]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
daily update
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
237fc4c9
PA
111int debug_displaced = 0;
112static void
113show_debug_displaced (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115{
116 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
117}
118
527159b7 119static int debug_infrun = 0;
920d2a44
AC
120static void
121show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125}
527159b7 126
d4f3574e
SS
127/* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
ca557f44
AC
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
d4f3574e 146
cfd8ab24 147 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
cfd8ab24 153 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
c906108c 165
c906108c
SS
166/* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174#ifndef SOLIB_IN_DYNAMIC_LINKER
175#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176#endif
177
c2c6d25f 178
7a292a7a
SS
179/* Convert the #defines into values. This is temporary until wfi control
180 flow is completely sorted out. */
181
692590c1
MS
182#ifndef CANNOT_STEP_HW_WATCHPOINTS
183#define CANNOT_STEP_HW_WATCHPOINTS 0
184#else
185#undef CANNOT_STEP_HW_WATCHPOINTS
186#define CANNOT_STEP_HW_WATCHPOINTS 1
187#endif
188
c906108c
SS
189/* Tables of how to react to signals; the user sets them. */
190
191static unsigned char *signal_stop;
192static unsigned char *signal_print;
193static unsigned char *signal_program;
194
195#define SET_SIGS(nsigs,sigs,flags) \
196 do { \
197 int signum = (nsigs); \
198 while (signum-- > 0) \
199 if ((sigs)[signum]) \
200 (flags)[signum] = 1; \
201 } while (0)
202
203#define UNSET_SIGS(nsigs,sigs,flags) \
204 do { \
205 int signum = (nsigs); \
206 while (signum-- > 0) \
207 if ((sigs)[signum]) \
208 (flags)[signum] = 0; \
209 } while (0)
210
39f77062
KB
211/* Value to pass to target_resume() to cause all threads to resume */
212
edb3359d 213#define RESUME_ALL minus_one_ptid
c906108c
SS
214
215/* Command list pointer for the "stop" placeholder. */
216
217static struct cmd_list_element *stop_command;
218
c906108c
SS
219/* Function inferior was in as of last step command. */
220
221static struct symbol *step_start_function;
222
c906108c
SS
223/* Nonzero if we want to give control to the user when we're notified
224 of shared library events by the dynamic linker. */
225static int stop_on_solib_events;
920d2a44
AC
226static void
227show_stop_on_solib_events (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229{
230 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
231 value);
232}
c906108c 233
c906108c
SS
234/* Nonzero means expecting a trace trap
235 and should stop the inferior and return silently when it happens. */
236
237int stop_after_trap;
238
642fd101
DE
239/* Save register contents here when executing a "finish" command or are
240 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
241 Thus this contains the return value from the called function (assuming
242 values are returned in a register). */
243
72cec141 244struct regcache *stop_registers;
c906108c 245
c906108c
SS
246/* Nonzero after stop if current stack frame should be printed. */
247
248static int stop_print_frame;
249
e02bc4cc 250/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
251 returned by target_wait()/deprecated_target_wait_hook(). This
252 information is returned by get_last_target_status(). */
39f77062 253static ptid_t target_last_wait_ptid;
e02bc4cc
DS
254static struct target_waitstatus target_last_waitstatus;
255
0d1e5fa7
PA
256static void context_switch (ptid_t ptid);
257
4e1c45ea 258void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
259
260void init_infwait_state (void);
a474d7c2 261
53904c9e
AC
262static const char follow_fork_mode_child[] = "child";
263static const char follow_fork_mode_parent[] = "parent";
264
488f131b 265static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
266 follow_fork_mode_child,
267 follow_fork_mode_parent,
268 NULL
ef346e04 269};
c906108c 270
53904c9e 271static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
272static void
273show_follow_fork_mode_string (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("\
277Debugger response to a program call of fork or vfork is \"%s\".\n"),
278 value);
279}
c906108c
SS
280\f
281
e58b0e63
PA
282/* Tell the target to follow the fork we're stopped at. Returns true
283 if the inferior should be resumed; false, if the target for some
284 reason decided it's best not to resume. */
285
6604731b 286static int
4ef3f3be 287follow_fork (void)
c906108c 288{
ea1dd7bc 289 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
290 int should_resume = 1;
291 struct thread_info *tp;
292
293 /* Copy user stepping state to the new inferior thread. FIXME: the
294 followed fork child thread should have a copy of most of the
4e3990f4
DE
295 parent thread structure's run control related fields, not just these.
296 Initialized to avoid "may be used uninitialized" warnings from gcc. */
297 struct breakpoint *step_resume_breakpoint = NULL;
298 CORE_ADDR step_range_start = 0;
299 CORE_ADDR step_range_end = 0;
300 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
301
302 if (!non_stop)
303 {
304 ptid_t wait_ptid;
305 struct target_waitstatus wait_status;
306
307 /* Get the last target status returned by target_wait(). */
308 get_last_target_status (&wait_ptid, &wait_status);
309
310 /* If not stopped at a fork event, then there's nothing else to
311 do. */
312 if (wait_status.kind != TARGET_WAITKIND_FORKED
313 && wait_status.kind != TARGET_WAITKIND_VFORKED)
314 return 1;
315
316 /* Check if we switched over from WAIT_PTID, since the event was
317 reported. */
318 if (!ptid_equal (wait_ptid, minus_one_ptid)
319 && !ptid_equal (inferior_ptid, wait_ptid))
320 {
321 /* We did. Switch back to WAIT_PTID thread, to tell the
322 target to follow it (in either direction). We'll
323 afterwards refuse to resume, and inform the user what
324 happened. */
325 switch_to_thread (wait_ptid);
326 should_resume = 0;
327 }
328 }
329
330 tp = inferior_thread ();
331
332 /* If there were any forks/vforks that were caught and are now to be
333 followed, then do so now. */
334 switch (tp->pending_follow.kind)
335 {
336 case TARGET_WAITKIND_FORKED:
337 case TARGET_WAITKIND_VFORKED:
338 {
339 ptid_t parent, child;
340
341 /* If the user did a next/step, etc, over a fork call,
342 preserve the stepping state in the fork child. */
343 if (follow_child && should_resume)
344 {
345 step_resume_breakpoint
346 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
347 step_range_start = tp->step_range_start;
348 step_range_end = tp->step_range_end;
349 step_frame_id = tp->step_frame_id;
350
351 /* For now, delete the parent's sr breakpoint, otherwise,
352 parent/child sr breakpoints are considered duplicates,
353 and the child version will not be installed. Remove
354 this when the breakpoints module becomes aware of
355 inferiors and address spaces. */
356 delete_step_resume_breakpoint (tp);
357 tp->step_range_start = 0;
358 tp->step_range_end = 0;
359 tp->step_frame_id = null_frame_id;
360 }
361
362 parent = inferior_ptid;
363 child = tp->pending_follow.value.related_pid;
364
365 /* Tell the target to do whatever is necessary to follow
366 either parent or child. */
367 if (target_follow_fork (follow_child))
368 {
369 /* Target refused to follow, or there's some other reason
370 we shouldn't resume. */
371 should_resume = 0;
372 }
373 else
374 {
375 /* This pending follow fork event is now handled, one way
376 or another. The previous selected thread may be gone
377 from the lists by now, but if it is still around, need
378 to clear the pending follow request. */
e09875d4 379 tp = find_thread_ptid (parent);
e58b0e63
PA
380 if (tp)
381 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
382
383 /* This makes sure we don't try to apply the "Switched
384 over from WAIT_PID" logic above. */
385 nullify_last_target_wait_ptid ();
386
387 /* If we followed the child, switch to it... */
388 if (follow_child)
389 {
390 switch_to_thread (child);
391
392 /* ... and preserve the stepping state, in case the
393 user was stepping over the fork call. */
394 if (should_resume)
395 {
396 tp = inferior_thread ();
397 tp->step_resume_breakpoint = step_resume_breakpoint;
398 tp->step_range_start = step_range_start;
399 tp->step_range_end = step_range_end;
400 tp->step_frame_id = step_frame_id;
401 }
402 else
403 {
404 /* If we get here, it was because we're trying to
405 resume from a fork catchpoint, but, the user
406 has switched threads away from the thread that
407 forked. In that case, the resume command
408 issued is most likely not applicable to the
409 child, so just warn, and refuse to resume. */
410 warning (_("\
411Not resuming: switched threads before following fork child.\n"));
412 }
413
414 /* Reset breakpoints in the child as appropriate. */
415 follow_inferior_reset_breakpoints ();
416 }
417 else
418 switch_to_thread (parent);
419 }
420 }
421 break;
422 case TARGET_WAITKIND_SPURIOUS:
423 /* Nothing to follow. */
424 break;
425 default:
426 internal_error (__FILE__, __LINE__,
427 "Unexpected pending_follow.kind %d\n",
428 tp->pending_follow.kind);
429 break;
430 }
c906108c 431
e58b0e63 432 return should_resume;
c906108c
SS
433}
434
6604731b
DJ
435void
436follow_inferior_reset_breakpoints (void)
c906108c 437{
4e1c45ea
PA
438 struct thread_info *tp = inferior_thread ();
439
6604731b
DJ
440 /* Was there a step_resume breakpoint? (There was if the user
441 did a "next" at the fork() call.) If so, explicitly reset its
442 thread number.
443
444 step_resumes are a form of bp that are made to be per-thread.
445 Since we created the step_resume bp when the parent process
446 was being debugged, and now are switching to the child process,
447 from the breakpoint package's viewpoint, that's a switch of
448 "threads". We must update the bp's notion of which thread
449 it is for, or it'll be ignored when it triggers. */
450
4e1c45ea
PA
451 if (tp->step_resume_breakpoint)
452 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
453
454 /* Reinsert all breakpoints in the child. The user may have set
455 breakpoints after catching the fork, in which case those
456 were never set in the child, but only in the parent. This makes
457 sure the inserted breakpoints match the breakpoint list. */
458
459 breakpoint_re_set ();
460 insert_breakpoints ();
c906108c 461}
c906108c 462
1adeb98a
FN
463/* EXECD_PATHNAME is assumed to be non-NULL. */
464
c906108c 465static void
3a3e9ee3 466follow_exec (ptid_t pid, char *execd_pathname)
c906108c 467{
7a292a7a 468 struct target_ops *tgt;
4e1c45ea 469 struct thread_info *th = inferior_thread ();
7a292a7a 470
c906108c
SS
471 /* This is an exec event that we actually wish to pay attention to.
472 Refresh our symbol table to the newly exec'd program, remove any
473 momentary bp's, etc.
474
475 If there are breakpoints, they aren't really inserted now,
476 since the exec() transformed our inferior into a fresh set
477 of instructions.
478
479 We want to preserve symbolic breakpoints on the list, since
480 we have hopes that they can be reset after the new a.out's
481 symbol table is read.
482
483 However, any "raw" breakpoints must be removed from the list
484 (e.g., the solib bp's), since their address is probably invalid
485 now.
486
487 And, we DON'T want to call delete_breakpoints() here, since
488 that may write the bp's "shadow contents" (the instruction
489 value that was overwritten witha TRAP instruction). Since
490 we now have a new a.out, those shadow contents aren't valid. */
491 update_breakpoints_after_exec ();
492
493 /* If there was one, it's gone now. We cannot truly step-to-next
494 statement through an exec(). */
4e1c45ea
PA
495 th->step_resume_breakpoint = NULL;
496 th->step_range_start = 0;
497 th->step_range_end = 0;
c906108c 498
a75724bc
PA
499 /* The target reports the exec event to the main thread, even if
500 some other thread does the exec, and even if the main thread was
501 already stopped --- if debugging in non-stop mode, it's possible
502 the user had the main thread held stopped in the previous image
503 --- release it now. This is the same behavior as step-over-exec
504 with scheduler-locking on in all-stop mode. */
505 th->stop_requested = 0;
506
c906108c 507 /* What is this a.out's name? */
a3f17187 508 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
509
510 /* We've followed the inferior through an exec. Therefore, the
511 inferior has essentially been killed & reborn. */
7a292a7a 512
c906108c 513 gdb_flush (gdb_stdout);
6ca15a4b
PA
514
515 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
516
517 if (gdb_sysroot && *gdb_sysroot)
518 {
519 char *name = alloca (strlen (gdb_sysroot)
520 + strlen (execd_pathname)
521 + 1);
522 strcpy (name, gdb_sysroot);
523 strcat (name, execd_pathname);
524 execd_pathname = name;
525 }
c906108c
SS
526
527 /* That a.out is now the one to use. */
528 exec_file_attach (execd_pathname, 0);
529
cce9b6bf
PA
530 /* Reset the shared library package. This ensures that we get a
531 shlib event when the child reaches "_start", at which point the
532 dld will have had a chance to initialize the child. */
533 /* Also, loading a symbol file below may trigger symbol lookups, and
534 we don't want those to be satisfied by the libraries of the
535 previous incarnation of this process. */
536 no_shared_libraries (NULL, 0);
537
538 /* Load the main file's symbols. */
1adeb98a 539 symbol_file_add_main (execd_pathname, 0);
c906108c 540
7a292a7a 541#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 542 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
543#else
544 solib_create_inferior_hook ();
7a292a7a 545#endif
c906108c
SS
546
547 /* Reinsert all breakpoints. (Those which were symbolic have
548 been reset to the proper address in the new a.out, thanks
549 to symbol_file_command...) */
550 insert_breakpoints ();
551
552 /* The next resume of this inferior should bring it to the shlib
553 startup breakpoints. (If the user had also set bp's on
554 "main" from the old (parent) process, then they'll auto-
555 matically get reset there in the new process.) */
c906108c
SS
556}
557
558/* Non-zero if we just simulating a single-step. This is needed
559 because we cannot remove the breakpoints in the inferior process
560 until after the `wait' in `wait_for_inferior'. */
561static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
562
563/* The thread we inserted single-step breakpoints for. */
564static ptid_t singlestep_ptid;
565
fd48f117
DJ
566/* PC when we started this single-step. */
567static CORE_ADDR singlestep_pc;
568
9f976b41
DJ
569/* If another thread hit the singlestep breakpoint, we save the original
570 thread here so that we can resume single-stepping it later. */
571static ptid_t saved_singlestep_ptid;
572static int stepping_past_singlestep_breakpoint;
6a6b96b9 573
ca67fcb8
VP
574/* If not equal to null_ptid, this means that after stepping over breakpoint
575 is finished, we need to switch to deferred_step_ptid, and step it.
576
577 The use case is when one thread has hit a breakpoint, and then the user
578 has switched to another thread and issued 'step'. We need to step over
579 breakpoint in the thread which hit the breakpoint, but then continue
580 stepping the thread user has selected. */
581static ptid_t deferred_step_ptid;
c906108c 582\f
237fc4c9
PA
583/* Displaced stepping. */
584
585/* In non-stop debugging mode, we must take special care to manage
586 breakpoints properly; in particular, the traditional strategy for
587 stepping a thread past a breakpoint it has hit is unsuitable.
588 'Displaced stepping' is a tactic for stepping one thread past a
589 breakpoint it has hit while ensuring that other threads running
590 concurrently will hit the breakpoint as they should.
591
592 The traditional way to step a thread T off a breakpoint in a
593 multi-threaded program in all-stop mode is as follows:
594
595 a0) Initially, all threads are stopped, and breakpoints are not
596 inserted.
597 a1) We single-step T, leaving breakpoints uninserted.
598 a2) We insert breakpoints, and resume all threads.
599
600 In non-stop debugging, however, this strategy is unsuitable: we
601 don't want to have to stop all threads in the system in order to
602 continue or step T past a breakpoint. Instead, we use displaced
603 stepping:
604
605 n0) Initially, T is stopped, other threads are running, and
606 breakpoints are inserted.
607 n1) We copy the instruction "under" the breakpoint to a separate
608 location, outside the main code stream, making any adjustments
609 to the instruction, register, and memory state as directed by
610 T's architecture.
611 n2) We single-step T over the instruction at its new location.
612 n3) We adjust the resulting register and memory state as directed
613 by T's architecture. This includes resetting T's PC to point
614 back into the main instruction stream.
615 n4) We resume T.
616
617 This approach depends on the following gdbarch methods:
618
619 - gdbarch_max_insn_length and gdbarch_displaced_step_location
620 indicate where to copy the instruction, and how much space must
621 be reserved there. We use these in step n1.
622
623 - gdbarch_displaced_step_copy_insn copies a instruction to a new
624 address, and makes any necessary adjustments to the instruction,
625 register contents, and memory. We use this in step n1.
626
627 - gdbarch_displaced_step_fixup adjusts registers and memory after
628 we have successfuly single-stepped the instruction, to yield the
629 same effect the instruction would have had if we had executed it
630 at its original address. We use this in step n3.
631
632 - gdbarch_displaced_step_free_closure provides cleanup.
633
634 The gdbarch_displaced_step_copy_insn and
635 gdbarch_displaced_step_fixup functions must be written so that
636 copying an instruction with gdbarch_displaced_step_copy_insn,
637 single-stepping across the copied instruction, and then applying
638 gdbarch_displaced_insn_fixup should have the same effects on the
639 thread's memory and registers as stepping the instruction in place
640 would have. Exactly which responsibilities fall to the copy and
641 which fall to the fixup is up to the author of those functions.
642
643 See the comments in gdbarch.sh for details.
644
645 Note that displaced stepping and software single-step cannot
646 currently be used in combination, although with some care I think
647 they could be made to. Software single-step works by placing
648 breakpoints on all possible subsequent instructions; if the
649 displaced instruction is a PC-relative jump, those breakpoints
650 could fall in very strange places --- on pages that aren't
651 executable, or at addresses that are not proper instruction
652 boundaries. (We do generally let other threads run while we wait
653 to hit the software single-step breakpoint, and they might
654 encounter such a corrupted instruction.) One way to work around
655 this would be to have gdbarch_displaced_step_copy_insn fully
656 simulate the effect of PC-relative instructions (and return NULL)
657 on architectures that use software single-stepping.
658
659 In non-stop mode, we can have independent and simultaneous step
660 requests, so more than one thread may need to simultaneously step
661 over a breakpoint. The current implementation assumes there is
662 only one scratch space per process. In this case, we have to
663 serialize access to the scratch space. If thread A wants to step
664 over a breakpoint, but we are currently waiting for some other
665 thread to complete a displaced step, we leave thread A stopped and
666 place it in the displaced_step_request_queue. Whenever a displaced
667 step finishes, we pick the next thread in the queue and start a new
668 displaced step operation on it. See displaced_step_prepare and
669 displaced_step_fixup for details. */
670
671/* If this is not null_ptid, this is the thread carrying out a
672 displaced single-step. This thread's state will require fixing up
673 once it has completed its step. */
674static ptid_t displaced_step_ptid;
675
676struct displaced_step_request
677{
678 ptid_t ptid;
679 struct displaced_step_request *next;
680};
681
682/* A queue of pending displaced stepping requests. */
683struct displaced_step_request *displaced_step_request_queue;
684
685/* The architecture the thread had when we stepped it. */
686static struct gdbarch *displaced_step_gdbarch;
687
688/* The closure provided gdbarch_displaced_step_copy_insn, to be used
689 for post-step cleanup. */
690static struct displaced_step_closure *displaced_step_closure;
691
692/* The address of the original instruction, and the copy we made. */
693static CORE_ADDR displaced_step_original, displaced_step_copy;
694
695/* Saved contents of copy area. */
696static gdb_byte *displaced_step_saved_copy;
697
fff08868
HZ
698/* Enum strings for "set|show displaced-stepping". */
699
700static const char can_use_displaced_stepping_auto[] = "auto";
701static const char can_use_displaced_stepping_on[] = "on";
702static const char can_use_displaced_stepping_off[] = "off";
703static const char *can_use_displaced_stepping_enum[] =
704{
705 can_use_displaced_stepping_auto,
706 can_use_displaced_stepping_on,
707 can_use_displaced_stepping_off,
708 NULL,
709};
710
711/* If ON, and the architecture supports it, GDB will use displaced
712 stepping to step over breakpoints. If OFF, or if the architecture
713 doesn't support it, GDB will instead use the traditional
714 hold-and-step approach. If AUTO (which is the default), GDB will
715 decide which technique to use to step over breakpoints depending on
716 which of all-stop or non-stop mode is active --- displaced stepping
717 in non-stop mode; hold-and-step in all-stop mode. */
718
719static const char *can_use_displaced_stepping =
720 can_use_displaced_stepping_auto;
721
237fc4c9
PA
722static void
723show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
724 struct cmd_list_element *c,
725 const char *value)
726{
fff08868
HZ
727 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
728 fprintf_filtered (file, _("\
729Debugger's willingness to use displaced stepping to step over \
730breakpoints is %s (currently %s).\n"),
731 value, non_stop ? "on" : "off");
732 else
733 fprintf_filtered (file, _("\
734Debugger's willingness to use displaced stepping to step over \
735breakpoints is %s.\n"), value);
237fc4c9
PA
736}
737
fff08868
HZ
738/* Return non-zero if displaced stepping can/should be used to step
739 over breakpoints. */
740
237fc4c9
PA
741static int
742use_displaced_stepping (struct gdbarch *gdbarch)
743{
fff08868
HZ
744 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
745 && non_stop)
746 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
747 && gdbarch_displaced_step_copy_insn_p (gdbarch)
748 && !RECORD_IS_USED);
237fc4c9
PA
749}
750
751/* Clean out any stray displaced stepping state. */
752static void
753displaced_step_clear (void)
754{
755 /* Indicate that there is no cleanup pending. */
756 displaced_step_ptid = null_ptid;
757
758 if (displaced_step_closure)
759 {
760 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
761 displaced_step_closure);
762 displaced_step_closure = NULL;
763 }
764}
765
766static void
9f5a595d 767displaced_step_clear_cleanup (void *ignore)
237fc4c9 768{
9f5a595d 769 displaced_step_clear ();
237fc4c9
PA
770}
771
772/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
773void
774displaced_step_dump_bytes (struct ui_file *file,
775 const gdb_byte *buf,
776 size_t len)
777{
778 int i;
779
780 for (i = 0; i < len; i++)
781 fprintf_unfiltered (file, "%02x ", buf[i]);
782 fputs_unfiltered ("\n", file);
783}
784
785/* Prepare to single-step, using displaced stepping.
786
787 Note that we cannot use displaced stepping when we have a signal to
788 deliver. If we have a signal to deliver and an instruction to step
789 over, then after the step, there will be no indication from the
790 target whether the thread entered a signal handler or ignored the
791 signal and stepped over the instruction successfully --- both cases
792 result in a simple SIGTRAP. In the first case we mustn't do a
793 fixup, and in the second case we must --- but we can't tell which.
794 Comments in the code for 'random signals' in handle_inferior_event
795 explain how we handle this case instead.
