]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Introduce null_block_symbol
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
1777feb0 155/* In asynchronous mode, but simulating synchronous execution. */
96baa820 156
43ff13b4
JM
157int sync_execution = 0;
158
b9f437de
PA
159/* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
96baa820 162
39f77062 163static ptid_t previous_inferior_ptid;
7a292a7a 164
07107ca6
LM
165/* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170static int detach_fork = 1;
6c95b8df 171
237fc4c9
PA
172int debug_displaced = 0;
173static void
174show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178}
179
ccce17b0 180unsigned int debug_infrun = 0;
920d2a44
AC
181static void
182show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186}
527159b7 187
03583c20
UW
188
189/* Support for disabling address space randomization. */
190
191int disable_randomization = 1;
192
193static void
194show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196{
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206}
207
208static void
209set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211{
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216}
217
d32dc48e
PA
218/* User interface for non-stop mode. */
219
220int non_stop = 0;
221static int non_stop_1 = 0;
222
223static void
224set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234}
235
236static void
237show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239{
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243}
244
d914c394
SS
245/* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
d914c394
SS
249int observer_mode = 0;
250static int observer_mode_1 = 0;
251
252static void
253set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255{
d914c394
SS
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
d914c394
SS
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286}
287
288static void
289show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291{
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293}
294
295/* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301void
302update_observer_mode (void)
303{
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318}
c2c6d25f 319
c906108c
SS
320/* Tables of how to react to signals; the user sets them. */
321
322static unsigned char *signal_stop;
323static unsigned char *signal_print;
324static unsigned char *signal_program;
325
ab04a2af
TT
326/* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330static unsigned char *signal_catch;
331
2455069d
UW
332/* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335static unsigned char *signal_pass;
336
c906108c
SS
337#define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345#define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
9b224c5e
PA
353/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356void
357update_signals_program_target (void)
358{
a493e3e2 359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
360}
361
1777feb0 362/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 363
edb3359d 364#define RESUME_ALL minus_one_ptid
c906108c
SS
365
366/* Command list pointer for the "stop" placeholder. */
367
368static struct cmd_list_element *stop_command;
369
c906108c
SS
370/* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
628fe4e4 372int stop_on_solib_events;
f9e14852
GB
373
374/* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377static void
378set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379{
380 update_solib_breakpoints ();
381}
382
920d2a44
AC
383static void
384show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389}
c906108c 390
c906108c
SS
391/* Nonzero after stop if current stack frame should be printed. */
392
393static int stop_print_frame;
394
e02bc4cc 395/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
0d1e5fa7
PA
401static void context_switch (ptid_t ptid);
402
4e1c45ea 403void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 404
53904c9e
AC
405static const char follow_fork_mode_child[] = "child";
406static const char follow_fork_mode_parent[] = "parent";
407
40478521 408static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
ef346e04 412};
c906108c 413
53904c9e 414static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
415static void
416show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418{
3e43a32a
MS
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
422 value);
423}
c906108c
SS
424\f
425
d83ad864
DB
426/* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432static int
433follow_fork_inferior (int follow_child, int detach_fork)
434{
435 int has_vforked;
79639e11 436 ptid_t parent_ptid, child_ptid;
d83ad864
DB
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
79639e11
PA
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454Can not resume the parent process over vfork in the foreground while\n\
455holding the child stopped. Try \"set detach-on-fork\" or \
456\"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
8dd06f7a
DB
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
6f259a23 486 target_terminal_ours_for_output ();
d83ad864 487 fprintf_filtered (gdb_stdlog,
79639e11 488 _("Detaching after %s from child %s.\n"),
6f259a23 489 has_vforked ? "vfork" : "fork",
8dd06f7a 490 target_pid_to_str (process_ptid));
d83ad864
DB
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
79639e11 499 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
79639e11 510 inferior_ptid = child_ptid;
d83ad864
DB
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
6f259a23
DB
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
79639e11
PA
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
6f259a23 578 has_vforked ? "vfork" : "fork",
79639e11 579 target_pid_to_str (child_ptid));
d83ad864
DB
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
79639e11 585 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
6f259a23
DB
616 {
617 if (info_verbose || debug_infrun)
618 {
8dd06f7a
DB
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
6f259a23
DB
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
79639e11 625 "child %s.\n"),
8dd06f7a 626 target_pid_to_str (process_ptid));
6f259a23
DB
627 }
628
629 target_detach (NULL, 0);
630 }
d83ad864
DB
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
79639e11 638 inferior_ptid = child_ptid;
d83ad864
DB
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668}
669
e58b0e63
PA
670/* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
6604731b 674static int
4ef3f3be 675follow_fork (void)
c906108c 676{
ea1dd7bc 677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
4e3990f4
DE
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 686 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
17b2616c 690 struct interp *command_interp = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
186c406b
TT
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 742 command_interp = tp->control.command_interp;
e58b0e63
PA
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
16c381f0
JK
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
186c406b 753 delete_exception_resume_breakpoint (tp);
17b2616c 754 tp->control.command_interp = NULL;
e58b0e63
PA
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
d83ad864
DB
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
e09875d4 775 tp = find_thread_ptid (parent);
e58b0e63
PA
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
1777feb0 783 /* If we followed the child, switch to it... */
e58b0e63
PA
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
17b2616c 800 tp->control.command_interp = command_interp;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
c906108c 831
e58b0e63 832 return should_resume;
c906108c
SS
833}
834
d83ad864 835static void
6604731b 836follow_inferior_reset_breakpoints (void)
c906108c 837{
4e1c45ea
PA
838 struct thread_info *tp = inferior_thread ();
839
6604731b
DJ
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
6604731b
DJ
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
8358c15c 853 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
6604731b 858
a1aa2221 859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 860 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
186c406b 865
6604731b
DJ
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
c906108c 873}
c906108c 874
6c95b8df
PA
875/* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878static int
879proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881{
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
a493e3e2 888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
70509625 896 clear_proceed_status (0);
64ce06e4 897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
898 }
899
900 return 0;
901}
902
903/* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906static void
907handle_vfork_child_exec_or_exit (int exec)
908{
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
f50f4e56
PA
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
6f259a23 964 target_terminal_ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
6c95b8df
PA
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1037 inferior. */
6c95b8df
PA
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
3e43a32a
MS
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
1777feb0 1086/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
95e50b27 1089follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1090{
95e50b27 1091 struct thread_info *th, *tmp;
6c95b8df 1092 struct inferior *inf = current_inferior ();
95e50b27 1093 int pid = ptid_get_pid (ptid);
94585166 1094 ptid_t process_ptid;
7a292a7a 1095
c906108c
SS
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1777feb0 1115 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1116
1117 mark_breakpoints_out ();
1118
95e50b27
PA
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
8a06aea7 1138 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
8358c15c 1147 th->control.step_resume_breakpoint = NULL;
186c406b 1148 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1149 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
c906108c 1152
95e50b27
PA
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
a75724bc
PA
1156 th->stop_requested = 0;
1157
95e50b27
PA
1158 update_breakpoints_after_exec ();
1159
1777feb0 1160 /* What is this a.out's name? */
94585166 1161 process_ptid = pid_to_ptid (pid);
6c95b8df 1162 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1163 target_pid_to_str (process_ptid),
6c95b8df 1164 execd_pathname);
c906108c
SS
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1167 inferior has essentially been killed & reborn. */
7a292a7a 1168
c906108c 1169 gdb_flush (gdb_stdout);
6ca15a4b
PA
1170
1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
a3be80c3 1173 if (*gdb_sysroot != '\0')
e85a822c 1174 {
998d2a3e 1175 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1176
224c3ddb 1177 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1178 strcpy (execd_pathname, name);
1179 xfree (name);
e85a822c 1180 }
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
17d8546e
DB
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
94585166
DB
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1203
1204 set_current_inferior (inf);
94585166
DB
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
6c95b8df 1207 }
9107fc8d
PA
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
6c95b8df
PA
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1777feb0 1221 /* That a.out is now the one to use. */
6c95b8df
PA
1222 exec_file_attach (execd_pathname, 0);
1223
c1e56572
JK
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
7dcd53a0
TT
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1232 NULL, 0);
1233
7dcd53a0
TT
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
c906108c 1236
9107fc8d
PA
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
268a4a75 1245 solib_create_inferior_hook (0);
c906108c 1246
4efc6507
DE
1247 jit_inferior_created_hook ();
1248
c1e56572
JK
1249 breakpoint_re_set ();
1250
c906108c
SS
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1777feb0 1253 to symbol_file_command...). */
c906108c
SS
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1777feb0 1259 matically get reset there in the new process.). */
c906108c
SS
1260}
1261
c2829269
PA
1262/* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269struct thread_info *step_over_queue_head;
1270
6c4cfb24
PA
1271/* Bit flags indicating what the thread needs to step over. */
1272
8d297bbf 1273enum step_over_what_flag
6c4cfb24
PA
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
8d297bbf 1283DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1284
963f9c80 1285/* Info about an instruction that is being stepped over. */
31e77af2
PA
1286
1287struct step_over_info
1288{
963f9c80
PA
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
31e77af2 1293 struct address_space *aspace;
31e77af2 1294 CORE_ADDR address;
963f9c80
PA
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
31e77af2
PA
1299};
1300
1301/* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325static struct step_over_info step_over_info;
1326
1327/* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330static void
963f9c80
PA
1331set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
31e77af2
PA
1333{
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
963f9c80 1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1337}
1338
1339/* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342static void
1343clear_step_over_info (void)
1344{
372316f1
PA
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
31e77af2
PA
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
963f9c80 1350 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
1367int
1368stepping_past_nonsteppable_watchpoint (void)
1369{
1370 return step_over_info.nonsteppable_watchpoint_p;
1371}
1372
6cc83d2a
PA
1373/* Returns true if step-over info is valid. */
1374
1375static int
1376step_over_info_valid_p (void)
1377{
963f9c80
PA
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1380}
1381
c906108c 1382\f
237fc4c9
PA
1383/* Displaced stepping. */
1384
1385/* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
fc1cf338
PA
1471/* Per-inferior displaced stepping state. */
1472struct displaced_step_inferior_state
1473{
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
3fc8eb30
PA
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
fc1cf338
PA
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502};
1503
1504/* The list of states of processes involved in displaced stepping
1505 presently. */
1506static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508/* Get the displaced stepping state of process PID. */
1509
1510static struct displaced_step_inferior_state *
1511get_displaced_stepping_state (int pid)
1512{
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522}
1523
372316f1
PA
1524/* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527static int
1528displaced_step_in_progress_any_inferior (void)
1529{
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539}
1540
c0987663
YQ
1541/* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544static int
1545displaced_step_in_progress_thread (ptid_t ptid)
1546{
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554}
1555
8f572e5c
PA
1556/* Return true if process PID has a thread doing a displaced step. */
1557
1558static int
1559displaced_step_in_progress (int pid)
1560{
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568}
1569
fc1cf338
PA
1570/* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574static struct displaced_step_inferior_state *
1575add_displaced_stepping_state (int pid)
1576{
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
237fc4c9 1584
8d749320 1585 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
237fc4c9 1589
fc1cf338
PA
1590 return state;
1591}
1592
a42244db
YQ
1593/* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597struct displaced_step_closure*
1598get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599{
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609}
1610
fc1cf338 1611/* Remove the displaced stepping state of process PID. */
237fc4c9 1612
fc1cf338
PA
1613static void
1614remove_displaced_stepping_state (int pid)
1615{
1616 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1617
fc1cf338
PA
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634}
1635
1636static void
1637infrun_inferior_exit (struct inferior *inf)
1638{
1639 remove_displaced_stepping_state (inf->pid);
1640}
237fc4c9 1641
fff08868
HZ
1642/* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
72d0e2c5 1650static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1651
237fc4c9
PA
1652static void
1653show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656{
72d0e2c5 1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1661 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1662 else
3e43a32a
MS
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1666}
1667
fff08868 1668/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1669 over breakpoints of thread TP. */
fff08868 1670
237fc4c9 1671static int
3fc8eb30 1672use_displaced_stepping (struct thread_info *tp)
237fc4c9 1673{
3fc8eb30
PA
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
fbea99ea
PA
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
72d0e2c5 1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
237fc4c9
PA
1687}
1688
1689/* Clean out any stray displaced stepping state. */
1690static void
fc1cf338 1691displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1692{
1693 /* Indicate that there is no cleanup pending. */
fc1cf338 1694 displaced->step_ptid = null_ptid;
237fc4c9 1695
fc1cf338 1696 if (displaced->step_closure)
237fc4c9 1697 {
fc1cf338
PA
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
237fc4c9
PA
1701 }
1702}
1703
1704static void
fc1cf338 1705displaced_step_clear_cleanup (void *arg)
237fc4c9 1706{
9a3c8263
SM
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1709
1710 displaced_step_clear (state);
237fc4c9
PA
1711}
1712
1713/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714void
1715displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718{
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724}
1725
1726/* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
237fc4c9 1742static int
3fc8eb30 1743displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1744{
ad53cd71 1745 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1746 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1749 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
fc1cf338 1753 struct displaced_step_inferior_state *displaced;
9e529e1d 1754 int status;
237fc4c9
PA
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
c2829269
PA
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
c1e36e3e
PA
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
fc1cf338
PA
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
237fc4c9 1771
fc1cf338
PA
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
237fc4c9
PA
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
c2829269 1781 "displaced: deferring step of %s\n",
237fc4c9
PA
1782 target_pid_to_str (ptid));
1783
c2829269 1784 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
fc1cf338 1795 displaced_step_clear (displaced);
237fc4c9 1796
ad53cd71
PA
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
515630c5 1800 original = regcache_read_pc (regcache);
237fc4c9
PA
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
d35ae833
PA
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
237fc4c9 1827 /* Save the original contents of the copy area. */
224c3ddb 1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1829 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1830 &displaced->step_saved_copy);
9e529e1d
JK
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1837 if (debug_displaced)
1838 {
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
fc1cf338
PA
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
237fc4c9
PA
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1847 original, copy, regcache);
7f03bd92
PA
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
237fc4c9 1856
9f5a595d
UW
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
fc1cf338
PA
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
9f5a595d 1864
fc1cf338 1865 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1866
1867 /* Resume execution at the copy. */
515630c5 1868 regcache_write_pc (regcache, copy);
237fc4c9 1869
ad53cd71
PA
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
237fc4c9
PA
1873
1874 if (debug_displaced)
5af949e3
UW
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
237fc4c9 1877
237fc4c9
PA
1878 return 1;
1879}
1880
3fc8eb30
PA
1881/* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884static int
1885displaced_step_prepare (ptid_t ptid)
1886{
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
fd7dcb94 1911 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923}
1924
237fc4c9 1925static void
3e43a32a
MS
1926write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
237fc4c9
PA
1928{
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1930
237fc4c9
PA
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934}
1935
e2d96639
YQ
1936/* Restore the contents of the copy area for thread PTID. */
1937
1938static void
1939displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941{
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951}
1952
372316f1
PA
1953/* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959static int
2ea28649 1960displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1961{
1962 struct cleanup *old_cleanups;
fc1cf338
PA
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1965 int ret;
fc1cf338
PA
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
372316f1 1969 return 0;
237fc4c9
PA
1970
1971 /* Was this event for the pid we displaced? */
fc1cf338
PA
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1974 return 0;
237fc4c9 1975
fc1cf338 1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1977
e2d96639 1978 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1979
cb71640d
PA
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
237fc4c9 1985 /* Did the instruction complete successfully? */
cb71640d
PA
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
237fc4c9
PA
1990 {
1991 /* Fix up the resulting state. */
fc1cf338
PA
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
372316f1 1997 ret = 1;
237fc4c9
PA
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
515630c5
UW
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2005
fc1cf338 2006 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2007 regcache_write_pc (regcache, pc);
372316f1 2008 ret = -1;
237fc4c9
PA
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
fc1cf338 2013 displaced->step_ptid = null_ptid;
372316f1
PA
2014
2015 return ret;
c2829269 2016}
1c5cfe86 2017
4d9d9d04
PA
2018/* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020struct execution_control_state
2021{
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039};
2040
2041/* Clear ECS and set it to point at TP. */
c2829269
PA
2042
2043static void
4d9d9d04
PA
2044reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045{
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049}
2050
2051static void keep_going_pass_signal (struct execution_control_state *ecs);
2052static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2053static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2054static step_over_what thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2055static void stop_all_threads (void);
4d9d9d04
PA
2056
2057/* Are there any pending step-over requests? If so, run all we can
2058 now and return true. Otherwise, return false. */
2059
2060static int
c2829269
PA
2061start_step_over (void)
2062{
2063 struct thread_info *tp, *next;
2064
372316f1
PA
2065 /* Don't start a new step-over if we already have an in-line
2066 step-over operation ongoing. */
2067 if (step_over_info_valid_p ())
2068 return 0;
2069
c2829269 2070 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2071 {
4d9d9d04
PA
2072 struct execution_control_state ecss;
2073 struct execution_control_state *ecs = &ecss;
8d297bbf 2074 step_over_what step_what;
372316f1 2075 int must_be_in_line;
c2829269
PA
2076
2077 next = thread_step_over_chain_next (tp);
237fc4c9 2078
c2829269
PA
2079 /* If this inferior already has a displaced step in process,
2080 don't start a new one. */
4d9d9d04 2081 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2082 continue;
2083
372316f1
PA
2084 step_what = thread_still_needs_step_over (tp);
2085 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2086 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2087 && !use_displaced_stepping (tp)));
372316f1
PA
2088
2089 /* We currently stop all threads of all processes to step-over
2090 in-line. If we need to start a new in-line step-over, let
2091 any pending displaced steps finish first. */
2092 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2093 return 0;
2094
c2829269
PA
2095 thread_step_over_chain_remove (tp);
2096
2097 if (step_over_queue_head == NULL)
2098 {
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "infrun: step-over queue now empty\n");
2102 }
2103
372316f1
PA
2104 if (tp->control.trap_expected
2105 || tp->resumed
2106 || tp->executing)
ad53cd71 2107 {
4d9d9d04
PA
2108 internal_error (__FILE__, __LINE__,
2109 "[%s] has inconsistent state: "
372316f1 2110 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2111 target_pid_to_str (tp->ptid),
2112 tp->control.trap_expected,
372316f1 2113 tp->resumed,
4d9d9d04 2114 tp->executing);
ad53cd71 2115 }
1c5cfe86 2116
4d9d9d04
PA
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: resuming [%s] for step-over\n",
2120 target_pid_to_str (tp->ptid));
2121
2122 /* keep_going_pass_signal skips the step-over if the breakpoint
2123 is no longer inserted. In all-stop, we want to keep looking
2124 for a thread that needs a step-over instead of resuming TP,
2125 because we wouldn't be able to resume anything else until the
2126 target stops again. In non-stop, the resume always resumes
2127 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2128 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2129 continue;
8550d3b3 2130
4d9d9d04
PA
2131 switch_to_thread (tp->ptid);
2132 reset_ecs (ecs, tp);
2133 keep_going_pass_signal (ecs);
1c5cfe86 2134
4d9d9d04
PA
2135 if (!ecs->wait_some_more)
2136 error (_("Command aborted."));
1c5cfe86 2137
372316f1
PA
2138 gdb_assert (tp->resumed);
2139
2140 /* If we started a new in-line step-over, we're done. */
2141 if (step_over_info_valid_p ())
2142 {
2143 gdb_assert (tp->control.trap_expected);
2144 return 1;
2145 }
2146
fbea99ea 2147 if (!target_is_non_stop_p ())
4d9d9d04
PA
2148 {
2149 /* On all-stop, shouldn't have resumed unless we needed a
2150 step over. */
2151 gdb_assert (tp->control.trap_expected
2152 || tp->step_after_step_resume_breakpoint);
2153
2154 /* With remote targets (at least), in all-stop, we can't
2155 issue any further remote commands until the program stops
2156 again. */
2157 return 1;
1c5cfe86 2158 }
c2829269 2159
4d9d9d04
PA
2160 /* Either the thread no longer needed a step-over, or a new
2161 displaced stepping sequence started. Even in the latter
2162 case, continue looking. Maybe we can also start another
2163 displaced step on a thread of other process. */
237fc4c9 2164 }
4d9d9d04
PA
2165
2166 return 0;
237fc4c9
PA
2167}
2168
5231c1fd
PA
2169/* Update global variables holding ptids to hold NEW_PTID if they were
2170 holding OLD_PTID. */
2171static void
2172infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2173{
2174 struct displaced_step_request *it;
fc1cf338 2175 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2176
2177 if (ptid_equal (inferior_ptid, old_ptid))
2178 inferior_ptid = new_ptid;
2179
fc1cf338
PA
2180 for (displaced = displaced_step_inferior_states;
2181 displaced;
2182 displaced = displaced->next)
2183 {
2184 if (ptid_equal (displaced->step_ptid, old_ptid))
2185 displaced->step_ptid = new_ptid;
fc1cf338 2186 }
5231c1fd
PA
2187}
2188
237fc4c9
PA
2189\f
2190/* Resuming. */
c906108c
SS
2191
2192/* Things to clean up if we QUIT out of resume (). */
c906108c 2193static void
74b7792f 2194resume_cleanups (void *ignore)
c906108c 2195{
34b7e8a6
PA
2196 if (!ptid_equal (inferior_ptid, null_ptid))
2197 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2198
c906108c
SS
2199 normal_stop ();
2200}
2201
53904c9e
AC
2202static const char schedlock_off[] = "off";
2203static const char schedlock_on[] = "on";
2204static const char schedlock_step[] = "step";
f2665db5 2205static const char schedlock_replay[] = "replay";
40478521 2206static const char *const scheduler_enums[] = {
ef346e04
AC
2207 schedlock_off,
2208 schedlock_on,
2209 schedlock_step,
f2665db5 2210 schedlock_replay,
ef346e04
AC
2211 NULL
2212};
f2665db5 2213static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2214static void
2215show_scheduler_mode (struct ui_file *file, int from_tty,
2216 struct cmd_list_element *c, const char *value)
2217{
3e43a32a
MS
2218 fprintf_filtered (file,
2219 _("Mode for locking scheduler "
2220 "during execution is \"%s\".\n"),
920d2a44
AC
2221 value);
2222}
c906108c
SS
2223
2224static void
96baa820 2225set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2226{
eefe576e
AC
2227 if (!target_can_lock_scheduler)
2228 {
2229 scheduler_mode = schedlock_off;
2230 error (_("Target '%s' cannot support this command."), target_shortname);
2231 }
c906108c
SS
2232}
2233
d4db2f36
PA
2234/* True if execution commands resume all threads of all processes by
2235 default; otherwise, resume only threads of the current inferior
2236 process. */
2237int sched_multi = 0;
2238
2facfe5c
DD
2239/* Try to setup for software single stepping over the specified location.
2240 Return 1 if target_resume() should use hardware single step.
2241
2242 GDBARCH the current gdbarch.
2243 PC the location to step over. */
2244
2245static int
2246maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2247{
2248 int hw_step = 1;
2249
f02253f1
HZ
2250 if (execution_direction == EXEC_FORWARD
2251 && gdbarch_software_single_step_p (gdbarch)
99e40580 2252 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2253 {
99e40580 2254 hw_step = 0;
2facfe5c
DD
2255 }
2256 return hw_step;
2257}
c906108c 2258
f3263aa4
PA
2259/* See infrun.h. */
2260
09cee04b
PA
2261ptid_t
2262user_visible_resume_ptid (int step)
2263{
f3263aa4 2264 ptid_t resume_ptid;
09cee04b 2265
09cee04b
PA
2266 if (non_stop)
2267 {
2268 /* With non-stop mode on, threads are always handled
2269 individually. */
2270 resume_ptid = inferior_ptid;
2271 }
2272 else if ((scheduler_mode == schedlock_on)
03d46957 2273 || (scheduler_mode == schedlock_step && step))
09cee04b 2274 {
f3263aa4
PA
2275 /* User-settable 'scheduler' mode requires solo thread
2276 resume. */
09cee04b
PA
2277 resume_ptid = inferior_ptid;
2278 }
f2665db5
MM
2279 else if ((scheduler_mode == schedlock_replay)
2280 && target_record_will_replay (minus_one_ptid, execution_direction))
2281 {
2282 /* User-settable 'scheduler' mode requires solo thread resume in replay
2283 mode. */
2284 resume_ptid = inferior_ptid;
2285 }
f3263aa4
PA
2286 else if (!sched_multi && target_supports_multi_process ())
2287 {
2288 /* Resume all threads of the current process (and none of other
2289 processes). */
2290 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2291 }
2292 else
2293 {
2294 /* Resume all threads of all processes. */
2295 resume_ptid = RESUME_ALL;
2296 }
09cee04b
PA
2297
2298 return resume_ptid;
2299}
2300
fbea99ea
PA
2301/* Return a ptid representing the set of threads that we will resume,
2302 in the perspective of the target, assuming run control handling
2303 does not require leaving some threads stopped (e.g., stepping past
2304 breakpoint). USER_STEP indicates whether we're about to start the
2305 target for a stepping command. */
2306
2307static ptid_t
2308internal_resume_ptid (int user_step)
2309{
2310 /* In non-stop, we always control threads individually. Note that
2311 the target may always work in non-stop mode even with "set
2312 non-stop off", in which case user_visible_resume_ptid could
2313 return a wildcard ptid. */
2314 if (target_is_non_stop_p ())
2315 return inferior_ptid;
2316 else
2317 return user_visible_resume_ptid (user_step);
2318}
2319
64ce06e4
PA
2320/* Wrapper for target_resume, that handles infrun-specific
2321 bookkeeping. */
2322
2323static void
2324do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2325{
2326 struct thread_info *tp = inferior_thread ();
2327
2328 /* Install inferior's terminal modes. */
2329 target_terminal_inferior ();
2330
2331 /* Avoid confusing the next resume, if the next stop/resume
2332 happens to apply to another thread. */
2333 tp->suspend.stop_signal = GDB_SIGNAL_0;
2334
8f572e5c
PA
2335 /* Advise target which signals may be handled silently.
2336
2337 If we have removed breakpoints because we are stepping over one
2338 in-line (in any thread), we need to receive all signals to avoid
2339 accidentally skipping a breakpoint during execution of a signal
2340 handler.
2341
2342 Likewise if we're displaced stepping, otherwise a trap for a
2343 breakpoint in a signal handler might be confused with the
2344 displaced step finishing. We don't make the displaced_step_fixup
2345 step distinguish the cases instead, because:
2346
2347 - a backtrace while stopped in the signal handler would show the
2348 scratch pad as frame older than the signal handler, instead of
2349 the real mainline code.
2350
2351 - when the thread is later resumed, the signal handler would
2352 return to the scratch pad area, which would no longer be
2353 valid. */
2354 if (step_over_info_valid_p ()
2355 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2356 target_pass_signals (0, NULL);
2357 else
2358 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2359
2360 target_resume (resume_ptid, step, sig);
2361}
2362
c906108c
SS
2363/* Resume the inferior, but allow a QUIT. This is useful if the user
2364 wants to interrupt some lengthy single-stepping operation
2365 (for child processes, the SIGINT goes to the inferior, and so
2366 we get a SIGINT random_signal, but for remote debugging and perhaps
2367 other targets, that's not true).
2368
c906108c
SS
2369 SIG is the signal to give the inferior (zero for none). */
2370void
64ce06e4 2371resume (enum gdb_signal sig)
c906108c 2372{
74b7792f 2373 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2374 struct regcache *regcache = get_current_regcache ();
2375 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2376 struct thread_info *tp = inferior_thread ();
515630c5 2377 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2378 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2379 ptid_t resume_ptid;
856e7dd6
PA
2380 /* This represents the user's step vs continue request. When
2381 deciding whether "set scheduler-locking step" applies, it's the
2382 user's intention that counts. */
2383 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2384 /* This represents what we'll actually request the target to do.
2385 This can decay from a step to a continue, if e.g., we need to
2386 implement single-stepping with breakpoints (software
2387 single-step). */
6b403daa 2388 int step;
c7e8a53c 2389
c2829269
PA
2390 gdb_assert (!thread_is_in_step_over_chain (tp));
2391
c906108c
SS
2392 QUIT;
2393
372316f1
PA
2394 if (tp->suspend.waitstatus_pending_p)
2395 {
2396 if (debug_infrun)
2397 {
2398 char *statstr;
2399
2400 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2401 fprintf_unfiltered (gdb_stdlog,
2402 "infrun: resume: thread %s has pending wait status %s "
2403 "(currently_stepping=%d).\n",
2404 target_pid_to_str (tp->ptid), statstr,
2405 currently_stepping (tp));
2406 xfree (statstr);
2407 }
2408
2409 tp->resumed = 1;
2410
2411 /* FIXME: What should we do if we are supposed to resume this
2412 thread with a signal? Maybe we should maintain a queue of
2413 pending signals to deliver. */
2414 if (sig != GDB_SIGNAL_0)
2415 {
fd7dcb94 2416 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2417 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2418 }
2419
2420 tp->suspend.stop_signal = GDB_SIGNAL_0;
2421 discard_cleanups (old_cleanups);
2422
2423 if (target_can_async_p ())
2424 target_async (1);
2425 return;
2426 }
2427
2428 tp->stepped_breakpoint = 0;
2429
6b403daa
PA
2430 /* Depends on stepped_breakpoint. */
2431 step = currently_stepping (tp);
2432
74609e71
YQ
2433 if (current_inferior ()->waiting_for_vfork_done)
2434 {
48f9886d
PA
2435 /* Don't try to single-step a vfork parent that is waiting for
2436 the child to get out of the shared memory region (by exec'ing
2437 or exiting). This is particularly important on software
2438 single-step archs, as the child process would trip on the
2439 software single step breakpoint inserted for the parent
2440 process. Since the parent will not actually execute any
2441 instruction until the child is out of the shared region (such
2442 are vfork's semantics), it is safe to simply continue it.
2443 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2444 the parent, and tell it to `keep_going', which automatically
2445 re-sets it stepping. */
74609e71
YQ
2446 if (debug_infrun)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "infrun: resume : clear step\n");
a09dd441 2449 step = 0;
74609e71
YQ
2450 }
2451
527159b7 2452 if (debug_infrun)
237fc4c9 2453 fprintf_unfiltered (gdb_stdlog,
c9737c08 2454 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2455 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2456 step, gdb_signal_to_symbol_string (sig),
2457 tp->control.trap_expected,
0d9a9a5f
PA
2458 target_pid_to_str (inferior_ptid),
2459 paddress (gdbarch, pc));
c906108c 2460
c2c6d25f
JM
2461 /* Normally, by the time we reach `resume', the breakpoints are either
2462 removed or inserted, as appropriate. The exception is if we're sitting
2463 at a permanent breakpoint; we need to step over it, but permanent
2464 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2465 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2466 {
af48d08f
PA
2467 if (sig != GDB_SIGNAL_0)
2468 {
2469 /* We have a signal to pass to the inferior. The resume
2470 may, or may not take us to the signal handler. If this
2471 is a step, we'll need to stop in the signal handler, if
2472 there's one, (if the target supports stepping into
2473 handlers), or in the next mainline instruction, if
2474 there's no handler. If this is a continue, we need to be
2475 sure to run the handler with all breakpoints inserted.
2476 In all cases, set a breakpoint at the current address
2477 (where the handler returns to), and once that breakpoint
2478 is hit, resume skipping the permanent breakpoint. If
2479 that breakpoint isn't hit, then we've stepped into the
2480 signal handler (or hit some other event). We'll delete
2481 the step-resume breakpoint then. */
2482
2483 if (debug_infrun)
2484 fprintf_unfiltered (gdb_stdlog,
2485 "infrun: resume: skipping permanent breakpoint, "
2486 "deliver signal first\n");
2487
2488 clear_step_over_info ();
2489 tp->control.trap_expected = 0;
2490
2491 if (tp->control.step_resume_breakpoint == NULL)
2492 {
2493 /* Set a "high-priority" step-resume, as we don't want
2494 user breakpoints at PC to trigger (again) when this
2495 hits. */
2496 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2497 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2498
2499 tp->step_after_step_resume_breakpoint = step;
2500 }
2501
2502 insert_breakpoints ();
2503 }
2504 else
2505 {
2506 /* There's no signal to pass, we can go ahead and skip the
2507 permanent breakpoint manually. */
2508 if (debug_infrun)
2509 fprintf_unfiltered (gdb_stdlog,
2510 "infrun: resume: skipping permanent breakpoint\n");
2511 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2512 /* Update pc to reflect the new address from which we will
2513 execute instructions. */
2514 pc = regcache_read_pc (regcache);
2515
2516 if (step)
2517 {
2518 /* We've already advanced the PC, so the stepping part
2519 is done. Now we need to arrange for a trap to be
2520 reported to handle_inferior_event. Set a breakpoint
2521 at the current PC, and run to it. Don't update
2522 prev_pc, because if we end in
44a1ee51
PA
2523 switch_back_to_stepped_thread, we want the "expected
2524 thread advanced also" branch to be taken. IOW, we
2525 don't want this thread to step further from PC
af48d08f 2526 (overstep). */
1ac806b8 2527 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2528 insert_single_step_breakpoint (gdbarch, aspace, pc);
2529 insert_breakpoints ();
2530
fbea99ea 2531 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2532 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2533 discard_cleanups (old_cleanups);
372316f1 2534 tp->resumed = 1;
af48d08f
PA
2535 return;
2536 }
2537 }
6d350bb5 2538 }
c2c6d25f 2539
c1e36e3e
PA
2540 /* If we have a breakpoint to step over, make sure to do a single
2541 step only. Same if we have software watchpoints. */
2542 if (tp->control.trap_expected || bpstat_should_step ())
2543 tp->control.may_range_step = 0;
2544
237fc4c9
PA
2545 /* If enabled, step over breakpoints by executing a copy of the
2546 instruction at a different address.
