]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
infrun.c:handle_inferior_event: Rework random signal checks.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
7e324e48 2422 int stop_func_filled_in;
488f131b
JB
2423 CORE_ADDR stop_func_start;
2424 CORE_ADDR stop_func_end;
2c02bd72 2425 const char *stop_func_name;
488f131b
JB
2426 int wait_some_more;
2427};
2428
ec9499be 2429static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2430
568d6575
UW
2431static void handle_step_into_function (struct gdbarch *gdbarch,
2432 struct execution_control_state *ecs);
2433static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2434 struct execution_control_state *ecs);
186c406b 2435static void check_exception_resume (struct execution_control_state *,
28106bc2 2436 struct frame_info *);
611c83ae 2437
104c1213
JM
2438static void stop_stepping (struct execution_control_state *ecs);
2439static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2440static void keep_going (struct execution_control_state *ecs);
94c57d6a 2441static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2442static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2443
252fbfc8
PA
2444/* Callback for iterate over threads. If the thread is stopped, but
2445 the user/frontend doesn't know about that yet, go through
2446 normal_stop, as if the thread had just stopped now. ARG points at
2447 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2448 ptid_is_pid(PTID) is true, applies to all threads of the process
2449 pointed at by PTID. Otherwise, apply only to the thread pointed by
2450 PTID. */
2451
2452static int
2453infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2454{
2455 ptid_t ptid = * (ptid_t *) arg;
2456
2457 if ((ptid_equal (info->ptid, ptid)
2458 || ptid_equal (minus_one_ptid, ptid)
2459 || (ptid_is_pid (ptid)
2460 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2461 && is_running (info->ptid)
2462 && !is_executing (info->ptid))
2463 {
2464 struct cleanup *old_chain;
2465 struct execution_control_state ecss;
2466 struct execution_control_state *ecs = &ecss;
2467
2468 memset (ecs, 0, sizeof (*ecs));
2469
2470 old_chain = make_cleanup_restore_current_thread ();
2471
252fbfc8
PA
2472 /* Go through handle_inferior_event/normal_stop, so we always
2473 have consistent output as if the stop event had been
2474 reported. */
2475 ecs->ptid = info->ptid;
e09875d4 2476 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2477 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2478 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2479
2480 handle_inferior_event (ecs);
2481
2482 if (!ecs->wait_some_more)
2483 {
2484 struct thread_info *tp;
2485
2486 normal_stop ();
2487
fa4cd53f 2488 /* Finish off the continuations. */
252fbfc8 2489 tp = inferior_thread ();
fa4cd53f
PA
2490 do_all_intermediate_continuations_thread (tp, 1);
2491 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2492 }
2493
2494 do_cleanups (old_chain);
2495 }
2496
2497 return 0;
2498}
2499
2500/* This function is attached as a "thread_stop_requested" observer.
2501 Cleanup local state that assumed the PTID was to be resumed, and
2502 report the stop to the frontend. */
2503
2c0b251b 2504static void
252fbfc8
PA
2505infrun_thread_stop_requested (ptid_t ptid)
2506{
fc1cf338 2507 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2508
2509 /* PTID was requested to stop. Remove it from the displaced
2510 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2511
2512 for (displaced = displaced_step_inferior_states;
2513 displaced;
2514 displaced = displaced->next)
252fbfc8 2515 {
fc1cf338 2516 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2517
fc1cf338
PA
2518 it = displaced->step_request_queue;
2519 prev_next_p = &displaced->step_request_queue;
2520 while (it)
252fbfc8 2521 {
fc1cf338
PA
2522 if (ptid_match (it->ptid, ptid))
2523 {
2524 *prev_next_p = it->next;
2525 it->next = NULL;
2526 xfree (it);
2527 }
252fbfc8 2528 else
fc1cf338
PA
2529 {
2530 prev_next_p = &it->next;
2531 }
252fbfc8 2532
fc1cf338 2533 it = *prev_next_p;
252fbfc8 2534 }
252fbfc8
PA
2535 }
2536
2537 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2538}
2539
a07daef3
PA
2540static void
2541infrun_thread_thread_exit (struct thread_info *tp, int silent)
2542{
2543 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2544 nullify_last_target_wait_ptid ();
2545}
2546
4e1c45ea
PA
2547/* Callback for iterate_over_threads. */
2548
2549static int
2550delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2551{
2552 if (is_exited (info->ptid))
2553 return 0;
2554
2555 delete_step_resume_breakpoint (info);
186c406b 2556 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2557 return 0;
2558}
2559
2560/* In all-stop, delete the step resume breakpoint of any thread that
2561 had one. In non-stop, delete the step resume breakpoint of the
2562 thread that just stopped. */
2563
2564static void
2565delete_step_thread_step_resume_breakpoint (void)
2566{
2567 if (!target_has_execution
2568 || ptid_equal (inferior_ptid, null_ptid))
2569 /* If the inferior has exited, we have already deleted the step
2570 resume breakpoints out of GDB's lists. */
2571 return;
2572
2573 if (non_stop)
2574 {
2575 /* If in non-stop mode, only delete the step-resume or
2576 longjmp-resume breakpoint of the thread that just stopped
2577 stepping. */
2578 struct thread_info *tp = inferior_thread ();
abbb1732 2579
4e1c45ea 2580 delete_step_resume_breakpoint (tp);
186c406b 2581 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2582 }
2583 else
2584 /* In all-stop mode, delete all step-resume and longjmp-resume
2585 breakpoints of any thread that had them. */
2586 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2587}
2588
1777feb0 2589/* A cleanup wrapper. */
4e1c45ea
PA
2590
2591static void
2592delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2593{
2594 delete_step_thread_step_resume_breakpoint ();
2595}
2596
223698f8
DE
2597/* Pretty print the results of target_wait, for debugging purposes. */
2598
2599static void
2600print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2601 const struct target_waitstatus *ws)
2602{
2603 char *status_string = target_waitstatus_to_string (ws);
2604 struct ui_file *tmp_stream = mem_fileopen ();
2605 char *text;
223698f8
DE
2606
2607 /* The text is split over several lines because it was getting too long.
2608 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2609 output as a unit; we want only one timestamp printed if debug_timestamp
2610 is set. */
2611
2612 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2613 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2614 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2615 fprintf_unfiltered (tmp_stream,
2616 " [%s]", target_pid_to_str (waiton_ptid));
2617 fprintf_unfiltered (tmp_stream, ", status) =\n");
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: %d [%s],\n",
dfd4cc63
LM
2620 ptid_get_pid (result_ptid),
2621 target_pid_to_str (result_ptid));
223698f8
DE
2622 fprintf_unfiltered (tmp_stream,
2623 "infrun: %s\n",
2624 status_string);
2625
759ef836 2626 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2627
2628 /* This uses %s in part to handle %'s in the text, but also to avoid
2629 a gcc error: the format attribute requires a string literal. */
2630 fprintf_unfiltered (gdb_stdlog, "%s", text);
2631
2632 xfree (status_string);
2633 xfree (text);
2634 ui_file_delete (tmp_stream);
2635}
2636
24291992
PA
2637/* Prepare and stabilize the inferior for detaching it. E.g.,
2638 detaching while a thread is displaced stepping is a recipe for
2639 crashing it, as nothing would readjust the PC out of the scratch
2640 pad. */
2641
2642void
2643prepare_for_detach (void)
2644{
2645 struct inferior *inf = current_inferior ();
2646 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2647 struct cleanup *old_chain_1;
2648 struct displaced_step_inferior_state *displaced;
2649
2650 displaced = get_displaced_stepping_state (inf->pid);
2651
2652 /* Is any thread of this process displaced stepping? If not,
2653 there's nothing else to do. */
2654 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2655 return;
2656
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog,
2659 "displaced-stepping in-process while detaching");
2660
2661 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2662 inf->detaching = 1;
2663
2664 while (!ptid_equal (displaced->step_ptid, null_ptid))
2665 {
2666 struct cleanup *old_chain_2;
2667 struct execution_control_state ecss;
2668 struct execution_control_state *ecs;
2669
2670 ecs = &ecss;
2671 memset (ecs, 0, sizeof (*ecs));
2672
2673 overlay_cache_invalid = 1;
2674
24291992
PA
2675 if (deprecated_target_wait_hook)
2676 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2677 else
2678 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2679
2680 if (debug_infrun)
2681 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2682
2683 /* If an error happens while handling the event, propagate GDB's
2684 knowledge of the executing state to the frontend/user running
2685 state. */
3e43a32a
MS
2686 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2687 &minus_one_ptid);
24291992
PA
2688
2689 /* Now figure out what to do with the result of the result. */
2690 handle_inferior_event (ecs);
2691
2692 /* No error, don't finish the state yet. */
2693 discard_cleanups (old_chain_2);
2694
2695 /* Breakpoints and watchpoints are not installed on the target
2696 at this point, and signals are passed directly to the
2697 inferior, so this must mean the process is gone. */
2698 if (!ecs->wait_some_more)
2699 {
2700 discard_cleanups (old_chain_1);
2701 error (_("Program exited while detaching"));
2702 }
2703 }
2704
2705 discard_cleanups (old_chain_1);
2706}
2707
cd0fc7c3 2708/* Wait for control to return from inferior to debugger.
ae123ec6 2709
cd0fc7c3
SS
2710 If inferior gets a signal, we may decide to start it up again
2711 instead of returning. That is why there is a loop in this function.
2712 When this function actually returns it means the inferior
2713 should be left stopped and GDB should read more commands. */
2714
2715void
e4c8541f 2716wait_for_inferior (void)
cd0fc7c3
SS
2717{
2718 struct cleanup *old_cleanups;
c906108c 2719
527159b7 2720 if (debug_infrun)
ae123ec6 2721 fprintf_unfiltered
e4c8541f 2722 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2723
4e1c45ea
PA
2724 old_cleanups =
2725 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2726
c906108c
SS
2727 while (1)
2728 {
ae25568b
PA
2729 struct execution_control_state ecss;
2730 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2731 struct cleanup *old_chain;
2732
ae25568b
PA
2733 memset (ecs, 0, sizeof (*ecs));
2734
ec9499be 2735 overlay_cache_invalid = 1;
ec9499be 2736
9a4105ab 2737 if (deprecated_target_wait_hook)
47608cb1 2738 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2739 else
47608cb1 2740 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2741
f00150c9 2742 if (debug_infrun)
223698f8 2743 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2744
29f49a6a
PA
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
2748 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2749
cd0fc7c3
SS
2750 /* Now figure out what to do with the result of the result. */
2751 handle_inferior_event (ecs);
c906108c 2752
29f49a6a
PA
2753 /* No error, don't finish the state yet. */
2754 discard_cleanups (old_chain);
2755
cd0fc7c3
SS
2756 if (!ecs->wait_some_more)
2757 break;
2758 }
4e1c45ea 2759
cd0fc7c3
SS
2760 do_cleanups (old_cleanups);
2761}
c906108c 2762
1777feb0 2763/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2764 event loop whenever a change of state is detected on the file
1777feb0
MS
2765 descriptor corresponding to the target. It can be called more than
2766 once to complete a single execution command. In such cases we need
2767 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2768 that this function is called for a single execution command, then
2769 report to the user that the inferior has stopped, and do the
1777feb0 2770 necessary cleanups. */
43ff13b4
JM
2771
2772void
fba45db2 2773fetch_inferior_event (void *client_data)
43ff13b4 2774{
0d1e5fa7 2775 struct execution_control_state ecss;
a474d7c2 2776 struct execution_control_state *ecs = &ecss;
4f8d22e3 2777 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2778 struct cleanup *ts_old_chain;
4f8d22e3 2779 int was_sync = sync_execution;
0f641c01 2780 int cmd_done = 0;
43ff13b4 2781
0d1e5fa7
PA
2782 memset (ecs, 0, sizeof (*ecs));
2783
c5187ac6
PA
2784 /* We're handling a live event, so make sure we're doing live
2785 debugging. If we're looking at traceframes while the target is
2786 running, we're going to need to get back to that mode after
2787 handling the event. */
2788 if (non_stop)
2789 {
2790 make_cleanup_restore_current_traceframe ();
e6e4e701 2791 set_current_traceframe (-1);
c5187ac6
PA
2792 }
2793
4f8d22e3
PA
2794 if (non_stop)
2795 /* In non-stop mode, the user/frontend should not notice a thread
2796 switch due to internal events. Make sure we reverse to the
2797 user selected thread and frame after handling the event and
2798 running any breakpoint commands. */
2799 make_cleanup_restore_current_thread ();
2800
ec9499be 2801 overlay_cache_invalid = 1;
3dd5b83d 2802
32231432
PA
2803 make_cleanup_restore_integer (&execution_direction);
2804 execution_direction = target_execution_direction ();
2805
9a4105ab 2806 if (deprecated_target_wait_hook)
a474d7c2 2807 ecs->ptid =
47608cb1 2808 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2809 else
47608cb1 2810 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2811
f00150c9 2812 if (debug_infrun)
223698f8 2813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2814
29f49a6a
PA
2815 /* If an error happens while handling the event, propagate GDB's
2816 knowledge of the executing state to the frontend/user running
2817 state. */
2818 if (!non_stop)
2819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2820 else
2821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2822
353d1d73
JK
2823 /* Get executed before make_cleanup_restore_current_thread above to apply
2824 still for the thread which has thrown the exception. */
2825 make_bpstat_clear_actions_cleanup ();
2826
43ff13b4 2827 /* Now figure out what to do with the result of the result. */
a474d7c2 2828 handle_inferior_event (ecs);
43ff13b4 2829
a474d7c2 2830 if (!ecs->wait_some_more)
43ff13b4 2831 {
d6b48e9c
PA
2832 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2833
4e1c45ea 2834 delete_step_thread_step_resume_breakpoint ();
f107f563 2835
d6b48e9c 2836 /* We may not find an inferior if this was a process exit. */
16c381f0 2837 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2838 normal_stop ();
2839
af679fd0 2840 if (target_has_execution
0e5bf2a8 2841 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2842 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2843 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2844 && ecs->event_thread->step_multi
16c381f0 2845 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2846 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2847 else
0f641c01
PA
2848 {
2849 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2850 cmd_done = 1;
2851 }
43ff13b4 2852 }
4f8d22e3 2853
29f49a6a
PA
2854 /* No error, don't finish the thread states yet. */
2855 discard_cleanups (ts_old_chain);
2856
4f8d22e3
PA
2857 /* Revert thread and frame. */
2858 do_cleanups (old_chain);
2859
2860 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2861 restore the prompt (a synchronous execution command has finished,
2862 and we're ready for input). */
b4a14fd0 2863 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2864 display_gdb_prompt (0);
0f641c01
PA
2865
2866 if (cmd_done
2867 && !was_sync
2868 && exec_done_display_p
2869 && (ptid_equal (inferior_ptid, null_ptid)
2870 || !is_running (inferior_ptid)))
2871 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2872}
2873
edb3359d
DJ
2874/* Record the frame and location we're currently stepping through. */
2875void
2876set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2877{
2878 struct thread_info *tp = inferior_thread ();
2879
16c381f0
JK
2880 tp->control.step_frame_id = get_frame_id (frame);
2881 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2882
2883 tp->current_symtab = sal.symtab;
2884 tp->current_line = sal.line;
2885}
2886
0d1e5fa7
PA
2887/* Clear context switchable stepping state. */
2888
2889void
4e1c45ea 2890init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2891{
2892 tss->stepping_over_breakpoint = 0;
2893 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2894}
2895
e02bc4cc 2896/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2897 target_wait()/deprecated_target_wait_hook(). The data is actually
2898 cached by handle_inferior_event(), which gets called immediately
2899 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2900
2901void
488f131b 2902get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2903{
39f77062 2904 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2905 *status = target_last_waitstatus;
2906}
2907
ac264b3b
MS
2908void
2909nullify_last_target_wait_ptid (void)
2910{
2911 target_last_wait_ptid = minus_one_ptid;
2912}
2913
dcf4fbde 2914/* Switch thread contexts. */
dd80620e
MS
2915
2916static void
0d1e5fa7 2917context_switch (ptid_t ptid)
dd80620e 2918{
4b51d87b 2919 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2920 {
2921 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2922 target_pid_to_str (inferior_ptid));
2923 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2924 target_pid_to_str (ptid));
fd48f117
DJ
2925 }
2926
0d1e5fa7 2927 switch_to_thread (ptid);
dd80620e
MS
2928}
2929
4fa8626c
DJ
2930static void
2931adjust_pc_after_break (struct execution_control_state *ecs)
2932{
24a73cce
UW
2933 struct regcache *regcache;
2934 struct gdbarch *gdbarch;
6c95b8df 2935 struct address_space *aspace;
8aad930b 2936 CORE_ADDR breakpoint_pc;
4fa8626c 2937
4fa8626c
DJ
2938 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2939 we aren't, just return.
9709f61c
DJ
2940
2941 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2942 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2943 implemented by software breakpoints should be handled through the normal
2944 breakpoint layer.
8fb3e588 2945
4fa8626c
DJ
2946 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2947 different signals (SIGILL or SIGEMT for instance), but it is less
2948 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2949 gdbarch_decr_pc_after_break. I don't know any specific target that
2950 generates these signals at breakpoints (the code has been in GDB since at
2951 least 1992) so I can not guess how to handle them here.
8fb3e588 2952
e6cf7916
UW
2953 In earlier versions of GDB, a target with
2954 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2955 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2956 target with both of these set in GDB history, and it seems unlikely to be
2957 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2958
2959 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2960 return;
2961
a493e3e2 2962 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2963 return;
2964
4058b839
PA
2965 /* In reverse execution, when a breakpoint is hit, the instruction
2966 under it has already been de-executed. The reported PC always
2967 points at the breakpoint address, so adjusting it further would
2968 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2969 architecture:
2970
2971 B1 0x08000000 : INSN1
2972 B2 0x08000001 : INSN2
2973 0x08000002 : INSN3
2974 PC -> 0x08000003 : INSN4
2975
2976 Say you're stopped at 0x08000003 as above. Reverse continuing
2977 from that point should hit B2 as below. Reading the PC when the
2978 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2979 been de-executed already.
2980
2981 B1 0x08000000 : INSN1
2982 B2 PC -> 0x08000001 : INSN2
2983 0x08000002 : INSN3
2984 0x08000003 : INSN4
2985
2986 We can't apply the same logic as for forward execution, because
2987 we would wrongly adjust the PC to 0x08000000, since there's a
2988 breakpoint at PC - 1. We'd then report a hit on B1, although
2989 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2990 behaviour. */
2991 if (execution_direction == EXEC_REVERSE)
2992 return;
2993
24a73cce
UW
2994 /* If this target does not decrement the PC after breakpoints, then
2995 we have nothing to do. */
2996 regcache = get_thread_regcache (ecs->ptid);
2997 gdbarch = get_regcache_arch (regcache);
2998 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2999 return;
3000
6c95b8df
PA
3001 aspace = get_regcache_aspace (regcache);
3002
8aad930b
AC
3003 /* Find the location where (if we've hit a breakpoint) the
3004 breakpoint would be. */
515630c5
UW
3005 breakpoint_pc = regcache_read_pc (regcache)
3006 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3007
1c5cfe86
PA
3008 /* Check whether there actually is a software breakpoint inserted at
3009 that location.
3010
3011 If in non-stop mode, a race condition is possible where we've
3012 removed a breakpoint, but stop events for that breakpoint were
3013 already queued and arrive later. To suppress those spurious
3014 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3015 and retire them after a number of stop events are reported. */
6c95b8df
PA
3016 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3017 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3018 {
77f9e713 3019 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3020
96429cc8 3021 if (RECORD_IS_USED)
77f9e713 3022 record_full_gdb_operation_disable_set ();
96429cc8 3023
1c0fdd0e
UW
3024 /* When using hardware single-step, a SIGTRAP is reported for both
3025 a completed single-step and a software breakpoint. Need to
3026 differentiate between the two, as the latter needs adjusting
3027 but the former does not.
3028
3029 The SIGTRAP can be due to a completed hardware single-step only if
3030 - we didn't insert software single-step breakpoints
3031 - the thread to be examined is still the current thread
3032 - this thread is currently being stepped
3033
3034 If any of these events did not occur, we must have stopped due
3035 to hitting a software breakpoint, and have to back up to the
3036 breakpoint address.
3037
3038 As a special case, we could have hardware single-stepped a
3039 software breakpoint. In this case (prev_pc == breakpoint_pc),
3040 we also need to back up to the breakpoint address. */
3041
3042 if (singlestep_breakpoints_inserted_p
3043 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3044 || !currently_stepping (ecs->event_thread)
3045 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3046 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3047
77f9e713 3048 do_cleanups (old_cleanups);
8aad930b 3049 }
4fa8626c
DJ
3050}
3051
7a76f5b8 3052static void
0d1e5fa7
PA
3053init_infwait_state (void)
3054{
3055 waiton_ptid = pid_to_ptid (-1);
3056 infwait_state = infwait_normal_state;
3057}
3058
edb3359d
DJ
3059static int
3060stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3061{
3062 for (frame = get_prev_frame (frame);
3063 frame != NULL;
3064 frame = get_prev_frame (frame))
3065 {
3066 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3067 return 1;
3068 if (get_frame_type (frame) != INLINE_FRAME)
3069 break;
3070 }
3071
3072 return 0;
3073}
3074
a96d9b2e
SDJ
3075/* Auxiliary function that handles syscall entry/return events.