796
797 Returns 1 if preparing was successful -- this thread is going to be
798 stepped now; or 0 if displaced stepping this thread got queued. */
799static int
800displaced_step_prepare (ptid_t ptid)
801{
ad53cd71 802 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
803 struct regcache *regcache = get_thread_regcache (ptid);
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 CORE_ADDR original, copy;
806 ULONGEST len;
807 struct displaced_step_closure *closure;
808
809 /* We should never reach this function if the architecture does not
810 support displaced stepping. */
811 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
812
813 /* For the first cut, we're displaced stepping one thread at a
814 time. */
815
816 if (!ptid_equal (displaced_step_ptid, null_ptid))
817 {
818 /* Already waiting for a displaced step to finish. Defer this
819 request and place in queue. */
820 struct displaced_step_request *req, *new_req;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog,
824 "displaced: defering step of %s\n",
825 target_pid_to_str (ptid));
826
827 new_req = xmalloc (sizeof (*new_req));
828 new_req->ptid = ptid;
829 new_req->next = NULL;
830
831 if (displaced_step_request_queue)
832 {
833 for (req = displaced_step_request_queue;
834 req && req->next;
835 req = req->next)
836 ;
837 req->next = new_req;
838 }
839 else
840 displaced_step_request_queue = new_req;
841
842 return 0;
843 }
844 else
845 {
846 if (debug_displaced)
847 fprintf_unfiltered (gdb_stdlog,
848 "displaced: stepping %s now\n",
849 target_pid_to_str (ptid));
850 }
851
852 displaced_step_clear ();
853
ad53cd71
PA
854 old_cleanups = save_inferior_ptid ();
855 inferior_ptid = ptid;
856
515630c5 857 original = regcache_read_pc (regcache);
237fc4c9
PA
858
859 copy = gdbarch_displaced_step_location (gdbarch);
860 len = gdbarch_max_insn_length (gdbarch);
861
862 /* Save the original contents of the copy area. */
863 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
864 ignore_cleanups = make_cleanup (free_current_contents,
865 &displaced_step_saved_copy);
237fc4c9
PA
866 read_memory (copy, displaced_step_saved_copy, len);
867 if (debug_displaced)
868 {
5af949e3
UW
869 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
870 paddress (gdbarch, copy));
237fc4c9
PA
871 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
872 };
873
874 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 875 original, copy, regcache);
237fc4c9
PA
876
877 /* We don't support the fully-simulated case at present. */
878 gdb_assert (closure);
879
9f5a595d
UW
880 /* Save the information we need to fix things up if the step
881 succeeds. */
882 displaced_step_ptid = ptid;
883 displaced_step_gdbarch = gdbarch;
884 displaced_step_closure = closure;
885 displaced_step_original = original;
886 displaced_step_copy = copy;
887
888 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
889
890 /* Resume execution at the copy. */
515630c5 891 regcache_write_pc (regcache, copy);
237fc4c9 892
ad53cd71
PA
893 discard_cleanups (ignore_cleanups);
894
895 do_cleanups (old_cleanups);
237fc4c9
PA
896
897 if (debug_displaced)
5af949e3
UW
898 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
899 paddress (gdbarch, copy));
237fc4c9 900
237fc4c9
PA
901 return 1;
902}
903
237fc4c9
PA
904static void
905write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
906{
907 struct cleanup *ptid_cleanup = save_inferior_ptid ();
908 inferior_ptid = ptid;
909 write_memory (memaddr, myaddr, len);
910 do_cleanups (ptid_cleanup);
911}
912
913static void
914displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
915{
916 struct cleanup *old_cleanups;
917
918 /* Was this event for the pid we displaced? */
919 if (ptid_equal (displaced_step_ptid, null_ptid)
920 || ! ptid_equal (displaced_step_ptid, event_ptid))
921 return;
922
923 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
924
925 /* Restore the contents of the copy area. */
926 {
927 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
928 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
929 displaced_step_saved_copy, len);
930 if (debug_displaced)
5af949e3
UW
931 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
932 paddress (displaced_step_gdbarch,
933 displaced_step_copy));
237fc4c9
PA
934 }
935
936 /* Did the instruction complete successfully? */
937 if (signal == TARGET_SIGNAL_TRAP)
938 {
939 /* Fix up the resulting state. */
940 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
941 displaced_step_closure,
942 displaced_step_original,
943 displaced_step_copy,
944 get_thread_regcache (displaced_step_ptid));
945 }
946 else
947 {
948 /* Since the instruction didn't complete, all we can do is
949 relocate the PC. */
515630c5
UW
950 struct regcache *regcache = get_thread_regcache (event_ptid);
951 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 952 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 953 regcache_write_pc (regcache, pc);
237fc4c9
PA
954 }
955
956 do_cleanups (old_cleanups);
957
1c5cfe86
PA
958 displaced_step_ptid = null_ptid;
959
237fc4c9
PA
960 /* Are there any pending displaced stepping requests? If so, run
961 one now. */
1c5cfe86 962 while (displaced_step_request_queue)
237fc4c9
PA
963 {
964 struct displaced_step_request *head;
965 ptid_t ptid;
5af949e3 966 struct regcache *regcache;
929dfd4f 967 struct gdbarch *gdbarch;
1c5cfe86 968 CORE_ADDR actual_pc;
237fc4c9
PA
969
970 head = displaced_step_request_queue;
971 ptid = head->ptid;
972 displaced_step_request_queue = head->next;
973 xfree (head);
974
ad53cd71
PA
975 context_switch (ptid);
976
5af949e3
UW
977 regcache = get_thread_regcache (ptid);
978 actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
979
980 if (breakpoint_here_p (actual_pc))
ad53cd71 981 {
1c5cfe86
PA
982 if (debug_displaced)
983 fprintf_unfiltered (gdb_stdlog,
984 "displaced: stepping queued %s now\n",
985 target_pid_to_str (ptid));
986
987 displaced_step_prepare (ptid);
988
929dfd4f
JB
989 gdbarch = get_regcache_arch (regcache);
990
1c5cfe86
PA
991 if (debug_displaced)
992 {
929dfd4f 993 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
994 gdb_byte buf[4];
995
5af949e3
UW
996 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
997 paddress (gdbarch, actual_pc));
1c5cfe86
PA
998 read_memory (actual_pc, buf, sizeof (buf));
999 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1000 }
1001
929dfd4f
JB
1002 if (gdbarch_software_single_step_p (gdbarch))
1003 target_resume (ptid, 0, TARGET_SIGNAL_0);
1004 else
1005 target_resume (ptid, 1, TARGET_SIGNAL_0);
1c5cfe86
PA
1006
1007 /* Done, we're stepping a thread. */
1008 break;
ad53cd71 1009 }
1c5cfe86
PA
1010 else
1011 {
1012 int step;
1013 struct thread_info *tp = inferior_thread ();
1014
1015 /* The breakpoint we were sitting under has since been
1016 removed. */
1017 tp->trap_expected = 0;
1018
1019 /* Go back to what we were trying to do. */
1020 step = currently_stepping (tp);
ad53cd71 1021
1c5cfe86
PA
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1024 target_pid_to_str (tp->ptid), step);
1025
1026 target_resume (ptid, step, TARGET_SIGNAL_0);
1027 tp->stop_signal = TARGET_SIGNAL_0;
1028
1029 /* This request was discarded. See if there's any other
1030 thread waiting for its turn. */
1031 }
237fc4c9
PA
1032 }
1033}
1034
5231c1fd
PA
1035/* Update global variables holding ptids to hold NEW_PTID if they were
1036 holding OLD_PTID. */
1037static void
1038infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1039{
1040 struct displaced_step_request *it;
1041
1042 if (ptid_equal (inferior_ptid, old_ptid))
1043 inferior_ptid = new_ptid;
1044
1045 if (ptid_equal (singlestep_ptid, old_ptid))
1046 singlestep_ptid = new_ptid;
1047
1048 if (ptid_equal (displaced_step_ptid, old_ptid))
1049 displaced_step_ptid = new_ptid;
1050
1051 if (ptid_equal (deferred_step_ptid, old_ptid))
1052 deferred_step_ptid = new_ptid;
1053
1054 for (it = displaced_step_request_queue; it; it = it->next)
1055 if (ptid_equal (it->ptid, old_ptid))
1056 it->ptid = new_ptid;
1057}
1058
237fc4c9
PA
1059\f
1060/* Resuming. */
c906108c
SS
1061
1062/* Things to clean up if we QUIT out of resume (). */
c906108c 1063static void
74b7792f 1064resume_cleanups (void *ignore)
c906108c
SS
1065{
1066 normal_stop ();
1067}
1068
53904c9e
AC
1069static const char schedlock_off[] = "off";
1070static const char schedlock_on[] = "on";
1071static const char schedlock_step[] = "step";
488f131b 1072static const char *scheduler_enums[] = {
ef346e04
AC
1073 schedlock_off,
1074 schedlock_on,
1075 schedlock_step,
1076 NULL
1077};
920d2a44
AC
1078static const char *scheduler_mode = schedlock_off;
1079static void
1080show_scheduler_mode (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("\
1084Mode for locking scheduler during execution is \"%s\".\n"),
1085 value);
1086}
c906108c
SS
1087
1088static void
96baa820 1089set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1090{
eefe576e
AC
1091 if (!target_can_lock_scheduler)
1092 {
1093 scheduler_mode = schedlock_off;
1094 error (_("Target '%s' cannot support this command."), target_shortname);
1095 }
c906108c
SS
1096}
1097
d4db2f36
PA
1098/* True if execution commands resume all threads of all processes by
1099 default; otherwise, resume only threads of the current inferior
1100 process. */
1101int sched_multi = 0;
1102
2facfe5c
DD
1103/* Try to setup for software single stepping over the specified location.
1104 Return 1 if target_resume() should use hardware single step.
1105
1106 GDBARCH the current gdbarch.
1107 PC the location to step over. */
1108
1109static int
1110maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1111{
1112 int hw_step = 1;
1113
929dfd4f 1114 if (gdbarch_software_single_step_p (gdbarch))
2facfe5c 1115 {
929dfd4f
JB
1116 if (use_displaced_stepping (gdbarch))
1117 hw_step = 0;
1118 else if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1119 {
1120 hw_step = 0;
1121 /* Do not pull these breakpoints until after a `wait' in
1122 `wait_for_inferior' */
1123 singlestep_breakpoints_inserted_p = 1;
1124 singlestep_ptid = inferior_ptid;
1125 singlestep_pc = pc;
1126 }
2facfe5c
DD
1127 }
1128 return hw_step;
1129}
c906108c
SS
1130
1131/* Resume the inferior, but allow a QUIT. This is useful if the user
1132 wants to interrupt some lengthy single-stepping operation
1133 (for child processes, the SIGINT goes to the inferior, and so
1134 we get a SIGINT random_signal, but for remote debugging and perhaps
1135 other targets, that's not true).
1136
1137 STEP nonzero if we should step (zero to continue instead).
1138 SIG is the signal to give the inferior (zero for none). */
1139void
96baa820 1140resume (int step, enum target_signal sig)
c906108c
SS
1141{
1142 int should_resume = 1;
74b7792f 1143 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1144 struct regcache *regcache = get_current_regcache ();
1145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1146 struct thread_info *tp = inferior_thread ();
515630c5 1147 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1148
c906108c
SS
1149 QUIT;
1150
527159b7 1151 if (debug_infrun)
237fc4c9
PA
1152 fprintf_unfiltered (gdb_stdlog,
1153 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1154 "trap_expected=%d\n",
1155 step, sig, tp->trap_expected);
c906108c 1156
692590c1
MS
1157 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1158 over an instruction that causes a page fault without triggering
1159 a hardware watchpoint. The kernel properly notices that it shouldn't
1160 stop, because the hardware watchpoint is not triggered, but it forgets
1161 the step request and continues the program normally.
1162 Work around the problem by removing hardware watchpoints if a step is
1163 requested, GDB will check for a hardware watchpoint trigger after the
1164 step anyway. */
c36b740a 1165 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1166 remove_hw_watchpoints ();
488f131b 1167
692590c1 1168
c2c6d25f
JM
1169 /* Normally, by the time we reach `resume', the breakpoints are either
1170 removed or inserted, as appropriate. The exception is if we're sitting
1171 at a permanent breakpoint; we need to step over it, but permanent
1172 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1173 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1174 {
515630c5
UW
1175 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1176 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1177 else
1178 error (_("\
1179The program is stopped at a permanent breakpoint, but GDB does not know\n\
1180how to step past a permanent breakpoint on this architecture. Try using\n\
1181a command like `return' or `jump' to continue execution."));
1182 }
c2c6d25f 1183
237fc4c9
PA
1184 /* If enabled, step over breakpoints by executing a copy of the
1185 instruction at a different address.
1186
1187 We can't use displaced stepping when we have a signal to deliver;
1188 the comments for displaced_step_prepare explain why. The
1189 comments in the handle_inferior event for dealing with 'random
1190 signals' explain what we do instead. */
515630c5 1191 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1192 && (tp->trap_expected
1193 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1194 && sig == TARGET_SIGNAL_0)
1195 {
1196 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1197 {
1198 /* Got placed in displaced stepping queue. Will be resumed
1199 later when all the currently queued displaced stepping
7f7efbd9
VP
1200 requests finish. The thread is not executing at this point,
1201 and the call to set_executing will be made later. But we
1202 need to call set_running here, since from frontend point of view,
1203 the thread is running. */
1204 set_running (inferior_ptid, 1);
d56b7306
VP
1205 discard_cleanups (old_cleanups);
1206 return;
1207 }
237fc4c9
PA
1208 }
1209
2facfe5c
DD
1210 /* Do we need to do it the hard way, w/temp breakpoints? */
1211 if (step)
1212 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1213
c906108c
SS
1214 if (should_resume)
1215 {
39f77062 1216 ptid_t resume_ptid;
dfcd3bfb 1217
cd76b0b7
VP
1218 /* If STEP is set, it's a request to use hardware stepping
1219 facilities. But in that case, we should never
1220 use singlestep breakpoint. */
1221 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1222
d4db2f36
PA
1223 /* Decide the set of threads to ask the target to resume. Start
1224 by assuming everything will be resumed, than narrow the set
1225 by applying increasingly restricting conditions. */
1226
1227 /* By default, resume all threads of all processes. */
1228 resume_ptid = RESUME_ALL;
1229
1230 /* Maybe resume only all threads of the current process. */
1231 if (!sched_multi && target_supports_multi_process ())
1232 {
1233 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1234 }
1235
1236 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1237 if (singlestep_breakpoints_inserted_p
1238 && stepping_past_singlestep_breakpoint)
c906108c 1239 {
cd76b0b7
VP
1240 /* The situation here is as follows. In thread T1 we wanted to
1241 single-step. Lacking hardware single-stepping we've
1242 set breakpoint at the PC of the next instruction -- call it
1243 P. After resuming, we've hit that breakpoint in thread T2.
1244 Now we've removed original breakpoint, inserted breakpoint
1245 at P+1, and try to step to advance T2 past breakpoint.
1246 We need to step only T2, as if T1 is allowed to freely run,
1247 it can run past P, and if other threads are allowed to run,
1248 they can hit breakpoint at P+1, and nested hits of single-step
1249 breakpoints is not something we'd want -- that's complicated
1250 to support, and has no value. */
1251 resume_ptid = inferior_ptid;
1252 }
d4db2f36
PA
1253 else if ((step || singlestep_breakpoints_inserted_p)
1254 && tp->trap_expected)
cd76b0b7 1255 {
74960c60
VP
1256 /* We're allowing a thread to run past a breakpoint it has
1257 hit, by single-stepping the thread with the breakpoint
1258 removed. In which case, we need to single-step only this
1259 thread, and keep others stopped, as they can miss this
1260 breakpoint if allowed to run.
1261
1262 The current code actually removes all breakpoints when
1263 doing this, not just the one being stepped over, so if we
1264 let other threads run, we can actually miss any
1265 breakpoint, not just the one at PC. */
ef5cf84e 1266 resume_ptid = inferior_ptid;
c906108c 1267 }
d4db2f36 1268 else if (non_stop)
94cc34af
PA
1269 {
1270 /* With non-stop mode on, threads are always handled
1271 individually. */
1272 resume_ptid = inferior_ptid;
1273 }
1274 else if ((scheduler_mode == schedlock_on)
1275 || (scheduler_mode == schedlock_step
1276 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1277 {
ef5cf84e 1278 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1279 resume_ptid = inferior_ptid;
c906108c 1280 }
ef5cf84e 1281
515630c5 1282 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1283 {
1284 /* Most targets can step a breakpoint instruction, thus
1285 executing it normally. But if this one cannot, just
1286 continue and we will hit it anyway. */
237fc4c9 1287 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1288 step = 0;
1289 }
237fc4c9
PA
1290
1291 if (debug_displaced
515630c5 1292 && use_displaced_stepping (gdbarch)
4e1c45ea 1293 && tp->trap_expected)
237fc4c9 1294 {
515630c5 1295 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1296 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1297 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1298 gdb_byte buf[4];
1299
5af949e3
UW
1300 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1301 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1302 read_memory (actual_pc, buf, sizeof (buf));
1303 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1304 }
1305
e58b0e63
PA
1306 /* Install inferior's terminal modes. */
1307 target_terminal_inferior ();
1308
2020b7ab
PA
1309 /* Avoid confusing the next resume, if the next stop/resume
1310 happens to apply to another thread. */
1311 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1312
1313 target_resume (resume_ptid, step, sig);
c906108c
SS
1314 }
1315
1316 discard_cleanups (old_cleanups);
1317}
1318\f
237fc4c9 1319/* Proceeding. */
c906108c
SS
1320
1321/* Clear out all variables saying what to do when inferior is continued.
1322 First do this, then set the ones you want, then call `proceed'. */
1323
a7212384
UW
1324static void
1325clear_proceed_status_thread (struct thread_info *tp)
c906108c 1326{
a7212384
UW
1327 if (debug_infrun)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "infrun: clear_proceed_status_thread (%s)\n",
1330 target_pid_to_str (tp->ptid));
d6b48e9c 1331
a7212384
UW
1332 tp->trap_expected = 0;
1333 tp->step_range_start = 0;
1334 tp->step_range_end = 0;
1335 tp->step_frame_id = null_frame_id;
edb3359d 1336 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1337 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1338 tp->stop_requested = 0;
4e1c45ea 1339
a7212384 1340 tp->stop_step = 0;
32400beb 1341
a7212384 1342 tp->proceed_to_finish = 0;
414c69f7 1343
a7212384
UW
1344 /* Discard any remaining commands or status from previous stop. */
1345 bpstat_clear (&tp->stop_bpstat);
1346}
32400beb 1347
a7212384
UW
1348static int
1349clear_proceed_status_callback (struct thread_info *tp, void *data)
1350{
1351 if (is_exited (tp->ptid))
1352 return 0;
d6b48e9c 1353
a7212384
UW
1354 clear_proceed_status_thread (tp);
1355 return 0;
1356}
1357
1358void
1359clear_proceed_status (void)
1360{
1361 if (!ptid_equal (inferior_ptid, null_ptid))
1362 {
1363 struct inferior *inferior;
1364
1365 if (non_stop)
1366 {
1367 /* If in non-stop mode, only delete the per-thread status
1368 of the current thread. */
1369 clear_proceed_status_thread (inferior_thread ());
1370 }
1371 else
1372 {
1373 /* In all-stop mode, delete the per-thread status of
1374 *all* threads. */
1375 iterate_over_threads (clear_proceed_status_callback, NULL);
1376 }
1377
d6b48e9c
PA
1378 inferior = current_inferior ();
1379 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1380 }
1381
c906108c 1382 stop_after_trap = 0;
f3b1572e
PA
1383
1384 observer_notify_about_to_proceed ();
c906108c 1385
d5c31457
UW
1386 if (stop_registers)
1387 {
1388 regcache_xfree (stop_registers);
1389 stop_registers = NULL;
1390 }
c906108c
SS
1391}
1392
5a437975
DE
1393/* Check the current thread against the thread that reported the most recent
1394 event. If a step-over is required return TRUE and set the current thread
1395 to the old thread. Otherwise return FALSE.
1396
1397 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1398
1399static int
6a6b96b9 1400prepare_to_proceed (int step)
ea67f13b
DJ
1401{
1402 ptid_t wait_ptid;
1403 struct target_waitstatus wait_status;
5a437975
DE
1404 int schedlock_enabled;
1405
1406 /* With non-stop mode on, threads are always handled individually. */
1407 gdb_assert (! non_stop);
ea67f13b
DJ
1408
1409 /* Get the last target status returned by target_wait(). */
1410 get_last_target_status (&wait_ptid, &wait_status);
1411
6a6b96b9 1412 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1413 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1414 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1415 {
1416 return 0;
1417 }
1418
5a437975
DE
1419 schedlock_enabled = (scheduler_mode == schedlock_on
1420 || (scheduler_mode == schedlock_step
1421 && step));
1422
d4db2f36
PA
1423 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1424 if (schedlock_enabled)
1425 return 0;
1426
1427 /* Don't switch over if we're about to resume some other process
1428 other than WAIT_PTID's, and schedule-multiple is off. */
1429 if (!sched_multi
1430 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1431 return 0;
1432
6a6b96b9 1433 /* Switched over from WAIT_PID. */
ea67f13b 1434 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1435 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1436 {
515630c5
UW
1437 struct regcache *regcache = get_thread_regcache (wait_ptid);
1438
1439 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1440 {
515630c5
UW
1441 /* If stepping, remember current thread to switch back to. */
1442 if (step)
1443 deferred_step_ptid = inferior_ptid;
ea67f13b 1444
515630c5
UW
1445 /* Switch back to WAIT_PID thread. */
1446 switch_to_thread (wait_ptid);
6a6b96b9 1447
515630c5
UW
1448 /* We return 1 to indicate that there is a breakpoint here,
1449 so we need to step over it before continuing to avoid
1450 hitting it straight away. */
1451 return 1;
1452 }
ea67f13b
DJ
1453 }
1454
1455 return 0;
ea67f13b 1456}
e4846b08 1457
c906108c
SS
1458/* Basic routine for continuing the program in various fashions.
1459
1460 ADDR is the address to resume at, or -1 for resume where stopped.
1461 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1462 or -1 for act according to how it stopped.
c906108c 1463 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1464 -1 means return after that and print nothing.
1465 You should probably set various step_... variables
1466 before calling here, if you are stepping.
c906108c
SS
1467
1468 You should call clear_proceed_status before calling proceed. */
1469
1470void
96baa820 1471proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1472{
e58b0e63
PA
1473 struct regcache *regcache;
1474 struct gdbarch *gdbarch;
4e1c45ea 1475 struct thread_info *tp;
e58b0e63 1476 CORE_ADDR pc;
c906108c
SS
1477 int oneproc = 0;
1478
e58b0e63
PA
1479 /* If we're stopped at a fork/vfork, follow the branch set by the
1480 "set follow-fork-mode" command; otherwise, we'll just proceed
1481 resuming the current thread. */
1482 if (!follow_fork ())
1483 {
1484 /* The target for some reason decided not to resume. */
1485 normal_stop ();
1486 return;
1487 }
1488
1489 regcache = get_current_regcache ();
1490 gdbarch = get_regcache_arch (regcache);
1491 pc = regcache_read_pc (regcache);
1492
c906108c 1493 if (step > 0)
515630c5 1494 step_start_function = find_pc_function (pc);
c906108c
SS
1495 if (step < 0)
1496 stop_after_trap = 1;
1497
2acceee2 1498 if (addr == (CORE_ADDR) -1)
c906108c 1499 {
b2175913
MS
1500 if (pc == stop_pc && breakpoint_here_p (pc)
1501 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1502 /* There is a breakpoint at the address we will resume at,
1503 step one instruction before inserting breakpoints so that
1504 we do not stop right away (and report a second hit at this
b2175913
MS
1505 breakpoint).
1506
1507 Note, we don't do this in reverse, because we won't
1508 actually be executing the breakpoint insn anyway.
1509 We'll be (un-)executing the previous instruction. */
1510
c906108c 1511 oneproc = 1;
515630c5
UW
1512 else if (gdbarch_single_step_through_delay_p (gdbarch)
1513 && gdbarch_single_step_through_delay (gdbarch,
1514 get_current_frame ()))
3352ef37
AC
1515 /* We stepped onto an instruction that needs to be stepped
1516 again before re-inserting the breakpoint, do so. */
c906108c
SS
1517 oneproc = 1;
1518 }
1519 else
1520 {
515630c5 1521 regcache_write_pc (regcache, addr);
c906108c
SS
1522 }
1523
527159b7 1524 if (debug_infrun)
8a9de0e4 1525 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1526 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1527 paddress (gdbarch, addr), siggnal, step);
527159b7 1528
94cc34af
PA
1529 if (non_stop)
1530 /* In non-stop, each thread is handled individually. The context
1531 must already be set to the right thread here. */
1532 ;
1533 else
1534 {
1535 /* In a multi-threaded task we may select another thread and
1536 then continue or step.
c906108c 1537
94cc34af
PA
1538 But if the old thread was stopped at a breakpoint, it will
1539 immediately cause another breakpoint stop without any
1540 execution (i.e. it will report a breakpoint hit incorrectly).
1541 So we must step over it first.
c906108c 1542
94cc34af
PA
1543 prepare_to_proceed checks the current thread against the
1544 thread that reported the most recent event. If a step-over
1545 is required it returns TRUE and sets the current thread to
1546 the old thread. */
1547 if (prepare_to_proceed (step))
1548 oneproc = 1;
1549 }
c906108c 1550
4e1c45ea
PA
1551 /* prepare_to_proceed may change the current thread. */
1552 tp = inferior_thread ();
1553
c906108c 1554 if (oneproc)
74960c60 1555 {
4e1c45ea 1556 tp->trap_expected = 1;
237fc4c9
PA
1557 /* If displaced stepping is enabled, we can step over the
1558 breakpoint without hitting it, so leave all breakpoints
1559 inserted. Otherwise we need to disable all breakpoints, step
1560 one instruction, and then re-add them when that step is
1561 finished. */
515630c5 1562 if (!use_displaced_stepping (gdbarch))
237fc4c9 1563 remove_breakpoints ();
74960c60 1564 }
237fc4c9
PA
1565
1566 /* We can insert breakpoints if we're not trying to step over one,
1567 or if we are stepping over one but we're using displaced stepping
1568 to do so. */
4e1c45ea 1569 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1570 insert_breakpoints ();
c906108c 1571
2020b7ab
PA
1572 if (!non_stop)
1573 {
1574 /* Pass the last stop signal to the thread we're resuming,
1575 irrespective of whether the current thread is the thread that
1576 got the last event or not. This was historically GDB's
1577 behaviour before keeping a stop_signal per thread. */
1578
1579 struct thread_info *last_thread;
1580 ptid_t last_ptid;
1581 struct target_waitstatus last_status;
1582
1583 get_last_target_status (&last_ptid, &last_status);
1584 if (!ptid_equal (inferior_ptid, last_ptid)
1585 && !ptid_equal (last_ptid, null_ptid)
1586 && !ptid_equal (last_ptid, minus_one_ptid))
1587 {
e09875d4 1588 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1589 if (last_thread)
1590 {
1591 tp->stop_signal = last_thread->stop_signal;
1592 last_thread->stop_signal = TARGET_SIGNAL_0;
1593 }
1594 }
1595 }
1596
c906108c 1597 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1598 tp->stop_signal = siggnal;
c906108c
SS
1599 /* If this signal should not be seen by program,
1600 give it zero. Used for debugging signals. */
2020b7ab
PA
1601 else if (!signal_program[tp->stop_signal])
1602 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1603
1604 annotate_starting ();
1605
1606 /* Make sure that output from GDB appears before output from the
1607 inferior. */
1608 gdb_flush (gdb_stdout);
1609
e4846b08
JJ
1610 /* Refresh prev_pc value just prior to resuming. This used to be
1611 done in stop_stepping, however, setting prev_pc there did not handle
1612 scenarios such as inferior function calls or returning from
1613 a function via the return command. In those cases, the prev_pc
1614 value was not set properly for subsequent commands. The prev_pc value
1615 is used to initialize the starting line number in the ecs. With an
1616 invalid value, the gdb next command ends up stopping at the position
1617 represented by the next line table entry past our start position.
