]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Move copy_u.w to MSA64 ASE, remove copy_u.d.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
e02bc4cc 394/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
39f77062 397static ptid_t target_last_wait_ptid;
e02bc4cc
DS
398static struct target_waitstatus target_last_waitstatus;
399
0d1e5fa7
PA
400static void context_switch (ptid_t ptid);
401
4e1c45ea 402void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 403
53904c9e
AC
404static const char follow_fork_mode_child[] = "child";
405static const char follow_fork_mode_parent[] = "parent";
406
40478521 407static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
ef346e04 411};
c906108c 412
53904c9e 413static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
414static void
415show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417{
3e43a32a
MS
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
421 value);
422}
c906108c
SS
423\f
424
d83ad864
DB
425/* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431static int
432follow_fork_inferior (int follow_child, int detach_fork)
433{
434 int has_vforked;
79639e11 435 ptid_t parent_ptid, child_ptid;
d83ad864
DB
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
79639e11
PA
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && (!target_is_async_p () || sync_execution)
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453Can not resume the parent process over vfork in the foreground while\n\
454holding the child stopped. Try \"set detach-on-fork\" or \
455\"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 struct cleanup *old_chain;
466
467 /* Before detaching from the child, remove all breakpoints
468 from it. If we forked, then this has already been taken
469 care of by infrun.c. If we vforked however, any
470 breakpoint inserted in the parent is visible in the
471 child, even those added while stopped in a vfork
472 catchpoint. This will remove the breakpoints from the
473 parent also, but they'll be reinserted below. */
474 if (has_vforked)
475 {
476 /* Keep breakpoints list in sync. */
477 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
478 }
479
480 if (info_verbose || debug_infrun)
481 {
8dd06f7a
DB
482 /* Ensure that we have a process ptid. */
483 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
484
6f259a23 485 target_terminal_ours_for_output ();
d83ad864 486 fprintf_filtered (gdb_stdlog,
79639e11 487 _("Detaching after %s from child %s.\n"),
6f259a23 488 has_vforked ? "vfork" : "fork",
8dd06f7a 489 target_pid_to_str (process_ptid));
d83ad864
DB
490 }
491 }
492 else
493 {
494 struct inferior *parent_inf, *child_inf;
495 struct cleanup *old_chain;
496
497 /* Add process to GDB's tables. */
79639e11 498 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
499
500 parent_inf = current_inferior ();
501 child_inf->attach_flag = parent_inf->attach_flag;
502 copy_terminal_info (child_inf, parent_inf);
503 child_inf->gdbarch = parent_inf->gdbarch;
504 copy_inferior_target_desc_info (child_inf, parent_inf);
505
506 old_chain = save_inferior_ptid ();
507 save_current_program_space ();
508
79639e11 509 inferior_ptid = child_ptid;
d83ad864
DB
510 add_thread (inferior_ptid);
511 child_inf->symfile_flags = SYMFILE_NO_READ;
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 /* The parent will be frozen until the child is done
521 with the shared region. Keep track of the
522 parent. */
523 child_inf->vfork_parent = parent_inf;
524 child_inf->pending_detach = 0;
525 parent_inf->vfork_child = child_inf;
526 parent_inf->pending_detach = 0;
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = add_program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* Let the shared library layer (e.g., solib-svr4) learn
537 about this new process, relocate the cloned exec, pull
538 in shared libraries, and install the solib event
539 breakpoint. If a "cloned-VM" event was propagated
540 better throughout the core, this wouldn't be
541 required. */
542 solib_create_inferior_hook (0);
543 }
544
545 do_cleanups (old_chain);
546 }
547
548 if (has_vforked)
549 {
550 struct inferior *parent_inf;
551
552 parent_inf = current_inferior ();
553
554 /* If we detached from the child, then we have to be careful
555 to not insert breakpoints in the parent until the child
556 is done with the shared memory region. However, if we're
557 staying attached to the child, then we can and should
558 insert breakpoints, so that we can debug it. A
559 subsequent child exec or exit is enough to know when does
560 the child stops using the parent's address space. */
561 parent_inf->waiting_for_vfork_done = detach_fork;
562 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
563 }
564 }
565 else
566 {
567 /* Follow the child. */
568 struct inferior *parent_inf, *child_inf;
569 struct program_space *parent_pspace;
570
571 if (info_verbose || debug_infrun)
572 {
6f259a23
DB
573 target_terminal_ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
79639e11
PA
575 _("Attaching after %s %s to child %s.\n"),
576 target_pid_to_str (parent_ptid),
6f259a23 577 has_vforked ? "vfork" : "fork",
79639e11 578 target_pid_to_str (child_ptid));
d83ad864
DB
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
79639e11 584 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 /* If we're vforking, we want to hold on to the parent until the
595 child exits or execs. At child exec or exit time we can
596 remove the old breakpoints from the parent and detach or
597 resume debugging it. Otherwise, detach the parent now; we'll
598 want to reuse it's program/address spaces, but we can't set
599 them to the child before removing breakpoints from the
600 parent, otherwise, the breakpoints module could decide to
601 remove breakpoints from the wrong process (since they'd be
602 assigned to the same address space). */
603
604 if (has_vforked)
605 {
606 gdb_assert (child_inf->vfork_parent == NULL);
607 gdb_assert (parent_inf->vfork_child == NULL);
608 child_inf->vfork_parent = parent_inf;
609 child_inf->pending_detach = 0;
610 parent_inf->vfork_child = child_inf;
611 parent_inf->pending_detach = detach_fork;
612 parent_inf->waiting_for_vfork_done = 0;
613 }
614 else if (detach_fork)
6f259a23
DB
615 {
616 if (info_verbose || debug_infrun)
617 {
8dd06f7a
DB
618 /* Ensure that we have a process ptid. */
619 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
620
6f259a23
DB
621 target_terminal_ours_for_output ();
622 fprintf_filtered (gdb_stdlog,
623 _("Detaching after fork from "
79639e11 624 "child %s.\n"),
8dd06f7a 625 target_pid_to_str (process_ptid));
6f259a23
DB
626 }
627
628 target_detach (NULL, 0);
629 }
d83ad864
DB
630
631 /* Note that the detach above makes PARENT_INF dangling. */
632
633 /* Add the child thread to the appropriate lists, and switch to
634 this new thread, before cloning the program space, and
635 informing the solib layer about this new process. */
636
79639e11 637 inferior_ptid = child_ptid;
d83ad864
DB
638 add_thread (inferior_ptid);
639
640 /* If this is a vfork child, then the address-space is shared
641 with the parent. If we detached from the parent, then we can
642 reuse the parent's program/address spaces. */
643 if (has_vforked || detach_fork)
644 {
645 child_inf->pspace = parent_pspace;
646 child_inf->aspace = child_inf->pspace->aspace;
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = add_program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667}
668
e58b0e63
PA
669/* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
6604731b 673static int
4ef3f3be 674follow_fork (void)
c906108c 675{
ea1dd7bc 676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
4e3990f4
DE
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 685 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
17b2616c 689 struct interp *command_interp = NULL;
e58b0e63
PA
690
691 if (!non_stop)
692 {
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (!ptid_equal (wait_ptid, minus_one_ptid)
708 && !ptid_equal (inferior_ptid, wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 switch_to_thread (wait_ptid);
715 should_resume = 0;
716 }
717 }
718
719 tp = inferior_thread ();
720
721 /* If there were any forks/vforks that were caught and are now to be
722 followed, then do so now. */
723 switch (tp->pending_follow.kind)
724 {
725 case TARGET_WAITKIND_FORKED:
726 case TARGET_WAITKIND_VFORKED:
727 {
728 ptid_t parent, child;
729
730 /* If the user did a next/step, etc, over a fork call,
731 preserve the stepping state in the fork child. */
732 if (follow_child && should_resume)
733 {
8358c15c
JK
734 step_resume_breakpoint = clone_momentary_breakpoint
735 (tp->control.step_resume_breakpoint);
16c381f0
JK
736 step_range_start = tp->control.step_range_start;
737 step_range_end = tp->control.step_range_end;
738 step_frame_id = tp->control.step_frame_id;
186c406b
TT
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 741 command_interp = tp->control.command_interp;
e58b0e63
PA
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
16c381f0
JK
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
186c406b 752 delete_exception_resume_breakpoint (tp);
17b2616c 753 tp->control.command_interp = NULL;
e58b0e63
PA
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.value.related_pid;
758
d83ad864
DB
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
e09875d4 774 tp = find_thread_ptid (parent);
e58b0e63
PA
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
1777feb0 782 /* If we followed the child, switch to it... */
e58b0e63
PA
783 if (follow_child)
784 {
785 switch_to_thread (child);
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
8358c15c
JK
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
16c381f0
JK
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
186c406b
TT
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
17b2616c 799 tp->control.command_interp = command_interp;
e58b0e63
PA
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
3e43a32a 809 warning (_("Not resuming: switched threads "
fd7dcb94 810 "before following fork child."));
e58b0e63
PA
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
816 else
817 switch_to_thread (parent);
818 }
819 }
820 break;
821 case TARGET_WAITKIND_SPURIOUS:
822 /* Nothing to follow. */
823 break;
824 default:
825 internal_error (__FILE__, __LINE__,
826 "Unexpected pending_follow.kind %d\n",
827 tp->pending_follow.kind);
828 break;
829 }
c906108c 830
e58b0e63 831 return should_resume;
c906108c
SS
832}
833
d83ad864 834static void
6604731b 835follow_inferior_reset_breakpoints (void)
c906108c 836{
4e1c45ea
PA
837 struct thread_info *tp = inferior_thread ();
838
6604731b
DJ
839 /* Was there a step_resume breakpoint? (There was if the user
840 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
841 thread number. Cloned step_resume breakpoints are disabled on
842 creation, so enable it here now that it is associated with the
843 correct thread.
6604731b
DJ
844
845 step_resumes are a form of bp that are made to be per-thread.
846 Since we created the step_resume bp when the parent process
847 was being debugged, and now are switching to the child process,
848 from the breakpoint package's viewpoint, that's a switch of
849 "threads". We must update the bp's notion of which thread
850 it is for, or it'll be ignored when it triggers. */
851
8358c15c 852 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
853 {
854 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
855 tp->control.step_resume_breakpoint->loc->enabled = 1;
856 }
6604731b 857
a1aa2221 858 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 859 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
860 {
861 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
862 tp->control.exception_resume_breakpoint->loc->enabled = 1;
863 }
186c406b 864
6604731b
DJ
865 /* Reinsert all breakpoints in the child. The user may have set
866 breakpoints after catching the fork, in which case those
867 were never set in the child, but only in the parent. This makes
868 sure the inserted breakpoints match the breakpoint list. */
869
870 breakpoint_re_set ();
871 insert_breakpoints ();
c906108c 872}
c906108c 873
6c95b8df
PA
874/* The child has exited or execed: resume threads of the parent the
875 user wanted to be executing. */
876
877static int
878proceed_after_vfork_done (struct thread_info *thread,
879 void *arg)
880{
881 int pid = * (int *) arg;
882
883 if (ptid_get_pid (thread->ptid) == pid
884 && is_running (thread->ptid)
885 && !is_executing (thread->ptid)
886 && !thread->stop_requested
a493e3e2 887 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
888 {
889 if (debug_infrun)
890 fprintf_unfiltered (gdb_stdlog,
891 "infrun: resuming vfork parent thread %s\n",
892 target_pid_to_str (thread->ptid));
893
894 switch_to_thread (thread->ptid);
70509625 895 clear_proceed_status (0);
64ce06e4 896 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
897 }
898
899 return 0;
900}
901
902/* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905static void
906handle_vfork_child_exec_or_exit (int exec)
907{
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct cleanup *old_chain;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
1777feb0 925 /* follow-fork child, detach-on-fork on. */
6c95b8df 926
68c9da30
PA
927 inf->vfork_parent->pending_detach = 0;
928
f50f4e56
PA
929 if (!exec)
930 {
931 /* If we're handling a child exit, then inferior_ptid
932 points at the inferior's pid, not to a thread. */
933 old_chain = save_inferior_ptid ();
934 save_current_program_space ();
935 save_current_inferior ();
936 }
937 else
938 old_chain = save_current_space_and_thread ();
6c95b8df
PA
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
6f259a23 963 target_terminal_ours_for_output ();
6c95b8df
PA
964
965 if (exec)
6f259a23
DB
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
6c95b8df
PA
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986
987 do_cleanups (old_chain);
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = add_program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct cleanup *old_chain;
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid, so that clone_program_space doesn't want
1018 to read the selected frame of a dead process. */
1019 old_chain = save_inferior_ptid ();
1020 inferior_ptid = null_ptid;
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = add_program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
7dcd53a0 1030 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1036 inferior. */
6c95b8df
PA
1037 do_cleanups (old_chain);
1038
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
1052 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1053
1054 if (debug_infrun)
3e43a32a
MS
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1060
1061 do_cleanups (old_chain);
1062 }
1063 }
1064}
1065
eb6c553b 1066/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1067
1068static const char follow_exec_mode_new[] = "new";
1069static const char follow_exec_mode_same[] = "same";
40478521 1070static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1071{
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075};
1076
1077static const char *follow_exec_mode_string = follow_exec_mode_same;
1078static void
1079show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081{
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083}
1084
1777feb0 1085/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1086
c906108c 1087static void
95e50b27 1088follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1089{
95e50b27 1090 struct thread_info *th, *tmp;
6c95b8df 1091 struct inferior *inf = current_inferior ();
95e50b27 1092 int pid = ptid_get_pid (ptid);
94585166 1093 ptid_t process_ptid;
7a292a7a 1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
8a06aea7 1137 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
94585166 1160 process_ptid = pid_to_ptid (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1162 target_pid_to_str (process_ptid),
6c95b8df 1163 execd_pathname);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
c906108c 1168 gdb_flush (gdb_stdout);
6ca15a4b
PA
1169
1170 breakpoint_init_inferior (inf_execd);
e85a822c 1171
a3be80c3 1172 if (*gdb_sysroot != '\0')
e85a822c 1173 {
998d2a3e 1174 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1175
224c3ddb 1176 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1177 strcpy (execd_pathname, name);
1178 xfree (name);
e85a822c 1179 }
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1777feb0 1220 /* That a.out is now the one to use. */
6c95b8df
PA
1221 exec_file_attach (execd_pathname, 0);
1222
c1e56572
JK
1223 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1224 (Position Independent Executable) main symbol file will get applied by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1226 the breakpoints with the zero displacement. */
1227
7dcd53a0
TT
1228 symbol_file_add (execd_pathname,
1229 (inf->symfile_flags
1230 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1231 NULL, 0);
1232
7dcd53a0
TT
1233 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1234 set_initial_language ();
c906108c 1235
9107fc8d
PA
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1777feb0 1258 matically get reset there in the new process.). */
c906108c
SS
1259}
1260
c2829269
PA
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268struct thread_info *step_over_queue_head;
1269
6c4cfb24
PA
1270/* Bit flags indicating what the thread needs to step over. */
1271
1272enum step_over_what
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282
963f9c80 1283/* Info about an instruction that is being stepped over. */
31e77af2
PA
1284
1285struct step_over_info
1286{
963f9c80
PA
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
31e77af2 1291 struct address_space *aspace;
31e77af2 1292 CORE_ADDR address;
963f9c80
PA
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
31e77af2
PA
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
1326 stepping over. */
1327
1328static void
963f9c80
PA
1329set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
372316f1
PA
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
31e77af2
PA
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
963f9c80 1348 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfuly single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 - gdbarch_displaced_step_free_closure provides cleanup.
1431
1432 The gdbarch_displaced_step_copy_insn and
1433 gdbarch_displaced_step_fixup functions must be written so that
1434 copying an instruction with gdbarch_displaced_step_copy_insn,
1435 single-stepping across the copied instruction, and then applying
1436 gdbarch_displaced_insn_fixup should have the same effects on the
1437 thread's memory and registers as stepping the instruction in place
1438 would have. Exactly which responsibilities fall to the copy and
1439 which fall to the fixup is up to the author of those functions.
1440
1441 See the comments in gdbarch.sh for details.
1442
1443 Note that displaced stepping and software single-step cannot
1444 currently be used in combination, although with some care I think
1445 they could be made to. Software single-step works by placing
1446 breakpoints on all possible subsequent instructions; if the
1447 displaced instruction is a PC-relative jump, those breakpoints
1448 could fall in very strange places --- on pages that aren't
1449 executable, or at addresses that are not proper instruction
1450 boundaries. (We do generally let other threads run while we wait
1451 to hit the software single-step breakpoint, and they might
1452 encounter such a corrupted instruction.) One way to work around
1453 this would be to have gdbarch_displaced_step_copy_insn fully
1454 simulate the effect of PC-relative instructions (and return NULL)
1455 on architectures that use software single-stepping.
1456
1457 In non-stop mode, we can have independent and simultaneous step
1458 requests, so more than one thread may need to simultaneously step
1459 over a breakpoint. The current implementation assumes there is
1460 only one scratch space per process. In this case, we have to
1461 serialize access to the scratch space. If thread A wants to step
1462 over a breakpoint, but we are currently waiting for some other
1463 thread to complete a displaced step, we leave thread A stopped and
1464 place it in the displaced_step_request_queue. Whenever a displaced
1465 step finishes, we pick the next thread in the queue and start a new
1466 displaced step operation on it. See displaced_step_prepare and
1467 displaced_step_fixup for details. */
1468
fc1cf338
PA
1469/* Per-inferior displaced stepping state. */
1470struct displaced_step_inferior_state
1471{
1472 /* Pointer to next in linked list. */
1473 struct displaced_step_inferior_state *next;
1474
1475 /* The process this displaced step state refers to. */
1476 int pid;
1477
3fc8eb30
PA
1478 /* True if preparing a displaced step ever failed. If so, we won't
1479 try displaced stepping for this inferior again. */
1480 int failed_before;
1481
fc1cf338
PA
1482 /* If this is not null_ptid, this is the thread carrying out a
1483 displaced single-step in process PID. This thread's state will
1484 require fixing up once it has completed its step. */
1485 ptid_t step_ptid;
1486
1487 /* The architecture the thread had when we stepped it. */
1488 struct gdbarch *step_gdbarch;
1489
1490 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1491 for post-step cleanup. */
1492 struct displaced_step_closure *step_closure;
1493
1494 /* The address of the original instruction, and the copy we
1495 made. */
1496 CORE_ADDR step_original, step_copy;
1497
1498 /* Saved contents of copy area. */
1499 gdb_byte *step_saved_copy;
1500};
1501
1502/* The list of states of processes involved in displaced stepping
1503 presently. */
1504static struct displaced_step_inferior_state *displaced_step_inferior_states;
1505
1506/* Get the displaced stepping state of process PID. */
1507
1508static struct displaced_step_inferior_state *
1509get_displaced_stepping_state (int pid)
1510{
1511 struct displaced_step_inferior_state *state;
1512
1513 for (state = displaced_step_inferior_states;
1514 state != NULL;
1515 state = state->next)
1516 if (state->pid == pid)
1517 return state;
1518
1519 return NULL;
1520}
1521
372316f1
PA
1522/* Returns true if any inferior has a thread doing a displaced
1523 step. */
1524
1525static int
1526displaced_step_in_progress_any_inferior (void)
1527{
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (!ptid_equal (state->step_ptid, null_ptid))
1534 return 1;
1535
1536 return 0;
1537}
1538
8f572e5c
PA
1539/* Return true if process PID has a thread doing a displaced step. */
1540
1541static int
1542displaced_step_in_progress (int pid)
1543{
1544 struct displaced_step_inferior_state *displaced;
1545
1546 displaced = get_displaced_stepping_state (pid);
1547 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1548 return 1;
1549
1550 return 0;
1551}
1552
fc1cf338
PA
1553/* Add a new displaced stepping state for process PID to the displaced
1554 stepping state list, or return a pointer to an already existing
1555 entry, if it already exists. Never returns NULL. */
1556
1557static struct displaced_step_inferior_state *
1558add_displaced_stepping_state (int pid)
1559{
1560 struct displaced_step_inferior_state *state;
1561
1562 for (state = displaced_step_inferior_states;
1563 state != NULL;
1564 state = state->next)
1565 if (state->pid == pid)
1566 return state;
237fc4c9 1567
8d749320 1568 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1569 state->pid = pid;
1570 state->next = displaced_step_inferior_states;
1571 displaced_step_inferior_states = state;
237fc4c9 1572
fc1cf338
PA
1573 return state;
1574}
1575
a42244db
YQ
1576/* If inferior is in displaced stepping, and ADDR equals to starting address
1577 of copy area, return corresponding displaced_step_closure. Otherwise,
1578 return NULL. */
1579
1580struct displaced_step_closure*
1581get_displaced_step_closure_by_addr (CORE_ADDR addr)
1582{
1583 struct displaced_step_inferior_state *displaced
1584 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1585
1586 /* If checking the mode of displaced instruction in copy area. */
1587 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1588 && (displaced->step_copy == addr))
1589 return displaced->step_closure;
1590
1591 return NULL;
1592}
1593
fc1cf338 1594/* Remove the displaced stepping state of process PID. */
237fc4c9 1595
fc1cf338
PA
1596static void
1597remove_displaced_stepping_state (int pid)
1598{
1599 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1600
fc1cf338
PA
1601 gdb_assert (pid != 0);
1602
1603 it = displaced_step_inferior_states;
1604 prev_next_p = &displaced_step_inferior_states;
1605 while (it)
1606 {
1607 if (it->pid == pid)
1608 {
1609 *prev_next_p = it->next;
1610 xfree (it);
1611 return;
1612 }
1613
1614 prev_next_p = &it->next;
1615 it = *prev_next_p;
1616 }
1617}
1618
1619static void
1620infrun_inferior_exit (struct inferior *inf)
1621{
1622 remove_displaced_stepping_state (inf->pid);
1623}
237fc4c9 1624
fff08868
HZ
1625/* If ON, and the architecture supports it, GDB will use displaced
1626 stepping to step over breakpoints. If OFF, or if the architecture
1627 doesn't support it, GDB will instead use the traditional
1628 hold-and-step approach. If AUTO (which is the default), GDB will
1629 decide which technique to use to step over breakpoints depending on
1630 which of all-stop or non-stop mode is active --- displaced stepping
1631 in non-stop mode; hold-and-step in all-stop mode. */
1632
72d0e2c5 1633static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1634
237fc4c9
PA
1635static void
1636show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c,
1638 const char *value)
1639{
72d0e2c5 1640 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1641 fprintf_filtered (file,
1642 _("Debugger's willingness to use displaced stepping "
1643 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1644 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1645 else
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1649}
1650
fff08868 1651/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1652 over breakpoints of thread TP. */
fff08868 1653
237fc4c9 1654static int
3fc8eb30 1655use_displaced_stepping (struct thread_info *tp)
237fc4c9 1656{
3fc8eb30
PA
1657 struct regcache *regcache = get_thread_regcache (tp->ptid);
1658 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1659 struct displaced_step_inferior_state *displaced_state;
1660
1661 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1662
fbea99ea
PA
1663 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1664 && target_is_non_stop_p ())
72d0e2c5 1665 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1666 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1667 && find_record_target () == NULL
1668 && (displaced_state == NULL
1669 || !displaced_state->failed_before));
237fc4c9
PA
1670}
1671
1672/* Clean out any stray displaced stepping state. */
1673static void
fc1cf338 1674displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1675{
1676 /* Indicate that there is no cleanup pending. */
fc1cf338 1677 displaced->step_ptid = null_ptid;
237fc4c9 1678
fc1cf338 1679 if (displaced->step_closure)
237fc4c9 1680 {
fc1cf338
PA
1681 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1682 displaced->step_closure);
1683 displaced->step_closure = NULL;
237fc4c9
PA
1684 }
1685}
1686
1687static void
fc1cf338 1688displaced_step_clear_cleanup (void *arg)
237fc4c9 1689{
9a3c8263
SM
1690 struct displaced_step_inferior_state *state
1691 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1692
1693 displaced_step_clear (state);
237fc4c9
PA
1694}
1695
1696/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1697void
1698displaced_step_dump_bytes (struct ui_file *file,
1699 const gdb_byte *buf,
1700 size_t len)
1701{
1702 int i;
1703
1704 for (i = 0; i < len; i++)
1705 fprintf_unfiltered (file, "%02x ", buf[i]);
1706 fputs_unfiltered ("\n", file);
1707}
1708
1709/* Prepare to single-step, using displaced stepping.
1710
1711 Note that we cannot use displaced stepping when we have a signal to
1712 deliver. If we have a signal to deliver and an instruction to step
1713 over, then after the step, there will be no indication from the
1714 target whether the thread entered a signal handler or ignored the
1715 signal and stepped over the instruction successfully --- both cases
1716 result in a simple SIGTRAP. In the first case we mustn't do a
1717 fixup, and in the second case we must --- but we can't tell which.
1718 Comments in the code for 'random signals' in handle_inferior_event
1719 explain how we handle this case instead.
