]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
2011-11-01 Justin Lebar <justin.lebar@gmail.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
b4a14fd0 58#include "interps.h"
c906108c
SS
59
60/* Prototypes for local functions */
61
96baa820 62static void signals_info (char *, int);
c906108c 63
96baa820 64static void handle_command (char *, int);
c906108c 65
96baa820 66static void sig_print_info (enum target_signal);
c906108c 67
96baa820 68static void sig_print_header (void);
c906108c 69
74b7792f 70static void resume_cleanups (void *);
c906108c 71
96baa820 72static int hook_stop_stub (void *);
c906108c 73
96baa820
JM
74static int restore_selected_frame (void *);
75
4ef3f3be 76static int follow_fork (void);
96baa820
JM
77
78static void set_schedlock_func (char *args, int from_tty,
488f131b 79 struct cmd_list_element *c);
96baa820 80
a289b8f6
JK
81static int currently_stepping (struct thread_info *tp);
82
b3444185
PA
83static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
a7212384 85
96baa820
JM
86static void xdb_handle_command (char *args, int from_tty);
87
6a6b96b9 88static int prepare_to_proceed (int);
ea67f13b 89
33d62d64
JK
90static void print_exited_reason (int exitstatus);
91
92static void print_signal_exited_reason (enum target_signal siggnal);
93
94static void print_no_history_reason (void);
95
96static void print_signal_received_reason (enum target_signal siggnal);
97
98static void print_end_stepping_range_reason (void);
99
96baa820 100void _initialize_infrun (void);
43ff13b4 101
e58b0e63
PA
102void nullify_last_target_wait_ptid (void);
103
2c03e5be 104static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
105
106static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
2484c66b
UW
108static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
5fbbeb29
CF
110/* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113int step_stop_if_no_debug = 0;
920d2a44
AC
114static void
115show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119}
5fbbeb29 120
1777feb0 121/* In asynchronous mode, but simulating synchronous execution. */
96baa820 122
43ff13b4
JM
123int sync_execution = 0;
124
c906108c
SS
125/* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
96baa820
JM
127 running in. */
128
39f77062 129static ptid_t previous_inferior_ptid;
7a292a7a 130
6c95b8df
PA
131/* Default behavior is to detach newly forked processes (legacy). */
132int detach_fork = 1;
133
237fc4c9
PA
134int debug_displaced = 0;
135static void
136show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140}
141
628fe4e4 142int debug_infrun = 0;
920d2a44
AC
143static void
144show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148}
527159b7 149
03583c20
UW
150
151/* Support for disabling address space randomization. */
152
153int disable_randomization = 1;
154
155static void
156show_disable_randomization (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 if (target_supports_disable_randomization ())
160 fprintf_filtered (file,
161 _("Disabling randomization of debuggee's "
162 "virtual address space is %s.\n"),
163 value);
164 else
165 fputs_filtered (_("Disabling randomization of debuggee's "
166 "virtual address space is unsupported on\n"
167 "this platform.\n"), file);
168}
169
170static void
171set_disable_randomization (char *args, int from_tty,
172 struct cmd_list_element *c)
173{
174 if (!target_supports_disable_randomization ())
175 error (_("Disabling randomization of debuggee's "
176 "virtual address space is unsupported on\n"
177 "this platform."));
178}
179
180
d4f3574e
SS
181/* If the program uses ELF-style shared libraries, then calls to
182 functions in shared libraries go through stubs, which live in a
183 table called the PLT (Procedure Linkage Table). The first time the
184 function is called, the stub sends control to the dynamic linker,
185 which looks up the function's real address, patches the stub so
186 that future calls will go directly to the function, and then passes
187 control to the function.
188
189 If we are stepping at the source level, we don't want to see any of
190 this --- we just want to skip over the stub and the dynamic linker.
191 The simple approach is to single-step until control leaves the
192 dynamic linker.
193
ca557f44
AC
194 However, on some systems (e.g., Red Hat's 5.2 distribution) the
195 dynamic linker calls functions in the shared C library, so you
196 can't tell from the PC alone whether the dynamic linker is still
197 running. In this case, we use a step-resume breakpoint to get us
198 past the dynamic linker, as if we were using "next" to step over a
199 function call.
d4f3574e 200
cfd8ab24 201 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
202 linker code or not. Normally, this means we single-step. However,
203 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
204 address where we can place a step-resume breakpoint to get past the
205 linker's symbol resolution function.
206
cfd8ab24 207 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
208 pretty portable way, by comparing the PC against the address ranges
209 of the dynamic linker's sections.
210
211 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
212 it depends on internal details of the dynamic linker. It's usually
213 not too hard to figure out where to put a breakpoint, but it
214 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
215 sanity checking. If it can't figure things out, returning zero and
216 getting the (possibly confusing) stepping behavior is better than
217 signalling an error, which will obscure the change in the
218 inferior's state. */
c906108c 219
c906108c
SS
220/* This function returns TRUE if pc is the address of an instruction
221 that lies within the dynamic linker (such as the event hook, or the
222 dld itself).
223
224 This function must be used only when a dynamic linker event has
225 been caught, and the inferior is being stepped out of the hook, or
226 undefined results are guaranteed. */
227
228#ifndef SOLIB_IN_DYNAMIC_LINKER
229#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
230#endif
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236static int non_stop_1 = 0;
237
238int observer_mode = 0;
239static int observer_mode_1 = 0;
240
241static void
242set_observer_mode (char *args, int from_tty,
243 struct cmd_list_element *c)
244{
245 extern int pagination_enabled;
246
247 if (target_has_execution)
248 {
249 observer_mode_1 = observer_mode;
250 error (_("Cannot change this setting while the inferior is running."));
251 }
252
253 observer_mode = observer_mode_1;
254
255 may_write_registers = !observer_mode;
256 may_write_memory = !observer_mode;
257 may_insert_breakpoints = !observer_mode;
258 may_insert_tracepoints = !observer_mode;
259 /* We can insert fast tracepoints in or out of observer mode,
260 but enable them if we're going into this mode. */
261 if (observer_mode)
262 may_insert_fast_tracepoints = 1;
263 may_stop = !observer_mode;
264 update_target_permissions ();
265
266 /* Going *into* observer mode we must force non-stop, then
267 going out we leave it that way. */
268 if (observer_mode)
269 {
270 target_async_permitted = 1;
271 pagination_enabled = 0;
272 non_stop = non_stop_1 = 1;
273 }
274
275 if (from_tty)
276 printf_filtered (_("Observer mode is now %s.\n"),
277 (observer_mode ? "on" : "off"));
278}
279
280static void
281show_observer_mode (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283{
284 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
285}
286
287/* This updates the value of observer mode based on changes in
288 permissions. Note that we are deliberately ignoring the values of
289 may-write-registers and may-write-memory, since the user may have
290 reason to enable these during a session, for instance to turn on a
291 debugging-related global. */
292
293void
294update_observer_mode (void)
295{
296 int newval;
297
298 newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310}
c2c6d25f 311
c906108c
SS
312/* Tables of how to react to signals; the user sets them. */
313
314static unsigned char *signal_stop;
315static unsigned char *signal_print;
316static unsigned char *signal_program;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
1777feb0 339/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 340
edb3359d 341#define RESUME_ALL minus_one_ptid
c906108c
SS
342
343/* Command list pointer for the "stop" placeholder. */
344
345static struct cmd_list_element *stop_command;
346
c906108c
SS
347/* Function inferior was in as of last step command. */
348
349static struct symbol *step_start_function;
350
c906108c
SS
351/* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
628fe4e4 353int stop_on_solib_events;
920d2a44
AC
354static void
355show_stop_on_solib_events (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c, const char *value)
357{
358 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
359 value);
360}
c906108c 361
c906108c
SS
362/* Nonzero means expecting a trace trap
363 and should stop the inferior and return silently when it happens. */
364
365int stop_after_trap;
366
642fd101
DE
367/* Save register contents here when executing a "finish" command or are
368 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
369 Thus this contains the return value from the called function (assuming
370 values are returned in a register). */
371
72cec141 372struct regcache *stop_registers;
c906108c 373
c906108c
SS
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
e02bc4cc 378/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
379 returned by target_wait()/deprecated_target_wait_hook(). This
380 information is returned by get_last_target_status(). */
39f77062 381static ptid_t target_last_wait_ptid;
e02bc4cc
DS
382static struct target_waitstatus target_last_waitstatus;
383
0d1e5fa7
PA
384static void context_switch (ptid_t ptid);
385
4e1c45ea 386void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
387
388void init_infwait_state (void);
a474d7c2 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
488f131b 393static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
e58b0e63
PA
411/* Tell the target to follow the fork we're stopped at. Returns true
412 if the inferior should be resumed; false, if the target for some
413 reason decided it's best not to resume. */
414
6604731b 415static int
4ef3f3be 416follow_fork (void)
c906108c 417{
ea1dd7bc 418 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
419 int should_resume = 1;
420 struct thread_info *tp;
421
422 /* Copy user stepping state to the new inferior thread. FIXME: the
423 followed fork child thread should have a copy of most of the
4e3990f4
DE
424 parent thread structure's run control related fields, not just these.
425 Initialized to avoid "may be used uninitialized" warnings from gcc. */
426 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 427 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
428 CORE_ADDR step_range_start = 0;
429 CORE_ADDR step_range_end = 0;
430 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
431
432 if (!non_stop)
433 {
434 ptid_t wait_ptid;
435 struct target_waitstatus wait_status;
436
437 /* Get the last target status returned by target_wait(). */
438 get_last_target_status (&wait_ptid, &wait_status);
439
440 /* If not stopped at a fork event, then there's nothing else to
441 do. */
442 if (wait_status.kind != TARGET_WAITKIND_FORKED
443 && wait_status.kind != TARGET_WAITKIND_VFORKED)
444 return 1;
445
446 /* Check if we switched over from WAIT_PTID, since the event was
447 reported. */
448 if (!ptid_equal (wait_ptid, minus_one_ptid)
449 && !ptid_equal (inferior_ptid, wait_ptid))
450 {
451 /* We did. Switch back to WAIT_PTID thread, to tell the
452 target to follow it (in either direction). We'll
453 afterwards refuse to resume, and inform the user what
454 happened. */
455 switch_to_thread (wait_ptid);
456 should_resume = 0;
457 }
458 }
459
460 tp = inferior_thread ();
461
462 /* If there were any forks/vforks that were caught and are now to be
463 followed, then do so now. */
464 switch (tp->pending_follow.kind)
465 {
466 case TARGET_WAITKIND_FORKED:
467 case TARGET_WAITKIND_VFORKED:
468 {
469 ptid_t parent, child;
470
471 /* If the user did a next/step, etc, over a fork call,
472 preserve the stepping state in the fork child. */
473 if (follow_child && should_resume)
474 {
8358c15c
JK
475 step_resume_breakpoint = clone_momentary_breakpoint
476 (tp->control.step_resume_breakpoint);
16c381f0
JK
477 step_range_start = tp->control.step_range_start;
478 step_range_end = tp->control.step_range_end;
479 step_frame_id = tp->control.step_frame_id;
186c406b
TT
480 exception_resume_breakpoint
481 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
482
483 /* For now, delete the parent's sr breakpoint, otherwise,
484 parent/child sr breakpoints are considered duplicates,
485 and the child version will not be installed. Remove
486 this when the breakpoints module becomes aware of
487 inferiors and address spaces. */
488 delete_step_resume_breakpoint (tp);
16c381f0
JK
489 tp->control.step_range_start = 0;
490 tp->control.step_range_end = 0;
491 tp->control.step_frame_id = null_frame_id;
186c406b 492 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
493 }
494
495 parent = inferior_ptid;
496 child = tp->pending_follow.value.related_pid;
497
498 /* Tell the target to do whatever is necessary to follow
499 either parent or child. */
500 if (target_follow_fork (follow_child))
501 {
502 /* Target refused to follow, or there's some other reason
503 we shouldn't resume. */
504 should_resume = 0;
505 }
506 else
507 {
508 /* This pending follow fork event is now handled, one way
509 or another. The previous selected thread may be gone
510 from the lists by now, but if it is still around, need
511 to clear the pending follow request. */
e09875d4 512 tp = find_thread_ptid (parent);
e58b0e63
PA
513 if (tp)
514 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
515
516 /* This makes sure we don't try to apply the "Switched
517 over from WAIT_PID" logic above. */
518 nullify_last_target_wait_ptid ();
519
1777feb0 520 /* If we followed the child, switch to it... */
e58b0e63
PA
521 if (follow_child)
522 {
523 switch_to_thread (child);
524
525 /* ... and preserve the stepping state, in case the
526 user was stepping over the fork call. */
527 if (should_resume)
528 {
529 tp = inferior_thread ();
8358c15c
JK
530 tp->control.step_resume_breakpoint
531 = step_resume_breakpoint;
16c381f0
JK
532 tp->control.step_range_start = step_range_start;
533 tp->control.step_range_end = step_range_end;
534 tp->control.step_frame_id = step_frame_id;
186c406b
TT
535 tp->control.exception_resume_breakpoint
536 = exception_resume_breakpoint;
e58b0e63
PA
537 }
538 else
539 {
540 /* If we get here, it was because we're trying to
541 resume from a fork catchpoint, but, the user
542 has switched threads away from the thread that
543 forked. In that case, the resume command
544 issued is most likely not applicable to the
545 child, so just warn, and refuse to resume. */
3e43a32a
MS
546 warning (_("Not resuming: switched threads "
547 "before following fork child.\n"));
e58b0e63
PA
548 }
549
550 /* Reset breakpoints in the child as appropriate. */
551 follow_inferior_reset_breakpoints ();
552 }
553 else
554 switch_to_thread (parent);
555 }
556 }
557 break;
558 case TARGET_WAITKIND_SPURIOUS:
559 /* Nothing to follow. */
560 break;
561 default:
562 internal_error (__FILE__, __LINE__,
563 "Unexpected pending_follow.kind %d\n",
564 tp->pending_follow.kind);
565 break;
566 }
c906108c 567
e58b0e63 568 return should_resume;
c906108c
SS
569}
570
6604731b
DJ
571void
572follow_inferior_reset_breakpoints (void)
c906108c 573{
4e1c45ea
PA
574 struct thread_info *tp = inferior_thread ();
575
6604731b
DJ
576 /* Was there a step_resume breakpoint? (There was if the user
577 did a "next" at the fork() call.) If so, explicitly reset its
578 thread number.
579
580 step_resumes are a form of bp that are made to be per-thread.
581 Since we created the step_resume bp when the parent process
582 was being debugged, and now are switching to the child process,
583 from the breakpoint package's viewpoint, that's a switch of
584 "threads". We must update the bp's notion of which thread
585 it is for, or it'll be ignored when it triggers. */
586
8358c15c
JK
587 if (tp->control.step_resume_breakpoint)
588 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 589
186c406b
TT
590 if (tp->control.exception_resume_breakpoint)
591 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
592
6604731b
DJ
593 /* Reinsert all breakpoints in the child. The user may have set
594 breakpoints after catching the fork, in which case those
595 were never set in the child, but only in the parent. This makes
596 sure the inserted breakpoints match the breakpoint list. */
597
598 breakpoint_re_set ();
599 insert_breakpoints ();
c906108c 600}
c906108c 601
6c95b8df
PA
602/* The child has exited or execed: resume threads of the parent the
603 user wanted to be executing. */
604
605static int
606proceed_after_vfork_done (struct thread_info *thread,
607 void *arg)
608{
609 int pid = * (int *) arg;
610
611 if (ptid_get_pid (thread->ptid) == pid
612 && is_running (thread->ptid)
613 && !is_executing (thread->ptid)
614 && !thread->stop_requested
16c381f0 615 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
616 {
617 if (debug_infrun)
618 fprintf_unfiltered (gdb_stdlog,
619 "infrun: resuming vfork parent thread %s\n",
620 target_pid_to_str (thread->ptid));
621
622 switch_to_thread (thread->ptid);
623 clear_proceed_status ();
624 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
625 }
626
627 return 0;
628}
629
630/* Called whenever we notice an exec or exit event, to handle
631 detaching or resuming a vfork parent. */
632
633static void
634handle_vfork_child_exec_or_exit (int exec)
635{
636 struct inferior *inf = current_inferior ();
637
638 if (inf->vfork_parent)
639 {
640 int resume_parent = -1;
641
642 /* This exec or exit marks the end of the shared memory region
643 between the parent and the child. If the user wanted to
644 detach from the parent, now is the time. */
645
646 if (inf->vfork_parent->pending_detach)
647 {
648 struct thread_info *tp;
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651 struct address_space *aspace;
652
1777feb0 653 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
654
655 old_chain = make_cleanup_restore_current_thread ();
656
657 /* We're letting loose of the parent. */
658 tp = any_live_thread_of_process (inf->vfork_parent->pid);
659 switch_to_thread (tp->ptid);
660
661 /* We're about to detach from the parent, which implicitly
662 removes breakpoints from its address space. There's a
663 catch here: we want to reuse the spaces for the child,
664 but, parent/child are still sharing the pspace at this
665 point, although the exec in reality makes the kernel give
666 the child a fresh set of new pages. The problem here is
667 that the breakpoints module being unaware of this, would
668 likely chose the child process to write to the parent
669 address space. Swapping the child temporarily away from
670 the spaces has the desired effect. Yes, this is "sort
671 of" a hack. */
672
673 pspace = inf->pspace;
674 aspace = inf->aspace;
675 inf->aspace = NULL;
676 inf->pspace = NULL;
677
678 if (debug_infrun || info_verbose)
679 {
680 target_terminal_ours ();
681
682 if (exec)
683 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
684 "Detaching vfork parent process "
685 "%d after child exec.\n",
6c95b8df
PA
686 inf->vfork_parent->pid);
687 else
688 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
689 "Detaching vfork parent process "
690 "%d after child exit.\n",
6c95b8df
PA
691 inf->vfork_parent->pid);
692 }
693
694 target_detach (NULL, 0);
695
696 /* Put it back. */
697 inf->pspace = pspace;
698 inf->aspace = aspace;
699
700 do_cleanups (old_chain);
701 }
702 else if (exec)
703 {
704 /* We're staying attached to the parent, so, really give the
705 child a new address space. */
706 inf->pspace = add_program_space (maybe_new_address_space ());
707 inf->aspace = inf->pspace->aspace;
708 inf->removable = 1;
709 set_current_program_space (inf->pspace);
710
711 resume_parent = inf->vfork_parent->pid;
712
713 /* Break the bonds. */
714 inf->vfork_parent->vfork_child = NULL;
715 }
716 else
717 {
718 struct cleanup *old_chain;
719 struct program_space *pspace;
720
721 /* If this is a vfork child exiting, then the pspace and
722 aspaces were shared with the parent. Since we're
723 reporting the process exit, we'll be mourning all that is
724 found in the address space, and switching to null_ptid,
725 preparing to start a new inferior. But, since we don't
726 want to clobber the parent's address/program spaces, we
727 go ahead and create a new one for this exiting
728 inferior. */
729
730 /* Switch to null_ptid, so that clone_program_space doesn't want
731 to read the selected frame of a dead process. */
732 old_chain = save_inferior_ptid ();
733 inferior_ptid = null_ptid;
734
735 /* This inferior is dead, so avoid giving the breakpoints
736 module the option to write through to it (cloning a
737 program space resets breakpoints). */
738 inf->aspace = NULL;
739 inf->pspace = NULL;
740 pspace = add_program_space (maybe_new_address_space ());
741 set_current_program_space (pspace);
742 inf->removable = 1;
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 748 inferior. */
6c95b8df
PA
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
3e43a32a
MS
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776}
777
778/* Enum strings for "set|show displaced-stepping". */
779
780static const char follow_exec_mode_new[] = "new";
781static const char follow_exec_mode_same[] = "same";
782static const char *follow_exec_mode_names[] =
783{
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787};
788
789static const char *follow_exec_mode_string = follow_exec_mode_same;
790static void
791show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793{
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795}
796
1777feb0 797/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 798
c906108c 799static void
3a3e9ee3 800follow_exec (ptid_t pid, char *execd_pathname)
c906108c 801{
4e1c45ea 802 struct thread_info *th = inferior_thread ();
6c95b8df 803 struct inferior *inf = current_inferior ();
7a292a7a 804
c906108c
SS
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
1777feb0 824 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
825
826 mark_breakpoints_out ();
827
c906108c
SS
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 831 statement through an exec(). */
8358c15c 832 th->control.step_resume_breakpoint = NULL;
186c406b 833 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
c906108c 836
a75724bc
PA
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
1777feb0 845 /* What is this a.out's name? */
6c95b8df
PA
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
c906108c
SS
849
850 /* We've followed the inferior through an exec. Therefore, the
1777feb0 851 inferior has essentially been killed & reborn. */
7a292a7a 852
c906108c 853 gdb_flush (gdb_stdout);
6ca15a4b
PA
854
855 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
abbb1732 862
e85a822c
DJ
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
c906108c 867
cce9b6bf
PA
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
6c95b8df
PA
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
6c95b8df
PA
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
1777feb0 896 /* That a.out is now the one to use. */
6c95b8df
PA
897 exec_file_attach (execd_pathname, 0);
898
c1e56572
JK
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
904 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
905 NULL, 0);
906
907 set_initial_language ();
c906108c 908
7a292a7a 909#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 910 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 911#else
268a4a75 912 solib_create_inferior_hook (0);
7a292a7a 913#endif
c906108c 914
4efc6507
DE
915 jit_inferior_created_hook ();
916
c1e56572
JK
917 breakpoint_re_set ();
918
c906108c
SS
919 /* Reinsert all breakpoints. (Those which were symbolic have
920 been reset to the proper address in the new a.out, thanks
1777feb0 921 to symbol_file_command...). */
c906108c
SS
922 insert_breakpoints ();
923
924 /* The next resume of this inferior should bring it to the shlib
925 startup breakpoints. (If the user had also set bp's on
926 "main" from the old (parent) process, then they'll auto-
1777feb0 927 matically get reset there in the new process.). */
c906108c
SS
928}
929
930/* Non-zero if we just simulating a single-step. This is needed
931 because we cannot remove the breakpoints in the inferior process
932 until after the `wait' in `wait_for_inferior'. */
933static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
934
935/* The thread we inserted single-step breakpoints for. */
936static ptid_t singlestep_ptid;
937
fd48f117
DJ
938/* PC when we started this single-step. */
939static CORE_ADDR singlestep_pc;
940
9f976b41
DJ
941/* If another thread hit the singlestep breakpoint, we save the original
942 thread here so that we can resume single-stepping it later. */
943static ptid_t saved_singlestep_ptid;
944static int stepping_past_singlestep_breakpoint;
6a6b96b9 945
ca67fcb8
VP
946/* If not equal to null_ptid, this means that after stepping over breakpoint
947 is finished, we need to switch to deferred_step_ptid, and step it.
948
949 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 950 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
951 breakpoint in the thread which hit the breakpoint, but then continue
952 stepping the thread user has selected. */
953static ptid_t deferred_step_ptid;
c906108c 954\f
237fc4c9
PA
955/* Displaced stepping. */
956
957/* In non-stop debugging mode, we must take special care to manage
958 breakpoints properly; in particular, the traditional strategy for
959 stepping a thread past a breakpoint it has hit is unsuitable.
960 'Displaced stepping' is a tactic for stepping one thread past a
961 breakpoint it has hit while ensuring that other threads running
962 concurrently will hit the breakpoint as they should.
963
964 The traditional way to step a thread T off a breakpoint in a
965 multi-threaded program in all-stop mode is as follows:
966
967 a0) Initially, all threads are stopped, and breakpoints are not
968 inserted.
969 a1) We single-step T, leaving breakpoints uninserted.
970 a2) We insert breakpoints, and resume all threads.
971
972 In non-stop debugging, however, this strategy is unsuitable: we
973 don't want to have to stop all threads in the system in order to
974 continue or step T past a breakpoint. Instead, we use displaced
975 stepping:
976
977 n0) Initially, T is stopped, other threads are running, and
978 breakpoints are inserted.
979 n1) We copy the instruction "under" the breakpoint to a separate
980 location, outside the main code stream, making any adjustments
981 to the instruction, register, and memory state as directed by
982 T's architecture.
983 n2) We single-step T over the instruction at its new location.
984 n3) We adjust the resulting register and memory state as directed
985 by T's architecture. This includes resetting T's PC to point
986 back into the main instruction stream.
987 n4) We resume T.
988
989 This approach depends on the following gdbarch methods:
990
991 - gdbarch_max_insn_length and gdbarch_displaced_step_location
992 indicate where to copy the instruction, and how much space must
993 be reserved there. We use these in step n1.
994
995 - gdbarch_displaced_step_copy_insn copies a instruction to a new
996 address, and makes any necessary adjustments to the instruction,
997 register contents, and memory. We use this in step n1.
998
999 - gdbarch_displaced_step_fixup adjusts registers and memory after
1000 we have successfuly single-stepped the instruction, to yield the
1001 same effect the instruction would have had if we had executed it
1002 at its original address. We use this in step n3.
1003
1004 - gdbarch_displaced_step_free_closure provides cleanup.
1005
1006 The gdbarch_displaced_step_copy_insn and
1007 gdbarch_displaced_step_fixup functions must be written so that
1008 copying an instruction with gdbarch_displaced_step_copy_insn,
1009 single-stepping across the copied instruction, and then applying
1010 gdbarch_displaced_insn_fixup should have the same effects on the
1011 thread's memory and registers as stepping the instruction in place
1012 would have. Exactly which responsibilities fall to the copy and
1013 which fall to the fixup is up to the author of those functions.
1014
1015 See the comments in gdbarch.sh for details.
1016
1017 Note that displaced stepping and software single-step cannot
1018 currently be used in combination, although with some care I think
1019 they could be made to. Software single-step works by placing
1020 breakpoints on all possible subsequent instructions; if the
1021 displaced instruction is a PC-relative jump, those breakpoints
1022 could fall in very strange places --- on pages that aren't
1023 executable, or at addresses that are not proper instruction
1024 boundaries. (We do generally let other threads run while we wait
1025 to hit the software single-step breakpoint, and they might
1026 encounter such a corrupted instruction.) One way to work around
1027 this would be to have gdbarch_displaced_step_copy_insn fully
1028 simulate the effect of PC-relative instructions (and return NULL)
1029 on architectures that use software single-stepping.
