]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
2013-01-31 Aleksandar Ristovski <aristovski@qnx.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
28106bc2
SDJ
58#include "probe.h"
59#include "objfiles.h"
de0bea00 60#include "completer.h"
9107fc8d 61#include "target-descriptions.h"
c906108c
SS
62
63/* Prototypes for local functions */
64
96baa820 65static void signals_info (char *, int);
c906108c 66
96baa820 67static void handle_command (char *, int);
c906108c 68
2ea28649 69static void sig_print_info (enum gdb_signal);
c906108c 70
96baa820 71static void sig_print_header (void);
c906108c 72
74b7792f 73static void resume_cleanups (void *);
c906108c 74
96baa820 75static int hook_stop_stub (void *);
c906108c 76
96baa820
JM
77static int restore_selected_frame (void *);
78
4ef3f3be 79static int follow_fork (void);
96baa820
JM
80
81static void set_schedlock_func (char *args, int from_tty,
488f131b 82 struct cmd_list_element *c);
96baa820 83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
b3444185
PA
86static int currently_stepping_or_nexting_callback (struct thread_info *tp,
87 void *data);
a7212384 88
96baa820
JM
89static void xdb_handle_command (char *args, int from_tty);
90
6a6b96b9 91static int prepare_to_proceed (int);
ea67f13b 92
33d62d64
JK
93static void print_exited_reason (int exitstatus);
94
2ea28649 95static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
96
97static void print_no_history_reason (void);
98
2ea28649 99static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
100
101static void print_end_stepping_range_reason (void);
102
96baa820 103void _initialize_infrun (void);
43ff13b4 104
e58b0e63
PA
105void nullify_last_target_wait_ptid (void);
106
2c03e5be 107static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
108
109static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
110
2484c66b
UW
111static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
112
5fbbeb29
CF
113/* When set, stop the 'step' command if we enter a function which has
114 no line number information. The normal behavior is that we step
115 over such function. */
116int step_stop_if_no_debug = 0;
920d2a44
AC
117static void
118show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120{
121 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
122}
5fbbeb29 123
1777feb0 124/* In asynchronous mode, but simulating synchronous execution. */
96baa820 125
43ff13b4
JM
126int sync_execution = 0;
127
c906108c
SS
128/* wait_for_inferior and normal_stop use this to notify the user
129 when the inferior stopped in a different thread than it had been
96baa820
JM
130 running in. */
131
39f77062 132static ptid_t previous_inferior_ptid;
7a292a7a 133
6c95b8df
PA
134/* Default behavior is to detach newly forked processes (legacy). */
135int detach_fork = 1;
136
237fc4c9
PA
137int debug_displaced = 0;
138static void
139show_debug_displaced (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
143}
144
ccce17b0 145unsigned int debug_infrun = 0;
920d2a44
AC
146static void
147show_debug_infrun (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149{
150 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
151}
527159b7 152
03583c20
UW
153
154/* Support for disabling address space randomization. */
155
156int disable_randomization = 1;
157
158static void
159show_disable_randomization (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 if (target_supports_disable_randomization ())
163 fprintf_filtered (file,
164 _("Disabling randomization of debuggee's "
165 "virtual address space is %s.\n"),
166 value);
167 else
168 fputs_filtered (_("Disabling randomization of debuggee's "
169 "virtual address space is unsupported on\n"
170 "this platform.\n"), file);
171}
172
173static void
174set_disable_randomization (char *args, int from_tty,
175 struct cmd_list_element *c)
176{
177 if (!target_supports_disable_randomization ())
178 error (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform."));
181}
182
183
d4f3574e
SS
184/* If the program uses ELF-style shared libraries, then calls to
185 functions in shared libraries go through stubs, which live in a
186 table called the PLT (Procedure Linkage Table). The first time the
187 function is called, the stub sends control to the dynamic linker,
188 which looks up the function's real address, patches the stub so
189 that future calls will go directly to the function, and then passes
190 control to the function.
191
192 If we are stepping at the source level, we don't want to see any of
193 this --- we just want to skip over the stub and the dynamic linker.
194 The simple approach is to single-step until control leaves the
195 dynamic linker.
196
ca557f44
AC
197 However, on some systems (e.g., Red Hat's 5.2 distribution) the
198 dynamic linker calls functions in the shared C library, so you
199 can't tell from the PC alone whether the dynamic linker is still
200 running. In this case, we use a step-resume breakpoint to get us
201 past the dynamic linker, as if we were using "next" to step over a
202 function call.
d4f3574e 203
cfd8ab24 204 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
205 linker code or not. Normally, this means we single-step. However,
206 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
207 address where we can place a step-resume breakpoint to get past the
208 linker's symbol resolution function.
209
cfd8ab24 210 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
211 pretty portable way, by comparing the PC against the address ranges
212 of the dynamic linker's sections.
213
214 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
215 it depends on internal details of the dynamic linker. It's usually
216 not too hard to figure out where to put a breakpoint, but it
217 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
218 sanity checking. If it can't figure things out, returning zero and
219 getting the (possibly confusing) stepping behavior is better than
220 signalling an error, which will obscure the change in the
221 inferior's state. */
c906108c 222
c906108c
SS
223/* This function returns TRUE if pc is the address of an instruction
224 that lies within the dynamic linker (such as the event hook, or the
225 dld itself).
226
227 This function must be used only when a dynamic linker event has
228 been caught, and the inferior is being stepped out of the hook, or
229 undefined results are guaranteed. */
230
231#ifndef SOLIB_IN_DYNAMIC_LINKER
232#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
233#endif
234
d914c394
SS
235/* "Observer mode" is somewhat like a more extreme version of
236 non-stop, in which all GDB operations that might affect the
237 target's execution have been disabled. */
238
239static int non_stop_1 = 0;
240
241int observer_mode = 0;
242static int observer_mode_1 = 0;
243
244static void
245set_observer_mode (char *args, int from_tty,
246 struct cmd_list_element *c)
247{
248 extern int pagination_enabled;
249
250 if (target_has_execution)
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = 1;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 target_async_permitted = 1;
274 pagination_enabled = 0;
275 non_stop = non_stop_1 = 1;
276 }
277
278 if (from_tty)
279 printf_filtered (_("Observer mode is now %s.\n"),
280 (observer_mode ? "on" : "off"));
281}
282
283static void
284show_observer_mode (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286{
287 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
288}
289
290/* This updates the value of observer mode based on changes in
291 permissions. Note that we are deliberately ignoring the values of
292 may-write-registers and may-write-memory, since the user may have
293 reason to enable these during a session, for instance to turn on a
294 debugging-related global. */
295
296void
297update_observer_mode (void)
298{
299 int newval;
300
301 newval = (!may_insert_breakpoints
302 && !may_insert_tracepoints
303 && may_insert_fast_tracepoints
304 && !may_stop
305 && non_stop);
306
307 /* Let the user know if things change. */
308 if (newval != observer_mode)
309 printf_filtered (_("Observer mode is now %s.\n"),
310 (newval ? "on" : "off"));
311
312 observer_mode = observer_mode_1 = newval;
313}
c2c6d25f 314
c906108c
SS
315/* Tables of how to react to signals; the user sets them. */
316
317static unsigned char *signal_stop;
318static unsigned char *signal_print;
319static unsigned char *signal_program;
320
ab04a2af
TT
321/* Table of signals that are registered with "catch signal". A
322 non-zero entry indicates that the signal is caught by some "catch
323 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
324 signals. */
325static unsigned char *signal_catch;
326
2455069d
UW
327/* Table of signals that the target may silently handle.
328 This is automatically determined from the flags above,
329 and simply cached here. */
330static unsigned char *signal_pass;
331
c906108c
SS
332#define SET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 1; \
338 } while (0)
339
340#define UNSET_SIGS(nsigs,sigs,flags) \
341 do { \
342 int signum = (nsigs); \
343 while (signum-- > 0) \
344 if ((sigs)[signum]) \
345 (flags)[signum] = 0; \
346 } while (0)
347
9b224c5e
PA
348/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
349 this function is to avoid exporting `signal_program'. */
350
351void
352update_signals_program_target (void)
353{
a493e3e2 354 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
355}
356
1777feb0 357/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 358
edb3359d 359#define RESUME_ALL minus_one_ptid
c906108c
SS
360
361/* Command list pointer for the "stop" placeholder. */
362
363static struct cmd_list_element *stop_command;
364
c906108c
SS
365/* Function inferior was in as of last step command. */
366
367static struct symbol *step_start_function;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
920d2a44
AC
372static void
373show_stop_on_solib_events (struct ui_file *file, int from_tty,
374 struct cmd_list_element *c, const char *value)
375{
376 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
377 value);
378}
c906108c 379
c906108c
SS
380/* Nonzero means expecting a trace trap
381 and should stop the inferior and return silently when it happens. */
382
383int stop_after_trap;
384
642fd101
DE
385/* Save register contents here when executing a "finish" command or are
386 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
387 Thus this contains the return value from the called function (assuming
388 values are returned in a register). */
389
72cec141 390struct regcache *stop_registers;
c906108c 391
c906108c
SS
392/* Nonzero after stop if current stack frame should be printed. */
393
394static int stop_print_frame;
395
e02bc4cc 396/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
397 returned by target_wait()/deprecated_target_wait_hook(). This
398 information is returned by get_last_target_status(). */
39f77062 399static ptid_t target_last_wait_ptid;
e02bc4cc
DS
400static struct target_waitstatus target_last_waitstatus;
401
0d1e5fa7
PA
402static void context_switch (ptid_t ptid);
403
4e1c45ea 404void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 405
7a76f5b8 406static void init_infwait_state (void);
a474d7c2 407
53904c9e
AC
408static const char follow_fork_mode_child[] = "child";
409static const char follow_fork_mode_parent[] = "parent";
410
40478521 411static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
412 follow_fork_mode_child,
413 follow_fork_mode_parent,
414 NULL
ef346e04 415};
c906108c 416
53904c9e 417static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
418static void
419show_follow_fork_mode_string (struct ui_file *file, int from_tty,
420 struct cmd_list_element *c, const char *value)
421{
3e43a32a
MS
422 fprintf_filtered (file,
423 _("Debugger response to a program "
424 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
425 value);
426}
c906108c
SS
427\f
428
e58b0e63
PA
429/* Tell the target to follow the fork we're stopped at. Returns true
430 if the inferior should be resumed; false, if the target for some
431 reason decided it's best not to resume. */
432
6604731b 433static int
4ef3f3be 434follow_fork (void)
c906108c 435{
ea1dd7bc 436 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
437 int should_resume = 1;
438 struct thread_info *tp;
439
440 /* Copy user stepping state to the new inferior thread. FIXME: the
441 followed fork child thread should have a copy of most of the
4e3990f4
DE
442 parent thread structure's run control related fields, not just these.
