]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
daily update
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
265#ifdef HP_OS_BUG
266/* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270static int trap_expected_after_continue;
271#endif
272
273/* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276int stop_after_trap;
277
278/* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
c0236d92 283enum stop_kind stop_soon;
c906108c
SS
284
285/* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288int proceed_to_finish;
289
290/* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
72cec141 295struct regcache *stop_registers;
c906108c
SS
296
297/* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299static int breakpoints_failed;
300
301/* Nonzero after stop if current stack frame should be printed. */
302
303static int stop_print_frame;
304
305static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
306
307/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313static int number_of_threads_in_syscalls;
314
e02bc4cc 315/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
39f77062 318static ptid_t target_last_wait_ptid;
e02bc4cc
DS
319static struct target_waitstatus target_last_waitstatus;
320
c906108c
SS
321/* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325static struct
488f131b
JB
326{
327 enum target_waitkind kind;
328 struct
c906108c 329 {
488f131b 330 int parent_pid;
488f131b 331 int child_pid;
c906108c 332 }
488f131b
JB
333 fork_event;
334 char *execd_pathname;
335}
c906108c
SS
336pending_follow;
337
53904c9e
AC
338static const char follow_fork_mode_child[] = "child";
339static const char follow_fork_mode_parent[] = "parent";
340
488f131b 341static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
ef346e04 345};
c906108c 346
53904c9e 347static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
348\f
349
6604731b 350static int
4ef3f3be 351follow_fork (void)
c906108c 352{
ea1dd7bc 353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 354
6604731b 355 return target_follow_fork (follow_child);
c906108c
SS
356}
357
6604731b
DJ
358void
359follow_inferior_reset_breakpoints (void)
c906108c 360{
6604731b
DJ
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
c906108c 382}
c906108c 383
1adeb98a
FN
384/* EXECD_PATHNAME is assumed to be non-NULL. */
385
c906108c 386static void
96baa820 387follow_exec (int pid, char *execd_pathname)
c906108c 388{
c906108c 389 int saved_pid = pid;
7a292a7a
SS
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
c906108c 394
c906108c
SS
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
c906108c
SS
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
7a292a7a
SS
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
c906108c
SS
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
39f77062 437 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 438 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 439 push_target (tgt);
c906108c
SS
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
1adeb98a 445 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
7a292a7a 450#if defined(SOLIB_RESTART)
c906108c 451 SOLIB_RESTART ();
7a292a7a
SS
452#endif
453#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 455#endif
c906108c
SS
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
c906108c
SS
466}
467
468/* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
472
473/* The thread we inserted single-step breakpoints for. */
474static ptid_t singlestep_ptid;
475
476/* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478static ptid_t saved_singlestep_ptid;
479static int stepping_past_singlestep_breakpoint;
c906108c
SS
480\f
481
482/* Things to clean up if we QUIT out of resume (). */
c906108c 483static void
74b7792f 484resume_cleanups (void *ignore)
c906108c
SS
485{
486 normal_stop ();
487}
488
53904c9e
AC
489static const char schedlock_off[] = "off";
490static const char schedlock_on[] = "on";
491static const char schedlock_step[] = "step";
492static const char *scheduler_mode = schedlock_off;
488f131b 493static const char *scheduler_enums[] = {
ef346e04
AC
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498};
c906108c
SS
499
500static void
96baa820 501set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 502{
1868c04e
AC
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
ce2826aa 507 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
c906108c
SS
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
488f131b 515 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
516 }
517}
518
519
520/* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528void
96baa820 529resume (int step, enum target_signal sig)
c906108c
SS
530{
531 int should_resume = 1;
74b7792f 532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
533 QUIT;
534
ef5cf84e
MS
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
c906108c 537
692590c1
MS
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
488f131b 548
692590c1 549
c2c6d25f
JM
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
b0ed3589 557 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
558 {
559 /* Do it the hard way, w/temp breakpoints */
c5aa993b 560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
9f976b41 566 singlestep_ptid = inferior_ptid;
c906108c
SS
567 }
568
c906108c 569 /* If there were any forks/vforks/execs that were caught and are
6604731b 570 now to be followed, then do so. */
c906108c
SS
571 switch (pending_follow.kind)
572 {
6604731b
DJ
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
c906108c 575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
576 if (follow_fork ())
577 should_resume = 0;
c906108c
SS
578 break;
579
6604731b 580 case TARGET_WAITKIND_EXECD:
c906108c 581 /* follow_exec is called as soon as the exec event is seen. */
6604731b 582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
583 break;
584
585 default:
586 break;
587 }
c906108c
SS
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
39f77062 594 ptid_t resume_ptid;
dfcd3bfb 595
488f131b 596 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 601 {
ef5cf84e
MS
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
c906108c 606
ef5cf84e 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e
MS
609
610 if ((scheduler_mode == schedlock_on) ||
488f131b 611 (scheduler_mode == schedlock_step &&
ef5cf84e 612 (step || singlestep_breakpoints_inserted_p)))
c906108c 613 {
ef5cf84e 614 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 615 resume_ptid = inferior_ptid;
c906108c 616 }
ef5cf84e 617
c4ed33b9
AC
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
39f77062 626 target_resume (resume_ptid, step, sig);
c906108c
SS
627 }
628
629 discard_cleanups (old_cleanups);
630}
631\f
632
633/* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636void
96baa820 637clear_proceed_status (void)
c906108c
SS
638{
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
aa0cd9c1 642 step_frame_id = null_frame_id;
5fbbeb29 643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 644 stop_after_trap = 0;
c0236d92 645 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651}
652
ea67f13b
DJ
653/* This should be suitable for any targets that support threads. */
654
655static int
656prepare_to_proceed (void)
657{
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701}
e4846b08
JJ
702
703/* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706static CORE_ADDR prev_pc;
707
c906108c
SS
708/* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 712 or -1 for act according to how it stopped.
c906108c 713 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
c906108c
SS
717
718 You should call clear_proceed_status before calling proceed. */
719
720void
96baa820 721proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
722{
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
2acceee2 730 if (addr == (CORE_ADDR) -1)
c906108c
SS
731 {
732 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
c906108c
SS
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740#ifndef STEP_SKIPS_DELAY
741#define STEP_SKIPS_DELAY(pc) (0)
742#define STEP_SKIPS_DELAY_P (0)
743#endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
c906108c
SS
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
c906108c
SS
755 }
756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c
SS
770
771#ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
c906108c
SS
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781#endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
81d0cc19
GS
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
c906108c
SS
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
e4846b08
JJ
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
c906108c
SS
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
6426a772 839 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
c906108c 844}
c906108c
SS
845\f
846
847/* Start remote-debugging of a machine over a serial link. */
96baa820 848
c906108c 849void
96baa820 850start_remote (void)
c906108c
SS
851{
852 init_thread_list ();
853 init_wait_for_inferior ();
c0236d92 854 stop_soon = STOP_QUIETLY;
c906108c 855 trap_expected = 0;
43ff13b4 856
6426a772
JM
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 859 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
c906108c
SS
873}
874
875/* Initialize static vars when a new inferior begins. */
876
877void
96baa820 878init_wait_for_inferior (void)
c906108c
SS
879{
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
c906108c
SS
882
883#ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885#endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
9f976b41
DJ
899
900 stepping_past_singlestep_breakpoint = 0;
c906108c 901}
c906108c 902\f
b83266a0
SS
903/* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
c5aa993b
JM
907enum infwait_states
908{
cd0fc7c3
SS
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
b83266a0
SS
913};
914
11cf8741
JM
915/* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917enum inferior_stop_reason
918{
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931};
932
cd0fc7c3
SS
933/* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
c5aa993b 937struct execution_control_state
488f131b
JB
938{
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
488f131b
JB
953 int stepping_through_solib_after_catch;
954 bpstat stepping_through_solib_catchpoints;
955 int enable_hw_watchpoints_after_wait;
956 int stepping_through_sigtramp;
957 int new_thread_event;
958 struct target_waitstatus tmpstatus;
959 enum infwait_states infwait_state;
960 ptid_t waiton_ptid;
961 int wait_some_more;
962};
963
964void init_execution_control_state (struct execution_control_state *ecs);
965
966void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 967
c2c6d25f 968static void step_into_function (struct execution_control_state *ecs);
d303a6c7
AC
969static void insert_step_resume_breakpoint (struct frame_info *step_frame,
970 struct execution_control_state *ecs);
104c1213
JM
971static void stop_stepping (struct execution_control_state *ecs);
972static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 973static void keep_going (struct execution_control_state *ecs);
488f131b
JB
974static void print_stop_reason (enum inferior_stop_reason stop_reason,
975 int stop_info);
104c1213 976
cd0fc7c3
SS
977/* Wait for control to return from inferior to debugger.
978 If inferior gets a signal, we may decide to start it up again
979 instead of returning. That is why there is a loop in this function.
980 When this function actually returns it means the inferior
981 should be left stopped and GDB should read more commands. */
982
983void
96baa820 984wait_for_inferior (void)
cd0fc7c3
SS
985{
986 struct cleanup *old_cleanups;
987 struct execution_control_state ecss;
988 struct execution_control_state *ecs;
c906108c 989
8601f500 990 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 991 &step_resume_breakpoint);
cd0fc7c3
SS
992
993 /* wfi still stays in a loop, so it's OK just to take the address of
994 a local to get the ecs pointer. */
995 ecs = &ecss;
996
997 /* Fill in with reasonable starting values. */
998 init_execution_control_state (ecs);
999
c906108c 1000 /* We'll update this if & when we switch to a new thread. */
39f77062 1001 previous_inferior_ptid = inferior_ptid;
c906108c 1002
cd0fc7c3
SS
1003 overlay_cache_invalid = 1;
1004
1005 /* We have to invalidate the registers BEFORE calling target_wait
1006 because they can be loaded from the target while in target_wait.
1007 This makes remote debugging a bit more efficient for those
1008 targets that provide critical registers as part of their normal
1009 status mechanism. */
1010
1011 registers_changed ();
b83266a0 1012
c906108c
SS
1013 while (1)
1014 {
9a4105ab
AC
1015 if (deprecated_target_wait_hook)
1016 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1017 else
39f77062 1018 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1019
cd0fc7c3
SS
1020 /* Now figure out what to do with the result of the result. */
1021 handle_inferior_event (ecs);
c906108c 1022
cd0fc7c3
SS
1023 if (!ecs->wait_some_more)
1024 break;
1025 }
1026 do_cleanups (old_cleanups);
1027}
c906108c 1028
43ff13b4
JM
1029/* Asynchronous version of wait_for_inferior. It is called by the
1030 event loop whenever a change of state is detected on the file
1031 descriptor corresponding to the target. It can be called more than
1032 once to complete a single execution command. In such cases we need
1033 to keep the state in a global variable ASYNC_ECSS. If it is the
1034 last time that this function is called for a single execution
1035 command, then report to the user that the inferior has stopped, and
1036 do the necessary cleanups. */
1037
1038struct execution_control_state async_ecss;
1039struct execution_control_state *async_ecs;
1040
1041void
fba45db2 1042fetch_inferior_event (void *client_data)
43ff13b4
JM
1043{
1044 static struct cleanup *old_cleanups;
1045
c5aa993b 1046 async_ecs = &async_ecss;
43ff13b4
JM
1047
1048 if (!async_ecs->wait_some_more)
1049 {
488f131b 1050 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1051 &step_resume_breakpoint);
43ff13b4
JM
1052
1053 /* Fill in with reasonable starting values. */
1054 init_execution_control_state (async_ecs);
1055
43ff13b4 1056 /* We'll update this if & when we switch to a new thread. */
39f77062 1057 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1058
1059 overlay_cache_invalid = 1;
1060
1061 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1062 because they can be loaded from the target while in target_wait.
1063 This makes remote debugging a bit more efficient for those
1064 targets that provide critical registers as part of their normal
1065 status mechanism. */
43ff13b4
JM
1066
1067 registers_changed ();
1068 }
1069
9a4105ab 1070 if (deprecated_target_wait_hook)
488f131b 1071 async_ecs->ptid =
9a4105ab 1072 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1073 else
39f77062 1074 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1075
1076 /* Now figure out what to do with the result of the result. */
1077 handle_inferior_event (async_ecs);
1078
1079 if (!async_ecs->wait_some_more)
1080 {
adf40b2e 1081 /* Do only the cleanups that have been added by this
488f131b
JB
1082 function. Let the continuations for the commands do the rest,
1083 if there are any. */
43ff13b4
JM
1084 do_exec_cleanups (old_cleanups);
1085 normal_stop ();
c2d11a7d
JM
1086 if (step_multi && stop_step)
1087 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1088 else
1089 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1090 }
1091}
1092
cd0fc7c3
SS
1093/* Prepare an execution control state for looping through a
1094 wait_for_inferior-type loop. */
1095
1096void
96baa820 1097init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1098{
c2d11a7d 1099 /* ecs->another_trap? */
cd0fc7c3
SS
1100 ecs->random_signal = 0;
1101 ecs->remove_breakpoints_on_following_step = 0;
1102 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1103 ecs->stepping_through_solib_after_catch = 0;
1104 ecs->stepping_through_solib_catchpoints = NULL;
1105 ecs->enable_hw_watchpoints_after_wait = 0;
1106 ecs->stepping_through_sigtramp = 0;
1107 ecs->sal = find_pc_line (prev_pc, 0);
1108 ecs->current_line = ecs->sal.line;
1109 ecs->current_symtab = ecs->sal.symtab;
1110 ecs->infwait_state = infwait_normal_state;
39f77062 1111 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1112 ecs->wp = &(ecs->ws);
1113}
1114
a0b3c4fd 1115/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1116 sanity check. There should never be more than one step-resume
1117 breakpoint per thread, so we should never be setting a new
1118 step_resume_breakpoint when one is already active. */
a0b3c4fd 1119static void
96baa820 1120check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1121{
1122 if (step_resume_breakpoint)
488f131b
JB
1123 warning
1124 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1125}
1126
e02bc4cc 1127/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1128 target_wait()/deprecated_target_wait_hook(). The data is actually
1129 cached by handle_inferior_event(), which gets called immediately
1130 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1131
1132void
488f131b 1133get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1134{
39f77062 1135 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1136 *status = target_last_waitstatus;
1137}
1138
dd80620e
MS
1139/* Switch thread contexts, maintaining "infrun state". */
1140
1141static void
1142context_switch (struct execution_control_state *ecs)
1143{
1144 /* Caution: it may happen that the new thread (or the old one!)