1618 On platforms that generate one line table entry per line, this
1619 is not a problem. However, on the ia64, the compiler generates
1620 extraneous line table entries that do not increase the line number.
1621 When we issue the gdb next command on the ia64 after an inferior call
1622 or a return command, we often end up a few instructions forward, still
1623 within the original line we started.
1624
1625 An attempt was made to have init_execution_control_state () refresh
1626 the prev_pc value before calculating the line number. This approach
1627 did not work because on platforms that use ptrace, the pc register
1628 cannot be read unless the inferior is stopped. At that point, we
515630c5 1629 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1630 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1631 updated correctly when the inferior is stopped. */
4e1c45ea 1632 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1633
59f0d5d9 1634 /* Fill in with reasonable starting values. */
4e1c45ea 1635 init_thread_stepping_state (tp);
59f0d5d9 1636
59f0d5d9
PA
1637 /* Reset to normal state. */
1638 init_infwait_state ();
1639
c906108c 1640 /* Resume inferior. */
2020b7ab 1641 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1642
1643 /* Wait for it to stop (if not standalone)
1644 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1645 /* Do this only if we are not using the event loop, or if the target
1646 does not support asynchronous execution. */
362646f5 1647 if (!target_can_async_p ())
43ff13b4 1648 {
ae123ec6 1649 wait_for_inferior (0);
43ff13b4
JM
1650 normal_stop ();
1651 }
c906108c 1652}
c906108c
SS
1653\f
1654
1655/* Start remote-debugging of a machine over a serial link. */
96baa820 1656
c906108c 1657void
8621d6a9 1658start_remote (int from_tty)
c906108c 1659{
d6b48e9c 1660 struct inferior *inferior;
c906108c 1661 init_wait_for_inferior ();
d6b48e9c
PA
1662
1663 inferior = current_inferior ();
1664 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1665
6426a772
JM
1666 /* Always go on waiting for the target, regardless of the mode. */
1667 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1668 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1669 nothing is returned (instead of just blocking). Because of this,
1670 targets expecting an immediate response need to, internally, set
1671 things up so that the target_wait() is forced to eventually
1672 timeout. */
1673 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1674 differentiate to its caller what the state of the target is after
1675 the initial open has been performed. Here we're assuming that
1676 the target has stopped. It should be possible to eventually have
1677 target_open() return to the caller an indication that the target
1678 is currently running and GDB state should be set to the same as
1679 for an async run. */
ae123ec6 1680 wait_for_inferior (0);
8621d6a9
DJ
1681
1682 /* Now that the inferior has stopped, do any bookkeeping like
1683 loading shared libraries. We want to do this before normal_stop,
1684 so that the displayed frame is up to date. */
1685 post_create_inferior (&current_target, from_tty);
1686
6426a772 1687 normal_stop ();
c906108c
SS
1688}
1689
1690/* Initialize static vars when a new inferior begins. */
1691
1692void
96baa820 1693init_wait_for_inferior (void)
c906108c
SS
1694{
1695 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1696
c906108c
SS
1697 breakpoint_init_inferior (inf_starting);
1698
c906108c 1699 clear_proceed_status ();
9f976b41
DJ
1700
1701 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1702 deferred_step_ptid = null_ptid;
ca005067
DJ
1703
1704 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1705
0d1e5fa7
PA
1706 previous_inferior_ptid = null_ptid;
1707 init_infwait_state ();
1708
237fc4c9 1709 displaced_step_clear ();
edb3359d
DJ
1710
1711 /* Discard any skipped inlined frames. */
1712 clear_inline_frame_state (minus_one_ptid);
c906108c 1713}
237fc4c9 1714
c906108c 1715\f
b83266a0
SS
1716/* This enum encodes possible reasons for doing a target_wait, so that
1717 wfi can call target_wait in one place. (Ultimately the call will be
1718 moved out of the infinite loop entirely.) */
1719
c5aa993b
JM
1720enum infwait_states
1721{
cd0fc7c3
SS
1722 infwait_normal_state,
1723 infwait_thread_hop_state,
d983da9c 1724 infwait_step_watch_state,
cd0fc7c3 1725 infwait_nonstep_watch_state
b83266a0
SS
1726};
1727
11cf8741
JM
1728/* Why did the inferior stop? Used to print the appropriate messages
1729 to the interface from within handle_inferior_event(). */
1730enum inferior_stop_reason
1731{
11cf8741
JM
1732 /* Step, next, nexti, stepi finished. */
1733 END_STEPPING_RANGE,
11cf8741
JM
1734 /* Inferior terminated by signal. */
1735 SIGNAL_EXITED,
1736 /* Inferior exited. */
1737 EXITED,
1738 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1739 SIGNAL_RECEIVED,
1740 /* Reverse execution -- target ran out of history info. */
1741 NO_HISTORY
11cf8741
JM
1742};
1743
0d1e5fa7
PA
1744/* The PTID we'll do a target_wait on.*/
1745ptid_t waiton_ptid;
1746
1747/* Current inferior wait state. */
1748enum infwait_states infwait_state;
cd0fc7c3 1749
0d1e5fa7
PA
1750/* Data to be passed around while handling an event. This data is
1751 discarded between events. */
c5aa993b 1752struct execution_control_state
488f131b 1753{
0d1e5fa7 1754 ptid_t ptid;
4e1c45ea
PA
1755 /* The thread that got the event, if this was a thread event; NULL
1756 otherwise. */
1757 struct thread_info *event_thread;
1758
488f131b 1759 struct target_waitstatus ws;
488f131b
JB
1760 int random_signal;
1761 CORE_ADDR stop_func_start;
1762 CORE_ADDR stop_func_end;
1763 char *stop_func_name;
488f131b 1764 int new_thread_event;
488f131b
JB
1765 int wait_some_more;
1766};
1767
edb3359d 1768static void init_execution_control_state (struct execution_control_state *ecs);
488f131b 1769
ec9499be 1770static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1771
568d6575
UW
1772static void handle_step_into_function (struct gdbarch *gdbarch,
1773 struct execution_control_state *ecs);
1774static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1775 struct execution_control_state *ecs);
44cbf7b5 1776static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1777static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
1778static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1779 struct symtab_and_line sr_sal,
44cbf7b5 1780 struct frame_id sr_id);
a6d9a66e 1781static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 1782
104c1213
JM
1783static void stop_stepping (struct execution_control_state *ecs);
1784static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1785static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1786static void print_stop_reason (enum inferior_stop_reason stop_reason,
1787 int stop_info);
104c1213 1788
252fbfc8
PA
1789/* Callback for iterate over threads. If the thread is stopped, but
1790 the user/frontend doesn't know about that yet, go through
1791 normal_stop, as if the thread had just stopped now. ARG points at
1792 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1793 ptid_is_pid(PTID) is true, applies to all threads of the process
1794 pointed at by PTID. Otherwise, apply only to the thread pointed by
1795 PTID. */
1796
1797static int
1798infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1799{
1800 ptid_t ptid = * (ptid_t *) arg;
1801
1802 if ((ptid_equal (info->ptid, ptid)
1803 || ptid_equal (minus_one_ptid, ptid)
1804 || (ptid_is_pid (ptid)
1805 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1806 && is_running (info->ptid)
1807 && !is_executing (info->ptid))
1808 {
1809 struct cleanup *old_chain;
1810 struct execution_control_state ecss;
1811 struct execution_control_state *ecs = &ecss;
1812
1813 memset (ecs, 0, sizeof (*ecs));
1814
1815 old_chain = make_cleanup_restore_current_thread ();
1816
1817 switch_to_thread (info->ptid);
1818
1819 /* Go through handle_inferior_event/normal_stop, so we always
1820 have consistent output as if the stop event had been
1821 reported. */
1822 ecs->ptid = info->ptid;
e09875d4 1823 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1824 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1825 ecs->ws.value.sig = TARGET_SIGNAL_0;
1826
1827 handle_inferior_event (ecs);
1828
1829 if (!ecs->wait_some_more)
1830 {
1831 struct thread_info *tp;
1832
1833 normal_stop ();
1834
1835 /* Finish off the continuations. The continations
1836 themselves are responsible for realising the thread
1837 didn't finish what it was supposed to do. */
1838 tp = inferior_thread ();
1839 do_all_intermediate_continuations_thread (tp);
1840 do_all_continuations_thread (tp);
1841 }
1842
1843 do_cleanups (old_chain);
1844 }
1845
1846 return 0;
1847}
1848
1849/* This function is attached as a "thread_stop_requested" observer.
1850 Cleanup local state that assumed the PTID was to be resumed, and
1851 report the stop to the frontend. */
1852
2c0b251b 1853static void
252fbfc8
PA
1854infrun_thread_stop_requested (ptid_t ptid)
1855{
1856 struct displaced_step_request *it, *next, *prev = NULL;
1857
1858 /* PTID was requested to stop. Remove it from the displaced
1859 stepping queue, so we don't try to resume it automatically. */
1860 for (it = displaced_step_request_queue; it; it = next)
1861 {
1862 next = it->next;
1863
1864 if (ptid_equal (it->ptid, ptid)
1865 || ptid_equal (minus_one_ptid, ptid)
1866 || (ptid_is_pid (ptid)
1867 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1868 {
1869 if (displaced_step_request_queue == it)
1870 displaced_step_request_queue = it->next;
1871 else
1872 prev->next = it->next;
1873
1874 xfree (it);
1875 }
1876 else
1877 prev = it;
1878 }
1879
1880 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1881}
1882
a07daef3
PA
1883static void
1884infrun_thread_thread_exit (struct thread_info *tp, int silent)
1885{
1886 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1887 nullify_last_target_wait_ptid ();
1888}
1889
4e1c45ea
PA
1890/* Callback for iterate_over_threads. */
1891
1892static int
1893delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1894{
1895 if (is_exited (info->ptid))
1896 return 0;
1897
1898 delete_step_resume_breakpoint (info);
1899 return 0;
1900}
1901
1902/* In all-stop, delete the step resume breakpoint of any thread that
1903 had one. In non-stop, delete the step resume breakpoint of the
1904 thread that just stopped. */
1905
1906static void
1907delete_step_thread_step_resume_breakpoint (void)
1908{
1909 if (!target_has_execution
1910 || ptid_equal (inferior_ptid, null_ptid))
1911 /* If the inferior has exited, we have already deleted the step
1912 resume breakpoints out of GDB's lists. */
1913 return;
1914
1915 if (non_stop)
1916 {
1917 /* If in non-stop mode, only delete the step-resume or
1918 longjmp-resume breakpoint of the thread that just stopped
1919 stepping. */
1920 struct thread_info *tp = inferior_thread ();
1921 delete_step_resume_breakpoint (tp);
1922 }
1923 else
1924 /* In all-stop mode, delete all step-resume and longjmp-resume
1925 breakpoints of any thread that had them. */
1926 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1927}
1928
1929/* A cleanup wrapper. */
1930
1931static void
1932delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1933{
1934 delete_step_thread_step_resume_breakpoint ();
1935}
1936
223698f8
DE
1937/* Pretty print the results of target_wait, for debugging purposes. */
1938
1939static void
1940print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1941 const struct target_waitstatus *ws)
1942{
1943 char *status_string = target_waitstatus_to_string (ws);
1944 struct ui_file *tmp_stream = mem_fileopen ();
1945 char *text;
223698f8
DE
1946
1947 /* The text is split over several lines because it was getting too long.
1948 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1949 output as a unit; we want only one timestamp printed if debug_timestamp
1950 is set. */
1951
1952 fprintf_unfiltered (tmp_stream,
1953 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1954 if (PIDGET (waiton_ptid) != -1)
1955 fprintf_unfiltered (tmp_stream,
1956 " [%s]", target_pid_to_str (waiton_ptid));
1957 fprintf_unfiltered (tmp_stream, ", status) =\n");
1958 fprintf_unfiltered (tmp_stream,
1959 "infrun: %d [%s],\n",
1960 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1961 fprintf_unfiltered (tmp_stream,
1962 "infrun: %s\n",
1963 status_string);
1964
759ef836 1965 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
1966
1967 /* This uses %s in part to handle %'s in the text, but also to avoid
1968 a gcc error: the format attribute requires a string literal. */
1969 fprintf_unfiltered (gdb_stdlog, "%s", text);
1970
1971 xfree (status_string);
1972 xfree (text);
1973 ui_file_delete (tmp_stream);
1974}
1975
cd0fc7c3 1976/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1977
1978 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1979 as if they were SIGTRAP signals. This can be useful during
1980 the startup sequence on some targets such as HP/UX, where
1981 we receive an EXEC event instead of the expected SIGTRAP.
1982
cd0fc7c3
SS
1983 If inferior gets a signal, we may decide to start it up again
1984 instead of returning. That is why there is a loop in this function.
1985 When this function actually returns it means the inferior
1986 should be left stopped and GDB should read more commands. */
1987
1988void
ae123ec6 1989wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1990{
1991 struct cleanup *old_cleanups;
0d1e5fa7 1992 struct execution_control_state ecss;
cd0fc7c3 1993 struct execution_control_state *ecs;
c906108c 1994
527159b7 1995 if (debug_infrun)
ae123ec6
JB
1996 fprintf_unfiltered
1997 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1998 treat_exec_as_sigtrap);
527159b7 1999
4e1c45ea
PA
2000 old_cleanups =
2001 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2002
cd0fc7c3 2003 ecs = &ecss;
0d1e5fa7
PA
2004 memset (ecs, 0, sizeof (*ecs));
2005
e0bb1c1c
PA
2006 /* We'll update this if & when we switch to a new thread. */
2007 previous_inferior_ptid = inferior_ptid;
2008
c906108c
SS
2009 while (1)
2010 {
29f49a6a
PA
2011 struct cleanup *old_chain;
2012
ec9499be
UW
2013 /* We have to invalidate the registers BEFORE calling target_wait
2014 because they can be loaded from the target while in target_wait.
2015 This makes remote debugging a bit more efficient for those
2016 targets that provide critical registers as part of their normal
2017 status mechanism. */
2018
2019 overlay_cache_invalid = 1;
2020 registers_changed ();
2021
9a4105ab 2022 if (deprecated_target_wait_hook)
47608cb1 2023 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2024 else
47608cb1 2025 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2026
f00150c9 2027 if (debug_infrun)
223698f8 2028 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2029
ae123ec6
JB
2030 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2031 {
2032 xfree (ecs->ws.value.execd_pathname);
2033 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2034 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2035 }
2036
29f49a6a
PA
2037 /* If an error happens while handling the event, propagate GDB's
2038 knowledge of the executing state to the frontend/user running
2039 state. */
2040 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2041
cd0fc7c3
SS
2042 /* Now figure out what to do with the result of the result. */
2043 handle_inferior_event (ecs);
c906108c 2044
29f49a6a
PA
2045 /* No error, don't finish the state yet. */
2046 discard_cleanups (old_chain);
2047
cd0fc7c3
SS
2048 if (!ecs->wait_some_more)
2049 break;
2050 }
4e1c45ea 2051
cd0fc7c3
SS
2052 do_cleanups (old_cleanups);
2053}
c906108c 2054
43ff13b4
JM
2055/* Asynchronous version of wait_for_inferior. It is called by the
2056 event loop whenever a change of state is detected on the file
2057 descriptor corresponding to the target. It can be called more than
2058 once to complete a single execution command. In such cases we need
a474d7c2
PA
2059 to keep the state in a global variable ECSS. If it is the last time
2060 that this function is called for a single execution command, then
2061 report to the user that the inferior has stopped, and do the
2062 necessary cleanups. */
43ff13b4
JM
2063
2064void
fba45db2 2065fetch_inferior_event (void *client_data)
43ff13b4 2066{
0d1e5fa7 2067 struct execution_control_state ecss;
a474d7c2 2068 struct execution_control_state *ecs = &ecss;
4f8d22e3 2069 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2070 struct cleanup *ts_old_chain;
4f8d22e3 2071 int was_sync = sync_execution;
43ff13b4 2072
0d1e5fa7
PA
2073 memset (ecs, 0, sizeof (*ecs));
2074
ec9499be
UW
2075 /* We'll update this if & when we switch to a new thread. */
2076 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2077
4f8d22e3
PA
2078 if (non_stop)
2079 /* In non-stop mode, the user/frontend should not notice a thread
2080 switch due to internal events. Make sure we reverse to the
2081 user selected thread and frame after handling the event and
2082 running any breakpoint commands. */
2083 make_cleanup_restore_current_thread ();
2084
59f0d5d9
PA
2085 /* We have to invalidate the registers BEFORE calling target_wait
2086 because they can be loaded from the target while in target_wait.
2087 This makes remote debugging a bit more efficient for those
2088 targets that provide critical registers as part of their normal
2089 status mechanism. */
43ff13b4 2090
ec9499be 2091 overlay_cache_invalid = 1;
59f0d5d9 2092 registers_changed ();
43ff13b4 2093
9a4105ab 2094 if (deprecated_target_wait_hook)
a474d7c2 2095 ecs->ptid =
47608cb1 2096 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2097 else
47608cb1 2098 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2099
f00150c9 2100 if (debug_infrun)
223698f8 2101 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2102
94cc34af
PA
2103 if (non_stop
2104 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2105 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2106 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2107 /* In non-stop mode, each thread is handled individually. Switch
2108 early, so the global state is set correctly for this
2109 thread. */
2110 context_switch (ecs->ptid);
2111
29f49a6a
PA
2112 /* If an error happens while handling the event, propagate GDB's
2113 knowledge of the executing state to the frontend/user running
2114 state. */
2115 if (!non_stop)
2116 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2117 else
2118 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2119
43ff13b4 2120 /* Now figure out what to do with the result of the result. */
a474d7c2 2121 handle_inferior_event (ecs);
43ff13b4 2122
a474d7c2 2123 if (!ecs->wait_some_more)
43ff13b4 2124 {
d6b48e9c
PA
2125 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2126
4e1c45ea 2127 delete_step_thread_step_resume_breakpoint ();
f107f563 2128
d6b48e9c
PA
2129 /* We may not find an inferior if this was a process exit. */
2130 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2131 normal_stop ();
2132
af679fd0
PA
2133 if (target_has_execution
2134 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2135 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2136 && ecs->event_thread->step_multi
414c69f7 2137 && ecs->event_thread->stop_step)
c2d11a7d
JM
2138 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2139 else
2140 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2141 }
4f8d22e3 2142
29f49a6a
PA
2143 /* No error, don't finish the thread states yet. */
2144 discard_cleanups (ts_old_chain);
2145
4f8d22e3
PA
2146 /* Revert thread and frame. */
2147 do_cleanups (old_chain);
2148
2149 /* If the inferior was in sync execution mode, and now isn't,
2150 restore the prompt. */
2151 if (was_sync && !sync_execution)
2152 display_gdb_prompt (0);
43ff13b4
JM
2153}
2154
edb3359d
DJ
2155/* Record the frame and location we're currently stepping through. */
2156void
2157set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2158{
2159 struct thread_info *tp = inferior_thread ();
2160
2161 tp->step_frame_id = get_frame_id (frame);
2162 tp->step_stack_frame_id = get_stack_frame_id (frame);
2163
2164 tp->current_symtab = sal.symtab;
2165 tp->current_line = sal.line;
2166}
2167
cd0fc7c3
SS
2168/* Prepare an execution control state for looping through a
2169 wait_for_inferior-type loop. */
2170
edb3359d 2171static void
96baa820 2172init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2173{
2174 ecs->random_signal = 0;
0d1e5fa7
PA
2175}
2176
2177/* Clear context switchable stepping state. */
2178
2179void
4e1c45ea 2180init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2181{
2182 tss->stepping_over_breakpoint = 0;
2183 tss->step_after_step_resume_breakpoint = 0;
2184 tss->stepping_through_solib_after_catch = 0;
2185 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2186}
2187
e02bc4cc 2188/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2189 target_wait()/deprecated_target_wait_hook(). The data is actually
2190 cached by handle_inferior_event(), which gets called immediately
2191 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2192
2193void
488f131b 2194get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2195{
39f77062 2196 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2197 *status = target_last_waitstatus;
2198}
2199
ac264b3b
MS
2200void
2201nullify_last_target_wait_ptid (void)
2202{
2203 target_last_wait_ptid = minus_one_ptid;
2204}
2205
dcf4fbde 2206/* Switch thread contexts. */
dd80620e
MS
2207
2208static void
0d1e5fa7 2209context_switch (ptid_t ptid)
dd80620e 2210{
fd48f117
DJ
2211 if (debug_infrun)
2212 {
2213 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2214 target_pid_to_str (inferior_ptid));
2215 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2216 target_pid_to_str (ptid));
fd48f117
DJ
2217 }
2218
0d1e5fa7 2219 switch_to_thread (ptid);
dd80620e
MS
2220}
2221
4fa8626c
DJ
2222static void
2223adjust_pc_after_break (struct execution_control_state *ecs)
2224{
24a73cce
UW
2225 struct regcache *regcache;
2226 struct gdbarch *gdbarch;
8aad930b 2227 CORE_ADDR breakpoint_pc;
4fa8626c 2228
4fa8626c
DJ
2229 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2230 we aren't, just return.
9709f61c
DJ
2231
2232 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2233 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2234 implemented by software breakpoints should be handled through the normal
2235 breakpoint layer.
8fb3e588 2236
4fa8626c
DJ
2237 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2238 different signals (SIGILL or SIGEMT for instance), but it is less
2239 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2240 gdbarch_decr_pc_after_break. I don't know any specific target that
2241 generates these signals at breakpoints (the code has been in GDB since at
2242 least 1992) so I can not guess how to handle them here.
8fb3e588 2243
e6cf7916
UW
2244 In earlier versions of GDB, a target with
2245 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2246 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2247 target with both of these set in GDB history, and it seems unlikely to be
2248 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2249
2250 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2251 return;
2252
2253 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2254 return;
2255
4058b839
PA
2256 /* In reverse execution, when a breakpoint is hit, the instruction
2257 under it has already been de-executed. The reported PC always
2258 points at the breakpoint address, so adjusting it further would
2259 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2260 architecture:
2261
2262 B1 0x08000000 : INSN1
2263 B2 0x08000001 : INSN2
2264 0x08000002 : INSN3
2265 PC -> 0x08000003 : INSN4
2266
2267 Say you're stopped at 0x08000003 as above. Reverse continuing
2268 from that point should hit B2 as below. Reading the PC when the
2269 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2270 been de-executed already.
2271
2272 B1 0x08000000 : INSN1
2273 B2 PC -> 0x08000001 : INSN2
2274 0x08000002 : INSN3
2275 0x08000003 : INSN4
2276
2277 We can't apply the same logic as for forward execution, because
2278 we would wrongly adjust the PC to 0x08000000, since there's a
2279 breakpoint at PC - 1. We'd then report a hit on B1, although
2280 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2281 behaviour. */
2282 if (execution_direction == EXEC_REVERSE)
2283 return;
2284
24a73cce
UW
2285 /* If this target does not decrement the PC after breakpoints, then
2286 we have nothing to do. */
2287 regcache = get_thread_regcache (ecs->ptid);
2288 gdbarch = get_regcache_arch (regcache);
2289 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2290 return;
2291
8aad930b
AC
2292 /* Find the location where (if we've hit a breakpoint) the
2293 breakpoint would be. */
515630c5
UW
2294 breakpoint_pc = regcache_read_pc (regcache)
2295 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2296
1c5cfe86
PA
2297 /* Check whether there actually is a software breakpoint inserted at
2298 that location.
2299
2300 If in non-stop mode, a race condition is possible where we've
2301 removed a breakpoint, but stop events for that breakpoint were
2302 already queued and arrive later. To suppress those spurious
2303 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2304 and retire them after a number of stop events are reported. */
2305 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2306 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2307 {
96429cc8
HZ
2308 struct cleanup *old_cleanups = NULL;
2309 if (RECORD_IS_USED)
2310 old_cleanups = record_gdb_operation_disable_set ();
2311
1c0fdd0e
UW
2312 /* When using hardware single-step, a SIGTRAP is reported for both
2313 a completed single-step and a software breakpoint. Need to
2314 differentiate between the two, as the latter needs adjusting
2315 but the former does not.
2316
2317 The SIGTRAP can be due to a completed hardware single-step only if
2318 - we didn't insert software single-step breakpoints
2319 - the thread to be examined is still the current thread
2320 - this thread is currently being stepped
2321
2322 If any of these events did not occur, we must have stopped due
2323 to hitting a software breakpoint, and have to back up to the
2324 breakpoint address.