1030
1031 In non-stop mode, we can have independent and simultaneous step
1032 requests, so more than one thread may need to simultaneously step
1033 over a breakpoint. The current implementation assumes there is
1034 only one scratch space per process. In this case, we have to
1035 serialize access to the scratch space. If thread A wants to step
1036 over a breakpoint, but we are currently waiting for some other
1037 thread to complete a displaced step, we leave thread A stopped and
1038 place it in the displaced_step_request_queue. Whenever a displaced
1039 step finishes, we pick the next thread in the queue and start a new
1040 displaced step operation on it. See displaced_step_prepare and
1041 displaced_step_fixup for details. */
1042
237fc4c9
PA
1043struct displaced_step_request
1044{
1045 ptid_t ptid;
1046 struct displaced_step_request *next;
1047};
1048
fc1cf338
PA
1049/* Per-inferior displaced stepping state. */
1050struct displaced_step_inferior_state
1051{
1052 /* Pointer to next in linked list. */
1053 struct displaced_step_inferior_state *next;
1054
1055 /* The process this displaced step state refers to. */
1056 int pid;
1057
1058 /* A queue of pending displaced stepping requests. One entry per
1059 thread that needs to do a displaced step. */
1060 struct displaced_step_request *step_request_queue;
1061
1062 /* If this is not null_ptid, this is the thread carrying out a
1063 displaced single-step in process PID. This thread's state will
1064 require fixing up once it has completed its step. */
1065 ptid_t step_ptid;
1066
1067 /* The architecture the thread had when we stepped it. */
1068 struct gdbarch *step_gdbarch;
1069
1070 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1071 for post-step cleanup. */
1072 struct displaced_step_closure *step_closure;
1073
1074 /* The address of the original instruction, and the copy we
1075 made. */
1076 CORE_ADDR step_original, step_copy;
1077
1078 /* Saved contents of copy area. */
1079 gdb_byte *step_saved_copy;
1080};
1081
1082/* The list of states of processes involved in displaced stepping
1083 presently. */
1084static struct displaced_step_inferior_state *displaced_step_inferior_states;
1085
1086/* Get the displaced stepping state of process PID. */
1087
1088static struct displaced_step_inferior_state *
1089get_displaced_stepping_state (int pid)
1090{
1091 struct displaced_step_inferior_state *state;
1092
1093 for (state = displaced_step_inferior_states;
1094 state != NULL;
1095 state = state->next)
1096 if (state->pid == pid)
1097 return state;
1098
1099 return NULL;
1100}
1101
1102/* Add a new displaced stepping state for process PID to the displaced
1103 stepping state list, or return a pointer to an already existing
1104 entry, if it already exists. Never returns NULL. */
1105
1106static struct displaced_step_inferior_state *
1107add_displaced_stepping_state (int pid)
1108{
1109 struct displaced_step_inferior_state *state;
1110
1111 for (state = displaced_step_inferior_states;
1112 state != NULL;
1113 state = state->next)
1114 if (state->pid == pid)
1115 return state;
237fc4c9 1116
fc1cf338
PA
1117 state = xcalloc (1, sizeof (*state));
1118 state->pid = pid;
1119 state->next = displaced_step_inferior_states;
1120 displaced_step_inferior_states = state;
237fc4c9 1121
fc1cf338
PA
1122 return state;
1123}
1124
a42244db
YQ
1125/* If inferior is in displaced stepping, and ADDR equals to starting address
1126 of copy area, return corresponding displaced_step_closure. Otherwise,
1127 return NULL. */
1128
1129struct displaced_step_closure*
1130get_displaced_step_closure_by_addr (CORE_ADDR addr)
1131{
1132 struct displaced_step_inferior_state *displaced
1133 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1134
1135 /* If checking the mode of displaced instruction in copy area. */
1136 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1137 && (displaced->step_copy == addr))
1138 return displaced->step_closure;
1139
1140 return NULL;
1141}
1142
fc1cf338 1143/* Remove the displaced stepping state of process PID. */
237fc4c9 1144
fc1cf338
PA
1145static void
1146remove_displaced_stepping_state (int pid)
1147{
1148 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1149
fc1cf338
PA
1150 gdb_assert (pid != 0);
1151
1152 it = displaced_step_inferior_states;
1153 prev_next_p = &displaced_step_inferior_states;
1154 while (it)
1155 {
1156 if (it->pid == pid)
1157 {
1158 *prev_next_p = it->next;
1159 xfree (it);
1160 return;
1161 }
1162
1163 prev_next_p = &it->next;
1164 it = *prev_next_p;
1165 }
1166}
1167
1168static void
1169infrun_inferior_exit (struct inferior *inf)
1170{
1171 remove_displaced_stepping_state (inf->pid);
1172}
237fc4c9 1173
fff08868
HZ
1174/* Enum strings for "set|show displaced-stepping". */
1175
1176static const char can_use_displaced_stepping_auto[] = "auto";
1177static const char can_use_displaced_stepping_on[] = "on";
1178static const char can_use_displaced_stepping_off[] = "off";
1179static const char *can_use_displaced_stepping_enum[] =
1180{
1181 can_use_displaced_stepping_auto,
1182 can_use_displaced_stepping_on,
1183 can_use_displaced_stepping_off,
1184 NULL,
1185};
1186
1187/* If ON, and the architecture supports it, GDB will use displaced
1188 stepping to step over breakpoints. If OFF, or if the architecture
1189 doesn't support it, GDB will instead use the traditional
1190 hold-and-step approach. If AUTO (which is the default), GDB will
1191 decide which technique to use to step over breakpoints depending on
1192 which of all-stop or non-stop mode is active --- displaced stepping
1193 in non-stop mode; hold-and-step in all-stop mode. */
1194
1195static const char *can_use_displaced_stepping =
1196 can_use_displaced_stepping_auto;
1197
237fc4c9
PA
1198static void
1199show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202{
fff08868 1203 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1207 value, non_stop ? "on" : "off");
1208 else
3e43a32a
MS
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1212}
1213
fff08868
HZ
1214/* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
237fc4c9
PA
1217static int
1218use_displaced_stepping (struct gdbarch *gdbarch)
1219{
fff08868
HZ
1220 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1221 && non_stop)
1222 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
237fc4c9
PA
1225}
1226
1227/* Clean out any stray displaced stepping state. */
1228static void
fc1cf338 1229displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1230{
1231 /* Indicate that there is no cleanup pending. */
fc1cf338 1232 displaced->step_ptid = null_ptid;
237fc4c9 1233
fc1cf338 1234 if (displaced->step_closure)
237fc4c9 1235 {
fc1cf338
PA
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
237fc4c9
PA
1239 }
1240}
1241
1242static void
fc1cf338 1243displaced_step_clear_cleanup (void *arg)
237fc4c9 1244{
fc1cf338
PA
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
237fc4c9
PA
1248}
1249
1250/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251void
1252displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255{
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261}
1262
1263/* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277static int
1278displaced_step_prepare (ptid_t ptid)
1279{
ad53cd71 1280 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
fc1cf338 1286 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
fc1cf338
PA
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
237fc4c9 1294
fc1cf338
PA
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
fc1cf338 1312 if (displaced->step_request_queue)
237fc4c9 1313 {
fc1cf338 1314 for (req = displaced->step_request_queue;
237fc4c9
PA
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
fc1cf338 1321 displaced->step_request_queue = new_req;
237fc4c9
PA
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
fc1cf338 1333 displaced_step_clear (displaced);
237fc4c9 1334
ad53cd71
PA
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
515630c5 1338 original = regcache_read_pc (regcache);
237fc4c9
PA
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
fc1cf338 1344 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1345 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1346 &displaced->step_saved_copy);
1347 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1348 if (debug_displaced)
1349 {
5af949e3
UW
1350 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1351 paddress (gdbarch, copy));
fc1cf338
PA
1352 displaced_step_dump_bytes (gdb_stdlog,
1353 displaced->step_saved_copy,
1354 len);
237fc4c9
PA
1355 };
1356
1357 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1358 original, copy, regcache);
237fc4c9
PA
1359
1360 /* We don't support the fully-simulated case at present. */
1361 gdb_assert (closure);
1362
9f5a595d
UW
1363 /* Save the information we need to fix things up if the step
1364 succeeds. */
fc1cf338
PA
1365 displaced->step_ptid = ptid;
1366 displaced->step_gdbarch = gdbarch;
1367 displaced->step_closure = closure;
1368 displaced->step_original = original;
1369 displaced->step_copy = copy;
9f5a595d 1370
fc1cf338 1371 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1372
1373 /* Resume execution at the copy. */
515630c5 1374 regcache_write_pc (regcache, copy);
237fc4c9 1375
ad53cd71
PA
1376 discard_cleanups (ignore_cleanups);
1377
1378 do_cleanups (old_cleanups);
237fc4c9
PA
1379
1380 if (debug_displaced)
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1382 paddress (gdbarch, copy));
237fc4c9 1383
237fc4c9
PA
1384 return 1;
1385}
1386
237fc4c9 1387static void
3e43a32a
MS
1388write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1389 const gdb_byte *myaddr, int len)
237fc4c9
PA
1390{
1391 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1392
237fc4c9
PA
1393 inferior_ptid = ptid;
1394 write_memory (memaddr, myaddr, len);
1395 do_cleanups (ptid_cleanup);
1396}
1397
e2d96639
YQ
1398/* Restore the contents of the copy area for thread PTID. */
1399
1400static void
1401displaced_step_restore (struct displaced_step_inferior_state *displaced,
1402 ptid_t ptid)
1403{
1404 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1405
1406 write_memory_ptid (ptid, displaced->step_copy,
1407 displaced->step_saved_copy, len);
1408 if (debug_displaced)
1409 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1410 target_pid_to_str (ptid),
1411 paddress (displaced->step_gdbarch,
1412 displaced->step_copy));
1413}
1414
237fc4c9
PA
1415static void
1416displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1417{
1418 struct cleanup *old_cleanups;
fc1cf338
PA
1419 struct displaced_step_inferior_state *displaced
1420 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1421
1422 /* Was any thread of this process doing a displaced step? */
1423 if (displaced == NULL)
1424 return;
237fc4c9
PA
1425
1426 /* Was this event for the pid we displaced? */
fc1cf338
PA
1427 if (ptid_equal (displaced->step_ptid, null_ptid)
1428 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1429 return;
1430
fc1cf338 1431 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1432
e2d96639 1433 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1434
1435 /* Did the instruction complete successfully? */
1436 if (signal == TARGET_SIGNAL_TRAP)
1437 {
1438 /* Fix up the resulting state. */
fc1cf338
PA
1439 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1440 displaced->step_closure,
1441 displaced->step_original,
1442 displaced->step_copy,
1443 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1444 }
1445 else
1446 {
1447 /* Since the instruction didn't complete, all we can do is
1448 relocate the PC. */
515630c5
UW
1449 struct regcache *regcache = get_thread_regcache (event_ptid);
1450 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1451
fc1cf338 1452 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1453 regcache_write_pc (regcache, pc);
237fc4c9
PA
1454 }
1455
1456 do_cleanups (old_cleanups);
1457
fc1cf338 1458 displaced->step_ptid = null_ptid;
1c5cfe86 1459
237fc4c9 1460 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1461 one now. Leave the state object around, since we're likely to
1462 need it again soon. */
1463 while (displaced->step_request_queue)
237fc4c9
PA
1464 {
1465 struct displaced_step_request *head;
1466 ptid_t ptid;
5af949e3 1467 struct regcache *regcache;
929dfd4f 1468 struct gdbarch *gdbarch;
1c5cfe86 1469 CORE_ADDR actual_pc;
6c95b8df 1470 struct address_space *aspace;
237fc4c9 1471
fc1cf338 1472 head = displaced->step_request_queue;
237fc4c9 1473 ptid = head->ptid;
fc1cf338 1474 displaced->step_request_queue = head->next;
237fc4c9
PA
1475 xfree (head);
1476
ad53cd71
PA
1477 context_switch (ptid);
1478
5af949e3
UW
1479 regcache = get_thread_regcache (ptid);
1480 actual_pc = regcache_read_pc (regcache);
6c95b8df 1481 aspace = get_regcache_aspace (regcache);
1c5cfe86 1482
6c95b8df 1483 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1484 {
1c5cfe86
PA
1485 if (debug_displaced)
1486 fprintf_unfiltered (gdb_stdlog,
1487 "displaced: stepping queued %s now\n",
1488 target_pid_to_str (ptid));
1489
1490 displaced_step_prepare (ptid);
1491
929dfd4f
JB
1492 gdbarch = get_regcache_arch (regcache);
1493
1c5cfe86
PA
1494 if (debug_displaced)
1495 {
929dfd4f 1496 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1497 gdb_byte buf[4];
1498
5af949e3
UW
1499 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1500 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1501 read_memory (actual_pc, buf, sizeof (buf));
1502 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1503 }
1504
fc1cf338
PA
1505 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1506 displaced->step_closure))
929dfd4f 1507 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1508 else
1509 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1510
1511 /* Done, we're stepping a thread. */
1512 break;
ad53cd71 1513 }
1c5cfe86
PA
1514 else
1515 {
1516 int step;
1517 struct thread_info *tp = inferior_thread ();
1518
1519 /* The breakpoint we were sitting under has since been
1520 removed. */
16c381f0 1521 tp->control.trap_expected = 0;
1c5cfe86
PA
1522
1523 /* Go back to what we were trying to do. */
1524 step = currently_stepping (tp);
ad53cd71 1525
1c5cfe86 1526 if (debug_displaced)
3e43a32a
MS
1527 fprintf_unfiltered (gdb_stdlog,
1528 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1529 target_pid_to_str (tp->ptid), step);
1530
1531 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1532 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1533
1534 /* This request was discarded. See if there's any other
1535 thread waiting for its turn. */
1536 }
237fc4c9
PA
1537 }
1538}
1539
5231c1fd
PA
1540/* Update global variables holding ptids to hold NEW_PTID if they were
1541 holding OLD_PTID. */
1542static void
1543infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1544{
1545 struct displaced_step_request *it;
fc1cf338 1546 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1547
1548 if (ptid_equal (inferior_ptid, old_ptid))
1549 inferior_ptid = new_ptid;
1550
1551 if (ptid_equal (singlestep_ptid, old_ptid))
1552 singlestep_ptid = new_ptid;
1553
5231c1fd
PA
1554 if (ptid_equal (deferred_step_ptid, old_ptid))
1555 deferred_step_ptid = new_ptid;
1556
fc1cf338
PA
1557 for (displaced = displaced_step_inferior_states;
1558 displaced;
1559 displaced = displaced->next)
1560 {
1561 if (ptid_equal (displaced->step_ptid, old_ptid))
1562 displaced->step_ptid = new_ptid;
1563
1564 for (it = displaced->step_request_queue; it; it = it->next)
1565 if (ptid_equal (it->ptid, old_ptid))
1566 it->ptid = new_ptid;
1567 }
5231c1fd
PA
1568}
1569
237fc4c9
PA
1570\f
1571/* Resuming. */
c906108c
SS
1572
1573/* Things to clean up if we QUIT out of resume (). */
c906108c 1574static void
74b7792f 1575resume_cleanups (void *ignore)
c906108c
SS
1576{
1577 normal_stop ();
1578}
1579
53904c9e
AC
1580static const char schedlock_off[] = "off";
1581static const char schedlock_on[] = "on";
1582static const char schedlock_step[] = "step";
488f131b 1583static const char *scheduler_enums[] = {
ef346e04
AC
1584 schedlock_off,
1585 schedlock_on,
1586 schedlock_step,
1587 NULL
1588};
920d2a44
AC
1589static const char *scheduler_mode = schedlock_off;
1590static void
1591show_scheduler_mode (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c, const char *value)
1593{
3e43a32a
MS
1594 fprintf_filtered (file,
1595 _("Mode for locking scheduler "
1596 "during execution is \"%s\".\n"),
920d2a44
AC
1597 value);
1598}
c906108c
SS
1599
1600static void
96baa820 1601set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1602{
eefe576e
AC
1603 if (!target_can_lock_scheduler)
1604 {
1605 scheduler_mode = schedlock_off;
1606 error (_("Target '%s' cannot support this command."), target_shortname);
1607 }
c906108c
SS
1608}
1609
d4db2f36
PA
1610/* True if execution commands resume all threads of all processes by
1611 default; otherwise, resume only threads of the current inferior
1612 process. */
1613int sched_multi = 0;
1614
2facfe5c
DD
1615/* Try to setup for software single stepping over the specified location.
1616 Return 1 if target_resume() should use hardware single step.
1617
1618 GDBARCH the current gdbarch.
1619 PC the location to step over. */
1620
1621static int
1622maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1623{
1624 int hw_step = 1;
1625
f02253f1
HZ
1626 if (execution_direction == EXEC_FORWARD
1627 && gdbarch_software_single_step_p (gdbarch)
99e40580 1628 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1629 {
99e40580
UW
1630 hw_step = 0;
1631 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1632 `wait_for_inferior'. */
99e40580
UW
1633 singlestep_breakpoints_inserted_p = 1;
1634 singlestep_ptid = inferior_ptid;
1635 singlestep_pc = pc;
2facfe5c
DD
1636 }
1637 return hw_step;
1638}
c906108c 1639
09cee04b
PA
1640/* Return a ptid representing the set of threads that we will proceed,
1641 in the perspective of the user/frontend. We may actually resume
1642 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1643 breakpoint that needs stepping-off, but that should not be visible
1644 to the user/frontend, and neither should the frontend/user be
1645 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1646 internal run control handling, if a previous command wanted them
1647 resumed. */
1648
1649ptid_t
1650user_visible_resume_ptid (int step)
1651{
1652 /* By default, resume all threads of all processes. */
1653 ptid_t resume_ptid = RESUME_ALL;
1654
1655 /* Maybe resume only all threads of the current process. */
1656 if (!sched_multi && target_supports_multi_process ())
1657 {
1658 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1659 }
1660
1661 /* Maybe resume a single thread after all. */
1662 if (non_stop)
1663 {
1664 /* With non-stop mode on, threads are always handled
1665 individually. */
1666 resume_ptid = inferior_ptid;
1667 }
1668 else if ((scheduler_mode == schedlock_on)
1669 || (scheduler_mode == schedlock_step
1670 && (step || singlestep_breakpoints_inserted_p)))
1671 {
1672 /* User-settable 'scheduler' mode requires solo thread resume. */
1673 resume_ptid = inferior_ptid;
1674 }
1675
1676 return resume_ptid;
1677}
1678
c906108c
SS
1679/* Resume the inferior, but allow a QUIT. This is useful if the user
1680 wants to interrupt some lengthy single-stepping operation
1681 (for child processes, the SIGINT goes to the inferior, and so
1682 we get a SIGINT random_signal, but for remote debugging and perhaps
1683 other targets, that's not true).
1684
1685 STEP nonzero if we should step (zero to continue instead).
1686 SIG is the signal to give the inferior (zero for none). */
1687void
96baa820 1688resume (int step, enum target_signal sig)
c906108c
SS
1689{
1690 int should_resume = 1;
74b7792f 1691 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1692 struct regcache *regcache = get_current_regcache ();
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1694 struct thread_info *tp = inferior_thread ();
515630c5 1695 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1696 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1697
c906108c
SS
1698 QUIT;
1699
74609e71
YQ
1700 if (current_inferior ()->waiting_for_vfork_done)
1701 {
48f9886d
PA
1702 /* Don't try to single-step a vfork parent that is waiting for
1703 the child to get out of the shared memory region (by exec'ing
1704 or exiting). This is particularly important on software
1705 single-step archs, as the child process would trip on the
1706 software single step breakpoint inserted for the parent
1707 process. Since the parent will not actually execute any
1708 instruction until the child is out of the shared region (such
1709 are vfork's semantics), it is safe to simply continue it.
1710 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1711 the parent, and tell it to `keep_going', which automatically
1712 re-sets it stepping. */
74609e71
YQ
1713 if (debug_infrun)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "infrun: resume : clear step\n");
1716 step = 0;
1717 }
1718
527159b7 1719 if (debug_infrun)
237fc4c9
PA
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1722 "trap_expected=%d, current thread [%s] at %s\n",
1723 step, sig, tp->control.trap_expected,
1724 target_pid_to_str (inferior_ptid),
1725 paddress (gdbarch, pc));
c906108c 1726
c2c6d25f
JM
1727 /* Normally, by the time we reach `resume', the breakpoints are either
1728 removed or inserted, as appropriate. The exception is if we're sitting
1729 at a permanent breakpoint; we need to step over it, but permanent
1730 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1731 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1732 {
515630c5
UW
1733 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1734 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1735 else
ac74f770
MS
1736 error (_("\
1737The program is stopped at a permanent breakpoint, but GDB does not know\n\
1738how to step past a permanent breakpoint on this architecture. Try using\n\
1739a command like `return' or `jump' to continue execution."));
6d350bb5 1740 }
c2c6d25f 1741
237fc4c9
PA
1742 /* If enabled, step over breakpoints by executing a copy of the
1743 instruction at a different address.
1744
1745 We can't use displaced stepping when we have a signal to deliver;
1746 the comments for displaced_step_prepare explain why. The
1747 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1748 signals' explain what we do instead.
1749
1750 We can't use displaced stepping when we are waiting for vfork_done
1751 event, displaced stepping breaks the vfork child similarly as single
1752 step software breakpoint. */
515630c5 1753 if (use_displaced_stepping (gdbarch)
16c381f0 1754 && (tp->control.trap_expected
929dfd4f 1755 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1756 && sig == TARGET_SIGNAL_0
1757 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1758 {
fc1cf338
PA
1759 struct displaced_step_inferior_state *displaced;
1760
237fc4c9 1761 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1762 {
1763 /* Got placed in displaced stepping queue. Will be resumed
1764 later when all the currently queued displaced stepping
7f7efbd9
VP
1765 requests finish. The thread is not executing at this point,
1766 and the call to set_executing will be made later. But we
1767 need to call set_running here, since from frontend point of view,
1768 the thread is running. */
1769 set_running (inferior_ptid, 1);
d56b7306
VP
1770 discard_cleanups (old_cleanups);
1771 return;
1772 }
99e40580 1773
fc1cf338
PA
1774 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1775 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1776 displaced->step_closure);
237fc4c9
PA
1777 }
1778
2facfe5c 1779 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1780 else if (step)
2facfe5c 1781 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1782
30852783
UW
1783 /* Currently, our software single-step implementation leads to different
1784 results than hardware single-stepping in one situation: when stepping
1785 into delivering a signal which has an associated signal handler,
1786 hardware single-step will stop at the first instruction of the handler,
1787 while software single-step will simply skip execution of the handler.
1788
1789 For now, this difference in behavior is accepted since there is no
1790 easy way to actually implement single-stepping into a signal handler
1791 without kernel support.
1792
1793 However, there is one scenario where this difference leads to follow-on
1794 problems: if we're stepping off a breakpoint by removing all breakpoints
1795 and then single-stepping. In this case, the software single-step
1796 behavior means that even if there is a *breakpoint* in the signal
1797 handler, GDB still would not stop.
1798
1799 Fortunately, we can at least fix this particular issue. We detect
1800 here the case where we are about to deliver a signal while software
1801 single-stepping with breakpoints removed. In this situation, we
1802 revert the decisions to remove all breakpoints and insert single-
1803 step breakpoints, and instead we install a step-resume breakpoint
1804 at the current address, deliver the signal without stepping, and
1805 once we arrive back at the step-resume breakpoint, actually step
1806 over the breakpoint we originally wanted to step over. */
1807 if (singlestep_breakpoints_inserted_p
1808 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1809 {
1810 /* If we have nested signals or a pending signal is delivered
1811 immediately after a handler returns, might might already have
1812 a step-resume breakpoint set on the earlier handler. We cannot
1813 set another step-resume breakpoint; just continue on until the
1814 original breakpoint is hit. */
1815 if (tp->control.step_resume_breakpoint == NULL)
1816 {
2c03e5be 1817 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1818 tp->step_after_step_resume_breakpoint = 1;
1819 }
1820
1821 remove_single_step_breakpoints ();
1822 singlestep_breakpoints_inserted_p = 0;
1823
1824 insert_breakpoints ();
1825 tp->control.trap_expected = 0;
1826 }
1827
c906108c
SS
1828 if (should_resume)
1829 {
39f77062 1830 ptid_t resume_ptid;
dfcd3bfb 1831
cd76b0b7
VP
1832 /* If STEP is set, it's a request to use hardware stepping
1833 facilities. But in that case, we should never
1834 use singlestep breakpoint. */
1835 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1836
d4db2f36
PA
1837 /* Decide the set of threads to ask the target to resume. Start
1838 by assuming everything will be resumed, than narrow the set
1839 by applying increasingly restricting conditions. */
09cee04b 1840 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1841
1842 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1843 if (singlestep_breakpoints_inserted_p
1844 && stepping_past_singlestep_breakpoint)
c906108c 1845 {
cd76b0b7
VP
1846 /* The situation here is as follows. In thread T1 we wanted to
1847 single-step. Lacking hardware single-stepping we've
1848 set breakpoint at the PC of the next instruction -- call it
1849 P. After resuming, we've hit that breakpoint in thread T2.
1850 Now we've removed original breakpoint, inserted breakpoint
1851 at P+1, and try to step to advance T2 past breakpoint.
1852 We need to step only T2, as if T1 is allowed to freely run,
1853 it can run past P, and if other threads are allowed to run,
1854 they can hit breakpoint at P+1, and nested hits of single-step
1855 breakpoints is not something we'd want -- that's complicated
1856 to support, and has no value. */
1857 resume_ptid = inferior_ptid;
1858 }
d4db2f36 1859 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1860 && tp->control.trap_expected)
cd76b0b7 1861 {
74960c60
VP
1862 /* We're allowing a thread to run past a breakpoint it has
1863 hit, by single-stepping the thread with the breakpoint
1864 removed. In which case, we need to single-step only this
1865 thread, and keep others stopped, as they can miss this
1866 breakpoint if allowed to run.
1867
1868 The current code actually removes all breakpoints when
1869 doing this, not just the one being stepped over, so if we
1870 let other threads run, we can actually miss any
1871 breakpoint, not just the one at PC. */
ef5cf84e 1872 resume_ptid = inferior_ptid;
c906108c 1873 }
ef5cf84e 1874
515630c5 1875 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1876 {
1877 /* Most targets can step a breakpoint instruction, thus
1878 executing it normally. But if this one cannot, just
1879 continue and we will hit it anyway. */
6c95b8df 1880 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1881 step = 0;
1882 }
237fc4c9
PA
1883
1884 if (debug_displaced
515630c5 1885 && use_displaced_stepping (gdbarch)
16c381f0 1886 && tp->control.trap_expected)
237fc4c9 1887 {
515630c5 1888 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1889 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1890 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1891 gdb_byte buf[4];
1892
5af949e3
UW
1893 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1894 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1895 read_memory (actual_pc, buf, sizeof (buf));
1896 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1897 }
1898
e58b0e63
PA
1899 /* Install inferior's terminal modes. */
1900 target_terminal_inferior ();
1901
2020b7ab
PA
1902 /* Avoid confusing the next resume, if the next stop/resume
1903 happens to apply to another thread. */
16c381f0 1904 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1905
2455069d
UW
1906 /* Advise target which signals may be handled silently. If we have
1907 removed breakpoints because we are stepping over one (which can
1908 happen only if we are not using displaced stepping), we need to
1909 receive all signals to avoid accidentally skipping a breakpoint
1910 during execution of a signal handler. */
1911 if ((step || singlestep_breakpoints_inserted_p)
1912 && tp->control.trap_expected
1913 && !use_displaced_stepping (gdbarch))
1914 target_pass_signals (0, NULL);
1915 else
1916 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1917
607cecd2 1918 target_resume (resume_ptid, step, sig);
c906108c
SS
1919 }
1920
1921 discard_cleanups (old_cleanups);
1922}
1923\f
237fc4c9 1924/* Proceeding. */
c906108c
SS
1925
1926/* Clear out all variables saying what to do when inferior is continued.
1927 First do this, then set the ones you want, then call `proceed'. */
1928
a7212384
UW
1929static void
1930clear_proceed_status_thread (struct thread_info *tp)
c906108c 1931{
a7212384
UW
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "infrun: clear_proceed_status_thread (%s)\n",
1935 target_pid_to_str (tp->ptid));
d6b48e9c 1936
16c381f0
JK
1937 tp->control.trap_expected = 0;
1938 tp->control.step_range_start = 0;
1939 tp->control.step_range_end = 0;
1940 tp->control.step_frame_id = null_frame_id;
1941 tp->control.step_stack_frame_id = null_frame_id;
1942 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1943 tp->stop_requested = 0;
4e1c45ea 1944
16c381f0 1945 tp->control.stop_step = 0;
32400beb 1946
16c381f0 1947 tp->control.proceed_to_finish = 0;
414c69f7 1948
a7212384 1949 /* Discard any remaining commands or status from previous stop. */
16c381f0 1950 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1951}
32400beb 1952
a7212384
UW
1953static int
1954clear_proceed_status_callback (struct thread_info *tp, void *data)
1955{
1956 if (is_exited (tp->ptid))
1957 return 0;
d6b48e9c 1958
a7212384
UW
1959 clear_proceed_status_thread (tp);
1960 return 0;
1961}
1962
1963void
1964clear_proceed_status (void)
1965{
6c95b8df
PA
1966 if (!non_stop)
1967 {
1968 /* In all-stop mode, delete the per-thread status of all
1969 threads, even if inferior_ptid is null_ptid, there may be
1970 threads on the list. E.g., we may be launching a new
1971 process, while selecting the executable. */
1972 iterate_over_threads (clear_proceed_status_callback, NULL);
1973 }
1974
a7212384
UW
1975 if (!ptid_equal (inferior_ptid, null_ptid))
1976 {
1977 struct inferior *inferior;
1978
1979 if (non_stop)
1980 {
6c95b8df
PA
1981 /* If in non-stop mode, only delete the per-thread status of
1982 the current thread. */
a7212384
UW
1983 clear_proceed_status_thread (inferior_thread ());
1984 }
6c95b8df 1985
d6b48e9c 1986 inferior = current_inferior ();
16c381f0 1987 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1988 }
1989
c906108c 1990 stop_after_trap = 0;
f3b1572e
PA
1991
1992 observer_notify_about_to_proceed ();
c906108c 1993
d5c31457
UW
1994 if (stop_registers)
1995 {
1996 regcache_xfree (stop_registers);
1997 stop_registers = NULL;
1998 }
c906108c
SS
1999}
2000
5a437975
DE
2001/* Check the current thread against the thread that reported the most recent
2002 event. If a step-over is required return TRUE and set the current thread
2003 to the old thread. Otherwise return FALSE.
2004
1777feb0 2005 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2006
2007static int
6a6b96b9 2008prepare_to_proceed (int step)
ea67f13b
DJ
2009{
2010 ptid_t wait_ptid;
2011 struct target_waitstatus wait_status;
5a437975
DE
2012 int schedlock_enabled;
2013
2014 /* With non-stop mode on, threads are always handled individually. */
2015 gdb_assert (! non_stop);
ea67f13b
DJ
2016
2017 /* Get the last target status returned by target_wait(). */
2018 get_last_target_status (&wait_ptid, &wait_status);
2019
6a6b96b9 2020 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2021 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2022 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2023 && wait_status.value.sig != TARGET_SIGNAL_ILL
2024 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2025 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2026 {
2027 return 0;
2028 }
2029
5a437975
DE
2030 schedlock_enabled = (scheduler_mode == schedlock_on
2031 || (scheduler_mode == schedlock_step
2032 && step));
2033
d4db2f36
PA
2034 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2035 if (schedlock_enabled)
2036 return 0;
2037
2038 /* Don't switch over if we're about to resume some other process
2039 other than WAIT_PTID's, and schedule-multiple is off. */
2040 if (!sched_multi
2041 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2042 return 0;
2043
6a6b96b9 2044 /* Switched over from WAIT_PID. */
ea67f13b 2045 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2046 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2047 {
515630c5
UW
2048 struct regcache *regcache = get_thread_regcache (wait_ptid);
2049
6c95b8df
PA
2050 if (breakpoint_here_p (get_regcache_aspace (regcache),
2051 regcache_read_pc (regcache)))
ea67f13b 2052 {
515630c5
UW
2053 /* If stepping, remember current thread to switch back to. */
2054 if (step)
2055 deferred_step_ptid = inferior_ptid;
ea67f13b 2056
515630c5
UW
2057 /* Switch back to WAIT_PID thread. */
2058 switch_to_thread (wait_ptid);
6a6b96b9 2059
0d9a9a5f
PA
2060 if (debug_infrun)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "infrun: prepare_to_proceed (step=%d), "
2063 "switched to [%s]\n",
2064 step, target_pid_to_str (inferior_ptid));
2065
515630c5
UW
2066 /* We return 1 to indicate that there is a breakpoint here,
2067 so we need to step over it before continuing to avoid
1777feb0 2068 hitting it straight away. */
515630c5
UW
2069 return 1;
2070 }
ea67f13b
DJ
2071 }
2072
2073 return 0;
ea67f13b 2074}
e4846b08 2075
c906108c
SS
2076/* Basic routine for continuing the program in various fashions.
2077
2078 ADDR is the address to resume at, or -1 for resume where stopped.
2079 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2080 or -1 for act according to how it stopped.
c906108c 2081 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2082 -1 means return after that and print nothing.
