]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
2004-05-11 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
265#ifdef HP_OS_BUG
266/* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270static int trap_expected_after_continue;
271#endif
272
273/* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276int stop_after_trap;
277
278/* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
c0236d92 283enum stop_kind stop_soon;
c906108c
SS
284
285/* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288int proceed_to_finish;
289
290/* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
72cec141 295struct regcache *stop_registers;
c906108c
SS
296
297/* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299static int breakpoints_failed;
300
301/* Nonzero after stop if current stack frame should be printed. */
302
303static int stop_print_frame;
304
305static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
306
307/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313static int number_of_threads_in_syscalls;
314
e02bc4cc 315/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
39f77062 318static ptid_t target_last_wait_ptid;
e02bc4cc
DS
319static struct target_waitstatus target_last_waitstatus;
320
c906108c
SS
321/* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325static struct
488f131b
JB
326{
327 enum target_waitkind kind;
328 struct
c906108c 329 {
488f131b 330 int parent_pid;
488f131b 331 int child_pid;
c906108c 332 }
488f131b
JB
333 fork_event;
334 char *execd_pathname;
335}
c906108c
SS
336pending_follow;
337
53904c9e
AC
338static const char follow_fork_mode_child[] = "child";
339static const char follow_fork_mode_parent[] = "parent";
340
488f131b 341static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
ef346e04 345};
c906108c 346
53904c9e 347static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
348\f
349
6604731b 350static int
4ef3f3be 351follow_fork (void)
c906108c 352{
ea1dd7bc 353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 354
6604731b 355 return target_follow_fork (follow_child);
c906108c
SS
356}
357
6604731b
DJ
358void
359follow_inferior_reset_breakpoints (void)
c906108c 360{
6604731b
DJ
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
c906108c 382}
c906108c 383
1adeb98a
FN
384/* EXECD_PATHNAME is assumed to be non-NULL. */
385
c906108c 386static void
96baa820 387follow_exec (int pid, char *execd_pathname)
c906108c 388{
c906108c 389 int saved_pid = pid;
7a292a7a
SS
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
c906108c 394
c906108c
SS
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
c906108c
SS
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
7a292a7a
SS
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
c906108c
SS
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
39f77062 437 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 438 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 439 push_target (tgt);
c906108c
SS
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
1adeb98a 445 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
7a292a7a 450#if defined(SOLIB_RESTART)
c906108c 451 SOLIB_RESTART ();
7a292a7a
SS
452#endif
453#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 455#endif
c906108c
SS
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
c906108c
SS
466}
467
468/* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
472
473/* The thread we inserted single-step breakpoints for. */
474static ptid_t singlestep_ptid;
475
476/* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478static ptid_t saved_singlestep_ptid;
479static int stepping_past_singlestep_breakpoint;
c906108c
SS
480\f
481
482/* Things to clean up if we QUIT out of resume (). */
c906108c 483static void
74b7792f 484resume_cleanups (void *ignore)
c906108c
SS
485{
486 normal_stop ();
487}
488
53904c9e
AC
489static const char schedlock_off[] = "off";
490static const char schedlock_on[] = "on";
491static const char schedlock_step[] = "step";
492static const char *scheduler_mode = schedlock_off;
488f131b 493static const char *scheduler_enums[] = {
ef346e04
AC
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498};
c906108c
SS
499
500static void
96baa820 501set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 502{
1868c04e
AC
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
ce2826aa 507 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
c906108c
SS
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
488f131b 515 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
516 }
517}
518
519
520/* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528void
96baa820 529resume (int step, enum target_signal sig)
c906108c
SS
530{
531 int should_resume = 1;
74b7792f 532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
533 QUIT;
534
ef5cf84e
MS
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
c906108c 537
692590c1
MS
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
488f131b 548
692590c1 549
c2c6d25f
JM
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
b0ed3589 557 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
558 {
559 /* Do it the hard way, w/temp breakpoints */
c5aa993b 560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
9f976b41 566 singlestep_ptid = inferior_ptid;
c906108c
SS
567 }
568
c906108c 569 /* If there were any forks/vforks/execs that were caught and are
6604731b 570 now to be followed, then do so. */
c906108c
SS
571 switch (pending_follow.kind)
572 {
6604731b
DJ
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
c906108c 575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
576 if (follow_fork ())
577 should_resume = 0;
c906108c
SS
578 break;
579
6604731b 580 case TARGET_WAITKIND_EXECD:
c906108c 581 /* follow_exec is called as soon as the exec event is seen. */
6604731b 582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
583 break;
584
585 default:
586 break;
587 }
c906108c
SS
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
39f77062 594 ptid_t resume_ptid;
dfcd3bfb 595
488f131b 596 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 601 {
ef5cf84e
MS
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
c906108c 606
ef5cf84e 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e
MS
609
610 if ((scheduler_mode == schedlock_on) ||
488f131b 611 (scheduler_mode == schedlock_step &&
ef5cf84e 612 (step || singlestep_breakpoints_inserted_p)))
c906108c 613 {
ef5cf84e 614 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 615 resume_ptid = inferior_ptid;
c906108c 616 }
ef5cf84e 617
c4ed33b9
AC
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
39f77062 626 target_resume (resume_ptid, step, sig);
c906108c
SS
627 }
628
629 discard_cleanups (old_cleanups);
630}
631\f
632
633/* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636void
96baa820 637clear_proceed_status (void)
c906108c
SS
638{
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
aa0cd9c1 642 step_frame_id = null_frame_id;
5fbbeb29 643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 644 stop_after_trap = 0;
c0236d92 645 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651}
652
ea67f13b
DJ
653/* This should be suitable for any targets that support threads. */
654
655static int
656prepare_to_proceed (void)
657{
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701}
e4846b08
JJ
702
703/* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706static CORE_ADDR prev_pc;
707
c906108c
SS
708/* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 712 or -1 for act according to how it stopped.
c906108c 713 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
c906108c
SS
717
718 You should call clear_proceed_status before calling proceed. */
719
720void
96baa820 721proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
722{
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
2acceee2 730 if (addr == (CORE_ADDR) -1)
c906108c
SS
731 {
732 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
c906108c
SS
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740#ifndef STEP_SKIPS_DELAY
741#define STEP_SKIPS_DELAY(pc) (0)
742#define STEP_SKIPS_DELAY_P (0)
743#endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
c906108c
SS
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
c906108c
SS
755 }
756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c
SS
770
771#ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
c906108c
SS
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781#endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
81d0cc19
GS
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
c906108c
SS
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
e4846b08
JJ
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
c906108c
SS
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
6426a772 839 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
c906108c 844}
c906108c
SS
845\f
846
847/* Start remote-debugging of a machine over a serial link. */
96baa820 848
c906108c 849void
96baa820 850start_remote (void)
c906108c
SS
851{
852 init_thread_list ();
853 init_wait_for_inferior ();
c0236d92 854 stop_soon = STOP_QUIETLY;
c906108c 855 trap_expected = 0;
43ff13b4 856
6426a772
JM
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 859 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
c906108c
SS
873}
874
875/* Initialize static vars when a new inferior begins. */
876
877void
96baa820 878init_wait_for_inferior (void)
c906108c
SS
879{
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
c906108c
SS
882
883#ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885#endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
9f976b41
DJ
899
900 stepping_past_singlestep_breakpoint = 0;
c906108c 901}
c906108c 902\f
b83266a0
SS
903/* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
c5aa993b
JM
907enum infwait_states
908{
cd0fc7c3
SS
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
b83266a0
SS
913};
914
11cf8741
JM
915/* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917enum inferior_stop_reason
918{
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931};
932
cd0fc7c3
SS
933/* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
c5aa993b 937struct execution_control_state
488f131b
JB
938{
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int update_step_sp;
954 int stepping_through_solib_after_catch;
955 bpstat stepping_through_solib_catchpoints;
956 int enable_hw_watchpoints_after_wait;
957 int stepping_through_sigtramp;
958 int new_thread_event;
959 struct target_waitstatus tmpstatus;
960 enum infwait_states infwait_state;
961 ptid_t waiton_ptid;
962 int wait_some_more;
963};
964
965void init_execution_control_state (struct execution_control_state *ecs);
966
1af510a8 967static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 968void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 969
c2c6d25f 970static void step_into_function (struct execution_control_state *ecs);
d4f3574e 971static void step_over_function (struct execution_control_state *ecs);
d303a6c7
AC
972static void insert_step_resume_breakpoint (struct frame_info *step_frame,
973 struct execution_control_state *ecs);
104c1213
JM
974static void stop_stepping (struct execution_control_state *ecs);
975static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 976static void keep_going (struct execution_control_state *ecs);
488f131b
JB
977static void print_stop_reason (enum inferior_stop_reason stop_reason,
978 int stop_info);
104c1213 979
cd0fc7c3
SS
980/* Wait for control to return from inferior to debugger.
981 If inferior gets a signal, we may decide to start it up again
982 instead of returning. That is why there is a loop in this function.
983 When this function actually returns it means the inferior
984 should be left stopped and GDB should read more commands. */
985
986void
96baa820 987wait_for_inferior (void)
cd0fc7c3
SS
988{
989 struct cleanup *old_cleanups;
990 struct execution_control_state ecss;
991 struct execution_control_state *ecs;
c906108c 992
8601f500 993 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 994 &step_resume_breakpoint);
cd0fc7c3
SS
995
996 /* wfi still stays in a loop, so it's OK just to take the address of
997 a local to get the ecs pointer. */
998 ecs = &ecss;
999
1000 /* Fill in with reasonable starting values. */
1001 init_execution_control_state (ecs);
1002
c906108c 1003 /* We'll update this if & when we switch to a new thread. */
39f77062 1004 previous_inferior_ptid = inferior_ptid;
c906108c 1005
cd0fc7c3
SS
1006 overlay_cache_invalid = 1;
1007
1008 /* We have to invalidate the registers BEFORE calling target_wait
1009 because they can be loaded from the target while in target_wait.
1010 This makes remote debugging a bit more efficient for those
1011 targets that provide critical registers as part of their normal
1012 status mechanism. */
1013
1014 registers_changed ();
b83266a0 1015
c906108c
SS
1016 while (1)
1017 {
9a4105ab
AC
1018 if (deprecated_target_wait_hook)
1019 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1020 else
39f77062 1021 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1022
cd0fc7c3
SS
1023 /* Now figure out what to do with the result of the result. */
1024 handle_inferior_event (ecs);
c906108c 1025
cd0fc7c3
SS
1026 if (!ecs->wait_some_more)
1027 break;
1028 }
1029 do_cleanups (old_cleanups);
1030}
c906108c 1031
43ff13b4
JM
1032/* Asynchronous version of wait_for_inferior. It is called by the
1033 event loop whenever a change of state is detected on the file
1034 descriptor corresponding to the target. It can be called more than
1035 once to complete a single execution command. In such cases we need
1036 to keep the state in a global variable ASYNC_ECSS. If it is the
1037 last time that this function is called for a single execution
1038 command, then report to the user that the inferior has stopped, and
1039 do the necessary cleanups. */
1040
1041struct execution_control_state async_ecss;
1042struct execution_control_state *async_ecs;
1043
1044void
fba45db2 1045fetch_inferior_event (void *client_data)
43ff13b4
JM
1046{
1047 static struct cleanup *old_cleanups;
1048
c5aa993b 1049 async_ecs = &async_ecss;
43ff13b4
JM
1050
1051 if (!async_ecs->wait_some_more)
1052 {
488f131b 1053 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1054 &step_resume_breakpoint);
43ff13b4
JM
1055
1056 /* Fill in with reasonable starting values. */
1057 init_execution_control_state (async_ecs);
1058
43ff13b4 1059 /* We'll update this if & when we switch to a new thread. */
39f77062 1060 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1061
1062 overlay_cache_invalid = 1;
1063
1064 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1065 because they can be loaded from the target while in target_wait.
1066 This makes remote debugging a bit more efficient for those
1067 targets that provide critical registers as part of their normal
1068 status mechanism. */
43ff13b4
JM
1069
1070 registers_changed ();
1071 }
1072
9a4105ab 1073 if (deprecated_target_wait_hook)
488f131b 1074 async_ecs->ptid =
9a4105ab 1075 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1076 else
39f77062 1077 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1078
1079 /* Now figure out what to do with the result of the result. */
1080 handle_inferior_event (async_ecs);
1081
1082 if (!async_ecs->wait_some_more)
1083 {
adf40b2e 1084 /* Do only the cleanups that have been added by this
488f131b
JB
1085 function. Let the continuations for the commands do the rest,
1086 if there are any. */
43ff13b4
JM
1087 do_exec_cleanups (old_cleanups);
1088 normal_stop ();
c2d11a7d
JM
1089 if (step_multi && stop_step)
1090 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1091 else
1092 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1093 }
1094}
1095
cd0fc7c3
SS
1096/* Prepare an execution control state for looping through a
1097 wait_for_inferior-type loop. */
1098
1099void
96baa820 1100init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1101{
c2d11a7d 1102 /* ecs->another_trap? */
cd0fc7c3
SS
1103 ecs->random_signal = 0;
1104 ecs->remove_breakpoints_on_following_step = 0;
1105 ecs->handling_longjmp = 0; /* FIXME */
1106 ecs->update_step_sp = 0;
1107 ecs->stepping_through_solib_after_catch = 0;
1108 ecs->stepping_through_solib_catchpoints = NULL;
1109 ecs->enable_hw_watchpoints_after_wait = 0;
1110 ecs->stepping_through_sigtramp = 0;
1111 ecs->sal = find_pc_line (prev_pc, 0);
1112 ecs->current_line = ecs->sal.line;
1113 ecs->current_symtab = ecs->sal.symtab;
1114 ecs->infwait_state = infwait_normal_state;
39f77062 1115 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1116 ecs->wp = &(ecs->ws);
1117}
1118
a0b3c4fd 1119/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1120 sanity check. There should never be more than one step-resume
1121 breakpoint per thread, so we should never be setting a new
1122 step_resume_breakpoint when one is already active. */
a0b3c4fd 1123static void
96baa820 1124check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1125{
1126 if (step_resume_breakpoint)
488f131b
JB
1127 warning
1128 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1129}
1130
e02bc4cc 1131/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1132 target_wait()/deprecated_target_wait_hook(). The data is actually
1133 cached by handle_inferior_event(), which gets called immediately
1134 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1135
1136void
488f131b 1137get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1138{
39f77062 1139 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1140 *status = target_last_waitstatus;
1141}
1142
dd80620e
MS
1143/* Switch thread contexts, maintaining "infrun state". */
1144
1145static void
1146context_switch (struct execution_control_state *ecs)
1147{
1148 /* Caution: it may happen that the new thread (or the old one!)