2325
2326 As a special case, we could have hardware single-stepped a
2327 software breakpoint. In this case (prev_pc == breakpoint_pc),
2328 we also need to back up to the breakpoint address. */
2329
2330 if (singlestep_breakpoints_inserted_p
2331 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2332 || !currently_stepping (ecs->event_thread)
2333 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2334 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2335
2336 if (RECORD_IS_USED)
2337 do_cleanups (old_cleanups);
8aad930b 2338 }
4fa8626c
DJ
2339}
2340
0d1e5fa7
PA
2341void
2342init_infwait_state (void)
2343{
2344 waiton_ptid = pid_to_ptid (-1);
2345 infwait_state = infwait_normal_state;
2346}
2347
94cc34af
PA
2348void
2349error_is_running (void)
2350{
2351 error (_("\
2352Cannot execute this command while the selected thread is running."));
2353}
2354
2355void
2356ensure_not_running (void)
2357{
2358 if (is_running (inferior_ptid))
2359 error_is_running ();
2360}
2361
edb3359d
DJ
2362static int
2363stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2364{
2365 for (frame = get_prev_frame (frame);
2366 frame != NULL;
2367 frame = get_prev_frame (frame))
2368 {
2369 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2370 return 1;
2371 if (get_frame_type (frame) != INLINE_FRAME)
2372 break;
2373 }
2374
2375 return 0;
2376}
2377
cd0fc7c3
SS
2378/* Given an execution control state that has been freshly filled in
2379 by an event from the inferior, figure out what it means and take
2380 appropriate action. */
c906108c 2381
ec9499be 2382static void
96baa820 2383handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2384{
568d6575
UW
2385 struct frame_info *frame;
2386 struct gdbarch *gdbarch;
c8edd8b4 2387 int sw_single_step_trap_p = 0;
d983da9c
DJ
2388 int stopped_by_watchpoint;
2389 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2390 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2391 enum stop_kind stop_soon;
2392
2393 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2394 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2395 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2396 {
2397 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2398 gdb_assert (inf);
2399 stop_soon = inf->stop_soon;
2400 }
2401 else
2402 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2403
e02bc4cc 2404 /* Cache the last pid/waitstatus. */
39f77062 2405 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2406 target_last_waitstatus = ecs->ws;
e02bc4cc 2407
ca005067
DJ
2408 /* Always clear state belonging to the previous time we stopped. */
2409 stop_stack_dummy = 0;
2410
8c90c137
LM
2411 /* If it's a new process, add it to the thread database */
2412
2413 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2414 && !ptid_equal (ecs->ptid, minus_one_ptid)
2415 && !in_thread_list (ecs->ptid));
2416
2417 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2418 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2419 add_thread (ecs->ptid);
2420
e09875d4 2421 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2422
2423 /* Dependent on valid ECS->EVENT_THREAD. */
2424 adjust_pc_after_break (ecs);
2425
2426 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2427 reinit_frame_cache ();
2428
8c90c137
LM
2429 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2430 {
1c5cfe86
PA
2431 breakpoint_retire_moribund ();
2432
48844aa6
PA
2433 /* Mark the non-executing threads accordingly. In all-stop, all
2434 threads of all processes are stopped when we get any event
2435 reported. In non-stop mode, only the event thread stops. If
2436 we're handling a process exit in non-stop mode, there's
2437 nothing to do, as threads of the dead process are gone, and
2438 threads of any other process were left running. */
2439 if (!non_stop)
2440 set_executing (minus_one_ptid, 0);
2441 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2442 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2443 set_executing (inferior_ptid, 0);
8c90c137
LM
2444 }
2445
0d1e5fa7 2446 switch (infwait_state)
488f131b
JB
2447 {
2448 case infwait_thread_hop_state:
527159b7 2449 if (debug_infrun)
8a9de0e4 2450 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2451 break;
b83266a0 2452
488f131b 2453 case infwait_normal_state:
527159b7 2454 if (debug_infrun)
8a9de0e4 2455 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2456 break;
2457
2458 case infwait_step_watch_state:
2459 if (debug_infrun)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "infrun: infwait_step_watch_state\n");
2462
2463 stepped_after_stopped_by_watchpoint = 1;
488f131b 2464 break;
b83266a0 2465
488f131b 2466 case infwait_nonstep_watch_state:
527159b7 2467 if (debug_infrun)
8a9de0e4
AC
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: infwait_nonstep_watch_state\n");
488f131b 2470 insert_breakpoints ();
c906108c 2471
488f131b
JB
2472 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2473 handle things like signals arriving and other things happening
2474 in combination correctly? */
2475 stepped_after_stopped_by_watchpoint = 1;
2476 break;
65e82032
AC
2477
2478 default:
e2e0b3e5 2479 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2480 }
ec9499be 2481
0d1e5fa7 2482 infwait_state = infwait_normal_state;
ec9499be 2483 waiton_ptid = pid_to_ptid (-1);
c906108c 2484
488f131b
JB
2485 switch (ecs->ws.kind)
2486 {
2487 case TARGET_WAITKIND_LOADED:
527159b7 2488 if (debug_infrun)
8a9de0e4 2489 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2490 /* Ignore gracefully during startup of the inferior, as it might
2491 be the shell which has just loaded some objects, otherwise
2492 add the symbols for the newly loaded objects. Also ignore at
2493 the beginning of an attach or remote session; we will query
2494 the full list of libraries once the connection is
2495 established. */
c0236d92 2496 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2497 {
488f131b
JB
2498 /* Check for any newly added shared libraries if we're
2499 supposed to be adding them automatically. Switch
2500 terminal for any messages produced by
2501 breakpoint_re_set. */
2502 target_terminal_ours_for_output ();
aff6338a 2503 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2504 stack's section table is kept up-to-date. Architectures,
2505 (e.g., PPC64), use the section table to perform
2506 operations such as address => section name and hence
2507 require the table to contain all sections (including
2508 those found in shared libraries). */
b0f4b84b 2509#ifdef SOLIB_ADD
aff6338a 2510 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2511#else
2512 solib_add (NULL, 0, &current_target, auto_solib_add);
2513#endif
488f131b
JB
2514 target_terminal_inferior ();
2515
b0f4b84b
DJ
2516 /* If requested, stop when the dynamic linker notifies
2517 gdb of events. This allows the user to get control
2518 and place breakpoints in initializer routines for
2519 dynamically loaded objects (among other things). */
2520 if (stop_on_solib_events)
2521 {
2522 stop_stepping (ecs);
2523 return;
2524 }
2525
2526 /* NOTE drow/2007-05-11: This might be a good place to check
2527 for "catch load". */
488f131b 2528 }
b0f4b84b
DJ
2529
2530 /* If we are skipping through a shell, or through shared library
2531 loading that we aren't interested in, resume the program. If
2532 we're running the program normally, also resume. But stop if
2533 we're attaching or setting up a remote connection. */
2534 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2535 {
74960c60
VP
2536 /* Loading of shared libraries might have changed breakpoint
2537 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2538 if (stop_soon == NO_STOP_QUIETLY
2539 && !breakpoints_always_inserted_mode ())
74960c60 2540 insert_breakpoints ();
b0f4b84b
DJ
2541 resume (0, TARGET_SIGNAL_0);
2542 prepare_to_wait (ecs);
2543 return;
2544 }
2545
2546 break;
c5aa993b 2547
488f131b 2548 case TARGET_WAITKIND_SPURIOUS:
527159b7 2549 if (debug_infrun)
8a9de0e4 2550 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2551 resume (0, TARGET_SIGNAL_0);
2552 prepare_to_wait (ecs);
2553 return;
c5aa993b 2554
488f131b 2555 case TARGET_WAITKIND_EXITED:
527159b7 2556 if (debug_infrun)
8a9de0e4 2557 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2558 inferior_ptid = ecs->ptid;
488f131b
JB
2559 target_terminal_ours (); /* Must do this before mourn anyway */
2560 print_stop_reason (EXITED, ecs->ws.value.integer);
2561
2562 /* Record the exit code in the convenience variable $_exitcode, so
2563 that the user can inspect this again later. */
4fa62494
UW
2564 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2565 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2566 gdb_flush (gdb_stdout);
2567 target_mourn_inferior ();
1c0fdd0e 2568 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2569 stop_print_frame = 0;
2570 stop_stepping (ecs);
2571 return;
c5aa993b 2572
488f131b 2573 case TARGET_WAITKIND_SIGNALLED:
527159b7 2574 if (debug_infrun)
8a9de0e4 2575 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2576 inferior_ptid = ecs->ptid;
488f131b 2577 stop_print_frame = 0;
488f131b 2578 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2579
488f131b
JB
2580 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2581 reach here unless the inferior is dead. However, for years
2582 target_kill() was called here, which hints that fatal signals aren't
2583 really fatal on some systems. If that's true, then some changes
2584 may be needed. */
2585 target_mourn_inferior ();
c906108c 2586
2020b7ab 2587 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2588 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2589 stop_stepping (ecs);
2590 return;
c906108c 2591
488f131b
JB
2592 /* The following are the only cases in which we keep going;
2593 the above cases end in a continue or goto. */
2594 case TARGET_WAITKIND_FORKED:
deb3b17b 2595 case TARGET_WAITKIND_VFORKED:
527159b7 2596 if (debug_infrun)
8a9de0e4 2597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2598
5a2901d9
DJ
2599 if (!ptid_equal (ecs->ptid, inferior_ptid))
2600 {
0d1e5fa7 2601 context_switch (ecs->ptid);
35f196d9 2602 reinit_frame_cache ();
5a2901d9
DJ
2603 }
2604
b242c3c2
PA
2605 /* Immediately detach breakpoints from the child before there's
2606 any chance of letting the user delete breakpoints from the
2607 breakpoint lists. If we don't do this early, it's easy to
2608 leave left over traps in the child, vis: "break foo; catch
2609 fork; c; <fork>; del; c; <child calls foo>". We only follow
2610 the fork on the last `continue', and by that time the
2611 breakpoint at "foo" is long gone from the breakpoint table.
2612 If we vforked, then we don't need to unpatch here, since both
2613 parent and child are sharing the same memory pages; we'll
2614 need to unpatch at follow/detach time instead to be certain
2615 that new breakpoints added between catchpoint hit time and
2616 vfork follow are detached. */
2617 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2618 {
2619 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2620
2621 /* This won't actually modify the breakpoint list, but will
2622 physically remove the breakpoints from the child. */
2623 detach_breakpoints (child_pid);
2624 }
2625
e58b0e63
PA
2626 /* In case the event is caught by a catchpoint, remember that
2627 the event is to be followed at the next resume of the thread,
2628 and not immediately. */
2629 ecs->event_thread->pending_follow = ecs->ws;
2630
fb14de7b 2631 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2632
347bddb7 2633 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2634
347bddb7 2635 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2636
2637 /* If no catchpoint triggered for this, then keep going. */
2638 if (ecs->random_signal)
2639 {
e58b0e63
PA
2640 int should_resume;
2641
2020b7ab 2642 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2643
2644 should_resume = follow_fork ();
2645
2646 ecs->event_thread = inferior_thread ();
2647 ecs->ptid = inferior_ptid;
2648
2649 if (should_resume)
2650 keep_going (ecs);
2651 else
2652 stop_stepping (ecs);
04e68871
DJ
2653 return;
2654 }
2020b7ab 2655 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2656 goto process_event_stop_test;
2657
2658 case TARGET_WAITKIND_EXECD:
527159b7 2659 if (debug_infrun)
fc5261f2 2660 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2661
5a2901d9
DJ
2662 if (!ptid_equal (ecs->ptid, inferior_ptid))
2663 {
0d1e5fa7 2664 context_switch (ecs->ptid);
35f196d9 2665 reinit_frame_cache ();
5a2901d9
DJ
2666 }
2667
fb14de7b 2668 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2669
2670 /* This causes the eventpoints and symbol table to be reset.
2671 Must do this now, before trying to determine whether to
2672 stop. */
71b43ef8 2673 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2674
2675 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2676 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2677
71b43ef8
PA
2678 /* Note that this may be referenced from inside
2679 bpstat_stop_status above, through inferior_has_execd. */
2680 xfree (ecs->ws.value.execd_pathname);
2681 ecs->ws.value.execd_pathname = NULL;
2682
04e68871
DJ
2683 /* If no catchpoint triggered for this, then keep going. */
2684 if (ecs->random_signal)
2685 {
2020b7ab 2686 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2687 keep_going (ecs);
2688 return;
2689 }
2020b7ab 2690 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2691 goto process_event_stop_test;
2692
b4dc5ffa
MK
2693 /* Be careful not to try to gather much state about a thread
2694 that's in a syscall. It's frequently a losing proposition. */
488f131b 2695 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2696 if (debug_infrun)
8a9de0e4 2697 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2698 resume (0, TARGET_SIGNAL_0);
2699 prepare_to_wait (ecs);
2700 return;
c906108c 2701
488f131b
JB
2702 /* Before examining the threads further, step this thread to
2703 get it entirely out of the syscall. (We get notice of the
2704 event when the thread is just on the verge of exiting a
2705 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2706 into user code.) */
488f131b 2707 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2708 if (debug_infrun)
8a9de0e4 2709 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2710 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2711 prepare_to_wait (ecs);
2712 return;
c906108c 2713
488f131b 2714 case TARGET_WAITKIND_STOPPED:
527159b7 2715 if (debug_infrun)
8a9de0e4 2716 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2717 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2718 break;
c906108c 2719
b2175913
MS
2720 case TARGET_WAITKIND_NO_HISTORY:
2721 /* Reverse execution: target ran out of history info. */
fb14de7b 2722 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2723 print_stop_reason (NO_HISTORY, 0);
2724 stop_stepping (ecs);
2725 return;
2726
488f131b
JB
2727 /* We had an event in the inferior, but we are not interested
2728 in handling it at this level. The lower layers have already
8e7d2c16 2729 done what needs to be done, if anything.
8fb3e588
AC
2730
2731 One of the possible circumstances for this is when the
2732 inferior produces output for the console. The inferior has
2733 not stopped, and we are ignoring the event. Another possible
2734 circumstance is any event which the lower level knows will be
2735 reported multiple times without an intervening resume. */
488f131b 2736 case TARGET_WAITKIND_IGNORE:
527159b7 2737 if (debug_infrun)
8a9de0e4 2738 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2739 prepare_to_wait (ecs);
488f131b
JB
2740 return;
2741 }
c906108c 2742
488f131b
JB
2743 if (ecs->new_thread_event)
2744 {
94cc34af
PA
2745 if (non_stop)
2746 /* Non-stop assumes that the target handles adding new threads
2747 to the thread list. */
2748 internal_error (__FILE__, __LINE__, "\
2749targets should add new threads to the thread list themselves in non-stop mode.");
2750
2751 /* We may want to consider not doing a resume here in order to
2752 give the user a chance to play with the new thread. It might
2753 be good to make that a user-settable option. */
2754
2755 /* At this point, all threads are stopped (happens automatically
2756 in either the OS or the native code). Therefore we need to
2757 continue all threads in order to make progress. */
2758
173853dc
PA
2759 if (!ptid_equal (ecs->ptid, inferior_ptid))
2760 context_switch (ecs->ptid);
488f131b
JB
2761 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2762 prepare_to_wait (ecs);
2763 return;
2764 }
c906108c 2765
2020b7ab 2766 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2767 {
2768 /* Do we need to clean up the state of a thread that has
2769 completed a displaced single-step? (Doing so usually affects
2770 the PC, so do it here, before we set stop_pc.) */
2771 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2772
2773 /* If we either finished a single-step or hit a breakpoint, but
2774 the user wanted this thread to be stopped, pretend we got a
2775 SIG0 (generic unsignaled stop). */
2776
2777 if (ecs->event_thread->stop_requested
2778 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2779 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2780 }
237fc4c9 2781
515630c5 2782 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2783
527159b7 2784 if (debug_infrun)
237fc4c9 2785 {
5af949e3
UW
2786 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2788
2789 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2790 paddress (gdbarch, stop_pc));
d92524f1 2791 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2792 {
2793 CORE_ADDR addr;
2794 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2795
2796 if (target_stopped_data_address (&current_target, &addr))
2797 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2798 "infrun: stopped data address = %s\n",
2799 paddress (gdbarch, addr));
237fc4c9
PA
2800 else
2801 fprintf_unfiltered (gdb_stdlog,
2802 "infrun: (no data address available)\n");
2803 }
2804 }
527159b7 2805
9f976b41
DJ
2806 if (stepping_past_singlestep_breakpoint)
2807 {
1c0fdd0e 2808 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2809 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2810 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2811
2812 stepping_past_singlestep_breakpoint = 0;
2813
2814 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2815 breakpoint, or stopped for some other reason. It would be nice if
2816 we could tell, but we can't reliably. */
2020b7ab 2817 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2818 {
527159b7 2819 if (debug_infrun)
8a9de0e4 2820 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2821 /* Pull the single step breakpoints out of the target. */
e0cd558a 2822 remove_single_step_breakpoints ();
9f976b41
DJ
2823 singlestep_breakpoints_inserted_p = 0;
2824
2825 ecs->random_signal = 0;
79626f8a 2826 ecs->event_thread->trap_expected = 0;
9f976b41 2827
0d1e5fa7 2828 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2829 if (deprecated_context_hook)
2830 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2831
2832 resume (1, TARGET_SIGNAL_0);
2833 prepare_to_wait (ecs);
2834 return;
2835 }
2836 }
2837
ca67fcb8 2838 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2839 {
94cc34af
PA
2840 /* In non-stop mode, there's never a deferred_step_ptid set. */
2841 gdb_assert (!non_stop);
2842
6a6b96b9
UW
2843 /* If we stopped for some other reason than single-stepping, ignore
2844 the fact that we were supposed to switch back. */
2020b7ab 2845 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2846 {
2847 if (debug_infrun)
2848 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2849 "infrun: handling deferred step\n");
6a6b96b9
UW
2850
2851 /* Pull the single step breakpoints out of the target. */
2852 if (singlestep_breakpoints_inserted_p)
2853 {
2854 remove_single_step_breakpoints ();
2855 singlestep_breakpoints_inserted_p = 0;
2856 }
2857
2858 /* Note: We do not call context_switch at this point, as the
2859 context is already set up for stepping the original thread. */
ca67fcb8
VP
2860 switch_to_thread (deferred_step_ptid);
2861 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2862 /* Suppress spurious "Switching to ..." message. */
2863 previous_inferior_ptid = inferior_ptid;
2864
2865 resume (1, TARGET_SIGNAL_0);
2866 prepare_to_wait (ecs);
2867 return;
2868 }
ca67fcb8
VP
2869
2870 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2871 }
2872
488f131b
JB
2873 /* See if a thread hit a thread-specific breakpoint that was meant for
2874 another thread. If so, then step that thread past the breakpoint,
2875 and continue it. */
2876
2020b7ab 2877 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2878 {
9f976b41
DJ
2879 int thread_hop_needed = 0;
2880
f8d40ec8
JB
2881 /* Check if a regular breakpoint has been hit before checking
2882 for a potential single step breakpoint. Otherwise, GDB will
2883 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2884 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2885 {
c5aa993b 2886 ecs->random_signal = 0;
4fa8626c 2887 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2888 thread_hop_needed = 1;
2889 }
1c0fdd0e 2890 else if (singlestep_breakpoints_inserted_p)
9f976b41 2891 {
fd48f117
DJ
2892 /* We have not context switched yet, so this should be true
2893 no matter which thread hit the singlestep breakpoint. */
2894 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2895 if (debug_infrun)
2896 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2897 "trap for %s\n",
2898 target_pid_to_str (ecs->ptid));
2899
9f976b41
DJ
2900 ecs->random_signal = 0;
2901 /* The call to in_thread_list is necessary because PTIDs sometimes
2902 change when we go from single-threaded to multi-threaded. If
2903 the singlestep_ptid is still in the list, assume that it is
2904 really different from ecs->ptid. */
2905 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2906 && in_thread_list (singlestep_ptid))
2907 {
fd48f117
DJ
2908 /* If the PC of the thread we were trying to single-step
2909 has changed, discard this event (which we were going
2910 to ignore anyway), and pretend we saw that thread
2911 trap. This prevents us continuously moving the
2912 single-step breakpoint forward, one instruction at a
2913 time. If the PC has changed, then the thread we were
2914 trying to single-step has trapped or been signalled,
2915 but the event has not been reported to GDB yet.
2916
2917 There might be some cases where this loses signal
2918 information, if a signal has arrived at exactly the
2919 same time that the PC changed, but this is the best
2920 we can do with the information available. Perhaps we
2921 should arrange to report all events for all threads
2922 when they stop, or to re-poll the remote looking for
2923 this particular thread (i.e. temporarily enable
2924 schedlock). */
515630c5
UW
2925
2926 CORE_ADDR new_singlestep_pc
2927 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2928
2929 if (new_singlestep_pc != singlestep_pc)
fd48f117 2930 {
2020b7ab
PA
2931 enum target_signal stop_signal;
2932
fd48f117
DJ
2933 if (debug_infrun)
2934 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2935 " but expected thread advanced also\n");
2936
2937 /* The current context still belongs to
2938 singlestep_ptid. Don't swap here, since that's
2939 the context we want to use. Just fudge our
2940 state and continue. */
2020b7ab
PA
2941 stop_signal = ecs->event_thread->stop_signal;
2942 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2943 ecs->ptid = singlestep_ptid;
e09875d4 2944 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2945 ecs->event_thread->stop_signal = stop_signal;
515630c5 2946 stop_pc = new_singlestep_pc;
fd48f117
DJ
2947 }
2948 else
2949 {
2950 if (debug_infrun)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "infrun: unexpected thread\n");
2953
2954 thread_hop_needed = 1;
2955 stepping_past_singlestep_breakpoint = 1;
2956 saved_singlestep_ptid = singlestep_ptid;
2957 }
9f976b41
DJ
2958 }
2959 }
2960
2961 if (thread_hop_needed)
8fb3e588 2962 {
9f5a595d 2963 struct regcache *thread_regcache;
237fc4c9 2964 int remove_status = 0;
8fb3e588 2965
527159b7 2966 if (debug_infrun)
8a9de0e4 2967 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2968
b3444185
PA
2969 /* Switch context before touching inferior memory, the
2970 previous thread may have exited. */
2971 if (!ptid_equal (inferior_ptid, ecs->ptid))
2972 context_switch (ecs->ptid);
2973
8fb3e588
AC
2974 /* Saw a breakpoint, but it was hit by the wrong thread.
2975 Just continue. */
2976
1c0fdd0e 2977 if (singlestep_breakpoints_inserted_p)
488f131b 2978 {
8fb3e588 2979 /* Pull the single step breakpoints out of the target. */
e0cd558a 2980 remove_single_step_breakpoints ();
8fb3e588
AC
2981 singlestep_breakpoints_inserted_p = 0;
2982 }
2983
237fc4c9
PA
2984 /* If the arch can displace step, don't remove the
2985 breakpoints. */
9f5a595d
UW
2986 thread_regcache = get_thread_regcache (ecs->ptid);
2987 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2988 remove_status = remove_breakpoints ();
2989
8fb3e588
AC
2990 /* Did we fail to remove breakpoints? If so, try
2991 to set the PC past the bp. (There's at least
2992 one situation in which we can fail to remove
2993 the bp's: On HP-UX's that use ttrace, we can't
2994 change the address space of a vforking child
2995 process until the child exits (well, okay, not
2996 then either :-) or execs. */
2997 if (remove_status != 0)
9d9cd7ac 2998 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2999 else
3000 { /* Single step */
94cc34af
PA
3001 if (!non_stop)
3002 {
3003 /* Only need to require the next event from this
3004 thread in all-stop mode. */
3005 waiton_ptid = ecs->ptid;
3006 infwait_state = infwait_thread_hop_state;
3007 }
8fb3e588 3008
4e1c45ea 3009 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3010 keep_going (ecs);
8fb3e588
AC
3011 return;
3012 }
488f131b 3013 }
1c0fdd0e 3014 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3015 {
3016 sw_single_step_trap_p = 1;
3017 ecs->random_signal = 0;
3018 }
488f131b
JB
3019 }
3020 else
3021 ecs->random_signal = 1;
c906108c 3022
488f131b 3023 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3024 so, then switch to that thread. */
3025 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3026 {
527159b7 3027 if (debug_infrun)
8a9de0e4 3028 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3029
0d1e5fa7 3030 context_switch (ecs->ptid);
c5aa993b 3031
9a4105ab
AC
3032 if (deprecated_context_hook)
3033 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3034 }
c906108c 3035
568d6575
UW
3036 /* At this point, get hold of the now-current thread's frame. */
3037 frame = get_current_frame ();
3038 gdbarch = get_frame_arch (frame);
3039
1c0fdd0e 3040 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3041 {
3042 /* Pull the single step breakpoints out of the target. */
e0cd558a 3043 remove_single_step_breakpoints ();
488f131b
JB
3044 singlestep_breakpoints_inserted_p = 0;
3045 }
c906108c 3046
d983da9c
DJ
3047 if (stepped_after_stopped_by_watchpoint)
3048 stopped_by_watchpoint = 0;
3049 else
3050 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3051
3052 /* If necessary, step over this watchpoint. We'll be back to display
3053 it in a moment. */
3054 if (stopped_by_watchpoint
d92524f1 3055 && (target_have_steppable_watchpoint
568d6575 3056 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3057 {
488f131b
JB
3058 /* At this point, we are stopped at an instruction which has
3059 attempted to write to a piece of memory under control of
3060 a watchpoint. The instruction hasn't actually executed
3061 yet. If we were to evaluate the watchpoint expression
3062 now, we would get the old value, and therefore no change
3063 would seem to have occurred.