1720
1721 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1722 stepped now; 0 if displaced stepping this thread got queued; or -1
1723 if this instruction can't be displaced stepped. */
1724
237fc4c9 1725static int
3fc8eb30 1726displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1727{
ad53cd71 1728 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1729 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1730 struct regcache *regcache = get_thread_regcache (ptid);
1731 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1732 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1733 CORE_ADDR original, copy;
1734 ULONGEST len;
1735 struct displaced_step_closure *closure;
fc1cf338 1736 struct displaced_step_inferior_state *displaced;
9e529e1d 1737 int status;
237fc4c9
PA
1738
1739 /* We should never reach this function if the architecture does not
1740 support displaced stepping. */
1741 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1742
c2829269
PA
1743 /* Nor if the thread isn't meant to step over a breakpoint. */
1744 gdb_assert (tp->control.trap_expected);
1745
c1e36e3e
PA
1746 /* Disable range stepping while executing in the scratch pad. We
1747 want a single-step even if executing the displaced instruction in
1748 the scratch buffer lands within the stepping range (e.g., a
1749 jump/branch). */
1750 tp->control.may_range_step = 0;
1751
fc1cf338
PA
1752 /* We have to displaced step one thread at a time, as we only have
1753 access to a single scratch space per inferior. */
237fc4c9 1754
fc1cf338
PA
1755 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1756
1757 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1758 {
1759 /* Already waiting for a displaced step to finish. Defer this
1760 request and place in queue. */
237fc4c9
PA
1761
1762 if (debug_displaced)
1763 fprintf_unfiltered (gdb_stdlog,
c2829269 1764 "displaced: deferring step of %s\n",
237fc4c9
PA
1765 target_pid_to_str (ptid));
1766
c2829269 1767 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1768 return 0;
1769 }
1770 else
1771 {
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "displaced: stepping %s now\n",
1775 target_pid_to_str (ptid));
1776 }
1777
fc1cf338 1778 displaced_step_clear (displaced);
237fc4c9 1779
ad53cd71
PA
1780 old_cleanups = save_inferior_ptid ();
1781 inferior_ptid = ptid;
1782
515630c5 1783 original = regcache_read_pc (regcache);
237fc4c9
PA
1784
1785 copy = gdbarch_displaced_step_location (gdbarch);
1786 len = gdbarch_max_insn_length (gdbarch);
1787
d35ae833
PA
1788 if (breakpoint_in_range_p (aspace, copy, len))
1789 {
1790 /* There's a breakpoint set in the scratch pad location range
1791 (which is usually around the entry point). We'd either
1792 install it before resuming, which would overwrite/corrupt the
1793 scratch pad, or if it was already inserted, this displaced
1794 step would overwrite it. The latter is OK in the sense that
1795 we already assume that no thread is going to execute the code
1796 in the scratch pad range (after initial startup) anyway, but
1797 the former is unacceptable. Simply punt and fallback to
1798 stepping over this breakpoint in-line. */
1799 if (debug_displaced)
1800 {
1801 fprintf_unfiltered (gdb_stdlog,
1802 "displaced: breakpoint set in scratch pad. "
1803 "Stepping over breakpoint in-line instead.\n");
1804 }
1805
1806 do_cleanups (old_cleanups);
1807 return -1;
1808 }
1809
237fc4c9 1810 /* Save the original contents of the copy area. */
224c3ddb 1811 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1812 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1813 &displaced->step_saved_copy);
9e529e1d
JK
1814 status = target_read_memory (copy, displaced->step_saved_copy, len);
1815 if (status != 0)
1816 throw_error (MEMORY_ERROR,
1817 _("Error accessing memory address %s (%s) for "
1818 "displaced-stepping scratch space."),
1819 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1820 if (debug_displaced)
1821 {
5af949e3
UW
1822 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1823 paddress (gdbarch, copy));
fc1cf338
PA
1824 displaced_step_dump_bytes (gdb_stdlog,
1825 displaced->step_saved_copy,
1826 len);
237fc4c9
PA
1827 };
1828
1829 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1830 original, copy, regcache);
7f03bd92
PA
1831 if (closure == NULL)
1832 {
1833 /* The architecture doesn't know how or want to displaced step
1834 this instruction or instruction sequence. Fallback to
1835 stepping over the breakpoint in-line. */
1836 do_cleanups (old_cleanups);
1837 return -1;
1838 }
237fc4c9 1839
9f5a595d
UW
1840 /* Save the information we need to fix things up if the step
1841 succeeds. */
fc1cf338
PA
1842 displaced->step_ptid = ptid;
1843 displaced->step_gdbarch = gdbarch;
1844 displaced->step_closure = closure;
1845 displaced->step_original = original;
1846 displaced->step_copy = copy;
9f5a595d 1847
fc1cf338 1848 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1849
1850 /* Resume execution at the copy. */
515630c5 1851 regcache_write_pc (regcache, copy);
237fc4c9 1852
ad53cd71
PA
1853 discard_cleanups (ignore_cleanups);
1854
1855 do_cleanups (old_cleanups);
237fc4c9
PA
1856
1857 if (debug_displaced)
5af949e3
UW
1858 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1859 paddress (gdbarch, copy));
237fc4c9 1860
237fc4c9
PA
1861 return 1;
1862}
1863
3fc8eb30
PA
1864/* Wrapper for displaced_step_prepare_throw that disabled further
1865 attempts at displaced stepping if we get a memory error. */
1866
1867static int
1868displaced_step_prepare (ptid_t ptid)
1869{
1870 int prepared = -1;
1871
1872 TRY
1873 {
1874 prepared = displaced_step_prepare_throw (ptid);
1875 }
1876 CATCH (ex, RETURN_MASK_ERROR)
1877 {
1878 struct displaced_step_inferior_state *displaced_state;
1879
1880 if (ex.error != MEMORY_ERROR)
1881 throw_exception (ex);
1882
1883 if (debug_infrun)
1884 {
1885 fprintf_unfiltered (gdb_stdlog,
1886 "infrun: disabling displaced stepping: %s\n",
1887 ex.message);
1888 }
1889
1890 /* Be verbose if "set displaced-stepping" is "on", silent if
1891 "auto". */
1892 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1893 {
fd7dcb94 1894 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1895 ex.message);
1896 }
1897
1898 /* Disable further displaced stepping attempts. */
1899 displaced_state
1900 = get_displaced_stepping_state (ptid_get_pid (ptid));
1901 displaced_state->failed_before = 1;
1902 }
1903 END_CATCH
1904
1905 return prepared;
1906}
1907
237fc4c9 1908static void
3e43a32a
MS
1909write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1910 const gdb_byte *myaddr, int len)
237fc4c9
PA
1911{
1912 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1913
237fc4c9
PA
1914 inferior_ptid = ptid;
1915 write_memory (memaddr, myaddr, len);
1916 do_cleanups (ptid_cleanup);
1917}
1918
e2d96639
YQ
1919/* Restore the contents of the copy area for thread PTID. */
1920
1921static void
1922displaced_step_restore (struct displaced_step_inferior_state *displaced,
1923 ptid_t ptid)
1924{
1925 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1926
1927 write_memory_ptid (ptid, displaced->step_copy,
1928 displaced->step_saved_copy, len);
1929 if (debug_displaced)
1930 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1931 target_pid_to_str (ptid),
1932 paddress (displaced->step_gdbarch,
1933 displaced->step_copy));
1934}
1935
372316f1
PA
1936/* If we displaced stepped an instruction successfully, adjust
1937 registers and memory to yield the same effect the instruction would
1938 have had if we had executed it at its original address, and return
1939 1. If the instruction didn't complete, relocate the PC and return
1940 -1. If the thread wasn't displaced stepping, return 0. */
1941
1942static int
2ea28649 1943displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1944{
1945 struct cleanup *old_cleanups;
fc1cf338
PA
1946 struct displaced_step_inferior_state *displaced
1947 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1948 int ret;
fc1cf338
PA
1949
1950 /* Was any thread of this process doing a displaced step? */
1951 if (displaced == NULL)
372316f1 1952 return 0;
237fc4c9
PA
1953
1954 /* Was this event for the pid we displaced? */
fc1cf338
PA
1955 if (ptid_equal (displaced->step_ptid, null_ptid)
1956 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1957 return 0;
237fc4c9 1958
fc1cf338 1959 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1960
e2d96639 1961 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1962
cb71640d
PA
1963 /* Fixup may need to read memory/registers. Switch to the thread
1964 that we're fixing up. Also, target_stopped_by_watchpoint checks
1965 the current thread. */
1966 switch_to_thread (event_ptid);
1967
237fc4c9 1968 /* Did the instruction complete successfully? */
cb71640d
PA
1969 if (signal == GDB_SIGNAL_TRAP
1970 && !(target_stopped_by_watchpoint ()
1971 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1972 || target_have_steppable_watchpoint)))
237fc4c9
PA
1973 {
1974 /* Fix up the resulting state. */
fc1cf338
PA
1975 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1976 displaced->step_closure,
1977 displaced->step_original,
1978 displaced->step_copy,
1979 get_thread_regcache (displaced->step_ptid));
372316f1 1980 ret = 1;
237fc4c9
PA
1981 }
1982 else
1983 {
1984 /* Since the instruction didn't complete, all we can do is
1985 relocate the PC. */
515630c5
UW
1986 struct regcache *regcache = get_thread_regcache (event_ptid);
1987 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1988
fc1cf338 1989 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1990 regcache_write_pc (regcache, pc);
372316f1 1991 ret = -1;
237fc4c9
PA
1992 }
1993
1994 do_cleanups (old_cleanups);
1995
fc1cf338 1996 displaced->step_ptid = null_ptid;
372316f1
PA
1997
1998 return ret;
c2829269 1999}
1c5cfe86 2000
4d9d9d04
PA
2001/* Data to be passed around while handling an event. This data is
2002 discarded between events. */
2003struct execution_control_state
2004{
2005 ptid_t ptid;
2006 /* The thread that got the event, if this was a thread event; NULL
2007 otherwise. */
2008 struct thread_info *event_thread;
2009
2010 struct target_waitstatus ws;
2011 int stop_func_filled_in;
2012 CORE_ADDR stop_func_start;
2013 CORE_ADDR stop_func_end;
2014 const char *stop_func_name;
2015 int wait_some_more;
2016
2017 /* True if the event thread hit the single-step breakpoint of
2018 another thread. Thus the event doesn't cause a stop, the thread
2019 needs to be single-stepped past the single-step breakpoint before
2020 we can switch back to the original stepping thread. */
2021 int hit_singlestep_breakpoint;
2022};
2023
2024/* Clear ECS and set it to point at TP. */
c2829269
PA
2025
2026static void
4d9d9d04
PA
2027reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2028{
2029 memset (ecs, 0, sizeof (*ecs));
2030 ecs->event_thread = tp;
2031 ecs->ptid = tp->ptid;
2032}
2033
2034static void keep_going_pass_signal (struct execution_control_state *ecs);
2035static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2036static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2037static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2038static void stop_all_threads (void);
4d9d9d04
PA
2039
2040/* Are there any pending step-over requests? If so, run all we can
2041 now and return true. Otherwise, return false. */
2042
2043static int
c2829269
PA
2044start_step_over (void)
2045{
2046 struct thread_info *tp, *next;
2047
372316f1
PA
2048 /* Don't start a new step-over if we already have an in-line
2049 step-over operation ongoing. */
2050 if (step_over_info_valid_p ())
2051 return 0;
2052
c2829269 2053 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2054 {
4d9d9d04
PA
2055 struct execution_control_state ecss;
2056 struct execution_control_state *ecs = &ecss;
372316f1
PA
2057 enum step_over_what step_what;
2058 int must_be_in_line;
c2829269
PA
2059
2060 next = thread_step_over_chain_next (tp);
237fc4c9 2061
c2829269
PA
2062 /* If this inferior already has a displaced step in process,
2063 don't start a new one. */
4d9d9d04 2064 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2065 continue;
2066
372316f1
PA
2067 step_what = thread_still_needs_step_over (tp);
2068 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2069 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2070 && !use_displaced_stepping (tp)));
372316f1
PA
2071
2072 /* We currently stop all threads of all processes to step-over
2073 in-line. If we need to start a new in-line step-over, let
2074 any pending displaced steps finish first. */
2075 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2076 return 0;
2077
c2829269
PA
2078 thread_step_over_chain_remove (tp);
2079
2080 if (step_over_queue_head == NULL)
2081 {
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: step-over queue now empty\n");
2085 }
2086
372316f1
PA
2087 if (tp->control.trap_expected
2088 || tp->resumed
2089 || tp->executing)
ad53cd71 2090 {
4d9d9d04
PA
2091 internal_error (__FILE__, __LINE__,
2092 "[%s] has inconsistent state: "
372316f1 2093 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2094 target_pid_to_str (tp->ptid),
2095 tp->control.trap_expected,
372316f1 2096 tp->resumed,
4d9d9d04 2097 tp->executing);
ad53cd71 2098 }
1c5cfe86 2099
4d9d9d04
PA
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "infrun: resuming [%s] for step-over\n",
2103 target_pid_to_str (tp->ptid));
2104
2105 /* keep_going_pass_signal skips the step-over if the breakpoint
2106 is no longer inserted. In all-stop, we want to keep looking
2107 for a thread that needs a step-over instead of resuming TP,
2108 because we wouldn't be able to resume anything else until the
2109 target stops again. In non-stop, the resume always resumes
2110 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2111 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2112 continue;
8550d3b3 2113
4d9d9d04
PA
2114 switch_to_thread (tp->ptid);
2115 reset_ecs (ecs, tp);
2116 keep_going_pass_signal (ecs);
1c5cfe86 2117
4d9d9d04
PA
2118 if (!ecs->wait_some_more)
2119 error (_("Command aborted."));
1c5cfe86 2120
372316f1
PA
2121 gdb_assert (tp->resumed);
2122
2123 /* If we started a new in-line step-over, we're done. */
2124 if (step_over_info_valid_p ())
2125 {
2126 gdb_assert (tp->control.trap_expected);
2127 return 1;
2128 }
2129
fbea99ea 2130 if (!target_is_non_stop_p ())
4d9d9d04
PA
2131 {
2132 /* On all-stop, shouldn't have resumed unless we needed a
2133 step over. */
2134 gdb_assert (tp->control.trap_expected
2135 || tp->step_after_step_resume_breakpoint);
2136
2137 /* With remote targets (at least), in all-stop, we can't
2138 issue any further remote commands until the program stops
2139 again. */
2140 return 1;
1c5cfe86 2141 }
c2829269 2142
4d9d9d04
PA
2143 /* Either the thread no longer needed a step-over, or a new
2144 displaced stepping sequence started. Even in the latter
2145 case, continue looking. Maybe we can also start another
2146 displaced step on a thread of other process. */
237fc4c9 2147 }
4d9d9d04
PA
2148
2149 return 0;
237fc4c9
PA
2150}
2151
5231c1fd
PA
2152/* Update global variables holding ptids to hold NEW_PTID if they were
2153 holding OLD_PTID. */
2154static void
2155infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2156{
2157 struct displaced_step_request *it;
fc1cf338 2158 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2159
2160 if (ptid_equal (inferior_ptid, old_ptid))
2161 inferior_ptid = new_ptid;
2162
fc1cf338
PA
2163 for (displaced = displaced_step_inferior_states;
2164 displaced;
2165 displaced = displaced->next)
2166 {
2167 if (ptid_equal (displaced->step_ptid, old_ptid))
2168 displaced->step_ptid = new_ptid;
fc1cf338 2169 }
5231c1fd
PA
2170}
2171
237fc4c9
PA
2172\f
2173/* Resuming. */
c906108c
SS
2174
2175/* Things to clean up if we QUIT out of resume (). */
c906108c 2176static void
74b7792f 2177resume_cleanups (void *ignore)
c906108c 2178{
34b7e8a6
PA
2179 if (!ptid_equal (inferior_ptid, null_ptid))
2180 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2181
c906108c
SS
2182 normal_stop ();
2183}
2184
53904c9e
AC
2185static const char schedlock_off[] = "off";
2186static const char schedlock_on[] = "on";
2187static const char schedlock_step[] = "step";
f2665db5 2188static const char schedlock_replay[] = "replay";
40478521 2189static const char *const scheduler_enums[] = {
ef346e04
AC
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
f2665db5 2193 schedlock_replay,
ef346e04
AC
2194 NULL
2195};
f2665db5 2196static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2197static void
2198show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200{
3e43a32a
MS
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
920d2a44
AC
2204 value);
2205}
c906108c
SS
2206
2207static void
96baa820 2208set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2209{
eefe576e
AC
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
c906108c
SS
2215}
2216
d4db2f36
PA
2217/* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220int sched_multi = 0;
2221
2facfe5c
DD
2222/* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228static int
2229maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230{
2231 int hw_step = 1;
2232
f02253f1
HZ
2233 if (execution_direction == EXEC_FORWARD
2234 && gdbarch_software_single_step_p (gdbarch)
99e40580 2235 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2236 {
99e40580 2237 hw_step = 0;
2facfe5c
DD
2238 }
2239 return hw_step;
2240}
c906108c 2241
f3263aa4
PA
2242/* See infrun.h. */
2243
09cee04b
PA
2244ptid_t
2245user_visible_resume_ptid (int step)
2246{
f3263aa4 2247 ptid_t resume_ptid;
09cee04b 2248
09cee04b
PA
2249 if (non_stop)
2250 {
2251 /* With non-stop mode on, threads are always handled
2252 individually. */
2253 resume_ptid = inferior_ptid;
2254 }
2255 else if ((scheduler_mode == schedlock_on)
03d46957 2256 || (scheduler_mode == schedlock_step && step))
09cee04b 2257 {
f3263aa4
PA
2258 /* User-settable 'scheduler' mode requires solo thread
2259 resume. */
09cee04b
PA
2260 resume_ptid = inferior_ptid;
2261 }
f2665db5
MM
2262 else if ((scheduler_mode == schedlock_replay)
2263 && target_record_will_replay (minus_one_ptid, execution_direction))
2264 {
2265 /* User-settable 'scheduler' mode requires solo thread resume in replay
2266 mode. */
2267 resume_ptid = inferior_ptid;
2268 }
f3263aa4
PA
2269 else if (!sched_multi && target_supports_multi_process ())
2270 {
2271 /* Resume all threads of the current process (and none of other
2272 processes). */
2273 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2274 }
2275 else
2276 {
2277 /* Resume all threads of all processes. */
2278 resume_ptid = RESUME_ALL;
2279 }
09cee04b
PA
2280
2281 return resume_ptid;
2282}
2283
fbea99ea
PA
2284/* Return a ptid representing the set of threads that we will resume,
2285 in the perspective of the target, assuming run control handling
2286 does not require leaving some threads stopped (e.g., stepping past
2287 breakpoint). USER_STEP indicates whether we're about to start the
2288 target for a stepping command. */
2289
2290static ptid_t
2291internal_resume_ptid (int user_step)
2292{
2293 /* In non-stop, we always control threads individually. Note that
2294 the target may always work in non-stop mode even with "set
2295 non-stop off", in which case user_visible_resume_ptid could
2296 return a wildcard ptid. */
2297 if (target_is_non_stop_p ())
2298 return inferior_ptid;
2299 else
2300 return user_visible_resume_ptid (user_step);
2301}
2302
64ce06e4
PA
2303/* Wrapper for target_resume, that handles infrun-specific
2304 bookkeeping. */
2305
2306static void
2307do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2308{
2309 struct thread_info *tp = inferior_thread ();
2310
2311 /* Install inferior's terminal modes. */
2312 target_terminal_inferior ();
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
8f572e5c
PA
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
2338 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
2344}
2345
c906108c
SS
2346/* Resume the inferior, but allow a QUIT. This is useful if the user
2347 wants to interrupt some lengthy single-stepping operation
2348 (for child processes, the SIGINT goes to the inferior, and so
2349 we get a SIGINT random_signal, but for remote debugging and perhaps
2350 other targets, that's not true).
2351
c906108c
SS
2352 SIG is the signal to give the inferior (zero for none). */
2353void
64ce06e4 2354resume (enum gdb_signal sig)
c906108c 2355{
74b7792f 2356 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2357 struct regcache *regcache = get_current_regcache ();
2358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2359 struct thread_info *tp = inferior_thread ();
515630c5 2360 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2361 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2362 ptid_t resume_ptid;
856e7dd6
PA
2363 /* This represents the user's step vs continue request. When
2364 deciding whether "set scheduler-locking step" applies, it's the
2365 user's intention that counts. */
2366 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2367 /* This represents what we'll actually request the target to do.
2368 This can decay from a step to a continue, if e.g., we need to
2369 implement single-stepping with breakpoints (software
2370 single-step). */
6b403daa 2371 int step;
c7e8a53c 2372
c2829269
PA
2373 gdb_assert (!thread_is_in_step_over_chain (tp));
2374
c906108c
SS
2375 QUIT;
2376
372316f1
PA
2377 if (tp->suspend.waitstatus_pending_p)
2378 {
2379 if (debug_infrun)
2380 {
2381 char *statstr;
2382
2383 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2384 fprintf_unfiltered (gdb_stdlog,
2385 "infrun: resume: thread %s has pending wait status %s "
2386 "(currently_stepping=%d).\n",
2387 target_pid_to_str (tp->ptid), statstr,
2388 currently_stepping (tp));
2389 xfree (statstr);
2390 }
2391
2392 tp->resumed = 1;
2393
2394 /* FIXME: What should we do if we are supposed to resume this
2395 thread with a signal? Maybe we should maintain a queue of
2396 pending signals to deliver. */
2397 if (sig != GDB_SIGNAL_0)
2398 {
fd7dcb94 2399 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2400 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2401 }
2402
2403 tp->suspend.stop_signal = GDB_SIGNAL_0;
2404 discard_cleanups (old_cleanups);
2405
2406 if (target_can_async_p ())
2407 target_async (1);
2408 return;
2409 }
2410
2411 tp->stepped_breakpoint = 0;
2412
6b403daa
PA
2413 /* Depends on stepped_breakpoint. */
2414 step = currently_stepping (tp);
2415
74609e71
YQ
2416 if (current_inferior ()->waiting_for_vfork_done)
2417 {
48f9886d
PA
2418 /* Don't try to single-step a vfork parent that is waiting for
2419 the child to get out of the shared memory region (by exec'ing
2420 or exiting). This is particularly important on software
2421 single-step archs, as the child process would trip on the
2422 software single step breakpoint inserted for the parent
2423 process. Since the parent will not actually execute any
2424 instruction until the child is out of the shared region (such
2425 are vfork's semantics), it is safe to simply continue it.
2426 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2427 the parent, and tell it to `keep_going', which automatically
2428 re-sets it stepping. */
74609e71
YQ
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "infrun: resume : clear step\n");
a09dd441 2432 step = 0;
74609e71
YQ
2433 }
2434
527159b7 2435 if (debug_infrun)
237fc4c9 2436 fprintf_unfiltered (gdb_stdlog,
c9737c08 2437 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2438 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2439 step, gdb_signal_to_symbol_string (sig),
2440 tp->control.trap_expected,
0d9a9a5f
PA
2441 target_pid_to_str (inferior_ptid),
2442 paddress (gdbarch, pc));
c906108c 2443
c2c6d25f
JM
2444 /* Normally, by the time we reach `resume', the breakpoints are either
2445 removed or inserted, as appropriate. The exception is if we're sitting
2446 at a permanent breakpoint; we need to step over it, but permanent
2447 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2448 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2449 {
af48d08f
PA
2450 if (sig != GDB_SIGNAL_0)
2451 {
2452 /* We have a signal to pass to the inferior. The resume
2453 may, or may not take us to the signal handler. If this
2454 is a step, we'll need to stop in the signal handler, if
2455 there's one, (if the target supports stepping into
2456 handlers), or in the next mainline instruction, if
2457 there's no handler. If this is a continue, we need to be
2458 sure to run the handler with all breakpoints inserted.
2459 In all cases, set a breakpoint at the current address
2460 (where the handler returns to), and once that breakpoint
2461 is hit, resume skipping the permanent breakpoint. If
2462 that breakpoint isn't hit, then we've stepped into the
2463 signal handler (or hit some other event). We'll delete
2464 the step-resume breakpoint then. */
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume: skipping permanent breakpoint, "
2469 "deliver signal first\n");
2470
2471 clear_step_over_info ();
2472 tp->control.trap_expected = 0;
2473
2474 if (tp->control.step_resume_breakpoint == NULL)
2475 {
2476 /* Set a "high-priority" step-resume, as we don't want
2477 user breakpoints at PC to trigger (again) when this
2478 hits. */
2479 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2480 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2481
2482 tp->step_after_step_resume_breakpoint = step;
2483 }
2484
2485 insert_breakpoints ();
2486 }
2487 else
2488 {
2489 /* There's no signal to pass, we can go ahead and skip the
2490 permanent breakpoint manually. */
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint\n");
2494 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions. */
2497 pc = regcache_read_pc (regcache);
2498
2499 if (step)
2500 {
2501 /* We've already advanced the PC, so the stepping part
2502 is done. Now we need to arrange for a trap to be
2503 reported to handle_inferior_event. Set a breakpoint
2504 at the current PC, and run to it. Don't update
2505 prev_pc, because if we end in
44a1ee51
PA
2506 switch_back_to_stepped_thread, we want the "expected
2507 thread advanced also" branch to be taken. IOW, we
2508 don't want this thread to step further from PC
af48d08f 2509 (overstep). */
1ac806b8 2510 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2511 insert_single_step_breakpoint (gdbarch, aspace, pc);
2512 insert_breakpoints ();
2513
fbea99ea 2514 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2515 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2516 discard_cleanups (old_cleanups);
372316f1 2517 tp->resumed = 1;
af48d08f
PA
2518 return;
2519 }
2520 }
6d350bb5 2521 }
c2c6d25f 2522
c1e36e3e
PA
2523 /* If we have a breakpoint to step over, make sure to do a single
2524 step only. Same if we have software watchpoints. */
2525 if (tp->control.trap_expected || bpstat_should_step ())
2526 tp->control.may_range_step = 0;
2527
237fc4c9
PA
2528 /* If enabled, step over breakpoints by executing a copy of the
2529 instruction at a different address.
2530
2531 We can't use displaced stepping when we have a signal to deliver;
2532 the comments for displaced_step_prepare explain why. The
2533 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2534 signals' explain what we do instead.
2535
2536 We can't use displaced stepping when we are waiting for vfork_done
2537 event, displaced stepping breaks the vfork child similarly as single
2538 step software breakpoint. */
3fc8eb30
PA
2539 if (tp->control.trap_expected
2540 && use_displaced_stepping (tp)
cb71640d 2541 && !step_over_info_valid_p ()
a493e3e2 2542 && sig == GDB_SIGNAL_0
74609e71 2543 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2544 {
3fc8eb30 2545 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2546
3fc8eb30 2547 if (prepared == 0)
d56b7306 2548 {
4d9d9d04
PA
2549 if (debug_infrun)
2550 fprintf_unfiltered (gdb_stdlog,
2551 "Got placed in step-over queue\n");
2552
2553 tp->control.trap_expected = 0;
d56b7306
VP
2554 discard_cleanups (old_cleanups);
2555 return;
2556 }
3fc8eb30
PA
2557 else if (prepared < 0)
2558 {
2559 /* Fallback to stepping over the breakpoint in-line. */
2560
2561 if (target_is_non_stop_p ())
2562 stop_all_threads ();
2563
2564 set_step_over_info (get_regcache_aspace (regcache),
2565 regcache_read_pc (regcache), 0);
2566
2567 step = maybe_software_singlestep (gdbarch, pc);
2568
2569 insert_breakpoints ();
2570 }
2571 else if (prepared > 0)
2572 {
2573 struct displaced_step_inferior_state *displaced;
99e40580 2574
3fc8eb30
PA
2575 /* Update pc to reflect the new address from which we will
2576 execute instructions due to displaced stepping. */
2577 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2578
3fc8eb30
PA
2579 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2580 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2581 displaced->step_closure);
2582 }
237fc4c9
PA
2583 }
2584
2facfe5c 2585 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2586 else if (step)
2facfe5c 2587 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2588
30852783
UW
2589 /* Currently, our software single-step implementation leads to different
2590 results than hardware single-stepping in one situation: when stepping
2591 into delivering a signal which has an associated signal handler,
2592 hardware single-step will stop at the first instruction of the handler,
2593 while software single-step will simply skip execution of the handler.
2594
2595 For now, this difference in behavior is accepted since there is no
2596 easy way to actually implement single-stepping into a signal handler
2597 without kernel support.
2598
2599 However, there is one scenario where this difference leads to follow-on
2600 problems: if we're stepping off a breakpoint by removing all breakpoints
2601 and then single-stepping. In this case, the software single-step
2602 behavior means that even if there is a *breakpoint* in the signal
2603 handler, GDB still would not stop.
2604
2605 Fortunately, we can at least fix this particular issue. We detect
2606 here the case where we are about to deliver a signal while software
2607 single-stepping with breakpoints removed. In this situation, we
2608 revert the decisions to remove all breakpoints and insert single-
2609 step breakpoints, and instead we install a step-resume breakpoint
2610 at the current address, deliver the signal without stepping, and
2611 once we arrive back at the step-resume breakpoint, actually step
2612 over the breakpoint we originally wanted to step over. */
34b7e8a6 2613 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2614 && sig != GDB_SIGNAL_0
2615 && step_over_info_valid_p ())
30852783
UW
2616 {
2617 /* If we have nested signals or a pending signal is delivered
2618 immediately after a handler returns, might might already have
2619 a step-resume breakpoint set on the earlier handler. We cannot
2620 set another step-resume breakpoint; just continue on until the
2621 original breakpoint is hit. */
2622 if (tp->control.step_resume_breakpoint == NULL)
2623 {
2c03e5be 2624 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2625 tp->step_after_step_resume_breakpoint = 1;
2626 }
2627
34b7e8a6 2628 delete_single_step_breakpoints (tp);
30852783 2629
31e77af2 2630 clear_step_over_info ();
30852783 2631 tp->control.trap_expected = 0;
31e77af2
PA
2632
2633 insert_breakpoints ();
30852783
UW
2634 }
2635
b0f16a3e
SM
2636 /* If STEP is set, it's a request to use hardware stepping
2637 facilities. But in that case, we should never
2638 use singlestep breakpoint. */
34b7e8a6 2639 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2640
fbea99ea 2641 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2642 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2643 && tp->control.trap_expected)
2644 {
2645 /* We're allowing a thread to run past a breakpoint it has
2646 hit, by single-stepping the thread with the breakpoint
2647 removed. In which case, we need to single-step only this
2648 thread, and keep others stopped, as they can miss this
2649 breakpoint if allowed to run. */
2650 resume_ptid = inferior_ptid;
2651 }
fbea99ea
PA
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2654
7f5ef605
PA
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2657 {
372316f1
PA
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
372316f1
PA
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
7f5ef605
PA
2690
2691 tp->stepped_breakpoint = 1;
2692
b0f16a3e
SM
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
7f5ef605 2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2697 step = 0;
2698 }
ef5cf84e 2699
b0f16a3e 2700 if (debug_displaced
cb71640d 2701 && tp->control.trap_expected
3fc8eb30 2702 && use_displaced_stepping (tp)
cb71640d 2703 && !step_over_info_valid_p ())
b0f16a3e 2704 {
d9b67d9f 2705 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2706 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
237fc4c9 2715
b0f16a3e
SM
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
c1e36e3e 2725
64ce06e4 2726 do_target_resume (resume_ptid, step, sig);
372316f1 2727 tp->resumed = 1;
c906108c
SS
2728 discard_cleanups (old_cleanups);
2729}
2730\f
237fc4c9 2731/* Proceeding. */
c906108c 2732
4c2f2a79
PA
2733/* See infrun.h. */
2734
2735/* Counter that tracks number of user visible stops. This can be used
2736 to tell whether a command has proceeded the inferior past the
2737 current location. This allows e.g., inferior function calls in
2738 breakpoint commands to not interrupt the command list. When the
2739 call finishes successfully, the inferior is standing at the same
2740 breakpoint as if nothing happened (and so we don't call
2741 normal_stop). */
2742static ULONGEST current_stop_id;
2743
2744/* See infrun.h. */
2745
2746ULONGEST
2747get_stop_id (void)
2748{
2749 return current_stop_id;
2750}
2751
2752/* Called when we report a user visible stop. */
2753
2754static void
2755new_stop_id (void)
2756{
2757 current_stop_id++;
2758}
2759
c906108c
SS
2760/* Clear out all variables saying what to do when inferior is continued.
2761 First do this, then set the ones you want, then call `proceed'. */
2762
a7212384
UW
2763static void
2764clear_proceed_status_thread (struct thread_info *tp)
c906108c 2765{
a7212384
UW
2766 if (debug_infrun)
2767 fprintf_unfiltered (gdb_stdlog,
2768 "infrun: clear_proceed_status_thread (%s)\n",
2769 target_pid_to_str (tp->ptid));
d6b48e9c 2770
372316f1
PA
2771 /* If we're starting a new sequence, then the previous finished
2772 single-step is no longer relevant. */
2773 if (tp->suspend.waitstatus_pending_p)
2774 {
2775 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2776 {
2777 if (debug_infrun)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "infrun: clear_proceed_status: pending "
2780 "event of %s was a finished step. "
2781 "Discarding.\n",
2782 target_pid_to_str (tp->ptid));
2783
2784 tp->suspend.waitstatus_pending_p = 0;
2785 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2786 }
2787 else if (debug_infrun)
2788 {
2789 char *statstr;
2790
2791 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread: thread %s "
2794 "has pending wait status %s "
2795 "(currently_stepping=%d).\n",
2796 target_pid_to_str (tp->ptid), statstr,
2797 currently_stepping (tp));
2798 xfree (statstr);
2799 }
2800 }
2801
70509625
PA
2802 /* If this signal should not be seen by program, give it zero.
2803 Used for debugging signals. */
2804 if (!signal_pass_state (tp->suspend.stop_signal))
2805 tp->suspend.stop_signal = GDB_SIGNAL_0;
2806
243a9253
PA
2807 thread_fsm_delete (tp->thread_fsm);
2808 tp->thread_fsm = NULL;
2809
16c381f0
JK
2810 tp->control.trap_expected = 0;
2811 tp->control.step_range_start = 0;
2812 tp->control.step_range_end = 0;
c1e36e3e 2813 tp->control.may_range_step = 0;
16c381f0
JK
2814 tp->control.step_frame_id = null_frame_id;
2815 tp->control.step_stack_frame_id = null_frame_id;
2816 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2817 tp->control.step_start_function = NULL;
a7212384 2818 tp->stop_requested = 0;
4e1c45ea 2819
16c381f0 2820 tp->control.stop_step = 0;
32400beb 2821
16c381f0 2822 tp->control.proceed_to_finish = 0;
414c69f7 2823
17b2616c 2824 tp->control.command_interp = NULL;
856e7dd6 2825 tp->control.stepping_command = 0;
17b2616c 2826
a7212384 2827 /* Discard any remaining commands or status from previous stop. */
16c381f0 2828 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2829}
32400beb 2830
a7212384 2831void
70509625 2832clear_proceed_status (int step)
a7212384 2833{
f2665db5
MM
2834 /* With scheduler-locking replay, stop replaying other threads if we're
2835 not replaying the user-visible resume ptid.
2836
2837 This is a convenience feature to not require the user to explicitly
2838 stop replaying the other threads. We're assuming that the user's
2839 intent is to resume tracing the recorded process. */
2840 if (!non_stop && scheduler_mode == schedlock_replay
2841 && target_record_is_replaying (minus_one_ptid)
2842 && !target_record_will_replay (user_visible_resume_ptid (step),
2843 execution_direction))
2844 target_record_stop_replaying ();
2845
6c95b8df
PA
2846 if (!non_stop)
2847 {
70509625
PA
2848 struct thread_info *tp;
2849 ptid_t resume_ptid;
2850
2851 resume_ptid = user_visible_resume_ptid (step);
2852
2853 /* In all-stop mode, delete the per-thread status of all threads
2854 we're about to resume, implicitly and explicitly. */
2855 ALL_NON_EXITED_THREADS (tp)
2856 {
2857 if (!ptid_match (tp->ptid, resume_ptid))
2858 continue;
2859 clear_proceed_status_thread (tp);
2860 }
6c95b8df
PA
2861 }
2862
a7212384
UW
2863 if (!ptid_equal (inferior_ptid, null_ptid))
2864 {
2865 struct inferior *inferior;
2866
2867 if (non_stop)
2868 {
6c95b8df
PA
2869 /* If in non-stop mode, only delete the per-thread status of
2870 the current thread. */
a7212384
UW
2871 clear_proceed_status_thread (inferior_thread ());
2872 }
6c95b8df 2873
d6b48e9c 2874 inferior = current_inferior ();
16c381f0 2875 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2876 }
2877
f3b1572e 2878 observer_notify_about_to_proceed ();
c906108c
SS
2879}
2880
99619bea
PA
2881/* Returns true if TP is still stopped at a breakpoint that needs
2882 stepping-over in order to make progress. If the breakpoint is gone
2883 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2884
2885static int
6c4cfb24 2886thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2887{
2888 if (tp->stepping_over_breakpoint)
2889 {
2890 struct regcache *regcache = get_thread_regcache (tp->ptid);
2891
2892 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2893 regcache_read_pc (regcache))
2894 == ordinary_breakpoint_here)
99619bea
PA
2895 return 1;
2896
2897 tp->stepping_over_breakpoint = 0;
2898 }
2899
2900 return 0;
2901}
2902
6c4cfb24
PA
2903/* Check whether thread TP still needs to start a step-over in order
2904 to make progress when resumed. Returns an bitwise or of enum
2905 step_over_what bits, indicating what needs to be stepped over. */
2906
2907static int
2908thread_still_needs_step_over (struct thread_info *tp)
2909{
2910 struct inferior *inf = find_inferior_ptid (tp->ptid);
2911 int what = 0;
2912
2913 if (thread_still_needs_step_over_bp (tp))
2914 what |= STEP_OVER_BREAKPOINT;
2915
2916 if (tp->stepping_over_watchpoint
2917 && !target_have_steppable_watchpoint)
2918 what |= STEP_OVER_WATCHPOINT;
2919
2920 return what;
2921}
2922
483805cf
PA
2923/* Returns true if scheduler locking applies. STEP indicates whether
2924 we're about to do a step/next-like command to a thread. */
2925
2926static int
856e7dd6 2927schedlock_applies (struct thread_info *tp)
483805cf
PA
2928{
2929 return (scheduler_mode == schedlock_on
2930 || (scheduler_mode == schedlock_step
f2665db5
MM
2931 && tp->control.stepping_command)
2932 || (scheduler_mode == schedlock_replay
2933 && target_record_will_replay (minus_one_ptid,
2934 execution_direction)));
483805cf
PA
2935}
2936
c906108c
SS
2937/* Basic routine for continuing the program in various fashions.
2938
2939 ADDR is the address to resume at, or -1 for resume where stopped.
2940 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2941 or -1 for act according to how it stopped.
c906108c 2942 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2943 -1 means return after that and print nothing.
2944 You should probably set various step_... variables
2945 before calling here, if you are stepping.
c906108c
SS
2946
2947 You should call clear_proceed_status before calling proceed. */
2948
2949void
64ce06e4 2950proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2951{
e58b0e63
PA
2952 struct regcache *regcache;
2953 struct gdbarch *gdbarch;
4e1c45ea 2954 struct thread_info *tp;
e58b0e63 2955 CORE_ADDR pc;
6c95b8df 2956 struct address_space *aspace;
4d9d9d04
PA
2957 ptid_t resume_ptid;
2958 struct execution_control_state ecss;
2959 struct execution_control_state *ecs = &ecss;
2960 struct cleanup *old_chain;
2961 int started;
c906108c 2962
e58b0e63
PA
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
f148b27e
PA
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2972 return;
2973 }
2974
842951eb
PA
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
e58b0e63
PA
2978 regcache = get_current_regcache ();
2979 gdbarch = get_regcache_arch (regcache);
6c95b8df 2980 aspace = get_regcache_aspace (regcache);
e58b0e63 2981 pc = regcache_read_pc (regcache);
2adfaa28 2982 tp = inferior_thread ();
e58b0e63 2983
99619bea
PA
2984 /* Fill in with reasonable starting values. */
2985 init_thread_stepping_state (tp);
2986
c2829269
PA
2987 gdb_assert (!thread_is_in_step_over_chain (tp));
2988
2acceee2 2989 if (addr == (CORE_ADDR) -1)
c906108c 2990 {
af48d08f
PA
2991 if (pc == stop_pc
2992 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2993 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2994 /* There is a breakpoint at the address we will resume at,
2995 step one instruction before inserting breakpoints so that
2996 we do not stop right away (and report a second hit at this
b2175913
MS
2997 breakpoint).
2998
2999 Note, we don't do this in reverse, because we won't
3000 actually be executing the breakpoint insn anyway.
3001 We'll be (un-)executing the previous instruction. */
99619bea 3002 tp->stepping_over_breakpoint = 1;
515630c5
UW
3003 else if (gdbarch_single_step_through_delay_p (gdbarch)
3004 && gdbarch_single_step_through_delay (gdbarch,
3005 get_current_frame ()))
3352ef37
AC
3006 /* We stepped onto an instruction that needs to be stepped
3007 again before re-inserting the breakpoint, do so. */
99619bea 3008 tp->stepping_over_breakpoint = 1;
c906108c
SS
3009 }
3010 else
3011 {
515630c5 3012 regcache_write_pc (regcache, addr);
c906108c
SS
3013 }
3014
70509625
PA
3015 if (siggnal != GDB_SIGNAL_DEFAULT)
3016 tp->suspend.stop_signal = siggnal;
3017
17b2616c
PA
3018 /* Record the interpreter that issued the execution command that
3019 caused this thread to resume. If the top level interpreter is
3020 MI/async, and the execution command was a CLI command
3021 (next/step/etc.), we'll want to print stop event output to the MI
3022 console channel (the stepped-to line, etc.), as if the user
3023 entered the execution command on a real GDB console. */
4d9d9d04
PA
3024 tp->control.command_interp = command_interp ();
3025
3026 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3027
3028 /* If an exception is thrown from this point on, make sure to
3029 propagate GDB's knowledge of the executing state to the
3030 frontend/user running state. */
3031 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3032
3033 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3034 threads (e.g., we might need to set threads stepping over
3035 breakpoints first), from the user/frontend's point of view, all
3036 threads in RESUME_PTID are now running. Unless we're calling an
3037 inferior function, as in that case we pretend the inferior
3038 doesn't run at all. */
3039 if (!tp->control.in_infcall)
3040 set_running (resume_ptid, 1);
17b2616c 3041
527159b7 3042 if (debug_infrun)
8a9de0e4 3043 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3044 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3045 paddress (gdbarch, addr),
64ce06e4 3046 gdb_signal_to_symbol_string (siggnal));
527159b7 3047
4d9d9d04
PA
3048 annotate_starting ();
3049
3050 /* Make sure that output from GDB appears before output from the
3051 inferior. */
3052 gdb_flush (gdb_stdout);
3053
3054 /* In a multi-threaded task we may select another thread and
3055 then continue or step.
3056
3057 But if a thread that we're resuming had stopped at a breakpoint,
3058 it will immediately cause another breakpoint stop without any
3059 execution (i.e. it will report a breakpoint hit incorrectly). So
3060 we must step over it first.