443 Initialized to avoid "may be used uninitialized" warnings from gcc. */
444 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 445 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
446 CORE_ADDR step_range_start = 0;
447 CORE_ADDR step_range_end = 0;
448 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
449
450 if (!non_stop)
451 {
452 ptid_t wait_ptid;
453 struct target_waitstatus wait_status;
454
455 /* Get the last target status returned by target_wait(). */
456 get_last_target_status (&wait_ptid, &wait_status);
457
458 /* If not stopped at a fork event, then there's nothing else to
459 do. */
460 if (wait_status.kind != TARGET_WAITKIND_FORKED
461 && wait_status.kind != TARGET_WAITKIND_VFORKED)
462 return 1;
463
464 /* Check if we switched over from WAIT_PTID, since the event was
465 reported. */
466 if (!ptid_equal (wait_ptid, minus_one_ptid)
467 && !ptid_equal (inferior_ptid, wait_ptid))
468 {
469 /* We did. Switch back to WAIT_PTID thread, to tell the
470 target to follow it (in either direction). We'll
471 afterwards refuse to resume, and inform the user what
472 happened. */
473 switch_to_thread (wait_ptid);
474 should_resume = 0;
475 }
476 }
477
478 tp = inferior_thread ();
479
480 /* If there were any forks/vforks that were caught and are now to be
481 followed, then do so now. */
482 switch (tp->pending_follow.kind)
483 {
484 case TARGET_WAITKIND_FORKED:
485 case TARGET_WAITKIND_VFORKED:
486 {
487 ptid_t parent, child;
488
489 /* If the user did a next/step, etc, over a fork call,
490 preserve the stepping state in the fork child. */
491 if (follow_child && should_resume)
492 {
8358c15c
JK
493 step_resume_breakpoint = clone_momentary_breakpoint
494 (tp->control.step_resume_breakpoint);
16c381f0
JK
495 step_range_start = tp->control.step_range_start;
496 step_range_end = tp->control.step_range_end;
497 step_frame_id = tp->control.step_frame_id;
186c406b
TT
498 exception_resume_breakpoint
499 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
500
501 /* For now, delete the parent's sr breakpoint, otherwise,
502 parent/child sr breakpoints are considered duplicates,
503 and the child version will not be installed. Remove
504 this when the breakpoints module becomes aware of
505 inferiors and address spaces. */
506 delete_step_resume_breakpoint (tp);
16c381f0
JK
507 tp->control.step_range_start = 0;
508 tp->control.step_range_end = 0;
509 tp->control.step_frame_id = null_frame_id;
186c406b 510 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
511 }
512
513 parent = inferior_ptid;
514 child = tp->pending_follow.value.related_pid;
515
516 /* Tell the target to do whatever is necessary to follow
517 either parent or child. */
518 if (target_follow_fork (follow_child))
519 {
520 /* Target refused to follow, or there's some other reason
521 we shouldn't resume. */
522 should_resume = 0;
523 }
524 else
525 {
526 /* This pending follow fork event is now handled, one way
527 or another. The previous selected thread may be gone
528 from the lists by now, but if it is still around, need
529 to clear the pending follow request. */
e09875d4 530 tp = find_thread_ptid (parent);
e58b0e63
PA
531 if (tp)
532 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
533
534 /* This makes sure we don't try to apply the "Switched
535 over from WAIT_PID" logic above. */
536 nullify_last_target_wait_ptid ();
537
1777feb0 538 /* If we followed the child, switch to it... */
e58b0e63
PA
539 if (follow_child)
540 {
541 switch_to_thread (child);
542
543 /* ... and preserve the stepping state, in case the
544 user was stepping over the fork call. */
545 if (should_resume)
546 {
547 tp = inferior_thread ();
8358c15c
JK
548 tp->control.step_resume_breakpoint
549 = step_resume_breakpoint;
16c381f0
JK
550 tp->control.step_range_start = step_range_start;
551 tp->control.step_range_end = step_range_end;
552 tp->control.step_frame_id = step_frame_id;
186c406b
TT
553 tp->control.exception_resume_breakpoint
554 = exception_resume_breakpoint;
e58b0e63
PA
555 }
556 else
557 {
558 /* If we get here, it was because we're trying to
559 resume from a fork catchpoint, but, the user
560 has switched threads away from the thread that
561 forked. In that case, the resume command
562 issued is most likely not applicable to the
563 child, so just warn, and refuse to resume. */
3e43a32a
MS
564 warning (_("Not resuming: switched threads "
565 "before following fork child.\n"));
e58b0e63
PA
566 }
567
568 /* Reset breakpoints in the child as appropriate. */
569 follow_inferior_reset_breakpoints ();
570 }
571 else
572 switch_to_thread (parent);
573 }
574 }
575 break;
576 case TARGET_WAITKIND_SPURIOUS:
577 /* Nothing to follow. */
578 break;
579 default:
580 internal_error (__FILE__, __LINE__,
581 "Unexpected pending_follow.kind %d\n",
582 tp->pending_follow.kind);
583 break;
584 }
c906108c 585
e58b0e63 586 return should_resume;
c906108c
SS
587}
588
6604731b
DJ
589void
590follow_inferior_reset_breakpoints (void)
c906108c 591{
4e1c45ea
PA
592 struct thread_info *tp = inferior_thread ();
593
6604731b
DJ
594 /* Was there a step_resume breakpoint? (There was if the user
595 did a "next" at the fork() call.) If so, explicitly reset its
596 thread number.
597
598 step_resumes are a form of bp that are made to be per-thread.
599 Since we created the step_resume bp when the parent process
600 was being debugged, and now are switching to the child process,
601 from the breakpoint package's viewpoint, that's a switch of
602 "threads". We must update the bp's notion of which thread
603 it is for, or it'll be ignored when it triggers. */
604
8358c15c
JK
605 if (tp->control.step_resume_breakpoint)
606 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 607
186c406b
TT
608 if (tp->control.exception_resume_breakpoint)
609 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
610
6604731b
DJ
611 /* Reinsert all breakpoints in the child. The user may have set
612 breakpoints after catching the fork, in which case those
613 were never set in the child, but only in the parent. This makes
614 sure the inserted breakpoints match the breakpoint list. */
615
616 breakpoint_re_set ();
617 insert_breakpoints ();
c906108c 618}
c906108c 619
6c95b8df
PA
620/* The child has exited or execed: resume threads of the parent the
621 user wanted to be executing. */
622
623static int
624proceed_after_vfork_done (struct thread_info *thread,
625 void *arg)
626{
627 int pid = * (int *) arg;
628
629 if (ptid_get_pid (thread->ptid) == pid
630 && is_running (thread->ptid)
631 && !is_executing (thread->ptid)
632 && !thread->stop_requested
a493e3e2 633 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
634 {
635 if (debug_infrun)
636 fprintf_unfiltered (gdb_stdlog,
637 "infrun: resuming vfork parent thread %s\n",
638 target_pid_to_str (thread->ptid));
639
640 switch_to_thread (thread->ptid);
641 clear_proceed_status ();
a493e3e2 642 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
643 }
644
645 return 0;
646}
647
648/* Called whenever we notice an exec or exit event, to handle
649 detaching or resuming a vfork parent. */
650
651static void
652handle_vfork_child_exec_or_exit (int exec)
653{
654 struct inferior *inf = current_inferior ();
655
656 if (inf->vfork_parent)
657 {
658 int resume_parent = -1;
659
660 /* This exec or exit marks the end of the shared memory region
661 between the parent and the child. If the user wanted to
662 detach from the parent, now is the time. */
663
664 if (inf->vfork_parent->pending_detach)
665 {
666 struct thread_info *tp;
667 struct cleanup *old_chain;
668 struct program_space *pspace;
669 struct address_space *aspace;
670
1777feb0 671 /* follow-fork child, detach-on-fork on. */
6c95b8df 672
68c9da30
PA
673 inf->vfork_parent->pending_detach = 0;
674
f50f4e56
PA
675 if (!exec)
676 {
677 /* If we're handling a child exit, then inferior_ptid
678 points at the inferior's pid, not to a thread. */
679 old_chain = save_inferior_ptid ();
680 save_current_program_space ();
681 save_current_inferior ();
682 }
683 else
684 old_chain = save_current_space_and_thread ();
6c95b8df
PA
685
686 /* We're letting loose of the parent. */
687 tp = any_live_thread_of_process (inf->vfork_parent->pid);
688 switch_to_thread (tp->ptid);
689
690 /* We're about to detach from the parent, which implicitly
691 removes breakpoints from its address space. There's a
692 catch here: we want to reuse the spaces for the child,
693 but, parent/child are still sharing the pspace at this
694 point, although the exec in reality makes the kernel give
695 the child a fresh set of new pages. The problem here is
696 that the breakpoints module being unaware of this, would
697 likely chose the child process to write to the parent
698 address space. Swapping the child temporarily away from
699 the spaces has the desired effect. Yes, this is "sort
700 of" a hack. */
701
702 pspace = inf->pspace;
703 aspace = inf->aspace;
704 inf->aspace = NULL;
705 inf->pspace = NULL;
706
707 if (debug_infrun || info_verbose)
708 {
709 target_terminal_ours ();
710
711 if (exec)
712 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
713 "Detaching vfork parent process "
714 "%d after child exec.\n",
6c95b8df
PA
715 inf->vfork_parent->pid);
716 else
717 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
718 "Detaching vfork parent process "
719 "%d after child exit.\n",
6c95b8df
PA
720 inf->vfork_parent->pid);
721 }
722
723 target_detach (NULL, 0);
724
725 /* Put it back. */
726 inf->pspace = pspace;
727 inf->aspace = aspace;
728
729 do_cleanups (old_chain);
730 }
731 else if (exec)
732 {
733 /* We're staying attached to the parent, so, really give the
734 child a new address space. */
735 inf->pspace = add_program_space (maybe_new_address_space ());
736 inf->aspace = inf->pspace->aspace;
737 inf->removable = 1;
738 set_current_program_space (inf->pspace);
739
740 resume_parent = inf->vfork_parent->pid;
741
742 /* Break the bonds. */
743 inf->vfork_parent->vfork_child = NULL;
744 }
745 else
746 {
747 struct cleanup *old_chain;
748 struct program_space *pspace;
749
750 /* If this is a vfork child exiting, then the pspace and
751 aspaces were shared with the parent. Since we're
752 reporting the process exit, we'll be mourning all that is
753 found in the address space, and switching to null_ptid,