1145 is not in the thread list. In this case we must not attempt
1146 to "switch context", or we run the risk that our context may
1147 be lost. This may happen as a result of the target module
1148 mishandling thread creation. */
1149
1150 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1151 { /* Perform infrun state context switch: */
dd80620e 1152 /* Save infrun state for the old thread. */
0ce3d317 1153 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1154 trap_expected, step_resume_breakpoint,
15960608 1155 step_range_start,
aa0cd9c1 1156 step_range_end, &step_frame_id,
dd80620e
MS
1157 ecs->handling_longjmp, ecs->another_trap,
1158 ecs->stepping_through_solib_after_catch,
1159 ecs->stepping_through_solib_catchpoints,
1160 ecs->stepping_through_sigtramp,
f2c9ca08 1161 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1162
1163 /* Load infrun state for the new thread. */
0ce3d317 1164 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1165 &trap_expected, &step_resume_breakpoint,
15960608 1166 &step_range_start,
aa0cd9c1 1167 &step_range_end, &step_frame_id,
dd80620e
MS
1168 &ecs->handling_longjmp, &ecs->another_trap,
1169 &ecs->stepping_through_solib_after_catch,
1170 &ecs->stepping_through_solib_catchpoints,
488f131b 1171 &ecs->stepping_through_sigtramp,
f2c9ca08 1172 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1173 }
1174 inferior_ptid = ecs->ptid;
1175}
1176
4fa8626c
DJ
1177static void
1178adjust_pc_after_break (struct execution_control_state *ecs)
1179{
8aad930b 1180 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1181
1182 /* If this target does not decrement the PC after breakpoints, then
1183 we have nothing to do. */
1184 if (DECR_PC_AFTER_BREAK == 0)
1185 return;
1186
1187 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1188 we aren't, just return.
9709f61c
DJ
1189
1190 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1191 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1192 by software breakpoints should be handled through the normal breakpoint
1193 layer.
4fa8626c
DJ
1194
1195 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1196 different signals (SIGILL or SIGEMT for instance), but it is less
1197 clear where the PC is pointing afterwards. It may not match
1198 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1199 these signals at breakpoints (the code has been in GDB since at least
1200 1992) so I can not guess how to handle them here.
1201
1202 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1203 would have the PC after hitting a watchpoint affected by
1204 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1205 in GDB history, and it seems unlikely to be correct, so
1206 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1207
1208 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1209 return;
1210
1211 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1212 return;
1213
8aad930b
AC
1214 /* Find the location where (if we've hit a breakpoint) the
1215 breakpoint would be. */
1216 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1217
1218 if (SOFTWARE_SINGLE_STEP_P ())
1219 {
1220 /* When using software single-step, a SIGTRAP can only indicate
1221 an inserted breakpoint. This actually makes things
1222 easier. */
1223 if (singlestep_breakpoints_inserted_p)
1224 /* When software single stepping, the instruction at [prev_pc]
1225 is never a breakpoint, but the instruction following
1226 [prev_pc] (in program execution order) always is. Assume
1227 that following instruction was reached and hence a software
1228 breakpoint was hit. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1231 /* The inferior was free running (i.e., no single-step
1232 breakpoints inserted) and it hit a software breakpoint. */
1233 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 }
1235 else
1236 {
1237 /* When using hardware single-step, a SIGTRAP is reported for
1238 both a completed single-step and a software breakpoint. Need
1239 to differentiate between the two as the latter needs
1240 adjusting but the former does not. */
1241 if (currently_stepping (ecs))
1242 {
1243 if (prev_pc == breakpoint_pc
1244 && software_breakpoint_inserted_here_p (breakpoint_pc))
1245 /* Hardware single-stepped a software breakpoint (as
1246 occures when the inferior is resumed with PC pointing
1247 at not-yet-hit software breakpoint). Since the
1248 breakpoint really is executed, the inferior needs to be
1249 backed up to the breakpoint address. */
1250 write_pc_pid (breakpoint_pc, ecs->ptid);
1251 }
1252 else
1253 {
1254 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1255 /* The inferior was free running (i.e., no hardware
1256 single-step and no possibility of a false SIGTRAP) and
1257 hit a software breakpoint. */
1258 write_pc_pid (breakpoint_pc, ecs->ptid);
1259 }
1260 }
4fa8626c
DJ
1261}
1262
cd0fc7c3
SS
1263/* Given an execution control state that has been freshly filled in
1264 by an event from the inferior, figure out what it means and take
1265 appropriate action. */
c906108c 1266
7270d8f2
OF
1267int stepped_after_stopped_by_watchpoint;
1268
cd0fc7c3 1269void
96baa820 1270handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1271{
65e82032
AC
1272 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1273 thinking that the variable stepped_after_stopped_by_watchpoint
1274 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1275 defined in the file "config/pa/nm-hppah.h", accesses the variable
1276 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1277 int sw_single_step_trap_p = 0;
00d4360e 1278 int stopped_by_watchpoint = 0;
cd0fc7c3 1279
e02bc4cc 1280 /* Cache the last pid/waitstatus. */
39f77062 1281 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1282 target_last_waitstatus = *ecs->wp;
1283
4fa8626c
DJ
1284 adjust_pc_after_break (ecs);
1285
488f131b
JB
1286 switch (ecs->infwait_state)
1287 {
1288 case infwait_thread_hop_state:
1289 /* Cancel the waiton_ptid. */
1290 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1291 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1292 is serviced in this loop, below. */
1293 if (ecs->enable_hw_watchpoints_after_wait)
1294 {
1295 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1296 ecs->enable_hw_watchpoints_after_wait = 0;
1297 }
1298 stepped_after_stopped_by_watchpoint = 0;
1299 break;
b83266a0 1300
488f131b
JB
1301 case infwait_normal_state:
1302 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1303 is serviced in this loop, below. */
1304 if (ecs->enable_hw_watchpoints_after_wait)
1305 {
1306 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1307 ecs->enable_hw_watchpoints_after_wait = 0;
1308 }
1309 stepped_after_stopped_by_watchpoint = 0;
1310 break;
b83266a0 1311
488f131b 1312 case infwait_nullified_state:
65e82032 1313 stepped_after_stopped_by_watchpoint = 0;
488f131b 1314 break;
b83266a0 1315
488f131b
JB
1316 case infwait_nonstep_watch_state:
1317 insert_breakpoints ();
c906108c 1318
488f131b
JB
1319 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1320 handle things like signals arriving and other things happening
1321 in combination correctly? */
1322 stepped_after_stopped_by_watchpoint = 1;
1323 break;
65e82032
AC
1324
1325 default:
1326 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1327 }
1328 ecs->infwait_state = infwait_normal_state;
c906108c 1329
488f131b 1330 flush_cached_frames ();
c906108c 1331
488f131b 1332 /* If it's a new process, add it to the thread database */
c906108c 1333
488f131b
JB
1334 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1335 && !in_thread_list (ecs->ptid));
1336
1337 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1338 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1339 {
1340 add_thread (ecs->ptid);
c906108c 1341
488f131b
JB
1342 ui_out_text (uiout, "[New ");
1343 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1344 ui_out_text (uiout, "]\n");
c906108c
SS
1345
1346#if 0
488f131b
JB
1347 /* NOTE: This block is ONLY meant to be invoked in case of a
1348 "thread creation event"! If it is invoked for any other
1349 sort of event (such as a new thread landing on a breakpoint),
1350 the event will be discarded, which is almost certainly
1351 a bad thing!
1352
1353 To avoid this, the low-level module (eg. target_wait)
1354 should call in_thread_list and add_thread, so that the
1355 new thread is known by the time we get here. */
1356
1357 /* We may want to consider not doing a resume here in order
1358 to give the user a chance to play with the new thread.
1359 It might be good to make that a user-settable option. */
1360
1361 /* At this point, all threads are stopped (happens
1362 automatically in either the OS or the native code).
1363 Therefore we need to continue all threads in order to
1364 make progress. */
1365
1366 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1367 prepare_to_wait (ecs);
1368 return;
c906108c 1369#endif
488f131b 1370 }
c906108c 1371
488f131b
JB
1372 switch (ecs->ws.kind)
1373 {
1374 case TARGET_WAITKIND_LOADED:
1375 /* Ignore gracefully during startup of the inferior, as it
1376 might be the shell which has just loaded some objects,
1377 otherwise add the symbols for the newly loaded objects. */
c906108c 1378#ifdef SOLIB_ADD
c0236d92 1379 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1380 {
1381 /* Remove breakpoints, SOLIB_ADD might adjust
1382 breakpoint addresses via breakpoint_re_set. */
1383 if (breakpoints_inserted)
1384 remove_breakpoints ();
c906108c 1385
488f131b
JB
1386 /* Check for any newly added shared libraries if we're
1387 supposed to be adding them automatically. Switch
1388 terminal for any messages produced by
1389 breakpoint_re_set. */
1390 target_terminal_ours_for_output ();
aff6338a
AC
1391 /* NOTE: cagney/2003-11-25: Make certain that the target
1392 stack's section table is kept up-to-date. Architectures,
1393 (e.g., PPC64), use the section table to perform
1394 operations such as address => section name and hence
1395 require the table to contain all sections (including
1396 those found in shared libraries). */
1397 /* NOTE: cagney/2003-11-25: Pass current_target and not
1398 exec_ops to SOLIB_ADD. This is because current GDB is
1399 only tooled to propagate section_table changes out from
1400 the "current_target" (see target_resize_to_sections), and
1401 not up from the exec stratum. This, of course, isn't
1402 right. "infrun.c" should only interact with the
1403 exec/process stratum, instead relying on the target stack
1404 to propagate relevant changes (stop, section table
1405 changed, ...) up to other layers. */
1406 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1407 target_terminal_inferior ();
1408
1409 /* Reinsert breakpoints and continue. */
1410 if (breakpoints_inserted)
1411 insert_breakpoints ();
1412 }
c906108c 1413#endif
488f131b
JB
1414 resume (0, TARGET_SIGNAL_0);
1415 prepare_to_wait (ecs);
1416 return;
c5aa993b 1417
488f131b
JB
1418 case TARGET_WAITKIND_SPURIOUS:
1419 resume (0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
c5aa993b 1422
488f131b
JB
1423 case TARGET_WAITKIND_EXITED:
1424 target_terminal_ours (); /* Must do this before mourn anyway */
1425 print_stop_reason (EXITED, ecs->ws.value.integer);
1426
1427 /* Record the exit code in the convenience variable $_exitcode, so
1428 that the user can inspect this again later. */
1429 set_internalvar (lookup_internalvar ("_exitcode"),
1430 value_from_longest (builtin_type_int,
1431 (LONGEST) ecs->ws.value.integer));
1432 gdb_flush (gdb_stdout);
1433 target_mourn_inferior ();
1434 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1435 stop_print_frame = 0;
1436 stop_stepping (ecs);
1437 return;
c5aa993b 1438
488f131b
JB
1439 case TARGET_WAITKIND_SIGNALLED:
1440 stop_print_frame = 0;
1441 stop_signal = ecs->ws.value.sig;
1442 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1443
488f131b
JB
1444 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1445 reach here unless the inferior is dead. However, for years
1446 target_kill() was called here, which hints that fatal signals aren't
1447 really fatal on some systems. If that's true, then some changes
1448 may be needed. */
1449 target_mourn_inferior ();
c906108c 1450
488f131b
JB
1451 print_stop_reason (SIGNAL_EXITED, stop_signal);
1452 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1453 stop_stepping (ecs);
1454 return;
c906108c 1455
488f131b
JB
1456 /* The following are the only cases in which we keep going;
1457 the above cases end in a continue or goto. */
1458 case TARGET_WAITKIND_FORKED:
deb3b17b 1459 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1460 stop_signal = TARGET_SIGNAL_TRAP;
1461 pending_follow.kind = ecs->ws.kind;
1462
8e7d2c16
DJ
1463 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1464 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1465
488f131b 1466 stop_pc = read_pc ();
675bf4cb 1467
00d4360e 1468 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1469
488f131b 1470 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1471
1472 /* If no catchpoint triggered for this, then keep going. */
1473 if (ecs->random_signal)
1474 {
1475 stop_signal = TARGET_SIGNAL_0;
1476 keep_going (ecs);
1477 return;
1478 }
488f131b
JB
1479 goto process_event_stop_test;
1480
1481 case TARGET_WAITKIND_EXECD:
1482 stop_signal = TARGET_SIGNAL_TRAP;
1483
7d2830a3
DJ
1484 /* NOTE drow/2002-12-05: This code should be pushed down into the
1485 target_wait function. Until then following vfork on HP/UX 10.20
1486 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1487 /* Is this a target which reports multiple exec events per actual
1488 call to exec()? (HP-UX using ptrace does, for example.) If so,
1489 ignore all but the last one. Just resume the exec'r, and wait
1490 for the next exec event. */
1491 if (inferior_ignoring_leading_exec_events)
1492 {
1493 inferior_ignoring_leading_exec_events--;
1494 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1495 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1496 parent_pid);
1497 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1498 prepare_to_wait (ecs);
1499 return;
1500 }
1501 inferior_ignoring_leading_exec_events =
1502 target_reported_exec_events_per_exec_call () - 1;
1503
1504 pending_follow.execd_pathname =
1505 savestring (ecs->ws.value.execd_pathname,
1506 strlen (ecs->ws.value.execd_pathname));
1507
488f131b
JB
1508 /* This causes the eventpoints and symbol table to be reset. Must
1509 do this now, before trying to determine whether to stop. */
1510 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1511 xfree (pending_follow.execd_pathname);
c906108c 1512
488f131b
JB
1513 stop_pc = read_pc_pid (ecs->ptid);
1514 ecs->saved_inferior_ptid = inferior_ptid;
1515 inferior_ptid = ecs->ptid;
675bf4cb 1516
00d4360e 1517 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1518
488f131b
JB
1519 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1520 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1521
1522 /* If no catchpoint triggered for this, then keep going. */
1523 if (ecs->random_signal)
1524 {
1525 stop_signal = TARGET_SIGNAL_0;
1526 keep_going (ecs);
1527 return;
1528 }
488f131b
JB
1529 goto process_event_stop_test;
1530
1531 /* These syscall events are returned on HP-UX, as part of its
1532 implementation of page-protection-based "hardware" watchpoints.