3076 It returns 1 if the inferior should keep going (and GDB
3077 should ignore the event), or 0 if the event deserves to be
3078 processed. */
ca2163eb 3079
a96d9b2e 3080static int
ca2163eb 3081handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3082{
ca2163eb 3083 struct regcache *regcache;
ca2163eb
PA
3084 int syscall_number;
3085
3086 if (!ptid_equal (ecs->ptid, inferior_ptid))
3087 context_switch (ecs->ptid);
3088
3089 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3090 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3091 stop_pc = regcache_read_pc (regcache);
3092
a96d9b2e
SDJ
3093 if (catch_syscall_enabled () > 0
3094 && catching_syscall_number (syscall_number) > 0)
3095 {
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3098 syscall_number);
a96d9b2e 3099
16c381f0 3100 ecs->event_thread->control.stop_bpstat
6c95b8df 3101 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3102 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3103
ce12b012 3104 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3105 {
3106 /* Catchpoint hit. */
ca2163eb
PA
3107 return 0;
3108 }
a96d9b2e 3109 }
ca2163eb
PA
3110
3111 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3112 keep_going (ecs);
3113 return 1;
a96d9b2e
SDJ
3114}
3115
7e324e48
GB
3116/* Lazily fill in the execution_control_state's stop_func_* fields. */
3117
3118static void
3119fill_in_stop_func (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs)
3121{
3122 if (!ecs->stop_func_filled_in)
3123 {
3124 /* Don't care about return value; stop_func_start and stop_func_name
3125 will both be 0 if it doesn't work. */
3126 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3127 &ecs->stop_func_start, &ecs->stop_func_end);
3128 ecs->stop_func_start
3129 += gdbarch_deprecated_function_start_offset (gdbarch);
3130
3131 ecs->stop_func_filled_in = 1;
3132 }
3133}
3134
05ba8510
PA
3135/* Given an execution control state that has been freshly filled in by
3136 an event from the inferior, figure out what it means and take
3137 appropriate action.
3138
3139 The alternatives are:
3140
3141 1) stop_stepping and return; to really stop and return to the
3142 debugger.
3143
3144 2) keep_going and return; to wait for the next event (set
3145 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3146 once). */
c906108c 3147
ec9499be 3148static void
96baa820 3149handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3150{
568d6575
UW
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
d983da9c
DJ
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
d6b48e9c 3155 enum stop_kind stop_soon;
ce12b012
PA
3156 int random_signal;
3157 enum bpstat_signal_value sval;
d6b48e9c 3158
28736962
PA
3159 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3160 {
3161 /* We had an event in the inferior, but we are not interested in
3162 handling it at this level. The lower layers have already
3163 done what needs to be done, if anything.
3164
3165 One of the possible circumstances for this is when the
3166 inferior produces output for the console. The inferior has
3167 not stopped, and we are ignoring the event. Another possible
3168 circumstance is any event which the lower level knows will be
3169 reported multiple times without an intervening resume. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3172 prepare_to_wait (ecs);
3173 return;
3174 }
3175
0e5bf2a8
PA
3176 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3177 && target_can_async_p () && !sync_execution)
3178 {
3179 /* There were no unwaited-for children left in the target, but,
3180 we're not synchronously waiting for events either. Just
3181 ignore. Otherwise, if we were running a synchronous
3182 execution command, we need to cancel it and give the user
3183 back the terminal. */
3184 if (debug_infrun)
3185 fprintf_unfiltered (gdb_stdlog,
3186 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3187 prepare_to_wait (ecs);
3188 return;
3189 }
3190
d6b48e9c 3191 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3192 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3193 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3194 {
3195 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3196
d6b48e9c 3197 gdb_assert (inf);
16c381f0 3198 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3199 }
3200 else
3201 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3202
1777feb0 3203 /* Cache the last pid/waitstatus. */
39f77062 3204 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3205 target_last_waitstatus = ecs->ws;
e02bc4cc 3206
ca005067 3207 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3208 stop_stack_dummy = STOP_NONE;
ca005067 3209
0e5bf2a8
PA
3210 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3211 {
3212 /* No unwaited-for children left. IOW, all resumed children
3213 have exited. */
3214 if (debug_infrun)
3215 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3216
3217 stop_print_frame = 0;
3218 stop_stepping (ecs);
3219 return;
3220 }
3221
8c90c137 3222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3224 {
3225 ecs->event_thread = find_thread_ptid (ecs->ptid);
3226 /* If it's a new thread, add it to the thread database. */
3227 if (ecs->event_thread == NULL)
3228 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3229
3230 /* Disable range stepping. If the next step request could use a
3231 range, this will be end up re-enabled then. */
3232 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3233 }
88ed393a
JK
3234
3235 /* Dependent on valid ECS->EVENT_THREAD. */
3236 adjust_pc_after_break (ecs);
3237
3238 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3239 reinit_frame_cache ();
3240
28736962
PA
3241 breakpoint_retire_moribund ();
3242
2b009048
DJ
3243 /* First, distinguish signals caused by the debugger from signals
3244 that have to do with the program's own actions. Note that
3245 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3246 on the operating system version. Here we detect when a SIGILL or
3247 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3248 something similar for SIGSEGV, since a SIGSEGV will be generated
3249 when we're trying to execute a breakpoint instruction on a
3250 non-executable stack. This happens for call dummy breakpoints
3251 for architectures like SPARC that place call dummies on the
3252 stack. */
2b009048 3253 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3254 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3255 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3256 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3257 {
de0a0249
UW
3258 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3259
3260 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3261 regcache_read_pc (regcache)))
3262 {
3263 if (debug_infrun)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3266 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3267 }
2b009048
DJ
3268 }
3269
28736962
PA
3270 /* Mark the non-executing threads accordingly. In all-stop, all
3271 threads of all processes are stopped when we get any event
3272 reported. In non-stop mode, only the event thread stops. If
3273 we're handling a process exit in non-stop mode, there's nothing
3274 to do, as threads of the dead process are gone, and threads of
3275 any other process were left running. */
3276 if (!non_stop)
3277 set_executing (minus_one_ptid, 0);
3278 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3279 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3280 set_executing (ecs->ptid, 0);
8c90c137 3281
0d1e5fa7 3282 switch (infwait_state)
488f131b
JB
3283 {
3284 case infwait_thread_hop_state:
527159b7 3285 if (debug_infrun)
8a9de0e4 3286 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3287 break;
b83266a0 3288
488f131b 3289 case infwait_normal_state:
527159b7 3290 if (debug_infrun)
8a9de0e4 3291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3292 break;
3293
3294 case infwait_step_watch_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: infwait_step_watch_state\n");
3298
3299 stepped_after_stopped_by_watchpoint = 1;
488f131b 3300 break;
b83266a0 3301
488f131b 3302 case infwait_nonstep_watch_state:
527159b7 3303 if (debug_infrun)
8a9de0e4
AC
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_nonstep_watch_state\n");
488f131b 3306 insert_breakpoints ();
c906108c 3307
488f131b
JB
3308 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3309 handle things like signals arriving and other things happening
3310 in combination correctly? */
3311 stepped_after_stopped_by_watchpoint = 1;
3312 break;
65e82032
AC
3313
3314 default:
e2e0b3e5 3315 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3316 }
ec9499be 3317
0d1e5fa7 3318 infwait_state = infwait_normal_state;
ec9499be 3319 waiton_ptid = pid_to_ptid (-1);
c906108c 3320
488f131b
JB
3321 switch (ecs->ws.kind)
3322 {
3323 case TARGET_WAITKIND_LOADED:
527159b7 3324 if (debug_infrun)
8a9de0e4 3325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3326 if (!ptid_equal (ecs->ptid, inferior_ptid))
3327 context_switch (ecs->ptid);
b0f4b84b
DJ
3328 /* Ignore gracefully during startup of the inferior, as it might
3329 be the shell which has just loaded some objects, otherwise
3330 add the symbols for the newly loaded objects. Also ignore at
3331 the beginning of an attach or remote session; we will query
3332 the full list of libraries once the connection is
3333 established. */
c0236d92 3334 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3335 {
edcc5120
TT
3336 struct regcache *regcache;
3337
edcc5120
TT
3338 regcache = get_thread_regcache (ecs->ptid);
3339
3340 handle_solib_event ();
3341
3342 ecs->event_thread->control.stop_bpstat
3343 = bpstat_stop_status (get_regcache_aspace (regcache),
3344 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3345
ce12b012 3346 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3347 {
3348 /* A catchpoint triggered. */
94c57d6a
PA
3349 process_event_stop_test (ecs);
3350 return;
edcc5120 3351 }
488f131b 3352
b0f4b84b
DJ
3353 /* If requested, stop when the dynamic linker notifies
3354 gdb of events. This allows the user to get control
3355 and place breakpoints in initializer routines for
3356 dynamically loaded objects (among other things). */
a493e3e2 3357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3358 if (stop_on_solib_events)
3359 {
55409f9d
DJ
3360 /* Make sure we print "Stopped due to solib-event" in
3361 normal_stop. */
3362 stop_print_frame = 1;
3363
b0f4b84b
DJ
3364 stop_stepping (ecs);
3365 return;
3366 }
488f131b 3367 }
b0f4b84b
DJ
3368
3369 /* If we are skipping through a shell, or through shared library
3370 loading that we aren't interested in, resume the program. If
5c09a2c5 3371 we're running the program normally, also resume. */
b0f4b84b
DJ
3372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3373 {
74960c60
VP
3374 /* Loading of shared libraries might have changed breakpoint
3375 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3376 if (stop_soon == NO_STOP_QUIETLY
3377 && !breakpoints_always_inserted_mode ())
74960c60 3378 insert_breakpoints ();
a493e3e2 3379 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3380 prepare_to_wait (ecs);
3381 return;
3382 }
3383
5c09a2c5
PA
3384 /* But stop if we're attaching or setting up a remote
3385 connection. */
3386 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3387 || stop_soon == STOP_QUIETLY_REMOTE)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3391 stop_stepping (ecs);
3392 return;
3393 }
3394
3395 internal_error (__FILE__, __LINE__,
3396 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3397
488f131b 3398 case TARGET_WAITKIND_SPURIOUS:
527159b7 3399 if (debug_infrun)
8a9de0e4 3400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3401 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3402 context_switch (ecs->ptid);
a493e3e2 3403 resume (0, GDB_SIGNAL_0);
488f131b
JB
3404 prepare_to_wait (ecs);
3405 return;
c5aa993b 3406
488f131b 3407 case TARGET_WAITKIND_EXITED:
940c3c06 3408 case TARGET_WAITKIND_SIGNALLED:
527159b7 3409 if (debug_infrun)
940c3c06
PA
3410 {
3411 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: TARGET_WAITKIND_EXITED\n");
3414 else
3415 fprintf_unfiltered (gdb_stdlog,
3416 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3417 }
3418
fb66883a 3419 inferior_ptid = ecs->ptid;
6c95b8df
PA
3420 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3421 set_current_program_space (current_inferior ()->pspace);
3422 handle_vfork_child_exec_or_exit (0);
1777feb0 3423 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3424
0c557179
SDJ
3425 /* Clearing any previous state of convenience variables. */
3426 clear_exit_convenience_vars ();
3427
940c3c06
PA
3428 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3429 {
3430 /* Record the exit code in the convenience variable $_exitcode, so
3431 that the user can inspect this again later. */
3432 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3433 (LONGEST) ecs->ws.value.integer);
3434
3435 /* Also record this in the inferior itself. */
3436 current_inferior ()->has_exit_code = 1;
3437 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3438
940c3c06
PA
3439 print_exited_reason (ecs->ws.value.integer);
3440 }
3441 else
0c557179
SDJ
3442 {
3443 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3445
3446 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3447 {
3448 /* Set the value of the internal variable $_exitsignal,
3449 which holds the signal uncaught by the inferior. */
3450 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3451 gdbarch_gdb_signal_to_target (gdbarch,
3452 ecs->ws.value.sig));
3453 }
3454 else
3455 {
3456 /* We don't have access to the target's method used for
3457 converting between signal numbers (GDB's internal
3458 representation <-> target's representation).
3459 Therefore, we cannot do a good job at displaying this
3460 information to the user. It's better to just warn
3461 her about it (if infrun debugging is enabled), and
3462 give up. */
3463 if (debug_infrun)
3464 fprintf_filtered (gdb_stdlog, _("\
3465Cannot fill $_exitsignal with the correct signal number.\n"));
3466 }
3467
3468 print_signal_exited_reason (ecs->ws.value.sig);
3469 }
8cf64490 3470
488f131b
JB
3471 gdb_flush (gdb_stdout);
3472 target_mourn_inferior ();
1c0fdd0e 3473 singlestep_breakpoints_inserted_p = 0;
d03285ec 3474 cancel_single_step_breakpoints ();
488f131b
JB
3475 stop_print_frame = 0;
3476 stop_stepping (ecs);
3477 return;
c5aa993b 3478
488f131b 3479 /* The following are the only cases in which we keep going;
1777feb0 3480 the above cases end in a continue or goto. */
488f131b 3481 case TARGET_WAITKIND_FORKED:
deb3b17b 3482 case TARGET_WAITKIND_VFORKED:
527159b7 3483 if (debug_infrun)
fed708ed
PA
3484 {
3485 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3486 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3487 else
3488 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3489 }
c906108c 3490
e2d96639
YQ
3491 /* Check whether the inferior is displaced stepping. */
3492 {
3493 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3494 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3495 struct displaced_step_inferior_state *displaced
3496 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3497
3498 /* If checking displaced stepping is supported, and thread
3499 ecs->ptid is displaced stepping. */
3500 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3501 {
3502 struct inferior *parent_inf
3503 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3504 struct regcache *child_regcache;
3505 CORE_ADDR parent_pc;
3506
3507 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3508 indicating that the displaced stepping of syscall instruction
3509 has been done. Perform cleanup for parent process here. Note
3510 that this operation also cleans up the child process for vfork,
3511 because their pages are shared. */
a493e3e2 3512 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3513
3514 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3515 {
3516 /* Restore scratch pad for child process. */
3517 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3518 }
3519
3520 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3521 the child's PC is also within the scratchpad. Set the child's PC
3522 to the parent's PC value, which has already been fixed up.
3523 FIXME: we use the parent's aspace here, although we're touching
3524 the child, because the child hasn't been added to the inferior
3525 list yet at this point. */
3526
3527 child_regcache
3528 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3529 gdbarch,
3530 parent_inf->aspace);
3531 /* Read PC value of parent process. */
3532 parent_pc = regcache_read_pc (regcache);
3533
3534 if (debug_displaced)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "displaced: write child pc from %s to %s\n",
3537 paddress (gdbarch,
3538 regcache_read_pc (child_regcache)),
3539 paddress (gdbarch, parent_pc));
3540
3541 regcache_write_pc (child_regcache, parent_pc);
3542 }
3543 }
3544
5a2901d9 3545 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3546 context_switch (ecs->ptid);
5a2901d9 3547
b242c3c2
PA
3548 /* Immediately detach breakpoints from the child before there's
3549 any chance of letting the user delete breakpoints from the
3550 breakpoint lists. If we don't do this early, it's easy to
3551 leave left over traps in the child, vis: "break foo; catch
3552 fork; c; <fork>; del; c; <child calls foo>". We only follow
3553 the fork on the last `continue', and by that time the
3554 breakpoint at "foo" is long gone from the breakpoint table.
3555 If we vforked, then we don't need to unpatch here, since both
3556 parent and child are sharing the same memory pages; we'll
3557 need to unpatch at follow/detach time instead to be certain
3558 that new breakpoints added between catchpoint hit time and
3559 vfork follow are detached. */
3560 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3561 {
b242c3c2
PA
3562 /* This won't actually modify the breakpoint list, but will
3563 physically remove the breakpoints from the child. */
d80ee84f 3564 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3565 }
3566
d03285ec
UW
3567 if (singlestep_breakpoints_inserted_p)
3568 {
1777feb0 3569 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3570 remove_single_step_breakpoints ();
3571 singlestep_breakpoints_inserted_p = 0;
3572 }
3573
e58b0e63
PA
3574 /* In case the event is caught by a catchpoint, remember that
3575 the event is to be followed at the next resume of the thread,
3576 and not immediately. */
3577 ecs->event_thread->pending_follow = ecs->ws;
3578
fb14de7b 3579 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3580
16c381f0 3581 ecs->event_thread->control.stop_bpstat
6c95b8df 3582 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3583 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3584
ce12b012
PA
3585 /* If no catchpoint triggered for this, then keep going. Note
3586 that we're interested in knowing the bpstat actually causes a
3587 stop, not just if it may explain the signal. Software
3588 watchpoints, for example, always appear in the bpstat. */
3589 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3590 {
6c95b8df
PA
3591 ptid_t parent;
3592 ptid_t child;
e58b0e63 3593 int should_resume;
3e43a32a
MS
3594 int follow_child
3595 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3596
a493e3e2 3597 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3598
3599 should_resume = follow_fork ();
3600
6c95b8df
PA
3601 parent = ecs->ptid;
3602 child = ecs->ws.value.related_pid;
3603
3604 /* In non-stop mode, also resume the other branch. */
3605 if (non_stop && !detach_fork)
3606 {
3607 if (follow_child)
3608 switch_to_thread (parent);
3609 else
3610 switch_to_thread (child);
3611
3612 ecs->event_thread = inferior_thread ();
3613 ecs->ptid = inferior_ptid;
3614 keep_going (ecs);
3615 }
3616
3617 if (follow_child)
3618 switch_to_thread (child);
3619 else
3620 switch_to_thread (parent);
3621
e58b0e63
PA
3622 ecs->event_thread = inferior_thread ();
3623 ecs->ptid = inferior_ptid;
3624
3625 if (should_resume)
3626 keep_going (ecs);
3627 else
3628 stop_stepping (ecs);
04e68871
DJ
3629 return;
3630 }
94c57d6a
PA
3631 process_event_stop_test (ecs);
3632 return;
488f131b 3633
6c95b8df
PA
3634 case TARGET_WAITKIND_VFORK_DONE:
3635 /* Done with the shared memory region. Re-insert breakpoints in
3636 the parent, and keep going. */
3637
3638 if (debug_infrun)
3e43a32a
MS
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3641
3642 if (!ptid_equal (ecs->ptid, inferior_ptid))
3643 context_switch (ecs->ptid);
3644
3645 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3646 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3647 /* This also takes care of reinserting breakpoints in the
3648 previously locked inferior. */
3649 keep_going (ecs);
3650 return;
3651
488f131b 3652 case TARGET_WAITKIND_EXECD:
527159b7 3653 if (debug_infrun)
fc5261f2 3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3655
5a2901d9 3656 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3657 context_switch (ecs->ptid);
5a2901d9 3658
d03285ec
UW
3659 singlestep_breakpoints_inserted_p = 0;
3660 cancel_single_step_breakpoints ();
3661
fb14de7b 3662 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3663
6c95b8df
PA
3664 /* Do whatever is necessary to the parent branch of the vfork. */
3665 handle_vfork_child_exec_or_exit (1);
3666
795e548f
PA
3667 /* This causes the eventpoints and symbol table to be reset.