1149 is not in the thread list. In this case we must not attempt
1150 to "switch context", or we run the risk that our context may
1151 be lost. This may happen as a result of the target module
1152 mishandling thread creation. */
1153
1154 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1155 { /* Perform infrun state context switch: */
dd80620e 1156 /* Save infrun state for the old thread. */
0ce3d317 1157 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1158 trap_expected, step_resume_breakpoint,
15960608 1159 step_range_start,
aa0cd9c1 1160 step_range_end, &step_frame_id,
dd80620e
MS
1161 ecs->handling_longjmp, ecs->another_trap,
1162 ecs->stepping_through_solib_after_catch,
1163 ecs->stepping_through_solib_catchpoints,
1164 ecs->stepping_through_sigtramp,
488f131b 1165 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1166
1167 /* Load infrun state for the new thread. */
0ce3d317 1168 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1169 &trap_expected, &step_resume_breakpoint,
15960608 1170 &step_range_start,
aa0cd9c1 1171 &step_range_end, &step_frame_id,
dd80620e
MS
1172 &ecs->handling_longjmp, &ecs->another_trap,
1173 &ecs->stepping_through_solib_after_catch,
1174 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1175 &ecs->stepping_through_sigtramp,
1176 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1177 }
1178 inferior_ptid = ecs->ptid;
1179}
1180
1af510a8
JB
1181/* Handle the inferior event in the cases when we just stepped
1182 into a function. */
1183
1184static void
1185handle_step_into_function (struct execution_control_state *ecs)
1186{
1187 CORE_ADDR real_stop_pc;
1188
1189 if ((step_over_calls == STEP_OVER_NONE)
1190 || ((step_range_end == 1)
1191 && in_prologue (prev_pc, ecs->stop_func_start)))
1192 {
1193 /* I presume that step_over_calls is only 0 when we're
1194 supposed to be stepping at the assembly language level
1195 ("stepi"). Just stop. */
1196 /* Also, maybe we just did a "nexti" inside a prolog,
1197 so we thought it was a subroutine call but it was not.
1198 Stop as well. FENN */
1199 stop_step = 1;
1200 print_stop_reason (END_STEPPING_RANGE, 0);
1201 stop_stepping (ecs);
1202 return;
1203 }
1204
1205 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1206 {
1207 /* We're doing a "next". */
1af510a8
JB
1208 step_over_function (ecs);
1209 keep_going (ecs);
1210 return;
1211 }
1212
1213 /* If we are in a function call trampoline (a stub between
1214 the calling routine and the real function), locate the real
1215 function. That's what tells us (a) whether we want to step
1216 into it at all, and (b) what prologue we want to run to
1217 the end of, if we do step into it. */
1218 real_stop_pc = skip_language_trampoline (stop_pc);
1219 if (real_stop_pc == 0)
1220 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1221 if (real_stop_pc != 0)
1222 ecs->stop_func_start = real_stop_pc;
1223
1224 /* If we have line number information for the function we
1225 are thinking of stepping into, step into it.
1226
1227 If there are several symtabs at that PC (e.g. with include
1228 files), just want to know whether *any* of them have line
1229 numbers. find_pc_line handles this. */
1230 {
1231 struct symtab_and_line tmp_sal;
1232
1233 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1234 if (tmp_sal.line != 0)
1235 {
1236 step_into_function (ecs);
1237 return;
1238 }
1239 }
1240
1241 /* If we have no line number and the step-stop-if-no-debug
1242 is set, we stop the step so that the user has a chance to
1243 switch in assembly mode. */
1244 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1245 {
1246 stop_step = 1;
1247 print_stop_reason (END_STEPPING_RANGE, 0);
1248 stop_stepping (ecs);
1249 return;
1250 }
1251
1252 step_over_function (ecs);
1253 keep_going (ecs);
1254 return;
1255}
dd80620e 1256
4fa8626c
DJ
1257static void
1258adjust_pc_after_break (struct execution_control_state *ecs)
1259{
1260 CORE_ADDR stop_pc;
1261
1262 /* If this target does not decrement the PC after breakpoints, then
1263 we have nothing to do. */
1264 if (DECR_PC_AFTER_BREAK == 0)
1265 return;
1266
1267 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1268 we aren't, just return.
9709f61c
DJ
1269
1270 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1271 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1272 by software breakpoints should be handled through the normal breakpoint
1273 layer.
4fa8626c
DJ
1274
1275 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1276 different signals (SIGILL or SIGEMT for instance), but it is less
1277 clear where the PC is pointing afterwards. It may not match
1278 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1279 these signals at breakpoints (the code has been in GDB since at least
1280 1992) so I can not guess how to handle them here.
1281
1282 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1283 would have the PC after hitting a watchpoint affected by
1284 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1285 in GDB history, and it seems unlikely to be correct, so
1286 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1287
1288 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1289 return;
1290
1291 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1292 return;
1293
1294 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1295 be. */
1296 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1297
1298 /* If we're software-single-stepping, then assume this is a breakpoint.
1299 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1300 we're even in the right thread. The software-single-step code needs
1301 some modernization.
1302
1303 If we're not software-single-stepping, then we first check that there
1304 is an enabled software breakpoint at this address. If there is, and
1305 we weren't using hardware-single-step, then we've hit the breakpoint.
1306
1307 If we were using hardware-single-step, we check prev_pc; if we just
1308 stepped over an inserted software breakpoint, then we should decrement
1309 the PC and eventually report hitting the breakpoint. The prev_pc check
1310 prevents us from decrementing the PC if we just stepped over a jump
1311 instruction and landed on the instruction after a breakpoint.
1312
1313 The last bit checks that we didn't hit a breakpoint in a signal handler
1314 without an intervening stop in sigtramp, which is detected by a new
1315 stack pointer value below any usual function calling stack adjustments.
1316
1317 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1318 predates checking for software single step at the same time. Also,
1319 if we've moved into a signal handler we should have seen the
1320 signal. */
1321
1322 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1323 || (software_breakpoint_inserted_here_p (stop_pc)
1324 && !(currently_stepping (ecs)
1325 && prev_pc != stop_pc
1326 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1327 write_pc_pid (stop_pc, ecs->ptid);
1328}
1329
cd0fc7c3
SS
1330/* Given an execution control state that has been freshly filled in
1331 by an event from the inferior, figure out what it means and take
1332 appropriate action. */
c906108c 1333
7270d8f2
OF
1334int stepped_after_stopped_by_watchpoint;
1335
cd0fc7c3 1336void
96baa820 1337handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1338{
65e82032
AC
1339 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1340 thinking that the variable stepped_after_stopped_by_watchpoint
1341 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1342 defined in the file "config/pa/nm-hppah.h", accesses the variable
1343 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1344 int sw_single_step_trap_p = 0;
cd0fc7c3 1345
e02bc4cc 1346 /* Cache the last pid/waitstatus. */
39f77062 1347 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1348 target_last_waitstatus = *ecs->wp;
1349
4fa8626c
DJ
1350 adjust_pc_after_break (ecs);
1351
488f131b
JB
1352 switch (ecs->infwait_state)
1353 {
1354 case infwait_thread_hop_state:
1355 /* Cancel the waiton_ptid. */
1356 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1357 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1358 is serviced in this loop, below. */
1359 if (ecs->enable_hw_watchpoints_after_wait)
1360 {
1361 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1362 ecs->enable_hw_watchpoints_after_wait = 0;
1363 }
1364 stepped_after_stopped_by_watchpoint = 0;
1365 break;
b83266a0 1366
488f131b
JB
1367 case infwait_normal_state:
1368 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1369 is serviced in this loop, below. */
1370 if (ecs->enable_hw_watchpoints_after_wait)
1371 {
1372 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1373 ecs->enable_hw_watchpoints_after_wait = 0;
1374 }
1375 stepped_after_stopped_by_watchpoint = 0;
1376 break;
b83266a0 1377
488f131b 1378 case infwait_nullified_state:
65e82032 1379 stepped_after_stopped_by_watchpoint = 0;
488f131b 1380 break;
b83266a0 1381
488f131b
JB
1382 case infwait_nonstep_watch_state:
1383 insert_breakpoints ();
c906108c 1384
488f131b
JB
1385 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1386 handle things like signals arriving and other things happening
1387 in combination correctly? */
1388 stepped_after_stopped_by_watchpoint = 1;
1389 break;
65e82032
AC
1390
1391 default:
1392 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1393 }
1394 ecs->infwait_state = infwait_normal_state;
c906108c 1395
488f131b 1396 flush_cached_frames ();
c906108c 1397
488f131b 1398 /* If it's a new process, add it to the thread database */
c906108c 1399
488f131b
JB
1400 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1401 && !in_thread_list (ecs->ptid));
1402
1403 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1404 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1405 {
1406 add_thread (ecs->ptid);
c906108c 1407
488f131b
JB
1408 ui_out_text (uiout, "[New ");
1409 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1410 ui_out_text (uiout, "]\n");
c906108c
SS
1411
1412#if 0
488f131b
JB
1413 /* NOTE: This block is ONLY meant to be invoked in case of a
1414 "thread creation event"! If it is invoked for any other
1415 sort of event (such as a new thread landing on a breakpoint),
1416 the event will be discarded, which is almost certainly
1417 a bad thing!
1418
1419 To avoid this, the low-level module (eg. target_wait)
1420 should call in_thread_list and add_thread, so that the
1421 new thread is known by the time we get here. */
1422
1423 /* We may want to consider not doing a resume here in order
1424 to give the user a chance to play with the new thread.
1425 It might be good to make that a user-settable option. */
1426
1427 /* At this point, all threads are stopped (happens
1428 automatically in either the OS or the native code).
1429 Therefore we need to continue all threads in order to
1430 make progress. */
1431
1432 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1433 prepare_to_wait (ecs);
1434 return;
c906108c 1435#endif
488f131b 1436 }
c906108c 1437
488f131b
JB
1438 switch (ecs->ws.kind)
1439 {
1440 case TARGET_WAITKIND_LOADED:
1441 /* Ignore gracefully during startup of the inferior, as it
1442 might be the shell which has just loaded some objects,
1443 otherwise add the symbols for the newly loaded objects. */
c906108c 1444#ifdef SOLIB_ADD
c0236d92 1445 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1446 {
1447 /* Remove breakpoints, SOLIB_ADD might adjust
1448 breakpoint addresses via breakpoint_re_set. */
1449 if (breakpoints_inserted)
1450 remove_breakpoints ();
c906108c 1451
488f131b
JB
1452 /* Check for any newly added shared libraries if we're
1453 supposed to be adding them automatically. Switch
1454 terminal for any messages produced by
1455 breakpoint_re_set. */
1456 target_terminal_ours_for_output ();
aff6338a
AC
1457 /* NOTE: cagney/2003-11-25: Make certain that the target
1458 stack's section table is kept up-to-date. Architectures,
1459 (e.g., PPC64), use the section table to perform
1460 operations such as address => section name and hence
1461 require the table to contain all sections (including
1462 those found in shared libraries). */
1463 /* NOTE: cagney/2003-11-25: Pass current_target and not
1464 exec_ops to SOLIB_ADD. This is because current GDB is
1465 only tooled to propagate section_table changes out from
1466 the "current_target" (see target_resize_to_sections), and
1467 not up from the exec stratum. This, of course, isn't
1468 right. "infrun.c" should only interact with the
1469 exec/process stratum, instead relying on the target stack
1470 to propagate relevant changes (stop, section table
1471 changed, ...) up to other layers. */
1472 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1473 target_terminal_inferior ();
1474
1475 /* Reinsert breakpoints and continue. */
1476 if (breakpoints_inserted)
1477 insert_breakpoints ();
1478 }
c906108c 1479#endif
488f131b
JB
1480 resume (0, TARGET_SIGNAL_0);
1481 prepare_to_wait (ecs);
1482 return;
c5aa993b 1483
488f131b
JB
1484 case TARGET_WAITKIND_SPURIOUS:
1485 resume (0, TARGET_SIGNAL_0);
1486 prepare_to_wait (ecs);
1487 return;
c5aa993b 1488
488f131b
JB
1489 case TARGET_WAITKIND_EXITED:
1490 target_terminal_ours (); /* Must do this before mourn anyway */
1491 print_stop_reason (EXITED, ecs->ws.value.integer);
1492
1493 /* Record the exit code in the convenience variable $_exitcode, so
1494 that the user can inspect this again later. */
1495 set_internalvar (lookup_internalvar ("_exitcode"),
1496 value_from_longest (builtin_type_int,
1497 (LONGEST) ecs->ws.value.integer));
1498 gdb_flush (gdb_stdout);
1499 target_mourn_inferior ();
1500 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1501 stop_print_frame = 0;
1502 stop_stepping (ecs);
1503 return;
c5aa993b 1504
488f131b
JB
1505 case TARGET_WAITKIND_SIGNALLED:
1506 stop_print_frame = 0;
1507 stop_signal = ecs->ws.value.sig;
1508 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1509
488f131b
JB
1510 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1511 reach here unless the inferior is dead. However, for years
1512 target_kill() was called here, which hints that fatal signals aren't
1513 really fatal on some systems. If that's true, then some changes
1514 may be needed. */
1515 target_mourn_inferior ();
c906108c 1516
488f131b
JB
1517 print_stop_reason (SIGNAL_EXITED, stop_signal);
1518 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1519 stop_stepping (ecs);
1520 return;
c906108c 1521
488f131b
JB
1522 /* The following are the only cases in which we keep going;
1523 the above cases end in a continue or goto. */
1524 case TARGET_WAITKIND_FORKED:
deb3b17b 1525 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1526 stop_signal = TARGET_SIGNAL_TRAP;
1527 pending_follow.kind = ecs->ws.kind;
1528
8e7d2c16
DJ
1529 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1530 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1531
488f131b 1532 stop_pc = read_pc ();
675bf4cb 1533
fa5281d0 1534 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1535
488f131b 1536 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1537
1538 /* If no catchpoint triggered for this, then keep going. */
1539 if (ecs->random_signal)
1540 {
1541 stop_signal = TARGET_SIGNAL_0;
1542 keep_going (ecs);
1543 return;
1544 }
488f131b
JB
1545 goto process_event_stop_test;
1546
1547 case TARGET_WAITKIND_EXECD:
1548 stop_signal = TARGET_SIGNAL_TRAP;
1549
7d2830a3
DJ
1550 /* NOTE drow/2002-12-05: This code should be pushed down into the
1551 target_wait function. Until then following vfork on HP/UX 10.20
1552 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1553 /* Is this a target which reports multiple exec events per actual
1554 call to exec()? (HP-UX using ptrace does, for example.) If so,
1555 ignore all but the last one. Just resume the exec'r, and wait
1556 for the next exec event. */
1557 if (inferior_ignoring_leading_exec_events)
1558 {
1559 inferior_ignoring_leading_exec_events--;
1560 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1561 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1562 parent_pid);
1563 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
1567 inferior_ignoring_leading_exec_events =
1568 target_reported_exec_events_per_exec_call () - 1;
1569
1570 pending_follow.execd_pathname =
1571 savestring (ecs->ws.value.execd_pathname,
1572 strlen (ecs->ws.value.execd_pathname));
1573
488f131b
JB
1574 /* This causes the eventpoints and symbol table to be reset. Must
1575 do this now, before trying to determine whether to stop. */
1576 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1577 xfree (pending_follow.execd_pathname);
c906108c 1578
488f131b
JB
1579 stop_pc = read_pc_pid (ecs->ptid);
1580 ecs->saved_inferior_ptid = inferior_ptid;
1581 inferior_ptid = ecs->ptid;
675bf4cb 1582
fa5281d0 1583 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1584
488f131b
JB
1585 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1586 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1587
1588 /* If no catchpoint triggered for this, then keep going. */
1589 if (ecs->random_signal)
1590 {
1591 stop_signal = TARGET_SIGNAL_0;
1592 keep_going (ecs);
1593 return;
1594 }
488f131b
JB
1595 goto process_event_stop_test;
1596
1597 /* These syscall events are returned on HP-UX, as part of its
1598 implementation of page-protection-based "hardware" watchpoints.