1533 HP-UX has unfortunate interactions between page-protections and
1534 some system calls. Our solution is to disable hardware watches
1535 when a system call is entered, and reenable them when the syscall
1536 completes. The downside of this is that we may miss the precise
1537 point at which a watched piece of memory is modified. "Oh well."
1538
1539 Note that we may have multiple threads running, which may each
1540 enter syscalls at roughly the same time. Since we don't have a
1541 good notion currently of whether a watched piece of memory is
1542 thread-private, we'd best not have any page-protections active
1543 when any thread is in a syscall. Thus, we only want to reenable
1544 hardware watches when no threads are in a syscall.
1545
1546 Also, be careful not to try to gather much state about a thread
1547 that's in a syscall. It's frequently a losing proposition. */
1548 case TARGET_WAITKIND_SYSCALL_ENTRY:
1549 number_of_threads_in_syscalls++;
1550 if (number_of_threads_in_syscalls == 1)
1551 {
1552 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1553 }
1554 resume (0, TARGET_SIGNAL_0);
1555 prepare_to_wait (ecs);
1556 return;
c906108c 1557
488f131b
JB
1558 /* Before examining the threads further, step this thread to
1559 get it entirely out of the syscall. (We get notice of the
1560 event when the thread is just on the verge of exiting a
1561 syscall. Stepping one instruction seems to get it back
1562 into user code.)
c906108c 1563
488f131b
JB
1564 Note that although the logical place to reenable h/w watches
1565 is here, we cannot. We cannot reenable them before stepping
1566 the thread (this causes the next wait on the thread to hang).
c4093a6a 1567
488f131b
JB
1568 Nor can we enable them after stepping until we've done a wait.
1569 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1570 here, which will be serviced immediately after the target
1571 is waited on. */
1572 case TARGET_WAITKIND_SYSCALL_RETURN:
1573 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1574
1575 if (number_of_threads_in_syscalls > 0)
1576 {
1577 number_of_threads_in_syscalls--;
1578 ecs->enable_hw_watchpoints_after_wait =
1579 (number_of_threads_in_syscalls == 0);
1580 }
1581 prepare_to_wait (ecs);
1582 return;
c906108c 1583
488f131b
JB
1584 case TARGET_WAITKIND_STOPPED:
1585 stop_signal = ecs->ws.value.sig;
1586 break;
c906108c 1587
488f131b
JB
1588 /* We had an event in the inferior, but we are not interested
1589 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1590 done what needs to be done, if anything.
1591
1592 One of the possible circumstances for this is when the
1593 inferior produces output for the console. The inferior has
1594 not stopped, and we are ignoring the event. Another possible
1595 circumstance is any event which the lower level knows will be
1596 reported multiple times without an intervening resume. */
488f131b 1597 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1598 prepare_to_wait (ecs);
488f131b
JB
1599 return;
1600 }
c906108c 1601
488f131b
JB
1602 /* We may want to consider not doing a resume here in order to give
1603 the user a chance to play with the new thread. It might be good
1604 to make that a user-settable option. */
c906108c 1605
488f131b
JB
1606 /* At this point, all threads are stopped (happens automatically in
1607 either the OS or the native code). Therefore we need to continue
1608 all threads in order to make progress. */
1609 if (ecs->new_thread_event)
1610 {
1611 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1612 prepare_to_wait (ecs);
1613 return;
1614 }
c906108c 1615
488f131b
JB
1616 stop_pc = read_pc_pid (ecs->ptid);
1617
9f976b41
DJ
1618 if (stepping_past_singlestep_breakpoint)
1619 {
1620 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1621 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1622 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1623
1624 stepping_past_singlestep_breakpoint = 0;
1625
1626 /* We've either finished single-stepping past the single-step
1627 breakpoint, or stopped for some other reason. It would be nice if
1628 we could tell, but we can't reliably. */
1629 if (stop_signal == TARGET_SIGNAL_TRAP)
1630 {
1631 /* Pull the single step breakpoints out of the target. */
1632 SOFTWARE_SINGLE_STEP (0, 0);
1633 singlestep_breakpoints_inserted_p = 0;
1634
1635 ecs->random_signal = 0;
1636
1637 ecs->ptid = saved_singlestep_ptid;
1638 context_switch (ecs);
9a4105ab
AC
1639 if (deprecated_context_hook)
1640 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1641
1642 resume (1, TARGET_SIGNAL_0);
1643 prepare_to_wait (ecs);
1644 return;
1645 }
1646 }
1647
1648 stepping_past_singlestep_breakpoint = 0;
1649
488f131b
JB
1650 /* See if a thread hit a thread-specific breakpoint that was meant for
1651 another thread. If so, then step that thread past the breakpoint,
1652 and continue it. */
1653
1654 if (stop_signal == TARGET_SIGNAL_TRAP)
1655 {
9f976b41
DJ
1656 int thread_hop_needed = 0;
1657
f8d40ec8
JB
1658 /* Check if a regular breakpoint has been hit before checking
1659 for a potential single step breakpoint. Otherwise, GDB will
1660 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1661 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1662 {
c5aa993b 1663 ecs->random_signal = 0;
4fa8626c 1664 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1665 thread_hop_needed = 1;
1666 }
1667 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1668 {
1669 ecs->random_signal = 0;
1670 /* The call to in_thread_list is necessary because PTIDs sometimes
1671 change when we go from single-threaded to multi-threaded. If
1672 the singlestep_ptid is still in the list, assume that it is
1673 really different from ecs->ptid. */
1674 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1675 && in_thread_list (singlestep_ptid))
1676 {
1677 thread_hop_needed = 1;
1678 stepping_past_singlestep_breakpoint = 1;
1679 saved_singlestep_ptid = singlestep_ptid;
1680 }
1681 }
1682
1683 if (thread_hop_needed)
488f131b
JB
1684 {
1685 int remove_status;
1686
1687 /* Saw a breakpoint, but it was hit by the wrong thread.
1688 Just continue. */
488f131b 1689
9f976b41
DJ
1690 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1691 {
1692 /* Pull the single step breakpoints out of the target. */
1693 SOFTWARE_SINGLE_STEP (0, 0);
1694 singlestep_breakpoints_inserted_p = 0;
1695 }
1696
488f131b
JB
1697 remove_status = remove_breakpoints ();
1698 /* Did we fail to remove breakpoints? If so, try
1699 to set the PC past the bp. (There's at least
1700 one situation in which we can fail to remove
1701 the bp's: On HP-UX's that use ttrace, we can't
1702 change the address space of a vforking child
1703 process until the child exits (well, okay, not
1704 then either :-) or execs. */
1705 if (remove_status != 0)
1706 {
1707 /* FIXME! This is obviously non-portable! */
4fa8626c 1708 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1709 /* We need to restart all the threads now,
1710 * unles we're running in scheduler-locked mode.
1711 * Use currently_stepping to determine whether to
1712 * step or continue.
1713 */
1714 /* FIXME MVS: is there any reason not to call resume()? */
1715 if (scheduler_mode == schedlock_on)
1716 target_resume (ecs->ptid,
1717 currently_stepping (ecs), TARGET_SIGNAL_0);
1718 else
1719 target_resume (RESUME_ALL,
1720 currently_stepping (ecs), TARGET_SIGNAL_0);
1721 prepare_to_wait (ecs);
1722 return;
1723 }
1724 else
1725 { /* Single step */
1726 breakpoints_inserted = 0;
1727 if (!ptid_equal (inferior_ptid, ecs->ptid))
1728 context_switch (ecs);
1729 ecs->waiton_ptid = ecs->ptid;
1730 ecs->wp = &(ecs->ws);
1731 ecs->another_trap = 1;
1732
1733 ecs->infwait_state = infwait_thread_hop_state;
1734 keep_going (ecs);
1735 registers_changed ();
1736 return;
1737 }
488f131b 1738 }
f8d40ec8
JB
1739 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1740 {
c8edd8b4 1741 sw_single_step_trap_p = 1;
f8d40ec8
JB
1742 ecs->random_signal = 0;
1743 }
488f131b
JB
1744 }
1745 else
1746 ecs->random_signal = 1;
c906108c 1747
488f131b 1748 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1749 so, then switch to that thread. */
1750 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1751 {
488f131b 1752 context_switch (ecs);
c5aa993b 1753
9a4105ab
AC
1754 if (deprecated_context_hook)
1755 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1756
488f131b
JB
1757 flush_cached_frames ();
1758 }
c906108c 1759
488f131b
JB
1760 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1761 {
1762 /* Pull the single step breakpoints out of the target. */
1763 SOFTWARE_SINGLE_STEP (0, 0);
1764 singlestep_breakpoints_inserted_p = 0;
1765 }
c906108c 1766
488f131b
JB
1767 /* If PC is pointing at a nullified instruction, then step beyond
1768 it so that the user won't be confused when GDB appears to be ready
1769 to execute it. */
c906108c 1770
488f131b
JB
1771 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1772 if (INSTRUCTION_NULLIFIED)
1773 {
1774 registers_changed ();
1775 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1776
488f131b
JB
1777 /* We may have received a signal that we want to pass to
1778 the inferior; therefore, we must not clobber the waitstatus
1779 in WS. */
c906108c 1780
488f131b
JB
1781 ecs->infwait_state = infwait_nullified_state;
1782 ecs->waiton_ptid = ecs->ptid;
1783 ecs->wp = &(ecs->tmpstatus);
1784 prepare_to_wait (ecs);
1785 return;
1786 }
c906108c 1787
488f131b
JB
1788 /* It may not be necessary to disable the watchpoint to stop over
1789 it. For example, the PA can (with some kernel cooperation)
1790 single step over a watchpoint without disabling the watchpoint. */
1791 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1792 {
1793 resume (1, 0);
1794 prepare_to_wait (ecs);
1795 return;
1796 }
c906108c 1797
488f131b
JB
1798 /* It is far more common to need to disable a watchpoint to step
1799 the inferior over it. FIXME. What else might a debug
1800 register or page protection watchpoint scheme need here? */
1801 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1802 {
1803 /* At this point, we are stopped at an instruction which has
1804 attempted to write to a piece of memory under control of
1805 a watchpoint. The instruction hasn't actually executed
1806 yet. If we were to evaluate the watchpoint expression
1807 now, we would get the old value, and therefore no change
1808 would seem to have occurred.
1809
1810 In order to make watchpoints work `right', we really need
1811 to complete the memory write, and then evaluate the
1812 watchpoint expression. The following code does that by
1813 removing the watchpoint (actually, all watchpoints and
1814 breakpoints), single-stepping the target, re-inserting
1815 watchpoints, and then falling through to let normal
1816 single-step processing handle proceed. Since this
1817 includes evaluating watchpoints, things will come to a
1818 stop in the correct manner. */
1819
488f131b
JB
1820 remove_breakpoints ();
1821 registers_changed ();
1822 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1823
488f131b
JB
1824 ecs->waiton_ptid = ecs->ptid;
1825 ecs->wp = &(ecs->ws);
1826 ecs->infwait_state = infwait_nonstep_watch_state;
1827 prepare_to_wait (ecs);
1828 return;
1829 }
1830
1831 /* It may be possible to simply continue after a watchpoint. */
1832 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1833 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1834
1835 ecs->stop_func_start = 0;
1836 ecs->stop_func_end = 0;
1837 ecs->stop_func_name = 0;
1838 /* Don't care about return value; stop_func_start and stop_func_name
1839 will both be 0 if it doesn't work. */
1840 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1841 &ecs->stop_func_start, &ecs->stop_func_end);
1842 ecs->stop_func_start += FUNCTION_START_OFFSET;
1843 ecs->another_trap = 0;
1844 bpstat_clear (&stop_bpstat);
1845 stop_step = 0;
1846 stop_stack_dummy = 0;
1847 stop_print_frame = 1;
1848 ecs->random_signal = 0;
1849 stopped_by_random_signal = 0;
1850 breakpoints_failed = 0;
1851
1852 /* Look at the cause of the stop, and decide what to do.
1853 The alternatives are:
1854 1) break; to really stop and return to the debugger,
1855 2) drop through to start up again
1856 (set ecs->another_trap to 1 to single step once)
1857 3) set ecs->random_signal to 1, and the decision between 1 and 2
1858 will be made according to the signal handling tables. */
1859
1860 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1861 that have to do with the program's own actions. Note that
1862 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1863 on the operating system version. Here we detect when a SIGILL or
1864 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1865 something similar for SIGSEGV, since a SIGSEGV will be generated
1866 when we're trying to execute a breakpoint instruction on a
1867 non-executable stack. This happens for call dummy breakpoints
1868 for architectures like SPARC that place call dummies on the
1869 stack. */
488f131b
JB
1870
1871 if (stop_signal == TARGET_SIGNAL_TRAP
1872 || (breakpoints_inserted &&
1873 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1874 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1875 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1876 || stop_soon == STOP_QUIETLY
1877 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1878 {
1879 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1880 {
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1883 return;
1884 }
c54cfec8
EZ
1885
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
c0236d92 1888 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1889 {
1890 stop_stepping (ecs);
1891 return;
1892 }
1893
c54cfec8
EZ
1894 /* This originates from attach_command(). We need to overwrite
1895 the stop_signal here, because some kernels don't ignore a
1896 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1897 See more comments in inferior.h. */
c0236d92 1898 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1899 {
1900 stop_stepping (ecs);
1901 if (stop_signal == TARGET_SIGNAL_STOP)
1902 stop_signal = TARGET_SIGNAL_0;
1903 return;
1904 }
1905
d303a6c7
AC
1906 /* Don't even think about breakpoints if just proceeded over a
1907 breakpoint. */
1908 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1909 bpstat_clear (&stop_bpstat);
1910 else
1911 {
1912 /* See if there is a breakpoint at the current PC. */
00d4360e
UW
1913 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1914 stopped_by_watchpoint);
488f131b 1915
488f131b
JB
1916 /* Following in case break condition called a
1917 function. */
1918 stop_print_frame = 1;
1919 }
1920
73dd234f
AC
1921 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1922 at one stage in the past included checks for an inferior
1923 function call's call dummy's return breakpoint. The original
1924 comment, that went with the test, read:
1925
1926 ``End of a stack dummy. Some systems (e.g. Sony news) give
1927 another signal besides SIGTRAP, so check here as well as
1928 above.''