3061
3062 Look for threads other than the current (TP) that reported a
3063 breakpoint hit and haven't been resumed yet since. */
3064
3065 /* If scheduler locking applies, we can avoid iterating over all
3066 threads. */
3067 if (!non_stop && !schedlock_applies (tp))
94cc34af 3068 {
4d9d9d04
PA
3069 struct thread_info *current = tp;
3070
3071 ALL_NON_EXITED_THREADS (tp)
3072 {
3073 /* Ignore the current thread here. It's handled
3074 afterwards. */
3075 if (tp == current)
3076 continue;
99619bea 3077
4d9d9d04
PA
3078 /* Ignore threads of processes we're not resuming. */
3079 if (!ptid_match (tp->ptid, resume_ptid))
3080 continue;
c906108c 3081
4d9d9d04
PA
3082 if (!thread_still_needs_step_over (tp))
3083 continue;
3084
3085 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3086
99619bea
PA
3087 if (debug_infrun)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "infrun: need to step-over [%s] first\n",
4d9d9d04 3090 target_pid_to_str (tp->ptid));
99619bea 3091
4d9d9d04 3092 thread_step_over_chain_enqueue (tp);
2adfaa28 3093 }
31e77af2 3094
4d9d9d04 3095 tp = current;
30852783
UW
3096 }
3097
4d9d9d04
PA
3098 /* Enqueue the current thread last, so that we move all other
3099 threads over their breakpoints first. */
3100 if (tp->stepping_over_breakpoint)
3101 thread_step_over_chain_enqueue (tp);
30852783 3102
4d9d9d04
PA
3103 /* If the thread isn't started, we'll still need to set its prev_pc,
3104 so that switch_back_to_stepped_thread knows the thread hasn't
3105 advanced. Must do this before resuming any thread, as in
3106 all-stop/remote, once we resume we can't send any other packet
3107 until the target stops again. */
3108 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3109
4d9d9d04 3110 started = start_step_over ();
c906108c 3111
4d9d9d04
PA
3112 if (step_over_info_valid_p ())
3113 {
3114 /* Either this thread started a new in-line step over, or some
3115 other thread was already doing one. In either case, don't
3116 resume anything else until the step-over is finished. */
3117 }
fbea99ea 3118 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3119 {
3120 /* A new displaced stepping sequence was started. In all-stop,
3121 we can't talk to the target anymore until it next stops. */
3122 }
fbea99ea
PA
3123 else if (!non_stop && target_is_non_stop_p ())
3124 {
3125 /* In all-stop, but the target is always in non-stop mode.
3126 Start all other threads that are implicitly resumed too. */
3127 ALL_NON_EXITED_THREADS (tp)
3128 {
3129 /* Ignore threads of processes we're not resuming. */
3130 if (!ptid_match (tp->ptid, resume_ptid))
3131 continue;
3132
3133 if (tp->resumed)
3134 {
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: proceed: [%s] resumed\n",
3138 target_pid_to_str (tp->ptid));
3139 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3140 continue;
3141 }
3142
3143 if (thread_is_in_step_over_chain (tp))
3144 {
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "infrun: proceed: [%s] needs step-over\n",
3148 target_pid_to_str (tp->ptid));
3149 continue;
3150 }
3151
3152 if (debug_infrun)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "infrun: proceed: resuming %s\n",
3155 target_pid_to_str (tp->ptid));
3156
3157 reset_ecs (ecs, tp);
3158 switch_to_thread (tp->ptid);
3159 keep_going_pass_signal (ecs);
3160 if (!ecs->wait_some_more)
fd7dcb94 3161 error (_("Command aborted."));
fbea99ea
PA
3162 }
3163 }
372316f1 3164 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3165 {
3166 /* The thread wasn't started, and isn't queued, run it now. */
3167 reset_ecs (ecs, tp);
3168 switch_to_thread (tp->ptid);
3169 keep_going_pass_signal (ecs);
3170 if (!ecs->wait_some_more)
fd7dcb94 3171 error (_("Command aborted."));
4d9d9d04 3172 }
c906108c 3173
4d9d9d04 3174 discard_cleanups (old_chain);
c906108c 3175
0b333c5e
PA
3176 /* Tell the event loop to wait for it to stop. If the target
3177 supports asynchronous execution, it'll do this from within
3178 target_resume. */
362646f5 3179 if (!target_can_async_p ())
0b333c5e 3180 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3181}
c906108c
SS
3182\f
3183
3184/* Start remote-debugging of a machine over a serial link. */
96baa820 3185
c906108c 3186void
8621d6a9 3187start_remote (int from_tty)
c906108c 3188{
d6b48e9c 3189 struct inferior *inferior;
d6b48e9c
PA
3190
3191 inferior = current_inferior ();
16c381f0 3192 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3193
1777feb0 3194 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3195 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3196 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3197 nothing is returned (instead of just blocking). Because of this,
3198 targets expecting an immediate response need to, internally, set
3199 things up so that the target_wait() is forced to eventually
1777feb0 3200 timeout. */
6426a772
JM
3201 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3202 differentiate to its caller what the state of the target is after
3203 the initial open has been performed. Here we're assuming that
3204 the target has stopped. It should be possible to eventually have
3205 target_open() return to the caller an indication that the target
3206 is currently running and GDB state should be set to the same as
1777feb0 3207 for an async run. */
e4c8541f 3208 wait_for_inferior ();
8621d6a9
DJ
3209
3210 /* Now that the inferior has stopped, do any bookkeeping like
3211 loading shared libraries. We want to do this before normal_stop,
3212 so that the displayed frame is up to date. */
3213 post_create_inferior (&current_target, from_tty);
3214
6426a772 3215 normal_stop ();
c906108c
SS
3216}
3217
3218/* Initialize static vars when a new inferior begins. */
3219
3220void
96baa820 3221init_wait_for_inferior (void)
c906108c
SS
3222{
3223 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3224
c906108c
SS
3225 breakpoint_init_inferior (inf_starting);
3226
70509625 3227 clear_proceed_status (0);
9f976b41 3228
ca005067 3229 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3230
842951eb 3231 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3232
edb3359d
DJ
3233 /* Discard any skipped inlined frames. */
3234 clear_inline_frame_state (minus_one_ptid);
c906108c 3235}
237fc4c9 3236
c906108c 3237\f
488f131b 3238
ec9499be 3239static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3240
568d6575
UW
3241static void handle_step_into_function (struct gdbarch *gdbarch,
3242 struct execution_control_state *ecs);
3243static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3244 struct execution_control_state *ecs);
4f5d7f63 3245static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3246static void check_exception_resume (struct execution_control_state *,
28106bc2 3247 struct frame_info *);
611c83ae 3248
bdc36728 3249static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3250static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3251static void keep_going (struct execution_control_state *ecs);
94c57d6a 3252static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3253static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3254
252fbfc8
PA
3255/* Callback for iterate over threads. If the thread is stopped, but
3256 the user/frontend doesn't know about that yet, go through
3257 normal_stop, as if the thread had just stopped now. ARG points at
3258 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3259 ptid_is_pid(PTID) is true, applies to all threads of the process
3260 pointed at by PTID. Otherwise, apply only to the thread pointed by
3261 PTID. */
3262
3263static int
3264infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3265{
3266 ptid_t ptid = * (ptid_t *) arg;
3267
3268 if ((ptid_equal (info->ptid, ptid)
3269 || ptid_equal (minus_one_ptid, ptid)
3270 || (ptid_is_pid (ptid)
3271 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3272 && is_running (info->ptid)
3273 && !is_executing (info->ptid))
3274 {
3275 struct cleanup *old_chain;
3276 struct execution_control_state ecss;
3277 struct execution_control_state *ecs = &ecss;
3278
3279 memset (ecs, 0, sizeof (*ecs));
3280
3281 old_chain = make_cleanup_restore_current_thread ();
3282
f15cb84a
YQ
3283 overlay_cache_invalid = 1;
3284 /* Flush target cache before starting to handle each event.
3285 Target was running and cache could be stale. This is just a
3286 heuristic. Running threads may modify target memory, but we
3287 don't get any event. */
3288 target_dcache_invalidate ();
3289
252fbfc8
PA
3290 /* Go through handle_inferior_event/normal_stop, so we always
3291 have consistent output as if the stop event had been
3292 reported. */
3293 ecs->ptid = info->ptid;
243a9253 3294 ecs->event_thread = info;
252fbfc8 3295 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3296 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3297
3298 handle_inferior_event (ecs);
3299
3300 if (!ecs->wait_some_more)
3301 {
243a9253
PA
3302 /* Cancel any running execution command. */
3303 thread_cancel_execution_command (info);
3304
252fbfc8 3305 normal_stop ();
252fbfc8
PA
3306 }
3307
3308 do_cleanups (old_chain);
3309 }
3310
3311 return 0;
3312}
3313
3314/* This function is attached as a "thread_stop_requested" observer.
3315 Cleanup local state that assumed the PTID was to be resumed, and
3316 report the stop to the frontend. */
3317
2c0b251b 3318static void
252fbfc8
PA
3319infrun_thread_stop_requested (ptid_t ptid)
3320{
c2829269 3321 struct thread_info *tp;
252fbfc8 3322
c2829269
PA
3323 /* PTID was requested to stop. Remove matching threads from the
3324 step-over queue, so we don't try to resume them
3325 automatically. */
3326 ALL_NON_EXITED_THREADS (tp)
3327 if (ptid_match (tp->ptid, ptid))
3328 {
3329 if (thread_is_in_step_over_chain (tp))
3330 thread_step_over_chain_remove (tp);
3331 }
252fbfc8
PA
3332
3333 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3334}
3335
a07daef3
PA
3336static void
3337infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338{
3339 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3340 nullify_last_target_wait_ptid ();
3341}
3342
0cbcdb96
PA
3343/* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
4e1c45ea 3345
0cbcdb96
PA
3346static void
3347delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3348{
0cbcdb96
PA
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
34b7e8a6 3351 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3352}
3353
0cbcdb96
PA
3354/* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
4e1c45ea
PA
3360
3361static void
0cbcdb96 3362for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3363{
0cbcdb96 3364 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3365 return;
3366
fbea99ea 3367 if (target_is_non_stop_p ())
4e1c45ea 3368 {
0cbcdb96
PA
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
4e1c45ea
PA
3371 }
3372 else
0cbcdb96
PA
3373 {
3374 struct thread_info *tp;
3375
3376 /* In all-stop mode, all threads have stopped. */
3377 ALL_NON_EXITED_THREADS (tp)
3378 {
3379 func (tp);
3380 }
3381 }
3382}
3383
3384/* Delete the step resume and longjmp/exception resume breakpoints of
3385 the threads that just stopped. */
3386
3387static void
3388delete_just_stopped_threads_infrun_breakpoints (void)
3389{
3390 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3391}
3392
3393/* Delete the single-step breakpoints of the threads that just
3394 stopped. */
7c16b83e 3395
34b7e8a6
PA
3396static void
3397delete_just_stopped_threads_single_step_breakpoints (void)
3398{
3399 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3400}
3401
1777feb0 3402/* A cleanup wrapper. */
4e1c45ea
PA
3403
3404static void
0cbcdb96 3405delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3406{
0cbcdb96 3407 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3408}
3409
221e1a37 3410/* See infrun.h. */
223698f8 3411
221e1a37 3412void
223698f8
DE
3413print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3414 const struct target_waitstatus *ws)
3415{
3416 char *status_string = target_waitstatus_to_string (ws);
3417 struct ui_file *tmp_stream = mem_fileopen ();
3418 char *text;
223698f8
DE
3419
3420 /* The text is split over several lines because it was getting too long.
3421 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3422 output as a unit; we want only one timestamp printed if debug_timestamp
3423 is set. */
3424
3425 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3426 "infrun: target_wait (%d.%ld.%ld",
3427 ptid_get_pid (waiton_ptid),
3428 ptid_get_lwp (waiton_ptid),
3429 ptid_get_tid (waiton_ptid));
dfd4cc63 3430 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3431 fprintf_unfiltered (tmp_stream,
3432 " [%s]", target_pid_to_str (waiton_ptid));
3433 fprintf_unfiltered (tmp_stream, ", status) =\n");
3434 fprintf_unfiltered (tmp_stream,
1176ecec 3435 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3436 ptid_get_pid (result_ptid),
1176ecec
PA
3437 ptid_get_lwp (result_ptid),
3438 ptid_get_tid (result_ptid),
dfd4cc63 3439 target_pid_to_str (result_ptid));
223698f8
DE
3440 fprintf_unfiltered (tmp_stream,
3441 "infrun: %s\n",
3442 status_string);
3443
759ef836 3444 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3445
3446 /* This uses %s in part to handle %'s in the text, but also to avoid
3447 a gcc error: the format attribute requires a string literal. */
3448 fprintf_unfiltered (gdb_stdlog, "%s", text);
3449
3450 xfree (status_string);
3451 xfree (text);
3452 ui_file_delete (tmp_stream);
3453}
3454
372316f1
PA
3455/* Select a thread at random, out of those which are resumed and have
3456 had events. */
3457
3458static struct thread_info *
3459random_pending_event_thread (ptid_t waiton_ptid)
3460{
3461 struct thread_info *event_tp;
3462 int num_events = 0;
3463 int random_selector;
3464
3465 /* First see how many events we have. Count only resumed threads
3466 that have an event pending. */
3467 ALL_NON_EXITED_THREADS (event_tp)
3468 if (ptid_match (event_tp->ptid, waiton_ptid)
3469 && event_tp->resumed
3470 && event_tp->suspend.waitstatus_pending_p)
3471 num_events++;
3472
3473 if (num_events == 0)
3474 return NULL;
3475
3476 /* Now randomly pick a thread out of those that have had events. */
3477 random_selector = (int)
3478 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3479
3480 if (debug_infrun && num_events > 1)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "infrun: Found %d events, selecting #%d\n",
3483 num_events, random_selector);
3484
3485 /* Select the Nth thread that has had an event. */
3486 ALL_NON_EXITED_THREADS (event_tp)
3487 if (ptid_match (event_tp->ptid, waiton_ptid)
3488 && event_tp->resumed
3489 && event_tp->suspend.waitstatus_pending_p)
3490 if (random_selector-- == 0)
3491 break;
3492
3493 return event_tp;
3494}
3495
3496/* Wrapper for target_wait that first checks whether threads have
3497 pending statuses to report before actually asking the target for
3498 more events. */
3499
3500static ptid_t
3501do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3502{
3503 ptid_t event_ptid;
3504 struct thread_info *tp;
3505
3506 /* First check if there is a resumed thread with a wait status
3507 pending. */
3508 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3509 {
3510 tp = random_pending_event_thread (ptid);
3511 }
3512 else
3513 {
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: Waiting for specific thread %s.\n",
3517 target_pid_to_str (ptid));
3518
3519 /* We have a specific thread to check. */
3520 tp = find_thread_ptid (ptid);
3521 gdb_assert (tp != NULL);
3522 if (!tp->suspend.waitstatus_pending_p)
3523 tp = NULL;
3524 }
3525
3526 if (tp != NULL
3527 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3528 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3529 {
3530 struct regcache *regcache = get_thread_regcache (tp->ptid);
3531 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3532 CORE_ADDR pc;
3533 int discard = 0;
3534
3535 pc = regcache_read_pc (regcache);
3536
3537 if (pc != tp->suspend.stop_pc)
3538 {
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "infrun: PC of %s changed. was=%s, now=%s\n",
3542 target_pid_to_str (tp->ptid),
3543 paddress (gdbarch, tp->prev_pc),
3544 paddress (gdbarch, pc));
3545 discard = 1;
3546 }
3547 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3548 {
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "infrun: previous breakpoint of %s, at %s gone\n",
3552 target_pid_to_str (tp->ptid),
3553 paddress (gdbarch, pc));
3554
3555 discard = 1;
3556 }
3557
3558 if (discard)
3559 {
3560 if (debug_infrun)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: pending event of %s cancelled.\n",
3563 target_pid_to_str (tp->ptid));
3564
3565 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3566 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3567 }
3568 }
3569
3570 if (tp != NULL)
3571 {
3572 if (debug_infrun)
3573 {
3574 char *statstr;
3575
3576 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3577 fprintf_unfiltered (gdb_stdlog,
3578 "infrun: Using pending wait status %s for %s.\n",
3579 statstr,
3580 target_pid_to_str (tp->ptid));
3581 xfree (statstr);
3582 }
3583
3584 /* Now that we've selected our final event LWP, un-adjust its PC
3585 if it was a software breakpoint (and the target doesn't
3586 always adjust the PC itself). */
3587 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3588 && !target_supports_stopped_by_sw_breakpoint ())
3589 {
3590 struct regcache *regcache;
3591 struct gdbarch *gdbarch;
3592 int decr_pc;
3593
3594 regcache = get_thread_regcache (tp->ptid);
3595 gdbarch = get_regcache_arch (regcache);
3596
3597 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3598 if (decr_pc != 0)
3599 {
3600 CORE_ADDR pc;
3601
3602 pc = regcache_read_pc (regcache);
3603 regcache_write_pc (regcache, pc + decr_pc);
3604 }
3605 }
3606
3607 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3608 *status = tp->suspend.waitstatus;
3609 tp->suspend.waitstatus_pending_p = 0;
3610
3611 /* Wake up the event loop again, until all pending events are
3612 processed. */
3613 if (target_is_async_p ())
3614 mark_async_event_handler (infrun_async_inferior_event_token);
3615 return tp->ptid;
3616 }
3617
3618 /* But if we don't find one, we'll have to wait. */
3619
3620 if (deprecated_target_wait_hook)
3621 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3622 else
3623 event_ptid = target_wait (ptid, status, options);
3624
3625 return event_ptid;
3626}
3627
24291992
PA
3628/* Prepare and stabilize the inferior for detaching it. E.g.,
3629 detaching while a thread is displaced stepping is a recipe for
3630 crashing it, as nothing would readjust the PC out of the scratch
3631 pad. */
3632
3633void
3634prepare_for_detach (void)
3635{
3636 struct inferior *inf = current_inferior ();
3637 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3638 struct cleanup *old_chain_1;
3639 struct displaced_step_inferior_state *displaced;
3640
3641 displaced = get_displaced_stepping_state (inf->pid);
3642
3643 /* Is any thread of this process displaced stepping? If not,
3644 there's nothing else to do. */
3645 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3646 return;
3647
3648 if (debug_infrun)
3649 fprintf_unfiltered (gdb_stdlog,
3650 "displaced-stepping in-process while detaching");
3651
3652 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3653 inf->detaching = 1;
3654
3655 while (!ptid_equal (displaced->step_ptid, null_ptid))
3656 {
3657 struct cleanup *old_chain_2;
3658 struct execution_control_state ecss;
3659 struct execution_control_state *ecs;
3660
3661 ecs = &ecss;
3662 memset (ecs, 0, sizeof (*ecs));
3663
3664 overlay_cache_invalid = 1;
f15cb84a
YQ
3665 /* Flush target cache before starting to handle each event.
3666 Target was running and cache could be stale. This is just a
3667 heuristic. Running threads may modify target memory, but we
3668 don't get any event. */
3669 target_dcache_invalidate ();
24291992 3670
372316f1 3671 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3672
3673 if (debug_infrun)
3674 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3675
3676 /* If an error happens while handling the event, propagate GDB's
3677 knowledge of the executing state to the frontend/user running
3678 state. */
3e43a32a
MS
3679 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3680 &minus_one_ptid);
24291992
PA
3681
3682 /* Now figure out what to do with the result of the result. */
3683 handle_inferior_event (ecs);
3684
3685 /* No error, don't finish the state yet. */
3686 discard_cleanups (old_chain_2);
3687
3688 /* Breakpoints and watchpoints are not installed on the target
3689 at this point, and signals are passed directly to the
3690 inferior, so this must mean the process is gone. */
3691 if (!ecs->wait_some_more)
3692 {
3693 discard_cleanups (old_chain_1);
3694 error (_("Program exited while detaching"));
3695 }
3696 }
3697
3698 discard_cleanups (old_chain_1);
3699}
3700
cd0fc7c3 3701/* Wait for control to return from inferior to debugger.
ae123ec6 3702
cd0fc7c3
SS
3703 If inferior gets a signal, we may decide to start it up again
3704 instead of returning. That is why there is a loop in this function.
3705 When this function actually returns it means the inferior
3706 should be left stopped and GDB should read more commands. */
3707
3708void
e4c8541f 3709wait_for_inferior (void)
cd0fc7c3
SS
3710{
3711 struct cleanup *old_cleanups;
e6f5c25b 3712 struct cleanup *thread_state_chain;
c906108c 3713
527159b7 3714 if (debug_infrun)
ae123ec6 3715 fprintf_unfiltered
e4c8541f 3716 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3717
0cbcdb96
PA
3718 old_cleanups
3719 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3720 NULL);
cd0fc7c3 3721
e6f5c25b
PA
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
3725 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3726
c906108c
SS
3727 while (1)
3728 {
ae25568b
PA
3729 struct execution_control_state ecss;
3730 struct execution_control_state *ecs = &ecss;
963f9c80 3731 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3732
ae25568b
PA
3733 memset (ecs, 0, sizeof (*ecs));
3734
ec9499be 3735 overlay_cache_invalid = 1;
ec9499be 3736
f15cb84a
YQ
3737 /* Flush target cache before starting to handle each event.
3738 Target was running and cache could be stale. This is just a
3739 heuristic. Running threads may modify target memory, but we
3740 don't get any event. */
3741 target_dcache_invalidate ();
3742
372316f1 3743 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3744
f00150c9 3745 if (debug_infrun)
223698f8 3746 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3747
cd0fc7c3
SS
3748 /* Now figure out what to do with the result of the result. */
3749 handle_inferior_event (ecs);
c906108c 3750
cd0fc7c3
SS
3751 if (!ecs->wait_some_more)
3752 break;
3753 }
4e1c45ea 3754
e6f5c25b
PA
3755 /* No error, don't finish the state yet. */
3756 discard_cleanups (thread_state_chain);
3757
cd0fc7c3
SS
3758 do_cleanups (old_cleanups);
3759}
c906108c 3760
d3d4baed
PA
3761/* Cleanup that reinstalls the readline callback handler, if the
3762 target is running in the background. If while handling the target
3763 event something triggered a secondary prompt, like e.g., a
3764 pagination prompt, we'll have removed the callback handler (see
3765 gdb_readline_wrapper_line). Need to do this as we go back to the
3766 event loop, ready to process further input. Note this has no
3767 effect if the handler hasn't actually been removed, because calling
3768 rl_callback_handler_install resets the line buffer, thus losing
3769 input. */
3770
3771static void
3772reinstall_readline_callback_handler_cleanup (void *arg)
3773{
6c400b59
PA
3774 if (!interpreter_async)
3775 {
3776 /* We're not going back to the top level event loop yet. Don't
3777 install the readline callback, as it'd prep the terminal,
3778 readline-style (raw, noecho) (e.g., --batch). We'll install
3779 it the next time the prompt is displayed, when we're ready
3780 for input. */
3781 return;
3782 }
3783
d3d4baed
PA
3784 if (async_command_editing_p && !sync_execution)
3785 gdb_rl_callback_handler_reinstall ();
3786}
3787
243a9253
PA
3788/* Clean up the FSMs of threads that are now stopped. In non-stop,
3789 that's just the event thread. In all-stop, that's all threads. */
3790
3791static void
3792clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3793{
3794 struct thread_info *thr = ecs->event_thread;
3795
3796 if (thr != NULL && thr->thread_fsm != NULL)
3797 thread_fsm_clean_up (thr->thread_fsm);
3798
3799 if (!non_stop)
3800 {
3801 ALL_NON_EXITED_THREADS (thr)
3802 {
3803 if (thr->thread_fsm == NULL)
3804 continue;
3805 if (thr == ecs->event_thread)
3806 continue;
3807
3808 switch_to_thread (thr->ptid);
3809 thread_fsm_clean_up (thr->thread_fsm);
3810 }
3811
3812 if (ecs->event_thread != NULL)
3813 switch_to_thread (ecs->event_thread->ptid);
3814 }
3815}
3816
170742de
PA
3817/* A cleanup that restores the execution direction to the value saved
3818 in *ARG. */
3819
3820static void
3821restore_execution_direction (void *arg)
3822{
3823 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3824
3825 execution_direction = *save_exec_dir;
3826}
3827
1777feb0 3828/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3829 event loop whenever a change of state is detected on the file
1777feb0
MS
3830 descriptor corresponding to the target. It can be called more than
3831 once to complete a single execution command. In such cases we need
3832 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3833 that this function is called for a single execution command, then
3834 report to the user that the inferior has stopped, and do the
1777feb0 3835 necessary cleanups. */
43ff13b4
JM
3836
3837void
fba45db2 3838fetch_inferior_event (void *client_data)
43ff13b4 3839{
0d1e5fa7 3840 struct execution_control_state ecss;
a474d7c2 3841 struct execution_control_state *ecs = &ecss;
4f8d22e3 3842 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3843 struct cleanup *ts_old_chain;
4f8d22e3 3844 int was_sync = sync_execution;
170742de 3845 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3846 int cmd_done = 0;
963f9c80 3847 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3848
0d1e5fa7
PA
3849 memset (ecs, 0, sizeof (*ecs));
3850
d3d4baed
PA
3851 /* End up with readline processing input, if necessary. */
3852 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3853
c5187ac6
PA
3854 /* We're handling a live event, so make sure we're doing live
3855 debugging. If we're looking at traceframes while the target is
3856 running, we're going to need to get back to that mode after
3857 handling the event. */
3858 if (non_stop)
3859 {
3860 make_cleanup_restore_current_traceframe ();
e6e4e701 3861 set_current_traceframe (-1);
c5187ac6
PA
3862 }
3863
4f8d22e3
PA
3864 if (non_stop)
3865 /* In non-stop mode, the user/frontend should not notice a thread
3866 switch due to internal events. Make sure we reverse to the
3867 user selected thread and frame after handling the event and
3868 running any breakpoint commands. */
3869 make_cleanup_restore_current_thread ();
3870
ec9499be 3871 overlay_cache_invalid = 1;
f15cb84a
YQ
3872 /* Flush target cache before starting to handle each event. Target
3873 was running and cache could be stale. This is just a heuristic.
3874 Running threads may modify target memory, but we don't get any
3875 event. */
3876 target_dcache_invalidate ();
3dd5b83d 3877
170742de 3878 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3879 execution_direction = target_execution_direction ();
3880
0b333c5e
PA
3881 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3882 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3883
f00150c9 3884 if (debug_infrun)
223698f8 3885 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3886
29f49a6a
PA
3887 /* If an error happens while handling the event, propagate GDB's
3888 knowledge of the executing state to the frontend/user running
3889 state. */
fbea99ea 3890 if (!target_is_non_stop_p ())
29f49a6a
PA
3891 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3892 else
3893 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3894
353d1d73
JK
3895 /* Get executed before make_cleanup_restore_current_thread above to apply
3896 still for the thread which has thrown the exception. */
3897 make_bpstat_clear_actions_cleanup ();
3898
7c16b83e
PA
3899 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3900
43ff13b4 3901 /* Now figure out what to do with the result of the result. */
a474d7c2 3902 handle_inferior_event (ecs);
43ff13b4 3903
a474d7c2 3904 if (!ecs->wait_some_more)
43ff13b4 3905 {
c9657e70 3906 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3907 int should_stop = 1;
3908 struct thread_info *thr = ecs->event_thread;
388a7084 3909 int should_notify_stop = 1;
d6b48e9c 3910
0cbcdb96 3911 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3912
243a9253
PA
3913 if (thr != NULL)
3914 {
3915 struct thread_fsm *thread_fsm = thr->thread_fsm;
3916
3917 if (thread_fsm != NULL)
3918 should_stop = thread_fsm_should_stop (thread_fsm);
3919 }
3920
3921 if (!should_stop)
3922 {
3923 keep_going (ecs);
3924 }
c2d11a7d 3925 else
0f641c01 3926 {
243a9253
PA
3927 clean_up_just_stopped_threads_fsms (ecs);
3928
388a7084
PA
3929 if (thr != NULL && thr->thread_fsm != NULL)
3930 {
3931 should_notify_stop
3932 = thread_fsm_should_notify_stop (thr->thread_fsm);
3933 }
3934
3935 if (should_notify_stop)
3936 {
4c2f2a79
PA
3937 int proceeded = 0;
3938
388a7084
PA
3939 /* We may not find an inferior if this was a process exit. */
3940 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3941 proceeded = normal_stop ();
243a9253 3942
4c2f2a79
PA
3943 if (!proceeded)
3944 {
3945 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3946 cmd_done = 1;
3947 }
388a7084 3948 }
0f641c01 3949 }
43ff13b4 3950 }
4f8d22e3 3951
29f49a6a
PA
3952 /* No error, don't finish the thread states yet. */
3953 discard_cleanups (ts_old_chain);
3954
4f8d22e3
PA
3955 /* Revert thread and frame. */
3956 do_cleanups (old_chain);
3957
3958 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3959 restore the prompt (a synchronous execution command has finished,
3960 and we're ready for input). */
b4a14fd0 3961 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3962 observer_notify_sync_execution_done ();
0f641c01
PA
3963
3964 if (cmd_done
3965 && !was_sync
3966 && exec_done_display_p
3967 && (ptid_equal (inferior_ptid, null_ptid)
3968 || !is_running (inferior_ptid)))
3969 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3970}
3971
edb3359d
DJ
3972/* Record the frame and location we're currently stepping through. */
3973void
3974set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3975{
3976 struct thread_info *tp = inferior_thread ();
3977
16c381f0
JK
3978 tp->control.step_frame_id = get_frame_id (frame);
3979 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3980
3981 tp->current_symtab = sal.symtab;
3982 tp->current_line = sal.line;
3983}
3984
0d1e5fa7
PA
3985/* Clear context switchable stepping state. */
3986
3987void
4e1c45ea 3988init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3989{
7f5ef605 3990 tss->stepped_breakpoint = 0;
0d1e5fa7 3991 tss->stepping_over_breakpoint = 0;
963f9c80 3992 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3993 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3994}
3995
c32c64b7
DE
3996/* Set the cached copy of the last ptid/waitstatus. */
3997
3998static void
3999set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4000{
4001 target_last_wait_ptid = ptid;
4002 target_last_waitstatus = status;
4003}
4004
e02bc4cc 4005/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4006 target_wait()/deprecated_target_wait_hook(). The data is actually
4007 cached by handle_inferior_event(), which gets called immediately
4008 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4009
4010void
488f131b 4011get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4012{
39f77062 4013 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4014 *status = target_last_waitstatus;
4015}
4016
ac264b3b
MS
4017void
4018nullify_last_target_wait_ptid (void)
4019{
4020 target_last_wait_ptid = minus_one_ptid;
4021}
4022
dcf4fbde 4023/* Switch thread contexts. */
dd80620e
MS
4024
4025static void
0d1e5fa7 4026context_switch (ptid_t ptid)
dd80620e 4027{
4b51d87b 4028 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4029 {
4030 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4031 target_pid_to_str (inferior_ptid));
4032 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4033 target_pid_to_str (ptid));
fd48f117
DJ
4034 }
4035
0d1e5fa7 4036 switch_to_thread (ptid);
dd80620e
MS
4037}
4038
d8dd4d5f
PA
4039/* If the target can't tell whether we've hit breakpoints
4040 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4041 check whether that could have been caused by a breakpoint. If so,
4042 adjust the PC, per gdbarch_decr_pc_after_break. */
4043
4fa8626c 4044static void
d8dd4d5f
PA
4045adjust_pc_after_break (struct thread_info *thread,
4046 struct target_waitstatus *ws)
4fa8626c 4047{
24a73cce
UW
4048 struct regcache *regcache;
4049 struct gdbarch *gdbarch;
6c95b8df 4050 struct address_space *aspace;
118e6252 4051 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4052
4fa8626c
DJ
4053 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4054 we aren't, just return.
9709f61c
DJ
4055
4056 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4057 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4058 implemented by software breakpoints should be handled through the normal
4059 breakpoint layer.
8fb3e588 4060
4fa8626c
DJ
4061 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4062 different signals (SIGILL or SIGEMT for instance), but it is less
4063 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4064 gdbarch_decr_pc_after_break. I don't know any specific target that
4065 generates these signals at breakpoints (the code has been in GDB since at
4066 least 1992) so I can not guess how to handle them here.
8fb3e588 4067
e6cf7916
UW
4068 In earlier versions of GDB, a target with
4069 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4070 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4071 target with both of these set in GDB history, and it seems unlikely to be
4072 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4073
d8dd4d5f 4074 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4075 return;
4076
d8dd4d5f 4077 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4078 return;
4079
4058b839
PA
4080 /* In reverse execution, when a breakpoint is hit, the instruction
4081 under it has already been de-executed. The reported PC always
4082 points at the breakpoint address, so adjusting it further would
4083 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4084 architecture:
4085
4086 B1 0x08000000 : INSN1
4087 B2 0x08000001 : INSN2
4088 0x08000002 : INSN3
4089 PC -> 0x08000003 : INSN4
4090
4091 Say you're stopped at 0x08000003 as above. Reverse continuing
4092 from that point should hit B2 as below. Reading the PC when the
4093 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4094 been de-executed already.
4095
4096 B1 0x08000000 : INSN1
4097 B2 PC -> 0x08000001 : INSN2
4098 0x08000002 : INSN3
4099 0x08000003 : INSN4
4100
4101 We can't apply the same logic as for forward execution, because
4102 we would wrongly adjust the PC to 0x08000000, since there's a
4103 breakpoint at PC - 1. We'd then report a hit on B1, although
4104 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4105 behaviour. */
4106 if (execution_direction == EXEC_REVERSE)
4107 return;
4108
1cf4d951
PA
4109 /* If the target can tell whether the thread hit a SW breakpoint,
4110 trust it. Targets that can tell also adjust the PC
4111 themselves. */
4112 if (target_supports_stopped_by_sw_breakpoint ())
4113 return;
4114
4115 /* Note that relying on whether a breakpoint is planted in memory to
4116 determine this can fail. E.g,. the breakpoint could have been
4117 removed since. Or the thread could have been told to step an
4118 instruction the size of a breakpoint instruction, and only
4119 _after_ was a breakpoint inserted at its address. */
4120
24a73cce
UW
4121 /* If this target does not decrement the PC after breakpoints, then
4122 we have nothing to do. */
d8dd4d5f 4123 regcache = get_thread_regcache (thread->ptid);
24a73cce 4124 gdbarch = get_regcache_arch (regcache);
118e6252 4125
527a273a 4126 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4127 if (decr_pc == 0)
24a73cce
UW
4128 return;
4129
6c95b8df
PA
4130 aspace = get_regcache_aspace (regcache);
4131
8aad930b
AC
4132 /* Find the location where (if we've hit a breakpoint) the
4133 breakpoint would be. */
118e6252 4134 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4135
1cf4d951
PA
4136 /* If the target can't tell whether a software breakpoint triggered,
4137 fallback to figuring it out based on breakpoints we think were
4138 inserted in the target, and on whether the thread was stepped or
4139 continued. */
4140
1c5cfe86
PA
4141 /* Check whether there actually is a software breakpoint inserted at
4142 that location.
4143
4144 If in non-stop mode, a race condition is possible where we've
4145 removed a breakpoint, but stop events for that breakpoint were
4146 already queued and arrive later. To suppress those spurious
4147 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4148 and retire them after a number of stop events are reported. Note
4149 this is an heuristic and can thus get confused. The real fix is
4150 to get the "stopped by SW BP and needs adjustment" info out of
4151 the target/kernel (and thus never reach here; see above). */
6c95b8df 4152 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4153 || (target_is_non_stop_p ()
4154 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4155 {
77f9e713 4156 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4157
8213266a 4158 if (record_full_is_used ())
77f9e713 4159 record_full_gdb_operation_disable_set ();
96429cc8 4160
1c0fdd0e
UW
4161 /* When using hardware single-step, a SIGTRAP is reported for both
4162 a completed single-step and a software breakpoint. Need to
4163 differentiate between the two, as the latter needs adjusting
4164 but the former does not.