2083 You should probably set various step_... variables
2084 before calling here, if you are stepping.
c906108c
SS
2085
2086 You should call clear_proceed_status before calling proceed. */
2087
2088void
96baa820 2089proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2090{
e58b0e63
PA
2091 struct regcache *regcache;
2092 struct gdbarch *gdbarch;
4e1c45ea 2093 struct thread_info *tp;
e58b0e63 2094 CORE_ADDR pc;
6c95b8df 2095 struct address_space *aspace;
c906108c
SS
2096 int oneproc = 0;
2097
e58b0e63
PA
2098 /* If we're stopped at a fork/vfork, follow the branch set by the
2099 "set follow-fork-mode" command; otherwise, we'll just proceed
2100 resuming the current thread. */
2101 if (!follow_fork ())
2102 {
2103 /* The target for some reason decided not to resume. */
2104 normal_stop ();
f148b27e
PA
2105 if (target_can_async_p ())
2106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2107 return;
2108 }
2109
842951eb
PA
2110 /* We'll update this if & when we switch to a new thread. */
2111 previous_inferior_ptid = inferior_ptid;
2112
e58b0e63
PA
2113 regcache = get_current_regcache ();
2114 gdbarch = get_regcache_arch (regcache);
6c95b8df 2115 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2116 pc = regcache_read_pc (regcache);
2117
c906108c 2118 if (step > 0)
515630c5 2119 step_start_function = find_pc_function (pc);
c906108c
SS
2120 if (step < 0)
2121 stop_after_trap = 1;
2122
2acceee2 2123 if (addr == (CORE_ADDR) -1)
c906108c 2124 {
6c95b8df 2125 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2126 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2127 /* There is a breakpoint at the address we will resume at,
2128 step one instruction before inserting breakpoints so that
2129 we do not stop right away (and report a second hit at this
b2175913
MS
2130 breakpoint).
2131
2132 Note, we don't do this in reverse, because we won't
2133 actually be executing the breakpoint insn anyway.
2134 We'll be (un-)executing the previous instruction. */
2135
c906108c 2136 oneproc = 1;
515630c5
UW
2137 else if (gdbarch_single_step_through_delay_p (gdbarch)
2138 && gdbarch_single_step_through_delay (gdbarch,
2139 get_current_frame ()))
3352ef37
AC
2140 /* We stepped onto an instruction that needs to be stepped
2141 again before re-inserting the breakpoint, do so. */
c906108c
SS
2142 oneproc = 1;
2143 }
2144 else
2145 {
515630c5 2146 regcache_write_pc (regcache, addr);
c906108c
SS
2147 }
2148
527159b7 2149 if (debug_infrun)
8a9de0e4 2150 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2151 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2152 paddress (gdbarch, addr), siggnal, step);
527159b7 2153
94cc34af
PA
2154 if (non_stop)
2155 /* In non-stop, each thread is handled individually. The context
2156 must already be set to the right thread here. */
2157 ;
2158 else
2159 {
2160 /* In a multi-threaded task we may select another thread and
2161 then continue or step.
c906108c 2162
94cc34af
PA
2163 But if the old thread was stopped at a breakpoint, it will
2164 immediately cause another breakpoint stop without any
2165 execution (i.e. it will report a breakpoint hit incorrectly).
2166 So we must step over it first.
c906108c 2167
94cc34af
PA
2168 prepare_to_proceed checks the current thread against the
2169 thread that reported the most recent event. If a step-over
2170 is required it returns TRUE and sets the current thread to
1777feb0 2171 the old thread. */
94cc34af
PA
2172 if (prepare_to_proceed (step))
2173 oneproc = 1;
2174 }
c906108c 2175
4e1c45ea
PA
2176 /* prepare_to_proceed may change the current thread. */
2177 tp = inferior_thread ();
2178
30852783
UW
2179 if (oneproc)
2180 {
2181 tp->control.trap_expected = 1;
2182 /* If displaced stepping is enabled, we can step over the
2183 breakpoint without hitting it, so leave all breakpoints
2184 inserted. Otherwise we need to disable all breakpoints, step
2185 one instruction, and then re-add them when that step is
2186 finished. */
2187 if (!use_displaced_stepping (gdbarch))
2188 remove_breakpoints ();
2189 }
2190
2191 /* We can insert breakpoints if we're not trying to step over one,
2192 or if we are stepping over one but we're using displaced stepping
2193 to do so. */
2194 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2195 insert_breakpoints ();
2196
2020b7ab
PA
2197 if (!non_stop)
2198 {
2199 /* Pass the last stop signal to the thread we're resuming,
2200 irrespective of whether the current thread is the thread that
2201 got the last event or not. This was historically GDB's
2202 behaviour before keeping a stop_signal per thread. */
2203
2204 struct thread_info *last_thread;
2205 ptid_t last_ptid;
2206 struct target_waitstatus last_status;
2207
2208 get_last_target_status (&last_ptid, &last_status);
2209 if (!ptid_equal (inferior_ptid, last_ptid)
2210 && !ptid_equal (last_ptid, null_ptid)
2211 && !ptid_equal (last_ptid, minus_one_ptid))
2212 {
e09875d4 2213 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2214 if (last_thread)
2215 {
16c381f0
JK
2216 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2217 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2218 }
2219 }
2220 }
2221
c906108c 2222 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2223 tp->suspend.stop_signal = siggnal;
c906108c
SS
2224 /* If this signal should not be seen by program,
2225 give it zero. Used for debugging signals. */
16c381f0
JK
2226 else if (!signal_program[tp->suspend.stop_signal])
2227 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2228
2229 annotate_starting ();
2230
2231 /* Make sure that output from GDB appears before output from the
2232 inferior. */
2233 gdb_flush (gdb_stdout);
2234
e4846b08
JJ
2235 /* Refresh prev_pc value just prior to resuming. This used to be
2236 done in stop_stepping, however, setting prev_pc there did not handle
2237 scenarios such as inferior function calls or returning from
2238 a function via the return command. In those cases, the prev_pc
2239 value was not set properly for subsequent commands. The prev_pc value
2240 is used to initialize the starting line number in the ecs. With an
2241 invalid value, the gdb next command ends up stopping at the position
2242 represented by the next line table entry past our start position.
2243 On platforms that generate one line table entry per line, this
2244 is not a problem. However, on the ia64, the compiler generates
2245 extraneous line table entries that do not increase the line number.
2246 When we issue the gdb next command on the ia64 after an inferior call
2247 or a return command, we often end up a few instructions forward, still
2248 within the original line we started.
2249
d5cd6034
JB
2250 An attempt was made to refresh the prev_pc at the same time the
2251 execution_control_state is initialized (for instance, just before
2252 waiting for an inferior event). But this approach did not work
2253 because of platforms that use ptrace, where the pc register cannot
2254 be read unless the inferior is stopped. At that point, we are not
2255 guaranteed the inferior is stopped and so the regcache_read_pc() call
2256 can fail. Setting the prev_pc value here ensures the value is updated
2257 correctly when the inferior is stopped. */
4e1c45ea 2258 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2259
59f0d5d9 2260 /* Fill in with reasonable starting values. */
4e1c45ea 2261 init_thread_stepping_state (tp);
59f0d5d9 2262
59f0d5d9
PA
2263 /* Reset to normal state. */
2264 init_infwait_state ();
2265
c906108c 2266 /* Resume inferior. */
16c381f0 2267 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2268
2269 /* Wait for it to stop (if not standalone)
2270 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2271 /* Do this only if we are not using the event loop, or if the target
1777feb0 2272 does not support asynchronous execution. */
362646f5 2273 if (!target_can_async_p ())
43ff13b4 2274 {
e4c8541f 2275 wait_for_inferior ();
43ff13b4
JM
2276 normal_stop ();
2277 }
c906108c 2278}
c906108c
SS
2279\f
2280
2281/* Start remote-debugging of a machine over a serial link. */
96baa820 2282
c906108c 2283void
8621d6a9 2284start_remote (int from_tty)
c906108c 2285{
d6b48e9c 2286 struct inferior *inferior;
d6b48e9c
PA
2287
2288 inferior = current_inferior ();
16c381f0 2289 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2290
1777feb0 2291 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2292 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2293 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2294 nothing is returned (instead of just blocking). Because of this,
2295 targets expecting an immediate response need to, internally, set
2296 things up so that the target_wait() is forced to eventually
1777feb0 2297 timeout. */
6426a772
JM
2298 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2299 differentiate to its caller what the state of the target is after
2300 the initial open has been performed. Here we're assuming that
2301 the target has stopped. It should be possible to eventually have
2302 target_open() return to the caller an indication that the target
2303 is currently running and GDB state should be set to the same as
1777feb0 2304 for an async run. */
e4c8541f 2305 wait_for_inferior ();
8621d6a9
DJ
2306
2307 /* Now that the inferior has stopped, do any bookkeeping like
2308 loading shared libraries. We want to do this before normal_stop,
2309 so that the displayed frame is up to date. */
2310 post_create_inferior (&current_target, from_tty);
2311
6426a772 2312 normal_stop ();
c906108c
SS
2313}
2314
2315/* Initialize static vars when a new inferior begins. */
2316
2317void
96baa820 2318init_wait_for_inferior (void)
c906108c
SS
2319{
2320 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2321
c906108c
SS
2322 breakpoint_init_inferior (inf_starting);
2323
c906108c 2324 clear_proceed_status ();
9f976b41
DJ
2325
2326 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2327 deferred_step_ptid = null_ptid;
ca005067
DJ
2328
2329 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2330
842951eb 2331 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2332 init_infwait_state ();
2333
edb3359d
DJ
2334 /* Discard any skipped inlined frames. */
2335 clear_inline_frame_state (minus_one_ptid);
c906108c 2336}
237fc4c9 2337
c906108c 2338\f
b83266a0
SS
2339/* This enum encodes possible reasons for doing a target_wait, so that
2340 wfi can call target_wait in one place. (Ultimately the call will be
2341 moved out of the infinite loop entirely.) */
2342
c5aa993b
JM
2343enum infwait_states
2344{
cd0fc7c3
SS
2345 infwait_normal_state,
2346 infwait_thread_hop_state,
d983da9c 2347 infwait_step_watch_state,
cd0fc7c3 2348 infwait_nonstep_watch_state
b83266a0
SS
2349};
2350
0d1e5fa7
PA
2351/* The PTID we'll do a target_wait on.*/
2352ptid_t waiton_ptid;
2353
2354/* Current inferior wait state. */
2355enum infwait_states infwait_state;
cd0fc7c3 2356
0d1e5fa7
PA
2357/* Data to be passed around while handling an event. This data is
2358 discarded between events. */
c5aa993b 2359struct execution_control_state
488f131b 2360{
0d1e5fa7 2361 ptid_t ptid;
4e1c45ea
PA
2362 /* The thread that got the event, if this was a thread event; NULL
2363 otherwise. */
2364 struct thread_info *event_thread;
2365
488f131b 2366 struct target_waitstatus ws;
488f131b 2367 int random_signal;
7e324e48 2368 int stop_func_filled_in;
488f131b
JB
2369 CORE_ADDR stop_func_start;
2370 CORE_ADDR stop_func_end;
2371 char *stop_func_name;
488f131b 2372 int new_thread_event;
488f131b
JB
2373 int wait_some_more;
2374};
2375
ec9499be 2376static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2377
568d6575
UW
2378static void handle_step_into_function (struct gdbarch *gdbarch,
2379 struct execution_control_state *ecs);
2380static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2381 struct execution_control_state *ecs);
186c406b
TT
2382static void check_exception_resume (struct execution_control_state *,
2383 struct frame_info *, struct symbol *);
611c83ae 2384
104c1213
JM
2385static void stop_stepping (struct execution_control_state *ecs);
2386static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2387static void keep_going (struct execution_control_state *ecs);
104c1213 2388
252fbfc8
PA
2389/* Callback for iterate over threads. If the thread is stopped, but
2390 the user/frontend doesn't know about that yet, go through
2391 normal_stop, as if the thread had just stopped now. ARG points at
2392 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2393 ptid_is_pid(PTID) is true, applies to all threads of the process
2394 pointed at by PTID. Otherwise, apply only to the thread pointed by
2395 PTID. */
2396
2397static int
2398infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2399{
2400 ptid_t ptid = * (ptid_t *) arg;
2401
2402 if ((ptid_equal (info->ptid, ptid)
2403 || ptid_equal (minus_one_ptid, ptid)
2404 || (ptid_is_pid (ptid)
2405 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2406 && is_running (info->ptid)
2407 && !is_executing (info->ptid))
2408 {
2409 struct cleanup *old_chain;
2410 struct execution_control_state ecss;
2411 struct execution_control_state *ecs = &ecss;
2412
2413 memset (ecs, 0, sizeof (*ecs));
2414
2415 old_chain = make_cleanup_restore_current_thread ();
2416
2417 switch_to_thread (info->ptid);
2418
2419 /* Go through handle_inferior_event/normal_stop, so we always
2420 have consistent output as if the stop event had been
2421 reported. */
2422 ecs->ptid = info->ptid;
e09875d4 2423 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2424 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2425 ecs->ws.value.sig = TARGET_SIGNAL_0;
2426
2427 handle_inferior_event (ecs);
2428
2429 if (!ecs->wait_some_more)
2430 {
2431 struct thread_info *tp;
2432
2433 normal_stop ();
2434
fa4cd53f 2435 /* Finish off the continuations. */
252fbfc8 2436 tp = inferior_thread ();
fa4cd53f
PA
2437 do_all_intermediate_continuations_thread (tp, 1);
2438 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2439 }
2440
2441 do_cleanups (old_chain);
2442 }
2443
2444 return 0;
2445}
2446
2447/* This function is attached as a "thread_stop_requested" observer.
2448 Cleanup local state that assumed the PTID was to be resumed, and
2449 report the stop to the frontend. */
2450
2c0b251b 2451static void
252fbfc8
PA
2452infrun_thread_stop_requested (ptid_t ptid)
2453{
fc1cf338 2454 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2455
2456 /* PTID was requested to stop. Remove it from the displaced
2457 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2458
2459 for (displaced = displaced_step_inferior_states;
2460 displaced;
2461 displaced = displaced->next)
252fbfc8 2462 {
fc1cf338 2463 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2464
fc1cf338
PA
2465 it = displaced->step_request_queue;
2466 prev_next_p = &displaced->step_request_queue;
2467 while (it)
252fbfc8 2468 {
fc1cf338
PA
2469 if (ptid_match (it->ptid, ptid))
2470 {
2471 *prev_next_p = it->next;
2472 it->next = NULL;
2473 xfree (it);
2474 }
252fbfc8 2475 else
fc1cf338
PA
2476 {
2477 prev_next_p = &it->next;
2478 }
252fbfc8 2479
fc1cf338 2480 it = *prev_next_p;
252fbfc8 2481 }
252fbfc8
PA
2482 }
2483
2484 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2485}
2486
a07daef3
PA
2487static void
2488infrun_thread_thread_exit (struct thread_info *tp, int silent)
2489{
2490 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2491 nullify_last_target_wait_ptid ();
2492}
2493
4e1c45ea
PA
2494/* Callback for iterate_over_threads. */
2495
2496static int
2497delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2498{
2499 if (is_exited (info->ptid))
2500 return 0;
2501
2502 delete_step_resume_breakpoint (info);
186c406b 2503 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2504 return 0;
2505}
2506
2507/* In all-stop, delete the step resume breakpoint of any thread that
2508 had one. In non-stop, delete the step resume breakpoint of the
2509 thread that just stopped. */
2510
2511static void
2512delete_step_thread_step_resume_breakpoint (void)
2513{
2514 if (!target_has_execution
2515 || ptid_equal (inferior_ptid, null_ptid))
2516 /* If the inferior has exited, we have already deleted the step
2517 resume breakpoints out of GDB's lists. */
2518 return;
2519
2520 if (non_stop)
2521 {
2522 /* If in non-stop mode, only delete the step-resume or
2523 longjmp-resume breakpoint of the thread that just stopped
2524 stepping. */
2525 struct thread_info *tp = inferior_thread ();
abbb1732 2526
4e1c45ea 2527 delete_step_resume_breakpoint (tp);
186c406b 2528 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2529 }
2530 else
2531 /* In all-stop mode, delete all step-resume and longjmp-resume
2532 breakpoints of any thread that had them. */
2533 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2534}
2535
1777feb0 2536/* A cleanup wrapper. */
4e1c45ea
PA
2537
2538static void
2539delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2540{
2541 delete_step_thread_step_resume_breakpoint ();
2542}
2543
223698f8
DE
2544/* Pretty print the results of target_wait, for debugging purposes. */
2545
2546static void
2547print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2548 const struct target_waitstatus *ws)
2549{
2550 char *status_string = target_waitstatus_to_string (ws);
2551 struct ui_file *tmp_stream = mem_fileopen ();
2552 char *text;
223698f8
DE
2553
2554 /* The text is split over several lines because it was getting too long.
2555 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2556 output as a unit; we want only one timestamp printed if debug_timestamp
2557 is set. */
2558
2559 fprintf_unfiltered (tmp_stream,
2560 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2561 if (PIDGET (waiton_ptid) != -1)
2562 fprintf_unfiltered (tmp_stream,
2563 " [%s]", target_pid_to_str (waiton_ptid));
2564 fprintf_unfiltered (tmp_stream, ", status) =\n");
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: %d [%s],\n",
2567 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %s\n",
2570 status_string);
2571
759ef836 2572 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2573
2574 /* This uses %s in part to handle %'s in the text, but also to avoid
2575 a gcc error: the format attribute requires a string literal. */
2576 fprintf_unfiltered (gdb_stdlog, "%s", text);
2577
2578 xfree (status_string);
2579 xfree (text);
2580 ui_file_delete (tmp_stream);
2581}
2582
24291992
PA
2583/* Prepare and stabilize the inferior for detaching it. E.g.,
2584 detaching while a thread is displaced stepping is a recipe for
2585 crashing it, as nothing would readjust the PC out of the scratch
2586 pad. */
2587
2588void
2589prepare_for_detach (void)
2590{
2591 struct inferior *inf = current_inferior ();
2592 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2593 struct cleanup *old_chain_1;
2594 struct displaced_step_inferior_state *displaced;
2595
2596 displaced = get_displaced_stepping_state (inf->pid);
2597
2598 /* Is any thread of this process displaced stepping? If not,
2599 there's nothing else to do. */
2600 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2601 return;
2602
2603 if (debug_infrun)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "displaced-stepping in-process while detaching");
2606
2607 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2608 inf->detaching = 1;
2609
2610 while (!ptid_equal (displaced->step_ptid, null_ptid))
2611 {
2612 struct cleanup *old_chain_2;
2613 struct execution_control_state ecss;
2614 struct execution_control_state *ecs;
2615
2616 ecs = &ecss;
2617 memset (ecs, 0, sizeof (*ecs));
2618
2619 overlay_cache_invalid = 1;
2620
24291992
PA
2621 if (deprecated_target_wait_hook)
2622 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2623 else
2624 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2625
2626 if (debug_infrun)
2627 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2628
2629 /* If an error happens while handling the event, propagate GDB's
2630 knowledge of the executing state to the frontend/user running
2631 state. */
3e43a32a
MS
2632 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2633 &minus_one_ptid);
24291992 2634
4d533103
PA
2635 /* In non-stop mode, each thread is handled individually.
2636 Switch early, so the global state is set correctly for this
2637 thread. */
2638 if (non_stop
2639 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2640 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2641 context_switch (ecs->ptid);
2642
24291992
PA
2643 /* Now figure out what to do with the result of the result. */
2644 handle_inferior_event (ecs);
2645
2646 /* No error, don't finish the state yet. */
2647 discard_cleanups (old_chain_2);
2648
2649 /* Breakpoints and watchpoints are not installed on the target
2650 at this point, and signals are passed directly to the
2651 inferior, so this must mean the process is gone. */
2652 if (!ecs->wait_some_more)
2653 {
2654 discard_cleanups (old_chain_1);
2655 error (_("Program exited while detaching"));
2656 }
2657 }
2658
2659 discard_cleanups (old_chain_1);
2660}
2661
cd0fc7c3 2662/* Wait for control to return from inferior to debugger.
ae123ec6 2663
cd0fc7c3
SS
2664 If inferior gets a signal, we may decide to start it up again
2665 instead of returning. That is why there is a loop in this function.
2666 When this function actually returns it means the inferior
2667 should be left stopped and GDB should read more commands. */
2668
2669void
e4c8541f 2670wait_for_inferior (void)
cd0fc7c3
SS
2671{
2672 struct cleanup *old_cleanups;
0d1e5fa7 2673 struct execution_control_state ecss;
cd0fc7c3 2674 struct execution_control_state *ecs;
c906108c 2675
527159b7 2676 if (debug_infrun)
ae123ec6 2677 fprintf_unfiltered
e4c8541f 2678 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2679
4e1c45ea
PA
2680 old_cleanups =
2681 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2682
cd0fc7c3 2683 ecs = &ecss;
0d1e5fa7
PA
2684 memset (ecs, 0, sizeof (*ecs));
2685
c906108c
SS
2686 while (1)
2687 {
29f49a6a
PA
2688 struct cleanup *old_chain;
2689
ec9499be 2690 overlay_cache_invalid = 1;
ec9499be 2691
9a4105ab 2692 if (deprecated_target_wait_hook)
47608cb1 2693 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2694 else
47608cb1 2695 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2696
f00150c9 2697 if (debug_infrun)
223698f8 2698 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2699
29f49a6a
PA
2700 /* If an error happens while handling the event, propagate GDB's
2701 knowledge of the executing state to the frontend/user running
2702 state. */
2703 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2704
a96d9b2e
SDJ
2705 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2706 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2707 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2708
cd0fc7c3
SS
2709 /* Now figure out what to do with the result of the result. */
2710 handle_inferior_event (ecs);
c906108c 2711
29f49a6a
PA
2712 /* No error, don't finish the state yet. */
2713 discard_cleanups (old_chain);
2714
cd0fc7c3
SS
2715 if (!ecs->wait_some_more)
2716 break;
2717 }
4e1c45ea 2718
cd0fc7c3
SS
2719 do_cleanups (old_cleanups);
2720}
c906108c 2721
1777feb0 2722/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2723 event loop whenever a change of state is detected on the file
1777feb0
MS
2724 descriptor corresponding to the target. It can be called more than
2725 once to complete a single execution command. In such cases we need
2726 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2727 that this function is called for a single execution command, then
2728 report to the user that the inferior has stopped, and do the
1777feb0 2729 necessary cleanups. */
43ff13b4
JM
2730
2731void
fba45db2 2732fetch_inferior_event (void *client_data)
43ff13b4 2733{
0d1e5fa7 2734 struct execution_control_state ecss;
a474d7c2 2735 struct execution_control_state *ecs = &ecss;
4f8d22e3 2736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2737 struct cleanup *ts_old_chain;
4f8d22e3 2738 int was_sync = sync_execution;
0f641c01 2739 int cmd_done = 0;
43ff13b4 2740
0d1e5fa7
PA
2741 memset (ecs, 0, sizeof (*ecs));
2742
c5187ac6
PA
2743 /* We're handling a live event, so make sure we're doing live
2744 debugging. If we're looking at traceframes while the target is
2745 running, we're going to need to get back to that mode after
2746 handling the event. */
2747 if (non_stop)
2748 {
2749 make_cleanup_restore_current_traceframe ();
e6e4e701 2750 set_current_traceframe (-1);
c5187ac6
PA
2751 }
2752
4f8d22e3
PA
2753 if (non_stop)
2754 /* In non-stop mode, the user/frontend should not notice a thread
2755 switch due to internal events. Make sure we reverse to the
2756 user selected thread and frame after handling the event and
2757 running any breakpoint commands. */
2758 make_cleanup_restore_current_thread ();
2759
ec9499be 2760 overlay_cache_invalid = 1;
3dd5b83d 2761
32231432
PA
2762 make_cleanup_restore_integer (&execution_direction);
2763 execution_direction = target_execution_direction ();
2764
9a4105ab 2765 if (deprecated_target_wait_hook)
a474d7c2 2766 ecs->ptid =
47608cb1 2767 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2768 else
47608cb1 2769 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2770
f00150c9 2771 if (debug_infrun)
223698f8 2772 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2773
94cc34af
PA
2774 if (non_stop
2775 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2776 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2777 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2778 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2779 /* In non-stop mode, each thread is handled individually. Switch
2780 early, so the global state is set correctly for this
2781 thread. */
2782 context_switch (ecs->ptid);
2783
29f49a6a
PA
2784 /* If an error happens while handling the event, propagate GDB's
2785 knowledge of the executing state to the frontend/user running
2786 state. */
2787 if (!non_stop)
2788 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2789 else
2790 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2791
353d1d73
JK
2792 /* Get executed before make_cleanup_restore_current_thread above to apply
2793 still for the thread which has thrown the exception. */
2794 make_bpstat_clear_actions_cleanup ();
2795
43ff13b4 2796 /* Now figure out what to do with the result of the result. */
a474d7c2 2797 handle_inferior_event (ecs);
43ff13b4 2798
a474d7c2 2799 if (!ecs->wait_some_more)
43ff13b4 2800 {
d6b48e9c
PA
2801 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2802
4e1c45ea 2803 delete_step_thread_step_resume_breakpoint ();
f107f563 2804
d6b48e9c 2805 /* We may not find an inferior if this was a process exit. */
16c381f0 2806 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2807 normal_stop ();
2808
af679fd0 2809 if (target_has_execution
0e5bf2a8 2810 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2811 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2812 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2813 && ecs->event_thread->step_multi
16c381f0 2814 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2815 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2816 else
0f641c01
PA
2817 {
2818 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2819 cmd_done = 1;
2820 }
43ff13b4 2821 }
4f8d22e3 2822
29f49a6a
PA
2823 /* No error, don't finish the thread states yet. */
2824 discard_cleanups (ts_old_chain);
2825
4f8d22e3
PA
2826 /* Revert thread and frame. */
2827 do_cleanups (old_chain);
2828
2829 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2830 restore the prompt (a synchronous execution command has finished,
2831 and we're ready for input). */
b4a14fd0 2832 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2833 display_gdb_prompt (0);
0f641c01
PA
2834
2835 if (cmd_done
2836 && !was_sync
2837 && exec_done_display_p
2838 && (ptid_equal (inferior_ptid, null_ptid)
2839 || !is_running (inferior_ptid)))
2840 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2841}
2842
edb3359d
DJ
2843/* Record the frame and location we're currently stepping through. */
2844void
2845set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2846{
2847 struct thread_info *tp = inferior_thread ();
2848
16c381f0
JK
2849 tp->control.step_frame_id = get_frame_id (frame);
2850 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2851
2852 tp->current_symtab = sal.symtab;
2853 tp->current_line = sal.line;
2854}
2855
0d1e5fa7
PA
2856/* Clear context switchable stepping state. */
2857
2858void
4e1c45ea 2859init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2860{
2861 tss->stepping_over_breakpoint = 0;
2862 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2863}
2864
e02bc4cc 2865/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2866 target_wait()/deprecated_target_wait_hook(). The data is actually
2867 cached by handle_inferior_event(), which gets called immediately
2868 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2869
2870void
488f131b 2871get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2872{
39f77062 2873 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2874 *status = target_last_waitstatus;
2875}
2876
ac264b3b
MS
2877void
2878nullify_last_target_wait_ptid (void)
2879{
2880 target_last_wait_ptid = minus_one_ptid;
2881}
2882
dcf4fbde 2883/* Switch thread contexts. */
dd80620e
MS
2884
2885static void
0d1e5fa7 2886context_switch (ptid_t ptid)
dd80620e 2887{
4b51d87b 2888 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2889 {
2890 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2891 target_pid_to_str (inferior_ptid));
2892 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2893 target_pid_to_str (ptid));
fd48f117
DJ
2894 }
2895
0d1e5fa7 2896 switch_to_thread (ptid);
dd80620e
MS
2897}
2898
4fa8626c
DJ
2899static void
2900adjust_pc_after_break (struct execution_control_state *ecs)
2901{
24a73cce
UW
2902 struct regcache *regcache;
2903 struct gdbarch *gdbarch;
6c95b8df 2904 struct address_space *aspace;
8aad930b 2905 CORE_ADDR breakpoint_pc;
4fa8626c 2906
4fa8626c
DJ
2907 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2908 we aren't, just return.
9709f61c
DJ
2909
2910 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2911 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2912 implemented by software breakpoints should be handled through the normal
2913 breakpoint layer.
8fb3e588 2914
4fa8626c
DJ
2915 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2916 different signals (SIGILL or SIGEMT for instance), but it is less
2917 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2918 gdbarch_decr_pc_after_break. I don't know any specific target that
2919 generates these signals at breakpoints (the code has been in GDB since at
2920 least 1992) so I can not guess how to handle them here.
8fb3e588 2921
e6cf7916
UW
2922 In earlier versions of GDB, a target with
2923 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2924 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2925 target with both of these set in GDB history, and it seems unlikely to be
2926 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2927
2928 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2929 return;
2930
2931 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2932 return;
2933
4058b839
PA
2934 /* In reverse execution, when a breakpoint is hit, the instruction
2935 under it has already been de-executed. The reported PC always
2936 points at the breakpoint address, so adjusting it further would
2937 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2938 architecture:
2939
2940 B1 0x08000000 : INSN1
2941 B2 0x08000001 : INSN2
2942 0x08000002 : INSN3
2943 PC -> 0x08000003 : INSN4
2944
2945 Say you're stopped at 0x08000003 as above. Reverse continuing
2946 from that point should hit B2 as below. Reading the PC when the
2947 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2948 been de-executed already.
2949
2950 B1 0x08000000 : INSN1
2951 B2 PC -> 0x08000001 : INSN2
2952 0x08000002 : INSN3
2953 0x08000003 : INSN4
2954
2955 We can't apply the same logic as for forward execution, because
2956 we would wrongly adjust the PC to 0x08000000, since there's a
2957 breakpoint at PC - 1. We'd then report a hit on B1, although
2958 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2959 behaviour. */
2960 if (execution_direction == EXEC_REVERSE)
2961 return;
2962
24a73cce
UW
2963 /* If this target does not decrement the PC after breakpoints, then
2964 we have nothing to do. */
2965 regcache = get_thread_regcache (ecs->ptid);
2966 gdbarch = get_regcache_arch (regcache);
2967 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2968 return;
2969
6c95b8df
PA
2970 aspace = get_regcache_aspace (regcache);
2971
8aad930b
AC
2972 /* Find the location where (if we've hit a breakpoint) the
2973 breakpoint would be. */
515630c5
UW
2974 breakpoint_pc = regcache_read_pc (regcache)
2975 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2976
1c5cfe86
PA
2977 /* Check whether there actually is a software breakpoint inserted at
2978 that location.