1929
1930 If someone ever tries to get get call dummys on a
1931 non-executable stack to work (where the target would stop
03cebad2
MK
1932 with something like a SIGSEGV), then those tests might need
1933 to be re-instated. Given, however, that the tests were only
73dd234f 1934 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1935 suspect that it won't be the case.
1936
1937 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1938 be necessary for call dummies on a non-executable stack on
1939 SPARC. */
73dd234f 1940
488f131b
JB
1941 if (stop_signal == TARGET_SIGNAL_TRAP)
1942 ecs->random_signal
1943 = !(bpstat_explains_signal (stop_bpstat)
1944 || trap_expected
488f131b 1945 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1946 else
1947 {
73dd234f 1948 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1949 if (!ecs->random_signal)
1950 stop_signal = TARGET_SIGNAL_TRAP;
1951 }
1952 }
1953
1954 /* When we reach this point, we've pretty much decided
1955 that the reason for stopping must've been a random
1956 (unexpected) signal. */
1957
1958 else
1959 ecs->random_signal = 1;
488f131b 1960
04e68871 1961process_event_stop_test:
488f131b
JB
1962 /* For the program's own signals, act according to
1963 the signal handling tables. */
1964
1965 if (ecs->random_signal)
1966 {
1967 /* Signal not for debugging purposes. */
1968 int printed = 0;
1969
1970 stopped_by_random_signal = 1;
1971
1972 if (signal_print[stop_signal])
1973 {
1974 printed = 1;
1975 target_terminal_ours_for_output ();
1976 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1977 }
1978 if (signal_stop[stop_signal])
1979 {
1980 stop_stepping (ecs);
1981 return;
1982 }
1983 /* If not going to stop, give terminal back
1984 if we took it away. */
1985 else if (printed)
1986 target_terminal_inferior ();
1987
1988 /* Clear the signal if it should not be passed. */
1989 if (signal_program[stop_signal] == 0)
1990 stop_signal = TARGET_SIGNAL_0;
1991
d303a6c7
AC
1992 if (step_range_end != 0
1993 && stop_signal != TARGET_SIGNAL_0
1994 && stop_pc >= step_range_start && stop_pc < step_range_end
1995 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
1996 {
1997 /* The inferior is about to take a signal that will take it
1998 out of the single step range. Set a breakpoint at the
1999 current PC (which is presumably where the signal handler
2000 will eventually return) and then allow the inferior to
2001 run free.
2002
2003 Note that this is only needed for a signal delivered
2004 while in the single-step range. Nested signals aren't a
2005 problem as they eventually all return. */
2006 insert_step_resume_breakpoint (get_current_frame (), ecs);
2007 }
488f131b
JB
2008 keep_going (ecs);
2009 return;
2010 }
2011
2012 /* Handle cases caused by hitting a breakpoint. */
2013 {
2014 CORE_ADDR jmp_buf_pc;
2015 struct bpstat_what what;
2016
2017 what = bpstat_what (stop_bpstat);
2018
2019 if (what.call_dummy)
2020 {
2021 stop_stack_dummy = 1;
2022#ifdef HP_OS_BUG
2023 trap_expected_after_continue = 1;
2024#endif
c5aa993b 2025 }
c906108c 2026
488f131b 2027 switch (what.main_action)
c5aa993b 2028 {
488f131b
JB
2029 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2030 /* If we hit the breakpoint at longjmp, disable it for the
2031 duration of this command. Then, install a temporary
2032 breakpoint at the target of the jmp_buf. */
2033 disable_longjmp_breakpoint ();
2034 remove_breakpoints ();
2035 breakpoints_inserted = 0;
2036 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2037 {
488f131b 2038 keep_going (ecs);
104c1213 2039 return;
c5aa993b 2040 }
488f131b
JB
2041
2042 /* Need to blow away step-resume breakpoint, as it
2043 interferes with us */
2044 if (step_resume_breakpoint != NULL)
104c1213 2045 {
488f131b 2046 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2047 }
c906108c 2048
488f131b
JB
2049#if 0
2050 /* FIXME - Need to implement nested temporary breakpoints */
2051 if (step_over_calls > 0)
2052 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2053 else
488f131b 2054#endif /* 0 */
818dd999 2055 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2056 ecs->handling_longjmp = 1; /* FIXME */
2057 keep_going (ecs);
2058 return;
c906108c 2059
488f131b
JB
2060 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2061 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2062 remove_breakpoints ();
2063 breakpoints_inserted = 0;
2064#if 0
2065 /* FIXME - Need to implement nested temporary breakpoints */
2066 if (step_over_calls
aa0cd9c1
AC
2067 && (frame_id_inner (get_frame_id (get_current_frame ()),
2068 step_frame_id)))
c5aa993b 2069 {
488f131b 2070 ecs->another_trap = 1;
d4f3574e
SS
2071 keep_going (ecs);
2072 return;
c5aa993b 2073 }
488f131b
JB
2074#endif /* 0 */
2075 disable_longjmp_breakpoint ();
2076 ecs->handling_longjmp = 0; /* FIXME */
2077 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2078 break;
2079 /* else fallthrough */
2080
2081 case BPSTAT_WHAT_SINGLE:
2082 if (breakpoints_inserted)
c5aa993b 2083 {
488f131b 2084 remove_breakpoints ();
c5aa993b 2085 }
488f131b
JB
2086 breakpoints_inserted = 0;
2087 ecs->another_trap = 1;
2088 /* Still need to check other stuff, at least the case
2089 where we are stepping and step out of the right range. */
2090 break;
c906108c 2091
488f131b
JB
2092 case BPSTAT_WHAT_STOP_NOISY:
2093 stop_print_frame = 1;
c906108c 2094
d303a6c7
AC
2095 /* We are about to nuke the step_resume_breakpointt via the
2096 cleanup chain, so no need to worry about it here. */
c5aa993b 2097
488f131b
JB
2098 stop_stepping (ecs);
2099 return;
c5aa993b 2100
488f131b
JB
2101 case BPSTAT_WHAT_STOP_SILENT:
2102 stop_print_frame = 0;
c5aa993b 2103
d303a6c7
AC
2104 /* We are about to nuke the step_resume_breakpoin via the
2105 cleanup chain, so no need to worry about it here. */
c5aa993b 2106
488f131b 2107 stop_stepping (ecs);
e441088d 2108 return;
c5aa993b 2109
488f131b
JB
2110 case BPSTAT_WHAT_STEP_RESUME:
2111 /* This proably demands a more elegant solution, but, yeah
2112 right...
c5aa993b 2113
488f131b
JB
2114 This function's use of the simple variable
2115 step_resume_breakpoint doesn't seem to accomodate
2116 simultaneously active step-resume bp's, although the
2117 breakpoint list certainly can.
c5aa993b 2118
488f131b
JB
2119 If we reach here and step_resume_breakpoint is already
2120 NULL, then apparently we have multiple active
2121 step-resume bp's. We'll just delete the breakpoint we
2122 stopped at, and carry on.
2123
2124 Correction: what the code currently does is delete a
2125 step-resume bp, but it makes no effort to ensure that
2126 the one deleted is the one currently stopped at. MVS */
c5aa993b 2127
488f131b
JB
2128 if (step_resume_breakpoint == NULL)
2129 {
2130 step_resume_breakpoint =
2131 bpstat_find_step_resume_breakpoint (stop_bpstat);
2132 }
2133 delete_step_resume_breakpoint (&step_resume_breakpoint);
2134 break;
2135
2136 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2137 /* If were waiting for a trap, hitting the step_resume_break
2138 doesn't count as getting it. */
2139 if (trap_expected)
2140 ecs->another_trap = 1;
2141 break;
2142
2143 case BPSTAT_WHAT_CHECK_SHLIBS:
2144 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2145#ifdef SOLIB_ADD
c906108c 2146 {
488f131b
JB
2147 /* Remove breakpoints, we eventually want to step over the
2148 shlib event breakpoint, and SOLIB_ADD might adjust
2149 breakpoint addresses via breakpoint_re_set. */
2150 if (breakpoints_inserted)
2151 remove_breakpoints ();
c5aa993b 2152 breakpoints_inserted = 0;
488f131b
JB
2153
2154 /* Check for any newly added shared libraries if we're
2155 supposed to be adding them automatically. Switch
2156 terminal for any messages produced by
2157 breakpoint_re_set. */
2158 target_terminal_ours_for_output ();
aff6338a
AC
2159 /* NOTE: cagney/2003-11-25: Make certain that the target
2160 stack's section table is kept up-to-date. Architectures,
2161 (e.g., PPC64), use the section table to perform
2162 operations such as address => section name and hence
2163 require the table to contain all sections (including
2164 those found in shared libraries). */
2165 /* NOTE: cagney/2003-11-25: Pass current_target and not
2166 exec_ops to SOLIB_ADD. This is because current GDB is
2167 only tooled to propagate section_table changes out from
2168 the "current_target" (see target_resize_to_sections), and
2169 not up from the exec stratum. This, of course, isn't
2170 right. "infrun.c" should only interact with the
2171 exec/process stratum, instead relying on the target stack
2172 to propagate relevant changes (stop, section table
2173 changed, ...) up to other layers. */
2174 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2175 target_terminal_inferior ();
2176
2177 /* Try to reenable shared library breakpoints, additional
2178 code segments in shared libraries might be mapped in now. */
2179 re_enable_breakpoints_in_shlibs ();
2180
2181 /* If requested, stop when the dynamic linker notifies
2182 gdb of events. This allows the user to get control
2183 and place breakpoints in initializer routines for
2184 dynamically loaded objects (among other things). */
877522db 2185 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2186 {
488f131b 2187 stop_stepping (ecs);
d4f3574e
SS
2188 return;
2189 }
c5aa993b 2190
488f131b
JB
2191 /* If we stopped due to an explicit catchpoint, then the
2192 (see above) call to SOLIB_ADD pulled in any symbols
2193 from a newly-loaded library, if appropriate.
2194
2195 We do want the inferior to stop, but not where it is
2196 now, which is in the dynamic linker callback. Rather,
2197 we would like it stop in the user's program, just after
2198 the call that caused this catchpoint to trigger. That
2199 gives the user a more useful vantage from which to
2200 examine their program's state. */
2201 else if (what.main_action ==
2202 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2203 {
488f131b
JB
2204 /* ??rehrauer: If I could figure out how to get the
2205 right return PC from here, we could just set a temp
2206 breakpoint and resume. I'm not sure we can without
2207 cracking open the dld's shared libraries and sniffing
2208 their unwind tables and text/data ranges, and that's
2209 not a terribly portable notion.
2210
2211 Until that time, we must step the inferior out of the
2212 dld callback, and also out of the dld itself (and any
2213 code or stubs in libdld.sl, such as "shl_load" and
2214 friends) until we reach non-dld code. At that point,
2215 we can stop stepping. */
2216 bpstat_get_triggered_catchpoints (stop_bpstat,
2217 &ecs->
2218 stepping_through_solib_catchpoints);
2219 ecs->stepping_through_solib_after_catch = 1;
2220
2221 /* Be sure to lift all breakpoints, so the inferior does
2222 actually step past this point... */
2223 ecs->another_trap = 1;
2224 break;
c906108c 2225 }
c5aa993b 2226 else
c5aa993b 2227 {
488f131b 2228 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2229 ecs->another_trap = 1;
488f131b 2230 break;
c5aa993b 2231 }
488f131b
JB
2232 }
2233#endif
2234 break;
c906108c 2235
488f131b
JB
2236 case BPSTAT_WHAT_LAST:
2237 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2238
488f131b
JB
2239 case BPSTAT_WHAT_KEEP_CHECKING:
2240 break;
2241 }
2242 }
c906108c 2243
488f131b
JB
2244 /* We come here if we hit a breakpoint but should not
2245 stop for it. Possibly we also were stepping
2246 and should stop for that. So fall through and
2247 test for stepping. But, if not stepping,
2248 do not stop. */
c906108c 2249
488f131b
JB
2250 /* Are we stepping to get the inferior out of the dynamic
2251 linker's hook (and possibly the dld itself) after catching
2252 a shlib event? */
2253 if (ecs->stepping_through_solib_after_catch)
2254 {
2255#if defined(SOLIB_ADD)
2256 /* Have we reached our destination? If not, keep going. */
2257 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2258 {
2259 ecs->another_trap = 1;
2260 keep_going (ecs);
104c1213 2261 return;
488f131b
JB
2262 }
2263#endif
2264 /* Else, stop and report the catchpoint(s) whose triggering
2265 caused us to begin stepping. */
2266 ecs->stepping_through_solib_after_catch = 0;
2267 bpstat_clear (&stop_bpstat);
2268 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2269 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2270 stop_print_frame = 1;
2271 stop_stepping (ecs);
2272 return;
2273 }
c906108c 2274
488f131b
JB
2275 if (step_resume_breakpoint)
2276 {
2277 /* Having a step-resume breakpoint overrides anything
2278 else having to do with stepping commands until
2279 that breakpoint is reached. */
488f131b
JB
2280 keep_going (ecs);
2281 return;
2282 }
c5aa993b 2283
488f131b
JB
2284 if (step_range_end == 0)
2285 {
2286 /* Likewise if we aren't even stepping. */
488f131b
JB
2287 keep_going (ecs);
2288 return;
2289 }
c5aa993b 2290
488f131b 2291 /* If stepping through a line, keep going if still within it.