3668 Must do this now, before trying to determine whether to
3669 stop. */
71b43ef8 3670 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3671
16c381f0 3672 ecs->event_thread->control.stop_bpstat
6c95b8df 3673 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3674 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3675
71b43ef8
PA
3676 /* Note that this may be referenced from inside
3677 bpstat_stop_status above, through inferior_has_execd. */
3678 xfree (ecs->ws.value.execd_pathname);
3679 ecs->ws.value.execd_pathname = NULL;
3680
04e68871 3681 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3682 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3683 {
a493e3e2 3684 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3685 keep_going (ecs);
3686 return;
3687 }
94c57d6a
PA
3688 process_event_stop_test (ecs);
3689 return;
488f131b 3690
b4dc5ffa
MK
3691 /* Be careful not to try to gather much state about a thread
3692 that's in a syscall. It's frequently a losing proposition. */
488f131b 3693 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3694 if (debug_infrun)
3e43a32a
MS
3695 fprintf_unfiltered (gdb_stdlog,
3696 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3697 /* Getting the current syscall number. */
94c57d6a
PA
3698 if (handle_syscall_event (ecs) == 0)
3699 process_event_stop_test (ecs);
3700 return;
c906108c 3701
488f131b
JB
3702 /* Before examining the threads further, step this thread to
3703 get it entirely out of the syscall. (We get notice of the
3704 event when the thread is just on the verge of exiting a
3705 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3706 into user code.) */
488f131b 3707 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3708 if (debug_infrun)
3e43a32a
MS
3709 fprintf_unfiltered (gdb_stdlog,
3710 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3711 if (handle_syscall_event (ecs) == 0)
3712 process_event_stop_test (ecs);
3713 return;
c906108c 3714
488f131b 3715 case TARGET_WAITKIND_STOPPED:
527159b7 3716 if (debug_infrun)
8a9de0e4 3717 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3718 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3719 break;
c906108c 3720
b2175913 3721 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3722 if (debug_infrun)
3723 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3724 /* Reverse execution: target ran out of history info. */
eab402df
PA
3725
3726 /* Pull the single step breakpoints out of the target. */
3727 if (singlestep_breakpoints_inserted_p)
3728 {
3729 if (!ptid_equal (ecs->ptid, inferior_ptid))
3730 context_switch (ecs->ptid);
3731 remove_single_step_breakpoints ();
3732 singlestep_breakpoints_inserted_p = 0;
3733 }
fb14de7b 3734 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3735 print_no_history_reason ();
b2175913
MS
3736 stop_stepping (ecs);
3737 return;
488f131b 3738 }
c906108c 3739
2020b7ab 3740 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3741 {
3742 /* Do we need to clean up the state of a thread that has
3743 completed a displaced single-step? (Doing so usually affects
3744 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3745 displaced_step_fixup (ecs->ptid,
3746 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3747
3748 /* If we either finished a single-step or hit a breakpoint, but
3749 the user wanted this thread to be stopped, pretend we got a
3750 SIG0 (generic unsignaled stop). */
3751
3752 if (ecs->event_thread->stop_requested
a493e3e2
PA
3753 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3754 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3755 }
237fc4c9 3756
515630c5 3757 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3758
527159b7 3759 if (debug_infrun)
237fc4c9 3760 {
5af949e3
UW
3761 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3763 struct cleanup *old_chain = save_inferior_ptid ();
3764
3765 inferior_ptid = ecs->ptid;
5af949e3
UW
3766
3767 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3768 paddress (gdbarch, stop_pc));
d92524f1 3769 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3770 {
3771 CORE_ADDR addr;
abbb1732 3772
237fc4c9
PA
3773 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3774
3775 if (target_stopped_data_address (&current_target, &addr))
3776 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3777 "infrun: stopped data address = %s\n",
3778 paddress (gdbarch, addr));
237fc4c9
PA
3779 else
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: (no data address available)\n");
3782 }
7f82dfc7
JK
3783
3784 do_cleanups (old_chain);
237fc4c9 3785 }
527159b7 3786
9f976b41
DJ
3787 if (stepping_past_singlestep_breakpoint)
3788 {
1c0fdd0e 3789 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3790 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3791 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3792
3793 stepping_past_singlestep_breakpoint = 0;
3794
3795 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3796 breakpoint, or stopped for some other reason. It would be nice if
3797 we could tell, but we can't reliably. */
a493e3e2 3798 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3799 {
527159b7 3800 if (debug_infrun)
3e43a32a
MS
3801 fprintf_unfiltered (gdb_stdlog,
3802 "infrun: stepping_past_"
3803 "singlestep_breakpoint\n");
9f976b41 3804 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3805 if (!ptid_equal (ecs->ptid, inferior_ptid))
3806 context_switch (ecs->ptid);
e0cd558a 3807 remove_single_step_breakpoints ();
9f976b41
DJ
3808 singlestep_breakpoints_inserted_p = 0;
3809
16c381f0 3810 ecs->event_thread->control.trap_expected = 0;
9f976b41 3811
0d1e5fa7 3812 context_switch (saved_singlestep_ptid);
9a4105ab 3813 if (deprecated_context_hook)
de9f1b68 3814 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3815
a493e3e2 3816 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3817 prepare_to_wait (ecs);
3818 return;
3819 }
3820 }
3821
ca67fcb8 3822 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3823 {
94cc34af
PA
3824 /* In non-stop mode, there's never a deferred_step_ptid set. */
3825 gdb_assert (!non_stop);
3826
6a6b96b9
UW
3827 /* If we stopped for some other reason than single-stepping, ignore
3828 the fact that we were supposed to switch back. */
a493e3e2 3829 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3830 {
3831 if (debug_infrun)
3832 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3833 "infrun: handling deferred step\n");
6a6b96b9
UW
3834
3835 /* Pull the single step breakpoints out of the target. */
3836 if (singlestep_breakpoints_inserted_p)
3837 {
8b3ee56d
PA
3838 if (!ptid_equal (ecs->ptid, inferior_ptid))
3839 context_switch (ecs->ptid);
6a6b96b9
UW
3840 remove_single_step_breakpoints ();
3841 singlestep_breakpoints_inserted_p = 0;
3842 }
3843
cd3da28e
PA
3844 ecs->event_thread->control.trap_expected = 0;
3845
d25f45d9 3846 context_switch (deferred_step_ptid);
ca67fcb8 3847 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3848 /* Suppress spurious "Switching to ..." message. */
3849 previous_inferior_ptid = inferior_ptid;
3850
a493e3e2 3851 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3852 prepare_to_wait (ecs);
3853 return;
3854 }
ca67fcb8
VP
3855
3856 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3857 }
3858
488f131b
JB
3859 /* See if a thread hit a thread-specific breakpoint that was meant for
3860 another thread. If so, then step that thread past the breakpoint,
3861 and continue it. */
3862
a493e3e2 3863 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3864 {
9f976b41 3865 int thread_hop_needed = 0;
cf00dfa7
VP
3866 struct address_space *aspace =
3867 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3868
f8d40ec8 3869 /* Check if a regular breakpoint has been hit before checking
1777feb0 3870 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3871 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3872 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3873 {
6c95b8df 3874 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3875 thread_hop_needed = 1;
3876 }
1c0fdd0e 3877 else if (singlestep_breakpoints_inserted_p)
9f976b41 3878 {
fd48f117
DJ
3879 /* We have not context switched yet, so this should be true
3880 no matter which thread hit the singlestep breakpoint. */
3881 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3882 if (debug_infrun)
3883 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3884 "trap for %s\n",
3885 target_pid_to_str (ecs->ptid));
3886
9f976b41
DJ
3887 /* The call to in_thread_list is necessary because PTIDs sometimes
3888 change when we go from single-threaded to multi-threaded. If
3889 the singlestep_ptid is still in the list, assume that it is
3890 really different from ecs->ptid. */
3891 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3892 && in_thread_list (singlestep_ptid))
3893 {
fd48f117
DJ
3894 /* If the PC of the thread we were trying to single-step
3895 has changed, discard this event (which we were going
3896 to ignore anyway), and pretend we saw that thread
3897 trap. This prevents us continuously moving the
3898 single-step breakpoint forward, one instruction at a
3899 time. If the PC has changed, then the thread we were
3900 trying to single-step has trapped or been signalled,
3901 but the event has not been reported to GDB yet.
3902
3903 There might be some cases where this loses signal
3904 information, if a signal has arrived at exactly the
3905 same time that the PC changed, but this is the best
3906 we can do with the information available. Perhaps we
3907 should arrange to report all events for all threads
3908 when they stop, or to re-poll the remote looking for
3909 this particular thread (i.e. temporarily enable
3910 schedlock). */
515630c5
UW
3911
3912 CORE_ADDR new_singlestep_pc
3913 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3914
3915 if (new_singlestep_pc != singlestep_pc)
fd48f117 3916 {
2ea28649 3917 enum gdb_signal stop_signal;
2020b7ab 3918
fd48f117
DJ
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3921 " but expected thread advanced also\n");
3922
3923 /* The current context still belongs to
3924 singlestep_ptid. Don't swap here, since that's
3925 the context we want to use. Just fudge our
3926 state and continue. */
16c381f0 3927 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3928 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3929 ecs->ptid = singlestep_ptid;
e09875d4 3930 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3931 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3932 stop_pc = new_singlestep_pc;
fd48f117
DJ
3933 }
3934 else
3935 {
3936 if (debug_infrun)
3937 fprintf_unfiltered (gdb_stdlog,
3938 "infrun: unexpected thread\n");
3939
3940 thread_hop_needed = 1;
3941 stepping_past_singlestep_breakpoint = 1;
3942 saved_singlestep_ptid = singlestep_ptid;
3943 }
9f976b41
DJ
3944 }
3945 }
3946
3947 if (thread_hop_needed)
8fb3e588 3948 {
9f5a595d 3949 struct regcache *thread_regcache;
237fc4c9 3950 int remove_status = 0;
8fb3e588 3951
527159b7 3952 if (debug_infrun)
8a9de0e4 3953 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3954
b3444185
PA
3955 /* Switch context before touching inferior memory, the
3956 previous thread may have exited. */
3957 if (!ptid_equal (inferior_ptid, ecs->ptid))
3958 context_switch (ecs->ptid);
3959
8fb3e588 3960 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3961 Just continue. */
8fb3e588 3962
1c0fdd0e 3963 if (singlestep_breakpoints_inserted_p)
488f131b 3964 {
1777feb0 3965 /* Pull the single step breakpoints out of the target. */
e0cd558a 3966 remove_single_step_breakpoints ();
8fb3e588
AC
3967 singlestep_breakpoints_inserted_p = 0;
3968 }
3969
237fc4c9
PA
3970 /* If the arch can displace step, don't remove the
3971 breakpoints. */
9f5a595d
UW
3972 thread_regcache = get_thread_regcache (ecs->ptid);
3973 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3974 remove_status = remove_breakpoints ();
3975
8fb3e588
AC
3976 /* Did we fail to remove breakpoints? If so, try
3977 to set the PC past the bp. (There's at least
3978 one situation in which we can fail to remove
3979 the bp's: On HP-UX's that use ttrace, we can't
3980 change the address space of a vforking child
3981 process until the child exits (well, okay, not
1777feb0 3982 then either :-) or execs. */
8fb3e588 3983 if (remove_status != 0)
9d9cd7ac 3984 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3985 else
3986 { /* Single step */
94cc34af
PA
3987 if (!non_stop)
3988 {
3989 /* Only need to require the next event from this
3990 thread in all-stop mode. */
3991 waiton_ptid = ecs->ptid;
3992 infwait_state = infwait_thread_hop_state;
3993 }
8fb3e588 3994
4e1c45ea 3995 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3996 keep_going (ecs);
8fb3e588
AC
3997 return;
3998 }
488f131b
JB
3999 }
4000 }
c906108c 4001
488f131b 4002 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4003 so, then switch to that thread. */
4004 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4005 {
527159b7 4006 if (debug_infrun)
8a9de0e4 4007 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4008
0d1e5fa7 4009 context_switch (ecs->ptid);
c5aa993b 4010
9a4105ab
AC
4011 if (deprecated_context_hook)
4012 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4013 }
c906108c 4014
568d6575
UW
4015 /* At this point, get hold of the now-current thread's frame. */
4016 frame = get_current_frame ();
4017 gdbarch = get_frame_arch (frame);
4018
1c0fdd0e 4019 if (singlestep_breakpoints_inserted_p)
488f131b 4020 {
1777feb0 4021 /* Pull the single step breakpoints out of the target. */
e0cd558a 4022 remove_single_step_breakpoints ();
488f131b
JB
4023 singlestep_breakpoints_inserted_p = 0;
4024 }
c906108c 4025
d983da9c
DJ
4026 if (stepped_after_stopped_by_watchpoint)
4027 stopped_by_watchpoint = 0;
4028 else
4029 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4030
4031 /* If necessary, step over this watchpoint. We'll be back to display
4032 it in a moment. */
4033 if (stopped_by_watchpoint
d92524f1 4034 && (target_have_steppable_watchpoint
568d6575 4035 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4036 {
488f131b
JB
4037 /* At this point, we are stopped at an instruction which has
4038 attempted to write to a piece of memory under control of
4039 a watchpoint. The instruction hasn't actually executed
4040 yet. If we were to evaluate the watchpoint expression
4041 now, we would get the old value, and therefore no change
4042 would seem to have occurred.
4043
4044 In order to make watchpoints work `right', we really need
4045 to complete the memory write, and then evaluate the
d983da9c
DJ
4046 watchpoint expression. We do this by single-stepping the
4047 target.
4048
4049 It may not be necessary to disable the watchpoint to stop over
4050 it. For example, the PA can (with some kernel cooperation)
4051 single step over a watchpoint without disabling the watchpoint.
4052
4053 It is far more common to need to disable a watchpoint to step
4054 the inferior over it. If we have non-steppable watchpoints,
4055 we must disable the current watchpoint; it's simplest to
4056 disable all watchpoints and breakpoints. */
2facfe5c
DD
4057 int hw_step = 1;
4058
d92524f1 4059 if (!target_have_steppable_watchpoint)
2455069d
UW
4060 {
4061 remove_breakpoints ();
4062 /* See comment in resume why we need to stop bypassing signals
4063 while breakpoints have been removed. */
4064 target_pass_signals (0, NULL);
4065 }
2facfe5c 4066 /* Single step */
568d6575 4067 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4068 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4069 waiton_ptid = ecs->ptid;
d92524f1 4070 if (target_have_steppable_watchpoint)
0d1e5fa7 4071 infwait_state = infwait_step_watch_state;
d983da9c 4072 else
0d1e5fa7 4073 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4074 prepare_to_wait (ecs);
4075 return;
4076 }
4077
4e1c45ea 4078 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4079 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4080 ecs->event_thread->control.stop_step = 0;
488f131b 4081 stop_print_frame = 1;
488f131b 4082 stopped_by_random_signal = 0;
488f131b 4083
edb3359d
DJ
4084 /* Hide inlined functions starting here, unless we just performed stepi or
4085 nexti. After stepi and nexti, always show the innermost frame (not any
4086 inline function call sites). */
16c381f0 4087 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4088 {
4089 struct address_space *aspace =
4090 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4091
4092 /* skip_inline_frames is expensive, so we avoid it if we can
4093 determine that the address is one where functions cannot have
4094 been inlined. This improves performance with inferiors that
4095 load a lot of shared libraries, because the solib event
4096 breakpoint is defined as the address of a function (i.e. not
4097 inline). Note that we have to check the previous PC as well
4098 as the current one to catch cases when we have just
4099 single-stepped off a breakpoint prior to reinstating it.
4100 Note that we're assuming that the code we single-step to is
4101 not inline, but that's not definitive: there's nothing
4102 preventing the event breakpoint function from containing
4103 inlined code, and the single-step ending up there. If the
4104 user had set a breakpoint on that inlined code, the missing
4105 skip_inline_frames call would break things. Fortunately
4106 that's an extremely unlikely scenario. */
09ac7c10 4107 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4108 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4109 && ecs->event_thread->control.trap_expected
4110 && pc_at_non_inline_function (aspace,
4111 ecs->event_thread->prev_pc,
09ac7c10 4112 &ecs->ws)))
1c5a993e
MR
4113 {
4114 skip_inline_frames (ecs->ptid);
4115
4116 /* Re-fetch current thread's frame in case that invalidated
4117 the frame cache. */
4118 frame = get_current_frame ();
4119 gdbarch = get_frame_arch (frame);
4120 }
0574c78f 4121 }
edb3359d 4122
a493e3e2 4123 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4124 && ecs->event_thread->control.trap_expected
568d6575 4125 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4126 && currently_stepping (ecs->event_thread))
3352ef37 4127 {
b50d7442 4128 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4129 also on an instruction that needs to be stepped multiple
1777feb0 4130 times before it's been fully executing. E.g., architectures
3352ef37
AC
4131 with a delay slot. It needs to be stepped twice, once for
4132 the instruction and once for the delay slot. */
4133 int step_through_delay
568d6575 4134 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4135
527159b7 4136 if (debug_infrun && step_through_delay)
8a9de0e4 4137 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4138 if (ecs->event_thread->control.step_range_end == 0
4139 && step_through_delay)
3352ef37
AC
4140 {
4141 /* The user issued a continue when stopped at a breakpoint.
4142 Set up for another trap and get out of here. */
4e1c45ea 4143 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4144 keep_going (ecs);
4145 return;
4146 }
4147 else if (step_through_delay)
4148 {
4149 /* The user issued a step when stopped at a breakpoint.
4150 Maybe we should stop, maybe we should not - the delay
4151 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4152 case, don't decide that here, just set
4153 ecs->stepping_over_breakpoint, making sure we
4154 single-step again before breakpoints are re-inserted. */
4e1c45ea 4155 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4156 }
4157 }
4158
a493e3e2 4159 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4160 && stop_after_trap)
488f131b 4161 {
ab04a2af
TT
4162 if (debug_infrun)
4163 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4164 stop_print_frame = 0;
4165 stop_stepping (ecs);
4166 return;
4167 }
488f131b 4168
ab04a2af
TT
4169 /* This is originated from start_remote(), start_inferior() and
4170 shared libraries hook functions. */
4171 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4172 {
4173 if (debug_infrun)
4174 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4175 stop_stepping (ecs);
4176 return;
4177 }
c54cfec8 4178
ab04a2af
TT
4179 /* This originates from attach_command(). We need to overwrite
4180 the stop_signal here, because some kernels don't ignore a
4181 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4182 See more comments in inferior.h. On the other hand, if we
4183 get a non-SIGSTOP, report it to the user - assume the backend
4184 will handle the SIGSTOP if it should show up later.
4185
4186 Also consider that the attach is complete when we see a
4187 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4188 target extended-remote report it instead of a SIGSTOP
4189 (e.g. gdbserver). We already rely on SIGTRAP being our
4190 signal, so this is no exception.
4191
4192 Also consider that the attach is complete when we see a
4193 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4194 the target to stop all threads of the inferior, in case the
4195 low level attach operation doesn't stop them implicitly. If
4196 they weren't stopped implicitly, then the stub will report a
4197 GDB_SIGNAL_0, meaning: stopped for no particular reason
4198 other than GDB's request. */
4199 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4200 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4201 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4202 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4203 {
4204 stop_stepping (ecs);
4205 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4206 return;
4207 }
6c95b8df 4208
ab04a2af
TT
4209 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4210 handles this event. */
4211 ecs->event_thread->control.stop_bpstat
4212 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4213 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4214
ab04a2af
TT
4215 /* Following in case break condition called a
4216 function. */
4217 stop_print_frame = 1;
73dd234f 4218
ab04a2af
TT
4219 /* This is where we handle "moribund" watchpoints. Unlike
4220 software breakpoints traps, hardware watchpoint traps are
4221 always distinguishable from random traps. If no high-level
4222 watchpoint is associated with the reported stop data address
4223 anymore, then the bpstat does not explain the signal ---
4224 simply make sure to ignore it if `stopped_by_watchpoint' is
4225 set. */
4226
4227 if (debug_infrun
4228 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4229 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4230 GDB_SIGNAL_TRAP)
ab04a2af
TT
4231 == BPSTAT_SIGNAL_NO)
4232 && stopped_by_watchpoint)
4233 fprintf_unfiltered (gdb_stdlog,
4234 "infrun: no user watchpoint explains "
4235 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4236
bac7d97b 4237 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4238 at one stage in the past included checks for an inferior
4239 function call's call dummy's return breakpoint. The original
4240 comment, that went with the test, read:
03cebad2 4241
ab04a2af
TT
4242 ``End of a stack dummy. Some systems (e.g. Sony news) give
4243 another signal besides SIGTRAP, so check here as well as
4244 above.''
73dd234f 4245
ab04a2af
TT
4246 If someone ever tries to get call dummys on a
4247 non-executable stack to work (where the target would stop
4248 with something like a SIGSEGV), then those tests might need
4249 to be re-instated. Given, however, that the tests were only
4250 enabled when momentary breakpoints were not being used, I
4251 suspect that it won't be the case.
488f131b 4252
ab04a2af
TT
4253 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4254 be necessary for call dummies on a non-executable stack on
4255 SPARC. */
488f131b 4256
bac7d97b
PA
4257 /* See if the breakpoints module can explain the signal. */
4258 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4259 ecs->event_thread->suspend.stop_signal);
4260 random_signal = (sval == BPSTAT_SIGNAL_NO);
4261
4262 /* If not, perhaps stepping/nexting can. */
4263 if (random_signal)
4264 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4265 && currently_stepping (ecs->event_thread));
ab04a2af 4266
bac7d97b
PA
4267 /* No? Perhaps we got a moribund watchpoint. */
4268 if (random_signal)
4269 random_signal = !stopped_by_watchpoint;
ab04a2af 4270
bac7d97b
PA
4271 if (sval == BPSTAT_SIGNAL_HIDE)
4272 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b
JB
4273
4274 /* For the program's own signals, act according to
4275 the signal handling tables. */
4276
ce12b012 4277 if (random_signal)
488f131b
JB
4278 {
4279 /* Signal not for debugging purposes. */
4280 int printed = 0;
24291992 4281 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4282 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4283
527159b7 4284 if (debug_infrun)
c9737c08
PA
4285 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4286 gdb_signal_to_symbol_string (stop_signal));
527159b7 4287
488f131b
JB
4288 stopped_by_random_signal = 1;
4289
16c381f0 4290 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4291 {
4292 printed = 1;
4293 target_terminal_ours_for_output ();
16c381f0
JK
4294 print_signal_received_reason
4295 (ecs->event_thread->suspend.stop_signal);
488f131b 4296 }
252fbfc8
PA
4297 /* Always stop on signals if we're either just gaining control
4298 of the program, or the user explicitly requested this thread
4299 to remain stopped. */
d6b48e9c 4300 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4301 || ecs->event_thread->stop_requested
24291992 4302 || (!inf->detaching
16c381f0 4303 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4304 {
4305 stop_stepping (ecs);
4306 return;
4307 }
4308 /* If not going to stop, give terminal back
4309 if we took it away. */
4310 else if (printed)
4311 target_terminal_inferior ();
4312
4313 /* Clear the signal if it should not be passed. */
16c381f0 4314 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4315 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4316
fb14de7b 4317 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4318 && ecs->event_thread->control.trap_expected
8358c15c 4319 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4320 {
4321 /* We were just starting a new sequence, attempting to
4322 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4323 Instead this signal arrives. This signal will take us out
68f53502
AC
4324 of the stepping range so GDB needs to remember to, when
4325 the signal handler returns, resume stepping off that
4326 breakpoint. */
4327 /* To simplify things, "continue" is forced to use the same
4328 code paths as single-step - set a breakpoint at the
4329 signal return address and then, once hit, step off that
4330 breakpoint. */
237fc4c9
PA
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: signal arrived while stepping over "
4334 "breakpoint\n");
d3169d93 4335
2c03e5be 4336 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4337 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4338 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4339 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4340 keep_going (ecs);
4341 return;
68f53502 4342 }
9d799f85 4343
16c381f0 4344 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4345 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4346 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4347 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4348 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4349 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4350 {
4351 /* The inferior is about to take a signal that will take it
4352 out of the single step range. Set a breakpoint at the
4353 current PC (which is presumably where the signal handler
4354 will eventually return) and then allow the inferior to
4355 run free.