4165
4166 The SIGTRAP can be due to a completed hardware single-step only if
4167 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4168 - this thread is currently being stepped
4169
4170 If any of these events did not occur, we must have stopped due
4171 to hitting a software breakpoint, and have to back up to the
4172 breakpoint address.
4173
4174 As a special case, we could have hardware single-stepped a
4175 software breakpoint. In this case (prev_pc == breakpoint_pc),
4176 we also need to back up to the breakpoint address. */
4177
d8dd4d5f
PA
4178 if (thread_has_single_step_breakpoints_set (thread)
4179 || !currently_stepping (thread)
4180 || (thread->stepped_breakpoint
4181 && thread->prev_pc == breakpoint_pc))
515630c5 4182 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4183
77f9e713 4184 do_cleanups (old_cleanups);
8aad930b 4185 }
4fa8626c
DJ
4186}
4187
edb3359d
DJ
4188static int
4189stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4190{
4191 for (frame = get_prev_frame (frame);
4192 frame != NULL;
4193 frame = get_prev_frame (frame))
4194 {
4195 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4196 return 1;
4197 if (get_frame_type (frame) != INLINE_FRAME)
4198 break;
4199 }
4200
4201 return 0;
4202}
4203
a96d9b2e
SDJ
4204/* Auxiliary function that handles syscall entry/return events.
4205 It returns 1 if the inferior should keep going (and GDB
4206 should ignore the event), or 0 if the event deserves to be
4207 processed. */
ca2163eb 4208
a96d9b2e 4209static int
ca2163eb 4210handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4211{
ca2163eb 4212 struct regcache *regcache;
ca2163eb
PA
4213 int syscall_number;
4214
4215 if (!ptid_equal (ecs->ptid, inferior_ptid))
4216 context_switch (ecs->ptid);
4217
4218 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4219 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4220 stop_pc = regcache_read_pc (regcache);
4221
a96d9b2e
SDJ
4222 if (catch_syscall_enabled () > 0
4223 && catching_syscall_number (syscall_number) > 0)
4224 {
4225 if (debug_infrun)
4226 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4227 syscall_number);
a96d9b2e 4228
16c381f0 4229 ecs->event_thread->control.stop_bpstat
6c95b8df 4230 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4231 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4232
ce12b012 4233 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4234 {
4235 /* Catchpoint hit. */
ca2163eb
PA
4236 return 0;
4237 }
a96d9b2e 4238 }
ca2163eb
PA
4239
4240 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4241 keep_going (ecs);
4242 return 1;
a96d9b2e
SDJ
4243}
4244
7e324e48
GB
4245/* Lazily fill in the execution_control_state's stop_func_* fields. */
4246
4247static void
4248fill_in_stop_func (struct gdbarch *gdbarch,
4249 struct execution_control_state *ecs)
4250{
4251 if (!ecs->stop_func_filled_in)
4252 {
4253 /* Don't care about return value; stop_func_start and stop_func_name
4254 will both be 0 if it doesn't work. */
4255 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4256 &ecs->stop_func_start, &ecs->stop_func_end);
4257 ecs->stop_func_start
4258 += gdbarch_deprecated_function_start_offset (gdbarch);
4259
591a12a1
UW
4260 if (gdbarch_skip_entrypoint_p (gdbarch))
4261 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4262 ecs->stop_func_start);
4263
7e324e48
GB
4264 ecs->stop_func_filled_in = 1;
4265 }
4266}
4267
4f5d7f63
PA
4268
4269/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4270
4271static enum stop_kind
4272get_inferior_stop_soon (ptid_t ptid)
4273{
c9657e70 4274 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4275
4276 gdb_assert (inf != NULL);
4277 return inf->control.stop_soon;
4278}
4279
372316f1
PA
4280/* Wait for one event. Store the resulting waitstatus in WS, and
4281 return the event ptid. */
4282
4283static ptid_t
4284wait_one (struct target_waitstatus *ws)
4285{
4286 ptid_t event_ptid;
4287 ptid_t wait_ptid = minus_one_ptid;
4288
4289 overlay_cache_invalid = 1;
4290
4291 /* Flush target cache before starting to handle each event.
4292 Target was running and cache could be stale. This is just a
4293 heuristic. Running threads may modify target memory, but we
4294 don't get any event. */
4295 target_dcache_invalidate ();
4296
4297 if (deprecated_target_wait_hook)
4298 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4299 else
4300 event_ptid = target_wait (wait_ptid, ws, 0);
4301
4302 if (debug_infrun)
4303 print_target_wait_results (wait_ptid, event_ptid, ws);
4304
4305 return event_ptid;
4306}
4307
4308/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4309 instead of the current thread. */
4310#define THREAD_STOPPED_BY(REASON) \
4311static int \
4312thread_stopped_by_ ## REASON (ptid_t ptid) \
4313{ \
4314 struct cleanup *old_chain; \
4315 int res; \
4316 \
4317 old_chain = save_inferior_ptid (); \
4318 inferior_ptid = ptid; \
4319 \
4320 res = target_stopped_by_ ## REASON (); \
4321 \
4322 do_cleanups (old_chain); \
4323 \
4324 return res; \
4325}
4326
4327/* Generate thread_stopped_by_watchpoint. */
4328THREAD_STOPPED_BY (watchpoint)
4329/* Generate thread_stopped_by_sw_breakpoint. */
4330THREAD_STOPPED_BY (sw_breakpoint)
4331/* Generate thread_stopped_by_hw_breakpoint. */
4332THREAD_STOPPED_BY (hw_breakpoint)
4333
4334/* Cleanups that switches to the PTID pointed at by PTID_P. */
4335
4336static void
4337switch_to_thread_cleanup (void *ptid_p)
4338{
4339 ptid_t ptid = *(ptid_t *) ptid_p;
4340
4341 switch_to_thread (ptid);
4342}
4343
4344/* Save the thread's event and stop reason to process it later. */
4345
4346static void
4347save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4348{
4349 struct regcache *regcache;
4350 struct address_space *aspace;
4351
4352 if (debug_infrun)
4353 {
4354 char *statstr;
4355
4356 statstr = target_waitstatus_to_string (ws);
4357 fprintf_unfiltered (gdb_stdlog,
4358 "infrun: saving status %s for %d.%ld.%ld\n",
4359 statstr,
4360 ptid_get_pid (tp->ptid),
4361 ptid_get_lwp (tp->ptid),
4362 ptid_get_tid (tp->ptid));
4363 xfree (statstr);
4364 }
4365
4366 /* Record for later. */
4367 tp->suspend.waitstatus = *ws;
4368 tp->suspend.waitstatus_pending_p = 1;
4369
4370 regcache = get_thread_regcache (tp->ptid);
4371 aspace = get_regcache_aspace (regcache);
4372
4373 if (ws->kind == TARGET_WAITKIND_STOPPED
4374 && ws->value.sig == GDB_SIGNAL_TRAP)
4375 {
4376 CORE_ADDR pc = regcache_read_pc (regcache);
4377
4378 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4379
4380 if (thread_stopped_by_watchpoint (tp->ptid))
4381 {
4382 tp->suspend.stop_reason
4383 = TARGET_STOPPED_BY_WATCHPOINT;
4384 }
4385 else if (target_supports_stopped_by_sw_breakpoint ()
4386 && thread_stopped_by_sw_breakpoint (tp->ptid))
4387 {
4388 tp->suspend.stop_reason
4389 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4390 }
4391 else if (target_supports_stopped_by_hw_breakpoint ()
4392 && thread_stopped_by_hw_breakpoint (tp->ptid))
4393 {
4394 tp->suspend.stop_reason
4395 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4396 }
4397 else if (!target_supports_stopped_by_hw_breakpoint ()
4398 && hardware_breakpoint_inserted_here_p (aspace,
4399 pc))
4400 {
4401 tp->suspend.stop_reason
4402 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4403 }
4404 else if (!target_supports_stopped_by_sw_breakpoint ()
4405 && software_breakpoint_inserted_here_p (aspace,
4406 pc))
4407 {
4408 tp->suspend.stop_reason
4409 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4410 }
4411 else if (!thread_has_single_step_breakpoints_set (tp)
4412 && currently_stepping (tp))
4413 {
4414 tp->suspend.stop_reason
4415 = TARGET_STOPPED_BY_SINGLE_STEP;
4416 }
4417 }
4418}
4419
4420/* Stop all threads. */
4421
4422static void
4423stop_all_threads (void)
4424{
4425 /* We may need multiple passes to discover all threads. */
4426 int pass;
4427 int iterations = 0;
4428 ptid_t entry_ptid;
4429 struct cleanup *old_chain;
4430
fbea99ea 4431 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4432
4433 if (debug_infrun)
4434 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4435
4436 entry_ptid = inferior_ptid;
4437 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4438
4439 /* Request threads to stop, and then wait for the stops. Because
4440 threads we already know about can spawn more threads while we're
4441 trying to stop them, and we only learn about new threads when we
4442 update the thread list, do this in a loop, and keep iterating
4443 until two passes find no threads that need to be stopped. */
4444 for (pass = 0; pass < 2; pass++, iterations++)
4445 {
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: stop_all_threads, pass=%d, "
4449 "iterations=%d\n", pass, iterations);
4450 while (1)
4451 {
4452 ptid_t event_ptid;
4453 struct target_waitstatus ws;
4454 int need_wait = 0;
4455 struct thread_info *t;
4456
4457 update_thread_list ();
4458
4459 /* Go through all threads looking for threads that we need
4460 to tell the target to stop. */
4461 ALL_NON_EXITED_THREADS (t)
4462 {
4463 if (t->executing)
4464 {
4465 /* If already stopping, don't request a stop again.
4466 We just haven't seen the notification yet. */
4467 if (!t->stop_requested)
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: %s executing, "
4472 "need stop\n",
4473 target_pid_to_str (t->ptid));
4474 target_stop (t->ptid);
4475 t->stop_requested = 1;
4476 }
4477 else
4478 {
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog,
4481 "infrun: %s executing, "
4482 "already stopping\n",
4483 target_pid_to_str (t->ptid));
4484 }
4485
4486 if (t->stop_requested)
4487 need_wait = 1;
4488 }
4489 else
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: %s not executing\n",
4494 target_pid_to_str (t->ptid));
4495
4496 /* The thread may be not executing, but still be
4497 resumed with a pending status to process. */
4498 t->resumed = 0;
4499 }
4500 }
4501
4502 if (!need_wait)
4503 break;
4504
4505 /* If we find new threads on the second iteration, restart
4506 over. We want to see two iterations in a row with all
4507 threads stopped. */
4508 if (pass > 0)
4509 pass = -1;
4510
4511 event_ptid = wait_one (&ws);
4512 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4513 {
4514 /* All resumed threads exited. */
4515 }
4516 else if (ws.kind == TARGET_WAITKIND_EXITED
4517 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4518 {
4519 if (debug_infrun)
4520 {
4521 ptid_t ptid = pid_to_ptid (ws.value.integer);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "infrun: %s exited while "
4525 "stopping threads\n",
4526 target_pid_to_str (ptid));
4527 }
4528 }
4529 else
4530 {
4531 t = find_thread_ptid (event_ptid);
4532 if (t == NULL)
4533 t = add_thread (event_ptid);
4534
4535 t->stop_requested = 0;
4536 t->executing = 0;
4537 t->resumed = 0;
4538 t->control.may_range_step = 0;
4539
4540 if (ws.kind == TARGET_WAITKIND_STOPPED
4541 && ws.value.sig == GDB_SIGNAL_0)
4542 {
4543 /* We caught the event that we intended to catch, so
4544 there's no event pending. */
4545 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4546 t->suspend.waitstatus_pending_p = 0;
4547
4548 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4549 {
4550 /* Add it back to the step-over queue. */
4551 if (debug_infrun)
4552 {
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: displaced-step of %s "
4555 "canceled: adding back to the "
4556 "step-over queue\n",
4557 target_pid_to_str (t->ptid));
4558 }
4559 t->control.trap_expected = 0;
4560 thread_step_over_chain_enqueue (t);
4561 }
4562 }
4563 else
4564 {
4565 enum gdb_signal sig;
4566 struct regcache *regcache;
4567 struct address_space *aspace;
4568
4569 if (debug_infrun)
4570 {
4571 char *statstr;
4572
4573 statstr = target_waitstatus_to_string (&ws);
4574 fprintf_unfiltered (gdb_stdlog,
4575 "infrun: target_wait %s, saving "
4576 "status for %d.%ld.%ld\n",
4577 statstr,
4578 ptid_get_pid (t->ptid),
4579 ptid_get_lwp (t->ptid),
4580 ptid_get_tid (t->ptid));
4581 xfree (statstr);
4582 }
4583
4584 /* Record for later. */
4585 save_waitstatus (t, &ws);
4586
4587 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4588 ? ws.value.sig : GDB_SIGNAL_0);
4589
4590 if (displaced_step_fixup (t->ptid, sig) < 0)
4591 {
4592 /* Add it back to the step-over queue. */
4593 t->control.trap_expected = 0;
4594 thread_step_over_chain_enqueue (t);
4595 }
4596
4597 regcache = get_thread_regcache (t->ptid);
4598 t->suspend.stop_pc = regcache_read_pc (regcache);
4599
4600 if (debug_infrun)
4601 {
4602 fprintf_unfiltered (gdb_stdlog,
4603 "infrun: saved stop_pc=%s for %s "
4604 "(currently_stepping=%d)\n",
4605 paddress (target_gdbarch (),
4606 t->suspend.stop_pc),
4607 target_pid_to_str (t->ptid),
4608 currently_stepping (t));
4609 }
4610 }
4611 }
4612 }
4613 }
4614
4615 do_cleanups (old_chain);
4616
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4619}
4620
05ba8510
PA
4621/* Given an execution control state that has been freshly filled in by
4622 an event from the inferior, figure out what it means and take
4623 appropriate action.
4624
4625 The alternatives are:
4626
22bcd14b 4627 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4628 debugger.
4629
4630 2) keep_going and return; to wait for the next event (set
4631 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4632 once). */
c906108c 4633
ec9499be 4634static void
0b6e5e10 4635handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4636{
d6b48e9c
PA
4637 enum stop_kind stop_soon;
4638
28736962
PA
4639 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4640 {
4641 /* We had an event in the inferior, but we are not interested in
4642 handling it at this level. The lower layers have already
4643 done what needs to be done, if anything.
4644
4645 One of the possible circumstances for this is when the
4646 inferior produces output for the console. The inferior has
4647 not stopped, and we are ignoring the event. Another possible
4648 circumstance is any event which the lower level knows will be
4649 reported multiple times without an intervening resume. */
4650 if (debug_infrun)
4651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4652 prepare_to_wait (ecs);
4653 return;
4654 }
4655
0e5bf2a8
PA
4656 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4657 && target_can_async_p () && !sync_execution)
4658 {
4659 /* There were no unwaited-for children left in the target, but,
4660 we're not synchronously waiting for events either. Just
4661 ignore. Otherwise, if we were running a synchronous
4662 execution command, we need to cancel it and give the user
4663 back the terminal. */
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog,
4666 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4667 prepare_to_wait (ecs);
4668 return;
4669 }
4670
1777feb0 4671 /* Cache the last pid/waitstatus. */
c32c64b7 4672 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4673
ca005067 4674 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4675 stop_stack_dummy = STOP_NONE;
ca005067 4676
0e5bf2a8
PA
4677 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4678 {
4679 /* No unwaited-for children left. IOW, all resumed children
4680 have exited. */
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4683
4684 stop_print_frame = 0;
22bcd14b 4685 stop_waiting (ecs);
0e5bf2a8
PA
4686 return;
4687 }
4688
8c90c137 4689 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4690 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4691 {
4692 ecs->event_thread = find_thread_ptid (ecs->ptid);
4693 /* If it's a new thread, add it to the thread database. */
4694 if (ecs->event_thread == NULL)
4695 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4696
4697 /* Disable range stepping. If the next step request could use a
4698 range, this will be end up re-enabled then. */
4699 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4700 }
88ed393a
JK
4701
4702 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4703 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4704
4705 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4706 reinit_frame_cache ();
4707
28736962
PA
4708 breakpoint_retire_moribund ();
4709
2b009048
DJ
4710 /* First, distinguish signals caused by the debugger from signals
4711 that have to do with the program's own actions. Note that
4712 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4713 on the operating system version. Here we detect when a SIGILL or
4714 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4715 something similar for SIGSEGV, since a SIGSEGV will be generated
4716 when we're trying to execute a breakpoint instruction on a
4717 non-executable stack. This happens for call dummy breakpoints
4718 for architectures like SPARC that place call dummies on the
4719 stack. */
2b009048 4720 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4721 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4722 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4723 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4724 {
de0a0249
UW
4725 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4726
4727 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4728 regcache_read_pc (regcache)))
4729 {
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4733 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4734 }
2b009048
DJ
4735 }
4736
28736962
PA
4737 /* Mark the non-executing threads accordingly. In all-stop, all
4738 threads of all processes are stopped when we get any event
e1316e60 4739 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4740 {
4741 ptid_t mark_ptid;
4742
fbea99ea 4743 if (!target_is_non_stop_p ())
372316f1
PA
4744 mark_ptid = minus_one_ptid;
4745 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4746 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4747 {
4748 /* If we're handling a process exit in non-stop mode, even
4749 though threads haven't been deleted yet, one would think
4750 that there is nothing to do, as threads of the dead process
4751 will be soon deleted, and threads of any other process were
4752 left running. However, on some targets, threads survive a
4753 process exit event. E.g., for the "checkpoint" command,
4754 when the current checkpoint/fork exits, linux-fork.c
4755 automatically switches to another fork from within
4756 target_mourn_inferior, by associating the same
4757 inferior/thread to another fork. We haven't mourned yet at
4758 this point, but we must mark any threads left in the
4759 process as not-executing so that finish_thread_state marks
4760 them stopped (in the user's perspective) if/when we present
4761 the stop to the user. */
4762 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4763 }
4764 else
4765 mark_ptid = ecs->ptid;
4766
4767 set_executing (mark_ptid, 0);
4768
4769 /* Likewise the resumed flag. */
4770 set_resumed (mark_ptid, 0);
4771 }
8c90c137 4772
488f131b
JB
4773 switch (ecs->ws.kind)
4774 {
4775 case TARGET_WAITKIND_LOADED:
527159b7 4776 if (debug_infrun)
8a9de0e4 4777 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4778 if (!ptid_equal (ecs->ptid, inferior_ptid))
4779 context_switch (ecs->ptid);
b0f4b84b
DJ
4780 /* Ignore gracefully during startup of the inferior, as it might
4781 be the shell which has just loaded some objects, otherwise
4782 add the symbols for the newly loaded objects. Also ignore at
4783 the beginning of an attach or remote session; we will query
4784 the full list of libraries once the connection is
4785 established. */
4f5d7f63
PA
4786
4787 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4788 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4789 {
edcc5120
TT
4790 struct regcache *regcache;
4791
edcc5120
TT
4792 regcache = get_thread_regcache (ecs->ptid);
4793
4794 handle_solib_event ();
4795
4796 ecs->event_thread->control.stop_bpstat
4797 = bpstat_stop_status (get_regcache_aspace (regcache),
4798 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4799
ce12b012 4800 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4801 {
4802 /* A catchpoint triggered. */
94c57d6a
PA
4803 process_event_stop_test (ecs);
4804 return;
edcc5120 4805 }
488f131b 4806
b0f4b84b
DJ
4807 /* If requested, stop when the dynamic linker notifies
4808 gdb of events. This allows the user to get control
4809 and place breakpoints in initializer routines for
4810 dynamically loaded objects (among other things). */
a493e3e2 4811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4812 if (stop_on_solib_events)
4813 {
55409f9d
DJ
4814 /* Make sure we print "Stopped due to solib-event" in
4815 normal_stop. */
4816 stop_print_frame = 1;
4817
22bcd14b 4818 stop_waiting (ecs);
b0f4b84b
DJ
4819 return;
4820 }
488f131b 4821 }
b0f4b84b
DJ
4822
4823 /* If we are skipping through a shell, or through shared library
4824 loading that we aren't interested in, resume the program. If
5c09a2c5 4825 we're running the program normally, also resume. */
b0f4b84b
DJ
4826 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4827 {
74960c60
VP
4828 /* Loading of shared libraries might have changed breakpoint
4829 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4830 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4831 insert_breakpoints ();
64ce06e4 4832 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4833 prepare_to_wait (ecs);
4834 return;
4835 }
4836
5c09a2c5
PA
4837 /* But stop if we're attaching or setting up a remote
4838 connection. */
4839 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4840 || stop_soon == STOP_QUIETLY_REMOTE)
4841 {
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4844 stop_waiting (ecs);
5c09a2c5
PA
4845 return;
4846 }
4847
4848 internal_error (__FILE__, __LINE__,
4849 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4850
488f131b 4851 case TARGET_WAITKIND_SPURIOUS:
527159b7 4852 if (debug_infrun)
8a9de0e4 4853 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4854 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4855 context_switch (ecs->ptid);
64ce06e4 4856 resume (GDB_SIGNAL_0);
488f131b
JB
4857 prepare_to_wait (ecs);
4858 return;
c5aa993b 4859
488f131b 4860 case TARGET_WAITKIND_EXITED:
940c3c06 4861 case TARGET_WAITKIND_SIGNALLED:
527159b7 4862 if (debug_infrun)
940c3c06
PA
4863 {
4864 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4865 fprintf_unfiltered (gdb_stdlog,
4866 "infrun: TARGET_WAITKIND_EXITED\n");
4867 else
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4870 }
4871
fb66883a 4872 inferior_ptid = ecs->ptid;
c9657e70 4873 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4874 set_current_program_space (current_inferior ()->pspace);
4875 handle_vfork_child_exec_or_exit (0);
1777feb0 4876 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4877
0c557179
SDJ
4878 /* Clearing any previous state of convenience variables. */
4879 clear_exit_convenience_vars ();
4880
940c3c06
PA
4881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 {
4883 /* Record the exit code in the convenience variable $_exitcode, so
4884 that the user can inspect this again later. */
4885 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4886 (LONGEST) ecs->ws.value.integer);
4887
4888 /* Also record this in the inferior itself. */
4889 current_inferior ()->has_exit_code = 1;
4890 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4891
98eb56a4
PA
4892 /* Support the --return-child-result option. */
4893 return_child_result_value = ecs->ws.value.integer;
4894
fd664c91 4895 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4896 }
4897 else
0c557179
SDJ
4898 {
4899 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4900 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4901
4902 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4903 {
4904 /* Set the value of the internal variable $_exitsignal,
4905 which holds the signal uncaught by the inferior. */
4906 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4907 gdbarch_gdb_signal_to_target (gdbarch,
4908 ecs->ws.value.sig));
4909 }
4910 else
4911 {
4912 /* We don't have access to the target's method used for
4913 converting between signal numbers (GDB's internal
4914 representation <-> target's representation).
4915 Therefore, we cannot do a good job at displaying this
4916 information to the user. It's better to just warn
4917 her about it (if infrun debugging is enabled), and
4918 give up. */
4919 if (debug_infrun)
4920 fprintf_filtered (gdb_stdlog, _("\
4921Cannot fill $_exitsignal with the correct signal number.\n"));
4922 }
4923
fd664c91 4924 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4925 }
8cf64490 4926
488f131b
JB
4927 gdb_flush (gdb_stdout);
4928 target_mourn_inferior ();
488f131b 4929 stop_print_frame = 0;
22bcd14b 4930 stop_waiting (ecs);
488f131b 4931 return;
c5aa993b 4932
488f131b 4933 /* The following are the only cases in which we keep going;
1777feb0 4934 the above cases end in a continue or goto. */
488f131b 4935 case TARGET_WAITKIND_FORKED:
deb3b17b 4936 case TARGET_WAITKIND_VFORKED:
527159b7 4937 if (debug_infrun)
fed708ed
PA
4938 {
4939 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4940 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4941 else
4942 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4943 }
c906108c 4944
e2d96639
YQ
4945 /* Check whether the inferior is displaced stepping. */
4946 {
4947 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4948 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4949 struct displaced_step_inferior_state *displaced
4950 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4951
4952 /* If checking displaced stepping is supported, and thread
4953 ecs->ptid is displaced stepping. */
4954 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4955 {
4956 struct inferior *parent_inf
c9657e70 4957 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4958 struct regcache *child_regcache;
4959 CORE_ADDR parent_pc;
4960
4961 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4962 indicating that the displaced stepping of syscall instruction
4963 has been done. Perform cleanup for parent process here. Note
4964 that this operation also cleans up the child process for vfork,
4965 because their pages are shared. */
a493e3e2 4966 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4967 /* Start a new step-over in another thread if there's one
4968 that needs it. */
4969 start_step_over ();
e2d96639
YQ
4970
4971 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4972 {
4973 /* Restore scratch pad for child process. */
4974 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4975 }
4976
4977 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4978 the child's PC is also within the scratchpad. Set the child's PC
4979 to the parent's PC value, which has already been fixed up.
4980 FIXME: we use the parent's aspace here, although we're touching
4981 the child, because the child hasn't been added to the inferior
4982 list yet at this point. */
4983
4984 child_regcache
4985 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4986 gdbarch,
4987 parent_inf->aspace);
4988 /* Read PC value of parent process. */
4989 parent_pc = regcache_read_pc (regcache);
4990
4991 if (debug_displaced)
4992 fprintf_unfiltered (gdb_stdlog,
4993 "displaced: write child pc from %s to %s\n",
4994 paddress (gdbarch,
4995 regcache_read_pc (child_regcache)),
4996 paddress (gdbarch, parent_pc));
4997
4998 regcache_write_pc (child_regcache, parent_pc);
4999 }
5000 }
5001
5a2901d9 5002 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5003 context_switch (ecs->ptid);
5a2901d9 5004
b242c3c2
PA
5005 /* Immediately detach breakpoints from the child before there's
5006 any chance of letting the user delete breakpoints from the
5007 breakpoint lists. If we don't do this early, it's easy to
5008 leave left over traps in the child, vis: "break foo; catch
5009 fork; c; <fork>; del; c; <child calls foo>". We only follow
5010 the fork on the last `continue', and by that time the
5011 breakpoint at "foo" is long gone from the breakpoint table.
5012 If we vforked, then we don't need to unpatch here, since both
5013 parent and child are sharing the same memory pages; we'll
5014 need to unpatch at follow/detach time instead to be certain
5015 that new breakpoints added between catchpoint hit time and
5016 vfork follow are detached. */
5017 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5018 {
b242c3c2
PA
5019 /* This won't actually modify the breakpoint list, but will
5020 physically remove the breakpoints from the child. */
d80ee84f 5021 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5022 }
5023
34b7e8a6 5024 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5025
e58b0e63
PA
5026 /* In case the event is caught by a catchpoint, remember that
5027 the event is to be followed at the next resume of the thread,
5028 and not immediately. */
5029 ecs->event_thread->pending_follow = ecs->ws;
5030
fb14de7b 5031 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5032
16c381f0 5033 ecs->event_thread->control.stop_bpstat
6c95b8df 5034 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5035 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5036
ce12b012
PA
5037 /* If no catchpoint triggered for this, then keep going. Note
5038 that we're interested in knowing the bpstat actually causes a
5039 stop, not just if it may explain the signal. Software
5040 watchpoints, for example, always appear in the bpstat. */
5041 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5042 {
6c95b8df
PA
5043 ptid_t parent;
5044 ptid_t child;
e58b0e63 5045 int should_resume;
3e43a32a
MS
5046 int follow_child
5047 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5048
a493e3e2 5049 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5050
5051 should_resume = follow_fork ();
5052
6c95b8df
PA
5053 parent = ecs->ptid;
5054 child = ecs->ws.value.related_pid;
5055
5056 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5057 if (!detach_fork && (non_stop
5058 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5059 {
5060 if (follow_child)
5061 switch_to_thread (parent);
5062 else
5063 switch_to_thread (child);
5064
5065 ecs->event_thread = inferior_thread ();
5066 ecs->ptid = inferior_ptid;
5067 keep_going (ecs);
5068 }
5069
5070 if (follow_child)
5071 switch_to_thread (child);
5072 else
5073 switch_to_thread (parent);
5074
e58b0e63
PA
5075 ecs->event_thread = inferior_thread ();
5076 ecs->ptid = inferior_ptid;
5077
5078 if (should_resume)
5079 keep_going (ecs);
5080 else
22bcd14b 5081 stop_waiting (ecs);
04e68871
DJ
5082 return;
5083 }
94c57d6a
PA
5084 process_event_stop_test (ecs);
5085 return;
488f131b 5086
6c95b8df
PA
5087 case TARGET_WAITKIND_VFORK_DONE:
5088 /* Done with the shared memory region. Re-insert breakpoints in
5089 the parent, and keep going. */
5090
5091 if (debug_infrun)
3e43a32a
MS
5092 fprintf_unfiltered (gdb_stdlog,
5093 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5094
5095 if (!ptid_equal (ecs->ptid, inferior_ptid))
5096 context_switch (ecs->ptid);
5097
5098 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5099 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5100 /* This also takes care of reinserting breakpoints in the
5101 previously locked inferior. */
5102 keep_going (ecs);
5103 return;
5104
488f131b 5105 case TARGET_WAITKIND_EXECD:
527159b7 5106 if (debug_infrun)
fc5261f2 5107 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5108
5a2901d9 5109 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5110 context_switch (ecs->ptid);
5a2901d9 5111
fb14de7b 5112 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5113
6c95b8df
PA
5114 /* Do whatever is necessary to the parent branch of the vfork. */
5115 handle_vfork_child_exec_or_exit (1);
5116
795e548f
PA
5117 /* This causes the eventpoints and symbol table to be reset.
5118 Must do this now, before trying to determine whether to
5119 stop. */
71b43ef8 5120 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5121
17d8546e
DB
5122 /* In follow_exec we may have deleted the original thread and
5123 created a new one. Make sure that the event thread is the
5124 execd thread for that case (this is a nop otherwise). */
5125 ecs->event_thread = inferior_thread ();
5126
16c381f0 5127 ecs->event_thread->control.stop_bpstat
6c95b8df 5128 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5129 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5130
71b43ef8
PA
5131 /* Note that this may be referenced from inside
5132 bpstat_stop_status above, through inferior_has_execd. */
5133 xfree (ecs->ws.value.execd_pathname);
5134 ecs->ws.value.execd_pathname = NULL;
5135
04e68871 5136 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5137 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5138 {
a493e3e2 5139 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5140 keep_going (ecs);
5141 return;
5142 }
94c57d6a
PA
5143 process_event_stop_test (ecs);
5144 return;
488f131b 5145
b4dc5ffa
MK
5146 /* Be careful not to try to gather much state about a thread
5147 that's in a syscall. It's frequently a losing proposition. */
488f131b 5148 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5149 if (debug_infrun)
3e43a32a
MS
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5152 /* Getting the current syscall number. */
94c57d6a
PA
5153 if (handle_syscall_event (ecs) == 0)
5154 process_event_stop_test (ecs);
5155 return;
c906108c 5156
488f131b
JB
5157 /* Before examining the threads further, step this thread to
5158 get it entirely out of the syscall. (We get notice of the
5159 event when the thread is just on the verge of exiting a
5160 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5161 into user code.) */
488f131b 5162 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5163 if (debug_infrun)
3e43a32a
MS
5164 fprintf_unfiltered (gdb_stdlog,
5165 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5166 if (handle_syscall_event (ecs) == 0)
5167 process_event_stop_test (ecs);
5168 return;
c906108c 5169
488f131b 5170 case TARGET_WAITKIND_STOPPED:
527159b7 5171 if (debug_infrun)
8a9de0e4 5172 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5173 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5174 handle_signal_stop (ecs);
5175 return;
c906108c 5176
b2175913 5177 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5178 if (debug_infrun)
5179 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5180 /* Reverse execution: target ran out of history info. */
eab402df 5181
d1988021
MM
5182 /* Switch to the stopped thread. */
5183 if (!ptid_equal (ecs->ptid, inferior_ptid))
5184 context_switch (ecs->ptid);
5185 if (debug_infrun)
5186 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5187
34b7e8a6 5188 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5189 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5190 observer_notify_no_history ();
22bcd14b 5191 stop_waiting (ecs);
b2175913 5192 return;
488f131b 5193 }
4f5d7f63
PA
5194}
5195
0b6e5e10
JB
5196/* A wrapper around handle_inferior_event_1, which also makes sure
5197 that all temporary struct value objects that were created during
5198 the handling of the event get deleted at the end. */
5199
5200static void
5201handle_inferior_event (struct execution_control_state *ecs)
5202{
5203 struct value *mark = value_mark ();
5204
5205 handle_inferior_event_1 (ecs);
5206 /* Purge all temporary values created during the event handling,
5207 as it could be a long time before we return to the command level
5208 where such values would otherwise be purged. */
5209 value_free_to_mark (mark);
5210}
5211
372316f1
PA
5212/* Restart threads back to what they were trying to do back when we
5213 paused them for an in-line step-over. The EVENT_THREAD thread is
5214 ignored. */
4d9d9d04
PA
5215
5216static void
372316f1
PA
5217restart_threads (struct thread_info *event_thread)
5218{
5219 struct thread_info *tp;
5220 struct thread_info *step_over = NULL;
5221
5222 /* In case the instruction just stepped spawned a new thread. */
5223 update_thread_list ();
5224
5225 ALL_NON_EXITED_THREADS (tp)
5226 {
5227 if (tp == event_thread)
5228 {
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: restart threads: "
5232 "[%s] is event thread\n",
5233 target_pid_to_str (tp->ptid));
5234 continue;
5235 }
5236
5237 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: "
5242 "[%s] not meant to be running\n",
5243 target_pid_to_str (tp->ptid));
5244 continue;
5245 }
5246
5247 if (tp->resumed)
5248 {
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: [%s] resumed\n",
5252 target_pid_to_str (tp->ptid));
5253 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5254 continue;
5255 }
5256
5257 if (thread_is_in_step_over_chain (tp))
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: restart threads: "
5262 "[%s] needs step-over\n",
5263 target_pid_to_str (tp->ptid));
5264 gdb_assert (!tp->resumed);
5265 continue;
5266 }
5267
5268
5269 if (tp->suspend.waitstatus_pending_p)
5270 {
5271 if (debug_infrun)
5272 fprintf_unfiltered (gdb_stdlog,
5273 "infrun: restart threads: "
5274 "[%s] has pending status\n",
5275 target_pid_to_str (tp->ptid));
5276 tp->resumed = 1;
5277 continue;
5278 }
5279
5280 /* If some thread needs to start a step-over at this point, it
5281 should still be in the step-over queue, and thus skipped
5282 above. */
5283 if (thread_still_needs_step_over (tp))
5284 {
5285 internal_error (__FILE__, __LINE__,
5286 "thread [%s] needs a step-over, but not in "
5287 "step-over queue\n",
5288 target_pid_to_str (tp->ptid));
5289 }
5290
5291 if (currently_stepping (tp))
5292 {
5293 if (debug_infrun)
5294 fprintf_unfiltered (gdb_stdlog,
5295 "infrun: restart threads: [%s] was stepping\n",
5296 target_pid_to_str (tp->ptid));
5297 keep_going_stepped_thread (tp);
5298 }
5299 else
5300 {
5301 struct execution_control_state ecss;
5302 struct execution_control_state *ecs = &ecss;
5303
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: restart threads: [%s] continuing\n",
5307 target_pid_to_str (tp->ptid));
5308 reset_ecs (ecs, tp);
5309 switch_to_thread (tp->ptid);
5310 keep_going_pass_signal (ecs);
5311 }
5312 }
5313}
5314
5315/* Callback for iterate_over_threads. Find a resumed thread that has
5316 a pending waitstatus. */
5317
5318static int
5319resumed_thread_with_pending_status (struct thread_info *tp,
5320 void *arg)
5321{
5322 return (tp->resumed
5323 && tp->suspend.waitstatus_pending_p);
5324}
5325
5326/* Called when we get an event that may finish an in-line or
5327 out-of-line (displaced stepping) step-over started previously.