754 preparing to start a new inferior. But, since we don't
755 want to clobber the parent's address/program spaces, we
756 go ahead and create a new one for this exiting
757 inferior. */
758
759 /* Switch to null_ptid, so that clone_program_space doesn't want
760 to read the selected frame of a dead process. */
761 old_chain = save_inferior_ptid ();
762 inferior_ptid = null_ptid;
763
764 /* This inferior is dead, so avoid giving the breakpoints
765 module the option to write through to it (cloning a
766 program space resets breakpoints). */
767 inf->aspace = NULL;
768 inf->pspace = NULL;
769 pspace = add_program_space (maybe_new_address_space ());
770 set_current_program_space (pspace);
771 inf->removable = 1;
7dcd53a0 772 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
773 clone_program_space (pspace, inf->vfork_parent->pspace);
774 inf->pspace = pspace;
775 inf->aspace = pspace->aspace;
776
777 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 778 inferior. */
6c95b8df
PA
779 do_cleanups (old_chain);
780
781 resume_parent = inf->vfork_parent->pid;
782 /* Break the bonds. */
783 inf->vfork_parent->vfork_child = NULL;
784 }
785
786 inf->vfork_parent = NULL;
787
788 gdb_assert (current_program_space == inf->pspace);
789
790 if (non_stop && resume_parent != -1)
791 {
792 /* If the user wanted the parent to be running, let it go
793 free now. */
794 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
795
796 if (debug_infrun)
3e43a32a
MS
797 fprintf_unfiltered (gdb_stdlog,
798 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
799 resume_parent);
800
801 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
802
803 do_cleanups (old_chain);
804 }
805 }
806}
807
808/* Enum strings for "set|show displaced-stepping". */
809
810static const char follow_exec_mode_new[] = "new";
811static const char follow_exec_mode_same[] = "same";
40478521 812static const char *const follow_exec_mode_names[] =
6c95b8df
PA
813{
814 follow_exec_mode_new,
815 follow_exec_mode_same,
816 NULL,
817};
818
819static const char *follow_exec_mode_string = follow_exec_mode_same;
820static void
821show_follow_exec_mode_string (struct ui_file *file, int from_tty,
822 struct cmd_list_element *c, const char *value)
823{
824 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
825}
826
1777feb0 827/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 828
c906108c 829static void
3a3e9ee3 830follow_exec (ptid_t pid, char *execd_pathname)
c906108c 831{
4e1c45ea 832 struct thread_info *th = inferior_thread ();
6c95b8df 833 struct inferior *inf = current_inferior ();
7a292a7a 834
c906108c
SS
835 /* This is an exec event that we actually wish to pay attention to.
836 Refresh our symbol table to the newly exec'd program, remove any
837 momentary bp's, etc.
838
839 If there are breakpoints, they aren't really inserted now,
840 since the exec() transformed our inferior into a fresh set
841 of instructions.
842
843 We want to preserve symbolic breakpoints on the list, since
844 we have hopes that they can be reset after the new a.out's
845 symbol table is read.
846
847 However, any "raw" breakpoints must be removed from the list
848 (e.g., the solib bp's), since their address is probably invalid
849 now.
850
851 And, we DON'T want to call delete_breakpoints() here, since
852 that may write the bp's "shadow contents" (the instruction
853 value that was overwritten witha TRAP instruction). Since
1777feb0 854 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
855
856 mark_breakpoints_out ();
857
c906108c
SS
858 update_breakpoints_after_exec ();
859
860 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 861 statement through an exec(). */
8358c15c 862 th->control.step_resume_breakpoint = NULL;
186c406b 863 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
864 th->control.step_range_start = 0;
865 th->control.step_range_end = 0;
c906108c 866
a75724bc
PA
867 /* The target reports the exec event to the main thread, even if
868 some other thread does the exec, and even if the main thread was
869 already stopped --- if debugging in non-stop mode, it's possible
870 the user had the main thread held stopped in the previous image
871 --- release it now. This is the same behavior as step-over-exec
872 with scheduler-locking on in all-stop mode. */
873 th->stop_requested = 0;
874
1777feb0 875 /* What is this a.out's name? */
6c95b8df
PA
876 printf_unfiltered (_("%s is executing new program: %s\n"),
877 target_pid_to_str (inferior_ptid),
878 execd_pathname);
c906108c
SS
879
880 /* We've followed the inferior through an exec. Therefore, the
1777feb0 881 inferior has essentially been killed & reborn. */
7a292a7a 882
c906108c 883 gdb_flush (gdb_stdout);
6ca15a4b
PA
884
885 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
886
887 if (gdb_sysroot && *gdb_sysroot)
888 {
889 char *name = alloca (strlen (gdb_sysroot)
890 + strlen (execd_pathname)
891 + 1);
abbb1732 892
e85a822c
DJ
893 strcpy (name, gdb_sysroot);
894 strcat (name, execd_pathname);
895 execd_pathname = name;
896 }
c906108c 897
cce9b6bf
PA
898 /* Reset the shared library package. This ensures that we get a
899 shlib event when the child reaches "_start", at which point the
900 dld will have had a chance to initialize the child. */
901 /* Also, loading a symbol file below may trigger symbol lookups, and
902 we don't want those to be satisfied by the libraries of the
903 previous incarnation of this process. */
904 no_shared_libraries (NULL, 0);
905
6c95b8df
PA
906 if (follow_exec_mode_string == follow_exec_mode_new)
907 {
908 struct program_space *pspace;
6c95b8df
PA
909
910 /* The user wants to keep the old inferior and program spaces
911 around. Create a new fresh one, and switch to it. */
912
913 inf = add_inferior (current_inferior ()->pid);
914 pspace = add_program_space (maybe_new_address_space ());
915 inf->pspace = pspace;
916 inf->aspace = pspace->aspace;
917
918 exit_inferior_num_silent (current_inferior ()->num);
919
920 set_current_inferior (inf);
921 set_current_program_space (pspace);
922 }
9107fc8d
PA
923 else
924 {
925 /* The old description may no longer be fit for the new image.
926 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
927 old description; we'll read a new one below. No need to do
928 this on "follow-exec-mode new", as the old inferior stays
929 around (its description is later cleared/refetched on
930 restart). */
931 target_clear_description ();
932 }
6c95b8df
PA
933
934 gdb_assert (current_program_space == inf->pspace);
935
1777feb0 936 /* That a.out is now the one to use. */
6c95b8df
PA
937 exec_file_attach (execd_pathname, 0);
938
c1e56572
JK
939 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
940 (Position Independent Executable) main symbol file will get applied by
941 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
942 the breakpoints with the zero displacement. */
943
7dcd53a0
TT
944 symbol_file_add (execd_pathname,
945 (inf->symfile_flags
946 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
947 NULL, 0);
948
7dcd53a0
TT
949 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
950 set_initial_language ();
c906108c 951
9107fc8d
PA
952 /* If the target can specify a description, read it. Must do this
953 after flipping to the new executable (because the target supplied
954 description must be compatible with the executable's
955 architecture, and the old executable may e.g., be 32-bit, while
956 the new one 64-bit), and before anything involving memory or
957 registers. */
958 target_find_description ();
959
7a292a7a 960#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 961 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 962#else
268a4a75 963 solib_create_inferior_hook (0);
7a292a7a 964#endif
c906108c 965
4efc6507
DE
966 jit_inferior_created_hook ();
967
c1e56572
JK
968 breakpoint_re_set ();
969
c906108c
SS
970 /* Reinsert all breakpoints. (Those which were symbolic have
971 been reset to the proper address in the new a.out, thanks
1777feb0 972 to symbol_file_command...). */
c906108c
SS
973 insert_breakpoints ();
974
975 /* The next resume of this inferior should bring it to the shlib
976 startup breakpoints. (If the user had also set bp's on
977 "main" from the old (parent) process, then they'll auto-
1777feb0 978 matically get reset there in the new process.). */
c906108c
SS
979}
980
981/* Non-zero if we just simulating a single-step. This is needed
982 because we cannot remove the breakpoints in the inferior process
983 until after the `wait' in `wait_for_inferior'. */
984static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
985
986/* The thread we inserted single-step breakpoints for. */
987static ptid_t singlestep_ptid;
988
fd48f117
DJ
989/* PC when we started this single-step. */
990static CORE_ADDR singlestep_pc;
991
9f976b41
DJ
992/* If another thread hit the singlestep breakpoint, we save the original
993 thread here so that we can resume single-stepping it later. */
994static ptid_t saved_singlestep_ptid;
995static int stepping_past_singlestep_breakpoint;
6a6b96b9 996
ca67fcb8
VP
997/* If not equal to null_ptid, this means that after stepping over breakpoint
998 is finished, we need to switch to deferred_step_ptid, and step it.
999
1000 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 1001 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
1002 breakpoint in the thread which hit the breakpoint, but then continue
1003 stepping the thread user has selected. */
1004static ptid_t deferred_step_ptid;
c906108c 1005\f
237fc4c9
PA
1006/* Displaced stepping. */
1007
1008/* In non-stop debugging mode, we must take special care to manage
1009 breakpoints properly; in particular, the traditional strategy for
1010 stepping a thread past a breakpoint it has hit is unsuitable.
1011 'Displaced stepping' is a tactic for stepping one thread past a
1012 breakpoint it has hit while ensuring that other threads running
1013 concurrently will hit the breakpoint as they should.
1014
1015 The traditional way to step a thread T off a breakpoint in a
1016 multi-threaded program in all-stop mode is as follows:
1017
1018 a0) Initially, all threads are stopped, and breakpoints are not
1019 inserted.
1020 a1) We single-step T, leaving breakpoints uninserted.
1021 a2) We insert breakpoints, and resume all threads.