c906108c 2292
488f131b
JB
2293 Note that step_range_end is the address of the first instruction
2294 beyond the step range, and NOT the address of the last instruction
2295 within it! */
2296 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2297 {
488f131b
JB
2298 keep_going (ecs);
2299 return;
2300 }
c5aa993b 2301
488f131b 2302 /* We stepped out of the stepping range. */
c906108c 2303
488f131b
JB
2304 /* If we are stepping at the source level and entered the runtime
2305 loader dynamic symbol resolution code, we keep on single stepping
2306 until we exit the run time loader code and reach the callee's
2307 address. */
2308 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2309 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2310 {
4c8c40e6
MK
2311 CORE_ADDR pc_after_resolver =
2312 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2313
488f131b
JB
2314 if (pc_after_resolver)
2315 {
2316 /* Set up a step-resume breakpoint at the address
2317 indicated by SKIP_SOLIB_RESOLVER. */
2318 struct symtab_and_line sr_sal;
fe39c653 2319 init_sal (&sr_sal);
488f131b
JB
2320 sr_sal.pc = pc_after_resolver;
2321
2322 check_for_old_step_resume_breakpoint ();
2323 step_resume_breakpoint =
818dd999 2324 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2325 if (breakpoints_inserted)
2326 insert_breakpoints ();
c5aa993b 2327 }
c906108c 2328
488f131b
JB
2329 keep_going (ecs);
2330 return;
2331 }
c906108c 2332
42edda50
AC
2333 if (step_range_end != 1
2334 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2335 || step_over_calls == STEP_OVER_ALL)
2336 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2337 {
42edda50
AC
2338 /* The inferior, while doing a "step" or "next", has ended up in
2339 a signal trampoline (either by a signal being delivered or by
2340 the signal handler returning). Just single-step until the
2341 inferior leaves the trampoline (either by calling the handler
2342 or returning). */
488f131b
JB
2343 keep_going (ecs);
2344 return;
2345 }
c906108c 2346
0b30808c
AC
2347 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2348 && ecs->stop_func_name == NULL)
2349 {
2350 /* The inferior just stepped into, or returned to, an
2351 undebuggable function (where there is no symbol, not even a
2352 minimal symbol, corresponding to the address where the
2353 inferior stopped). Since we want to skip this kind of code,
2354 we keep going until the inferior returns from this
2355 function. */
06f32659 2356 if (step_stop_if_no_debug)
95918acb 2357 {
06f32659
AC
2358 /* If we have no line number and the step-stop-if-no-debug
2359 is set, we stop the step so that the user has a chance to
2360 switch in assembly mode. */
95918acb
AC
2361 stop_step = 1;
2362 print_stop_reason (END_STEPPING_RANGE, 0);
2363 stop_stepping (ecs);
2364 return;
2365 }
06f32659 2366 else
95918acb 2367 {
06f32659
AC
2368 /* Set a breakpoint at callee's return address (the address
2369 at which the caller will resume). */
95918acb
AC
2370 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2371 ecs);
2372 keep_going (ecs);
2373 return;
2374 }
0b30808c
AC
2375 }
2376
4a72a2a6 2377 if (frame_id_eq (frame_unwind_id (get_current_frame ()),
a587af0b 2378 step_frame_id))
488f131b
JB
2379 {
2380 /* It's a subroutine call. */
95918acb
AC
2381 CORE_ADDR real_stop_pc;
2382
2383 if ((step_over_calls == STEP_OVER_NONE)
2384 || ((step_range_end == 1)
2385 && in_prologue (prev_pc, ecs->stop_func_start)))
2386 {
2387 /* I presume that step_over_calls is only 0 when we're
2388 supposed to be stepping at the assembly language level
2389 ("stepi"). Just stop. */
2390 /* Also, maybe we just did a "nexti" inside a prolog, so we
2391 thought it was a subroutine call but it was not. Stop as
2392 well. FENN */
2393 stop_step = 1;
2394 print_stop_reason (END_STEPPING_RANGE, 0);
2395 stop_stepping (ecs);
2396 return;
2397 }
2398
2399 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2400 {
2401 /* We're doing a "next", set a breakpoint at callee's return
2402 address (the address at which the caller will
2403 resume). */
2404 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2405 ecs);
2406 keep_going (ecs);
2407 return;
2408 }
2409
2410 /* If we are in a function call trampoline (a stub between the
2411 calling routine and the real function), locate the real
2412 function. That's what tells us (a) whether we want to step
2413 into it at all, and (b) what prologue we want to run to the
2414 end of, if we do step into it. */
2415 real_stop_pc = skip_language_trampoline (stop_pc);
2416 if (real_stop_pc == 0)
2417 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2418 if (real_stop_pc != 0)
2419 ecs->stop_func_start = real_stop_pc;
2420
2421 /* If we have line number information for the function we are
2422 thinking of stepping into, step into it.
2423
2424 If there are several symtabs at that PC (e.g. with include
2425 files), just want to know whether *any* of them have line
2426 numbers. find_pc_line handles this. */
2427 {
2428 struct symtab_and_line tmp_sal;
2429
2430 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2431 if (tmp_sal.line != 0)
2432 {
2433 step_into_function (ecs);
2434 return;
2435 }
2436 }
2437
2438 /* If we have no line number and the step-stop-if-no-debug is
2439 set, we stop the step so that the user has a chance to switch
2440 in assembly mode. */
2441 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2442 {
2443 stop_step = 1;
2444 print_stop_reason (END_STEPPING_RANGE, 0);
2445 stop_stepping (ecs);
2446 return;
2447 }
2448
2449 /* Set a breakpoint at callee's return address (the address at
2450 which the caller will resume). */
2451 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
2452 keep_going (ecs);
488f131b 2453 return;
488f131b 2454 }
c906108c 2455
488f131b 2456 /* We've wandered out of the step range. */
c906108c 2457
488f131b 2458 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2459
488f131b
JB
2460 if (step_range_end == 1)
2461 {
2462 /* It is stepi or nexti. We always want to stop stepping after
2463 one instruction. */
2464 stop_step = 1;
2465 print_stop_reason (END_STEPPING_RANGE, 0);
2466 stop_stepping (ecs);
2467 return;
2468 }
c906108c 2469
488f131b
JB
2470 /* If we're in the return path from a shared library trampoline,
2471 we want to proceed through the trampoline when stepping. */
2472 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2473 {
488f131b 2474 /* Determine where this trampoline returns. */
5cf4d23a 2475 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2476
488f131b 2477 /* Only proceed through if we know where it's going. */
d764a824 2478 if (real_stop_pc)
488f131b
JB
2479 {
2480 /* And put the step-breakpoint there and go until there. */
2481 struct symtab_and_line sr_sal;
2482
fe39c653 2483 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2484 sr_sal.pc = real_stop_pc;
488f131b
JB
2485 sr_sal.section = find_pc_overlay (sr_sal.pc);
2486 /* Do not specify what the fp should be when we stop
2487 since on some machines the prologue
2488 is where the new fp value is established. */
2489 check_for_old_step_resume_breakpoint ();
2490 step_resume_breakpoint =
818dd999 2491 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2492 if (breakpoints_inserted)
2493 insert_breakpoints ();
c906108c 2494
488f131b
JB
2495 /* Restart without fiddling with the step ranges or
2496 other state. */
2497 keep_going (ecs);
2498 return;
2499 }
2500 }
c906108c 2501
488f131b
JB
2502 if (ecs->sal.line == 0)
2503 {
2504 /* We have no line number information. That means to stop
2505 stepping (does this always happen right after one instruction,
2506 when we do "s" in a function with no line numbers,
2507 or can this happen as a result of a return or longjmp?). */
2508 stop_step = 1;
2509 print_stop_reason (END_STEPPING_RANGE, 0);
2510 stop_stepping (ecs);
2511 return;
2512 }
c906108c 2513
488f131b
JB
2514 if ((stop_pc == ecs->sal.pc)
2515 && (ecs->current_line != ecs->sal.line
2516 || ecs->current_symtab != ecs->sal.symtab))
2517 {
2518 /* We are at the start of a different line. So stop. Note that
2519 we don't stop if we step into the middle of a different line.
2520 That is said to make things like for (;;) statements work
2521 better. */
2522 stop_step = 1;
2523 print_stop_reason (END_STEPPING_RANGE, 0);
2524 stop_stepping (ecs);
2525 return;
2526 }
c906108c 2527
488f131b 2528 /* We aren't done stepping.
c906108c 2529
488f131b
JB
2530 Optimize by setting the stepping range to the line.
2531 (We might not be in the original line, but if we entered a
2532 new line in mid-statement, we continue stepping. This makes
2533 things like for(;;) statements work better.) */
c906108c 2534
488f131b 2535 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2536 {
488f131b
JB
2537 /* If this is the last line of the function, don't keep stepping
2538 (it would probably step us out of the function).
2539 This is particularly necessary for a one-line function,
2540 in which after skipping the prologue we better stop even though
2541 we will be in mid-line. */
2542 stop_step = 1;
2543 print_stop_reason (END_STEPPING_RANGE, 0);
2544 stop_stepping (ecs);
2545 return;
c5aa993b 2546 }
488f131b
JB
2547 step_range_start = ecs->sal.pc;
2548 step_range_end = ecs->sal.end;
aa0cd9c1 2549 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2550 ecs->current_line = ecs->sal.line;
2551 ecs->current_symtab = ecs->sal.symtab;
2552
aa0cd9c1
AC
2553 /* In the case where we just stepped out of a function into the
2554 middle of a line of the caller, continue stepping, but
2555 step_frame_id must be modified to current frame */
65815ea1
AC
2556#if 0
2557 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2558 generous. It will trigger on things like a step into a frameless
2559 stackless leaf function. I think the logic should instead look
2560 at the unwound frame ID has that should give a more robust
2561 indication of what happened. */
2562 if (step-ID == current-ID)
2563 still stepping in same function;
2564 else if (step-ID == unwind (current-ID))
2565 stepped into a function;
2566 else
2567 stepped out of a function;
2568 /* Of course this assumes that the frame ID unwind code is robust
2569 and we're willing to introduce frame unwind logic into this
ce2826aa 2570 function. Fortunately, those days are nearly upon us. */
65815ea1 2571#endif
488f131b 2572 {
aa0cd9c1
AC
2573 struct frame_id current_frame = get_frame_id (get_current_frame ());
2574 if (!(frame_id_inner (current_frame, step_frame_id)))
2575 step_frame_id = current_frame;
488f131b 2576 }
c906108c 2577
488f131b 2578 keep_going (ecs);
104c1213
JM
2579}
2580
2581/* Are we in the middle of stepping? */
2582
2583static int
2584currently_stepping (struct execution_control_state *ecs)
2585{
d303a6c7 2586 return ((!ecs->handling_longjmp
104c1213
JM
2587 && ((step_range_end && step_resume_breakpoint == NULL)
2588 || trap_expected))
2589 || ecs->stepping_through_solib_after_catch
2590 || bpstat_should_step ());
2591}
c906108c 2592
c2c6d25f
JM
2593/* Subroutine call with source code we should not step over. Do step
2594 to the first line of code in it. */
2595
2596static void
2597step_into_function (struct execution_control_state *ecs)
2598{
2599 struct symtab *s;
2600 struct symtab_and_line sr_sal;
2601
2602 s = find_pc_symtab (stop_pc);
2603 if (s && s->language != language_asm)
2604 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2605
2606 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2607 /* Use the step_resume_break to step until the end of the prologue,
2608 even if that involves jumps (as it seems to on the vax under
2609 4.2). */
2610 /* If the prologue ends in the middle of a source line, continue to
2611 the end of that source line (if it is still within the function).
2612 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2613 if (ecs->sal.end
2614 && ecs->sal.pc != ecs->stop_func_start
2615 && ecs->sal.end < ecs->stop_func_end)
2616 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2617
2dbd5e30
KB
2618 /* Architectures which require breakpoint adjustment might not be able
2619 to place a breakpoint at the computed address. If so, the test
2620 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2621 ecs->stop_func_start to an address at which a breakpoint may be
2622 legitimately placed.
