_print_frame = 1;
c906108c 3159
d303a6c7
AC
3160 /* We are about to nuke the step_resume_breakpointt via the
3161 cleanup chain, so no need to worry about it here. */
c5aa993b 3162
488f131b
JB
3163 stop_stepping (ecs);
3164 return;
c5aa993b 3165
488f131b 3166 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3167 if (debug_infrun)
8802d8ed 3168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3169 stop_print_frame = 0;
c5aa993b 3170
d303a6c7
AC
3171 /* We are about to nuke the step_resume_breakpoin via the
3172 cleanup chain, so no need to worry about it here. */
c5aa993b 3173
488f131b 3174 stop_stepping (ecs);
e441088d 3175 return;
c5aa993b 3176
488f131b 3177 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3178 if (debug_infrun)
8802d8ed 3179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3180
4e1c45ea
PA
3181 delete_step_resume_breakpoint (ecs->event_thread);
3182 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3183 {
3184 /* Back when the step-resume breakpoint was inserted, we
3185 were trying to single-step off a breakpoint. Go back
3186 to doing that. */
4e1c45ea
PA
3187 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3188 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3189 keep_going (ecs);
3190 return;
3191 }
b2175913
MS
3192 if (stop_pc == ecs->stop_func_start
3193 && execution_direction == EXEC_REVERSE)
3194 {
3195 /* We are stepping over a function call in reverse, and
3196 just hit the step-resume breakpoint at the start
3197 address of the function. Go back to single-stepping,
3198 which should take us back to the function call. */
3199 ecs->event_thread->stepping_over_breakpoint = 1;
3200 keep_going (ecs);
3201 return;
3202 }
488f131b
JB
3203 break;
3204
488f131b 3205 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3206 {
527159b7 3207 if (debug_infrun)
8802d8ed 3208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3209
3210 /* Check for any newly added shared libraries if we're
3211 supposed to be adding them automatically. Switch
3212 terminal for any messages produced by
3213 breakpoint_re_set. */
3214 target_terminal_ours_for_output ();
aff6338a 3215 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3216 stack's section table is kept up-to-date. Architectures,
3217 (e.g., PPC64), use the section table to perform
3218 operations such as address => section name and hence
3219 require the table to contain all sections (including
3220 those found in shared libraries). */
aff6338a 3221 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
3222 exec_ops to SOLIB_ADD. This is because current GDB is
3223 only tooled to propagate section_table changes out from
3224 the "current_target" (see target_resize_to_sections), and
3225 not up from the exec stratum. This, of course, isn't
3226 right. "infrun.c" should only interact with the
3227 exec/process stratum, instead relying on the target stack
3228 to propagate relevant changes (stop, section table
3229 changed, ...) up to other layers. */
a77053c2 3230#ifdef SOLIB_ADD
aff6338a 3231 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3232#else
3233 solib_add (NULL, 0, &current_target, auto_solib_add);
3234#endif
488f131b
JB
3235 target_terminal_inferior ();
3236
488f131b
JB
3237 /* If requested, stop when the dynamic linker notifies
3238 gdb of events. This allows the user to get control
3239 and place breakpoints in initializer routines for
3240 dynamically loaded objects (among other things). */
877522db 3241 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3242 {
488f131b 3243 stop_stepping (ecs);
d4f3574e
SS
3244 return;
3245 }
c5aa993b 3246 else
c5aa993b 3247 {
488f131b 3248 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3249 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3250 break;
c5aa993b 3251 }
488f131b 3252 }
488f131b 3253 break;
c906108c 3254
488f131b
JB
3255 case BPSTAT_WHAT_LAST:
3256 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3257
488f131b
JB
3258 case BPSTAT_WHAT_KEEP_CHECKING:
3259 break;
3260 }
3261 }
c906108c 3262
488f131b
JB
3263 /* We come here if we hit a breakpoint but should not
3264 stop for it. Possibly we also were stepping
3265 and should stop for that. So fall through and
3266 test for stepping. But, if not stepping,
3267 do not stop. */
c906108c 3268
a7212384
UW
3269 /* In all-stop mode, if we're currently stepping but have stopped in
3270 some other thread, we need to switch back to the stepped thread. */
3271 if (!non_stop)
3272 {
3273 struct thread_info *tp;
3274 tp = iterate_over_threads (currently_stepping_callback,
3275 ecs->event_thread);
3276 if (tp)
3277 {
3278 /* However, if the current thread is blocked on some internal
3279 breakpoint, and we simply need to step over that breakpoint
3280 to get it going again, do that first. */
3281 if ((ecs->event_thread->trap_expected
3282 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3283 || ecs->event_thread->stepping_over_breakpoint)
3284 {
3285 keep_going (ecs);
3286 return;
3287 }
3288
3289 /* Otherwise, we no longer expect a trap in the current thread.
3290 Clear the trap_expected flag before switching back -- this is
3291 what keep_going would do as well, if we called it. */
3292 ecs->event_thread->trap_expected = 0;
3293
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: switching back to stepped thread\n");
3297
3298 ecs->event_thread = tp;
3299 ecs->ptid = tp->ptid;
3300 context_switch (ecs->ptid);
3301 keep_going (ecs);
3302 return;
3303 }
3304 }
3305
9d1ff73f
MS
3306 /* Are we stepping to get the inferior out of the dynamic linker's
3307 hook (and possibly the dld itself) after catching a shlib
3308 event? */
4e1c45ea 3309 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3310 {
3311#if defined(SOLIB_ADD)
3312 /* Have we reached our destination? If not, keep going. */
3313 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3314 {
527159b7 3315 if (debug_infrun)
8a9de0e4 3316 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3317 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3318 keep_going (ecs);
104c1213 3319 return;
488f131b
JB
3320 }
3321#endif
527159b7 3322 if (debug_infrun)
8a9de0e4 3323 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3324 /* Else, stop and report the catchpoint(s) whose triggering
3325 caused us to begin stepping. */
4e1c45ea 3326 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3327 bpstat_clear (&ecs->event_thread->stop_bpstat);
3328 ecs->event_thread->stop_bpstat
3329 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3330 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3331 stop_print_frame = 1;
3332 stop_stepping (ecs);
3333 return;
3334 }
c906108c 3335
4e1c45ea 3336 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3337 {
527159b7 3338 if (debug_infrun)
d3169d93
DJ
3339 fprintf_unfiltered (gdb_stdlog,
3340 "infrun: step-resume breakpoint is inserted\n");
527159b7 3341
488f131b
JB
3342 /* Having a step-resume breakpoint overrides anything
3343 else having to do with stepping commands until
3344 that breakpoint is reached. */
488f131b
JB
3345 keep_going (ecs);
3346 return;
3347 }
c5aa993b 3348
4e1c45ea 3349 if (ecs->event_thread->step_range_end == 0)
488f131b 3350 {
527159b7 3351 if (debug_infrun)
8a9de0e4 3352 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3353 /* Likewise if we aren't even stepping. */
488f131b
JB
3354 keep_going (ecs);
3355 return;
3356 }
c5aa993b 3357
488f131b 3358 /* If stepping through a line, keep going if still within it.
c906108c 3359
488f131b
JB
3360 Note that step_range_end is the address of the first instruction
3361 beyond the step range, and NOT the address of the last instruction
3362 within it! */
4e1c45ea
PA
3363 if (stop_pc >= ecs->event_thread->step_range_start
3364 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3365 {
527159b7 3366 if (debug_infrun)
b2175913 3367 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3368 paddr_nz (ecs->event_thread->step_range_start),
3369 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3370
3371 /* When stepping backward, stop at beginning of line range
3372 (unless it's the function entry point, in which case
3373 keep going back to the call point). */
3374 if (stop_pc == ecs->event_thread->step_range_start
3375 && stop_pc != ecs->stop_func_start
3376 && execution_direction == EXEC_REVERSE)
3377 {
3378 ecs->event_thread->stop_step = 1;
3379 print_stop_reason (END_STEPPING_RANGE, 0);
3380 stop_stepping (ecs);
3381 }
3382 else
3383 keep_going (ecs);
3384
488f131b
JB
3385 return;
3386 }
c5aa993b 3387
488f131b 3388 /* We stepped out of the stepping range. */
c906108c 3389
488f131b
JB
3390 /* If we are stepping at the source level and entered the runtime
3391 loader dynamic symbol resolution code, we keep on single stepping
3392 until we exit the run time loader code and reach the callee's
3393 address. */
078130d0 3394 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3395 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3396 {
4c8c40e6
MK
3397 CORE_ADDR pc_after_resolver =
3398 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3399
527159b7 3400 if (debug_infrun)
8a9de0e4 3401 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3402
488f131b
JB
3403 if (pc_after_resolver)
3404 {
3405 /* Set up a step-resume breakpoint at the address
3406 indicated by SKIP_SOLIB_RESOLVER. */
3407 struct symtab_and_line sr_sal;
fe39c653 3408 init_sal (&sr_sal);
488f131b
JB
3409 sr_sal.pc = pc_after_resolver;
3410
44cbf7b5 3411 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3412 }
c906108c 3413
488f131b
JB
3414 keep_going (ecs);
3415 return;
3416 }
c906108c 3417
4e1c45ea 3418 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3419 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3420 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3421 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3422 {
527159b7 3423 if (debug_infrun)
8a9de0e4 3424 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3425 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3426 a signal trampoline (either by a signal being delivered or by
3427 the signal handler returning). Just single-step until the
3428 inferior leaves the trampoline (either by calling the handler
3429 or returning). */
488f131b
JB
3430 keep_going (ecs);
3431 return;
3432 }
c906108c 3433
c17eaafe
DJ
3434 /* Check for subroutine calls. The check for the current frame
3435 equalling the step ID is not necessary - the check of the
3436 previous frame's ID is sufficient - but it is a common case and
3437 cheaper than checking the previous frame's ID.