2547
2548 We can't use displaced stepping when we have a signal to deliver;
2549 the comments for displaced_step_prepare explain why. The
2550 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2551 signals' explain what we do instead.
2552
2553 We can't use displaced stepping when we are waiting for vfork_done
2554 event, displaced stepping breaks the vfork child similarly as single
2555 step software breakpoint. */
3fc8eb30
PA
2556 if (tp->control.trap_expected
2557 && use_displaced_stepping (tp)
cb71640d 2558 && !step_over_info_valid_p ()
a493e3e2 2559 && sig == GDB_SIGNAL_0
74609e71 2560 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2561 {
3fc8eb30 2562 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2563
3fc8eb30 2564 if (prepared == 0)
d56b7306 2565 {
4d9d9d04
PA
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "Got placed in step-over queue\n");
2569
2570 tp->control.trap_expected = 0;
d56b7306
VP
2571 discard_cleanups (old_cleanups);
2572 return;
2573 }
3fc8eb30
PA
2574 else if (prepared < 0)
2575 {
2576 /* Fallback to stepping over the breakpoint in-line. */
2577
2578 if (target_is_non_stop_p ())
2579 stop_all_threads ();
2580
2581 set_step_over_info (get_regcache_aspace (regcache),
2582 regcache_read_pc (regcache), 0);
2583
2584 step = maybe_software_singlestep (gdbarch, pc);
2585
2586 insert_breakpoints ();
2587 }
2588 else if (prepared > 0)
2589 {
2590 struct displaced_step_inferior_state *displaced;
99e40580 2591
3fc8eb30
PA
2592 /* Update pc to reflect the new address from which we will
2593 execute instructions due to displaced stepping. */
2594 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2595
3fc8eb30
PA
2596 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2597 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2598 displaced->step_closure);
2599 }
237fc4c9
PA
2600 }
2601
2facfe5c 2602 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2603 else if (step)
2facfe5c 2604 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2605
30852783
UW
2606 /* Currently, our software single-step implementation leads to different
2607 results than hardware single-stepping in one situation: when stepping
2608 into delivering a signal which has an associated signal handler,
2609 hardware single-step will stop at the first instruction of the handler,
2610 while software single-step will simply skip execution of the handler.
2611
2612 For now, this difference in behavior is accepted since there is no
2613 easy way to actually implement single-stepping into a signal handler
2614 without kernel support.
2615
2616 However, there is one scenario where this difference leads to follow-on
2617 problems: if we're stepping off a breakpoint by removing all breakpoints
2618 and then single-stepping. In this case, the software single-step
2619 behavior means that even if there is a *breakpoint* in the signal
2620 handler, GDB still would not stop.
2621
2622 Fortunately, we can at least fix this particular issue. We detect
2623 here the case where we are about to deliver a signal while software
2624 single-stepping with breakpoints removed. In this situation, we
2625 revert the decisions to remove all breakpoints and insert single-
2626 step breakpoints, and instead we install a step-resume breakpoint
2627 at the current address, deliver the signal without stepping, and
2628 once we arrive back at the step-resume breakpoint, actually step
2629 over the breakpoint we originally wanted to step over. */
34b7e8a6 2630 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2631 && sig != GDB_SIGNAL_0
2632 && step_over_info_valid_p ())
30852783
UW
2633 {
2634 /* If we have nested signals or a pending signal is delivered
2635 immediately after a handler returns, might might already have
2636 a step-resume breakpoint set on the earlier handler. We cannot
2637 set another step-resume breakpoint; just continue on until the
2638 original breakpoint is hit. */
2639 if (tp->control.step_resume_breakpoint == NULL)
2640 {
2c03e5be 2641 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2642 tp->step_after_step_resume_breakpoint = 1;
2643 }
2644
34b7e8a6 2645 delete_single_step_breakpoints (tp);
30852783 2646
31e77af2 2647 clear_step_over_info ();
30852783 2648 tp->control.trap_expected = 0;
31e77af2
PA
2649
2650 insert_breakpoints ();
30852783
UW
2651 }
2652
b0f16a3e
SM
2653 /* If STEP is set, it's a request to use hardware stepping
2654 facilities. But in that case, we should never
2655 use singlestep breakpoint. */
34b7e8a6 2656 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2657
fbea99ea 2658 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2659 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2660 && tp->control.trap_expected)
2661 {
2662 /* We're allowing a thread to run past a breakpoint it has
2663 hit, by single-stepping the thread with the breakpoint
2664 removed. In which case, we need to single-step only this
2665 thread, and keep others stopped, as they can miss this
2666 breakpoint if allowed to run. */
2667 resume_ptid = inferior_ptid;
2668 }
fbea99ea
PA
2669 else
2670 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2671
7f5ef605
PA
2672 if (execution_direction != EXEC_REVERSE
2673 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2674 {
372316f1
PA
2675 /* There are two cases where we currently need to step a
2676 breakpoint instruction when we have a signal to deliver:
2677
2678 - See handle_signal_stop where we handle random signals that
2679 could take out us out of the stepping range. Normally, in
2680 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2681 signal handler with a breakpoint at PC, but there are cases
2682 where we should _always_ single-step, even if we have a
2683 step-resume breakpoint, like when a software watchpoint is
2684 set. Assuming single-stepping and delivering a signal at the
2685 same time would takes us to the signal handler, then we could
2686 have removed the breakpoint at PC to step over it. However,
2687 some hardware step targets (like e.g., Mac OS) can't step
2688 into signal handlers, and for those, we need to leave the
2689 breakpoint at PC inserted, as otherwise if the handler
2690 recurses and executes PC again, it'll miss the breakpoint.
2691 So we leave the breakpoint inserted anyway, but we need to
2692 record that we tried to step a breakpoint instruction, so
372316f1
PA
2693 that adjust_pc_after_break doesn't end up confused.
2694
2695 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2696 in one thread after another thread that was stepping had been
2697 momentarily paused for a step-over. When we re-resume the
2698 stepping thread, it may be resumed from that address with a
2699 breakpoint that hasn't trapped yet. Seen with
2700 gdb.threads/non-stop-fair-events.exp, on targets that don't
2701 do displaced stepping. */
2702
2703 if (debug_infrun)
2704 fprintf_unfiltered (gdb_stdlog,
2705 "infrun: resume: [%s] stepped breakpoint\n",
2706 target_pid_to_str (tp->ptid));
7f5ef605
PA
2707
2708 tp->stepped_breakpoint = 1;
2709
b0f16a3e
SM
2710 /* Most targets can step a breakpoint instruction, thus
2711 executing it normally. But if this one cannot, just
2712 continue and we will hit it anyway. */
7f5ef605 2713 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2714 step = 0;
2715 }
ef5cf84e 2716
b0f16a3e 2717 if (debug_displaced
cb71640d 2718 && tp->control.trap_expected
3fc8eb30 2719 && use_displaced_stepping (tp)
cb71640d 2720 && !step_over_info_valid_p ())
b0f16a3e 2721 {
d9b67d9f 2722 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2723 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2724 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2725 gdb_byte buf[4];
2726
2727 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2728 paddress (resume_gdbarch, actual_pc));
2729 read_memory (actual_pc, buf, sizeof (buf));
2730 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2731 }
237fc4c9 2732
b0f16a3e
SM
2733 if (tp->control.may_range_step)
2734 {
2735 /* If we're resuming a thread with the PC out of the step
2736 range, then we're doing some nested/finer run control
2737 operation, like stepping the thread out of the dynamic
2738 linker or the displaced stepping scratch pad. We
2739 shouldn't have allowed a range step then. */
2740 gdb_assert (pc_in_thread_step_range (pc, tp));
2741 }
c1e36e3e 2742
64ce06e4 2743 do_target_resume (resume_ptid, step, sig);
372316f1 2744 tp->resumed = 1;
c906108c
SS
2745 discard_cleanups (old_cleanups);
2746}
2747\f
237fc4c9 2748/* Proceeding. */
c906108c 2749
4c2f2a79
PA
2750/* See infrun.h. */
2751
2752/* Counter that tracks number of user visible stops. This can be used
2753 to tell whether a command has proceeded the inferior past the
2754 current location. This allows e.g., inferior function calls in
2755 breakpoint commands to not interrupt the command list. When the
2756 call finishes successfully, the inferior is standing at the same
2757 breakpoint as if nothing happened (and so we don't call
2758 normal_stop). */
2759static ULONGEST current_stop_id;
2760
2761/* See infrun.h. */
2762
2763ULONGEST
2764get_stop_id (void)
2765{
2766 return current_stop_id;
2767}
2768
2769/* Called when we report a user visible stop. */
2770
2771static void
2772new_stop_id (void)
2773{
2774 current_stop_id++;
2775}
2776
c906108c
SS
2777/* Clear out all variables saying what to do when inferior is continued.
2778 First do this, then set the ones you want, then call `proceed'. */
2779
a7212384
UW
2780static void
2781clear_proceed_status_thread (struct thread_info *tp)
c906108c 2782{
a7212384
UW
2783 if (debug_infrun)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "infrun: clear_proceed_status_thread (%s)\n",
2786 target_pid_to_str (tp->ptid));
d6b48e9c 2787
372316f1
PA
2788 /* If we're starting a new sequence, then the previous finished
2789 single-step is no longer relevant. */
2790 if (tp->suspend.waitstatus_pending_p)
2791 {
2792 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status: pending "
2797 "event of %s was a finished step. "
2798 "Discarding.\n",
2799 target_pid_to_str (tp->ptid));
2800
2801 tp->suspend.waitstatus_pending_p = 0;
2802 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2803 }
2804 else if (debug_infrun)
2805 {
2806 char *statstr;
2807
2808 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2809 fprintf_unfiltered (gdb_stdlog,
2810 "infrun: clear_proceed_status_thread: thread %s "
2811 "has pending wait status %s "
2812 "(currently_stepping=%d).\n",
2813 target_pid_to_str (tp->ptid), statstr,
2814 currently_stepping (tp));
2815 xfree (statstr);
2816 }
2817 }
2818
70509625
PA
2819 /* If this signal should not be seen by program, give it zero.
2820 Used for debugging signals. */
2821 if (!signal_pass_state (tp->suspend.stop_signal))
2822 tp->suspend.stop_signal = GDB_SIGNAL_0;
2823
243a9253
PA
2824 thread_fsm_delete (tp->thread_fsm);
2825 tp->thread_fsm = NULL;
2826
16c381f0
JK
2827 tp->control.trap_expected = 0;
2828 tp->control.step_range_start = 0;
2829 tp->control.step_range_end = 0;
c1e36e3e 2830 tp->control.may_range_step = 0;
16c381f0
JK
2831 tp->control.step_frame_id = null_frame_id;
2832 tp->control.step_stack_frame_id = null_frame_id;
2833 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2834 tp->control.step_start_function = NULL;
a7212384 2835 tp->stop_requested = 0;
4e1c45ea 2836
16c381f0 2837 tp->control.stop_step = 0;
32400beb 2838
16c381f0 2839 tp->control.proceed_to_finish = 0;
414c69f7 2840
17b2616c 2841 tp->control.command_interp = NULL;
856e7dd6 2842 tp->control.stepping_command = 0;
17b2616c 2843
a7212384 2844 /* Discard any remaining commands or status from previous stop. */
16c381f0 2845 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2846}
32400beb 2847
a7212384 2848void
70509625 2849clear_proceed_status (int step)
a7212384 2850{
f2665db5
MM
2851 /* With scheduler-locking replay, stop replaying other threads if we're
2852 not replaying the user-visible resume ptid.
2853
2854 This is a convenience feature to not require the user to explicitly
2855 stop replaying the other threads. We're assuming that the user's
2856 intent is to resume tracing the recorded process. */
2857 if (!non_stop && scheduler_mode == schedlock_replay
2858 && target_record_is_replaying (minus_one_ptid)
2859 && !target_record_will_replay (user_visible_resume_ptid (step),
2860 execution_direction))
2861 target_record_stop_replaying ();
2862
6c95b8df
PA
2863 if (!non_stop)
2864 {
70509625
PA
2865 struct thread_info *tp;
2866 ptid_t resume_ptid;
2867
2868 resume_ptid = user_visible_resume_ptid (step);
2869
2870 /* In all-stop mode, delete the per-thread status of all threads
2871 we're about to resume, implicitly and explicitly. */
2872 ALL_NON_EXITED_THREADS (tp)
2873 {
2874 if (!ptid_match (tp->ptid, resume_ptid))
2875 continue;
2876 clear_proceed_status_thread (tp);
2877 }
6c95b8df
PA
2878 }
2879
a7212384
UW
2880 if (!ptid_equal (inferior_ptid, null_ptid))
2881 {
2882 struct inferior *inferior;
2883
2884 if (non_stop)
2885 {
6c95b8df
PA
2886 /* If in non-stop mode, only delete the per-thread status of
2887 the current thread. */
a7212384
UW
2888 clear_proceed_status_thread (inferior_thread ());
2889 }
6c95b8df 2890
d6b48e9c 2891 inferior = current_inferior ();
16c381f0 2892 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2893 }
2894
f3b1572e 2895 observer_notify_about_to_proceed ();
c906108c
SS
2896}
2897
99619bea
PA
2898/* Returns true if TP is still stopped at a breakpoint that needs
2899 stepping-over in order to make progress. If the breakpoint is gone
2900 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2901
2902static int
6c4cfb24 2903thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2904{
2905 if (tp->stepping_over_breakpoint)
2906 {
2907 struct regcache *regcache = get_thread_regcache (tp->ptid);
2908
2909 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2910 regcache_read_pc (regcache))
2911 == ordinary_breakpoint_here)
99619bea
PA
2912 return 1;
2913
2914 tp->stepping_over_breakpoint = 0;
2915 }
2916
2917 return 0;
2918}
2919
6c4cfb24
PA
2920/* Check whether thread TP still needs to start a step-over in order
2921 to make progress when resumed. Returns an bitwise or of enum
2922 step_over_what bits, indicating what needs to be stepped over. */
2923
8d297bbf 2924static step_over_what
6c4cfb24
PA
2925thread_still_needs_step_over (struct thread_info *tp)
2926{
2927 struct inferior *inf = find_inferior_ptid (tp->ptid);
8d297bbf 2928 step_over_what what = 0;
6c4cfb24
PA
2929
2930 if (thread_still_needs_step_over_bp (tp))
2931 what |= STEP_OVER_BREAKPOINT;
2932
2933 if (tp->stepping_over_watchpoint
2934 && !target_have_steppable_watchpoint)
2935 what |= STEP_OVER_WATCHPOINT;
2936
2937 return what;
2938}
2939
483805cf
PA
2940/* Returns true if scheduler locking applies. STEP indicates whether
2941 we're about to do a step/next-like command to a thread. */
2942
2943static int
856e7dd6 2944schedlock_applies (struct thread_info *tp)
483805cf
PA
2945{
2946 return (scheduler_mode == schedlock_on
2947 || (scheduler_mode == schedlock_step
f2665db5
MM
2948 && tp->control.stepping_command)
2949 || (scheduler_mode == schedlock_replay
2950 && target_record_will_replay (minus_one_ptid,
2951 execution_direction)));
483805cf
PA
2952}
2953
c906108c
SS
2954/* Basic routine for continuing the program in various fashions.
2955
2956 ADDR is the address to resume at, or -1 for resume where stopped.
2957 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2958 or -1 for act according to how it stopped.
c906108c 2959 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2960 -1 means return after that and print nothing.
2961 You should probably set various step_... variables
2962 before calling here, if you are stepping.
c906108c
SS
2963
2964 You should call clear_proceed_status before calling proceed. */
2965
2966void
64ce06e4 2967proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2968{
e58b0e63
PA
2969 struct regcache *regcache;
2970 struct gdbarch *gdbarch;
4e1c45ea 2971 struct thread_info *tp;
e58b0e63 2972 CORE_ADDR pc;
6c95b8df 2973 struct address_space *aspace;
4d9d9d04
PA
2974 ptid_t resume_ptid;
2975 struct execution_control_state ecss;
2976 struct execution_control_state *ecs = &ecss;
2977 struct cleanup *old_chain;
2978 int started;
c906108c 2979
e58b0e63
PA
2980 /* If we're stopped at a fork/vfork, follow the branch set by the
2981 "set follow-fork-mode" command; otherwise, we'll just proceed
2982 resuming the current thread. */
2983 if (!follow_fork ())
2984 {
2985 /* The target for some reason decided not to resume. */
2986 normal_stop ();
f148b27e
PA
2987 if (target_can_async_p ())
2988 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2989 return;
2990 }
2991
842951eb
PA
2992 /* We'll update this if & when we switch to a new thread. */
2993 previous_inferior_ptid = inferior_ptid;
2994
e58b0e63
PA
2995 regcache = get_current_regcache ();
2996 gdbarch = get_regcache_arch (regcache);
6c95b8df 2997 aspace = get_regcache_aspace (regcache);
e58b0e63 2998 pc = regcache_read_pc (regcache);
2adfaa28 2999 tp = inferior_thread ();
e58b0e63 3000
99619bea
PA
3001 /* Fill in with reasonable starting values. */
3002 init_thread_stepping_state (tp);
3003
c2829269
PA
3004 gdb_assert (!thread_is_in_step_over_chain (tp));
3005
2acceee2 3006 if (addr == (CORE_ADDR) -1)
c906108c 3007 {
af48d08f
PA
3008 if (pc == stop_pc
3009 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3010 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3011 /* There is a breakpoint at the address we will resume at,
3012 step one instruction before inserting breakpoints so that
3013 we do not stop right away (and report a second hit at this
b2175913
MS
3014 breakpoint).
3015
3016 Note, we don't do this in reverse, because we won't
3017 actually be executing the breakpoint insn anyway.
3018 We'll be (un-)executing the previous instruction. */
99619bea 3019 tp->stepping_over_breakpoint = 1;
515630c5
UW
3020 else if (gdbarch_single_step_through_delay_p (gdbarch)
3021 && gdbarch_single_step_through_delay (gdbarch,
3022 get_current_frame ()))
3352ef37
AC
3023 /* We stepped onto an instruction that needs to be stepped
3024 again before re-inserting the breakpoint, do so. */
99619bea 3025 tp->stepping_over_breakpoint = 1;
c906108c
SS
3026 }
3027 else
3028 {
515630c5 3029 regcache_write_pc (regcache, addr);
c906108c
SS
3030 }
3031
70509625
PA
3032 if (siggnal != GDB_SIGNAL_DEFAULT)
3033 tp->suspend.stop_signal = siggnal;
3034
17b2616c
PA
3035 /* Record the interpreter that issued the execution command that
3036 caused this thread to resume. If the top level interpreter is
3037 MI/async, and the execution command was a CLI command
3038 (next/step/etc.), we'll want to print stop event output to the MI
3039 console channel (the stepped-to line, etc.), as if the user
3040 entered the execution command on a real GDB console. */
4d9d9d04
PA
3041 tp->control.command_interp = command_interp ();
3042
3043 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3044
3045 /* If an exception is thrown from this point on, make sure to
3046 propagate GDB's knowledge of the executing state to the
3047 frontend/user running state. */
3048 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3049
3050 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3051 threads (e.g., we might need to set threads stepping over
3052 breakpoints first), from the user/frontend's point of view, all
3053 threads in RESUME_PTID are now running. Unless we're calling an
3054 inferior function, as in that case we pretend the inferior
3055 doesn't run at all. */
3056 if (!tp->control.in_infcall)
3057 set_running (resume_ptid, 1);
17b2616c 3058
527159b7 3059 if (debug_infrun)
8a9de0e4 3060 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3061 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3062 paddress (gdbarch, addr),
64ce06e4 3063 gdb_signal_to_symbol_string (siggnal));
527159b7 3064
4d9d9d04
PA
3065 annotate_starting ();
3066
3067 /* Make sure that output from GDB appears before output from the
3068 inferior. */
3069 gdb_flush (gdb_stdout);
3070
3071 /* In a multi-threaded task we may select another thread and
3072 then continue or step.
3073
3074 But if a thread that we're resuming had stopped at a breakpoint,
3075 it will immediately cause another breakpoint stop without any
3076 execution (i.e. it will report a breakpoint hit incorrectly). So
3077 we must step over it first.
3078
3079 Look for threads other than the current (TP) that reported a
3080 breakpoint hit and haven't been resumed yet since. */
3081
3082 /* If scheduler locking applies, we can avoid iterating over all
3083 threads. */
3084 if (!non_stop && !schedlock_applies (tp))
94cc34af 3085 {
4d9d9d04
PA
3086 struct thread_info *current = tp;
3087
3088 ALL_NON_EXITED_THREADS (tp)
3089 {
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == current)
3093 continue;
99619bea 3094
4d9d9d04
PA
3095 /* Ignore threads of processes we're not resuming. */
3096 if (!ptid_match (tp->ptid, resume_ptid))
3097 continue;
c906108c 3098
4d9d9d04
PA
3099 if (!thread_still_needs_step_over (tp))
3100 continue;
3101
3102 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3103
99619bea
PA
3104 if (debug_infrun)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "infrun: need to step-over [%s] first\n",
4d9d9d04 3107 target_pid_to_str (tp->ptid));
99619bea 3108
4d9d9d04 3109 thread_step_over_chain_enqueue (tp);
2adfaa28 3110 }
31e77af2 3111
4d9d9d04 3112 tp = current;
30852783
UW
3113 }
3114
4d9d9d04
PA
3115 /* Enqueue the current thread last, so that we move all other
3116 threads over their breakpoints first. */
3117 if (tp->stepping_over_breakpoint)
3118 thread_step_over_chain_enqueue (tp);
30852783 3119
4d9d9d04
PA
3120 /* If the thread isn't started, we'll still need to set its prev_pc,
3121 so that switch_back_to_stepped_thread knows the thread hasn't
3122 advanced. Must do this before resuming any thread, as in
3123 all-stop/remote, once we resume we can't send any other packet
3124 until the target stops again. */
3125 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3126
4d9d9d04 3127 started = start_step_over ();
c906108c 3128
4d9d9d04
PA
3129 if (step_over_info_valid_p ())
3130 {
3131 /* Either this thread started a new in-line step over, or some
3132 other thread was already doing one. In either case, don't
3133 resume anything else until the step-over is finished. */
3134 }
fbea99ea 3135 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3136 {
3137 /* A new displaced stepping sequence was started. In all-stop,
3138 we can't talk to the target anymore until it next stops. */
3139 }
fbea99ea
PA
3140 else if (!non_stop && target_is_non_stop_p ())
3141 {
3142 /* In all-stop, but the target is always in non-stop mode.
3143 Start all other threads that are implicitly resumed too. */
3144 ALL_NON_EXITED_THREADS (tp)
3145 {
3146 /* Ignore threads of processes we're not resuming. */
3147 if (!ptid_match (tp->ptid, resume_ptid))
3148 continue;
3149
3150 if (tp->resumed)
3151 {
3152 if (debug_infrun)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "infrun: proceed: [%s] resumed\n",
3155 target_pid_to_str (tp->ptid));
3156 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3157 continue;
3158 }
3159
3160 if (thread_is_in_step_over_chain (tp))
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] needs step-over\n",
3165 target_pid_to_str (tp->ptid));
3166 continue;
3167 }
3168
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "infrun: proceed: resuming %s\n",
3172 target_pid_to_str (tp->ptid));
3173
3174 reset_ecs (ecs, tp);
3175 switch_to_thread (tp->ptid);
3176 keep_going_pass_signal (ecs);
3177 if (!ecs->wait_some_more)
fd7dcb94 3178 error (_("Command aborted."));
fbea99ea
PA
3179 }
3180 }
372316f1 3181 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3182 {
3183 /* The thread wasn't started, and isn't queued, run it now. */
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
fd7dcb94 3188 error (_("Command aborted."));
4d9d9d04 3189 }
c906108c 3190
4d9d9d04 3191 discard_cleanups (old_chain);
c906108c 3192
0b333c5e
PA
3193 /* Tell the event loop to wait for it to stop. If the target
3194 supports asynchronous execution, it'll do this from within
3195 target_resume. */
362646f5 3196 if (!target_can_async_p ())
0b333c5e 3197 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3198}
c906108c
SS
3199\f
3200
3201/* Start remote-debugging of a machine over a serial link. */
96baa820 3202
c906108c 3203void
8621d6a9 3204start_remote (int from_tty)
c906108c 3205{
d6b48e9c 3206 struct inferior *inferior;
d6b48e9c
PA
3207
3208 inferior = current_inferior ();
16c381f0 3209 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3210
1777feb0 3211 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3212 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3213 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3214 nothing is returned (instead of just blocking). Because of this,
3215 targets expecting an immediate response need to, internally, set
3216 things up so that the target_wait() is forced to eventually
1777feb0 3217 timeout. */
6426a772
JM
3218 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3219 differentiate to its caller what the state of the target is after
3220 the initial open has been performed. Here we're assuming that
3221 the target has stopped. It should be possible to eventually have
3222 target_open() return to the caller an indication that the target
3223 is currently running and GDB state should be set to the same as
1777feb0 3224 for an async run. */
e4c8541f 3225 wait_for_inferior ();
8621d6a9
DJ
3226
3227 /* Now that the inferior has stopped, do any bookkeeping like
3228 loading shared libraries. We want to do this before normal_stop,
3229 so that the displayed frame is up to date. */
3230 post_create_inferior (&current_target, from_tty);
3231
6426a772 3232 normal_stop ();
c906108c
SS
3233}
3234
3235/* Initialize static vars when a new inferior begins. */
3236
3237void
96baa820 3238init_wait_for_inferior (void)
c906108c
SS
3239{
3240 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3241
c906108c
SS
3242 breakpoint_init_inferior (inf_starting);
3243
70509625 3244 clear_proceed_status (0);
9f976b41 3245
ca005067 3246 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3247
842951eb 3248 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3249
edb3359d
DJ
3250 /* Discard any skipped inlined frames. */
3251 clear_inline_frame_state (minus_one_ptid);
c906108c 3252}
237fc4c9 3253
c906108c 3254\f
488f131b 3255
ec9499be 3256static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3257
568d6575
UW
3258static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
4f5d7f63 3262static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3263static void check_exception_resume (struct execution_control_state *,
28106bc2 3264 struct frame_info *);
611c83ae 3265
bdc36728 3266static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3267static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3268static void keep_going (struct execution_control_state *ecs);
94c57d6a 3269static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3270static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3271
252fbfc8
PA
3272/* Callback for iterate over threads. If the thread is stopped, but
3273 the user/frontend doesn't know about that yet, go through
3274 normal_stop, as if the thread had just stopped now. ARG points at
3275 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3276 ptid_is_pid(PTID) is true, applies to all threads of the process
3277 pointed at by PTID. Otherwise, apply only to the thread pointed by
3278 PTID. */
3279
3280static int
3281infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3282{
3283 ptid_t ptid = * (ptid_t *) arg;
3284
3285 if ((ptid_equal (info->ptid, ptid)
3286 || ptid_equal (minus_one_ptid, ptid)
3287 || (ptid_is_pid (ptid)
3288 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3289 && is_running (info->ptid)
3290 && !is_executing (info->ptid))
3291 {
3292 struct cleanup *old_chain;
3293 struct execution_control_state ecss;
3294 struct execution_control_state *ecs = &ecss;
3295
3296 memset (ecs, 0, sizeof (*ecs));
3297
3298 old_chain = make_cleanup_restore_current_thread ();
3299
f15cb84a
YQ
3300 overlay_cache_invalid = 1;
3301 /* Flush target cache before starting to handle each event.
3302 Target was running and cache could be stale. This is just a
3303 heuristic. Running threads may modify target memory, but we
3304 don't get any event. */
3305 target_dcache_invalidate ();
3306
252fbfc8
PA
3307 /* Go through handle_inferior_event/normal_stop, so we always
3308 have consistent output as if the stop event had been
3309 reported. */
3310 ecs->ptid = info->ptid;
243a9253 3311 ecs->event_thread = info;
252fbfc8 3312 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3313 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3314
3315 handle_inferior_event (ecs);
3316
3317 if (!ecs->wait_some_more)
3318 {
243a9253
PA
3319 /* Cancel any running execution command. */
3320 thread_cancel_execution_command (info);
3321
252fbfc8 3322 normal_stop ();
252fbfc8
PA
3323 }
3324
3325 do_cleanups (old_chain);
3326 }
3327
3328 return 0;
3329}
3330
3331/* This function is attached as a "thread_stop_requested" observer.
3332 Cleanup local state that assumed the PTID was to be resumed, and
3333 report the stop to the frontend. */
3334
2c0b251b 3335static void
252fbfc8
PA
3336infrun_thread_stop_requested (ptid_t ptid)
3337{
c2829269 3338 struct thread_info *tp;
252fbfc8 3339
c2829269
PA
3340 /* PTID was requested to stop. Remove matching threads from the
3341 step-over queue, so we don't try to resume them
3342 automatically. */
3343 ALL_NON_EXITED_THREADS (tp)
3344 if (ptid_match (tp->ptid, ptid))
3345 {
3346 if (thread_is_in_step_over_chain (tp))
3347 thread_step_over_chain_remove (tp);
3348 }
252fbfc8
PA
3349
3350 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3351}
3352
a07daef3
PA
3353static void
3354infrun_thread_thread_exit (struct thread_info *tp, int silent)
3355{
3356 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3357 nullify_last_target_wait_ptid ();
3358}
3359
0cbcdb96
PA
3360/* Delete the step resume, single-step and longjmp/exception resume
3361 breakpoints of TP. */
4e1c45ea 3362
0cbcdb96
PA
3363static void
3364delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3365{
0cbcdb96
PA
3366 delete_step_resume_breakpoint (tp);
3367 delete_exception_resume_breakpoint (tp);
34b7e8a6 3368 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3369}
3370
0cbcdb96
PA
3371/* If the target still has execution, call FUNC for each thread that
3372 just stopped. In all-stop, that's all the non-exited threads; in
3373 non-stop, that's the current thread, only. */
3374
3375typedef void (*for_each_just_stopped_thread_callback_func)
3376 (struct thread_info *tp);
4e1c45ea
PA
3377
3378static void
0cbcdb96 3379for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3380{
0cbcdb96 3381 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3382 return;
3383
fbea99ea 3384 if (target_is_non_stop_p ())
4e1c45ea 3385 {
0cbcdb96
PA
3386 /* If in non-stop mode, only the current thread stopped. */
3387 func (inferior_thread ());
4e1c45ea
PA
3388 }
3389 else
0cbcdb96
PA
3390 {
3391 struct thread_info *tp;
3392
3393 /* In all-stop mode, all threads have stopped. */
3394 ALL_NON_EXITED_THREADS (tp)
3395 {
3396 func (tp);
3397 }
3398 }
3399}
3400
3401/* Delete the step resume and longjmp/exception resume breakpoints of
3402 the threads that just stopped. */
3403
3404static void
3405delete_just_stopped_threads_infrun_breakpoints (void)
3406{
3407 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3408}
3409
3410/* Delete the single-step breakpoints of the threads that just
3411 stopped. */
7c16b83e 3412
34b7e8a6
PA
3413static void
3414delete_just_stopped_threads_single_step_breakpoints (void)
3415{
3416 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3417}
3418
1777feb0 3419/* A cleanup wrapper. */
4e1c45ea
PA
3420
3421static void
0cbcdb96 3422delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3423{
0cbcdb96 3424 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3425}
3426
221e1a37 3427/* See infrun.h. */
223698f8 3428
221e1a37 3429void
223698f8
DE
3430print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3431 const struct target_waitstatus *ws)
3432{
3433 char *status_string = target_waitstatus_to_string (ws);
3434 struct ui_file *tmp_stream = mem_fileopen ();
3435 char *text;
223698f8
DE
3436
3437 /* The text is split over several lines because it was getting too long.