1599 HP-UX has unfortunate interactions between page-protections and
1600 some system calls. Our solution is to disable hardware watches
1601 when a system call is entered, and reenable them when the syscall
1602 completes. The downside of this is that we may miss the precise
1603 point at which a watched piece of memory is modified. "Oh well."
1604
1605 Note that we may have multiple threads running, which may each
1606 enter syscalls at roughly the same time. Since we don't have a
1607 good notion currently of whether a watched piece of memory is
1608 thread-private, we'd best not have any page-protections active
1609 when any thread is in a syscall. Thus, we only want to reenable
1610 hardware watches when no threads are in a syscall.
1611
1612 Also, be careful not to try to gather much state about a thread
1613 that's in a syscall. It's frequently a losing proposition. */
1614 case TARGET_WAITKIND_SYSCALL_ENTRY:
1615 number_of_threads_in_syscalls++;
1616 if (number_of_threads_in_syscalls == 1)
1617 {
1618 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1619 }
1620 resume (0, TARGET_SIGNAL_0);
1621 prepare_to_wait (ecs);
1622 return;
c906108c 1623
488f131b
JB
1624 /* Before examining the threads further, step this thread to
1625 get it entirely out of the syscall. (We get notice of the
1626 event when the thread is just on the verge of exiting a
1627 syscall. Stepping one instruction seems to get it back
1628 into user code.)
c906108c 1629
488f131b
JB
1630 Note that although the logical place to reenable h/w watches
1631 is here, we cannot. We cannot reenable them before stepping
1632 the thread (this causes the next wait on the thread to hang).
c4093a6a 1633
488f131b
JB
1634 Nor can we enable them after stepping until we've done a wait.
1635 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1636 here, which will be serviced immediately after the target
1637 is waited on. */
1638 case TARGET_WAITKIND_SYSCALL_RETURN:
1639 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1640
1641 if (number_of_threads_in_syscalls > 0)
1642 {
1643 number_of_threads_in_syscalls--;
1644 ecs->enable_hw_watchpoints_after_wait =
1645 (number_of_threads_in_syscalls == 0);
1646 }
1647 prepare_to_wait (ecs);
1648 return;
c906108c 1649
488f131b
JB
1650 case TARGET_WAITKIND_STOPPED:
1651 stop_signal = ecs->ws.value.sig;
1652 break;
c906108c 1653
488f131b
JB
1654 /* We had an event in the inferior, but we are not interested
1655 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1656 done what needs to be done, if anything.
1657
1658 One of the possible circumstances for this is when the
1659 inferior produces output for the console. The inferior has
1660 not stopped, and we are ignoring the event. Another possible
1661 circumstance is any event which the lower level knows will be
1662 reported multiple times without an intervening resume. */
488f131b 1663 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1664 prepare_to_wait (ecs);
488f131b
JB
1665 return;
1666 }
c906108c 1667
488f131b
JB
1668 /* We may want to consider not doing a resume here in order to give
1669 the user a chance to play with the new thread. It might be good
1670 to make that a user-settable option. */
c906108c 1671
488f131b
JB
1672 /* At this point, all threads are stopped (happens automatically in
1673 either the OS or the native code). Therefore we need to continue
1674 all threads in order to make progress. */
1675 if (ecs->new_thread_event)
1676 {
1677 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1678 prepare_to_wait (ecs);
1679 return;
1680 }
c906108c 1681
488f131b
JB
1682 stop_pc = read_pc_pid (ecs->ptid);
1683
9f976b41
DJ
1684 if (stepping_past_singlestep_breakpoint)
1685 {
1686 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1687 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1688 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1689
1690 stepping_past_singlestep_breakpoint = 0;
1691
1692 /* We've either finished single-stepping past the single-step
1693 breakpoint, or stopped for some other reason. It would be nice if
1694 we could tell, but we can't reliably. */
1695 if (stop_signal == TARGET_SIGNAL_TRAP)
1696 {
1697 /* Pull the single step breakpoints out of the target. */
1698 SOFTWARE_SINGLE_STEP (0, 0);
1699 singlestep_breakpoints_inserted_p = 0;
1700
1701 ecs->random_signal = 0;
1702
1703 ecs->ptid = saved_singlestep_ptid;
1704 context_switch (ecs);
9a4105ab
AC
1705 if (deprecated_context_hook)
1706 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1707
1708 resume (1, TARGET_SIGNAL_0);
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712 }
1713
1714 stepping_past_singlestep_breakpoint = 0;
1715
488f131b
JB
1716 /* See if a thread hit a thread-specific breakpoint that was meant for
1717 another thread. If so, then step that thread past the breakpoint,
1718 and continue it. */
1719
1720 if (stop_signal == TARGET_SIGNAL_TRAP)
1721 {
9f976b41
DJ
1722 int thread_hop_needed = 0;
1723
f8d40ec8
JB
1724 /* Check if a regular breakpoint has been hit before checking
1725 for a potential single step breakpoint. Otherwise, GDB will
1726 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1727 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1728 {
c5aa993b 1729 ecs->random_signal = 0;
4fa8626c 1730 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1731 thread_hop_needed = 1;
1732 }
1733 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1734 {
1735 ecs->random_signal = 0;
1736 /* The call to in_thread_list is necessary because PTIDs sometimes
1737 change when we go from single-threaded to multi-threaded. If
1738 the singlestep_ptid is still in the list, assume that it is
1739 really different from ecs->ptid. */
1740 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1741 && in_thread_list (singlestep_ptid))
1742 {
1743 thread_hop_needed = 1;
1744 stepping_past_singlestep_breakpoint = 1;
1745 saved_singlestep_ptid = singlestep_ptid;
1746 }
1747 }
1748
1749 if (thread_hop_needed)
488f131b
JB
1750 {
1751 int remove_status;
1752
1753 /* Saw a breakpoint, but it was hit by the wrong thread.
1754 Just continue. */
488f131b 1755
9f976b41
DJ
1756 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1757 {
1758 /* Pull the single step breakpoints out of the target. */
1759 SOFTWARE_SINGLE_STEP (0, 0);
1760 singlestep_breakpoints_inserted_p = 0;
1761 }
1762
488f131b
JB
1763 remove_status = remove_breakpoints ();
1764 /* Did we fail to remove breakpoints? If so, try
1765 to set the PC past the bp. (There's at least
1766 one situation in which we can fail to remove
1767 the bp's: On HP-UX's that use ttrace, we can't
1768 change the address space of a vforking child
1769 process until the child exits (well, okay, not
1770 then either :-) or execs. */
1771 if (remove_status != 0)
1772 {
1773 /* FIXME! This is obviously non-portable! */
4fa8626c 1774 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1775 /* We need to restart all the threads now,
1776 * unles we're running in scheduler-locked mode.
1777 * Use currently_stepping to determine whether to
1778 * step or continue.
1779 */
1780 /* FIXME MVS: is there any reason not to call resume()? */
1781 if (scheduler_mode == schedlock_on)
1782 target_resume (ecs->ptid,
1783 currently_stepping (ecs), TARGET_SIGNAL_0);
1784 else
1785 target_resume (RESUME_ALL,
1786 currently_stepping (ecs), TARGET_SIGNAL_0);
1787 prepare_to_wait (ecs);
1788 return;
1789 }
1790 else
1791 { /* Single step */
1792 breakpoints_inserted = 0;
1793 if (!ptid_equal (inferior_ptid, ecs->ptid))
1794 context_switch (ecs);
1795 ecs->waiton_ptid = ecs->ptid;
1796 ecs->wp = &(ecs->ws);
1797 ecs->another_trap = 1;
1798
1799 ecs->infwait_state = infwait_thread_hop_state;
1800 keep_going (ecs);
1801 registers_changed ();
1802 return;
1803 }
488f131b 1804 }
f8d40ec8
JB
1805 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1806 {
c8edd8b4 1807 sw_single_step_trap_p = 1;
f8d40ec8
JB
1808 ecs->random_signal = 0;
1809 }
488f131b
JB
1810 }
1811 else
1812 ecs->random_signal = 1;
c906108c 1813
488f131b 1814 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1815 so, then switch to that thread. */
1816 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1817 {
488f131b 1818 context_switch (ecs);
c5aa993b 1819
9a4105ab
AC
1820 if (deprecated_context_hook)
1821 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1822
488f131b
JB
1823 flush_cached_frames ();
1824 }
c906108c 1825
488f131b
JB
1826 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1827 {
1828 /* Pull the single step breakpoints out of the target. */
1829 SOFTWARE_SINGLE_STEP (0, 0);
1830 singlestep_breakpoints_inserted_p = 0;
1831 }
c906108c 1832
488f131b
JB
1833 /* If PC is pointing at a nullified instruction, then step beyond
1834 it so that the user won't be confused when GDB appears to be ready
1835 to execute it. */
c906108c 1836
488f131b
JB
1837 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1838 if (INSTRUCTION_NULLIFIED)
1839 {
1840 registers_changed ();
1841 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1842
488f131b
JB
1843 /* We may have received a signal that we want to pass to
1844 the inferior; therefore, we must not clobber the waitstatus
1845 in WS. */
c906108c 1846
488f131b
JB
1847 ecs->infwait_state = infwait_nullified_state;
1848 ecs->waiton_ptid = ecs->ptid;
1849 ecs->wp = &(ecs->tmpstatus);
1850 prepare_to_wait (ecs);
1851 return;
1852 }
c906108c 1853
488f131b
JB
1854 /* It may not be necessary to disable the watchpoint to stop over
1855 it. For example, the PA can (with some kernel cooperation)
1856 single step over a watchpoint without disabling the watchpoint. */
1857 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1858 {
1859 resume (1, 0);
1860 prepare_to_wait (ecs);
1861 return;
1862 }
c906108c 1863
488f131b
JB
1864 /* It is far more common to need to disable a watchpoint to step
1865 the inferior over it. FIXME. What else might a debug
1866 register or page protection watchpoint scheme need here? */
1867 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1868 {
1869 /* At this point, we are stopped at an instruction which has
1870 attempted to write to a piece of memory under control of
1871 a watchpoint. The instruction hasn't actually executed
1872 yet. If we were to evaluate the watchpoint expression
1873 now, we would get the old value, and therefore no change
1874 would seem to have occurred.
1875
1876 In order to make watchpoints work `right', we really need
1877 to complete the memory write, and then evaluate the
1878 watchpoint expression. The following code does that by
1879 removing the watchpoint (actually, all watchpoints and
1880 breakpoints), single-stepping the target, re-inserting
1881 watchpoints, and then falling through to let normal
1882 single-step processing handle proceed. Since this
1883 includes evaluating watchpoints, things will come to a
1884 stop in the correct manner. */
1885
488f131b
JB
1886 remove_breakpoints ();
1887 registers_changed ();
1888 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1889
488f131b
JB
1890 ecs->waiton_ptid = ecs->ptid;
1891 ecs->wp = &(ecs->ws);
1892 ecs->infwait_state = infwait_nonstep_watch_state;
1893 prepare_to_wait (ecs);
1894 return;
1895 }
1896
1897 /* It may be possible to simply continue after a watchpoint. */
1898 if (HAVE_CONTINUABLE_WATCHPOINT)
1899 STOPPED_BY_WATCHPOINT (ecs->ws);
1900
1901 ecs->stop_func_start = 0;
1902 ecs->stop_func_end = 0;
1903 ecs->stop_func_name = 0;
1904 /* Don't care about return value; stop_func_start and stop_func_name
1905 will both be 0 if it doesn't work. */
1906 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1907 &ecs->stop_func_start, &ecs->stop_func_end);
1908 ecs->stop_func_start += FUNCTION_START_OFFSET;
1909 ecs->another_trap = 0;
1910 bpstat_clear (&stop_bpstat);
1911 stop_step = 0;
1912 stop_stack_dummy = 0;
1913 stop_print_frame = 1;
1914 ecs->random_signal = 0;
1915 stopped_by_random_signal = 0;
1916 breakpoints_failed = 0;
1917
1918 /* Look at the cause of the stop, and decide what to do.