2979
2980 If in non-stop mode, a race condition is possible where we've
2981 removed a breakpoint, but stop events for that breakpoint were
2982 already queued and arrive later. To suppress those spurious
2983 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2984 and retire them after a number of stop events are reported. */
6c95b8df
PA
2985 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2986 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2987 {
96429cc8 2988 struct cleanup *old_cleanups = NULL;
abbb1732 2989
96429cc8
HZ
2990 if (RECORD_IS_USED)
2991 old_cleanups = record_gdb_operation_disable_set ();
2992
1c0fdd0e
UW
2993 /* When using hardware single-step, a SIGTRAP is reported for both
2994 a completed single-step and a software breakpoint. Need to
2995 differentiate between the two, as the latter needs adjusting
2996 but the former does not.
2997
2998 The SIGTRAP can be due to a completed hardware single-step only if
2999 - we didn't insert software single-step breakpoints
3000 - the thread to be examined is still the current thread
3001 - this thread is currently being stepped
3002
3003 If any of these events did not occur, we must have stopped due
3004 to hitting a software breakpoint, and have to back up to the
3005 breakpoint address.
3006
3007 As a special case, we could have hardware single-stepped a
3008 software breakpoint. In this case (prev_pc == breakpoint_pc),
3009 we also need to back up to the breakpoint address. */
3010
3011 if (singlestep_breakpoints_inserted_p
3012 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3013 || !currently_stepping (ecs->event_thread)
3014 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3015 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3016
3017 if (RECORD_IS_USED)
3018 do_cleanups (old_cleanups);
8aad930b 3019 }
4fa8626c
DJ
3020}
3021
0d1e5fa7
PA
3022void
3023init_infwait_state (void)
3024{
3025 waiton_ptid = pid_to_ptid (-1);
3026 infwait_state = infwait_normal_state;
3027}
3028
94cc34af
PA
3029void
3030error_is_running (void)
3031{
3e43a32a
MS
3032 error (_("Cannot execute this command while "
3033 "the selected thread is running."));
94cc34af
PA
3034}
3035
3036void
3037ensure_not_running (void)
3038{
3039 if (is_running (inferior_ptid))
3040 error_is_running ();
3041}
3042
edb3359d
DJ
3043static int
3044stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3045{
3046 for (frame = get_prev_frame (frame);
3047 frame != NULL;
3048 frame = get_prev_frame (frame))
3049 {
3050 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3051 return 1;
3052 if (get_frame_type (frame) != INLINE_FRAME)
3053 break;
3054 }
3055
3056 return 0;
3057}
3058
a96d9b2e
SDJ
3059/* Auxiliary function that handles syscall entry/return events.
3060 It returns 1 if the inferior should keep going (and GDB
3061 should ignore the event), or 0 if the event deserves to be
3062 processed. */
ca2163eb 3063
a96d9b2e 3064static int
ca2163eb 3065handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3066{
ca2163eb
PA
3067 struct regcache *regcache;
3068 struct gdbarch *gdbarch;
3069 int syscall_number;
3070
3071 if (!ptid_equal (ecs->ptid, inferior_ptid))
3072 context_switch (ecs->ptid);
3073
3074 regcache = get_thread_regcache (ecs->ptid);
3075 gdbarch = get_regcache_arch (regcache);
3076 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3077 stop_pc = regcache_read_pc (regcache);
3078
a96d9b2e
SDJ
3079 target_last_waitstatus.value.syscall_number = syscall_number;
3080
3081 if (catch_syscall_enabled () > 0
3082 && catching_syscall_number (syscall_number) > 0)
3083 {
3084 if (debug_infrun)
3085 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3086 syscall_number);
a96d9b2e 3087
16c381f0 3088 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3089 = bpstat_stop_status (get_regcache_aspace (regcache),
3090 stop_pc, ecs->ptid);
16c381f0
JK
3091 ecs->random_signal
3092 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3093
ca2163eb
PA
3094 if (!ecs->random_signal)
3095 {
3096 /* Catchpoint hit. */
16c381f0 3097 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3098 return 0;
3099 }
a96d9b2e 3100 }
ca2163eb
PA
3101
3102 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3103 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3104 keep_going (ecs);
3105 return 1;
a96d9b2e
SDJ
3106}
3107
7e324e48
GB
3108/* Clear the supplied execution_control_state's stop_func_* fields. */
3109
3110static void
3111clear_stop_func (struct execution_control_state *ecs)
3112{
3113 ecs->stop_func_filled_in = 0;
3114 ecs->stop_func_start = 0;
3115 ecs->stop_func_end = 0;
3116 ecs->stop_func_name = NULL;
3117}
3118
3119/* Lazily fill in the execution_control_state's stop_func_* fields. */
3120
3121static void
3122fill_in_stop_func (struct gdbarch *gdbarch,
3123 struct execution_control_state *ecs)
3124{
3125 if (!ecs->stop_func_filled_in)
3126 {
3127 /* Don't care about return value; stop_func_start and stop_func_name
3128 will both be 0 if it doesn't work. */
3129 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3130 &ecs->stop_func_start, &ecs->stop_func_end);
3131 ecs->stop_func_start
3132 += gdbarch_deprecated_function_start_offset (gdbarch);
3133
3134 ecs->stop_func_filled_in = 1;
3135 }
3136}
3137
cd0fc7c3
SS
3138/* Given an execution control state that has been freshly filled in
3139 by an event from the inferior, figure out what it means and take
3140 appropriate action. */
c906108c 3141
ec9499be 3142static void
96baa820 3143handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3144{
568d6575
UW
3145 struct frame_info *frame;
3146 struct gdbarch *gdbarch;
d983da9c
DJ
3147 int stopped_by_watchpoint;
3148 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3149 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3150 enum stop_kind stop_soon;
3151
28736962
PA
3152 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3153 {
3154 /* We had an event in the inferior, but we are not interested in
3155 handling it at this level. The lower layers have already
3156 done what needs to be done, if anything.
3157
3158 One of the possible circumstances for this is when the
3159 inferior produces output for the console. The inferior has
3160 not stopped, and we are ignoring the event. Another possible
3161 circumstance is any event which the lower level knows will be
3162 reported multiple times without an intervening resume. */
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3165 prepare_to_wait (ecs);
3166 return;
3167 }
3168
0e5bf2a8
PA
3169 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3170 && target_can_async_p () && !sync_execution)
3171 {
3172 /* There were no unwaited-for children left in the target, but,
3173 we're not synchronously waiting for events either. Just
3174 ignore. Otherwise, if we were running a synchronous
3175 execution command, we need to cancel it and give the user
3176 back the terminal. */
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3180 prepare_to_wait (ecs);
3181 return;
3182 }
3183
d6b48e9c 3184 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3185 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3186 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3187 {
3188 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3189
d6b48e9c 3190 gdb_assert (inf);
16c381f0 3191 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3192 }
3193 else
3194 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3195
1777feb0 3196 /* Cache the last pid/waitstatus. */
39f77062 3197 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3198 target_last_waitstatus = ecs->ws;
e02bc4cc 3199
ca005067 3200 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3201 stop_stack_dummy = STOP_NONE;
ca005067 3202
0e5bf2a8
PA
3203 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3204 {
3205 /* No unwaited-for children left. IOW, all resumed children
3206 have exited. */
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3209
3210 stop_print_frame = 0;
3211 stop_stepping (ecs);
3212 return;
3213 }
3214
1777feb0 3215 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3216
3217 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3218 && !ptid_equal (ecs->ptid, minus_one_ptid)
3219 && !in_thread_list (ecs->ptid));
3220
3221 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3222 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3223 add_thread (ecs->ptid);
3224
e09875d4 3225 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3226
3227 /* Dependent on valid ECS->EVENT_THREAD. */
3228 adjust_pc_after_break (ecs);
3229
3230 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3231 reinit_frame_cache ();
3232
28736962
PA
3233 breakpoint_retire_moribund ();
3234
2b009048
DJ
3235 /* First, distinguish signals caused by the debugger from signals
3236 that have to do with the program's own actions. Note that
3237 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3238 on the operating system version. Here we detect when a SIGILL or
3239 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3240 something similar for SIGSEGV, since a SIGSEGV will be generated
3241 when we're trying to execute a breakpoint instruction on a
3242 non-executable stack. This happens for call dummy breakpoints
3243 for architectures like SPARC that place call dummies on the
3244 stack. */
2b009048
DJ
3245 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3246 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3247 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3248 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3249 {
de0a0249
UW
3250 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3251
3252 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3253 regcache_read_pc (regcache)))
3254 {
3255 if (debug_infrun)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "infrun: Treating signal as SIGTRAP\n");
3258 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3259 }
2b009048
DJ
3260 }
3261
28736962
PA
3262 /* Mark the non-executing threads accordingly. In all-stop, all
3263 threads of all processes are stopped when we get any event
3264 reported. In non-stop mode, only the event thread stops. If
3265 we're handling a process exit in non-stop mode, there's nothing
3266 to do, as threads of the dead process are gone, and threads of
3267 any other process were left running. */
3268 if (!non_stop)
3269 set_executing (minus_one_ptid, 0);
3270 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3271 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3272 set_executing (ecs->ptid, 0);
8c90c137 3273
0d1e5fa7 3274 switch (infwait_state)
488f131b
JB
3275 {
3276 case infwait_thread_hop_state:
527159b7 3277 if (debug_infrun)
8a9de0e4 3278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3279 break;
b83266a0 3280
488f131b 3281 case infwait_normal_state:
527159b7 3282 if (debug_infrun)
8a9de0e4 3283 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3284 break;
3285
3286 case infwait_step_watch_state:
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: infwait_step_watch_state\n");
3290
3291 stepped_after_stopped_by_watchpoint = 1;
488f131b 3292 break;
b83266a0 3293
488f131b 3294 case infwait_nonstep_watch_state:
527159b7 3295 if (debug_infrun)
8a9de0e4
AC
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: infwait_nonstep_watch_state\n");
488f131b 3298 insert_breakpoints ();
c906108c 3299
488f131b
JB
3300 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3301 handle things like signals arriving and other things happening
3302 in combination correctly? */
3303 stepped_after_stopped_by_watchpoint = 1;
3304 break;
65e82032
AC
3305
3306 default:
e2e0b3e5 3307 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3308 }
ec9499be 3309
0d1e5fa7 3310 infwait_state = infwait_normal_state;
ec9499be 3311 waiton_ptid = pid_to_ptid (-1);
c906108c 3312
488f131b
JB
3313 switch (ecs->ws.kind)
3314 {
3315 case TARGET_WAITKIND_LOADED:
527159b7 3316 if (debug_infrun)
8a9de0e4 3317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3318 /* Ignore gracefully during startup of the inferior, as it might
3319 be the shell which has just loaded some objects, otherwise
3320 add the symbols for the newly loaded objects. Also ignore at
3321 the beginning of an attach or remote session; we will query
3322 the full list of libraries once the connection is
3323 established. */
c0236d92 3324 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3325 {
488f131b
JB
3326 /* Check for any newly added shared libraries if we're
3327 supposed to be adding them automatically. Switch
3328 terminal for any messages produced by
3329 breakpoint_re_set. */
3330 target_terminal_ours_for_output ();
aff6338a 3331 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3332 stack's section table is kept up-to-date. Architectures,
3333 (e.g., PPC64), use the section table to perform
3334 operations such as address => section name and hence
3335 require the table to contain all sections (including
3336 those found in shared libraries). */
b0f4b84b 3337#ifdef SOLIB_ADD
aff6338a 3338 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3339#else
3340 solib_add (NULL, 0, &current_target, auto_solib_add);
3341#endif
488f131b
JB
3342 target_terminal_inferior ();
3343
b0f4b84b
DJ
3344 /* If requested, stop when the dynamic linker notifies
3345 gdb of events. This allows the user to get control
3346 and place breakpoints in initializer routines for
3347 dynamically loaded objects (among other things). */
3348 if (stop_on_solib_events)
3349 {
55409f9d
DJ
3350 /* Make sure we print "Stopped due to solib-event" in
3351 normal_stop. */
3352 stop_print_frame = 1;
3353
b0f4b84b
DJ
3354 stop_stepping (ecs);
3355 return;
3356 }
3357
3358 /* NOTE drow/2007-05-11: This might be a good place to check
3359 for "catch load". */
488f131b 3360 }
b0f4b84b
DJ
3361
3362 /* If we are skipping through a shell, or through shared library
3363 loading that we aren't interested in, resume the program. If
3364 we're running the program normally, also resume. But stop if
3365 we're attaching or setting up a remote connection. */
3366 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3367 {
74960c60
VP
3368 /* Loading of shared libraries might have changed breakpoint
3369 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3370 if (stop_soon == NO_STOP_QUIETLY
3371 && !breakpoints_always_inserted_mode ())
74960c60 3372 insert_breakpoints ();
b0f4b84b
DJ
3373 resume (0, TARGET_SIGNAL_0);
3374 prepare_to_wait (ecs);
3375 return;
3376 }
3377
3378 break;
c5aa993b 3379
488f131b 3380 case TARGET_WAITKIND_SPURIOUS:
527159b7 3381 if (debug_infrun)
8a9de0e4 3382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3383 resume (0, TARGET_SIGNAL_0);
3384 prepare_to_wait (ecs);
3385 return;
c5aa993b 3386
488f131b 3387 case TARGET_WAITKIND_EXITED:
527159b7 3388 if (debug_infrun)
8a9de0e4 3389 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3390 inferior_ptid = ecs->ptid;
6c95b8df
PA
3391 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3392 set_current_program_space (current_inferior ()->pspace);
3393 handle_vfork_child_exec_or_exit (0);
1777feb0 3394 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3395 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3396
3397 /* Record the exit code in the convenience variable $_exitcode, so
3398 that the user can inspect this again later. */
4fa62494
UW
3399 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3400 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3401
3402 /* Also record this in the inferior itself. */
3403 current_inferior ()->has_exit_code = 1;
3404 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3405
488f131b
JB
3406 gdb_flush (gdb_stdout);
3407 target_mourn_inferior ();
1c0fdd0e 3408 singlestep_breakpoints_inserted_p = 0;
d03285ec 3409 cancel_single_step_breakpoints ();
488f131b
JB
3410 stop_print_frame = 0;
3411 stop_stepping (ecs);
3412 return;
c5aa993b 3413
488f131b 3414 case TARGET_WAITKIND_SIGNALLED:
527159b7 3415 if (debug_infrun)
8a9de0e4 3416 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3417 inferior_ptid = ecs->ptid;
6c95b8df
PA
3418 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3419 set_current_program_space (current_inferior ()->pspace);
3420 handle_vfork_child_exec_or_exit (0);
488f131b 3421 stop_print_frame = 0;
1777feb0 3422 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3423
488f131b
JB
3424 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3425 reach here unless the inferior is dead. However, for years
3426 target_kill() was called here, which hints that fatal signals aren't
3427 really fatal on some systems. If that's true, then some changes
1777feb0 3428 may be needed. */
488f131b 3429 target_mourn_inferior ();
c906108c 3430
33d62d64 3431 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3432 singlestep_breakpoints_inserted_p = 0;
d03285ec 3433 cancel_single_step_breakpoints ();
488f131b
JB
3434 stop_stepping (ecs);
3435 return;
c906108c 3436
488f131b 3437 /* The following are the only cases in which we keep going;
1777feb0 3438 the above cases end in a continue or goto. */
488f131b 3439 case TARGET_WAITKIND_FORKED:
deb3b17b 3440 case TARGET_WAITKIND_VFORKED:
527159b7 3441 if (debug_infrun)
8a9de0e4 3442 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3443
e2d96639
YQ
3444 /* Check whether the inferior is displaced stepping. */
3445 {
3446 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3447 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3448 struct displaced_step_inferior_state *displaced
3449 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3450
3451 /* If checking displaced stepping is supported, and thread
3452 ecs->ptid is displaced stepping. */
3453 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3454 {
3455 struct inferior *parent_inf
3456 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3457 struct regcache *child_regcache;
3458 CORE_ADDR parent_pc;
3459
3460 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3461 indicating that the displaced stepping of syscall instruction
3462 has been done. Perform cleanup for parent process here. Note
3463 that this operation also cleans up the child process for vfork,
3464 because their pages are shared. */
3465 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3466
3467 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3468 {
3469 /* Restore scratch pad for child process. */
3470 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3471 }
3472
3473 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3474 the child's PC is also within the scratchpad. Set the child's PC
3475 to the parent's PC value, which has already been fixed up.
3476 FIXME: we use the parent's aspace here, although we're touching
3477 the child, because the child hasn't been added to the inferior
3478 list yet at this point. */
3479
3480 child_regcache
3481 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3482 gdbarch,
3483 parent_inf->aspace);
3484 /* Read PC value of parent process. */
3485 parent_pc = regcache_read_pc (regcache);
3486
3487 if (debug_displaced)
3488 fprintf_unfiltered (gdb_stdlog,
3489 "displaced: write child pc from %s to %s\n",
3490 paddress (gdbarch,
3491 regcache_read_pc (child_regcache)),
3492 paddress (gdbarch, parent_pc));
3493
3494 regcache_write_pc (child_regcache, parent_pc);
3495 }
3496 }
3497
5a2901d9
DJ
3498 if (!ptid_equal (ecs->ptid, inferior_ptid))
3499 {
0d1e5fa7 3500 context_switch (ecs->ptid);
35f196d9 3501 reinit_frame_cache ();
5a2901d9
DJ
3502 }
3503
b242c3c2
PA
3504 /* Immediately detach breakpoints from the child before there's
3505 any chance of letting the user delete breakpoints from the
3506 breakpoint lists. If we don't do this early, it's easy to
3507 leave left over traps in the child, vis: "break foo; catch
3508 fork; c; <fork>; del; c; <child calls foo>". We only follow
3509 the fork on the last `continue', and by that time the
3510 breakpoint at "foo" is long gone from the breakpoint table.
3511 If we vforked, then we don't need to unpatch here, since both
3512 parent and child are sharing the same memory pages; we'll
3513 need to unpatch at follow/detach time instead to be certain
3514 that new breakpoints added between catchpoint hit time and
3515 vfork follow are detached. */
3516 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3517 {
3518 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3519
3520 /* This won't actually modify the breakpoint list, but will
3521 physically remove the breakpoints from the child. */
3522 detach_breakpoints (child_pid);
3523 }
3524
d03285ec
UW
3525 if (singlestep_breakpoints_inserted_p)
3526 {
1777feb0 3527 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3528 remove_single_step_breakpoints ();
3529 singlestep_breakpoints_inserted_p = 0;
3530 }
3531
e58b0e63
PA
3532 /* In case the event is caught by a catchpoint, remember that
3533 the event is to be followed at the next resume of the thread,
3534 and not immediately. */
3535 ecs->event_thread->pending_follow = ecs->ws;
3536
fb14de7b 3537 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3538
16c381f0 3539 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3540 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3541 stop_pc, ecs->ptid);
675bf4cb 3542
67822962
PA
3543 /* Note that we're interested in knowing the bpstat actually
3544 causes a stop, not just if it may explain the signal.
3545 Software watchpoints, for example, always appear in the
3546 bpstat. */
16c381f0
JK
3547 ecs->random_signal
3548 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3549
3550 /* If no catchpoint triggered for this, then keep going. */
3551 if (ecs->random_signal)
3552 {
6c95b8df
PA
3553 ptid_t parent;
3554 ptid_t child;
e58b0e63 3555 int should_resume;
3e43a32a
MS
3556 int follow_child
3557 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3558
16c381f0 3559 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3560
3561 should_resume = follow_fork ();
3562
6c95b8df
PA
3563 parent = ecs->ptid;
3564 child = ecs->ws.value.related_pid;
3565
3566 /* In non-stop mode, also resume the other branch. */
3567 if (non_stop && !detach_fork)
3568 {
3569 if (follow_child)
3570 switch_to_thread (parent);
3571 else
3572 switch_to_thread (child);
3573
3574 ecs->event_thread = inferior_thread ();
3575 ecs->ptid = inferior_ptid;
3576 keep_going (ecs);
3577 }
3578
3579 if (follow_child)
3580 switch_to_thread (child);
3581 else
3582 switch_to_thread (parent);
3583
e58b0e63
PA
3584 ecs->event_thread = inferior_thread ();
3585 ecs->ptid = inferior_ptid;
3586
3587 if (should_resume)
3588 keep_going (ecs);
3589 else
3590 stop_stepping (ecs);
04e68871
DJ
3591 return;
3592 }
16c381f0 3593 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3594 goto process_event_stop_test;
3595
6c95b8df
PA
3596 case TARGET_WAITKIND_VFORK_DONE:
3597 /* Done with the shared memory region. Re-insert breakpoints in
3598 the parent, and keep going. */
3599
3600 if (debug_infrun)
3e43a32a
MS
3601 fprintf_unfiltered (gdb_stdlog,
3602 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3603
3604 if (!ptid_equal (ecs->ptid, inferior_ptid))
3605 context_switch (ecs->ptid);
3606
3607 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3608 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3609 /* This also takes care of reinserting breakpoints in the
3610 previously locked inferior. */
3611 keep_going (ecs);
3612 return;
3613
488f131b 3614 case TARGET_WAITKIND_EXECD:
527159b7 3615 if (debug_infrun)
fc5261f2 3616 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3617
5a2901d9
DJ
3618 if (!ptid_equal (ecs->ptid, inferior_ptid))
3619 {
0d1e5fa7 3620 context_switch (ecs->ptid);
35f196d9 3621 reinit_frame_cache ();
5a2901d9
DJ
3622 }
3623
d03285ec
UW
3624 singlestep_breakpoints_inserted_p = 0;
3625 cancel_single_step_breakpoints ();
3626
fb14de7b 3627 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3628
6c95b8df
PA
3629 /* Do whatever is necessary to the parent branch of the vfork. */
3630 handle_vfork_child_exec_or_exit (1);
3631
795e548f
PA
3632 /* This causes the eventpoints and symbol table to be reset.
3633 Must do this now, before trying to determine whether to
3634 stop. */
71b43ef8 3635 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3636
16c381f0 3637 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3638 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3639 stop_pc, ecs->ptid);
16c381f0
JK
3640 ecs->random_signal
3641 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3642
71b43ef8
PA
3643 /* Note that this may be referenced from inside
3644 bpstat_stop_status above, through inferior_has_execd. */
3645 xfree (ecs->ws.value.execd_pathname);
3646 ecs->ws.value.execd_pathname = NULL;
3647
04e68871
DJ
3648 /* If no catchpoint triggered for this, then keep going. */
3649 if (ecs->random_signal)
3650 {
16c381f0 3651 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3652 keep_going (ecs);
3653 return;
3654 }
16c381f0 3655 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3656 goto process_event_stop_test;
3657
b4dc5ffa
MK
3658 /* Be careful not to try to gather much state about a thread
3659 that's in a syscall. It's frequently a losing proposition. */
488f131b 3660 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3661 if (debug_infrun)
3e43a32a
MS
3662 fprintf_unfiltered (gdb_stdlog,
3663 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3664 /* Getting the current syscall number. */
ca2163eb 3665 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3666 return;
3667 goto process_event_stop_test;
c906108c 3668
488f131b
JB
3669 /* Before examining the threads further, step this thread to
3670 get it entirely out of the syscall. (We get notice of the
3671 event when the thread is just on the verge of exiting a
3672 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3673 into user code.) */
488f131b 3674 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3675 if (debug_infrun)
3e43a32a
MS
3676 fprintf_unfiltered (gdb_stdlog,
3677 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3678 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3679 return;
3680 goto process_event_stop_test;
c906108c 3681
488f131b 3682 case TARGET_WAITKIND_STOPPED:
527159b7 3683 if (debug_infrun)
8a9de0e4 3684 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3685 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3686 break;
c906108c 3687
b2175913 3688 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3689 if (debug_infrun)
3690 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3691 /* Reverse execution: target ran out of history info. */
fb14de7b 3692 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3693 print_no_history_reason ();
b2175913
MS
3694 stop_stepping (ecs);
3695 return;
488f131b 3696 }
c906108c 3697
488f131b
JB
3698 if (ecs->new_thread_event)
3699 {
94cc34af
PA
3700 if (non_stop)
3701 /* Non-stop assumes that the target handles adding new threads
3702 to the thread list. */
3e43a32a
MS
3703 internal_error (__FILE__, __LINE__,
3704 "targets should add new threads to the thread "
3705 "list themselves in non-stop mode.");
94cc34af
PA
3706
3707 /* We may want to consider not doing a resume here in order to
3708 give the user a chance to play with the new thread. It might
3709 be good to make that a user-settable option. */
3710
3711 /* At this point, all threads are stopped (happens automatically
3712 in either the OS or the native code). Therefore we need to
3713 continue all threads in order to make progress. */
3714
173853dc
PA
3715 if (!ptid_equal (ecs->ptid, inferior_ptid))
3716 context_switch (ecs->ptid);
488f131b
JB
3717 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3718 prepare_to_wait (ecs);
3719 return;
3720 }
c906108c 3721
2020b7ab 3722 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3723 {
3724 /* Do we need to clean up the state of a thread that has
3725 completed a displaced single-step? (Doing so usually affects
3726 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3727 displaced_step_fixup (ecs->ptid,
3728 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3729
3730 /* If we either finished a single-step or hit a breakpoint, but
3731 the user wanted this thread to be stopped, pretend we got a
3732 SIG0 (generic unsignaled stop). */
3733
3734 if (ecs->event_thread->stop_requested
16c381f0
JK
3735 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3736 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3737 }
237fc4c9 3738
515630c5 3739 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3740
527159b7 3741 if (debug_infrun)
237fc4c9 3742 {
5af949e3
UW
3743 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3744 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3745 struct cleanup *old_chain = save_inferior_ptid ();
3746
3747 inferior_ptid = ecs->ptid;
5af949e3
UW
3748
3749 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3750 paddress (gdbarch, stop_pc));
d92524f1 3751 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3752 {
3753 CORE_ADDR addr;
abbb1732 3754
237fc4c9
PA
3755 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3756
3757 if (target_stopped_data_address (&current_target, &addr))
3758 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3759 "infrun: stopped data address = %s\n",
3760 paddress (gdbarch, addr));
237fc4c9
PA
3761 else
3762 fprintf_unfiltered (gdb_stdlog,
3763 "infrun: (no data address available)\n");
3764 }
7f82dfc7
JK
3765
3766 do_cleanups (old_chain);
237fc4c9 3767 }
527159b7 3768
9f976b41
DJ
3769 if (stepping_past_singlestep_breakpoint)
3770 {
1c0fdd0e 3771 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3772 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3773 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3774
3775 stepping_past_singlestep_breakpoint = 0;
3776
3777 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3778 breakpoint, or stopped for some other reason. It would be nice if
3779 we could tell, but we can't reliably. */
16c381f0 3780 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3781 {
527159b7 3782 if (debug_infrun)
3e43a32a
MS
3783 fprintf_unfiltered (gdb_stdlog,
3784 "infrun: stepping_past_"
3785 "singlestep_breakpoint\n");
9f976b41 3786 /* Pull the single step breakpoints out of the target. */
e0cd558a 3787 remove_single_step_breakpoints ();
9f976b41
DJ
3788 singlestep_breakpoints_inserted_p = 0;
3789
3790 ecs->random_signal = 0;
16c381f0 3791 ecs->event_thread->control.trap_expected = 0;
9f976b41 3792
0d1e5fa7 3793 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3794 if (deprecated_context_hook)
3795 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3796
3797 resume (1, TARGET_SIGNAL_0);
3798 prepare_to_wait (ecs);
3799 return;
3800 }
3801 }
3802
ca67fcb8 3803 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3804 {
94cc34af
PA
3805 /* In non-stop mode, there's never a deferred_step_ptid set. */
3806 gdb_assert (!non_stop);
3807
6a6b96b9
UW
3808 /* If we stopped for some other reason than single-stepping, ignore
3809 the fact that we were supposed to switch back. */
16c381f0 3810 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3811 {
3812 if (debug_infrun)
3813 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3814 "infrun: handling deferred step\n");
6a6b96b9
UW
3815
3816 /* Pull the single step breakpoints out of the target. */
3817 if (singlestep_breakpoints_inserted_p)
3818 {
3819 remove_single_step_breakpoints ();
3820 singlestep_breakpoints_inserted_p = 0;
3821 }
3822
cd3da28e
PA
3823 ecs->event_thread->control.trap_expected = 0;
3824
6a6b96b9
UW
3825 /* Note: We do not call context_switch at this point, as the
3826 context is already set up for stepping the original thread. */
ca67fcb8
VP
3827 switch_to_thread (deferred_step_ptid);
3828 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3829 /* Suppress spurious "Switching to ..." message. */
3830 previous_inferior_ptid = inferior_ptid;
3831
3832 resume (1, TARGET_SIGNAL_0);
3833 prepare_to_wait (ecs);
3834 return;
3835 }
ca67fcb8
VP
3836
3837 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3838 }
3839
488f131b
JB
3840 /* See if a thread hit a thread-specific breakpoint that was meant for
3841 another thread. If so, then step that thread past the breakpoint,
3842 and continue it. */
3843
16c381f0 3844 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3845 {
9f976b41 3846 int thread_hop_needed = 0;
cf00dfa7
VP
3847 struct address_space *aspace =
3848 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3849
f8d40ec8 3850 /* Check if a regular breakpoint has been hit before checking
1777feb0 3851 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3852 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3853 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3854 {
c5aa993b 3855 ecs->random_signal = 0;
6c95b8df 3856 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3857 thread_hop_needed = 1;
3858 }
1c0fdd0e 3859 else if (singlestep_breakpoints_inserted_p)
9f976b41 3860 {
fd48f117
DJ
3861 /* We have not context switched yet, so this should be true
3862 no matter which thread hit the singlestep breakpoint. */
3863 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3864 if (debug_infrun)
3865 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3866 "trap for %s\n",
3867 target_pid_to_str (ecs->ptid));
3868
9f976b41
DJ
3869 ecs->random_signal = 0;
3870 /* The call to in_thread_list is necessary because PTIDs sometimes
3871 change when we go from single-threaded to multi-threaded. If
3872 the singlestep_ptid is still in the list, assume that it is
3873 really different from ecs->ptid. */
3874 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3875 && in_thread_list (singlestep_ptid))
3876 {
fd48f117
DJ
3877 /* If the PC of the thread we were trying to single-step
3878 has changed, discard this event (which we were going
3879 to ignore anyway), and pretend we saw that thread
3880 trap. This prevents us continuously moving the
3881 single-step breakpoint forward, one instruction at a
3882 time. If the PC has changed, then the thread we were
3883 trying to single-step has trapped or been signalled,
3884 but the event has not been reported to GDB yet.