1022
1023 In non-stop debugging, however, this strategy is unsuitable: we
1024 don't want to have to stop all threads in the system in order to
1025 continue or step T past a breakpoint. Instead, we use displaced
1026 stepping:
1027
1028 n0) Initially, T is stopped, other threads are running, and
1029 breakpoints are inserted.
1030 n1) We copy the instruction "under" the breakpoint to a separate
1031 location, outside the main code stream, making any adjustments
1032 to the instruction, register, and memory state as directed by
1033 T's architecture.
1034 n2) We single-step T over the instruction at its new location.
1035 n3) We adjust the resulting register and memory state as directed
1036 by T's architecture. This includes resetting T's PC to point
1037 back into the main instruction stream.
1038 n4) We resume T.
1039
1040 This approach depends on the following gdbarch methods:
1041
1042 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1043 indicate where to copy the instruction, and how much space must
1044 be reserved there. We use these in step n1.
1045
1046 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1047 address, and makes any necessary adjustments to the instruction,
1048 register contents, and memory. We use this in step n1.
1049
1050 - gdbarch_displaced_step_fixup adjusts registers and memory after
1051 we have successfuly single-stepped the instruction, to yield the
1052 same effect the instruction would have had if we had executed it
1053 at its original address. We use this in step n3.
1054
1055 - gdbarch_displaced_step_free_closure provides cleanup.
1056
1057 The gdbarch_displaced_step_copy_insn and
1058 gdbarch_displaced_step_fixup functions must be written so that
1059 copying an instruction with gdbarch_displaced_step_copy_insn,
1060 single-stepping across the copied instruction, and then applying
1061 gdbarch_displaced_insn_fixup should have the same effects on the
1062 thread's memory and registers as stepping the instruction in place
1063 would have. Exactly which responsibilities fall to the copy and
1064 which fall to the fixup is up to the author of those functions.
1065
1066 See the comments in gdbarch.sh for details.
1067
1068 Note that displaced stepping and software single-step cannot
1069 currently be used in combination, although with some care I think
1070 they could be made to. Software single-step works by placing
1071 breakpoints on all possible subsequent instructions; if the
1072 displaced instruction is a PC-relative jump, those breakpoints
1073 could fall in very strange places --- on pages that aren't
1074 executable, or at addresses that are not proper instruction
1075 boundaries. (We do generally let other threads run while we wait
1076 to hit the software single-step breakpoint, and they might
1077 encounter such a corrupted instruction.) One way to work around
1078 this would be to have gdbarch_displaced_step_copy_insn fully
1079 simulate the effect of PC-relative instructions (and return NULL)
1080 on architectures that use software single-stepping.
1081
1082 In non-stop mode, we can have independent and simultaneous step
1083 requests, so more than one thread may need to simultaneously step
1084 over a breakpoint. The current implementation assumes there is
1085 only one scratch space per process. In this case, we have to
1086 serialize access to the scratch space. If thread A wants to step
1087 over a breakpoint, but we are currently waiting for some other
1088 thread to complete a displaced step, we leave thread A stopped and
1089 place it in the displaced_step_request_queue. Whenever a displaced
1090 step finishes, we pick the next thread in the queue and start a new
1091 displaced step operation on it. See displaced_step_prepare and
1092 displaced_step_fixup for details. */
1093
237fc4c9
PA
1094struct displaced_step_request
1095{
1096 ptid_t ptid;
1097 struct displaced_step_request *next;
1098};
1099
fc1cf338
PA
1100/* Per-inferior displaced stepping state. */
1101struct displaced_step_inferior_state
1102{
1103 /* Pointer to next in linked list. */
1104 struct displaced_step_inferior_state *next;
1105
1106 /* The process this displaced step state refers to. */
1107 int pid;
1108
1109 /* A queue of pending displaced stepping requests. One entry per
1110 thread that needs to do a displaced step. */
1111 struct displaced_step_request *step_request_queue;
1112
1113 /* If this is not null_ptid, this is the thread carrying out a
1114 displaced single-step in process PID. This thread's state will
1115 require fixing up once it has completed its step. */
1116 ptid_t step_ptid;
1117
1118 /* The architecture the thread had when we stepped it. */
1119 struct gdbarch *step_gdbarch;
1120
1121 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1122 for post-step cleanup. */
1123 struct displaced_step_closure *step_closure;
1124
1125 /* The address of the original instruction, and the copy we
1126 made. */
1127 CORE_ADDR step_original, step_copy;
1128
1129 /* Saved contents of copy area. */
1130 gdb_byte *step_saved_copy;
1131};
1132
1133/* The list of states of processes involved in displaced stepping
1134 presently. */
1135static struct displaced_step_inferior_state *displaced_step_inferior_states;
1136
1137/* Get the displaced stepping state of process PID. */
1138
1139static struct displaced_step_inferior_state *
1140get_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 return NULL;
1151}
1152
1153/* Add a new displaced stepping state for process PID to the displaced
1154 stepping state list, or return a pointer to an already existing
1155 entry, if it already exists. Never returns NULL. */
1156
1157static struct displaced_step_inferior_state *
1158add_displaced_stepping_state (int pid)
1159{
1160 struct displaced_step_inferior_state *state;
1161
1162 for (state = displaced_step_inferior_states;
1163 state != NULL;
1164 state = state->next)
1165 if (state->pid == pid)
1166 return state;
237fc4c9 1167
fc1cf338
PA
1168 state = xcalloc (1, sizeof (*state));
1169 state->pid = pid;
1170 state->next = displaced_step_inferior_states;
1171 displaced_step_inferior_states = state;
237fc4c9 1172
fc1cf338
PA
1173 return state;
1174}
1175
a42244db
YQ
1176/* If inferior is in displaced stepping, and ADDR equals to starting address
1177 of copy area, return corresponding displaced_step_closure. Otherwise,
1178 return NULL. */
1179
1180struct displaced_step_closure*
1181get_displaced_step_closure_by_addr (CORE_ADDR addr)
1182{
1183 struct displaced_step_inferior_state *displaced
1184 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1185
1186 /* If checking the mode of displaced instruction in copy area. */
1187 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1188 && (displaced->step_copy == addr))
1189 return displaced->step_closure;
1190
1191 return NULL;
1192}
1193
fc1cf338 1194/* Remove the displaced stepping state of process PID. */
237fc4c9 1195
fc1cf338
PA
1196static void
1197remove_displaced_stepping_state (int pid)
1198{
1199 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1200
fc1cf338
PA
1201 gdb_assert (pid != 0);
1202
1203 it = displaced_step_inferior_states;
1204 prev_next_p = &displaced_step_inferior_states;
1205 while (it)
1206 {
1207 if (it->pid == pid)
1208 {
1209 *prev_next_p = it->next;
1210 xfree (it);
1211 return;
1212 }
1213
1214 prev_next_p = &it->next;
1215 it = *prev_next_p;
1216 }
1217}
1218
1219static void
1220infrun_inferior_exit (struct inferior *inf)
1221{
1222 remove_displaced_stepping_state (inf->pid);
1223}
237fc4c9 1224
fff08868
HZ
1225/* If ON, and the architecture supports it, GDB will use displaced
1226 stepping to step over breakpoints. If OFF, or if the architecture
1227 doesn't support it, GDB will instead use the traditional
1228 hold-and-step approach. If AUTO (which is the default), GDB will
1229 decide which technique to use to step over breakpoints depending on
1230 which of all-stop or non-stop mode is active --- displaced stepping
1231 in non-stop mode; hold-and-step in all-stop mode. */
1232
72d0e2c5 1233static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1234
237fc4c9
PA
1235static void
1236show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1237 struct cmd_list_element *c,
1238 const char *value)
1239{
72d0e2c5 1240 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1241 fprintf_filtered (file,
1242 _("Debugger's willingness to use displaced stepping "
1243 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1244 value, non_stop ? "on" : "off");
1245 else
3e43a32a
MS
1246 fprintf_filtered (file,
1247 _("Debugger's willingness to use displaced stepping "
1248 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1249}
1250
fff08868
HZ
1251/* Return non-zero if displaced stepping can/should be used to step
1252 over breakpoints. */
1253
237fc4c9
PA
1254static int
1255use_displaced_stepping (struct gdbarch *gdbarch)
1256{
72d0e2c5
YQ
1257 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1258 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1259 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1260 && !RECORD_IS_USED);
237fc4c9
PA
1261}
1262
1263/* Clean out any stray displaced stepping state. */
1264static void
fc1cf338 1265displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1266{
1267 /* Indicate that there is no cleanup pending. */
fc1cf338 1268 displaced->step_ptid = null_ptid;
237fc4c9 1269
fc1cf338 1270 if (displaced->step_closure)
237fc4c9 1271 {
fc1cf338
PA
1272 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1273 displaced->step_closure);
1274 displaced->step_closure = NULL;
237fc4c9
PA
1275 }
1276}
1277
1278static void
fc1cf338 1279displaced_step_clear_cleanup (void *arg)
237fc4c9 1280{
fc1cf338
PA
1281 struct displaced_step_inferior_state *state = arg;
1282
1283 displaced_step_clear (state);
237fc4c9
PA
1284}
1285
1286/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1287void
1288displaced_step_dump_bytes (struct ui_file *file,
1289 const gdb_byte *buf,
1290 size_t len)
1291{
1292 int i;
1293
1294 for (i = 0; i < len; i++)
1295 fprintf_unfiltered (file, "%02x ", buf[i]);
1296 fputs_unfiltered ("\n", file);
1297}
1298
1299/* Prepare to single-step, using displaced stepping.
1300
1301 Note that we cannot use displaced stepping when we have a signal to
1302 deliver. If we have a signal to deliver and an instruction to step
1303 over, then after the step, there will be no indication from the
1304 target whether the thread entered a signal handler or ignored the
1305 signal and stepped over the instruction successfully --- both cases
1306 result in a simple SIGTRAP. In the first case we mustn't do a
1307 fixup, and in the second case we must --- but we can't tell which.
1308 Comments in the code for 'random signals' in handle_inferior_event
1309 explain how we handle this case instead.