14e60db5
DJ
3438
3439 NOTE: frame_id_eq will never report two invalid frame IDs as
3440 being equal, so to get into this block, both the current and
3441 previous frame must have valid frame IDs. */
4e1c45ea
PA
3442 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3443 ecs->event_thread->step_frame_id)
b2175913
MS
3444 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3445 ecs->event_thread->step_frame_id)
3446 || execution_direction == EXEC_REVERSE))
488f131b 3447 {
95918acb 3448 CORE_ADDR real_stop_pc;
8fb3e588 3449
527159b7 3450 if (debug_infrun)
8a9de0e4 3451 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3452
078130d0 3453 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3454 || ((ecs->event_thread->step_range_end == 1)
3455 && in_prologue (ecs->event_thread->prev_pc,
3456 ecs->stop_func_start)))
95918acb
AC
3457 {
3458 /* I presume that step_over_calls is only 0 when we're
3459 supposed to be stepping at the assembly language level
3460 ("stepi"). Just stop. */
3461 /* Also, maybe we just did a "nexti" inside a prolog, so we
3462 thought it was a subroutine call but it was not. Stop as
3463 well. FENN */
414c69f7 3464 ecs->event_thread->stop_step = 1;
95918acb
AC
3465 print_stop_reason (END_STEPPING_RANGE, 0);
3466 stop_stepping (ecs);
3467 return;
3468 }
8fb3e588 3469
078130d0 3470 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3471 {
b2175913
MS
3472 /* We're doing a "next".
3473
3474 Normal (forward) execution: set a breakpoint at the
3475 callee's return address (the address at which the caller
3476 will resume).
3477
3478 Reverse (backward) execution. set the step-resume
3479 breakpoint at the start of the function that we just
3480 stepped into (backwards), and continue to there. When we
6130d0b7 3481 get there, we'll need to single-step back to the caller. */
b2175913
MS
3482
3483 if (execution_direction == EXEC_REVERSE)
3484 {
3485 struct symtab_and_line sr_sal;
3067f6e5
MS
3486
3487 if (ecs->stop_func_start == 0
3488 && in_solib_dynsym_resolve_code (stop_pc))
3489 {
3490 /* Stepped into runtime loader dynamic symbol
3491 resolution code. Since we're in reverse,
3492 we have already backed up through the runtime
3493 loader and the dynamic function. This is just
3494 the trampoline (jump table).
3495
3496 Just keep stepping, we'll soon be home.
3497 */
3498 keep_going (ecs);
3499 return;
3500 }
3501 /* Normal (staticly linked) function call return. */
b2175913
MS
3502 init_sal (&sr_sal);
3503 sr_sal.pc = ecs->stop_func_start;
3504 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3505 }
3506 else
3507 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3508
8567c30f
AC
3509 keep_going (ecs);
3510 return;
3511 }
a53c66de 3512
95918acb 3513 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3514 calling routine and the real function), locate the real
3515 function. That's what tells us (a) whether we want to step
3516 into it at all, and (b) what prologue we want to run to the
3517 end of, if we do step into it. */
52f729a7 3518 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3519 if (real_stop_pc == 0)
52f729a7
UW
3520 real_stop_pc = gdbarch_skip_trampoline_code
3521 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3522 if (real_stop_pc != 0)
3523 ecs->stop_func_start = real_stop_pc;
8fb3e588 3524
db5f024e 3525 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3526 {
3527 struct symtab_and_line sr_sal;
3528 init_sal (&sr_sal);
3529 sr_sal.pc = ecs->stop_func_start;
3530
44cbf7b5 3531 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3532 keep_going (ecs);
3533 return;
1b2bfbb9
RC
3534 }
3535
95918acb 3536 /* If we have line number information for the function we are
8fb3e588 3537 thinking of stepping into, step into it.
95918acb 3538
8fb3e588
AC
3539 If there are several symtabs at that PC (e.g. with include
3540 files), just want to know whether *any* of them have line
3541 numbers. find_pc_line handles this. */
95918acb
AC
3542 {
3543 struct symtab_and_line tmp_sal;
8fb3e588 3544
95918acb
AC
3545 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3546 if (tmp_sal.line != 0)
3547 {
b2175913
MS
3548 if (execution_direction == EXEC_REVERSE)
3549 handle_step_into_function_backward (ecs);
3550 else
3551 handle_step_into_function (ecs);
95918acb
AC
3552 return;
3553 }
3554 }
3555
3556 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3557 set, we stop the step so that the user has a chance to switch
3558 in assembly mode. */
078130d0
PA
3559 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3560 && step_stop_if_no_debug)
95918acb 3561 {
414c69f7 3562 ecs->event_thread->stop_step = 1;
95918acb
AC
3563 print_stop_reason (END_STEPPING_RANGE, 0);
3564 stop_stepping (ecs);
3565 return;
3566 }
3567
b2175913
MS
3568 if (execution_direction == EXEC_REVERSE)
3569 {
3570 /* Set a breakpoint at callee's start address.
3571 From there we can step once and be back in the caller. */
3572 struct symtab_and_line sr_sal;
3573 init_sal (&sr_sal);
3574 sr_sal.pc = ecs->stop_func_start;
3575 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3576 }
3577 else
3578 /* Set a breakpoint at callee's return address (the address
3579 at which the caller will resume). */
3580 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3581
95918acb 3582 keep_going (ecs);
488f131b 3583 return;
488f131b 3584 }
c906108c 3585
488f131b
JB
3586 /* If we're in the return path from a shared library trampoline,
3587 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3588 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3589 stop_pc, ecs->stop_func_name))
488f131b 3590 {
488f131b 3591 /* Determine where this trampoline returns. */
52f729a7
UW
3592 CORE_ADDR real_stop_pc;
3593 real_stop_pc = gdbarch_skip_trampoline_code
3594 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3595
527159b7 3596 if (debug_infrun)
8a9de0e4 3597 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3598
488f131b 3599 /* Only proceed through if we know where it's going. */
d764a824 3600 if (real_stop_pc)
488f131b
JB
3601 {
3602 /* And put the step-breakpoint there and go until there. */
3603 struct symtab_and_line sr_sal;
3604
fe39c653 3605 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3606 sr_sal.pc = real_stop_pc;
488f131b 3607 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3608
3609 /* Do not specify what the fp should be when we stop since
3610 on some machines the prologue is where the new fp value
3611 is established. */
3612 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3613
488f131b
JB
3614 /* Restart without fiddling with the step ranges or
3615 other state. */
3616 keep_going (ecs);
3617 return;
3618 }
3619 }
c906108c 3620
2afb61aa 3621 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3622
1b2bfbb9
RC
3623 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3624 the trampoline processing logic, however, there are some trampolines
3625 that have no names, so we should do trampoline handling first. */
078130d0 3626 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3627 && ecs->stop_func_name == NULL
2afb61aa 3628 && stop_pc_sal.line == 0)
1b2bfbb9 3629 {
527159b7 3630 if (debug_infrun)
8a9de0e4 3631 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3632
1b2bfbb9 3633 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3634 undebuggable function (where there is no debugging information
3635 and no line number corresponding to the address where the
1b2bfbb9
RC
3636 inferior stopped). Since we want to skip this kind of code,
3637 we keep going until the inferior returns from this
14e60db5
DJ
3638 function - unless the user has asked us not to (via
3639 set step-mode) or we no longer know how to get back
3640 to the call site. */
3641 if (step_stop_if_no_debug
eb2f4a08 3642 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3643 {
3644 /* If we have no line number and the step-stop-if-no-debug
3645 is set, we stop the step so that the user has a chance to
3646 switch in assembly mode. */
414c69f7 3647 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3648 print_stop_reason (END_STEPPING_RANGE, 0);
3649 stop_stepping (ecs);
3650 return;
3651 }
3652 else
3653 {
3654 /* Set a breakpoint at callee's return address (the address
3655 at which the caller will resume). */
14e60db5 3656 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3657 keep_going (ecs);
3658 return;
3659 }
3660 }
3661
4e1c45ea 3662 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3663 {
3664 /* It is stepi or nexti. We always want to stop stepping after
3665 one instruction. */
527159b7 3666 if (debug_infrun)
8a9de0e4 3667 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3668 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3669 print_stop_reason (END_STEPPING_RANGE, 0);
3670 stop_stepping (ecs);
3671 return;
3672 }
3673
2afb61aa 3674 if (stop_pc_sal.line == 0)
488f131b
JB
3675 {
3676 /* We have no line number information. That means to stop
3677 stepping (does this always happen right after one instruction,
3678 when we do "s" in a function with no line numbers,
3679 or can this happen as a result of a return or longjmp?). */
527159b7 3680 if (debug_infrun)
8a9de0e4 3681 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3682 ecs->event_thread->stop_step = 1;
488f131b
JB
3683 print_stop_reason (END_STEPPING_RANGE, 0);
3684 stop_stepping (ecs);
3685 return;
3686 }
c906108c 3687
2afb61aa 3688 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3689 && (ecs->event_thread->current_line != stop_pc_sal.line
3690 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3691 {
3692 /* We are at the start of a different line. So stop. Note that
3693 we don't stop if we step into the middle of a different line.
3694 That is said to make things like for (;;) statements work
3695 better. */
527159b7 3696 if (debug_infrun)
8a9de0e4 3697 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3698 ecs->event_thread->stop_step = 1;
488f131b
JB
3699 print_stop_reason (END_STEPPING_RANGE, 0);
3700 stop_stepping (ecs);
3701 return;
3702 }
c906108c 3703
488f131b 3704 /* We aren't done stepping.
c906108c 3705
488f131b
JB
3706 Optimize by setting the stepping range to the line.
3707 (We might not be in the original line, but if we entered a
3708 new line in mid-statement, we continue stepping. This makes
3709 things like for(;;) statements work better.) */
c906108c 3710
4e1c45ea
PA
3711 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3712 ecs->event_thread->step_range_end = stop_pc_sal.end;
3713 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3714 ecs->event_thread->current_line = stop_pc_sal.line;
3715 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3716
527159b7 3717 if (debug_infrun)
8a9de0e4 3718 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3719 keep_going (ecs);
104c1213
JM
3720}
3721
3722/* Are we in the middle of stepping? */
3723
a7212384
UW
3724static int
3725currently_stepping_thread (struct thread_info *tp)
3726{
3727 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3728 || tp->trap_expected
3729 || tp->stepping_through_solib_after_catch;
3730}
3731
3732static int
3733currently_stepping_callback (struct thread_info *tp, void *data)
3734{
3735 /* Return true if any thread *but* the one passed in "data" is
3736 in the middle of stepping. */
3737 return tp != data && currently_stepping_thread (tp);
3738}
3739
104c1213 3740static int
4e1c45ea 3741currently_stepping (struct thread_info *tp)
104c1213 3742{
a7212384 3743 return currently_stepping_thread (tp) || bpstat_should_step ();
104c1213 3744}
c906108c 3745
b2175913
MS
3746/* Inferior has stepped into a subroutine call with source code that
3747 we should not step over. Do step to the first line of code in
3748 it. */
c2c6d25f
JM
3749
3750static void
b2175913 3751handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3752{
3753 struct symtab *s;
2afb61aa 3754 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3755
3756 s = find_pc_symtab (stop_pc);
3757 if (s && s->language != language_asm)
b2175913
MS
3758 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3759 ecs->stop_func_start);
c2c6d25f 3760
2afb61aa 3761 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3762 /* Use the step_resume_break to step until the end of the prologue,
3763 even if that involves jumps (as it seems to on the vax under
3764 4.2). */
3765 /* If the prologue ends in the middle of a source line, continue to
3766 the end of that source line (if it is still within the function).