3885
3886 There might be some cases where this loses signal
3887 information, if a signal has arrived at exactly the
3888 same time that the PC changed, but this is the best
3889 we can do with the information available. Perhaps we
3890 should arrange to report all events for all threads
3891 when they stop, or to re-poll the remote looking for
3892 this particular thread (i.e. temporarily enable
3893 schedlock). */
515630c5
UW
3894
3895 CORE_ADDR new_singlestep_pc
3896 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3897
3898 if (new_singlestep_pc != singlestep_pc)
fd48f117 3899 {
2020b7ab
PA
3900 enum target_signal stop_signal;
3901
fd48f117
DJ
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3904 " but expected thread advanced also\n");
3905
3906 /* The current context still belongs to
3907 singlestep_ptid. Don't swap here, since that's
3908 the context we want to use. Just fudge our
3909 state and continue. */
16c381f0
JK
3910 stop_signal = ecs->event_thread->suspend.stop_signal;
3911 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3912 ecs->ptid = singlestep_ptid;
e09875d4 3913 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3914 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3915 stop_pc = new_singlestep_pc;
fd48f117
DJ
3916 }
3917 else
3918 {
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog,
3921 "infrun: unexpected thread\n");
3922
3923 thread_hop_needed = 1;
3924 stepping_past_singlestep_breakpoint = 1;
3925 saved_singlestep_ptid = singlestep_ptid;
3926 }
9f976b41
DJ
3927 }
3928 }
3929
3930 if (thread_hop_needed)
8fb3e588 3931 {
9f5a595d 3932 struct regcache *thread_regcache;
237fc4c9 3933 int remove_status = 0;
8fb3e588 3934
527159b7 3935 if (debug_infrun)
8a9de0e4 3936 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3937
b3444185
PA
3938 /* Switch context before touching inferior memory, the
3939 previous thread may have exited. */
3940 if (!ptid_equal (inferior_ptid, ecs->ptid))
3941 context_switch (ecs->ptid);
3942
8fb3e588 3943 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3944 Just continue. */
8fb3e588 3945
1c0fdd0e 3946 if (singlestep_breakpoints_inserted_p)
488f131b 3947 {
1777feb0 3948 /* Pull the single step breakpoints out of the target. */
e0cd558a 3949 remove_single_step_breakpoints ();
8fb3e588
AC
3950 singlestep_breakpoints_inserted_p = 0;
3951 }
3952
237fc4c9
PA
3953 /* If the arch can displace step, don't remove the
3954 breakpoints. */
9f5a595d
UW
3955 thread_regcache = get_thread_regcache (ecs->ptid);
3956 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3957 remove_status = remove_breakpoints ();
3958
8fb3e588
AC
3959 /* Did we fail to remove breakpoints? If so, try
3960 to set the PC past the bp. (There's at least
3961 one situation in which we can fail to remove
3962 the bp's: On HP-UX's that use ttrace, we can't
3963 change the address space of a vforking child
3964 process until the child exits (well, okay, not
1777feb0 3965 then either :-) or execs. */
8fb3e588 3966 if (remove_status != 0)
9d9cd7ac 3967 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3968 else
3969 { /* Single step */
94cc34af
PA
3970 if (!non_stop)
3971 {
3972 /* Only need to require the next event from this
3973 thread in all-stop mode. */
3974 waiton_ptid = ecs->ptid;
3975 infwait_state = infwait_thread_hop_state;
3976 }
8fb3e588 3977
4e1c45ea 3978 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3979 keep_going (ecs);
8fb3e588
AC
3980 return;
3981 }
488f131b 3982 }
1c0fdd0e 3983 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3984 {
8fb3e588
AC
3985 ecs->random_signal = 0;
3986 }
488f131b
JB
3987 }
3988 else
3989 ecs->random_signal = 1;
c906108c 3990
488f131b 3991 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3992 so, then switch to that thread. */
3993 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3994 {
527159b7 3995 if (debug_infrun)
8a9de0e4 3996 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3997
0d1e5fa7 3998 context_switch (ecs->ptid);
c5aa993b 3999
9a4105ab
AC
4000 if (deprecated_context_hook)
4001 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4002 }
c906108c 4003
568d6575
UW
4004 /* At this point, get hold of the now-current thread's frame. */
4005 frame = get_current_frame ();
4006 gdbarch = get_frame_arch (frame);
4007
1c0fdd0e 4008 if (singlestep_breakpoints_inserted_p)
488f131b 4009 {
1777feb0 4010 /* Pull the single step breakpoints out of the target. */
e0cd558a 4011 remove_single_step_breakpoints ();
488f131b
JB
4012 singlestep_breakpoints_inserted_p = 0;
4013 }
c906108c 4014
d983da9c
DJ
4015 if (stepped_after_stopped_by_watchpoint)
4016 stopped_by_watchpoint = 0;
4017 else
4018 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4019
4020 /* If necessary, step over this watchpoint. We'll be back to display
4021 it in a moment. */
4022 if (stopped_by_watchpoint
d92524f1 4023 && (target_have_steppable_watchpoint
568d6575 4024 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4025 {
488f131b
JB
4026 /* At this point, we are stopped at an instruction which has
4027 attempted to write to a piece of memory under control of
4028 a watchpoint. The instruction hasn't actually executed
4029 yet. If we were to evaluate the watchpoint expression
4030 now, we would get the old value, and therefore no change
4031 would seem to have occurred.
4032
4033 In order to make watchpoints work `right', we really need
4034 to complete the memory write, and then evaluate the
d983da9c
DJ
4035 watchpoint expression. We do this by single-stepping the
4036 target.
4037
4038 It may not be necessary to disable the watchpoint to stop over
4039 it. For example, the PA can (with some kernel cooperation)
4040 single step over a watchpoint without disabling the watchpoint.
4041
4042 It is far more common to need to disable a watchpoint to step
4043 the inferior over it. If we have non-steppable watchpoints,
4044 we must disable the current watchpoint; it's simplest to
4045 disable all watchpoints and breakpoints. */
2facfe5c
DD
4046 int hw_step = 1;
4047
d92524f1 4048 if (!target_have_steppable_watchpoint)
2455069d
UW
4049 {
4050 remove_breakpoints ();
4051 /* See comment in resume why we need to stop bypassing signals
4052 while breakpoints have been removed. */
4053 target_pass_signals (0, NULL);
4054 }
2facfe5c 4055 /* Single step */
568d6575 4056 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4057 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4058 waiton_ptid = ecs->ptid;
d92524f1 4059 if (target_have_steppable_watchpoint)
0d1e5fa7 4060 infwait_state = infwait_step_watch_state;
d983da9c 4061 else
0d1e5fa7 4062 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4063 prepare_to_wait (ecs);
4064 return;
4065 }
4066
7e324e48 4067 clear_stop_func (ecs);
4e1c45ea 4068 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4069 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4070 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4071 stop_print_frame = 1;
4072 ecs->random_signal = 0;
4073 stopped_by_random_signal = 0;
488f131b 4074
edb3359d
DJ
4075 /* Hide inlined functions starting here, unless we just performed stepi or
4076 nexti. After stepi and nexti, always show the innermost frame (not any
4077 inline function call sites). */
16c381f0 4078 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4079 {
4080 struct address_space *aspace =
4081 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4082
4083 /* skip_inline_frames is expensive, so we avoid it if we can
4084 determine that the address is one where functions cannot have
4085 been inlined. This improves performance with inferiors that
4086 load a lot of shared libraries, because the solib event
4087 breakpoint is defined as the address of a function (i.e. not
4088 inline). Note that we have to check the previous PC as well
4089 as the current one to catch cases when we have just
4090 single-stepped off a breakpoint prior to reinstating it.
4091 Note that we're assuming that the code we single-step to is
4092 not inline, but that's not definitive: there's nothing
4093 preventing the event breakpoint function from containing
4094 inlined code, and the single-step ending up there. If the
4095 user had set a breakpoint on that inlined code, the missing
4096 skip_inline_frames call would break things. Fortunately
4097 that's an extremely unlikely scenario. */
4098 if (!pc_at_non_inline_function (aspace, stop_pc)
4099 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4100 && ecs->event_thread->control.trap_expected
4101 && pc_at_non_inline_function (aspace,
4102 ecs->event_thread->prev_pc)))
4103 skip_inline_frames (ecs->ptid);
4104 }
edb3359d 4105
16c381f0
JK
4106 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4107 && ecs->event_thread->control.trap_expected
568d6575 4108 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4109 && currently_stepping (ecs->event_thread))
3352ef37 4110 {
b50d7442 4111 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4112 also on an instruction that needs to be stepped multiple
1777feb0 4113 times before it's been fully executing. E.g., architectures
3352ef37
AC
4114 with a delay slot. It needs to be stepped twice, once for
4115 the instruction and once for the delay slot. */
4116 int step_through_delay
568d6575 4117 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4118
527159b7 4119 if (debug_infrun && step_through_delay)
8a9de0e4 4120 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4121 if (ecs->event_thread->control.step_range_end == 0
4122 && step_through_delay)
3352ef37
AC
4123 {
4124 /* The user issued a continue when stopped at a breakpoint.
4125 Set up for another trap and get out of here. */
4e1c45ea 4126 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4127 keep_going (ecs);
4128 return;
4129 }
4130 else if (step_through_delay)
4131 {
4132 /* The user issued a step when stopped at a breakpoint.
4133 Maybe we should stop, maybe we should not - the delay
4134 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4135 case, don't decide that here, just set
4136 ecs->stepping_over_breakpoint, making sure we
4137 single-step again before breakpoints are re-inserted. */
4e1c45ea 4138 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4139 }
4140 }
4141
488f131b
JB
4142 /* Look at the cause of the stop, and decide what to do.
4143 The alternatives are:
0d1e5fa7
PA
4144 1) stop_stepping and return; to really stop and return to the debugger,
4145 2) keep_going and return to start up again
4e1c45ea 4146 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4147 3) set ecs->random_signal to 1, and the decision between 1 and 2
4148 will be made according to the signal handling tables. */
4149
16c381f0 4150 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4151 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4152 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4153 {
16c381f0
JK
4154 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4155 && stop_after_trap)
488f131b 4156 {
527159b7 4157 if (debug_infrun)
8a9de0e4 4158 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4159 stop_print_frame = 0;
4160 stop_stepping (ecs);
4161 return;
4162 }
c54cfec8
EZ
4163
4164 /* This is originated from start_remote(), start_inferior() and
4165 shared libraries hook functions. */
b0f4b84b 4166 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4167 {
527159b7 4168 if (debug_infrun)
8a9de0e4 4169 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4170 stop_stepping (ecs);
4171 return;
4172 }
4173
c54cfec8 4174 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4175 the stop_signal here, because some kernels don't ignore a
4176 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4177 See more comments in inferior.h. On the other hand, if we
a0ef4274 4178 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4179 will handle the SIGSTOP if it should show up later.
4180
4181 Also consider that the attach is complete when we see a
4182 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4183 target extended-remote report it instead of a SIGSTOP
4184 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4185 signal, so this is no exception.
4186
4187 Also consider that the attach is complete when we see a
4188 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4189 the target to stop all threads of the inferior, in case the
4190 low level attach operation doesn't stop them implicitly. If
4191 they weren't stopped implicitly, then the stub will report a
4192 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4193 other than GDB's request. */
a0ef4274 4194 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4195 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4197 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4198 {
4199 stop_stepping (ecs);
16c381f0 4200 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4201 return;
4202 }
4203
fba57f8f 4204 /* See if there is a breakpoint at the current PC. */
16c381f0 4205 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4206 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4207 stop_pc, ecs->ptid);
4208
fba57f8f
VP
4209 /* Following in case break condition called a
4210 function. */
4211 stop_print_frame = 1;
488f131b 4212
db82e815
PA
4213 /* This is where we handle "moribund" watchpoints. Unlike
4214 software breakpoints traps, hardware watchpoint traps are
4215 always distinguishable from random traps. If no high-level
4216 watchpoint is associated with the reported stop data address
4217 anymore, then the bpstat does not explain the signal ---
4218 simply make sure to ignore it if `stopped_by_watchpoint' is
4219 set. */
4220
4221 if (debug_infrun
16c381f0
JK
4222 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4223 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4224 && stopped_by_watchpoint)
3e43a32a
MS
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: no user watchpoint explains "
4227 "watchpoint SIGTRAP, ignoring\n");
db82e815 4228
73dd234f 4229 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4230 at one stage in the past included checks for an inferior
4231 function call's call dummy's return breakpoint. The original
4232 comment, that went with the test, read:
73dd234f 4233
8fb3e588
AC
4234 ``End of a stack dummy. Some systems (e.g. Sony news) give
4235 another signal besides SIGTRAP, so check here as well as
4236 above.''
73dd234f 4237
8002d778 4238 If someone ever tries to get call dummys on a
73dd234f 4239 non-executable stack to work (where the target would stop
03cebad2
MK
4240 with something like a SIGSEGV), then those tests might need
4241 to be re-instated. Given, however, that the tests were only
73dd234f 4242 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4243 suspect that it won't be the case.
4244
8fb3e588
AC
4245 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4246 be necessary for call dummies on a non-executable stack on
4247 SPARC. */
73dd234f 4248
16c381f0 4249 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4250 ecs->random_signal
16c381f0 4251 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4252 || stopped_by_watchpoint
16c381f0
JK
4253 || ecs->event_thread->control.trap_expected
4254 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4255 && (ecs->event_thread->control.step_resume_breakpoint
4256 == NULL)));
488f131b
JB
4257 else
4258 {
16c381f0
JK
4259 ecs->random_signal = !bpstat_explains_signal
4260 (ecs->event_thread->control.stop_bpstat);
488f131b 4261 if (!ecs->random_signal)
16c381f0 4262 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4263 }
4264 }
4265
4266 /* When we reach this point, we've pretty much decided
4267 that the reason for stopping must've been a random
1777feb0 4268 (unexpected) signal. */
488f131b
JB
4269
4270 else
4271 ecs->random_signal = 1;
488f131b 4272
04e68871 4273process_event_stop_test:
568d6575
UW
4274
4275 /* Re-fetch current thread's frame in case we did a
4276 "goto process_event_stop_test" above. */
4277 frame = get_current_frame ();
4278 gdbarch = get_frame_arch (frame);
4279
488f131b
JB
4280 /* For the program's own signals, act according to
4281 the signal handling tables. */
4282
4283 if (ecs->random_signal)
4284 {
4285 /* Signal not for debugging purposes. */
4286 int printed = 0;
24291992 4287 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4288
527159b7 4289 if (debug_infrun)
2020b7ab 4290 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4291 ecs->event_thread->suspend.stop_signal);
527159b7 4292
488f131b
JB
4293 stopped_by_random_signal = 1;
4294
16c381f0 4295 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4296 {
4297 printed = 1;
4298 target_terminal_ours_for_output ();
16c381f0
JK
4299 print_signal_received_reason
4300 (ecs->event_thread->suspend.stop_signal);
488f131b 4301 }
252fbfc8
PA
4302 /* Always stop on signals if we're either just gaining control
4303 of the program, or the user explicitly requested this thread
4304 to remain stopped. */
d6b48e9c 4305 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4306 || ecs->event_thread->stop_requested
24291992 4307 || (!inf->detaching
16c381f0 4308 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4309 {
4310 stop_stepping (ecs);
4311 return;
4312 }
4313 /* If not going to stop, give terminal back
4314 if we took it away. */
4315 else if (printed)
4316 target_terminal_inferior ();
4317
4318 /* Clear the signal if it should not be passed. */
16c381f0
JK
4319 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4320 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4321
fb14de7b 4322 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4323 && ecs->event_thread->control.trap_expected
8358c15c 4324 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4325 {
4326 /* We were just starting a new sequence, attempting to
4327 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4328 Instead this signal arrives. This signal will take us out
68f53502
AC
4329 of the stepping range so GDB needs to remember to, when
4330 the signal handler returns, resume stepping off that
4331 breakpoint. */
4332 /* To simplify things, "continue" is forced to use the same
4333 code paths as single-step - set a breakpoint at the
4334 signal return address and then, once hit, step off that
4335 breakpoint. */
237fc4c9
PA
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal arrived while stepping over "
4339 "breakpoint\n");
d3169d93 4340
2c03e5be 4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4342 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4343 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4344 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4345 keep_going (ecs);
4346 return;
68f53502 4347 }
9d799f85 4348
16c381f0
JK
4349 if (ecs->event_thread->control.step_range_end != 0
4350 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4351 && (ecs->event_thread->control.step_range_start <= stop_pc
4352 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4353 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4354 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4356 {
4357 /* The inferior is about to take a signal that will take it
4358 out of the single step range. Set a breakpoint at the
4359 current PC (which is presumably where the signal handler
4360 will eventually return) and then allow the inferior to
4361 run free.
4362
4363 Note that this is only needed for a signal delivered
4364 while in the single-step range. Nested signals aren't a
4365 problem as they eventually all return. */
237fc4c9
PA
4366 if (debug_infrun)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: signal may take us out of "
4369 "single-step range\n");
4370
2c03e5be 4371 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4372 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4373 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4374 keep_going (ecs);
4375 return;
d303a6c7 4376 }
9d799f85
AC
4377
4378 /* Note: step_resume_breakpoint may be non-NULL. This occures
4379 when either there's a nested signal, or when there's a
4380 pending signal enabled just as the signal handler returns
4381 (leaving the inferior at the step-resume-breakpoint without
4382 actually executing it). Either way continue until the
4383 breakpoint is really hit. */
488f131b
JB
4384 keep_going (ecs);
4385 return;
4386 }
4387
4388 /* Handle cases caused by hitting a breakpoint. */
4389 {
4390 CORE_ADDR jmp_buf_pc;
4391 struct bpstat_what what;
4392
16c381f0 4393 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4394
4395 if (what.call_dummy)
4396 {
aa7d318d 4397 stop_stack_dummy = what.call_dummy;
c5aa993b 4398 }
c906108c 4399
628fe4e4
JK
4400 /* If we hit an internal event that triggers symbol changes, the
4401 current frame will be invalidated within bpstat_what (e.g., if
4402 we hit an internal solib event). Re-fetch it. */
4403 frame = get_current_frame ();
4404 gdbarch = get_frame_arch (frame);
4405
488f131b 4406 switch (what.main_action)
c5aa993b 4407 {
488f131b 4408 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4409 /* If we hit the breakpoint at longjmp while stepping, we
4410 install a momentary breakpoint at the target of the
4411 jmp_buf. */
4412
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4416
4e1c45ea 4417 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4418
186c406b 4419 if (what.is_longjmp)
c5aa993b 4420 {
186c406b
TT
4421 if (!gdbarch_get_longjmp_target_p (gdbarch)
4422 || !gdbarch_get_longjmp_target (gdbarch,
4423 frame, &jmp_buf_pc))
4424 {
4425 if (debug_infrun)
3e43a32a
MS
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4428 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4429 keep_going (ecs);
4430 return;
4431 }
488f131b 4432
186c406b
TT
4433 /* We're going to replace the current step-resume breakpoint
4434 with a longjmp-resume breakpoint. */
4435 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4436
186c406b
TT
4437 /* Insert a breakpoint at resume address. */
4438 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4439 }
4440 else
4441 {
4442 struct symbol *func = get_frame_function (frame);
c906108c 4443
186c406b
TT
4444 if (func)
4445 check_exception_resume (ecs, frame, func);
4446 }
488f131b
JB
4447 keep_going (ecs);
4448 return;
c906108c 4449
488f131b 4450 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4451 if (debug_infrun)
611c83ae
PA
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4454
186c406b
TT
4455 if (what.is_longjmp)
4456 {
4457 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4458 != NULL);
4459 delete_step_resume_breakpoint (ecs->event_thread);
4460 }
4461 else
4462 {
4463 /* There are several cases to consider.
4464
4465 1. The initiating frame no longer exists. In this case
4466 we must stop, because the exception has gone too far.
4467
4468 2. The initiating frame exists, and is the same as the
4469 current frame. We stop, because the exception has been
4470 caught.
4471
4472 3. The initiating frame exists and is different from
4473 the current frame. This means the exception has been
4474 caught beneath the initiating frame, so keep going. */
4475 struct frame_info *init_frame
4476 = frame_find_by_id (ecs->event_thread->initiating_frame);
4477
4478 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4479 != NULL);
4480 delete_exception_resume_breakpoint (ecs->event_thread);
4481
4482 if (init_frame)
4483 {
4484 struct frame_id current_id
4485 = get_frame_id (get_current_frame ());
4486 if (frame_id_eq (current_id,
4487 ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 2. Fall through. */
4490 }
4491 else
4492 {
4493 /* Case 3. */
4494 keep_going (ecs);
4495 return;
4496 }
4497 }
4498
4499 /* For Cases 1 and 2, remove the step-resume breakpoint,
4500 if it exists. */
4501 delete_step_resume_breakpoint (ecs->event_thread);
4502 }
611c83ae 4503
16c381f0 4504 ecs->event_thread->control.stop_step = 1;
33d62d64 4505 print_end_stepping_range_reason ();
611c83ae
PA
4506 stop_stepping (ecs);
4507 return;
488f131b
JB
4508
4509 case BPSTAT_WHAT_SINGLE:
527159b7 4510 if (debug_infrun)
8802d8ed 4511 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4512 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4513 /* Still need to check other stuff, at least the case
4514 where we are stepping and step out of the right range. */
4515 break;
c906108c 4516
2c03e5be
PA
4517 case BPSTAT_WHAT_STEP_RESUME:
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4520
4521 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4522 if (ecs->event_thread->control.proceed_to_finish
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 struct thread_info *tp = ecs->event_thread;
4526
4527 /* We are finishing a function in reverse, and just hit
4528 the step-resume breakpoint at the start address of the
4529 function, and we're almost there -- just need to back
4530 up by one more single-step, which should take us back
4531 to the function call. */
4532 tp->control.step_range_start = tp->control.step_range_end = 1;
4533 keep_going (ecs);
4534 return;
4535 }
7e324e48 4536 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4537 if (stop_pc == ecs->stop_func_start
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 /* We are stepping over a function call in reverse, and
4541 just hit the step-resume breakpoint at the start
4542 address of the function. Go back to single-stepping,
4543 which should take us back to the function call. */
4544 ecs->event_thread->stepping_over_breakpoint = 1;
4545 keep_going (ecs);
4546 return;
4547 }
4548 break;
4549
488f131b 4550 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4551 if (debug_infrun)
8802d8ed 4552 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4553 stop_print_frame = 1;
c906108c 4554
d303a6c7
AC
4555 /* We are about to nuke the step_resume_breakpointt via the
4556 cleanup chain, so no need to worry about it here. */
c5aa993b 4557
488f131b
JB
4558 stop_stepping (ecs);
4559 return;
c5aa993b 4560
488f131b 4561 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4562 if (debug_infrun)
8802d8ed 4563 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4564 stop_print_frame = 0;
c5aa993b 4565
d303a6c7
AC
4566 /* We are about to nuke the step_resume_breakpoin via the
4567 cleanup chain, so no need to worry about it here. */
c5aa993b 4568
488f131b 4569 stop_stepping (ecs);
e441088d 4570 return;
c5aa993b 4571
2c03e5be 4572 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4573 if (debug_infrun)
2c03e5be 4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4575
4e1c45ea
PA
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4578 {
4579 /* Back when the step-resume breakpoint was inserted, we
4580 were trying to single-step off a breakpoint. Go back
4581 to doing that. */
4e1c45ea
PA
4582 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4583 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4584 keep_going (ecs);
4585 return;
4586 }
488f131b
JB
4587 break;
4588
488f131b
JB
4589 case BPSTAT_WHAT_KEEP_CHECKING:
4590 break;
4591 }
4592 }
c906108c 4593
488f131b
JB
4594 /* We come here if we hit a breakpoint but should not
4595 stop for it. Possibly we also were stepping
4596 and should stop for that. So fall through and
4597 test for stepping. But, if not stepping,
4598 do not stop. */
c906108c 4599
a7212384
UW
4600 /* In all-stop mode, if we're currently stepping but have stopped in
4601 some other thread, we need to switch back to the stepped thread. */
4602 if (!non_stop)
4603 {
4604 struct thread_info *tp;
abbb1732 4605
b3444185 4606 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4607 ecs->event_thread);
4608 if (tp)
4609 {
4610 /* However, if the current thread is blocked on some internal
4611 breakpoint, and we simply need to step over that breakpoint
4612 to get it going again, do that first. */
16c381f0
JK
4613 if ((ecs->event_thread->control.trap_expected
4614 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4615 || ecs->event_thread->stepping_over_breakpoint)
4616 {
4617 keep_going (ecs);
4618 return;
4619 }
4620
66852e9c
PA
4621 /* If the stepping thread exited, then don't try to switch
4622 back and resume it, which could fail in several different
4623 ways depending on the target. Instead, just keep going.
4624
4625 We can find a stepping dead thread in the thread list in
4626 two cases:
4627
4628 - The target supports thread exit events, and when the
4629 target tries to delete the thread from the thread list,
4630 inferior_ptid pointed at the exiting thread. In such
4631 case, calling delete_thread does not really remove the
4632 thread from the list; instead, the thread is left listed,
4633 with 'exited' state.
4634
4635 - The target's debug interface does not support thread
4636 exit events, and so we have no idea whatsoever if the
4637 previously stepping thread is still alive. For that
4638 reason, we need to synchronously query the target
4639 now. */
b3444185
PA
4640 if (is_exited (tp->ptid)
4641 || !target_thread_alive (tp->ptid))
4642 {
4643 if (debug_infrun)
3e43a32a
MS
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: not switching back to "
4646 "stepped thread, it has vanished\n");
b3444185
PA
4647
4648 delete_thread (tp->ptid);
4649 keep_going (ecs);
4650 return;
4651 }
4652
a7212384
UW
4653 /* Otherwise, we no longer expect a trap in the current thread.
4654 Clear the trap_expected flag before switching back -- this is
4655 what keep_going would do as well, if we called it. */
16c381f0 4656 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4657
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: switching back to stepped thread\n");
4661
4662 ecs->event_thread = tp;
4663 ecs->ptid = tp->ptid;
4664 context_switch (ecs->ptid);
4665 keep_going (ecs);
4666 return;
4667 }
4668 }
4669
8358c15c 4670 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4671 {
527159b7 4672 if (debug_infrun)
d3169d93
DJ
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: step-resume breakpoint is inserted\n");
527159b7 4675
488f131b
JB
4676 /* Having a step-resume breakpoint overrides anything
4677 else having to do with stepping commands until
4678 that breakpoint is reached. */
488f131b
JB
4679 keep_going (ecs);
4680 return;
4681 }
c5aa993b 4682
16c381f0 4683 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4684 {
527159b7 4685 if (debug_infrun)
8a9de0e4 4686 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4687 /* Likewise if we aren't even stepping. */
488f131b
JB
4688 keep_going (ecs);
4689 return;
4690 }
c5aa993b 4691
4b7703ad
JB
4692 /* Re-fetch current thread's frame in case the code above caused
4693 the frame cache to be re-initialized, making our FRAME variable
4694 a dangling pointer. */
4695 frame = get_current_frame ();
628fe4e4 4696 gdbarch = get_frame_arch (frame);
7e324e48 4697 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4698
488f131b 4699 /* If stepping through a line, keep going if still within it.
c906108c 4700
488f131b
JB
4701 Note that step_range_end is the address of the first instruction
4702 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4703 within it!
4704
4705 Note also that during reverse execution, we may be stepping
4706 through a function epilogue and therefore must detect when
4707 the current-frame changes in the middle of a line. */
4708
16c381f0
JK
4709 if (stop_pc >= ecs->event_thread->control.step_range_start
4710 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4711 && (execution_direction != EXEC_REVERSE
388a8562 4712 || frame_id_eq (get_frame_id (frame),
16c381f0 4713 ecs->event_thread->control.step_frame_id)))
488f131b 4714 {
527159b7 4715 if (debug_infrun)
5af949e3
UW
4716 fprintf_unfiltered
4717 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4718 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4719 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4720
4721 /* When stepping backward, stop at beginning of line range
4722 (unless it's the function entry point, in which case
4723 keep going back to the call point). */
16c381f0 4724 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4725 && stop_pc != ecs->stop_func_start
4726 && execution_direction == EXEC_REVERSE)
4727 {
16c381f0 4728 ecs->event_thread->control.stop_step = 1;
33d62d64 4729 print_end_stepping_range_reason ();
b2175913
MS
4730 stop_stepping (ecs);
4731 }
4732 else
4733 keep_going (ecs);
4734
488f131b
JB
4735 return;
4736 }
c5aa993b 4737
488f131b 4738 /* We stepped out of the stepping range. */
c906108c 4739
488f131b 4740 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4741 loader dynamic symbol resolution code...
4742
4743 EXEC_FORWARD: we keep on single stepping until we exit the run
4744 time loader code and reach the callee's address.