4356
4357 Note that this is only needed for a signal delivered
4358 while in the single-step range. Nested signals aren't a
4359 problem as they eventually all return. */
237fc4c9
PA
4360 if (debug_infrun)
4361 fprintf_unfiltered (gdb_stdlog,
4362 "infrun: signal may take us out of "
4363 "single-step range\n");
4364
2c03e5be 4365 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4366 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4367 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4368 keep_going (ecs);
4369 return;
d303a6c7 4370 }
9d799f85
AC
4371
4372 /* Note: step_resume_breakpoint may be non-NULL. This occures
4373 when either there's a nested signal, or when there's a
4374 pending signal enabled just as the signal handler returns
4375 (leaving the inferior at the step-resume-breakpoint without
4376 actually executing it). Either way continue until the
4377 breakpoint is really hit. */
c447ac0b
PA
4378
4379 if (!switch_back_to_stepped_thread (ecs))
4380 {
4381 if (debug_infrun)
4382 fprintf_unfiltered (gdb_stdlog,
4383 "infrun: random signal, keep going\n");
4384
4385 keep_going (ecs);
4386 }
4387 return;
488f131b 4388 }
94c57d6a
PA
4389
4390 process_event_stop_test (ecs);
4391}
4392
4393/* Come here when we've got some debug event / signal we can explain
4394 (IOW, not a random signal), and test whether it should cause a
4395 stop, or whether we should resume the inferior (transparently).
4396 E.g., could be a breakpoint whose condition evaluates false; we
4397 could be still stepping within the line; etc. */
4398
4399static void
4400process_event_stop_test (struct execution_control_state *ecs)
4401{
4402 struct symtab_and_line stop_pc_sal;
4403 struct frame_info *frame;
4404 struct gdbarch *gdbarch;
cdaa5b73
PA
4405 CORE_ADDR jmp_buf_pc;
4406 struct bpstat_what what;
94c57d6a 4407
cdaa5b73 4408 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4409
cdaa5b73
PA
4410 frame = get_current_frame ();
4411 gdbarch = get_frame_arch (frame);
fcf3daef 4412
cdaa5b73 4413 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4414
cdaa5b73
PA
4415 if (what.call_dummy)
4416 {
4417 stop_stack_dummy = what.call_dummy;
4418 }
186c406b 4419
cdaa5b73
PA
4420 /* If we hit an internal event that triggers symbol changes, the
4421 current frame will be invalidated within bpstat_what (e.g., if we
4422 hit an internal solib event). Re-fetch it. */
4423 frame = get_current_frame ();
4424 gdbarch = get_frame_arch (frame);
e2e4d78b 4425
cdaa5b73
PA
4426 switch (what.main_action)
4427 {
4428 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4429 /* If we hit the breakpoint at longjmp while stepping, we
4430 install a momentary breakpoint at the target of the
4431 jmp_buf. */
186c406b 4432
cdaa5b73
PA
4433 if (debug_infrun)
4434 fprintf_unfiltered (gdb_stdlog,
4435 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4436
cdaa5b73 4437 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4438
cdaa5b73
PA
4439 if (what.is_longjmp)
4440 {
4441 struct value *arg_value;
4442
4443 /* If we set the longjmp breakpoint via a SystemTap probe,
4444 then use it to extract the arguments. The destination PC
4445 is the third argument to the probe. */
4446 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4447 if (arg_value)
4448 jmp_buf_pc = value_as_address (arg_value);
4449 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4450 || !gdbarch_get_longjmp_target (gdbarch,
4451 frame, &jmp_buf_pc))
e2e4d78b 4452 {
cdaa5b73
PA
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4456 "(!gdbarch_get_longjmp_target)\n");
4457 keep_going (ecs);
4458 return;
e2e4d78b 4459 }
e2e4d78b 4460
cdaa5b73
PA
4461 /* Insert a breakpoint at resume address. */
4462 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4463 }
4464 else
4465 check_exception_resume (ecs, frame);
4466 keep_going (ecs);
4467 return;
e81a37f7 4468
cdaa5b73
PA
4469 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4470 {
4471 struct frame_info *init_frame;
e81a37f7 4472
cdaa5b73 4473 /* There are several cases to consider.
c906108c 4474
cdaa5b73
PA
4475 1. The initiating frame no longer exists. In this case we
4476 must stop, because the exception or longjmp has gone too
4477 far.
2c03e5be 4478
cdaa5b73
PA
4479 2. The initiating frame exists, and is the same as the
4480 current frame. We stop, because the exception or longjmp
4481 has been caught.
2c03e5be 4482
cdaa5b73
PA
4483 3. The initiating frame exists and is different from the
4484 current frame. This means the exception or longjmp has
4485 been caught beneath the initiating frame, so keep going.
c906108c 4486
cdaa5b73
PA
4487 4. longjmp breakpoint has been placed just to protect
4488 against stale dummy frames and user is not interested in
4489 stopping around longjmps. */
c5aa993b 4490
cdaa5b73
PA
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4494
cdaa5b73
PA
4495 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4496 != NULL);
4497 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4498
cdaa5b73
PA
4499 if (what.is_longjmp)
4500 {
4501 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4502
cdaa5b73 4503 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4504 {
cdaa5b73
PA
4505 /* Case 4. */
4506 keep_going (ecs);
4507 return;
e5ef252a 4508 }
cdaa5b73 4509 }
c5aa993b 4510
cdaa5b73 4511 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4512
cdaa5b73
PA
4513 if (init_frame)
4514 {
4515 struct frame_id current_id
4516 = get_frame_id (get_current_frame ());
4517 if (frame_id_eq (current_id,
4518 ecs->event_thread->initiating_frame))
4519 {
4520 /* Case 2. Fall through. */
4521 }
4522 else
4523 {
4524 /* Case 3. */
4525 keep_going (ecs);
4526 return;
4527 }
68f53502 4528 }
488f131b 4529
cdaa5b73
PA
4530 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4531 exists. */
4532 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4533
cdaa5b73
PA
4534 ecs->event_thread->control.stop_step = 1;
4535 print_end_stepping_range_reason ();
4536 stop_stepping (ecs);
4537 }
4538 return;
e5ef252a 4539
cdaa5b73
PA
4540 case BPSTAT_WHAT_SINGLE:
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4543 ecs->event_thread->stepping_over_breakpoint = 1;
4544 /* Still need to check other stuff, at least the case where we
4545 are stepping and step out of the right range. */
4546 break;
e5ef252a 4547
cdaa5b73
PA
4548 case BPSTAT_WHAT_STEP_RESUME:
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4551
cdaa5b73
PA
4552 delete_step_resume_breakpoint (ecs->event_thread);
4553 if (ecs->event_thread->control.proceed_to_finish
4554 && execution_direction == EXEC_REVERSE)
4555 {
4556 struct thread_info *tp = ecs->event_thread;
4557
4558 /* We are finishing a function in reverse, and just hit the
4559 step-resume breakpoint at the start address of the
4560 function, and we're almost there -- just need to back up
4561 by one more single-step, which should take us back to the
4562 function call. */
4563 tp->control.step_range_start = tp->control.step_range_end = 1;
4564 keep_going (ecs);
e5ef252a 4565 return;
cdaa5b73
PA
4566 }
4567 fill_in_stop_func (gdbarch, ecs);
4568 if (stop_pc == ecs->stop_func_start
4569 && execution_direction == EXEC_REVERSE)
4570 {
4571 /* We are stepping over a function call in reverse, and just
4572 hit the step-resume breakpoint at the start address of
4573 the function. Go back to single-stepping, which should
4574 take us back to the function call. */
4575 ecs->event_thread->stepping_over_breakpoint = 1;
4576 keep_going (ecs);
4577 return;
4578 }
4579 break;
e5ef252a 4580
cdaa5b73
PA
4581 case BPSTAT_WHAT_STOP_NOISY:
4582 if (debug_infrun)
4583 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4584 stop_print_frame = 1;
e5ef252a 4585
cdaa5b73
PA
4586 /* We are about to nuke the step_resume_breakpointt via the
4587 cleanup chain, so no need to worry about it here. */
e5ef252a 4588
cdaa5b73
PA
4589 stop_stepping (ecs);
4590 return;
e5ef252a 4591
cdaa5b73
PA
4592 case BPSTAT_WHAT_STOP_SILENT:
4593 if (debug_infrun)
4594 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4595 stop_print_frame = 0;
e5ef252a 4596
cdaa5b73
PA
4597 /* We are about to nuke the step_resume_breakpoin via the
4598 cleanup chain, so no need to worry about it here. */
e5ef252a 4599
cdaa5b73
PA
4600 stop_stepping (ecs);
4601 return;
4602
4603 case BPSTAT_WHAT_HP_STEP_RESUME:
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4606
4607 delete_step_resume_breakpoint (ecs->event_thread);
4608 if (ecs->event_thread->step_after_step_resume_breakpoint)
4609 {
4610 /* Back when the step-resume breakpoint was inserted, we
4611 were trying to single-step off a breakpoint. Go back to
4612 doing that. */
4613 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4614 ecs->event_thread->stepping_over_breakpoint = 1;
4615 keep_going (ecs);
4616 return;
e5ef252a 4617 }
cdaa5b73
PA
4618 break;
4619
4620 case BPSTAT_WHAT_KEEP_CHECKING:
4621 break;
e5ef252a 4622 }
c906108c 4623
cdaa5b73
PA
4624 /* We come here if we hit a breakpoint but should not stop for it.
4625 Possibly we also were stepping and should stop for that. So fall
4626 through and test for stepping. But, if not stepping, do not
4627 stop. */
c906108c 4628
a7212384
UW
4629 /* In all-stop mode, if we're currently stepping but have stopped in
4630 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4631 if (switch_back_to_stepped_thread (ecs))
4632 return;
776f04fa 4633
8358c15c 4634 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4635 {
527159b7 4636 if (debug_infrun)
d3169d93
DJ
4637 fprintf_unfiltered (gdb_stdlog,
4638 "infrun: step-resume breakpoint is inserted\n");
527159b7 4639
488f131b
JB
4640 /* Having a step-resume breakpoint overrides anything
4641 else having to do with stepping commands until
4642 that breakpoint is reached. */
488f131b
JB
4643 keep_going (ecs);
4644 return;
4645 }
c5aa993b 4646
16c381f0 4647 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4648 {
527159b7 4649 if (debug_infrun)
8a9de0e4 4650 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4651 /* Likewise if we aren't even stepping. */
488f131b
JB
4652 keep_going (ecs);
4653 return;
4654 }
c5aa993b 4655
4b7703ad
JB
4656 /* Re-fetch current thread's frame in case the code above caused
4657 the frame cache to be re-initialized, making our FRAME variable
4658 a dangling pointer. */
4659 frame = get_current_frame ();
628fe4e4 4660 gdbarch = get_frame_arch (frame);
7e324e48 4661 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4662
488f131b 4663 /* If stepping through a line, keep going if still within it.
c906108c 4664
488f131b
JB
4665 Note that step_range_end is the address of the first instruction
4666 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4667 within it!
4668
4669 Note also that during reverse execution, we may be stepping
4670 through a function epilogue and therefore must detect when
4671 the current-frame changes in the middle of a line. */
4672
ce4c476a 4673 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4674 && (execution_direction != EXEC_REVERSE
388a8562 4675 || frame_id_eq (get_frame_id (frame),
16c381f0 4676 ecs->event_thread->control.step_frame_id)))
488f131b 4677 {
527159b7 4678 if (debug_infrun)
5af949e3
UW
4679 fprintf_unfiltered
4680 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4681 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4682 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4683
c1e36e3e
PA
4684 /* Tentatively re-enable range stepping; `resume' disables it if
4685 necessary (e.g., if we're stepping over a breakpoint or we
4686 have software watchpoints). */
4687 ecs->event_thread->control.may_range_step = 1;
4688
b2175913
MS
4689 /* When stepping backward, stop at beginning of line range
4690 (unless it's the function entry point, in which case
4691 keep going back to the call point). */
16c381f0 4692 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4693 && stop_pc != ecs->stop_func_start
4694 && execution_direction == EXEC_REVERSE)
4695 {
16c381f0 4696 ecs->event_thread->control.stop_step = 1;
33d62d64 4697 print_end_stepping_range_reason ();
b2175913
MS
4698 stop_stepping (ecs);
4699 }
4700 else
4701 keep_going (ecs);
4702
488f131b
JB
4703 return;
4704 }
c5aa993b 4705
488f131b 4706 /* We stepped out of the stepping range. */
c906108c 4707
488f131b 4708 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4709 loader dynamic symbol resolution code...
4710
4711 EXEC_FORWARD: we keep on single stepping until we exit the run
4712 time loader code and reach the callee's address.
4713
4714 EXEC_REVERSE: we've already executed the callee (backward), and
4715 the runtime loader code is handled just like any other
4716 undebuggable function call. Now we need only keep stepping
4717 backward through the trampoline code, and that's handled further
4718 down, so there is nothing for us to do here. */
4719
4720 if (execution_direction != EXEC_REVERSE
16c381f0 4721 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4722 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4723 {
4c8c40e6 4724 CORE_ADDR pc_after_resolver =
568d6575 4725 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4726
527159b7 4727 if (debug_infrun)
3e43a32a
MS
4728 fprintf_unfiltered (gdb_stdlog,
4729 "infrun: stepped into dynsym resolve code\n");
527159b7 4730
488f131b
JB
4731 if (pc_after_resolver)
4732 {
4733 /* Set up a step-resume breakpoint at the address
4734 indicated by SKIP_SOLIB_RESOLVER. */
4735 struct symtab_and_line sr_sal;
abbb1732 4736
fe39c653 4737 init_sal (&sr_sal);
488f131b 4738 sr_sal.pc = pc_after_resolver;
6c95b8df 4739 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4740
a6d9a66e
UW
4741 insert_step_resume_breakpoint_at_sal (gdbarch,
4742 sr_sal, null_frame_id);
c5aa993b 4743 }
c906108c 4744
488f131b
JB
4745 keep_going (ecs);
4746 return;
4747 }
c906108c 4748
16c381f0
JK
4749 if (ecs->event_thread->control.step_range_end != 1
4750 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4751 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4752 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4753 {
527159b7 4754 if (debug_infrun)
3e43a32a
MS
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: stepped into signal trampoline\n");
42edda50 4757 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4758 a signal trampoline (either by a signal being delivered or by
4759 the signal handler returning). Just single-step until the
4760 inferior leaves the trampoline (either by calling the handler
4761 or returning). */
488f131b
JB
4762 keep_going (ecs);
4763 return;
4764 }
c906108c 4765
14132e89
MR
4766 /* If we're in the return path from a shared library trampoline,
4767 we want to proceed through the trampoline when stepping. */
4768 /* macro/2012-04-25: This needs to come before the subroutine
4769 call check below as on some targets return trampolines look
4770 like subroutine calls (MIPS16 return thunks). */
4771 if (gdbarch_in_solib_return_trampoline (gdbarch,
4772 stop_pc, ecs->stop_func_name)
4773 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4774 {
4775 /* Determine where this trampoline returns. */
4776 CORE_ADDR real_stop_pc;
4777
4778 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4779
4780 if (debug_infrun)
4781 fprintf_unfiltered (gdb_stdlog,
4782 "infrun: stepped into solib return tramp\n");
4783
4784 /* Only proceed through if we know where it's going. */
4785 if (real_stop_pc)
4786 {
4787 /* And put the step-breakpoint there and go until there. */
4788 struct symtab_and_line sr_sal;
4789
4790 init_sal (&sr_sal); /* initialize to zeroes */
4791 sr_sal.pc = real_stop_pc;
4792 sr_sal.section = find_pc_overlay (sr_sal.pc);
4793 sr_sal.pspace = get_frame_program_space (frame);
4794
4795 /* Do not specify what the fp should be when we stop since
4796 on some machines the prologue is where the new fp value
4797 is established. */
4798 insert_step_resume_breakpoint_at_sal (gdbarch,
4799 sr_sal, null_frame_id);
4800
4801 /* Restart without fiddling with the step ranges or
4802 other state. */
4803 keep_going (ecs);
4804 return;
4805 }
4806 }
4807
c17eaafe
DJ
4808 /* Check for subroutine calls. The check for the current frame
4809 equalling the step ID is not necessary - the check of the
4810 previous frame's ID is sufficient - but it is a common case and
4811 cheaper than checking the previous frame's ID.
14e60db5
DJ
4812
4813 NOTE: frame_id_eq will never report two invalid frame IDs as
4814 being equal, so to get into this block, both the current and
4815 previous frame must have valid frame IDs. */
005ca36a
JB
4816 /* The outer_frame_id check is a heuristic to detect stepping
4817 through startup code. If we step over an instruction which
4818 sets the stack pointer from an invalid value to a valid value,
4819 we may detect that as a subroutine call from the mythical
4820 "outermost" function. This could be fixed by marking
4821 outermost frames as !stack_p,code_p,special_p. Then the
4822 initial outermost frame, before sp was valid, would
ce6cca6d 4823 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4824 for more. */
edb3359d 4825 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4826 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4827 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4828 ecs->event_thread->control.step_stack_frame_id)
4829 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4830 outer_frame_id)
4831 || step_start_function != find_pc_function (stop_pc))))
488f131b 4832 {
95918acb 4833 CORE_ADDR real_stop_pc;
8fb3e588 4834
527159b7 4835 if (debug_infrun)
8a9de0e4 4836 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4837
16c381f0
JK
4838 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4839 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4840 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4841 ecs->stop_func_start)))
95918acb
AC
4842 {
4843 /* I presume that step_over_calls is only 0 when we're
4844 supposed to be stepping at the assembly language level
4845 ("stepi"). Just stop. */
4846 /* Also, maybe we just did a "nexti" inside a prolog, so we
4847 thought it was a subroutine call but it was not. Stop as
4848 well. FENN */
388a8562 4849 /* And this works the same backward as frontward. MVS */
16c381f0 4850 ecs->event_thread->control.stop_step = 1;
33d62d64 4851 print_end_stepping_range_reason ();
95918acb
AC
4852 stop_stepping (ecs);
4853 return;
4854 }
8fb3e588 4855
388a8562
MS
4856 /* Reverse stepping through solib trampolines. */
4857
4858 if (execution_direction == EXEC_REVERSE
16c381f0 4859 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4860 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4861 || (ecs->stop_func_start == 0
4862 && in_solib_dynsym_resolve_code (stop_pc))))
4863 {
4864 /* Any solib trampoline code can be handled in reverse
4865 by simply continuing to single-step. We have already
4866 executed the solib function (backwards), and a few
4867 steps will take us back through the trampoline to the
4868 caller. */
4869 keep_going (ecs);
4870 return;
4871 }
4872
16c381f0 4873 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4874 {
b2175913
MS
4875 /* We're doing a "next".
4876
4877 Normal (forward) execution: set a breakpoint at the
4878 callee's return address (the address at which the caller
4879 will resume).
4880
4881 Reverse (backward) execution. set the step-resume
4882 breakpoint at the start of the function that we just
4883 stepped into (backwards), and continue to there. When we
6130d0b7 4884 get there, we'll need to single-step back to the caller. */
b2175913
MS
4885
4886 if (execution_direction == EXEC_REVERSE)
4887 {
acf9414f
JK
4888 /* If we're already at the start of the function, we've either
4889 just stepped backward into a single instruction function,
4890 or stepped back out of a signal handler to the first instruction
4891 of the function. Just keep going, which will single-step back
4892 to the caller. */
58c48e72 4893 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4894 {
4895 struct symtab_and_line sr_sal;
4896
4897 /* Normal function call return (static or dynamic). */
4898 init_sal (&sr_sal);
4899 sr_sal.pc = ecs->stop_func_start;
4900 sr_sal.pspace = get_frame_program_space (frame);
4901 insert_step_resume_breakpoint_at_sal (gdbarch,
4902 sr_sal, null_frame_id);
4903 }
b2175913
MS
4904 }
4905 else
568d6575 4906 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4907
8567c30f
AC
4908 keep_going (ecs);
4909 return;
4910 }
a53c66de 4911
95918acb 4912 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4913 calling routine and the real function), locate the real
4914 function. That's what tells us (a) whether we want to step
4915 into it at all, and (b) what prologue we want to run to the
4916 end of, if we do step into it. */
568d6575 4917 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4918 if (real_stop_pc == 0)
568d6575 4919 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4920 if (real_stop_pc != 0)
4921 ecs->stop_func_start = real_stop_pc;
8fb3e588 4922
db5f024e 4923 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4924 {
4925 struct symtab_and_line sr_sal;
abbb1732 4926
1b2bfbb9
RC
4927 init_sal (&sr_sal);
4928 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4929 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4930
a6d9a66e
UW
4931 insert_step_resume_breakpoint_at_sal (gdbarch,
4932 sr_sal, null_frame_id);
8fb3e588
AC
4933 keep_going (ecs);
4934 return;
1b2bfbb9
RC
4935 }
4936
95918acb 4937 /* If we have line number information for the function we are
1bfeeb0f
JL
4938 thinking of stepping into and the function isn't on the skip
4939 list, step into it.
95918acb 4940
8fb3e588
AC
4941 If there are several symtabs at that PC (e.g. with include
4942 files), just want to know whether *any* of them have line
4943 numbers. find_pc_line handles this. */
95918acb
AC
4944 {
4945 struct symtab_and_line tmp_sal;
8fb3e588 4946
95918acb 4947 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4948 if (tmp_sal.line != 0
85817405
JK
4949 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4950 &tmp_sal))
95918acb 4951 {
b2175913 4952 if (execution_direction == EXEC_REVERSE)
568d6575 4953 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4954 else
568d6575 4955 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4956 return;
4957 }
4958 }
4959
4960 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4961 set, we stop the step so that the user has a chance to switch
4962 in assembly mode. */
16c381f0 4963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4964 && step_stop_if_no_debug)
95918acb 4965 {
16c381f0 4966 ecs->event_thread->control.stop_step = 1;
33d62d64 4967 print_end_stepping_range_reason ();
95918acb
AC
4968 stop_stepping (ecs);
4969 return;
4970 }
4971
b2175913
MS
4972 if (execution_direction == EXEC_REVERSE)
4973 {
acf9414f
JK
4974 /* If we're already at the start of the function, we've either just
4975 stepped backward into a single instruction function without line
4976 number info, or stepped back out of a signal handler to the first
4977 instruction of the function without line number info. Just keep
4978 going, which will single-step back to the caller. */
4979 if (ecs->stop_func_start != stop_pc)
4980 {
4981 /* Set a breakpoint at callee's start address.