3767 Otherwise, just go to end of prologue. */
2afb61aa
PA
3768 if (stop_func_sal.end
3769 && stop_func_sal.pc != ecs->stop_func_start
3770 && stop_func_sal.end < ecs->stop_func_end)
3771 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3772
2dbd5e30
KB
3773 /* Architectures which require breakpoint adjustment might not be able
3774 to place a breakpoint at the computed address. If so, the test
3775 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3776 ecs->stop_func_start to an address at which a breakpoint may be
3777 legitimately placed.
8fb3e588 3778
2dbd5e30
KB
3779 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3780 made, GDB will enter an infinite loop when stepping through
3781 optimized code consisting of VLIW instructions which contain
3782 subinstructions corresponding to different source lines. On
3783 FR-V, it's not permitted to place a breakpoint on any but the
3784 first subinstruction of a VLIW instruction. When a breakpoint is
3785 set, GDB will adjust the breakpoint address to the beginning of
3786 the VLIW instruction. Thus, we need to make the corresponding
3787 adjustment here when computing the stop address. */
8fb3e588 3788
2dbd5e30
KB
3789 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3790 {
3791 ecs->stop_func_start
3792 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3793 ecs->stop_func_start);
2dbd5e30
KB
3794 }
3795
c2c6d25f
JM
3796 if (ecs->stop_func_start == stop_pc)
3797 {
3798 /* We are already there: stop now. */
414c69f7 3799 ecs->event_thread->stop_step = 1;
488f131b 3800 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3801 stop_stepping (ecs);
3802 return;
3803 }
3804 else
3805 {
3806 /* Put the step-breakpoint there and go until there. */
fe39c653 3807 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3808 sr_sal.pc = ecs->stop_func_start;
3809 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3810
c2c6d25f 3811 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3812 some machines the prologue is where the new fp value is
3813 established. */
44cbf7b5 3814 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3815
3816 /* And make sure stepping stops right away then. */
4e1c45ea 3817 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3818 }
3819 keep_going (ecs);
3820}
d4f3574e 3821
b2175913
MS
3822/* Inferior has stepped backward into a subroutine call with source
3823 code that we should not step over. Do step to the beginning of the
3824 last line of code in it. */
3825
3826static void
3827handle_step_into_function_backward (struct execution_control_state *ecs)
3828{
3829 struct symtab *s;
3830 struct symtab_and_line stop_func_sal, sr_sal;
3831
3832 s = find_pc_symtab (stop_pc);
3833 if (s && s->language != language_asm)
3834 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3835 ecs->stop_func_start);
3836
3837 stop_func_sal = find_pc_line (stop_pc, 0);
3838
3839 /* OK, we're just going to keep stepping here. */
3840 if (stop_func_sal.pc == stop_pc)
3841 {
3842 /* We're there already. Just stop stepping now. */
3843 ecs->event_thread->stop_step = 1;
3844 print_stop_reason (END_STEPPING_RANGE, 0);
3845 stop_stepping (ecs);
3846 }
3847 else
3848 {
3849 /* Else just reset the step range and keep going.
3850 No step-resume breakpoint, they don't work for
3851 epilogues, which can have multiple entry paths. */
3852 ecs->event_thread->step_range_start = stop_func_sal.pc;
3853 ecs->event_thread->step_range_end = stop_func_sal.end;
3854 keep_going (ecs);
3855 }
3856 return;
3857}
3858
d3169d93 3859/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3860 This is used to both functions and to skip over code. */
3861
3862static void
3863insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3864 struct frame_id sr_id)
3865{
611c83ae
PA
3866 /* There should never be more than one step-resume or longjmp-resume
3867 breakpoint per thread, so we should never be setting a new
44cbf7b5 3868 step_resume_breakpoint when one is already active. */
4e1c45ea 3869 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3870
3871 if (debug_infrun)
3872 fprintf_unfiltered (gdb_stdlog,
3873 "infrun: inserting step-resume breakpoint at 0x%s\n",
3874 paddr_nz (sr_sal.pc));
3875
4e1c45ea
PA
3876 inferior_thread ()->step_resume_breakpoint
3877 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3878}
7ce450bd 3879
d3169d93 3880/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3881 to skip a potential signal handler.
7ce450bd 3882
14e60db5
DJ
3883 This is called with the interrupted function's frame. The signal
3884 handler, when it returns, will resume the interrupted function at
3885 RETURN_FRAME.pc. */
d303a6c7
AC
3886
3887static void
44cbf7b5 3888insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3889{
3890 struct symtab_and_line sr_sal;
3891
f4c1edd8 3892 gdb_assert (return_frame != NULL);
d303a6c7
AC
3893 init_sal (&sr_sal); /* initialize to zeros */
3894
bf6ae464
UW
3895 sr_sal.pc = gdbarch_addr_bits_remove
3896 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3897 sr_sal.section = find_pc_overlay (sr_sal.pc);
3898
44cbf7b5 3899 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3900}
3901
14e60db5
DJ
3902/* Similar to insert_step_resume_breakpoint_at_frame, except
3903 but a breakpoint at the previous frame's PC. This is used to
3904 skip a function after stepping into it (for "next" or if the called
3905 function has no debugging information).
3906
3907 The current function has almost always been reached by single
3908 stepping a call or return instruction. NEXT_FRAME belongs to the
3909 current function, and the breakpoint will be set at the caller's
3910 resume address.
3911
3912 This is a separate function rather than reusing
3913 insert_step_resume_breakpoint_at_frame in order to avoid
3914 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3915 of frame_unwind_id for an example). */
14e60db5
DJ
3916
3917static void
3918insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3919{
3920 struct symtab_and_line sr_sal;
3921
3922 /* We shouldn't have gotten here if we don't know where the call site
3923 is. */
eb2f4a08 3924 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3925
3926 init_sal (&sr_sal); /* initialize to zeros */
3927
bf6ae464 3928 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3929 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3930 sr_sal.section = find_pc_overlay (sr_sal.pc);
3931
eb2f4a08 3932 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3933}
3934
611c83ae
PA
3935/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3936 new breakpoint at the target of a jmp_buf. The handling of
3937 longjmp-resume uses the same mechanisms used for handling
3938 "step-resume" breakpoints. */
3939
3940static void
3941insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3942{
3943 /* There should never be more than one step-resume or longjmp-resume
3944 breakpoint per thread, so we should never be setting a new
3945 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3946 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3947
3948 if (debug_infrun)
3949 fprintf_unfiltered (gdb_stdlog,
3950 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3951 paddr_nz (pc));
3952
4e1c45ea 3953 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3954 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3955}
3956
104c1213
JM
3957static void
3958stop_stepping (struct execution_control_state *ecs)
3959{
527159b7 3960 if (debug_infrun)
8a9de0e4 3961 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3962
cd0fc7c3
SS
3963 /* Let callers know we don't want to wait for the inferior anymore. */
3964 ecs->wait_some_more = 0;
3965}
3966
d4f3574e
SS
3967/* This function handles various cases where we need to continue
3968 waiting for the inferior. */
3969/* (Used to be the keep_going: label in the old wait_for_inferior) */
3970
3971static void
3972keep_going (struct execution_control_state *ecs)
3973{
d4f3574e 3974 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 3975 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3976
d4f3574e
SS
3977 /* If we did not do break;, it means we should keep running the
3978 inferior and not return to debugger. */
3979
2020b7ab
PA
3980 if (ecs->event_thread->trap_expected
3981 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3982 {
3983 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
3984 the inferior, else we'd not get here) and we haven't yet
3985 gotten our trap. Simply continue. */
2020b7ab
PA
3986 resume (currently_stepping (ecs->event_thread),
3987 ecs->event_thread->stop_signal);
d4f3574e
SS
3988 }
3989 else
3990 {
3991 /* Either the trap was not expected, but we are continuing
488f131b
JB
3992 anyway (the user asked that this signal be passed to the
3993 child)
3994 -- or --
3995 The signal was SIGTRAP, e.g. it was our signal, but we
3996 decided we should resume from it.
d4f3574e 3997
c36b740a 3998 We're going to run this baby now!
d4f3574e 3999
c36b740a
VP
4000 Note that insert_breakpoints won't try to re-insert
4001 already inserted breakpoints. Therefore, we don't
4002 care if breakpoints were already inserted, or not. */
4003
4e1c45ea 4004 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4005 {
237fc4c9
PA
4006 if (! use_displaced_stepping (current_gdbarch))
4007 /* Since we can't do a displaced step, we have to remove
4008 the breakpoint while we step it. To keep things
4009 simple, we remove them all. */
4010 remove_breakpoints ();
45e8c884
VP
4011 }
4012 else
d4f3574e 4013 {
e236ba44 4014 struct gdb_exception e;
569631c6
UW
4015 /* Stop stepping when inserting breakpoints
4016 has failed. */
e236ba44
VP
4017 TRY_CATCH (e, RETURN_MASK_ERROR)
4018 {
4019 insert_breakpoints ();
4020 }
4021 if (e.reason < 0)
d4f3574e
SS
4022 {
4023 stop_stepping (ecs);
4024 return;
4025 }
d4f3574e
SS
4026 }
4027
4e1c45ea 4028 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4029
4030 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4031 specifies that such a signal should be delivered to the
4032 target program).