1919 The alternatives are:
1920 1) break; to really stop and return to the debugger,
1921 2) drop through to start up again
1922 (set ecs->another_trap to 1 to single step once)
1923 3) set ecs->random_signal to 1, and the decision between 1 and 2
1924 will be made according to the signal handling tables. */
1925
1926 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1927 that have to do with the program's own actions. Note that
1928 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1929 on the operating system version. Here we detect when a SIGILL or
1930 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1931 something similar for SIGSEGV, since a SIGSEGV will be generated
1932 when we're trying to execute a breakpoint instruction on a
1933 non-executable stack. This happens for call dummy breakpoints
1934 for architectures like SPARC that place call dummies on the
1935 stack. */
488f131b
JB
1936
1937 if (stop_signal == TARGET_SIGNAL_TRAP
1938 || (breakpoints_inserted &&
1939 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1940 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1941 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1942 || stop_soon == STOP_QUIETLY
1943 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1944 {
1945 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1946 {
1947 stop_print_frame = 0;
1948 stop_stepping (ecs);
1949 return;
1950 }
c54cfec8
EZ
1951
1952 /* This is originated from start_remote(), start_inferior() and
1953 shared libraries hook functions. */
c0236d92 1954 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1955 {
1956 stop_stepping (ecs);
1957 return;
1958 }
1959
c54cfec8
EZ
1960 /* This originates from attach_command(). We need to overwrite
1961 the stop_signal here, because some kernels don't ignore a
1962 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1963 See more comments in inferior.h. */
c0236d92 1964 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1965 {
1966 stop_stepping (ecs);
1967 if (stop_signal == TARGET_SIGNAL_STOP)
1968 stop_signal = TARGET_SIGNAL_0;
1969 return;
1970 }
1971
d303a6c7
AC
1972 /* Don't even think about breakpoints if just proceeded over a
1973 breakpoint. */
1974 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1975 bpstat_clear (&stop_bpstat);
1976 else
1977 {
1978 /* See if there is a breakpoint at the current PC. */
fa5281d0 1979 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 1980
488f131b
JB
1981 /* Following in case break condition called a
1982 function. */
1983 stop_print_frame = 1;
1984 }
1985
73dd234f
AC
1986 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1987 at one stage in the past included checks for an inferior
1988 function call's call dummy's return breakpoint. The original
1989 comment, that went with the test, read:
1990
1991 ``End of a stack dummy. Some systems (e.g. Sony news) give
1992 another signal besides SIGTRAP, so check here as well as
1993 above.''
1994
1995 If someone ever tries to get get call dummys on a
1996 non-executable stack to work (where the target would stop
03cebad2
MK
1997 with something like a SIGSEGV), then those tests might need
1998 to be re-instated. Given, however, that the tests were only
73dd234f 1999 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2000 suspect that it won't be the case.
2001
2002 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2003 be necessary for call dummies on a non-executable stack on
2004 SPARC. */
73dd234f 2005
488f131b
JB
2006 if (stop_signal == TARGET_SIGNAL_TRAP)
2007 ecs->random_signal
2008 = !(bpstat_explains_signal (stop_bpstat)
2009 || trap_expected
488f131b 2010 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2011 else
2012 {
73dd234f 2013 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2014 if (!ecs->random_signal)
2015 stop_signal = TARGET_SIGNAL_TRAP;
2016 }
2017 }
2018
2019 /* When we reach this point, we've pretty much decided
2020 that the reason for stopping must've been a random
2021 (unexpected) signal. */
2022
2023 else
2024 ecs->random_signal = 1;
488f131b 2025
04e68871 2026process_event_stop_test:
488f131b
JB
2027 /* For the program's own signals, act according to
2028 the signal handling tables. */
2029
2030 if (ecs->random_signal)
2031 {
2032 /* Signal not for debugging purposes. */
2033 int printed = 0;
2034
2035 stopped_by_random_signal = 1;
2036
2037 if (signal_print[stop_signal])
2038 {
2039 printed = 1;
2040 target_terminal_ours_for_output ();
2041 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2042 }
2043 if (signal_stop[stop_signal])
2044 {
2045 stop_stepping (ecs);
2046 return;
2047 }
2048 /* If not going to stop, give terminal back
2049 if we took it away. */
2050 else if (printed)
2051 target_terminal_inferior ();
2052
2053 /* Clear the signal if it should not be passed. */
2054 if (signal_program[stop_signal] == 0)
2055 stop_signal = TARGET_SIGNAL_0;
2056
d303a6c7
AC
2057 if (step_range_end != 0
2058 && stop_signal != TARGET_SIGNAL_0
2059 && stop_pc >= step_range_start && stop_pc < step_range_end
2060 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2061 {
2062 /* The inferior is about to take a signal that will take it
2063 out of the single step range. Set a breakpoint at the
2064 current PC (which is presumably where the signal handler
2065 will eventually return) and then allow the inferior to
2066 run free.
2067
2068 Note that this is only needed for a signal delivered
2069 while in the single-step range. Nested signals aren't a
2070 problem as they eventually all return. */
2071 insert_step_resume_breakpoint (get_current_frame (), ecs);
2072 }
488f131b
JB
2073 keep_going (ecs);
2074 return;
2075 }
2076
2077 /* Handle cases caused by hitting a breakpoint. */
2078 {
2079 CORE_ADDR jmp_buf_pc;
2080 struct bpstat_what what;
2081
2082 what = bpstat_what (stop_bpstat);
2083
2084 if (what.call_dummy)
2085 {
2086 stop_stack_dummy = 1;
2087#ifdef HP_OS_BUG
2088 trap_expected_after_continue = 1;
2089#endif
c5aa993b 2090 }
c906108c 2091
488f131b 2092 switch (what.main_action)
c5aa993b 2093 {
488f131b
JB
2094 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2095 /* If we hit the breakpoint at longjmp, disable it for the
2096 duration of this command. Then, install a temporary
2097 breakpoint at the target of the jmp_buf. */
2098 disable_longjmp_breakpoint ();
2099 remove_breakpoints ();
2100 breakpoints_inserted = 0;
2101 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2102 {
488f131b 2103 keep_going (ecs);
104c1213 2104 return;
c5aa993b 2105 }
488f131b
JB
2106
2107 /* Need to blow away step-resume breakpoint, as it
2108 interferes with us */
2109 if (step_resume_breakpoint != NULL)
104c1213 2110 {
488f131b 2111 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2112 }
c906108c 2113
488f131b
JB
2114#if 0
2115 /* FIXME - Need to implement nested temporary breakpoints */
2116 if (step_over_calls > 0)
2117 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2118 else
488f131b 2119#endif /* 0 */
818dd999 2120 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2121 ecs->handling_longjmp = 1; /* FIXME */
2122 keep_going (ecs);
2123 return;
c906108c 2124
488f131b
JB
2125 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2126 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2127 remove_breakpoints ();
2128 breakpoints_inserted = 0;
2129#if 0
2130 /* FIXME - Need to implement nested temporary breakpoints */
2131 if (step_over_calls
aa0cd9c1
AC
2132 && (frame_id_inner (get_frame_id (get_current_frame ()),
2133 step_frame_id)))
c5aa993b 2134 {
488f131b 2135 ecs->another_trap = 1;
d4f3574e
SS
2136 keep_going (ecs);
2137 return;
c5aa993b 2138 }
488f131b
JB
2139#endif /* 0 */
2140 disable_longjmp_breakpoint ();
2141 ecs->handling_longjmp = 0; /* FIXME */
2142 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2143 break;
2144 /* else fallthrough */
2145
2146 case BPSTAT_WHAT_SINGLE:
2147 if (breakpoints_inserted)
c5aa993b 2148 {
488f131b 2149 remove_breakpoints ();
c5aa993b 2150 }
488f131b
JB
2151 breakpoints_inserted = 0;
2152 ecs->another_trap = 1;
2153 /* Still need to check other stuff, at least the case
2154 where we are stepping and step out of the right range. */
2155 break;
c906108c 2156
488f131b
JB
2157 case BPSTAT_WHAT_STOP_NOISY:
2158 stop_print_frame = 1;
c906108c 2159
d303a6c7
AC
2160 /* We are about to nuke the step_resume_breakpointt via the
2161 cleanup chain, so no need to worry about it here. */
c5aa993b 2162
488f131b
JB
2163 stop_stepping (ecs);
2164 return;
c5aa993b 2165
488f131b
JB
2166 case BPSTAT_WHAT_STOP_SILENT:
2167 stop_print_frame = 0;
c5aa993b 2168
d303a6c7
AC
2169 /* We are about to nuke the step_resume_breakpoin via the
2170 cleanup chain, so no need to worry about it here. */
c5aa993b 2171
488f131b 2172 stop_stepping (ecs);
e441088d 2173 return;
c5aa993b 2174
488f131b
JB
2175 case BPSTAT_WHAT_STEP_RESUME:
2176 /* This proably demands a more elegant solution, but, yeah
2177 right...
c5aa993b 2178
488f131b
JB
2179 This function's use of the simple variable
2180 step_resume_breakpoint doesn't seem to accomodate
2181 simultaneously active step-resume bp's, although the
2182 breakpoint list certainly can.
c5aa993b 2183
488f131b
JB
2184 If we reach here and step_resume_breakpoint is already
2185 NULL, then apparently we have multiple active
2186 step-resume bp's. We'll just delete the breakpoint we
2187 stopped at, and carry on.
2188
2189 Correction: what the code currently does is delete a
2190 step-resume bp, but it makes no effort to ensure that
2191 the one deleted is the one currently stopped at. MVS */
c5aa993b 2192
488f131b
JB
2193 if (step_resume_breakpoint == NULL)
2194 {
2195 step_resume_breakpoint =
2196 bpstat_find_step_resume_breakpoint (stop_bpstat);
2197 }
2198 delete_step_resume_breakpoint (&step_resume_breakpoint);
2199 break;
2200
2201 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2202 /* If were waiting for a trap, hitting the step_resume_break
2203 doesn't count as getting it. */
2204 if (trap_expected)
2205 ecs->another_trap = 1;
2206 break;
2207
2208 case BPSTAT_WHAT_CHECK_SHLIBS:
2209 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2210#ifdef SOLIB_ADD
c906108c 2211 {
488f131b
JB
2212 /* Remove breakpoints, we eventually want to step over the
2213 shlib event breakpoint, and SOLIB_ADD might adjust
2214 breakpoint addresses via breakpoint_re_set. */
2215 if (breakpoints_inserted)
2216 remove_breakpoints ();
c5aa993b 2217 breakpoints_inserted = 0;
488f131b
JB
2218
2219 /* Check for any newly added shared libraries if we're
2220 supposed to be adding them automatically. Switch
2221 terminal for any messages produced by
2222 breakpoint_re_set. */
2223 target_terminal_ours_for_output ();
aff6338a
AC
2224 /* NOTE: cagney/2003-11-25: Make certain that the target
2225 stack's section table is kept up-to-date. Architectures,
2226 (e.g., PPC64), use the section table to perform
2227 operations such as address => section name and hence
2228 require the table to contain all sections (including
2229 those found in shared libraries). */
2230 /* NOTE: cagney/2003-11-25: Pass current_target and not
2231 exec_ops to SOLIB_ADD. This is because current GDB is
2232 only tooled to propagate section_table changes out from
2233 the "current_target" (see target_resize_to_sections), and
2234 not up from the exec stratum. This, of course, isn't
2235 right. "infrun.c" should only interact with the
2236 exec/process stratum, instead relying on the target stack
2237 to propagate relevant changes (stop, section table
2238 changed, ...) up to other layers. */
2239 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2240 target_terminal_inferior ();
2241
2242 /* Try to reenable shared library breakpoints, additional
2243 code segments in shared libraries might be mapped in now. */
2244 re_enable_breakpoints_in_shlibs ();
2245
2246 /* If requested, stop when the dynamic linker notifies
2247 gdb of events. This allows the user to get control
2248 and place breakpoints in initializer routines for
2249 dynamically loaded objects (among other things). */
877522db 2250 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2251 {
488f131b 2252 stop_stepping (ecs);
d4f3574e
SS
2253 return;
2254 }
c5aa993b 2255
488f131b
JB
2256 /* If we stopped due to an explicit catchpoint, then the
2257 (see above) call to SOLIB_ADD pulled in any symbols
2258 from a newly-loaded library, if appropriate.
2259
2260 We do want the inferior to stop, but not where it is
2261 now, which is in the dynamic linker callback. Rather,
2262 we would like it stop in the user's program, just after
2263 the call that caused this catchpoint to trigger. That
2264 gives the user a more useful vantage from which to
2265 examine their program's state. */
2266 else if (what.main_action ==
2267 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2268 {
488f131b
JB
2269 /* ??rehrauer: If I could figure out how to get the
2270 right return PC from here, we could just set a temp
2271 breakpoint and resume. I'm not sure we can without
2272 cracking open the dld's shared libraries and sniffing
2273 their unwind tables and text/data ranges, and that's
2274 not a terribly portable notion.
2275
2276 Until that time, we must step the inferior out of the
2277 dld callback, and also out of the dld itself (and any
2278 code or stubs in libdld.sl, such as "shl_load" and
2279 friends) until we reach non-dld code. At that point,
2280 we can stop stepping. */
2281 bpstat_get_triggered_catchpoints (stop_bpstat,
2282 &ecs->
2283 stepping_through_solib_catchpoints);
2284 ecs->stepping_through_solib_after_catch = 1;
2285
2286 /* Be sure to lift all breakpoints, so the inferior does
2287 actually step past this point... */
2288 ecs->another_trap = 1;
2289 break;
c906108c 2290 }
c5aa993b 2291 else
c5aa993b 2292 {
488f131b 2293 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2294 ecs->another_trap = 1;
488f131b 2295 break;
c5aa993b 2296 }
488f131b
JB
2297 }
2298#endif
2299 break;
c906108c 2300
488f131b
JB
2301 case BPSTAT_WHAT_LAST:
2302 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2303
488f131b
JB
2304 case BPSTAT_WHAT_KEEP_CHECKING:
2305 break;
2306 }
2307 }
c906108c 2308
488f131b
JB
2309 /* We come here if we hit a breakpoint but should not
2310 stop for it. Possibly we also were stepping
2311 and should stop for that. So fall through and
2312 test for stepping. But, if not stepping,
2313 do not stop. */
c906108c 2314
488f131b
JB
2315 /* Are we stepping to get the inferior out of the dynamic
2316 linker's hook (and possibly the dld itself) after catching
2317 a shlib event? */
2318 if (ecs->stepping_through_solib_after_catch)
2319 {
2320#if defined(SOLIB_ADD)
2321 /* Have we reached our destination? If not, keep going. */
2322 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2323 {
2324 ecs->another_trap = 1;
2325 keep_going (ecs);
104c1213 2326 return;
488f131b
JB
2327 }
2328#endif
2329 /* Else, stop and report the catchpoint(s) whose triggering
2330 caused us to begin stepping. */
2331 ecs->stepping_through_solib_after_catch = 0;
2332 bpstat_clear (&stop_bpstat);
2333 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2334 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2335 stop_print_frame = 1;
2336 stop_stepping (ecs);
2337 return;
2338 }
c906108c 2339
488f131b
JB
2340 if (step_resume_breakpoint)
2341 {
2342 /* Having a step-resume breakpoint overrides anything
2343 else having to do with stepping commands until
2344 that breakpoint is reached. */
488f131b
JB
2345 keep_going (ecs);
2346 return;
2347 }
c5aa993b 2348
488f131b
JB
2349 if (step_range_end == 0)
2350 {
2351 /* Likewise if we aren't even stepping. */
488f131b
JB
2352 keep_going (ecs);
2353 return;
2354 }
c5aa993b 2355
488f131b 2356 /* If stepping through a line, keep going if still within it.
c906108c 2357
488f131b
JB
2358 Note that step_range_end is the address of the first instruction
2359 beyond the step range, and NOT the address of the last instruction
2360 within it! */
2361 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2362 {
488f131b
JB
2363 keep_going (ecs);
2364 return;
2365 }
c5aa993b 2366
488f131b 2367 /* We stepped out of the stepping range. */
c906108c 2368
488f131b
JB
2369 /* If we are stepping at the source level and entered the runtime
2370 loader dynamic symbol resolution code, we keep on single stepping
2371 until we exit the run time loader code and reach the callee's
2372 address. */
2373 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2374 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2375 {
4c8c40e6
MK
2376 CORE_ADDR pc_after_resolver =
2377 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2378
488f131b
JB
2379 if (pc_after_resolver)
2380 {
2381 /* Set up a step-resume breakpoint at the address
2382 indicated by SKIP_SOLIB_RESOLVER. */
2383 struct symtab_and_line sr_sal;
fe39c653 2384 init_sal (&sr_sal);
488f131b
JB
2385 sr_sal.pc = pc_after_resolver;
2386
2387 check_for_old_step_resume_breakpoint ();
2388 step_resume_breakpoint =
818dd999 2389 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2390 if (breakpoints_inserted)
2391 insert_breakpoints ();
c5aa993b 2392 }
c906108c 2393
488f131b
JB
2394 keep_going (ecs);
2395 return;
2396 }
c906108c 2397
a587af0b
AC
2398 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2399 && ecs->stop_func_name == NULL)
2400 {
2401 /* There is no symbol, not even a minimal symbol, corresponding
2402 to the address where we just stopped. So we just stepped
2403 inside undebuggable code. Since we want to step over this
2404 kind of code, we keep going until the inferior returns from
2405 the current function. */
2406 handle_step_into_function (ecs);
2407 return;
2408 }
2409
488f131b
JB
2410 /* We can't update step_sp every time through the loop, because
2411 reading the stack pointer would slow down stepping too much.