4982 From there we can step once and be back in the caller. */
4983 struct symtab_and_line sr_sal;
abbb1732 4984
acf9414f
JK
4985 init_sal (&sr_sal);
4986 sr_sal.pc = ecs->stop_func_start;
4987 sr_sal.pspace = get_frame_program_space (frame);
4988 insert_step_resume_breakpoint_at_sal (gdbarch,
4989 sr_sal, null_frame_id);
4990 }
b2175913
MS
4991 }
4992 else
4993 /* Set a breakpoint at callee's return address (the address
4994 at which the caller will resume). */
568d6575 4995 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4996
95918acb 4997 keep_going (ecs);
488f131b 4998 return;
488f131b 4999 }
c906108c 5000
fdd654f3
MS
5001 /* Reverse stepping through solib trampolines. */
5002
5003 if (execution_direction == EXEC_REVERSE
16c381f0 5004 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5005 {
5006 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5007 || (ecs->stop_func_start == 0
5008 && in_solib_dynsym_resolve_code (stop_pc)))
5009 {
5010 /* Any solib trampoline code can be handled in reverse
5011 by simply continuing to single-step. We have already
5012 executed the solib function (backwards), and a few
5013 steps will take us back through the trampoline to the
5014 caller. */
5015 keep_going (ecs);
5016 return;
5017 }
5018 else if (in_solib_dynsym_resolve_code (stop_pc))
5019 {
5020 /* Stepped backward into the solib dynsym resolver.
5021 Set a breakpoint at its start and continue, then
5022 one more step will take us out. */
5023 struct symtab_and_line sr_sal;
abbb1732 5024
fdd654f3
MS
5025 init_sal (&sr_sal);
5026 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5027 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5028 insert_step_resume_breakpoint_at_sal (gdbarch,
5029 sr_sal, null_frame_id);
5030 keep_going (ecs);
5031 return;
5032 }
5033 }
5034
2afb61aa 5035 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5036
1b2bfbb9
RC
5037 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5038 the trampoline processing logic, however, there are some trampolines
5039 that have no names, so we should do trampoline handling first. */
16c381f0 5040 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5041 && ecs->stop_func_name == NULL
2afb61aa 5042 && stop_pc_sal.line == 0)
1b2bfbb9 5043 {
527159b7 5044 if (debug_infrun)
3e43a32a
MS
5045 fprintf_unfiltered (gdb_stdlog,
5046 "infrun: stepped into undebuggable function\n");
527159b7 5047
1b2bfbb9 5048 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5049 undebuggable function (where there is no debugging information
5050 and no line number corresponding to the address where the
1b2bfbb9
RC
5051 inferior stopped). Since we want to skip this kind of code,
5052 we keep going until the inferior returns from this
14e60db5
DJ
5053 function - unless the user has asked us not to (via
5054 set step-mode) or we no longer know how to get back
5055 to the call site. */
5056 if (step_stop_if_no_debug
c7ce8faa 5057 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5058 {
5059 /* If we have no line number and the step-stop-if-no-debug
5060 is set, we stop the step so that the user has a chance to
5061 switch in assembly mode. */
16c381f0 5062 ecs->event_thread->control.stop_step = 1;
33d62d64 5063 print_end_stepping_range_reason ();
1b2bfbb9
RC
5064 stop_stepping (ecs);
5065 return;
5066 }
5067 else
5068 {
5069 /* Set a breakpoint at callee's return address (the address
5070 at which the caller will resume). */
568d6575 5071 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5072 keep_going (ecs);
5073 return;
5074 }
5075 }
5076
16c381f0 5077 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5078 {
5079 /* It is stepi or nexti. We always want to stop stepping after
5080 one instruction. */
527159b7 5081 if (debug_infrun)
8a9de0e4 5082 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5083 ecs->event_thread->control.stop_step = 1;
33d62d64 5084 print_end_stepping_range_reason ();
1b2bfbb9
RC
5085 stop_stepping (ecs);
5086 return;
5087 }
5088
2afb61aa 5089 if (stop_pc_sal.line == 0)
488f131b
JB
5090 {
5091 /* We have no line number information. That means to stop
5092 stepping (does this always happen right after one instruction,
5093 when we do "s" in a function with no line numbers,
5094 or can this happen as a result of a return or longjmp?). */
527159b7 5095 if (debug_infrun)
8a9de0e4 5096 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5097 ecs->event_thread->control.stop_step = 1;
33d62d64 5098 print_end_stepping_range_reason ();
488f131b
JB
5099 stop_stepping (ecs);
5100 return;
5101 }
c906108c 5102
edb3359d
DJ
5103 /* Look for "calls" to inlined functions, part one. If the inline
5104 frame machinery detected some skipped call sites, we have entered
5105 a new inline function. */
5106
5107 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5108 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5109 && inline_skipped_frames (ecs->ptid))
5110 {
5111 struct symtab_and_line call_sal;
5112
5113 if (debug_infrun)
5114 fprintf_unfiltered (gdb_stdlog,
5115 "infrun: stepped into inlined function\n");
5116
5117 find_frame_sal (get_current_frame (), &call_sal);
5118
16c381f0 5119 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5120 {
5121 /* For "step", we're going to stop. But if the call site
5122 for this inlined function is on the same source line as
5123 we were previously stepping, go down into the function
5124 first. Otherwise stop at the call site. */
5125
5126 if (call_sal.line == ecs->event_thread->current_line
5127 && call_sal.symtab == ecs->event_thread->current_symtab)
5128 step_into_inline_frame (ecs->ptid);
5129
16c381f0 5130 ecs->event_thread->control.stop_step = 1;
33d62d64 5131 print_end_stepping_range_reason ();
edb3359d
DJ
5132 stop_stepping (ecs);
5133 return;
5134 }
5135 else
5136 {
5137 /* For "next", we should stop at the call site if it is on a
5138 different source line. Otherwise continue through the
5139 inlined function. */
5140 if (call_sal.line == ecs->event_thread->current_line
5141 && call_sal.symtab == ecs->event_thread->current_symtab)
5142 keep_going (ecs);
5143 else
5144 {
16c381f0 5145 ecs->event_thread->control.stop_step = 1;
33d62d64 5146 print_end_stepping_range_reason ();
edb3359d
DJ
5147 stop_stepping (ecs);
5148 }
5149 return;
5150 }
5151 }
5152
5153 /* Look for "calls" to inlined functions, part two. If we are still
5154 in the same real function we were stepping through, but we have
5155 to go further up to find the exact frame ID, we are stepping
5156 through a more inlined call beyond its call site. */
5157
5158 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5159 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5160 ecs->event_thread->control.step_frame_id)
edb3359d 5161 && stepped_in_from (get_current_frame (),
16c381f0 5162 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5163 {
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: stepping through inlined function\n");
5167
16c381f0 5168 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5169 keep_going (ecs);
5170 else
5171 {
16c381f0 5172 ecs->event_thread->control.stop_step = 1;
33d62d64 5173 print_end_stepping_range_reason ();
edb3359d
DJ
5174 stop_stepping (ecs);
5175 }
5176 return;
5177 }
5178
2afb61aa 5179 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5180 && (ecs->event_thread->current_line != stop_pc_sal.line
5181 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5182 {
5183 /* We are at the start of a different line. So stop. Note that
5184 we don't stop if we step into the middle of a different line.
5185 That is said to make things like for (;;) statements work
5186 better. */
527159b7 5187 if (debug_infrun)
3e43a32a
MS
5188 fprintf_unfiltered (gdb_stdlog,
5189 "infrun: stepped to a different line\n");
16c381f0 5190 ecs->event_thread->control.stop_step = 1;
33d62d64 5191 print_end_stepping_range_reason ();
488f131b
JB
5192 stop_stepping (ecs);
5193 return;
5194 }
c906108c 5195
488f131b 5196 /* We aren't done stepping.
c906108c 5197
488f131b
JB
5198 Optimize by setting the stepping range to the line.
5199 (We might not be in the original line, but if we entered a
5200 new line in mid-statement, we continue stepping. This makes
5201 things like for(;;) statements work better.) */
c906108c 5202
16c381f0
JK
5203 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5204 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5205 ecs->event_thread->control.may_range_step = 1;
edb3359d 5206 set_step_info (frame, stop_pc_sal);
488f131b 5207
527159b7 5208 if (debug_infrun)
8a9de0e4 5209 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5210 keep_going (ecs);
104c1213
JM
5211}
5212
c447ac0b
PA
5213/* In all-stop mode, if we're currently stepping but have stopped in
5214 some other thread, we may need to switch back to the stepped
5215 thread. Returns true we set the inferior running, false if we left
5216 it stopped (and the event needs further processing). */
5217
5218static int
5219switch_back_to_stepped_thread (struct execution_control_state *ecs)
5220{
5221 if (!non_stop)
5222 {
5223 struct thread_info *tp;
5224
5225 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5226 ecs->event_thread);
5227 if (tp)
5228 {
5229 /* However, if the current thread is blocked on some internal
5230 breakpoint, and we simply need to step over that breakpoint
5231 to get it going again, do that first. */
5232 if ((ecs->event_thread->control.trap_expected
5233 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5234 || ecs->event_thread->stepping_over_breakpoint)
5235 {
5236 keep_going (ecs);
5237 return 1;
5238 }
5239
5240 /* If the stepping thread exited, then don't try to switch
5241 back and resume it, which could fail in several different
5242 ways depending on the target. Instead, just keep going.
5243
5244 We can find a stepping dead thread in the thread list in
5245 two cases:
5246
5247 - The target supports thread exit events, and when the
5248 target tries to delete the thread from the thread list,
5249 inferior_ptid pointed at the exiting thread. In such
5250 case, calling delete_thread does not really remove the
5251 thread from the list; instead, the thread is left listed,
5252 with 'exited' state.
5253
5254 - The target's debug interface does not support thread
5255 exit events, and so we have no idea whatsoever if the
5256 previously stepping thread is still alive. For that
5257 reason, we need to synchronously query the target
5258 now. */
5259 if (is_exited (tp->ptid)
5260 || !target_thread_alive (tp->ptid))
5261 {
5262 if (debug_infrun)
5263 fprintf_unfiltered (gdb_stdlog,
5264 "infrun: not switching back to "
5265 "stepped thread, it has vanished\n");
5266
5267 delete_thread (tp->ptid);
5268 keep_going (ecs);
5269 return 1;
5270 }
5271
5272 /* Otherwise, we no longer expect a trap in the current thread.
5273 Clear the trap_expected flag before switching back -- this is
5274 what keep_going would do as well, if we called it. */
5275 ecs->event_thread->control.trap_expected = 0;
5276
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: switching back to stepped thread\n");
5280
5281 ecs->event_thread = tp;
5282 ecs->ptid = tp->ptid;
5283 context_switch (ecs->ptid);
5284 keep_going (ecs);
5285 return 1;
5286 }
5287 }
5288 return 0;
5289}
5290
b3444185 5291/* Is thread TP in the middle of single-stepping? */
104c1213 5292
a289b8f6 5293static int
b3444185 5294currently_stepping (struct thread_info *tp)
a7212384 5295{
8358c15c
JK
5296 return ((tp->control.step_range_end
5297 && tp->control.step_resume_breakpoint == NULL)
5298 || tp->control.trap_expected
8358c15c 5299 || bpstat_should_step ());
a7212384
UW
5300}
5301
b3444185
PA
5302/* Returns true if any thread *but* the one passed in "data" is in the
5303 middle of stepping or of handling a "next". */
a7212384 5304
104c1213 5305static int
b3444185 5306currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5307{
b3444185
PA
5308 if (tp == data)
5309 return 0;
5310
16c381f0 5311 return (tp->control.step_range_end
ede1849f 5312 || tp->control.trap_expected);
104c1213 5313}
c906108c 5314
b2175913
MS
5315/* Inferior has stepped into a subroutine call with source code that
5316 we should not step over. Do step to the first line of code in
5317 it. */
c2c6d25f
JM
5318
5319static void
568d6575
UW
5320handle_step_into_function (struct gdbarch *gdbarch,
5321 struct execution_control_state *ecs)
c2c6d25f
JM
5322{
5323 struct symtab *s;
2afb61aa 5324 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5325
7e324e48
GB
5326 fill_in_stop_func (gdbarch, ecs);
5327
c2c6d25f
JM
5328 s = find_pc_symtab (stop_pc);
5329 if (s && s->language != language_asm)
568d6575 5330 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5331 ecs->stop_func_start);
c2c6d25f 5332
2afb61aa 5333 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5334 /* Use the step_resume_break to step until the end of the prologue,
5335 even if that involves jumps (as it seems to on the vax under
5336 4.2). */
5337 /* If the prologue ends in the middle of a source line, continue to
5338 the end of that source line (if it is still within the function).
5339 Otherwise, just go to end of prologue. */
2afb61aa
PA
5340 if (stop_func_sal.end
5341 && stop_func_sal.pc != ecs->stop_func_start
5342 && stop_func_sal.end < ecs->stop_func_end)
5343 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5344
2dbd5e30
KB
5345 /* Architectures which require breakpoint adjustment might not be able
5346 to place a breakpoint at the computed address. If so, the test
5347 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5348 ecs->stop_func_start to an address at which a breakpoint may be
5349 legitimately placed.
8fb3e588 5350
2dbd5e30
KB
5351 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5352 made, GDB will enter an infinite loop when stepping through
5353 optimized code consisting of VLIW instructions which contain
5354 subinstructions corresponding to different source lines. On
5355 FR-V, it's not permitted to place a breakpoint on any but the
5356 first subinstruction of a VLIW instruction. When a breakpoint is
5357 set, GDB will adjust the breakpoint address to the beginning of
5358 the VLIW instruction. Thus, we need to make the corresponding
5359 adjustment here when computing the stop address. */
8fb3e588 5360
568d6575 5361 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5362 {
5363 ecs->stop_func_start
568d6575 5364 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5365 ecs->stop_func_start);
2dbd5e30
KB
5366 }
5367
c2c6d25f
JM
5368 if (ecs->stop_func_start == stop_pc)
5369 {
5370 /* We are already there: stop now. */
16c381f0 5371 ecs->event_thread->control.stop_step = 1;
33d62d64 5372 print_end_stepping_range_reason ();
c2c6d25f
JM
5373 stop_stepping (ecs);
5374 return;
5375 }
5376 else
5377 {
5378 /* Put the step-breakpoint there and go until there. */
fe39c653 5379 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5380 sr_sal.pc = ecs->stop_func_start;
5381 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5382 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5383
c2c6d25f 5384 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5385 some machines the prologue is where the new fp value is
5386 established. */
a6d9a66e 5387 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5388
5389 /* And make sure stepping stops right away then. */
16c381f0
JK
5390 ecs->event_thread->control.step_range_end
5391 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5392 }
5393 keep_going (ecs);
5394}
d4f3574e 5395
b2175913
MS
5396/* Inferior has stepped backward into a subroutine call with source
5397 code that we should not step over. Do step to the beginning of the
5398 last line of code in it. */
5399
5400static void
568d6575
UW
5401handle_step_into_function_backward (struct gdbarch *gdbarch,
5402 struct execution_control_state *ecs)
b2175913
MS
5403{
5404 struct symtab *s;
167e4384 5405 struct symtab_and_line stop_func_sal;
b2175913 5406
7e324e48
GB
5407 fill_in_stop_func (gdbarch, ecs);
5408
b2175913
MS
5409 s = find_pc_symtab (stop_pc);
5410 if (s && s->language != language_asm)
568d6575 5411 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5412 ecs->stop_func_start);
5413
5414 stop_func_sal = find_pc_line (stop_pc, 0);
5415
5416 /* OK, we're just going to keep stepping here. */
5417 if (stop_func_sal.pc == stop_pc)
5418 {
5419 /* We're there already. Just stop stepping now. */
16c381f0 5420 ecs->event_thread->control.stop_step = 1;
33d62d64 5421 print_end_stepping_range_reason ();
b2175913
MS
5422 stop_stepping (ecs);
5423 }
5424 else
5425 {
5426 /* Else just reset the step range and keep going.
5427 No step-resume breakpoint, they don't work for
5428 epilogues, which can have multiple entry paths. */
16c381f0
JK
5429 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5430 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5431 keep_going (ecs);
5432 }
5433 return;
5434}
5435
d3169d93 5436/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5437 This is used to both functions and to skip over code. */
5438
5439static void
2c03e5be
PA
5440insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5441 struct symtab_and_line sr_sal,
5442 struct frame_id sr_id,
5443 enum bptype sr_type)
44cbf7b5 5444{
611c83ae
PA
5445 /* There should never be more than one step-resume or longjmp-resume
5446 breakpoint per thread, so we should never be setting a new
44cbf7b5 5447 step_resume_breakpoint when one is already active. */
8358c15c 5448 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5449 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5450
5451 if (debug_infrun)
5452 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5453 "infrun: inserting step-resume breakpoint at %s\n",
5454 paddress (gdbarch, sr_sal.pc));
d3169d93 5455
8358c15c 5456 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5457 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5458}
5459
9da8c2a0 5460void
2c03e5be
PA
5461insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5462 struct symtab_and_line sr_sal,
5463 struct frame_id sr_id)
5464{
5465 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5466 sr_sal, sr_id,
5467 bp_step_resume);
44cbf7b5 5468}
7ce450bd 5469
2c03e5be
PA
5470/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5471 This is used to skip a potential signal handler.
7ce450bd 5472
14e60db5
DJ
5473 This is called with the interrupted function's frame. The signal
5474 handler, when it returns, will resume the interrupted function at
5475 RETURN_FRAME.pc. */
d303a6c7
AC
5476
5477static void
2c03e5be 5478insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5479{
5480 struct symtab_and_line sr_sal;
a6d9a66e 5481 struct gdbarch *gdbarch;
d303a6c7 5482
f4c1edd8 5483 gdb_assert (return_frame != NULL);
d303a6c7
AC
5484 init_sal (&sr_sal); /* initialize to zeros */
5485
a6d9a66e 5486 gdbarch = get_frame_arch (return_frame);
568d6575 5487 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5488 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5489 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5490
2c03e5be
PA
5491 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5492 get_stack_frame_id (return_frame),
5493 bp_hp_step_resume);
d303a6c7
AC
5494}
5495
2c03e5be
PA
5496/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5497 is used to skip a function after stepping into it (for "next" or if
5498 the called function has no debugging information).
14e60db5
DJ
5499
5500 The current function has almost always been reached by single
5501 stepping a call or return instruction. NEXT_FRAME belongs to the
5502 current function, and the breakpoint will be set at the caller's
5503 resume address.