4033
4034 Typically, this would occure when a user is debugging a
4035 target monitor on a simulator: the target monitor sets a
4036 breakpoint; the simulator encounters this break-point and
4037 halts the simulation handing control to GDB; GDB, noteing
4038 that the break-point isn't valid, returns control back to the
4039 simulator; the simulator then delivers the hardware
4040 equivalent of a SIGNAL_TRAP to the program being debugged. */
4041
2020b7ab
PA
4042 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4043 && !signal_program[ecs->event_thread->stop_signal])
4044 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4045
2020b7ab
PA
4046 resume (currently_stepping (ecs->event_thread),
4047 ecs->event_thread->stop_signal);
d4f3574e
SS
4048 }
4049
488f131b 4050 prepare_to_wait (ecs);
d4f3574e
SS
4051}
4052
104c1213
JM
4053/* This function normally comes after a resume, before
4054 handle_inferior_event exits. It takes care of any last bits of
4055 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4056
104c1213
JM
4057static void
4058prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4059{
527159b7 4060 if (debug_infrun)
8a9de0e4 4061 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4062 if (infwait_state == infwait_normal_state)
104c1213
JM
4063 {
4064 overlay_cache_invalid = 1;
4065
4066 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4067 target_wait because they can be loaded from the target while
4068 in target_wait. This makes remote debugging a bit more
4069 efficient for those targets that provide critical registers
4070 as part of their normal status mechanism. */
104c1213
JM
4071
4072 registers_changed ();
0d1e5fa7 4073 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4074 }
4075 /* This is the old end of the while loop. Let everybody know we
4076 want to wait for the inferior some more and get called again
4077 soon. */
4078 ecs->wait_some_more = 1;
c906108c 4079}
11cf8741
JM
4080
4081/* Print why the inferior has stopped. We always print something when
4082 the inferior exits, or receives a signal. The rest of the cases are
4083 dealt with later on in normal_stop() and print_it_typical(). Ideally
4084 there should be a call to this function from handle_inferior_event()
4085 each time stop_stepping() is called.*/
4086static void
4087print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4088{
4089 switch (stop_reason)
4090 {
11cf8741
JM
4091 case END_STEPPING_RANGE:
4092 /* We are done with a step/next/si/ni command. */
4093 /* For now print nothing. */
fb40c209 4094 /* Print a message only if not in the middle of doing a "step n"
488f131b 4095 operation for n > 1 */
414c69f7
PA
4096 if (!inferior_thread ()->step_multi
4097 || !inferior_thread ()->stop_step)
9dc5e2a9 4098 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4099 ui_out_field_string
4100 (uiout, "reason",
4101 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4102 break;
11cf8741
JM
4103 case SIGNAL_EXITED:
4104 /* The inferior was terminated by a signal. */
8b93c638 4105 annotate_signalled ();
9dc5e2a9 4106 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4107 ui_out_field_string
4108 (uiout, "reason",
4109 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4110 ui_out_text (uiout, "\nProgram terminated with signal ");
4111 annotate_signal_name ();
488f131b
JB
4112 ui_out_field_string (uiout, "signal-name",
4113 target_signal_to_name (stop_info));
8b93c638
JM
4114 annotate_signal_name_end ();
4115 ui_out_text (uiout, ", ");
4116 annotate_signal_string ();
488f131b
JB
4117 ui_out_field_string (uiout, "signal-meaning",
4118 target_signal_to_string (stop_info));
8b93c638
JM
4119 annotate_signal_string_end ();
4120 ui_out_text (uiout, ".\n");
4121 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4122 break;
4123 case EXITED:
4124 /* The inferior program is finished. */
8b93c638
JM
4125 annotate_exited (stop_info);
4126 if (stop_info)
4127 {
9dc5e2a9 4128 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4129 ui_out_field_string (uiout, "reason",
4130 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4131 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4132 ui_out_field_fmt (uiout, "exit-code", "0%o",
4133 (unsigned int) stop_info);
8b93c638
JM
4134 ui_out_text (uiout, ".\n");
4135 }
4136 else
4137 {
9dc5e2a9 4138 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4139 ui_out_field_string
4140 (uiout, "reason",
4141 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4142 ui_out_text (uiout, "\nProgram exited normally.\n");
4143 }
f17517ea
AS
4144 /* Support the --return-child-result option. */
4145 return_child_result_value = stop_info;
11cf8741
JM
4146 break;
4147 case SIGNAL_RECEIVED:
252fbfc8
PA
4148 /* Signal received. The signal table tells us to print about
4149 it. */
8b93c638 4150 annotate_signal ();
252fbfc8
PA
4151
4152 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4153 {
4154 struct thread_info *t = inferior_thread ();
4155
4156 ui_out_text (uiout, "\n[");
4157 ui_out_field_string (uiout, "thread-name",
4158 target_pid_to_str (t->ptid));
4159 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4160 ui_out_text (uiout, " stopped");
4161 }
4162 else
4163 {
4164 ui_out_text (uiout, "\nProgram received signal ");
4165 annotate_signal_name ();
4166 if (ui_out_is_mi_like_p (uiout))
4167 ui_out_field_string
4168 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4169 ui_out_field_string (uiout, "signal-name",
4170 target_signal_to_name (stop_info));
4171 annotate_signal_name_end ();
4172 ui_out_text (uiout, ", ");
4173 annotate_signal_string ();
4174 ui_out_field_string (uiout, "signal-meaning",
4175 target_signal_to_string (stop_info));
4176 annotate_signal_string_end ();
4177 }
8b93c638 4178 ui_out_text (uiout, ".\n");
11cf8741 4179 break;
b2175913
MS
4180 case NO_HISTORY:
4181 /* Reverse execution: target ran out of history info. */
4182 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4183 break;
11cf8741 4184 default:
8e65ff28 4185 internal_error (__FILE__, __LINE__,
e2e0b3e5 4186 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4187 break;
4188 }
4189}
c906108c 4190\f
43ff13b4 4191
c906108c
SS
4192/* Here to return control to GDB when the inferior stops for real.
4193 Print appropriate messages, remove breakpoints, give terminal our modes.
4194
4195 STOP_PRINT_FRAME nonzero means print the executing frame
4196 (pc, function, args, file, line number and line text).
4197 BREAKPOINTS_FAILED nonzero means stop was due to error
4198 attempting to insert breakpoints. */
4199
4200void
96baa820 4201normal_stop (void)
c906108c 4202{
73b65bb0
DJ
4203 struct target_waitstatus last;
4204 ptid_t last_ptid;
29f49a6a 4205 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4206
4207 get_last_target_status (&last_ptid, &last);
4208
29f49a6a
PA
4209 /* If an exception is thrown from this point on, make sure to
4210 propagate GDB's knowledge of the executing state to the
4211 frontend/user running state. A QUIT is an easy exception to see
4212 here, so do this before any filtered output. */
4213 if (target_has_execution)
4214 {
4215 if (!non_stop)
4216 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4217 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4218 && last.kind != TARGET_WAITKIND_EXITED)
4219 old_chain = make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4220 }
4221
4f8d22e3
PA
4222 /* In non-stop mode, we don't want GDB to switch threads behind the
4223 user's back, to avoid races where the user is typing a command to
4224 apply to thread x, but GDB switches to thread y before the user
4225 finishes entering the command. */
4226
c906108c
SS
4227 /* As with the notification of thread events, we want to delay
4228 notifying the user that we've switched thread context until
4229 the inferior actually stops.
4230
73b65bb0
DJ
4231 There's no point in saying anything if the inferior has exited.
4232 Note that SIGNALLED here means "exited with a signal", not
4233 "received a signal". */
4f8d22e3
PA
4234 if (!non_stop
4235 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4236 && target_has_execution
4237 && last.kind != TARGET_WAITKIND_SIGNALLED
4238 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4239 {
4240 target_terminal_ours_for_output ();
a3f17187 4241 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4242 target_pid_to_str (inferior_ptid));
b8fa951a 4243 annotate_thread_changed ();
39f77062 4244 previous_inferior_ptid = inferior_ptid;
c906108c 4245 }
c906108c 4246
74960c60 4247 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4248 {
4249 if (remove_breakpoints ())
4250 {
4251 target_terminal_ours_for_output ();
a3f17187
AC
4252 printf_filtered (_("\
4253Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4254Further execution is probably impossible.\n"));
c906108c
SS
4255 }
4256 }
c906108c 4257
c906108c
SS
4258 /* If an auto-display called a function and that got a signal,
4259 delete that auto-display to avoid an infinite recursion. */
4260
4261 if (stopped_by_random_signal)
4262 disable_current_display ();
4263
4264 /* Don't print a message if in the middle of doing a "step n"
4265 operation for n > 1 */
af679fd0
PA
4266 if (target_has_execution
4267 && last.kind != TARGET_WAITKIND_SIGNALLED
4268 && last.kind != TARGET_WAITKIND_EXITED
4269 && inferior_thread ()->step_multi
414c69f7 4270 && inferior_thread ()->stop_step)
c906108c
SS
4271 goto done;
4272
4273 target_terminal_ours ();
4274
7abfe014
DJ
4275 /* Set the current source location. This will also happen if we
4276 display the frame below, but the current SAL will be incorrect
4277 during a user hook-stop function. */
4278 if (target_has_stack && !stop_stack_dummy)
4279 set_current_sal_from_frame (get_current_frame (), 1);
4280
dd7e2d2b
PA
4281 /* Let the user/frontend see the threads as stopped. */
4282 do_cleanups (old_chain);
4283
4284 /* Look up the hook_stop and run it (CLI internally handles problem
4285 of stop_command's pre-hook not existing). */
4286 if (stop_command)
4287 catch_errors (hook_stop_stub, stop_command,
4288 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4289
c906108c 4290 if (!target_has_stack)
d51fd4c8 4291 goto done;
c906108c 4292
32400beb
PA
4293 if (last.kind == TARGET_WAITKIND_SIGNALLED
4294 || last.kind == TARGET_WAITKIND_EXITED)
4295 goto done;
4296
c906108c
SS
4297 /* Select innermost stack frame - i.e., current frame is frame 0,
4298 and current location is based on that.
4299 Don't do this on return from a stack dummy routine,
4300 or if the program has exited. */
4301
4302 if (!stop_stack_dummy)
4303 {
0f7d239c 4304 select_frame (get_current_frame ());
c906108c
SS
4305
4306 /* Print current location without a level number, if
c5aa993b
JM
4307 we have changed functions or hit a breakpoint.