3064
3065 In order to make watchpoints work `right', we really need
3066 to complete the memory write, and then evaluate the
d983da9c
DJ
3067 watchpoint expression. We do this by single-stepping the
3068 target.
3069
3070 It may not be necessary to disable the watchpoint to stop over
3071 it. For example, the PA can (with some kernel cooperation)
3072 single step over a watchpoint without disabling the watchpoint.
3073
3074 It is far more common to need to disable a watchpoint to step
3075 the inferior over it. If we have non-steppable watchpoints,
3076 we must disable the current watchpoint; it's simplest to
3077 disable all watchpoints and breakpoints. */
2facfe5c
DD
3078 int hw_step = 1;
3079
d92524f1 3080 if (!target_have_steppable_watchpoint)
d983da9c 3081 remove_breakpoints ();
2facfe5c 3082 /* Single step */
568d6575 3083 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3084 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3085 waiton_ptid = ecs->ptid;
d92524f1 3086 if (target_have_steppable_watchpoint)
0d1e5fa7 3087 infwait_state = infwait_step_watch_state;
d983da9c 3088 else
0d1e5fa7 3089 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3090 prepare_to_wait (ecs);
3091 return;
3092 }
3093
488f131b
JB
3094 ecs->stop_func_start = 0;
3095 ecs->stop_func_end = 0;
3096 ecs->stop_func_name = 0;
3097 /* Don't care about return value; stop_func_start and stop_func_name
3098 will both be 0 if it doesn't work. */
3099 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3100 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3101 ecs->stop_func_start
568d6575 3102 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3103 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3104 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3105 ecs->event_thread->stop_step = 0;
488f131b
JB
3106 stop_print_frame = 1;
3107 ecs->random_signal = 0;
3108 stopped_by_random_signal = 0;
488f131b 3109
edb3359d
DJ
3110 /* Hide inlined functions starting here, unless we just performed stepi or
3111 nexti. After stepi and nexti, always show the innermost frame (not any
3112 inline function call sites). */
3113 if (ecs->event_thread->step_range_end != 1)
3114 skip_inline_frames (ecs->ptid);
3115
2020b7ab 3116 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3117 && ecs->event_thread->trap_expected
568d6575 3118 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3119 && currently_stepping (ecs->event_thread))
3352ef37 3120 {
b50d7442 3121 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3122 also on an instruction that needs to be stepped multiple
3123 times before it's been fully executing. E.g., architectures
3124 with a delay slot. It needs to be stepped twice, once for
3125 the instruction and once for the delay slot. */
3126 int step_through_delay
568d6575 3127 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3128 if (debug_infrun && step_through_delay)
8a9de0e4 3129 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3130 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3131 {
3132 /* The user issued a continue when stopped at a breakpoint.
3133 Set up for another trap and get out of here. */
4e1c45ea 3134 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3135 keep_going (ecs);
3136 return;
3137 }
3138 else if (step_through_delay)
3139 {
3140 /* The user issued a step when stopped at a breakpoint.
3141 Maybe we should stop, maybe we should not - the delay
3142 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3143 case, don't decide that here, just set
3144 ecs->stepping_over_breakpoint, making sure we
3145 single-step again before breakpoints are re-inserted. */
4e1c45ea 3146 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3147 }
3148 }
3149
488f131b
JB
3150 /* Look at the cause of the stop, and decide what to do.
3151 The alternatives are:
0d1e5fa7
PA
3152 1) stop_stepping and return; to really stop and return to the debugger,
3153 2) keep_going and return to start up again
4e1c45ea 3154 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3155 3) set ecs->random_signal to 1, and the decision between 1 and 2
3156 will be made according to the signal handling tables. */
3157
3158 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3159 that have to do with the program's own actions. Note that
3160 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3161 on the operating system version. Here we detect when a SIGILL or
3162 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3163 something similar for SIGSEGV, since a SIGSEGV will be generated
3164 when we're trying to execute a breakpoint instruction on a
3165 non-executable stack. This happens for call dummy breakpoints
3166 for architectures like SPARC that place call dummies on the
237fc4c9 3167 stack.
488f131b 3168
237fc4c9
PA
3169 If we're doing a displaced step past a breakpoint, then the
3170 breakpoint is always inserted at the original instruction;
3171 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3172 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3173 || (! ecs->event_thread->trap_expected
237fc4c9 3174 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3175 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3176 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3177 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3178 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3179 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3180 {
2020b7ab 3181 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3182 {
527159b7 3183 if (debug_infrun)
8a9de0e4 3184 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3185 stop_print_frame = 0;
3186 stop_stepping (ecs);
3187 return;
3188 }
c54cfec8
EZ
3189
3190 /* This is originated from start_remote(), start_inferior() and
3191 shared libraries hook functions. */
b0f4b84b 3192 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3193 {
527159b7 3194 if (debug_infrun)
8a9de0e4 3195 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3196 stop_stepping (ecs);
3197 return;
3198 }
3199
c54cfec8 3200 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3201 the stop_signal here, because some kernels don't ignore a
3202 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3203 See more comments in inferior.h. On the other hand, if we
a0ef4274 3204 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3205 will handle the SIGSTOP if it should show up later.
3206
3207 Also consider that the attach is complete when we see a
3208 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3209 target extended-remote report it instead of a SIGSTOP
3210 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3211 signal, so this is no exception.
3212
3213 Also consider that the attach is complete when we see a
3214 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3215 the target to stop all threads of the inferior, in case the
3216 low level attach operation doesn't stop them implicitly. If
3217 they weren't stopped implicitly, then the stub will report a
3218 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3219 other than GDB's request. */
a0ef4274 3220 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3221 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3222 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3223 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3224 {
3225 stop_stepping (ecs);
2020b7ab 3226 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3227 return;
3228 }
3229
fba57f8f 3230 /* See if there is a breakpoint at the current PC. */
347bddb7 3231 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3232
3233 /* Following in case break condition called a
3234 function. */
3235 stop_print_frame = 1;
488f131b 3236
73dd234f 3237 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3238 at one stage in the past included checks for an inferior
3239 function call's call dummy's return breakpoint. The original
3240 comment, that went with the test, read:
73dd234f 3241
8fb3e588
AC
3242 ``End of a stack dummy. Some systems (e.g. Sony news) give
3243 another signal besides SIGTRAP, so check here as well as
3244 above.''
73dd234f 3245
8002d778 3246 If someone ever tries to get call dummys on a
73dd234f 3247 non-executable stack to work (where the target would stop
03cebad2
MK
3248 with something like a SIGSEGV), then those tests might need
3249 to be re-instated. Given, however, that the tests were only
73dd234f 3250 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3251 suspect that it won't be the case.
3252
8fb3e588
AC
3253 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3254 be necessary for call dummies on a non-executable stack on
3255 SPARC. */
73dd234f 3256
2020b7ab 3257 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3258 ecs->random_signal
347bddb7 3259 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3260 || ecs->event_thread->trap_expected
3261 || (ecs->event_thread->step_range_end
3262 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3263 else
3264 {
347bddb7 3265 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3266 if (!ecs->random_signal)
2020b7ab 3267 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3268 }
3269 }
3270
3271 /* When we reach this point, we've pretty much decided
3272 that the reason for stopping must've been a random
3273 (unexpected) signal. */
3274
3275 else
3276 ecs->random_signal = 1;
488f131b 3277
04e68871 3278process_event_stop_test:
568d6575
UW
3279
3280 /* Re-fetch current thread's frame in case we did a
3281 "goto process_event_stop_test" above. */
3282 frame = get_current_frame ();
3283 gdbarch = get_frame_arch (frame);
3284
488f131b
JB
3285 /* For the program's own signals, act according to
3286 the signal handling tables. */
3287
3288 if (ecs->random_signal)
3289 {
3290 /* Signal not for debugging purposes. */
3291 int printed = 0;
3292
527159b7 3293 if (debug_infrun)
2020b7ab
PA
3294 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3295 ecs->event_thread->stop_signal);
527159b7 3296
488f131b
JB
3297 stopped_by_random_signal = 1;
3298
2020b7ab 3299 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3300 {
3301 printed = 1;
3302 target_terminal_ours_for_output ();
2020b7ab 3303 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3304 }
252fbfc8
PA
3305 /* Always stop on signals if we're either just gaining control
3306 of the program, or the user explicitly requested this thread
3307 to remain stopped. */
d6b48e9c 3308 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3309 || ecs->event_thread->stop_requested
d6b48e9c 3310 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3311 {
3312 stop_stepping (ecs);
3313 return;
3314 }
3315 /* If not going to stop, give terminal back
3316 if we took it away. */
3317 else if (printed)
3318 target_terminal_inferior ();
3319
3320 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3321 if (signal_program[ecs->event_thread->stop_signal] == 0)
3322 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3323
fb14de7b 3324 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3325 && ecs->event_thread->trap_expected
3326 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3327 {
3328 /* We were just starting a new sequence, attempting to
3329 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3330 Instead this signal arrives. This signal will take us out
68f53502
AC
3331 of the stepping range so GDB needs to remember to, when
3332 the signal handler returns, resume stepping off that
3333 breakpoint. */
3334 /* To simplify things, "continue" is forced to use the same
3335 code paths as single-step - set a breakpoint at the
3336 signal return address and then, once hit, step off that
3337 breakpoint. */
237fc4c9
PA
3338 if (debug_infrun)
3339 fprintf_unfiltered (gdb_stdlog,
3340 "infrun: signal arrived while stepping over "
3341 "breakpoint\n");
d3169d93 3342
568d6575 3343 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3344 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3345 keep_going (ecs);
3346 return;
68f53502 3347 }
9d799f85 3348
4e1c45ea 3349 if (ecs->event_thread->step_range_end != 0
2020b7ab 3350 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3351 && (ecs->event_thread->step_range_start <= stop_pc
3352 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3353 && frame_id_eq (get_stack_frame_id (frame),
3354 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3355 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3356 {
3357 /* The inferior is about to take a signal that will take it
3358 out of the single step range. Set a breakpoint at the
3359 current PC (which is presumably where the signal handler
3360 will eventually return) and then allow the inferior to
3361 run free.
3362
3363 Note that this is only needed for a signal delivered
3364 while in the single-step range. Nested signals aren't a
3365 problem as they eventually all return. */
237fc4c9
PA
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog,
3368 "infrun: signal may take us out of "
3369 "single-step range\n");
3370
568d6575 3371 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3372 keep_going (ecs);
3373 return;
d303a6c7 3374 }
9d799f85
AC
3375
3376 /* Note: step_resume_breakpoint may be non-NULL. This occures
3377 when either there's a nested signal, or when there's a
3378 pending signal enabled just as the signal handler returns
3379 (leaving the inferior at the step-resume-breakpoint without
3380 actually executing it). Either way continue until the
3381 breakpoint is really hit. */
488f131b
JB
3382 keep_going (ecs);
3383 return;
3384 }
3385
3386 /* Handle cases caused by hitting a breakpoint. */
3387 {
3388 CORE_ADDR jmp_buf_pc;
3389 struct bpstat_what what;
3390
347bddb7 3391 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3392
3393 if (what.call_dummy)
3394 {
3395 stop_stack_dummy = 1;
c5aa993b 3396 }
c906108c 3397
488f131b 3398 switch (what.main_action)
c5aa993b 3399 {
488f131b 3400 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3401 /* If we hit the breakpoint at longjmp while stepping, we
3402 install a momentary breakpoint at the target of the
3403 jmp_buf. */
3404
3405 if (debug_infrun)
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3408
4e1c45ea 3409 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3410
568d6575
UW
3411 if (!gdbarch_get_longjmp_target_p (gdbarch)
3412 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3413 {
611c83ae
PA
3414 if (debug_infrun)
3415 fprintf_unfiltered (gdb_stdlog, "\
3416infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3417 keep_going (ecs);
104c1213 3418 return;
c5aa993b 3419 }
488f131b 3420
611c83ae
PA
3421 /* We're going to replace the current step-resume breakpoint
3422 with a longjmp-resume breakpoint. */
4e1c45ea 3423 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3424
3425 /* Insert a breakpoint at resume address. */
a6d9a66e 3426 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3427
488f131b
JB
3428 keep_going (ecs);
3429 return;
c906108c 3430
488f131b 3431 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3432 if (debug_infrun)
611c83ae
PA
3433 fprintf_unfiltered (gdb_stdlog,
3434 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3435
4e1c45ea
PA
3436 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3437 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3438
414c69f7 3439 ecs->event_thread->stop_step = 1;
611c83ae
PA
3440 print_stop_reason (END_STEPPING_RANGE, 0);
3441 stop_stepping (ecs);
3442 return;
488f131b
JB
3443
3444 case BPSTAT_WHAT_SINGLE:
527159b7 3445 if (debug_infrun)
8802d8ed 3446 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3447 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3448 /* Still need to check other stuff, at least the case
3449 where we are stepping and step out of the right range. */
3450 break;
c906108c 3451
488f131b 3452 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3453 if (debug_infrun)
8802d8ed 3454 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3455 stop_print_frame = 1;
c906108c 3456
d303a6c7
AC
3457 /* We are about to nuke the step_resume_breakpointt via the
3458 cleanup chain, so no need to worry about it here. */
c5aa993b 3459
488f131b
JB
3460 stop_stepping (ecs);
3461 return;
c5aa993b 3462
488f131b 3463 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3464 if (debug_infrun)
8802d8ed 3465 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3466 stop_print_frame = 0;
c5aa993b 3467
d303a6c7
AC
3468 /* We are about to nuke the step_resume_breakpoin via the
3469 cleanup chain, so no need to worry about it here. */
c5aa993b 3470
488f131b 3471 stop_stepping (ecs);
e441088d 3472 return;
c5aa993b 3473
488f131b 3474 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3475 if (debug_infrun)
8802d8ed 3476 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3477
4e1c45ea
PA
3478 delete_step_resume_breakpoint (ecs->event_thread);
3479 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3480 {
3481 /* Back when the step-resume breakpoint was inserted, we
3482 were trying to single-step off a breakpoint. Go back
3483 to doing that. */
4e1c45ea
PA
3484 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3485 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3486 keep_going (ecs);
3487 return;
3488 }
b2175913
MS
3489 if (stop_pc == ecs->stop_func_start
3490 && execution_direction == EXEC_REVERSE)
3491 {
3492 /* We are stepping over a function call in reverse, and
3493 just hit the step-resume breakpoint at the start
3494 address of the function. Go back to single-stepping,
3495 which should take us back to the function call. */
3496 ecs->event_thread->stepping_over_breakpoint = 1;
3497 keep_going (ecs);
3498 return;
3499 }
488f131b
JB
3500 break;
3501
488f131b 3502 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3503 {
527159b7 3504 if (debug_infrun)
8802d8ed 3505 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3506
3507 /* Check for any newly added shared libraries if we're
3508 supposed to be adding them automatically. Switch
3509 terminal for any messages produced by
3510 breakpoint_re_set. */
3511 target_terminal_ours_for_output ();
aff6338a 3512 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3513 stack's section table is kept up-to-date. Architectures,
3514 (e.g., PPC64), use the section table to perform
3515 operations such as address => section name and hence
3516 require the table to contain all sections (including
3517 those found in shared libraries). */
a77053c2 3518#ifdef SOLIB_ADD
aff6338a 3519 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3520#else
3521 solib_add (NULL, 0, &current_target, auto_solib_add);
3522#endif
488f131b
JB
3523 target_terminal_inferior ();
3524
488f131b
JB
3525 /* If requested, stop when the dynamic linker notifies
3526 gdb of events. This allows the user to get control
3527 and place breakpoints in initializer routines for
3528 dynamically loaded objects (among other things). */
877522db 3529 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3530 {
488f131b 3531 stop_stepping (ecs);
d4f3574e
SS
3532 return;
3533 }
c5aa993b 3534 else
c5aa993b 3535 {
488f131b 3536 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3537 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3538 break;
c5aa993b 3539 }
488f131b 3540 }
488f131b 3541 break;
c906108c 3542
488f131b
JB
3543 case BPSTAT_WHAT_LAST:
3544 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3545
488f131b
JB
3546 case BPSTAT_WHAT_KEEP_CHECKING:
3547 break;
3548 }
3549 }
c906108c 3550
488f131b
JB
3551 /* We come here if we hit a breakpoint but should not
3552 stop for it. Possibly we also were stepping
3553 and should stop for that. So fall through and
3554 test for stepping. But, if not stepping,
3555 do not stop. */
c906108c 3556
a7212384
UW
3557 /* In all-stop mode, if we're currently stepping but have stopped in
3558 some other thread, we need to switch back to the stepped thread. */
3559 if (!non_stop)
3560 {
3561 struct thread_info *tp;
b3444185 3562 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3563 ecs->event_thread);
3564 if (tp)
3565 {
3566 /* However, if the current thread is blocked on some internal
3567 breakpoint, and we simply need to step over that breakpoint
3568 to get it going again, do that first. */
3569 if ((ecs->event_thread->trap_expected
3570 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3571 || ecs->event_thread->stepping_over_breakpoint)
3572 {
3573 keep_going (ecs);
3574 return;
3575 }
3576
66852e9c
PA
3577 /* If the stepping thread exited, then don't try to switch
3578 back and resume it, which could fail in several different
3579 ways depending on the target. Instead, just keep going.
3580
3581 We can find a stepping dead thread in the thread list in
3582 two cases:
3583
3584 - The target supports thread exit events, and when the
3585 target tries to delete the thread from the thread list,
3586 inferior_ptid pointed at the exiting thread. In such
3587 case, calling delete_thread does not really remove the
3588 thread from the list; instead, the thread is left listed,
3589 with 'exited' state.
3590
3591 - The target's debug interface does not support thread
3592 exit events, and so we have no idea whatsoever if the
3593 previously stepping thread is still alive. For that
3594 reason, we need to synchronously query the target
3595 now. */
b3444185
PA
3596 if (is_exited (tp->ptid)
3597 || !target_thread_alive (tp->ptid))
3598 {
3599 if (debug_infrun)
3600 fprintf_unfiltered (gdb_stdlog, "\
3601infrun: not switching back to stepped thread, it has vanished\n");
3602
3603 delete_thread (tp->ptid);
3604 keep_going (ecs);
3605 return;
3606 }
3607
a7212384
UW
3608 /* Otherwise, we no longer expect a trap in the current thread.
3609 Clear the trap_expected flag before switching back -- this is
3610 what keep_going would do as well, if we called it. */
3611 ecs->event_thread->trap_expected = 0;
3612
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog,
3615 "infrun: switching back to stepped thread\n");
3616
3617 ecs->event_thread = tp;
3618 ecs->ptid = tp->ptid;
3619 context_switch (ecs->ptid);
3620 keep_going (ecs);
3621 return;
3622 }
3623 }
3624
9d1ff73f
MS
3625 /* Are we stepping to get the inferior out of the dynamic linker's
3626 hook (and possibly the dld itself) after catching a shlib
3627 event? */
4e1c45ea 3628 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3629 {
3630#if defined(SOLIB_ADD)
3631 /* Have we reached our destination? If not, keep going. */
3632 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3633 {
527159b7 3634 if (debug_infrun)
8a9de0e4 3635 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3636 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3637 keep_going (ecs);
104c1213 3638 return;
488f131b
JB
3639 }
3640#endif
527159b7 3641 if (debug_infrun)
8a9de0e4 3642 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3643 /* Else, stop and report the catchpoint(s) whose triggering
3644 caused us to begin stepping. */
4e1c45ea 3645 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3646 bpstat_clear (&ecs->event_thread->stop_bpstat);
3647 ecs->event_thread->stop_bpstat
3648 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3649 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3650 stop_print_frame = 1;
3651 stop_stepping (ecs);
3652 return;
3653 }
c906108c 3654
4e1c45ea 3655 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3656 {
527159b7 3657 if (debug_infrun)
d3169d93
DJ
3658 fprintf_unfiltered (gdb_stdlog,
3659 "infrun: step-resume breakpoint is inserted\n");
527159b7 3660
488f131b
JB
3661 /* Having a step-resume breakpoint overrides anything
3662 else having to do with stepping commands until
3663 that breakpoint is reached. */
488f131b
JB
3664 keep_going (ecs);
3665 return;
3666 }
c5aa993b 3667
4e1c45ea 3668 if (ecs->event_thread->step_range_end == 0)
488f131b 3669 {
527159b7 3670 if (debug_infrun)
8a9de0e4 3671 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3672 /* Likewise if we aren't even stepping. */
488f131b
JB
3673 keep_going (ecs);
3674 return;
3675 }
c5aa993b 3676
488f131b 3677 /* If stepping through a line, keep going if still within it.
c906108c 3678
488f131b
JB
3679 Note that step_range_end is the address of the first instruction
3680 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3681 within it!
3682
3683 Note also that during reverse execution, we may be stepping
3684 through a function epilogue and therefore must detect when
3685 the current-frame changes in the middle of a line. */
3686
4e1c45ea 3687 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3688 && stop_pc < ecs->event_thread->step_range_end
3689 && (execution_direction != EXEC_REVERSE
388a8562 3690 || frame_id_eq (get_frame_id (frame),
31410e84 3691 ecs->event_thread->step_frame_id)))
488f131b 3692 {
527159b7 3693 if (debug_infrun)
5af949e3
UW
3694 fprintf_unfiltered
3695 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3696 paddress (gdbarch, ecs->event_thread->step_range_start),
3697 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
3698
3699 /* When stepping backward, stop at beginning of line range
3700 (unless it's the function entry point, in which case
3701 keep going back to the call point). */
3702 if (stop_pc == ecs->event_thread->step_range_start
3703 && stop_pc != ecs->stop_func_start
3704 && execution_direction == EXEC_REVERSE)
3705 {
3706 ecs->event_thread->stop_step = 1;
3707 print_stop_reason (END_STEPPING_RANGE, 0);
3708 stop_stepping (ecs);
3709 }
3710 else
3711 keep_going (ecs);
3712
488f131b
JB
3713 return;
3714 }
c5aa993b 3715
488f131b 3716 /* We stepped out of the stepping range. */
c906108c 3717
488f131b 3718 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3719 loader dynamic symbol resolution code...
3720
3721 EXEC_FORWARD: we keep on single stepping until we exit the run
3722 time loader code and reach the callee's address.
3723
3724 EXEC_REVERSE: we've already executed the callee (backward), and
3725 the runtime loader code is handled just like any other
3726 undebuggable function call. Now we need only keep stepping
3727 backward through the trampoline code, and that's handled further
3728 down, so there is nothing for us to do here. */
3729
3730 if (execution_direction != EXEC_REVERSE
3731 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3732 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3733 {
4c8c40e6 3734 CORE_ADDR pc_after_resolver =
568d6575 3735 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3736
527159b7 3737 if (debug_infrun)
8a9de0e4 3738 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3739
488f131b
JB
3740 if (pc_after_resolver)
3741 {
3742 /* Set up a step-resume breakpoint at the address
3743 indicated by SKIP_SOLIB_RESOLVER. */
3744 struct symtab_and_line sr_sal;
fe39c653 3745 init_sal (&sr_sal);
488f131b
JB
3746 sr_sal.pc = pc_after_resolver;
3747
a6d9a66e
UW
3748 insert_step_resume_breakpoint_at_sal (gdbarch,
3749 sr_sal, null_frame_id);
c5aa993b 3750 }
c906108c 3751
488f131b
JB
3752 keep_going (ecs);
3753 return;
3754 }
c906108c 3755
4e1c45ea 3756 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3757 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3758 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3759 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3760 {
527159b7 3761 if (debug_infrun)
8a9de0e4 3762 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3763 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3764 a signal trampoline (either by a signal being delivered or by
3765 the signal handler returning). Just single-step until the
3766 inferior leaves the trampoline (either by calling the handler
3767 or returning). */
488f131b
JB
3768 keep_going (ecs);
3769 return;
3770 }
c906108c 3771
c17eaafe
DJ
3772 /* Check for subroutine calls. The check for the current frame
3773 equalling the step ID is not necessary - the check of the
3774 previous frame's ID is sufficient - but it is a common case and
3775 cheaper than checking the previous frame's ID.