3438 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3439 output as a unit; we want only one timestamp printed if debug_timestamp
3440 is set. */
3441
3442 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3443 "infrun: target_wait (%d.%ld.%ld",
3444 ptid_get_pid (waiton_ptid),
3445 ptid_get_lwp (waiton_ptid),
3446 ptid_get_tid (waiton_ptid));
dfd4cc63 3447 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3448 fprintf_unfiltered (tmp_stream,
3449 " [%s]", target_pid_to_str (waiton_ptid));
3450 fprintf_unfiltered (tmp_stream, ", status) =\n");
3451 fprintf_unfiltered (tmp_stream,
1176ecec 3452 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3453 ptid_get_pid (result_ptid),
1176ecec
PA
3454 ptid_get_lwp (result_ptid),
3455 ptid_get_tid (result_ptid),
dfd4cc63 3456 target_pid_to_str (result_ptid));
223698f8
DE
3457 fprintf_unfiltered (tmp_stream,
3458 "infrun: %s\n",
3459 status_string);
3460
759ef836 3461 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3462
3463 /* This uses %s in part to handle %'s in the text, but also to avoid
3464 a gcc error: the format attribute requires a string literal. */
3465 fprintf_unfiltered (gdb_stdlog, "%s", text);
3466
3467 xfree (status_string);
3468 xfree (text);
3469 ui_file_delete (tmp_stream);
3470}
3471
372316f1
PA
3472/* Select a thread at random, out of those which are resumed and have
3473 had events. */
3474
3475static struct thread_info *
3476random_pending_event_thread (ptid_t waiton_ptid)
3477{
3478 struct thread_info *event_tp;
3479 int num_events = 0;
3480 int random_selector;
3481
3482 /* First see how many events we have. Count only resumed threads
3483 that have an event pending. */
3484 ALL_NON_EXITED_THREADS (event_tp)
3485 if (ptid_match (event_tp->ptid, waiton_ptid)
3486 && event_tp->resumed
3487 && event_tp->suspend.waitstatus_pending_p)
3488 num_events++;
3489
3490 if (num_events == 0)
3491 return NULL;
3492
3493 /* Now randomly pick a thread out of those that have had events. */
3494 random_selector = (int)
3495 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3496
3497 if (debug_infrun && num_events > 1)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "infrun: Found %d events, selecting #%d\n",
3500 num_events, random_selector);
3501
3502 /* Select the Nth thread that has had an event. */
3503 ALL_NON_EXITED_THREADS (event_tp)
3504 if (ptid_match (event_tp->ptid, waiton_ptid)
3505 && event_tp->resumed
3506 && event_tp->suspend.waitstatus_pending_p)
3507 if (random_selector-- == 0)
3508 break;
3509
3510 return event_tp;
3511}
3512
3513/* Wrapper for target_wait that first checks whether threads have
3514 pending statuses to report before actually asking the target for
3515 more events. */
3516
3517static ptid_t
3518do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3519{
3520 ptid_t event_ptid;
3521 struct thread_info *tp;
3522
3523 /* First check if there is a resumed thread with a wait status
3524 pending. */
3525 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3526 {
3527 tp = random_pending_event_thread (ptid);
3528 }
3529 else
3530 {
3531 if (debug_infrun)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "infrun: Waiting for specific thread %s.\n",
3534 target_pid_to_str (ptid));
3535
3536 /* We have a specific thread to check. */
3537 tp = find_thread_ptid (ptid);
3538 gdb_assert (tp != NULL);
3539 if (!tp->suspend.waitstatus_pending_p)
3540 tp = NULL;
3541 }
3542
3543 if (tp != NULL
3544 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3545 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3546 {
3547 struct regcache *regcache = get_thread_regcache (tp->ptid);
3548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3549 CORE_ADDR pc;
3550 int discard = 0;
3551
3552 pc = regcache_read_pc (regcache);
3553
3554 if (pc != tp->suspend.stop_pc)
3555 {
3556 if (debug_infrun)
3557 fprintf_unfiltered (gdb_stdlog,
3558 "infrun: PC of %s changed. was=%s, now=%s\n",
3559 target_pid_to_str (tp->ptid),
3560 paddress (gdbarch, tp->prev_pc),
3561 paddress (gdbarch, pc));
3562 discard = 1;
3563 }
3564 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3565 {
3566 if (debug_infrun)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "infrun: previous breakpoint of %s, at %s gone\n",
3569 target_pid_to_str (tp->ptid),
3570 paddress (gdbarch, pc));
3571
3572 discard = 1;
3573 }
3574
3575 if (discard)
3576 {
3577 if (debug_infrun)
3578 fprintf_unfiltered (gdb_stdlog,
3579 "infrun: pending event of %s cancelled.\n",
3580 target_pid_to_str (tp->ptid));
3581
3582 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 }
3585 }
3586
3587 if (tp != NULL)
3588 {
3589 if (debug_infrun)
3590 {
3591 char *statstr;
3592
3593 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3594 fprintf_unfiltered (gdb_stdlog,
3595 "infrun: Using pending wait status %s for %s.\n",
3596 statstr,
3597 target_pid_to_str (tp->ptid));
3598 xfree (statstr);
3599 }
3600
3601 /* Now that we've selected our final event LWP, un-adjust its PC
3602 if it was a software breakpoint (and the target doesn't
3603 always adjust the PC itself). */
3604 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3605 && !target_supports_stopped_by_sw_breakpoint ())
3606 {
3607 struct regcache *regcache;
3608 struct gdbarch *gdbarch;
3609 int decr_pc;
3610
3611 regcache = get_thread_regcache (tp->ptid);
3612 gdbarch = get_regcache_arch (regcache);
3613
3614 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3615 if (decr_pc != 0)
3616 {
3617 CORE_ADDR pc;
3618
3619 pc = regcache_read_pc (regcache);
3620 regcache_write_pc (regcache, pc + decr_pc);
3621 }
3622 }
3623
3624 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3625 *status = tp->suspend.waitstatus;
3626 tp->suspend.waitstatus_pending_p = 0;
3627
3628 /* Wake up the event loop again, until all pending events are
3629 processed. */
3630 if (target_is_async_p ())
3631 mark_async_event_handler (infrun_async_inferior_event_token);
3632 return tp->ptid;
3633 }
3634
3635 /* But if we don't find one, we'll have to wait. */
3636
3637 if (deprecated_target_wait_hook)
3638 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3639 else
3640 event_ptid = target_wait (ptid, status, options);
3641
3642 return event_ptid;
3643}
3644
24291992
PA
3645/* Prepare and stabilize the inferior for detaching it. E.g.,
3646 detaching while a thread is displaced stepping is a recipe for
3647 crashing it, as nothing would readjust the PC out of the scratch
3648 pad. */
3649
3650void
3651prepare_for_detach (void)
3652{
3653 struct inferior *inf = current_inferior ();
3654 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3655 struct cleanup *old_chain_1;
3656 struct displaced_step_inferior_state *displaced;
3657
3658 displaced = get_displaced_stepping_state (inf->pid);
3659
3660 /* Is any thread of this process displaced stepping? If not,
3661 there's nothing else to do. */
3662 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3663 return;
3664
3665 if (debug_infrun)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "displaced-stepping in-process while detaching");
3668
3669 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3670 inf->detaching = 1;
3671
3672 while (!ptid_equal (displaced->step_ptid, null_ptid))
3673 {
3674 struct cleanup *old_chain_2;
3675 struct execution_control_state ecss;
3676 struct execution_control_state *ecs;
3677
3678 ecs = &ecss;
3679 memset (ecs, 0, sizeof (*ecs));
3680
3681 overlay_cache_invalid = 1;
f15cb84a
YQ
3682 /* Flush target cache before starting to handle each event.
3683 Target was running and cache could be stale. This is just a
3684 heuristic. Running threads may modify target memory, but we
3685 don't get any event. */
3686 target_dcache_invalidate ();
24291992 3687
372316f1 3688 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3689
3690 if (debug_infrun)
3691 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3692
3693 /* If an error happens while handling the event, propagate GDB's
3694 knowledge of the executing state to the frontend/user running
3695 state. */
3e43a32a
MS
3696 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3697 &minus_one_ptid);
24291992
PA
3698
3699 /* Now figure out what to do with the result of the result. */
3700 handle_inferior_event (ecs);
3701
3702 /* No error, don't finish the state yet. */
3703 discard_cleanups (old_chain_2);
3704
3705 /* Breakpoints and watchpoints are not installed on the target
3706 at this point, and signals are passed directly to the
3707 inferior, so this must mean the process is gone. */
3708 if (!ecs->wait_some_more)
3709 {
3710 discard_cleanups (old_chain_1);
3711 error (_("Program exited while detaching"));
3712 }
3713 }
3714
3715 discard_cleanups (old_chain_1);
3716}
3717
cd0fc7c3 3718/* Wait for control to return from inferior to debugger.
ae123ec6 3719
cd0fc7c3
SS
3720 If inferior gets a signal, we may decide to start it up again
3721 instead of returning. That is why there is a loop in this function.
3722 When this function actually returns it means the inferior
3723 should be left stopped and GDB should read more commands. */
3724
3725void
e4c8541f 3726wait_for_inferior (void)
cd0fc7c3
SS
3727{
3728 struct cleanup *old_cleanups;
e6f5c25b 3729 struct cleanup *thread_state_chain;
c906108c 3730
527159b7 3731 if (debug_infrun)
ae123ec6 3732 fprintf_unfiltered
e4c8541f 3733 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3734
0cbcdb96
PA
3735 old_cleanups
3736 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3737 NULL);
cd0fc7c3 3738
e6f5c25b
PA
3739 /* If an error happens while handling the event, propagate GDB's
3740 knowledge of the executing state to the frontend/user running
3741 state. */
3742 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3743
c906108c
SS
3744 while (1)
3745 {
ae25568b
PA
3746 struct execution_control_state ecss;
3747 struct execution_control_state *ecs = &ecss;
963f9c80 3748 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3749
ae25568b
PA
3750 memset (ecs, 0, sizeof (*ecs));
3751
ec9499be 3752 overlay_cache_invalid = 1;
ec9499be 3753
f15cb84a
YQ
3754 /* Flush target cache before starting to handle each event.
3755 Target was running and cache could be stale. This is just a
3756 heuristic. Running threads may modify target memory, but we
3757 don't get any event. */
3758 target_dcache_invalidate ();
3759
372316f1 3760 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3761
f00150c9 3762 if (debug_infrun)
223698f8 3763 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3764
cd0fc7c3
SS
3765 /* Now figure out what to do with the result of the result. */
3766 handle_inferior_event (ecs);
c906108c 3767
cd0fc7c3
SS
3768 if (!ecs->wait_some_more)
3769 break;
3770 }
4e1c45ea 3771
e6f5c25b
PA
3772 /* No error, don't finish the state yet. */
3773 discard_cleanups (thread_state_chain);
3774
cd0fc7c3
SS
3775 do_cleanups (old_cleanups);
3776}
c906108c 3777
d3d4baed
PA
3778/* Cleanup that reinstalls the readline callback handler, if the
3779 target is running in the background. If while handling the target
3780 event something triggered a secondary prompt, like e.g., a
3781 pagination prompt, we'll have removed the callback handler (see
3782 gdb_readline_wrapper_line). Need to do this as we go back to the
3783 event loop, ready to process further input. Note this has no
3784 effect if the handler hasn't actually been removed, because calling
3785 rl_callback_handler_install resets the line buffer, thus losing
3786 input. */
3787
3788static void
3789reinstall_readline_callback_handler_cleanup (void *arg)
3790{
6c400b59
PA
3791 if (!interpreter_async)
3792 {
3793 /* We're not going back to the top level event loop yet. Don't
3794 install the readline callback, as it'd prep the terminal,
3795 readline-style (raw, noecho) (e.g., --batch). We'll install
3796 it the next time the prompt is displayed, when we're ready
3797 for input. */
3798 return;
3799 }
3800
d3d4baed
PA
3801 if (async_command_editing_p && !sync_execution)
3802 gdb_rl_callback_handler_reinstall ();
3803}
3804
243a9253
PA
3805/* Clean up the FSMs of threads that are now stopped. In non-stop,
3806 that's just the event thread. In all-stop, that's all threads. */
3807
3808static void
3809clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3810{
3811 struct thread_info *thr = ecs->event_thread;
3812
3813 if (thr != NULL && thr->thread_fsm != NULL)
3814 thread_fsm_clean_up (thr->thread_fsm);
3815
3816 if (!non_stop)
3817 {
3818 ALL_NON_EXITED_THREADS (thr)
3819 {
3820 if (thr->thread_fsm == NULL)
3821 continue;
3822 if (thr == ecs->event_thread)
3823 continue;
3824
3825 switch_to_thread (thr->ptid);
3826 thread_fsm_clean_up (thr->thread_fsm);
3827 }
3828
3829 if (ecs->event_thread != NULL)
3830 switch_to_thread (ecs->event_thread->ptid);
3831 }
3832}
3833
170742de
PA
3834/* A cleanup that restores the execution direction to the value saved
3835 in *ARG. */
3836
3837static void
3838restore_execution_direction (void *arg)
3839{
3840 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3841
3842 execution_direction = *save_exec_dir;
3843}
3844
1777feb0 3845/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3846 event loop whenever a change of state is detected on the file
1777feb0
MS
3847 descriptor corresponding to the target. It can be called more than
3848 once to complete a single execution command. In such cases we need
3849 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3850 that this function is called for a single execution command, then
3851 report to the user that the inferior has stopped, and do the
1777feb0 3852 necessary cleanups. */
43ff13b4
JM
3853
3854void
fba45db2 3855fetch_inferior_event (void *client_data)
43ff13b4 3856{
0d1e5fa7 3857 struct execution_control_state ecss;
a474d7c2 3858 struct execution_control_state *ecs = &ecss;
4f8d22e3 3859 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3860 struct cleanup *ts_old_chain;
4f8d22e3 3861 int was_sync = sync_execution;
170742de 3862 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3863 int cmd_done = 0;
963f9c80 3864 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3865
0d1e5fa7
PA
3866 memset (ecs, 0, sizeof (*ecs));
3867
d3d4baed
PA
3868 /* End up with readline processing input, if necessary. */
3869 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3870
c5187ac6
PA
3871 /* We're handling a live event, so make sure we're doing live
3872 debugging. If we're looking at traceframes while the target is
3873 running, we're going to need to get back to that mode after
3874 handling the event. */
3875 if (non_stop)
3876 {
3877 make_cleanup_restore_current_traceframe ();
e6e4e701 3878 set_current_traceframe (-1);
c5187ac6
PA
3879 }
3880
4f8d22e3
PA
3881 if (non_stop)
3882 /* In non-stop mode, the user/frontend should not notice a thread
3883 switch due to internal events. Make sure we reverse to the
3884 user selected thread and frame after handling the event and
3885 running any breakpoint commands. */
3886 make_cleanup_restore_current_thread ();
3887
ec9499be 3888 overlay_cache_invalid = 1;
f15cb84a
YQ
3889 /* Flush target cache before starting to handle each event. Target
3890 was running and cache could be stale. This is just a heuristic.
3891 Running threads may modify target memory, but we don't get any
3892 event. */
3893 target_dcache_invalidate ();
3dd5b83d 3894
170742de 3895 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3896 execution_direction = target_execution_direction ();
3897
0b333c5e
PA
3898 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3899 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3900
f00150c9 3901 if (debug_infrun)
223698f8 3902 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3903
29f49a6a
PA
3904 /* If an error happens while handling the event, propagate GDB's
3905 knowledge of the executing state to the frontend/user running
3906 state. */
fbea99ea 3907 if (!target_is_non_stop_p ())
29f49a6a
PA
3908 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3909 else
3910 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3911
353d1d73
JK
3912 /* Get executed before make_cleanup_restore_current_thread above to apply
3913 still for the thread which has thrown the exception. */
3914 make_bpstat_clear_actions_cleanup ();
3915
7c16b83e
PA
3916 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3917
43ff13b4 3918 /* Now figure out what to do with the result of the result. */
a474d7c2 3919 handle_inferior_event (ecs);
43ff13b4 3920
a474d7c2 3921 if (!ecs->wait_some_more)
43ff13b4 3922 {
c9657e70 3923 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3924 int should_stop = 1;
3925 struct thread_info *thr = ecs->event_thread;
388a7084 3926 int should_notify_stop = 1;
d6b48e9c 3927
0cbcdb96 3928 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3929
243a9253
PA
3930 if (thr != NULL)
3931 {
3932 struct thread_fsm *thread_fsm = thr->thread_fsm;
3933
3934 if (thread_fsm != NULL)
3935 should_stop = thread_fsm_should_stop (thread_fsm);
3936 }
3937
3938 if (!should_stop)
3939 {
3940 keep_going (ecs);
3941 }
c2d11a7d 3942 else
0f641c01 3943 {
243a9253
PA
3944 clean_up_just_stopped_threads_fsms (ecs);
3945
388a7084
PA
3946 if (thr != NULL && thr->thread_fsm != NULL)
3947 {
3948 should_notify_stop
3949 = thread_fsm_should_notify_stop (thr->thread_fsm);
3950 }
3951
3952 if (should_notify_stop)
3953 {
4c2f2a79
PA
3954 int proceeded = 0;
3955
388a7084
PA
3956 /* We may not find an inferior if this was a process exit. */
3957 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3958 proceeded = normal_stop ();
243a9253 3959
4c2f2a79
PA
3960 if (!proceeded)
3961 {
3962 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3963 cmd_done = 1;
3964 }
388a7084 3965 }
0f641c01 3966 }
43ff13b4 3967 }
4f8d22e3 3968
29f49a6a
PA
3969 /* No error, don't finish the thread states yet. */
3970 discard_cleanups (ts_old_chain);
3971
4f8d22e3
PA
3972 /* Revert thread and frame. */
3973 do_cleanups (old_chain);
3974
3975 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3976 restore the prompt (a synchronous execution command has finished,
3977 and we're ready for input). */
b4a14fd0 3978 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3979 observer_notify_sync_execution_done ();
0f641c01
PA
3980
3981 if (cmd_done
3982 && !was_sync
3983 && exec_done_display_p
3984 && (ptid_equal (inferior_ptid, null_ptid)
3985 || !is_running (inferior_ptid)))
3986 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3987}
3988
edb3359d
DJ
3989/* Record the frame and location we're currently stepping through. */
3990void
3991set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3992{
3993 struct thread_info *tp = inferior_thread ();
3994
16c381f0
JK
3995 tp->control.step_frame_id = get_frame_id (frame);
3996 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3997
3998 tp->current_symtab = sal.symtab;
3999 tp->current_line = sal.line;
4000}
4001
0d1e5fa7
PA
4002/* Clear context switchable stepping state. */
4003
4004void
4e1c45ea 4005init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4006{
7f5ef605 4007 tss->stepped_breakpoint = 0;
0d1e5fa7 4008 tss->stepping_over_breakpoint = 0;
963f9c80 4009 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4010 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4011}
4012
c32c64b7
DE
4013/* Set the cached copy of the last ptid/waitstatus. */
4014
4015static void
4016set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4017{
4018 target_last_wait_ptid = ptid;
4019 target_last_waitstatus = status;
4020}
4021
e02bc4cc 4022/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4023 target_wait()/deprecated_target_wait_hook(). The data is actually
4024 cached by handle_inferior_event(), which gets called immediately
4025 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4026
4027void
488f131b 4028get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4029{
39f77062 4030 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4031 *status = target_last_waitstatus;
4032}
4033
ac264b3b
MS
4034void
4035nullify_last_target_wait_ptid (void)
4036{
4037 target_last_wait_ptid = minus_one_ptid;
4038}
4039
dcf4fbde 4040/* Switch thread contexts. */
dd80620e
MS
4041
4042static void
0d1e5fa7 4043context_switch (ptid_t ptid)
dd80620e 4044{
4b51d87b 4045 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4046 {
4047 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4048 target_pid_to_str (inferior_ptid));
4049 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4050 target_pid_to_str (ptid));
fd48f117
DJ
4051 }
4052
0d1e5fa7 4053 switch_to_thread (ptid);
dd80620e
MS
4054}
4055
d8dd4d5f
PA
4056/* If the target can't tell whether we've hit breakpoints
4057 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4058 check whether that could have been caused by a breakpoint. If so,
4059 adjust the PC, per gdbarch_decr_pc_after_break. */
4060
4fa8626c 4061static void
d8dd4d5f
PA
4062adjust_pc_after_break (struct thread_info *thread,
4063 struct target_waitstatus *ws)
4fa8626c 4064{
24a73cce
UW
4065 struct regcache *regcache;
4066 struct gdbarch *gdbarch;
6c95b8df 4067 struct address_space *aspace;
118e6252 4068 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4069
4fa8626c
DJ
4070 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4071 we aren't, just return.
9709f61c
DJ
4072
4073 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4074 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4075 implemented by software breakpoints should be handled through the normal
4076 breakpoint layer.
8fb3e588 4077
4fa8626c
DJ
4078 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4079 different signals (SIGILL or SIGEMT for instance), but it is less
4080 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4081 gdbarch_decr_pc_after_break. I don't know any specific target that
4082 generates these signals at breakpoints (the code has been in GDB since at
4083 least 1992) so I can not guess how to handle them here.
8fb3e588 4084
e6cf7916
UW
4085 In earlier versions of GDB, a target with
4086 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4087 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4088 target with both of these set in GDB history, and it seems unlikely to be
4089 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4090
d8dd4d5f 4091 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4092 return;
4093
d8dd4d5f 4094 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4095 return;
4096
4058b839
PA
4097 /* In reverse execution, when a breakpoint is hit, the instruction
4098 under it has already been de-executed. The reported PC always
4099 points at the breakpoint address, so adjusting it further would
4100 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4101 architecture:
4102
4103 B1 0x08000000 : INSN1
4104 B2 0x08000001 : INSN2
4105 0x08000002 : INSN3
4106 PC -> 0x08000003 : INSN4
4107
4108 Say you're stopped at 0x08000003 as above. Reverse continuing
4109 from that point should hit B2 as below. Reading the PC when the
4110 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4111 been de-executed already.
4112
4113 B1 0x08000000 : INSN1
4114 B2 PC -> 0x08000001 : INSN2
4115 0x08000002 : INSN3
4116 0x08000003 : INSN4
4117
4118 We can't apply the same logic as for forward execution, because
4119 we would wrongly adjust the PC to 0x08000000, since there's a
4120 breakpoint at PC - 1. We'd then report a hit on B1, although
4121 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4122 behaviour. */
4123 if (execution_direction == EXEC_REVERSE)
4124 return;
4125
1cf4d951
PA
4126 /* If the target can tell whether the thread hit a SW breakpoint,
4127 trust it. Targets that can tell also adjust the PC
4128 themselves. */
4129 if (target_supports_stopped_by_sw_breakpoint ())
4130 return;
4131
4132 /* Note that relying on whether a breakpoint is planted in memory to
4133 determine this can fail. E.g,. the breakpoint could have been
4134 removed since. Or the thread could have been told to step an
4135 instruction the size of a breakpoint instruction, and only
4136 _after_ was a breakpoint inserted at its address. */
4137
24a73cce
UW
4138 /* If this target does not decrement the PC after breakpoints, then
4139 we have nothing to do. */
d8dd4d5f 4140 regcache = get_thread_regcache (thread->ptid);
24a73cce 4141 gdbarch = get_regcache_arch (regcache);
118e6252 4142
527a273a 4143 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4144 if (decr_pc == 0)
24a73cce
UW
4145 return;
4146
6c95b8df
PA
4147 aspace = get_regcache_aspace (regcache);
4148
8aad930b
AC
4149 /* Find the location where (if we've hit a breakpoint) the
4150 breakpoint would be. */
118e6252 4151 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4152
1cf4d951
PA
4153 /* If the target can't tell whether a software breakpoint triggered,
4154 fallback to figuring it out based on breakpoints we think were
4155 inserted in the target, and on whether the thread was stepped or
4156 continued. */
4157
1c5cfe86
PA
4158 /* Check whether there actually is a software breakpoint inserted at
4159 that location.
4160
4161 If in non-stop mode, a race condition is possible where we've
4162 removed a breakpoint, but stop events for that breakpoint were
4163 already queued and arrive later. To suppress those spurious
4164 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4165 and retire them after a number of stop events are reported. Note
4166 this is an heuristic and can thus get confused. The real fix is
4167 to get the "stopped by SW BP and needs adjustment" info out of
4168 the target/kernel (and thus never reach here; see above). */
6c95b8df 4169 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4170 || (target_is_non_stop_p ()
4171 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4172 {
77f9e713 4173 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4174
8213266a 4175 if (record_full_is_used ())
77f9e713 4176 record_full_gdb_operation_disable_set ();
96429cc8 4177
1c0fdd0e
UW
4178 /* When using hardware single-step, a SIGTRAP is reported for both
4179 a completed single-step and a software breakpoint. Need to
4180 differentiate between the two, as the latter needs adjusting
4181 but the former does not.
4182
4183 The SIGTRAP can be due to a completed hardware single-step only if
4184 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4185 - this thread is currently being stepped
4186
4187 If any of these events did not occur, we must have stopped due
4188 to hitting a software breakpoint, and have to back up to the
4189 breakpoint address.
4190
4191 As a special case, we could have hardware single-stepped a
4192 software breakpoint. In this case (prev_pc == breakpoint_pc),
4193 we also need to back up to the breakpoint address. */
4194
d8dd4d5f
PA
4195 if (thread_has_single_step_breakpoints_set (thread)
4196 || !currently_stepping (thread)
4197 || (thread->stepped_breakpoint
4198 && thread->prev_pc == breakpoint_pc))
515630c5 4199 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4200
77f9e713 4201 do_cleanups (old_cleanups);
8aad930b 4202 }
4fa8626c
DJ
4203}
4204
edb3359d
DJ
4205static int
4206stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4207{
4208 for (frame = get_prev_frame (frame);
4209 frame != NULL;
4210 frame = get_prev_frame (frame))
4211 {
4212 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4213 return 1;
4214 if (get_frame_type (frame) != INLINE_FRAME)
4215 break;
4216 }
4217
4218 return 0;
4219}
4220
a96d9b2e
SDJ
4221/* Auxiliary function that handles syscall entry/return events.
4222 It returns 1 if the inferior should keep going (and GDB
4223 should ignore the event), or 0 if the event deserves to be
4224 processed. */
ca2163eb 4225
a96d9b2e 4226static int
ca2163eb 4227handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4228{
ca2163eb 4229 struct regcache *regcache;
ca2163eb
PA
4230 int syscall_number;
4231
4232 if (!ptid_equal (ecs->ptid, inferior_ptid))
4233 context_switch (ecs->ptid);
4234
4235 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4236 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4237 stop_pc = regcache_read_pc (regcache);
4238
a96d9b2e
SDJ
4239 if (catch_syscall_enabled () > 0
4240 && catching_syscall_number (syscall_number) > 0)
4241 {
4242 if (debug_infrun)
4243 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4244 syscall_number);
a96d9b2e 4245
16c381f0 4246 ecs->event_thread->control.stop_bpstat
6c95b8df 4247 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4248 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4249
ce12b012 4250 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4251 {
4252 /* Catchpoint hit. */
ca2163eb
PA
4253 return 0;
4254 }
a96d9b2e 4255 }
ca2163eb
PA
4256
4257 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4258 keep_going (ecs);
4259 return 1;
a96d9b2e
SDJ
4260}
4261
7e324e48
GB
4262/* Lazily fill in the execution_control_state's stop_func_* fields. */
4263
4264static void
4265fill_in_stop_func (struct gdbarch *gdbarch,
4266 struct execution_control_state *ecs)
4267{
4268 if (!ecs->stop_func_filled_in)
4269 {
4270 /* Don't care about return value; stop_func_start and stop_func_name
4271 will both be 0 if it doesn't work. */
4272 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4273 &ecs->stop_func_start, &ecs->stop_func_end);
4274 ecs->stop_func_start
4275 += gdbarch_deprecated_function_start_offset (gdbarch);
4276
591a12a1
UW
4277 if (gdbarch_skip_entrypoint_p (gdbarch))
4278 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4279 ecs->stop_func_start);
4280
7e324e48
GB
4281 ecs->stop_func_filled_in = 1;
4282 }
4283}
4284
4f5d7f63
PA
4285
4286/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4287
4288static enum stop_kind
4289get_inferior_stop_soon (ptid_t ptid)
4290{
c9657e70 4291 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4292
4293 gdb_assert (inf != NULL);
4294 return inf->control.stop_soon;
4295}
4296
372316f1
PA
4297/* Wait for one event. Store the resulting waitstatus in WS, and
4298 return the event ptid. */
4299
4300static ptid_t
4301wait_one (struct target_waitstatus *ws)
4302{
4303 ptid_t event_ptid;
4304 ptid_t wait_ptid = minus_one_ptid;
4305
4306 overlay_cache_invalid = 1;
4307
4308 /* Flush target cache before starting to handle each event.
4309 Target was running and cache could be stale. This is just a
4310 heuristic. Running threads may modify target memory, but we
4311 don't get any event. */
4312 target_dcache_invalidate ();
4313
4314 if (deprecated_target_wait_hook)
4315 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4316 else
4317 event_ptid = target_wait (wait_ptid, ws, 0);
4318
4319 if (debug_infrun)
4320 print_target_wait_results (wait_ptid, event_ptid, ws);
4321
4322 return event_ptid;
4323}
4324
4325/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4326 instead of the current thread. */
4327#define THREAD_STOPPED_BY(REASON) \
4328static int \
4329thread_stopped_by_ ## REASON (ptid_t ptid) \
4330{ \
4331 struct cleanup *old_chain; \
4332 int res; \
4333 \
4334 old_chain = save_inferior_ptid (); \
4335 inferior_ptid = ptid; \
4336 \
4337 res = target_stopped_by_ ## REASON (); \
4338 \
4339 do_cleanups (old_chain); \
4340 \
4341 return res; \
4342}
4343
4344/* Generate thread_stopped_by_watchpoint. */
4345THREAD_STOPPED_BY (watchpoint)
4346/* Generate thread_stopped_by_sw_breakpoint. */
4347THREAD_STOPPED_BY (sw_breakpoint)
4348/* Generate thread_stopped_by_hw_breakpoint. */
4349THREAD_STOPPED_BY (hw_breakpoint)
4350
4351/* Cleanups that switches to the PTID pointed at by PTID_P. */
4352
4353static void
4354switch_to_thread_cleanup (void *ptid_p)
4355{
4356 ptid_t ptid = *(ptid_t *) ptid_p;
4357
4358 switch_to_thread (ptid);
4359}
4360
4361/* Save the thread's event and stop reason to process it later. */
4362
4363static void
4364save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4365{
4366 struct regcache *regcache;
4367 struct address_space *aspace;
4368
4369 if (debug_infrun)
4370 {
4371 char *statstr;
4372
4373 statstr = target_waitstatus_to_string (ws);
4374 fprintf_unfiltered (gdb_stdlog,
4375 "infrun: saving status %s for %d.%ld.%ld\n",
4376 statstr,
4377 ptid_get_pid (tp->ptid),
4378 ptid_get_lwp (tp->ptid),
4379 ptid_get_tid (tp->ptid));
4380 xfree (statstr);
4381 }
4382
4383 /* Record for later. */
4384 tp->suspend.waitstatus = *ws;
4385 tp->suspend.waitstatus_pending_p = 1;
4386
4387 regcache = get_thread_regcache (tp->ptid);
4388 aspace = get_regcache_aspace (regcache);
4389
4390 if (ws->kind == TARGET_WAITKIND_STOPPED
4391 && ws->value.sig == GDB_SIGNAL_TRAP)
4392 {
4393 CORE_ADDR pc = regcache_read_pc (regcache);
4394
4395 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4396
4397 if (thread_stopped_by_watchpoint (tp->ptid))
4398 {
4399 tp->suspend.stop_reason
4400 = TARGET_STOPPED_BY_WATCHPOINT;
4401 }
4402 else if (target_supports_stopped_by_sw_breakpoint ()
4403 && thread_stopped_by_sw_breakpoint (tp->ptid))
4404 {
4405 tp->suspend.stop_reason
4406 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4407 }
4408 else if (target_supports_stopped_by_hw_breakpoint ()
4409 && thread_stopped_by_hw_breakpoint (tp->ptid))
4410 {
4411 tp->suspend.stop_reason
4412 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4413 }
4414 else if (!target_supports_stopped_by_hw_breakpoint ()
4415 && hardware_breakpoint_inserted_here_p (aspace,
4416 pc))
4417 {
4418 tp->suspend.stop_reason
4419 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4420 }
4421 else if (!target_supports_stopped_by_sw_breakpoint ()
4422 && software_breakpoint_inserted_here_p (aspace,
4423 pc))
4424 {
4425 tp->suspend.stop_reason
4426 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4427 }
4428 else if (!thread_has_single_step_breakpoints_set (tp)
4429 && currently_stepping (tp))
4430 {
4431 tp->suspend.stop_reason
4432 = TARGET_STOPPED_BY_SINGLE_STEP;
4433 }
4434 }
4435}
4436
4437/* Stop all threads. */
4438
4439static void
4440stop_all_threads (void)
4441{
4442 /* We may need multiple passes to discover all threads. */
4443 int pass;
4444 int iterations = 0;
4445 ptid_t entry_ptid;
4446 struct cleanup *old_chain;
4447
fbea99ea 4448 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4449
4450 if (debug_infrun)
4451 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4452
4453 entry_ptid = inferior_ptid;
4454 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4455
4456 /* Request threads to stop, and then wait for the stops. Because
4457 threads we already know about can spawn more threads while we're
4458 trying to stop them, and we only learn about new threads when we
4459 update the thread list, do this in a loop, and keep iterating
4460 until two passes find no threads that need to be stopped. */
4461 for (pass = 0; pass < 2; pass++, iterations++)
4462 {
4463 if (debug_infrun)
4464 fprintf_unfiltered (gdb_stdlog,
4465 "infrun: stop_all_threads, pass=%d, "
4466 "iterations=%d\n", pass, iterations);
4467 while (1)
4468 {
4469 ptid_t event_ptid;
4470 struct target_waitstatus ws;
4471 int need_wait = 0;
4472 struct thread_info *t;
4473
4474 update_thread_list ();
4475
4476 /* Go through all threads looking for threads that we need
4477 to tell the target to stop. */
4478 ALL_NON_EXITED_THREADS (t)
4479 {
4480 if (t->executing)
4481 {
4482 /* If already stopping, don't request a stop again.