4308 Print source line if we have one.
4309 bpstat_print() contains the logic deciding in detail
4310 what to print, based on the event(s) that just occurred. */
c906108c 4311
d01a8610
AS
4312 /* If --batch-silent is enabled then there's no need to print the current
4313 source location, and to try risks causing an error message about
4314 missing source files. */
4315 if (stop_print_frame && !batch_silent)
c906108c
SS
4316 {
4317 int bpstat_ret;
4318 int source_flag;
917317f4 4319 int do_frame_printing = 1;
347bddb7 4320 struct thread_info *tp = inferior_thread ();
c906108c 4321
347bddb7 4322 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4323 switch (bpstat_ret)
4324 {
4325 case PRINT_UNKNOWN:
b0f4b84b
DJ
4326 /* If we had hit a shared library event breakpoint,
4327 bpstat_print would print out this message. If we hit
4328 an OS-level shared library event, do the same
4329 thing. */
4330 if (last.kind == TARGET_WAITKIND_LOADED)
4331 {
4332 printf_filtered (_("Stopped due to shared library event\n"));
4333 source_flag = SRC_LINE; /* something bogus */
4334 do_frame_printing = 0;
4335 break;
4336 }
4337
aa0cd9c1 4338 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4339 (or should) carry around the function and does (or
4340 should) use that when doing a frame comparison. */
414c69f7 4341 if (tp->stop_step
347bddb7 4342 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4343 get_frame_id (get_current_frame ()))
917317f4 4344 && step_start_function == find_pc_function (stop_pc))
488f131b 4345 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4346 else
488f131b 4347 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4348 break;
4349 case PRINT_SRC_AND_LOC:
488f131b 4350 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4351 break;
4352 case PRINT_SRC_ONLY:
c5394b80 4353 source_flag = SRC_LINE;
917317f4
JM
4354 break;
4355 case PRINT_NOTHING:
488f131b 4356 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4357 do_frame_printing = 0;
4358 break;
4359 default:
e2e0b3e5 4360 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4361 }
c906108c
SS
4362
4363 /* The behavior of this routine with respect to the source
4364 flag is:
c5394b80
JM
4365 SRC_LINE: Print only source line
4366 LOCATION: Print only location
4367 SRC_AND_LOC: Print location and source line */
917317f4 4368 if (do_frame_printing)
b04f3ab4 4369 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4370
4371 /* Display the auto-display expressions. */
4372 do_displays ();
4373 }
4374 }
4375
4376 /* Save the function value return registers, if we care.
4377 We might be about to restore their previous contents. */
32400beb 4378 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4379 {
4380 /* This should not be necessary. */
4381 if (stop_registers)
4382 regcache_xfree (stop_registers);
4383
4384 /* NB: The copy goes through to the target picking up the value of
4385 all the registers. */
4386 stop_registers = regcache_dup (get_current_regcache ());
4387 }
c906108c
SS
4388
4389 if (stop_stack_dummy)
4390 {
b89667eb
DE
4391 /* Pop the empty frame that contains the stack dummy.
4392 This also restores inferior state prior to the call
4393 (struct inferior_thread_state). */
4394 struct frame_info *frame = get_current_frame ();
4395 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4396 frame_pop (frame);
4397 /* frame_pop() calls reinit_frame_cache as the last thing it does
4398 which means there's currently no selected frame. We don't need
4399 to re-establish a selected frame if the dummy call returns normally,
4400 that will be done by restore_inferior_status. However, we do have
4401 to handle the case where the dummy call is returning after being
4402 stopped (e.g. the dummy call previously hit a breakpoint). We
4403 can't know which case we have so just always re-establish a
4404 selected frame here. */
0f7d239c 4405 select_frame (get_current_frame ());
c906108c
SS
4406 }
4407
c906108c
SS
4408done:
4409 annotate_stopped ();
af679fd0
PA
4410 if (!suppress_stop_observer
4411 && !(target_has_execution
4412 && last.kind != TARGET_WAITKIND_SIGNALLED
4413 && last.kind != TARGET_WAITKIND_EXITED
4414 && inferior_thread ()->step_multi))
347bddb7
PA
4415 {
4416 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4417 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4418 stop_print_frame);
347bddb7 4419 else
1d33d6ba 4420 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4421 }
347bddb7 4422
48844aa6
PA
4423 if (target_has_execution)
4424 {
4425 if (last.kind != TARGET_WAITKIND_SIGNALLED
4426 && last.kind != TARGET_WAITKIND_EXITED)
4427 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4428 Delete any breakpoint that is to be deleted at the next stop. */
4429 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4430 }
c906108c
SS
4431}
4432
4433static int
96baa820 4434hook_stop_stub (void *cmd)
c906108c 4435{
5913bcb0 4436 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4437 return (0);
4438}
4439\f
c5aa993b 4440int
96baa820 4441signal_stop_state (int signo)
c906108c 4442{
d6b48e9c 4443 return signal_stop[signo];
c906108c
SS
4444}
4445
c5aa993b 4446int
96baa820 4447signal_print_state (int signo)
c906108c
SS
4448{
4449 return signal_print[signo];
4450}
4451
c5aa993b 4452int
96baa820 4453signal_pass_state (int signo)
c906108c
SS
4454{
4455 return signal_program[signo];
4456}
4457
488f131b 4458int
7bda5e4a 4459signal_stop_update (int signo, int state)
d4f3574e
SS
4460{
4461 int ret = signal_stop[signo];
4462 signal_stop[signo] = state;
4463 return ret;
4464}
4465
488f131b 4466int
7bda5e4a 4467signal_print_update (int signo, int state)
d4f3574e
SS
4468{
4469 int ret = signal_print[signo];
4470 signal_print[signo] = state;
4471 return ret;
4472}
4473
488f131b 4474int
7bda5e4a 4475signal_pass_update (int signo, int state)
d4f3574e
SS
4476{
4477 int ret = signal_program[signo];
4478 signal_program[signo] = state;
4479 return ret;
4480}
4481
c906108c 4482static void
96baa820 4483sig_print_header (void)
c906108c 4484{
a3f17187
AC
4485 printf_filtered (_("\
4486Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4487}
4488
4489static void
96baa820 4490sig_print_info (enum target_signal oursig)
c906108c 4491{
54363045 4492 const char *name = target_signal_to_name (oursig);
c906108c 4493 int name_padding = 13 - strlen (name);
96baa820 4494
c906108c
SS
4495 if (name_padding <= 0)
4496 name_padding = 0;
4497
4498 printf_filtered ("%s", name);
488f131b 4499 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4500 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4501 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4502 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4503 printf_filtered ("%s\n", target_signal_to_string (oursig));
4504}
4505
4506/* Specify how various signals in the inferior should be handled. */
4507
4508static void
96baa820 4509handle_command (char *args, int from_tty)
c906108c
SS
4510{
4511 char **argv;
4512 int digits, wordlen;
4513 int sigfirst, signum, siglast;
4514 enum target_signal oursig;
4515 int allsigs;
4516 int nsigs;
4517 unsigned char *sigs;
4518 struct cleanup *old_chain;
4519
4520 if (args == NULL)
4521 {
e2e0b3e5 4522 error_no_arg (_("signal to handle"));
c906108c
SS
4523 }
4524
4525 /* Allocate and zero an array of flags for which signals to handle. */
4526
4527 nsigs = (int) TARGET_SIGNAL_LAST;
4528 sigs = (unsigned char *) alloca (nsigs);
4529 memset (sigs, 0, nsigs);
4530
4531 /* Break the command line up into args. */
4532
d1a41061 4533 argv = gdb_buildargv (args);
7a292a7a 4534 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4535
4536 /* Walk through the args, looking for signal oursigs, signal names, and
4537 actions. Signal numbers and signal names may be interspersed with
4538 actions, with the actions being performed for all signals cumulatively
4539 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4540
4541 while (*argv != NULL)
4542 {
4543 wordlen = strlen (*argv);
4544 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4545 {;
4546 }
4547 allsigs = 0;
4548 sigfirst = siglast = -1;
4549
4550 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4551 {
4552 /* Apply action to all signals except those used by the
4553 debugger. Silently skip those. */
4554 allsigs = 1;
4555 sigfirst = 0;
4556 siglast = nsigs - 1;
4557 }
4558 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4559 {
4560 SET_SIGS (nsigs, sigs, signal_stop);
4561 SET_SIGS (nsigs, sigs, signal_print);
4562 }
4563 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4564 {
4565 UNSET_SIGS (nsigs, sigs, signal_program);
4566 }
4567 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4568 {
4569 SET_SIGS (nsigs, sigs, signal_print);
4570 }
4571 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4572 {
4573 SET_SIGS (nsigs, sigs, signal_program);
4574 }
4575 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4576 {
4577 UNSET_SIGS (nsigs, sigs, signal_stop);
4578 }
4579 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4580 {
4581 SET_SIGS (nsigs, sigs, signal_program);
4582 }
4583 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4584 {
4585 UNSET_SIGS (nsigs, sigs, signal_print);
4586 UNSET_SIGS (nsigs, sigs, signal_stop);
4587 }
4588 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4589 {
4590 UNSET_SIGS (nsigs, sigs, signal_program);
4591 }
4592 else if (digits > 0)
4593 {
4594 /* It is numeric. The numeric signal refers to our own
4595 internal signal numbering from target.h, not to host/target
4596 signal number. This is a feature; users really should be
4597 using symbolic names anyway, and the common ones like