5328 Return true if the event is processed and we should go back to the
5329 event loop; false if the caller should continue processing the
5330 event. */
5331
5332static int
4d9d9d04
PA
5333finish_step_over (struct execution_control_state *ecs)
5334{
372316f1
PA
5335 int had_step_over_info;
5336
4d9d9d04
PA
5337 displaced_step_fixup (ecs->ptid,
5338 ecs->event_thread->suspend.stop_signal);
5339
372316f1
PA
5340 had_step_over_info = step_over_info_valid_p ();
5341
5342 if (had_step_over_info)
4d9d9d04
PA
5343 {
5344 /* If we're stepping over a breakpoint with all threads locked,
5345 then only the thread that was stepped should be reporting
5346 back an event. */
5347 gdb_assert (ecs->event_thread->control.trap_expected);
5348
5349 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5350 clear_step_over_info ();
5351 }
5352
fbea99ea 5353 if (!target_is_non_stop_p ())
372316f1 5354 return 0;
4d9d9d04
PA
5355
5356 /* Start a new step-over in another thread if there's one that
5357 needs it. */
5358 start_step_over ();
372316f1
PA
5359
5360 /* If we were stepping over a breakpoint before, and haven't started
5361 a new in-line step-over sequence, then restart all other threads
5362 (except the event thread). We can't do this in all-stop, as then
5363 e.g., we wouldn't be able to issue any other remote packet until
5364 these other threads stop. */
5365 if (had_step_over_info && !step_over_info_valid_p ())
5366 {
5367 struct thread_info *pending;
5368
5369 /* If we only have threads with pending statuses, the restart
5370 below won't restart any thread and so nothing re-inserts the
5371 breakpoint we just stepped over. But we need it inserted
5372 when we later process the pending events, otherwise if
5373 another thread has a pending event for this breakpoint too,
5374 we'd discard its event (because the breakpoint that
5375 originally caused the event was no longer inserted). */
5376 context_switch (ecs->ptid);
5377 insert_breakpoints ();
5378
5379 restart_threads (ecs->event_thread);
5380
5381 /* If we have events pending, go through handle_inferior_event
5382 again, picking up a pending event at random. This avoids
5383 thread starvation. */
5384
5385 /* But not if we just stepped over a watchpoint in order to let
5386 the instruction execute so we can evaluate its expression.
5387 The set of watchpoints that triggered is recorded in the
5388 breakpoint objects themselves (see bp->watchpoint_triggered).
5389 If we processed another event first, that other event could
5390 clobber this info. */
5391 if (ecs->event_thread->stepping_over_watchpoint)
5392 return 0;
5393
5394 pending = iterate_over_threads (resumed_thread_with_pending_status,
5395 NULL);
5396 if (pending != NULL)
5397 {
5398 struct thread_info *tp = ecs->event_thread;
5399 struct regcache *regcache;
5400
5401 if (debug_infrun)
5402 {
5403 fprintf_unfiltered (gdb_stdlog,
5404 "infrun: found resumed threads with "
5405 "pending events, saving status\n");
5406 }
5407
5408 gdb_assert (pending != tp);
5409
5410 /* Record the event thread's event for later. */
5411 save_waitstatus (tp, &ecs->ws);
5412 /* This was cleared early, by handle_inferior_event. Set it
5413 so this pending event is considered by
5414 do_target_wait. */
5415 tp->resumed = 1;
5416
5417 gdb_assert (!tp->executing);
5418
5419 regcache = get_thread_regcache (tp->ptid);
5420 tp->suspend.stop_pc = regcache_read_pc (regcache);
5421
5422 if (debug_infrun)
5423 {
5424 fprintf_unfiltered (gdb_stdlog,
5425 "infrun: saved stop_pc=%s for %s "
5426 "(currently_stepping=%d)\n",
5427 paddress (target_gdbarch (),
5428 tp->suspend.stop_pc),
5429 target_pid_to_str (tp->ptid),
5430 currently_stepping (tp));
5431 }
5432
5433 /* This in-line step-over finished; clear this so we won't
5434 start a new one. This is what handle_signal_stop would
5435 do, if we returned false. */
5436 tp->stepping_over_breakpoint = 0;
5437
5438 /* Wake up the event loop again. */
5439 mark_async_event_handler (infrun_async_inferior_event_token);
5440
5441 prepare_to_wait (ecs);
5442 return 1;
5443 }
5444 }
5445
5446 return 0;
4d9d9d04
PA
5447}
5448
4f5d7f63
PA
5449/* Come here when the program has stopped with a signal. */
5450
5451static void
5452handle_signal_stop (struct execution_control_state *ecs)
5453{
5454 struct frame_info *frame;
5455 struct gdbarch *gdbarch;
5456 int stopped_by_watchpoint;
5457 enum stop_kind stop_soon;
5458 int random_signal;
c906108c 5459
f0407826
DE
5460 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5461
5462 /* Do we need to clean up the state of a thread that has
5463 completed a displaced single-step? (Doing so usually affects
5464 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5465 if (finish_step_over (ecs))
5466 return;
f0407826
DE
5467
5468 /* If we either finished a single-step or hit a breakpoint, but
5469 the user wanted this thread to be stopped, pretend we got a
5470 SIG0 (generic unsignaled stop). */
5471 if (ecs->event_thread->stop_requested
5472 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5473 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5474
515630c5 5475 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5476
527159b7 5477 if (debug_infrun)
237fc4c9 5478 {
5af949e3
UW
5479 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5480 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5481 struct cleanup *old_chain = save_inferior_ptid ();
5482
5483 inferior_ptid = ecs->ptid;
5af949e3
UW
5484
5485 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5486 paddress (gdbarch, stop_pc));
d92524f1 5487 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5488 {
5489 CORE_ADDR addr;
abbb1732 5490
237fc4c9
PA
5491 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5492
5493 if (target_stopped_data_address (&current_target, &addr))
5494 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5495 "infrun: stopped data address = %s\n",
5496 paddress (gdbarch, addr));
237fc4c9
PA
5497 else
5498 fprintf_unfiltered (gdb_stdlog,
5499 "infrun: (no data address available)\n");
5500 }
7f82dfc7
JK
5501
5502 do_cleanups (old_chain);
237fc4c9 5503 }
527159b7 5504
36fa8042
PA
5505 /* This is originated from start_remote(), start_inferior() and
5506 shared libraries hook functions. */
5507 stop_soon = get_inferior_stop_soon (ecs->ptid);
5508 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5509 {
5510 if (!ptid_equal (ecs->ptid, inferior_ptid))
5511 context_switch (ecs->ptid);
5512 if (debug_infrun)
5513 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5514 stop_print_frame = 1;
22bcd14b 5515 stop_waiting (ecs);
36fa8042
PA
5516 return;
5517 }
5518
36fa8042
PA
5519 /* This originates from attach_command(). We need to overwrite
5520 the stop_signal here, because some kernels don't ignore a
5521 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5522 See more comments in inferior.h. On the other hand, if we
5523 get a non-SIGSTOP, report it to the user - assume the backend
5524 will handle the SIGSTOP if it should show up later.
5525
5526 Also consider that the attach is complete when we see a
5527 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5528 target extended-remote report it instead of a SIGSTOP
5529 (e.g. gdbserver). We already rely on SIGTRAP being our
5530 signal, so this is no exception.
5531
5532 Also consider that the attach is complete when we see a
5533 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5534 the target to stop all threads of the inferior, in case the
5535 low level attach operation doesn't stop them implicitly. If
5536 they weren't stopped implicitly, then the stub will report a
5537 GDB_SIGNAL_0, meaning: stopped for no particular reason
5538 other than GDB's request. */
5539 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5540 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5541 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5542 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5543 {
5544 stop_print_frame = 1;
22bcd14b 5545 stop_waiting (ecs);
36fa8042
PA
5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5547 return;
5548 }
5549
488f131b 5550 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5551 so, then switch to that thread. */
5552 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5553 {
527159b7 5554 if (debug_infrun)
8a9de0e4 5555 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5556
0d1e5fa7 5557 context_switch (ecs->ptid);
c5aa993b 5558
9a4105ab
AC
5559 if (deprecated_context_hook)
5560 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5561 }
c906108c 5562
568d6575
UW
5563 /* At this point, get hold of the now-current thread's frame. */
5564 frame = get_current_frame ();
5565 gdbarch = get_frame_arch (frame);
5566
2adfaa28 5567 /* Pull the single step breakpoints out of the target. */
af48d08f 5568 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5569 {
af48d08f
PA
5570 struct regcache *regcache;
5571 struct address_space *aspace;
5572 CORE_ADDR pc;
2adfaa28 5573
af48d08f
PA
5574 regcache = get_thread_regcache (ecs->ptid);
5575 aspace = get_regcache_aspace (regcache);
5576 pc = regcache_read_pc (regcache);
34b7e8a6 5577
af48d08f
PA
5578 /* However, before doing so, if this single-step breakpoint was
5579 actually for another thread, set this thread up for moving
5580 past it. */
5581 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5582 aspace, pc))
5583 {
5584 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5585 {
5586 if (debug_infrun)
5587 {
5588 fprintf_unfiltered (gdb_stdlog,
af48d08f 5589 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5590 "single-step breakpoint\n",
5591 target_pid_to_str (ecs->ptid));
2adfaa28 5592 }
af48d08f
PA
5593 ecs->hit_singlestep_breakpoint = 1;
5594 }
5595 }
5596 else
5597 {
5598 if (debug_infrun)
5599 {
5600 fprintf_unfiltered (gdb_stdlog,
5601 "infrun: [%s] hit its "
5602 "single-step breakpoint\n",
5603 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5604 }
5605 }
488f131b 5606 }
af48d08f 5607 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5608
963f9c80
PA
5609 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5610 && ecs->event_thread->control.trap_expected
5611 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5612 stopped_by_watchpoint = 0;
5613 else
5614 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5615
5616 /* If necessary, step over this watchpoint. We'll be back to display
5617 it in a moment. */
5618 if (stopped_by_watchpoint
d92524f1 5619 && (target_have_steppable_watchpoint
568d6575 5620 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5621 {
488f131b
JB
5622 /* At this point, we are stopped at an instruction which has
5623 attempted to write to a piece of memory under control of
5624 a watchpoint. The instruction hasn't actually executed
5625 yet. If we were to evaluate the watchpoint expression
5626 now, we would get the old value, and therefore no change
5627 would seem to have occurred.
5628
5629 In order to make watchpoints work `right', we really need
5630 to complete the memory write, and then evaluate the
d983da9c
DJ
5631 watchpoint expression. We do this by single-stepping the
5632 target.
5633
7f89fd65 5634 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5635 it. For example, the PA can (with some kernel cooperation)
5636 single step over a watchpoint without disabling the watchpoint.
5637
5638 It is far more common to need to disable a watchpoint to step
5639 the inferior over it. If we have non-steppable watchpoints,
5640 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5641 disable all watchpoints.
5642
5643 Any breakpoint at PC must also be stepped over -- if there's
5644 one, it will have already triggered before the watchpoint
5645 triggered, and we either already reported it to the user, or
5646 it didn't cause a stop and we called keep_going. In either
5647 case, if there was a breakpoint at PC, we must be trying to
5648 step past it. */
5649 ecs->event_thread->stepping_over_watchpoint = 1;
5650 keep_going (ecs);
488f131b
JB
5651 return;
5652 }
5653
4e1c45ea 5654 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5655 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5656 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5657 ecs->event_thread->control.stop_step = 0;
488f131b 5658 stop_print_frame = 1;
488f131b 5659 stopped_by_random_signal = 0;
488f131b 5660
edb3359d
DJ
5661 /* Hide inlined functions starting here, unless we just performed stepi or
5662 nexti. After stepi and nexti, always show the innermost frame (not any
5663 inline function call sites). */
16c381f0 5664 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5665 {
5666 struct address_space *aspace =
5667 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5668
5669 /* skip_inline_frames is expensive, so we avoid it if we can
5670 determine that the address is one where functions cannot have
5671 been inlined. This improves performance with inferiors that
5672 load a lot of shared libraries, because the solib event
5673 breakpoint is defined as the address of a function (i.e. not
5674 inline). Note that we have to check the previous PC as well
5675 as the current one to catch cases when we have just
5676 single-stepped off a breakpoint prior to reinstating it.
5677 Note that we're assuming that the code we single-step to is
5678 not inline, but that's not definitive: there's nothing
5679 preventing the event breakpoint function from containing
5680 inlined code, and the single-step ending up there. If the
5681 user had set a breakpoint on that inlined code, the missing
5682 skip_inline_frames call would break things. Fortunately
5683 that's an extremely unlikely scenario. */
09ac7c10 5684 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5685 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5686 && ecs->event_thread->control.trap_expected
5687 && pc_at_non_inline_function (aspace,
5688 ecs->event_thread->prev_pc,
09ac7c10 5689 &ecs->ws)))
1c5a993e
MR
5690 {
5691 skip_inline_frames (ecs->ptid);
5692
5693 /* Re-fetch current thread's frame in case that invalidated
5694 the frame cache. */
5695 frame = get_current_frame ();
5696 gdbarch = get_frame_arch (frame);
5697 }
0574c78f 5698 }
edb3359d 5699
a493e3e2 5700 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5701 && ecs->event_thread->control.trap_expected
568d6575 5702 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5703 && currently_stepping (ecs->event_thread))
3352ef37 5704 {
b50d7442 5705 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5706 also on an instruction that needs to be stepped multiple
1777feb0 5707 times before it's been fully executing. E.g., architectures
3352ef37
AC
5708 with a delay slot. It needs to be stepped twice, once for
5709 the instruction and once for the delay slot. */
5710 int step_through_delay
568d6575 5711 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5712
527159b7 5713 if (debug_infrun && step_through_delay)
8a9de0e4 5714 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5715 if (ecs->event_thread->control.step_range_end == 0
5716 && step_through_delay)
3352ef37
AC
5717 {
5718 /* The user issued a continue when stopped at a breakpoint.
5719 Set up for another trap and get out of here. */
4e1c45ea 5720 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5721 keep_going (ecs);
5722 return;
5723 }
5724 else if (step_through_delay)
5725 {
5726 /* The user issued a step when stopped at a breakpoint.
5727 Maybe we should stop, maybe we should not - the delay
5728 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5729 case, don't decide that here, just set
5730 ecs->stepping_over_breakpoint, making sure we
5731 single-step again before breakpoints are re-inserted. */
4e1c45ea 5732 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5733 }
5734 }
5735
ab04a2af
TT
5736 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5737 handles this event. */
5738 ecs->event_thread->control.stop_bpstat
5739 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5740 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5741
ab04a2af
TT
5742 /* Following in case break condition called a
5743 function. */
5744 stop_print_frame = 1;
73dd234f 5745
ab04a2af
TT
5746 /* This is where we handle "moribund" watchpoints. Unlike
5747 software breakpoints traps, hardware watchpoint traps are
5748 always distinguishable from random traps. If no high-level
5749 watchpoint is associated with the reported stop data address
5750 anymore, then the bpstat does not explain the signal ---
5751 simply make sure to ignore it if `stopped_by_watchpoint' is
5752 set. */
5753
5754 if (debug_infrun
5755 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5756 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5757 GDB_SIGNAL_TRAP)
ab04a2af
TT
5758 && stopped_by_watchpoint)
5759 fprintf_unfiltered (gdb_stdlog,
5760 "infrun: no user watchpoint explains "
5761 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5762
bac7d97b 5763 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5764 at one stage in the past included checks for an inferior
5765 function call's call dummy's return breakpoint. The original
5766 comment, that went with the test, read:
03cebad2 5767
ab04a2af
TT
5768 ``End of a stack dummy. Some systems (e.g. Sony news) give
5769 another signal besides SIGTRAP, so check here as well as
5770 above.''
73dd234f 5771
ab04a2af
TT
5772 If someone ever tries to get call dummys on a
5773 non-executable stack to work (where the target would stop
5774 with something like a SIGSEGV), then those tests might need
5775 to be re-instated. Given, however, that the tests were only
5776 enabled when momentary breakpoints were not being used, I
5777 suspect that it won't be the case.
488f131b 5778
ab04a2af
TT
5779 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5780 be necessary for call dummies on a non-executable stack on
5781 SPARC. */
488f131b 5782
bac7d97b 5783 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5784 random_signal
5785 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5786 ecs->event_thread->suspend.stop_signal);
bac7d97b 5787
1cf4d951
PA
5788 /* Maybe this was a trap for a software breakpoint that has since
5789 been removed. */
5790 if (random_signal && target_stopped_by_sw_breakpoint ())
5791 {
5792 if (program_breakpoint_here_p (gdbarch, stop_pc))
5793 {
5794 struct regcache *regcache;
5795 int decr_pc;
5796
5797 /* Re-adjust PC to what the program would see if GDB was not
5798 debugging it. */
5799 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5800 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5801 if (decr_pc != 0)
5802 {
5803 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5804
5805 if (record_full_is_used ())
5806 record_full_gdb_operation_disable_set ();
5807
5808 regcache_write_pc (regcache, stop_pc + decr_pc);
5809
5810 do_cleanups (old_cleanups);
5811 }
5812 }
5813 else
5814 {
5815 /* A delayed software breakpoint event. Ignore the trap. */
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: delayed software breakpoint "
5819 "trap, ignoring\n");
5820 random_signal = 0;
5821 }
5822 }
5823
5824 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5825 has since been removed. */
5826 if (random_signal && target_stopped_by_hw_breakpoint ())
5827 {
5828 /* A delayed hardware breakpoint event. Ignore the trap. */
5829 if (debug_infrun)
5830 fprintf_unfiltered (gdb_stdlog,
5831 "infrun: delayed hardware breakpoint/watchpoint "
5832 "trap, ignoring\n");
5833 random_signal = 0;
5834 }
5835
bac7d97b
PA
5836 /* If not, perhaps stepping/nexting can. */
5837 if (random_signal)
5838 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5839 && currently_stepping (ecs->event_thread));
ab04a2af 5840
2adfaa28
PA
5841 /* Perhaps the thread hit a single-step breakpoint of _another_
5842 thread. Single-step breakpoints are transparent to the
5843 breakpoints module. */
5844 if (random_signal)
5845 random_signal = !ecs->hit_singlestep_breakpoint;
5846
bac7d97b
PA
5847 /* No? Perhaps we got a moribund watchpoint. */
5848 if (random_signal)
5849 random_signal = !stopped_by_watchpoint;
ab04a2af 5850
488f131b
JB
5851 /* For the program's own signals, act according to
5852 the signal handling tables. */
5853
ce12b012 5854 if (random_signal)
488f131b
JB
5855 {
5856 /* Signal not for debugging purposes. */
c9657e70 5857 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5858 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5859
527159b7 5860 if (debug_infrun)
c9737c08
PA
5861 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5862 gdb_signal_to_symbol_string (stop_signal));
527159b7 5863
488f131b
JB
5864 stopped_by_random_signal = 1;
5865
252fbfc8
PA
5866 /* Always stop on signals if we're either just gaining control
5867 of the program, or the user explicitly requested this thread
5868 to remain stopped. */
d6b48e9c 5869 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5870 || ecs->event_thread->stop_requested
24291992 5871 || (!inf->detaching
16c381f0 5872 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5873 {
22bcd14b 5874 stop_waiting (ecs);
488f131b
JB
5875 return;
5876 }
b57bacec
PA
5877
5878 /* Notify observers the signal has "handle print" set. Note we
5879 returned early above if stopping; normal_stop handles the
5880 printing in that case. */
5881 if (signal_print[ecs->event_thread->suspend.stop_signal])
5882 {
5883 /* The signal table tells us to print about this signal. */
5884 target_terminal_ours_for_output ();
5885 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5886 target_terminal_inferior ();
5887 }
488f131b
JB
5888
5889 /* Clear the signal if it should not be passed. */
16c381f0 5890 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5891 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5892
fb14de7b 5893 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5894 && ecs->event_thread->control.trap_expected
8358c15c 5895 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5896 {
372316f1
PA
5897 int was_in_line;
5898
68f53502
AC
5899 /* We were just starting a new sequence, attempting to
5900 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5901 Instead this signal arrives. This signal will take us out
68f53502
AC
5902 of the stepping range so GDB needs to remember to, when
5903 the signal handler returns, resume stepping off that
5904 breakpoint. */
5905 /* To simplify things, "continue" is forced to use the same
5906 code paths as single-step - set a breakpoint at the
5907 signal return address and then, once hit, step off that
5908 breakpoint. */
237fc4c9
PA
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: signal arrived while stepping over "
5912 "breakpoint\n");
d3169d93 5913
372316f1
PA
5914 was_in_line = step_over_info_valid_p ();
5915 clear_step_over_info ();
2c03e5be 5916 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5917 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5918 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5919 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5920
fbea99ea 5921 if (target_is_non_stop_p ())
372316f1 5922 {
fbea99ea
PA
5923 /* Either "set non-stop" is "on", or the target is
5924 always in non-stop mode. In this case, we have a bit
5925 more work to do. Resume the current thread, and if
5926 we had paused all threads, restart them while the
5927 signal handler runs. */
372316f1
PA
5928 keep_going (ecs);
5929
372316f1
PA
5930 if (was_in_line)
5931 {
372316f1
PA
5932 restart_threads (ecs->event_thread);
5933 }
5934 else if (debug_infrun)
5935 {
5936 fprintf_unfiltered (gdb_stdlog,
5937 "infrun: no need to restart threads\n");
5938 }
5939 return;
5940 }
5941
d137e6dc
PA
5942 /* If we were nexting/stepping some other thread, switch to
5943 it, so that we don't continue it, losing control. */
5944 if (!switch_back_to_stepped_thread (ecs))
5945 keep_going (ecs);
9d799f85 5946 return;
68f53502 5947 }
9d799f85 5948
e5f8a7cc
PA
5949 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5950 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5951 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5952 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5953 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5954 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5955 {
5956 /* The inferior is about to take a signal that will take it
5957 out of the single step range. Set a breakpoint at the
5958 current PC (which is presumably where the signal handler
5959 will eventually return) and then allow the inferior to
5960 run free.
5961
5962 Note that this is only needed for a signal delivered
5963 while in the single-step range. Nested signals aren't a
5964 problem as they eventually all return. */
237fc4c9
PA
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: signal may take us out of "
5968 "single-step range\n");
5969
372316f1 5970 clear_step_over_info ();
2c03e5be 5971 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5972 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5973 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5974 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5975 keep_going (ecs);
5976 return;
d303a6c7 5977 }
9d799f85
AC
5978
5979 /* Note: step_resume_breakpoint may be non-NULL. This occures
5980 when either there's a nested signal, or when there's a
5981 pending signal enabled just as the signal handler returns
5982 (leaving the inferior at the step-resume-breakpoint without
5983 actually executing it). Either way continue until the
5984 breakpoint is really hit. */
c447ac0b
PA
5985
5986 if (!switch_back_to_stepped_thread (ecs))
5987 {
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: random signal, keep going\n");
5991
5992 keep_going (ecs);
5993 }
5994 return;
488f131b 5995 }
94c57d6a
PA
5996
5997 process_event_stop_test (ecs);
5998}
5999
6000/* Come here when we've got some debug event / signal we can explain
6001 (IOW, not a random signal), and test whether it should cause a
6002 stop, or whether we should resume the inferior (transparently).
6003 E.g., could be a breakpoint whose condition evaluates false; we
6004 could be still stepping within the line; etc. */
6005
6006static void
6007process_event_stop_test (struct execution_control_state *ecs)
6008{
6009 struct symtab_and_line stop_pc_sal;
6010 struct frame_info *frame;
6011 struct gdbarch *gdbarch;
cdaa5b73
PA
6012 CORE_ADDR jmp_buf_pc;
6013 struct bpstat_what what;
94c57d6a 6014
cdaa5b73 6015 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6016
cdaa5b73
PA
6017 frame = get_current_frame ();
6018 gdbarch = get_frame_arch (frame);
fcf3daef 6019
cdaa5b73 6020 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6021
cdaa5b73
PA
6022 if (what.call_dummy)
6023 {
6024 stop_stack_dummy = what.call_dummy;
6025 }
186c406b 6026
243a9253
PA
6027 /* A few breakpoint types have callbacks associated (e.g.,
6028 bp_jit_event). Run them now. */
6029 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6030
cdaa5b73
PA
6031 /* If we hit an internal event that triggers symbol changes, the
6032 current frame will be invalidated within bpstat_what (e.g., if we
6033 hit an internal solib event). Re-fetch it. */
6034 frame = get_current_frame ();
6035 gdbarch = get_frame_arch (frame);
e2e4d78b 6036
cdaa5b73
PA
6037 switch (what.main_action)
6038 {
6039 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6040 /* If we hit the breakpoint at longjmp while stepping, we
6041 install a momentary breakpoint at the target of the
6042 jmp_buf. */
186c406b 6043
cdaa5b73
PA
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6047
cdaa5b73 6048 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6049
cdaa5b73
PA
6050 if (what.is_longjmp)
6051 {
6052 struct value *arg_value;
6053
6054 /* If we set the longjmp breakpoint via a SystemTap probe,
6055 then use it to extract the arguments. The destination PC
6056 is the third argument to the probe. */
6057 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6058 if (arg_value)
8fa0c4f8
AA
6059 {
6060 jmp_buf_pc = value_as_address (arg_value);
6061 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6062 }
cdaa5b73
PA
6063 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6064 || !gdbarch_get_longjmp_target (gdbarch,
6065 frame, &jmp_buf_pc))
e2e4d78b 6066 {
cdaa5b73
PA
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog,
6069 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6070 "(!gdbarch_get_longjmp_target)\n");
6071 keep_going (ecs);
6072 return;
e2e4d78b 6073 }
e2e4d78b 6074
cdaa5b73
PA
6075 /* Insert a breakpoint at resume address. */
6076 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6077 }
6078 else
6079 check_exception_resume (ecs, frame);
6080 keep_going (ecs);
6081 return;
e81a37f7 6082
cdaa5b73
PA
6083 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6084 {
6085 struct frame_info *init_frame;
e81a37f7 6086
cdaa5b73 6087 /* There are several cases to consider.
c906108c 6088
cdaa5b73
PA
6089 1. The initiating frame no longer exists. In this case we
6090 must stop, because the exception or longjmp has gone too
6091 far.
2c03e5be 6092
cdaa5b73
PA
6093 2. The initiating frame exists, and is the same as the
6094 current frame. We stop, because the exception or longjmp
6095 has been caught.
2c03e5be 6096
cdaa5b73
PA
6097 3. The initiating frame exists and is different from the
6098 current frame. This means the exception or longjmp has
6099 been caught beneath the initiating frame, so keep going.
c906108c 6100
cdaa5b73
PA
6101 4. longjmp breakpoint has been placed just to protect
6102 against stale dummy frames and user is not interested in
6103 stopping around longjmps. */
c5aa993b 6104
cdaa5b73
PA
6105 if (debug_infrun)
6106 fprintf_unfiltered (gdb_stdlog,
6107 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6108
cdaa5b73
PA
6109 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6110 != NULL);
6111 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6112
cdaa5b73
PA
6113 if (what.is_longjmp)
6114 {
b67a2c6f 6115 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6116
cdaa5b73 6117 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6118 {
cdaa5b73
PA
6119 /* Case 4. */
6120 keep_going (ecs);
6121 return;
e5ef252a 6122 }
cdaa5b73 6123 }
c5aa993b 6124
cdaa5b73 6125 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6126
cdaa5b73
PA
6127 if (init_frame)
6128 {
6129 struct frame_id current_id
6130 = get_frame_id (get_current_frame ());
6131 if (frame_id_eq (current_id,
6132 ecs->event_thread->initiating_frame))
6133 {
6134 /* Case 2. Fall through. */
6135 }
6136 else
6137 {
6138 /* Case 3. */
6139 keep_going (ecs);
6140 return;
6141 }
68f53502 6142 }
488f131b 6143
cdaa5b73
PA
6144 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6145 exists. */
6146 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6147
bdc36728 6148 end_stepping_range (ecs);
cdaa5b73
PA
6149 }
6150 return;
e5ef252a 6151
cdaa5b73
PA
6152 case BPSTAT_WHAT_SINGLE:
6153 if (debug_infrun)
6154 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6155 ecs->event_thread->stepping_over_breakpoint = 1;
6156 /* Still need to check other stuff, at least the case where we
6157 are stepping and step out of the right range. */
6158 break;
e5ef252a 6159
cdaa5b73
PA
6160 case BPSTAT_WHAT_STEP_RESUME:
6161 if (debug_infrun)
6162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6163
cdaa5b73
PA
6164 delete_step_resume_breakpoint (ecs->event_thread);
6165 if (ecs->event_thread->control.proceed_to_finish
6166 && execution_direction == EXEC_REVERSE)
6167 {
6168 struct thread_info *tp = ecs->event_thread;
6169
6170 /* We are finishing a function in reverse, and just hit the
6171 step-resume breakpoint at the start address of the
6172 function, and we're almost there -- just need to back up
6173 by one more single-step, which should take us back to the
6174 function call. */
6175 tp->control.step_range_start = tp->control.step_range_end = 1;
6176 keep_going (ecs);
e5ef252a 6177 return;
cdaa5b73
PA
6178 }
6179 fill_in_stop_func (gdbarch, ecs);
6180 if (stop_pc == ecs->stop_func_start
6181 && execution_direction == EXEC_REVERSE)
6182 {
6183 /* We are stepping over a function call in reverse, and just
6184 hit the step-resume breakpoint at the start address of
6185 the function. Go back to single-stepping, which should
6186 take us back to the function call. */
6187 ecs->event_thread->stepping_over_breakpoint = 1;
6188 keep_going (ecs);
6189 return;
6190 }
6191 break;
e5ef252a 6192
cdaa5b73
PA
6193 case BPSTAT_WHAT_STOP_NOISY:
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6196 stop_print_frame = 1;
e5ef252a 6197
99619bea
PA
6198 /* Assume the thread stopped for a breapoint. We'll still check
6199 whether a/the breakpoint is there when the thread is next
6200 resumed. */
6201 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6202
22bcd14b 6203 stop_waiting (ecs);
cdaa5b73 6204 return;
e5ef252a 6205
cdaa5b73
PA
6206 case BPSTAT_WHAT_STOP_SILENT:
6207 if (debug_infrun)
6208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6209 stop_print_frame = 0;
e5ef252a 6210
99619bea
PA
6211 /* Assume the thread stopped for a breapoint. We'll still check
6212 whether a/the breakpoint is there when the thread is next
6213 resumed. */
6214 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6215 stop_waiting (ecs);
cdaa5b73
PA
6216 return;
6217
6218 case BPSTAT_WHAT_HP_STEP_RESUME:
6219 if (debug_infrun)
6220 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6221
6222 delete_step_resume_breakpoint (ecs->event_thread);
6223 if (ecs->event_thread->step_after_step_resume_breakpoint)
6224 {
6225 /* Back when the step-resume breakpoint was inserted, we
6226 were trying to single-step off a breakpoint. Go back to
6227 doing that. */
6228 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6229 ecs->event_thread->stepping_over_breakpoint = 1;
6230 keep_going (ecs);
6231 return;
e5ef252a 6232 }
cdaa5b73
PA
6233 break;
6234
6235 case BPSTAT_WHAT_KEEP_CHECKING:
6236 break;
e5ef252a 6237 }
c906108c 6238
af48d08f
PA
6239 /* If we stepped a permanent breakpoint and we had a high priority
6240 step-resume breakpoint for the address we stepped, but we didn't
6241 hit it, then we must have stepped into the signal handler. The
6242 step-resume was only necessary to catch the case of _not_
6243 stepping into the handler, so delete it, and fall through to
6244 checking whether the step finished. */
6245 if (ecs->event_thread->stepped_breakpoint)
6246 {
6247 struct breakpoint *sr_bp
6248 = ecs->event_thread->control.step_resume_breakpoint;
6249
8d707a12
PA
6250 if (sr_bp != NULL
6251 && sr_bp->loc->permanent
af48d08f
PA
6252 && sr_bp->type == bp_hp_step_resume
6253 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6254 {
6255 if (debug_infrun)
6256 fprintf_unfiltered (gdb_stdlog,
6257 "infrun: stepped permanent breakpoint, stopped in "
6258 "handler\n");
6259 delete_step_resume_breakpoint (ecs->event_thread);
6260 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6261 }
6262 }
6263
cdaa5b73
PA
6264 /* We come here if we hit a breakpoint but should not stop for it.