2412 But we can update it every time we leave the step range. */
2413 ecs->update_step_sp = 1;
c906108c 2414
ca4bb888
AC
2415 /* Did we just step into a singal trampoline (either by stepping out
2416 of a handler, or by taking a signal)? */
08e69816
AC
2417 if (get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME
2418 && !frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
488f131b 2419 {
c5aa993b 2420 {
aa0cd9c1 2421 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2422
aa0cd9c1 2423 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2424 {
2425 /* We have just taken a signal; go until we are back to
2426 the point where we took it and one more. */
c906108c 2427
488f131b
JB
2428 /* This code is needed at least in the following case:
2429 The user types "next" and then a signal arrives (before
2430 the "next" is done). */
d4f3574e 2431
488f131b
JB
2432 /* Note that if we are stopped at a breakpoint, then we need
2433 the step_resume breakpoint to override any breakpoints at
2434 the same location, so that we will still step over the
2435 breakpoint even though the signal happened. */
d4f3574e 2436 struct symtab_and_line sr_sal;
d4f3574e 2437
fe39c653 2438 init_sal (&sr_sal);
488f131b
JB
2439 sr_sal.symtab = NULL;
2440 sr_sal.line = 0;
2441 sr_sal.pc = prev_pc;
2442 /* We could probably be setting the frame to
aa0cd9c1 2443 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2444 check_for_old_step_resume_breakpoint ();
2445 step_resume_breakpoint =
818dd999 2446 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2447 if (breakpoints_inserted)
2448 insert_breakpoints ();
2449 }
488f131b
JB
2450 else
2451 {
2452 /* We just stepped out of a signal handler and into
2453 its calling trampoline.
2454
2455 Normally, we'd call step_over_function from
2456 here, but for some reason GDB can't unwind the
2457 stack correctly to find the real PC for the point
2458 user code where the signal trampoline will return
2459 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2460 But signal trampolines are pretty small stubs of
2461 code, anyway, so it's OK instead to just
2462 single-step out. Note: assuming such trampolines
2463 don't exhibit recursion on any platform... */
2464 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2465 &ecs->stop_func_start,
2466 &ecs->stop_func_end);
2467 /* Readjust stepping range */
2468 step_range_start = ecs->stop_func_start;
2469 step_range_end = ecs->stop_func_end;
2470 ecs->stepping_through_sigtramp = 1;
2471 }
d4f3574e 2472 }
c906108c 2473
c906108c 2474
488f131b
JB
2475 /* If this is stepi or nexti, make sure that the stepping range
2476 gets us past that instruction. */
2477 if (step_range_end == 1)
2478 /* FIXME: Does this run afoul of the code below which, if
2479 we step into the middle of a line, resets the stepping
2480 range? */
2481 step_range_end = (step_range_start = prev_pc) + 1;
2482
2483 ecs->remove_breakpoints_on_following_step = 1;
2484 keep_going (ecs);
2485 return;
2486 }
c906108c 2487
a587af0b
AC
2488 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2489 step_frame_id))
488f131b
JB
2490 {
2491 /* It's a subroutine call. */
1af510a8 2492 handle_step_into_function (ecs);
488f131b 2493 return;
488f131b 2494 }
c906108c 2495
488f131b 2496 /* We've wandered out of the step range. */
c906108c 2497
488f131b 2498 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2499
488f131b
JB
2500 if (step_range_end == 1)
2501 {
2502 /* It is stepi or nexti. We always want to stop stepping after
2503 one instruction. */
2504 stop_step = 1;
2505 print_stop_reason (END_STEPPING_RANGE, 0);
2506 stop_stepping (ecs);
2507 return;
2508 }
c906108c 2509
488f131b
JB
2510 /* If we're in the return path from a shared library trampoline,
2511 we want to proceed through the trampoline when stepping. */
2512 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2513 {
488f131b 2514 /* Determine where this trampoline returns. */
5cf4d23a 2515 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2516
488f131b 2517 /* Only proceed through if we know where it's going. */
d764a824 2518 if (real_stop_pc)
488f131b
JB
2519 {
2520 /* And put the step-breakpoint there and go until there. */
2521 struct symtab_and_line sr_sal;
2522
fe39c653 2523 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2524 sr_sal.pc = real_stop_pc;
488f131b
JB
2525 sr_sal.section = find_pc_overlay (sr_sal.pc);
2526 /* Do not specify what the fp should be when we stop
2527 since on some machines the prologue
2528 is where the new fp value is established. */
2529 check_for_old_step_resume_breakpoint ();
2530 step_resume_breakpoint =
818dd999 2531 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2532 if (breakpoints_inserted)
2533 insert_breakpoints ();
c906108c 2534
488f131b
JB
2535 /* Restart without fiddling with the step ranges or
2536 other state. */
2537 keep_going (ecs);
2538 return;
2539 }
2540 }
c906108c 2541
488f131b
JB
2542 if (ecs->sal.line == 0)
2543 {
2544 /* We have no line number information. That means to stop
2545 stepping (does this always happen right after one instruction,
2546 when we do "s" in a function with no line numbers,
2547 or can this happen as a result of a return or longjmp?). */
2548 stop_step = 1;
2549 print_stop_reason (END_STEPPING_RANGE, 0);
2550 stop_stepping (ecs);
2551 return;
2552 }
c906108c 2553
488f131b
JB
2554 if ((stop_pc == ecs->sal.pc)
2555 && (ecs->current_line != ecs->sal.line
2556 || ecs->current_symtab != ecs->sal.symtab))
2557 {
2558 /* We are at the start of a different line. So stop. Note that
2559 we don't stop if we step into the middle of a different line.
2560 That is said to make things like for (;;) statements work
2561 better. */
2562 stop_step = 1;
2563 print_stop_reason (END_STEPPING_RANGE, 0);
2564 stop_stepping (ecs);
2565 return;
2566 }
c906108c 2567
488f131b 2568 /* We aren't done stepping.
c906108c 2569
488f131b
JB
2570 Optimize by setting the stepping range to the line.
2571 (We might not be in the original line, but if we entered a
2572 new line in mid-statement, we continue stepping. This makes
2573 things like for(;;) statements work better.) */
c906108c 2574
488f131b 2575 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2576 {
488f131b
JB
2577 /* If this is the last line of the function, don't keep stepping
2578 (it would probably step us out of the function).
2579 This is particularly necessary for a one-line function,
2580 in which after skipping the prologue we better stop even though
2581 we will be in mid-line. */
2582 stop_step = 1;
2583 print_stop_reason (END_STEPPING_RANGE, 0);
2584 stop_stepping (ecs);
2585 return;
c5aa993b 2586 }
488f131b
JB
2587 step_range_start = ecs->sal.pc;
2588 step_range_end = ecs->sal.end;
aa0cd9c1 2589 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2590 ecs->current_line = ecs->sal.line;
2591 ecs->current_symtab = ecs->sal.symtab;
2592
aa0cd9c1
AC
2593 /* In the case where we just stepped out of a function into the
2594 middle of a line of the caller, continue stepping, but
2595 step_frame_id must be modified to current frame */
65815ea1
AC
2596#if 0
2597 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2598 generous. It will trigger on things like a step into a frameless
2599 stackless leaf function. I think the logic should instead look
2600 at the unwound frame ID has that should give a more robust
2601 indication of what happened. */
2602 if (step-ID == current-ID)
2603 still stepping in same function;
2604 else if (step-ID == unwind (current-ID))
2605 stepped into a function;
2606 else
2607 stepped out of a function;
2608 /* Of course this assumes that the frame ID unwind code is robust
2609 and we're willing to introduce frame unwind logic into this
ce2826aa 2610 function. Fortunately, those days are nearly upon us. */
65815ea1 2611#endif
488f131b 2612 {
aa0cd9c1
AC
2613 struct frame_id current_frame = get_frame_id (get_current_frame ());
2614 if (!(frame_id_inner (current_frame, step_frame_id)))
2615 step_frame_id = current_frame;
488f131b 2616 }
c906108c 2617
488f131b 2618 keep_going (ecs);
104c1213
JM
2619}
2620
2621/* Are we in the middle of stepping? */
2622
2623static int
2624currently_stepping (struct execution_control_state *ecs)
2625{
d303a6c7 2626 return ((!ecs->handling_longjmp
104c1213
JM
2627 && ((step_range_end && step_resume_breakpoint == NULL)
2628 || trap_expected))
2629 || ecs->stepping_through_solib_after_catch
2630 || bpstat_should_step ());
2631}
c906108c 2632
c2c6d25f
JM
2633/* Subroutine call with source code we should not step over. Do step
2634 to the first line of code in it. */
2635
2636static void
2637step_into_function (struct execution_control_state *ecs)
2638{
2639 struct symtab *s;
2640 struct symtab_and_line sr_sal;
2641
2642 s = find_pc_symtab (stop_pc);
2643 if (s && s->language != language_asm)
2644 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2645
2646 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2647 /* Use the step_resume_break to step until the end of the prologue,
2648 even if that involves jumps (as it seems to on the vax under
2649 4.2). */
2650 /* If the prologue ends in the middle of a source line, continue to
2651 the end of that source line (if it is still within the function).
2652 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2653 if (ecs->sal.end
2654 && ecs->sal.pc != ecs->stop_func_start
2655 && ecs->sal.end < ecs->stop_func_end)
2656 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2657
2dbd5e30
KB
2658 /* Architectures which require breakpoint adjustment might not be able
2659 to place a breakpoint at the computed address. If so, the test
2660 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2661 ecs->stop_func_start to an address at which a breakpoint may be
2662 legitimately placed.
2663
2664 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2665 made, GDB will enter an infinite loop when stepping through
2666 optimized code consisting of VLIW instructions which contain
2667 subinstructions corresponding to different source lines. On
2668 FR-V, it's not permitted to place a breakpoint on any but the
2669 first subinstruction of a VLIW instruction. When a breakpoint is
2670 set, GDB will adjust the breakpoint address to the beginning of
2671 the VLIW instruction. Thus, we need to make the corresponding
2672 adjustment here when computing the stop address. */
2673
2674 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2675 {
2676 ecs->stop_func_start
2677 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2678 ecs->stop_func_start);
2679 }
2680
c2c6d25f
JM
2681 if (ecs->stop_func_start == stop_pc)
2682 {
2683 /* We are already there: stop now. */
2684 stop_step = 1;
488f131b 2685 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2686 stop_stepping (ecs);
2687 return;
2688 }
2689 else
2690 {
2691 /* Put the step-breakpoint there and go until there. */
fe39c653 2692 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2693 sr_sal.pc = ecs->stop_func_start;
2694 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2695 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2696 some machines the prologue is where the new fp value is
2697 established. */
c2c6d25f
JM
2698 check_for_old_step_resume_breakpoint ();
2699 step_resume_breakpoint =
818dd999 2700 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2701 if (breakpoints_inserted)
2702 insert_breakpoints ();
2703
2704 /* And make sure stepping stops right away then. */
2705 step_range_end = step_range_start;
2706 }
2707 keep_going (ecs);
2708}
d4f3574e 2709
d303a6c7
AC
2710/* The inferior, as a result of a function call (has left) or signal
2711 (about to leave) the single-step range. Set a momentary breakpoint
2712 within the step range where the inferior is expected to later
2713 return. */
2714
2715static void
2716insert_step_resume_breakpoint (struct frame_info *step_frame,
2717 struct execution_control_state *ecs)
2718{
2719 struct symtab_and_line sr_sal;
2720
2721 /* This is only used within the step-resume range/frame. */
2722 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2723 gdb_assert (step_range_end != 0);
2724 gdb_assert (get_frame_pc (step_frame) >= step_range_start
2725 && get_frame_pc (step_frame) < step_range_end);
2726
2727 init_sal (&sr_sal); /* initialize to zeros */
2728
2729 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2730 sr_sal.section = find_pc_overlay (sr_sal.pc);
2731
2732 check_for_old_step_resume_breakpoint ();
2733
2734 step_resume_breakpoint
2735 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2736 bp_step_resume);
2737
2738 if (breakpoints_inserted)
2739 insert_breakpoints ();
2740}
2741
d4f3574e
SS
2742/* We've just entered a callee, and we wish to resume until it returns
2743 to the caller. Setting a step_resume breakpoint on the return
2744 address will catch a return from the callee.