4483 We just haven't seen the notification yet. */
4484 if (!t->stop_requested)
4485 {
4486 if (debug_infrun)
4487 fprintf_unfiltered (gdb_stdlog,
4488 "infrun: %s executing, "
4489 "need stop\n",
4490 target_pid_to_str (t->ptid));
4491 target_stop (t->ptid);
4492 t->stop_requested = 1;
4493 }
4494 else
4495 {
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: %s executing, "
4499 "already stopping\n",
4500 target_pid_to_str (t->ptid));
4501 }
4502
4503 if (t->stop_requested)
4504 need_wait = 1;
4505 }
4506 else
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: %s not executing\n",
4511 target_pid_to_str (t->ptid));
4512
4513 /* The thread may be not executing, but still be
4514 resumed with a pending status to process. */
4515 t->resumed = 0;
4516 }
4517 }
4518
4519 if (!need_wait)
4520 break;
4521
4522 /* If we find new threads on the second iteration, restart
4523 over. We want to see two iterations in a row with all
4524 threads stopped. */
4525 if (pass > 0)
4526 pass = -1;
4527
4528 event_ptid = wait_one (&ws);
4529 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4530 {
4531 /* All resumed threads exited. */
4532 }
4533 else if (ws.kind == TARGET_WAITKIND_EXITED
4534 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4535 {
4536 if (debug_infrun)
4537 {
4538 ptid_t ptid = pid_to_ptid (ws.value.integer);
4539
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: %s exited while "
4542 "stopping threads\n",
4543 target_pid_to_str (ptid));
4544 }
4545 }
4546 else
4547 {
4548 t = find_thread_ptid (event_ptid);
4549 if (t == NULL)
4550 t = add_thread (event_ptid);
4551
4552 t->stop_requested = 0;
4553 t->executing = 0;
4554 t->resumed = 0;
4555 t->control.may_range_step = 0;
4556
4557 if (ws.kind == TARGET_WAITKIND_STOPPED
4558 && ws.value.sig == GDB_SIGNAL_0)
4559 {
4560 /* We caught the event that we intended to catch, so
4561 there's no event pending. */
4562 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4563 t->suspend.waitstatus_pending_p = 0;
4564
4565 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4566 {
4567 /* Add it back to the step-over queue. */
4568 if (debug_infrun)
4569 {
4570 fprintf_unfiltered (gdb_stdlog,
4571 "infrun: displaced-step of %s "
4572 "canceled: adding back to the "
4573 "step-over queue\n",
4574 target_pid_to_str (t->ptid));
4575 }
4576 t->control.trap_expected = 0;
4577 thread_step_over_chain_enqueue (t);
4578 }
4579 }
4580 else
4581 {
4582 enum gdb_signal sig;
4583 struct regcache *regcache;
4584 struct address_space *aspace;
4585
4586 if (debug_infrun)
4587 {
4588 char *statstr;
4589
4590 statstr = target_waitstatus_to_string (&ws);
4591 fprintf_unfiltered (gdb_stdlog,
4592 "infrun: target_wait %s, saving "
4593 "status for %d.%ld.%ld\n",
4594 statstr,
4595 ptid_get_pid (t->ptid),
4596 ptid_get_lwp (t->ptid),
4597 ptid_get_tid (t->ptid));
4598 xfree (statstr);
4599 }
4600
4601 /* Record for later. */
4602 save_waitstatus (t, &ws);
4603
4604 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4605 ? ws.value.sig : GDB_SIGNAL_0);
4606
4607 if (displaced_step_fixup (t->ptid, sig) < 0)
4608 {
4609 /* Add it back to the step-over queue. */
4610 t->control.trap_expected = 0;
4611 thread_step_over_chain_enqueue (t);
4612 }
4613
4614 regcache = get_thread_regcache (t->ptid);
4615 t->suspend.stop_pc = regcache_read_pc (regcache);
4616
4617 if (debug_infrun)
4618 {
4619 fprintf_unfiltered (gdb_stdlog,
4620 "infrun: saved stop_pc=%s for %s "
4621 "(currently_stepping=%d)\n",
4622 paddress (target_gdbarch (),
4623 t->suspend.stop_pc),
4624 target_pid_to_str (t->ptid),
4625 currently_stepping (t));
4626 }
4627 }
4628 }
4629 }
4630 }
4631
4632 do_cleanups (old_chain);
4633
4634 if (debug_infrun)
4635 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4636}
4637
05ba8510
PA
4638/* Given an execution control state that has been freshly filled in by
4639 an event from the inferior, figure out what it means and take
4640 appropriate action.
4641
4642 The alternatives are:
4643
22bcd14b 4644 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4645 debugger.
4646
4647 2) keep_going and return; to wait for the next event (set
4648 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4649 once). */
c906108c 4650
ec9499be 4651static void
0b6e5e10 4652handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4653{
d6b48e9c
PA
4654 enum stop_kind stop_soon;
4655
28736962
PA
4656 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4657 {
4658 /* We had an event in the inferior, but we are not interested in
4659 handling it at this level. The lower layers have already
4660 done what needs to be done, if anything.
4661
4662 One of the possible circumstances for this is when the
4663 inferior produces output for the console. The inferior has
4664 not stopped, and we are ignoring the event. Another possible
4665 circumstance is any event which the lower level knows will be
4666 reported multiple times without an intervening resume. */
4667 if (debug_infrun)
4668 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4669 prepare_to_wait (ecs);
4670 return;
4671 }
4672
0e5bf2a8
PA
4673 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4674 && target_can_async_p () && !sync_execution)
4675 {
4676 /* There were no unwaited-for children left in the target, but,
4677 we're not synchronously waiting for events either. Just
4678 ignore. Otherwise, if we were running a synchronous
4679 execution command, we need to cancel it and give the user
4680 back the terminal. */
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog,
4683 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4684 prepare_to_wait (ecs);
4685 return;
4686 }
4687
1777feb0 4688 /* Cache the last pid/waitstatus. */
c32c64b7 4689 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4690
ca005067 4691 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4692 stop_stack_dummy = STOP_NONE;
ca005067 4693
0e5bf2a8
PA
4694 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4695 {
4696 /* No unwaited-for children left. IOW, all resumed children
4697 have exited. */
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4700
4701 stop_print_frame = 0;
22bcd14b 4702 stop_waiting (ecs);
0e5bf2a8
PA
4703 return;
4704 }
4705
8c90c137 4706 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4707 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4708 {
4709 ecs->event_thread = find_thread_ptid (ecs->ptid);
4710 /* If it's a new thread, add it to the thread database. */
4711 if (ecs->event_thread == NULL)
4712 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4713
4714 /* Disable range stepping. If the next step request could use a
4715 range, this will be end up re-enabled then. */
4716 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4717 }
88ed393a
JK
4718
4719 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4720 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4721
4722 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4723 reinit_frame_cache ();
4724
28736962
PA
4725 breakpoint_retire_moribund ();
4726
2b009048
DJ
4727 /* First, distinguish signals caused by the debugger from signals
4728 that have to do with the program's own actions. Note that
4729 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4730 on the operating system version. Here we detect when a SIGILL or
4731 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4732 something similar for SIGSEGV, since a SIGSEGV will be generated
4733 when we're trying to execute a breakpoint instruction on a
4734 non-executable stack. This happens for call dummy breakpoints
4735 for architectures like SPARC that place call dummies on the
4736 stack. */
2b009048 4737 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4738 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4739 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4740 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4741 {
de0a0249
UW
4742 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4743
4744 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4745 regcache_read_pc (regcache)))
4746 {
4747 if (debug_infrun)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4750 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4751 }
2b009048
DJ
4752 }
4753
28736962
PA
4754 /* Mark the non-executing threads accordingly. In all-stop, all
4755 threads of all processes are stopped when we get any event
e1316e60 4756 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4757 {
4758 ptid_t mark_ptid;
4759
fbea99ea 4760 if (!target_is_non_stop_p ())
372316f1
PA
4761 mark_ptid = minus_one_ptid;
4762 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4763 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4764 {
4765 /* If we're handling a process exit in non-stop mode, even
4766 though threads haven't been deleted yet, one would think
4767 that there is nothing to do, as threads of the dead process
4768 will be soon deleted, and threads of any other process were
4769 left running. However, on some targets, threads survive a
4770 process exit event. E.g., for the "checkpoint" command,
4771 when the current checkpoint/fork exits, linux-fork.c
4772 automatically switches to another fork from within
4773 target_mourn_inferior, by associating the same
4774 inferior/thread to another fork. We haven't mourned yet at
4775 this point, but we must mark any threads left in the
4776 process as not-executing so that finish_thread_state marks
4777 them stopped (in the user's perspective) if/when we present
4778 the stop to the user. */
4779 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4780 }
4781 else
4782 mark_ptid = ecs->ptid;
4783
4784 set_executing (mark_ptid, 0);
4785
4786 /* Likewise the resumed flag. */
4787 set_resumed (mark_ptid, 0);
4788 }
8c90c137 4789
488f131b
JB
4790 switch (ecs->ws.kind)
4791 {
4792 case TARGET_WAITKIND_LOADED:
527159b7 4793 if (debug_infrun)
8a9de0e4 4794 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4795 if (!ptid_equal (ecs->ptid, inferior_ptid))
4796 context_switch (ecs->ptid);
b0f4b84b
DJ
4797 /* Ignore gracefully during startup of the inferior, as it might
4798 be the shell which has just loaded some objects, otherwise
4799 add the symbols for the newly loaded objects. Also ignore at
4800 the beginning of an attach or remote session; we will query
4801 the full list of libraries once the connection is
4802 established. */
4f5d7f63
PA
4803
4804 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4805 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4806 {
edcc5120
TT
4807 struct regcache *regcache;
4808
edcc5120
TT
4809 regcache = get_thread_regcache (ecs->ptid);
4810
4811 handle_solib_event ();
4812
4813 ecs->event_thread->control.stop_bpstat
4814 = bpstat_stop_status (get_regcache_aspace (regcache),
4815 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4816
ce12b012 4817 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4818 {
4819 /* A catchpoint triggered. */
94c57d6a
PA
4820 process_event_stop_test (ecs);
4821 return;
edcc5120 4822 }
488f131b 4823
b0f4b84b
DJ
4824 /* If requested, stop when the dynamic linker notifies
4825 gdb of events. This allows the user to get control
4826 and place breakpoints in initializer routines for
4827 dynamically loaded objects (among other things). */
a493e3e2 4828 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4829 if (stop_on_solib_events)
4830 {
55409f9d
DJ
4831 /* Make sure we print "Stopped due to solib-event" in
4832 normal_stop. */
4833 stop_print_frame = 1;
4834
22bcd14b 4835 stop_waiting (ecs);
b0f4b84b
DJ
4836 return;
4837 }
488f131b 4838 }
b0f4b84b
DJ
4839
4840 /* If we are skipping through a shell, or through shared library
4841 loading that we aren't interested in, resume the program. If
5c09a2c5 4842 we're running the program normally, also resume. */
b0f4b84b
DJ
4843 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4844 {
74960c60
VP
4845 /* Loading of shared libraries might have changed breakpoint
4846 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4847 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4848 insert_breakpoints ();
64ce06e4 4849 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4850 prepare_to_wait (ecs);
4851 return;
4852 }
4853
5c09a2c5
PA
4854 /* But stop if we're attaching or setting up a remote
4855 connection. */
4856 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4857 || stop_soon == STOP_QUIETLY_REMOTE)
4858 {
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4861 stop_waiting (ecs);
5c09a2c5
PA
4862 return;
4863 }
4864
4865 internal_error (__FILE__, __LINE__,
4866 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4867
488f131b 4868 case TARGET_WAITKIND_SPURIOUS:
527159b7 4869 if (debug_infrun)
8a9de0e4 4870 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4871 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4872 context_switch (ecs->ptid);
64ce06e4 4873 resume (GDB_SIGNAL_0);
488f131b
JB
4874 prepare_to_wait (ecs);
4875 return;
c5aa993b 4876
488f131b 4877 case TARGET_WAITKIND_EXITED:
940c3c06 4878 case TARGET_WAITKIND_SIGNALLED:
527159b7 4879 if (debug_infrun)
940c3c06
PA
4880 {
4881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 fprintf_unfiltered (gdb_stdlog,
4883 "infrun: TARGET_WAITKIND_EXITED\n");
4884 else
4885 fprintf_unfiltered (gdb_stdlog,
4886 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4887 }
4888
fb66883a 4889 inferior_ptid = ecs->ptid;
c9657e70 4890 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4891 set_current_program_space (current_inferior ()->pspace);
4892 handle_vfork_child_exec_or_exit (0);
1777feb0 4893 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4894
0c557179
SDJ
4895 /* Clearing any previous state of convenience variables. */
4896 clear_exit_convenience_vars ();
4897
940c3c06
PA
4898 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4899 {
4900 /* Record the exit code in the convenience variable $_exitcode, so
4901 that the user can inspect this again later. */
4902 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4903 (LONGEST) ecs->ws.value.integer);
4904
4905 /* Also record this in the inferior itself. */
4906 current_inferior ()->has_exit_code = 1;
4907 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4908
98eb56a4
PA
4909 /* Support the --return-child-result option. */
4910 return_child_result_value = ecs->ws.value.integer;
4911
fd664c91 4912 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4913 }
4914 else
0c557179
SDJ
4915 {
4916 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4917 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4918
4919 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4920 {
4921 /* Set the value of the internal variable $_exitsignal,
4922 which holds the signal uncaught by the inferior. */
4923 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4924 gdbarch_gdb_signal_to_target (gdbarch,
4925 ecs->ws.value.sig));
4926 }
4927 else
4928 {
4929 /* We don't have access to the target's method used for
4930 converting between signal numbers (GDB's internal
4931 representation <-> target's representation).
4932 Therefore, we cannot do a good job at displaying this
4933 information to the user. It's better to just warn
4934 her about it (if infrun debugging is enabled), and
4935 give up. */
4936 if (debug_infrun)
4937 fprintf_filtered (gdb_stdlog, _("\
4938Cannot fill $_exitsignal with the correct signal number.\n"));
4939 }
4940
fd664c91 4941 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4942 }
8cf64490 4943
488f131b
JB
4944 gdb_flush (gdb_stdout);
4945 target_mourn_inferior ();
488f131b 4946 stop_print_frame = 0;
22bcd14b 4947 stop_waiting (ecs);
488f131b 4948 return;
c5aa993b 4949
488f131b 4950 /* The following are the only cases in which we keep going;
1777feb0 4951 the above cases end in a continue or goto. */
488f131b 4952 case TARGET_WAITKIND_FORKED:
deb3b17b 4953 case TARGET_WAITKIND_VFORKED:
527159b7 4954 if (debug_infrun)
fed708ed
PA
4955 {
4956 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4957 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4958 else
4959 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4960 }
c906108c 4961
e2d96639
YQ
4962 /* Check whether the inferior is displaced stepping. */
4963 {
4964 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4965 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
4966
4967 /* If checking displaced stepping is supported, and thread
4968 ecs->ptid is displaced stepping. */
c0987663 4969 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
4970 {
4971 struct inferior *parent_inf
c9657e70 4972 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4973 struct regcache *child_regcache;
4974 CORE_ADDR parent_pc;
4975
4976 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4977 indicating that the displaced stepping of syscall instruction
4978 has been done. Perform cleanup for parent process here. Note
4979 that this operation also cleans up the child process for vfork,
4980 because their pages are shared. */
a493e3e2 4981 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4982 /* Start a new step-over in another thread if there's one
4983 that needs it. */
4984 start_step_over ();
e2d96639
YQ
4985
4986 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4987 {
c0987663
YQ
4988 struct displaced_step_inferior_state *displaced
4989 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4990
e2d96639
YQ
4991 /* Restore scratch pad for child process. */
4992 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4993 }
4994
4995 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4996 the child's PC is also within the scratchpad. Set the child's PC
4997 to the parent's PC value, which has already been fixed up.
4998 FIXME: we use the parent's aspace here, although we're touching
4999 the child, because the child hasn't been added to the inferior
5000 list yet at this point. */
5001
5002 child_regcache
5003 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5004 gdbarch,
5005 parent_inf->aspace);
5006 /* Read PC value of parent process. */
5007 parent_pc = regcache_read_pc (regcache);
5008
5009 if (debug_displaced)
5010 fprintf_unfiltered (gdb_stdlog,
5011 "displaced: write child pc from %s to %s\n",
5012 paddress (gdbarch,
5013 regcache_read_pc (child_regcache)),
5014 paddress (gdbarch, parent_pc));
5015
5016 regcache_write_pc (child_regcache, parent_pc);
5017 }
5018 }
5019
5a2901d9 5020 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5021 context_switch (ecs->ptid);
5a2901d9 5022
b242c3c2
PA
5023 /* Immediately detach breakpoints from the child before there's
5024 any chance of letting the user delete breakpoints from the
5025 breakpoint lists. If we don't do this early, it's easy to
5026 leave left over traps in the child, vis: "break foo; catch
5027 fork; c; <fork>; del; c; <child calls foo>". We only follow
5028 the fork on the last `continue', and by that time the
5029 breakpoint at "foo" is long gone from the breakpoint table.
5030 If we vforked, then we don't need to unpatch here, since both
5031 parent and child are sharing the same memory pages; we'll
5032 need to unpatch at follow/detach time instead to be certain
5033 that new breakpoints added between catchpoint hit time and
5034 vfork follow are detached. */
5035 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5036 {
b242c3c2
PA
5037 /* This won't actually modify the breakpoint list, but will
5038 physically remove the breakpoints from the child. */
d80ee84f 5039 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5040 }
5041
34b7e8a6 5042 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5043
e58b0e63
PA
5044 /* In case the event is caught by a catchpoint, remember that
5045 the event is to be followed at the next resume of the thread,
5046 and not immediately. */
5047 ecs->event_thread->pending_follow = ecs->ws;
5048
fb14de7b 5049 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5050
16c381f0 5051 ecs->event_thread->control.stop_bpstat
6c95b8df 5052 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5053 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5054
ce12b012
PA
5055 /* If no catchpoint triggered for this, then keep going. Note
5056 that we're interested in knowing the bpstat actually causes a
5057 stop, not just if it may explain the signal. Software
5058 watchpoints, for example, always appear in the bpstat. */
5059 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5060 {
6c95b8df
PA
5061 ptid_t parent;
5062 ptid_t child;
e58b0e63 5063 int should_resume;
3e43a32a
MS
5064 int follow_child
5065 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5066
a493e3e2 5067 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5068
5069 should_resume = follow_fork ();
5070
6c95b8df
PA
5071 parent = ecs->ptid;
5072 child = ecs->ws.value.related_pid;
5073
5074 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5075 if (!detach_fork && (non_stop
5076 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5077 {
5078 if (follow_child)
5079 switch_to_thread (parent);
5080 else
5081 switch_to_thread (child);
5082
5083 ecs->event_thread = inferior_thread ();
5084 ecs->ptid = inferior_ptid;
5085 keep_going (ecs);
5086 }
5087
5088 if (follow_child)
5089 switch_to_thread (child);
5090 else
5091 switch_to_thread (parent);
5092
e58b0e63
PA
5093 ecs->event_thread = inferior_thread ();
5094 ecs->ptid = inferior_ptid;
5095
5096 if (should_resume)
5097 keep_going (ecs);
5098 else
22bcd14b 5099 stop_waiting (ecs);
04e68871
DJ
5100 return;
5101 }
94c57d6a
PA
5102 process_event_stop_test (ecs);
5103 return;
488f131b 5104
6c95b8df
PA
5105 case TARGET_WAITKIND_VFORK_DONE:
5106 /* Done with the shared memory region. Re-insert breakpoints in
5107 the parent, and keep going. */
5108
5109 if (debug_infrun)
3e43a32a
MS
5110 fprintf_unfiltered (gdb_stdlog,
5111 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5112
5113 if (!ptid_equal (ecs->ptid, inferior_ptid))
5114 context_switch (ecs->ptid);
5115
5116 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5117 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5118 /* This also takes care of reinserting breakpoints in the
5119 previously locked inferior. */
5120 keep_going (ecs);
5121 return;
5122
488f131b 5123 case TARGET_WAITKIND_EXECD:
527159b7 5124 if (debug_infrun)
fc5261f2 5125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5126
5a2901d9 5127 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5128 context_switch (ecs->ptid);
5a2901d9 5129
fb14de7b 5130 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5131
6c95b8df
PA
5132 /* Do whatever is necessary to the parent branch of the vfork. */
5133 handle_vfork_child_exec_or_exit (1);
5134
795e548f
PA
5135 /* This causes the eventpoints and symbol table to be reset.
5136 Must do this now, before trying to determine whether to
5137 stop. */
71b43ef8 5138 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5139
17d8546e
DB
5140 /* In follow_exec we may have deleted the original thread and
5141 created a new one. Make sure that the event thread is the
5142 execd thread for that case (this is a nop otherwise). */
5143 ecs->event_thread = inferior_thread ();
5144
16c381f0 5145 ecs->event_thread->control.stop_bpstat
6c95b8df 5146 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5147 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5148
71b43ef8
PA
5149 /* Note that this may be referenced from inside
5150 bpstat_stop_status above, through inferior_has_execd. */
5151 xfree (ecs->ws.value.execd_pathname);
5152 ecs->ws.value.execd_pathname = NULL;
5153
04e68871 5154 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5155 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5156 {
a493e3e2 5157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5158 keep_going (ecs);
5159 return;
5160 }
94c57d6a
PA
5161 process_event_stop_test (ecs);
5162 return;
488f131b 5163
b4dc5ffa
MK
5164 /* Be careful not to try to gather much state about a thread
5165 that's in a syscall. It's frequently a losing proposition. */
488f131b 5166 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5167 if (debug_infrun)
3e43a32a
MS
5168 fprintf_unfiltered (gdb_stdlog,
5169 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5170 /* Getting the current syscall number. */
94c57d6a
PA
5171 if (handle_syscall_event (ecs) == 0)
5172 process_event_stop_test (ecs);
5173 return;
c906108c 5174
488f131b
JB
5175 /* Before examining the threads further, step this thread to
5176 get it entirely out of the syscall. (We get notice of the
5177 event when the thread is just on the verge of exiting a
5178 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5179 into user code.) */
488f131b 5180 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5181 if (debug_infrun)
3e43a32a
MS
5182 fprintf_unfiltered (gdb_stdlog,
5183 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5184 if (handle_syscall_event (ecs) == 0)
5185 process_event_stop_test (ecs);
5186 return;
c906108c 5187
488f131b 5188 case TARGET_WAITKIND_STOPPED:
527159b7 5189 if (debug_infrun)
8a9de0e4 5190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5191 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5192 handle_signal_stop (ecs);
5193 return;
c906108c 5194
b2175913 5195 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5196 if (debug_infrun)
5197 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5198 /* Reverse execution: target ran out of history info. */
eab402df 5199
d1988021
MM
5200 /* Switch to the stopped thread. */
5201 if (!ptid_equal (ecs->ptid, inferior_ptid))
5202 context_switch (ecs->ptid);
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5205
34b7e8a6 5206 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5207 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5208 observer_notify_no_history ();
22bcd14b 5209 stop_waiting (ecs);
b2175913 5210 return;
488f131b 5211 }
4f5d7f63
PA
5212}
5213
0b6e5e10
JB
5214/* A wrapper around handle_inferior_event_1, which also makes sure
5215 that all temporary struct value objects that were created during
5216 the handling of the event get deleted at the end. */
5217
5218static void
5219handle_inferior_event (struct execution_control_state *ecs)
5220{
5221 struct value *mark = value_mark ();
5222
5223 handle_inferior_event_1 (ecs);
5224 /* Purge all temporary values created during the event handling,
5225 as it could be a long time before we return to the command level
5226 where such values would otherwise be purged. */
5227 value_free_to_mark (mark);
5228}
5229
372316f1
PA
5230/* Restart threads back to what they were trying to do back when we
5231 paused them for an in-line step-over. The EVENT_THREAD thread is
5232 ignored. */
4d9d9d04
PA
5233
5234static void
372316f1
PA
5235restart_threads (struct thread_info *event_thread)
5236{
5237 struct thread_info *tp;
5238 struct thread_info *step_over = NULL;
5239
5240 /* In case the instruction just stepped spawned a new thread. */
5241 update_thread_list ();
5242
5243 ALL_NON_EXITED_THREADS (tp)
5244 {
5245 if (tp == event_thread)
5246 {
5247 if (debug_infrun)
5248 fprintf_unfiltered (gdb_stdlog,
5249 "infrun: restart threads: "
5250 "[%s] is event thread\n",
5251 target_pid_to_str (tp->ptid));
5252 continue;
5253 }
5254
5255 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5256 {
5257 if (debug_infrun)
5258 fprintf_unfiltered (gdb_stdlog,
5259 "infrun: restart threads: "
5260 "[%s] not meant to be running\n",
5261 target_pid_to_str (tp->ptid));
5262 continue;
5263 }
5264
5265 if (tp->resumed)
5266 {
5267 if (debug_infrun)
5268 fprintf_unfiltered (gdb_stdlog,
5269 "infrun: restart threads: [%s] resumed\n",
5270 target_pid_to_str (tp->ptid));
5271 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5272 continue;
5273 }
5274
5275 if (thread_is_in_step_over_chain (tp))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: "
5280 "[%s] needs step-over\n",
5281 target_pid_to_str (tp->ptid));
5282 gdb_assert (!tp->resumed);
5283 continue;
5284 }
5285
5286
5287 if (tp->suspend.waitstatus_pending_p)
5288 {
5289 if (debug_infrun)
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: restart threads: "
5292 "[%s] has pending status\n",
5293 target_pid_to_str (tp->ptid));
5294 tp->resumed = 1;
5295 continue;
5296 }
5297
5298 /* If some thread needs to start a step-over at this point, it
5299 should still be in the step-over queue, and thus skipped
5300 above. */
5301 if (thread_still_needs_step_over (tp))
5302 {
5303 internal_error (__FILE__, __LINE__,
5304 "thread [%s] needs a step-over, but not in "
5305 "step-over queue\n",
5306 target_pid_to_str (tp->ptid));
5307 }
5308
5309 if (currently_stepping (tp))
5310 {
5311 if (debug_infrun)
5312 fprintf_unfiltered (gdb_stdlog,
5313 "infrun: restart threads: [%s] was stepping\n",
5314 target_pid_to_str (tp->ptid));
5315 keep_going_stepped_thread (tp);
5316 }
5317 else
5318 {
5319 struct execution_control_state ecss;
5320 struct execution_control_state *ecs = &ecss;
5321
5322 if (debug_infrun)
5323 fprintf_unfiltered (gdb_stdlog,
5324 "infrun: restart threads: [%s] continuing\n",
5325 target_pid_to_str (tp->ptid));
5326 reset_ecs (ecs, tp);
5327 switch_to_thread (tp->ptid);
5328 keep_going_pass_signal (ecs);
5329 }
5330 }
5331}
5332
5333/* Callback for iterate_over_threads. Find a resumed thread that has
5334 a pending waitstatus. */
5335
5336static int
5337resumed_thread_with_pending_status (struct thread_info *tp,
5338 void *arg)
5339{
5340 return (tp->resumed
5341 && tp->suspend.waitstatus_pending_p);
5342}
5343
5344/* Called when we get an event that may finish an in-line or
5345 out-of-line (displaced stepping) step-over started previously.
5346 Return true if the event is processed and we should go back to the
5347 event loop; false if the caller should continue processing the
5348 event. */
5349
5350static int
4d9d9d04
PA
5351finish_step_over (struct execution_control_state *ecs)
5352{
372316f1
PA
5353 int had_step_over_info;
5354
4d9d9d04
PA
5355 displaced_step_fixup (ecs->ptid,
5356 ecs->event_thread->suspend.stop_signal);
5357
372316f1
PA
5358 had_step_over_info = step_over_info_valid_p ();
5359
5360 if (had_step_over_info)
4d9d9d04
PA
5361 {
5362 /* If we're stepping over a breakpoint with all threads locked,
5363 then only the thread that was stepped should be reporting
5364 back an event. */
5365 gdb_assert (ecs->event_thread->control.trap_expected);
5366
5367 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5368 clear_step_over_info ();
5369 }
5370
fbea99ea 5371 if (!target_is_non_stop_p ())
372316f1 5372 return 0;
4d9d9d04
PA
5373
5374 /* Start a new step-over in another thread if there's one that
5375 needs it. */
5376 start_step_over ();
372316f1
PA
5377
5378 /* If we were stepping over a breakpoint before, and haven't started
5379 a new in-line step-over sequence, then restart all other threads
5380 (except the event thread). We can't do this in all-stop, as then
5381 e.g., we wouldn't be able to issue any other remote packet until
5382 these other threads stop. */
5383 if (had_step_over_info && !step_over_info_valid_p ())
5384 {
5385 struct thread_info *pending;
5386
5387 /* If we only have threads with pending statuses, the restart
5388 below won't restart any thread and so nothing re-inserts the
5389 breakpoint we just stepped over. But we need it inserted
5390 when we later process the pending events, otherwise if
5391 another thread has a pending event for this breakpoint too,
5392 we'd discard its event (because the breakpoint that
5393 originally caused the event was no longer inserted). */
5394 context_switch (ecs->ptid);
5395 insert_breakpoints ();
5396
5397 restart_threads (ecs->event_thread);
5398
5399 /* If we have events pending, go through handle_inferior_event
5400 again, picking up a pending event at random. This avoids
5401 thread starvation. */
5402
5403 /* But not if we just stepped over a watchpoint in order to let
5404 the instruction execute so we can evaluate its expression.
5405 The set of watchpoints that triggered is recorded in the
5406 breakpoint objects themselves (see bp->watchpoint_triggered).
5407 If we processed another event first, that other event could
5408 clobber this info. */
5409 if (ecs->event_thread->stepping_over_watchpoint)
5410 return 0;
5411
5412 pending = iterate_over_threads (resumed_thread_with_pending_status,
5413 NULL);
5414 if (pending != NULL)
5415 {
5416 struct thread_info *tp = ecs->event_thread;
5417 struct regcache *regcache;
5418
5419 if (debug_infrun)
5420 {
5421 fprintf_unfiltered (gdb_stdlog,
5422 "infrun: found resumed threads with "
5423 "pending events, saving status\n");
5424 }
5425
5426 gdb_assert (pending != tp);
5427
5428 /* Record the event thread's event for later. */
5429 save_waitstatus (tp, &ecs->ws);
5430 /* This was cleared early, by handle_inferior_event. Set it
5431 so this pending event is considered by
5432 do_target_wait. */
5433 tp->resumed = 1;
5434
5435 gdb_assert (!tp->executing);
5436
5437 regcache = get_thread_regcache (tp->ptid);
5438 tp->suspend.stop_pc = regcache_read_pc (regcache);
5439
5440 if (debug_infrun)
5441 {
5442 fprintf_unfiltered (gdb_stdlog,
5443 "infrun: saved stop_pc=%s for %s "
5444 "(currently_stepping=%d)\n",
5445 paddress (target_gdbarch (),
5446 tp->suspend.stop_pc),
5447 target_pid_to_str (tp->ptid),
5448 currently_stepping (tp));
5449 }
5450
5451 /* This in-line step-over finished; clear this so we won't
5452 start a new one. This is what handle_signal_stop would
5453 do, if we returned false. */
5454 tp->stepping_over_breakpoint = 0;
5455
5456 /* Wake up the event loop again. */
5457 mark_async_event_handler (infrun_async_inferior_event_token);
5458
5459 prepare_to_wait (ecs);
5460 return 1;
5461 }
5462 }
5463
5464 return 0;
4d9d9d04
PA
5465}
5466
4f5d7f63
PA
5467/* Come here when the program has stopped with a signal. */
5468
5469static void
5470handle_signal_stop (struct execution_control_state *ecs)
5471{
5472 struct frame_info *frame;
5473 struct gdbarch *gdbarch;
5474 int stopped_by_watchpoint;
5475 enum stop_kind stop_soon;
5476 int random_signal;
c906108c 5477
f0407826
DE
5478 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5479
5480 /* Do we need to clean up the state of a thread that has
5481 completed a displaced single-step? (Doing so usually affects
5482 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5483 if (finish_step_over (ecs))
5484 return;
f0407826
DE
5485
5486 /* If we either finished a single-step or hit a breakpoint, but
5487 the user wanted this thread to be stopped, pretend we got a
5488 SIG0 (generic unsignaled stop). */
5489 if (ecs->event_thread->stop_requested
5490 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5491 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5492
515630c5 5493 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5494
527159b7 5495 if (debug_infrun)
237fc4c9 5496 {
5af949e3
UW
5497 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5499 struct cleanup *old_chain = save_inferior_ptid ();
5500
5501 inferior_ptid = ecs->ptid;
5af949e3
UW
5502
5503 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5504 paddress (gdbarch, stop_pc));
d92524f1 5505 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5506 {
5507 CORE_ADDR addr;
abbb1732 5508
237fc4c9
PA
5509 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5510
5511 if (target_stopped_data_address (&current_target, &addr))
5512 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5513 "infrun: stopped data address = %s\n",
5514 paddress (gdbarch, addr));
237fc4c9
PA
5515 else
5516 fprintf_unfiltered (gdb_stdlog,
5517 "infrun: (no data address available)\n");
5518 }
7f82dfc7
JK
5519
5520 do_cleanups (old_chain);
237fc4c9 5521 }
527159b7 5522
36fa8042
PA
5523 /* This is originated from start_remote(), start_inferior() and
5524 shared libraries hook functions. */
5525 stop_soon = get_inferior_stop_soon (ecs->ptid);
5526 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5527 {
5528 if (!ptid_equal (ecs->ptid, inferior_ptid))
5529 context_switch (ecs->ptid);
5530 if (debug_infrun)
5531 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5532 stop_print_frame = 1;
22bcd14b 5533 stop_waiting (ecs);
36fa8042
PA
5534 return;
5535 }
5536
36fa8042
PA
5537 /* This originates from attach_command(). We need to overwrite
5538 the stop_signal here, because some kernels don't ignore a
5539 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5540 See more comments in inferior.h. On the other hand, if we
5541 get a non-SIGSTOP, report it to the user - assume the backend
5542 will handle the SIGSTOP if it should show up later.