4598 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4599
4600 sigfirst = siglast = (int)
4601 target_signal_from_command (atoi (*argv));
4602 if ((*argv)[digits] == '-')
4603 {
4604 siglast = (int)
4605 target_signal_from_command (atoi ((*argv) + digits + 1));
4606 }
4607 if (sigfirst > siglast)
4608 {
4609 /* Bet he didn't figure we'd think of this case... */
4610 signum = sigfirst;
4611 sigfirst = siglast;
4612 siglast = signum;
4613 }
4614 }
4615 else
4616 {
4617 oursig = target_signal_from_name (*argv);
4618 if (oursig != TARGET_SIGNAL_UNKNOWN)
4619 {
4620 sigfirst = siglast = (int) oursig;
4621 }
4622 else
4623 {
4624 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4625 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4626 }
4627 }
4628
4629 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4630 which signals to apply actions to. */
c906108c
SS
4631
4632 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4633 {
4634 switch ((enum target_signal) signum)
4635 {
4636 case TARGET_SIGNAL_TRAP:
4637 case TARGET_SIGNAL_INT:
4638 if (!allsigs && !sigs[signum])
4639 {
4640 if (query ("%s is used by the debugger.\n\
488f131b 4641Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4642 {
4643 sigs[signum] = 1;
4644 }
4645 else
4646 {
a3f17187 4647 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4648 gdb_flush (gdb_stdout);
4649 }
4650 }
4651 break;
4652 case TARGET_SIGNAL_0:
4653 case TARGET_SIGNAL_DEFAULT:
4654 case TARGET_SIGNAL_UNKNOWN:
4655 /* Make sure that "all" doesn't print these. */
4656 break;
4657 default:
4658 sigs[signum] = 1;
4659 break;
4660 }
4661 }
4662
4663 argv++;
4664 }
4665
3a031f65
PA
4666 for (signum = 0; signum < nsigs; signum++)
4667 if (sigs[signum])
4668 {
4669 target_notice_signals (inferior_ptid);
c906108c 4670
3a031f65
PA
4671 if (from_tty)
4672 {
4673 /* Show the results. */
4674 sig_print_header ();
4675 for (; signum < nsigs; signum++)
4676 if (sigs[signum])
4677 sig_print_info (signum);
4678 }
4679
4680 break;
4681 }
c906108c
SS
4682
4683 do_cleanups (old_chain);
4684}
4685
4686static void
96baa820 4687xdb_handle_command (char *args, int from_tty)
c906108c
SS
4688{
4689 char **argv;
4690 struct cleanup *old_chain;
4691
d1a41061
PP
4692 if (args == NULL)
4693 error_no_arg (_("xdb command"));
4694
c906108c
SS
4695 /* Break the command line up into args. */
4696
d1a41061 4697 argv = gdb_buildargv (args);
7a292a7a 4698 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4699 if (argv[1] != (char *) NULL)
4700 {
4701 char *argBuf;
4702 int bufLen;
4703
4704 bufLen = strlen (argv[0]) + 20;
4705 argBuf = (char *) xmalloc (bufLen);
4706 if (argBuf)
4707 {
4708 int validFlag = 1;
4709 enum target_signal oursig;
4710
4711 oursig = target_signal_from_name (argv[0]);
4712 memset (argBuf, 0, bufLen);
4713 if (strcmp (argv[1], "Q") == 0)
4714 sprintf (argBuf, "%s %s", argv[0], "noprint");
4715 else
4716 {
4717 if (strcmp (argv[1], "s") == 0)
4718 {
4719 if (!signal_stop[oursig])
4720 sprintf (argBuf, "%s %s", argv[0], "stop");
4721 else
4722 sprintf (argBuf, "%s %s", argv[0], "nostop");
4723 }
4724 else if (strcmp (argv[1], "i") == 0)
4725 {
4726 if (!signal_program[oursig])
4727 sprintf (argBuf, "%s %s", argv[0], "pass");
4728 else
4729 sprintf (argBuf, "%s %s", argv[0], "nopass");
4730 }
4731 else if (strcmp (argv[1], "r") == 0)
4732 {
4733 if (!signal_print[oursig])
4734 sprintf (argBuf, "%s %s", argv[0], "print");
4735 else
4736 sprintf (argBuf, "%s %s", argv[0], "noprint");
4737 }
4738 else
4739 validFlag = 0;
4740 }
4741 if (validFlag)
4742 handle_command (argBuf, from_tty);
4743 else
a3f17187 4744 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4745 if (argBuf)
b8c9b27d 4746 xfree (argBuf);
c906108c
SS
4747 }
4748 }
4749 do_cleanups (old_chain);
4750}
4751
4752/* Print current contents of the tables set by the handle command.
4753 It is possible we should just be printing signals actually used
4754 by the current target (but for things to work right when switching
4755 targets, all signals should be in the signal tables). */
4756
4757static void
96baa820 4758signals_info (char *signum_exp, int from_tty)
c906108c
SS
4759{
4760 enum target_signal oursig;
4761 sig_print_header ();
4762
4763 if (signum_exp)
4764 {
4765 /* First see if this is a symbol name. */
4766 oursig = target_signal_from_name (signum_exp);
4767 if (oursig == TARGET_SIGNAL_UNKNOWN)
4768 {
4769 /* No, try numeric. */
4770 oursig =
bb518678 4771 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4772 }
4773 sig_print_info (oursig);
4774 return;
4775 }
4776
4777 printf_filtered ("\n");
4778 /* These ugly casts brought to you by the native VAX compiler. */
4779 for (oursig = TARGET_SIGNAL_FIRST;
4780 (int) oursig < (int) TARGET_SIGNAL_LAST;
4781 oursig = (enum target_signal) ((int) oursig + 1))
4782 {
4783 QUIT;
4784
4785 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4786 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4787 sig_print_info (oursig);
4788 }
4789
a3f17187 4790 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 4791}
4aa995e1
PA
4792
4793/* The $_siginfo convenience variable is a bit special. We don't know
4794 for sure the type of the value until we actually have a chance to
4795 fetch the data. The type can change depending on gdbarch, so it it
4796 also dependent on which thread you have selected.
4797
4798 1. making $_siginfo be an internalvar that creates a new value on
4799 access.
4800
4801 2. making the value of $_siginfo be an lval_computed value. */
4802
4803/* This function implements the lval_computed support for reading a
4804 $_siginfo value. */
4805
4806static void
4807siginfo_value_read (struct value *v)
4808{
4809 LONGEST transferred;
4810
4811 transferred =
4812 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
4813 NULL,
4814 value_contents_all_raw (v),
4815 value_offset (v),
4816 TYPE_LENGTH (value_type (v)));
4817
4818 if (transferred != TYPE_LENGTH (value_type (v)))
4819 error (_("Unable to read siginfo"));
4820}
4821
4822/* This function implements the lval_computed support for writing a
4823 $_siginfo value. */
4824
4825static void
4826siginfo_value_write (struct value *v, struct value *fromval)
4827{
4828 LONGEST transferred;
4829
4830 transferred = target_write (&current_target,
4831 TARGET_OBJECT_SIGNAL_INFO,
4832 NULL,
4833 value_contents_all_raw (fromval),
4834 value_offset (v),
4835 TYPE_LENGTH (value_type (fromval)));
4836
4837 if (transferred != TYPE_LENGTH (value_type (fromval)))
4838 error (_("Unable to write siginfo"));
4839}
4840
4841static struct lval_funcs siginfo_value_funcs =
4842 {
4843 siginfo_value_read,
4844 siginfo_value_write
4845 };
4846
4847/* Return a new value with the correct type for the siginfo object of
4848 the current thread. Return a void value if there's no object
4849 available. */
4850
4851struct value *
4852siginfo_make_value (struct internalvar *var)
4853{
4854 struct type *type;
4855 struct gdbarch *gdbarch;
4856
4857 if (target_has_stack
4858 && !ptid_equal (inferior_ptid, null_ptid))
4859 {
4860 gdbarch = get_frame_arch (get_current_frame ());
4861
4862 if (gdbarch_get_siginfo_type_p (gdbarch))
4863 {
4864 type = gdbarch_get_siginfo_type (gdbarch);
4865
4866 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4867 }
4868 }
4869
4870 return allocate_value (builtin_type_void);
4871}
4872
c906108c 4873\f
b89667eb
DE
4874/* Inferior thread state.
4875 These are details related to the inferior itself, and don't include
4876 things like what frame the user had selected or what gdb was doing
4877 with the target at the time.
4878 For inferior function calls these are things we want to restore
4879 regardless of whether the function call successfully completes
4880 or the dummy frame has to be manually popped. */
4881
4882struct inferior_thread_state
7a292a7a
SS
4883{
4884 enum target_signal stop_signal;
4885 CORE_ADDR stop_pc;
b89667eb
DE
4886 struct regcache *registers;
4887};
4888
4889struct inferior_thread_state *
4890save_inferior_thread_state (void)
4891{
4892 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
4893 struct thread_info *tp = inferior_thread ();
4894
4895 inf_state->stop_signal = tp->stop_signal;
4896 inf_state->stop_pc = stop_pc;
4897
4898 inf_state->registers = regcache_dup (get_current_regcache ());
4899
4900 return inf_state;
4901}
4902
4903/* Restore inferior session state to INF_STATE. */
4904
4905void
4906restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4907{
4908 struct thread_info *tp = inferior_thread ();
4909
4910 tp->stop_signal = inf_state->stop_signal;
4911 stop_pc = inf_state->stop_pc;
4912
4913 /* The inferior can be gone if the user types "print exit(0)"
4914 (and perhaps other times). */
4915 if (target_has_execution)
4916 /* NB: The register write goes through to the target. */
4917 regcache_cpy (get_current_regcache (), inf_state->registers);
4918 regcache_xfree (inf_state->registers);
4919 xfree (inf_state);
4920}
4921
4922static void
4923do_restore_inferior_thread_state_cleanup (void *state)
4924{
4925 restore_inferior_thread_state (state);
4926}
4927
4928struct cleanup *
4929make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4930{
4931 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
4932}
4933
4934void
4935discard_inferior_thread_state (struct inferior_thread_state *inf_state)
4936{
4937 regcache_xfree (inf_state->registers);
4938 xfree (inf_state);
4939}
4940
4941struct regcache *
4942get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
4943{
4944 return inf_state->registers;
4945}
4946
4947/* Session related state for inferior function calls.