14e60db5
DJ
3776
3777 NOTE: frame_id_eq will never report two invalid frame IDs as
3778 being equal, so to get into this block, both the current and
3779 previous frame must have valid frame IDs. */
edb3359d
DJ
3780 if (!frame_id_eq (get_stack_frame_id (frame),
3781 ecs->event_thread->step_stack_frame_id)
fdd654f3
MS
3782 && frame_id_eq (frame_unwind_caller_id (frame),
3783 ecs->event_thread->step_stack_frame_id))
488f131b 3784 {
95918acb 3785 CORE_ADDR real_stop_pc;
8fb3e588 3786
527159b7 3787 if (debug_infrun)
8a9de0e4 3788 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3789
078130d0 3790 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3791 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3792 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3793 ecs->stop_func_start)))
95918acb
AC
3794 {
3795 /* I presume that step_over_calls is only 0 when we're
3796 supposed to be stepping at the assembly language level
3797 ("stepi"). Just stop. */
3798 /* Also, maybe we just did a "nexti" inside a prolog, so we
3799 thought it was a subroutine call but it was not. Stop as
3800 well. FENN */
388a8562 3801 /* And this works the same backward as frontward. MVS */
414c69f7 3802 ecs->event_thread->stop_step = 1;
95918acb
AC
3803 print_stop_reason (END_STEPPING_RANGE, 0);
3804 stop_stepping (ecs);
3805 return;
3806 }
8fb3e588 3807
388a8562
MS
3808 /* Reverse stepping through solib trampolines. */
3809
3810 if (execution_direction == EXEC_REVERSE
fdd654f3 3811 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
3812 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3813 || (ecs->stop_func_start == 0
3814 && in_solib_dynsym_resolve_code (stop_pc))))
3815 {
3816 /* Any solib trampoline code can be handled in reverse
3817 by simply continuing to single-step. We have already
3818 executed the solib function (backwards), and a few
3819 steps will take us back through the trampoline to the
3820 caller. */
3821 keep_going (ecs);
3822 return;
3823 }
3824
078130d0 3825 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3826 {
b2175913
MS
3827 /* We're doing a "next".
3828
3829 Normal (forward) execution: set a breakpoint at the
3830 callee's return address (the address at which the caller
3831 will resume).
3832
3833 Reverse (backward) execution. set the step-resume
3834 breakpoint at the start of the function that we just
3835 stepped into (backwards), and continue to there. When we
6130d0b7 3836 get there, we'll need to single-step back to the caller. */
b2175913
MS
3837
3838 if (execution_direction == EXEC_REVERSE)
3839 {
3840 struct symtab_and_line sr_sal;
3067f6e5 3841
388a8562
MS
3842 /* Normal function call return (static or dynamic). */
3843 init_sal (&sr_sal);
3844 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3845 insert_step_resume_breakpoint_at_sal (gdbarch,
3846 sr_sal, null_frame_id);
b2175913
MS
3847 }
3848 else
568d6575 3849 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3850
8567c30f
AC
3851 keep_going (ecs);
3852 return;
3853 }
a53c66de 3854
95918acb 3855 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3856 calling routine and the real function), locate the real
3857 function. That's what tells us (a) whether we want to step
3858 into it at all, and (b) what prologue we want to run to the
3859 end of, if we do step into it. */
568d6575 3860 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3861 if (real_stop_pc == 0)
568d6575 3862 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3863 if (real_stop_pc != 0)
3864 ecs->stop_func_start = real_stop_pc;
8fb3e588 3865
db5f024e 3866 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3867 {
3868 struct symtab_and_line sr_sal;
3869 init_sal (&sr_sal);
3870 sr_sal.pc = ecs->stop_func_start;
3871
a6d9a66e
UW
3872 insert_step_resume_breakpoint_at_sal (gdbarch,
3873 sr_sal, null_frame_id);
8fb3e588
AC
3874 keep_going (ecs);
3875 return;
1b2bfbb9
RC
3876 }
3877
95918acb 3878 /* If we have line number information for the function we are
8fb3e588 3879 thinking of stepping into, step into it.
95918acb 3880
8fb3e588
AC
3881 If there are several symtabs at that PC (e.g. with include
3882 files), just want to know whether *any* of them have line
3883 numbers. find_pc_line handles this. */
95918acb
AC
3884 {
3885 struct symtab_and_line tmp_sal;
8fb3e588 3886
95918acb
AC
3887 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3888 if (tmp_sal.line != 0)
3889 {
b2175913 3890 if (execution_direction == EXEC_REVERSE)
568d6575 3891 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3892 else
568d6575 3893 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3894 return;
3895 }
3896 }
3897
3898 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3899 set, we stop the step so that the user has a chance to switch
3900 in assembly mode. */
078130d0
PA
3901 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3902 && step_stop_if_no_debug)
95918acb 3903 {
414c69f7 3904 ecs->event_thread->stop_step = 1;
95918acb
AC
3905 print_stop_reason (END_STEPPING_RANGE, 0);
3906 stop_stepping (ecs);
3907 return;
3908 }
3909
b2175913
MS
3910 if (execution_direction == EXEC_REVERSE)
3911 {
3912 /* Set a breakpoint at callee's start address.
3913 From there we can step once and be back in the caller. */
3914 struct symtab_and_line sr_sal;
3915 init_sal (&sr_sal);
3916 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3917 insert_step_resume_breakpoint_at_sal (gdbarch,
3918 sr_sal, null_frame_id);
b2175913
MS
3919 }
3920 else
3921 /* Set a breakpoint at callee's return address (the address
3922 at which the caller will resume). */
568d6575 3923 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3924
95918acb 3925 keep_going (ecs);
488f131b 3926 return;
488f131b 3927 }
c906108c 3928
fdd654f3
MS
3929 /* Reverse stepping through solib trampolines. */
3930
3931 if (execution_direction == EXEC_REVERSE
3932 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
3933 {
3934 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3935 || (ecs->stop_func_start == 0
3936 && in_solib_dynsym_resolve_code (stop_pc)))
3937 {
3938 /* Any solib trampoline code can be handled in reverse
3939 by simply continuing to single-step. We have already
3940 executed the solib function (backwards), and a few
3941 steps will take us back through the trampoline to the
3942 caller. */
3943 keep_going (ecs);
3944 return;
3945 }
3946 else if (in_solib_dynsym_resolve_code (stop_pc))
3947 {
3948 /* Stepped backward into the solib dynsym resolver.
3949 Set a breakpoint at its start and continue, then
3950 one more step will take us out. */
3951 struct symtab_and_line sr_sal;
3952 init_sal (&sr_sal);
3953 sr_sal.pc = ecs->stop_func_start;
3954 insert_step_resume_breakpoint_at_sal (gdbarch,
3955 sr_sal, null_frame_id);
3956 keep_going (ecs);
3957 return;
3958 }
3959 }
3960
488f131b
JB
3961 /* If we're in the return path from a shared library trampoline,
3962 we want to proceed through the trampoline when stepping. */
568d6575 3963 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3964 stop_pc, ecs->stop_func_name))
488f131b 3965 {
488f131b 3966 /* Determine where this trampoline returns. */
52f729a7 3967 CORE_ADDR real_stop_pc;
568d6575 3968 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 3969
527159b7 3970 if (debug_infrun)
8a9de0e4 3971 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3972
488f131b 3973 /* Only proceed through if we know where it's going. */
d764a824 3974 if (real_stop_pc)
488f131b
JB
3975 {
3976 /* And put the step-breakpoint there and go until there. */
3977 struct symtab_and_line sr_sal;
3978
fe39c653 3979 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3980 sr_sal.pc = real_stop_pc;
488f131b 3981 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3982
3983 /* Do not specify what the fp should be when we stop since
3984 on some machines the prologue is where the new fp value
3985 is established. */
a6d9a66e
UW
3986 insert_step_resume_breakpoint_at_sal (gdbarch,
3987 sr_sal, null_frame_id);
c906108c 3988
488f131b
JB
3989 /* Restart without fiddling with the step ranges or
3990 other state. */
3991 keep_going (ecs);
3992 return;
3993 }
3994 }
c906108c 3995
2afb61aa 3996 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3997
1b2bfbb9
RC
3998 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3999 the trampoline processing logic, however, there are some trampolines
4000 that have no names, so we should do trampoline handling first. */
078130d0 4001 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4002 && ecs->stop_func_name == NULL
2afb61aa 4003 && stop_pc_sal.line == 0)
1b2bfbb9 4004 {
527159b7 4005 if (debug_infrun)
8a9de0e4 4006 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4007
1b2bfbb9 4008 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4009 undebuggable function (where there is no debugging information
4010 and no line number corresponding to the address where the
1b2bfbb9
RC
4011 inferior stopped). Since we want to skip this kind of code,
4012 we keep going until the inferior returns from this
14e60db5
DJ
4013 function - unless the user has asked us not to (via
4014 set step-mode) or we no longer know how to get back
4015 to the call site. */
4016 if (step_stop_if_no_debug
c7ce8faa 4017 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4018 {
4019 /* If we have no line number and the step-stop-if-no-debug
4020 is set, we stop the step so that the user has a chance to
4021 switch in assembly mode. */
414c69f7 4022 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4023 print_stop_reason (END_STEPPING_RANGE, 0);
4024 stop_stepping (ecs);
4025 return;
4026 }
4027 else
4028 {
4029 /* Set a breakpoint at callee's return address (the address
4030 at which the caller will resume). */
568d6575 4031 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4032 keep_going (ecs);
4033 return;
4034 }
4035 }
4036
4e1c45ea 4037 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4038 {
4039 /* It is stepi or nexti. We always want to stop stepping after
4040 one instruction. */
527159b7 4041 if (debug_infrun)
8a9de0e4 4042 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4043 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4044 print_stop_reason (END_STEPPING_RANGE, 0);
4045 stop_stepping (ecs);
4046 return;
4047 }
4048
2afb61aa 4049 if (stop_pc_sal.line == 0)
488f131b
JB
4050 {
4051 /* We have no line number information. That means to stop
4052 stepping (does this always happen right after one instruction,
4053 when we do "s" in a function with no line numbers,
4054 or can this happen as a result of a return or longjmp?). */
527159b7 4055 if (debug_infrun)
8a9de0e4 4056 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4057 ecs->event_thread->stop_step = 1;
488f131b
JB
4058 print_stop_reason (END_STEPPING_RANGE, 0);
4059 stop_stepping (ecs);
4060 return;
4061 }
c906108c 4062
edb3359d
DJ
4063 /* Look for "calls" to inlined functions, part one. If the inline
4064 frame machinery detected some skipped call sites, we have entered
4065 a new inline function. */
4066
4067 if (frame_id_eq (get_frame_id (get_current_frame ()),
4068 ecs->event_thread->step_frame_id)
4069 && inline_skipped_frames (ecs->ptid))
4070 {
4071 struct symtab_and_line call_sal;
4072
4073 if (debug_infrun)
4074 fprintf_unfiltered (gdb_stdlog,
4075 "infrun: stepped into inlined function\n");
4076
4077 find_frame_sal (get_current_frame (), &call_sal);
4078
4079 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4080 {
4081 /* For "step", we're going to stop. But if the call site
4082 for this inlined function is on the same source line as
4083 we were previously stepping, go down into the function
4084 first. Otherwise stop at the call site. */
4085
4086 if (call_sal.line == ecs->event_thread->current_line
4087 && call_sal.symtab == ecs->event_thread->current_symtab)
4088 step_into_inline_frame (ecs->ptid);
4089
4090 ecs->event_thread->stop_step = 1;
4091 print_stop_reason (END_STEPPING_RANGE, 0);
4092 stop_stepping (ecs);
4093 return;
4094 }
4095 else
4096 {
4097 /* For "next", we should stop at the call site if it is on a
4098 different source line. Otherwise continue through the
4099 inlined function. */
4100 if (call_sal.line == ecs->event_thread->current_line
4101 && call_sal.symtab == ecs->event_thread->current_symtab)
4102 keep_going (ecs);
4103 else
4104 {
4105 ecs->event_thread->stop_step = 1;
4106 print_stop_reason (END_STEPPING_RANGE, 0);
4107 stop_stepping (ecs);
4108 }
4109 return;
4110 }
4111 }
4112
4113 /* Look for "calls" to inlined functions, part two. If we are still
4114 in the same real function we were stepping through, but we have
4115 to go further up to find the exact frame ID, we are stepping
4116 through a more inlined call beyond its call site. */
4117
4118 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4119 && !frame_id_eq (get_frame_id (get_current_frame ()),
4120 ecs->event_thread->step_frame_id)
4121 && stepped_in_from (get_current_frame (),
4122 ecs->event_thread->step_frame_id))
4123 {
4124 if (debug_infrun)
4125 fprintf_unfiltered (gdb_stdlog,
4126 "infrun: stepping through inlined function\n");
4127
4128 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4129 keep_going (ecs);
4130 else
4131 {
4132 ecs->event_thread->stop_step = 1;
4133 print_stop_reason (END_STEPPING_RANGE, 0);
4134 stop_stepping (ecs);
4135 }
4136 return;
4137 }
4138
2afb61aa 4139 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4140 && (ecs->event_thread->current_line != stop_pc_sal.line
4141 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4142 {
4143 /* We are at the start of a different line. So stop. Note that
4144 we don't stop if we step into the middle of a different line.
4145 That is said to make things like for (;;) statements work
4146 better. */
527159b7 4147 if (debug_infrun)
8a9de0e4 4148 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4149 ecs->event_thread->stop_step = 1;
488f131b
JB
4150 print_stop_reason (END_STEPPING_RANGE, 0);
4151 stop_stepping (ecs);
4152 return;
4153 }
c906108c 4154
488f131b 4155 /* We aren't done stepping.
c906108c 4156
488f131b
JB
4157 Optimize by setting the stepping range to the line.
4158 (We might not be in the original line, but if we entered a
4159 new line in mid-statement, we continue stepping. This makes
4160 things like for(;;) statements work better.) */
c906108c 4161
4e1c45ea
PA
4162 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4163 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4164 set_step_info (frame, stop_pc_sal);
488f131b 4165
527159b7 4166 if (debug_infrun)
8a9de0e4 4167 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4168 keep_going (ecs);
104c1213
JM
4169}
4170
b3444185 4171/* Is thread TP in the middle of single-stepping? */
104c1213 4172
a7212384 4173static int
b3444185 4174currently_stepping (struct thread_info *tp)
a7212384 4175{
b3444185
PA
4176 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4177 || tp->trap_expected
4178 || tp->stepping_through_solib_after_catch
4179 || bpstat_should_step ());
a7212384
UW
4180}
4181
b3444185
PA
4182/* Returns true if any thread *but* the one passed in "data" is in the
4183 middle of stepping or of handling a "next". */
a7212384 4184
104c1213 4185static int
b3444185 4186currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4187{
b3444185
PA
4188 if (tp == data)
4189 return 0;
4190
4191 return (tp->step_range_end
4192 || tp->trap_expected
4193 || tp->stepping_through_solib_after_catch);
104c1213 4194}
c906108c 4195
b2175913
MS
4196/* Inferior has stepped into a subroutine call with source code that
4197 we should not step over. Do step to the first line of code in
4198 it. */
c2c6d25f
JM
4199
4200static void
568d6575
UW
4201handle_step_into_function (struct gdbarch *gdbarch,
4202 struct execution_control_state *ecs)
c2c6d25f
JM
4203{
4204 struct symtab *s;
2afb61aa 4205 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4206
4207 s = find_pc_symtab (stop_pc);
4208 if (s && s->language != language_asm)
568d6575 4209 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4210 ecs->stop_func_start);
c2c6d25f 4211
2afb61aa 4212 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4213 /* Use the step_resume_break to step until the end of the prologue,
4214 even if that involves jumps (as it seems to on the vax under
4215 4.2). */
4216 /* If the prologue ends in the middle of a source line, continue to
4217 the end of that source line (if it is still within the function).
4218 Otherwise, just go to end of prologue. */
2afb61aa
PA
4219 if (stop_func_sal.end
4220 && stop_func_sal.pc != ecs->stop_func_start
4221 && stop_func_sal.end < ecs->stop_func_end)
4222 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4223
2dbd5e30
KB
4224 /* Architectures which require breakpoint adjustment might not be able
4225 to place a breakpoint at the computed address. If so, the test
4226 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4227 ecs->stop_func_start to an address at which a breakpoint may be
4228 legitimately placed.
8fb3e588 4229
2dbd5e30
KB
4230 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4231 made, GDB will enter an infinite loop when stepping through
4232 optimized code consisting of VLIW instructions which contain
4233 subinstructions corresponding to different source lines. On
4234 FR-V, it's not permitted to place a breakpoint on any but the
4235 first subinstruction of a VLIW instruction. When a breakpoint is
4236 set, GDB will adjust the breakpoint address to the beginning of
4237 the VLIW instruction. Thus, we need to make the corresponding
4238 adjustment here when computing the stop address. */
8fb3e588 4239
568d6575 4240 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4241 {
4242 ecs->stop_func_start
568d6575 4243 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4244 ecs->stop_func_start);
2dbd5e30
KB
4245 }
4246
c2c6d25f
JM
4247 if (ecs->stop_func_start == stop_pc)
4248 {
4249 /* We are already there: stop now. */
414c69f7 4250 ecs->event_thread->stop_step = 1;
488f131b 4251 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4252 stop_stepping (ecs);
4253 return;
4254 }
4255 else
4256 {
4257 /* Put the step-breakpoint there and go until there. */
fe39c653 4258 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4259 sr_sal.pc = ecs->stop_func_start;
4260 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4261
c2c6d25f 4262 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4263 some machines the prologue is where the new fp value is
4264 established. */
a6d9a66e 4265 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4266
4267 /* And make sure stepping stops right away then. */
4e1c45ea 4268 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4269 }
4270 keep_going (ecs);
4271}
d4f3574e 4272
b2175913
MS
4273/* Inferior has stepped backward into a subroutine call with source
4274 code that we should not step over. Do step to the beginning of the
4275 last line of code in it. */
4276
4277static void
568d6575
UW
4278handle_step_into_function_backward (struct gdbarch *gdbarch,
4279 struct execution_control_state *ecs)
b2175913
MS
4280{
4281 struct symtab *s;
4282 struct symtab_and_line stop_func_sal, sr_sal;
4283
4284 s = find_pc_symtab (stop_pc);
4285 if (s && s->language != language_asm)
568d6575 4286 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4287 ecs->stop_func_start);
4288
4289 stop_func_sal = find_pc_line (stop_pc, 0);
4290
4291 /* OK, we're just going to keep stepping here. */
4292 if (stop_func_sal.pc == stop_pc)
4293 {
4294 /* We're there already. Just stop stepping now. */
4295 ecs->event_thread->stop_step = 1;
4296 print_stop_reason (END_STEPPING_RANGE, 0);
4297 stop_stepping (ecs);
4298 }
4299 else
4300 {
4301 /* Else just reset the step range and keep going.
4302 No step-resume breakpoint, they don't work for
4303 epilogues, which can have multiple entry paths. */
4304 ecs->event_thread->step_range_start = stop_func_sal.pc;
4305 ecs->event_thread->step_range_end = stop_func_sal.end;
4306 keep_going (ecs);
4307 }
4308 return;
4309}
4310
d3169d93 4311/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4312 This is used to both functions and to skip over code. */
4313
4314static void
a6d9a66e
UW
4315insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4316 struct symtab_and_line sr_sal,
44cbf7b5
AC
4317 struct frame_id sr_id)
4318{
611c83ae
PA
4319 /* There should never be more than one step-resume or longjmp-resume
4320 breakpoint per thread, so we should never be setting a new
44cbf7b5 4321 step_resume_breakpoint when one is already active. */
4e1c45ea 4322 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4323
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4326 "infrun: inserting step-resume breakpoint at %s\n",
4327 paddress (gdbarch, sr_sal.pc));
d3169d93 4328
4e1c45ea 4329 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4330 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4331}
7ce450bd 4332
d3169d93 4333/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4334 to skip a potential signal handler.
7ce450bd 4335
14e60db5
DJ
4336 This is called with the interrupted function's frame. The signal
4337 handler, when it returns, will resume the interrupted function at
4338 RETURN_FRAME.pc. */
d303a6c7
AC
4339
4340static void
44cbf7b5 4341insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4342{
4343 struct symtab_and_line sr_sal;
a6d9a66e 4344 struct gdbarch *gdbarch;
d303a6c7 4345
f4c1edd8 4346 gdb_assert (return_frame != NULL);
d303a6c7
AC
4347 init_sal (&sr_sal); /* initialize to zeros */
4348
a6d9a66e 4349 gdbarch = get_frame_arch (return_frame);
568d6575 4350 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4351 sr_sal.section = find_pc_overlay (sr_sal.pc);
4352
a6d9a66e
UW
4353 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4354 get_stack_frame_id (return_frame));
d303a6c7
AC
4355}
4356
14e60db5
DJ
4357/* Similar to insert_step_resume_breakpoint_at_frame, except
4358 but a breakpoint at the previous frame's PC. This is used to
4359 skip a function after stepping into it (for "next" or if the called
4360 function has no debugging information).
4361
4362 The current function has almost always been reached by single
4363 stepping a call or return instruction. NEXT_FRAME belongs to the
4364 current function, and the breakpoint will be set at the caller's
4365 resume address.
4366
4367 This is a separate function rather than reusing
4368 insert_step_resume_breakpoint_at_frame in order to avoid
4369 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4370 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4371
4372static void
4373insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4374{
4375 struct symtab_and_line sr_sal;
a6d9a66e 4376 struct gdbarch *gdbarch;
14e60db5
DJ
4377
4378 /* We shouldn't have gotten here if we don't know where the call site
4379 is. */
c7ce8faa 4380 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4381
4382 init_sal (&sr_sal); /* initialize to zeros */
4383
a6d9a66e 4384 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4385 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4386 frame_unwind_caller_pc (next_frame));
14e60db5
DJ
4387 sr_sal.section = find_pc_overlay (sr_sal.pc);
4388
a6d9a66e 4389 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4390 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4391}
4392
611c83ae
PA
4393/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4394 new breakpoint at the target of a jmp_buf. The handling of
4395 longjmp-resume uses the same mechanisms used for handling
4396 "step-resume" breakpoints. */
4397
4398static void
a6d9a66e 4399insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4400{
4401 /* There should never be more than one step-resume or longjmp-resume
4402 breakpoint per thread, so we should never be setting a new
4403 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4404 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4405
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4408 "infrun: inserting longjmp-resume breakpoint at %s\n",
4409 paddress (gdbarch, pc));
611c83ae 4410
4e1c45ea 4411 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4412 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4413}
4414
104c1213
JM
4415static void
4416stop_stepping (struct execution_control_state *ecs)
4417{
527159b7 4418 if (debug_infrun)
8a9de0e4 4419 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4420
cd0fc7c3
SS
4421 /* Let callers know we don't want to wait for the inferior anymore. */
4422 ecs->wait_some_more = 0;
4423}
4424
d4f3574e
SS
4425/* This function handles various cases where we need to continue
4426 waiting for the inferior. */
4427/* (Used to be the keep_going: label in the old wait_for_inferior) */
4428
4429static void
4430keep_going (struct execution_control_state *ecs)
4431{
d4f3574e 4432 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4433 ecs->event_thread->prev_pc
4434 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4435
d4f3574e
SS
4436 /* If we did not do break;, it means we should keep running the
4437 inferior and not return to debugger. */
4438
2020b7ab
PA
4439 if (ecs->event_thread->trap_expected
4440 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4441 {
4442 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4443 the inferior, else we'd not get here) and we haven't yet
4444 gotten our trap. Simply continue. */
2020b7ab
PA
4445 resume (currently_stepping (ecs->event_thread),
4446 ecs->event_thread->stop_signal);
d4f3574e
SS
4447 }
4448 else
4449 {
4450 /* Either the trap was not expected, but we are continuing
488f131b
JB
4451 anyway (the user asked that this signal be passed to the
4452 child)
4453 -- or --
4454 The signal was SIGTRAP, e.g. it was our signal, but we
4455 decided we should resume from it.
d4f3574e 4456
c36b740a 4457 We're going to run this baby now!
d4f3574e 4458
c36b740a
VP
4459 Note that insert_breakpoints won't try to re-insert
4460 already inserted breakpoints. Therefore, we don't
4461 care if breakpoints were already inserted, or not. */
4462
4e1c45ea 4463 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4464 {
9f5a595d
UW
4465 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4466 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4467 /* Since we can't do a displaced step, we have to remove
4468 the breakpoint while we step it. To keep things
4469 simple, we remove them all. */
4470 remove_breakpoints ();
45e8c884
VP
4471 }
4472 else
d4f3574e 4473 {
e236ba44 4474 struct gdb_exception e;
569631c6
UW
4475 /* Stop stepping when inserting breakpoints
4476 has failed. */
e236ba44
VP
4477 TRY_CATCH (e, RETURN_MASK_ERROR)
4478 {
4479 insert_breakpoints ();
4480 }
4481 if (e.reason < 0)
d4f3574e
SS
4482 {
4483 stop_stepping (ecs);
4484 return;
4485 }
d4f3574e
SS
4486 }
4487
4e1c45ea 4488 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4489
4490 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4491 specifies that such a signal should be delivered to the
4492 target program).