2745
2746 However, if the callee is recursing, we want to be careful not to
2747 catch returns of those recursive calls, but only of THIS instance
4fdf6121 2748 of the caller.
d4f3574e
SS
2749
2750 To do this, we set the step_resume bp's frame to our current
4fdf6121 2751 caller's frame (obtained by doing a frame ID unwind). */
d4f3574e
SS
2752
2753static void
2754step_over_function (struct execution_control_state *ecs)
2755{
2756 struct symtab_and_line sr_sal;
c107cc1b 2757 struct frame_id sr_id;
d4f3574e 2758
fe39c653 2759 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2760
2761 /* NOTE: cagney/2003-04-06:
2762
2763 At this point the equality get_frame_pc() == get_frame_func()
2764 should hold. This may make it possible for this code to tell the
2765 frame where it's function is, instead of the reverse. This would
2766 avoid the need to search for the frame's function, which can get
2767 very messy when there is no debug info available (look at the
2768 heuristic find pc start code found in targets like the MIPS). */
2769
6913c89a 2770 /* NOTE: cagney/2003-04-06:
4443bd83 2771
6913c89a 2772 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2773
2774 - provide a very light weight equivalent to frame_unwind_pc()
2775 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2776
2777 - avoid handling the case where the PC hasn't been saved in the
2778 prologue analyzer
2779
ce2826aa 2780 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2781 get_frame_id() and that is guarenteed to trigger the prologue
2782 analyzer.
2783
2784 The `correct fix' is for the prologe analyzer to handle the case
2785 where the prologue is incomplete (PC in prologue) and,
2786 consequently, the return pc has not yet been saved. It should be
2787 noted that the prologue analyzer needs to handle this case
2788 anyway: frameless leaf functions that don't save the return PC;
2789 single stepping through a prologue.
2790
2791 The d10v handles all this by bailing out of the prologue analsis
2792 when it reaches the current instruction. */
2793
6913c89a
AC
2794 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2795 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2796 else
2797 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2798 sr_sal.section = find_pc_overlay (sr_sal.pc);
2799
2800 check_for_old_step_resume_breakpoint ();
d4f3574e 2801
08e69816
AC
2802 /* NOTE: cagney/2004-03-31: Code using the current value of
2803 "step_frame_id", instead of unwinding that frame ID, removed. On
2804 s390 GNU/Linux, after taking a signal, the program is directly
2805 resumed at the signal handler and, consequently, the PC would
2806 point at at the first instruction of that signal handler but
2807 STEP_FRAME_ID would [incorrectly] at the interrupted code when it
2808 should point at the signal trampoline. By always and locally
2809 doing a frame ID unwind, it's possible to assert that the code is
2810 always using the correct ID. */
2811 sr_id = frame_unwind_id (get_current_frame ());
c107cc1b
AC
2812
2813 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
d4f3574e
SS
2814
2815 if (breakpoints_inserted)
2816 insert_breakpoints ();
2817}
2818
104c1213
JM
2819static void
2820stop_stepping (struct execution_control_state *ecs)
2821{
cd0fc7c3
SS
2822 /* Let callers know we don't want to wait for the inferior anymore. */
2823 ecs->wait_some_more = 0;
2824}
2825
d4f3574e
SS
2826/* This function handles various cases where we need to continue
2827 waiting for the inferior. */
2828/* (Used to be the keep_going: label in the old wait_for_inferior) */
2829
2830static void
2831keep_going (struct execution_control_state *ecs)
2832{
d4f3574e 2833 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2834 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2835
2836 if (ecs->update_step_sp)
2837 step_sp = read_sp ();
2838 ecs->update_step_sp = 0;
2839
2840 /* If we did not do break;, it means we should keep running the
2841 inferior and not return to debugger. */
2842
2843 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2844 {
2845 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2846 the inferior, else we'd have done a break above) and we
2847 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2848 resume (currently_stepping (ecs), stop_signal);
2849 }
2850 else
2851 {
2852 /* Either the trap was not expected, but we are continuing
488f131b
JB
2853 anyway (the user asked that this signal be passed to the
2854 child)
2855 -- or --
2856 The signal was SIGTRAP, e.g. it was our signal, but we
2857 decided we should resume from it.
d4f3574e 2858
488f131b 2859 We're going to run this baby now!
d4f3574e 2860
488f131b
JB
2861 Insert breakpoints now, unless we are trying to one-proceed
2862 past a breakpoint. */
d4f3574e 2863 /* If we've just finished a special step resume and we don't
488f131b 2864 want to hit a breakpoint, pull em out. */
d4f3574e 2865 if (step_resume_breakpoint == NULL
d4f3574e
SS
2866 && ecs->remove_breakpoints_on_following_step)
2867 {
2868 ecs->remove_breakpoints_on_following_step = 0;
2869 remove_breakpoints ();
2870 breakpoints_inserted = 0;
2871 }
d303a6c7 2872 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2873 {
2874 breakpoints_failed = insert_breakpoints ();
2875 if (breakpoints_failed)
2876 {
2877 stop_stepping (ecs);
2878 return;
2879 }
2880 breakpoints_inserted = 1;
2881 }
2882
2883 trap_expected = ecs->another_trap;
2884
2885 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2886 specifies that such a signal should be delivered to the
2887 target program).
2888
2889 Typically, this would occure when a user is debugging a
2890 target monitor on a simulator: the target monitor sets a
2891 breakpoint; the simulator encounters this break-point and
2892 halts the simulation handing control to GDB; GDB, noteing
2893 that the break-point isn't valid, returns control back to the
2894 simulator; the simulator then delivers the hardware
2895 equivalent of a SIGNAL_TRAP to the program being debugged. */
2896
2897 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2898 stop_signal = TARGET_SIGNAL_0;
2899
d4f3574e
SS
2900
2901 resume (currently_stepping (ecs), stop_signal);
2902 }
2903
488f131b 2904 prepare_to_wait (ecs);
d4f3574e
SS
2905}
2906
104c1213
JM
2907/* This function normally comes after a resume, before
2908 handle_inferior_event exits. It takes care of any last bits of
2909 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2910
104c1213
JM
2911static void
2912prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2913{
104c1213
JM
2914 if (ecs->infwait_state == infwait_normal_state)
2915 {
2916 overlay_cache_invalid = 1;
2917
2918 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2919 target_wait because they can be loaded from the target while
2920 in target_wait. This makes remote debugging a bit more
2921 efficient for those targets that provide critical registers
2922 as part of their normal status mechanism. */
104c1213
JM
2923
2924 registers_changed ();
39f77062 2925 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2926 ecs->wp = &(ecs->ws);
2927 }
2928 /* This is the old end of the while loop. Let everybody know we
2929 want to wait for the inferior some more and get called again
2930 soon. */
2931 ecs->wait_some_more = 1;
c906108c 2932}
11cf8741
JM
2933
2934/* Print why the inferior has stopped. We always print something when
2935 the inferior exits, or receives a signal. The rest of the cases are
2936 dealt with later on in normal_stop() and print_it_typical(). Ideally
2937 there should be a call to this function from handle_inferior_event()
2938 each time stop_stepping() is called.*/
2939static void
2940print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2941{
2942 switch (stop_reason)
2943 {
2944 case STOP_UNKNOWN:
2945 /* We don't deal with these cases from handle_inferior_event()
2946 yet. */
2947 break;
2948 case END_STEPPING_RANGE:
2949 /* We are done with a step/next/si/ni command. */
2950 /* For now print nothing. */
fb40c209 2951 /* Print a message only if not in the middle of doing a "step n"
488f131b 2952 operation for n > 1 */
fb40c209 2953 if (!step_multi || !stop_step)
9dc5e2a9 2954 if (ui_out_is_mi_like_p (uiout))
fb40c209 2955 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2956 break;
2957 case BREAKPOINT_HIT:
2958 /* We found a breakpoint. */
2959 /* For now print nothing. */
2960 break;
2961 case SIGNAL_EXITED:
2962 /* The inferior was terminated by a signal. */
8b93c638 2963 annotate_signalled ();
9dc5e2a9 2964 if (ui_out_is_mi_like_p (uiout))
fb40c209 2965 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2966 ui_out_text (uiout, "\nProgram terminated with signal ");
2967 annotate_signal_name ();
488f131b
JB
2968 ui_out_field_string (uiout, "signal-name",
2969 target_signal_to_name (stop_info));
8b93c638
JM
2970 annotate_signal_name_end ();
2971 ui_out_text (uiout, ", ");
2972 annotate_signal_string ();
488f131b
JB
2973 ui_out_field_string (uiout, "signal-meaning",
2974 target_signal_to_string (stop_info));
8b93c638
JM
2975 annotate_signal_string_end ();
2976 ui_out_text (uiout, ".\n");
2977 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2978 break;
2979 case EXITED:
2980 /* The inferior program is finished. */
8b93c638
JM
2981 annotate_exited (stop_info);
2982 if (stop_info)
2983 {
9dc5e2a9 2984 if (ui_out_is_mi_like_p (uiout))
fb40c209 2985 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2986 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2987 ui_out_field_fmt (uiout, "exit-code", "0%o",
2988 (unsigned int) stop_info);
8b93c638
JM
2989 ui_out_text (uiout, ".\n");
2990 }
2991 else
2992 {
9dc5e2a9 2993 if (ui_out_is_mi_like_p (uiout))
fb40c209 2994 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2995 ui_out_text (uiout, "\nProgram exited normally.\n");
2996 }
11cf8741
JM
2997 break;
2998 case SIGNAL_RECEIVED:
2999 /* Signal received. The signal table tells us to print about
3000 it. */
8b93c638
JM
3001 annotate_signal ();
3002 ui_out_text (uiout, "\nProgram received signal ");
3003 annotate_signal_name ();
84c6c83c
KS
3004 if (ui_out_is_mi_like_p (uiout))
3005 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3006 ui_out_field_string (uiout, "signal-name",
3007 target_signal_to_name (stop_info));
8b93c638
JM
3008 annotate_signal_name_end ();
3009 ui_out_text (uiout, ", ");
3010 annotate_signal_string ();
488f131b
JB
3011 ui_out_field_string (uiout, "signal-meaning",
3012 target_signal_to_string (stop_info));
8b93c638
JM
3013 annotate_signal_string_end ();
3014 ui_out_text (uiout, ".\n");
11cf8741
JM
3015 break;
3016 default:
8e65ff28
AC
3017 internal_error (__FILE__, __LINE__,
3018 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3019 break;
3020 }
3021}
c906108c 3022\f
43ff13b4 3023
c906108c
SS
3024/* Here to return control to GDB when the inferior stops for real.
3025 Print appropriate messages, remove breakpoints, give terminal our modes.
3026
3027 STOP_PRINT_FRAME nonzero means print the executing frame
3028 (pc, function, args, file, line number and line text).
3029 BREAKPOINTS_FAILED nonzero means stop was due to error
3030 attempting to insert breakpoints. */
3031
3032void
96baa820 3033normal_stop (void)
c906108c 3034{
73b65bb0
DJ
3035 struct target_waitstatus last;
3036 ptid_t last_ptid;
3037
3038 get_last_target_status (&last_ptid, &last);
3039
c906108c
SS
3040 /* As with the notification of thread events, we want to delay
3041 notifying the user that we've switched thread context until
3042 the inferior actually stops.
3043
73b65bb0
DJ
3044 There's no point in saying anything if the inferior has exited.
3045 Note that SIGNALLED here means "exited with a signal", not
3046 "received a signal". */
488f131b 3047 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3048 && target_has_execution
3049 && last.kind != TARGET_WAITKIND_SIGNALLED
3050 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3051 {
3052 target_terminal_ours_for_output ();
c3f6f71d 3053 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3054 target_pid_or_tid_to_str (inferior_ptid));
3055 previous_inferior_ptid = inferior_ptid;
c906108c 3056 }
c906108c 3057
4fa8626c 3058 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3059 /* Make sure that the current_frame's pc is correct. This
3060 is a correction for setting up the frame info before doing
3061 DECR_PC_AFTER_BREAK */
b87efeee
AC
3062 if (target_has_execution)
3063 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3064 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3065 frame code to check for this and sort out any resultant mess.
3066 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3067 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3068
c906108c
SS
3069 if (target_has_execution && breakpoints_inserted)
3070 {
3071 if (remove_breakpoints ())
3072 {
3073 target_terminal_ours_for_output ();
3074 printf_filtered ("Cannot remove breakpoints because ");
3075 printf_filtered ("program is no longer writable.\n");
3076 printf_filtered ("It might be running in another process.\n");
3077 printf_filtered ("Further execution is probably impossible.\n");
3078 }
3079 }
3080 breakpoints_inserted = 0;
3081
3082 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3083 Delete any breakpoint that is to be deleted at the next stop. */
3084
3085 breakpoint_auto_delete (stop_bpstat);
3086
3087 /* If an auto-display called a function and that got a signal,
3088 delete that auto-display to avoid an infinite recursion. */
3089
3090 if (stopped_by_random_signal)
3091 disable_current_display ();
3092
3093 /* Don't print a message if in the middle of doing a "step n"
3094 operation for n > 1 */
3095 if (step_multi && stop_step)
3096 goto done;
3097
3098 target_terminal_ours ();
3099
5913bcb0
AC
3100 /* Look up the hook_stop and run it (CLI internally handles problem
3101 of stop_command's pre-hook not existing). */
3102 if (stop_command)
3103 catch_errors (hook_stop_stub, stop_command,
3104 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3105
3106 if (!target_has_stack)
3107 {
3108
3109 goto done;
3110 }
3111
3112 /* Select innermost stack frame - i.e., current frame is frame 0,
3113 and current location is based on that.
3114 Don't do this on return from a stack dummy routine,
3115 or if the program has exited. */
3116
3117 if (!stop_stack_dummy)
3118 {
0f7d239c 3119 select_frame (get_current_frame ());
c906108c
SS
3120
3121 /* Print current location without a level number, if
c5aa993b
JM
3122 we have changed functions or hit a breakpoint.