5543
5544 Also consider that the attach is complete when we see a
5545 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5546 target extended-remote report it instead of a SIGSTOP
5547 (e.g. gdbserver). We already rely on SIGTRAP being our
5548 signal, so this is no exception.
5549
5550 Also consider that the attach is complete when we see a
5551 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5552 the target to stop all threads of the inferior, in case the
5553 low level attach operation doesn't stop them implicitly. If
5554 they weren't stopped implicitly, then the stub will report a
5555 GDB_SIGNAL_0, meaning: stopped for no particular reason
5556 other than GDB's request. */
5557 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5558 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5559 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5560 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5561 {
5562 stop_print_frame = 1;
22bcd14b 5563 stop_waiting (ecs);
36fa8042
PA
5564 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5565 return;
5566 }
5567
488f131b 5568 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5569 so, then switch to that thread. */
5570 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5571 {
527159b7 5572 if (debug_infrun)
8a9de0e4 5573 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5574
0d1e5fa7 5575 context_switch (ecs->ptid);
c5aa993b 5576
9a4105ab
AC
5577 if (deprecated_context_hook)
5578 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5579 }
c906108c 5580
568d6575
UW
5581 /* At this point, get hold of the now-current thread's frame. */
5582 frame = get_current_frame ();
5583 gdbarch = get_frame_arch (frame);
5584
2adfaa28 5585 /* Pull the single step breakpoints out of the target. */
af48d08f 5586 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5587 {
af48d08f
PA
5588 struct regcache *regcache;
5589 struct address_space *aspace;
5590 CORE_ADDR pc;
2adfaa28 5591
af48d08f
PA
5592 regcache = get_thread_regcache (ecs->ptid);
5593 aspace = get_regcache_aspace (regcache);
5594 pc = regcache_read_pc (regcache);
34b7e8a6 5595
af48d08f
PA
5596 /* However, before doing so, if this single-step breakpoint was
5597 actually for another thread, set this thread up for moving
5598 past it. */
5599 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5600 aspace, pc))
5601 {
5602 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5603 {
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
af48d08f 5607 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5608 "single-step breakpoint\n",
5609 target_pid_to_str (ecs->ptid));
2adfaa28 5610 }
af48d08f
PA
5611 ecs->hit_singlestep_breakpoint = 1;
5612 }
5613 }
5614 else
5615 {
5616 if (debug_infrun)
5617 {
5618 fprintf_unfiltered (gdb_stdlog,
5619 "infrun: [%s] hit its "
5620 "single-step breakpoint\n",
5621 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5622 }
5623 }
488f131b 5624 }
af48d08f 5625 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5626
963f9c80
PA
5627 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5628 && ecs->event_thread->control.trap_expected
5629 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5630 stopped_by_watchpoint = 0;
5631 else
5632 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5633
5634 /* If necessary, step over this watchpoint. We'll be back to display
5635 it in a moment. */
5636 if (stopped_by_watchpoint
d92524f1 5637 && (target_have_steppable_watchpoint
568d6575 5638 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5639 {
488f131b
JB
5640 /* At this point, we are stopped at an instruction which has
5641 attempted to write to a piece of memory under control of
5642 a watchpoint. The instruction hasn't actually executed
5643 yet. If we were to evaluate the watchpoint expression
5644 now, we would get the old value, and therefore no change
5645 would seem to have occurred.
5646
5647 In order to make watchpoints work `right', we really need
5648 to complete the memory write, and then evaluate the
d983da9c
DJ
5649 watchpoint expression. We do this by single-stepping the
5650 target.
5651
7f89fd65 5652 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5653 it. For example, the PA can (with some kernel cooperation)
5654 single step over a watchpoint without disabling the watchpoint.
5655
5656 It is far more common to need to disable a watchpoint to step
5657 the inferior over it. If we have non-steppable watchpoints,
5658 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5659 disable all watchpoints.
5660
5661 Any breakpoint at PC must also be stepped over -- if there's
5662 one, it will have already triggered before the watchpoint
5663 triggered, and we either already reported it to the user, or
5664 it didn't cause a stop and we called keep_going. In either
5665 case, if there was a breakpoint at PC, we must be trying to
5666 step past it. */
5667 ecs->event_thread->stepping_over_watchpoint = 1;
5668 keep_going (ecs);
488f131b
JB
5669 return;
5670 }
5671
4e1c45ea 5672 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5673 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5674 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5675 ecs->event_thread->control.stop_step = 0;
488f131b 5676 stop_print_frame = 1;
488f131b 5677 stopped_by_random_signal = 0;
488f131b 5678
edb3359d
DJ
5679 /* Hide inlined functions starting here, unless we just performed stepi or
5680 nexti. After stepi and nexti, always show the innermost frame (not any
5681 inline function call sites). */
16c381f0 5682 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5683 {
5684 struct address_space *aspace =
5685 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5686
5687 /* skip_inline_frames is expensive, so we avoid it if we can
5688 determine that the address is one where functions cannot have
5689 been inlined. This improves performance with inferiors that
5690 load a lot of shared libraries, because the solib event
5691 breakpoint is defined as the address of a function (i.e. not
5692 inline). Note that we have to check the previous PC as well
5693 as the current one to catch cases when we have just
5694 single-stepped off a breakpoint prior to reinstating it.
5695 Note that we're assuming that the code we single-step to is
5696 not inline, but that's not definitive: there's nothing
5697 preventing the event breakpoint function from containing
5698 inlined code, and the single-step ending up there. If the
5699 user had set a breakpoint on that inlined code, the missing
5700 skip_inline_frames call would break things. Fortunately
5701 that's an extremely unlikely scenario. */
09ac7c10 5702 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5703 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5704 && ecs->event_thread->control.trap_expected
5705 && pc_at_non_inline_function (aspace,
5706 ecs->event_thread->prev_pc,
09ac7c10 5707 &ecs->ws)))
1c5a993e
MR
5708 {
5709 skip_inline_frames (ecs->ptid);
5710
5711 /* Re-fetch current thread's frame in case that invalidated
5712 the frame cache. */
5713 frame = get_current_frame ();
5714 gdbarch = get_frame_arch (frame);
5715 }
0574c78f 5716 }
edb3359d 5717
a493e3e2 5718 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5719 && ecs->event_thread->control.trap_expected
568d6575 5720 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5721 && currently_stepping (ecs->event_thread))
3352ef37 5722 {
b50d7442 5723 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5724 also on an instruction that needs to be stepped multiple
1777feb0 5725 times before it's been fully executing. E.g., architectures
3352ef37
AC
5726 with a delay slot. It needs to be stepped twice, once for
5727 the instruction and once for the delay slot. */
5728 int step_through_delay
568d6575 5729 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5730
527159b7 5731 if (debug_infrun && step_through_delay)
8a9de0e4 5732 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5733 if (ecs->event_thread->control.step_range_end == 0
5734 && step_through_delay)
3352ef37
AC
5735 {
5736 /* The user issued a continue when stopped at a breakpoint.
5737 Set up for another trap and get out of here. */
4e1c45ea 5738 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5739 keep_going (ecs);
5740 return;
5741 }
5742 else if (step_through_delay)
5743 {
5744 /* The user issued a step when stopped at a breakpoint.
5745 Maybe we should stop, maybe we should not - the delay
5746 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5747 case, don't decide that here, just set
5748 ecs->stepping_over_breakpoint, making sure we
5749 single-step again before breakpoints are re-inserted. */
4e1c45ea 5750 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5751 }
5752 }
5753
ab04a2af
TT
5754 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5755 handles this event. */
5756 ecs->event_thread->control.stop_bpstat
5757 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5758 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5759
ab04a2af
TT
5760 /* Following in case break condition called a
5761 function. */
5762 stop_print_frame = 1;
73dd234f 5763
ab04a2af
TT
5764 /* This is where we handle "moribund" watchpoints. Unlike
5765 software breakpoints traps, hardware watchpoint traps are
5766 always distinguishable from random traps. If no high-level
5767 watchpoint is associated with the reported stop data address
5768 anymore, then the bpstat does not explain the signal ---
5769 simply make sure to ignore it if `stopped_by_watchpoint' is
5770 set. */
5771
5772 if (debug_infrun
5773 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5774 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5775 GDB_SIGNAL_TRAP)
ab04a2af
TT
5776 && stopped_by_watchpoint)
5777 fprintf_unfiltered (gdb_stdlog,
5778 "infrun: no user watchpoint explains "
5779 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5780
bac7d97b 5781 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5782 at one stage in the past included checks for an inferior
5783 function call's call dummy's return breakpoint. The original
5784 comment, that went with the test, read:
03cebad2 5785
ab04a2af
TT
5786 ``End of a stack dummy. Some systems (e.g. Sony news) give
5787 another signal besides SIGTRAP, so check here as well as
5788 above.''
73dd234f 5789
ab04a2af
TT
5790 If someone ever tries to get call dummys on a
5791 non-executable stack to work (where the target would stop
5792 with something like a SIGSEGV), then those tests might need
5793 to be re-instated. Given, however, that the tests were only
5794 enabled when momentary breakpoints were not being used, I
5795 suspect that it won't be the case.
488f131b 5796
ab04a2af
TT
5797 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5798 be necessary for call dummies on a non-executable stack on
5799 SPARC. */
488f131b 5800
bac7d97b 5801 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5802 random_signal
5803 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5804 ecs->event_thread->suspend.stop_signal);
bac7d97b 5805
1cf4d951
PA
5806 /* Maybe this was a trap for a software breakpoint that has since
5807 been removed. */
5808 if (random_signal && target_stopped_by_sw_breakpoint ())
5809 {
5810 if (program_breakpoint_here_p (gdbarch, stop_pc))
5811 {
5812 struct regcache *regcache;
5813 int decr_pc;
5814
5815 /* Re-adjust PC to what the program would see if GDB was not
5816 debugging it. */
5817 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5818 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5819 if (decr_pc != 0)
5820 {
5821 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5822
5823 if (record_full_is_used ())
5824 record_full_gdb_operation_disable_set ();
5825
5826 regcache_write_pc (regcache, stop_pc + decr_pc);
5827
5828 do_cleanups (old_cleanups);
5829 }
5830 }
5831 else
5832 {
5833 /* A delayed software breakpoint event. Ignore the trap. */
5834 if (debug_infrun)
5835 fprintf_unfiltered (gdb_stdlog,
5836 "infrun: delayed software breakpoint "
5837 "trap, ignoring\n");
5838 random_signal = 0;
5839 }
5840 }
5841
5842 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5843 has since been removed. */
5844 if (random_signal && target_stopped_by_hw_breakpoint ())
5845 {
5846 /* A delayed hardware breakpoint event. Ignore the trap. */
5847 if (debug_infrun)
5848 fprintf_unfiltered (gdb_stdlog,
5849 "infrun: delayed hardware breakpoint/watchpoint "
5850 "trap, ignoring\n");
5851 random_signal = 0;
5852 }
5853
bac7d97b
PA
5854 /* If not, perhaps stepping/nexting can. */
5855 if (random_signal)
5856 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5857 && currently_stepping (ecs->event_thread));
ab04a2af 5858
2adfaa28
PA
5859 /* Perhaps the thread hit a single-step breakpoint of _another_
5860 thread. Single-step breakpoints are transparent to the
5861 breakpoints module. */
5862 if (random_signal)
5863 random_signal = !ecs->hit_singlestep_breakpoint;
5864
bac7d97b
PA
5865 /* No? Perhaps we got a moribund watchpoint. */
5866 if (random_signal)
5867 random_signal = !stopped_by_watchpoint;
ab04a2af 5868
488f131b
JB
5869 /* For the program's own signals, act according to
5870 the signal handling tables. */
5871
ce12b012 5872 if (random_signal)
488f131b
JB
5873 {
5874 /* Signal not for debugging purposes. */
c9657e70 5875 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5876 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5877
527159b7 5878 if (debug_infrun)
c9737c08
PA
5879 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5880 gdb_signal_to_symbol_string (stop_signal));
527159b7 5881
488f131b
JB
5882 stopped_by_random_signal = 1;
5883
252fbfc8
PA
5884 /* Always stop on signals if we're either just gaining control
5885 of the program, or the user explicitly requested this thread
5886 to remain stopped. */
d6b48e9c 5887 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5888 || ecs->event_thread->stop_requested
24291992 5889 || (!inf->detaching
16c381f0 5890 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5891 {
22bcd14b 5892 stop_waiting (ecs);
488f131b
JB
5893 return;
5894 }
b57bacec
PA
5895
5896 /* Notify observers the signal has "handle print" set. Note we
5897 returned early above if stopping; normal_stop handles the
5898 printing in that case. */
5899 if (signal_print[ecs->event_thread->suspend.stop_signal])
5900 {
5901 /* The signal table tells us to print about this signal. */
5902 target_terminal_ours_for_output ();
5903 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5904 target_terminal_inferior ();
5905 }
488f131b
JB
5906
5907 /* Clear the signal if it should not be passed. */
16c381f0 5908 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5909 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5910
fb14de7b 5911 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5912 && ecs->event_thread->control.trap_expected
8358c15c 5913 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5914 {
372316f1
PA
5915 int was_in_line;
5916
68f53502
AC
5917 /* We were just starting a new sequence, attempting to
5918 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5919 Instead this signal arrives. This signal will take us out
68f53502
AC
5920 of the stepping range so GDB needs to remember to, when
5921 the signal handler returns, resume stepping off that
5922 breakpoint. */
5923 /* To simplify things, "continue" is forced to use the same
5924 code paths as single-step - set a breakpoint at the
5925 signal return address and then, once hit, step off that
5926 breakpoint. */
237fc4c9
PA
5927 if (debug_infrun)
5928 fprintf_unfiltered (gdb_stdlog,
5929 "infrun: signal arrived while stepping over "
5930 "breakpoint\n");
d3169d93 5931
372316f1
PA
5932 was_in_line = step_over_info_valid_p ();
5933 clear_step_over_info ();
2c03e5be 5934 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5935 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5936 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5937 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5938
fbea99ea 5939 if (target_is_non_stop_p ())
372316f1 5940 {
fbea99ea
PA
5941 /* Either "set non-stop" is "on", or the target is
5942 always in non-stop mode. In this case, we have a bit
5943 more work to do. Resume the current thread, and if
5944 we had paused all threads, restart them while the
5945 signal handler runs. */
372316f1
PA
5946 keep_going (ecs);
5947
372316f1
PA
5948 if (was_in_line)
5949 {
372316f1
PA
5950 restart_threads (ecs->event_thread);
5951 }
5952 else if (debug_infrun)
5953 {
5954 fprintf_unfiltered (gdb_stdlog,
5955 "infrun: no need to restart threads\n");
5956 }
5957 return;
5958 }
5959
d137e6dc
PA
5960 /* If we were nexting/stepping some other thread, switch to
5961 it, so that we don't continue it, losing control. */
5962 if (!switch_back_to_stepped_thread (ecs))
5963 keep_going (ecs);
9d799f85 5964 return;
68f53502 5965 }
9d799f85 5966
e5f8a7cc
PA
5967 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5968 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5969 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5970 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5971 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5972 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5973 {
5974 /* The inferior is about to take a signal that will take it
5975 out of the single step range. Set a breakpoint at the
5976 current PC (which is presumably where the signal handler
5977 will eventually return) and then allow the inferior to
5978 run free.
5979
5980 Note that this is only needed for a signal delivered
5981 while in the single-step range. Nested signals aren't a
5982 problem as they eventually all return. */
237fc4c9
PA
5983 if (debug_infrun)
5984 fprintf_unfiltered (gdb_stdlog,
5985 "infrun: signal may take us out of "
5986 "single-step range\n");
5987
372316f1 5988 clear_step_over_info ();
2c03e5be 5989 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5990 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5991 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5992 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5993 keep_going (ecs);
5994 return;
d303a6c7 5995 }
9d799f85
AC
5996
5997 /* Note: step_resume_breakpoint may be non-NULL. This occures
5998 when either there's a nested signal, or when there's a
5999 pending signal enabled just as the signal handler returns
6000 (leaving the inferior at the step-resume-breakpoint without
6001 actually executing it). Either way continue until the
6002 breakpoint is really hit. */
c447ac0b
PA
6003
6004 if (!switch_back_to_stepped_thread (ecs))
6005 {
6006 if (debug_infrun)
6007 fprintf_unfiltered (gdb_stdlog,
6008 "infrun: random signal, keep going\n");
6009
6010 keep_going (ecs);
6011 }
6012 return;
488f131b 6013 }
94c57d6a
PA
6014
6015 process_event_stop_test (ecs);
6016}
6017
6018/* Come here when we've got some debug event / signal we can explain
6019 (IOW, not a random signal), and test whether it should cause a
6020 stop, or whether we should resume the inferior (transparently).
6021 E.g., could be a breakpoint whose condition evaluates false; we
6022 could be still stepping within the line; etc. */
6023
6024static void
6025process_event_stop_test (struct execution_control_state *ecs)
6026{
6027 struct symtab_and_line stop_pc_sal;
6028 struct frame_info *frame;
6029 struct gdbarch *gdbarch;
cdaa5b73
PA
6030 CORE_ADDR jmp_buf_pc;
6031 struct bpstat_what what;
94c57d6a 6032
cdaa5b73 6033 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6034
cdaa5b73
PA
6035 frame = get_current_frame ();
6036 gdbarch = get_frame_arch (frame);
fcf3daef 6037
cdaa5b73 6038 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6039
cdaa5b73
PA
6040 if (what.call_dummy)
6041 {
6042 stop_stack_dummy = what.call_dummy;
6043 }
186c406b 6044
243a9253
PA
6045 /* A few breakpoint types have callbacks associated (e.g.,
6046 bp_jit_event). Run them now. */
6047 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6048
cdaa5b73
PA
6049 /* If we hit an internal event that triggers symbol changes, the
6050 current frame will be invalidated within bpstat_what (e.g., if we
6051 hit an internal solib event). Re-fetch it. */
6052 frame = get_current_frame ();
6053 gdbarch = get_frame_arch (frame);
e2e4d78b 6054
cdaa5b73
PA
6055 switch (what.main_action)
6056 {
6057 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6058 /* If we hit the breakpoint at longjmp while stepping, we
6059 install a momentary breakpoint at the target of the
6060 jmp_buf. */
186c406b 6061
cdaa5b73
PA
6062 if (debug_infrun)
6063 fprintf_unfiltered (gdb_stdlog,
6064 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6065
cdaa5b73 6066 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6067
cdaa5b73
PA
6068 if (what.is_longjmp)
6069 {
6070 struct value *arg_value;
6071
6072 /* If we set the longjmp breakpoint via a SystemTap probe,
6073 then use it to extract the arguments. The destination PC
6074 is the third argument to the probe. */
6075 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6076 if (arg_value)
8fa0c4f8
AA
6077 {
6078 jmp_buf_pc = value_as_address (arg_value);
6079 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6080 }
cdaa5b73
PA
6081 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6082 || !gdbarch_get_longjmp_target (gdbarch,
6083 frame, &jmp_buf_pc))
e2e4d78b 6084 {
cdaa5b73
PA
6085 if (debug_infrun)
6086 fprintf_unfiltered (gdb_stdlog,
6087 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6088 "(!gdbarch_get_longjmp_target)\n");
6089 keep_going (ecs);
6090 return;
e2e4d78b 6091 }
e2e4d78b 6092
cdaa5b73
PA
6093 /* Insert a breakpoint at resume address. */
6094 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6095 }
6096 else
6097 check_exception_resume (ecs, frame);
6098 keep_going (ecs);
6099 return;
e81a37f7 6100
cdaa5b73
PA
6101 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6102 {
6103 struct frame_info *init_frame;
e81a37f7 6104
cdaa5b73 6105 /* There are several cases to consider.
c906108c 6106
cdaa5b73
PA
6107 1. The initiating frame no longer exists. In this case we
6108 must stop, because the exception or longjmp has gone too
6109 far.
2c03e5be 6110
cdaa5b73
PA
6111 2. The initiating frame exists, and is the same as the
6112 current frame. We stop, because the exception or longjmp
6113 has been caught.
2c03e5be 6114
cdaa5b73
PA
6115 3. The initiating frame exists and is different from the
6116 current frame. This means the exception or longjmp has
6117 been caught beneath the initiating frame, so keep going.
c906108c 6118
cdaa5b73
PA
6119 4. longjmp breakpoint has been placed just to protect
6120 against stale dummy frames and user is not interested in
6121 stopping around longjmps. */
c5aa993b 6122
cdaa5b73
PA
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog,
6125 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6126
cdaa5b73
PA
6127 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6128 != NULL);
6129 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6130
cdaa5b73
PA
6131 if (what.is_longjmp)
6132 {
b67a2c6f 6133 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6134
cdaa5b73 6135 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6136 {
cdaa5b73
PA
6137 /* Case 4. */
6138 keep_going (ecs);
6139 return;
e5ef252a 6140 }
cdaa5b73 6141 }
c5aa993b 6142
cdaa5b73 6143 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6144
cdaa5b73
PA
6145 if (init_frame)
6146 {
6147 struct frame_id current_id
6148 = get_frame_id (get_current_frame ());
6149 if (frame_id_eq (current_id,
6150 ecs->event_thread->initiating_frame))
6151 {
6152 /* Case 2. Fall through. */
6153 }
6154 else
6155 {
6156 /* Case 3. */
6157 keep_going (ecs);
6158 return;
6159 }
68f53502 6160 }
488f131b 6161
cdaa5b73
PA
6162 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6163 exists. */
6164 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6165
bdc36728 6166 end_stepping_range (ecs);
cdaa5b73
PA
6167 }
6168 return;
e5ef252a 6169
cdaa5b73
PA
6170 case BPSTAT_WHAT_SINGLE:
6171 if (debug_infrun)
6172 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6173 ecs->event_thread->stepping_over_breakpoint = 1;
6174 /* Still need to check other stuff, at least the case where we
6175 are stepping and step out of the right range. */
6176 break;
e5ef252a 6177
cdaa5b73
PA
6178 case BPSTAT_WHAT_STEP_RESUME:
6179 if (debug_infrun)
6180 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6181
cdaa5b73
PA
6182 delete_step_resume_breakpoint (ecs->event_thread);
6183 if (ecs->event_thread->control.proceed_to_finish
6184 && execution_direction == EXEC_REVERSE)
6185 {
6186 struct thread_info *tp = ecs->event_thread;
6187
6188 /* We are finishing a function in reverse, and just hit the
6189 step-resume breakpoint at the start address of the
6190 function, and we're almost there -- just need to back up
6191 by one more single-step, which should take us back to the
6192 function call. */
6193 tp->control.step_range_start = tp->control.step_range_end = 1;
6194 keep_going (ecs);
e5ef252a 6195 return;
cdaa5b73
PA
6196 }
6197 fill_in_stop_func (gdbarch, ecs);
6198 if (stop_pc == ecs->stop_func_start
6199 && execution_direction == EXEC_REVERSE)
6200 {
6201 /* We are stepping over a function call in reverse, and just
6202 hit the step-resume breakpoint at the start address of
6203 the function. Go back to single-stepping, which should
6204 take us back to the function call. */
6205 ecs->event_thread->stepping_over_breakpoint = 1;
6206 keep_going (ecs);
6207 return;
6208 }
6209 break;
e5ef252a 6210
cdaa5b73
PA
6211 case BPSTAT_WHAT_STOP_NOISY:
6212 if (debug_infrun)
6213 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6214 stop_print_frame = 1;
e5ef252a 6215
99619bea
PA
6216 /* Assume the thread stopped for a breapoint. We'll still check
6217 whether a/the breakpoint is there when the thread is next
6218 resumed. */
6219 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6220
22bcd14b 6221 stop_waiting (ecs);
cdaa5b73 6222 return;
e5ef252a 6223
cdaa5b73
PA
6224 case BPSTAT_WHAT_STOP_SILENT:
6225 if (debug_infrun)
6226 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6227 stop_print_frame = 0;
e5ef252a 6228
99619bea
PA
6229 /* Assume the thread stopped for a breapoint. We'll still check
6230 whether a/the breakpoint is there when the thread is next
6231 resumed. */
6232 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6233 stop_waiting (ecs);
cdaa5b73
PA
6234 return;
6235
6236 case BPSTAT_WHAT_HP_STEP_RESUME:
6237 if (debug_infrun)
6238 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6239
6240 delete_step_resume_breakpoint (ecs->event_thread);
6241 if (ecs->event_thread->step_after_step_resume_breakpoint)
6242 {
6243 /* Back when the step-resume breakpoint was inserted, we
6244 were trying to single-step off a breakpoint. Go back to
6245 doing that. */
6246 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6247 ecs->event_thread->stepping_over_breakpoint = 1;
6248 keep_going (ecs);
6249 return;
e5ef252a 6250 }
cdaa5b73
PA
6251 break;
6252
6253 case BPSTAT_WHAT_KEEP_CHECKING:
6254 break;
e5ef252a 6255 }
c906108c 6256
af48d08f
PA
6257 /* If we stepped a permanent breakpoint and we had a high priority
6258 step-resume breakpoint for the address we stepped, but we didn't
6259 hit it, then we must have stepped into the signal handler. The
6260 step-resume was only necessary to catch the case of _not_
6261 stepping into the handler, so delete it, and fall through to
6262 checking whether the step finished. */
6263 if (ecs->event_thread->stepped_breakpoint)
6264 {
6265 struct breakpoint *sr_bp
6266 = ecs->event_thread->control.step_resume_breakpoint;
6267
8d707a12
PA
6268 if (sr_bp != NULL
6269 && sr_bp->loc->permanent
af48d08f
PA
6270 && sr_bp->type == bp_hp_step_resume
6271 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6272 {
6273 if (debug_infrun)
6274 fprintf_unfiltered (gdb_stdlog,
6275 "infrun: stepped permanent breakpoint, stopped in "
6276 "handler\n");
6277 delete_step_resume_breakpoint (ecs->event_thread);
6278 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6279 }
6280 }
6281
cdaa5b73
PA
6282 /* We come here if we hit a breakpoint but should not stop for it.
6283 Possibly we also were stepping and should stop for that. So fall
6284 through and test for stepping. But, if not stepping, do not
6285 stop. */
c906108c 6286
a7212384
UW
6287 /* In all-stop mode, if we're currently stepping but have stopped in
6288 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6289 if (switch_back_to_stepped_thread (ecs))
6290 return;
776f04fa 6291
8358c15c 6292 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6293 {
527159b7 6294 if (debug_infrun)
d3169d93
DJ
6295 fprintf_unfiltered (gdb_stdlog,
6296 "infrun: step-resume breakpoint is inserted\n");
527159b7 6297
488f131b
JB
6298 /* Having a step-resume breakpoint overrides anything
6299 else having to do with stepping commands until
6300 that breakpoint is reached. */
488f131b
JB
6301 keep_going (ecs);
6302 return;
6303 }
c5aa993b 6304
16c381f0 6305 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6306 {
527159b7 6307 if (debug_infrun)
8a9de0e4 6308 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6309 /* Likewise if we aren't even stepping. */
488f131b
JB
6310 keep_going (ecs);
6311 return;
6312 }
c5aa993b 6313
4b7703ad
JB
6314 /* Re-fetch current thread's frame in case the code above caused
6315 the frame cache to be re-initialized, making our FRAME variable
6316 a dangling pointer. */
6317 frame = get_current_frame ();
628fe4e4 6318 gdbarch = get_frame_arch (frame);
7e324e48 6319 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6320
488f131b 6321 /* If stepping through a line, keep going if still within it.
c906108c 6322
488f131b
JB
6323 Note that step_range_end is the address of the first instruction
6324 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6325 within it!
6326
6327 Note also that during reverse execution, we may be stepping
6328 through a function epilogue and therefore must detect when
6329 the current-frame changes in the middle of a line. */
6330
ce4c476a 6331 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6332 && (execution_direction != EXEC_REVERSE
388a8562 6333 || frame_id_eq (get_frame_id (frame),
16c381f0 6334 ecs->event_thread->control.step_frame_id)))
488f131b 6335 {
527159b7 6336 if (debug_infrun)
5af949e3
UW
6337 fprintf_unfiltered
6338 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6339 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6340 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6341
c1e36e3e
PA
6342 /* Tentatively re-enable range stepping; `resume' disables it if
6343 necessary (e.g., if we're stepping over a breakpoint or we
6344 have software watchpoints). */
6345 ecs->event_thread->control.may_range_step = 1;
6346
b2175913
MS
6347 /* When stepping backward, stop at beginning of line range
6348 (unless it's the function entry point, in which case
6349 keep going back to the call point). */
16c381f0 6350 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6351 && stop_pc != ecs->stop_func_start
6352 && execution_direction == EXEC_REVERSE)
bdc36728 6353 end_stepping_range (ecs);
b2175913
MS
6354 else
6355 keep_going (ecs);
6356
488f131b
JB
6357 return;
6358 }
c5aa993b 6359
488f131b 6360 /* We stepped out of the stepping range. */
c906108c 6361
488f131b 6362 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6363 loader dynamic symbol resolution code...
6364
6365 EXEC_FORWARD: we keep on single stepping until we exit the run
6366 time loader code and reach the callee's address.
6367
6368 EXEC_REVERSE: we've already executed the callee (backward), and
6369 the runtime loader code is handled just like any other
6370 undebuggable function call. Now we need only keep stepping
6371 backward through the trampoline code, and that's handled further
6372 down, so there is nothing for us to do here. */
6373
6374 if (execution_direction != EXEC_REVERSE
16c381f0 6375 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6376 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6377 {
4c8c40e6 6378 CORE_ADDR pc_after_resolver =
568d6575 6379 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6380
527159b7 6381 if (debug_infrun)
3e43a32a
MS
6382 fprintf_unfiltered (gdb_stdlog,
6383 "infrun: stepped into dynsym resolve code\n");
527159b7 6384
488f131b
JB
6385 if (pc_after_resolver)
6386 {
6387 /* Set up a step-resume breakpoint at the address
6388 indicated by SKIP_SOLIB_RESOLVER. */
6389 struct symtab_and_line sr_sal;
abbb1732 6390
fe39c653 6391 init_sal (&sr_sal);
488f131b 6392 sr_sal.pc = pc_after_resolver;
6c95b8df 6393 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6394
a6d9a66e
UW
6395 insert_step_resume_breakpoint_at_sal (gdbarch,
6396 sr_sal, null_frame_id);
c5aa993b 6397 }
c906108c 6398
488f131b
JB
6399 keep_going (ecs);
6400 return;
6401 }
c906108c 6402
16c381f0
JK
6403 if (ecs->event_thread->control.step_range_end != 1
6404 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6405 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6406 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6407 {
527159b7 6408 if (debug_infrun)
3e43a32a
MS
6409 fprintf_unfiltered (gdb_stdlog,
6410 "infrun: stepped into signal trampoline\n");
42edda50 6411 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6412 a signal trampoline (either by a signal being delivered or by
6413 the signal handler returning). Just single-step until the
6414 inferior leaves the trampoline (either by calling the handler
6415 or returning). */
488f131b
JB
6416 keep_going (ecs);
6417 return;
6418 }
c906108c 6419
14132e89
MR
6420 /* If we're in the return path from a shared library trampoline,
6421 we want to proceed through the trampoline when stepping. */
6422 /* macro/2012-04-25: This needs to come before the subroutine
6423 call check below as on some targets return trampolines look
6424 like subroutine calls (MIPS16 return thunks). */
6425 if (gdbarch_in_solib_return_trampoline (gdbarch,
6426 stop_pc, ecs->stop_func_name)
6427 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6428 {
6429 /* Determine where this trampoline returns. */
6430 CORE_ADDR real_stop_pc;
6431
6432 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6433
6434 if (debug_infrun)
6435 fprintf_unfiltered (gdb_stdlog,
6436 "infrun: stepped into solib return tramp\n");
6437
6438 /* Only proceed through if we know where it's going. */
6439 if (real_stop_pc)
6440 {
6441 /* And put the step-breakpoint there and go until there. */
6442 struct symtab_and_line sr_sal;
6443
6444 init_sal (&sr_sal); /* initialize to zeroes */
6445 sr_sal.pc = real_stop_pc;
6446 sr_sal.section = find_pc_overlay (sr_sal.pc);
6447 sr_sal.pspace = get_frame_program_space (frame);
6448
6449 /* Do not specify what the fp should be when we stop since
6450 on some machines the prologue is where the new fp value
6451 is established. */
6452 insert_step_resume_breakpoint_at_sal (gdbarch,
6453 sr_sal, null_frame_id);
6454
6455 /* Restart without fiddling with the step ranges or
6456 other state. */
6457 keep_going (ecs);
6458 return;
6459 }
6460 }
6461
c17eaafe
DJ
6462 /* Check for subroutine calls. The check for the current frame
6463 equalling the step ID is not necessary - the check of the
6464 previous frame's ID is sufficient - but it is a common case and
6465 cheaper than checking the previous frame's ID.