4493
4494 Typically, this would occure when a user is debugging a
4495 target monitor on a simulator: the target monitor sets a
4496 breakpoint; the simulator encounters this break-point and
4497 halts the simulation handing control to GDB; GDB, noteing
4498 that the break-point isn't valid, returns control back to the
4499 simulator; the simulator then delivers the hardware
4500 equivalent of a SIGNAL_TRAP to the program being debugged. */
4501
2020b7ab
PA
4502 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4503 && !signal_program[ecs->event_thread->stop_signal])
4504 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4505
2020b7ab
PA
4506 resume (currently_stepping (ecs->event_thread),
4507 ecs->event_thread->stop_signal);
d4f3574e
SS
4508 }
4509
488f131b 4510 prepare_to_wait (ecs);
d4f3574e
SS
4511}
4512
104c1213
JM
4513/* This function normally comes after a resume, before
4514 handle_inferior_event exits. It takes care of any last bits of
4515 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4516
104c1213
JM
4517static void
4518prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4519{
527159b7 4520 if (debug_infrun)
8a9de0e4 4521 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4522
104c1213
JM
4523 /* This is the old end of the while loop. Let everybody know we
4524 want to wait for the inferior some more and get called again
4525 soon. */
4526 ecs->wait_some_more = 1;
c906108c 4527}
11cf8741
JM
4528
4529/* Print why the inferior has stopped. We always print something when
4530 the inferior exits, or receives a signal. The rest of the cases are
4531 dealt with later on in normal_stop() and print_it_typical(). Ideally
4532 there should be a call to this function from handle_inferior_event()
4533 each time stop_stepping() is called.*/
4534static void
4535print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4536{
4537 switch (stop_reason)
4538 {
11cf8741
JM
4539 case END_STEPPING_RANGE:
4540 /* We are done with a step/next/si/ni command. */
4541 /* For now print nothing. */
fb40c209 4542 /* Print a message only if not in the middle of doing a "step n"
488f131b 4543 operation for n > 1 */
414c69f7
PA
4544 if (!inferior_thread ()->step_multi
4545 || !inferior_thread ()->stop_step)
9dc5e2a9 4546 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4547 ui_out_field_string
4548 (uiout, "reason",
4549 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4550 break;
11cf8741
JM
4551 case SIGNAL_EXITED:
4552 /* The inferior was terminated by a signal. */
8b93c638 4553 annotate_signalled ();
9dc5e2a9 4554 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4555 ui_out_field_string
4556 (uiout, "reason",
4557 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4558 ui_out_text (uiout, "\nProgram terminated with signal ");
4559 annotate_signal_name ();
488f131b
JB
4560 ui_out_field_string (uiout, "signal-name",
4561 target_signal_to_name (stop_info));
8b93c638
JM
4562 annotate_signal_name_end ();
4563 ui_out_text (uiout, ", ");
4564 annotate_signal_string ();
488f131b
JB
4565 ui_out_field_string (uiout, "signal-meaning",
4566 target_signal_to_string (stop_info));
8b93c638
JM
4567 annotate_signal_string_end ();
4568 ui_out_text (uiout, ".\n");
4569 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4570 break;
4571 case EXITED:
4572 /* The inferior program is finished. */
8b93c638
JM
4573 annotate_exited (stop_info);
4574 if (stop_info)
4575 {
9dc5e2a9 4576 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4577 ui_out_field_string (uiout, "reason",
4578 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4579 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4580 ui_out_field_fmt (uiout, "exit-code", "0%o",
4581 (unsigned int) stop_info);
8b93c638
JM
4582 ui_out_text (uiout, ".\n");
4583 }
4584 else
4585 {
9dc5e2a9 4586 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4587 ui_out_field_string
4588 (uiout, "reason",
4589 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4590 ui_out_text (uiout, "\nProgram exited normally.\n");
4591 }
f17517ea
AS
4592 /* Support the --return-child-result option. */
4593 return_child_result_value = stop_info;
11cf8741
JM
4594 break;
4595 case SIGNAL_RECEIVED:
252fbfc8
PA
4596 /* Signal received. The signal table tells us to print about
4597 it. */
8b93c638 4598 annotate_signal ();
252fbfc8
PA
4599
4600 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4601 {
4602 struct thread_info *t = inferior_thread ();
4603
4604 ui_out_text (uiout, "\n[");
4605 ui_out_field_string (uiout, "thread-name",
4606 target_pid_to_str (t->ptid));
4607 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4608 ui_out_text (uiout, " stopped");
4609 }
4610 else
4611 {
4612 ui_out_text (uiout, "\nProgram received signal ");
4613 annotate_signal_name ();
4614 if (ui_out_is_mi_like_p (uiout))
4615 ui_out_field_string
4616 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4617 ui_out_field_string (uiout, "signal-name",
4618 target_signal_to_name (stop_info));
4619 annotate_signal_name_end ();
4620 ui_out_text (uiout, ", ");
4621 annotate_signal_string ();
4622 ui_out_field_string (uiout, "signal-meaning",
4623 target_signal_to_string (stop_info));
4624 annotate_signal_string_end ();
4625 }
8b93c638 4626 ui_out_text (uiout, ".\n");
11cf8741 4627 break;
b2175913
MS
4628 case NO_HISTORY:
4629 /* Reverse execution: target ran out of history info. */
4630 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4631 break;
11cf8741 4632 default:
8e65ff28 4633 internal_error (__FILE__, __LINE__,
e2e0b3e5 4634 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4635 break;
4636 }
4637}
c906108c 4638\f
43ff13b4 4639
c906108c
SS
4640/* Here to return control to GDB when the inferior stops for real.
4641 Print appropriate messages, remove breakpoints, give terminal our modes.
4642
4643 STOP_PRINT_FRAME nonzero means print the executing frame
4644 (pc, function, args, file, line number and line text).
4645 BREAKPOINTS_FAILED nonzero means stop was due to error
4646 attempting to insert breakpoints. */
4647
4648void
96baa820 4649normal_stop (void)
c906108c 4650{
73b65bb0
DJ
4651 struct target_waitstatus last;
4652 ptid_t last_ptid;
29f49a6a 4653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4654
4655 get_last_target_status (&last_ptid, &last);
4656
29f49a6a
PA
4657 /* If an exception is thrown from this point on, make sure to
4658 propagate GDB's knowledge of the executing state to the
4659 frontend/user running state. A QUIT is an easy exception to see
4660 here, so do this before any filtered output. */
c35b1492
PA
4661 if (!non_stop)
4662 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4663 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4664 && last.kind != TARGET_WAITKIND_EXITED)
4665 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4666
4f8d22e3
PA
4667 /* In non-stop mode, we don't want GDB to switch threads behind the
4668 user's back, to avoid races where the user is typing a command to
4669 apply to thread x, but GDB switches to thread y before the user
4670 finishes entering the command. */
4671
c906108c
SS
4672 /* As with the notification of thread events, we want to delay
4673 notifying the user that we've switched thread context until
4674 the inferior actually stops.
4675
73b65bb0
DJ
4676 There's no point in saying anything if the inferior has exited.
4677 Note that SIGNALLED here means "exited with a signal", not
4678 "received a signal". */
4f8d22e3
PA
4679 if (!non_stop
4680 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4681 && target_has_execution
4682 && last.kind != TARGET_WAITKIND_SIGNALLED
4683 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4684 {
4685 target_terminal_ours_for_output ();
a3f17187 4686 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4687 target_pid_to_str (inferior_ptid));
b8fa951a 4688 annotate_thread_changed ();
39f77062 4689 previous_inferior_ptid = inferior_ptid;
c906108c 4690 }
c906108c 4691
74960c60 4692 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4693 {
4694 if (remove_breakpoints ())
4695 {
4696 target_terminal_ours_for_output ();
a3f17187
AC
4697 printf_filtered (_("\
4698Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4699Further execution is probably impossible.\n"));
c906108c
SS
4700 }
4701 }
c906108c 4702
c906108c
SS
4703 /* If an auto-display called a function and that got a signal,
4704 delete that auto-display to avoid an infinite recursion. */
4705
4706 if (stopped_by_random_signal)
4707 disable_current_display ();
4708
4709 /* Don't print a message if in the middle of doing a "step n"
4710 operation for n > 1 */
af679fd0
PA
4711 if (target_has_execution
4712 && last.kind != TARGET_WAITKIND_SIGNALLED
4713 && last.kind != TARGET_WAITKIND_EXITED
4714 && inferior_thread ()->step_multi
414c69f7 4715 && inferior_thread ()->stop_step)
c906108c
SS
4716 goto done;
4717
4718 target_terminal_ours ();
4719
7abfe014
DJ
4720 /* Set the current source location. This will also happen if we
4721 display the frame below, but the current SAL will be incorrect
4722 during a user hook-stop function. */
d729566a 4723 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4724 set_current_sal_from_frame (get_current_frame (), 1);
4725
dd7e2d2b
PA
4726 /* Let the user/frontend see the threads as stopped. */
4727 do_cleanups (old_chain);
4728
4729 /* Look up the hook_stop and run it (CLI internally handles problem
4730 of stop_command's pre-hook not existing). */
4731 if (stop_command)
4732 catch_errors (hook_stop_stub, stop_command,
4733 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4734
d729566a 4735 if (!has_stack_frames ())
d51fd4c8 4736 goto done;
c906108c 4737
32400beb
PA
4738 if (last.kind == TARGET_WAITKIND_SIGNALLED
4739 || last.kind == TARGET_WAITKIND_EXITED)
4740 goto done;
4741
c906108c
SS
4742 /* Select innermost stack frame - i.e., current frame is frame 0,
4743 and current location is based on that.
4744 Don't do this on return from a stack dummy routine,
4745 or if the program has exited. */
4746
4747 if (!stop_stack_dummy)
4748 {
0f7d239c 4749 select_frame (get_current_frame ());
c906108c
SS
4750
4751 /* Print current location without a level number, if
c5aa993b
JM
4752 we have changed functions or hit a breakpoint.
4753 Print source line if we have one.
4754 bpstat_print() contains the logic deciding in detail
4755 what to print, based on the event(s) that just occurred. */
c906108c 4756
d01a8610
AS
4757 /* If --batch-silent is enabled then there's no need to print the current
4758 source location, and to try risks causing an error message about
4759 missing source files. */
4760 if (stop_print_frame && !batch_silent)
c906108c
SS
4761 {
4762 int bpstat_ret;
4763 int source_flag;
917317f4 4764 int do_frame_printing = 1;
347bddb7 4765 struct thread_info *tp = inferior_thread ();
c906108c 4766
347bddb7 4767 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4768 switch (bpstat_ret)
4769 {
4770 case PRINT_UNKNOWN:
b0f4b84b
DJ
4771 /* If we had hit a shared library event breakpoint,
4772 bpstat_print would print out this message. If we hit
4773 an OS-level shared library event, do the same
4774 thing. */
4775 if (last.kind == TARGET_WAITKIND_LOADED)
4776 {
4777 printf_filtered (_("Stopped due to shared library event\n"));
4778 source_flag = SRC_LINE; /* something bogus */
4779 do_frame_printing = 0;
4780 break;
4781 }
4782
aa0cd9c1 4783 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4784 (or should) carry around the function and does (or
4785 should) use that when doing a frame comparison. */
414c69f7 4786 if (tp->stop_step
347bddb7 4787 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4788 get_frame_id (get_current_frame ()))
917317f4 4789 && step_start_function == find_pc_function (stop_pc))
488f131b 4790 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4791 else
488f131b 4792 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4793 break;
4794 case PRINT_SRC_AND_LOC:
488f131b 4795 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4796 break;
4797 case PRINT_SRC_ONLY:
c5394b80 4798 source_flag = SRC_LINE;
917317f4
JM
4799 break;
4800 case PRINT_NOTHING:
488f131b 4801 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4802 do_frame_printing = 0;
4803 break;
4804 default:
e2e0b3e5 4805 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4806 }
c906108c
SS
4807
4808 /* The behavior of this routine with respect to the source
4809 flag is:
c5394b80
JM
4810 SRC_LINE: Print only source line
4811 LOCATION: Print only location
4812 SRC_AND_LOC: Print location and source line */
917317f4 4813 if (do_frame_printing)
b04f3ab4 4814 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4815
4816 /* Display the auto-display expressions. */
4817 do_displays ();
4818 }
4819 }
4820
4821 /* Save the function value return registers, if we care.
4822 We might be about to restore their previous contents. */
32400beb 4823 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4824 {
4825 /* This should not be necessary. */
4826 if (stop_registers)
4827 regcache_xfree (stop_registers);
4828
4829 /* NB: The copy goes through to the target picking up the value of
4830 all the registers. */
4831 stop_registers = regcache_dup (get_current_regcache ());
4832 }
c906108c
SS
4833
4834 if (stop_stack_dummy)
4835 {
b89667eb
DE
4836 /* Pop the empty frame that contains the stack dummy.
4837 This also restores inferior state prior to the call
4838 (struct inferior_thread_state). */
4839 struct frame_info *frame = get_current_frame ();
4840 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4841 frame_pop (frame);
4842 /* frame_pop() calls reinit_frame_cache as the last thing it does
4843 which means there's currently no selected frame. We don't need
4844 to re-establish a selected frame if the dummy call returns normally,
4845 that will be done by restore_inferior_status. However, we do have
4846 to handle the case where the dummy call is returning after being
4847 stopped (e.g. the dummy call previously hit a breakpoint). We
4848 can't know which case we have so just always re-establish a
4849 selected frame here. */
0f7d239c 4850 select_frame (get_current_frame ());
c906108c
SS
4851 }
4852
c906108c
SS
4853done:
4854 annotate_stopped ();
41d2bdb4
PA
4855
4856 /* Suppress the stop observer if we're in the middle of:
4857
4858 - a step n (n > 1), as there still more steps to be done.
4859
4860 - a "finish" command, as the observer will be called in
4861 finish_command_continuation, so it can include the inferior
4862 function's return value.
4863
4864 - calling an inferior function, as we pretend we inferior didn't
4865 run at all. The return value of the call is handled by the
4866 expression evaluator, through call_function_by_hand. */
4867
4868 if (!target_has_execution
4869 || last.kind == TARGET_WAITKIND_SIGNALLED
4870 || last.kind == TARGET_WAITKIND_EXITED
4871 || (!inferior_thread ()->step_multi
4872 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4873 && inferior_thread ()->proceed_to_finish)
4874 && !inferior_thread ()->in_infcall))
347bddb7
PA
4875 {
4876 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4877 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4878 stop_print_frame);
347bddb7 4879 else
1d33d6ba 4880 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4881 }
347bddb7 4882
48844aa6
PA
4883 if (target_has_execution)
4884 {
4885 if (last.kind != TARGET_WAITKIND_SIGNALLED
4886 && last.kind != TARGET_WAITKIND_EXITED)
4887 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4888 Delete any breakpoint that is to be deleted at the next stop. */
4889 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4890 }
c906108c
SS
4891}
4892
4893static int
96baa820 4894hook_stop_stub (void *cmd)
c906108c 4895{
5913bcb0 4896 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4897 return (0);
4898}
4899\f
c5aa993b 4900int
96baa820 4901signal_stop_state (int signo)
c906108c 4902{
d6b48e9c 4903 return signal_stop[signo];
c906108c
SS
4904}
4905
c5aa993b 4906int
96baa820 4907signal_print_state (int signo)
c906108c
SS
4908{
4909 return signal_print[signo];
4910}
4911
c5aa993b 4912int
96baa820 4913signal_pass_state (int signo)
c906108c
SS
4914{
4915 return signal_program[signo];
4916}
4917
488f131b 4918int
7bda5e4a 4919signal_stop_update (int signo, int state)
d4f3574e
SS
4920{
4921 int ret = signal_stop[signo];
4922 signal_stop[signo] = state;
4923 return ret;
4924}
4925
488f131b 4926int
7bda5e4a 4927signal_print_update (int signo, int state)
d4f3574e
SS
4928{
4929 int ret = signal_print[signo];
4930 signal_print[signo] = state;
4931 return ret;
4932}
4933
488f131b 4934int
7bda5e4a 4935signal_pass_update (int signo, int state)
d4f3574e
SS
4936{
4937 int ret = signal_program[signo];
4938 signal_program[signo] = state;
4939 return ret;
4940}
4941
c906108c 4942static void
96baa820 4943sig_print_header (void)
c906108c 4944{
a3f17187
AC
4945 printf_filtered (_("\
4946Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4947}
4948
4949static void
96baa820 4950sig_print_info (enum target_signal oursig)
c906108c 4951{
54363045 4952 const char *name = target_signal_to_name (oursig);
c906108c 4953 int name_padding = 13 - strlen (name);
96baa820 4954
c906108c
SS
4955 if (name_padding <= 0)
4956 name_padding = 0;
4957
4958 printf_filtered ("%s", name);
488f131b 4959 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4960 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4961 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4962 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4963 printf_filtered ("%s\n", target_signal_to_string (oursig));
4964}
4965
4966/* Specify how various signals in the inferior should be handled. */
4967
4968static void
96baa820 4969handle_command (char *args, int from_tty)
c906108c
SS
4970{
4971 char **argv;
4972 int digits, wordlen;
4973 int sigfirst, signum, siglast;
4974 enum target_signal oursig;
4975 int allsigs;
4976 int nsigs;
4977 unsigned char *sigs;
4978 struct cleanup *old_chain;
4979
4980 if (args == NULL)
4981 {
e2e0b3e5 4982 error_no_arg (_("signal to handle"));
c906108c
SS
4983 }
4984
4985 /* Allocate and zero an array of flags for which signals to handle. */
4986
4987 nsigs = (int) TARGET_SIGNAL_LAST;
4988 sigs = (unsigned char *) alloca (nsigs);
4989 memset (sigs, 0, nsigs);
4990
4991 /* Break the command line up into args. */
4992
d1a41061 4993 argv = gdb_buildargv (args);
7a292a7a 4994 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4995
4996 /* Walk through the args, looking for signal oursigs, signal names, and
4997 actions. Signal numbers and signal names may be interspersed with
4998 actions, with the actions being performed for all signals cumulatively
4999 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5000
5001 while (*argv != NULL)
5002 {
5003 wordlen = strlen (*argv);
5004 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5005 {;
5006 }
5007 allsigs = 0;
5008 sigfirst = siglast = -1;
5009
5010 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5011 {
5012 /* Apply action to all signals except those used by the
5013 debugger. Silently skip those. */
5014 allsigs = 1;
5015 sigfirst = 0;
5016 siglast = nsigs - 1;
5017 }
5018 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5019 {
5020 SET_SIGS (nsigs, sigs, signal_stop);
5021 SET_SIGS (nsigs, sigs, signal_print);
5022 }
5023 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5024 {
5025 UNSET_SIGS (nsigs, sigs, signal_program);
5026 }
5027 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5028 {
5029 SET_SIGS (nsigs, sigs, signal_print);
5030 }
5031 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5032 {
5033 SET_SIGS (nsigs, sigs, signal_program);
5034 }
5035 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5036 {
5037 UNSET_SIGS (nsigs, sigs, signal_stop);
5038 }
5039 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5040 {
5041 SET_SIGS (nsigs, sigs, signal_program);
5042 }
5043 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5044 {
5045 UNSET_SIGS (nsigs, sigs, signal_print);
5046 UNSET_SIGS (nsigs, sigs, signal_stop);
5047 }
5048 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5049 {
5050 UNSET_SIGS (nsigs, sigs, signal_program);
5051 }
5052 else if (digits > 0)
5053 {
5054 /* It is numeric. The numeric signal refers to our own
5055 internal signal numbering from target.h, not to host/target
5056 signal number. This is a feature; users really should be
5057 using symbolic names anyway, and the common ones like
5058 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5059
5060 sigfirst = siglast = (int)
5061 target_signal_from_command (atoi (*argv));
5062 if ((*argv)[digits] == '-')
5063 {
5064 siglast = (int)
5065 target_signal_from_command (atoi ((*argv) + digits + 1));
5066 }
5067 if (sigfirst > siglast)
5068 {
5069 /* Bet he didn't figure we'd think of this case... */
5070 signum = sigfirst;
5071 sigfirst = siglast;
5072 siglast = signum;
5073 }
5074 }
5075 else
5076 {
5077 oursig = target_signal_from_name (*argv);
5078 if (oursig != TARGET_SIGNAL_UNKNOWN)
5079 {
5080 sigfirst = siglast = (int) oursig;
5081 }
5082 else
5083 {
5084 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5085 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5086 }
5087 }
5088
5089 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5090 which signals to apply actions to. */
c906108c
SS
5091
5092 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5093 {
5094 switch ((enum target_signal) signum)
5095 {
5096 case TARGET_SIGNAL_TRAP:
5097 case TARGET_SIGNAL_INT:
5098 if (!allsigs && !sigs[signum])
5099 {
9e2f0ad4
HZ
5100 if (query (_("%s is used by the debugger.\n\
5101Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5102 {
5103 sigs[signum] = 1;
5104 }
5105 else
5106 {
a3f17187 5107 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5108 gdb_flush (gdb_stdout);
5109 }
5110 }
5111 break;
5112 case TARGET_SIGNAL_0:
5113 case TARGET_SIGNAL_DEFAULT:
5114 case TARGET_SIGNAL_UNKNOWN:
5115 /* Make sure that "all" doesn't print these. */
5116 break;
5117 default:
5118 sigs[signum] = 1;
5119 break;
5120 }
5121 }
5122
5123 argv++;
5124 }
5125
3a031f65
PA
5126 for (signum = 0; signum < nsigs; signum++)
5127 if (sigs[signum])
5128 {
5129 target_notice_signals (inferior_ptid);
c906108c 5130
3a031f65
PA
5131 if (from_tty)
5132 {
5133 /* Show the results. */
5134 sig_print_header ();
5135 for (; signum < nsigs; signum++)
5136 if (sigs[signum])
5137 sig_print_info (signum);
5138 }
5139
5140 break;
5141 }
c906108c
SS
5142
5143 do_cleanups (old_chain);
5144}
5145
5146static void
96baa820 5147xdb_handle_command (char *args, int from_tty)
c906108c
SS
5148{
5149 char **argv;
5150 struct cleanup *old_chain;
5151
d1a41061
PP
5152 if (args == NULL)
5153 error_no_arg (_("xdb command"));
5154
c906108c
SS
5155 /* Break the command line up into args. */
5156
d1a41061 5157 argv = gdb_buildargv (args);
7a292a7a 5158 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5159 if (argv[1] != (char *) NULL)
5160 {
5161 char *argBuf;
5162 int bufLen;
5163
5164 bufLen = strlen (argv[0]) + 20;
5165 argBuf = (char *) xmalloc (bufLen);
5166 if (argBuf)
5167 {
5168 int validFlag = 1;
5169 enum target_signal oursig;
5170
5171 oursig = target_signal_from_name (argv[0]);
5172 memset (argBuf, 0, bufLen);
5173 if (strcmp (argv[1], "Q") == 0)
5174 sprintf (argBuf, "%s %s", argv[0], "noprint");
5175 else
5176 {
5177 if (strcmp (argv[1], "s") == 0)
5178 {
5179 if (!signal_stop[oursig])
5180 sprintf (argBuf, "%s %s", argv[0], "stop");
5181 else
5182 sprintf (argBuf, "%s %s", argv[0], "nostop");
5183 }
5184 else if (strcmp (argv[1], "i") == 0)
5185 {
5186 if (!signal_program[oursig])
5187 sprintf (argBuf, "%s %s", argv[0], "pass");
5188 else
5189 sprintf (argBuf, "%s %s", argv[0], "nopass");
5190 }
5191 else if (strcmp (argv[1], "r") == 0)
5192 {
5193 if (!signal_print[oursig])
5194 sprintf (argBuf, "%s %s", argv[0], "print");
5195 else
5196 sprintf (argBuf, "%s %s", argv[0], "noprint");
5197 }
5198 else
5199 validFlag = 0;
5200 }
5201 if (validFlag)
5202 handle_command (argBuf, from_tty);
5203 else
a3f17187 5204 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5205 if (argBuf)
b8c9b27d 5206 xfree (argBuf);
c906108c
SS
5207 }
5208 }
5209 do_cleanups (old_chain);
5210}
5211
5212/* Print current contents of the tables set by the handle command.
5213 It is possible we should just be printing signals actually used
5214 by the current target (but for things to work right when switching
5215 targets, all signals should be in the signal tables). */
5216
5217static void
96baa820 5218signals_info (char *signum_exp, int from_tty)
c906108c
SS
5219{
5220 enum target_signal oursig;
5221 sig_print_header ();
5222
5223 if (signum_exp)
5224 {
5225 /* First see if this is a symbol name. */
5226 oursig = target_signal_from_name (signum_exp);
5227 if (oursig == TARGET_SIGNAL_UNKNOWN)
5228 {
5229 /* No, try numeric. */
5230 oursig =
bb518678 5231 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5232 }
5233 sig_print_info (oursig);
5234 return;
5235 }
5236
5237 printf_filtered ("\n");
5238 /* These ugly casts brought to you by the native VAX compiler. */
5239 for (oursig = TARGET_SIGNAL_FIRST;
5240 (int) oursig < (int) TARGET_SIGNAL_LAST;
5241 oursig = (enum target_signal) ((int) oursig + 1))
5242 {
5243 QUIT;
5244
5245 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5246 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5247 sig_print_info (oursig);
5248 }
5249
a3f17187 5250 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5251}
4aa995e1
PA
5252
5253/* The $_siginfo convenience variable is a bit special. We don't know
5254 for sure the type of the value until we actually have a chance to
5255 fetch the data. The type can change depending on gdbarch, so it it
5256 also dependent on which thread you have selected.
5257
5258 1. making $_siginfo be an internalvar that creates a new value on
5259 access.