3123 Print source line if we have one.
3124 bpstat_print() contains the logic deciding in detail
3125 what to print, based on the event(s) that just occurred. */
c906108c 3126
6e7f8b9c 3127 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3128 {
3129 int bpstat_ret;
3130 int source_flag;
917317f4 3131 int do_frame_printing = 1;
c906108c
SS
3132
3133 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3134 switch (bpstat_ret)
3135 {
3136 case PRINT_UNKNOWN:
aa0cd9c1
AC
3137 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3138 (or should) carry around the function and does (or
3139 should) use that when doing a frame comparison. */
917317f4 3140 if (stop_step
aa0cd9c1
AC
3141 && frame_id_eq (step_frame_id,
3142 get_frame_id (get_current_frame ()))
917317f4 3143 && step_start_function == find_pc_function (stop_pc))
488f131b 3144 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3145 else
488f131b 3146 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3147 break;
3148 case PRINT_SRC_AND_LOC:
488f131b 3149 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3150 break;
3151 case PRINT_SRC_ONLY:
c5394b80 3152 source_flag = SRC_LINE;
917317f4
JM
3153 break;
3154 case PRINT_NOTHING:
488f131b 3155 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3156 do_frame_printing = 0;
3157 break;
3158 default:
488f131b 3159 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3160 }
fb40c209 3161 /* For mi, have the same behavior every time we stop:
488f131b 3162 print everything but the source line. */
9dc5e2a9 3163 if (ui_out_is_mi_like_p (uiout))
fb40c209 3164 source_flag = LOC_AND_ADDRESS;
c906108c 3165
9dc5e2a9 3166 if (ui_out_is_mi_like_p (uiout))
39f77062 3167 ui_out_field_int (uiout, "thread-id",
488f131b 3168 pid_to_thread_id (inferior_ptid));
c906108c
SS
3169 /* The behavior of this routine with respect to the source
3170 flag is:
c5394b80
JM
3171 SRC_LINE: Print only source line
3172 LOCATION: Print only location
3173 SRC_AND_LOC: Print location and source line */
917317f4 3174 if (do_frame_printing)
0faf0076 3175 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3176
3177 /* Display the auto-display expressions. */
3178 do_displays ();
3179 }
3180 }
3181
3182 /* Save the function value return registers, if we care.
3183 We might be about to restore their previous contents. */
3184 if (proceed_to_finish)
72cec141
AC
3185 /* NB: The copy goes through to the target picking up the value of
3186 all the registers. */
3187 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3188
3189 if (stop_stack_dummy)
3190 {
dbe9fe58
AC
3191 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3192 ends with a setting of the current frame, so we can use that
3193 next. */
3194 frame_pop (get_current_frame ());
c906108c 3195 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3196 Can't rely on restore_inferior_status because that only gets
3197 called if we don't stop in the called function. */
c906108c 3198 stop_pc = read_pc ();
0f7d239c 3199 select_frame (get_current_frame ());
c906108c
SS
3200 }
3201
c906108c
SS
3202done:
3203 annotate_stopped ();
7a464420 3204 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3205}
3206
3207static int
96baa820 3208hook_stop_stub (void *cmd)
c906108c 3209{
5913bcb0 3210 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3211 return (0);
3212}
3213\f
c5aa993b 3214int
96baa820 3215signal_stop_state (int signo)
c906108c
SS
3216{
3217 return signal_stop[signo];
3218}
3219
c5aa993b 3220int
96baa820 3221signal_print_state (int signo)
c906108c
SS
3222{
3223 return signal_print[signo];
3224}
3225
c5aa993b 3226int
96baa820 3227signal_pass_state (int signo)
c906108c
SS
3228{
3229 return signal_program[signo];
3230}
3231
488f131b 3232int
7bda5e4a 3233signal_stop_update (int signo, int state)
d4f3574e
SS
3234{
3235 int ret = signal_stop[signo];
3236 signal_stop[signo] = state;
3237 return ret;
3238}
3239
488f131b 3240int
7bda5e4a 3241signal_print_update (int signo, int state)
d4f3574e
SS
3242{
3243 int ret = signal_print[signo];
3244 signal_print[signo] = state;
3245 return ret;
3246}
3247
488f131b 3248int
7bda5e4a 3249signal_pass_update (int signo, int state)
d4f3574e
SS
3250{
3251 int ret = signal_program[signo];
3252 signal_program[signo] = state;
3253 return ret;
3254}
3255
c906108c 3256static void
96baa820 3257sig_print_header (void)
c906108c
SS
3258{
3259 printf_filtered ("\
3260Signal Stop\tPrint\tPass to program\tDescription\n");
3261}
3262
3263static void
96baa820 3264sig_print_info (enum target_signal oursig)
c906108c
SS
3265{
3266 char *name = target_signal_to_name (oursig);
3267 int name_padding = 13 - strlen (name);
96baa820 3268
c906108c
SS
3269 if (name_padding <= 0)
3270 name_padding = 0;
3271
3272 printf_filtered ("%s", name);
488f131b 3273 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3274 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3275 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3276 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3277 printf_filtered ("%s\n", target_signal_to_string (oursig));
3278}
3279
3280/* Specify how various signals in the inferior should be handled. */
3281
3282static void
96baa820 3283handle_command (char *args, int from_tty)
c906108c
SS
3284{
3285 char **argv;
3286 int digits, wordlen;
3287 int sigfirst, signum, siglast;
3288 enum target_signal oursig;
3289 int allsigs;
3290 int nsigs;
3291 unsigned char *sigs;
3292 struct cleanup *old_chain;
3293
3294 if (args == NULL)
3295 {
3296 error_no_arg ("signal to handle");
3297 }
3298
3299 /* Allocate and zero an array of flags for which signals to handle. */
3300
3301 nsigs = (int) TARGET_SIGNAL_LAST;
3302 sigs = (unsigned char *) alloca (nsigs);
3303 memset (sigs, 0, nsigs);
3304
3305 /* Break the command line up into args. */
3306
3307 argv = buildargv (args);
3308 if (argv == NULL)
3309 {
3310 nomem (0);
3311 }
7a292a7a 3312 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3313
3314 /* Walk through the args, looking for signal oursigs, signal names, and
3315 actions. Signal numbers and signal names may be interspersed with
3316 actions, with the actions being performed for all signals cumulatively
3317 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3318
3319 while (*argv != NULL)
3320 {
3321 wordlen = strlen (*argv);
3322 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3323 {;
3324 }
3325 allsigs = 0;
3326 sigfirst = siglast = -1;
3327
3328 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3329 {
3330 /* Apply action to all signals except those used by the
3331 debugger. Silently skip those. */
3332 allsigs = 1;
3333 sigfirst = 0;
3334 siglast = nsigs - 1;
3335 }
3336 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3337 {
3338 SET_SIGS (nsigs, sigs, signal_stop);
3339 SET_SIGS (nsigs, sigs, signal_print);
3340 }
3341 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3342 {
3343 UNSET_SIGS (nsigs, sigs, signal_program);
3344 }
3345 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3346 {
3347 SET_SIGS (nsigs, sigs, signal_print);
3348 }
3349 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3350 {
3351 SET_SIGS (nsigs, sigs, signal_program);
3352 }
3353 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3354 {
3355 UNSET_SIGS (nsigs, sigs, signal_stop);
3356 }
3357 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3358 {
3359 SET_SIGS (nsigs, sigs, signal_program);
3360 }
3361 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3362 {
3363 UNSET_SIGS (nsigs, sigs, signal_print);
3364 UNSET_SIGS (nsigs, sigs, signal_stop);
3365 }
3366 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3367 {
3368 UNSET_SIGS (nsigs, sigs, signal_program);
3369 }
3370 else if (digits > 0)
3371 {
3372 /* It is numeric. The numeric signal refers to our own
3373 internal signal numbering from target.h, not to host/target
3374 signal number. This is a feature; users really should be
3375 using symbolic names anyway, and the common ones like
3376 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3377
3378 sigfirst = siglast = (int)
3379 target_signal_from_command (atoi (*argv));
3380 if ((*argv)[digits] == '-')
3381 {
3382 siglast = (int)
3383 target_signal_from_command (atoi ((*argv) + digits + 1));
3384 }
3385 if (sigfirst > siglast)
3386 {
3387 /* Bet he didn't figure we'd think of this case... */
3388 signum = sigfirst;
3389 sigfirst = siglast;
3390 siglast = signum;
3391 }
3392 }
3393 else
3394 {
3395 oursig = target_signal_from_name (*argv);
3396 if (oursig != TARGET_SIGNAL_UNKNOWN)
3397 {
3398 sigfirst = siglast = (int) oursig;
3399 }
3400 else
3401 {
3402 /* Not a number and not a recognized flag word => complain. */
3403 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3404 }
3405 }
3406
3407 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3408 which signals to apply actions to. */
c906108c
SS
3409
3410 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3411 {
3412 switch ((enum target_signal) signum)
3413 {
3414 case TARGET_SIGNAL_TRAP:
3415 case TARGET_SIGNAL_INT:
3416 if (!allsigs && !sigs[signum])
3417 {
3418 if (query ("%s is used by the debugger.\n\
488f131b 3419Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3420 {
3421 sigs[signum] = 1;
3422 }
3423 else
3424 {
3425 printf_unfiltered ("Not confirmed, unchanged.\n");
3426 gdb_flush (gdb_stdout);
3427 }
3428 }
3429 break;
3430 case TARGET_SIGNAL_0:
3431 case TARGET_SIGNAL_DEFAULT:
3432 case TARGET_SIGNAL_UNKNOWN:
3433 /* Make sure that "all" doesn't print these. */
3434 break;
3435 default:
3436 sigs[signum] = 1;
3437 break;
3438 }
3439 }
3440
3441 argv++;
3442 }
3443
39f77062 3444 target_notice_signals (inferior_ptid);
c906108c
SS
3445
3446 if (from_tty)
3447 {
3448 /* Show the results. */
3449 sig_print_header ();
3450 for (signum = 0; signum < nsigs; signum++)
3451 {
3452 if (sigs[signum])
3453 {
3454 sig_print_info (signum);
3455 }
3456 }
3457 }
3458
3459 do_cleanups (old_chain);
3460}
3461
3462static void
96baa820 3463xdb_handle_command (char *args, int from_tty)
c906108c
SS
3464{
3465 char **argv;
3466 struct cleanup *old_chain;
3467
3468 /* Break the command line up into args. */
3469
3470 argv = buildargv (args);
3471 if (argv == NULL)
3472 {
3473 nomem (0);
3474 }
7a292a7a 3475 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3476 if (argv[1] != (char *) NULL)
3477 {
3478 char *argBuf;
3479 int bufLen;
3480
3481 bufLen = strlen (argv[0]) + 20;
3482 argBuf = (char *) xmalloc (bufLen);
3483 if (argBuf)
3484 {
3485 int validFlag = 1;
3486 enum target_signal oursig;
3487
3488 oursig = target_signal_from_name (argv[0]);
3489 memset (argBuf, 0, bufLen);
3490 if (strcmp (argv[1], "Q") == 0)
3491 sprintf (argBuf, "%s %s", argv[0], "noprint");
3492 else
3493 {
3494 if (strcmp (argv[1], "s") == 0)
3495 {
3496 if (!signal_stop[oursig])
3497 sprintf (argBuf, "%s %s", argv[0], "stop");
3498 else
3499 sprintf (argBuf, "%s %s", argv[0], "nostop");
3500 }
3501 else if (strcmp (argv[1], "i") == 0)
3502 {
3503 if (!signal_program[oursig])
3504 sprintf (argBuf, "%s %s", argv[0], "pass");
3505 else
3506 sprintf (argBuf, "%s %s", argv[0], "nopass");
3507 }
3508 else if (strcmp (argv[1], "r") == 0)
3509 {
3510 if (!signal_print[oursig])
3511 sprintf (argBuf, "%s %s", argv[0], "print");
3512 else
3513 sprintf (argBuf, "%s %s", argv[0], "noprint");
3514 }
3515 else
3516 validFlag = 0;
3517 }
3518 if (validFlag)
3519 handle_command (argBuf, from_tty);
3520 else
3521 printf_filtered ("Invalid signal handling flag.\n");
3522 if (argBuf)
b8c9b27d 3523 xfree (argBuf);
c906108c
SS
3524 }
3525 }
3526 do_cleanups (old_chain);
3527}
3528
3529/* Print current contents of the tables set by the handle command.
3530 It is possible we should just be printing signals actually used
3531 by the current target (but for things to work right when switching
3532 targets, all signals should be in the signal tables). */
3533
3534static void
96baa820 3535signals_info (char *signum_exp, int from_tty)
c906108c
SS
3536{
3537 enum target_signal oursig;
3538 sig_print_header ();
3539
3540 if (signum_exp)
3541 {
3542 /* First see if this is a symbol name. */
3543 oursig = target_signal_from_name (signum_exp);
3544 if (oursig == TARGET_SIGNAL_UNKNOWN)
3545 {
3546 /* No, try numeric. */
3547 oursig =
bb518678 3548 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3549 }
3550 sig_print_info (oursig);
3551 return;
3552 }
3553
3554 printf_filtered ("\n");
3555 /* These ugly casts brought to you by the native VAX compiler. */
3556 for (oursig = TARGET_SIGNAL_FIRST;
3557 (int) oursig < (int) TARGET_SIGNAL_LAST;
3558 oursig = (enum target_signal) ((int) oursig + 1))
3559 {
3560 QUIT;
3561
3562 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3563 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3564 sig_print_info (oursig);
3565 }
3566
3567 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3568}
3569\f
7a292a7a
SS
3570struct inferior_status
3571{
3572 enum target_signal stop_signal;
3573 CORE_ADDR stop_pc;
3574 bpstat stop_bpstat;
3575 int stop_step;
3576 int stop_stack_dummy;
3577 int stopped_by_random_signal;
3578 int trap_expected;
3579 CORE_ADDR step_range_start;
3580 CORE_ADDR step_range_end;
aa0cd9c1 3581 struct frame_id step_frame_id;
5fbbeb29 3582 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3583 CORE_ADDR step_resume_break_address;
3584 int stop_after_trap;
c0236d92 3585 int stop_soon;
72cec141 3586 struct regcache *stop_registers;
7a292a7a
SS
3587
3588 /* These are here because if call_function_by_hand has written some
3589 registers and then decides to call error(), we better not have changed
3590 any registers. */
72cec141 3591 struct regcache *registers;
7a292a7a 3592
101dcfbe
AC
3593 /* A frame unique identifier. */
3594 struct frame_id selected_frame_id;
3595
7a292a7a
SS
3596 int breakpoint_proceeded;
3597 int restore_stack_info;
3598 int proceed_to_finish;
3599};
3600
7a292a7a 3601void
96baa820
JM
3602write_inferior_status_register (struct inferior_status *inf_status, int regno,
3603 LONGEST val)
7a292a7a 3604{
12c266ea 3605 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3606 void *buf = alloca (size);
3607 store_signed_integer (buf, size, val);
0818c12a 3608 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3609}
3610
c906108c
SS
3611/* Save all of the information associated with the inferior<==>gdb
3612 connection. INF_STATUS is a pointer to a "struct inferior_status"
3613 (defined in inferior.h). */
3614
7a292a7a 3615struct inferior_status *
96baa820 3616save_inferior_status (int restore_stack_info)
c906108c 3617{
72cec141 3618 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3619
c906108c
SS
3620 inf_status->stop_signal = stop_signal;
3621 inf_status->stop_pc = stop_pc;
3622 inf_status->stop_step = stop_step;
3623 inf_status->stop_stack_dummy = stop_stack_dummy;
3624 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3625 inf_status->trap_expected = trap_expected;
3626 inf_status->step_range_start = step_range_start;
3627 inf_status->step_range_end = step_range_end;
aa0cd9c1 3628 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3629 inf_status->step_over_calls = step_over_calls;
3630 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3631 inf_status->stop_soon = stop_soon;
c906108c
SS
3632 /* Save original bpstat chain here; replace it with copy of chain.