6265 Possibly we also were stepping and should stop for that. So fall
6266 through and test for stepping. But, if not stepping, do not
6267 stop. */
c906108c 6268
a7212384
UW
6269 /* In all-stop mode, if we're currently stepping but have stopped in
6270 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6271 if (switch_back_to_stepped_thread (ecs))
6272 return;
776f04fa 6273
8358c15c 6274 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6275 {
527159b7 6276 if (debug_infrun)
d3169d93
DJ
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: step-resume breakpoint is inserted\n");
527159b7 6279
488f131b
JB
6280 /* Having a step-resume breakpoint overrides anything
6281 else having to do with stepping commands until
6282 that breakpoint is reached. */
488f131b
JB
6283 keep_going (ecs);
6284 return;
6285 }
c5aa993b 6286
16c381f0 6287 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6288 {
527159b7 6289 if (debug_infrun)
8a9de0e4 6290 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6291 /* Likewise if we aren't even stepping. */
488f131b
JB
6292 keep_going (ecs);
6293 return;
6294 }
c5aa993b 6295
4b7703ad
JB
6296 /* Re-fetch current thread's frame in case the code above caused
6297 the frame cache to be re-initialized, making our FRAME variable
6298 a dangling pointer. */
6299 frame = get_current_frame ();
628fe4e4 6300 gdbarch = get_frame_arch (frame);
7e324e48 6301 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6302
488f131b 6303 /* If stepping through a line, keep going if still within it.
c906108c 6304
488f131b
JB
6305 Note that step_range_end is the address of the first instruction
6306 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6307 within it!
6308
6309 Note also that during reverse execution, we may be stepping
6310 through a function epilogue and therefore must detect when
6311 the current-frame changes in the middle of a line. */
6312
ce4c476a 6313 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6314 && (execution_direction != EXEC_REVERSE
388a8562 6315 || frame_id_eq (get_frame_id (frame),
16c381f0 6316 ecs->event_thread->control.step_frame_id)))
488f131b 6317 {
527159b7 6318 if (debug_infrun)
5af949e3
UW
6319 fprintf_unfiltered
6320 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6321 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6322 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6323
c1e36e3e
PA
6324 /* Tentatively re-enable range stepping; `resume' disables it if
6325 necessary (e.g., if we're stepping over a breakpoint or we
6326 have software watchpoints). */
6327 ecs->event_thread->control.may_range_step = 1;
6328
b2175913
MS
6329 /* When stepping backward, stop at beginning of line range
6330 (unless it's the function entry point, in which case
6331 keep going back to the call point). */
16c381f0 6332 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6333 && stop_pc != ecs->stop_func_start
6334 && execution_direction == EXEC_REVERSE)
bdc36728 6335 end_stepping_range (ecs);
b2175913
MS
6336 else
6337 keep_going (ecs);
6338
488f131b
JB
6339 return;
6340 }
c5aa993b 6341
488f131b 6342 /* We stepped out of the stepping range. */
c906108c 6343
488f131b 6344 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6345 loader dynamic symbol resolution code...
6346
6347 EXEC_FORWARD: we keep on single stepping until we exit the run
6348 time loader code and reach the callee's address.
6349
6350 EXEC_REVERSE: we've already executed the callee (backward), and
6351 the runtime loader code is handled just like any other
6352 undebuggable function call. Now we need only keep stepping
6353 backward through the trampoline code, and that's handled further
6354 down, so there is nothing for us to do here. */
6355
6356 if (execution_direction != EXEC_REVERSE
16c381f0 6357 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6358 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6359 {
4c8c40e6 6360 CORE_ADDR pc_after_resolver =
568d6575 6361 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6362
527159b7 6363 if (debug_infrun)
3e43a32a
MS
6364 fprintf_unfiltered (gdb_stdlog,
6365 "infrun: stepped into dynsym resolve code\n");
527159b7 6366
488f131b
JB
6367 if (pc_after_resolver)
6368 {
6369 /* Set up a step-resume breakpoint at the address
6370 indicated by SKIP_SOLIB_RESOLVER. */
6371 struct symtab_and_line sr_sal;
abbb1732 6372
fe39c653 6373 init_sal (&sr_sal);
488f131b 6374 sr_sal.pc = pc_after_resolver;
6c95b8df 6375 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6376
a6d9a66e
UW
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
c5aa993b 6379 }
c906108c 6380
488f131b
JB
6381 keep_going (ecs);
6382 return;
6383 }
c906108c 6384
16c381f0
JK
6385 if (ecs->event_thread->control.step_range_end != 1
6386 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6387 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6388 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6389 {
527159b7 6390 if (debug_infrun)
3e43a32a
MS
6391 fprintf_unfiltered (gdb_stdlog,
6392 "infrun: stepped into signal trampoline\n");
42edda50 6393 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6394 a signal trampoline (either by a signal being delivered or by
6395 the signal handler returning). Just single-step until the
6396 inferior leaves the trampoline (either by calling the handler
6397 or returning). */
488f131b
JB
6398 keep_going (ecs);
6399 return;
6400 }
c906108c 6401
14132e89
MR
6402 /* If we're in the return path from a shared library trampoline,
6403 we want to proceed through the trampoline when stepping. */
6404 /* macro/2012-04-25: This needs to come before the subroutine
6405 call check below as on some targets return trampolines look
6406 like subroutine calls (MIPS16 return thunks). */
6407 if (gdbarch_in_solib_return_trampoline (gdbarch,
6408 stop_pc, ecs->stop_func_name)
6409 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6410 {
6411 /* Determine where this trampoline returns. */
6412 CORE_ADDR real_stop_pc;
6413
6414 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6415
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog,
6418 "infrun: stepped into solib return tramp\n");
6419
6420 /* Only proceed through if we know where it's going. */
6421 if (real_stop_pc)
6422 {
6423 /* And put the step-breakpoint there and go until there. */
6424 struct symtab_and_line sr_sal;
6425
6426 init_sal (&sr_sal); /* initialize to zeroes */
6427 sr_sal.pc = real_stop_pc;
6428 sr_sal.section = find_pc_overlay (sr_sal.pc);
6429 sr_sal.pspace = get_frame_program_space (frame);
6430
6431 /* Do not specify what the fp should be when we stop since
6432 on some machines the prologue is where the new fp value
6433 is established. */
6434 insert_step_resume_breakpoint_at_sal (gdbarch,
6435 sr_sal, null_frame_id);
6436
6437 /* Restart without fiddling with the step ranges or
6438 other state. */
6439 keep_going (ecs);
6440 return;
6441 }
6442 }
6443
c17eaafe
DJ
6444 /* Check for subroutine calls. The check for the current frame
6445 equalling the step ID is not necessary - the check of the
6446 previous frame's ID is sufficient - but it is a common case and
6447 cheaper than checking the previous frame's ID.
14e60db5
DJ
6448
6449 NOTE: frame_id_eq will never report two invalid frame IDs as
6450 being equal, so to get into this block, both the current and
6451 previous frame must have valid frame IDs. */
005ca36a
JB
6452 /* The outer_frame_id check is a heuristic to detect stepping
6453 through startup code. If we step over an instruction which
6454 sets the stack pointer from an invalid value to a valid value,
6455 we may detect that as a subroutine call from the mythical
6456 "outermost" function. This could be fixed by marking
6457 outermost frames as !stack_p,code_p,special_p. Then the
6458 initial outermost frame, before sp was valid, would
ce6cca6d 6459 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6460 for more. */
edb3359d 6461 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6462 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6463 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6464 ecs->event_thread->control.step_stack_frame_id)
6465 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6466 outer_frame_id)
885eeb5b
PA
6467 || (ecs->event_thread->control.step_start_function
6468 != find_pc_function (stop_pc)))))
488f131b 6469 {
95918acb 6470 CORE_ADDR real_stop_pc;
8fb3e588 6471
527159b7 6472 if (debug_infrun)
8a9de0e4 6473 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6474
b7a084be 6475 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6476 {
6477 /* I presume that step_over_calls is only 0 when we're
6478 supposed to be stepping at the assembly language level
6479 ("stepi"). Just stop. */
388a8562 6480 /* And this works the same backward as frontward. MVS */
bdc36728 6481 end_stepping_range (ecs);
95918acb
AC
6482 return;
6483 }
8fb3e588 6484
388a8562
MS
6485 /* Reverse stepping through solib trampolines. */
6486
6487 if (execution_direction == EXEC_REVERSE
16c381f0 6488 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6489 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6490 || (ecs->stop_func_start == 0
6491 && in_solib_dynsym_resolve_code (stop_pc))))
6492 {
6493 /* Any solib trampoline code can be handled in reverse
6494 by simply continuing to single-step. We have already
6495 executed the solib function (backwards), and a few
6496 steps will take us back through the trampoline to the
6497 caller. */
6498 keep_going (ecs);
6499 return;
6500 }
6501
16c381f0 6502 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6503 {
b2175913
MS
6504 /* We're doing a "next".
6505
6506 Normal (forward) execution: set a breakpoint at the
6507 callee's return address (the address at which the caller
6508 will resume).
6509
6510 Reverse (backward) execution. set the step-resume
6511 breakpoint at the start of the function that we just
6512 stepped into (backwards), and continue to there. When we
6130d0b7 6513 get there, we'll need to single-step back to the caller. */
b2175913
MS
6514
6515 if (execution_direction == EXEC_REVERSE)
6516 {
acf9414f
JK
6517 /* If we're already at the start of the function, we've either
6518 just stepped backward into a single instruction function,
6519 or stepped back out of a signal handler to the first instruction
6520 of the function. Just keep going, which will single-step back
6521 to the caller. */
58c48e72 6522 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6523 {
6524 struct symtab_and_line sr_sal;
6525
6526 /* Normal function call return (static or dynamic). */
6527 init_sal (&sr_sal);
6528 sr_sal.pc = ecs->stop_func_start;
6529 sr_sal.pspace = get_frame_program_space (frame);
6530 insert_step_resume_breakpoint_at_sal (gdbarch,
6531 sr_sal, null_frame_id);
6532 }
b2175913
MS
6533 }
6534 else
568d6575 6535 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6536
8567c30f
AC
6537 keep_going (ecs);
6538 return;
6539 }
a53c66de 6540
95918acb 6541 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6542 calling routine and the real function), locate the real
6543 function. That's what tells us (a) whether we want to step
6544 into it at all, and (b) what prologue we want to run to the
6545 end of, if we do step into it. */
568d6575 6546 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6547 if (real_stop_pc == 0)
568d6575 6548 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6549 if (real_stop_pc != 0)
6550 ecs->stop_func_start = real_stop_pc;
8fb3e588 6551
db5f024e 6552 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6553 {
6554 struct symtab_and_line sr_sal;
abbb1732 6555
1b2bfbb9
RC
6556 init_sal (&sr_sal);
6557 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6558 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6559
a6d9a66e
UW
6560 insert_step_resume_breakpoint_at_sal (gdbarch,
6561 sr_sal, null_frame_id);
8fb3e588
AC
6562 keep_going (ecs);
6563 return;
1b2bfbb9
RC
6564 }
6565
95918acb 6566 /* If we have line number information for the function we are
1bfeeb0f
JL
6567 thinking of stepping into and the function isn't on the skip
6568 list, step into it.
95918acb 6569
8fb3e588
AC
6570 If there are several symtabs at that PC (e.g. with include
6571 files), just want to know whether *any* of them have line
6572 numbers. find_pc_line handles this. */
95918acb
AC
6573 {
6574 struct symtab_and_line tmp_sal;
8fb3e588 6575
95918acb 6576 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6577 if (tmp_sal.line != 0
85817405
JK
6578 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6579 &tmp_sal))
95918acb 6580 {
b2175913 6581 if (execution_direction == EXEC_REVERSE)
568d6575 6582 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6583 else
568d6575 6584 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6585 return;
6586 }
6587 }
6588
6589 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6590 set, we stop the step so that the user has a chance to switch
6591 in assembly mode. */
16c381f0 6592 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6593 && step_stop_if_no_debug)
95918acb 6594 {
bdc36728 6595 end_stepping_range (ecs);
95918acb
AC
6596 return;
6597 }
6598
b2175913
MS
6599 if (execution_direction == EXEC_REVERSE)
6600 {
acf9414f
JK
6601 /* If we're already at the start of the function, we've either just
6602 stepped backward into a single instruction function without line
6603 number info, or stepped back out of a signal handler to the first
6604 instruction of the function without line number info. Just keep
6605 going, which will single-step back to the caller. */
6606 if (ecs->stop_func_start != stop_pc)
6607 {
6608 /* Set a breakpoint at callee's start address.
6609 From there we can step once and be back in the caller. */
6610 struct symtab_and_line sr_sal;
abbb1732 6611
acf9414f
JK
6612 init_sal (&sr_sal);
6613 sr_sal.pc = ecs->stop_func_start;
6614 sr_sal.pspace = get_frame_program_space (frame);
6615 insert_step_resume_breakpoint_at_sal (gdbarch,
6616 sr_sal, null_frame_id);
6617 }
b2175913
MS
6618 }
6619 else
6620 /* Set a breakpoint at callee's return address (the address
6621 at which the caller will resume). */
568d6575 6622 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6623
95918acb 6624 keep_going (ecs);
488f131b 6625 return;
488f131b 6626 }
c906108c 6627
fdd654f3
MS
6628 /* Reverse stepping through solib trampolines. */
6629
6630 if (execution_direction == EXEC_REVERSE
16c381f0 6631 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6632 {
6633 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6634 || (ecs->stop_func_start == 0
6635 && in_solib_dynsym_resolve_code (stop_pc)))
6636 {
6637 /* Any solib trampoline code can be handled in reverse
6638 by simply continuing to single-step. We have already
6639 executed the solib function (backwards), and a few
6640 steps will take us back through the trampoline to the
6641 caller. */
6642 keep_going (ecs);
6643 return;
6644 }
6645 else if (in_solib_dynsym_resolve_code (stop_pc))
6646 {
6647 /* Stepped backward into the solib dynsym resolver.
6648 Set a breakpoint at its start and continue, then
6649 one more step will take us out. */
6650 struct symtab_and_line sr_sal;
abbb1732 6651
fdd654f3
MS
6652 init_sal (&sr_sal);
6653 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6654 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6655 insert_step_resume_breakpoint_at_sal (gdbarch,
6656 sr_sal, null_frame_id);
6657 keep_going (ecs);
6658 return;
6659 }
6660 }
6661
2afb61aa 6662 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6663
1b2bfbb9
RC
6664 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6665 the trampoline processing logic, however, there are some trampolines
6666 that have no names, so we should do trampoline handling first. */
16c381f0 6667 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6668 && ecs->stop_func_name == NULL
2afb61aa 6669 && stop_pc_sal.line == 0)
1b2bfbb9 6670 {
527159b7 6671 if (debug_infrun)
3e43a32a
MS
6672 fprintf_unfiltered (gdb_stdlog,
6673 "infrun: stepped into undebuggable function\n");
527159b7 6674
1b2bfbb9 6675 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6676 undebuggable function (where there is no debugging information
6677 and no line number corresponding to the address where the
1b2bfbb9
RC
6678 inferior stopped). Since we want to skip this kind of code,
6679 we keep going until the inferior returns from this
14e60db5
DJ
6680 function - unless the user has asked us not to (via
6681 set step-mode) or we no longer know how to get back
6682 to the call site. */
6683 if (step_stop_if_no_debug
c7ce8faa 6684 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6685 {
6686 /* If we have no line number and the step-stop-if-no-debug
6687 is set, we stop the step so that the user has a chance to
6688 switch in assembly mode. */
bdc36728 6689 end_stepping_range (ecs);
1b2bfbb9
RC
6690 return;
6691 }
6692 else
6693 {
6694 /* Set a breakpoint at callee's return address (the address
6695 at which the caller will resume). */
568d6575 6696 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6697 keep_going (ecs);
6698 return;
6699 }
6700 }
6701
16c381f0 6702 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6703 {
6704 /* It is stepi or nexti. We always want to stop stepping after
6705 one instruction. */
527159b7 6706 if (debug_infrun)
8a9de0e4 6707 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6708 end_stepping_range (ecs);
1b2bfbb9
RC
6709 return;
6710 }
6711
2afb61aa 6712 if (stop_pc_sal.line == 0)
488f131b
JB
6713 {
6714 /* We have no line number information. That means to stop
6715 stepping (does this always happen right after one instruction,
6716 when we do "s" in a function with no line numbers,
6717 or can this happen as a result of a return or longjmp?). */
527159b7 6718 if (debug_infrun)
8a9de0e4 6719 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6720 end_stepping_range (ecs);
488f131b
JB
6721 return;
6722 }
c906108c 6723
edb3359d
DJ
6724 /* Look for "calls" to inlined functions, part one. If the inline
6725 frame machinery detected some skipped call sites, we have entered
6726 a new inline function. */
6727
6728 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6729 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6730 && inline_skipped_frames (ecs->ptid))
6731 {
6732 struct symtab_and_line call_sal;
6733
6734 if (debug_infrun)
6735 fprintf_unfiltered (gdb_stdlog,
6736 "infrun: stepped into inlined function\n");
6737
6738 find_frame_sal (get_current_frame (), &call_sal);
6739
16c381f0 6740 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6741 {
6742 /* For "step", we're going to stop. But if the call site
6743 for this inlined function is on the same source line as
6744 we were previously stepping, go down into the function
6745 first. Otherwise stop at the call site. */
6746
6747 if (call_sal.line == ecs->event_thread->current_line
6748 && call_sal.symtab == ecs->event_thread->current_symtab)
6749 step_into_inline_frame (ecs->ptid);
6750
bdc36728 6751 end_stepping_range (ecs);
edb3359d
DJ
6752 return;
6753 }
6754 else
6755 {
6756 /* For "next", we should stop at the call site if it is on a
6757 different source line. Otherwise continue through the
6758 inlined function. */
6759 if (call_sal.line == ecs->event_thread->current_line
6760 && call_sal.symtab == ecs->event_thread->current_symtab)
6761 keep_going (ecs);
6762 else
bdc36728 6763 end_stepping_range (ecs);
edb3359d
DJ
6764 return;
6765 }
6766 }
6767
6768 /* Look for "calls" to inlined functions, part two. If we are still
6769 in the same real function we were stepping through, but we have
6770 to go further up to find the exact frame ID, we are stepping
6771 through a more inlined call beyond its call site. */
6772
6773 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6774 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6775 ecs->event_thread->control.step_frame_id)
edb3359d 6776 && stepped_in_from (get_current_frame (),
16c381f0 6777 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6778 {
6779 if (debug_infrun)
6780 fprintf_unfiltered (gdb_stdlog,
6781 "infrun: stepping through inlined function\n");
6782
16c381f0 6783 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6784 keep_going (ecs);
6785 else
bdc36728 6786 end_stepping_range (ecs);
edb3359d
DJ
6787 return;
6788 }
6789
2afb61aa 6790 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6791 && (ecs->event_thread->current_line != stop_pc_sal.line
6792 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6793 {
6794 /* We are at the start of a different line. So stop. Note that
6795 we don't stop if we step into the middle of a different line.
6796 That is said to make things like for (;;) statements work
6797 better. */
527159b7 6798 if (debug_infrun)
3e43a32a
MS
6799 fprintf_unfiltered (gdb_stdlog,
6800 "infrun: stepped to a different line\n");
bdc36728 6801 end_stepping_range (ecs);
488f131b
JB
6802 return;
6803 }
c906108c 6804
488f131b 6805 /* We aren't done stepping.
c906108c 6806
488f131b
JB
6807 Optimize by setting the stepping range to the line.
6808 (We might not be in the original line, but if we entered a
6809 new line in mid-statement, we continue stepping. This makes
6810 things like for(;;) statements work better.) */
c906108c 6811
16c381f0
JK
6812 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6813 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6814 ecs->event_thread->control.may_range_step = 1;
edb3359d 6815 set_step_info (frame, stop_pc_sal);
488f131b 6816
527159b7 6817 if (debug_infrun)
8a9de0e4 6818 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6819 keep_going (ecs);
104c1213
JM
6820}
6821
c447ac0b
PA
6822/* In all-stop mode, if we're currently stepping but have stopped in
6823 some other thread, we may need to switch back to the stepped
6824 thread. Returns true we set the inferior running, false if we left
6825 it stopped (and the event needs further processing). */
6826
6827static int
6828switch_back_to_stepped_thread (struct execution_control_state *ecs)
6829{
fbea99ea 6830 if (!target_is_non_stop_p ())
c447ac0b
PA
6831 {
6832 struct thread_info *tp;
99619bea
PA
6833 struct thread_info *stepping_thread;
6834
6835 /* If any thread is blocked on some internal breakpoint, and we
6836 simply need to step over that breakpoint to get it going
6837 again, do that first. */
6838
6839 /* However, if we see an event for the stepping thread, then we
6840 know all other threads have been moved past their breakpoints
6841 already. Let the caller check whether the step is finished,
6842 etc., before deciding to move it past a breakpoint. */
6843 if (ecs->event_thread->control.step_range_end != 0)
6844 return 0;
6845
6846 /* Check if the current thread is blocked on an incomplete
6847 step-over, interrupted by a random signal. */
6848 if (ecs->event_thread->control.trap_expected
6849 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6850 {
99619bea
PA
6851 if (debug_infrun)
6852 {
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: need to finish step-over of [%s]\n",
6855 target_pid_to_str (ecs->event_thread->ptid));
6856 }
6857 keep_going (ecs);
6858 return 1;
6859 }
2adfaa28 6860
99619bea
PA
6861 /* Check if the current thread is blocked by a single-step
6862 breakpoint of another thread. */
6863 if (ecs->hit_singlestep_breakpoint)
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to step [%s] over single-step "
6869 "breakpoint\n",
6870 target_pid_to_str (ecs->ptid));
6871 }
6872 keep_going (ecs);
6873 return 1;
6874 }
6875
4d9d9d04
PA
6876 /* If this thread needs yet another step-over (e.g., stepping
6877 through a delay slot), do it first before moving on to
6878 another thread. */
6879 if (thread_still_needs_step_over (ecs->event_thread))
6880 {
6881 if (debug_infrun)
6882 {
6883 fprintf_unfiltered (gdb_stdlog,
6884 "infrun: thread [%s] still needs step-over\n",
6885 target_pid_to_str (ecs->event_thread->ptid));
6886 }
6887 keep_going (ecs);
6888 return 1;
6889 }
70509625 6890
483805cf
PA
6891 /* If scheduler locking applies even if not stepping, there's no
6892 need to walk over threads. Above we've checked whether the
6893 current thread is stepping. If some other thread not the
6894 event thread is stepping, then it must be that scheduler
6895 locking is not in effect. */
856e7dd6 6896 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6897 return 0;
6898
4d9d9d04
PA
6899 /* Otherwise, we no longer expect a trap in the current thread.
6900 Clear the trap_expected flag before switching back -- this is
6901 what keep_going does as well, if we call it. */
6902 ecs->event_thread->control.trap_expected = 0;
6903
6904 /* Likewise, clear the signal if it should not be passed. */
6905 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6906 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6907
6908 /* Do all pending step-overs before actually proceeding with
483805cf 6909 step/next/etc. */
4d9d9d04
PA
6910 if (start_step_over ())
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915
6916 /* Look for the stepping/nexting thread. */
483805cf 6917 stepping_thread = NULL;
4d9d9d04 6918
034f788c 6919 ALL_NON_EXITED_THREADS (tp)
483805cf 6920 {
fbea99ea
PA
6921 /* Ignore threads of processes the caller is not
6922 resuming. */
483805cf 6923 if (!sched_multi
1afd5965 6924 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6925 continue;
6926
6927 /* When stepping over a breakpoint, we lock all threads
6928 except the one that needs to move past the breakpoint.
6929 If a non-event thread has this set, the "incomplete
6930 step-over" check above should have caught it earlier. */
372316f1
PA
6931 if (tp->control.trap_expected)
6932 {
6933 internal_error (__FILE__, __LINE__,
6934 "[%s] has inconsistent state: "
6935 "trap_expected=%d\n",
6936 target_pid_to_str (tp->ptid),
6937 tp->control.trap_expected);
6938 }
483805cf
PA
6939
6940 /* Did we find the stepping thread? */
6941 if (tp->control.step_range_end)
6942 {
6943 /* Yep. There should only one though. */
6944 gdb_assert (stepping_thread == NULL);
6945
6946 /* The event thread is handled at the top, before we
6947 enter this loop. */
6948 gdb_assert (tp != ecs->event_thread);
6949
6950 /* If some thread other than the event thread is
6951 stepping, then scheduler locking can't be in effect,
6952 otherwise we wouldn't have resumed the current event
6953 thread in the first place. */
856e7dd6 6954 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6955
6956 stepping_thread = tp;
6957 }
99619bea
PA
6958 }
6959
483805cf 6960 if (stepping_thread != NULL)
99619bea 6961 {
c447ac0b
PA
6962 if (debug_infrun)
6963 fprintf_unfiltered (gdb_stdlog,
6964 "infrun: switching back to stepped thread\n");
6965
2ac7589c
PA
6966 if (keep_going_stepped_thread (stepping_thread))
6967 {
6968 prepare_to_wait (ecs);
6969 return 1;
6970 }
6971 }
6972 }
2adfaa28 6973
2ac7589c
PA
6974 return 0;
6975}
2adfaa28 6976
2ac7589c
PA
6977/* Set a previously stepped thread back to stepping. Returns true on
6978 success, false if the resume is not possible (e.g., the thread
6979 vanished). */
6980
6981static int
6982keep_going_stepped_thread (struct thread_info *tp)
6983{
6984 struct frame_info *frame;
6985 struct gdbarch *gdbarch;
6986 struct execution_control_state ecss;
6987 struct execution_control_state *ecs = &ecss;
2adfaa28 6988
2ac7589c
PA
6989 /* If the stepping thread exited, then don't try to switch back and
6990 resume it, which could fail in several different ways depending
6991 on the target. Instead, just keep going.
2adfaa28 6992
2ac7589c
PA
6993 We can find a stepping dead thread in the thread list in two
6994 cases:
2adfaa28 6995
2ac7589c
PA
6996 - The target supports thread exit events, and when the target
6997 tries to delete the thread from the thread list, inferior_ptid
6998 pointed at the exiting thread. In such case, calling
6999 delete_thread does not really remove the thread from the list;
7000 instead, the thread is left listed, with 'exited' state.
64ce06e4 7001
2ac7589c
PA
7002 - The target's debug interface does not support thread exit
7003 events, and so we have no idea whatsoever if the previously
7004 stepping thread is still alive. For that reason, we need to
7005 synchronously query the target now. */
2adfaa28 7006
2ac7589c
PA
7007 if (is_exited (tp->ptid)
7008 || !target_thread_alive (tp->ptid))
7009 {
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: not resuming previously "
7013 "stepped thread, it has vanished\n");
7014
7015 delete_thread (tp->ptid);
7016 return 0;
c447ac0b 7017 }
2ac7589c
PA
7018
7019 if (debug_infrun)
7020 fprintf_unfiltered (gdb_stdlog,
7021 "infrun: resuming previously stepped thread\n");
7022
7023 reset_ecs (ecs, tp);
7024 switch_to_thread (tp->ptid);
7025
7026 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7027 frame = get_current_frame ();
7028 gdbarch = get_frame_arch (frame);
7029
7030 /* If the PC of the thread we were trying to single-step has
7031 changed, then that thread has trapped or been signaled, but the
7032 event has not been reported to GDB yet. Re-poll the target
7033 looking for this particular thread's event (i.e. temporarily
7034 enable schedlock) by:
7035
7036 - setting a break at the current PC
7037 - resuming that particular thread, only (by setting trap
7038 expected)
7039
7040 This prevents us continuously moving the single-step breakpoint
7041 forward, one instruction at a time, overstepping. */
7042
7043 if (stop_pc != tp->prev_pc)
7044 {
7045 ptid_t resume_ptid;
7046
7047 if (debug_infrun)
7048 fprintf_unfiltered (gdb_stdlog,
7049 "infrun: expected thread advanced also (%s -> %s)\n",
7050 paddress (target_gdbarch (), tp->prev_pc),
7051 paddress (target_gdbarch (), stop_pc));
7052
7053 /* Clear the info of the previous step-over, as it's no longer
7054 valid (if the thread was trying to step over a breakpoint, it
7055 has already succeeded). It's what keep_going would do too,
7056 if we called it. Do this before trying to insert the sss
7057 breakpoint, otherwise if we were previously trying to step
7058 over this exact address in another thread, the breakpoint is
7059 skipped. */
7060 clear_step_over_info ();
7061 tp->control.trap_expected = 0;
7062
7063 insert_single_step_breakpoint (get_frame_arch (frame),
7064 get_frame_address_space (frame),
7065 stop_pc);
7066
372316f1 7067 tp->resumed = 1;
fbea99ea 7068 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7069 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7070 }
7071 else
7072 {
7073 if (debug_infrun)
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: expected thread still hasn't advanced\n");
7076
7077 keep_going_pass_signal (ecs);
7078 }
7079 return 1;
c447ac0b
PA
7080}
7081
8b061563
PA
7082/* Is thread TP in the middle of (software or hardware)
7083 single-stepping? (Note the result of this function must never be
7084 passed directly as target_resume's STEP parameter.) */
104c1213 7085
a289b8f6 7086static int
b3444185 7087currently_stepping (struct thread_info *tp)
a7212384 7088{
8358c15c
JK
7089 return ((tp->control.step_range_end
7090 && tp->control.step_resume_breakpoint == NULL)
7091 || tp->control.trap_expected
af48d08f 7092 || tp->stepped_breakpoint
8358c15c 7093 || bpstat_should_step ());
a7212384
UW
7094}
7095
b2175913
MS
7096/* Inferior has stepped into a subroutine call with source code that
7097 we should not step over. Do step to the first line of code in
7098 it. */
c2c6d25f
JM
7099
7100static void
568d6575
UW
7101handle_step_into_function (struct gdbarch *gdbarch,
7102 struct execution_control_state *ecs)
c2c6d25f 7103{
43f3e411 7104 struct compunit_symtab *cust;
2afb61aa 7105 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7106
7e324e48
GB
7107 fill_in_stop_func (gdbarch, ecs);
7108
43f3e411
DE
7109 cust = find_pc_compunit_symtab (stop_pc);
7110 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7111 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7112 ecs->stop_func_start);
c2c6d25f 7113
2afb61aa 7114 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7115 /* Use the step_resume_break to step until the end of the prologue,
7116 even if that involves jumps (as it seems to on the vax under
7117 4.2). */
7118 /* If the prologue ends in the middle of a source line, continue to
7119 the end of that source line (if it is still within the function).
7120 Otherwise, just go to end of prologue. */
2afb61aa
PA
7121 if (stop_func_sal.end
7122 && stop_func_sal.pc != ecs->stop_func_start
7123 && stop_func_sal.end < ecs->stop_func_end)
7124 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7125
2dbd5e30
KB
7126 /* Architectures which require breakpoint adjustment might not be able
7127 to place a breakpoint at the computed address. If so, the test
7128 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7129 ecs->stop_func_start to an address at which a breakpoint may be
7130 legitimately placed.
8fb3e588 7131
2dbd5e30
KB
7132 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7133 made, GDB will enter an infinite loop when stepping through
7134 optimized code consisting of VLIW instructions which contain
7135 subinstructions corresponding to different source lines. On
7136 FR-V, it's not permitted to place a breakpoint on any but the
7137 first subinstruction of a VLIW instruction. When a breakpoint is
7138 set, GDB will adjust the breakpoint address to the beginning of
7139 the VLIW instruction. Thus, we need to make the corresponding
7140 adjustment here when computing the stop address. */
8fb3e588 7141
568d6575 7142 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7143 {
7144 ecs->stop_func_start
568d6575 7145 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7146 ecs->stop_func_start);
2dbd5e30
KB
7147 }
7148
c2c6d25f
JM
7149 if (ecs->stop_func_start == stop_pc)
7150 {
7151 /* We are already there: stop now. */
bdc36728 7152 end_stepping_range (ecs);
c2c6d25f
JM
7153 return;
7154 }
7155 else
7156 {
7157 /* Put the step-breakpoint there and go until there. */
fe39c653 7158 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7159 sr_sal.pc = ecs->stop_func_start;
7160 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7161 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7162
c2c6d25f 7163 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7164 some machines the prologue is where the new fp value is
7165 established. */
a6d9a66e 7166 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7167
7168 /* And make sure stepping stops right away then. */
16c381f0
JK
7169 ecs->event_thread->control.step_range_end
7170 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7171 }
7172 keep_going (ecs);
7173}
d4f3574e 7174
b2175913
MS
7175/* Inferior has stepped backward into a subroutine call with source
7176 code that we should not step over. Do step to the beginning of the
7177 last line of code in it. */
7178
7179static void
568d6575
UW
7180handle_step_into_function_backward (struct gdbarch *gdbarch,
7181 struct execution_control_state *ecs)
b2175913 7182{
43f3e411 7183 struct compunit_symtab *cust;
167e4384 7184 struct symtab_and_line stop_func_sal;
b2175913 7185
7e324e48
GB
7186 fill_in_stop_func (gdbarch, ecs);
7187
43f3e411
DE
7188 cust = find_pc_compunit_symtab (stop_pc);
7189 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7190 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7191 ecs->stop_func_start);
7192
7193 stop_func_sal = find_pc_line (stop_pc, 0);
7194
7195 /* OK, we're just going to keep stepping here. */
7196 if (stop_func_sal.pc == stop_pc)
7197 {
7198 /* We're there already. Just stop stepping now. */
bdc36728 7199 end_stepping_range (ecs);
b2175913
MS
7200 }
7201 else
7202 {
7203 /* Else just reset the step range and keep going.
7204 No step-resume breakpoint, they don't work for
7205 epilogues, which can have multiple entry paths. */
16c381f0
JK
7206 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7207 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7208 keep_going (ecs);
7209 }
7210 return;
7211}
7212
d3169d93 7213/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7214 This is used to both functions and to skip over code. */
7215
7216static void
2c03e5be
PA
7217insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7218 struct symtab_and_line sr_sal,
7219 struct frame_id sr_id,
7220 enum bptype sr_type)
44cbf7b5 7221{
611c83ae
PA
7222 /* There should never be more than one step-resume or longjmp-resume
7223 breakpoint per thread, so we should never be setting a new
44cbf7b5 7224 step_resume_breakpoint when one is already active. */
8358c15c 7225 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7226 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7227
7228 if (debug_infrun)
7229 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7230 "infrun: inserting step-resume breakpoint at %s\n",
7231 paddress (gdbarch, sr_sal.pc));
d3169d93 7232
8358c15c 7233 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7234 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7235}
7236
9da8c2a0 7237void
2c03e5be
PA
7238insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7239 struct symtab_and_line sr_sal,
7240 struct frame_id sr_id)
7241{
7242 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7243 sr_sal, sr_id,
7244 bp_step_resume);
44cbf7b5 7245}
7ce450bd 7246
2c03e5be
PA
7247/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7248 This is used to skip a potential signal handler.