1310
1311 Returns 1 if preparing was successful -- this thread is going to be
1312 stepped now; or 0 if displaced stepping this thread got queued. */
1313static int
1314displaced_step_prepare (ptid_t ptid)
1315{
ad53cd71 1316 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1317 struct regcache *regcache = get_thread_regcache (ptid);
1318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1319 CORE_ADDR original, copy;
1320 ULONGEST len;
1321 struct displaced_step_closure *closure;
fc1cf338 1322 struct displaced_step_inferior_state *displaced;
9e529e1d 1323 int status;
237fc4c9
PA
1324
1325 /* We should never reach this function if the architecture does not
1326 support displaced stepping. */
1327 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1328
fc1cf338
PA
1329 /* We have to displaced step one thread at a time, as we only have
1330 access to a single scratch space per inferior. */
237fc4c9 1331
fc1cf338
PA
1332 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1333
1334 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1335 {
1336 /* Already waiting for a displaced step to finish. Defer this
1337 request and place in queue. */
1338 struct displaced_step_request *req, *new_req;
1339
1340 if (debug_displaced)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "displaced: defering step of %s\n",
1343 target_pid_to_str (ptid));
1344
1345 new_req = xmalloc (sizeof (*new_req));
1346 new_req->ptid = ptid;
1347 new_req->next = NULL;
1348
fc1cf338 1349 if (displaced->step_request_queue)
237fc4c9 1350 {
fc1cf338 1351 for (req = displaced->step_request_queue;
237fc4c9
PA
1352 req && req->next;
1353 req = req->next)
1354 ;
1355 req->next = new_req;
1356 }
1357 else
fc1cf338 1358 displaced->step_request_queue = new_req;
237fc4c9
PA
1359
1360 return 0;
1361 }
1362 else
1363 {
1364 if (debug_displaced)
1365 fprintf_unfiltered (gdb_stdlog,
1366 "displaced: stepping %s now\n",
1367 target_pid_to_str (ptid));
1368 }
1369
fc1cf338 1370 displaced_step_clear (displaced);
237fc4c9 1371
ad53cd71
PA
1372 old_cleanups = save_inferior_ptid ();
1373 inferior_ptid = ptid;
1374
515630c5 1375 original = regcache_read_pc (regcache);
237fc4c9
PA
1376
1377 copy = gdbarch_displaced_step_location (gdbarch);
1378 len = gdbarch_max_insn_length (gdbarch);
1379
1380 /* Save the original contents of the copy area. */
fc1cf338 1381 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1382 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1383 &displaced->step_saved_copy);
9e529e1d
JK
1384 status = target_read_memory (copy, displaced->step_saved_copy, len);
1385 if (status != 0)
1386 throw_error (MEMORY_ERROR,
1387 _("Error accessing memory address %s (%s) for "
1388 "displaced-stepping scratch space."),
1389 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1390 if (debug_displaced)
1391 {
5af949e3
UW
1392 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1393 paddress (gdbarch, copy));
fc1cf338
PA
1394 displaced_step_dump_bytes (gdb_stdlog,
1395 displaced->step_saved_copy,
1396 len);
237fc4c9
PA
1397 };
1398
1399 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1400 original, copy, regcache);
237fc4c9
PA
1401
1402 /* We don't support the fully-simulated case at present. */
1403 gdb_assert (closure);
1404
9f5a595d
UW
1405 /* Save the information we need to fix things up if the step
1406 succeeds. */
fc1cf338
PA
1407 displaced->step_ptid = ptid;
1408 displaced->step_gdbarch = gdbarch;
1409 displaced->step_closure = closure;
1410 displaced->step_original = original;
1411 displaced->step_copy = copy;
9f5a595d 1412
fc1cf338 1413 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1414
1415 /* Resume execution at the copy. */
515630c5 1416 regcache_write_pc (regcache, copy);
237fc4c9 1417
ad53cd71
PA
1418 discard_cleanups (ignore_cleanups);
1419
1420 do_cleanups (old_cleanups);
237fc4c9
PA
1421
1422 if (debug_displaced)
5af949e3
UW
1423 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1424 paddress (gdbarch, copy));
237fc4c9 1425
237fc4c9
PA
1426 return 1;
1427}
1428
237fc4c9 1429static void
3e43a32a
MS
1430write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1431 const gdb_byte *myaddr, int len)
237fc4c9
PA
1432{
1433 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1434
237fc4c9
PA
1435 inferior_ptid = ptid;
1436 write_memory (memaddr, myaddr, len);
1437 do_cleanups (ptid_cleanup);
1438}
1439
e2d96639
YQ
1440/* Restore the contents of the copy area for thread PTID. */
1441
1442static void
1443displaced_step_restore (struct displaced_step_inferior_state *displaced,
1444 ptid_t ptid)
1445{
1446 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1447
1448 write_memory_ptid (ptid, displaced->step_copy,
1449 displaced->step_saved_copy, len);
1450 if (debug_displaced)
1451 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1452 target_pid_to_str (ptid),
1453 paddress (displaced->step_gdbarch,
1454 displaced->step_copy));
1455}
1456
237fc4c9 1457static void
2ea28649 1458displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1459{
1460 struct cleanup *old_cleanups;
fc1cf338
PA
1461 struct displaced_step_inferior_state *displaced
1462 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1463
1464 /* Was any thread of this process doing a displaced step? */
1465 if (displaced == NULL)
1466 return;
237fc4c9
PA
1467
1468 /* Was this event for the pid we displaced? */
fc1cf338
PA
1469 if (ptid_equal (displaced->step_ptid, null_ptid)
1470 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1471 return;
1472
fc1cf338 1473 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1474
e2d96639 1475 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1476
1477 /* Did the instruction complete successfully? */
a493e3e2 1478 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1479 {
1480 /* Fix up the resulting state. */
fc1cf338
PA
1481 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1482 displaced->step_closure,
1483 displaced->step_original,
1484 displaced->step_copy,
1485 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1486 }
1487 else
1488 {
1489 /* Since the instruction didn't complete, all we can do is
1490 relocate the PC. */
515630c5
UW
1491 struct regcache *regcache = get_thread_regcache (event_ptid);
1492 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1493
fc1cf338 1494 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1495 regcache_write_pc (regcache, pc);
237fc4c9
PA
1496 }
1497
1498 do_cleanups (old_cleanups);
1499
fc1cf338 1500 displaced->step_ptid = null_ptid;
1c5cfe86 1501
237fc4c9 1502 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1503 one now. Leave the state object around, since we're likely to
1504 need it again soon. */
1505 while (displaced->step_request_queue)
237fc4c9
PA
1506 {
1507 struct displaced_step_request *head;
1508 ptid_t ptid;
5af949e3 1509 struct regcache *regcache;
929dfd4f 1510 struct gdbarch *gdbarch;
1c5cfe86 1511 CORE_ADDR actual_pc;
6c95b8df 1512 struct address_space *aspace;
237fc4c9 1513
fc1cf338 1514 head = displaced->step_request_queue;
237fc4c9 1515 ptid = head->ptid;
fc1cf338 1516 displaced->step_request_queue = head->next;
237fc4c9
PA
1517 xfree (head);
1518
ad53cd71
PA
1519 context_switch (ptid);
1520
5af949e3
UW
1521 regcache = get_thread_regcache (ptid);
1522 actual_pc = regcache_read_pc (regcache);
6c95b8df 1523 aspace = get_regcache_aspace (regcache);
1c5cfe86 1524
6c95b8df 1525 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1526 {
1c5cfe86
PA
1527 if (debug_displaced)
1528 fprintf_unfiltered (gdb_stdlog,
1529 "displaced: stepping queued %s now\n",
1530 target_pid_to_str (ptid));
1531
1532 displaced_step_prepare (ptid);
1533
929dfd4f
JB
1534 gdbarch = get_regcache_arch (regcache);
1535
1c5cfe86
PA
1536 if (debug_displaced)
1537 {
929dfd4f 1538 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1539 gdb_byte buf[4];
1540
5af949e3
UW
1541 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1542 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1543 read_memory (actual_pc, buf, sizeof (buf));
1544 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1545 }
1546
fc1cf338
PA
1547 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1548 displaced->step_closure))
a493e3e2 1549 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1550 else
a493e3e2 1551 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1552
1553 /* Done, we're stepping a thread. */
1554 break;
ad53cd71 1555 }
1c5cfe86
PA
1556 else
1557 {
1558 int step;
1559 struct thread_info *tp = inferior_thread ();
1560
1561 /* The breakpoint we were sitting under has since been
1562 removed. */
16c381f0 1563 tp->control.trap_expected = 0;
1c5cfe86
PA
1564
1565 /* Go back to what we were trying to do. */
1566 step = currently_stepping (tp);
ad53cd71 1567
1c5cfe86 1568 if (debug_displaced)
3e43a32a 1569 fprintf_unfiltered (gdb_stdlog,
27d2932e 1570 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1571 target_pid_to_str (tp->ptid), step);
1572
a493e3e2
PA
1573 target_resume (ptid, step, GDB_SIGNAL_0);
1574 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1575
1576 /* This request was discarded. See if there's any other
1577 thread waiting for its turn. */
1578 }
237fc4c9
PA
1579 }
1580}
1581
5231c1fd
PA
1582/* Update global variables holding ptids to hold NEW_PTID if they were
1583 holding OLD_PTID. */
1584static void
1585infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1586{
1587 struct displaced_step_request *it;
fc1cf338 1588 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1589
1590 if (ptid_equal (inferior_ptid, old_ptid))
1591 inferior_ptid = new_ptid;
1592
1593 if (ptid_equal (singlestep_ptid, old_ptid))
1594 singlestep_ptid = new_ptid;
1595
5231c1fd
PA
1596 if (ptid_equal (deferred_step_ptid, old_ptid))
1597 deferred_step_ptid = new_ptid;
1598
fc1cf338
PA
1599 for (displaced = displaced_step_inferior_states;
1600 displaced;
1601 displaced = displaced->next)
1602 {
1603 if (ptid_equal (displaced->step_ptid, old_ptid))
1604 displaced->step_ptid = new_ptid;
1605
1606 for (it = displaced->step_request_queue; it; it = it->next)
1607 if (ptid_equal (it->ptid, old_ptid))
1608 it->ptid = new_ptid;
1609 }
5231c1fd
PA
1610}
1611
237fc4c9
PA
1612\f
1613/* Resuming. */
c906108c
SS
1614
1615/* Things to clean up if we QUIT out of resume (). */
c906108c 1616static void
74b7792f 1617resume_cleanups (void *ignore)
c906108c
SS
1618{
1619 normal_stop ();
1620}
1621
53904c9e
AC
1622static const char schedlock_off[] = "off";
1623static const char schedlock_on[] = "on";
1624static const char schedlock_step[] = "step";
40478521 1625static const char *const scheduler_enums[] = {
ef346e04
AC
1626 schedlock_off,
1627 schedlock_on,
1628 schedlock_step,
1629 NULL
1630};
920d2a44
AC
1631static const char *scheduler_mode = schedlock_off;
1632static void
1633show_scheduler_mode (struct ui_file *file, int from_tty,
1634 struct cmd_list_element *c, const char *value)
1635{
3e43a32a
MS
1636 fprintf_filtered (file,
1637 _("Mode for locking scheduler "
1638 "during execution is \"%s\".\n"),
920d2a44
AC
1639 value);
1640}
c906108c
SS
1641
1642static void
96baa820 1643set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1644{
eefe576e
AC
1645 if (!target_can_lock_scheduler)
1646 {
1647 scheduler_mode = schedlock_off;
1648 error (_("Target '%s' cannot support this command."), target_shortname);
1649 }
c906108c
SS
1650}
1651
d4db2f36
PA
1652/* True if execution commands resume all threads of all processes by
1653 default; otherwise, resume only threads of the current inferior
1654 process. */
1655int sched_multi = 0;
1656
2facfe5c
DD
1657/* Try to setup for software single stepping over the specified location.