4745
4746 EXEC_REVERSE: we've already executed the callee (backward), and
4747 the runtime loader code is handled just like any other
4748 undebuggable function call. Now we need only keep stepping
4749 backward through the trampoline code, and that's handled further
4750 down, so there is nothing for us to do here. */
4751
4752 if (execution_direction != EXEC_REVERSE
16c381f0 4753 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4754 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4755 {
4c8c40e6 4756 CORE_ADDR pc_after_resolver =
568d6575 4757 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4758
527159b7 4759 if (debug_infrun)
3e43a32a
MS
4760 fprintf_unfiltered (gdb_stdlog,
4761 "infrun: stepped into dynsym resolve code\n");
527159b7 4762
488f131b
JB
4763 if (pc_after_resolver)
4764 {
4765 /* Set up a step-resume breakpoint at the address
4766 indicated by SKIP_SOLIB_RESOLVER. */
4767 struct symtab_and_line sr_sal;
abbb1732 4768
fe39c653 4769 init_sal (&sr_sal);
488f131b 4770 sr_sal.pc = pc_after_resolver;
6c95b8df 4771 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4772
a6d9a66e
UW
4773 insert_step_resume_breakpoint_at_sal (gdbarch,
4774 sr_sal, null_frame_id);
c5aa993b 4775 }
c906108c 4776
488f131b
JB
4777 keep_going (ecs);
4778 return;
4779 }
c906108c 4780
16c381f0
JK
4781 if (ecs->event_thread->control.step_range_end != 1
4782 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4783 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4784 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4785 {
527159b7 4786 if (debug_infrun)
3e43a32a
MS
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: stepped into signal trampoline\n");
42edda50 4789 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4790 a signal trampoline (either by a signal being delivered or by
4791 the signal handler returning). Just single-step until the
4792 inferior leaves the trampoline (either by calling the handler
4793 or returning). */
488f131b
JB
4794 keep_going (ecs);
4795 return;
4796 }
c906108c 4797
c17eaafe
DJ
4798 /* Check for subroutine calls. The check for the current frame
4799 equalling the step ID is not necessary - the check of the
4800 previous frame's ID is sufficient - but it is a common case and
4801 cheaper than checking the previous frame's ID.
14e60db5
DJ
4802
4803 NOTE: frame_id_eq will never report two invalid frame IDs as
4804 being equal, so to get into this block, both the current and
4805 previous frame must have valid frame IDs. */
005ca36a
JB
4806 /* The outer_frame_id check is a heuristic to detect stepping
4807 through startup code. If we step over an instruction which
4808 sets the stack pointer from an invalid value to a valid value,
4809 we may detect that as a subroutine call from the mythical
4810 "outermost" function. This could be fixed by marking
4811 outermost frames as !stack_p,code_p,special_p. Then the
4812 initial outermost frame, before sp was valid, would
ce6cca6d 4813 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4814 for more. */
edb3359d 4815 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4816 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4817 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4818 ecs->event_thread->control.step_stack_frame_id)
4819 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4820 outer_frame_id)
4821 || step_start_function != find_pc_function (stop_pc))))
488f131b 4822 {
95918acb 4823 CORE_ADDR real_stop_pc;
8fb3e588 4824
527159b7 4825 if (debug_infrun)
8a9de0e4 4826 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4827
16c381f0
JK
4828 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4829 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4830 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4831 ecs->stop_func_start)))
95918acb
AC
4832 {
4833 /* I presume that step_over_calls is only 0 when we're
4834 supposed to be stepping at the assembly language level
4835 ("stepi"). Just stop. */
4836 /* Also, maybe we just did a "nexti" inside a prolog, so we
4837 thought it was a subroutine call but it was not. Stop as
4838 well. FENN */
388a8562 4839 /* And this works the same backward as frontward. MVS */
16c381f0 4840 ecs->event_thread->control.stop_step = 1;
33d62d64 4841 print_end_stepping_range_reason ();
95918acb
AC
4842 stop_stepping (ecs);
4843 return;
4844 }
8fb3e588 4845
388a8562
MS
4846 /* Reverse stepping through solib trampolines. */
4847
4848 if (execution_direction == EXEC_REVERSE
16c381f0 4849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4850 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4851 || (ecs->stop_func_start == 0
4852 && in_solib_dynsym_resolve_code (stop_pc))))
4853 {
4854 /* Any solib trampoline code can be handled in reverse
4855 by simply continuing to single-step. We have already
4856 executed the solib function (backwards), and a few
4857 steps will take us back through the trampoline to the
4858 caller. */
4859 keep_going (ecs);
4860 return;
4861 }
4862
16c381f0 4863 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4864 {
b2175913
MS
4865 /* We're doing a "next".
4866
4867 Normal (forward) execution: set a breakpoint at the
4868 callee's return address (the address at which the caller
4869 will resume).
4870
4871 Reverse (backward) execution. set the step-resume
4872 breakpoint at the start of the function that we just
4873 stepped into (backwards), and continue to there. When we
6130d0b7 4874 get there, we'll need to single-step back to the caller. */
b2175913
MS
4875
4876 if (execution_direction == EXEC_REVERSE)
4877 {
4878 struct symtab_and_line sr_sal;
3067f6e5 4879
388a8562
MS
4880 /* Normal function call return (static or dynamic). */
4881 init_sal (&sr_sal);
4882 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4883 sr_sal.pspace = get_frame_program_space (frame);
4884 insert_step_resume_breakpoint_at_sal (gdbarch,
4885 sr_sal, null_frame_id);
b2175913
MS
4886 }
4887 else
568d6575 4888 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4889
8567c30f
AC
4890 keep_going (ecs);
4891 return;
4892 }
a53c66de 4893
95918acb 4894 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4895 calling routine and the real function), locate the real
4896 function. That's what tells us (a) whether we want to step
4897 into it at all, and (b) what prologue we want to run to the
4898 end of, if we do step into it. */
568d6575 4899 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4900 if (real_stop_pc == 0)
568d6575 4901 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4902 if (real_stop_pc != 0)
4903 ecs->stop_func_start = real_stop_pc;
8fb3e588 4904
db5f024e 4905 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4906 {
4907 struct symtab_and_line sr_sal;
abbb1732 4908
1b2bfbb9
RC
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4911 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4912
a6d9a66e
UW
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
8fb3e588
AC
4915 keep_going (ecs);
4916 return;
1b2bfbb9
RC
4917 }
4918
95918acb 4919 /* If we have line number information for the function we are
8fb3e588 4920 thinking of stepping into, step into it.
95918acb 4921
8fb3e588
AC
4922 If there are several symtabs at that PC (e.g. with include
4923 files), just want to know whether *any* of them have line
4924 numbers. find_pc_line handles this. */
95918acb
AC
4925 {
4926 struct symtab_and_line tmp_sal;
8fb3e588 4927
95918acb
AC
4928 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4929 if (tmp_sal.line != 0)
4930 {
b2175913 4931 if (execution_direction == EXEC_REVERSE)
568d6575 4932 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4933 else
568d6575 4934 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4935 return;
4936 }
4937 }
4938
4939 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4940 set, we stop the step so that the user has a chance to switch
4941 in assembly mode. */
16c381f0 4942 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4943 && step_stop_if_no_debug)
95918acb 4944 {
16c381f0 4945 ecs->event_thread->control.stop_step = 1;
33d62d64 4946 print_end_stepping_range_reason ();
95918acb
AC
4947 stop_stepping (ecs);
4948 return;
4949 }
4950
b2175913
MS
4951 if (execution_direction == EXEC_REVERSE)
4952 {
4953 /* Set a breakpoint at callee's start address.
4954 From there we can step once and be back in the caller. */
4955 struct symtab_and_line sr_sal;
abbb1732 4956
b2175913
MS
4957 init_sal (&sr_sal);
4958 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4959 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4960 insert_step_resume_breakpoint_at_sal (gdbarch,
4961 sr_sal, null_frame_id);
b2175913
MS
4962 }
4963 else
4964 /* Set a breakpoint at callee's return address (the address
4965 at which the caller will resume). */
568d6575 4966 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4967
95918acb 4968 keep_going (ecs);
488f131b 4969 return;
488f131b 4970 }
c906108c 4971
fdd654f3
MS
4972 /* Reverse stepping through solib trampolines. */
4973
4974 if (execution_direction == EXEC_REVERSE
16c381f0 4975 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4976 {
4977 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4978 || (ecs->stop_func_start == 0
4979 && in_solib_dynsym_resolve_code (stop_pc)))
4980 {
4981 /* Any solib trampoline code can be handled in reverse
4982 by simply continuing to single-step. We have already
4983 executed the solib function (backwards), and a few
4984 steps will take us back through the trampoline to the
4985 caller. */
4986 keep_going (ecs);
4987 return;
4988 }
4989 else if (in_solib_dynsym_resolve_code (stop_pc))
4990 {
4991 /* Stepped backward into the solib dynsym resolver.
4992 Set a breakpoint at its start and continue, then
4993 one more step will take us out. */
4994 struct symtab_and_line sr_sal;
abbb1732 4995
fdd654f3
MS
4996 init_sal (&sr_sal);
4997 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4998 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4999 insert_step_resume_breakpoint_at_sal (gdbarch,
5000 sr_sal, null_frame_id);
5001 keep_going (ecs);
5002 return;
5003 }
5004 }
5005
488f131b
JB
5006 /* If we're in the return path from a shared library trampoline,
5007 we want to proceed through the trampoline when stepping. */
568d6575 5008 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 5009 stop_pc, ecs->stop_func_name))
488f131b 5010 {
488f131b 5011 /* Determine where this trampoline returns. */
52f729a7 5012 CORE_ADDR real_stop_pc;
abbb1732 5013
568d6575 5014 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5015
527159b7 5016 if (debug_infrun)
3e43a32a
MS
5017 fprintf_unfiltered (gdb_stdlog,
5018 "infrun: stepped into solib return tramp\n");
527159b7 5019
488f131b 5020 /* Only proceed through if we know where it's going. */
d764a824 5021 if (real_stop_pc)
488f131b 5022 {
1777feb0 5023 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5024 struct symtab_and_line sr_sal;
5025
fe39c653 5026 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5027 sr_sal.pc = real_stop_pc;
488f131b 5028 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5029 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5030
5031 /* Do not specify what the fp should be when we stop since
5032 on some machines the prologue is where the new fp value
5033 is established. */
a6d9a66e
UW
5034 insert_step_resume_breakpoint_at_sal (gdbarch,
5035 sr_sal, null_frame_id);
c906108c 5036
488f131b
JB
5037 /* Restart without fiddling with the step ranges or
5038 other state. */
5039 keep_going (ecs);
5040 return;
5041 }
5042 }
c906108c 5043
2afb61aa 5044 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5045
1b2bfbb9
RC
5046 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5047 the trampoline processing logic, however, there are some trampolines
5048 that have no names, so we should do trampoline handling first. */
16c381f0 5049 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5050 && ecs->stop_func_name == NULL
2afb61aa 5051 && stop_pc_sal.line == 0)
1b2bfbb9 5052 {
527159b7 5053 if (debug_infrun)
3e43a32a
MS
5054 fprintf_unfiltered (gdb_stdlog,
5055 "infrun: stepped into undebuggable function\n");
527159b7 5056
1b2bfbb9 5057 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5058 undebuggable function (where there is no debugging information
5059 and no line number corresponding to the address where the
1b2bfbb9
RC
5060 inferior stopped). Since we want to skip this kind of code,
5061 we keep going until the inferior returns from this
14e60db5
DJ
5062 function - unless the user has asked us not to (via
5063 set step-mode) or we no longer know how to get back
5064 to the call site. */
5065 if (step_stop_if_no_debug
c7ce8faa 5066 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5067 {
5068 /* If we have no line number and the step-stop-if-no-debug
5069 is set, we stop the step so that the user has a chance to
5070 switch in assembly mode. */
16c381f0 5071 ecs->event_thread->control.stop_step = 1;
33d62d64 5072 print_end_stepping_range_reason ();
1b2bfbb9
RC
5073 stop_stepping (ecs);
5074 return;
5075 }
5076 else
5077 {
5078 /* Set a breakpoint at callee's return address (the address
5079 at which the caller will resume). */
568d6575 5080 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5081 keep_going (ecs);
5082 return;
5083 }
5084 }
5085
16c381f0 5086 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5087 {
5088 /* It is stepi or nexti. We always want to stop stepping after
5089 one instruction. */
527159b7 5090 if (debug_infrun)
8a9de0e4 5091 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5092 ecs->event_thread->control.stop_step = 1;
33d62d64 5093 print_end_stepping_range_reason ();
1b2bfbb9
RC
5094 stop_stepping (ecs);
5095 return;
5096 }
5097
2afb61aa 5098 if (stop_pc_sal.line == 0)
488f131b
JB
5099 {
5100 /* We have no line number information. That means to stop
5101 stepping (does this always happen right after one instruction,
5102 when we do "s" in a function with no line numbers,
5103 or can this happen as a result of a return or longjmp?). */
527159b7 5104 if (debug_infrun)
8a9de0e4 5105 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5106 ecs->event_thread->control.stop_step = 1;
33d62d64 5107 print_end_stepping_range_reason ();
488f131b
JB
5108 stop_stepping (ecs);
5109 return;
5110 }
c906108c 5111
edb3359d
DJ
5112 /* Look for "calls" to inlined functions, part one. If the inline
5113 frame machinery detected some skipped call sites, we have entered
5114 a new inline function. */
5115
5116 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5117 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5118 && inline_skipped_frames (ecs->ptid))
5119 {
5120 struct symtab_and_line call_sal;
5121
5122 if (debug_infrun)
5123 fprintf_unfiltered (gdb_stdlog,
5124 "infrun: stepped into inlined function\n");
5125
5126 find_frame_sal (get_current_frame (), &call_sal);
5127
16c381f0 5128 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5129 {
5130 /* For "step", we're going to stop. But if the call site
5131 for this inlined function is on the same source line as
5132 we were previously stepping, go down into the function
5133 first. Otherwise stop at the call site. */
5134
5135 if (call_sal.line == ecs->event_thread->current_line
5136 && call_sal.symtab == ecs->event_thread->current_symtab)
5137 step_into_inline_frame (ecs->ptid);
5138
16c381f0 5139 ecs->event_thread->control.stop_step = 1;
33d62d64 5140 print_end_stepping_range_reason ();
edb3359d
DJ
5141 stop_stepping (ecs);
5142 return;
5143 }
5144 else
5145 {
5146 /* For "next", we should stop at the call site if it is on a
5147 different source line. Otherwise continue through the
5148 inlined function. */
5149 if (call_sal.line == ecs->event_thread->current_line
5150 && call_sal.symtab == ecs->event_thread->current_symtab)
5151 keep_going (ecs);
5152 else
5153 {
16c381f0 5154 ecs->event_thread->control.stop_step = 1;
33d62d64 5155 print_end_stepping_range_reason ();
edb3359d
DJ
5156 stop_stepping (ecs);
5157 }
5158 return;
5159 }
5160 }
5161
5162 /* Look for "calls" to inlined functions, part two. If we are still
5163 in the same real function we were stepping through, but we have
5164 to go further up to find the exact frame ID, we are stepping
5165 through a more inlined call beyond its call site. */
5166
5167 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5168 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5169 ecs->event_thread->control.step_frame_id)
edb3359d 5170 && stepped_in_from (get_current_frame (),
16c381f0 5171 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: stepping through inlined function\n");
5176
16c381f0 5177 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5178 keep_going (ecs);
5179 else
5180 {
16c381f0 5181 ecs->event_thread->control.stop_step = 1;
33d62d64 5182 print_end_stepping_range_reason ();
edb3359d
DJ
5183 stop_stepping (ecs);
5184 }
5185 return;
5186 }
5187
2afb61aa 5188 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5189 && (ecs->event_thread->current_line != stop_pc_sal.line
5190 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5191 {
5192 /* We are at the start of a different line. So stop. Note that
5193 we don't stop if we step into the middle of a different line.
5194 That is said to make things like for (;;) statements work
5195 better. */
527159b7 5196 if (debug_infrun)
3e43a32a
MS
5197 fprintf_unfiltered (gdb_stdlog,
5198 "infrun: stepped to a different line\n");
16c381f0 5199 ecs->event_thread->control.stop_step = 1;
33d62d64 5200 print_end_stepping_range_reason ();
488f131b
JB
5201 stop_stepping (ecs);
5202 return;
5203 }
c906108c 5204
488f131b 5205 /* We aren't done stepping.
c906108c 5206
488f131b
JB
5207 Optimize by setting the stepping range to the line.
5208 (We might not be in the original line, but if we entered a
5209 new line in mid-statement, we continue stepping. This makes
5210 things like for(;;) statements work better.) */
c906108c 5211
16c381f0
JK
5212 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5213 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5214 set_step_info (frame, stop_pc_sal);
488f131b 5215
527159b7 5216 if (debug_infrun)
8a9de0e4 5217 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5218 keep_going (ecs);
104c1213
JM
5219}
5220
b3444185 5221/* Is thread TP in the middle of single-stepping? */
104c1213 5222
a289b8f6 5223static int
b3444185 5224currently_stepping (struct thread_info *tp)
a7212384 5225{
8358c15c
JK
5226 return ((tp->control.step_range_end
5227 && tp->control.step_resume_breakpoint == NULL)
5228 || tp->control.trap_expected
8358c15c 5229 || bpstat_should_step ());
a7212384
UW
5230}
5231
b3444185
PA
5232/* Returns true if any thread *but* the one passed in "data" is in the
5233 middle of stepping or of handling a "next". */
a7212384 5234
104c1213 5235static int
b3444185 5236currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5237{
b3444185
PA
5238 if (tp == data)
5239 return 0;
5240
16c381f0 5241 return (tp->control.step_range_end
ede1849f 5242 || tp->control.trap_expected);
104c1213 5243}
c906108c 5244
b2175913
MS
5245/* Inferior has stepped into a subroutine call with source code that
5246 we should not step over. Do step to the first line of code in
5247 it. */
c2c6d25f
JM
5248
5249static void
568d6575
UW
5250handle_step_into_function (struct gdbarch *gdbarch,
5251 struct execution_control_state *ecs)
c2c6d25f
JM
5252{
5253 struct symtab *s;
2afb61aa 5254 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5255
7e324e48
GB
5256 fill_in_stop_func (gdbarch, ecs);
5257
c2c6d25f
JM
5258 s = find_pc_symtab (stop_pc);
5259 if (s && s->language != language_asm)
568d6575 5260 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5261 ecs->stop_func_start);
c2c6d25f 5262
2afb61aa 5263 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5264 /* Use the step_resume_break to step until the end of the prologue,
5265 even if that involves jumps (as it seems to on the vax under
5266 4.2). */
5267 /* If the prologue ends in the middle of a source line, continue to
5268 the end of that source line (if it is still within the function).
5269 Otherwise, just go to end of prologue. */
2afb61aa
PA
5270 if (stop_func_sal.end
5271 && stop_func_sal.pc != ecs->stop_func_start
5272 && stop_func_sal.end < ecs->stop_func_end)
5273 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5274
2dbd5e30
KB
5275 /* Architectures which require breakpoint adjustment might not be able
5276 to place a breakpoint at the computed address. If so, the test
5277 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5278 ecs->stop_func_start to an address at which a breakpoint may be
5279 legitimately placed.
8fb3e588 5280
2dbd5e30
KB
5281 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5282 made, GDB will enter an infinite loop when stepping through
5283 optimized code consisting of VLIW instructions which contain
5284 subinstructions corresponding to different source lines. On
5285 FR-V, it's not permitted to place a breakpoint on any but the
5286 first subinstruction of a VLIW instruction. When a breakpoint is
5287 set, GDB will adjust the breakpoint address to the beginning of
5288 the VLIW instruction. Thus, we need to make the corresponding
5289 adjustment here when computing the stop address. */
8fb3e588 5290
568d6575 5291 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5292 {
5293 ecs->stop_func_start
568d6575 5294 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5295 ecs->stop_func_start);
2dbd5e30
KB
5296 }
5297
c2c6d25f
JM
5298 if (ecs->stop_func_start == stop_pc)
5299 {
5300 /* We are already there: stop now. */
16c381f0 5301 ecs->event_thread->control.stop_step = 1;
33d62d64 5302 print_end_stepping_range_reason ();
c2c6d25f
JM
5303 stop_stepping (ecs);
5304 return;
5305 }
5306 else
5307 {
5308 /* Put the step-breakpoint there and go until there. */
fe39c653 5309 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5310 sr_sal.pc = ecs->stop_func_start;
5311 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5312 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5313
c2c6d25f 5314 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5315 some machines the prologue is where the new fp value is
5316 established. */
a6d9a66e 5317 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5318
5319 /* And make sure stepping stops right away then. */
16c381f0
JK
5320 ecs->event_thread->control.step_range_end
5321 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5322 }
5323 keep_going (ecs);
5324}
d4f3574e 5325
b2175913
MS
5326/* Inferior has stepped backward into a subroutine call with source
5327 code that we should not step over. Do step to the beginning of the
5328 last line of code in it. */
5329
5330static void
568d6575
UW
5331handle_step_into_function_backward (struct gdbarch *gdbarch,
5332 struct execution_control_state *ecs)
b2175913
MS
5333{
5334 struct symtab *s;
167e4384 5335 struct symtab_and_line stop_func_sal;
b2175913 5336
7e324e48
GB
5337 fill_in_stop_func (gdbarch, ecs);
5338
b2175913
MS
5339 s = find_pc_symtab (stop_pc);
5340 if (s && s->language != language_asm)
568d6575 5341 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5342 ecs->stop_func_start);
5343
5344 stop_func_sal = find_pc_line (stop_pc, 0);
5345
5346 /* OK, we're just going to keep stepping here. */
5347 if (stop_func_sal.pc == stop_pc)
5348 {
5349 /* We're there already. Just stop stepping now. */
16c381f0 5350 ecs->event_thread->control.stop_step = 1;
33d62d64 5351 print_end_stepping_range_reason ();
b2175913
MS
5352 stop_stepping (ecs);
5353 }
5354 else
5355 {
5356 /* Else just reset the step range and keep going.
5357 No step-resume breakpoint, they don't work for
5358 epilogues, which can have multiple entry paths. */
16c381f0
JK
5359 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5360 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5361 keep_going (ecs);
5362 }
5363 return;
5364}
5365
d3169d93 5366/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5367 This is used to both functions and to skip over code. */
5368
5369static void
2c03e5be
PA
5370insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5371 struct symtab_and_line sr_sal,
5372 struct frame_id sr_id,
5373 enum bptype sr_type)
44cbf7b5 5374{
611c83ae
PA
5375 /* There should never be more than one step-resume or longjmp-resume
5376 breakpoint per thread, so we should never be setting a new
44cbf7b5 5377 step_resume_breakpoint when one is already active. */
8358c15c 5378 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5379 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5380
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5383 "infrun: inserting step-resume breakpoint at %s\n",
5384 paddress (gdbarch, sr_sal.pc));
d3169d93 5385
8358c15c 5386 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5387 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5388}
5389
9da8c2a0 5390void
2c03e5be
PA
5391insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5392 struct symtab_and_line sr_sal,
5393 struct frame_id sr_id)
5394{
5395 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5396 sr_sal, sr_id,
5397 bp_step_resume);
44cbf7b5 5398}
7ce450bd 5399
2c03e5be
PA
5400/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5401 This is used to skip a potential signal handler.
7ce450bd 5402
14e60db5
DJ
5403 This is called with the interrupted function's frame. The signal
5404 handler, when it returns, will resume the interrupted function at
5405 RETURN_FRAME.pc. */
d303a6c7
AC
5406
5407static void
2c03e5be 5408insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5409{
5410 struct symtab_and_line sr_sal;
a6d9a66e 5411 struct gdbarch *gdbarch;
d303a6c7 5412
f4c1edd8 5413 gdb_assert (return_frame != NULL);
d303a6c7
AC
5414 init_sal (&sr_sal); /* initialize to zeros */
5415
a6d9a66e 5416 gdbarch = get_frame_arch (return_frame);
568d6575 5417 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5418 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5419 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5420
2c03e5be
PA
5421 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5422 get_stack_frame_id (return_frame),
5423 bp_hp_step_resume);
d303a6c7
AC
5424}
5425
2c03e5be
PA
5426/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5427 is used to skip a function after stepping into it (for "next" or if
5428 the called function has no debugging information).
14e60db5
DJ
5429
5430 The current function has almost always been reached by single
5431 stepping a call or return instruction. NEXT_FRAME belongs to the
5432 current function, and the breakpoint will be set at the caller's
5433 resume address.
5434
5435 This is a separate function rather than reusing
2c03e5be 5436 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5437 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5438 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5439
5440static void
5441insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5442{
5443 struct symtab_and_line sr_sal;
a6d9a66e 5444 struct gdbarch *gdbarch;
14e60db5
DJ
5445
5446 /* We shouldn't have gotten here if we don't know where the call site
5447 is. */
c7ce8faa 5448 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5449
5450 init_sal (&sr_sal); /* initialize to zeros */
5451
a6d9a66e 5452 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5453 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5454 frame_unwind_caller_pc (next_frame));
14e60db5 5455 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5456 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5457
a6d9a66e 5458 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5459 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5460}
5461
611c83ae
PA
5462/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5463 new breakpoint at the target of a jmp_buf. The handling of
5464 longjmp-resume uses the same mechanisms used for handling
5465 "step-resume" breakpoints. */
5466
5467static void
a6d9a66e 5468insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5469{
5470 /* There should never be more than one step-resume or longjmp-resume
5471 breakpoint per thread, so we should never be setting a new
5472 longjmp_resume_breakpoint when one is already active. */
8358c15c 5473 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5474
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5477 "infrun: inserting longjmp-resume breakpoint at %s\n",
5478 paddress (gdbarch, pc));
611c83ae 5479
8358c15c 5480 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5481 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5482}
5483
186c406b
TT
5484/* Insert an exception resume breakpoint. TP is the thread throwing
5485 the exception. The block B is the block of the unwinder debug hook
5486 function. FRAME is the frame corresponding to the call to this
5487 function. SYM is the symbol of the function argument holding the
5488 target PC of the exception. */
5489
5490static void
5491insert_exception_resume_breakpoint (struct thread_info *tp,
5492 struct block *b,
5493 struct frame_info *frame,
5494 struct symbol *sym)
5495{
5496 struct gdb_exception e;
5497
5498 /* We want to ignore errors here. */
5499 TRY_CATCH (e, RETURN_MASK_ERROR)
5500 {
5501 struct symbol *vsym;
5502 struct value *value;
5503 CORE_ADDR handler;
5504 struct breakpoint *bp;
5505
5506 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5507 value = read_var_value (vsym, frame);
5508 /* If the value was optimized out, revert to the old behavior. */
5509 if (! value_optimized_out (value))
5510 {
5511 handler = value_as_address (value);
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog,
5515 "infrun: exception resume at %lx\n",
5516 (unsigned long) handler);
5517
5518 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5519 handler, bp_exception_resume);
5520 bp->thread = tp->num;
5521 inferior_thread ()->control.exception_resume_breakpoint = bp;
5522 }
5523 }
5524}
5525
5526/* This is called when an exception has been intercepted. Check to
5527 see whether the exception's destination is of interest, and if so,
5528 set an exception resume breakpoint there. */
5529
5530static void
5531check_exception_resume (struct execution_control_state *ecs,
5532 struct frame_info *frame, struct symbol *func)
5533{
5534 struct gdb_exception e;
5535
5536 TRY_CATCH (e, RETURN_MASK_ERROR)
5537 {
5538 struct block *b;
5539 struct dict_iterator iter;
5540 struct symbol *sym;
5541 int argno = 0;
5542
5543 /* The exception breakpoint is a thread-specific breakpoint on
5544 the unwinder's debug hook, declared as:
5545
5546 void _Unwind_DebugHook (void *cfa, void *handler);
5547
5548 The CFA argument indicates the frame to which control is
5549 about to be transferred. HANDLER is the destination PC.
5550
5551 We ignore the CFA and set a temporary breakpoint at HANDLER.
5552 This is not extremely efficient but it avoids issues in gdb
5553 with computing the DWARF CFA, and it also works even in weird
5554 cases such as throwing an exception from inside a signal
5555 handler. */
5556
5557 b = SYMBOL_BLOCK_VALUE (func);
5558 ALL_BLOCK_SYMBOLS (b, iter, sym)
5559 {
5560 if (!SYMBOL_IS_ARGUMENT (sym))
5561 continue;
5562
5563 if (argno == 0)
5564 ++argno;
5565 else
5566 {
5567 insert_exception_resume_breakpoint (ecs->event_thread,
5568 b, frame, sym);
5569 break;
5570 }
5571 }
5572 }
5573}
5574
104c1213
JM
5575static void
5576stop_stepping (struct execution_control_state *ecs)
5577{
527159b7 5578 if (debug_infrun)
8a9de0e4 5579 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5580
cd0fc7c3
SS
5581 /* Let callers know we don't want to wait for the inferior anymore. */
5582 ecs->wait_some_more = 0;
5583}
5584
d4f3574e
SS
5585/* This function handles various cases where we need to continue
5586 waiting for the inferior. */
1777feb0 5587/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5588
5589static void
5590keep_going (struct execution_control_state *ecs)
5591{
c4dbc9af
PA
5592 /* Make sure normal_stop is called if we get a QUIT handled before
5593 reaching resume. */
5594 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5595
d4f3574e 5596 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5597 ecs->event_thread->prev_pc
5598 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5599
d4f3574e
SS
5600 /* If we did not do break;, it means we should keep running the
5601 inferior and not return to debugger. */
5602
16c381f0
JK
5603 if (ecs->event_thread->control.trap_expected
5604 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5605 {
5606 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5607 the inferior, else we'd not get here) and we haven't yet
5608 gotten our trap. Simply continue. */
c4dbc9af
PA
5609
5610 discard_cleanups (old_cleanups);
2020b7ab 5611 resume (currently_stepping (ecs->event_thread),
16c381f0 5612 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5613 }
5614 else
5615 {
5616 /* Either the trap was not expected, but we are continuing
488f131b
JB
5617 anyway (the user asked that this signal be passed to the
5618 child)
5619 -- or --
5620 The signal was SIGTRAP, e.g. it was our signal, but we
5621 decided we should resume from it.
d4f3574e 5622
c36b740a 5623 We're going to run this baby now!
d4f3574e 5624
c36b740a
VP
5625 Note that insert_breakpoints won't try to re-insert
5626 already inserted breakpoints. Therefore, we don't
5627 care if breakpoints were already inserted, or not. */
5628
4e1c45ea 5629 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5630 {
9f5a595d 5631 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5632
9f5a595d 5633 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5634 /* Since we can't do a displaced step, we have to remove
5635 the breakpoint while we step it. To keep things
5636 simple, we remove them all. */
5637 remove_breakpoints ();
45e8c884
VP
5638 }
5639 else
d4f3574e 5640 {
e236ba44 5641 struct gdb_exception e;
abbb1732 5642
569631c6
UW
5643 /* Stop stepping when inserting breakpoints
5644 has failed. */
e236ba44
VP
5645 TRY_CATCH (e, RETURN_MASK_ERROR)
5646 {
5647 insert_breakpoints ();
5648 }
5649 if (e.reason < 0)
d4f3574e 5650 {
97bd5475 5651 exception_print (gdb_stderr, e);
d4f3574e
SS
5652 stop_stepping (ecs);
5653 return;
5654 }
d4f3574e
SS
5655 }
5656
16c381f0
JK
5657 ecs->event_thread->control.trap_expected
5658 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5659
5660 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5661 specifies that such a signal should be delivered to the
5662 target program).