7ce450bd 7249
14e60db5
DJ
7250 This is called with the interrupted function's frame. The signal
7251 handler, when it returns, will resume the interrupted function at
7252 RETURN_FRAME.pc. */
d303a6c7
AC
7253
7254static void
2c03e5be 7255insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7256{
7257 struct symtab_and_line sr_sal;
a6d9a66e 7258 struct gdbarch *gdbarch;
d303a6c7 7259
f4c1edd8 7260 gdb_assert (return_frame != NULL);
d303a6c7
AC
7261 init_sal (&sr_sal); /* initialize to zeros */
7262
a6d9a66e 7263 gdbarch = get_frame_arch (return_frame);
568d6575 7264 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7265 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7266 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7267
2c03e5be
PA
7268 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7269 get_stack_frame_id (return_frame),
7270 bp_hp_step_resume);
d303a6c7
AC
7271}
7272
2c03e5be
PA
7273/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7274 is used to skip a function after stepping into it (for "next" or if
7275 the called function has no debugging information).
14e60db5
DJ
7276
7277 The current function has almost always been reached by single
7278 stepping a call or return instruction. NEXT_FRAME belongs to the
7279 current function, and the breakpoint will be set at the caller's
7280 resume address.
7281
7282 This is a separate function rather than reusing
2c03e5be 7283 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7284 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7285 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7286
7287static void
7288insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7289{
7290 struct symtab_and_line sr_sal;
a6d9a66e 7291 struct gdbarch *gdbarch;
14e60db5
DJ
7292
7293 /* We shouldn't have gotten here if we don't know where the call site
7294 is. */
c7ce8faa 7295 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7296
7297 init_sal (&sr_sal); /* initialize to zeros */
7298
a6d9a66e 7299 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7300 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7301 frame_unwind_caller_pc (next_frame));
14e60db5 7302 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7303 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7304
a6d9a66e 7305 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7306 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7307}
7308
611c83ae
PA
7309/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7310 new breakpoint at the target of a jmp_buf. The handling of
7311 longjmp-resume uses the same mechanisms used for handling
7312 "step-resume" breakpoints. */
7313
7314static void
a6d9a66e 7315insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7316{
e81a37f7
TT
7317 /* There should never be more than one longjmp-resume breakpoint per
7318 thread, so we should never be setting a new
611c83ae 7319 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7320 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7321
7322 if (debug_infrun)
7323 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7324 "infrun: inserting longjmp-resume breakpoint at %s\n",
7325 paddress (gdbarch, pc));
611c83ae 7326
e81a37f7 7327 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7328 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7329}
7330
186c406b
TT
7331/* Insert an exception resume breakpoint. TP is the thread throwing
7332 the exception. The block B is the block of the unwinder debug hook
7333 function. FRAME is the frame corresponding to the call to this
7334 function. SYM is the symbol of the function argument holding the
7335 target PC of the exception. */
7336
7337static void
7338insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7339 const struct block *b,
186c406b
TT
7340 struct frame_info *frame,
7341 struct symbol *sym)
7342{
492d29ea 7343 TRY
186c406b 7344 {
63e43d3a 7345 struct block_symbol vsym;
186c406b
TT
7346 struct value *value;
7347 CORE_ADDR handler;
7348 struct breakpoint *bp;
7349
63e43d3a
PMR
7350 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7351 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7352 /* If the value was optimized out, revert to the old behavior. */
7353 if (! value_optimized_out (value))
7354 {
7355 handler = value_as_address (value);
7356
7357 if (debug_infrun)
7358 fprintf_unfiltered (gdb_stdlog,
7359 "infrun: exception resume at %lx\n",
7360 (unsigned long) handler);
7361
7362 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7363 handler, bp_exception_resume);
c70a6932
JK
7364
7365 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7366 frame = NULL;
7367
186c406b
TT
7368 bp->thread = tp->num;
7369 inferior_thread ()->control.exception_resume_breakpoint = bp;
7370 }
7371 }
492d29ea
PA
7372 CATCH (e, RETURN_MASK_ERROR)
7373 {
7374 /* We want to ignore errors here. */
7375 }
7376 END_CATCH
186c406b
TT
7377}
7378
28106bc2
SDJ
7379/* A helper for check_exception_resume that sets an
7380 exception-breakpoint based on a SystemTap probe. */
7381
7382static void
7383insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7384 const struct bound_probe *probe,
28106bc2
SDJ
7385 struct frame_info *frame)
7386{
7387 struct value *arg_value;
7388 CORE_ADDR handler;
7389 struct breakpoint *bp;
7390
7391 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7392 if (!arg_value)
7393 return;
7394
7395 handler = value_as_address (arg_value);
7396
7397 if (debug_infrun)
7398 fprintf_unfiltered (gdb_stdlog,
7399 "infrun: exception resume at %s\n",
6bac7473 7400 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7401 handler));
7402
7403 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7404 handler, bp_exception_resume);
7405 bp->thread = tp->num;
7406 inferior_thread ()->control.exception_resume_breakpoint = bp;
7407}
7408
186c406b
TT
7409/* This is called when an exception has been intercepted. Check to
7410 see whether the exception's destination is of interest, and if so,
7411 set an exception resume breakpoint there. */
7412
7413static void
7414check_exception_resume (struct execution_control_state *ecs,
28106bc2 7415 struct frame_info *frame)
186c406b 7416{
729662a5 7417 struct bound_probe probe;
28106bc2
SDJ
7418 struct symbol *func;
7419
7420 /* First see if this exception unwinding breakpoint was set via a
7421 SystemTap probe point. If so, the probe has two arguments: the
7422 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7423 set a breakpoint there. */
6bac7473 7424 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7425 if (probe.probe)
28106bc2 7426 {
729662a5 7427 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7428 return;
7429 }
7430
7431 func = get_frame_function (frame);
7432 if (!func)
7433 return;
186c406b 7434
492d29ea 7435 TRY
186c406b 7436 {
3977b71f 7437 const struct block *b;
8157b174 7438 struct block_iterator iter;
186c406b
TT
7439 struct symbol *sym;
7440 int argno = 0;
7441
7442 /* The exception breakpoint is a thread-specific breakpoint on
7443 the unwinder's debug hook, declared as:
7444
7445 void _Unwind_DebugHook (void *cfa, void *handler);
7446
7447 The CFA argument indicates the frame to which control is
7448 about to be transferred. HANDLER is the destination PC.
7449
7450 We ignore the CFA and set a temporary breakpoint at HANDLER.
7451 This is not extremely efficient but it avoids issues in gdb
7452 with computing the DWARF CFA, and it also works even in weird
7453 cases such as throwing an exception from inside a signal
7454 handler. */
7455
7456 b = SYMBOL_BLOCK_VALUE (func);
7457 ALL_BLOCK_SYMBOLS (b, iter, sym)
7458 {
7459 if (!SYMBOL_IS_ARGUMENT (sym))
7460 continue;
7461
7462 if (argno == 0)
7463 ++argno;
7464 else
7465 {
7466 insert_exception_resume_breakpoint (ecs->event_thread,
7467 b, frame, sym);
7468 break;
7469 }
7470 }
7471 }
492d29ea
PA
7472 CATCH (e, RETURN_MASK_ERROR)
7473 {
7474 }
7475 END_CATCH
186c406b
TT
7476}
7477
104c1213 7478static void
22bcd14b 7479stop_waiting (struct execution_control_state *ecs)
104c1213 7480{
527159b7 7481 if (debug_infrun)
22bcd14b 7482 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7483
31e77af2
PA
7484 clear_step_over_info ();
7485
cd0fc7c3
SS
7486 /* Let callers know we don't want to wait for the inferior anymore. */
7487 ecs->wait_some_more = 0;
fbea99ea
PA
7488
7489 /* If all-stop, but the target is always in non-stop mode, stop all
7490 threads now that we're presenting the stop to the user. */
7491 if (!non_stop && target_is_non_stop_p ())
7492 stop_all_threads ();
cd0fc7c3
SS
7493}
7494
4d9d9d04
PA
7495/* Like keep_going, but passes the signal to the inferior, even if the
7496 signal is set to nopass. */
d4f3574e
SS
7497
7498static void
4d9d9d04 7499keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7500{
c4dbc9af
PA
7501 /* Make sure normal_stop is called if we get a QUIT handled before
7502 reaching resume. */
7503 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7504
4d9d9d04 7505 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7506 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7507
d4f3574e 7508 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7509 ecs->event_thread->prev_pc
7510 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7511
4d9d9d04 7512 if (ecs->event_thread->control.trap_expected)
d4f3574e 7513 {
4d9d9d04
PA
7514 struct thread_info *tp = ecs->event_thread;
7515
7516 if (debug_infrun)
7517 fprintf_unfiltered (gdb_stdlog,
7518 "infrun: %s has trap_expected set, "
7519 "resuming to collect trap\n",
7520 target_pid_to_str (tp->ptid));
7521
a9ba6bae
PA
7522 /* We haven't yet gotten our trap, and either: intercepted a
7523 non-signal event (e.g., a fork); or took a signal which we
7524 are supposed to pass through to the inferior. Simply
7525 continue. */
c4dbc9af 7526 discard_cleanups (old_cleanups);
64ce06e4 7527 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7528 }
372316f1
PA
7529 else if (step_over_info_valid_p ())
7530 {
7531 /* Another thread is stepping over a breakpoint in-line. If
7532 this thread needs a step-over too, queue the request. In
7533 either case, this resume must be deferred for later. */
7534 struct thread_info *tp = ecs->event_thread;
7535
7536 if (ecs->hit_singlestep_breakpoint
7537 || thread_still_needs_step_over (tp))
7538 {
7539 if (debug_infrun)
7540 fprintf_unfiltered (gdb_stdlog,
7541 "infrun: step-over already in progress: "
7542 "step-over for %s deferred\n",
7543 target_pid_to_str (tp->ptid));
7544 thread_step_over_chain_enqueue (tp);
7545 }
7546 else
7547 {
7548 if (debug_infrun)
7549 fprintf_unfiltered (gdb_stdlog,
7550 "infrun: step-over in progress: "
7551 "resume of %s deferred\n",
7552 target_pid_to_str (tp->ptid));
7553 }
7554
7555 discard_cleanups (old_cleanups);
7556 }
d4f3574e
SS
7557 else
7558 {
31e77af2 7559 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7560 int remove_bp;
7561 int remove_wps;
6c4cfb24 7562 enum step_over_what step_what;
31e77af2 7563
d4f3574e 7564 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7565 anyway (if we got a signal, the user asked it be passed to
7566 the child)
7567 -- or --
7568 We got our expected trap, but decided we should resume from
7569 it.
d4f3574e 7570
a9ba6bae 7571 We're going to run this baby now!
d4f3574e 7572
c36b740a
VP
7573 Note that insert_breakpoints won't try to re-insert
7574 already inserted breakpoints. Therefore, we don't
7575 care if breakpoints were already inserted, or not. */
a9ba6bae 7576
31e77af2
PA
7577 /* If we need to step over a breakpoint, and we're not using
7578 displaced stepping to do so, insert all breakpoints
7579 (watchpoints, etc.) but the one we're stepping over, step one
7580 instruction, and then re-insert the breakpoint when that step
7581 is finished. */
963f9c80 7582
6c4cfb24
PA
7583 step_what = thread_still_needs_step_over (ecs->event_thread);
7584
963f9c80 7585 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7586 || (step_what & STEP_OVER_BREAKPOINT));
7587 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7588
cb71640d
PA
7589 /* We can't use displaced stepping if we need to step past a
7590 watchpoint. The instruction copied to the scratch pad would
7591 still trigger the watchpoint. */
7592 if (remove_bp
3fc8eb30 7593 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7594 {
31e77af2 7595 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7596 regcache_read_pc (regcache), remove_wps);
45e8c884 7597 }
963f9c80
PA
7598 else if (remove_wps)
7599 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7600
7601 /* If we now need to do an in-line step-over, we need to stop
7602 all other threads. Note this must be done before
7603 insert_breakpoints below, because that removes the breakpoint
7604 we're about to step over, otherwise other threads could miss
7605 it. */
fbea99ea 7606 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7607 stop_all_threads ();
abbb1732 7608
31e77af2 7609 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7610 TRY
31e77af2
PA
7611 {
7612 insert_breakpoints ();
7613 }
492d29ea 7614 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7615 {
7616 exception_print (gdb_stderr, e);
22bcd14b 7617 stop_waiting (ecs);
de1fe8c8 7618 discard_cleanups (old_cleanups);
31e77af2 7619 return;
d4f3574e 7620 }
492d29ea 7621 END_CATCH
d4f3574e 7622
963f9c80 7623 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7624
c4dbc9af 7625 discard_cleanups (old_cleanups);
64ce06e4 7626 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7627 }
7628
488f131b 7629 prepare_to_wait (ecs);
d4f3574e
SS
7630}
7631
4d9d9d04
PA
7632/* Called when we should continue running the inferior, because the
7633 current event doesn't cause a user visible stop. This does the
7634 resuming part; waiting for the next event is done elsewhere. */
7635
7636static void
7637keep_going (struct execution_control_state *ecs)
7638{
7639 if (ecs->event_thread->control.trap_expected
7640 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7641 ecs->event_thread->control.trap_expected = 0;
7642
7643 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7644 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7645 keep_going_pass_signal (ecs);
7646}
7647
104c1213
JM
7648/* This function normally comes after a resume, before
7649 handle_inferior_event exits. It takes care of any last bits of
7650 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7651
104c1213
JM
7652static void
7653prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7654{
527159b7 7655 if (debug_infrun)
8a9de0e4 7656 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7657
104c1213 7658 ecs->wait_some_more = 1;
0b333c5e
PA
7659
7660 if (!target_is_async_p ())
7661 mark_infrun_async_event_handler ();
c906108c 7662}
11cf8741 7663
fd664c91 7664/* We are done with the step range of a step/next/si/ni command.
b57bacec 7665 Called once for each n of a "step n" operation. */
fd664c91
PA
7666
7667static void
bdc36728 7668end_stepping_range (struct execution_control_state *ecs)
fd664c91 7669{
bdc36728 7670 ecs->event_thread->control.stop_step = 1;
bdc36728 7671 stop_waiting (ecs);
fd664c91
PA
7672}
7673
33d62d64
JK
7674/* Several print_*_reason functions to print why the inferior has stopped.
7675 We always print something when the inferior exits, or receives a signal.
7676 The rest of the cases are dealt with later on in normal_stop and
7677 print_it_typical. Ideally there should be a call to one of these
7678 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7679 stop_waiting is called.
33d62d64 7680
fd664c91
PA
7681 Note that we don't call these directly, instead we delegate that to
7682 the interpreters, through observers. Interpreters then call these
7683 with whatever uiout is right. */
33d62d64 7684
fd664c91
PA
7685void
7686print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7687{
fd664c91 7688 /* For CLI-like interpreters, print nothing. */
33d62d64 7689
fd664c91
PA
7690 if (ui_out_is_mi_like_p (uiout))
7691 {
7692 ui_out_field_string (uiout, "reason",
7693 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7694 }
7695}
33d62d64 7696
fd664c91
PA
7697void
7698print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7699{
33d62d64
JK
7700 annotate_signalled ();
7701 if (ui_out_is_mi_like_p (uiout))
7702 ui_out_field_string
7703 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7704 ui_out_text (uiout, "\nProgram terminated with signal ");
7705 annotate_signal_name ();
7706 ui_out_field_string (uiout, "signal-name",
2ea28649 7707 gdb_signal_to_name (siggnal));
33d62d64
JK
7708 annotate_signal_name_end ();
7709 ui_out_text (uiout, ", ");
7710 annotate_signal_string ();
7711 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7712 gdb_signal_to_string (siggnal));
33d62d64
JK
7713 annotate_signal_string_end ();
7714 ui_out_text (uiout, ".\n");
7715 ui_out_text (uiout, "The program no longer exists.\n");
7716}
7717
fd664c91
PA
7718void
7719print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7720{
fda326dd
TT
7721 struct inferior *inf = current_inferior ();
7722 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7723
33d62d64
JK
7724 annotate_exited (exitstatus);
7725 if (exitstatus)
7726 {
7727 if (ui_out_is_mi_like_p (uiout))
7728 ui_out_field_string (uiout, "reason",
7729 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7730 ui_out_text (uiout, "[Inferior ");
7731 ui_out_text (uiout, plongest (inf->num));
7732 ui_out_text (uiout, " (");
7733 ui_out_text (uiout, pidstr);
7734 ui_out_text (uiout, ") exited with code ");
33d62d64 7735 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7736 ui_out_text (uiout, "]\n");
33d62d64
JK
7737 }
7738 else
11cf8741 7739 {
9dc5e2a9 7740 if (ui_out_is_mi_like_p (uiout))
034dad6f 7741 ui_out_field_string
33d62d64 7742 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7743 ui_out_text (uiout, "[Inferior ");
7744 ui_out_text (uiout, plongest (inf->num));
7745 ui_out_text (uiout, " (");
7746 ui_out_text (uiout, pidstr);
7747 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7748 }
33d62d64
JK
7749}
7750
fd664c91
PA
7751void
7752print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7753{
7754 annotate_signal ();
7755
a493e3e2 7756 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7757 {
7758 struct thread_info *t = inferior_thread ();
7759
7760 ui_out_text (uiout, "\n[");
7761 ui_out_field_string (uiout, "thread-name",
7762 target_pid_to_str (t->ptid));
7763 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7764 ui_out_text (uiout, " stopped");
7765 }
7766 else
7767 {
7768 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7769 annotate_signal_name ();
33d62d64
JK
7770 if (ui_out_is_mi_like_p (uiout))
7771 ui_out_field_string
7772 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7773 ui_out_field_string (uiout, "signal-name",
2ea28649 7774 gdb_signal_to_name (siggnal));
8b93c638
JM
7775 annotate_signal_name_end ();
7776 ui_out_text (uiout, ", ");
7777 annotate_signal_string ();
488f131b 7778 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7779 gdb_signal_to_string (siggnal));
8b93c638 7780 annotate_signal_string_end ();
33d62d64
JK
7781 }
7782 ui_out_text (uiout, ".\n");
7783}
252fbfc8 7784
fd664c91
PA
7785void
7786print_no_history_reason (struct ui_out *uiout)
33d62d64 7787{
fd664c91 7788 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7789}
43ff13b4 7790
0c7e1a46
PA
7791/* Print current location without a level number, if we have changed
7792 functions or hit a breakpoint. Print source line if we have one.
7793 bpstat_print contains the logic deciding in detail what to print,
7794 based on the event(s) that just occurred. */
7795
243a9253
PA
7796static void
7797print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7798{
7799 int bpstat_ret;
f486487f 7800 enum print_what source_flag;
0c7e1a46
PA
7801 int do_frame_printing = 1;
7802 struct thread_info *tp = inferior_thread ();
7803
7804 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7805 switch (bpstat_ret)
7806 {
7807 case PRINT_UNKNOWN:
7808 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7809 should) carry around the function and does (or should) use
7810 that when doing a frame comparison. */
7811 if (tp->control.stop_step
7812 && frame_id_eq (tp->control.step_frame_id,
7813 get_frame_id (get_current_frame ()))
885eeb5b 7814 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7815 {
7816 /* Finished step, just print source line. */
7817 source_flag = SRC_LINE;
7818 }
7819 else
7820 {
7821 /* Print location and source line. */
7822 source_flag = SRC_AND_LOC;
7823 }
7824 break;
7825 case PRINT_SRC_AND_LOC:
7826 /* Print location and source line. */
7827 source_flag = SRC_AND_LOC;
7828 break;
7829 case PRINT_SRC_ONLY:
7830 source_flag = SRC_LINE;
7831 break;
7832 case PRINT_NOTHING:
7833 /* Something bogus. */
7834 source_flag = SRC_LINE;
7835 do_frame_printing = 0;
7836 break;
7837 default:
7838 internal_error (__FILE__, __LINE__, _("Unknown value."));
7839 }
7840
7841 /* The behavior of this routine with respect to the source
7842 flag is:
7843 SRC_LINE: Print only source line
7844 LOCATION: Print only location
7845 SRC_AND_LOC: Print location and source line. */
7846 if (do_frame_printing)
7847 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7848}
7849
7850/* Cleanup that restores a previous current uiout. */
7851
7852static void
7853restore_current_uiout_cleanup (void *arg)
7854{
9a3c8263 7855 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7856
7857 current_uiout = saved_uiout;
7858}
7859
7860/* See infrun.h. */
7861
7862void
7863print_stop_event (struct ui_out *uiout)
7864{
7865 struct cleanup *old_chain;
7866 struct target_waitstatus last;
7867 ptid_t last_ptid;
7868 struct thread_info *tp;
7869
7870 get_last_target_status (&last_ptid, &last);
7871
7872 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7873 current_uiout = uiout;
7874
7875 print_stop_location (&last);
0c7e1a46
PA
7876
7877 /* Display the auto-display expressions. */
7878 do_displays ();
243a9253
PA
7879
7880 do_cleanups (old_chain);
7881
7882 tp = inferior_thread ();
7883 if (tp->thread_fsm != NULL
7884 && thread_fsm_finished_p (tp->thread_fsm))
7885 {
7886 struct return_value_info *rv;
7887
7888 rv = thread_fsm_return_value (tp->thread_fsm);
7889 if (rv != NULL)
7890 print_return_value (uiout, rv);
7891 }
0c7e1a46
PA
7892}
7893
388a7084
PA
7894/* See infrun.h. */
7895
7896void
7897maybe_remove_breakpoints (void)
7898{
7899 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7900 {
7901 if (remove_breakpoints ())
7902 {
7903 target_terminal_ours_for_output ();
7904 printf_filtered (_("Cannot remove breakpoints because "
7905 "program is no longer writable.\nFurther "
7906 "execution is probably impossible.\n"));
7907 }
7908 }
7909}
7910
4c2f2a79
PA
7911/* The execution context that just caused a normal stop. */
7912
7913struct stop_context
7914{
7915 /* The stop ID. */
7916 ULONGEST stop_id;
c906108c 7917
4c2f2a79 7918 /* The event PTID. */
c906108c 7919
4c2f2a79
PA
7920 ptid_t ptid;
7921
7922 /* If stopp for a thread event, this is the thread that caused the
7923 stop. */
7924 struct thread_info *thread;
7925
7926 /* The inferior that caused the stop. */
7927 int inf_num;
7928};
7929
7930/* Returns a new stop context. If stopped for a thread event, this
7931 takes a strong reference to the thread. */
7932
7933static struct stop_context *
7934save_stop_context (void)
7935{
224c3ddb 7936 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7937
7938 sc->stop_id = get_stop_id ();
7939 sc->ptid = inferior_ptid;
7940 sc->inf_num = current_inferior ()->num;
7941
7942 if (!ptid_equal (inferior_ptid, null_ptid))
7943 {
7944 /* Take a strong reference so that the thread can't be deleted
7945 yet. */
7946 sc->thread = inferior_thread ();
7947 sc->thread->refcount++;
7948 }
7949 else
7950 sc->thread = NULL;
7951
7952 return sc;
7953}
7954
7955/* Release a stop context previously created with save_stop_context.
7956 Releases the strong reference to the thread as well. */
7957
7958static void
7959release_stop_context_cleanup (void *arg)
7960{
9a3c8263 7961 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7962
7963 if (sc->thread != NULL)
7964 sc->thread->refcount--;
7965 xfree (sc);
7966}
7967
7968/* Return true if the current context no longer matches the saved stop
7969 context. */
7970
7971static int
7972stop_context_changed (struct stop_context *prev)
7973{
7974 if (!ptid_equal (prev->ptid, inferior_ptid))
7975 return 1;
7976 if (prev->inf_num != current_inferior ()->num)
7977 return 1;
7978 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7979 return 1;
7980 if (get_stop_id () != prev->stop_id)
7981 return 1;
7982 return 0;
7983}
7984
7985/* See infrun.h. */
7986
7987int
96baa820 7988normal_stop (void)
c906108c 7989{
73b65bb0
DJ
7990 struct target_waitstatus last;
7991 ptid_t last_ptid;
29f49a6a 7992 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7993 ptid_t pid_ptid;
73b65bb0
DJ
7994
7995 get_last_target_status (&last_ptid, &last);
7996
4c2f2a79
PA
7997 new_stop_id ();
7998
29f49a6a
PA
7999 /* If an exception is thrown from this point on, make sure to
8000 propagate GDB's knowledge of the executing state to the
8001 frontend/user running state. A QUIT is an easy exception to see
8002 here, so do this before any filtered output. */
c35b1492
PA
8003 if (!non_stop)
8004 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8005 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8006 || last.kind == TARGET_WAITKIND_EXITED)
8007 {
8008 /* On some targets, we may still have live threads in the
8009 inferior when we get a process exit event. E.g., for
8010 "checkpoint", when the current checkpoint/fork exits,
8011 linux-fork.c automatically switches to another fork from
8012 within target_mourn_inferior. */
8013 if (!ptid_equal (inferior_ptid, null_ptid))
8014 {
8015 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8016 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8017 }
8018 }
8019 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8020 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8021
b57bacec
PA
8022 /* As we're presenting a stop, and potentially removing breakpoints,
8023 update the thread list so we can tell whether there are threads
8024 running on the target. With target remote, for example, we can
8025 only learn about new threads when we explicitly update the thread
8026 list. Do this before notifying the interpreters about signal
8027 stops, end of stepping ranges, etc., so that the "new thread"
8028 output is emitted before e.g., "Program received signal FOO",
8029 instead of after. */
8030 update_thread_list ();
8031
8032 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8033 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8034
c906108c
SS
8035 /* As with the notification of thread events, we want to delay
8036 notifying the user that we've switched thread context until
8037 the inferior actually stops.
8038
73b65bb0
DJ
8039 There's no point in saying anything if the inferior has exited.
8040 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8041 "received a signal".
8042
8043 Also skip saying anything in non-stop mode. In that mode, as we
8044 don't want GDB to switch threads behind the user's back, to avoid
8045 races where the user is typing a command to apply to thread x,
8046 but GDB switches to thread y before the user finishes entering
8047 the command, fetch_inferior_event installs a cleanup to restore
8048 the current thread back to the thread the user had selected right
8049 after this event is handled, so we're not really switching, only
8050 informing of a stop. */
4f8d22e3
PA
8051 if (!non_stop
8052 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8053 && target_has_execution
8054 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8055 && last.kind != TARGET_WAITKIND_EXITED
8056 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8057 {
8058 target_terminal_ours_for_output ();
a3f17187 8059 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8060 target_pid_to_str (inferior_ptid));
b8fa951a 8061 annotate_thread_changed ();
39f77062 8062 previous_inferior_ptid = inferior_ptid;
c906108c 8063 }
c906108c 8064
0e5bf2a8
PA
8065 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8066 {
8067 gdb_assert (sync_execution || !target_can_async_p ());
8068
8069 target_terminal_ours_for_output ();
8070 printf_filtered (_("No unwaited-for children left.\n"));
8071 }
8072
b57bacec 8073 /* Note: this depends on the update_thread_list call above. */
388a7084 8074 maybe_remove_breakpoints ();
c906108c 8075
c906108c
SS
8076 /* If an auto-display called a function and that got a signal,
8077 delete that auto-display to avoid an infinite recursion. */
8078
8079 if (stopped_by_random_signal)
8080 disable_current_display ();
8081
c906108c 8082 target_terminal_ours ();
0f641c01 8083 async_enable_stdin ();
c906108c 8084
388a7084
PA
8085 /* Let the user/frontend see the threads as stopped. */
8086 do_cleanups (old_chain);
8087
8088 /* Select innermost stack frame - i.e., current frame is frame 0,
8089 and current location is based on that. Handle the case where the
8090 dummy call is returning after being stopped. E.g. the dummy call
8091 previously hit a breakpoint. (If the dummy call returns
8092 normally, we won't reach here.) Do this before the stop hook is
8093 run, so that it doesn't get to see the temporary dummy frame,
8094 which is not where we'll present the stop. */
8095 if (has_stack_frames ())
8096 {
8097 if (stop_stack_dummy == STOP_STACK_DUMMY)
8098 {
8099 /* Pop the empty frame that contains the stack dummy. This
8100 also restores inferior state prior to the call (struct
8101 infcall_suspend_state). */
8102 struct frame_info *frame = get_current_frame ();
8103
8104 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8105 frame_pop (frame);
8106 /* frame_pop calls reinit_frame_cache as the last thing it
8107 does which means there's now no selected frame. */
8108 }
8109
8110 select_frame (get_current_frame ());
8111
8112 /* Set the current source location. */
8113 set_current_sal_from_frame (get_current_frame ());
8114 }
dd7e2d2b
PA
8115
8116 /* Look up the hook_stop and run it (CLI internally handles problem
8117 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8118 if (stop_command != NULL)
8119 {
8120 struct stop_context *saved_context = save_stop_context ();
8121 struct cleanup *old_chain
8122 = make_cleanup (release_stop_context_cleanup, saved_context);
8123
8124 catch_errors (hook_stop_stub, stop_command,
8125 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8126
8127 /* If the stop hook resumes the target, then there's no point in
8128 trying to notify about the previous stop; its context is
8129 gone. Likewise if the command switches thread or inferior --
8130 the observers would print a stop for the wrong
8131 thread/inferior. */
8132 if (stop_context_changed (saved_context))
8133 {
8134 do_cleanups (old_chain);
8135 return 1;
8136 }
8137 do_cleanups (old_chain);
8138 }
dd7e2d2b 8139
388a7084
PA
8140 /* Notify observers about the stop. This is where the interpreters
8141 print the stop event. */
8142 if (!ptid_equal (inferior_ptid, null_ptid))
8143 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8144 stop_print_frame);
8145 else
8146 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8147
243a9253
PA
8148 annotate_stopped ();
8149
48844aa6
PA
8150 if (target_has_execution)
8151 {
8152 if (last.kind != TARGET_WAITKIND_SIGNALLED
8153 && last.kind != TARGET_WAITKIND_EXITED)
8154 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8155 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8156 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8157 }
6c95b8df
PA
8158
8159 /* Try to get rid of automatically added inferiors that are no
8160 longer needed. Keeping those around slows down things linearly.