1658 Return 1 if target_resume() should use hardware single step.
1659
1660 GDBARCH the current gdbarch.
1661 PC the location to step over. */
1662
1663static int
1664maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1665{
1666 int hw_step = 1;
1667
f02253f1
HZ
1668 if (execution_direction == EXEC_FORWARD
1669 && gdbarch_software_single_step_p (gdbarch)
99e40580 1670 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1671 {
99e40580
UW
1672 hw_step = 0;
1673 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1674 `wait_for_inferior'. */
99e40580
UW
1675 singlestep_breakpoints_inserted_p = 1;
1676 singlestep_ptid = inferior_ptid;
1677 singlestep_pc = pc;
2facfe5c
DD
1678 }
1679 return hw_step;
1680}
c906108c 1681
09cee04b
PA
1682/* Return a ptid representing the set of threads that we will proceed,
1683 in the perspective of the user/frontend. We may actually resume
1684 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1685 breakpoint that needs stepping-off, but that should not be visible
1686 to the user/frontend, and neither should the frontend/user be
1687 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1688 internal run control handling, if a previous command wanted them
1689 resumed. */
1690
1691ptid_t
1692user_visible_resume_ptid (int step)
1693{
1694 /* By default, resume all threads of all processes. */
1695 ptid_t resume_ptid = RESUME_ALL;
1696
1697 /* Maybe resume only all threads of the current process. */
1698 if (!sched_multi && target_supports_multi_process ())
1699 {
1700 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1701 }
1702
1703 /* Maybe resume a single thread after all. */
1704 if (non_stop)
1705 {
1706 /* With non-stop mode on, threads are always handled
1707 individually. */
1708 resume_ptid = inferior_ptid;
1709 }
1710 else if ((scheduler_mode == schedlock_on)
1711 || (scheduler_mode == schedlock_step
1712 && (step || singlestep_breakpoints_inserted_p)))
1713 {
1714 /* User-settable 'scheduler' mode requires solo thread resume. */
1715 resume_ptid = inferior_ptid;
1716 }
1717
1718 return resume_ptid;
1719}
1720
c906108c
SS
1721/* Resume the inferior, but allow a QUIT. This is useful if the user
1722 wants to interrupt some lengthy single-stepping operation
1723 (for child processes, the SIGINT goes to the inferior, and so
1724 we get a SIGINT random_signal, but for remote debugging and perhaps
1725 other targets, that's not true).
1726
1727 STEP nonzero if we should step (zero to continue instead).
1728 SIG is the signal to give the inferior (zero for none). */
1729void
2ea28649 1730resume (int step, enum gdb_signal sig)
c906108c
SS
1731{
1732 int should_resume = 1;
74b7792f 1733 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1734 struct regcache *regcache = get_current_regcache ();
1735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1736 struct thread_info *tp = inferior_thread ();
515630c5 1737 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1738 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1739
c906108c
SS
1740 QUIT;
1741
74609e71
YQ
1742 if (current_inferior ()->waiting_for_vfork_done)
1743 {
48f9886d
PA
1744 /* Don't try to single-step a vfork parent that is waiting for
1745 the child to get out of the shared memory region (by exec'ing
1746 or exiting). This is particularly important on software
1747 single-step archs, as the child process would trip on the
1748 software single step breakpoint inserted for the parent
1749 process. Since the parent will not actually execute any
1750 instruction until the child is out of the shared region (such
1751 are vfork's semantics), it is safe to simply continue it.
1752 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1753 the parent, and tell it to `keep_going', which automatically
1754 re-sets it stepping. */
74609e71
YQ
1755 if (debug_infrun)
1756 fprintf_unfiltered (gdb_stdlog,
1757 "infrun: resume : clear step\n");
1758 step = 0;
1759 }
1760
527159b7 1761 if (debug_infrun)
237fc4c9
PA
1762 fprintf_unfiltered (gdb_stdlog,
1763 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1764 "trap_expected=%d, current thread [%s] at %s\n",
1765 step, sig, tp->control.trap_expected,
1766 target_pid_to_str (inferior_ptid),
1767 paddress (gdbarch, pc));
c906108c 1768
c2c6d25f
JM
1769 /* Normally, by the time we reach `resume', the breakpoints are either
1770 removed or inserted, as appropriate. The exception is if we're sitting
1771 at a permanent breakpoint; we need to step over it, but permanent
1772 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1773 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1774 {
515630c5
UW
1775 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1776 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1777 else
ac74f770
MS
1778 error (_("\
1779The program is stopped at a permanent breakpoint, but GDB does not know\n\
1780how to step past a permanent breakpoint on this architecture. Try using\n\
1781a command like `return' or `jump' to continue execution."));
6d350bb5 1782 }
c2c6d25f 1783
237fc4c9
PA
1784 /* If enabled, step over breakpoints by executing a copy of the
1785 instruction at a different address.
1786
1787 We can't use displaced stepping when we have a signal to deliver;
1788 the comments for displaced_step_prepare explain why. The
1789 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1790 signals' explain what we do instead.
1791
1792 We can't use displaced stepping when we are waiting for vfork_done
1793 event, displaced stepping breaks the vfork child similarly as single
1794 step software breakpoint. */
515630c5 1795 if (use_displaced_stepping (gdbarch)
16c381f0 1796 && (tp->control.trap_expected
929dfd4f 1797 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1798 && sig == GDB_SIGNAL_0
74609e71 1799 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1800 {
fc1cf338
PA
1801 struct displaced_step_inferior_state *displaced;
1802
237fc4c9 1803 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1804 {
1805 /* Got placed in displaced stepping queue. Will be resumed
1806 later when all the currently queued displaced stepping
7f7efbd9
VP
1807 requests finish. The thread is not executing at this point,
1808 and the call to set_executing will be made later. But we
1809 need to call set_running here, since from frontend point of view,
1810 the thread is running. */
1811 set_running (inferior_ptid, 1);
d56b7306
VP
1812 discard_cleanups (old_cleanups);
1813 return;
1814 }
99e40580 1815
ca7781d2
LM
1816 /* Update pc to reflect the new address from which we will execute
1817 instructions due to displaced stepping. */
1818 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1819
fc1cf338
PA
1820 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1821 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1822 displaced->step_closure);
237fc4c9
PA
1823 }
1824
2facfe5c 1825 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1826 else if (step)
2facfe5c 1827 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1828
30852783
UW
1829 /* Currently, our software single-step implementation leads to different
1830 results than hardware single-stepping in one situation: when stepping
1831 into delivering a signal which has an associated signal handler,
1832 hardware single-step will stop at the first instruction of the handler,
1833 while software single-step will simply skip execution of the handler.
1834
1835 For now, this difference in behavior is accepted since there is no
1836 easy way to actually implement single-stepping into a signal handler
1837 without kernel support.
1838
1839 However, there is one scenario where this difference leads to follow-on
1840 problems: if we're stepping off a breakpoint by removing all breakpoints
1841 and then single-stepping. In this case, the software single-step
1842 behavior means that even if there is a *breakpoint* in the signal
1843 handler, GDB still would not stop.
1844
1845 Fortunately, we can at least fix this particular issue. We detect
1846 here the case where we are about to deliver a signal while software
1847 single-stepping with breakpoints removed. In this situation, we
1848 revert the decisions to remove all breakpoints and insert single-
1849 step breakpoints, and instead we install a step-resume breakpoint
1850 at the current address, deliver the signal without stepping, and
1851 once we arrive back at the step-resume breakpoint, actually step
1852 over the breakpoint we originally wanted to step over. */
1853 if (singlestep_breakpoints_inserted_p
a493e3e2 1854 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1855 {
1856 /* If we have nested signals or a pending signal is delivered
1857 immediately after a handler returns, might might already have
1858 a step-resume breakpoint set on the earlier handler. We cannot
1859 set another step-resume breakpoint; just continue on until the
1860 original breakpoint is hit. */
1861 if (tp->control.step_resume_breakpoint == NULL)
1862 {
2c03e5be 1863 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1864 tp->step_after_step_resume_breakpoint = 1;
1865 }
1866
1867 remove_single_step_breakpoints ();
1868 singlestep_breakpoints_inserted_p = 0;
1869
1870 insert_breakpoints ();
1871 tp->control.trap_expected = 0;
1872 }
1873
c906108c
SS
1874 if (should_resume)
1875 {
39f77062 1876 ptid_t resume_ptid;
dfcd3bfb 1877
cd76b0b7
VP
1878 /* If STEP is set, it's a request to use hardware stepping
1879 facilities. But in that case, we should never
1880 use singlestep breakpoint. */
1881 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1882
d4db2f36
PA
1883 /* Decide the set of threads to ask the target to resume. Start
1884 by assuming everything will be resumed, than narrow the set
1885 by applying increasingly restricting conditions. */
09cee04b 1886 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1887
1888 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1889 if (singlestep_breakpoints_inserted_p
1890 && stepping_past_singlestep_breakpoint)
c906108c 1891 {
cd76b0b7
VP
1892 /* The situation here is as follows. In thread T1 we wanted to
1893 single-step. Lacking hardware single-stepping we've
1894 set breakpoint at the PC of the next instruction -- call it
1895 P. After resuming, we've hit that breakpoint in thread T2.
1896 Now we've removed original breakpoint, inserted breakpoint
1897 at P+1, and try to step to advance T2 past breakpoint.