2623
2624 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2625 made, GDB will enter an infinite loop when stepping through
2626 optimized code consisting of VLIW instructions which contain
2627 subinstructions corresponding to different source lines. On
2628 FR-V, it's not permitted to place a breakpoint on any but the
2629 first subinstruction of a VLIW instruction. When a breakpoint is
2630 set, GDB will adjust the breakpoint address to the beginning of
2631 the VLIW instruction. Thus, we need to make the corresponding
2632 adjustment here when computing the stop address. */
2633
2634 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2635 {
2636 ecs->stop_func_start
2637 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2638 ecs->stop_func_start);
2639 }
2640
c2c6d25f
JM
2641 if (ecs->stop_func_start == stop_pc)
2642 {
2643 /* We are already there: stop now. */
2644 stop_step = 1;
488f131b 2645 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2646 stop_stepping (ecs);
2647 return;
2648 }
2649 else
2650 {
2651 /* Put the step-breakpoint there and go until there. */
fe39c653 2652 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2653 sr_sal.pc = ecs->stop_func_start;
2654 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2655 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2656 some machines the prologue is where the new fp value is
2657 established. */
c2c6d25f
JM
2658 check_for_old_step_resume_breakpoint ();
2659 step_resume_breakpoint =
818dd999 2660 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2661 if (breakpoints_inserted)
2662 insert_breakpoints ();
2663
2664 /* And make sure stepping stops right away then. */
2665 step_range_end = step_range_start;
2666 }
2667 keep_going (ecs);
2668}
d4f3574e 2669
d303a6c7
AC
2670/* The inferior, as a result of a function call (has left) or signal
2671 (about to leave) the single-step range. Set a momentary breakpoint
2672 within the step range where the inferior is expected to later
2673 return. */
2674
2675static void
2676insert_step_resume_breakpoint (struct frame_info *step_frame,
2677 struct execution_control_state *ecs)
2678{
2679 struct symtab_and_line sr_sal;
2680
2681 /* This is only used within the step-resume range/frame. */
2682 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2683 gdb_assert (step_range_end != 0);
922d5ae0
AC
2684 /* Remember, if the call instruction is the last in the step range,
2685 the breakpoint will land just beyond that. Hence ``<=
2686 step_range_end''. Also, ignore check when "nexti". */
2687 gdb_assert (step_range_start == step_range_end
2688 || (get_frame_pc (step_frame) >= step_range_start
2689 && get_frame_pc (step_frame) <= step_range_end));
d303a6c7
AC
2690
2691 init_sal (&sr_sal); /* initialize to zeros */
2692
2693 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2694 sr_sal.section = find_pc_overlay (sr_sal.pc);
2695
2696 check_for_old_step_resume_breakpoint ();
2697
2698 step_resume_breakpoint
2699 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2700 bp_step_resume);
2701
2702 if (breakpoints_inserted)
2703 insert_breakpoints ();
2704}
2705
104c1213
JM
2706static void
2707stop_stepping (struct execution_control_state *ecs)
2708{
cd0fc7c3
SS
2709 /* Let callers know we don't want to wait for the inferior anymore. */
2710 ecs->wait_some_more = 0;
2711}
2712
d4f3574e
SS
2713/* This function handles various cases where we need to continue
2714 waiting for the inferior. */
2715/* (Used to be the keep_going: label in the old wait_for_inferior) */
2716
2717static void
2718keep_going (struct execution_control_state *ecs)
2719{
d4f3574e 2720 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2721 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2722
d4f3574e
SS
2723 /* If we did not do break;, it means we should keep running the
2724 inferior and not return to debugger. */
2725
2726 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2727 {
2728 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2729 the inferior, else we'd have done a break above) and we
2730 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2731 resume (currently_stepping (ecs), stop_signal);
2732 }
2733 else
2734 {
2735 /* Either the trap was not expected, but we are continuing
488f131b
JB
2736 anyway (the user asked that this signal be passed to the
2737 child)
2738 -- or --
2739 The signal was SIGTRAP, e.g. it was our signal, but we
2740 decided we should resume from it.
d4f3574e 2741
488f131b 2742 We're going to run this baby now!
d4f3574e 2743
488f131b
JB
2744 Insert breakpoints now, unless we are trying to one-proceed
2745 past a breakpoint. */
d4f3574e 2746 /* If we've just finished a special step resume and we don't
488f131b 2747 want to hit a breakpoint, pull em out. */
d4f3574e 2748 if (step_resume_breakpoint == NULL
d4f3574e
SS
2749 && ecs->remove_breakpoints_on_following_step)
2750 {
2751 ecs->remove_breakpoints_on_following_step = 0;
2752 remove_breakpoints ();
2753 breakpoints_inserted = 0;
2754 }
d303a6c7 2755 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2756 {
2757 breakpoints_failed = insert_breakpoints ();
2758 if (breakpoints_failed)
2759 {
2760 stop_stepping (ecs);
2761 return;
2762 }
2763 breakpoints_inserted = 1;
2764 }
2765
2766 trap_expected = ecs->another_trap;
2767
2768 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2769 specifies that such a signal should be delivered to the
2770 target program).
2771
2772 Typically, this would occure when a user is debugging a
2773 target monitor on a simulator: the target monitor sets a
2774 breakpoint; the simulator encounters this break-point and
2775 halts the simulation handing control to GDB; GDB, noteing
2776 that the break-point isn't valid, returns control back to the
2777 simulator; the simulator then delivers the hardware
2778 equivalent of a SIGNAL_TRAP to the program being debugged. */
2779
2780 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2781 stop_signal = TARGET_SIGNAL_0;
2782
d4f3574e
SS
2783
2784 resume (currently_stepping (ecs), stop_signal);
2785 }
2786
488f131b 2787 prepare_to_wait (ecs);
d4f3574e
SS
2788}
2789
104c1213
JM
2790/* This function normally comes after a resume, before
2791 handle_inferior_event exits. It takes care of any last bits of
2792 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2793
104c1213
JM
2794static void
2795prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2796{
104c1213
JM
2797 if (ecs->infwait_state == infwait_normal_state)
2798 {
2799 overlay_cache_invalid = 1;
2800
2801 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2802 target_wait because they can be loaded from the target while
2803 in target_wait. This makes remote debugging a bit more
2804 efficient for those targets that provide critical registers
2805 as part of their normal status mechanism. */
104c1213
JM
2806
2807 registers_changed ();
39f77062 2808 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2809 ecs->wp = &(ecs->ws);
2810 }
2811 /* This is the old end of the while loop. Let everybody know we
2812 want to wait for the inferior some more and get called again
2813 soon. */
2814 ecs->wait_some_more = 1;
c906108c 2815}
11cf8741
JM
2816
2817/* Print why the inferior has stopped. We always print something when
2818 the inferior exits, or receives a signal. The rest of the cases are
2819 dealt with later on in normal_stop() and print_it_typical(). Ideally
2820 there should be a call to this function from handle_inferior_event()
2821 each time stop_stepping() is called.*/
2822static void
2823print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2824{
2825 switch (stop_reason)
2826 {
2827 case STOP_UNKNOWN:
2828 /* We don't deal with these cases from handle_inferior_event()
2829 yet. */
2830 break;
2831 case END_STEPPING_RANGE:
2832 /* We are done with a step/next/si/ni command. */
2833 /* For now print nothing. */
fb40c209 2834 /* Print a message only if not in the middle of doing a "step n"
488f131b 2835 operation for n > 1 */
fb40c209 2836 if (!step_multi || !stop_step)
9dc5e2a9 2837 if (ui_out_is_mi_like_p (uiout))
fb40c209 2838 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2839 break;
2840 case BREAKPOINT_HIT:
2841 /* We found a breakpoint. */
2842 /* For now print nothing. */
2843 break;
2844 case SIGNAL_EXITED:
2845 /* The inferior was terminated by a signal. */
8b93c638 2846 annotate_signalled ();
9dc5e2a9 2847 if (ui_out_is_mi_like_p (uiout))
fb40c209 2848 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2849 ui_out_text (uiout, "\nProgram terminated with signal ");
2850 annotate_signal_name ();
488f131b
JB
2851 ui_out_field_string (uiout, "signal-name",
2852 target_signal_to_name (stop_info));
8b93c638
JM
2853 annotate_signal_name_end ();
2854 ui_out_text (uiout, ", ");
2855 annotate_signal_string ();
488f131b
JB
2856 ui_out_field_string (uiout, "signal-meaning",
2857 target_signal_to_string (stop_info));
8b93c638
JM
2858 annotate_signal_string_end ();
2859 ui_out_text (uiout, ".\n");
2860 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2861 break;
2862 case EXITED:
2863 /* The inferior program is finished. */
8b93c638
JM
2864 annotate_exited (stop_info);
2865 if (stop_info)
2866 {
9dc5e2a9 2867 if (ui_out_is_mi_like_p (uiout))
fb40c209 2868 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2869 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2870 ui_out_field_fmt (uiout, "exit-code", "0%o",
2871 (unsigned int) stop_info);
8b93c638
JM
2872 ui_out_text (uiout, ".\n");
2873 }
2874 else
2875 {
9dc5e2a9 2876 if (ui_out_is_mi_like_p (uiout))
fb40c209 2877 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2878 ui_out_text (uiout, "\nProgram exited normally.\n");
2879 }
11cf8741
JM
2880 break;
2881 case SIGNAL_RECEIVED:
2882 /* Signal received. The signal table tells us to print about
2883 it. */
8b93c638
JM
2884 annotate_signal ();
2885 ui_out_text (uiout, "\nProgram received signal ");
2886 annotate_signal_name ();
84c6c83c
KS
2887 if (ui_out_is_mi_like_p (uiout))
2888 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2889 ui_out_field_string (uiout, "signal-name",
2890 target_signal_to_name (stop_info));
8b93c638
JM
2891 annotate_signal_name_end ();
2892 ui_out_text (uiout, ", ");
2893 annotate_signal_string ();
488f131b
JB
2894 ui_out_field_string (uiout, "signal-meaning",
2895 target_signal_to_string (stop_info));
8b93c638
JM
2896 annotate_signal_string_end ();
2897 ui_out_text (uiout, ".\n");
11cf8741
JM
2898 break;
2899 default:
8e65ff28
AC
2900 internal_error (__FILE__, __LINE__,
2901 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2902 break;
2903 }
2904}
c906108c 2905\f
43ff13b4 2906
c906108c
SS
2907/* Here to return control to GDB when the inferior stops for real.
2908 Print appropriate messages, remove breakpoints, give terminal our modes.
2909
2910 STOP_PRINT_FRAME nonzero means print the executing frame
2911 (pc, function, args, file, line number and line text).
2912 BREAKPOINTS_FAILED nonzero means stop was due to error
2913 attempting to insert breakpoints. */
2914
2915void
96baa820 2916normal_stop (void)
c906108c 2917{
73b65bb0
DJ
2918 struct target_waitstatus last;
2919 ptid_t last_ptid;
2920
2921 get_last_target_status (&last_ptid, &last);
2922
c906108c
SS
2923 /* As with the notification of thread events, we want to delay
2924 notifying the user that we've switched thread context until
2925 the inferior actually stops.
2926
73b65bb0
DJ
2927 There's no point in saying anything if the inferior has exited.
2928 Note that SIGNALLED here means "exited with a signal", not
2929 "received a signal". */
488f131b 2930 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2931 && target_has_execution
2932 && last.kind != TARGET_WAITKIND_SIGNALLED
2933 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2934 {
2935 target_terminal_ours_for_output ();
c3f6f71d 2936 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2937 target_pid_or_tid_to_str (inferior_ptid));
2938 previous_inferior_ptid = inferior_ptid;
c906108c 2939 }
c906108c 2940
4fa8626c 2941 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2942 /* Make sure that the current_frame's pc is correct. This
2943 is a correction for setting up the frame info before doing
2944 DECR_PC_AFTER_BREAK */
b87efeee
AC
2945 if (target_has_execution)
2946 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2947 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2948 frame code to check for this and sort out any resultant mess.
2949 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2950 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2951
c906108c
SS
2952 if (target_has_execution && breakpoints_inserted)
2953 {
2954 if (remove_breakpoints ())
2955 {
2956 target_terminal_ours_for_output ();
2957 printf_filtered ("Cannot remove breakpoints because ");
2958 printf_filtered ("program is no longer writable.\n");
2959 printf_filtered ("It might be running in another process.\n");
2960 printf_filtered ("Further execution is probably impossible.\n");
2961 }
2962 }
2963 breakpoints_inserted = 0;
2964
2965 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2966 Delete any breakpoint that is to be deleted at the next stop. */
2967
2968 breakpoint_auto_delete (stop_bpstat);
2969
2970 /* If an auto-display called a function and that got a signal,
2971 delete that auto-display to avoid an infinite recursion. */
2972
2973 if (stopped_by_random_signal)
2974 disable_current_display ();
2975
2976 /* Don't print a message if in the middle of doing a "step n"
2977 operation for n > 1 */
2978 if (step_multi && stop_step)
2979 goto done;
2980
2981 target_terminal_ours ();
2982
5913bcb0
AC
2983 /* Look up the hook_stop and run it (CLI internally handles problem
2984 of stop_command's pre-hook not existing). */
2985 if (stop_command)
2986 catch_errors (hook_stop_stub, stop_command,
2987 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2988
2989 if (!target_has_stack)
2990 {
2991
2992 goto done;
2993 }
2994
2995 /* Select innermost stack frame - i.e., current frame is frame 0,
2996 and current location is based on that.
2997 Don't do this on return from a stack dummy routine,
2998 or if the program has exited. */
2999
3000 if (!stop_stack_dummy)
3001 {
0f7d239c 3002 select_frame (get_current_frame ());
c906108c
SS
3003
3004 /* Print current location without a level number, if
c5aa993b
JM
3005 we have changed functions or hit a breakpoint.
3006 Print source line if we have one.
3007 bpstat_print() contains the logic deciding in detail
3008 what to print, based on the event(s) that just occurred. */
c906108c 3009
6e7f8b9c 3010 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3011 {
3012 int bpstat_ret;
3013 int source_flag;
917317f4 3014 int do_frame_printing = 1;
c906108c
SS
3015
3016 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3017 switch (bpstat_ret)
3018 {
3019 case PRINT_UNKNOWN:
aa0cd9c1
AC
3020 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3021 (or should) carry around the function and does (or
3022 should) use that when doing a frame comparison. */
917317f4 3023 if (stop_step
aa0cd9c1
AC
3024 && frame_id_eq (step_frame_id,
3025 get_frame_id (get_current_frame ()))
917317f4 3026 && step_start_function == find_pc_function (stop_pc))
488f131b 3027 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3028 else
488f131b 3029 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3030 break;
3031 case PRINT_SRC_AND_LOC:
488f131b 3032 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3033 break;
3034 case PRINT_SRC_ONLY:
c5394b80 3035 source_flag = SRC_LINE;
917317f4
JM
3036 break;
3037 case PRINT_NOTHING:
488f131b 3038 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3039 do_frame_printing = 0;
3040 break;
3041 default:
488f131b 3042 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3043 }
fb40c209 3044 /* For mi, have the same behavior every time we stop:
488f131b 3045 print everything but the source line. */
9dc5e2a9 3046 if (ui_out_is_mi_like_p (uiout))
fb40c209 3047 source_flag = LOC_AND_ADDRESS;
c906108c 3048
9dc5e2a9 3049 if (ui_out_is_mi_like_p (uiout))
39f77062 3050 ui_out_field_int (uiout, "thread-id",
488f131b 3051 pid_to_thread_id (inferior_ptid));
c906108c
SS
3052 /* The behavior of this routine with respect to the source
3053 flag is:
c5394b80
JM
3054 SRC_LINE: Print only source line
3055 LOCATION: Print only location
3056 SRC_AND_LOC: Print location and source line */
917317f4 3057 if (do_frame_printing)
0faf0076 3058 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3059
3060 /* Display the auto-display expressions. */
3061 do_displays ();
3062 }
3063 }
3064
3065 /* Save the function value return registers, if we care.