14e60db5
DJ
6466
6467 NOTE: frame_id_eq will never report two invalid frame IDs as
6468 being equal, so to get into this block, both the current and
6469 previous frame must have valid frame IDs. */
005ca36a
JB
6470 /* The outer_frame_id check is a heuristic to detect stepping
6471 through startup code. If we step over an instruction which
6472 sets the stack pointer from an invalid value to a valid value,
6473 we may detect that as a subroutine call from the mythical
6474 "outermost" function. This could be fixed by marking
6475 outermost frames as !stack_p,code_p,special_p. Then the
6476 initial outermost frame, before sp was valid, would
ce6cca6d 6477 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6478 for more. */
edb3359d 6479 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6480 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6481 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6482 ecs->event_thread->control.step_stack_frame_id)
6483 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6484 outer_frame_id)
885eeb5b
PA
6485 || (ecs->event_thread->control.step_start_function
6486 != find_pc_function (stop_pc)))))
488f131b 6487 {
95918acb 6488 CORE_ADDR real_stop_pc;
8fb3e588 6489
527159b7 6490 if (debug_infrun)
8a9de0e4 6491 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6492
b7a084be 6493 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6494 {
6495 /* I presume that step_over_calls is only 0 when we're
6496 supposed to be stepping at the assembly language level
6497 ("stepi"). Just stop. */
388a8562 6498 /* And this works the same backward as frontward. MVS */
bdc36728 6499 end_stepping_range (ecs);
95918acb
AC
6500 return;
6501 }
8fb3e588 6502
388a8562
MS
6503 /* Reverse stepping through solib trampolines. */
6504
6505 if (execution_direction == EXEC_REVERSE
16c381f0 6506 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6507 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6508 || (ecs->stop_func_start == 0
6509 && in_solib_dynsym_resolve_code (stop_pc))))
6510 {
6511 /* Any solib trampoline code can be handled in reverse
6512 by simply continuing to single-step. We have already
6513 executed the solib function (backwards), and a few
6514 steps will take us back through the trampoline to the
6515 caller. */
6516 keep_going (ecs);
6517 return;
6518 }
6519
16c381f0 6520 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6521 {
b2175913
MS
6522 /* We're doing a "next".
6523
6524 Normal (forward) execution: set a breakpoint at the
6525 callee's return address (the address at which the caller
6526 will resume).
6527
6528 Reverse (backward) execution. set the step-resume
6529 breakpoint at the start of the function that we just
6530 stepped into (backwards), and continue to there. When we
6130d0b7 6531 get there, we'll need to single-step back to the caller. */
b2175913
MS
6532
6533 if (execution_direction == EXEC_REVERSE)
6534 {
acf9414f
JK
6535 /* If we're already at the start of the function, we've either
6536 just stepped backward into a single instruction function,
6537 or stepped back out of a signal handler to the first instruction
6538 of the function. Just keep going, which will single-step back
6539 to the caller. */
58c48e72 6540 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6541 {
6542 struct symtab_and_line sr_sal;
6543
6544 /* Normal function call return (static or dynamic). */
6545 init_sal (&sr_sal);
6546 sr_sal.pc = ecs->stop_func_start;
6547 sr_sal.pspace = get_frame_program_space (frame);
6548 insert_step_resume_breakpoint_at_sal (gdbarch,
6549 sr_sal, null_frame_id);
6550 }
b2175913
MS
6551 }
6552 else
568d6575 6553 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6554
8567c30f
AC
6555 keep_going (ecs);
6556 return;
6557 }
a53c66de 6558
95918acb 6559 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6560 calling routine and the real function), locate the real
6561 function. That's what tells us (a) whether we want to step
6562 into it at all, and (b) what prologue we want to run to the
6563 end of, if we do step into it. */
568d6575 6564 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6565 if (real_stop_pc == 0)
568d6575 6566 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6567 if (real_stop_pc != 0)
6568 ecs->stop_func_start = real_stop_pc;
8fb3e588 6569
db5f024e 6570 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6571 {
6572 struct symtab_and_line sr_sal;
abbb1732 6573
1b2bfbb9
RC
6574 init_sal (&sr_sal);
6575 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6576 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6577
a6d9a66e
UW
6578 insert_step_resume_breakpoint_at_sal (gdbarch,
6579 sr_sal, null_frame_id);
8fb3e588
AC
6580 keep_going (ecs);
6581 return;
1b2bfbb9
RC
6582 }
6583
95918acb 6584 /* If we have line number information for the function we are
1bfeeb0f
JL
6585 thinking of stepping into and the function isn't on the skip
6586 list, step into it.
95918acb 6587
8fb3e588
AC
6588 If there are several symtabs at that PC (e.g. with include
6589 files), just want to know whether *any* of them have line
6590 numbers. find_pc_line handles this. */
95918acb
AC
6591 {
6592 struct symtab_and_line tmp_sal;
8fb3e588 6593
95918acb 6594 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6595 if (tmp_sal.line != 0
85817405
JK
6596 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6597 &tmp_sal))
95918acb 6598 {
b2175913 6599 if (execution_direction == EXEC_REVERSE)
568d6575 6600 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6601 else
568d6575 6602 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6603 return;
6604 }
6605 }
6606
6607 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6608 set, we stop the step so that the user has a chance to switch
6609 in assembly mode. */
16c381f0 6610 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6611 && step_stop_if_no_debug)
95918acb 6612 {
bdc36728 6613 end_stepping_range (ecs);
95918acb
AC
6614 return;
6615 }
6616
b2175913
MS
6617 if (execution_direction == EXEC_REVERSE)
6618 {
acf9414f
JK
6619 /* If we're already at the start of the function, we've either just
6620 stepped backward into a single instruction function without line
6621 number info, or stepped back out of a signal handler to the first
6622 instruction of the function without line number info. Just keep
6623 going, which will single-step back to the caller. */
6624 if (ecs->stop_func_start != stop_pc)
6625 {
6626 /* Set a breakpoint at callee's start address.
6627 From there we can step once and be back in the caller. */
6628 struct symtab_and_line sr_sal;
abbb1732 6629
acf9414f
JK
6630 init_sal (&sr_sal);
6631 sr_sal.pc = ecs->stop_func_start;
6632 sr_sal.pspace = get_frame_program_space (frame);
6633 insert_step_resume_breakpoint_at_sal (gdbarch,
6634 sr_sal, null_frame_id);
6635 }
b2175913
MS
6636 }
6637 else
6638 /* Set a breakpoint at callee's return address (the address
6639 at which the caller will resume). */
568d6575 6640 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6641
95918acb 6642 keep_going (ecs);
488f131b 6643 return;
488f131b 6644 }
c906108c 6645
fdd654f3
MS
6646 /* Reverse stepping through solib trampolines. */
6647
6648 if (execution_direction == EXEC_REVERSE
16c381f0 6649 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6650 {
6651 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6652 || (ecs->stop_func_start == 0
6653 && in_solib_dynsym_resolve_code (stop_pc)))
6654 {
6655 /* Any solib trampoline code can be handled in reverse
6656 by simply continuing to single-step. We have already
6657 executed the solib function (backwards), and a few
6658 steps will take us back through the trampoline to the
6659 caller. */
6660 keep_going (ecs);
6661 return;
6662 }
6663 else if (in_solib_dynsym_resolve_code (stop_pc))
6664 {
6665 /* Stepped backward into the solib dynsym resolver.
6666 Set a breakpoint at its start and continue, then
6667 one more step will take us out. */
6668 struct symtab_and_line sr_sal;
abbb1732 6669
fdd654f3
MS
6670 init_sal (&sr_sal);
6671 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6672 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6673 insert_step_resume_breakpoint_at_sal (gdbarch,
6674 sr_sal, null_frame_id);
6675 keep_going (ecs);
6676 return;
6677 }
6678 }
6679
2afb61aa 6680 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6681
1b2bfbb9
RC
6682 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6683 the trampoline processing logic, however, there are some trampolines
6684 that have no names, so we should do trampoline handling first. */
16c381f0 6685 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6686 && ecs->stop_func_name == NULL
2afb61aa 6687 && stop_pc_sal.line == 0)
1b2bfbb9 6688 {
527159b7 6689 if (debug_infrun)
3e43a32a
MS
6690 fprintf_unfiltered (gdb_stdlog,
6691 "infrun: stepped into undebuggable function\n");
527159b7 6692
1b2bfbb9 6693 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6694 undebuggable function (where there is no debugging information
6695 and no line number corresponding to the address where the
1b2bfbb9
RC
6696 inferior stopped). Since we want to skip this kind of code,
6697 we keep going until the inferior returns from this
14e60db5
DJ
6698 function - unless the user has asked us not to (via
6699 set step-mode) or we no longer know how to get back
6700 to the call site. */
6701 if (step_stop_if_no_debug
c7ce8faa 6702 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6703 {
6704 /* If we have no line number and the step-stop-if-no-debug
6705 is set, we stop the step so that the user has a chance to
6706 switch in assembly mode. */
bdc36728 6707 end_stepping_range (ecs);
1b2bfbb9
RC
6708 return;
6709 }
6710 else
6711 {
6712 /* Set a breakpoint at callee's return address (the address
6713 at which the caller will resume). */
568d6575 6714 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6715 keep_going (ecs);
6716 return;
6717 }
6718 }
6719
16c381f0 6720 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6721 {
6722 /* It is stepi or nexti. We always want to stop stepping after
6723 one instruction. */
527159b7 6724 if (debug_infrun)
8a9de0e4 6725 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6726 end_stepping_range (ecs);
1b2bfbb9
RC
6727 return;
6728 }
6729
2afb61aa 6730 if (stop_pc_sal.line == 0)
488f131b
JB
6731 {
6732 /* We have no line number information. That means to stop
6733 stepping (does this always happen right after one instruction,
6734 when we do "s" in a function with no line numbers,
6735 or can this happen as a result of a return or longjmp?). */
527159b7 6736 if (debug_infrun)
8a9de0e4 6737 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6738 end_stepping_range (ecs);
488f131b
JB
6739 return;
6740 }
c906108c 6741
edb3359d
DJ
6742 /* Look for "calls" to inlined functions, part one. If the inline
6743 frame machinery detected some skipped call sites, we have entered
6744 a new inline function. */
6745
6746 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6747 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6748 && inline_skipped_frames (ecs->ptid))
6749 {
6750 struct symtab_and_line call_sal;
6751
6752 if (debug_infrun)
6753 fprintf_unfiltered (gdb_stdlog,
6754 "infrun: stepped into inlined function\n");
6755
6756 find_frame_sal (get_current_frame (), &call_sal);
6757
16c381f0 6758 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6759 {
6760 /* For "step", we're going to stop. But if the call site
6761 for this inlined function is on the same source line as
6762 we were previously stepping, go down into the function
6763 first. Otherwise stop at the call site. */
6764
6765 if (call_sal.line == ecs->event_thread->current_line
6766 && call_sal.symtab == ecs->event_thread->current_symtab)
6767 step_into_inline_frame (ecs->ptid);
6768
bdc36728 6769 end_stepping_range (ecs);
edb3359d
DJ
6770 return;
6771 }
6772 else
6773 {
6774 /* For "next", we should stop at the call site if it is on a
6775 different source line. Otherwise continue through the
6776 inlined function. */
6777 if (call_sal.line == ecs->event_thread->current_line
6778 && call_sal.symtab == ecs->event_thread->current_symtab)
6779 keep_going (ecs);
6780 else
bdc36728 6781 end_stepping_range (ecs);
edb3359d
DJ
6782 return;
6783 }
6784 }
6785
6786 /* Look for "calls" to inlined functions, part two. If we are still
6787 in the same real function we were stepping through, but we have
6788 to go further up to find the exact frame ID, we are stepping
6789 through a more inlined call beyond its call site. */
6790
6791 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6792 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6793 ecs->event_thread->control.step_frame_id)
edb3359d 6794 && stepped_in_from (get_current_frame (),
16c381f0 6795 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6796 {
6797 if (debug_infrun)
6798 fprintf_unfiltered (gdb_stdlog,
6799 "infrun: stepping through inlined function\n");
6800
16c381f0 6801 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6802 keep_going (ecs);
6803 else
bdc36728 6804 end_stepping_range (ecs);
edb3359d
DJ
6805 return;
6806 }
6807
2afb61aa 6808 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6809 && (ecs->event_thread->current_line != stop_pc_sal.line
6810 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6811 {
6812 /* We are at the start of a different line. So stop. Note that
6813 we don't stop if we step into the middle of a different line.
6814 That is said to make things like for (;;) statements work
6815 better. */
527159b7 6816 if (debug_infrun)
3e43a32a
MS
6817 fprintf_unfiltered (gdb_stdlog,
6818 "infrun: stepped to a different line\n");
bdc36728 6819 end_stepping_range (ecs);
488f131b
JB
6820 return;
6821 }
c906108c 6822
488f131b 6823 /* We aren't done stepping.
c906108c 6824
488f131b
JB
6825 Optimize by setting the stepping range to the line.
6826 (We might not be in the original line, but if we entered a
6827 new line in mid-statement, we continue stepping. This makes
6828 things like for(;;) statements work better.) */
c906108c 6829
16c381f0
JK
6830 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6831 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6832 ecs->event_thread->control.may_range_step = 1;
edb3359d 6833 set_step_info (frame, stop_pc_sal);
488f131b 6834
527159b7 6835 if (debug_infrun)
8a9de0e4 6836 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6837 keep_going (ecs);
104c1213
JM
6838}
6839
c447ac0b
PA
6840/* In all-stop mode, if we're currently stepping but have stopped in
6841 some other thread, we may need to switch back to the stepped
6842 thread. Returns true we set the inferior running, false if we left
6843 it stopped (and the event needs further processing). */
6844
6845static int
6846switch_back_to_stepped_thread (struct execution_control_state *ecs)
6847{
fbea99ea 6848 if (!target_is_non_stop_p ())
c447ac0b
PA
6849 {
6850 struct thread_info *tp;
99619bea
PA
6851 struct thread_info *stepping_thread;
6852
6853 /* If any thread is blocked on some internal breakpoint, and we
6854 simply need to step over that breakpoint to get it going
6855 again, do that first. */
6856
6857 /* However, if we see an event for the stepping thread, then we
6858 know all other threads have been moved past their breakpoints
6859 already. Let the caller check whether the step is finished,
6860 etc., before deciding to move it past a breakpoint. */
6861 if (ecs->event_thread->control.step_range_end != 0)
6862 return 0;
6863
6864 /* Check if the current thread is blocked on an incomplete
6865 step-over, interrupted by a random signal. */
6866 if (ecs->event_thread->control.trap_expected
6867 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6868 {
99619bea
PA
6869 if (debug_infrun)
6870 {
6871 fprintf_unfiltered (gdb_stdlog,
6872 "infrun: need to finish step-over of [%s]\n",
6873 target_pid_to_str (ecs->event_thread->ptid));
6874 }
6875 keep_going (ecs);
6876 return 1;
6877 }
2adfaa28 6878
99619bea
PA
6879 /* Check if the current thread is blocked by a single-step
6880 breakpoint of another thread. */
6881 if (ecs->hit_singlestep_breakpoint)
6882 {
6883 if (debug_infrun)
6884 {
6885 fprintf_unfiltered (gdb_stdlog,
6886 "infrun: need to step [%s] over single-step "
6887 "breakpoint\n",
6888 target_pid_to_str (ecs->ptid));
6889 }
6890 keep_going (ecs);
6891 return 1;
6892 }
6893
4d9d9d04
PA
6894 /* If this thread needs yet another step-over (e.g., stepping
6895 through a delay slot), do it first before moving on to
6896 another thread. */
6897 if (thread_still_needs_step_over (ecs->event_thread))
6898 {
6899 if (debug_infrun)
6900 {
6901 fprintf_unfiltered (gdb_stdlog,
6902 "infrun: thread [%s] still needs step-over\n",
6903 target_pid_to_str (ecs->event_thread->ptid));
6904 }
6905 keep_going (ecs);
6906 return 1;
6907 }
70509625 6908
483805cf
PA
6909 /* If scheduler locking applies even if not stepping, there's no
6910 need to walk over threads. Above we've checked whether the
6911 current thread is stepping. If some other thread not the
6912 event thread is stepping, then it must be that scheduler
6913 locking is not in effect. */
856e7dd6 6914 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6915 return 0;
6916
4d9d9d04
PA
6917 /* Otherwise, we no longer expect a trap in the current thread.
6918 Clear the trap_expected flag before switching back -- this is
6919 what keep_going does as well, if we call it. */
6920 ecs->event_thread->control.trap_expected = 0;
6921
6922 /* Likewise, clear the signal if it should not be passed. */
6923 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6924 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6925
6926 /* Do all pending step-overs before actually proceeding with
483805cf 6927 step/next/etc. */
4d9d9d04
PA
6928 if (start_step_over ())
6929 {
6930 prepare_to_wait (ecs);
6931 return 1;
6932 }
6933
6934 /* Look for the stepping/nexting thread. */
483805cf 6935 stepping_thread = NULL;
4d9d9d04 6936
034f788c 6937 ALL_NON_EXITED_THREADS (tp)
483805cf 6938 {
fbea99ea
PA
6939 /* Ignore threads of processes the caller is not
6940 resuming. */
483805cf 6941 if (!sched_multi
1afd5965 6942 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6943 continue;
6944
6945 /* When stepping over a breakpoint, we lock all threads
6946 except the one that needs to move past the breakpoint.
6947 If a non-event thread has this set, the "incomplete
6948 step-over" check above should have caught it earlier. */
372316f1
PA
6949 if (tp->control.trap_expected)
6950 {
6951 internal_error (__FILE__, __LINE__,
6952 "[%s] has inconsistent state: "
6953 "trap_expected=%d\n",
6954 target_pid_to_str (tp->ptid),
6955 tp->control.trap_expected);
6956 }
483805cf
PA
6957
6958 /* Did we find the stepping thread? */
6959 if (tp->control.step_range_end)
6960 {
6961 /* Yep. There should only one though. */
6962 gdb_assert (stepping_thread == NULL);
6963
6964 /* The event thread is handled at the top, before we
6965 enter this loop. */
6966 gdb_assert (tp != ecs->event_thread);
6967
6968 /* If some thread other than the event thread is
6969 stepping, then scheduler locking can't be in effect,
6970 otherwise we wouldn't have resumed the current event
6971 thread in the first place. */
856e7dd6 6972 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6973
6974 stepping_thread = tp;
6975 }
99619bea
PA
6976 }
6977
483805cf 6978 if (stepping_thread != NULL)
99619bea 6979 {
c447ac0b
PA
6980 if (debug_infrun)
6981 fprintf_unfiltered (gdb_stdlog,
6982 "infrun: switching back to stepped thread\n");
6983
2ac7589c
PA
6984 if (keep_going_stepped_thread (stepping_thread))
6985 {
6986 prepare_to_wait (ecs);
6987 return 1;
6988 }
6989 }
6990 }
2adfaa28 6991
2ac7589c
PA
6992 return 0;
6993}
2adfaa28 6994
2ac7589c
PA
6995/* Set a previously stepped thread back to stepping. Returns true on
6996 success, false if the resume is not possible (e.g., the thread
6997 vanished). */
6998
6999static int
7000keep_going_stepped_thread (struct thread_info *tp)
7001{
7002 struct frame_info *frame;
7003 struct gdbarch *gdbarch;
7004 struct execution_control_state ecss;
7005 struct execution_control_state *ecs = &ecss;
2adfaa28 7006
2ac7589c
PA
7007 /* If the stepping thread exited, then don't try to switch back and
7008 resume it, which could fail in several different ways depending
7009 on the target. Instead, just keep going.
2adfaa28 7010
2ac7589c
PA
7011 We can find a stepping dead thread in the thread list in two
7012 cases:
2adfaa28 7013
2ac7589c
PA
7014 - The target supports thread exit events, and when the target
7015 tries to delete the thread from the thread list, inferior_ptid
7016 pointed at the exiting thread. In such case, calling
7017 delete_thread does not really remove the thread from the list;
7018 instead, the thread is left listed, with 'exited' state.
64ce06e4 7019
2ac7589c
PA
7020 - The target's debug interface does not support thread exit
7021 events, and so we have no idea whatsoever if the previously
7022 stepping thread is still alive. For that reason, we need to
7023 synchronously query the target now. */
2adfaa28 7024
2ac7589c
PA
7025 if (is_exited (tp->ptid)
7026 || !target_thread_alive (tp->ptid))
7027 {
7028 if (debug_infrun)
7029 fprintf_unfiltered (gdb_stdlog,
7030 "infrun: not resuming previously "
7031 "stepped thread, it has vanished\n");
7032
7033 delete_thread (tp->ptid);
7034 return 0;
c447ac0b 7035 }
2ac7589c
PA
7036
7037 if (debug_infrun)
7038 fprintf_unfiltered (gdb_stdlog,
7039 "infrun: resuming previously stepped thread\n");
7040
7041 reset_ecs (ecs, tp);
7042 switch_to_thread (tp->ptid);
7043
7044 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7045 frame = get_current_frame ();
7046 gdbarch = get_frame_arch (frame);
7047
7048 /* If the PC of the thread we were trying to single-step has
7049 changed, then that thread has trapped or been signaled, but the
7050 event has not been reported to GDB yet. Re-poll the target
7051 looking for this particular thread's event (i.e. temporarily
7052 enable schedlock) by:
7053
7054 - setting a break at the current PC
7055 - resuming that particular thread, only (by setting trap
7056 expected)
7057
7058 This prevents us continuously moving the single-step breakpoint
7059 forward, one instruction at a time, overstepping. */
7060
7061 if (stop_pc != tp->prev_pc)
7062 {
7063 ptid_t resume_ptid;
7064
7065 if (debug_infrun)
7066 fprintf_unfiltered (gdb_stdlog,
7067 "infrun: expected thread advanced also (%s -> %s)\n",
7068 paddress (target_gdbarch (), tp->prev_pc),
7069 paddress (target_gdbarch (), stop_pc));
7070
7071 /* Clear the info of the previous step-over, as it's no longer
7072 valid (if the thread was trying to step over a breakpoint, it
7073 has already succeeded). It's what keep_going would do too,
7074 if we called it. Do this before trying to insert the sss
7075 breakpoint, otherwise if we were previously trying to step
7076 over this exact address in another thread, the breakpoint is
7077 skipped. */
7078 clear_step_over_info ();
7079 tp->control.trap_expected = 0;
7080
7081 insert_single_step_breakpoint (get_frame_arch (frame),
7082 get_frame_address_space (frame),
7083 stop_pc);
7084
372316f1 7085 tp->resumed = 1;
fbea99ea 7086 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7087 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7088 }
7089 else
7090 {
7091 if (debug_infrun)
7092 fprintf_unfiltered (gdb_stdlog,
7093 "infrun: expected thread still hasn't advanced\n");
7094
7095 keep_going_pass_signal (ecs);
7096 }
7097 return 1;
c447ac0b
PA
7098}
7099
8b061563
PA
7100/* Is thread TP in the middle of (software or hardware)
7101 single-stepping? (Note the result of this function must never be
7102 passed directly as target_resume's STEP parameter.) */
104c1213 7103
a289b8f6 7104static int
b3444185 7105currently_stepping (struct thread_info *tp)
a7212384 7106{
8358c15c
JK
7107 return ((tp->control.step_range_end
7108 && tp->control.step_resume_breakpoint == NULL)
7109 || tp->control.trap_expected
af48d08f 7110 || tp->stepped_breakpoint
8358c15c 7111 || bpstat_should_step ());
a7212384
UW
7112}
7113
b2175913
MS
7114/* Inferior has stepped into a subroutine call with source code that
7115 we should not step over. Do step to the first line of code in
7116 it. */
c2c6d25f
JM
7117
7118static void
568d6575
UW
7119handle_step_into_function (struct gdbarch *gdbarch,
7120 struct execution_control_state *ecs)
c2c6d25f 7121{
43f3e411 7122 struct compunit_symtab *cust;
2afb61aa 7123 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7124
7e324e48
GB
7125 fill_in_stop_func (gdbarch, ecs);
7126
43f3e411
DE
7127 cust = find_pc_compunit_symtab (stop_pc);
7128 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7129 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7130 ecs->stop_func_start);
c2c6d25f 7131
2afb61aa 7132 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7133 /* Use the step_resume_break to step until the end of the prologue,
7134 even if that involves jumps (as it seems to on the vax under
7135 4.2). */
7136 /* If the prologue ends in the middle of a source line, continue to
7137 the end of that source line (if it is still within the function).
7138 Otherwise, just go to end of prologue. */
2afb61aa
PA
7139 if (stop_func_sal.end
7140 && stop_func_sal.pc != ecs->stop_func_start
7141 && stop_func_sal.end < ecs->stop_func_end)
7142 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7143
2dbd5e30
KB
7144 /* Architectures which require breakpoint adjustment might not be able
7145 to place a breakpoint at the computed address. If so, the test
7146 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7147 ecs->stop_func_start to an address at which a breakpoint may be
7148 legitimately placed.
8fb3e588 7149
2dbd5e30
KB
7150 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7151 made, GDB will enter an infinite loop when stepping through
7152 optimized code consisting of VLIW instructions which contain
7153 subinstructions corresponding to different source lines. On
7154 FR-V, it's not permitted to place a breakpoint on any but the
7155 first subinstruction of a VLIW instruction. When a breakpoint is
7156 set, GDB will adjust the breakpoint address to the beginning of
7157 the VLIW instruction. Thus, we need to make the corresponding
7158 adjustment here when computing the stop address. */
8fb3e588 7159
568d6575 7160 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7161 {
7162 ecs->stop_func_start
568d6575 7163 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7164 ecs->stop_func_start);
2dbd5e30
KB
7165 }
7166
c2c6d25f
JM
7167 if (ecs->stop_func_start == stop_pc)
7168 {
7169 /* We are already there: stop now. */
bdc36728 7170 end_stepping_range (ecs);
c2c6d25f
JM
7171 return;
7172 }
7173 else
7174 {
7175 /* Put the step-breakpoint there and go until there. */
fe39c653 7176 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7177 sr_sal.pc = ecs->stop_func_start;
7178 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7179 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7180
c2c6d25f 7181 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7182 some machines the prologue is where the new fp value is
7183 established. */
a6d9a66e 7184 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7185
7186 /* And make sure stepping stops right away then. */
16c381f0
JK
7187 ecs->event_thread->control.step_range_end
7188 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7189 }
7190 keep_going (ecs);
7191}
d4f3574e 7192
b2175913
MS
7193/* Inferior has stepped backward into a subroutine call with source
7194 code that we should not step over. Do step to the beginning of the
7195 last line of code in it. */
7196
7197static void
568d6575
UW
7198handle_step_into_function_backward (struct gdbarch *gdbarch,
7199 struct execution_control_state *ecs)
b2175913 7200{
43f3e411 7201 struct compunit_symtab *cust;
167e4384 7202 struct symtab_and_line stop_func_sal;
b2175913 7203
7e324e48
GB
7204 fill_in_stop_func (gdbarch, ecs);
7205
43f3e411
DE
7206 cust = find_pc_compunit_symtab (stop_pc);
7207 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7208 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7209 ecs->stop_func_start);
7210
7211 stop_func_sal = find_pc_line (stop_pc, 0);
7212
7213 /* OK, we're just going to keep stepping here. */
7214 if (stop_func_sal.pc == stop_pc)
7215 {
7216 /* We're there already. Just stop stepping now. */
bdc36728 7217 end_stepping_range (ecs);
b2175913
MS
7218 }
7219 else
7220 {
7221 /* Else just reset the step range and keep going.
7222 No step-resume breakpoint, they don't work for
7223 epilogues, which can have multiple entry paths. */
16c381f0
JK
7224 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7225 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7226 keep_going (ecs);
7227 }
7228 return;
7229}
7230
d3169d93 7231/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7232 This is used to both functions and to skip over code. */
7233
7234static void
2c03e5be
PA
7235insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7236 struct symtab_and_line sr_sal,
7237 struct frame_id sr_id,
7238 enum bptype sr_type)
44cbf7b5 7239{
611c83ae
PA
7240 /* There should never be more than one step-resume or longjmp-resume
7241 breakpoint per thread, so we should never be setting a new
44cbf7b5 7242 step_resume_breakpoint when one is already active. */
8358c15c 7243 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7244 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7245
7246 if (debug_infrun)
7247 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7248 "infrun: inserting step-resume breakpoint at %s\n",
7249 paddress (gdbarch, sr_sal.pc));
d3169d93 7250
8358c15c 7251 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7252 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7253}
7254
9da8c2a0 7255void
2c03e5be
PA
7256insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7257 struct symtab_and_line sr_sal,
7258 struct frame_id sr_id)
7259{
7260 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7261 sr_sal, sr_id,
7262 bp_step_resume);
44cbf7b5 7263}
7ce450bd 7264
2c03e5be
PA
7265/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7266 This is used to skip a potential signal handler.
7ce450bd 7267
14e60db5
DJ
7268 This is called with the interrupted function's frame. The signal
7269 handler, when it returns, will resume the interrupted function at
7270 RETURN_FRAME.pc. */
d303a6c7
AC
7271
7272static void
2c03e5be 7273insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7274{
7275 struct symtab_and_line sr_sal;
a6d9a66e 7276 struct gdbarch *gdbarch;
d303a6c7 7277
f4c1edd8 7278 gdb_assert (return_frame != NULL);
d303a6c7
AC
7279 init_sal (&sr_sal); /* initialize to zeros */
7280
a6d9a66e 7281 gdbarch = get_frame_arch (return_frame);
568d6575 7282 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7283 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7284 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7285
2c03e5be
PA
7286 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7287 get_stack_frame_id (return_frame),
7288 bp_hp_step_resume);
d303a6c7
AC
7289}
7290
2c03e5be
PA
7291/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7292 is used to skip a function after stepping into it (for "next" or if
7293 the called function has no debugging information).
14e60db5
DJ
7294
7295 The current function has almost always been reached by single
7296 stepping a call or return instruction. NEXT_FRAME belongs to the
7297 current function, and the breakpoint will be set at the caller's
7298 resume address.