1898 We need to step only T2, as if T1 is allowed to freely run,
1899 it can run past P, and if other threads are allowed to run,
1900 they can hit breakpoint at P+1, and nested hits of single-step
1901 breakpoints is not something we'd want -- that's complicated
1902 to support, and has no value. */
1903 resume_ptid = inferior_ptid;
1904 }
d4db2f36 1905 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1906 && tp->control.trap_expected)
cd76b0b7 1907 {
74960c60
VP
1908 /* We're allowing a thread to run past a breakpoint it has
1909 hit, by single-stepping the thread with the breakpoint
1910 removed. In which case, we need to single-step only this
1911 thread, and keep others stopped, as they can miss this
1912 breakpoint if allowed to run.
1913
1914 The current code actually removes all breakpoints when
1915 doing this, not just the one being stepped over, so if we
1916 let other threads run, we can actually miss any
1917 breakpoint, not just the one at PC. */
ef5cf84e 1918 resume_ptid = inferior_ptid;
c906108c 1919 }
ef5cf84e 1920
515630c5 1921 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1922 {
1923 /* Most targets can step a breakpoint instruction, thus
1924 executing it normally. But if this one cannot, just
1925 continue and we will hit it anyway. */
6c95b8df 1926 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1927 step = 0;
1928 }
237fc4c9
PA
1929
1930 if (debug_displaced
515630c5 1931 && use_displaced_stepping (gdbarch)
16c381f0 1932 && tp->control.trap_expected)
237fc4c9 1933 {
515630c5 1934 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1935 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1936 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1937 gdb_byte buf[4];
1938
5af949e3
UW
1939 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1940 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1941 read_memory (actual_pc, buf, sizeof (buf));
1942 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1943 }
1944
e58b0e63
PA
1945 /* Install inferior's terminal modes. */
1946 target_terminal_inferior ();
1947
2020b7ab
PA
1948 /* Avoid confusing the next resume, if the next stop/resume
1949 happens to apply to another thread. */
a493e3e2 1950 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1951
2455069d
UW
1952 /* Advise target which signals may be handled silently. If we have
1953 removed breakpoints because we are stepping over one (which can
1954 happen only if we are not using displaced stepping), we need to
1955 receive all signals to avoid accidentally skipping a breakpoint
1956 during execution of a signal handler. */
1957 if ((step || singlestep_breakpoints_inserted_p)
1958 && tp->control.trap_expected
1959 && !use_displaced_stepping (gdbarch))
1960 target_pass_signals (0, NULL);
1961 else
a493e3e2 1962 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1963
607cecd2 1964 target_resume (resume_ptid, step, sig);
c906108c
SS
1965 }
1966
1967 discard_cleanups (old_cleanups);
1968}
1969\f
237fc4c9 1970/* Proceeding. */
c906108c
SS
1971
1972/* Clear out all variables saying what to do when inferior is continued.
1973 First do this, then set the ones you want, then call `proceed'. */
1974
a7212384
UW
1975static void
1976clear_proceed_status_thread (struct thread_info *tp)
c906108c 1977{
a7212384
UW
1978 if (debug_infrun)
1979 fprintf_unfiltered (gdb_stdlog,
1980 "infrun: clear_proceed_status_thread (%s)\n",
1981 target_pid_to_str (tp->ptid));
d6b48e9c 1982
16c381f0
JK
1983 tp->control.trap_expected = 0;
1984 tp->control.step_range_start = 0;
1985 tp->control.step_range_end = 0;
1986 tp->control.step_frame_id = null_frame_id;
1987 tp->control.step_stack_frame_id = null_frame_id;
1988 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1989 tp->stop_requested = 0;
4e1c45ea 1990
16c381f0 1991 tp->control.stop_step = 0;
32400beb 1992
16c381f0 1993 tp->control.proceed_to_finish = 0;
414c69f7 1994
a7212384 1995 /* Discard any remaining commands or status from previous stop. */
16c381f0 1996 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1997}
32400beb 1998
a7212384
UW
1999static int
2000clear_proceed_status_callback (struct thread_info *tp, void *data)
2001{
2002 if (is_exited (tp->ptid))
2003 return 0;
d6b48e9c 2004
a7212384
UW
2005 clear_proceed_status_thread (tp);
2006 return 0;
2007}
2008
2009void
2010clear_proceed_status (void)
2011{
6c95b8df
PA
2012 if (!non_stop)
2013 {
2014 /* In all-stop mode, delete the per-thread status of all
2015 threads, even if inferior_ptid is null_ptid, there may be
2016 threads on the list. E.g., we may be launching a new
2017 process, while selecting the executable. */
2018 iterate_over_threads (clear_proceed_status_callback, NULL);
2019 }
2020
a7212384
UW
2021 if (!ptid_equal (inferior_ptid, null_ptid))
2022 {
2023 struct inferior *inferior;
2024
2025 if (non_stop)
2026 {
6c95b8df
PA
2027 /* If in non-stop mode, only delete the per-thread status of
2028 the current thread. */
a7212384
UW
2029 clear_proceed_status_thread (inferior_thread ());
2030 }
6c95b8df 2031
d6b48e9c 2032 inferior = current_inferior ();
16c381f0 2033 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2034 }
2035
c906108c 2036 stop_after_trap = 0;
f3b1572e
PA
2037
2038 observer_notify_about_to_proceed ();
c906108c 2039
d5c31457
UW
2040 if (stop_registers)
2041 {
2042 regcache_xfree (stop_registers);
2043 stop_registers = NULL;
2044 }
c906108c
SS
2045}
2046
5a437975
DE
2047/* Check the current thread against the thread that reported the most recent
2048 event. If a step-over is required return TRUE and set the current thread
2049 to the old thread. Otherwise return FALSE.
2050
1777feb0 2051 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2052
2053static int
6a6b96b9 2054prepare_to_proceed (int step)
ea67f13b
DJ
2055{
2056 ptid_t wait_ptid;
2057 struct target_waitstatus wait_status;
5a437975
DE
2058 int schedlock_enabled;
2059
2060 /* With non-stop mode on, threads are always handled individually. */
2061 gdb_assert (! non_stop);
ea67f13b
DJ
2062
2063 /* Get the last target status returned by target_wait(). */
2064 get_last_target_status (&wait_ptid, &wait_status);
2065
6a6b96b9 2066 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2067 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2068 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2069 && wait_status.value.sig != GDB_SIGNAL_ILL
2070 && wait_status.value.sig != GDB_SIGNAL_SEGV
2071 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2072 {
2073 return 0;
2074 }
2075
5a437975
DE
2076 schedlock_enabled = (scheduler_mode == schedlock_on
2077 || (scheduler_mode == schedlock_step
2078 && step));
2079
d4db2f36
PA
2080 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2081 if (schedlock_enabled)
2082 return 0;
2083
2084 /* Don't switch over if we're about to resume some other process
2085 other than WAIT_PTID's, and schedule-multiple is off. */
2086 if (!sched_multi
2087 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2088 return 0;
2089
6a6b96b9 2090 /* Switched over from WAIT_PID. */
ea67f13b 2091 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2092 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2093 {
515630c5
UW
2094 struct regcache *regcache = get_thread_regcache (wait_ptid);
2095
6c95b8df
PA
2096 if (breakpoint_here_p (get_regcache_aspace (regcache),
2097 regcache_read_pc (regcache)))
ea67f13b 2098 {
515630c5
UW
2099 /* If stepping, remember current thread to switch back to. */
2100 if (step)
2101 deferred_step_ptid = inferior_ptid;
ea67f13b 2102
515630c5
UW
2103 /* Switch back to WAIT_PID thread. */
2104 switch_to_thread (wait_ptid);
6a6b96b9 2105
0d9a9a5f
PA
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: prepare_to_proceed (step=%d), "
2109 "switched to [%s]\n",
2110 step, target_pid_to_str (inferior_ptid));
2111
515630c5
UW
2112 /* We return 1 to indicate that there is a breakpoint here,
2113 so we need to step over it before continuing to avoid
1777feb0 2114 hitting it straight away. */
515630c5
UW
2115 return 1;
2116 }
ea67f13b
DJ
2117 }
2118
2119 return 0;
ea67f13b 2120}
e4846b08 2121
c906108c
SS
2122/* Basic routine for continuing the program in various fashions.
2123
2124 ADDR is the address to resume at, or -1 for resume where stopped.
2125 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2126 or -1 for act according to how it stopped.
c906108c 2127 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2128 -1 means return after that and print nothing.
2129 You should probably set various step_... variables
2130 before calling here, if you are stepping.
c906108c
SS
2131
2132 You should call clear_proceed_status before calling proceed. */
2133
2134void
2ea28649 2135proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2136{
e58b0e63
PA
2137 struct regcache *regcache;
2138 struct gdbarch *gdbarch;
4e1c45ea 2139 struct thread_info *tp;
e58b0e63 2140 CORE_ADDR pc;
6c95b8df 2141 struct address_space *aspace;
0de5618e
YQ
2142 /* GDB may force the inferior to step due to various reasons. */
2143 int force_step = 0;
c906108c 2144
e58b0e63
PA
2145 /* If we're stopped at a fork/vfork, follow the branch set by the
2146 "set follow-fork-mode" command; otherwise, we'll just proceed
2147 resuming the current thread. */
2148 if (!follow_fork ())
2149 {
2150 /* The target for some reason decided not to resume. */
2151 normal_stop ();
f148b27e
PA
2152 if (target_can_async_p ())
2153 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2154 return;
2155 }
2156
842951eb
PA
2157 /* We'll update this if & when we switch to a new thread. */
2158 previous_inferior_ptid = inferior_ptid;
2159
e58b0e63
PA
2160 regcache = get_current_regcache ();
2161 gdbarch = get_regcache_arch (regcache);
6c95b8df 2162 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2163 pc = regcache_read_pc (regcache);
2164
c906108c 2165 if (step > 0)
515630c5 2166 step_start_function = find_pc_function (pc);
c906108c
SS
2167 if (step < 0)
2168 stop_after_trap = 1;
2169
2acceee2 2170 if (addr == (CORE_ADDR) -1)
c906108c 2171 {
6c95b8df 2172 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2173 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2174 /* There is a breakpoint at the address we will resume at,
2175 step one instruction before inserting breakpoints so that
2176 we do not stop right away (and report a second hit at this
b2175913
MS
2177 breakpoint).