3066 We might be about to restore their previous contents. */
3067 if (proceed_to_finish)
72cec141
AC
3068 /* NB: The copy goes through to the target picking up the value of
3069 all the registers. */
3070 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3071
3072 if (stop_stack_dummy)
3073 {
dbe9fe58
AC
3074 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3075 ends with a setting of the current frame, so we can use that
3076 next. */
3077 frame_pop (get_current_frame ());
c906108c 3078 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3079 Can't rely on restore_inferior_status because that only gets
3080 called if we don't stop in the called function. */
c906108c 3081 stop_pc = read_pc ();
0f7d239c 3082 select_frame (get_current_frame ());
c906108c
SS
3083 }
3084
c906108c
SS
3085done:
3086 annotate_stopped ();
7a464420 3087 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3088}
3089
3090static int
96baa820 3091hook_stop_stub (void *cmd)
c906108c 3092{
5913bcb0 3093 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3094 return (0);
3095}
3096\f
c5aa993b 3097int
96baa820 3098signal_stop_state (int signo)
c906108c
SS
3099{
3100 return signal_stop[signo];
3101}
3102
c5aa993b 3103int
96baa820 3104signal_print_state (int signo)
c906108c
SS
3105{
3106 return signal_print[signo];
3107}
3108
c5aa993b 3109int
96baa820 3110signal_pass_state (int signo)
c906108c
SS
3111{
3112 return signal_program[signo];
3113}
3114
488f131b 3115int
7bda5e4a 3116signal_stop_update (int signo, int state)
d4f3574e
SS
3117{
3118 int ret = signal_stop[signo];
3119 signal_stop[signo] = state;
3120 return ret;
3121}
3122
488f131b 3123int
7bda5e4a 3124signal_print_update (int signo, int state)
d4f3574e
SS
3125{
3126 int ret = signal_print[signo];
3127 signal_print[signo] = state;
3128 return ret;
3129}
3130
488f131b 3131int
7bda5e4a 3132signal_pass_update (int signo, int state)
d4f3574e
SS
3133{
3134 int ret = signal_program[signo];
3135 signal_program[signo] = state;
3136 return ret;
3137}
3138
c906108c 3139static void
96baa820 3140sig_print_header (void)
c906108c
SS
3141{
3142 printf_filtered ("\
3143Signal Stop\tPrint\tPass to program\tDescription\n");
3144}
3145
3146static void
96baa820 3147sig_print_info (enum target_signal oursig)
c906108c
SS
3148{
3149 char *name = target_signal_to_name (oursig);
3150 int name_padding = 13 - strlen (name);
96baa820 3151
c906108c
SS
3152 if (name_padding <= 0)
3153 name_padding = 0;
3154
3155 printf_filtered ("%s", name);
488f131b 3156 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3157 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3158 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3159 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3160 printf_filtered ("%s\n", target_signal_to_string (oursig));
3161}
3162
3163/* Specify how various signals in the inferior should be handled. */
3164
3165static void
96baa820 3166handle_command (char *args, int from_tty)
c906108c
SS
3167{
3168 char **argv;
3169 int digits, wordlen;
3170 int sigfirst, signum, siglast;
3171 enum target_signal oursig;
3172 int allsigs;
3173 int nsigs;
3174 unsigned char *sigs;
3175 struct cleanup *old_chain;
3176
3177 if (args == NULL)
3178 {
3179 error_no_arg ("signal to handle");
3180 }
3181
3182 /* Allocate and zero an array of flags for which signals to handle. */
3183
3184 nsigs = (int) TARGET_SIGNAL_LAST;
3185 sigs = (unsigned char *) alloca (nsigs);
3186 memset (sigs, 0, nsigs);
3187
3188 /* Break the command line up into args. */
3189
3190 argv = buildargv (args);
3191 if (argv == NULL)
3192 {
3193 nomem (0);
3194 }
7a292a7a 3195 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3196
3197 /* Walk through the args, looking for signal oursigs, signal names, and
3198 actions. Signal numbers and signal names may be interspersed with
3199 actions, with the actions being performed for all signals cumulatively
3200 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3201
3202 while (*argv != NULL)
3203 {
3204 wordlen = strlen (*argv);
3205 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3206 {;
3207 }
3208 allsigs = 0;
3209 sigfirst = siglast = -1;
3210
3211 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3212 {
3213 /* Apply action to all signals except those used by the
3214 debugger. Silently skip those. */
3215 allsigs = 1;
3216 sigfirst = 0;
3217 siglast = nsigs - 1;
3218 }
3219 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3220 {
3221 SET_SIGS (nsigs, sigs, signal_stop);
3222 SET_SIGS (nsigs, sigs, signal_print);
3223 }
3224 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3225 {
3226 UNSET_SIGS (nsigs, sigs, signal_program);
3227 }
3228 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3229 {
3230 SET_SIGS (nsigs, sigs, signal_print);
3231 }
3232 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3233 {
3234 SET_SIGS (nsigs, sigs, signal_program);
3235 }
3236 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3237 {
3238 UNSET_SIGS (nsigs, sigs, signal_stop);
3239 }
3240 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3241 {
3242 SET_SIGS (nsigs, sigs, signal_program);
3243 }
3244 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3245 {
3246 UNSET_SIGS (nsigs, sigs, signal_print);
3247 UNSET_SIGS (nsigs, sigs, signal_stop);
3248 }
3249 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3250 {
3251 UNSET_SIGS (nsigs, sigs, signal_program);
3252 }
3253 else if (digits > 0)
3254 {
3255 /* It is numeric. The numeric signal refers to our own
3256 internal signal numbering from target.h, not to host/target
3257 signal number. This is a feature; users really should be
3258 using symbolic names anyway, and the common ones like
3259 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3260
3261 sigfirst = siglast = (int)
3262 target_signal_from_command (atoi (*argv));
3263 if ((*argv)[digits] == '-')
3264 {
3265 siglast = (int)
3266 target_signal_from_command (atoi ((*argv) + digits + 1));
3267 }
3268 if (sigfirst > siglast)
3269 {
3270 /* Bet he didn't figure we'd think of this case... */
3271 signum = sigfirst;
3272 sigfirst = siglast;
3273 siglast = signum;
3274 }
3275 }
3276 else
3277 {
3278 oursig = target_signal_from_name (*argv);
3279 if (oursig != TARGET_SIGNAL_UNKNOWN)
3280 {
3281 sigfirst = siglast = (int) oursig;
3282 }
3283 else
3284 {
3285 /* Not a number and not a recognized flag word => complain. */
3286 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3287 }
3288 }
3289
3290 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3291 which signals to apply actions to. */
c906108c
SS
3292
3293 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3294 {
3295 switch ((enum target_signal) signum)
3296 {
3297 case TARGET_SIGNAL_TRAP:
3298 case TARGET_SIGNAL_INT:
3299 if (!allsigs && !sigs[signum])
3300 {
3301 if (query ("%s is used by the debugger.\n\
488f131b 3302Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3303 {
3304 sigs[signum] = 1;
3305 }
3306 else
3307 {
3308 printf_unfiltered ("Not confirmed, unchanged.\n");
3309 gdb_flush (gdb_stdout);
3310 }
3311 }
3312 break;
3313 case TARGET_SIGNAL_0:
3314 case TARGET_SIGNAL_DEFAULT:
3315 case TARGET_SIGNAL_UNKNOWN:
3316 /* Make sure that "all" doesn't print these. */
3317 break;
3318 default:
3319 sigs[signum] = 1;
3320 break;
3321 }
3322 }
3323
3324 argv++;
3325 }
3326
39f77062 3327 target_notice_signals (inferior_ptid);
c906108c
SS
3328
3329 if (from_tty)
3330 {
3331 /* Show the results. */
3332 sig_print_header ();
3333 for (signum = 0; signum < nsigs; signum++)
3334 {
3335 if (sigs[signum])
3336 {
3337 sig_print_info (signum);
3338 }
3339 }
3340 }
3341
3342 do_cleanups (old_chain);
3343}
3344
3345static void
96baa820 3346xdb_handle_command (char *args, int from_tty)
c906108c
SS
3347{
3348 char **argv;
3349 struct cleanup *old_chain;
3350
3351 /* Break the command line up into args. */
3352
3353 argv = buildargv (args);
3354 if (argv == NULL)
3355 {
3356 nomem (0);
3357 }
7a292a7a 3358 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3359 if (argv[1] != (char *) NULL)
3360 {
3361 char *argBuf;
3362 int bufLen;
3363
3364 bufLen = strlen (argv[0]) + 20;
3365 argBuf = (char *) xmalloc (bufLen);
3366 if (argBuf)
3367 {
3368 int validFlag = 1;
3369 enum target_signal oursig;
3370
3371 oursig = target_signal_from_name (argv[0]);
3372 memset (argBuf, 0, bufLen);
3373 if (strcmp (argv[1], "Q") == 0)
3374 sprintf (argBuf, "%s %s", argv[0], "noprint");
3375 else
3376 {
3377 if (strcmp (argv[1], "s") == 0)
3378 {
3379 if (!signal_stop[oursig])
3380 sprintf (argBuf, "%s %s", argv[0], "stop");
3381 else
3382 sprintf (argBuf, "%s %s", argv[0], "nostop");
3383 }
3384 else if (strcmp (argv[1], "i") == 0)
3385 {
3386 if (!signal_program[oursig])
3387 sprintf (argBuf, "%s %s", argv[0], "pass");
3388 else
3389 sprintf (argBuf, "%s %s", argv[0], "nopass");
3390 }
3391 else if (strcmp (argv[1], "r") == 0)
3392 {
3393 if (!signal_print[oursig])
3394 sprintf (argBuf, "%s %s", argv[0], "print");
3395 else
3396 sprintf (argBuf, "%s %s", argv[0], "noprint");
3397 }
3398 else
3399 validFlag = 0;
3400 }
3401 if (validFlag)
3402 handle_command (argBuf, from_tty);
3403 else
3404 printf_filtered ("Invalid signal handling flag.\n");
3405 if (argBuf)
b8c9b27d 3406 xfree (argBuf);
c906108c
SS
3407 }
3408 }
3409 do_cleanups (old_chain);
3410}
3411
3412/* Print current contents of the tables set by the handle command.
3413 It is possible we should just be printing signals actually used
3414 by the current target (but for things to work right when switching
3415 targets, all signals should be in the signal tables). */
3416
3417static void
96baa820 3418signals_info (char *signum_exp, int from_tty)
c906108c
SS
3419{
3420 enum target_signal oursig;
3421 sig_print_header ();
3422
3423 if (signum_exp)
3424 {
3425 /* First see if this is a symbol name. */
3426 oursig = target_signal_from_name (signum_exp);
3427 if (oursig == TARGET_SIGNAL_UNKNOWN)
3428 {
3429 /* No, try numeric. */
3430 oursig =
bb518678 3431 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3432 }
3433 sig_print_info (oursig);
3434 return;
3435 }
3436
3437 printf_filtered ("\n");
3438 /* These ugly casts brought to you by the native VAX compiler. */
3439 for (oursig = TARGET_SIGNAL_FIRST;
3440 (int) oursig < (int) TARGET_SIGNAL_LAST;
3441 oursig = (enum target_signal) ((int) oursig + 1))
3442 {
3443 QUIT;
3444
3445 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3446 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3447 sig_print_info (oursig);
3448 }
3449
3450 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3451}
3452\f
7a292a7a
SS
3453struct inferior_status
3454{
3455 enum target_signal stop_signal;
3456 CORE_ADDR stop_pc;
3457 bpstat stop_bpstat;
3458 int stop_step;
3459 int stop_stack_dummy;
3460 int stopped_by_random_signal;
3461 int trap_expected;
3462 CORE_ADDR step_range_start;
3463 CORE_ADDR step_range_end;
aa0cd9c1 3464 struct frame_id step_frame_id;
5fbbeb29 3465 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3466 CORE_ADDR step_resume_break_address;
3467 int stop_after_trap;
c0236d92 3468 int stop_soon;
72cec141 3469 struct regcache *stop_registers;
7a292a7a
SS
3470
3471 /* These are here because if call_function_by_hand has written some
3472 registers and then decides to call error(), we better not have changed
3473 any registers. */
72cec141 3474 struct regcache *registers;
7a292a7a 3475
101dcfbe
AC
3476 /* A frame unique identifier. */
3477 struct frame_id selected_frame_id;
3478
7a292a7a
SS
3479 int breakpoint_proceeded;
3480 int restore_stack_info;
3481 int proceed_to_finish;
3482};
3483
7a292a7a 3484void
96baa820
JM
3485write_inferior_status_register (struct inferior_status *inf_status, int regno,
3486 LONGEST val)
7a292a7a 3487{
12c266ea 3488 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3489 void *buf = alloca (size);
3490 store_signed_integer (buf, size, val);
0818c12a 3491 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3492}
3493
c906108c
SS
3494/* Save all of the information associated with the inferior<==>gdb
3495 connection. INF_STATUS is a pointer to a "struct inferior_status"
3496 (defined in inferior.h). */
3497
7a292a7a 3498struct inferior_status *
96baa820 3499save_inferior_status (int restore_stack_info)
c906108c 3500{
72cec141 3501 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3502
c906108c
SS
3503 inf_status->stop_signal = stop_signal;
3504 inf_status->stop_pc = stop_pc;
3505 inf_status->stop_step = stop_step;
3506 inf_status->stop_stack_dummy = stop_stack_dummy;
3507 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3508 inf_status->trap_expected = trap_expected;
3509 inf_status->step_range_start = step_range_start;
3510 inf_status->step_range_end = step_range_end;
aa0cd9c1 3511 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3512 inf_status->step_over_calls = step_over_calls;
3513 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3514 inf_status->stop_soon = stop_soon;
c906108c
SS
3515 /* Save original bpstat chain here; replace it with copy of chain.