4948 These are the additional bits of state that need to be restored
4949 when an inferior function call successfully completes. */
4950
4951struct inferior_status
4952{
7a292a7a
SS
4953 bpstat stop_bpstat;
4954 int stop_step;
4955 int stop_stack_dummy;
4956 int stopped_by_random_signal;
ca67fcb8 4957 int stepping_over_breakpoint;
7a292a7a
SS
4958 CORE_ADDR step_range_start;
4959 CORE_ADDR step_range_end;
aa0cd9c1 4960 struct frame_id step_frame_id;
5fbbeb29 4961 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4962 CORE_ADDR step_resume_break_address;
4963 int stop_after_trap;
c0236d92 4964 int stop_soon;
7a292a7a 4965
b89667eb 4966 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
4967 struct frame_id selected_frame_id;
4968
7a292a7a 4969 int breakpoint_proceeded;
7a292a7a
SS
4970 int proceed_to_finish;
4971};
4972
c906108c 4973/* Save all of the information associated with the inferior<==>gdb
b89667eb 4974 connection. */
c906108c 4975
7a292a7a 4976struct inferior_status *
b89667eb 4977save_inferior_status (void)
c906108c 4978{
72cec141 4979 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 4980 struct thread_info *tp = inferior_thread ();
d6b48e9c 4981 struct inferior *inf = current_inferior ();
7a292a7a 4982
414c69f7 4983 inf_status->stop_step = tp->stop_step;
c906108c
SS
4984 inf_status->stop_stack_dummy = stop_stack_dummy;
4985 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
4986 inf_status->stepping_over_breakpoint = tp->trap_expected;
4987 inf_status->step_range_start = tp->step_range_start;
4988 inf_status->step_range_end = tp->step_range_end;
4989 inf_status->step_frame_id = tp->step_frame_id;
078130d0 4990 inf_status->step_over_calls = tp->step_over_calls;
c906108c 4991 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 4992 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
4993 /* Save original bpstat chain here; replace it with copy of chain.
4994 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4995 hand them back the original chain when restore_inferior_status is
4996 called. */
347bddb7
PA
4997 inf_status->stop_bpstat = tp->stop_bpstat;
4998 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
c906108c 4999 inf_status->breakpoint_proceeded = breakpoint_proceeded;
32400beb 5000 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5aa993b 5001
206415a3 5002 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5003
7a292a7a 5004 return inf_status;
c906108c
SS
5005}
5006
c906108c 5007static int
96baa820 5008restore_selected_frame (void *args)
c906108c 5009{
488f131b 5010 struct frame_id *fid = (struct frame_id *) args;
c906108c 5011 struct frame_info *frame;
c906108c 5012
101dcfbe 5013 frame = frame_find_by_id (*fid);
c906108c 5014
aa0cd9c1
AC
5015 /* If inf_status->selected_frame_id is NULL, there was no previously
5016 selected frame. */
101dcfbe 5017 if (frame == NULL)
c906108c 5018 {
8a3fe4f8 5019 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5020 return 0;
5021 }
5022
0f7d239c 5023 select_frame (frame);
c906108c
SS
5024
5025 return (1);
5026}
5027
b89667eb
DE
5028/* Restore inferior session state to INF_STATUS. */
5029
c906108c 5030void
96baa820 5031restore_inferior_status (struct inferior_status *inf_status)
c906108c 5032{
4e1c45ea 5033 struct thread_info *tp = inferior_thread ();
d6b48e9c 5034 struct inferior *inf = current_inferior ();
4e1c45ea 5035
414c69f7 5036 tp->stop_step = inf_status->stop_step;
c906108c
SS
5037 stop_stack_dummy = inf_status->stop_stack_dummy;
5038 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5039 tp->trap_expected = inf_status->stepping_over_breakpoint;
5040 tp->step_range_start = inf_status->step_range_start;
5041 tp->step_range_end = inf_status->step_range_end;
5042 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5043 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5044 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5045 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5046 bpstat_clear (&tp->stop_bpstat);
5047 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5048 inf_status->stop_bpstat = NULL;
c906108c 5049 breakpoint_proceeded = inf_status->breakpoint_proceeded;
32400beb 5050 tp->proceed_to_finish = inf_status->proceed_to_finish;
c906108c 5051
b89667eb 5052 if (target_has_stack)
c906108c 5053 {
c906108c 5054 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5055 walking the stack might encounter a garbage pointer and
5056 error() trying to dereference it. */
488f131b
JB
5057 if (catch_errors
5058 (restore_selected_frame, &inf_status->selected_frame_id,
5059 "Unable to restore previously selected frame:\n",
5060 RETURN_MASK_ERROR) == 0)
c906108c
SS
5061 /* Error in restoring the selected frame. Select the innermost
5062 frame. */
0f7d239c 5063 select_frame (get_current_frame ());
c906108c 5064 }
c906108c 5065
72cec141 5066 xfree (inf_status);
7a292a7a 5067}
c906108c 5068
74b7792f
AC
5069static void
5070do_restore_inferior_status_cleanup (void *sts)
5071{
5072 restore_inferior_status (sts);
5073}
5074
5075struct cleanup *
5076make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5077{
5078 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5079}
5080
c906108c 5081void
96baa820 5082discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5083{
5084 /* See save_inferior_status for info on stop_bpstat. */
5085 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5086 xfree (inf_status);
7a292a7a 5087}
b89667eb 5088\f
47932f85 5089int
3a3e9ee3 5090inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5091{
5092 struct target_waitstatus last;
5093 ptid_t last_ptid;
5094
5095 get_last_target_status (&last_ptid, &last);
5096
5097 if (last.kind != TARGET_WAITKIND_FORKED)
5098 return 0;
5099
3a3e9ee3 5100 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5101 return 0;
5102
5103 *child_pid = last.value.related_pid;
5104 return 1;
5105}
5106
5107int
3a3e9ee3 5108inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5109{
5110 struct target_waitstatus last;
5111 ptid_t last_ptid;
5112
5113 get_last_target_status (&last_ptid, &last);
5114
5115 if (last.kind != TARGET_WAITKIND_VFORKED)
5116 return 0;
5117
3a3e9ee3 5118 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5119 return 0;
5120
5121 *child_pid = last.value.related_pid;
5122 return 1;
5123}
5124
5125int
3a3e9ee3 5126inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5127{
5128 struct target_waitstatus last;
5129 ptid_t last_ptid;
5130
5131 get_last_target_status (&last_ptid, &last);
5132
5133 if (last.kind != TARGET_WAITKIND_EXECD)
5134 return 0;
5135
3a3e9ee3 5136 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5137 return 0;
5138
5139 *execd_pathname = xstrdup (last.value.execd_pathname);
5140 return 1;
5141}
5142
ca6724c1
KB
5143/* Oft used ptids */
5144ptid_t null_ptid;
5145ptid_t minus_one_ptid;
5146
5147/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5148
ca6724c1
KB
5149ptid_t
5150ptid_build (int pid, long lwp, long tid)
5151{
5152 ptid_t ptid;
5153
5154 ptid.pid = pid;
5155 ptid.lwp = lwp;
5156 ptid.tid = tid;
5157 return ptid;
5158}
5159
5160/* Create a ptid from just a pid. */
5161
5162ptid_t
5163pid_to_ptid (int pid)
5164{
5165 return ptid_build (pid, 0, 0);
5166}
5167
5168/* Fetch the pid (process id) component from a ptid. */
5169
5170int
5171ptid_get_pid (ptid_t ptid)
5172{
5173 return ptid.pid;
5174}
5175
5176/* Fetch the lwp (lightweight process) component from a ptid. */
5177
5178long
5179ptid_get_lwp (ptid_t ptid)
5180{
5181 return ptid.lwp;
5182}
5183
5184/* Fetch the tid (thread id) component from a ptid. */
5185
5186long
5187ptid_get_tid (ptid_t ptid)
5188{
5189 return ptid.tid;
5190}
5191
5192/* ptid_equal() is used to test equality of two ptids. */
5193
5194int
5195ptid_equal (ptid_t ptid1, ptid_t ptid2)
5196{
5197 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5198 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5199}
5200
252fbfc8
PA
5201/* Returns true if PTID represents a process. */
5202
5203int
5204ptid_is_pid (ptid_t ptid)
5205{
5206 if (ptid_equal (minus_one_ptid, ptid))
5207 return 0;
5208 if (ptid_equal (null_ptid, ptid))
5209 return 0;
5210
5211 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5212}
5213
ca6724c1
KB
5214/* restore_inferior_ptid() will be used by the cleanup machinery
5215 to restore the inferior_ptid value saved in a call to
5216 save_inferior_ptid(). */
ce696e05
KB
5217
5218static void
5219restore_inferior_ptid (void *arg)
5220{
5221 ptid_t *saved_ptid_ptr = arg;
5222 inferior_ptid = *saved_ptid_ptr;
5223 xfree (arg);
5224}
5225
5226/* Save the value of inferior_ptid so that it may be restored by a
5227 later call to do_cleanups(). Returns the struct cleanup pointer
5228 needed for later doing the cleanup. */
5229
5230struct cleanup *
5231save_inferior_ptid (void)
5232{
5233 ptid_t *saved_ptid_ptr;
5234
5235 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5236 *saved_ptid_ptr = inferior_ptid;
5237 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5238}
c5aa993b 5239\f
488f131b 5240
b2175913
MS
5241/* User interface for reverse debugging:
5242 Set exec-direction / show exec-direction commands
5243 (returns error unless target implements to_set_exec_direction method). */
5244
5245enum exec_direction_kind execution_direction = EXEC_FORWARD;
5246static const char exec_forward[] = "forward";
5247static const char exec_reverse[] = "reverse";
5248static const char *exec_direction = exec_forward;
5249static const char *exec_direction_names[] = {
5250 exec_forward,
5251 exec_reverse,
5252 NULL
5253};
5254
5255static void
5256set_exec_direction_func (char *args, int from_tty,
5257 struct cmd_list_element *cmd)
5258{
5259 if (target_can_execute_reverse)
5260 {
5261 if (!strcmp (exec_direction, exec_forward))
5262 execution_direction = EXEC_FORWARD;
5263 else if (!strcmp (exec_direction, exec_reverse))
5264 execution_direction = EXEC_REVERSE;
5265 }
5266}
5267
5268static void
5269show_exec_direction_func (struct ui_file *out, int from_tty,
5270 struct cmd_list_element *cmd, const char *value)
5271{
5272 switch (execution_direction) {
5273 case EXEC_FORWARD:
5274 fprintf_filtered (out, _("Forward.\n"));
5275 break;
5276 case EXEC_REVERSE:
5277 fprintf_filtered (out, _("Reverse.\n"));
5278 break;
5279 case EXEC_ERROR:
5280 default:
5281 fprintf_filtered (out,
5282 _("Forward (target `%s' does not support exec-direction).\n"),
5283 target_shortname);
5284 break;
5285 }
5286}
5287
5288/* User interface for non-stop mode. */
5289
ad52ddc6
PA
5290int non_stop = 0;
5291static int non_stop_1 = 0;
5292
5293static void
5294set_non_stop (char *args, int from_tty,
5295 struct cmd_list_element *c)
5296{
5297 if (target_has_execution)
5298 {
5299 non_stop_1 = non_stop;
5300 error (_("Cannot change this setting while the inferior is running."));
5301 }
5302
5303 non_stop = non_stop_1;
5304}
5305
5306static void
5307show_non_stop (struct ui_file *file, int from_tty,
5308 struct cmd_list_element *c, const char *value)