5504
5505 This is a separate function rather than reusing
2c03e5be 5506 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5507 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5508 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5509
5510static void
5511insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5512{
5513 struct symtab_and_line sr_sal;
a6d9a66e 5514 struct gdbarch *gdbarch;
14e60db5
DJ
5515
5516 /* We shouldn't have gotten here if we don't know where the call site
5517 is. */
c7ce8faa 5518 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5519
5520 init_sal (&sr_sal); /* initialize to zeros */
5521
a6d9a66e 5522 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5523 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5524 frame_unwind_caller_pc (next_frame));
14e60db5 5525 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5526 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5527
a6d9a66e 5528 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5529 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5530}
5531
611c83ae
PA
5532/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5533 new breakpoint at the target of a jmp_buf. The handling of
5534 longjmp-resume uses the same mechanisms used for handling
5535 "step-resume" breakpoints. */
5536
5537static void
a6d9a66e 5538insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5539{
e81a37f7
TT
5540 /* There should never be more than one longjmp-resume breakpoint per
5541 thread, so we should never be setting a new
611c83ae 5542 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5543 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5544
5545 if (debug_infrun)
5546 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5547 "infrun: inserting longjmp-resume breakpoint at %s\n",
5548 paddress (gdbarch, pc));
611c83ae 5549
e81a37f7 5550 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5551 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5552}
5553
186c406b
TT
5554/* Insert an exception resume breakpoint. TP is the thread throwing
5555 the exception. The block B is the block of the unwinder debug hook
5556 function. FRAME is the frame corresponding to the call to this
5557 function. SYM is the symbol of the function argument holding the
5558 target PC of the exception. */
5559
5560static void
5561insert_exception_resume_breakpoint (struct thread_info *tp,
5562 struct block *b,
5563 struct frame_info *frame,
5564 struct symbol *sym)
5565{
bfd189b1 5566 volatile struct gdb_exception e;
186c406b
TT
5567
5568 /* We want to ignore errors here. */
5569 TRY_CATCH (e, RETURN_MASK_ERROR)
5570 {
5571 struct symbol *vsym;
5572 struct value *value;
5573 CORE_ADDR handler;
5574 struct breakpoint *bp;
5575
5576 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5577 value = read_var_value (vsym, frame);
5578 /* If the value was optimized out, revert to the old behavior. */
5579 if (! value_optimized_out (value))
5580 {
5581 handler = value_as_address (value);
5582
5583 if (debug_infrun)
5584 fprintf_unfiltered (gdb_stdlog,
5585 "infrun: exception resume at %lx\n",
5586 (unsigned long) handler);
5587
5588 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5589 handler, bp_exception_resume);
c70a6932
JK
5590
5591 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5592 frame = NULL;
5593
186c406b
TT
5594 bp->thread = tp->num;
5595 inferior_thread ()->control.exception_resume_breakpoint = bp;
5596 }
5597 }
5598}
5599
28106bc2
SDJ
5600/* A helper for check_exception_resume that sets an
5601 exception-breakpoint based on a SystemTap probe. */
5602
5603static void
5604insert_exception_resume_from_probe (struct thread_info *tp,
5605 const struct probe *probe,
28106bc2
SDJ
5606 struct frame_info *frame)
5607{
5608 struct value *arg_value;
5609 CORE_ADDR handler;
5610 struct breakpoint *bp;
5611
5612 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5613 if (!arg_value)
5614 return;
5615
5616 handler = value_as_address (arg_value);
5617
5618 if (debug_infrun)
5619 fprintf_unfiltered (gdb_stdlog,
5620 "infrun: exception resume at %s\n",
6bac7473 5621 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5622 handler));
5623
5624 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5625 handler, bp_exception_resume);
5626 bp->thread = tp->num;
5627 inferior_thread ()->control.exception_resume_breakpoint = bp;
5628}
5629
186c406b
TT
5630/* This is called when an exception has been intercepted. Check to
5631 see whether the exception's destination is of interest, and if so,
5632 set an exception resume breakpoint there. */
5633
5634static void
5635check_exception_resume (struct execution_control_state *ecs,
28106bc2 5636 struct frame_info *frame)
186c406b 5637{
bfd189b1 5638 volatile struct gdb_exception e;
28106bc2
SDJ
5639 const struct probe *probe;
5640 struct symbol *func;
5641
5642 /* First see if this exception unwinding breakpoint was set via a
5643 SystemTap probe point. If so, the probe has two arguments: the
5644 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5645 set a breakpoint there. */
6bac7473 5646 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5647 if (probe)
5648 {
6bac7473 5649 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5650 return;
5651 }
5652
5653 func = get_frame_function (frame);
5654 if (!func)
5655 return;
186c406b
TT
5656
5657 TRY_CATCH (e, RETURN_MASK_ERROR)
5658 {
5659 struct block *b;
8157b174 5660 struct block_iterator iter;
186c406b
TT
5661 struct symbol *sym;
5662 int argno = 0;
5663
5664 /* The exception breakpoint is a thread-specific breakpoint on
5665 the unwinder's debug hook, declared as:
5666
5667 void _Unwind_DebugHook (void *cfa, void *handler);
5668
5669 The CFA argument indicates the frame to which control is
5670 about to be transferred. HANDLER is the destination PC.
5671
5672 We ignore the CFA and set a temporary breakpoint at HANDLER.
5673 This is not extremely efficient but it avoids issues in gdb
5674 with computing the DWARF CFA, and it also works even in weird
5675 cases such as throwing an exception from inside a signal
5676 handler. */
5677
5678 b = SYMBOL_BLOCK_VALUE (func);
5679 ALL_BLOCK_SYMBOLS (b, iter, sym)
5680 {
5681 if (!SYMBOL_IS_ARGUMENT (sym))
5682 continue;
5683
5684 if (argno == 0)
5685 ++argno;
5686 else
5687 {
5688 insert_exception_resume_breakpoint (ecs->event_thread,
5689 b, frame, sym);
5690 break;
5691 }
5692 }
5693 }
5694}
5695
104c1213
JM
5696static void
5697stop_stepping (struct execution_control_state *ecs)
5698{
527159b7 5699 if (debug_infrun)
8a9de0e4 5700 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5701
cd0fc7c3
SS
5702 /* Let callers know we don't want to wait for the inferior anymore. */
5703 ecs->wait_some_more = 0;
5704}
5705
a9ba6bae
PA
5706/* Called when we should continue running the inferior, because the
5707 current event doesn't cause a user visible stop. This does the
5708 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5709
5710static void
5711keep_going (struct execution_control_state *ecs)
5712{
c4dbc9af
PA
5713 /* Make sure normal_stop is called if we get a QUIT handled before
5714 reaching resume. */
5715 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5716
d4f3574e 5717 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5718 ecs->event_thread->prev_pc
5719 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5720
16c381f0 5721 if (ecs->event_thread->control.trap_expected
a493e3e2 5722 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5723 {
a9ba6bae
PA
5724 /* We haven't yet gotten our trap, and either: intercepted a
5725 non-signal event (e.g., a fork); or took a signal which we
5726 are supposed to pass through to the inferior. Simply
5727 continue. */
c4dbc9af 5728 discard_cleanups (old_cleanups);
2020b7ab 5729 resume (currently_stepping (ecs->event_thread),
16c381f0 5730 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5731 }
5732 else
5733 {
5734 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5735 anyway (if we got a signal, the user asked it be passed to
5736 the child)
5737 -- or --
5738 We got our expected trap, but decided we should resume from
5739 it.
d4f3574e 5740
a9ba6bae 5741 We're going to run this baby now!
d4f3574e 5742
c36b740a
VP
5743 Note that insert_breakpoints won't try to re-insert
5744 already inserted breakpoints. Therefore, we don't
5745 care if breakpoints were already inserted, or not. */
a9ba6bae 5746
4e1c45ea 5747 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5748 {
9f5a595d 5749 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5750
9f5a595d 5751 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5752 {
5753 /* Since we can't do a displaced step, we have to remove
5754 the breakpoint while we step it. To keep things
5755 simple, we remove them all. */
5756 remove_breakpoints ();
5757 }
45e8c884
VP
5758 }
5759 else
d4f3574e 5760 {
bfd189b1 5761 volatile struct gdb_exception e;
abbb1732 5762
a9ba6bae 5763 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5764 TRY_CATCH (e, RETURN_MASK_ERROR)
5765 {
5766 insert_breakpoints ();
5767 }
5768 if (e.reason < 0)
d4f3574e 5769 {
97bd5475 5770 exception_print (gdb_stderr, e);
d4f3574e
SS
5771 stop_stepping (ecs);
5772 return;
5773 }
d4f3574e
SS
5774 }
5775
16c381f0
JK
5776 ecs->event_thread->control.trap_expected
5777 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5778
a9ba6bae
PA
5779 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5780 explicitly specifies that such a signal should be delivered
5781 to the target program). Typically, that would occur when a
5782 user is debugging a target monitor on a simulator: the target
5783 monitor sets a breakpoint; the simulator encounters this
5784 breakpoint and halts the simulation handing control to GDB;
5785 GDB, noting that the stop address doesn't map to any known
5786 breakpoint, returns control back to the simulator; the
5787 simulator then delivers the hardware equivalent of a
5788 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5789 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5790 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5791 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5792
c4dbc9af 5793 discard_cleanups (old_cleanups);
2020b7ab 5794 resume (currently_stepping (ecs->event_thread),
16c381f0 5795 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5796 }
5797
488f131b 5798 prepare_to_wait (ecs);
d4f3574e
SS
5799}
5800
104c1213
JM
5801/* This function normally comes after a resume, before
5802 handle_inferior_event exits. It takes care of any last bits of
5803 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5804
104c1213
JM
5805static void
5806prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5807{
527159b7 5808 if (debug_infrun)
8a9de0e4 5809 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5810
104c1213
JM
5811 /* This is the old end of the while loop. Let everybody know we
5812 want to wait for the inferior some more and get called again
5813 soon. */
5814 ecs->wait_some_more = 1;
c906108c 5815}
11cf8741 5816
33d62d64
JK
5817/* Several print_*_reason functions to print why the inferior has stopped.
5818 We always print something when the inferior exits, or receives a signal.
5819 The rest of the cases are dealt with later on in normal_stop and
5820 print_it_typical. Ideally there should be a call to one of these
5821 print_*_reason functions functions from handle_inferior_event each time
5822 stop_stepping is called. */
5823
5824/* Print why the inferior has stopped.
5825 We are done with a step/next/si/ni command, print why the inferior has
5826 stopped. For now print nothing. Print a message only if not in the middle
5827 of doing a "step n" operation for n > 1. */
5828
5829static void
5830print_end_stepping_range_reason (void)
5831{
16c381f0
JK
5832 if ((!inferior_thread ()->step_multi
5833 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5834 && ui_out_is_mi_like_p (current_uiout))
5835 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5836 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5837}
5838
5839/* The inferior was terminated by a signal, print why it stopped. */
5840
11cf8741 5841static void
2ea28649 5842print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5843{
79a45e25
PA
5844 struct ui_out *uiout = current_uiout;
5845
33d62d64
JK
5846 annotate_signalled ();
5847 if (ui_out_is_mi_like_p (uiout))
5848 ui_out_field_string
5849 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5850 ui_out_text (uiout, "\nProgram terminated with signal ");
5851 annotate_signal_name ();
5852 ui_out_field_string (uiout, "signal-name",
2ea28649 5853 gdb_signal_to_name (siggnal));
33d62d64
JK
5854 annotate_signal_name_end ();
5855 ui_out_text (uiout, ", ");
5856 annotate_signal_string ();
5857 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5858 gdb_signal_to_string (siggnal));
33d62d64
JK
5859 annotate_signal_string_end ();
5860 ui_out_text (uiout, ".\n");
5861 ui_out_text (uiout, "The program no longer exists.\n");
5862}
5863
5864/* The inferior program is finished, print why it stopped. */
5865
5866static void
5867print_exited_reason (int exitstatus)
5868{
fda326dd
TT
5869 struct inferior *inf = current_inferior ();
5870 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5871 struct ui_out *uiout = current_uiout;
fda326dd 5872
33d62d64
JK
5873 annotate_exited (exitstatus);
5874 if (exitstatus)
5875 {
5876 if (ui_out_is_mi_like_p (uiout))
5877 ui_out_field_string (uiout, "reason",
5878 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5879 ui_out_text (uiout, "[Inferior ");
5880 ui_out_text (uiout, plongest (inf->num));
5881 ui_out_text (uiout, " (");
5882 ui_out_text (uiout, pidstr);
5883 ui_out_text (uiout, ") exited with code ");
33d62d64 5884 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5885 ui_out_text (uiout, "]\n");
33d62d64
JK
5886 }
5887 else
11cf8741 5888 {
9dc5e2a9 5889 if (ui_out_is_mi_like_p (uiout))
034dad6f 5890 ui_out_field_string
33d62d64 5891 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5892 ui_out_text (uiout, "[Inferior ");
5893 ui_out_text (uiout, plongest (inf->num));
5894 ui_out_text (uiout, " (");
5895 ui_out_text (uiout, pidstr);
5896 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5897 }
5898 /* Support the --return-child-result option. */
5899 return_child_result_value = exitstatus;
5900}
5901
5902/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5903 tells us to print about it. */
33d62d64
JK
5904
5905static void
2ea28649 5906print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5907{
79a45e25
PA
5908 struct ui_out *uiout = current_uiout;
5909
33d62d64
JK
5910 annotate_signal ();
5911
a493e3e2 5912 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5913 {
5914 struct thread_info *t = inferior_thread ();
5915
5916 ui_out_text (uiout, "\n[");
5917 ui_out_field_string (uiout, "thread-name",
5918 target_pid_to_str (t->ptid));
5919 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5920 ui_out_text (uiout, " stopped");
5921 }
5922 else
5923 {
5924 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5925 annotate_signal_name ();
33d62d64
JK
5926 if (ui_out_is_mi_like_p (uiout))
5927 ui_out_field_string
5928 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5929 ui_out_field_string (uiout, "signal-name",
2ea28649 5930 gdb_signal_to_name (siggnal));
8b93c638
JM
5931 annotate_signal_name_end ();
5932 ui_out_text (uiout, ", ");
5933 annotate_signal_string ();
488f131b 5934 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5935 gdb_signal_to_string (siggnal));
8b93c638 5936 annotate_signal_string_end ();
33d62d64
JK
5937 }
5938 ui_out_text (uiout, ".\n");
5939}
252fbfc8 5940
33d62d64
JK
5941/* Reverse execution: target ran out of history info, print why the inferior
5942 has stopped. */
252fbfc8 5943
33d62d64
JK
5944static void
5945print_no_history_reason (void)
5946{
79a45e25 5947 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5948}
43ff13b4 5949
c906108c
SS
5950/* Here to return control to GDB when the inferior stops for real.
5951 Print appropriate messages, remove breakpoints, give terminal our modes.
5952
5953 STOP_PRINT_FRAME nonzero means print the executing frame
5954 (pc, function, args, file, line number and line text).
5955 BREAKPOINTS_FAILED nonzero means stop was due to error
5956 attempting to insert breakpoints. */
5957
5958void
96baa820 5959normal_stop (void)
c906108c 5960{
73b65bb0
DJ
5961 struct target_waitstatus last;
5962 ptid_t last_ptid;
29f49a6a 5963 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5964
5965 get_last_target_status (&last_ptid, &last);
5966
29f49a6a
PA
5967 /* If an exception is thrown from this point on, make sure to
5968 propagate GDB's knowledge of the executing state to the
5969 frontend/user running state. A QUIT is an easy exception to see
5970 here, so do this before any filtered output. */
c35b1492
PA
5971 if (!non_stop)
5972 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5973 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5974 && last.kind != TARGET_WAITKIND_EXITED
5975 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5976 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5977
4f8d22e3
PA
5978 /* In non-stop mode, we don't want GDB to switch threads behind the
5979 user's back, to avoid races where the user is typing a command to
5980 apply to thread x, but GDB switches to thread y before the user
5981 finishes entering the command. */
5982
c906108c
SS
5983 /* As with the notification of thread events, we want to delay
5984 notifying the user that we've switched thread context until
5985 the inferior actually stops.
5986
73b65bb0
DJ
5987 There's no point in saying anything if the inferior has exited.
5988 Note that SIGNALLED here means "exited with a signal", not
5989 "received a signal". */
4f8d22e3
PA
5990 if (!non_stop
5991 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5992 && target_has_execution
5993 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5994 && last.kind != TARGET_WAITKIND_EXITED
5995 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5996 {
5997 target_terminal_ours_for_output ();
a3f17187 5998 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5999 target_pid_to_str (inferior_ptid));
b8fa951a 6000 annotate_thread_changed ();
39f77062 6001 previous_inferior_ptid = inferior_ptid;
c906108c 6002 }
c906108c 6003
0e5bf2a8
PA
6004 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6005 {
6006 gdb_assert (sync_execution || !target_can_async_p ());
6007
6008 target_terminal_ours_for_output ();
6009 printf_filtered (_("No unwaited-for children left.\n"));
6010 }
6011
74960c60 6012 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6013 {
6014 if (remove_breakpoints ())
6015 {
6016 target_terminal_ours_for_output ();
3e43a32a
MS
6017 printf_filtered (_("Cannot remove breakpoints because "
6018 "program is no longer writable.\nFurther "
6019 "execution is probably impossible.\n"));
c906108c
SS
6020 }
6021 }
c906108c 6022
c906108c
SS
6023 /* If an auto-display called a function and that got a signal,
6024 delete that auto-display to avoid an infinite recursion. */
6025
6026 if (stopped_by_random_signal)
6027 disable_current_display ();
6028
6029 /* Don't print a message if in the middle of doing a "step n"
6030 operation for n > 1 */
af679fd0
PA
6031 if (target_has_execution
6032 && last.kind != TARGET_WAITKIND_SIGNALLED
6033 && last.kind != TARGET_WAITKIND_EXITED
6034 && inferior_thread ()->step_multi
16c381f0 6035 && inferior_thread ()->control.stop_step)
c906108c
SS
6036 goto done;
6037
6038 target_terminal_ours ();
0f641c01 6039 async_enable_stdin ();
c906108c 6040
7abfe014
DJ
6041 /* Set the current source location. This will also happen if we
6042 display the frame below, but the current SAL will be incorrect
6043 during a user hook-stop function. */
d729566a 6044 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6045 set_current_sal_from_frame (get_current_frame (), 1);
6046
dd7e2d2b
PA
6047 /* Let the user/frontend see the threads as stopped. */
6048 do_cleanups (old_chain);
6049
6050 /* Look up the hook_stop and run it (CLI internally handles problem
6051 of stop_command's pre-hook not existing). */
6052 if (stop_command)
6053 catch_errors (hook_stop_stub, stop_command,
6054 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6055
d729566a 6056 if (!has_stack_frames ())
d51fd4c8 6057 goto done;
c906108c 6058
32400beb
PA
6059 if (last.kind == TARGET_WAITKIND_SIGNALLED
6060 || last.kind == TARGET_WAITKIND_EXITED)
6061 goto done;
6062
c906108c
SS
6063 /* Select innermost stack frame - i.e., current frame is frame 0,
6064 and current location is based on that.
6065 Don't do this on return from a stack dummy routine,
1777feb0 6066 or if the program has exited. */
c906108c
SS
6067
6068 if (!stop_stack_dummy)
6069 {
0f7d239c 6070 select_frame (get_current_frame ());
c906108c
SS
6071
6072 /* Print current location without a level number, if
c5aa993b
JM
6073 we have changed functions or hit a breakpoint.
6074 Print source line if we have one.
6075 bpstat_print() contains the logic deciding in detail
1777feb0 6076 what to print, based on the event(s) that just occurred. */
c906108c 6077
d01a8610
AS
6078 /* If --batch-silent is enabled then there's no need to print the current
6079 source location, and to try risks causing an error message about
6080 missing source files. */
6081 if (stop_print_frame && !batch_silent)
c906108c
SS
6082 {
6083 int bpstat_ret;
6084 int source_flag;
917317f4 6085 int do_frame_printing = 1;
347bddb7 6086 struct thread_info *tp = inferior_thread ();
c906108c 6087
36dfb11c 6088 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6089 switch (bpstat_ret)
6090 {
6091 case PRINT_UNKNOWN:
aa0cd9c1 6092 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6093 (or should) carry around the function and does (or
6094 should) use that when doing a frame comparison. */
16c381f0
JK
6095 if (tp->control.stop_step
6096 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6097 get_frame_id (get_current_frame ()))
917317f4 6098 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6099 source_flag = SRC_LINE; /* Finished step, just
6100 print source line. */
917317f4 6101 else
1777feb0
MS
6102 source_flag = SRC_AND_LOC; /* Print location and
6103 source line. */
917317f4
JM
6104 break;
6105 case PRINT_SRC_AND_LOC:
1777feb0
MS
6106 source_flag = SRC_AND_LOC; /* Print location and
6107 source line. */
917317f4
JM
6108 break;
6109 case PRINT_SRC_ONLY:
c5394b80 6110 source_flag = SRC_LINE;
917317f4
JM
6111 break;
6112 case PRINT_NOTHING:
488f131b 6113 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6114 do_frame_printing = 0;
6115 break;
6116 default:
e2e0b3e5 6117 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6118 }
c906108c
SS
6119
6120 /* The behavior of this routine with respect to the source
6121 flag is:
c5394b80
JM
6122 SRC_LINE: Print only source line
6123 LOCATION: Print only location
1777feb0 6124 SRC_AND_LOC: Print location and source line. */
917317f4 6125 if (do_frame_printing)
08d72866 6126 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6127
6128 /* Display the auto-display expressions. */
6129 do_displays ();
6130 }
6131 }
6132
6133 /* Save the function value return registers, if we care.
6134 We might be about to restore their previous contents. */
9da8c2a0
PA
6135 if (inferior_thread ()->control.proceed_to_finish
6136 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6137 {
6138 /* This should not be necessary. */
6139 if (stop_registers)
6140 regcache_xfree (stop_registers);
6141
6142 /* NB: The copy goes through to the target picking up the value of
6143 all the registers. */
6144 stop_registers = regcache_dup (get_current_regcache ());
6145 }
c906108c 6146
aa7d318d 6147 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6148 {
b89667eb
DE
6149 /* Pop the empty frame that contains the stack dummy.
6150 This also restores inferior state prior to the call
16c381f0 6151 (struct infcall_suspend_state). */
b89667eb 6152 struct frame_info *frame = get_current_frame ();
abbb1732 6153
b89667eb
DE
6154 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6155 frame_pop (frame);
3e43a32a
MS
6156 /* frame_pop() calls reinit_frame_cache as the last thing it
6157 does which means there's currently no selected frame. We
6158 don't need to re-establish a selected frame if the dummy call
6159 returns normally, that will be done by
6160 restore_infcall_control_state. However, we do have to handle
6161 the case where the dummy call is returning after being
6162 stopped (e.g. the dummy call previously hit a breakpoint).
6163 We can't know which case we have so just always re-establish
6164 a selected frame here. */
0f7d239c 6165 select_frame (get_current_frame ());
c906108c
SS
6166 }
6167
c906108c
SS
6168done:
6169 annotate_stopped ();
41d2bdb4
PA
6170
6171 /* Suppress the stop observer if we're in the middle of:
6172
6173 - a step n (n > 1), as there still more steps to be done.
6174
6175 - a "finish" command, as the observer will be called in
6176 finish_command_continuation, so it can include the inferior
6177 function's return value.
6178
6179 - calling an inferior function, as we pretend we inferior didn't
6180 run at all. The return value of the call is handled by the
6181 expression evaluator, through call_function_by_hand. */
6182
6183 if (!target_has_execution
6184 || last.kind == TARGET_WAITKIND_SIGNALLED
6185 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6186 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6187 || (!(inferior_thread ()->step_multi
6188 && inferior_thread ()->control.stop_step)
16c381f0
JK
6189 && !(inferior_thread ()->control.stop_bpstat
6190 && inferior_thread ()->control.proceed_to_finish)
6191 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6192 {
6193 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6194 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6195 stop_print_frame);
347bddb7 6196 else
1d33d6ba 6197 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6198 }
347bddb7 6199
48844aa6
PA
6200 if (target_has_execution)
6201 {
6202 if (last.kind != TARGET_WAITKIND_SIGNALLED
6203 && last.kind != TARGET_WAITKIND_EXITED)
6204 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6205 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6206 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6207 }
6c95b8df
PA
6208
6209 /* Try to get rid of automatically added inferiors that are no
6210 longer needed. Keeping those around slows down things linearly.