5663
5664 Typically, this would occure when a user is debugging a
5665 target monitor on a simulator: the target monitor sets a
5666 breakpoint; the simulator encounters this break-point and
5667 halts the simulation handing control to GDB; GDB, noteing
5668 that the break-point isn't valid, returns control back to the
5669 simulator; the simulator then delivers the hardware
1777feb0 5670 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5671
16c381f0
JK
5672 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5673 && !signal_program[ecs->event_thread->suspend.stop_signal])
5674 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5675
c4dbc9af 5676 discard_cleanups (old_cleanups);
2020b7ab 5677 resume (currently_stepping (ecs->event_thread),
16c381f0 5678 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5679 }
5680
488f131b 5681 prepare_to_wait (ecs);
d4f3574e
SS
5682}
5683
104c1213
JM
5684/* This function normally comes after a resume, before
5685 handle_inferior_event exits. It takes care of any last bits of
5686 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5687
104c1213
JM
5688static void
5689prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5690{
527159b7 5691 if (debug_infrun)
8a9de0e4 5692 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5693
104c1213
JM
5694 /* This is the old end of the while loop. Let everybody know we
5695 want to wait for the inferior some more and get called again
5696 soon. */
5697 ecs->wait_some_more = 1;
c906108c 5698}
11cf8741 5699
33d62d64
JK
5700/* Several print_*_reason functions to print why the inferior has stopped.
5701 We always print something when the inferior exits, or receives a signal.
5702 The rest of the cases are dealt with later on in normal_stop and
5703 print_it_typical. Ideally there should be a call to one of these
5704 print_*_reason functions functions from handle_inferior_event each time
5705 stop_stepping is called. */
5706
5707/* Print why the inferior has stopped.
5708 We are done with a step/next/si/ni command, print why the inferior has
5709 stopped. For now print nothing. Print a message only if not in the middle
5710 of doing a "step n" operation for n > 1. */
5711
5712static void
5713print_end_stepping_range_reason (void)
5714{
16c381f0
JK
5715 if ((!inferior_thread ()->step_multi
5716 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5717 && ui_out_is_mi_like_p (current_uiout))
5718 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5719 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5720}
5721
5722/* The inferior was terminated by a signal, print why it stopped. */
5723
11cf8741 5724static void
33d62d64 5725print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5726{
79a45e25
PA
5727 struct ui_out *uiout = current_uiout;
5728
33d62d64
JK
5729 annotate_signalled ();
5730 if (ui_out_is_mi_like_p (uiout))
5731 ui_out_field_string
5732 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5733 ui_out_text (uiout, "\nProgram terminated with signal ");
5734 annotate_signal_name ();
5735 ui_out_field_string (uiout, "signal-name",
5736 target_signal_to_name (siggnal));
5737 annotate_signal_name_end ();
5738 ui_out_text (uiout, ", ");
5739 annotate_signal_string ();
5740 ui_out_field_string (uiout, "signal-meaning",
5741 target_signal_to_string (siggnal));
5742 annotate_signal_string_end ();
5743 ui_out_text (uiout, ".\n");
5744 ui_out_text (uiout, "The program no longer exists.\n");
5745}
5746
5747/* The inferior program is finished, print why it stopped. */
5748
5749static void
5750print_exited_reason (int exitstatus)
5751{
fda326dd
TT
5752 struct inferior *inf = current_inferior ();
5753 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5754 struct ui_out *uiout = current_uiout;
fda326dd 5755
33d62d64
JK
5756 annotate_exited (exitstatus);
5757 if (exitstatus)
5758 {
5759 if (ui_out_is_mi_like_p (uiout))
5760 ui_out_field_string (uiout, "reason",
5761 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5762 ui_out_text (uiout, "[Inferior ");
5763 ui_out_text (uiout, plongest (inf->num));
5764 ui_out_text (uiout, " (");
5765 ui_out_text (uiout, pidstr);
5766 ui_out_text (uiout, ") exited with code ");
33d62d64 5767 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5768 ui_out_text (uiout, "]\n");
33d62d64
JK
5769 }
5770 else
11cf8741 5771 {
9dc5e2a9 5772 if (ui_out_is_mi_like_p (uiout))
034dad6f 5773 ui_out_field_string
33d62d64 5774 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5775 ui_out_text (uiout, "[Inferior ");
5776 ui_out_text (uiout, plongest (inf->num));
5777 ui_out_text (uiout, " (");
5778 ui_out_text (uiout, pidstr);
5779 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5780 }
5781 /* Support the --return-child-result option. */
5782 return_child_result_value = exitstatus;
5783}
5784
5785/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5786 tells us to print about it. */
33d62d64
JK
5787
5788static void
5789print_signal_received_reason (enum target_signal siggnal)
5790{
79a45e25
PA
5791 struct ui_out *uiout = current_uiout;
5792
33d62d64
JK
5793 annotate_signal ();
5794
5795 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5796 {
5797 struct thread_info *t = inferior_thread ();
5798
5799 ui_out_text (uiout, "\n[");
5800 ui_out_field_string (uiout, "thread-name",
5801 target_pid_to_str (t->ptid));
5802 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5803 ui_out_text (uiout, " stopped");
5804 }
5805 else
5806 {
5807 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5808 annotate_signal_name ();
33d62d64
JK
5809 if (ui_out_is_mi_like_p (uiout))
5810 ui_out_field_string
5811 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5812 ui_out_field_string (uiout, "signal-name",
33d62d64 5813 target_signal_to_name (siggnal));
8b93c638
JM
5814 annotate_signal_name_end ();
5815 ui_out_text (uiout, ", ");
5816 annotate_signal_string ();
488f131b 5817 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5818 target_signal_to_string (siggnal));
8b93c638 5819 annotate_signal_string_end ();
33d62d64
JK
5820 }
5821 ui_out_text (uiout, ".\n");
5822}
252fbfc8 5823
33d62d64
JK
5824/* Reverse execution: target ran out of history info, print why the inferior
5825 has stopped. */
252fbfc8 5826
33d62d64
JK
5827static void
5828print_no_history_reason (void)
5829{
79a45e25 5830 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5831}
43ff13b4 5832
c906108c
SS
5833/* Here to return control to GDB when the inferior stops for real.
5834 Print appropriate messages, remove breakpoints, give terminal our modes.
5835
5836 STOP_PRINT_FRAME nonzero means print the executing frame
5837 (pc, function, args, file, line number and line text).
5838 BREAKPOINTS_FAILED nonzero means stop was due to error
5839 attempting to insert breakpoints. */
5840
5841void
96baa820 5842normal_stop (void)
c906108c 5843{
73b65bb0
DJ
5844 struct target_waitstatus last;
5845 ptid_t last_ptid;
29f49a6a 5846 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5847
5848 get_last_target_status (&last_ptid, &last);
5849
29f49a6a
PA
5850 /* If an exception is thrown from this point on, make sure to
5851 propagate GDB's knowledge of the executing state to the
5852 frontend/user running state. A QUIT is an easy exception to see
5853 here, so do this before any filtered output. */
c35b1492
PA
5854 if (!non_stop)
5855 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5856 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5857 && last.kind != TARGET_WAITKIND_EXITED
5858 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5859 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5860
4f8d22e3
PA
5861 /* In non-stop mode, we don't want GDB to switch threads behind the
5862 user's back, to avoid races where the user is typing a command to
5863 apply to thread x, but GDB switches to thread y before the user
5864 finishes entering the command. */
5865
c906108c
SS
5866 /* As with the notification of thread events, we want to delay
5867 notifying the user that we've switched thread context until
5868 the inferior actually stops.
5869
73b65bb0
DJ
5870 There's no point in saying anything if the inferior has exited.
5871 Note that SIGNALLED here means "exited with a signal", not
5872 "received a signal". */
4f8d22e3
PA
5873 if (!non_stop
5874 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5875 && target_has_execution
5876 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5877 && last.kind != TARGET_WAITKIND_EXITED
5878 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5879 {
5880 target_terminal_ours_for_output ();
a3f17187 5881 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5882 target_pid_to_str (inferior_ptid));
b8fa951a 5883 annotate_thread_changed ();
39f77062 5884 previous_inferior_ptid = inferior_ptid;
c906108c 5885 }
c906108c 5886
0e5bf2a8
PA
5887 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5888 {
5889 gdb_assert (sync_execution || !target_can_async_p ());
5890
5891 target_terminal_ours_for_output ();
5892 printf_filtered (_("No unwaited-for children left.\n"));
5893 }
5894
74960c60 5895 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5896 {
5897 if (remove_breakpoints ())
5898 {
5899 target_terminal_ours_for_output ();
3e43a32a
MS
5900 printf_filtered (_("Cannot remove breakpoints because "
5901 "program is no longer writable.\nFurther "
5902 "execution is probably impossible.\n"));
c906108c
SS
5903 }
5904 }
c906108c 5905
c906108c
SS
5906 /* If an auto-display called a function and that got a signal,
5907 delete that auto-display to avoid an infinite recursion. */
5908
5909 if (stopped_by_random_signal)
5910 disable_current_display ();
5911
5912 /* Don't print a message if in the middle of doing a "step n"
5913 operation for n > 1 */
af679fd0
PA
5914 if (target_has_execution
5915 && last.kind != TARGET_WAITKIND_SIGNALLED
5916 && last.kind != TARGET_WAITKIND_EXITED
5917 && inferior_thread ()->step_multi
16c381f0 5918 && inferior_thread ()->control.stop_step)
c906108c
SS
5919 goto done;
5920
5921 target_terminal_ours ();
0f641c01 5922 async_enable_stdin ();
c906108c 5923
7abfe014
DJ
5924 /* Set the current source location. This will also happen if we
5925 display the frame below, but the current SAL will be incorrect
5926 during a user hook-stop function. */
d729566a 5927 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5928 set_current_sal_from_frame (get_current_frame (), 1);
5929
dd7e2d2b
PA
5930 /* Let the user/frontend see the threads as stopped. */
5931 do_cleanups (old_chain);
5932
5933 /* Look up the hook_stop and run it (CLI internally handles problem
5934 of stop_command's pre-hook not existing). */
5935 if (stop_command)
5936 catch_errors (hook_stop_stub, stop_command,
5937 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5938
d729566a 5939 if (!has_stack_frames ())
d51fd4c8 5940 goto done;
c906108c 5941
32400beb
PA
5942 if (last.kind == TARGET_WAITKIND_SIGNALLED
5943 || last.kind == TARGET_WAITKIND_EXITED)
5944 goto done;
5945
c906108c
SS
5946 /* Select innermost stack frame - i.e., current frame is frame 0,
5947 and current location is based on that.
5948 Don't do this on return from a stack dummy routine,
1777feb0 5949 or if the program has exited. */
c906108c
SS
5950
5951 if (!stop_stack_dummy)
5952 {
0f7d239c 5953 select_frame (get_current_frame ());
c906108c
SS
5954
5955 /* Print current location without a level number, if
c5aa993b
JM
5956 we have changed functions or hit a breakpoint.
5957 Print source line if we have one.
5958 bpstat_print() contains the logic deciding in detail
1777feb0 5959 what to print, based on the event(s) that just occurred. */
c906108c 5960
d01a8610
AS
5961 /* If --batch-silent is enabled then there's no need to print the current
5962 source location, and to try risks causing an error message about
5963 missing source files. */
5964 if (stop_print_frame && !batch_silent)
c906108c
SS
5965 {
5966 int bpstat_ret;
5967 int source_flag;
917317f4 5968 int do_frame_printing = 1;
347bddb7 5969 struct thread_info *tp = inferior_thread ();
c906108c 5970
16c381f0 5971 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5972 switch (bpstat_ret)
5973 {
5974 case PRINT_UNKNOWN:
b0f4b84b
DJ
5975 /* If we had hit a shared library event breakpoint,
5976 bpstat_print would print out this message. If we hit
5977 an OS-level shared library event, do the same
5978 thing. */
5979 if (last.kind == TARGET_WAITKIND_LOADED)
5980 {
5981 printf_filtered (_("Stopped due to shared library event\n"));
5982 source_flag = SRC_LINE; /* something bogus */
5983 do_frame_printing = 0;
5984 break;
5985 }
5986
aa0cd9c1 5987 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5988 (or should) carry around the function and does (or
5989 should) use that when doing a frame comparison. */
16c381f0
JK
5990 if (tp->control.stop_step
5991 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5992 get_frame_id (get_current_frame ()))
917317f4 5993 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5994 source_flag = SRC_LINE; /* Finished step, just
5995 print source line. */
917317f4 5996 else
1777feb0
MS
5997 source_flag = SRC_AND_LOC; /* Print location and
5998 source line. */
917317f4
JM
5999 break;
6000 case PRINT_SRC_AND_LOC:
1777feb0
MS
6001 source_flag = SRC_AND_LOC; /* Print location and
6002 source line. */
917317f4
JM
6003 break;
6004 case PRINT_SRC_ONLY:
c5394b80 6005 source_flag = SRC_LINE;
917317f4
JM
6006 break;
6007 case PRINT_NOTHING:
488f131b 6008 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6009 do_frame_printing = 0;
6010 break;
6011 default:
e2e0b3e5 6012 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6013 }
c906108c
SS
6014
6015 /* The behavior of this routine with respect to the source
6016 flag is:
c5394b80
JM
6017 SRC_LINE: Print only source line
6018 LOCATION: Print only location
1777feb0 6019 SRC_AND_LOC: Print location and source line. */
917317f4 6020 if (do_frame_printing)
b04f3ab4 6021 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6022
6023 /* Display the auto-display expressions. */
6024 do_displays ();
6025 }
6026 }
6027
6028 /* Save the function value return registers, if we care.
6029 We might be about to restore their previous contents. */
9da8c2a0
PA
6030 if (inferior_thread ()->control.proceed_to_finish
6031 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6032 {
6033 /* This should not be necessary. */
6034 if (stop_registers)
6035 regcache_xfree (stop_registers);
6036
6037 /* NB: The copy goes through to the target picking up the value of
6038 all the registers. */
6039 stop_registers = regcache_dup (get_current_regcache ());
6040 }
c906108c 6041
aa7d318d 6042 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6043 {
b89667eb
DE
6044 /* Pop the empty frame that contains the stack dummy.
6045 This also restores inferior state prior to the call
16c381f0 6046 (struct infcall_suspend_state). */
b89667eb 6047 struct frame_info *frame = get_current_frame ();
abbb1732 6048
b89667eb
DE
6049 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6050 frame_pop (frame);
3e43a32a
MS
6051 /* frame_pop() calls reinit_frame_cache as the last thing it
6052 does which means there's currently no selected frame. We
6053 don't need to re-establish a selected frame if the dummy call
6054 returns normally, that will be done by
6055 restore_infcall_control_state. However, we do have to handle
6056 the case where the dummy call is returning after being
6057 stopped (e.g. the dummy call previously hit a breakpoint).
6058 We can't know which case we have so just always re-establish
6059 a selected frame here. */
0f7d239c 6060 select_frame (get_current_frame ());
c906108c
SS
6061 }
6062
c906108c
SS
6063done:
6064 annotate_stopped ();
41d2bdb4
PA
6065
6066 /* Suppress the stop observer if we're in the middle of:
6067
6068 - a step n (n > 1), as there still more steps to be done.
6069
6070 - a "finish" command, as the observer will be called in
6071 finish_command_continuation, so it can include the inferior
6072 function's return value.
6073
6074 - calling an inferior function, as we pretend we inferior didn't
6075 run at all. The return value of the call is handled by the
6076 expression evaluator, through call_function_by_hand. */
6077
6078 if (!target_has_execution
6079 || last.kind == TARGET_WAITKIND_SIGNALLED
6080 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6081 || last.kind == TARGET_WAITKIND_NO_RESUMED
41d2bdb4 6082 || (!inferior_thread ()->step_multi
16c381f0
JK
6083 && !(inferior_thread ()->control.stop_bpstat
6084 && inferior_thread ()->control.proceed_to_finish)
6085 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6086 {
6087 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6088 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6089 stop_print_frame);
347bddb7 6090 else
1d33d6ba 6091 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6092 }
347bddb7 6093
48844aa6
PA
6094 if (target_has_execution)
6095 {
6096 if (last.kind != TARGET_WAITKIND_SIGNALLED
6097 && last.kind != TARGET_WAITKIND_EXITED)
6098 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6099 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6100 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6101 }
6c95b8df
PA
6102
6103 /* Try to get rid of automatically added inferiors that are no
6104 longer needed. Keeping those around slows down things linearly.
6105 Note that this never removes the current inferior. */
6106 prune_inferiors ();
c906108c
SS
6107}
6108
6109static int
96baa820 6110hook_stop_stub (void *cmd)
c906108c 6111{
5913bcb0 6112 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6113 return (0);
6114}
6115\f
c5aa993b 6116int
96baa820 6117signal_stop_state (int signo)
c906108c 6118{
d6b48e9c 6119 return signal_stop[signo];
c906108c
SS
6120}
6121
c5aa993b 6122int
96baa820 6123signal_print_state (int signo)
c906108c
SS
6124{
6125 return signal_print[signo];
6126}
6127
c5aa993b 6128int
96baa820 6129signal_pass_state (int signo)
c906108c
SS
6130{
6131 return signal_program[signo];
6132}
6133
2455069d
UW
6134static void
6135signal_cache_update (int signo)
6136{
6137 if (signo == -1)
6138 {
6139 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6140 signal_cache_update (signo);
6141
6142 return;
6143 }
6144
6145 signal_pass[signo] = (signal_stop[signo] == 0
6146 && signal_print[signo] == 0
6147 && signal_program[signo] == 1);
6148}
6149
488f131b 6150int
7bda5e4a 6151signal_stop_update (int signo, int state)
d4f3574e
SS
6152{
6153 int ret = signal_stop[signo];
abbb1732 6154
d4f3574e 6155 signal_stop[signo] = state;
2455069d 6156 signal_cache_update (signo);
d4f3574e
SS
6157 return ret;
6158}
6159
488f131b 6160int
7bda5e4a 6161signal_print_update (int signo, int state)
d4f3574e
SS
6162{
6163 int ret = signal_print[signo];
abbb1732 6164
d4f3574e 6165 signal_print[signo] = state;
2455069d 6166 signal_cache_update (signo);
d4f3574e
SS
6167 return ret;
6168}
6169
488f131b 6170int
7bda5e4a 6171signal_pass_update (int signo, int state)
d4f3574e
SS
6172{
6173 int ret = signal_program[signo];
abbb1732 6174
d4f3574e 6175 signal_program[signo] = state;
2455069d 6176 signal_cache_update (signo);
d4f3574e
SS
6177 return ret;
6178}
6179
c906108c 6180static void
96baa820 6181sig_print_header (void)
c906108c 6182{
3e43a32a
MS
6183 printf_filtered (_("Signal Stop\tPrint\tPass "
6184 "to program\tDescription\n"));
c906108c
SS
6185}
6186
6187static void
96baa820 6188sig_print_info (enum target_signal oursig)
c906108c 6189{
54363045 6190 const char *name = target_signal_to_name (oursig);
c906108c 6191 int name_padding = 13 - strlen (name);
96baa820 6192
c906108c
SS
6193 if (name_padding <= 0)
6194 name_padding = 0;
6195
6196 printf_filtered ("%s", name);
488f131b 6197 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6198 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6199 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6200 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6201 printf_filtered ("%s\n", target_signal_to_string (oursig));
6202}
6203
6204/* Specify how various signals in the inferior should be handled. */
6205
6206static void
96baa820 6207handle_command (char *args, int from_tty)
c906108c
SS
6208{
6209 char **argv;
6210 int digits, wordlen;
6211 int sigfirst, signum, siglast;
6212 enum target_signal oursig;
6213 int allsigs;
6214 int nsigs;
6215 unsigned char *sigs;
6216 struct cleanup *old_chain;
6217
6218 if (args == NULL)
6219 {
e2e0b3e5 6220 error_no_arg (_("signal to handle"));
c906108c
SS
6221 }
6222
1777feb0 6223 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6224
6225 nsigs = (int) TARGET_SIGNAL_LAST;
6226 sigs = (unsigned char *) alloca (nsigs);
6227 memset (sigs, 0, nsigs);
6228
1777feb0 6229 /* Break the command line up into args. */
c906108c 6230
d1a41061 6231 argv = gdb_buildargv (args);
7a292a7a 6232 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6233
6234 /* Walk through the args, looking for signal oursigs, signal names, and
6235 actions. Signal numbers and signal names may be interspersed with
6236 actions, with the actions being performed for all signals cumulatively
1777feb0 6237 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6238
6239 while (*argv != NULL)
6240 {
6241 wordlen = strlen (*argv);
6242 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6243 {;
6244 }
6245 allsigs = 0;
6246 sigfirst = siglast = -1;
6247
6248 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6249 {
6250 /* Apply action to all signals except those used by the
1777feb0 6251 debugger. Silently skip those. */
c906108c
SS
6252 allsigs = 1;
6253 sigfirst = 0;
6254 siglast = nsigs - 1;
6255 }
6256 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6257 {
6258 SET_SIGS (nsigs, sigs, signal_stop);
6259 SET_SIGS (nsigs, sigs, signal_print);
6260 }
6261 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6262 {
6263 UNSET_SIGS (nsigs, sigs, signal_program);
6264 }
6265 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6266 {
6267 SET_SIGS (nsigs, sigs, signal_print);
6268 }
6269 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6270 {
6271 SET_SIGS (nsigs, sigs, signal_program);
6272 }
6273 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6274 {
6275 UNSET_SIGS (nsigs, sigs, signal_stop);
6276 }
6277 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6278 {
6279 SET_SIGS (nsigs, sigs, signal_program);
6280 }
6281 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6282 {
6283 UNSET_SIGS (nsigs, sigs, signal_print);
6284 UNSET_SIGS (nsigs, sigs, signal_stop);
6285 }
6286 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6287 {
6288 UNSET_SIGS (nsigs, sigs, signal_program);
6289 }
6290 else if (digits > 0)
6291 {
6292 /* It is numeric. The numeric signal refers to our own
6293 internal signal numbering from target.h, not to host/target
6294 signal number. This is a feature; users really should be
6295 using symbolic names anyway, and the common ones like
6296 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6297
6298 sigfirst = siglast = (int)
6299 target_signal_from_command (atoi (*argv));
6300 if ((*argv)[digits] == '-')
6301 {
6302 siglast = (int)
6303 target_signal_from_command (atoi ((*argv) + digits + 1));
6304 }
6305 if (sigfirst > siglast)
6306 {
1777feb0 6307 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6308 signum = sigfirst;
6309 sigfirst = siglast;
6310 siglast = signum;
6311 }
6312 }
6313 else
6314 {
6315 oursig = target_signal_from_name (*argv);
6316 if (oursig != TARGET_SIGNAL_UNKNOWN)
6317 {
6318 sigfirst = siglast = (int) oursig;
6319 }
6320 else
6321 {
6322 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6323 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6324 }
6325 }
6326
6327 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6328 which signals to apply actions to. */
c906108c
SS
6329
6330 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6331 {
6332 switch ((enum target_signal) signum)
6333 {
6334 case TARGET_SIGNAL_TRAP:
6335 case TARGET_SIGNAL_INT:
6336 if (!allsigs && !sigs[signum])
6337 {
9e2f0ad4 6338 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6339Are you sure you want to change it? "),
6340 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6341 {
6342 sigs[signum] = 1;
6343 }
6344 else
6345 {
a3f17187 6346 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6347 gdb_flush (gdb_stdout);
6348 }
6349 }
6350 break;
6351 case TARGET_SIGNAL_0:
6352 case TARGET_SIGNAL_DEFAULT:
6353 case TARGET_SIGNAL_UNKNOWN:
6354 /* Make sure that "all" doesn't print these. */
6355 break;
6356 default:
6357 sigs[signum] = 1;
6358 break;
6359 }
6360 }
6361
6362 argv++;
6363 }
6364
3a031f65
PA
6365 for (signum = 0; signum < nsigs; signum++)
6366 if (sigs[signum])
6367 {
2455069d
UW
6368 signal_cache_update (-1);
6369 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6370
3a031f65
PA
6371 if (from_tty)
6372 {
6373 /* Show the results. */
6374 sig_print_header ();
6375 for (; signum < nsigs; signum++)
6376 if (sigs[signum])
6377 sig_print_info (signum);
6378 }
6379
6380 break;
6381 }
c906108c
SS
6382
6383 do_cleanups (old_chain);
6384}
6385
6386static void
96baa820 6387xdb_handle_command (char *args, int from_tty)
c906108c
SS
6388{
6389 char **argv;
6390 struct cleanup *old_chain;
6391
d1a41061
PP
6392 if (args == NULL)
6393 error_no_arg (_("xdb command"));
6394
1777feb0 6395 /* Break the command line up into args. */
c906108c 6396
d1a41061 6397 argv = gdb_buildargv (args);
7a292a7a 6398 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6399 if (argv[1] != (char *) NULL)
6400 {
6401 char *argBuf;
6402 int bufLen;
6403
6404 bufLen = strlen (argv[0]) + 20;
6405 argBuf = (char *) xmalloc (bufLen);
6406 if (argBuf)
6407 {
6408 int validFlag = 1;
6409 enum target_signal oursig;
6410
6411 oursig = target_signal_from_name (argv[0]);
6412 memset (argBuf, 0, bufLen);
6413 if (strcmp (argv[1], "Q") == 0)
6414 sprintf (argBuf, "%s %s", argv[0], "noprint");
6415 else
6416 {
6417 if (strcmp (argv[1], "s") == 0)
6418 {
6419 if (!signal_stop[oursig])
6420 sprintf (argBuf, "%s %s", argv[0], "stop");
6421 else
6422 sprintf (argBuf, "%s %s", argv[0], "nostop");
6423 }
6424 else if (strcmp (argv[1], "i") == 0)
6425 {
6426 if (!signal_program[oursig])
6427 sprintf (argBuf, "%s %s", argv[0], "pass");
6428 else
6429 sprintf (argBuf, "%s %s", argv[0], "nopass");
6430 }
6431 else if (strcmp (argv[1], "r") == 0)
6432 {
6433 if (!signal_print[oursig])
6434 sprintf (argBuf, "%s %s", argv[0], "print");
6435 else
6436 sprintf (argBuf, "%s %s", argv[0], "noprint");
6437 }
6438 else
6439 validFlag = 0;
6440 }
6441 if (validFlag)
6442 handle_command (argBuf, from_tty);
6443 else
a3f17187 6444 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6445 if (argBuf)
b8c9b27d 6446 xfree (argBuf);
c906108c
SS
6447 }
6448 }
6449 do_cleanups (old_chain);
6450}
6451
6452/* Print current contents of the tables set by the handle command.
6453 It is possible we should just be printing signals actually used
6454 by the current target (but for things to work right when switching
6455 targets, all signals should be in the signal tables). */
6456
6457static void
96baa820 6458signals_info (char *signum_exp, int from_tty)
c906108c
SS
6459{
6460 enum target_signal oursig;
abbb1732 6461
c906108c
SS
6462 sig_print_header ();
6463
6464 if (signum_exp)
6465 {
6466 /* First see if this is a symbol name. */
6467 oursig = target_signal_from_name (signum_exp);
6468 if (oursig == TARGET_SIGNAL_UNKNOWN)
6469 {
6470 /* No, try numeric. */
6471 oursig =
bb518678 6472 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6473 }
6474 sig_print_info (oursig);
6475 return;
6476 }
6477
6478 printf_filtered ("\n");
6479 /* These ugly casts brought to you by the native VAX compiler. */
6480 for (oursig = TARGET_SIGNAL_FIRST;
6481 (int) oursig < (int) TARGET_SIGNAL_LAST;
6482 oursig = (enum target_signal) ((int) oursig + 1))
6483 {
6484 QUIT;
6485
6486 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6487 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6488 sig_print_info (oursig);
6489 }
6490
3e43a32a
MS
6491 printf_filtered (_("\nUse the \"handle\" command "
6492 "to change these tables.\n"));
c906108c 6493}
4aa995e1 6494
c709acd1
PA
6495/* Check if it makes sense to read $_siginfo from the current thread
6496 at this point. If not, throw an error. */
6497
6498static void
6499validate_siginfo_access (void)
6500{
6501 /* No current inferior, no siginfo. */
6502 if (ptid_equal (inferior_ptid, null_ptid))
6503 error (_("No thread selected."));
6504
6505 /* Don't try to read from a dead thread. */
6506 if (is_exited (inferior_ptid))
6507 error (_("The current thread has terminated"));
6508
6509 /* ... or from a spinning thread. */
6510 if (is_running (inferior_ptid))
6511 error (_("Selected thread is running."));
6512}
6513
4aa995e1
PA
6514/* The $_siginfo convenience variable is a bit special. We don't know
6515 for sure the type of the value until we actually have a chance to
7a9dd1b2 6516 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6517 also dependent on which thread you have selected.