5309{
5310 fprintf_filtered (file,
5311 _("Controlling the inferior in non-stop mode is %s.\n"),
5312 value);
5313}
5314
5315
c906108c 5316void
96baa820 5317_initialize_infrun (void)
c906108c 5318{
52f0bd74
AC
5319 int i;
5320 int numsigs;
c906108c
SS
5321 struct cmd_list_element *c;
5322
1bedd215
AC
5323 add_info ("signals", signals_info, _("\
5324What debugger does when program gets various signals.\n\
5325Specify a signal as argument to print info on that signal only."));
c906108c
SS
5326 add_info_alias ("handle", "signals", 0);
5327
1bedd215
AC
5328 add_com ("handle", class_run, handle_command, _("\
5329Specify how to handle a signal.\n\
c906108c
SS
5330Args are signals and actions to apply to those signals.\n\
5331Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5332from 1-15 are allowed for compatibility with old versions of GDB.\n\
5333Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5334The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5335used by the debugger, typically SIGTRAP and SIGINT.\n\
5336Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5337\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5338Stop means reenter debugger if this signal happens (implies print).\n\
5339Print means print a message if this signal happens.\n\
5340Pass means let program see this signal; otherwise program doesn't know.\n\
5341Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5342Pass and Stop may be combined."));
c906108c
SS
5343 if (xdb_commands)
5344 {
1bedd215
AC
5345 add_com ("lz", class_info, signals_info, _("\
5346What debugger does when program gets various signals.\n\
5347Specify a signal as argument to print info on that signal only."));
5348 add_com ("z", class_run, xdb_handle_command, _("\
5349Specify how to handle a signal.\n\
c906108c
SS
5350Args are signals and actions to apply to those signals.\n\
5351Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5352from 1-15 are allowed for compatibility with old versions of GDB.\n\
5353Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5354The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5355used by the debugger, typically SIGTRAP and SIGINT.\n\
5356Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5357\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5358nopass), \"Q\" (noprint)\n\
5359Stop means reenter debugger if this signal happens (implies print).\n\
5360Print means print a message if this signal happens.\n\
5361Pass means let program see this signal; otherwise program doesn't know.\n\
5362Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5363Pass and Stop may be combined."));
c906108c
SS
5364 }
5365
5366 if (!dbx_commands)
1a966eab
AC
5367 stop_command = add_cmd ("stop", class_obscure,
5368 not_just_help_class_command, _("\
5369There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5370This allows you to set a list of commands to be run each time execution\n\
1a966eab 5371of the program stops."), &cmdlist);
c906108c 5372
85c07804
AC
5373 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5374Set inferior debugging."), _("\
5375Show inferior debugging."), _("\
5376When non-zero, inferior specific debugging is enabled."),
5377 NULL,
920d2a44 5378 show_debug_infrun,
85c07804 5379 &setdebuglist, &showdebuglist);
527159b7 5380
237fc4c9
PA
5381 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5382Set displaced stepping debugging."), _("\
5383Show displaced stepping debugging."), _("\
5384When non-zero, displaced stepping specific debugging is enabled."),
5385 NULL,
5386 show_debug_displaced,
5387 &setdebuglist, &showdebuglist);
5388
ad52ddc6
PA
5389 add_setshow_boolean_cmd ("non-stop", no_class,
5390 &non_stop_1, _("\
5391Set whether gdb controls the inferior in non-stop mode."), _("\
5392Show whether gdb controls the inferior in non-stop mode."), _("\
5393When debugging a multi-threaded program and this setting is\n\
5394off (the default, also called all-stop mode), when one thread stops\n\
5395(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5396all other threads in the program while you interact with the thread of\n\
5397interest. When you continue or step a thread, you can allow the other\n\
5398threads to run, or have them remain stopped, but while you inspect any\n\
5399thread's state, all threads stop.\n\
5400\n\
5401In non-stop mode, when one thread stops, other threads can continue\n\
5402to run freely. You'll be able to step each thread independently,\n\
5403leave it stopped or free to run as needed."),
5404 set_non_stop,
5405 show_non_stop,
5406 &setlist,
5407 &showlist);
5408
c906108c 5409 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5410 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5411 signal_print = (unsigned char *)
5412 xmalloc (sizeof (signal_print[0]) * numsigs);
5413 signal_program = (unsigned char *)
5414 xmalloc (sizeof (signal_program[0]) * numsigs);
5415 for (i = 0; i < numsigs; i++)
5416 {
5417 signal_stop[i] = 1;
5418 signal_print[i] = 1;
5419 signal_program[i] = 1;
5420 }
5421
5422 /* Signals caused by debugger's own actions
5423 should not be given to the program afterwards. */
5424 signal_program[TARGET_SIGNAL_TRAP] = 0;
5425 signal_program[TARGET_SIGNAL_INT] = 0;
5426
5427 /* Signals that are not errors should not normally enter the debugger. */
5428 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5429 signal_print[TARGET_SIGNAL_ALRM] = 0;
5430 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5431 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5432 signal_stop[TARGET_SIGNAL_PROF] = 0;
5433 signal_print[TARGET_SIGNAL_PROF] = 0;
5434 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5435 signal_print[TARGET_SIGNAL_CHLD] = 0;
5436 signal_stop[TARGET_SIGNAL_IO] = 0;
5437 signal_print[TARGET_SIGNAL_IO] = 0;
5438 signal_stop[TARGET_SIGNAL_POLL] = 0;
5439 signal_print[TARGET_SIGNAL_POLL] = 0;
5440 signal_stop[TARGET_SIGNAL_URG] = 0;
5441 signal_print[TARGET_SIGNAL_URG] = 0;
5442 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5443 signal_print[TARGET_SIGNAL_WINCH] = 0;
5444
cd0fc7c3
SS
5445 /* These signals are used internally by user-level thread
5446 implementations. (See signal(5) on Solaris.) Like the above
5447 signals, a healthy program receives and handles them as part of
5448 its normal operation. */
5449 signal_stop[TARGET_SIGNAL_LWP] = 0;
5450 signal_print[TARGET_SIGNAL_LWP] = 0;
5451 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5452 signal_print[TARGET_SIGNAL_WAITING] = 0;
5453 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5454 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5455
85c07804
AC
5456 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5457 &stop_on_solib_events, _("\
5458Set stopping for shared library events."), _("\
5459Show stopping for shared library events."), _("\
c906108c
SS
5460If nonzero, gdb will give control to the user when the dynamic linker\n\
5461notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5462to the user would be loading/unloading of a new library."),
5463 NULL,
920d2a44 5464 show_stop_on_solib_events,
85c07804 5465 &setlist, &showlist);
c906108c 5466
7ab04401
AC
5467 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5468 follow_fork_mode_kind_names,
5469 &follow_fork_mode_string, _("\
5470Set debugger response to a program call of fork or vfork."), _("\
5471Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5472A fork or vfork creates a new process. follow-fork-mode can be:\n\
5473 parent - the original process is debugged after a fork\n\
5474 child - the new process is debugged after a fork\n\
ea1dd7bc 5475The unfollowed process will continue to run.\n\
7ab04401
AC
5476By default, the debugger will follow the parent process."),
5477 NULL,
920d2a44 5478 show_follow_fork_mode_string,
7ab04401
AC
5479 &setlist, &showlist);
5480
5481 add_setshow_enum_cmd ("scheduler-locking", class_run,
5482 scheduler_enums, &scheduler_mode, _("\
5483Set mode for locking scheduler during execution."), _("\
5484Show mode for locking scheduler during execution."), _("\
c906108c
SS
5485off == no locking (threads may preempt at any time)\n\
5486on == full locking (no thread except the current thread may run)\n\
5487step == scheduler locked during every single-step operation.\n\
5488 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5489 Other threads may run while stepping over a function call ('next')."),
5490 set_schedlock_func, /* traps on target vector */
920d2a44 5491 show_scheduler_mode,
7ab04401 5492 &setlist, &showlist);
5fbbeb29 5493
5bf193a2
AC
5494 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5495Set mode of the step operation."), _("\
5496Show mode of the step operation."), _("\
5497When set, doing a step over a function without debug line information\n\
5498will stop at the first instruction of that function. Otherwise, the\n\
5499function is skipped and the step command stops at a different source line."),
5500 NULL,
920d2a44 5501 show_step_stop_if_no_debug,
5bf193a2 5502 &setlist, &showlist);
ca6724c1 5503
fff08868
HZ
5504 add_setshow_enum_cmd ("displaced-stepping", class_run,
5505 can_use_displaced_stepping_enum,
5506 &can_use_displaced_stepping, _("\
237fc4c9
PA
5507Set debugger's willingness to use displaced stepping."), _("\
5508Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5509If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5510supported by the target architecture. If off, gdb will not use displaced\n\
5511stepping to step over breakpoints, even if such is supported by the target\n\
5512architecture. If auto (which is the default), gdb will use displaced stepping\n\
5513if the target architecture supports it and non-stop mode is active, but will not\n\
5514use it in all-stop mode (see help set non-stop)."),
5515 NULL,
5516 show_can_use_displaced_stepping,
5517 &setlist, &showlist);
237fc4c9 5518
b2175913
MS
5519 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5520 &exec_direction, _("Set direction of execution.\n\
5521Options are 'forward' or 'reverse'."),
5522 _("Show direction of execution (forward/reverse)."),
5523 _("Tells gdb whether to execute forward or backward."),
5524 set_exec_direction_func, show_exec_direction_func,
5525 &setlist, &showlist);
5526
ca6724c1
KB
5527 /* ptid initializations */
5528 null_ptid = ptid_build (0, 0, 0);
5529 minus_one_ptid = ptid_build (-1, 0, 0);
5530 inferior_ptid = null_ptid;
5531 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5532 displaced_step_ptid = null_ptid;
5231c1fd
PA
5533
5534 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5535 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
4aa995e1
PA
5536
5537 /* Explicitly create without lookup, since that tries to create a
5538 value with a void typed value, and when we get here, gdbarch
5539 isn't initialized yet. At this point, we're quite sure there
5540 isn't another convenience variable of the same name. */
5541 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5542}