7299
7300 This is a separate function rather than reusing
2c03e5be 7301 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7302 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7303 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7304
7305static void
7306insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7307{
7308 struct symtab_and_line sr_sal;
a6d9a66e 7309 struct gdbarch *gdbarch;
14e60db5
DJ
7310
7311 /* We shouldn't have gotten here if we don't know where the call site
7312 is. */
c7ce8faa 7313 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7314
7315 init_sal (&sr_sal); /* initialize to zeros */
7316
a6d9a66e 7317 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7318 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7319 frame_unwind_caller_pc (next_frame));
14e60db5 7320 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7321 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7322
a6d9a66e 7323 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7324 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7325}
7326
611c83ae
PA
7327/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7328 new breakpoint at the target of a jmp_buf. The handling of
7329 longjmp-resume uses the same mechanisms used for handling
7330 "step-resume" breakpoints. */
7331
7332static void
a6d9a66e 7333insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7334{
e81a37f7
TT
7335 /* There should never be more than one longjmp-resume breakpoint per
7336 thread, so we should never be setting a new
611c83ae 7337 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7338 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7339
7340 if (debug_infrun)
7341 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7342 "infrun: inserting longjmp-resume breakpoint at %s\n",
7343 paddress (gdbarch, pc));
611c83ae 7344
e81a37f7 7345 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7346 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7347}
7348
186c406b
TT
7349/* Insert an exception resume breakpoint. TP is the thread throwing
7350 the exception. The block B is the block of the unwinder debug hook
7351 function. FRAME is the frame corresponding to the call to this
7352 function. SYM is the symbol of the function argument holding the
7353 target PC of the exception. */
7354
7355static void
7356insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7357 const struct block *b,
186c406b
TT
7358 struct frame_info *frame,
7359 struct symbol *sym)
7360{
492d29ea 7361 TRY
186c406b 7362 {
63e43d3a 7363 struct block_symbol vsym;
186c406b
TT
7364 struct value *value;
7365 CORE_ADDR handler;
7366 struct breakpoint *bp;
7367
63e43d3a
PMR
7368 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7369 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7370 /* If the value was optimized out, revert to the old behavior. */
7371 if (! value_optimized_out (value))
7372 {
7373 handler = value_as_address (value);
7374
7375 if (debug_infrun)
7376 fprintf_unfiltered (gdb_stdlog,
7377 "infrun: exception resume at %lx\n",
7378 (unsigned long) handler);
7379
7380 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7381 handler, bp_exception_resume);
c70a6932
JK
7382
7383 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7384 frame = NULL;
7385
186c406b
TT
7386 bp->thread = tp->num;
7387 inferior_thread ()->control.exception_resume_breakpoint = bp;
7388 }
7389 }
492d29ea
PA
7390 CATCH (e, RETURN_MASK_ERROR)
7391 {
7392 /* We want to ignore errors here. */
7393 }
7394 END_CATCH
186c406b
TT
7395}
7396
28106bc2
SDJ
7397/* A helper for check_exception_resume that sets an
7398 exception-breakpoint based on a SystemTap probe. */
7399
7400static void
7401insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7402 const struct bound_probe *probe,
28106bc2
SDJ
7403 struct frame_info *frame)
7404{
7405 struct value *arg_value;
7406 CORE_ADDR handler;
7407 struct breakpoint *bp;
7408
7409 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7410 if (!arg_value)
7411 return;
7412
7413 handler = value_as_address (arg_value);
7414
7415 if (debug_infrun)
7416 fprintf_unfiltered (gdb_stdlog,
7417 "infrun: exception resume at %s\n",
6bac7473 7418 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7419 handler));
7420
7421 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7422 handler, bp_exception_resume);
7423 bp->thread = tp->num;
7424 inferior_thread ()->control.exception_resume_breakpoint = bp;
7425}
7426
186c406b
TT
7427/* This is called when an exception has been intercepted. Check to
7428 see whether the exception's destination is of interest, and if so,
7429 set an exception resume breakpoint there. */
7430
7431static void
7432check_exception_resume (struct execution_control_state *ecs,
28106bc2 7433 struct frame_info *frame)
186c406b 7434{
729662a5 7435 struct bound_probe probe;
28106bc2
SDJ
7436 struct symbol *func;
7437
7438 /* First see if this exception unwinding breakpoint was set via a
7439 SystemTap probe point. If so, the probe has two arguments: the
7440 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7441 set a breakpoint there. */
6bac7473 7442 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7443 if (probe.probe)
28106bc2 7444 {
729662a5 7445 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7446 return;
7447 }
7448
7449 func = get_frame_function (frame);
7450 if (!func)
7451 return;
186c406b 7452
492d29ea 7453 TRY
186c406b 7454 {
3977b71f 7455 const struct block *b;
8157b174 7456 struct block_iterator iter;
186c406b
TT
7457 struct symbol *sym;
7458 int argno = 0;
7459
7460 /* The exception breakpoint is a thread-specific breakpoint on
7461 the unwinder's debug hook, declared as:
7462
7463 void _Unwind_DebugHook (void *cfa, void *handler);
7464
7465 The CFA argument indicates the frame to which control is
7466 about to be transferred. HANDLER is the destination PC.
7467
7468 We ignore the CFA and set a temporary breakpoint at HANDLER.
7469 This is not extremely efficient but it avoids issues in gdb
7470 with computing the DWARF CFA, and it also works even in weird
7471 cases such as throwing an exception from inside a signal
7472 handler. */
7473
7474 b = SYMBOL_BLOCK_VALUE (func);
7475 ALL_BLOCK_SYMBOLS (b, iter, sym)
7476 {
7477 if (!SYMBOL_IS_ARGUMENT (sym))
7478 continue;
7479
7480 if (argno == 0)
7481 ++argno;
7482 else
7483 {
7484 insert_exception_resume_breakpoint (ecs->event_thread,
7485 b, frame, sym);
7486 break;
7487 }
7488 }
7489 }
492d29ea
PA
7490 CATCH (e, RETURN_MASK_ERROR)
7491 {
7492 }
7493 END_CATCH
186c406b
TT
7494}
7495
104c1213 7496static void
22bcd14b 7497stop_waiting (struct execution_control_state *ecs)
104c1213 7498{
527159b7 7499 if (debug_infrun)
22bcd14b 7500 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7501
31e77af2
PA
7502 clear_step_over_info ();
7503
cd0fc7c3
SS
7504 /* Let callers know we don't want to wait for the inferior anymore. */
7505 ecs->wait_some_more = 0;
fbea99ea
PA
7506
7507 /* If all-stop, but the target is always in non-stop mode, stop all
7508 threads now that we're presenting the stop to the user. */
7509 if (!non_stop && target_is_non_stop_p ())
7510 stop_all_threads ();
cd0fc7c3
SS
7511}
7512
4d9d9d04
PA
7513/* Like keep_going, but passes the signal to the inferior, even if the
7514 signal is set to nopass. */
d4f3574e
SS
7515
7516static void
4d9d9d04 7517keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7518{
c4dbc9af
PA
7519 /* Make sure normal_stop is called if we get a QUIT handled before
7520 reaching resume. */
7521 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7522
4d9d9d04 7523 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7524 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7525
d4f3574e 7526 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7527 ecs->event_thread->prev_pc
7528 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7529
4d9d9d04 7530 if (ecs->event_thread->control.trap_expected)
d4f3574e 7531 {
4d9d9d04
PA
7532 struct thread_info *tp = ecs->event_thread;
7533
7534 if (debug_infrun)
7535 fprintf_unfiltered (gdb_stdlog,
7536 "infrun: %s has trap_expected set, "
7537 "resuming to collect trap\n",
7538 target_pid_to_str (tp->ptid));
7539
a9ba6bae
PA
7540 /* We haven't yet gotten our trap, and either: intercepted a
7541 non-signal event (e.g., a fork); or took a signal which we
7542 are supposed to pass through to the inferior. Simply
7543 continue. */
c4dbc9af 7544 discard_cleanups (old_cleanups);
64ce06e4 7545 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7546 }
372316f1
PA
7547 else if (step_over_info_valid_p ())
7548 {
7549 /* Another thread is stepping over a breakpoint in-line. If
7550 this thread needs a step-over too, queue the request. In
7551 either case, this resume must be deferred for later. */
7552 struct thread_info *tp = ecs->event_thread;
7553
7554 if (ecs->hit_singlestep_breakpoint
7555 || thread_still_needs_step_over (tp))
7556 {
7557 if (debug_infrun)
7558 fprintf_unfiltered (gdb_stdlog,
7559 "infrun: step-over already in progress: "
7560 "step-over for %s deferred\n",
7561 target_pid_to_str (tp->ptid));
7562 thread_step_over_chain_enqueue (tp);
7563 }
7564 else
7565 {
7566 if (debug_infrun)
7567 fprintf_unfiltered (gdb_stdlog,
7568 "infrun: step-over in progress: "
7569 "resume of %s deferred\n",
7570 target_pid_to_str (tp->ptid));
7571 }
7572
7573 discard_cleanups (old_cleanups);
7574 }
d4f3574e
SS
7575 else
7576 {
31e77af2 7577 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7578 int remove_bp;
7579 int remove_wps;
8d297bbf 7580 step_over_what step_what;
31e77af2 7581
d4f3574e 7582 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7583 anyway (if we got a signal, the user asked it be passed to
7584 the child)
7585 -- or --
7586 We got our expected trap, but decided we should resume from
7587 it.
d4f3574e 7588
a9ba6bae 7589 We're going to run this baby now!
d4f3574e 7590
c36b740a
VP
7591 Note that insert_breakpoints won't try to re-insert
7592 already inserted breakpoints. Therefore, we don't
7593 care if breakpoints were already inserted, or not. */
a9ba6bae 7594
31e77af2
PA
7595 /* If we need to step over a breakpoint, and we're not using
7596 displaced stepping to do so, insert all breakpoints
7597 (watchpoints, etc.) but the one we're stepping over, step one
7598 instruction, and then re-insert the breakpoint when that step
7599 is finished. */
963f9c80 7600
6c4cfb24
PA
7601 step_what = thread_still_needs_step_over (ecs->event_thread);
7602
963f9c80 7603 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7604 || (step_what & STEP_OVER_BREAKPOINT));
7605 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7606
cb71640d
PA
7607 /* We can't use displaced stepping if we need to step past a
7608 watchpoint. The instruction copied to the scratch pad would
7609 still trigger the watchpoint. */
7610 if (remove_bp
3fc8eb30 7611 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7612 {
31e77af2 7613 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7614 regcache_read_pc (regcache), remove_wps);
45e8c884 7615 }
963f9c80
PA
7616 else if (remove_wps)
7617 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7618
7619 /* If we now need to do an in-line step-over, we need to stop
7620 all other threads. Note this must be done before
7621 insert_breakpoints below, because that removes the breakpoint
7622 we're about to step over, otherwise other threads could miss
7623 it. */
fbea99ea 7624 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7625 stop_all_threads ();
abbb1732 7626
31e77af2 7627 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7628 TRY
31e77af2
PA
7629 {
7630 insert_breakpoints ();
7631 }
492d29ea 7632 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7633 {
7634 exception_print (gdb_stderr, e);
22bcd14b 7635 stop_waiting (ecs);
de1fe8c8 7636 discard_cleanups (old_cleanups);
31e77af2 7637 return;
d4f3574e 7638 }
492d29ea 7639 END_CATCH
d4f3574e 7640
963f9c80 7641 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7642
c4dbc9af 7643 discard_cleanups (old_cleanups);
64ce06e4 7644 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7645 }
7646
488f131b 7647 prepare_to_wait (ecs);
d4f3574e
SS
7648}
7649
4d9d9d04
PA
7650/* Called when we should continue running the inferior, because the
7651 current event doesn't cause a user visible stop. This does the
7652 resuming part; waiting for the next event is done elsewhere. */
7653
7654static void
7655keep_going (struct execution_control_state *ecs)
7656{
7657 if (ecs->event_thread->control.trap_expected
7658 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7659 ecs->event_thread->control.trap_expected = 0;
7660
7661 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7662 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7663 keep_going_pass_signal (ecs);
7664}
7665
104c1213
JM
7666/* This function normally comes after a resume, before
7667 handle_inferior_event exits. It takes care of any last bits of
7668 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7669
104c1213
JM
7670static void
7671prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7672{
527159b7 7673 if (debug_infrun)
8a9de0e4 7674 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7675
104c1213 7676 ecs->wait_some_more = 1;
0b333c5e
PA
7677
7678 if (!target_is_async_p ())
7679 mark_infrun_async_event_handler ();
c906108c 7680}
11cf8741 7681
fd664c91 7682/* We are done with the step range of a step/next/si/ni command.
b57bacec 7683 Called once for each n of a "step n" operation. */
fd664c91
PA
7684
7685static void
bdc36728 7686end_stepping_range (struct execution_control_state *ecs)
fd664c91 7687{
bdc36728 7688 ecs->event_thread->control.stop_step = 1;
bdc36728 7689 stop_waiting (ecs);
fd664c91
PA
7690}
7691
33d62d64
JK
7692/* Several print_*_reason functions to print why the inferior has stopped.
7693 We always print something when the inferior exits, or receives a signal.
7694 The rest of the cases are dealt with later on in normal_stop and
7695 print_it_typical. Ideally there should be a call to one of these
7696 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7697 stop_waiting is called.
33d62d64 7698
fd664c91
PA
7699 Note that we don't call these directly, instead we delegate that to
7700 the interpreters, through observers. Interpreters then call these
7701 with whatever uiout is right. */
33d62d64 7702
fd664c91
PA
7703void
7704print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7705{
fd664c91 7706 /* For CLI-like interpreters, print nothing. */
33d62d64 7707
fd664c91
PA
7708 if (ui_out_is_mi_like_p (uiout))
7709 {
7710 ui_out_field_string (uiout, "reason",
7711 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7712 }
7713}
33d62d64 7714
fd664c91
PA
7715void
7716print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7717{
33d62d64
JK
7718 annotate_signalled ();
7719 if (ui_out_is_mi_like_p (uiout))
7720 ui_out_field_string
7721 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7722 ui_out_text (uiout, "\nProgram terminated with signal ");
7723 annotate_signal_name ();
7724 ui_out_field_string (uiout, "signal-name",
2ea28649 7725 gdb_signal_to_name (siggnal));
33d62d64
JK
7726 annotate_signal_name_end ();
7727 ui_out_text (uiout, ", ");
7728 annotate_signal_string ();
7729 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7730 gdb_signal_to_string (siggnal));
33d62d64
JK
7731 annotate_signal_string_end ();
7732 ui_out_text (uiout, ".\n");
7733 ui_out_text (uiout, "The program no longer exists.\n");
7734}
7735
fd664c91
PA
7736void
7737print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7738{
fda326dd
TT
7739 struct inferior *inf = current_inferior ();
7740 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7741
33d62d64
JK
7742 annotate_exited (exitstatus);
7743 if (exitstatus)
7744 {
7745 if (ui_out_is_mi_like_p (uiout))
7746 ui_out_field_string (uiout, "reason",
7747 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7748 ui_out_text (uiout, "[Inferior ");
7749 ui_out_text (uiout, plongest (inf->num));
7750 ui_out_text (uiout, " (");
7751 ui_out_text (uiout, pidstr);
7752 ui_out_text (uiout, ") exited with code ");
33d62d64 7753 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7754 ui_out_text (uiout, "]\n");
33d62d64
JK
7755 }
7756 else
11cf8741 7757 {
9dc5e2a9 7758 if (ui_out_is_mi_like_p (uiout))
034dad6f 7759 ui_out_field_string
33d62d64 7760 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7761 ui_out_text (uiout, "[Inferior ");
7762 ui_out_text (uiout, plongest (inf->num));
7763 ui_out_text (uiout, " (");
7764 ui_out_text (uiout, pidstr);
7765 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7766 }
33d62d64
JK
7767}
7768
fd664c91
PA
7769void
7770print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7771{
7772 annotate_signal ();
7773
a493e3e2 7774 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7775 {
7776 struct thread_info *t = inferior_thread ();
7777
7778 ui_out_text (uiout, "\n[");
7779 ui_out_field_string (uiout, "thread-name",
7780 target_pid_to_str (t->ptid));
7781 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7782 ui_out_text (uiout, " stopped");
7783 }
7784 else
7785 {
7786 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7787 annotate_signal_name ();
33d62d64
JK
7788 if (ui_out_is_mi_like_p (uiout))
7789 ui_out_field_string
7790 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7791 ui_out_field_string (uiout, "signal-name",
2ea28649 7792 gdb_signal_to_name (siggnal));
8b93c638
JM
7793 annotate_signal_name_end ();
7794 ui_out_text (uiout, ", ");
7795 annotate_signal_string ();
488f131b 7796 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7797 gdb_signal_to_string (siggnal));
8b93c638 7798 annotate_signal_string_end ();
33d62d64
JK
7799 }
7800 ui_out_text (uiout, ".\n");
7801}
252fbfc8 7802
fd664c91
PA
7803void
7804print_no_history_reason (struct ui_out *uiout)
33d62d64 7805{
fd664c91 7806 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7807}
43ff13b4 7808
0c7e1a46
PA
7809/* Print current location without a level number, if we have changed
7810 functions or hit a breakpoint. Print source line if we have one.
7811 bpstat_print contains the logic deciding in detail what to print,
7812 based on the event(s) that just occurred. */
7813
243a9253
PA
7814static void
7815print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7816{
7817 int bpstat_ret;
f486487f 7818 enum print_what source_flag;
0c7e1a46
PA
7819 int do_frame_printing = 1;
7820 struct thread_info *tp = inferior_thread ();
7821
7822 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7823 switch (bpstat_ret)
7824 {
7825 case PRINT_UNKNOWN:
7826 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7827 should) carry around the function and does (or should) use
7828 that when doing a frame comparison. */
7829 if (tp->control.stop_step
7830 && frame_id_eq (tp->control.step_frame_id,
7831 get_frame_id (get_current_frame ()))
885eeb5b 7832 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7833 {
7834 /* Finished step, just print source line. */
7835 source_flag = SRC_LINE;
7836 }
7837 else
7838 {
7839 /* Print location and source line. */
7840 source_flag = SRC_AND_LOC;
7841 }
7842 break;
7843 case PRINT_SRC_AND_LOC:
7844 /* Print location and source line. */
7845 source_flag = SRC_AND_LOC;
7846 break;
7847 case PRINT_SRC_ONLY:
7848 source_flag = SRC_LINE;
7849 break;
7850 case PRINT_NOTHING:
7851 /* Something bogus. */
7852 source_flag = SRC_LINE;
7853 do_frame_printing = 0;
7854 break;
7855 default:
7856 internal_error (__FILE__, __LINE__, _("Unknown value."));
7857 }
7858
7859 /* The behavior of this routine with respect to the source
7860 flag is:
7861 SRC_LINE: Print only source line
7862 LOCATION: Print only location
7863 SRC_AND_LOC: Print location and source line. */
7864 if (do_frame_printing)
7865 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7866}
7867
7868/* Cleanup that restores a previous current uiout. */
7869
7870static void
7871restore_current_uiout_cleanup (void *arg)
7872{
9a3c8263 7873 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7874
7875 current_uiout = saved_uiout;
7876}
7877
7878/* See infrun.h. */
7879
7880void
7881print_stop_event (struct ui_out *uiout)
7882{
7883 struct cleanup *old_chain;
7884 struct target_waitstatus last;
7885 ptid_t last_ptid;
7886 struct thread_info *tp;
7887
7888 get_last_target_status (&last_ptid, &last);
7889
7890 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7891 current_uiout = uiout;
7892
7893 print_stop_location (&last);
0c7e1a46
PA
7894
7895 /* Display the auto-display expressions. */
7896 do_displays ();
243a9253
PA
7897
7898 do_cleanups (old_chain);
7899
7900 tp = inferior_thread ();
7901 if (tp->thread_fsm != NULL
7902 && thread_fsm_finished_p (tp->thread_fsm))
7903 {
7904 struct return_value_info *rv;
7905
7906 rv = thread_fsm_return_value (tp->thread_fsm);
7907 if (rv != NULL)
7908 print_return_value (uiout, rv);
7909 }
0c7e1a46
PA
7910}
7911
388a7084
PA
7912/* See infrun.h. */
7913
7914void
7915maybe_remove_breakpoints (void)
7916{
7917 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7918 {
7919 if (remove_breakpoints ())
7920 {
7921 target_terminal_ours_for_output ();
7922 printf_filtered (_("Cannot remove breakpoints because "
7923 "program is no longer writable.\nFurther "
7924 "execution is probably impossible.\n"));
7925 }
7926 }
7927}
7928
4c2f2a79
PA
7929/* The execution context that just caused a normal stop. */
7930
7931struct stop_context
7932{
7933 /* The stop ID. */
7934 ULONGEST stop_id;
c906108c 7935
4c2f2a79 7936 /* The event PTID. */
c906108c 7937
4c2f2a79
PA
7938 ptid_t ptid;
7939
7940 /* If stopp for a thread event, this is the thread that caused the
7941 stop. */
7942 struct thread_info *thread;
7943
7944 /* The inferior that caused the stop. */
7945 int inf_num;
7946};
7947
7948/* Returns a new stop context. If stopped for a thread event, this
7949 takes a strong reference to the thread. */
7950
7951static struct stop_context *
7952save_stop_context (void)
7953{
224c3ddb 7954 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7955
7956 sc->stop_id = get_stop_id ();
7957 sc->ptid = inferior_ptid;
7958 sc->inf_num = current_inferior ()->num;
7959
7960 if (!ptid_equal (inferior_ptid, null_ptid))
7961 {
7962 /* Take a strong reference so that the thread can't be deleted
7963 yet. */
7964 sc->thread = inferior_thread ();
7965 sc->thread->refcount++;
7966 }
7967 else
7968 sc->thread = NULL;
7969
7970 return sc;
7971}
7972
7973/* Release a stop context previously created with save_stop_context.
7974 Releases the strong reference to the thread as well. */
7975
7976static void
7977release_stop_context_cleanup (void *arg)
7978{
9a3c8263 7979 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7980
7981 if (sc->thread != NULL)
7982 sc->thread->refcount--;
7983 xfree (sc);
7984}
7985
7986/* Return true if the current context no longer matches the saved stop
7987 context. */
7988
7989static int
7990stop_context_changed (struct stop_context *prev)
7991{
7992 if (!ptid_equal (prev->ptid, inferior_ptid))
7993 return 1;
7994 if (prev->inf_num != current_inferior ()->num)
7995 return 1;
7996 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7997 return 1;
7998 if (get_stop_id () != prev->stop_id)
7999 return 1;
8000 return 0;
8001}
8002
8003/* See infrun.h. */
8004
8005int
96baa820 8006normal_stop (void)
c906108c 8007{
73b65bb0
DJ
8008 struct target_waitstatus last;
8009 ptid_t last_ptid;
29f49a6a 8010 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8011 ptid_t pid_ptid;
73b65bb0
DJ
8012
8013 get_last_target_status (&last_ptid, &last);
8014
4c2f2a79
PA
8015 new_stop_id ();
8016
29f49a6a
PA
8017 /* If an exception is thrown from this point on, make sure to
8018 propagate GDB's knowledge of the executing state to the
8019 frontend/user running state. A QUIT is an easy exception to see
8020 here, so do this before any filtered output. */
c35b1492
PA
8021 if (!non_stop)
8022 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8023 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8024 || last.kind == TARGET_WAITKIND_EXITED)
8025 {
8026 /* On some targets, we may still have live threads in the
8027 inferior when we get a process exit event. E.g., for
8028 "checkpoint", when the current checkpoint/fork exits,
8029 linux-fork.c automatically switches to another fork from
8030 within target_mourn_inferior. */
8031 if (!ptid_equal (inferior_ptid, null_ptid))
8032 {
8033 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8034 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8035 }
8036 }
8037 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8038 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8039
b57bacec
PA
8040 /* As we're presenting a stop, and potentially removing breakpoints,
8041 update the thread list so we can tell whether there are threads
8042 running on the target. With target remote, for example, we can
8043 only learn about new threads when we explicitly update the thread
8044 list. Do this before notifying the interpreters about signal
8045 stops, end of stepping ranges, etc., so that the "new thread"
8046 output is emitted before e.g., "Program received signal FOO",
8047 instead of after. */
8048 update_thread_list ();
8049
8050 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8051 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8052
c906108c
SS
8053 /* As with the notification of thread events, we want to delay
8054 notifying the user that we've switched thread context until
8055 the inferior actually stops.
8056
73b65bb0
DJ
8057 There's no point in saying anything if the inferior has exited.
8058 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8059 "received a signal".
8060
8061 Also skip saying anything in non-stop mode. In that mode, as we
8062 don't want GDB to switch threads behind the user's back, to avoid
8063 races where the user is typing a command to apply to thread x,
8064 but GDB switches to thread y before the user finishes entering
8065 the command, fetch_inferior_event installs a cleanup to restore
8066 the current thread back to the thread the user had selected right
8067 after this event is handled, so we're not really switching, only
8068 informing of a stop. */
4f8d22e3
PA
8069 if (!non_stop
8070 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8071 && target_has_execution
8072 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8073 && last.kind != TARGET_WAITKIND_EXITED
8074 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8075 {
8076 target_terminal_ours_for_output ();
a3f17187 8077 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8078 target_pid_to_str (inferior_ptid));
b8fa951a 8079 annotate_thread_changed ();
39f77062 8080 previous_inferior_ptid = inferior_ptid;
c906108c 8081 }
c906108c 8082
0e5bf2a8
PA
8083 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8084 {
8085 gdb_assert (sync_execution || !target_can_async_p ());
8086
8087 target_terminal_ours_for_output ();
8088 printf_filtered (_("No unwaited-for children left.\n"));
8089 }
8090
b57bacec 8091 /* Note: this depends on the update_thread_list call above. */
388a7084 8092 maybe_remove_breakpoints ();
c906108c 8093
c906108c
SS
8094 /* If an auto-display called a function and that got a signal,
8095 delete that auto-display to avoid an infinite recursion. */
8096
8097 if (stopped_by_random_signal)
8098 disable_current_display ();
8099
c906108c 8100 target_terminal_ours ();
0f641c01 8101 async_enable_stdin ();
c906108c 8102
388a7084
PA
8103 /* Let the user/frontend see the threads as stopped. */
8104 do_cleanups (old_chain);
8105
8106 /* Select innermost stack frame - i.e., current frame is frame 0,
8107 and current location is based on that. Handle the case where the
8108 dummy call is returning after being stopped. E.g. the dummy call
8109 previously hit a breakpoint. (If the dummy call returns
8110 normally, we won't reach here.) Do this before the stop hook is
8111 run, so that it doesn't get to see the temporary dummy frame,
8112 which is not where we'll present the stop. */
8113 if (has_stack_frames ())
8114 {
8115 if (stop_stack_dummy == STOP_STACK_DUMMY)
8116 {
8117 /* Pop the empty frame that contains the stack dummy. This
8118 also restores inferior state prior to the call (struct
8119 infcall_suspend_state). */
8120 struct frame_info *frame = get_current_frame ();
8121
8122 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8123 frame_pop (frame);
8124 /* frame_pop calls reinit_frame_cache as the last thing it
8125 does which means there's now no selected frame. */
8126 }
8127
8128 select_frame (get_current_frame ());
8129
8130 /* Set the current source location. */
8131 set_current_sal_from_frame (get_current_frame ());
8132 }
dd7e2d2b
PA
8133
8134 /* Look up the hook_stop and run it (CLI internally handles problem
8135 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8136 if (stop_command != NULL)
8137 {
8138 struct stop_context *saved_context = save_stop_context ();
8139 struct cleanup *old_chain
8140 = make_cleanup (release_stop_context_cleanup, saved_context);
8141
8142 catch_errors (hook_stop_stub, stop_command,
8143 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8144
8145 /* If the stop hook resumes the target, then there's no point in
8146 trying to notify about the previous stop; its context is
8147 gone. Likewise if the command switches thread or inferior --
8148 the observers would print a stop for the wrong
8149 thread/inferior. */
8150 if (stop_context_changed (saved_context))
8151 {
8152 do_cleanups (old_chain);
8153 return 1;
8154 }
8155 do_cleanups (old_chain);
8156 }
dd7e2d2b 8157
388a7084
PA
8158 /* Notify observers about the stop. This is where the interpreters
8159 print the stop event. */
8160 if (!ptid_equal (inferior_ptid, null_ptid))
8161 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8162 stop_print_frame);
8163 else
8164 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8165
243a9253
PA
8166 annotate_stopped ();
8167
48844aa6
PA
8168 if (target_has_execution)
8169 {
8170 if (last.kind != TARGET_WAITKIND_SIGNALLED
8171 && last.kind != TARGET_WAITKIND_EXITED)
8172 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8173 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8174 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8175 }
6c95b8df
PA
8176
8177 /* Try to get rid of automatically added inferiors that are no
8178 longer needed. Keeping those around slows down things linearly.
8179 Note that this never removes the current inferior. */
8180 prune_inferiors ();
4c2f2a79
PA
8181
8182 return 0;
c906108c
SS
8183}
8184
8185static int
96baa820 8186hook_stop_stub (void *cmd)
c906108c 8187{
5913bcb0 8188 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8189 return (0);
8190}
8191\f
c5aa993b 8192int
96baa820 8193signal_stop_state (int signo)
c906108c 8194{
d6b48e9c 8195 return signal_stop[signo];
c906108c
SS
8196}
8197
c5aa993b 8198int
96baa820 8199signal_print_state (int signo)
c906108c
SS
8200{
8201 return signal_print[signo];
8202}
8203
c5aa993b 8204int
96baa820 8205signal_pass_state (int signo)
c906108c
SS
8206{
8207 return signal_program[signo];
8208}
8209
2455069d
UW
8210static void
8211signal_cache_update (int signo)
8212{
8213 if (signo == -1)
8214 {
a493e3e2 8215 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8216 signal_cache_update (signo);
8217
8218 return;
8219 }
8220
8221 signal_pass[signo] = (signal_stop[signo] == 0
8222 && signal_print[signo] == 0
ab04a2af
TT
8223 && signal_program[signo] == 1
8224 && signal_catch[signo] == 0);
2455069d
UW
8225}
8226
488f131b 8227int
7bda5e4a 8228signal_stop_update (int signo, int state)
d4f3574e
SS
8229{
8230 int ret = signal_stop[signo];
abbb1732 8231
d4f3574e 8232 signal_stop[signo] = state;
2455069d 8233 signal_cache_update (signo);
d4f3574e
SS
8234 return ret;
8235}
8236
488f131b 8237int
7bda5e4a 8238signal_print_update (int signo, int state)
d4f3574e
SS
8239{
8240 int ret = signal_print[signo];
abbb1732 8241
d4f3574e 8242 signal_print[signo] = state;
2455069d 8243 signal_cache_update (signo);
d4f3574e
SS
8244 return ret;
8245}
8246
488f131b 8247int
7bda5e4a 8248signal_pass_update (int signo, int state)
d4f3574e
SS
8249{
8250 int ret = signal_program[signo];
abbb1732 8251
d4f3574e 8252 signal_program[signo] = state;
2455069d 8253 signal_cache_update (signo);
d4f3574e
SS
8254 return ret;
8255}
8256
ab04a2af
TT
8257/* Update the global 'signal_catch' from INFO and notify the
8258 target. */
8259
8260void
8261signal_catch_update (const unsigned int *info)
8262{
8263 int i;
8264
8265 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8266 signal_catch[i] = info[i] > 0;
8267 signal_cache_update (-1);
8268 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8269}
8270
c906108c 8271static void
96baa820 8272sig_print_header (void)
c906108c 8273{
3e43a32a
MS
8274 printf_filtered (_("Signal Stop\tPrint\tPass "
8275 "to program\tDescription\n"));
c906108c
SS
8276}
8277
8278static void
2ea28649 8279sig_print_info (enum gdb_signal oursig)
c906108c 8280{
2ea28649 8281 const char *name = gdb_signal_to_name (oursig);
c906108c 8282 int name_padding = 13 - strlen (name);
96baa820 8283
c906108c
SS
8284 if (name_padding <= 0)
8285 name_padding = 0;
8286
8287 printf_filtered ("%s", name);
488f131b 8288 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8289 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8290 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8291 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8292 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8293}
8294
8295/* Specify how various signals in the inferior should be handled. */
8296
8297static void
96baa820 8298handle_command (char *args, int from_tty)
c906108c
SS
8299{
8300 char **argv;
8301 int digits, wordlen;
8302 int sigfirst, signum, siglast;
2ea28649 8303 enum gdb_signal oursig;
c906108c
SS
8304 int allsigs;
8305 int nsigs;
8306 unsigned char *sigs;
8307 struct cleanup *old_chain;
8308
8309 if (args == NULL)
8310 {
e2e0b3e5 8311 error_no_arg (_("signal to handle"));
c906108c
SS
8312 }
8313
1777feb0 8314 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8315
a493e3e2 8316 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8317 sigs = (unsigned char *) alloca (nsigs);
8318 memset (sigs, 0, nsigs);
8319
1777feb0 8320 /* Break the command line up into args. */
c906108c 8321
d1a41061 8322 argv = gdb_buildargv (args);
7a292a7a 8323 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8324
8325 /* Walk through the args, looking for signal oursigs, signal names, and
8326 actions. Signal numbers and signal names may be interspersed with
8327 actions, with the actions being performed for all signals cumulatively
1777feb0 8328 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8329
8330 while (*argv != NULL)
8331 {
8332 wordlen = strlen (*argv);
8333 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8334 {;
8335 }
8336 allsigs = 0;
8337 sigfirst = siglast = -1;
8338
8339 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8340 {
8341 /* Apply action to all signals except those used by the
1777feb0 8342 debugger. Silently skip those. */
c906108c
SS
8343 allsigs = 1;
8344 sigfirst = 0;
8345 siglast = nsigs - 1;
8346 }
8347 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8348 {
8349 SET_SIGS (nsigs, sigs, signal_stop);
8350 SET_SIGS (nsigs, sigs, signal_print);
8351 }
8352 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8353 {
8354 UNSET_SIGS (nsigs, sigs, signal_program);
8355 }
8356 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8357 {
8358 SET_SIGS (nsigs, sigs, signal_print);
8359 }
8360 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8361 {
8362 SET_SIGS (nsigs, sigs, signal_program);
8363 }
8364 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8365 {
8366 UNSET_SIGS (nsigs, sigs, signal_stop);
8367 }
8368 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8369 {
8370 SET_SIGS (nsigs, sigs, signal_program);
8371 }
8372 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8373 {
8374 UNSET_SIGS (nsigs, sigs, signal_print);
8375 UNSET_SIGS (nsigs, sigs, signal_stop);
8376 }
8377 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8378 {
8379 UNSET_SIGS (nsigs, sigs, signal_program);
8380 }
8381 else if (digits > 0)
8382 {
8383 /* It is numeric. The numeric signal refers to our own
8384 internal signal numbering from target.h, not to host/target
8385 signal number. This is a feature; users really should be
8386 using symbolic names anyway, and the common ones like
8387 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8388
8389 sigfirst = siglast = (int)
2ea28649 8390 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8391 if ((*argv)[digits] == '-')
8392 {
8393 siglast = (int)
2ea28649 8394 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8395 }
8396 if (sigfirst > siglast)
8397 {
1777feb0 8398 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8399 signum = sigfirst;
8400 sigfirst = siglast;
8401 siglast = signum;
8402 }
8403 }
8404 else
8405 {
2ea28649 8406 oursig = gdb_signal_from_name (*argv);
a493e3e2 8407 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8408 {
8409 sigfirst = siglast = (int) oursig;
8410 }
8411 else
8412 {
8413 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8414 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8415 }
8416 }
8417
8418 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8419 which signals to apply actions to. */
c906108c
SS
8420
8421 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8422 {
2ea28649 8423 switch ((enum gdb_signal) signum)
c906108c 8424 {
a493e3e2
PA
8425 case GDB_SIGNAL_TRAP:
8426 case GDB_SIGNAL_INT:
c906108c
SS
8427 if (!allsigs && !sigs[signum])
8428 {
9e2f0ad4 8429 if (query (_("%s is used by the debugger.\n\
3e43a32a 8430Are you sure you want to change it? "),
2ea28649 8431 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8432 {
8433 sigs[signum] = 1;
8434 }
8435 else
8436 {
a3f17187 8437 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8438 gdb_flush (gdb_stdout);
8439 }
8440 }
8441 break;
a493e3e2
PA
8442 case GDB_SIGNAL_0:
8443 case GDB_SIGNAL_DEFAULT:
8444 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8445 /* Make sure that "all" doesn't print these. */
8446 break;
8447 default:
8448 sigs[signum] = 1;
8449 break;
8450 }
8451 }
8452
8453 argv++;
8454 }
8455
3a031f65
PA
8456 for (signum = 0; signum < nsigs; signum++)
8457 if (sigs[signum])
8458 {
2455069d 8459 signal_cache_update (-1);
a493e3e2
PA
8460 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8461 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8462
3a031f65
PA
8463 if (from_tty)
8464 {
8465 /* Show the results. */
8466 sig_print_header ();
8467 for (; signum < nsigs; signum++)
8468 if (sigs[signum])
aead7601 8469 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8470 }
8471
8472 break;
8473 }
c906108c
SS
8474
8475 do_cleanups (old_chain);
8476}
8477
de0bea00
MF
8478/* Complete the "handle" command. */
8479
8480static VEC (char_ptr) *
8481handle_completer (struct cmd_list_element *ignore,
6f937416 8482 const char *text, const char *word)
de0bea00
MF
8483{
8484 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8485 static const char * const keywords[] =
8486 {
8487 "all",
8488 "stop",
8489 "ignore",
8490 "print",
8491 "pass",
8492 "nostop",
8493 "noignore",
8494 "noprint",
8495 "nopass",
8496 NULL,
8497 };
8498
8499 vec_signals = signal_completer (ignore, text, word);
8500 vec_keywords = complete_on_enum (keywords, word, word);
8501
8502 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8503 VEC_free (char_ptr, vec_signals);
8504 VEC_free (char_ptr, vec_keywords);
8505 return return_val;
8506}
8507
2ea28649
PA
8508enum gdb_signal
8509gdb_signal_from_command (int num)
ed01b82c
PA
8510{
8511 if (num >= 1 && num <= 15)
2ea28649 8512 return (enum gdb_signal) num;
ed01b82c
PA
8513 error (_("Only signals 1-15 are valid as numeric signals.\n\
8514Use \"info signals\" for a list of symbolic signals."));
8515}
8516
c906108c
SS
8517/* Print current contents of the tables set by the handle command.