5260
5261 2. making the value of $_siginfo be an lval_computed value. */
5262
5263/* This function implements the lval_computed support for reading a
5264 $_siginfo value. */
5265
5266static void
5267siginfo_value_read (struct value *v)
5268{
5269 LONGEST transferred;
5270
5271 transferred =
5272 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5273 NULL,
5274 value_contents_all_raw (v),
5275 value_offset (v),
5276 TYPE_LENGTH (value_type (v)));
5277
5278 if (transferred != TYPE_LENGTH (value_type (v)))
5279 error (_("Unable to read siginfo"));
5280}
5281
5282/* This function implements the lval_computed support for writing a
5283 $_siginfo value. */
5284
5285static void
5286siginfo_value_write (struct value *v, struct value *fromval)
5287{
5288 LONGEST transferred;
5289
5290 transferred = target_write (&current_target,
5291 TARGET_OBJECT_SIGNAL_INFO,
5292 NULL,
5293 value_contents_all_raw (fromval),
5294 value_offset (v),
5295 TYPE_LENGTH (value_type (fromval)));
5296
5297 if (transferred != TYPE_LENGTH (value_type (fromval)))
5298 error (_("Unable to write siginfo"));
5299}
5300
5301static struct lval_funcs siginfo_value_funcs =
5302 {
5303 siginfo_value_read,
5304 siginfo_value_write
5305 };
5306
5307/* Return a new value with the correct type for the siginfo object of
78267919
UW
5308 the current thread using architecture GDBARCH. Return a void value
5309 if there's no object available. */
4aa995e1 5310
2c0b251b 5311static struct value *
78267919 5312siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5313{
4aa995e1 5314 if (target_has_stack
78267919
UW
5315 && !ptid_equal (inferior_ptid, null_ptid)
5316 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5317 {
78267919
UW
5318 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5319 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5320 }
5321
78267919 5322 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5323}
5324
c906108c 5325\f
b89667eb
DE
5326/* Inferior thread state.
5327 These are details related to the inferior itself, and don't include
5328 things like what frame the user had selected or what gdb was doing
5329 with the target at the time.
5330 For inferior function calls these are things we want to restore
5331 regardless of whether the function call successfully completes
5332 or the dummy frame has to be manually popped. */
5333
5334struct inferior_thread_state
7a292a7a
SS
5335{
5336 enum target_signal stop_signal;
5337 CORE_ADDR stop_pc;
b89667eb
DE
5338 struct regcache *registers;
5339};
5340
5341struct inferior_thread_state *
5342save_inferior_thread_state (void)
5343{
5344 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5345 struct thread_info *tp = inferior_thread ();
5346
5347 inf_state->stop_signal = tp->stop_signal;
5348 inf_state->stop_pc = stop_pc;
5349
5350 inf_state->registers = regcache_dup (get_current_regcache ());
5351
5352 return inf_state;
5353}
5354
5355/* Restore inferior session state to INF_STATE. */
5356
5357void
5358restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5359{
5360 struct thread_info *tp = inferior_thread ();
5361
5362 tp->stop_signal = inf_state->stop_signal;
5363 stop_pc = inf_state->stop_pc;
5364
5365 /* The inferior can be gone if the user types "print exit(0)"
5366 (and perhaps other times). */
5367 if (target_has_execution)
5368 /* NB: The register write goes through to the target. */
5369 regcache_cpy (get_current_regcache (), inf_state->registers);
5370 regcache_xfree (inf_state->registers);
5371 xfree (inf_state);
5372}
5373
5374static void
5375do_restore_inferior_thread_state_cleanup (void *state)
5376{
5377 restore_inferior_thread_state (state);
5378}
5379
5380struct cleanup *
5381make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5382{
5383 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5384}
5385
5386void
5387discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5388{
5389 regcache_xfree (inf_state->registers);
5390 xfree (inf_state);
5391}
5392
5393struct regcache *
5394get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5395{
5396 return inf_state->registers;
5397}
5398
5399/* Session related state for inferior function calls.
5400 These are the additional bits of state that need to be restored
5401 when an inferior function call successfully completes. */
5402
5403struct inferior_status
5404{
7a292a7a
SS
5405 bpstat stop_bpstat;
5406 int stop_step;
5407 int stop_stack_dummy;
5408 int stopped_by_random_signal;
ca67fcb8 5409 int stepping_over_breakpoint;
7a292a7a
SS
5410 CORE_ADDR step_range_start;
5411 CORE_ADDR step_range_end;
aa0cd9c1 5412 struct frame_id step_frame_id;
edb3359d 5413 struct frame_id step_stack_frame_id;
5fbbeb29 5414 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5415 CORE_ADDR step_resume_break_address;
5416 int stop_after_trap;
c0236d92 5417 int stop_soon;
7a292a7a 5418
b89667eb 5419 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5420 struct frame_id selected_frame_id;
5421
7a292a7a 5422 int proceed_to_finish;
c5a4d20b 5423 int in_infcall;
7a292a7a
SS
5424};
5425
c906108c 5426/* Save all of the information associated with the inferior<==>gdb
b89667eb 5427 connection. */
c906108c 5428
7a292a7a 5429struct inferior_status *
b89667eb 5430save_inferior_status (void)
c906108c 5431{
72cec141 5432 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5433 struct thread_info *tp = inferior_thread ();
d6b48e9c 5434 struct inferior *inf = current_inferior ();
7a292a7a 5435
414c69f7 5436 inf_status->stop_step = tp->stop_step;
c906108c
SS
5437 inf_status->stop_stack_dummy = stop_stack_dummy;
5438 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5439 inf_status->stepping_over_breakpoint = tp->trap_expected;
5440 inf_status->step_range_start = tp->step_range_start;
5441 inf_status->step_range_end = tp->step_range_end;
5442 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5443 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5444 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5445 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5446 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5447 /* Save original bpstat chain here; replace it with copy of chain.
5448 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5449 hand them back the original chain when restore_inferior_status is
5450 called. */
347bddb7
PA
5451 inf_status->stop_bpstat = tp->stop_bpstat;
5452 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5453 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5454 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5455
206415a3 5456 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5457
7a292a7a 5458 return inf_status;
c906108c
SS
5459}
5460
c906108c 5461static int
96baa820 5462restore_selected_frame (void *args)
c906108c 5463{
488f131b 5464 struct frame_id *fid = (struct frame_id *) args;
c906108c 5465 struct frame_info *frame;
c906108c 5466
101dcfbe 5467 frame = frame_find_by_id (*fid);
c906108c 5468
aa0cd9c1
AC
5469 /* If inf_status->selected_frame_id is NULL, there was no previously
5470 selected frame. */
101dcfbe 5471 if (frame == NULL)
c906108c 5472 {
8a3fe4f8 5473 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5474 return 0;
5475 }
5476
0f7d239c 5477 select_frame (frame);
c906108c
SS
5478
5479 return (1);
5480}
5481
b89667eb
DE
5482/* Restore inferior session state to INF_STATUS. */
5483
c906108c 5484void
96baa820 5485restore_inferior_status (struct inferior_status *inf_status)
c906108c 5486{
4e1c45ea 5487 struct thread_info *tp = inferior_thread ();
d6b48e9c 5488 struct inferior *inf = current_inferior ();
4e1c45ea 5489
414c69f7 5490 tp->stop_step = inf_status->stop_step;
c906108c
SS
5491 stop_stack_dummy = inf_status->stop_stack_dummy;
5492 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5493 tp->trap_expected = inf_status->stepping_over_breakpoint;
5494 tp->step_range_start = inf_status->step_range_start;
5495 tp->step_range_end = inf_status->step_range_end;
5496 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5497 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5498 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5499 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5500 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5501 bpstat_clear (&tp->stop_bpstat);
5502 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5503 inf_status->stop_bpstat = NULL;
32400beb 5504 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5505 tp->in_infcall = inf_status->in_infcall;
c906108c 5506
b89667eb 5507 if (target_has_stack)
c906108c 5508 {
c906108c 5509 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5510 walking the stack might encounter a garbage pointer and
5511 error() trying to dereference it. */
488f131b
JB
5512 if (catch_errors
5513 (restore_selected_frame, &inf_status->selected_frame_id,
5514 "Unable to restore previously selected frame:\n",
5515 RETURN_MASK_ERROR) == 0)
c906108c
SS
5516 /* Error in restoring the selected frame. Select the innermost
5517 frame. */
0f7d239c 5518 select_frame (get_current_frame ());
c906108c 5519 }
c906108c 5520
72cec141 5521 xfree (inf_status);
7a292a7a 5522}
c906108c 5523
74b7792f
AC
5524static void
5525do_restore_inferior_status_cleanup (void *sts)
5526{
5527 restore_inferior_status (sts);
5528}
5529
5530struct cleanup *
5531make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5532{
5533 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5534}
5535
c906108c 5536void
96baa820 5537discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5538{
5539 /* See save_inferior_status for info on stop_bpstat. */
5540 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5541 xfree (inf_status);
7a292a7a 5542}
b89667eb 5543\f
47932f85 5544int
3a3e9ee3 5545inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5546{
5547 struct target_waitstatus last;
5548 ptid_t last_ptid;
5549
5550 get_last_target_status (&last_ptid, &last);
5551
5552 if (last.kind != TARGET_WAITKIND_FORKED)
5553 return 0;
5554
3a3e9ee3 5555 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5556 return 0;
5557
5558 *child_pid = last.value.related_pid;
5559 return 1;
5560}
5561
5562int
3a3e9ee3 5563inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5564{
5565 struct target_waitstatus last;
5566 ptid_t last_ptid;
5567
5568 get_last_target_status (&last_ptid, &last);
5569
5570 if (last.kind != TARGET_WAITKIND_VFORKED)
5571 return 0;
5572
3a3e9ee3 5573 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5574 return 0;
5575
5576 *child_pid = last.value.related_pid;
5577 return 1;
5578}
5579
5580int
3a3e9ee3 5581inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5582{
5583 struct target_waitstatus last;
5584 ptid_t last_ptid;
5585
5586 get_last_target_status (&last_ptid, &last);
5587
5588 if (last.kind != TARGET_WAITKIND_EXECD)
5589 return 0;
5590
3a3e9ee3 5591 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5592 return 0;
5593
5594 *execd_pathname = xstrdup (last.value.execd_pathname);
5595 return 1;
5596}
5597
ca6724c1
KB
5598/* Oft used ptids */
5599ptid_t null_ptid;
5600ptid_t minus_one_ptid;
5601
5602/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5603
ca6724c1
KB
5604ptid_t
5605ptid_build (int pid, long lwp, long tid)
5606{
5607 ptid_t ptid;
5608
5609 ptid.pid = pid;
5610 ptid.lwp = lwp;
5611 ptid.tid = tid;
5612 return ptid;
5613}
5614
5615/* Create a ptid from just a pid. */
5616
5617ptid_t
5618pid_to_ptid (int pid)
5619{
5620 return ptid_build (pid, 0, 0);
5621}
5622
5623/* Fetch the pid (process id) component from a ptid. */
5624
5625int
5626ptid_get_pid (ptid_t ptid)
5627{
5628 return ptid.pid;
5629}
5630
5631/* Fetch the lwp (lightweight process) component from a ptid. */
5632
5633long
5634ptid_get_lwp (ptid_t ptid)
5635{
5636 return ptid.lwp;
5637}
5638
5639/* Fetch the tid (thread id) component from a ptid. */
5640
5641long
5642ptid_get_tid (ptid_t ptid)
5643{
5644 return ptid.tid;
5645}
5646
5647/* ptid_equal() is used to test equality of two ptids. */
5648
5649int
5650ptid_equal (ptid_t ptid1, ptid_t ptid2)
5651{
5652 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5653 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5654}
5655
252fbfc8
PA
5656/* Returns true if PTID represents a process. */
5657
5658int
5659ptid_is_pid (ptid_t ptid)
5660{
5661 if (ptid_equal (minus_one_ptid, ptid))
5662 return 0;
5663 if (ptid_equal (null_ptid, ptid))
5664 return 0;
5665
5666 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5667}
5668
ca6724c1
KB
5669/* restore_inferior_ptid() will be used by the cleanup machinery
5670 to restore the inferior_ptid value saved in a call to
5671 save_inferior_ptid(). */
ce696e05
KB
5672
5673static void
5674restore_inferior_ptid (void *arg)
5675{
5676 ptid_t *saved_ptid_ptr = arg;
5677 inferior_ptid = *saved_ptid_ptr;
5678 xfree (arg);
5679}
5680
5681/* Save the value of inferior_ptid so that it may be restored by a
5682 later call to do_cleanups(). Returns the struct cleanup pointer
5683 needed for later doing the cleanup. */
5684
5685struct cleanup *
5686save_inferior_ptid (void)
5687{
5688 ptid_t *saved_ptid_ptr;
5689
5690 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5691 *saved_ptid_ptr = inferior_ptid;
5692 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5693}
c5aa993b 5694\f
488f131b 5695
b2175913
MS
5696/* User interface for reverse debugging:
5697 Set exec-direction / show exec-direction commands
5698 (returns error unless target implements to_set_exec_direction method). */
5699
5700enum exec_direction_kind execution_direction = EXEC_FORWARD;
5701static const char exec_forward[] = "forward";
5702static const char exec_reverse[] = "reverse";
5703static const char *exec_direction = exec_forward;
5704static const char *exec_direction_names[] = {
5705 exec_forward,
5706 exec_reverse,
5707 NULL
5708};
5709
5710static void
5711set_exec_direction_func (char *args, int from_tty,
5712 struct cmd_list_element *cmd)
5713{
5714 if (target_can_execute_reverse)
5715 {
5716 if (!strcmp (exec_direction, exec_forward))
5717 execution_direction = EXEC_FORWARD;
5718 else if (!strcmp (exec_direction, exec_reverse))
5719 execution_direction = EXEC_REVERSE;
5720 }
5721}
5722
5723static void
5724show_exec_direction_func (struct ui_file *out, int from_tty,
5725 struct cmd_list_element *cmd, const char *value)
5726{
5727 switch (execution_direction) {
5728 case EXEC_FORWARD:
5729 fprintf_filtered (out, _("Forward.\n"));
5730 break;
5731 case EXEC_REVERSE:
5732 fprintf_filtered (out, _("Reverse.\n"));
5733 break;
5734 case EXEC_ERROR:
5735 default:
5736 fprintf_filtered (out,
5737 _("Forward (target `%s' does not support exec-direction).\n"),
5738 target_shortname);
5739 break;
5740 }
5741}
5742
5743/* User interface for non-stop mode. */
5744
ad52ddc6
PA
5745int non_stop = 0;
5746static int non_stop_1 = 0;
5747
5748static void
5749set_non_stop (char *args, int from_tty,
5750 struct cmd_list_element *c)
5751{
5752 if (target_has_execution)
5753 {
5754 non_stop_1 = non_stop;
5755 error (_("Cannot change this setting while the inferior is running."));
5756 }
5757
5758 non_stop = non_stop_1;
5759}
5760
5761static void
5762show_non_stop (struct ui_file *file, int from_tty,
5763 struct cmd_list_element *c, const char *value)
5764{
5765 fprintf_filtered (file,
5766 _("Controlling the inferior in non-stop mode is %s.\n"),
5767 value);
5768}
5769
d4db2f36
PA
5770static void
5771show_schedule_multiple (struct ui_file *file, int from_tty,
5772 struct cmd_list_element *c, const char *value)
5773{
5774 fprintf_filtered (file, _("\
5775Resuming the execution of threads of all processes is %s.\n"), value);
5776}
ad52ddc6 5777
c906108c 5778void
96baa820 5779_initialize_infrun (void)
c906108c 5780{
52f0bd74
AC
5781 int i;
5782 int numsigs;
c906108c
SS
5783 struct cmd_list_element *c;
5784
1bedd215
AC
5785 add_info ("signals", signals_info, _("\
5786What debugger does when program gets various signals.\n\
5787Specify a signal as argument to print info on that signal only."));
c906108c
SS
5788 add_info_alias ("handle", "signals", 0);
5789
1bedd215
AC
5790 add_com ("handle", class_run, handle_command, _("\
5791Specify how to handle a signal.\n\
c906108c
SS
5792Args are signals and actions to apply to those signals.\n\
5793Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5794from 1-15 are allowed for compatibility with old versions of GDB.\n\
5795Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5796The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5797used by the debugger, typically SIGTRAP and SIGINT.\n\
5798Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5799\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5800Stop means reenter debugger if this signal happens (implies print).\n\
5801Print means print a message if this signal happens.\n\
5802Pass means let program see this signal; otherwise program doesn't know.\n\
5803Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5804Pass and Stop may be combined."));
c906108c
SS
5805 if (xdb_commands)
5806 {
1bedd215
AC
5807 add_com ("lz", class_info, signals_info, _("\
5808What debugger does when program gets various signals.\n\
5809Specify a signal as argument to print info on that signal only."));
5810 add_com ("z", class_run, xdb_handle_command, _("\
5811Specify how to handle a signal.\n\
c906108c
SS
5812Args are signals and actions to apply to those signals.\n\
5813Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5814from 1-15 are allowed for compatibility with old versions of GDB.\n\
5815Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5816The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5817used by the debugger, typically SIGTRAP and SIGINT.\n\
5818Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5819\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5820nopass), \"Q\" (noprint)\n\
5821Stop means reenter debugger if this signal happens (implies print).\n\
5822Print means print a message if this signal happens.\n\
5823Pass means let program see this signal; otherwise program doesn't know.\n\
5824Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5825Pass and Stop may be combined."));
c906108c
SS
5826 }
5827
5828 if (!dbx_commands)
1a966eab
AC
5829 stop_command = add_cmd ("stop", class_obscure,
5830 not_just_help_class_command, _("\
5831There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5832This allows you to set a list of commands to be run each time execution\n\
1a966eab 5833of the program stops."), &cmdlist);
c906108c 5834
85c07804
AC
5835 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5836Set inferior debugging."), _("\
5837Show inferior debugging."), _("\
5838When non-zero, inferior specific debugging is enabled."),
5839 NULL,
920d2a44 5840 show_debug_infrun,
85c07804 5841 &setdebuglist, &showdebuglist);
527159b7 5842
237fc4c9
PA
5843 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5844Set displaced stepping debugging."), _("\
5845Show displaced stepping debugging."), _("\
5846When non-zero, displaced stepping specific debugging is enabled."),
5847 NULL,
5848 show_debug_displaced,
5849 &setdebuglist, &showdebuglist);
5850
ad52ddc6
PA
5851 add_setshow_boolean_cmd ("non-stop", no_class,
5852 &non_stop_1, _("\
5853Set whether gdb controls the inferior in non-stop mode."), _("\
5854Show whether gdb controls the inferior in non-stop mode."), _("\
5855When debugging a multi-threaded program and this setting is\n\
5856off (the default, also called all-stop mode), when one thread stops\n\
5857(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5858all other threads in the program while you interact with the thread of\n\
5859interest. When you continue or step a thread, you can allow the other\n\
5860threads to run, or have them remain stopped, but while you inspect any\n\
5861thread's state, all threads stop.\n\
5862\n\
5863In non-stop mode, when one thread stops, other threads can continue\n\
5864to run freely. You'll be able to step each thread independently,\n\
5865leave it stopped or free to run as needed."),
5866 set_non_stop,
5867 show_non_stop,
5868 &setlist,
5869 &showlist);
5870
c906108c 5871 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5872 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5873 signal_print = (unsigned char *)
5874 xmalloc (sizeof (signal_print[0]) * numsigs);
5875 signal_program = (unsigned char *)
5876 xmalloc (sizeof (signal_program[0]) * numsigs);
5877 for (i = 0; i < numsigs; i++)
5878 {
5879 signal_stop[i] = 1;
5880 signal_print[i] = 1;
5881 signal_program[i] = 1;
5882 }
5883
5884 /* Signals caused by debugger's own actions
5885 should not be given to the program afterwards. */
5886 signal_program[TARGET_SIGNAL_TRAP] = 0;
5887 signal_program[TARGET_SIGNAL_INT] = 0;
5888
5889 /* Signals that are not errors should not normally enter the debugger. */
5890 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5891 signal_print[TARGET_SIGNAL_ALRM] = 0;
5892 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5893 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5894 signal_stop[TARGET_SIGNAL_PROF] = 0;
5895 signal_print[TARGET_SIGNAL_PROF] = 0;
5896 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5897 signal_print[TARGET_SIGNAL_CHLD] = 0;
5898 signal_stop[TARGET_SIGNAL_IO] = 0;
5899 signal_print[TARGET_SIGNAL_IO] = 0;
5900 signal_stop[TARGET_SIGNAL_POLL] = 0;
5901 signal_print[TARGET_SIGNAL_POLL] = 0;
5902 signal_stop[TARGET_SIGNAL_URG] = 0;
5903 signal_print[TARGET_SIGNAL_URG] = 0;
5904 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5905 signal_print[TARGET_SIGNAL_WINCH] = 0;
5906
cd0fc7c3
SS
5907 /* These signals are used internally by user-level thread
5908 implementations. (See signal(5) on Solaris.) Like the above
5909 signals, a healthy program receives and handles them as part of
5910 its normal operation. */
5911 signal_stop[TARGET_SIGNAL_LWP] = 0;
5912 signal_print[TARGET_SIGNAL_LWP] = 0;
5913 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5914 signal_print[TARGET_SIGNAL_WAITING] = 0;
5915 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5916 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5917
85c07804
AC
5918 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5919 &stop_on_solib_events, _("\
5920Set stopping for shared library events."), _("\
5921Show stopping for shared library events."), _("\
c906108c
SS
5922If nonzero, gdb will give control to the user when the dynamic linker\n\
5923notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5924to the user would be loading/unloading of a new library."),
5925 NULL,
920d2a44 5926 show_stop_on_solib_events,
85c07804 5927 &setlist, &showlist);
c906108c 5928
7ab04401
AC
5929 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5930 follow_fork_mode_kind_names,
5931 &follow_fork_mode_string, _("\
5932Set debugger response to a program call of fork or vfork."), _("\
5933Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5934A fork or vfork creates a new process. follow-fork-mode can be:\n\
5935 parent - the original process is debugged after a fork\n\
5936 child - the new process is debugged after a fork\n\
ea1dd7bc 5937The unfollowed process will continue to run.\n\
7ab04401
AC
5938By default, the debugger will follow the parent process."),
5939 NULL,
920d2a44 5940 show_follow_fork_mode_string,
7ab04401
AC
5941 &setlist, &showlist);
5942
5943 add_setshow_enum_cmd ("scheduler-locking", class_run,
5944 scheduler_enums, &scheduler_mode, _("\
5945Set mode for locking scheduler during execution."), _("\
5946Show mode for locking scheduler during execution."), _("\
c906108c
SS
5947off == no locking (threads may preempt at any time)\n\
5948on == full locking (no thread except the current thread may run)\n\
5949step == scheduler locked during every single-step operation.\n\
5950 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5951 Other threads may run while stepping over a function call ('next')."),
5952 set_schedlock_func, /* traps on target vector */
920d2a44 5953 show_scheduler_mode,
7ab04401 5954 &setlist, &showlist);
5fbbeb29 5955
d4db2f36
PA
5956 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5957Set mode for resuming threads of all processes."), _("\
5958Show mode for resuming threads of all processes."), _("\
5959When on, execution commands (such as 'continue' or 'next') resume all\n\
5960threads of all processes. When off (which is the default), execution\n\
5961commands only resume the threads of the current process. The set of\n\
5962threads that are resumed is further refined by the scheduler-locking\n\
5963mode (see help set scheduler-locking)."),
5964 NULL,
5965 show_schedule_multiple,
5966 &setlist, &showlist);
5967
5bf193a2
AC
5968 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5969Set mode of the step operation."), _("\
5970Show mode of the step operation."), _("\
5971When set, doing a step over a function without debug line information\n\
5972will stop at the first instruction of that function. Otherwise, the\n\
5973function is skipped and the step command stops at a different source line."),
5974 NULL,
920d2a44 5975 show_step_stop_if_no_debug,
5bf193a2 5976 &setlist, &showlist);
ca6724c1 5977
fff08868
HZ
5978 add_setshow_enum_cmd ("displaced-stepping", class_run,
5979 can_use_displaced_stepping_enum,
5980 &can_use_displaced_stepping, _("\
237fc4c9
PA
5981Set debugger's willingness to use displaced stepping."), _("\
5982Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5983If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5984supported by the target architecture. If off, gdb will not use displaced\n\
5985stepping to step over breakpoints, even if such is supported by the target\n\
5986architecture. If auto (which is the default), gdb will use displaced stepping\n\
5987if the target architecture supports it and non-stop mode is active, but will not\n\
5988use it in all-stop mode (see help set non-stop)."),
5989 NULL,
5990 show_can_use_displaced_stepping,
5991 &setlist, &showlist);
237fc4c9 5992
b2175913
MS
5993 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5994 &exec_direction, _("Set direction of execution.\n\
5995Options are 'forward' or 'reverse'."),
5996 _("Show direction of execution (forward/reverse)."),
5997 _("Tells gdb whether to execute forward or backward."),
5998 set_exec_direction_func, show_exec_direction_func,
5999 &setlist, &showlist);
6000
ca6724c1
KB
6001 /* ptid initializations */
6002 null_ptid = ptid_build (0, 0, 0);
6003 minus_one_ptid = ptid_build (-1, 0, 0);
6004 inferior_ptid = null_ptid;
6005 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6006 displaced_step_ptid = null_ptid;
5231c1fd
PA
6007
6008 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6009 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6010 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6011
6012 /* Explicitly create without lookup, since that tries to create a
6013 value with a void typed value, and when we get here, gdbarch
6014 isn't initialized yet. At this point, we're quite sure there
6015 isn't another convenience variable of the same name. */
6016 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6017}