6211 Note that this never removes the current inferior. */
6212 prune_inferiors ();
c906108c
SS
6213}
6214
6215static int
96baa820 6216hook_stop_stub (void *cmd)
c906108c 6217{
5913bcb0 6218 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6219 return (0);
6220}
6221\f
c5aa993b 6222int
96baa820 6223signal_stop_state (int signo)
c906108c 6224{
d6b48e9c 6225 return signal_stop[signo];
c906108c
SS
6226}
6227
c5aa993b 6228int
96baa820 6229signal_print_state (int signo)
c906108c
SS
6230{
6231 return signal_print[signo];
6232}
6233
c5aa993b 6234int
96baa820 6235signal_pass_state (int signo)
c906108c
SS
6236{
6237 return signal_program[signo];
6238}
6239
2455069d
UW
6240static void
6241signal_cache_update (int signo)
6242{
6243 if (signo == -1)
6244 {
a493e3e2 6245 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6246 signal_cache_update (signo);
6247
6248 return;
6249 }
6250
6251 signal_pass[signo] = (signal_stop[signo] == 0
6252 && signal_print[signo] == 0
ab04a2af
TT
6253 && signal_program[signo] == 1
6254 && signal_catch[signo] == 0);
2455069d
UW
6255}
6256
488f131b 6257int
7bda5e4a 6258signal_stop_update (int signo, int state)
d4f3574e
SS
6259{
6260 int ret = signal_stop[signo];
abbb1732 6261
d4f3574e 6262 signal_stop[signo] = state;
2455069d 6263 signal_cache_update (signo);
d4f3574e
SS
6264 return ret;
6265}
6266
488f131b 6267int
7bda5e4a 6268signal_print_update (int signo, int state)
d4f3574e
SS
6269{
6270 int ret = signal_print[signo];
abbb1732 6271
d4f3574e 6272 signal_print[signo] = state;
2455069d 6273 signal_cache_update (signo);
d4f3574e
SS
6274 return ret;
6275}
6276
488f131b 6277int
7bda5e4a 6278signal_pass_update (int signo, int state)
d4f3574e
SS
6279{
6280 int ret = signal_program[signo];
abbb1732 6281
d4f3574e 6282 signal_program[signo] = state;
2455069d 6283 signal_cache_update (signo);
d4f3574e
SS
6284 return ret;
6285}
6286
ab04a2af
TT
6287/* Update the global 'signal_catch' from INFO and notify the
6288 target. */
6289
6290void
6291signal_catch_update (const unsigned int *info)
6292{
6293 int i;
6294
6295 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6296 signal_catch[i] = info[i] > 0;
6297 signal_cache_update (-1);
6298 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6299}
6300
c906108c 6301static void
96baa820 6302sig_print_header (void)
c906108c 6303{
3e43a32a
MS
6304 printf_filtered (_("Signal Stop\tPrint\tPass "
6305 "to program\tDescription\n"));
c906108c
SS
6306}
6307
6308static void
2ea28649 6309sig_print_info (enum gdb_signal oursig)
c906108c 6310{
2ea28649 6311 const char *name = gdb_signal_to_name (oursig);
c906108c 6312 int name_padding = 13 - strlen (name);
96baa820 6313
c906108c
SS
6314 if (name_padding <= 0)
6315 name_padding = 0;
6316
6317 printf_filtered ("%s", name);
488f131b 6318 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6319 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6320 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6321 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6322 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6323}
6324
6325/* Specify how various signals in the inferior should be handled. */
6326
6327static void
96baa820 6328handle_command (char *args, int from_tty)
c906108c
SS
6329{
6330 char **argv;
6331 int digits, wordlen;
6332 int sigfirst, signum, siglast;
2ea28649 6333 enum gdb_signal oursig;
c906108c
SS
6334 int allsigs;
6335 int nsigs;
6336 unsigned char *sigs;
6337 struct cleanup *old_chain;
6338
6339 if (args == NULL)
6340 {
e2e0b3e5 6341 error_no_arg (_("signal to handle"));
c906108c
SS
6342 }
6343
1777feb0 6344 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6345
a493e3e2 6346 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6347 sigs = (unsigned char *) alloca (nsigs);
6348 memset (sigs, 0, nsigs);
6349
1777feb0 6350 /* Break the command line up into args. */
c906108c 6351
d1a41061 6352 argv = gdb_buildargv (args);
7a292a7a 6353 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6354
6355 /* Walk through the args, looking for signal oursigs, signal names, and
6356 actions. Signal numbers and signal names may be interspersed with
6357 actions, with the actions being performed for all signals cumulatively
1777feb0 6358 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6359
6360 while (*argv != NULL)
6361 {
6362 wordlen = strlen (*argv);
6363 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6364 {;
6365 }
6366 allsigs = 0;
6367 sigfirst = siglast = -1;
6368
6369 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6370 {
6371 /* Apply action to all signals except those used by the
1777feb0 6372 debugger. Silently skip those. */
c906108c
SS
6373 allsigs = 1;
6374 sigfirst = 0;
6375 siglast = nsigs - 1;
6376 }
6377 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6378 {
6379 SET_SIGS (nsigs, sigs, signal_stop);
6380 SET_SIGS (nsigs, sigs, signal_print);
6381 }
6382 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6383 {
6384 UNSET_SIGS (nsigs, sigs, signal_program);
6385 }
6386 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6387 {
6388 SET_SIGS (nsigs, sigs, signal_print);
6389 }
6390 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6391 {
6392 SET_SIGS (nsigs, sigs, signal_program);
6393 }
6394 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6395 {
6396 UNSET_SIGS (nsigs, sigs, signal_stop);
6397 }
6398 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6399 {
6400 SET_SIGS (nsigs, sigs, signal_program);
6401 }
6402 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6403 {
6404 UNSET_SIGS (nsigs, sigs, signal_print);
6405 UNSET_SIGS (nsigs, sigs, signal_stop);
6406 }
6407 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6408 {
6409 UNSET_SIGS (nsigs, sigs, signal_program);
6410 }
6411 else if (digits > 0)
6412 {
6413 /* It is numeric. The numeric signal refers to our own
6414 internal signal numbering from target.h, not to host/target
6415 signal number. This is a feature; users really should be
6416 using symbolic names anyway, and the common ones like
6417 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6418
6419 sigfirst = siglast = (int)
2ea28649 6420 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6421 if ((*argv)[digits] == '-')
6422 {
6423 siglast = (int)
2ea28649 6424 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6425 }
6426 if (sigfirst > siglast)
6427 {
1777feb0 6428 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6429 signum = sigfirst;
6430 sigfirst = siglast;
6431 siglast = signum;
6432 }
6433 }
6434 else
6435 {
2ea28649 6436 oursig = gdb_signal_from_name (*argv);
a493e3e2 6437 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6438 {
6439 sigfirst = siglast = (int) oursig;
6440 }
6441 else
6442 {
6443 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6444 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6445 }
6446 }
6447
6448 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6449 which signals to apply actions to. */
c906108c
SS
6450
6451 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6452 {
2ea28649 6453 switch ((enum gdb_signal) signum)
c906108c 6454 {
a493e3e2
PA
6455 case GDB_SIGNAL_TRAP:
6456 case GDB_SIGNAL_INT:
c906108c
SS
6457 if (!allsigs && !sigs[signum])
6458 {
9e2f0ad4 6459 if (query (_("%s is used by the debugger.\n\
3e43a32a 6460Are you sure you want to change it? "),
2ea28649 6461 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6462 {
6463 sigs[signum] = 1;
6464 }
6465 else
6466 {
a3f17187 6467 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6468 gdb_flush (gdb_stdout);
6469 }
6470 }
6471 break;
a493e3e2
PA
6472 case GDB_SIGNAL_0:
6473 case GDB_SIGNAL_DEFAULT:
6474 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6475 /* Make sure that "all" doesn't print these. */
6476 break;
6477 default:
6478 sigs[signum] = 1;
6479 break;
6480 }
6481 }
6482
6483 argv++;
6484 }
6485
3a031f65
PA
6486 for (signum = 0; signum < nsigs; signum++)
6487 if (sigs[signum])
6488 {
2455069d 6489 signal_cache_update (-1);
a493e3e2
PA
6490 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6491 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6492
3a031f65
PA
6493 if (from_tty)
6494 {
6495 /* Show the results. */
6496 sig_print_header ();
6497 for (; signum < nsigs; signum++)
6498 if (sigs[signum])
6499 sig_print_info (signum);
6500 }
6501
6502 break;
6503 }
c906108c
SS
6504
6505 do_cleanups (old_chain);
6506}
6507
de0bea00
MF
6508/* Complete the "handle" command. */
6509
6510static VEC (char_ptr) *
6511handle_completer (struct cmd_list_element *ignore,
6f937416 6512 const char *text, const char *word)
de0bea00
MF
6513{
6514 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6515 static const char * const keywords[] =
6516 {
6517 "all",
6518 "stop",
6519 "ignore",
6520 "print",
6521 "pass",
6522 "nostop",
6523 "noignore",
6524 "noprint",
6525 "nopass",
6526 NULL,
6527 };
6528
6529 vec_signals = signal_completer (ignore, text, word);
6530 vec_keywords = complete_on_enum (keywords, word, word);
6531
6532 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6533 VEC_free (char_ptr, vec_signals);
6534 VEC_free (char_ptr, vec_keywords);
6535 return return_val;
6536}
6537
c906108c 6538static void
96baa820 6539xdb_handle_command (char *args, int from_tty)
c906108c
SS
6540{
6541 char **argv;
6542 struct cleanup *old_chain;
6543
d1a41061
PP
6544 if (args == NULL)
6545 error_no_arg (_("xdb command"));
6546
1777feb0 6547 /* Break the command line up into args. */
c906108c 6548
d1a41061 6549 argv = gdb_buildargv (args);
7a292a7a 6550 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6551 if (argv[1] != (char *) NULL)
6552 {
6553 char *argBuf;
6554 int bufLen;
6555
6556 bufLen = strlen (argv[0]) + 20;
6557 argBuf = (char *) xmalloc (bufLen);
6558 if (argBuf)
6559 {
6560 int validFlag = 1;
2ea28649 6561 enum gdb_signal oursig;
c906108c 6562
2ea28649 6563 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6564 memset (argBuf, 0, bufLen);
6565 if (strcmp (argv[1], "Q") == 0)
6566 sprintf (argBuf, "%s %s", argv[0], "noprint");
6567 else
6568 {
6569 if (strcmp (argv[1], "s") == 0)
6570 {
6571 if (!signal_stop[oursig])
6572 sprintf (argBuf, "%s %s", argv[0], "stop");
6573 else
6574 sprintf (argBuf, "%s %s", argv[0], "nostop");
6575 }
6576 else if (strcmp (argv[1], "i") == 0)
6577 {
6578 if (!signal_program[oursig])
6579 sprintf (argBuf, "%s %s", argv[0], "pass");
6580 else
6581 sprintf (argBuf, "%s %s", argv[0], "nopass");
6582 }
6583 else if (strcmp (argv[1], "r") == 0)
6584 {
6585 if (!signal_print[oursig])
6586 sprintf (argBuf, "%s %s", argv[0], "print");
6587 else
6588 sprintf (argBuf, "%s %s", argv[0], "noprint");
6589 }
6590 else
6591 validFlag = 0;
6592 }
6593 if (validFlag)
6594 handle_command (argBuf, from_tty);
6595 else
a3f17187 6596 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6597 if (argBuf)
b8c9b27d 6598 xfree (argBuf);
c906108c
SS
6599 }
6600 }
6601 do_cleanups (old_chain);
6602}
6603
2ea28649
PA
6604enum gdb_signal
6605gdb_signal_from_command (int num)
ed01b82c
PA
6606{
6607 if (num >= 1 && num <= 15)
2ea28649 6608 return (enum gdb_signal) num;
ed01b82c
PA
6609 error (_("Only signals 1-15 are valid as numeric signals.\n\
6610Use \"info signals\" for a list of symbolic signals."));
6611}
6612
c906108c
SS
6613/* Print current contents of the tables set by the handle command.
6614 It is possible we should just be printing signals actually used
6615 by the current target (but for things to work right when switching
6616 targets, all signals should be in the signal tables). */
6617
6618static void
96baa820 6619signals_info (char *signum_exp, int from_tty)
c906108c 6620{
2ea28649 6621 enum gdb_signal oursig;
abbb1732 6622
c906108c
SS
6623 sig_print_header ();
6624
6625 if (signum_exp)
6626 {
6627 /* First see if this is a symbol name. */
2ea28649 6628 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6629 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6630 {
6631 /* No, try numeric. */
6632 oursig =
2ea28649 6633 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6634 }
6635 sig_print_info (oursig);
6636 return;
6637 }
6638
6639 printf_filtered ("\n");
6640 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6641 for (oursig = GDB_SIGNAL_FIRST;
6642 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6643 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6644 {
6645 QUIT;
6646
a493e3e2
PA
6647 if (oursig != GDB_SIGNAL_UNKNOWN
6648 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6649 sig_print_info (oursig);
6650 }
6651
3e43a32a
MS
6652 printf_filtered (_("\nUse the \"handle\" command "
6653 "to change these tables.\n"));
c906108c 6654}
4aa995e1 6655
c709acd1
PA
6656/* Check if it makes sense to read $_siginfo from the current thread
6657 at this point. If not, throw an error. */
6658
6659static void
6660validate_siginfo_access (void)
6661{
6662 /* No current inferior, no siginfo. */
6663 if (ptid_equal (inferior_ptid, null_ptid))
6664 error (_("No thread selected."));
6665
6666 /* Don't try to read from a dead thread. */
6667 if (is_exited (inferior_ptid))
6668 error (_("The current thread has terminated"));
6669
6670 /* ... or from a spinning thread. */
6671 if (is_running (inferior_ptid))
6672 error (_("Selected thread is running."));
6673}
6674
4aa995e1
PA
6675/* The $_siginfo convenience variable is a bit special. We don't know
6676 for sure the type of the value until we actually have a chance to
7a9dd1b2 6677 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6678 also dependent on which thread you have selected.
6679
6680 1. making $_siginfo be an internalvar that creates a new value on
6681 access.
6682
6683 2. making the value of $_siginfo be an lval_computed value. */
6684
6685/* This function implements the lval_computed support for reading a
6686 $_siginfo value. */
6687
6688static void
6689siginfo_value_read (struct value *v)
6690{
6691 LONGEST transferred;
6692
c709acd1
PA
6693 validate_siginfo_access ();
6694
4aa995e1
PA
6695 transferred =
6696 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6697 NULL,
6698 value_contents_all_raw (v),
6699 value_offset (v),
6700 TYPE_LENGTH (value_type (v)));
6701
6702 if (transferred != TYPE_LENGTH (value_type (v)))
6703 error (_("Unable to read siginfo"));
6704}
6705
6706/* This function implements the lval_computed support for writing a
6707 $_siginfo value. */
6708
6709static void
6710siginfo_value_write (struct value *v, struct value *fromval)
6711{
6712 LONGEST transferred;
6713
c709acd1
PA
6714 validate_siginfo_access ();
6715
4aa995e1
PA
6716 transferred = target_write (&current_target,
6717 TARGET_OBJECT_SIGNAL_INFO,
6718 NULL,
6719 value_contents_all_raw (fromval),
6720 value_offset (v),
6721 TYPE_LENGTH (value_type (fromval)));
6722
6723 if (transferred != TYPE_LENGTH (value_type (fromval)))
6724 error (_("Unable to write siginfo"));
6725}
6726
c8f2448a 6727static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6728 {
6729 siginfo_value_read,
6730 siginfo_value_write
6731 };
6732
6733/* Return a new value with the correct type for the siginfo object of
78267919
UW
6734 the current thread using architecture GDBARCH. Return a void value
6735 if there's no object available. */
4aa995e1 6736
2c0b251b 6737static struct value *
22d2b532
SDJ
6738siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6739 void *ignore)
4aa995e1 6740{
4aa995e1 6741 if (target_has_stack
78267919
UW
6742 && !ptid_equal (inferior_ptid, null_ptid)
6743 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6744 {
78267919 6745 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6746
78267919 6747 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6748 }
6749
78267919 6750 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6751}
6752
c906108c 6753\f
16c381f0
JK
6754/* infcall_suspend_state contains state about the program itself like its
6755 registers and any signal it received when it last stopped.