8161 Note that this never removes the current inferior. */
8162 prune_inferiors ();
4c2f2a79
PA
8163
8164 return 0;
c906108c
SS
8165}
8166
8167static int
96baa820 8168hook_stop_stub (void *cmd)
c906108c 8169{
5913bcb0 8170 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8171 return (0);
8172}
8173\f
c5aa993b 8174int
96baa820 8175signal_stop_state (int signo)
c906108c 8176{
d6b48e9c 8177 return signal_stop[signo];
c906108c
SS
8178}
8179
c5aa993b 8180int
96baa820 8181signal_print_state (int signo)
c906108c
SS
8182{
8183 return signal_print[signo];
8184}
8185
c5aa993b 8186int
96baa820 8187signal_pass_state (int signo)
c906108c
SS
8188{
8189 return signal_program[signo];
8190}
8191
2455069d
UW
8192static void
8193signal_cache_update (int signo)
8194{
8195 if (signo == -1)
8196 {
a493e3e2 8197 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8198 signal_cache_update (signo);
8199
8200 return;
8201 }
8202
8203 signal_pass[signo] = (signal_stop[signo] == 0
8204 && signal_print[signo] == 0
ab04a2af
TT
8205 && signal_program[signo] == 1
8206 && signal_catch[signo] == 0);
2455069d
UW
8207}
8208
488f131b 8209int
7bda5e4a 8210signal_stop_update (int signo, int state)
d4f3574e
SS
8211{
8212 int ret = signal_stop[signo];
abbb1732 8213
d4f3574e 8214 signal_stop[signo] = state;
2455069d 8215 signal_cache_update (signo);
d4f3574e
SS
8216 return ret;
8217}
8218
488f131b 8219int
7bda5e4a 8220signal_print_update (int signo, int state)
d4f3574e
SS
8221{
8222 int ret = signal_print[signo];
abbb1732 8223
d4f3574e 8224 signal_print[signo] = state;
2455069d 8225 signal_cache_update (signo);
d4f3574e
SS
8226 return ret;
8227}
8228
488f131b 8229int
7bda5e4a 8230signal_pass_update (int signo, int state)
d4f3574e
SS
8231{
8232 int ret = signal_program[signo];
abbb1732 8233
d4f3574e 8234 signal_program[signo] = state;
2455069d 8235 signal_cache_update (signo);
d4f3574e
SS
8236 return ret;
8237}
8238
ab04a2af
TT
8239/* Update the global 'signal_catch' from INFO and notify the
8240 target. */
8241
8242void
8243signal_catch_update (const unsigned int *info)
8244{
8245 int i;
8246
8247 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8248 signal_catch[i] = info[i] > 0;
8249 signal_cache_update (-1);
8250 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8251}
8252
c906108c 8253static void
96baa820 8254sig_print_header (void)
c906108c 8255{
3e43a32a
MS
8256 printf_filtered (_("Signal Stop\tPrint\tPass "
8257 "to program\tDescription\n"));
c906108c
SS
8258}
8259
8260static void
2ea28649 8261sig_print_info (enum gdb_signal oursig)
c906108c 8262{
2ea28649 8263 const char *name = gdb_signal_to_name (oursig);
c906108c 8264 int name_padding = 13 - strlen (name);
96baa820 8265
c906108c
SS
8266 if (name_padding <= 0)
8267 name_padding = 0;
8268
8269 printf_filtered ("%s", name);
488f131b 8270 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8271 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8272 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8273 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8274 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8275}
8276
8277/* Specify how various signals in the inferior should be handled. */
8278
8279static void
96baa820 8280handle_command (char *args, int from_tty)
c906108c
SS
8281{
8282 char **argv;
8283 int digits, wordlen;
8284 int sigfirst, signum, siglast;
2ea28649 8285 enum gdb_signal oursig;
c906108c
SS
8286 int allsigs;
8287 int nsigs;
8288 unsigned char *sigs;
8289 struct cleanup *old_chain;
8290
8291 if (args == NULL)
8292 {
e2e0b3e5 8293 error_no_arg (_("signal to handle"));
c906108c
SS
8294 }
8295
1777feb0 8296 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8297
a493e3e2 8298 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8299 sigs = (unsigned char *) alloca (nsigs);
8300 memset (sigs, 0, nsigs);
8301
1777feb0 8302 /* Break the command line up into args. */
c906108c 8303
d1a41061 8304 argv = gdb_buildargv (args);
7a292a7a 8305 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8306
8307 /* Walk through the args, looking for signal oursigs, signal names, and
8308 actions. Signal numbers and signal names may be interspersed with
8309 actions, with the actions being performed for all signals cumulatively
1777feb0 8310 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8311
8312 while (*argv != NULL)
8313 {
8314 wordlen = strlen (*argv);
8315 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8316 {;
8317 }
8318 allsigs = 0;
8319 sigfirst = siglast = -1;
8320
8321 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8322 {
8323 /* Apply action to all signals except those used by the
1777feb0 8324 debugger. Silently skip those. */
c906108c
SS
8325 allsigs = 1;
8326 sigfirst = 0;
8327 siglast = nsigs - 1;
8328 }
8329 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8330 {
8331 SET_SIGS (nsigs, sigs, signal_stop);
8332 SET_SIGS (nsigs, sigs, signal_print);
8333 }
8334 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8335 {
8336 UNSET_SIGS (nsigs, sigs, signal_program);
8337 }
8338 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8339 {
8340 SET_SIGS (nsigs, sigs, signal_print);
8341 }
8342 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8343 {
8344 SET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8347 {
8348 UNSET_SIGS (nsigs, sigs, signal_stop);
8349 }
8350 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8351 {
8352 SET_SIGS (nsigs, sigs, signal_program);
8353 }
8354 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8355 {
8356 UNSET_SIGS (nsigs, sigs, signal_print);
8357 UNSET_SIGS (nsigs, sigs, signal_stop);
8358 }
8359 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8360 {
8361 UNSET_SIGS (nsigs, sigs, signal_program);
8362 }
8363 else if (digits > 0)
8364 {
8365 /* It is numeric. The numeric signal refers to our own
8366 internal signal numbering from target.h, not to host/target
8367 signal number. This is a feature; users really should be
8368 using symbolic names anyway, and the common ones like
8369 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8370
8371 sigfirst = siglast = (int)
2ea28649 8372 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8373 if ((*argv)[digits] == '-')
8374 {
8375 siglast = (int)
2ea28649 8376 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8377 }
8378 if (sigfirst > siglast)
8379 {
1777feb0 8380 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8381 signum = sigfirst;
8382 sigfirst = siglast;
8383 siglast = signum;
8384 }
8385 }
8386 else
8387 {
2ea28649 8388 oursig = gdb_signal_from_name (*argv);
a493e3e2 8389 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8390 {
8391 sigfirst = siglast = (int) oursig;
8392 }
8393 else
8394 {
8395 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8396 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8397 }
8398 }
8399
8400 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8401 which signals to apply actions to. */
c906108c
SS
8402
8403 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8404 {
2ea28649 8405 switch ((enum gdb_signal) signum)
c906108c 8406 {
a493e3e2
PA
8407 case GDB_SIGNAL_TRAP:
8408 case GDB_SIGNAL_INT:
c906108c
SS
8409 if (!allsigs && !sigs[signum])
8410 {
9e2f0ad4 8411 if (query (_("%s is used by the debugger.\n\
3e43a32a 8412Are you sure you want to change it? "),
2ea28649 8413 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8414 {
8415 sigs[signum] = 1;
8416 }
8417 else
8418 {
a3f17187 8419 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8420 gdb_flush (gdb_stdout);
8421 }
8422 }
8423 break;
a493e3e2
PA
8424 case GDB_SIGNAL_0:
8425 case GDB_SIGNAL_DEFAULT:
8426 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8427 /* Make sure that "all" doesn't print these. */
8428 break;
8429 default:
8430 sigs[signum] = 1;
8431 break;
8432 }
8433 }
8434
8435 argv++;
8436 }
8437
3a031f65
PA
8438 for (signum = 0; signum < nsigs; signum++)
8439 if (sigs[signum])
8440 {
2455069d 8441 signal_cache_update (-1);
a493e3e2
PA
8442 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8443 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8444
3a031f65
PA
8445 if (from_tty)
8446 {
8447 /* Show the results. */
8448 sig_print_header ();
8449 for (; signum < nsigs; signum++)
8450 if (sigs[signum])
aead7601 8451 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8452 }
8453
8454 break;
8455 }
c906108c
SS
8456
8457 do_cleanups (old_chain);
8458}
8459
de0bea00
MF
8460/* Complete the "handle" command. */
8461
8462static VEC (char_ptr) *
8463handle_completer (struct cmd_list_element *ignore,
6f937416 8464 const char *text, const char *word)
de0bea00
MF
8465{
8466 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8467 static const char * const keywords[] =
8468 {
8469 "all",
8470 "stop",
8471 "ignore",
8472 "print",
8473 "pass",
8474 "nostop",
8475 "noignore",
8476 "noprint",
8477 "nopass",
8478 NULL,
8479 };
8480
8481 vec_signals = signal_completer (ignore, text, word);
8482 vec_keywords = complete_on_enum (keywords, word, word);
8483
8484 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8485 VEC_free (char_ptr, vec_signals);
8486 VEC_free (char_ptr, vec_keywords);
8487 return return_val;
8488}
8489
2ea28649
PA
8490enum gdb_signal
8491gdb_signal_from_command (int num)
ed01b82c
PA
8492{
8493 if (num >= 1 && num <= 15)
2ea28649 8494 return (enum gdb_signal) num;
ed01b82c
PA
8495 error (_("Only signals 1-15 are valid as numeric signals.\n\
8496Use \"info signals\" for a list of symbolic signals."));
8497}
8498
c906108c
SS
8499/* Print current contents of the tables set by the handle command.
8500 It is possible we should just be printing signals actually used
8501 by the current target (but for things to work right when switching
8502 targets, all signals should be in the signal tables). */
8503
8504static void
96baa820 8505signals_info (char *signum_exp, int from_tty)
c906108c 8506{
2ea28649 8507 enum gdb_signal oursig;
abbb1732 8508
c906108c
SS
8509 sig_print_header ();
8510
8511 if (signum_exp)
8512 {
8513 /* First see if this is a symbol name. */
2ea28649 8514 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8515 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8516 {
8517 /* No, try numeric. */
8518 oursig =
2ea28649 8519 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8520 }
8521 sig_print_info (oursig);
8522 return;
8523 }
8524
8525 printf_filtered ("\n");
8526 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8527 for (oursig = GDB_SIGNAL_FIRST;
8528 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8529 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8530 {
8531 QUIT;
8532
a493e3e2
PA
8533 if (oursig != GDB_SIGNAL_UNKNOWN
8534 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8535 sig_print_info (oursig);
8536 }
8537
3e43a32a
MS
8538 printf_filtered (_("\nUse the \"handle\" command "
8539 "to change these tables.\n"));
c906108c 8540}
4aa995e1 8541
c709acd1
PA
8542/* Check if it makes sense to read $_siginfo from the current thread
8543 at this point. If not, throw an error. */
8544
8545static void
8546validate_siginfo_access (void)
8547{
8548 /* No current inferior, no siginfo. */
8549 if (ptid_equal (inferior_ptid, null_ptid))
8550 error (_("No thread selected."));
8551
8552 /* Don't try to read from a dead thread. */
8553 if (is_exited (inferior_ptid))
8554 error (_("The current thread has terminated"));
8555
8556 /* ... or from a spinning thread. */
8557 if (is_running (inferior_ptid))
8558 error (_("Selected thread is running."));
8559}
8560
4aa995e1
PA
8561/* The $_siginfo convenience variable is a bit special. We don't know
8562 for sure the type of the value until we actually have a chance to
7a9dd1b2 8563 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8564 also dependent on which thread you have selected.
8565
8566 1. making $_siginfo be an internalvar that creates a new value on
8567 access.
8568
8569 2. making the value of $_siginfo be an lval_computed value. */
8570
8571/* This function implements the lval_computed support for reading a
8572 $_siginfo value. */
8573
8574static void
8575siginfo_value_read (struct value *v)
8576{
8577 LONGEST transferred;
8578
c709acd1
PA
8579 validate_siginfo_access ();
8580
4aa995e1
PA
8581 transferred =
8582 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8583 NULL,
8584 value_contents_all_raw (v),
8585 value_offset (v),
8586 TYPE_LENGTH (value_type (v)));
8587
8588 if (transferred != TYPE_LENGTH (value_type (v)))
8589 error (_("Unable to read siginfo"));
8590}
8591
8592/* This function implements the lval_computed support for writing a
8593 $_siginfo value. */
8594
8595static void
8596siginfo_value_write (struct value *v, struct value *fromval)
8597{
8598 LONGEST transferred;
8599
c709acd1
PA
8600 validate_siginfo_access ();
8601
4aa995e1
PA
8602 transferred = target_write (&current_target,
8603 TARGET_OBJECT_SIGNAL_INFO,
8604 NULL,
8605 value_contents_all_raw (fromval),
8606 value_offset (v),
8607 TYPE_LENGTH (value_type (fromval)));
8608
8609 if (transferred != TYPE_LENGTH (value_type (fromval)))
8610 error (_("Unable to write siginfo"));
8611}
8612
c8f2448a 8613static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8614 {
8615 siginfo_value_read,
8616 siginfo_value_write
8617 };
8618
8619/* Return a new value with the correct type for the siginfo object of
78267919
UW
8620 the current thread using architecture GDBARCH. Return a void value
8621 if there's no object available. */
4aa995e1 8622
2c0b251b 8623static struct value *
22d2b532
SDJ
8624siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8625 void *ignore)
4aa995e1 8626{
4aa995e1 8627 if (target_has_stack
78267919
UW
8628 && !ptid_equal (inferior_ptid, null_ptid)
8629 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8630 {
78267919 8631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8632
78267919 8633 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8634 }
8635
78267919 8636 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8637}
8638
c906108c 8639\f
16c381f0
JK
8640/* infcall_suspend_state contains state about the program itself like its
8641 registers and any signal it received when it last stopped.
8642 This state must be restored regardless of how the inferior function call
8643 ends (either successfully, or after it hits a breakpoint or signal)
8644 if the program is to properly continue where it left off. */
8645
8646struct infcall_suspend_state
7a292a7a 8647{
16c381f0 8648 struct thread_suspend_state thread_suspend;
16c381f0
JK
8649
8650 /* Other fields: */
7a292a7a 8651 CORE_ADDR stop_pc;
b89667eb 8652 struct regcache *registers;
1736ad11 8653
35515841 8654 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8655 struct gdbarch *siginfo_gdbarch;
8656
8657 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8658 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8659 content would be invalid. */
8660 gdb_byte *siginfo_data;
b89667eb
DE
8661};
8662
16c381f0
JK
8663struct infcall_suspend_state *
8664save_infcall_suspend_state (void)
b89667eb 8665{
16c381f0 8666 struct infcall_suspend_state *inf_state;
b89667eb 8667 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8668 struct regcache *regcache = get_current_regcache ();
8669 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8670 gdb_byte *siginfo_data = NULL;
8671
8672 if (gdbarch_get_siginfo_type_p (gdbarch))
8673 {
8674 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8675 size_t len = TYPE_LENGTH (type);
8676 struct cleanup *back_to;
8677
224c3ddb 8678 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8679 back_to = make_cleanup (xfree, siginfo_data);
8680
8681 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8682 siginfo_data, 0, len) == len)
8683 discard_cleanups (back_to);
8684 else
8685 {
8686 /* Errors ignored. */
8687 do_cleanups (back_to);
8688 siginfo_data = NULL;
8689 }
8690 }
8691
41bf6aca 8692 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8693
8694 if (siginfo_data)
8695 {
8696 inf_state->siginfo_gdbarch = gdbarch;
8697 inf_state->siginfo_data = siginfo_data;
8698 }
b89667eb 8699
16c381f0 8700 inf_state->thread_suspend = tp->suspend;
16c381f0 8701
35515841 8702 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8703 GDB_SIGNAL_0 anyway. */
8704 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8705
b89667eb
DE
8706 inf_state->stop_pc = stop_pc;
8707
1736ad11 8708 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8709
8710 return inf_state;
8711}
8712
8713/* Restore inferior session state to INF_STATE. */
8714
8715void
16c381f0 8716restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8717{
8718 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8719 struct regcache *regcache = get_current_regcache ();
8720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8721
16c381f0 8722 tp->suspend = inf_state->thread_suspend;
16c381f0 8723
b89667eb
DE
8724 stop_pc = inf_state->stop_pc;
8725
1736ad11
JK
8726 if (inf_state->siginfo_gdbarch == gdbarch)
8727 {
8728 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8729
8730 /* Errors ignored. */
8731 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8732 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8733 }
8734
b89667eb
DE
8735 /* The inferior can be gone if the user types "print exit(0)"
8736 (and perhaps other times). */
8737 if (target_has_execution)
8738 /* NB: The register write goes through to the target. */
1736ad11 8739 regcache_cpy (regcache, inf_state->registers);
803b5f95 8740
16c381f0 8741 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8742}
8743
8744static void
16c381f0 8745do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8746{
9a3c8263 8747 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8748}
8749
8750struct cleanup *
16c381f0
JK
8751make_cleanup_restore_infcall_suspend_state
8752 (struct infcall_suspend_state *inf_state)
b89667eb 8753{
16c381f0 8754 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8755}
8756
8757void
16c381f0 8758discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8759{
8760 regcache_xfree (inf_state->registers);
803b5f95 8761 xfree (inf_state->siginfo_data);
b89667eb
DE
8762 xfree (inf_state);
8763}
8764
8765struct regcache *
16c381f0 8766get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8767{
8768 return inf_state->registers;
8769}
8770
16c381f0
JK
8771/* infcall_control_state contains state regarding gdb's control of the
8772 inferior itself like stepping control. It also contains session state like
8773 the user's currently selected frame. */
b89667eb 8774
16c381f0 8775struct infcall_control_state
b89667eb 8776{
16c381f0
JK
8777 struct thread_control_state thread_control;
8778 struct inferior_control_state inferior_control;
d82142e2
JK
8779
8780 /* Other fields: */
8781 enum stop_stack_kind stop_stack_dummy;
8782 int stopped_by_random_signal;
7a292a7a 8783
b89667eb 8784 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8785 struct frame_id selected_frame_id;
7a292a7a
SS
8786};
8787
c906108c 8788/* Save all of the information associated with the inferior<==>gdb
b89667eb 8789 connection. */
c906108c 8790
16c381f0
JK
8791struct infcall_control_state *
8792save_infcall_control_state (void)
c906108c 8793{
8d749320
SM
8794 struct infcall_control_state *inf_status =
8795 XNEW (struct infcall_control_state);
4e1c45ea 8796 struct thread_info *tp = inferior_thread ();
d6b48e9c 8797 struct inferior *inf = current_inferior ();
7a292a7a 8798
16c381f0
JK
8799 inf_status->thread_control = tp->control;
8800 inf_status->inferior_control = inf->control;
d82142e2 8801
8358c15c 8802 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8803 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8804
16c381f0
JK
8805 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8806 chain. If caller's caller is walking the chain, they'll be happier if we
8807 hand them back the original chain when restore_infcall_control_state is
8808 called. */
8809 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8810
8811 /* Other fields: */
8812 inf_status->stop_stack_dummy = stop_stack_dummy;
8813 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8814
206415a3 8815 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8816
7a292a7a 8817 return inf_status;
c906108c
SS
8818}
8819
c906108c 8820static int
96baa820 8821restore_selected_frame (void *args)
c906108c 8822{
488f131b 8823 struct frame_id *fid = (struct frame_id *) args;
c906108c 8824 struct frame_info *frame;
c906108c 8825
101dcfbe 8826 frame = frame_find_by_id (*fid);
c906108c 8827
aa0cd9c1
AC
8828 /* If inf_status->selected_frame_id is NULL, there was no previously
8829 selected frame. */
101dcfbe 8830 if (frame == NULL)
c906108c 8831 {
8a3fe4f8 8832 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8833 return 0;
8834 }
8835
0f7d239c 8836 select_frame (frame);
c906108c
SS
8837
8838 return (1);
8839}
8840
b89667eb
DE
8841/* Restore inferior session state to INF_STATUS. */
8842
c906108c 8843void
16c381f0 8844restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8845{
4e1c45ea 8846 struct thread_info *tp = inferior_thread ();
d6b48e9c 8847 struct inferior *inf = current_inferior ();
4e1c45ea 8848
8358c15c
JK
8849 if (tp->control.step_resume_breakpoint)
8850 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8851
5b79abe7
TT
8852 if (tp->control.exception_resume_breakpoint)
8853 tp->control.exception_resume_breakpoint->disposition
8854 = disp_del_at_next_stop;
8855
d82142e2 8856 /* Handle the bpstat_copy of the chain. */
16c381f0 8857 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8858
16c381f0
JK
8859 tp->control = inf_status->thread_control;
8860 inf->control = inf_status->inferior_control;
d82142e2
JK
8861
8862 /* Other fields: */
8863 stop_stack_dummy = inf_status->stop_stack_dummy;
8864 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8865
b89667eb 8866 if (target_has_stack)
c906108c 8867 {
c906108c 8868 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8869 walking the stack might encounter a garbage pointer and
8870 error() trying to dereference it. */
488f131b
JB
8871 if (catch_errors
8872 (restore_selected_frame, &inf_status->selected_frame_id,
8873 "Unable to restore previously selected frame:\n",
8874 RETURN_MASK_ERROR) == 0)
c906108c
SS
8875 /* Error in restoring the selected frame. Select the innermost
8876 frame. */
0f7d239c 8877 select_frame (get_current_frame ());
c906108c 8878 }
c906108c 8879
72cec141 8880 xfree (inf_status);
7a292a7a 8881}
c906108c 8882
74b7792f 8883static void
16c381f0 8884do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8885{
9a3c8263 8886 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8887}
8888
8889struct cleanup *
16c381f0
JK
8890make_cleanup_restore_infcall_control_state
8891 (struct infcall_control_state *inf_status)
74b7792f 8892{
16c381f0 8893 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8894}
8895
c906108c 8896void
16c381f0 8897discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8898{
8358c15c
JK
8899 if (inf_status->thread_control.step_resume_breakpoint)
8900 inf_status->thread_control.step_resume_breakpoint->disposition
8901 = disp_del_at_next_stop;
8902
5b79abe7
TT
8903 if (inf_status->thread_control.exception_resume_breakpoint)
8904 inf_status->thread_control.exception_resume_breakpoint->disposition
8905 = disp_del_at_next_stop;
8906
1777feb0 8907 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8908 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8909
72cec141 8910 xfree (inf_status);
7a292a7a 8911}
b89667eb 8912\f
ca6724c1
KB
8913/* restore_inferior_ptid() will be used by the cleanup machinery
8914 to restore the inferior_ptid value saved in a call to
8915 save_inferior_ptid(). */
ce696e05
KB
8916
8917static void
8918restore_inferior_ptid (void *arg)
8919{
9a3c8263 8920 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8921
ce696e05
KB
8922 inferior_ptid = *saved_ptid_ptr;
8923 xfree (arg);
8924}
8925
8926/* Save the value of inferior_ptid so that it may be restored by a
8927 later call to do_cleanups(). Returns the struct cleanup pointer
8928 needed for later doing the cleanup. */
8929
8930struct cleanup *
8931save_inferior_ptid (void)
8932{
8d749320 8933 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8934
ce696e05
KB
8935 *saved_ptid_ptr = inferior_ptid;
8936 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8937}
0c557179 8938
7f89fd65 8939/* See infrun.h. */
0c557179
SDJ
8940
8941void
8942clear_exit_convenience_vars (void)
8943{
8944 clear_internalvar (lookup_internalvar ("_exitsignal"));
8945 clear_internalvar (lookup_internalvar ("_exitcode"));
8946}
c5aa993b 8947\f
488f131b 8948
b2175913
MS
8949/* User interface for reverse debugging:
8950 Set exec-direction / show exec-direction commands
8951 (returns error unless target implements to_set_exec_direction method). */
8952
170742de 8953enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8954static const char exec_forward[] = "forward";
8955static const char exec_reverse[] = "reverse";
8956static const char *exec_direction = exec_forward;
40478521 8957static const char *const exec_direction_names[] = {
b2175913
MS
8958 exec_forward,
8959 exec_reverse,
8960 NULL
8961};
8962
8963static void
8964set_exec_direction_func (char *args, int from_tty,
8965 struct cmd_list_element *cmd)
8966{
8967 if (target_can_execute_reverse)
8968 {
8969 if (!strcmp (exec_direction, exec_forward))
8970 execution_direction = EXEC_FORWARD;
8971 else if (!strcmp (exec_direction, exec_reverse))
8972 execution_direction = EXEC_REVERSE;
8973 }
8bbed405
MS
8974 else
8975 {
8976 exec_direction = exec_forward;
8977 error (_("Target does not support this operation."));
8978 }
b2175913
MS
8979}
8980
8981static void
8982show_exec_direction_func (struct ui_file *out, int from_tty,
8983 struct cmd_list_element *cmd, const char *value)
8984{
8985 switch (execution_direction) {
8986 case EXEC_FORWARD:
8987 fprintf_filtered (out, _("Forward.\n"));
8988 break;
8989 case EXEC_REVERSE:
8990 fprintf_filtered (out, _("Reverse.\n"));
8991 break;
b2175913 8992 default:
d8b34453
PA
8993 internal_error (__FILE__, __LINE__,
8994 _("bogus execution_direction value: %d"),
8995 (int) execution_direction);
b2175913
MS
8996 }
8997}
8998
d4db2f36
PA
8999static void
9000show_schedule_multiple (struct ui_file *file, int from_tty,
9001 struct cmd_list_element *c, const char *value)
9002{
3e43a32a
MS
9003 fprintf_filtered (file, _("Resuming the execution of threads "
9004 "of all processes is %s.\n"), value);
d4db2f36 9005}
ad52ddc6 9006
22d2b532
SDJ
9007/* Implementation of `siginfo' variable. */
9008
9009static const struct internalvar_funcs siginfo_funcs =
9010{
9011 siginfo_make_value,
9012 NULL,
9013 NULL
9014};
9015
372316f1
PA
9016/* Callback for infrun's target events source. This is marked when a
9017 thread has a pending status to process. */
9018
9019static void
9020infrun_async_inferior_event_handler (gdb_client_data data)
9021{
372316f1
PA
9022 inferior_event_handler (INF_REG_EVENT, NULL);
9023}
9024
c906108c 9025void
96baa820 9026_initialize_infrun (void)
c906108c 9027{
52f0bd74
AC
9028 int i;
9029 int numsigs;
de0bea00 9030 struct cmd_list_element *c;
c906108c 9031
372316f1
PA
9032 /* Register extra event sources in the event loop. */
9033 infrun_async_inferior_event_token
9034 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9035
1bedd215
AC
9036 add_info ("signals", signals_info, _("\
9037What debugger does when program gets various signals.\n\
9038Specify a signal as argument to print info on that signal only."));
c906108c
SS
9039 add_info_alias ("handle", "signals", 0);
9040
de0bea00 9041 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9042Specify how to handle signals.\n\
486c7739 9043Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9044Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9045If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9046will be displayed instead.\n\
9047\n\
c906108c
SS
9048Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9049from 1-15 are allowed for compatibility with old versions of GDB.\n\
9050Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9051The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9052used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9053\n\
1bedd215 9054Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9055\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9056Stop means reenter debugger if this signal happens (implies print).\n\
9057Print means print a message if this signal happens.\n\
9058Pass means let program see this signal; otherwise program doesn't know.\n\
9059Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9060Pass and Stop may be combined.\n\
9061\n\
9062Multiple signals may be specified. Signal numbers and signal names\n\
9063may be interspersed with actions, with the actions being performed for\n\
9064all signals cumulatively specified."));
de0bea00 9065 set_cmd_completer (c, handle_completer);
486c7739 9066
c906108c 9067 if (!dbx_commands)
1a966eab
AC
9068 stop_command = add_cmd ("stop", class_obscure,
9069 not_just_help_class_command, _("\
9070There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9071This allows you to set a list of commands to be run each time execution\n\
1a966eab 9072of the program stops."), &cmdlist);
c906108c 9073
ccce17b0 9074 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9075Set inferior debugging."), _("\
9076Show inferior debugging."), _("\
9077When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9078 NULL,
9079 show_debug_infrun,
9080 &setdebuglist, &showdebuglist);
527159b7 9081
3e43a32a
MS
9082 add_setshow_boolean_cmd ("displaced", class_maintenance,
9083 &debug_displaced, _("\
237fc4c9
PA
9084Set displaced stepping debugging."), _("\
9085Show displaced stepping debugging."), _("\
9086When non-zero, displaced stepping specific debugging is enabled."),
9087 NULL,
9088 show_debug_displaced,
9089 &setdebuglist, &showdebuglist);
9090
ad52ddc6
PA
9091 add_setshow_boolean_cmd ("non-stop", no_class,
9092 &non_stop_1, _("\
9093Set whether gdb controls the inferior in non-stop mode."), _("\
9094Show whether gdb controls the inferior in non-stop mode."), _("\
9095When debugging a multi-threaded program and this setting is\n\
9096off (the default, also called all-stop mode), when one thread stops\n\
9097(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9098all other threads in the program while you interact with the thread of\n\
9099interest. When you continue or step a thread, you can allow the other\n\
9100threads to run, or have them remain stopped, but while you inspect any\n\
9101thread's state, all threads stop.\n\
9102\n\
9103In non-stop mode, when one thread stops, other threads can continue\n\
9104to run freely. You'll be able to step each thread independently,\n\
9105leave it stopped or free to run as needed."),
9106 set_non_stop,
9107 show_non_stop,
9108 &setlist,
9109 &showlist);
9110
a493e3e2 9111 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9112 signal_stop = XNEWVEC (unsigned char, numsigs);
9113 signal_print = XNEWVEC (unsigned char, numsigs);
9114 signal_program = XNEWVEC (unsigned char, numsigs);
9115 signal_catch = XNEWVEC (unsigned char, numsigs);
9116 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9117 for (i = 0; i < numsigs; i++)
9118 {
9119 signal_stop[i] = 1;
9120 signal_print[i] = 1;
9121 signal_program[i] = 1;
ab04a2af 9122 signal_catch[i] = 0;
c906108c
SS
9123 }
9124
4d9d9d04
PA
9125 /* Signals caused by debugger's own actions should not be given to
9126 the program afterwards.
9127
9128 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9129 explicitly specifies that it should be delivered to the target
9130 program. Typically, that would occur when a user is debugging a
9131 target monitor on a simulator: the target monitor sets a
9132 breakpoint; the simulator encounters this breakpoint and halts
9133 the simulation handing control to GDB; GDB, noting that the stop
9134 address doesn't map to any known breakpoint, returns control back
9135 to the simulator; the simulator then delivers the hardware
9136 equivalent of a GDB_SIGNAL_TRAP to the program being
9137 debugged. */
a493e3e2
PA
9138 signal_program[GDB_SIGNAL_TRAP] = 0;
9139 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9140
9141 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9142 signal_stop[GDB_SIGNAL_ALRM] = 0;
9143 signal_print[GDB_SIGNAL_ALRM] = 0;
9144 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9145 signal_print[GDB_SIGNAL_VTALRM] = 0;
9146 signal_stop[GDB_SIGNAL_PROF] = 0;
9147 signal_print[GDB_SIGNAL_PROF] = 0;
9148 signal_stop[GDB_SIGNAL_CHLD] = 0;
9149 signal_print[GDB_SIGNAL_CHLD] = 0;
9150 signal_stop[GDB_SIGNAL_IO] = 0;
9151 signal_print[GDB_SIGNAL_IO] = 0;
9152 signal_stop[GDB_SIGNAL_POLL] = 0;
9153 signal_print[GDB_SIGNAL_POLL] = 0;
9154 signal_stop[GDB_SIGNAL_URG] = 0;
9155 signal_print[GDB_SIGNAL_URG] = 0;
9156 signal_stop[GDB_SIGNAL_WINCH] = 0;
9157 signal_print[GDB_SIGNAL_WINCH] = 0;
9158 signal_stop[GDB_SIGNAL_PRIO] = 0;
9159 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9160
cd0fc7c3
SS
9161 /* These signals are used internally by user-level thread
9162 implementations. (See signal(5) on Solaris.) Like the above
9163 signals, a healthy program receives and handles them as part of
9164 its normal operation. */
a493e3e2
PA
9165 signal_stop[GDB_SIGNAL_LWP] = 0;
9166 signal_print[GDB_SIGNAL_LWP] = 0;
9167 signal_stop[GDB_SIGNAL_WAITING] = 0;
9168 signal_print[GDB_SIGNAL_WAITING] = 0;
9169 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9170 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9171
2455069d
UW
9172 /* Update cached state. */
9173 signal_cache_update (-1);
9174
85c07804
AC
9175 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9176 &stop_on_solib_events, _("\
9177Set stopping for shared library events."), _("\
9178Show stopping for shared library events."), _("\
c906108c
SS
9179If nonzero, gdb will give control to the user when the dynamic linker\n\
9180notifies gdb of shared library events. The most common event of interest\n\
85c07804 9181to the user would be loading/unloading of a new library."),
f9e14852 9182 set_stop_on_solib_events,
920d2a44 9183 show_stop_on_solib_events,
85c07804 9184 &setlist, &showlist);
c906108c 9185
7ab04401
AC
9186 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9187 follow_fork_mode_kind_names,
9188 &follow_fork_mode_string, _("\
9189Set debugger response to a program call of fork or vfork."), _("\
9190Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9191A fork or vfork creates a new process. follow-fork-mode can be:\n\
9192 parent - the original process is debugged after a fork\n\
9193 child - the new process is debugged after a fork\n\
ea1dd7bc 9194The unfollowed process will continue to run.\n\
7ab04401
AC
9195By default, the debugger will follow the parent process."),
9196 NULL,
920d2a44 9197 show_follow_fork_mode_string,
7ab04401
AC
9198 &setlist, &showlist);
9199
6c95b8df
PA
9200 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9201 follow_exec_mode_names,
9202 &follow_exec_mode_string, _("\
9203Set debugger response to a program call of exec."), _("\
9204Show debugger response to a program call of exec."), _("\
9205An exec call replaces the program image of a process.\n\
9206\n\
9207follow-exec-mode can be:\n\
9208\n\
cce7e648 9209 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9210to this new inferior. The program the process was running before\n\
9211the exec call can be restarted afterwards by restarting the original\n\
9212inferior.\n\
9213\n\
9214 same - the debugger keeps the process bound to the same inferior.\n\
9215The new executable image replaces the previous executable loaded in\n\
9216the inferior. Restarting the inferior after the exec call restarts\n\
9217the executable the process was running after the exec call.\n\
9218\n\
9219By default, the debugger will use the same inferior."),
9220 NULL,
9221 show_follow_exec_mode_string,
9222 &setlist, &showlist);
9223
7ab04401
AC
9224 add_setshow_enum_cmd ("scheduler-locking", class_run,
9225 scheduler_enums, &scheduler_mode, _("\
9226Set mode for locking scheduler during execution."), _("\
9227Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9228off == no locking (threads may preempt at any time)\n\
9229on == full locking (no thread except the current thread may run)\n\
9230 This applies to both normal execution and replay mode.\n\
9231step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9232 In this mode, other threads may run during other commands.\n\
9233 This applies to both normal execution and replay mode.\n\
9234replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9235 set_schedlock_func, /* traps on target vector */
920d2a44 9236 show_scheduler_mode,
7ab04401 9237 &setlist, &showlist);
5fbbeb29 9238
d4db2f36
PA
9239 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9240Set mode for resuming threads of all processes."), _("\
9241Show mode for resuming threads of all processes."), _("\
9242When on, execution commands (such as 'continue' or 'next') resume all\n\
9243threads of all processes. When off (which is the default), execution\n\
9244commands only resume the threads of the current process. The set of\n\
9245threads that are resumed is further refined by the scheduler-locking\n\
9246mode (see help set scheduler-locking)."),
9247 NULL,
9248 show_schedule_multiple,
9249 &setlist, &showlist);
9250
5bf193a2
AC
9251 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9252Set mode of the step operation."), _("\
9253Show mode of the step operation."), _("\
9254When set, doing a step over a function without debug line information\n\
9255will stop at the first instruction of that function. Otherwise, the\n\
9256function is skipped and the step command stops at a different source line."),
9257 NULL,
920d2a44 9258 show_step_stop_if_no_debug,
5bf193a2 9259 &setlist, &showlist);
ca6724c1 9260
72d0e2c5
YQ
9261 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9262 &can_use_displaced_stepping, _("\
237fc4c9
PA
9263Set debugger's willingness to use displaced stepping."), _("\
9264Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9265If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9266supported by the target architecture. If off, gdb will not use displaced\n\
9267stepping to step over breakpoints, even if such is supported by the target\n\
9268architecture. If auto (which is the default), gdb will use displaced stepping\n\
9269if the target architecture supports it and non-stop mode is active, but will not\n\
9270use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9271 NULL,
9272 show_can_use_displaced_stepping,
9273 &setlist, &showlist);
237fc4c9 9274
b2175913
MS
9275 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9276 &exec_direction, _("Set direction of execution.\n\
9277Options are 'forward' or 'reverse'."),
9278 _("Show direction of execution (forward/reverse)."),
9279 _("Tells gdb whether to execute forward or backward."),
9280 set_exec_direction_func, show_exec_direction_func,
9281 &setlist, &showlist);
9282
6c95b8df
PA
9283 /* Set/show detach-on-fork: user-settable mode. */
9284
9285 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9286Set whether gdb will detach the child of a fork."), _("\
9287Show whether gdb will detach the child of a fork."), _("\
9288Tells gdb whether to detach the child of a fork."),
9289 NULL, NULL, &setlist, &showlist);
9290
03583c20
UW
9291 /* Set/show disable address space randomization mode. */
9292
9293 add_setshow_boolean_cmd ("disable-randomization", class_support,
9294 &disable_randomization, _("\
9295Set disabling of debuggee's virtual address space randomization."), _("\
9296Show disabling of debuggee's virtual address space randomization."), _("\
9297When this mode is on (which is the default), randomization of the virtual\n\
9298address space is disabled. Standalone programs run with the randomization\n\
9299enabled by default on some platforms."),
9300 &set_disable_randomization,
9301 &show_disable_randomization,
9302 &setlist, &showlist);
9303
ca6724c1 9304 /* ptid initializations */
ca6724c1
KB
9305 inferior_ptid = null_ptid;
9306 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9307
9308 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9309 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9310 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9311 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9312
9313 /* Explicitly create without lookup, since that tries to create a
9314 value with a void typed value, and when we get here, gdbarch
9315 isn't initialized yet. At this point, we're quite sure there
9316 isn't another convenience variable of the same name. */
22d2b532 9317 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9318
9319 add_setshow_boolean_cmd ("observer", no_class,
9320 &observer_mode_1, _("\
9321Set whether gdb controls the inferior in observer mode."), _("\
9322Show whether gdb controls the inferior in observer mode."), _("\
9323In observer mode, GDB can get data from the inferior, but not\n\
9324affect its execution. Registers and memory may not be changed,\n\
9325breakpoints may not be set, and the program cannot be interrupted\n\
9326or signalled."),
9327 set_observer_mode,
9328 show_observer_mode,
9329 &setlist,
9330 &showlist);
c906108c 9331}