3516 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3517 hand them back the original chain when restore_inferior_status is
3518 called. */
c906108c
SS
3519 inf_status->stop_bpstat = stop_bpstat;
3520 stop_bpstat = bpstat_copy (stop_bpstat);
3521 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3522 inf_status->restore_stack_info = restore_stack_info;
3523 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3524
72cec141 3525 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3526
72cec141 3527 inf_status->registers = regcache_dup (current_regcache);
c906108c 3528
7a424e99 3529 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3530 return inf_status;
c906108c
SS
3531}
3532
c906108c 3533static int
96baa820 3534restore_selected_frame (void *args)
c906108c 3535{
488f131b 3536 struct frame_id *fid = (struct frame_id *) args;
c906108c 3537 struct frame_info *frame;
c906108c 3538
101dcfbe 3539 frame = frame_find_by_id (*fid);
c906108c 3540
aa0cd9c1
AC
3541 /* If inf_status->selected_frame_id is NULL, there was no previously
3542 selected frame. */
101dcfbe 3543 if (frame == NULL)
c906108c
SS
3544 {
3545 warning ("Unable to restore previously selected frame.\n");
3546 return 0;
3547 }
3548
0f7d239c 3549 select_frame (frame);
c906108c
SS
3550
3551 return (1);
3552}
3553
3554void
96baa820 3555restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3556{
3557 stop_signal = inf_status->stop_signal;
3558 stop_pc = inf_status->stop_pc;
3559 stop_step = inf_status->stop_step;
3560 stop_stack_dummy = inf_status->stop_stack_dummy;
3561 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3562 trap_expected = inf_status->trap_expected;
3563 step_range_start = inf_status->step_range_start;
3564 step_range_end = inf_status->step_range_end;
aa0cd9c1 3565 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3566 step_over_calls = inf_status->step_over_calls;
3567 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3568 stop_soon = inf_status->stop_soon;
c906108c
SS
3569 bpstat_clear (&stop_bpstat);
3570 stop_bpstat = inf_status->stop_bpstat;
3571 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3572 proceed_to_finish = inf_status->proceed_to_finish;
3573
72cec141
AC
3574 /* FIXME: Is the restore of stop_registers always needed. */
3575 regcache_xfree (stop_registers);
3576 stop_registers = inf_status->stop_registers;
c906108c
SS
3577
3578 /* The inferior can be gone if the user types "print exit(0)"
3579 (and perhaps other times). */
3580 if (target_has_execution)
72cec141
AC
3581 /* NB: The register write goes through to the target. */
3582 regcache_cpy (current_regcache, inf_status->registers);
3583 regcache_xfree (inf_status->registers);
c906108c 3584
c906108c
SS
3585 /* FIXME: If we are being called after stopping in a function which
3586 is called from gdb, we should not be trying to restore the
3587 selected frame; it just prints a spurious error message (The
3588 message is useful, however, in detecting bugs in gdb (like if gdb
3589 clobbers the stack)). In fact, should we be restoring the
3590 inferior status at all in that case? . */
3591
3592 if (target_has_stack && inf_status->restore_stack_info)
3593 {
c906108c 3594 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3595 walking the stack might encounter a garbage pointer and
3596 error() trying to dereference it. */
488f131b
JB
3597 if (catch_errors
3598 (restore_selected_frame, &inf_status->selected_frame_id,
3599 "Unable to restore previously selected frame:\n",
3600 RETURN_MASK_ERROR) == 0)
c906108c
SS
3601 /* Error in restoring the selected frame. Select the innermost
3602 frame. */
0f7d239c 3603 select_frame (get_current_frame ());
c906108c
SS
3604
3605 }
c906108c 3606
72cec141 3607 xfree (inf_status);
7a292a7a 3608}
c906108c 3609
74b7792f
AC
3610static void
3611do_restore_inferior_status_cleanup (void *sts)
3612{
3613 restore_inferior_status (sts);
3614}
3615
3616struct cleanup *
3617make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3618{
3619 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3620}
3621
c906108c 3622void
96baa820 3623discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3624{
3625 /* See save_inferior_status for info on stop_bpstat. */
3626 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3627 regcache_xfree (inf_status->registers);
3628 regcache_xfree (inf_status->stop_registers);
3629 xfree (inf_status);
7a292a7a
SS
3630}
3631
47932f85
DJ
3632int
3633inferior_has_forked (int pid, int *child_pid)
3634{
3635 struct target_waitstatus last;
3636 ptid_t last_ptid;
3637
3638 get_last_target_status (&last_ptid, &last);
3639
3640 if (last.kind != TARGET_WAITKIND_FORKED)
3641 return 0;
3642
3643 if (ptid_get_pid (last_ptid) != pid)
3644 return 0;
3645
3646 *child_pid = last.value.related_pid;
3647 return 1;
3648}
3649
3650int
3651inferior_has_vforked (int pid, int *child_pid)
3652{
3653 struct target_waitstatus last;
3654 ptid_t last_ptid;
3655
3656 get_last_target_status (&last_ptid, &last);
3657
3658 if (last.kind != TARGET_WAITKIND_VFORKED)
3659 return 0;
3660
3661 if (ptid_get_pid (last_ptid) != pid)
3662 return 0;
3663
3664 *child_pid = last.value.related_pid;
3665 return 1;
3666}
3667
3668int
3669inferior_has_execd (int pid, char **execd_pathname)
3670{
3671 struct target_waitstatus last;
3672 ptid_t last_ptid;
3673
3674 get_last_target_status (&last_ptid, &last);
3675
3676 if (last.kind != TARGET_WAITKIND_EXECD)
3677 return 0;
3678
3679 if (ptid_get_pid (last_ptid) != pid)
3680 return 0;
3681
3682 *execd_pathname = xstrdup (last.value.execd_pathname);
3683 return 1;
3684}
3685
ca6724c1
KB
3686/* Oft used ptids */
3687ptid_t null_ptid;
3688ptid_t minus_one_ptid;
3689
3690/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3691
ca6724c1
KB
3692ptid_t
3693ptid_build (int pid, long lwp, long tid)
3694{
3695 ptid_t ptid;
3696
3697 ptid.pid = pid;
3698 ptid.lwp = lwp;
3699 ptid.tid = tid;
3700 return ptid;
3701}
3702
3703/* Create a ptid from just a pid. */
3704
3705ptid_t
3706pid_to_ptid (int pid)
3707{
3708 return ptid_build (pid, 0, 0);
3709}
3710
3711/* Fetch the pid (process id) component from a ptid. */
3712
3713int
3714ptid_get_pid (ptid_t ptid)
3715{
3716 return ptid.pid;
3717}
3718
3719/* Fetch the lwp (lightweight process) component from a ptid. */
3720
3721long
3722ptid_get_lwp (ptid_t ptid)
3723{
3724 return ptid.lwp;
3725}
3726
3727/* Fetch the tid (thread id) component from a ptid. */
3728
3729long
3730ptid_get_tid (ptid_t ptid)
3731{
3732 return ptid.tid;
3733}
3734
3735/* ptid_equal() is used to test equality of two ptids. */
3736
3737int
3738ptid_equal (ptid_t ptid1, ptid_t ptid2)
3739{
3740 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3741 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3742}
3743
3744/* restore_inferior_ptid() will be used by the cleanup machinery
3745 to restore the inferior_ptid value saved in a call to
3746 save_inferior_ptid(). */
ce696e05
KB
3747
3748static void
3749restore_inferior_ptid (void *arg)
3750{
3751 ptid_t *saved_ptid_ptr = arg;
3752 inferior_ptid = *saved_ptid_ptr;
3753 xfree (arg);
3754}
3755
3756/* Save the value of inferior_ptid so that it may be restored by a
3757 later call to do_cleanups(). Returns the struct cleanup pointer
3758 needed for later doing the cleanup. */
3759
3760struct cleanup *
3761save_inferior_ptid (void)
3762{
3763 ptid_t *saved_ptid_ptr;
3764
3765 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3766 *saved_ptid_ptr = inferior_ptid;
3767 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3768}
c5aa993b 3769\f
488f131b 3770
7a292a7a 3771static void
96baa820 3772build_infrun (void)
7a292a7a 3773{
72cec141 3774 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3775}
c906108c 3776
c906108c 3777void
96baa820 3778_initialize_infrun (void)
c906108c 3779{
52f0bd74
AC
3780 int i;
3781 int numsigs;
c906108c
SS
3782 struct cmd_list_element *c;
3783
046a4708
AC
3784 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3785 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3786
c906108c
SS
3787 add_info ("signals", signals_info,
3788 "What debugger does when program gets various signals.\n\
3789Specify a signal as argument to print info on that signal only.");
3790 add_info_alias ("handle", "signals", 0);
3791
3792 add_com ("handle", class_run, handle_command,
3793 concat ("Specify how to handle a signal.\n\
3794Args are signals and actions to apply to those signals.\n\
3795Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3796from 1-15 are allowed for compatibility with old versions of GDB.\n\
3797Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3798The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3799used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3800\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3801Stop means reenter debugger if this signal happens (implies print).\n\
3802Print means print a message if this signal happens.\n\
3803Pass means let program see this signal; otherwise program doesn't know.\n\
3804Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3805Pass and Stop may be combined.", NULL));
3806 if (xdb_commands)
3807 {
3808 add_com ("lz", class_info, signals_info,
3809 "What debugger does when program gets various signals.\n\
3810Specify a signal as argument to print info on that signal only.");
3811 add_com ("z", class_run, xdb_handle_command,
3812 concat ("Specify how to handle a signal.\n\
3813Args are signals and actions to apply to those signals.\n\
3814Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3815from 1-15 are allowed for compatibility with old versions of GDB.\n\
3816Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3817The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3818used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3819\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3820nopass), \"Q\" (noprint)\n\
3821Stop means reenter debugger if this signal happens (implies print).\n\
3822Print means print a message if this signal happens.\n\
3823Pass means let program see this signal; otherwise program doesn't know.\n\
3824Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3825Pass and Stop may be combined.", NULL));
3826 }
3827
3828 if (!dbx_commands)
488f131b
JB
3829 stop_command =
3830 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3831This allows you to set a list of commands to be run each time execution\n\
3832of the program stops.", &cmdlist);
3833
3834 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3835 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3836 signal_print = (unsigned char *)
3837 xmalloc (sizeof (signal_print[0]) * numsigs);
3838 signal_program = (unsigned char *)
3839 xmalloc (sizeof (signal_program[0]) * numsigs);
3840 for (i = 0; i < numsigs; i++)
3841 {
3842 signal_stop[i] = 1;
3843 signal_print[i] = 1;
3844 signal_program[i] = 1;
3845 }
3846
3847 /* Signals caused by debugger's own actions
3848 should not be given to the program afterwards. */
3849 signal_program[TARGET_SIGNAL_TRAP] = 0;
3850 signal_program[TARGET_SIGNAL_INT] = 0;
3851
3852 /* Signals that are not errors should not normally enter the debugger. */
3853 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3854 signal_print[TARGET_SIGNAL_ALRM] = 0;
3855 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3856 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3857 signal_stop[TARGET_SIGNAL_PROF] = 0;
3858 signal_print[TARGET_SIGNAL_PROF] = 0;
3859 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3860 signal_print[TARGET_SIGNAL_CHLD] = 0;
3861 signal_stop[TARGET_SIGNAL_IO] = 0;
3862 signal_print[TARGET_SIGNAL_IO] = 0;
3863 signal_stop[TARGET_SIGNAL_POLL] = 0;
3864 signal_print[TARGET_SIGNAL_POLL] = 0;
3865 signal_stop[TARGET_SIGNAL_URG] = 0;
3866 signal_print[TARGET_SIGNAL_URG] = 0;
3867 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3868 signal_print[TARGET_SIGNAL_WINCH] = 0;
3869
cd0fc7c3
SS
3870 /* These signals are used internally by user-level thread
3871 implementations. (See signal(5) on Solaris.) Like the above
3872 signals, a healthy program receives and handles them as part of
3873 its normal operation. */
3874 signal_stop[TARGET_SIGNAL_LWP] = 0;
3875 signal_print[TARGET_SIGNAL_LWP] = 0;
3876 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3877 signal_print[TARGET_SIGNAL_WAITING] = 0;
3878 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3879 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3880
c906108c
SS
3881#ifdef SOLIB_ADD
3882 add_show_from_set
3883 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3884 (char *) &stop_on_solib_events,
3885 "Set stopping for shared library events.\n\
3886If nonzero, gdb will give control to the user when the dynamic linker\n\
3887notifies gdb of shared library events. The most common event of interest\n\
488f131b 3888to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3889#endif
3890
3891 c = add_set_enum_cmd ("follow-fork-mode",
3892 class_run,
488f131b 3893 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3894 "Set debugger response to a program call of fork \
3895or vfork.\n\
3896A fork or vfork creates a new process. follow-fork-mode can be:\n\
3897 parent - the original process is debugged after a fork\n\
3898 child - the new process is debugged after a fork\n\
ea1dd7bc 3899The unfollowed process will continue to run.\n\
488f131b 3900By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
3901 add_show_from_set (c, &showlist);
3902
488f131b 3903 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 3904 &scheduler_mode, /* current mode */
c906108c
SS
3905 "Set mode for locking scheduler during execution.\n\
3906off == no locking (threads may preempt at any time)\n\
3907on == full locking (no thread except the current thread may run)\n\
3908step == scheduler locked during every single-step operation.\n\
3909 In this mode, no other thread may run during a step command.\n\
488f131b 3910 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 3911
9f60d481 3912 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 3913 add_show_from_set (c, &showlist);
5fbbeb29
CF
3914
3915 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3916 var_boolean, (char *) &step_stop_if_no_debug,
3917 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3918function without debug line information will stop at the first\n\
3919instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3920the step command stops at a different source line.", &setlist);
5fbbeb29 3921 add_show_from_set (c, &showlist);
ca6724c1
KB
3922
3923 /* ptid initializations */
3924 null_ptid = ptid_build (0, 0, 0);
3925 minus_one_ptid = ptid_build (-1, 0, 0);
3926 inferior_ptid = null_ptid;
3927 target_last_wait_ptid = minus_one_ptid;
c906108c 3928}