6756 This state must be restored regardless of how the inferior function call
6757 ends (either successfully, or after it hits a breakpoint or signal)
6758 if the program is to properly continue where it left off. */
6759
6760struct infcall_suspend_state
7a292a7a 6761{
16c381f0 6762 struct thread_suspend_state thread_suspend;
dd80ea3c 6763#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6764 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6765#endif
16c381f0
JK
6766
6767 /* Other fields: */
7a292a7a 6768 CORE_ADDR stop_pc;
b89667eb 6769 struct regcache *registers;
1736ad11 6770
35515841 6771 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6772 struct gdbarch *siginfo_gdbarch;
6773
6774 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6775 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6776 content would be invalid. */
6777 gdb_byte *siginfo_data;
b89667eb
DE
6778};
6779
16c381f0
JK
6780struct infcall_suspend_state *
6781save_infcall_suspend_state (void)
b89667eb 6782{
16c381f0 6783 struct infcall_suspend_state *inf_state;
b89667eb 6784 struct thread_info *tp = inferior_thread ();
974a734b 6785#if 0
16c381f0 6786 struct inferior *inf = current_inferior ();
974a734b 6787#endif
1736ad11
JK
6788 struct regcache *regcache = get_current_regcache ();
6789 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6790 gdb_byte *siginfo_data = NULL;
6791
6792 if (gdbarch_get_siginfo_type_p (gdbarch))
6793 {
6794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6795 size_t len = TYPE_LENGTH (type);
6796 struct cleanup *back_to;
6797
6798 siginfo_data = xmalloc (len);
6799 back_to = make_cleanup (xfree, siginfo_data);
6800
6801 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6802 siginfo_data, 0, len) == len)
6803 discard_cleanups (back_to);
6804 else
6805 {
6806 /* Errors ignored. */
6807 do_cleanups (back_to);
6808 siginfo_data = NULL;
6809 }
6810 }
6811
16c381f0 6812 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6813
6814 if (siginfo_data)
6815 {
6816 inf_state->siginfo_gdbarch = gdbarch;
6817 inf_state->siginfo_data = siginfo_data;
6818 }
b89667eb 6819
16c381f0 6820 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6821#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6822 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6823#endif
16c381f0 6824
35515841 6825 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6826 GDB_SIGNAL_0 anyway. */
6827 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6828
b89667eb
DE
6829 inf_state->stop_pc = stop_pc;
6830
1736ad11 6831 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6832
6833 return inf_state;
6834}
6835
6836/* Restore inferior session state to INF_STATE. */
6837
6838void
16c381f0 6839restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6840{
6841 struct thread_info *tp = inferior_thread ();
974a734b 6842#if 0
16c381f0 6843 struct inferior *inf = current_inferior ();
974a734b 6844#endif
1736ad11
JK
6845 struct regcache *regcache = get_current_regcache ();
6846 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6847
16c381f0 6848 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6849#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6850 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6851#endif
16c381f0 6852
b89667eb
DE
6853 stop_pc = inf_state->stop_pc;
6854
1736ad11
JK
6855 if (inf_state->siginfo_gdbarch == gdbarch)
6856 {
6857 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6858
6859 /* Errors ignored. */
6860 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6861 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6862 }
6863
b89667eb
DE
6864 /* The inferior can be gone if the user types "print exit(0)"
6865 (and perhaps other times). */
6866 if (target_has_execution)
6867 /* NB: The register write goes through to the target. */
1736ad11 6868 regcache_cpy (regcache, inf_state->registers);
803b5f95 6869
16c381f0 6870 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6871}
6872
6873static void
16c381f0 6874do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6875{
16c381f0 6876 restore_infcall_suspend_state (state);
b89667eb
DE
6877}
6878
6879struct cleanup *
16c381f0
JK
6880make_cleanup_restore_infcall_suspend_state
6881 (struct infcall_suspend_state *inf_state)
b89667eb 6882{
16c381f0 6883 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6884}
6885
6886void
16c381f0 6887discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6888{
6889 regcache_xfree (inf_state->registers);
803b5f95 6890 xfree (inf_state->siginfo_data);
b89667eb
DE
6891 xfree (inf_state);
6892}
6893
6894struct regcache *
16c381f0 6895get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6896{
6897 return inf_state->registers;
6898}
6899
16c381f0
JK
6900/* infcall_control_state contains state regarding gdb's control of the
6901 inferior itself like stepping control. It also contains session state like
6902 the user's currently selected frame. */
b89667eb 6903
16c381f0 6904struct infcall_control_state
b89667eb 6905{
16c381f0
JK
6906 struct thread_control_state thread_control;
6907 struct inferior_control_state inferior_control;
d82142e2
JK
6908
6909 /* Other fields: */
6910 enum stop_stack_kind stop_stack_dummy;
6911 int stopped_by_random_signal;
7a292a7a 6912 int stop_after_trap;
7a292a7a 6913
b89667eb 6914 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6915 struct frame_id selected_frame_id;
7a292a7a
SS
6916};
6917
c906108c 6918/* Save all of the information associated with the inferior<==>gdb
b89667eb 6919 connection. */
c906108c 6920
16c381f0
JK
6921struct infcall_control_state *
6922save_infcall_control_state (void)
c906108c 6923{
16c381f0 6924 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6925 struct thread_info *tp = inferior_thread ();
d6b48e9c 6926 struct inferior *inf = current_inferior ();
7a292a7a 6927
16c381f0
JK
6928 inf_status->thread_control = tp->control;
6929 inf_status->inferior_control = inf->control;
d82142e2 6930
8358c15c 6931 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6932 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6933
16c381f0
JK
6934 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6935 chain. If caller's caller is walking the chain, they'll be happier if we
6936 hand them back the original chain when restore_infcall_control_state is
6937 called. */
6938 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6939
6940 /* Other fields: */
6941 inf_status->stop_stack_dummy = stop_stack_dummy;
6942 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6943 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6944
206415a3 6945 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6946
7a292a7a 6947 return inf_status;
c906108c
SS
6948}
6949
c906108c 6950static int
96baa820 6951restore_selected_frame (void *args)
c906108c 6952{
488f131b 6953 struct frame_id *fid = (struct frame_id *) args;
c906108c 6954 struct frame_info *frame;
c906108c 6955
101dcfbe 6956 frame = frame_find_by_id (*fid);
c906108c 6957
aa0cd9c1
AC
6958 /* If inf_status->selected_frame_id is NULL, there was no previously
6959 selected frame. */
101dcfbe 6960 if (frame == NULL)
c906108c 6961 {
8a3fe4f8 6962 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6963 return 0;
6964 }
6965
0f7d239c 6966 select_frame (frame);
c906108c
SS
6967
6968 return (1);
6969}
6970
b89667eb
DE
6971/* Restore inferior session state to INF_STATUS. */
6972
c906108c 6973void
16c381f0 6974restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6975{
4e1c45ea 6976 struct thread_info *tp = inferior_thread ();
d6b48e9c 6977 struct inferior *inf = current_inferior ();
4e1c45ea 6978
8358c15c
JK
6979 if (tp->control.step_resume_breakpoint)
6980 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6981
5b79abe7
TT
6982 if (tp->control.exception_resume_breakpoint)
6983 tp->control.exception_resume_breakpoint->disposition
6984 = disp_del_at_next_stop;
6985
d82142e2 6986 /* Handle the bpstat_copy of the chain. */
16c381f0 6987 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6988
16c381f0
JK
6989 tp->control = inf_status->thread_control;
6990 inf->control = inf_status->inferior_control;
d82142e2
JK
6991
6992 /* Other fields: */
6993 stop_stack_dummy = inf_status->stop_stack_dummy;
6994 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6995 stop_after_trap = inf_status->stop_after_trap;
c906108c 6996
b89667eb 6997 if (target_has_stack)
c906108c 6998 {
c906108c 6999 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7000 walking the stack might encounter a garbage pointer and
7001 error() trying to dereference it. */
488f131b
JB
7002 if (catch_errors
7003 (restore_selected_frame, &inf_status->selected_frame_id,
7004 "Unable to restore previously selected frame:\n",
7005 RETURN_MASK_ERROR) == 0)
c906108c
SS
7006 /* Error in restoring the selected frame. Select the innermost
7007 frame. */
0f7d239c 7008 select_frame (get_current_frame ());
c906108c 7009 }
c906108c 7010
72cec141 7011 xfree (inf_status);
7a292a7a 7012}
c906108c 7013
74b7792f 7014static void
16c381f0 7015do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7016{
16c381f0 7017 restore_infcall_control_state (sts);
74b7792f
AC
7018}
7019
7020struct cleanup *
16c381f0
JK
7021make_cleanup_restore_infcall_control_state
7022 (struct infcall_control_state *inf_status)
74b7792f 7023{
16c381f0 7024 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7025}
7026
c906108c 7027void
16c381f0 7028discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7029{
8358c15c
JK
7030 if (inf_status->thread_control.step_resume_breakpoint)
7031 inf_status->thread_control.step_resume_breakpoint->disposition
7032 = disp_del_at_next_stop;
7033
5b79abe7
TT
7034 if (inf_status->thread_control.exception_resume_breakpoint)
7035 inf_status->thread_control.exception_resume_breakpoint->disposition
7036 = disp_del_at_next_stop;
7037
1777feb0 7038 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7039 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7040
72cec141 7041 xfree (inf_status);
7a292a7a 7042}
b89667eb 7043\f
0723dbf5
PA
7044int
7045ptid_match (ptid_t ptid, ptid_t filter)
7046{
0723dbf5
PA
7047 if (ptid_equal (filter, minus_one_ptid))
7048 return 1;
7049 if (ptid_is_pid (filter)
7050 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7051 return 1;
7052 else if (ptid_equal (ptid, filter))
7053 return 1;
7054
7055 return 0;
7056}
7057
ca6724c1
KB
7058/* restore_inferior_ptid() will be used by the cleanup machinery
7059 to restore the inferior_ptid value saved in a call to
7060 save_inferior_ptid(). */
ce696e05
KB
7061
7062static void
7063restore_inferior_ptid (void *arg)
7064{
7065 ptid_t *saved_ptid_ptr = arg;
abbb1732 7066
ce696e05
KB
7067 inferior_ptid = *saved_ptid_ptr;
7068 xfree (arg);
7069}
7070
7071/* Save the value of inferior_ptid so that it may be restored by a
7072 later call to do_cleanups(). Returns the struct cleanup pointer
7073 needed for later doing the cleanup. */
7074
7075struct cleanup *
7076save_inferior_ptid (void)
7077{
7078 ptid_t *saved_ptid_ptr;
7079
7080 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7081 *saved_ptid_ptr = inferior_ptid;
7082 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7083}
0c557179
SDJ
7084
7085/* See inferior.h. */
7086
7087void
7088clear_exit_convenience_vars (void)
7089{
7090 clear_internalvar (lookup_internalvar ("_exitsignal"));
7091 clear_internalvar (lookup_internalvar ("_exitcode"));
7092}
c5aa993b 7093\f
488f131b 7094
b2175913
MS
7095/* User interface for reverse debugging:
7096 Set exec-direction / show exec-direction commands
7097 (returns error unless target implements to_set_exec_direction method). */
7098
32231432 7099int execution_direction = EXEC_FORWARD;
b2175913
MS
7100static const char exec_forward[] = "forward";
7101static const char exec_reverse[] = "reverse";
7102static const char *exec_direction = exec_forward;
40478521 7103static const char *const exec_direction_names[] = {
b2175913
MS
7104 exec_forward,
7105 exec_reverse,
7106 NULL
7107};
7108
7109static void
7110set_exec_direction_func (char *args, int from_tty,
7111 struct cmd_list_element *cmd)
7112{
7113 if (target_can_execute_reverse)
7114 {
7115 if (!strcmp (exec_direction, exec_forward))
7116 execution_direction = EXEC_FORWARD;
7117 else if (!strcmp (exec_direction, exec_reverse))
7118 execution_direction = EXEC_REVERSE;
7119 }
8bbed405
MS
7120 else
7121 {
7122 exec_direction = exec_forward;
7123 error (_("Target does not support this operation."));
7124 }
b2175913
MS
7125}
7126
7127static void
7128show_exec_direction_func (struct ui_file *out, int from_tty,
7129 struct cmd_list_element *cmd, const char *value)
7130{
7131 switch (execution_direction) {
7132 case EXEC_FORWARD:
7133 fprintf_filtered (out, _("Forward.\n"));
7134 break;
7135 case EXEC_REVERSE:
7136 fprintf_filtered (out, _("Reverse.\n"));
7137 break;
b2175913 7138 default:
d8b34453
PA
7139 internal_error (__FILE__, __LINE__,
7140 _("bogus execution_direction value: %d"),
7141 (int) execution_direction);
b2175913
MS
7142 }
7143}
7144
d4db2f36
PA
7145static void
7146show_schedule_multiple (struct ui_file *file, int from_tty,
7147 struct cmd_list_element *c, const char *value)
7148{
3e43a32a
MS
7149 fprintf_filtered (file, _("Resuming the execution of threads "
7150 "of all processes is %s.\n"), value);
d4db2f36 7151}
ad52ddc6 7152
22d2b532
SDJ
7153/* Implementation of `siginfo' variable. */
7154
7155static const struct internalvar_funcs siginfo_funcs =
7156{
7157 siginfo_make_value,
7158 NULL,
7159 NULL
7160};
7161
c906108c 7162void
96baa820 7163_initialize_infrun (void)
c906108c 7164{
52f0bd74
AC
7165 int i;
7166 int numsigs;
de0bea00 7167 struct cmd_list_element *c;
c906108c 7168
1bedd215
AC
7169 add_info ("signals", signals_info, _("\
7170What debugger does when program gets various signals.\n\
7171Specify a signal as argument to print info on that signal only."));
c906108c
SS
7172 add_info_alias ("handle", "signals", 0);
7173
de0bea00 7174 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7175Specify how to handle signals.\n\
486c7739 7176Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7177Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7178If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7179will be displayed instead.\n\
7180\n\
c906108c
SS
7181Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7182from 1-15 are allowed for compatibility with old versions of GDB.\n\
7183Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7184The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7185used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7186\n\
1bedd215 7187Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7188\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7189Stop means reenter debugger if this signal happens (implies print).\n\
7190Print means print a message if this signal happens.\n\
7191Pass means let program see this signal; otherwise program doesn't know.\n\
7192Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7193Pass and Stop may be combined.\n\
7194\n\
7195Multiple signals may be specified. Signal numbers and signal names\n\
7196may be interspersed with actions, with the actions being performed for\n\
7197all signals cumulatively specified."));
de0bea00 7198 set_cmd_completer (c, handle_completer);
486c7739 7199
c906108c
SS
7200 if (xdb_commands)
7201 {
1bedd215
AC
7202 add_com ("lz", class_info, signals_info, _("\
7203What debugger does when program gets various signals.\n\
7204Specify a signal as argument to print info on that signal only."));
7205 add_com ("z", class_run, xdb_handle_command, _("\
7206Specify how to handle a signal.\n\
c906108c
SS
7207Args are signals and actions to apply to those signals.\n\
7208Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7209from 1-15 are allowed for compatibility with old versions of GDB.\n\
7210Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7211The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7212used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7213Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7214\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7215nopass), \"Q\" (noprint)\n\
7216Stop means reenter debugger if this signal happens (implies print).\n\
7217Print means print a message if this signal happens.\n\
7218Pass means let program see this signal; otherwise program doesn't know.\n\
7219Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7220Pass and Stop may be combined."));
c906108c
SS
7221 }
7222
7223 if (!dbx_commands)
1a966eab
AC
7224 stop_command = add_cmd ("stop", class_obscure,
7225 not_just_help_class_command, _("\
7226There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7227This allows you to set a list of commands to be run each time execution\n\
1a966eab 7228of the program stops."), &cmdlist);
c906108c 7229
ccce17b0 7230 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7231Set inferior debugging."), _("\
7232Show inferior debugging."), _("\
7233When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7234 NULL,
7235 show_debug_infrun,
7236 &setdebuglist, &showdebuglist);
527159b7 7237
3e43a32a
MS
7238 add_setshow_boolean_cmd ("displaced", class_maintenance,
7239 &debug_displaced, _("\
237fc4c9
PA
7240Set displaced stepping debugging."), _("\
7241Show displaced stepping debugging."), _("\
7242When non-zero, displaced stepping specific debugging is enabled."),
7243 NULL,
7244 show_debug_displaced,
7245 &setdebuglist, &showdebuglist);
7246
ad52ddc6
PA
7247 add_setshow_boolean_cmd ("non-stop", no_class,
7248 &non_stop_1, _("\
7249Set whether gdb controls the inferior in non-stop mode."), _("\
7250Show whether gdb controls the inferior in non-stop mode."), _("\
7251When debugging a multi-threaded program and this setting is\n\
7252off (the default, also called all-stop mode), when one thread stops\n\
7253(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7254all other threads in the program while you interact with the thread of\n\
7255interest. When you continue or step a thread, you can allow the other\n\
7256threads to run, or have them remain stopped, but while you inspect any\n\
7257thread's state, all threads stop.\n\
7258\n\
7259In non-stop mode, when one thread stops, other threads can continue\n\
7260to run freely. You'll be able to step each thread independently,\n\
7261leave it stopped or free to run as needed."),
7262 set_non_stop,
7263 show_non_stop,
7264 &setlist,
7265 &showlist);
7266
a493e3e2 7267 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7268 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7269 signal_print = (unsigned char *)
7270 xmalloc (sizeof (signal_print[0]) * numsigs);
7271 signal_program = (unsigned char *)
7272 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7273 signal_catch = (unsigned char *)
7274 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7275 signal_pass = (unsigned char *)
7276 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7277 for (i = 0; i < numsigs; i++)
7278 {
7279 signal_stop[i] = 1;
7280 signal_print[i] = 1;
7281 signal_program[i] = 1;
ab04a2af 7282 signal_catch[i] = 0;
c906108c
SS
7283 }
7284
7285 /* Signals caused by debugger's own actions
7286 should not be given to the program afterwards. */
a493e3e2
PA
7287 signal_program[GDB_SIGNAL_TRAP] = 0;
7288 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7289
7290 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7291 signal_stop[GDB_SIGNAL_ALRM] = 0;
7292 signal_print[GDB_SIGNAL_ALRM] = 0;
7293 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7294 signal_print[GDB_SIGNAL_VTALRM] = 0;
7295 signal_stop[GDB_SIGNAL_PROF] = 0;
7296 signal_print[GDB_SIGNAL_PROF] = 0;
7297 signal_stop[GDB_SIGNAL_CHLD] = 0;
7298 signal_print[GDB_SIGNAL_CHLD] = 0;
7299 signal_stop[GDB_SIGNAL_IO] = 0;
7300 signal_print[GDB_SIGNAL_IO] = 0;
7301 signal_stop[GDB_SIGNAL_POLL] = 0;
7302 signal_print[GDB_SIGNAL_POLL] = 0;
7303 signal_stop[GDB_SIGNAL_URG] = 0;
7304 signal_print[GDB_SIGNAL_URG] = 0;
7305 signal_stop[GDB_SIGNAL_WINCH] = 0;
7306 signal_print[GDB_SIGNAL_WINCH] = 0;
7307 signal_stop[GDB_SIGNAL_PRIO] = 0;
7308 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7309
cd0fc7c3
SS
7310 /* These signals are used internally by user-level thread
7311 implementations. (See signal(5) on Solaris.) Like the above
7312 signals, a healthy program receives and handles them as part of
7313 its normal operation. */
a493e3e2
PA
7314 signal_stop[GDB_SIGNAL_LWP] = 0;
7315 signal_print[GDB_SIGNAL_LWP] = 0;
7316 signal_stop[GDB_SIGNAL_WAITING] = 0;
7317 signal_print[GDB_SIGNAL_WAITING] = 0;
7318 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7319 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7320
2455069d
UW
7321 /* Update cached state. */
7322 signal_cache_update (-1);
7323
85c07804
AC
7324 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7325 &stop_on_solib_events, _("\
7326Set stopping for shared library events."), _("\
7327Show stopping for shared library events."), _("\
c906108c
SS
7328If nonzero, gdb will give control to the user when the dynamic linker\n\
7329notifies gdb of shared library events. The most common event of interest\n\
85c07804 7330to the user would be loading/unloading of a new library."),
f9e14852 7331 set_stop_on_solib_events,
920d2a44 7332 show_stop_on_solib_events,
85c07804 7333 &setlist, &showlist);
c906108c 7334
7ab04401
AC
7335 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7336 follow_fork_mode_kind_names,
7337 &follow_fork_mode_string, _("\
7338Set debugger response to a program call of fork or vfork."), _("\
7339Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7340A fork or vfork creates a new process. follow-fork-mode can be:\n\
7341 parent - the original process is debugged after a fork\n\
7342 child - the new process is debugged after a fork\n\
ea1dd7bc 7343The unfollowed process will continue to run.\n\
7ab04401
AC
7344By default, the debugger will follow the parent process."),
7345 NULL,
920d2a44 7346 show_follow_fork_mode_string,
7ab04401
AC
7347 &setlist, &showlist);
7348
6c95b8df
PA
7349 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7350 follow_exec_mode_names,
7351 &follow_exec_mode_string, _("\
7352Set debugger response to a program call of exec."), _("\
7353Show debugger response to a program call of exec."), _("\
7354An exec call replaces the program image of a process.\n\
7355\n\
7356follow-exec-mode can be:\n\
7357\n\
cce7e648 7358 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7359to this new inferior. The program the process was running before\n\
7360the exec call can be restarted afterwards by restarting the original\n\
7361inferior.\n\
7362\n\
7363 same - the debugger keeps the process bound to the same inferior.\n\
7364The new executable image replaces the previous executable loaded in\n\
7365the inferior. Restarting the inferior after the exec call restarts\n\
7366the executable the process was running after the exec call.\n\
7367\n\
7368By default, the debugger will use the same inferior."),
7369 NULL,
7370 show_follow_exec_mode_string,
7371 &setlist, &showlist);
7372
7ab04401
AC
7373 add_setshow_enum_cmd ("scheduler-locking", class_run,
7374 scheduler_enums, &scheduler_mode, _("\
7375Set mode for locking scheduler during execution."), _("\
7376Show mode for locking scheduler during execution."), _("\
c906108c
SS
7377off == no locking (threads may preempt at any time)\n\
7378on == full locking (no thread except the current thread may run)\n\
7379step == scheduler locked during every single-step operation.\n\
7380 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7381 Other threads may run while stepping over a function call ('next')."),
7382 set_schedlock_func, /* traps on target vector */
920d2a44 7383 show_scheduler_mode,
7ab04401 7384 &setlist, &showlist);
5fbbeb29 7385
d4db2f36
PA
7386 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7387Set mode for resuming threads of all processes."), _("\
7388Show mode for resuming threads of all processes."), _("\
7389When on, execution commands (such as 'continue' or 'next') resume all\n\
7390threads of all processes. When off (which is the default), execution\n\
7391commands only resume the threads of the current process. The set of\n\
7392threads that are resumed is further refined by the scheduler-locking\n\
7393mode (see help set scheduler-locking)."),
7394 NULL,
7395 show_schedule_multiple,
7396 &setlist, &showlist);
7397
5bf193a2
AC
7398 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7399Set mode of the step operation."), _("\
7400Show mode of the step operation."), _("\
7401When set, doing a step over a function without debug line information\n\
7402will stop at the first instruction of that function. Otherwise, the\n\
7403function is skipped and the step command stops at a different source line."),
7404 NULL,
920d2a44 7405 show_step_stop_if_no_debug,
5bf193a2 7406 &setlist, &showlist);
ca6724c1 7407
72d0e2c5
YQ
7408 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7409 &can_use_displaced_stepping, _("\
237fc4c9
PA
7410Set debugger's willingness to use displaced stepping."), _("\
7411Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7412If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7413supported by the target architecture. If off, gdb will not use displaced\n\
7414stepping to step over breakpoints, even if such is supported by the target\n\
7415architecture. If auto (which is the default), gdb will use displaced stepping\n\
7416if the target architecture supports it and non-stop mode is active, but will not\n\
7417use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7418 NULL,
7419 show_can_use_displaced_stepping,
7420 &setlist, &showlist);
237fc4c9 7421
b2175913
MS
7422 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7423 &exec_direction, _("Set direction of execution.\n\
7424Options are 'forward' or 'reverse'."),
7425 _("Show direction of execution (forward/reverse)."),
7426 _("Tells gdb whether to execute forward or backward."),
7427 set_exec_direction_func, show_exec_direction_func,
7428 &setlist, &showlist);
7429
6c95b8df
PA
7430 /* Set/show detach-on-fork: user-settable mode. */
7431
7432 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7433Set whether gdb will detach the child of a fork."), _("\
7434Show whether gdb will detach the child of a fork."), _("\
7435Tells gdb whether to detach the child of a fork."),
7436 NULL, NULL, &setlist, &showlist);
7437
03583c20
UW
7438 /* Set/show disable address space randomization mode. */
7439
7440 add_setshow_boolean_cmd ("disable-randomization", class_support,
7441 &disable_randomization, _("\
7442Set disabling of debuggee's virtual address space randomization."), _("\
7443Show disabling of debuggee's virtual address space randomization."), _("\
7444When this mode is on (which is the default), randomization of the virtual\n\
7445address space is disabled. Standalone programs run with the randomization\n\
7446enabled by default on some platforms."),
7447 &set_disable_randomization,
7448 &show_disable_randomization,
7449 &setlist, &showlist);
7450
ca6724c1 7451 /* ptid initializations */
ca6724c1
KB
7452 inferior_ptid = null_ptid;
7453 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7454
7455 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7456 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7457 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7458 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7459
7460 /* Explicitly create without lookup, since that tries to create a
7461 value with a void typed value, and when we get here, gdbarch
7462 isn't initialized yet. At this point, we're quite sure there
7463 isn't another convenience variable of the same name. */
22d2b532 7464 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7465
7466 add_setshow_boolean_cmd ("observer", no_class,
7467 &observer_mode_1, _("\
7468Set whether gdb controls the inferior in observer mode."), _("\
7469Show whether gdb controls the inferior in observer mode."), _("\
7470In observer mode, GDB can get data from the inferior, but not\n\
7471affect its execution. Registers and memory may not be changed,\n\
7472breakpoints may not be set, and the program cannot be interrupted\n\
7473or signalled."),
7474 set_observer_mode,
7475 show_observer_mode,
7476 &setlist,
7477 &showlist);
c906108c 7478}