6518
6519 1. making $_siginfo be an internalvar that creates a new value on
6520 access.
6521
6522 2. making the value of $_siginfo be an lval_computed value. */
6523
6524/* This function implements the lval_computed support for reading a
6525 $_siginfo value. */
6526
6527static void
6528siginfo_value_read (struct value *v)
6529{
6530 LONGEST transferred;
6531
c709acd1
PA
6532 validate_siginfo_access ();
6533
4aa995e1
PA
6534 transferred =
6535 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6536 NULL,
6537 value_contents_all_raw (v),
6538 value_offset (v),
6539 TYPE_LENGTH (value_type (v)));
6540
6541 if (transferred != TYPE_LENGTH (value_type (v)))
6542 error (_("Unable to read siginfo"));
6543}
6544
6545/* This function implements the lval_computed support for writing a
6546 $_siginfo value. */
6547
6548static void
6549siginfo_value_write (struct value *v, struct value *fromval)
6550{
6551 LONGEST transferred;
6552
c709acd1
PA
6553 validate_siginfo_access ();
6554
4aa995e1
PA
6555 transferred = target_write (&current_target,
6556 TARGET_OBJECT_SIGNAL_INFO,
6557 NULL,
6558 value_contents_all_raw (fromval),
6559 value_offset (v),
6560 TYPE_LENGTH (value_type (fromval)));
6561
6562 if (transferred != TYPE_LENGTH (value_type (fromval)))
6563 error (_("Unable to write siginfo"));
6564}
6565
c8f2448a 6566static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6567 {
6568 siginfo_value_read,
6569 siginfo_value_write
6570 };
6571
6572/* Return a new value with the correct type for the siginfo object of
78267919
UW
6573 the current thread using architecture GDBARCH. Return a void value
6574 if there's no object available. */
4aa995e1 6575
2c0b251b 6576static struct value *
78267919 6577siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6578{
4aa995e1 6579 if (target_has_stack
78267919
UW
6580 && !ptid_equal (inferior_ptid, null_ptid)
6581 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6582 {
78267919 6583 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6584
78267919 6585 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6586 }
6587
78267919 6588 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6589}
6590
c906108c 6591\f
16c381f0
JK
6592/* infcall_suspend_state contains state about the program itself like its
6593 registers and any signal it received when it last stopped.
6594 This state must be restored regardless of how the inferior function call
6595 ends (either successfully, or after it hits a breakpoint or signal)
6596 if the program is to properly continue where it left off. */
6597
6598struct infcall_suspend_state
7a292a7a 6599{
16c381f0
JK
6600 struct thread_suspend_state thread_suspend;
6601 struct inferior_suspend_state inferior_suspend;
6602
6603 /* Other fields: */
7a292a7a 6604 CORE_ADDR stop_pc;
b89667eb 6605 struct regcache *registers;
1736ad11 6606
35515841 6607 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6608 struct gdbarch *siginfo_gdbarch;
6609
6610 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6611 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6612 content would be invalid. */
6613 gdb_byte *siginfo_data;
b89667eb
DE
6614};
6615
16c381f0
JK
6616struct infcall_suspend_state *
6617save_infcall_suspend_state (void)
b89667eb 6618{
16c381f0 6619 struct infcall_suspend_state *inf_state;
b89667eb 6620 struct thread_info *tp = inferior_thread ();
16c381f0 6621 struct inferior *inf = current_inferior ();
1736ad11
JK
6622 struct regcache *regcache = get_current_regcache ();
6623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6624 gdb_byte *siginfo_data = NULL;
6625
6626 if (gdbarch_get_siginfo_type_p (gdbarch))
6627 {
6628 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6629 size_t len = TYPE_LENGTH (type);
6630 struct cleanup *back_to;
6631
6632 siginfo_data = xmalloc (len);
6633 back_to = make_cleanup (xfree, siginfo_data);
6634
6635 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6636 siginfo_data, 0, len) == len)
6637 discard_cleanups (back_to);
6638 else
6639 {
6640 /* Errors ignored. */
6641 do_cleanups (back_to);
6642 siginfo_data = NULL;
6643 }
6644 }
6645
16c381f0 6646 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6647
6648 if (siginfo_data)
6649 {
6650 inf_state->siginfo_gdbarch = gdbarch;
6651 inf_state->siginfo_data = siginfo_data;
6652 }
b89667eb 6653
16c381f0
JK
6654 inf_state->thread_suspend = tp->suspend;
6655 inf_state->inferior_suspend = inf->suspend;
6656
35515841
JK
6657 /* run_inferior_call will not use the signal due to its `proceed' call with
6658 TARGET_SIGNAL_0 anyway. */
16c381f0 6659 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6660
b89667eb
DE
6661 inf_state->stop_pc = stop_pc;
6662
1736ad11 6663 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6664
6665 return inf_state;
6666}
6667
6668/* Restore inferior session state to INF_STATE. */
6669
6670void
16c381f0 6671restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6672{
6673 struct thread_info *tp = inferior_thread ();
16c381f0 6674 struct inferior *inf = current_inferior ();
1736ad11
JK
6675 struct regcache *regcache = get_current_regcache ();
6676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6677
16c381f0
JK
6678 tp->suspend = inf_state->thread_suspend;
6679 inf->suspend = inf_state->inferior_suspend;
6680
b89667eb
DE
6681 stop_pc = inf_state->stop_pc;
6682
1736ad11
JK
6683 if (inf_state->siginfo_gdbarch == gdbarch)
6684 {
6685 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6686 size_t len = TYPE_LENGTH (type);
6687
6688 /* Errors ignored. */
6689 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6690 inf_state->siginfo_data, 0, len);
6691 }
6692
b89667eb
DE
6693 /* The inferior can be gone if the user types "print exit(0)"
6694 (and perhaps other times). */
6695 if (target_has_execution)
6696 /* NB: The register write goes through to the target. */
1736ad11 6697 regcache_cpy (regcache, inf_state->registers);
803b5f95 6698
16c381f0 6699 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6700}
6701
6702static void
16c381f0 6703do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6704{
16c381f0 6705 restore_infcall_suspend_state (state);
b89667eb
DE
6706}
6707
6708struct cleanup *
16c381f0
JK
6709make_cleanup_restore_infcall_suspend_state
6710 (struct infcall_suspend_state *inf_state)
b89667eb 6711{
16c381f0 6712 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6713}
6714
6715void
16c381f0 6716discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6717{
6718 regcache_xfree (inf_state->registers);
803b5f95 6719 xfree (inf_state->siginfo_data);
b89667eb
DE
6720 xfree (inf_state);
6721}
6722
6723struct regcache *
16c381f0 6724get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6725{
6726 return inf_state->registers;
6727}
6728
16c381f0
JK
6729/* infcall_control_state contains state regarding gdb's control of the
6730 inferior itself like stepping control. It also contains session state like
6731 the user's currently selected frame. */
b89667eb 6732
16c381f0 6733struct infcall_control_state
b89667eb 6734{
16c381f0
JK
6735 struct thread_control_state thread_control;
6736 struct inferior_control_state inferior_control;
d82142e2
JK
6737
6738 /* Other fields: */
6739 enum stop_stack_kind stop_stack_dummy;
6740 int stopped_by_random_signal;
7a292a7a 6741 int stop_after_trap;
7a292a7a 6742
b89667eb 6743 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6744 struct frame_id selected_frame_id;
7a292a7a
SS
6745};
6746
c906108c 6747/* Save all of the information associated with the inferior<==>gdb
b89667eb 6748 connection. */
c906108c 6749
16c381f0
JK
6750struct infcall_control_state *
6751save_infcall_control_state (void)
c906108c 6752{
16c381f0 6753 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6754 struct thread_info *tp = inferior_thread ();
d6b48e9c 6755 struct inferior *inf = current_inferior ();
7a292a7a 6756
16c381f0
JK
6757 inf_status->thread_control = tp->control;
6758 inf_status->inferior_control = inf->control;
d82142e2 6759
8358c15c 6760 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6761 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6762
16c381f0
JK
6763 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6764 chain. If caller's caller is walking the chain, they'll be happier if we
6765 hand them back the original chain when restore_infcall_control_state is
6766 called. */
6767 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6768
6769 /* Other fields: */
6770 inf_status->stop_stack_dummy = stop_stack_dummy;
6771 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6772 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6773
206415a3 6774 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6775
7a292a7a 6776 return inf_status;
c906108c
SS
6777}
6778
c906108c 6779static int
96baa820 6780restore_selected_frame (void *args)
c906108c 6781{
488f131b 6782 struct frame_id *fid = (struct frame_id *) args;
c906108c 6783 struct frame_info *frame;
c906108c 6784
101dcfbe 6785 frame = frame_find_by_id (*fid);
c906108c 6786
aa0cd9c1
AC
6787 /* If inf_status->selected_frame_id is NULL, there was no previously
6788 selected frame. */
101dcfbe 6789 if (frame == NULL)
c906108c 6790 {
8a3fe4f8 6791 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6792 return 0;
6793 }
6794
0f7d239c 6795 select_frame (frame);
c906108c
SS
6796
6797 return (1);
6798}
6799
b89667eb
DE
6800/* Restore inferior session state to INF_STATUS. */
6801
c906108c 6802void
16c381f0 6803restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6804{
4e1c45ea 6805 struct thread_info *tp = inferior_thread ();
d6b48e9c 6806 struct inferior *inf = current_inferior ();
4e1c45ea 6807
8358c15c
JK
6808 if (tp->control.step_resume_breakpoint)
6809 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6810
5b79abe7
TT
6811 if (tp->control.exception_resume_breakpoint)
6812 tp->control.exception_resume_breakpoint->disposition
6813 = disp_del_at_next_stop;
6814
d82142e2 6815 /* Handle the bpstat_copy of the chain. */
16c381f0 6816 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6817
16c381f0
JK
6818 tp->control = inf_status->thread_control;
6819 inf->control = inf_status->inferior_control;
d82142e2
JK
6820
6821 /* Other fields: */
6822 stop_stack_dummy = inf_status->stop_stack_dummy;
6823 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6824 stop_after_trap = inf_status->stop_after_trap;
c906108c 6825
b89667eb 6826 if (target_has_stack)
c906108c 6827 {
c906108c 6828 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6829 walking the stack might encounter a garbage pointer and
6830 error() trying to dereference it. */
488f131b
JB
6831 if (catch_errors
6832 (restore_selected_frame, &inf_status->selected_frame_id,
6833 "Unable to restore previously selected frame:\n",
6834 RETURN_MASK_ERROR) == 0)
c906108c
SS
6835 /* Error in restoring the selected frame. Select the innermost
6836 frame. */
0f7d239c 6837 select_frame (get_current_frame ());
c906108c 6838 }
c906108c 6839
72cec141 6840 xfree (inf_status);
7a292a7a 6841}
c906108c 6842
74b7792f 6843static void
16c381f0 6844do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6845{
16c381f0 6846 restore_infcall_control_state (sts);
74b7792f
AC
6847}
6848
6849struct cleanup *
16c381f0
JK
6850make_cleanup_restore_infcall_control_state
6851 (struct infcall_control_state *inf_status)
74b7792f 6852{
16c381f0 6853 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6854}
6855
c906108c 6856void
16c381f0 6857discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6858{
8358c15c
JK
6859 if (inf_status->thread_control.step_resume_breakpoint)
6860 inf_status->thread_control.step_resume_breakpoint->disposition
6861 = disp_del_at_next_stop;
6862
5b79abe7
TT
6863 if (inf_status->thread_control.exception_resume_breakpoint)
6864 inf_status->thread_control.exception_resume_breakpoint->disposition
6865 = disp_del_at_next_stop;
6866
1777feb0 6867 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6868 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6869
72cec141 6870 xfree (inf_status);
7a292a7a 6871}
b89667eb 6872\f
47932f85 6873int
3a3e9ee3 6874inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6875{
6876 struct target_waitstatus last;
6877 ptid_t last_ptid;
6878
6879 get_last_target_status (&last_ptid, &last);
6880
6881 if (last.kind != TARGET_WAITKIND_FORKED)
6882 return 0;
6883
3a3e9ee3 6884 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6885 return 0;
6886
6887 *child_pid = last.value.related_pid;
6888 return 1;
6889}
6890
6891int
3a3e9ee3 6892inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6893{
6894 struct target_waitstatus last;
6895 ptid_t last_ptid;
6896
6897 get_last_target_status (&last_ptid, &last);
6898
6899 if (last.kind != TARGET_WAITKIND_VFORKED)
6900 return 0;
6901
3a3e9ee3 6902 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6903 return 0;
6904
6905 *child_pid = last.value.related_pid;
6906 return 1;
6907}
6908
6909int
3a3e9ee3 6910inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6911{
6912 struct target_waitstatus last;
6913 ptid_t last_ptid;
6914
6915 get_last_target_status (&last_ptid, &last);
6916
6917 if (last.kind != TARGET_WAITKIND_EXECD)
6918 return 0;
6919
3a3e9ee3 6920 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6921 return 0;
6922
6923 *execd_pathname = xstrdup (last.value.execd_pathname);
6924 return 1;
6925}
6926
a96d9b2e
SDJ
6927int
6928inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6929{
6930 struct target_waitstatus last;
6931 ptid_t last_ptid;
6932
6933 get_last_target_status (&last_ptid, &last);
6934
6935 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6936 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6937 return 0;
6938
6939 if (!ptid_equal (last_ptid, pid))
6940 return 0;
6941
6942 *syscall_number = last.value.syscall_number;
6943 return 1;
6944}
6945
0723dbf5
PA
6946int
6947ptid_match (ptid_t ptid, ptid_t filter)
6948{
0723dbf5
PA
6949 if (ptid_equal (filter, minus_one_ptid))
6950 return 1;
6951 if (ptid_is_pid (filter)
6952 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6953 return 1;
6954 else if (ptid_equal (ptid, filter))
6955 return 1;
6956
6957 return 0;
6958}
6959
ca6724c1
KB
6960/* restore_inferior_ptid() will be used by the cleanup machinery
6961 to restore the inferior_ptid value saved in a call to
6962 save_inferior_ptid(). */
ce696e05
KB
6963
6964static void
6965restore_inferior_ptid (void *arg)
6966{
6967 ptid_t *saved_ptid_ptr = arg;
abbb1732 6968
ce696e05
KB
6969 inferior_ptid = *saved_ptid_ptr;
6970 xfree (arg);
6971}
6972
6973/* Save the value of inferior_ptid so that it may be restored by a
6974 later call to do_cleanups(). Returns the struct cleanup pointer
6975 needed for later doing the cleanup. */
6976
6977struct cleanup *
6978save_inferior_ptid (void)
6979{
6980 ptid_t *saved_ptid_ptr;
6981
6982 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6983 *saved_ptid_ptr = inferior_ptid;
6984 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6985}
c5aa993b 6986\f
488f131b 6987
b2175913
MS
6988/* User interface for reverse debugging:
6989 Set exec-direction / show exec-direction commands
6990 (returns error unless target implements to_set_exec_direction method). */
6991
32231432 6992int execution_direction = EXEC_FORWARD;
b2175913
MS
6993static const char exec_forward[] = "forward";
6994static const char exec_reverse[] = "reverse";
6995static const char *exec_direction = exec_forward;
6996static const char *exec_direction_names[] = {
6997 exec_forward,
6998 exec_reverse,
6999 NULL
7000};
7001
7002static void
7003set_exec_direction_func (char *args, int from_tty,
7004 struct cmd_list_element *cmd)
7005{
7006 if (target_can_execute_reverse)
7007 {
7008 if (!strcmp (exec_direction, exec_forward))
7009 execution_direction = EXEC_FORWARD;
7010 else if (!strcmp (exec_direction, exec_reverse))
7011 execution_direction = EXEC_REVERSE;
7012 }
8bbed405
MS
7013 else
7014 {
7015 exec_direction = exec_forward;
7016 error (_("Target does not support this operation."));
7017 }
b2175913
MS
7018}
7019
7020static void
7021show_exec_direction_func (struct ui_file *out, int from_tty,
7022 struct cmd_list_element *cmd, const char *value)
7023{
7024 switch (execution_direction) {
7025 case EXEC_FORWARD:
7026 fprintf_filtered (out, _("Forward.\n"));
7027 break;
7028 case EXEC_REVERSE:
7029 fprintf_filtered (out, _("Reverse.\n"));
7030 break;
b2175913 7031 default:
d8b34453
PA
7032 internal_error (__FILE__, __LINE__,
7033 _("bogus execution_direction value: %d"),
7034 (int) execution_direction);
b2175913
MS
7035 }
7036}
7037
7038/* User interface for non-stop mode. */
7039
ad52ddc6 7040int non_stop = 0;
ad52ddc6
PA
7041
7042static void
7043set_non_stop (char *args, int from_tty,
7044 struct cmd_list_element *c)
7045{
7046 if (target_has_execution)
7047 {
7048 non_stop_1 = non_stop;
7049 error (_("Cannot change this setting while the inferior is running."));
7050 }
7051
7052 non_stop = non_stop_1;
7053}
7054
7055static void
7056show_non_stop (struct ui_file *file, int from_tty,
7057 struct cmd_list_element *c, const char *value)
7058{
7059 fprintf_filtered (file,
7060 _("Controlling the inferior in non-stop mode is %s.\n"),
7061 value);
7062}
7063
d4db2f36
PA
7064static void
7065show_schedule_multiple (struct ui_file *file, int from_tty,
7066 struct cmd_list_element *c, const char *value)
7067{
3e43a32a
MS
7068 fprintf_filtered (file, _("Resuming the execution of threads "
7069 "of all processes is %s.\n"), value);
d4db2f36 7070}
ad52ddc6 7071
c906108c 7072void
96baa820 7073_initialize_infrun (void)
c906108c 7074{
52f0bd74
AC
7075 int i;
7076 int numsigs;
c906108c 7077
1bedd215
AC
7078 add_info ("signals", signals_info, _("\
7079What debugger does when program gets various signals.\n\
7080Specify a signal as argument to print info on that signal only."));
c906108c
SS
7081 add_info_alias ("handle", "signals", 0);
7082
1bedd215
AC
7083 add_com ("handle", class_run, handle_command, _("\
7084Specify how to handle a signal.\n\
c906108c
SS
7085Args are signals and actions to apply to those signals.\n\
7086Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7087from 1-15 are allowed for compatibility with old versions of GDB.\n\
7088Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7089The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7090used by the debugger, typically SIGTRAP and SIGINT.\n\
7091Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7092\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7093Stop means reenter debugger if this signal happens (implies print).\n\
7094Print means print a message if this signal happens.\n\
7095Pass means let program see this signal; otherwise program doesn't know.\n\
7096Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7097Pass and Stop may be combined."));
c906108c
SS
7098 if (xdb_commands)
7099 {
1bedd215
AC
7100 add_com ("lz", class_info, signals_info, _("\
7101What debugger does when program gets various signals.\n\
7102Specify a signal as argument to print info on that signal only."));
7103 add_com ("z", class_run, xdb_handle_command, _("\
7104Specify how to handle a signal.\n\
c906108c
SS
7105Args are signals and actions to apply to those signals.\n\
7106Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7107from 1-15 are allowed for compatibility with old versions of GDB.\n\
7108Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7109The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7110used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7111Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7112\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7113nopass), \"Q\" (noprint)\n\
7114Stop means reenter debugger if this signal happens (implies print).\n\
7115Print means print a message if this signal happens.\n\
7116Pass means let program see this signal; otherwise program doesn't know.\n\
7117Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7118Pass and Stop may be combined."));
c906108c
SS
7119 }
7120
7121 if (!dbx_commands)
1a966eab
AC
7122 stop_command = add_cmd ("stop", class_obscure,
7123 not_just_help_class_command, _("\
7124There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7125This allows you to set a list of commands to be run each time execution\n\
1a966eab 7126of the program stops."), &cmdlist);
c906108c 7127
85c07804
AC
7128 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7129Set inferior debugging."), _("\
7130Show inferior debugging."), _("\
7131When non-zero, inferior specific debugging is enabled."),
7132 NULL,
920d2a44 7133 show_debug_infrun,
85c07804 7134 &setdebuglist, &showdebuglist);
527159b7 7135
3e43a32a
MS
7136 add_setshow_boolean_cmd ("displaced", class_maintenance,
7137 &debug_displaced, _("\
237fc4c9
PA
7138Set displaced stepping debugging."), _("\
7139Show displaced stepping debugging."), _("\
7140When non-zero, displaced stepping specific debugging is enabled."),
7141 NULL,
7142 show_debug_displaced,
7143 &setdebuglist, &showdebuglist);
7144
ad52ddc6
PA
7145 add_setshow_boolean_cmd ("non-stop", no_class,
7146 &non_stop_1, _("\
7147Set whether gdb controls the inferior in non-stop mode."), _("\
7148Show whether gdb controls the inferior in non-stop mode."), _("\
7149When debugging a multi-threaded program and this setting is\n\
7150off (the default, also called all-stop mode), when one thread stops\n\
7151(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7152all other threads in the program while you interact with the thread of\n\
7153interest. When you continue or step a thread, you can allow the other\n\
7154threads to run, or have them remain stopped, but while you inspect any\n\
7155thread's state, all threads stop.\n\
7156\n\
7157In non-stop mode, when one thread stops, other threads can continue\n\
7158to run freely. You'll be able to step each thread independently,\n\
7159leave it stopped or free to run as needed."),
7160 set_non_stop,
7161 show_non_stop,
7162 &setlist,
7163 &showlist);
7164
c906108c 7165 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7166 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7167 signal_print = (unsigned char *)
7168 xmalloc (sizeof (signal_print[0]) * numsigs);
7169 signal_program = (unsigned char *)
7170 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7171 signal_pass = (unsigned char *)
7172 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7173 for (i = 0; i < numsigs; i++)
7174 {
7175 signal_stop[i] = 1;
7176 signal_print[i] = 1;
7177 signal_program[i] = 1;
7178 }
7179
7180 /* Signals caused by debugger's own actions
7181 should not be given to the program afterwards. */
7182 signal_program[TARGET_SIGNAL_TRAP] = 0;
7183 signal_program[TARGET_SIGNAL_INT] = 0;
7184
7185 /* Signals that are not errors should not normally enter the debugger. */
7186 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7187 signal_print[TARGET_SIGNAL_ALRM] = 0;
7188 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7189 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7190 signal_stop[TARGET_SIGNAL_PROF] = 0;
7191 signal_print[TARGET_SIGNAL_PROF] = 0;
7192 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7193 signal_print[TARGET_SIGNAL_CHLD] = 0;
7194 signal_stop[TARGET_SIGNAL_IO] = 0;
7195 signal_print[TARGET_SIGNAL_IO] = 0;
7196 signal_stop[TARGET_SIGNAL_POLL] = 0;
7197 signal_print[TARGET_SIGNAL_POLL] = 0;
7198 signal_stop[TARGET_SIGNAL_URG] = 0;
7199 signal_print[TARGET_SIGNAL_URG] = 0;
7200 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7201 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7202 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7203 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7204
cd0fc7c3
SS
7205 /* These signals are used internally by user-level thread
7206 implementations. (See signal(5) on Solaris.) Like the above
7207 signals, a healthy program receives and handles them as part of
7208 its normal operation. */
7209 signal_stop[TARGET_SIGNAL_LWP] = 0;
7210 signal_print[TARGET_SIGNAL_LWP] = 0;
7211 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7212 signal_print[TARGET_SIGNAL_WAITING] = 0;
7213 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7214 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7215
2455069d
UW
7216 /* Update cached state. */
7217 signal_cache_update (-1);
7218
85c07804
AC
7219 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7220 &stop_on_solib_events, _("\
7221Set stopping for shared library events."), _("\
7222Show stopping for shared library events."), _("\
c906108c
SS
7223If nonzero, gdb will give control to the user when the dynamic linker\n\
7224notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7225to the user would be loading/unloading of a new library."),
7226 NULL,
920d2a44 7227 show_stop_on_solib_events,
85c07804 7228 &setlist, &showlist);
c906108c 7229
7ab04401
AC
7230 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7231 follow_fork_mode_kind_names,
7232 &follow_fork_mode_string, _("\
7233Set debugger response to a program call of fork or vfork."), _("\
7234Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7235A fork or vfork creates a new process. follow-fork-mode can be:\n\
7236 parent - the original process is debugged after a fork\n\
7237 child - the new process is debugged after a fork\n\
ea1dd7bc 7238The unfollowed process will continue to run.\n\
7ab04401
AC
7239By default, the debugger will follow the parent process."),
7240 NULL,
920d2a44 7241 show_follow_fork_mode_string,
7ab04401
AC
7242 &setlist, &showlist);
7243
6c95b8df
PA
7244 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7245 follow_exec_mode_names,
7246 &follow_exec_mode_string, _("\
7247Set debugger response to a program call of exec."), _("\
7248Show debugger response to a program call of exec."), _("\
7249An exec call replaces the program image of a process.\n\
7250\n\
7251follow-exec-mode can be:\n\
7252\n\
cce7e648 7253 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7254to this new inferior. The program the process was running before\n\
7255the exec call can be restarted afterwards by restarting the original\n\
7256inferior.\n\
7257\n\
7258 same - the debugger keeps the process bound to the same inferior.\n\
7259The new executable image replaces the previous executable loaded in\n\
7260the inferior. Restarting the inferior after the exec call restarts\n\
7261the executable the process was running after the exec call.\n\
7262\n\
7263By default, the debugger will use the same inferior."),
7264 NULL,
7265 show_follow_exec_mode_string,
7266 &setlist, &showlist);
7267
7ab04401
AC
7268 add_setshow_enum_cmd ("scheduler-locking", class_run,
7269 scheduler_enums, &scheduler_mode, _("\
7270Set mode for locking scheduler during execution."), _("\
7271Show mode for locking scheduler during execution."), _("\
c906108c
SS
7272off == no locking (threads may preempt at any time)\n\
7273on == full locking (no thread except the current thread may run)\n\
7274step == scheduler locked during every single-step operation.\n\
7275 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7276 Other threads may run while stepping over a function call ('next')."),
7277 set_schedlock_func, /* traps on target vector */
920d2a44 7278 show_scheduler_mode,
7ab04401 7279 &setlist, &showlist);
5fbbeb29 7280
d4db2f36
PA
7281 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7282Set mode for resuming threads of all processes."), _("\
7283Show mode for resuming threads of all processes."), _("\
7284When on, execution commands (such as 'continue' or 'next') resume all\n\
7285threads of all processes. When off (which is the default), execution\n\
7286commands only resume the threads of the current process. The set of\n\
7287threads that are resumed is further refined by the scheduler-locking\n\
7288mode (see help set scheduler-locking)."),
7289 NULL,
7290 show_schedule_multiple,
7291 &setlist, &showlist);
7292
5bf193a2
AC
7293 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7294Set mode of the step operation."), _("\
7295Show mode of the step operation."), _("\
7296When set, doing a step over a function without debug line information\n\
7297will stop at the first instruction of that function. Otherwise, the\n\
7298function is skipped and the step command stops at a different source line."),
7299 NULL,
920d2a44 7300 show_step_stop_if_no_debug,
5bf193a2 7301 &setlist, &showlist);
ca6724c1 7302
fff08868
HZ
7303 add_setshow_enum_cmd ("displaced-stepping", class_run,
7304 can_use_displaced_stepping_enum,
7305 &can_use_displaced_stepping, _("\
237fc4c9
PA
7306Set debugger's willingness to use displaced stepping."), _("\
7307Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7308If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7309supported by the target architecture. If off, gdb will not use displaced\n\
7310stepping to step over breakpoints, even if such is supported by the target\n\
7311architecture. If auto (which is the default), gdb will use displaced stepping\n\
7312if the target architecture supports it and non-stop mode is active, but will not\n\
7313use it in all-stop mode (see help set non-stop)."),
7314 NULL,
7315 show_can_use_displaced_stepping,
7316 &setlist, &showlist);
237fc4c9 7317
b2175913
MS
7318 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7319 &exec_direction, _("Set direction of execution.\n\
7320Options are 'forward' or 'reverse'."),
7321 _("Show direction of execution (forward/reverse)."),
7322 _("Tells gdb whether to execute forward or backward."),
7323 set_exec_direction_func, show_exec_direction_func,
7324 &setlist, &showlist);
7325
6c95b8df
PA
7326 /* Set/show detach-on-fork: user-settable mode. */
7327
7328 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7329Set whether gdb will detach the child of a fork."), _("\
7330Show whether gdb will detach the child of a fork."), _("\
7331Tells gdb whether to detach the child of a fork."),
7332 NULL, NULL, &setlist, &showlist);
7333
03583c20
UW
7334 /* Set/show disable address space randomization mode. */
7335
7336 add_setshow_boolean_cmd ("disable-randomization", class_support,
7337 &disable_randomization, _("\
7338Set disabling of debuggee's virtual address space randomization."), _("\
7339Show disabling of debuggee's virtual address space randomization."), _("\
7340When this mode is on (which is the default), randomization of the virtual\n\
7341address space is disabled. Standalone programs run with the randomization\n\
7342enabled by default on some platforms."),
7343 &set_disable_randomization,
7344 &show_disable_randomization,
7345 &setlist, &showlist);
7346
ca6724c1 7347 /* ptid initializations */
ca6724c1
KB
7348 inferior_ptid = null_ptid;
7349 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7350
7351 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7352 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7353 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7354 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7355
7356 /* Explicitly create without lookup, since that tries to create a
7357 value with a void typed value, and when we get here, gdbarch
7358 isn't initialized yet. At this point, we're quite sure there
7359 isn't another convenience variable of the same name. */
7360 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7361
7362 add_setshow_boolean_cmd ("observer", no_class,
7363 &observer_mode_1, _("\
7364Set whether gdb controls the inferior in observer mode."), _("\
7365Show whether gdb controls the inferior in observer mode."), _("\
7366In observer mode, GDB can get data from the inferior, but not\n\
7367affect its execution. Registers and memory may not be changed,\n\
7368breakpoints may not be set, and the program cannot be interrupted\n\
7369or signalled."),
7370 set_observer_mode,
7371 show_observer_mode,
7372 &setlist,
7373 &showlist);
c906108c 7374}