8518 It is possible we should just be printing signals actually used
8519 by the current target (but for things to work right when switching
8520 targets, all signals should be in the signal tables). */
8521
8522static void
96baa820 8523signals_info (char *signum_exp, int from_tty)
c906108c 8524{
2ea28649 8525 enum gdb_signal oursig;
abbb1732 8526
c906108c
SS
8527 sig_print_header ();
8528
8529 if (signum_exp)
8530 {
8531 /* First see if this is a symbol name. */
2ea28649 8532 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8533 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8534 {
8535 /* No, try numeric. */
8536 oursig =
2ea28649 8537 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8538 }
8539 sig_print_info (oursig);
8540 return;
8541 }
8542
8543 printf_filtered ("\n");
8544 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8545 for (oursig = GDB_SIGNAL_FIRST;
8546 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8547 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8548 {
8549 QUIT;
8550
a493e3e2
PA
8551 if (oursig != GDB_SIGNAL_UNKNOWN
8552 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8553 sig_print_info (oursig);
8554 }
8555
3e43a32a
MS
8556 printf_filtered (_("\nUse the \"handle\" command "
8557 "to change these tables.\n"));
c906108c 8558}
4aa995e1 8559
c709acd1
PA
8560/* Check if it makes sense to read $_siginfo from the current thread
8561 at this point. If not, throw an error. */
8562
8563static void
8564validate_siginfo_access (void)
8565{
8566 /* No current inferior, no siginfo. */
8567 if (ptid_equal (inferior_ptid, null_ptid))
8568 error (_("No thread selected."));
8569
8570 /* Don't try to read from a dead thread. */
8571 if (is_exited (inferior_ptid))
8572 error (_("The current thread has terminated"));
8573
8574 /* ... or from a spinning thread. */
8575 if (is_running (inferior_ptid))
8576 error (_("Selected thread is running."));
8577}
8578
4aa995e1
PA
8579/* The $_siginfo convenience variable is a bit special. We don't know
8580 for sure the type of the value until we actually have a chance to
7a9dd1b2 8581 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8582 also dependent on which thread you have selected.
8583
8584 1. making $_siginfo be an internalvar that creates a new value on
8585 access.
8586
8587 2. making the value of $_siginfo be an lval_computed value. */
8588
8589/* This function implements the lval_computed support for reading a
8590 $_siginfo value. */
8591
8592static void
8593siginfo_value_read (struct value *v)
8594{
8595 LONGEST transferred;
8596
c709acd1
PA
8597 validate_siginfo_access ();
8598
4aa995e1
PA
8599 transferred =
8600 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8601 NULL,
8602 value_contents_all_raw (v),
8603 value_offset (v),
8604 TYPE_LENGTH (value_type (v)));
8605
8606 if (transferred != TYPE_LENGTH (value_type (v)))
8607 error (_("Unable to read siginfo"));
8608}
8609
8610/* This function implements the lval_computed support for writing a
8611 $_siginfo value. */
8612
8613static void
8614siginfo_value_write (struct value *v, struct value *fromval)
8615{
8616 LONGEST transferred;
8617
c709acd1
PA
8618 validate_siginfo_access ();
8619
4aa995e1
PA
8620 transferred = target_write (&current_target,
8621 TARGET_OBJECT_SIGNAL_INFO,
8622 NULL,
8623 value_contents_all_raw (fromval),
8624 value_offset (v),
8625 TYPE_LENGTH (value_type (fromval)));
8626
8627 if (transferred != TYPE_LENGTH (value_type (fromval)))
8628 error (_("Unable to write siginfo"));
8629}
8630
c8f2448a 8631static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8632 {
8633 siginfo_value_read,
8634 siginfo_value_write
8635 };
8636
8637/* Return a new value with the correct type for the siginfo object of
78267919
UW
8638 the current thread using architecture GDBARCH. Return a void value
8639 if there's no object available. */
4aa995e1 8640
2c0b251b 8641static struct value *
22d2b532
SDJ
8642siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8643 void *ignore)
4aa995e1 8644{
4aa995e1 8645 if (target_has_stack
78267919
UW
8646 && !ptid_equal (inferior_ptid, null_ptid)
8647 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8648 {
78267919 8649 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8650
78267919 8651 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8652 }
8653
78267919 8654 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8655}
8656
c906108c 8657\f
16c381f0
JK
8658/* infcall_suspend_state contains state about the program itself like its
8659 registers and any signal it received when it last stopped.
8660 This state must be restored regardless of how the inferior function call
8661 ends (either successfully, or after it hits a breakpoint or signal)
8662 if the program is to properly continue where it left off. */
8663
8664struct infcall_suspend_state
7a292a7a 8665{
16c381f0 8666 struct thread_suspend_state thread_suspend;
16c381f0
JK
8667
8668 /* Other fields: */
7a292a7a 8669 CORE_ADDR stop_pc;
b89667eb 8670 struct regcache *registers;
1736ad11 8671
35515841 8672 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8673 struct gdbarch *siginfo_gdbarch;
8674
8675 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8676 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8677 content would be invalid. */
8678 gdb_byte *siginfo_data;
b89667eb
DE
8679};
8680
16c381f0
JK
8681struct infcall_suspend_state *
8682save_infcall_suspend_state (void)
b89667eb 8683{
16c381f0 8684 struct infcall_suspend_state *inf_state;
b89667eb 8685 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8686 struct regcache *regcache = get_current_regcache ();
8687 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8688 gdb_byte *siginfo_data = NULL;
8689
8690 if (gdbarch_get_siginfo_type_p (gdbarch))
8691 {
8692 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8693 size_t len = TYPE_LENGTH (type);
8694 struct cleanup *back_to;
8695
224c3ddb 8696 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8697 back_to = make_cleanup (xfree, siginfo_data);
8698
8699 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8700 siginfo_data, 0, len) == len)
8701 discard_cleanups (back_to);
8702 else
8703 {
8704 /* Errors ignored. */
8705 do_cleanups (back_to);
8706 siginfo_data = NULL;
8707 }
8708 }
8709
41bf6aca 8710 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8711
8712 if (siginfo_data)
8713 {
8714 inf_state->siginfo_gdbarch = gdbarch;
8715 inf_state->siginfo_data = siginfo_data;
8716 }
b89667eb 8717
16c381f0 8718 inf_state->thread_suspend = tp->suspend;
16c381f0 8719
35515841 8720 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8721 GDB_SIGNAL_0 anyway. */
8722 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8723
b89667eb
DE
8724 inf_state->stop_pc = stop_pc;
8725
1736ad11 8726 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8727
8728 return inf_state;
8729}
8730
8731/* Restore inferior session state to INF_STATE. */
8732
8733void
16c381f0 8734restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8735{
8736 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8737 struct regcache *regcache = get_current_regcache ();
8738 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8739
16c381f0 8740 tp->suspend = inf_state->thread_suspend;
16c381f0 8741
b89667eb
DE
8742 stop_pc = inf_state->stop_pc;
8743
1736ad11
JK
8744 if (inf_state->siginfo_gdbarch == gdbarch)
8745 {
8746 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8747
8748 /* Errors ignored. */
8749 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8750 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8751 }
8752
b89667eb
DE
8753 /* The inferior can be gone if the user types "print exit(0)"
8754 (and perhaps other times). */
8755 if (target_has_execution)
8756 /* NB: The register write goes through to the target. */
1736ad11 8757 regcache_cpy (regcache, inf_state->registers);
803b5f95 8758
16c381f0 8759 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8760}
8761
8762static void
16c381f0 8763do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8764{
9a3c8263 8765 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8766}
8767
8768struct cleanup *
16c381f0
JK
8769make_cleanup_restore_infcall_suspend_state
8770 (struct infcall_suspend_state *inf_state)
b89667eb 8771{
16c381f0 8772 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8773}
8774
8775void
16c381f0 8776discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8777{
8778 regcache_xfree (inf_state->registers);
803b5f95 8779 xfree (inf_state->siginfo_data);
b89667eb
DE
8780 xfree (inf_state);
8781}
8782
8783struct regcache *
16c381f0 8784get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8785{
8786 return inf_state->registers;
8787}
8788
16c381f0
JK
8789/* infcall_control_state contains state regarding gdb's control of the
8790 inferior itself like stepping control. It also contains session state like
8791 the user's currently selected frame. */
b89667eb 8792
16c381f0 8793struct infcall_control_state
b89667eb 8794{
16c381f0
JK
8795 struct thread_control_state thread_control;
8796 struct inferior_control_state inferior_control;
d82142e2
JK
8797
8798 /* Other fields: */
8799 enum stop_stack_kind stop_stack_dummy;
8800 int stopped_by_random_signal;
7a292a7a 8801
b89667eb 8802 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8803 struct frame_id selected_frame_id;
7a292a7a
SS
8804};
8805
c906108c 8806/* Save all of the information associated with the inferior<==>gdb
b89667eb 8807 connection. */
c906108c 8808
16c381f0
JK
8809struct infcall_control_state *
8810save_infcall_control_state (void)
c906108c 8811{
8d749320
SM
8812 struct infcall_control_state *inf_status =
8813 XNEW (struct infcall_control_state);
4e1c45ea 8814 struct thread_info *tp = inferior_thread ();
d6b48e9c 8815 struct inferior *inf = current_inferior ();
7a292a7a 8816
16c381f0
JK
8817 inf_status->thread_control = tp->control;
8818 inf_status->inferior_control = inf->control;
d82142e2 8819
8358c15c 8820 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8821 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8822
16c381f0
JK
8823 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8824 chain. If caller's caller is walking the chain, they'll be happier if we
8825 hand them back the original chain when restore_infcall_control_state is
8826 called. */
8827 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8828
8829 /* Other fields: */
8830 inf_status->stop_stack_dummy = stop_stack_dummy;
8831 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8832
206415a3 8833 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8834
7a292a7a 8835 return inf_status;
c906108c
SS
8836}
8837
c906108c 8838static int
96baa820 8839restore_selected_frame (void *args)
c906108c 8840{
488f131b 8841 struct frame_id *fid = (struct frame_id *) args;
c906108c 8842 struct frame_info *frame;
c906108c 8843
101dcfbe 8844 frame = frame_find_by_id (*fid);
c906108c 8845
aa0cd9c1
AC
8846 /* If inf_status->selected_frame_id is NULL, there was no previously
8847 selected frame. */
101dcfbe 8848 if (frame == NULL)
c906108c 8849 {
8a3fe4f8 8850 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8851 return 0;
8852 }
8853
0f7d239c 8854 select_frame (frame);
c906108c
SS
8855
8856 return (1);
8857}
8858
b89667eb
DE
8859/* Restore inferior session state to INF_STATUS. */
8860
c906108c 8861void
16c381f0 8862restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8863{
4e1c45ea 8864 struct thread_info *tp = inferior_thread ();
d6b48e9c 8865 struct inferior *inf = current_inferior ();
4e1c45ea 8866
8358c15c
JK
8867 if (tp->control.step_resume_breakpoint)
8868 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8869
5b79abe7
TT
8870 if (tp->control.exception_resume_breakpoint)
8871 tp->control.exception_resume_breakpoint->disposition
8872 = disp_del_at_next_stop;
8873
d82142e2 8874 /* Handle the bpstat_copy of the chain. */
16c381f0 8875 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8876
16c381f0
JK
8877 tp->control = inf_status->thread_control;
8878 inf->control = inf_status->inferior_control;
d82142e2
JK
8879
8880 /* Other fields: */
8881 stop_stack_dummy = inf_status->stop_stack_dummy;
8882 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8883
b89667eb 8884 if (target_has_stack)
c906108c 8885 {
c906108c 8886 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8887 walking the stack might encounter a garbage pointer and
8888 error() trying to dereference it. */
488f131b
JB
8889 if (catch_errors
8890 (restore_selected_frame, &inf_status->selected_frame_id,
8891 "Unable to restore previously selected frame:\n",
8892 RETURN_MASK_ERROR) == 0)
c906108c
SS
8893 /* Error in restoring the selected frame. Select the innermost
8894 frame. */
0f7d239c 8895 select_frame (get_current_frame ());
c906108c 8896 }
c906108c 8897
72cec141 8898 xfree (inf_status);
7a292a7a 8899}
c906108c 8900
74b7792f 8901static void
16c381f0 8902do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8903{
9a3c8263 8904 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8905}
8906
8907struct cleanup *
16c381f0
JK
8908make_cleanup_restore_infcall_control_state
8909 (struct infcall_control_state *inf_status)
74b7792f 8910{
16c381f0 8911 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8912}
8913
c906108c 8914void
16c381f0 8915discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8916{
8358c15c
JK
8917 if (inf_status->thread_control.step_resume_breakpoint)
8918 inf_status->thread_control.step_resume_breakpoint->disposition
8919 = disp_del_at_next_stop;
8920
5b79abe7
TT
8921 if (inf_status->thread_control.exception_resume_breakpoint)
8922 inf_status->thread_control.exception_resume_breakpoint->disposition
8923 = disp_del_at_next_stop;
8924
1777feb0 8925 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8926 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8927
72cec141 8928 xfree (inf_status);
7a292a7a 8929}
b89667eb 8930\f
ca6724c1
KB
8931/* restore_inferior_ptid() will be used by the cleanup machinery
8932 to restore the inferior_ptid value saved in a call to
8933 save_inferior_ptid(). */
ce696e05
KB
8934
8935static void
8936restore_inferior_ptid (void *arg)
8937{
9a3c8263 8938 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8939
ce696e05
KB
8940 inferior_ptid = *saved_ptid_ptr;
8941 xfree (arg);
8942}
8943
8944/* Save the value of inferior_ptid so that it may be restored by a
8945 later call to do_cleanups(). Returns the struct cleanup pointer
8946 needed for later doing the cleanup. */
8947
8948struct cleanup *
8949save_inferior_ptid (void)
8950{
8d749320 8951 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8952
ce696e05
KB
8953 *saved_ptid_ptr = inferior_ptid;
8954 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8955}
0c557179 8956
7f89fd65 8957/* See infrun.h. */
0c557179
SDJ
8958
8959void
8960clear_exit_convenience_vars (void)
8961{
8962 clear_internalvar (lookup_internalvar ("_exitsignal"));
8963 clear_internalvar (lookup_internalvar ("_exitcode"));
8964}
c5aa993b 8965\f
488f131b 8966
b2175913
MS
8967/* User interface for reverse debugging:
8968 Set exec-direction / show exec-direction commands
8969 (returns error unless target implements to_set_exec_direction method). */
8970
170742de 8971enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8972static const char exec_forward[] = "forward";
8973static const char exec_reverse[] = "reverse";
8974static const char *exec_direction = exec_forward;
40478521 8975static const char *const exec_direction_names[] = {
b2175913
MS
8976 exec_forward,
8977 exec_reverse,
8978 NULL
8979};
8980
8981static void
8982set_exec_direction_func (char *args, int from_tty,
8983 struct cmd_list_element *cmd)
8984{
8985 if (target_can_execute_reverse)
8986 {
8987 if (!strcmp (exec_direction, exec_forward))
8988 execution_direction = EXEC_FORWARD;
8989 else if (!strcmp (exec_direction, exec_reverse))
8990 execution_direction = EXEC_REVERSE;
8991 }
8bbed405
MS
8992 else
8993 {
8994 exec_direction = exec_forward;
8995 error (_("Target does not support this operation."));
8996 }
b2175913
MS
8997}
8998
8999static void
9000show_exec_direction_func (struct ui_file *out, int from_tty,
9001 struct cmd_list_element *cmd, const char *value)
9002{
9003 switch (execution_direction) {
9004 case EXEC_FORWARD:
9005 fprintf_filtered (out, _("Forward.\n"));
9006 break;
9007 case EXEC_REVERSE:
9008 fprintf_filtered (out, _("Reverse.\n"));
9009 break;
b2175913 9010 default:
d8b34453
PA
9011 internal_error (__FILE__, __LINE__,
9012 _("bogus execution_direction value: %d"),
9013 (int) execution_direction);
b2175913
MS
9014 }
9015}
9016
d4db2f36
PA
9017static void
9018show_schedule_multiple (struct ui_file *file, int from_tty,
9019 struct cmd_list_element *c, const char *value)
9020{
3e43a32a
MS
9021 fprintf_filtered (file, _("Resuming the execution of threads "
9022 "of all processes is %s.\n"), value);
d4db2f36 9023}
ad52ddc6 9024
22d2b532
SDJ
9025/* Implementation of `siginfo' variable. */
9026
9027static const struct internalvar_funcs siginfo_funcs =
9028{
9029 siginfo_make_value,
9030 NULL,
9031 NULL
9032};
9033
372316f1
PA
9034/* Callback for infrun's target events source. This is marked when a
9035 thread has a pending status to process. */
9036
9037static void
9038infrun_async_inferior_event_handler (gdb_client_data data)
9039{
372316f1
PA
9040 inferior_event_handler (INF_REG_EVENT, NULL);
9041}
9042
c906108c 9043void
96baa820 9044_initialize_infrun (void)
c906108c 9045{
52f0bd74
AC
9046 int i;
9047 int numsigs;
de0bea00 9048 struct cmd_list_element *c;
c906108c 9049
372316f1
PA
9050 /* Register extra event sources in the event loop. */
9051 infrun_async_inferior_event_token
9052 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9053
1bedd215
AC
9054 add_info ("signals", signals_info, _("\
9055What debugger does when program gets various signals.\n\
9056Specify a signal as argument to print info on that signal only."));
c906108c
SS
9057 add_info_alias ("handle", "signals", 0);
9058
de0bea00 9059 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9060Specify how to handle signals.\n\
486c7739 9061Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9062Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9063If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9064will be displayed instead.\n\
9065\n\
c906108c
SS
9066Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9067from 1-15 are allowed for compatibility with old versions of GDB.\n\
9068Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9069The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9070used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9071\n\
1bedd215 9072Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9073\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9074Stop means reenter debugger if this signal happens (implies print).\n\
9075Print means print a message if this signal happens.\n\
9076Pass means let program see this signal; otherwise program doesn't know.\n\
9077Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9078Pass and Stop may be combined.\n\
9079\n\
9080Multiple signals may be specified. Signal numbers and signal names\n\
9081may be interspersed with actions, with the actions being performed for\n\
9082all signals cumulatively specified."));
de0bea00 9083 set_cmd_completer (c, handle_completer);
486c7739 9084
c906108c 9085 if (!dbx_commands)
1a966eab
AC
9086 stop_command = add_cmd ("stop", class_obscure,
9087 not_just_help_class_command, _("\
9088There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9089This allows you to set a list of commands to be run each time execution\n\
1a966eab 9090of the program stops."), &cmdlist);
c906108c 9091
ccce17b0 9092 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9093Set inferior debugging."), _("\
9094Show inferior debugging."), _("\
9095When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9096 NULL,
9097 show_debug_infrun,
9098 &setdebuglist, &showdebuglist);
527159b7 9099
3e43a32a
MS
9100 add_setshow_boolean_cmd ("displaced", class_maintenance,
9101 &debug_displaced, _("\
237fc4c9
PA
9102Set displaced stepping debugging."), _("\
9103Show displaced stepping debugging."), _("\
9104When non-zero, displaced stepping specific debugging is enabled."),
9105 NULL,
9106 show_debug_displaced,
9107 &setdebuglist, &showdebuglist);
9108
ad52ddc6
PA
9109 add_setshow_boolean_cmd ("non-stop", no_class,
9110 &non_stop_1, _("\
9111Set whether gdb controls the inferior in non-stop mode."), _("\
9112Show whether gdb controls the inferior in non-stop mode."), _("\
9113When debugging a multi-threaded program and this setting is\n\
9114off (the default, also called all-stop mode), when one thread stops\n\
9115(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9116all other threads in the program while you interact with the thread of\n\
9117interest. When you continue or step a thread, you can allow the other\n\
9118threads to run, or have them remain stopped, but while you inspect any\n\
9119thread's state, all threads stop.\n\
9120\n\
9121In non-stop mode, when one thread stops, other threads can continue\n\
9122to run freely. You'll be able to step each thread independently,\n\
9123leave it stopped or free to run as needed."),
9124 set_non_stop,
9125 show_non_stop,
9126 &setlist,
9127 &showlist);
9128
a493e3e2 9129 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9130 signal_stop = XNEWVEC (unsigned char, numsigs);
9131 signal_print = XNEWVEC (unsigned char, numsigs);
9132 signal_program = XNEWVEC (unsigned char, numsigs);
9133 signal_catch = XNEWVEC (unsigned char, numsigs);
9134 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9135 for (i = 0; i < numsigs; i++)
9136 {
9137 signal_stop[i] = 1;
9138 signal_print[i] = 1;
9139 signal_program[i] = 1;
ab04a2af 9140 signal_catch[i] = 0;
c906108c
SS
9141 }
9142
4d9d9d04
PA
9143 /* Signals caused by debugger's own actions should not be given to
9144 the program afterwards.
9145
9146 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9147 explicitly specifies that it should be delivered to the target
9148 program. Typically, that would occur when a user is debugging a
9149 target monitor on a simulator: the target monitor sets a
9150 breakpoint; the simulator encounters this breakpoint and halts
9151 the simulation handing control to GDB; GDB, noting that the stop
9152 address doesn't map to any known breakpoint, returns control back
9153 to the simulator; the simulator then delivers the hardware
9154 equivalent of a GDB_SIGNAL_TRAP to the program being
9155 debugged. */
a493e3e2
PA
9156 signal_program[GDB_SIGNAL_TRAP] = 0;
9157 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9158
9159 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9160 signal_stop[GDB_SIGNAL_ALRM] = 0;
9161 signal_print[GDB_SIGNAL_ALRM] = 0;
9162 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9163 signal_print[GDB_SIGNAL_VTALRM] = 0;
9164 signal_stop[GDB_SIGNAL_PROF] = 0;
9165 signal_print[GDB_SIGNAL_PROF] = 0;
9166 signal_stop[GDB_SIGNAL_CHLD] = 0;
9167 signal_print[GDB_SIGNAL_CHLD] = 0;
9168 signal_stop[GDB_SIGNAL_IO] = 0;
9169 signal_print[GDB_SIGNAL_IO] = 0;
9170 signal_stop[GDB_SIGNAL_POLL] = 0;
9171 signal_print[GDB_SIGNAL_POLL] = 0;
9172 signal_stop[GDB_SIGNAL_URG] = 0;
9173 signal_print[GDB_SIGNAL_URG] = 0;
9174 signal_stop[GDB_SIGNAL_WINCH] = 0;
9175 signal_print[GDB_SIGNAL_WINCH] = 0;
9176 signal_stop[GDB_SIGNAL_PRIO] = 0;
9177 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9178
cd0fc7c3
SS
9179 /* These signals are used internally by user-level thread
9180 implementations. (See signal(5) on Solaris.) Like the above
9181 signals, a healthy program receives and handles them as part of
9182 its normal operation. */
a493e3e2
PA
9183 signal_stop[GDB_SIGNAL_LWP] = 0;
9184 signal_print[GDB_SIGNAL_LWP] = 0;
9185 signal_stop[GDB_SIGNAL_WAITING] = 0;
9186 signal_print[GDB_SIGNAL_WAITING] = 0;
9187 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9188 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9189
2455069d
UW
9190 /* Update cached state. */
9191 signal_cache_update (-1);
9192
85c07804
AC
9193 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9194 &stop_on_solib_events, _("\
9195Set stopping for shared library events."), _("\
9196Show stopping for shared library events."), _("\
c906108c
SS
9197If nonzero, gdb will give control to the user when the dynamic linker\n\
9198notifies gdb of shared library events. The most common event of interest\n\
85c07804 9199to the user would be loading/unloading of a new library."),
f9e14852 9200 set_stop_on_solib_events,
920d2a44 9201 show_stop_on_solib_events,
85c07804 9202 &setlist, &showlist);
c906108c 9203
7ab04401
AC
9204 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9205 follow_fork_mode_kind_names,
9206 &follow_fork_mode_string, _("\
9207Set debugger response to a program call of fork or vfork."), _("\
9208Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9209A fork or vfork creates a new process. follow-fork-mode can be:\n\
9210 parent - the original process is debugged after a fork\n\
9211 child - the new process is debugged after a fork\n\
ea1dd7bc 9212The unfollowed process will continue to run.\n\
7ab04401
AC
9213By default, the debugger will follow the parent process."),
9214 NULL,
920d2a44 9215 show_follow_fork_mode_string,
7ab04401
AC
9216 &setlist, &showlist);
9217
6c95b8df
PA
9218 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9219 follow_exec_mode_names,
9220 &follow_exec_mode_string, _("\
9221Set debugger response to a program call of exec."), _("\
9222Show debugger response to a program call of exec."), _("\
9223An exec call replaces the program image of a process.\n\
9224\n\
9225follow-exec-mode can be:\n\
9226\n\
cce7e648 9227 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9228to this new inferior. The program the process was running before\n\
9229the exec call can be restarted afterwards by restarting the original\n\
9230inferior.\n\
9231\n\
9232 same - the debugger keeps the process bound to the same inferior.\n\
9233The new executable image replaces the previous executable loaded in\n\
9234the inferior. Restarting the inferior after the exec call restarts\n\
9235the executable the process was running after the exec call.\n\
9236\n\
9237By default, the debugger will use the same inferior."),
9238 NULL,
9239 show_follow_exec_mode_string,
9240 &setlist, &showlist);
9241
7ab04401
AC
9242 add_setshow_enum_cmd ("scheduler-locking", class_run,
9243 scheduler_enums, &scheduler_mode, _("\
9244Set mode for locking scheduler during execution."), _("\
9245Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9246off == no locking (threads may preempt at any time)\n\
9247on == full locking (no thread except the current thread may run)\n\
9248 This applies to both normal execution and replay mode.\n\
9249step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9250 In this mode, other threads may run during other commands.\n\
9251 This applies to both normal execution and replay mode.\n\
9252replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9253 set_schedlock_func, /* traps on target vector */
920d2a44 9254 show_scheduler_mode,
7ab04401 9255 &setlist, &showlist);
5fbbeb29 9256
d4db2f36
PA
9257 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9258Set mode for resuming threads of all processes."), _("\
9259Show mode for resuming threads of all processes."), _("\
9260When on, execution commands (such as 'continue' or 'next') resume all\n\
9261threads of all processes. When off (which is the default), execution\n\
9262commands only resume the threads of the current process. The set of\n\
9263threads that are resumed is further refined by the scheduler-locking\n\
9264mode (see help set scheduler-locking)."),
9265 NULL,
9266 show_schedule_multiple,
9267 &setlist, &showlist);
9268
5bf193a2
AC
9269 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9270Set mode of the step operation."), _("\
9271Show mode of the step operation."), _("\
9272When set, doing a step over a function without debug line information\n\
9273will stop at the first instruction of that function. Otherwise, the\n\
9274function is skipped and the step command stops at a different source line."),
9275 NULL,
920d2a44 9276 show_step_stop_if_no_debug,
5bf193a2 9277 &setlist, &showlist);
ca6724c1 9278
72d0e2c5
YQ
9279 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9280 &can_use_displaced_stepping, _("\
237fc4c9
PA
9281Set debugger's willingness to use displaced stepping."), _("\
9282Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9283If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9284supported by the target architecture. If off, gdb will not use displaced\n\
9285stepping to step over breakpoints, even if such is supported by the target\n\
9286architecture. If auto (which is the default), gdb will use displaced stepping\n\
9287if the target architecture supports it and non-stop mode is active, but will not\n\
9288use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9289 NULL,
9290 show_can_use_displaced_stepping,
9291 &setlist, &showlist);
237fc4c9 9292
b2175913
MS
9293 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9294 &exec_direction, _("Set direction of execution.\n\
9295Options are 'forward' or 'reverse'."),
9296 _("Show direction of execution (forward/reverse)."),
9297 _("Tells gdb whether to execute forward or backward."),
9298 set_exec_direction_func, show_exec_direction_func,
9299 &setlist, &showlist);
9300
6c95b8df
PA
9301 /* Set/show detach-on-fork: user-settable mode. */
9302
9303 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9304Set whether gdb will detach the child of a fork."), _("\
9305Show whether gdb will detach the child of a fork."), _("\
9306Tells gdb whether to detach the child of a fork."),
9307 NULL, NULL, &setlist, &showlist);
9308
03583c20
UW
9309 /* Set/show disable address space randomization mode. */
9310
9311 add_setshow_boolean_cmd ("disable-randomization", class_support,
9312 &disable_randomization, _("\
9313Set disabling of debuggee's virtual address space randomization."), _("\
9314Show disabling of debuggee's virtual address space randomization."), _("\
9315When this mode is on (which is the default), randomization of the virtual\n\
9316address space is disabled. Standalone programs run with the randomization\n\
9317enabled by default on some platforms."),
9318 &set_disable_randomization,
9319 &show_disable_randomization,
9320 &setlist, &showlist);
9321
ca6724c1 9322 /* ptid initializations */
ca6724c1
KB
9323 inferior_ptid = null_ptid;
9324 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9325
9326 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9327 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9328 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9329 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9330
9331 /* Explicitly create without lookup, since that tries to create a
9332 value with a void typed value, and when we get here, gdbarch
9333 isn't initialized yet. At this point, we're quite sure there
9334 isn't another convenience variable of the same name. */
22d2b532 9335 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9336
9337 add_setshow_boolean_cmd ("observer", no_class,
9338 &observer_mode_1, _("\
9339Set whether gdb controls the inferior in observer mode."), _("\
9340Show whether gdb controls the inferior in observer mode."), _("\
9341In observer mode, GDB can get data from the inferior, but not\n\
9342affect its execution. Registers and memory may not be changed,\n\
9343breakpoints may not be set, and the program cannot be interrupted\n\
9344or signalled."),
9345 set_observer_mode,
9346 show_observer_mode,
9347 &setlist,
9348 &showlist);
c906108c 9349}