3633 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3634 hand them back the original chain when restore_inferior_status is
3635 called. */
c906108c
SS
3636 inf_status->stop_bpstat = stop_bpstat;
3637 stop_bpstat = bpstat_copy (stop_bpstat);
3638 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3639 inf_status->restore_stack_info = restore_stack_info;
3640 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3641
72cec141 3642 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3643
72cec141 3644 inf_status->registers = regcache_dup (current_regcache);
c906108c 3645
7a424e99 3646 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3647 return inf_status;
c906108c
SS
3648}
3649
c906108c 3650static int
96baa820 3651restore_selected_frame (void *args)
c906108c 3652{
488f131b 3653 struct frame_id *fid = (struct frame_id *) args;
c906108c 3654 struct frame_info *frame;
c906108c 3655
101dcfbe 3656 frame = frame_find_by_id (*fid);
c906108c 3657
aa0cd9c1
AC
3658 /* If inf_status->selected_frame_id is NULL, there was no previously
3659 selected frame. */
101dcfbe 3660 if (frame == NULL)
c906108c
SS
3661 {
3662 warning ("Unable to restore previously selected frame.\n");
3663 return 0;
3664 }
3665
0f7d239c 3666 select_frame (frame);
c906108c
SS
3667
3668 return (1);
3669}
3670
3671void
96baa820 3672restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3673{
3674 stop_signal = inf_status->stop_signal;
3675 stop_pc = inf_status->stop_pc;
3676 stop_step = inf_status->stop_step;
3677 stop_stack_dummy = inf_status->stop_stack_dummy;
3678 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3679 trap_expected = inf_status->trap_expected;
3680 step_range_start = inf_status->step_range_start;
3681 step_range_end = inf_status->step_range_end;
aa0cd9c1 3682 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3683 step_over_calls = inf_status->step_over_calls;
3684 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3685 stop_soon = inf_status->stop_soon;
c906108c
SS
3686 bpstat_clear (&stop_bpstat);
3687 stop_bpstat = inf_status->stop_bpstat;
3688 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3689 proceed_to_finish = inf_status->proceed_to_finish;
3690
72cec141
AC
3691 /* FIXME: Is the restore of stop_registers always needed. */
3692 regcache_xfree (stop_registers);
3693 stop_registers = inf_status->stop_registers;
c906108c
SS
3694
3695 /* The inferior can be gone if the user types "print exit(0)"
3696 (and perhaps other times). */
3697 if (target_has_execution)
72cec141
AC
3698 /* NB: The register write goes through to the target. */
3699 regcache_cpy (current_regcache, inf_status->registers);
3700 regcache_xfree (inf_status->registers);
c906108c 3701
c906108c
SS
3702 /* FIXME: If we are being called after stopping in a function which
3703 is called from gdb, we should not be trying to restore the
3704 selected frame; it just prints a spurious error message (The
3705 message is useful, however, in detecting bugs in gdb (like if gdb
3706 clobbers the stack)). In fact, should we be restoring the
3707 inferior status at all in that case? . */
3708
3709 if (target_has_stack && inf_status->restore_stack_info)
3710 {
c906108c 3711 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3712 walking the stack might encounter a garbage pointer and
3713 error() trying to dereference it. */
488f131b
JB
3714 if (catch_errors
3715 (restore_selected_frame, &inf_status->selected_frame_id,
3716 "Unable to restore previously selected frame:\n",
3717 RETURN_MASK_ERROR) == 0)
c906108c
SS
3718 /* Error in restoring the selected frame. Select the innermost
3719 frame. */
0f7d239c 3720 select_frame (get_current_frame ());
c906108c
SS
3721
3722 }
c906108c 3723
72cec141 3724 xfree (inf_status);
7a292a7a 3725}
c906108c 3726
74b7792f
AC
3727static void
3728do_restore_inferior_status_cleanup (void *sts)
3729{
3730 restore_inferior_status (sts);
3731}
3732
3733struct cleanup *
3734make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3735{
3736 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3737}
3738
c906108c 3739void
96baa820 3740discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3741{
3742 /* See save_inferior_status for info on stop_bpstat. */
3743 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3744 regcache_xfree (inf_status->registers);
3745 regcache_xfree (inf_status->stop_registers);
3746 xfree (inf_status);
7a292a7a
SS
3747}
3748
47932f85
DJ
3749int
3750inferior_has_forked (int pid, int *child_pid)
3751{
3752 struct target_waitstatus last;
3753 ptid_t last_ptid;
3754
3755 get_last_target_status (&last_ptid, &last);
3756
3757 if (last.kind != TARGET_WAITKIND_FORKED)
3758 return 0;
3759
3760 if (ptid_get_pid (last_ptid) != pid)
3761 return 0;
3762
3763 *child_pid = last.value.related_pid;
3764 return 1;
3765}
3766
3767int
3768inferior_has_vforked (int pid, int *child_pid)
3769{
3770 struct target_waitstatus last;
3771 ptid_t last_ptid;
3772
3773 get_last_target_status (&last_ptid, &last);
3774
3775 if (last.kind != TARGET_WAITKIND_VFORKED)
3776 return 0;
3777
3778 if (ptid_get_pid (last_ptid) != pid)
3779 return 0;
3780
3781 *child_pid = last.value.related_pid;
3782 return 1;
3783}
3784
3785int
3786inferior_has_execd (int pid, char **execd_pathname)
3787{
3788 struct target_waitstatus last;
3789 ptid_t last_ptid;
3790
3791 get_last_target_status (&last_ptid, &last);
3792
3793 if (last.kind != TARGET_WAITKIND_EXECD)
3794 return 0;
3795
3796 if (ptid_get_pid (last_ptid) != pid)
3797 return 0;
3798
3799 *execd_pathname = xstrdup (last.value.execd_pathname);
3800 return 1;
3801}
3802
ca6724c1
KB
3803/* Oft used ptids */
3804ptid_t null_ptid;
3805ptid_t minus_one_ptid;
3806
3807/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3808
ca6724c1
KB
3809ptid_t
3810ptid_build (int pid, long lwp, long tid)
3811{
3812 ptid_t ptid;
3813
3814 ptid.pid = pid;
3815 ptid.lwp = lwp;
3816 ptid.tid = tid;
3817 return ptid;
3818}
3819
3820/* Create a ptid from just a pid. */
3821
3822ptid_t
3823pid_to_ptid (int pid)
3824{
3825 return ptid_build (pid, 0, 0);
3826}
3827
3828/* Fetch the pid (process id) component from a ptid. */
3829
3830int
3831ptid_get_pid (ptid_t ptid)
3832{
3833 return ptid.pid;
3834}
3835
3836/* Fetch the lwp (lightweight process) component from a ptid. */
3837
3838long
3839ptid_get_lwp (ptid_t ptid)
3840{
3841 return ptid.lwp;
3842}
3843
3844/* Fetch the tid (thread id) component from a ptid. */
3845
3846long
3847ptid_get_tid (ptid_t ptid)
3848{
3849 return ptid.tid;
3850}
3851
3852/* ptid_equal() is used to test equality of two ptids. */
3853
3854int
3855ptid_equal (ptid_t ptid1, ptid_t ptid2)
3856{
3857 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3858 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3859}
3860
3861/* restore_inferior_ptid() will be used by the cleanup machinery
3862 to restore the inferior_ptid value saved in a call to
3863 save_inferior_ptid(). */
ce696e05
KB
3864
3865static void
3866restore_inferior_ptid (void *arg)
3867{
3868 ptid_t *saved_ptid_ptr = arg;
3869 inferior_ptid = *saved_ptid_ptr;
3870 xfree (arg);
3871}
3872
3873/* Save the value of inferior_ptid so that it may be restored by a
3874 later call to do_cleanups(). Returns the struct cleanup pointer
3875 needed for later doing the cleanup. */
3876
3877struct cleanup *
3878save_inferior_ptid (void)
3879{
3880 ptid_t *saved_ptid_ptr;
3881
3882 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3883 *saved_ptid_ptr = inferior_ptid;
3884 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3885}
c5aa993b 3886\f
488f131b 3887
7a292a7a 3888static void
96baa820 3889build_infrun (void)
7a292a7a 3890{
72cec141 3891 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3892}
c906108c 3893
c906108c 3894void
96baa820 3895_initialize_infrun (void)
c906108c 3896{
52f0bd74
AC
3897 int i;
3898 int numsigs;
c906108c
SS
3899 struct cmd_list_element *c;
3900
046a4708
AC
3901 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3902 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3903
c906108c
SS
3904 add_info ("signals", signals_info,
3905 "What debugger does when program gets various signals.\n\
3906Specify a signal as argument to print info on that signal only.");
3907 add_info_alias ("handle", "signals", 0);
3908
3909 add_com ("handle", class_run, handle_command,
3910 concat ("Specify how to handle a signal.\n\
3911Args are signals and actions to apply to those signals.\n\
3912Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3913from 1-15 are allowed for compatibility with old versions of GDB.\n\
3914Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3915The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3916used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3917\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3918Stop means reenter debugger if this signal happens (implies print).\n\
3919Print means print a message if this signal happens.\n\
3920Pass means let program see this signal; otherwise program doesn't know.\n\
3921Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3922Pass and Stop may be combined.", NULL));
3923 if (xdb_commands)
3924 {
3925 add_com ("lz", class_info, signals_info,
3926 "What debugger does when program gets various signals.\n\
3927Specify a signal as argument to print info on that signal only.");
3928 add_com ("z", class_run, xdb_handle_command,
3929 concat ("Specify how to handle a signal.\n\
3930Args are signals and actions to apply to those signals.\n\
3931Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3932from 1-15 are allowed for compatibility with old versions of GDB.\n\
3933Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3934The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3935used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3936\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3937nopass), \"Q\" (noprint)\n\
3938Stop means reenter debugger if this signal happens (implies print).\n\
3939Print means print a message if this signal happens.\n\
3940Pass means let program see this signal; otherwise program doesn't know.\n\
3941Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3942Pass and Stop may be combined.", NULL));
3943 }
3944
3945 if (!dbx_commands)
488f131b
JB
3946 stop_command =
3947 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3948This allows you to set a list of commands to be run each time execution\n\
3949of the program stops.", &cmdlist);
3950
3951 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3952 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3953 signal_print = (unsigned char *)
3954 xmalloc (sizeof (signal_print[0]) * numsigs);
3955 signal_program = (unsigned char *)
3956 xmalloc (sizeof (signal_program[0]) * numsigs);
3957 for (i = 0; i < numsigs; i++)
3958 {
3959 signal_stop[i] = 1;
3960 signal_print[i] = 1;
3961 signal_program[i] = 1;
3962 }
3963
3964 /* Signals caused by debugger's own actions
3965 should not be given to the program afterwards. */
3966 signal_program[TARGET_SIGNAL_TRAP] = 0;
3967 signal_program[TARGET_SIGNAL_INT] = 0;
3968
3969 /* Signals that are not errors should not normally enter the debugger. */
3970 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3971 signal_print[TARGET_SIGNAL_ALRM] = 0;
3972 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3973 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3974 signal_stop[TARGET_SIGNAL_PROF] = 0;
3975 signal_print[TARGET_SIGNAL_PROF] = 0;
3976 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3977 signal_print[TARGET_SIGNAL_CHLD] = 0;
3978 signal_stop[TARGET_SIGNAL_IO] = 0;
3979 signal_print[TARGET_SIGNAL_IO] = 0;
3980 signal_stop[TARGET_SIGNAL_POLL] = 0;
3981 signal_print[TARGET_SIGNAL_POLL] = 0;
3982 signal_stop[TARGET_SIGNAL_URG] = 0;
3983 signal_print[TARGET_SIGNAL_URG] = 0;
3984 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3985 signal_print[TARGET_SIGNAL_WINCH] = 0;
3986
cd0fc7c3
SS
3987 /* These signals are used internally by user-level thread
3988 implementations. (See signal(5) on Solaris.) Like the above
3989 signals, a healthy program receives and handles them as part of
3990 its normal operation. */
3991 signal_stop[TARGET_SIGNAL_LWP] = 0;
3992 signal_print[TARGET_SIGNAL_LWP] = 0;
3993 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3994 signal_print[TARGET_SIGNAL_WAITING] = 0;
3995 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3996 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3997
c906108c
SS
3998#ifdef SOLIB_ADD
3999 add_show_from_set
4000 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4001 (char *) &stop_on_solib_events,
4002 "Set stopping for shared library events.\n\
4003If nonzero, gdb will give control to the user when the dynamic linker\n\
4004notifies gdb of shared library events. The most common event of interest\n\
488f131b 4005to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4006#endif
4007
4008 c = add_set_enum_cmd ("follow-fork-mode",
4009 class_run,
488f131b 4010 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4011 "Set debugger response to a program call of fork \
4012or vfork.\n\
4013A fork or vfork creates a new process. follow-fork-mode can be:\n\
4014 parent - the original process is debugged after a fork\n\
4015 child - the new process is debugged after a fork\n\
ea1dd7bc 4016The unfollowed process will continue to run.\n\
488f131b 4017By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4018 add_show_from_set (c, &showlist);
4019
488f131b 4020 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4021 &scheduler_mode, /* current mode */
c906108c
SS
4022 "Set mode for locking scheduler during execution.\n\
4023off == no locking (threads may preempt at any time)\n\
4024on == full locking (no thread except the current thread may run)\n\
4025step == scheduler locked during every single-step operation.\n\
4026 In this mode, no other thread may run during a step command.\n\
488f131b 4027 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4028
9f60d481 4029 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4030 add_show_from_set (c, &showlist);
5fbbeb29
CF
4031
4032 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4033 var_boolean, (char *) &step_stop_if_no_debug,
4034 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4035function without debug line information will stop at the first\n\
4036instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4037the step command stops at a different source line.", &setlist);
5fbbeb29 4038 add_show_from_set (c, &showlist);
ca6724c1
KB
4039
4040 /* ptid initializations */
4041 null_ptid = ptid_build (0, 0, 0);
4042 minus_one_ptid = ptid_build (-1, 0, 0);
4043 inferior_ptid = null_ptid;
4044 target_last_wait_ptid = minus_one_ptid;
c906108c 4045}