2178
2179 Note, we don't do this in reverse, because we won't
2180 actually be executing the breakpoint insn anyway.
2181 We'll be (un-)executing the previous instruction. */
2182
0de5618e 2183 force_step = 1;
515630c5
UW
2184 else if (gdbarch_single_step_through_delay_p (gdbarch)
2185 && gdbarch_single_step_through_delay (gdbarch,
2186 get_current_frame ()))
3352ef37
AC
2187 /* We stepped onto an instruction that needs to be stepped
2188 again before re-inserting the breakpoint, do so. */
0de5618e 2189 force_step = 1;
c906108c
SS
2190 }
2191 else
2192 {
515630c5 2193 regcache_write_pc (regcache, addr);
c906108c
SS
2194 }
2195
527159b7 2196 if (debug_infrun)
8a9de0e4 2197 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2198 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2199 paddress (gdbarch, addr), siggnal, step);
527159b7 2200
94cc34af
PA
2201 if (non_stop)
2202 /* In non-stop, each thread is handled individually. The context
2203 must already be set to the right thread here. */
2204 ;
2205 else
2206 {
2207 /* In a multi-threaded task we may select another thread and
2208 then continue or step.
c906108c 2209
94cc34af
PA
2210 But if the old thread was stopped at a breakpoint, it will
2211 immediately cause another breakpoint stop without any
2212 execution (i.e. it will report a breakpoint hit incorrectly).
2213 So we must step over it first.
c906108c 2214
94cc34af
PA
2215 prepare_to_proceed checks the current thread against the
2216 thread that reported the most recent event. If a step-over
2217 is required it returns TRUE and sets the current thread to
1777feb0 2218 the old thread. */
94cc34af 2219 if (prepare_to_proceed (step))
0de5618e 2220 force_step = 1;
94cc34af 2221 }
c906108c 2222
4e1c45ea
PA
2223 /* prepare_to_proceed may change the current thread. */
2224 tp = inferior_thread ();
2225
0de5618e 2226 if (force_step)
30852783
UW
2227 {
2228 tp->control.trap_expected = 1;
2229 /* If displaced stepping is enabled, we can step over the
2230 breakpoint without hitting it, so leave all breakpoints
2231 inserted. Otherwise we need to disable all breakpoints, step
2232 one instruction, and then re-add them when that step is
2233 finished. */
2234 if (!use_displaced_stepping (gdbarch))
2235 remove_breakpoints ();
2236 }
2237
2238 /* We can insert breakpoints if we're not trying to step over one,
2239 or if we are stepping over one but we're using displaced stepping
2240 to do so. */
2241 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2242 insert_breakpoints ();
2243
2020b7ab
PA
2244 if (!non_stop)
2245 {
2246 /* Pass the last stop signal to the thread we're resuming,
2247 irrespective of whether the current thread is the thread that
2248 got the last event or not. This was historically GDB's
2249 behaviour before keeping a stop_signal per thread. */
2250
2251 struct thread_info *last_thread;
2252 ptid_t last_ptid;
2253 struct target_waitstatus last_status;
2254
2255 get_last_target_status (&last_ptid, &last_status);
2256 if (!ptid_equal (inferior_ptid, last_ptid)
2257 && !ptid_equal (last_ptid, null_ptid)
2258 && !ptid_equal (last_ptid, minus_one_ptid))
2259 {
e09875d4 2260 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2261 if (last_thread)
2262 {
16c381f0 2263 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2264 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2265 }
2266 }
2267 }
2268
a493e3e2 2269 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2270 tp->suspend.stop_signal = siggnal;
c906108c
SS
2271 /* If this signal should not be seen by program,
2272 give it zero. Used for debugging signals. */
16c381f0 2273 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2274 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2275
2276 annotate_starting ();
2277
2278 /* Make sure that output from GDB appears before output from the
2279 inferior. */
2280 gdb_flush (gdb_stdout);
2281
e4846b08
JJ
2282 /* Refresh prev_pc value just prior to resuming. This used to be
2283 done in stop_stepping, however, setting prev_pc there did not handle
2284 scenarios such as inferior function calls or returning from
2285 a function via the return command. In those cases, the prev_pc
2286 value was not set properly for subsequent commands. The prev_pc value
2287 is used to initialize the starting line number in the ecs. With an
2288 invalid value, the gdb next command ends up stopping at the position
2289 represented by the next line table entry past our start position.
2290 On platforms that generate one line table entry per line, this
2291 is not a problem. However, on the ia64, the compiler generates
2292 extraneous line table entries that do not increase the line number.
2293 When we issue the gdb next command on the ia64 after an inferior call
2294 or a return command, we often end up a few instructions forward, still
2295 within the original line we started.
2296
d5cd6034
JB
2297 An attempt was made to refresh the prev_pc at the same time the
2298 execution_control_state is initialized (for instance, just before
2299 waiting for an inferior event). But this approach did not work
2300 because of platforms that use ptrace, where the pc register cannot
2301 be read unless the inferior is stopped. At that point, we are not
2302 guaranteed the inferior is stopped and so the regcache_read_pc() call
2303 can fail. Setting the prev_pc value here ensures the value is updated
2304 correctly when the inferior is stopped. */
4e1c45ea 2305 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2306
59f0d5d9 2307 /* Fill in with reasonable starting values. */
4e1c45ea 2308 init_thread_stepping_state (tp);
59f0d5d9 2309
59f0d5d9
PA
2310 /* Reset to normal state. */
2311 init_infwait_state ();
2312
c906108c 2313 /* Resume inferior. */
0de5618e
YQ
2314 resume (force_step || step || bpstat_should_step (),
2315 tp->suspend.stop_signal);
c906108c
SS
2316
2317 /* Wait for it to stop (if not standalone)
2318 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2319 /* Do this only if we are not using the event loop, or if the target
1777feb0 2320 does not support asynchronous execution. */
362646f5 2321 if (!target_can_async_p ())
43ff13b4 2322 {
e4c8541f 2323 wait_for_inferior ();
43ff13b4
JM
2324 normal_stop ();
2325 }
c906108c 2326}
c906108c
SS
2327\f
2328
2329/* Start remote-debugging of a machine over a serial link. */
96baa820 2330
c906108c 2331void
8621d6a9 2332start_remote (int from_tty)
c906108c 2333{
d6b48e9c 2334 struct inferior *inferior;
d6b48e9c
PA
2335
2336 inferior = current_inferior ();
16c381f0 2337 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2338
1777feb0 2339 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2340 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2341 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2342 nothing is returned (instead of just blocking). Because of this,
2343 targets expecting an immediate response need to, internally, set
2344 things up so that the target_wait() is forced to eventually
1777feb0 2345 timeout. */
6426a772
JM
2346 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2347 differentiate to its caller what the state of the target is after
2348 the initial open has been performed. Here we're assuming that
2349 the target has stopped. It should be possible to eventually have
2350 target_open() return to the caller an indication that the target
2351 is currently running and GDB state should be set to the same as
1777feb0 2352 for an async run. */
e4c8541f 2353 wait_for_inferior ();
8621d6a9
DJ
2354
2355 /* Now that the inferior has stopped, do any bookkeeping like
2356 loading shared libraries. We want to do this before normal_stop,
2357 so that the displayed frame is up to date. */
2358 post_create_inferior (&current_target, from_tty);
2359
6426a772 2360 normal_stop ();
c906108c
SS
2361}
2362
2363/* Initialize static vars when a new inferior begins. */
2364
2365void
96baa820 2366init_wait_for_inferior (void)
c906108c
SS
2367{
2368 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2369
c906108c
SS
2370 breakpoint_init_inferior (inf_starting);
2371
c906108c 2372 clear_proceed_status ();
9f976b41
DJ
2373
2374 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2375 deferred_step_ptid = null_ptid;
ca005067
DJ
2376
2377 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2378
842951eb 2379 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2380 init_infwait_state ();
2381
edb3359d
DJ
2382 /* Discard any skipped inlined frames. */
2383 clear_inline_frame_state (minus_one_ptid);
c906108c 2384}
237fc4c9 2385
c906108c 2386\f
b83266a0
SS
2387/* This enum encodes possible reasons for doing a target_wait, so that
2388 wfi can call target_wait in one place. (Ultimately the call will be
2389 moved out of the infinite loop entirely.) */
2390
c5aa993b
JM
2391enum infwait_states
2392{
cd0fc7c3
SS
2393 infwait_normal_state,
2394 infwait_thread_hop_state,
d983da9c 2395 infwait_step_watch_state,
cd0fc7c3 2396 infwait_nonstep_watch_state
b83266a0
SS
2397};
2398
0d1e5fa7
PA
2399/* The PTID we'll do a target_wait on.*/
2400ptid_t waiton_ptid;
2401
2402/* Current inferior wait state. */
8870954f 2403static enum infwait_states infwait_state;
cd0fc7c3 2404
0d1e5fa7
PA
2405/* Data to be passed around while handling an event. This data is
2406 discarded between events. */
c5aa993b 2407struct execution_control_state
488f131b 2408{
0d1e5fa7 2409 ptid_t ptid;
4e1c45ea
PA
2410 /* The thread that got the event, if this was a thread event; NULL
2411 otherwise. */
2412 struct thread_info *event_thread;
2413
488f131b 2414 struct target_waitstatus ws;
488f131b 2415 int random_signal;
7e324e48 2416 int stop_func_filled_in;
488f131b
JB
2417 CORE_ADDR stop_func_start;
2418 CORE_ADDR stop_func_end;
2c02bd72 2419 const char *stop_func_name;
488f131b
JB
2420 int wait_some_more;
2421};
2422
ec9499be 2423static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2424
568d6575
UW
2425static void handle_step_into_function (struct gdbarch *gdbarch,
2426 struct execution_control_state *ecs);
2427static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2428 struct execution_control_state *ecs);
186c406b 2429static void check_exception_resume (struct execution_control_state *,
28106bc2 2430 struct frame_info *);
611c83ae 2431
104c1213
JM
2432static void stop_stepping (struct execution_control_state *ecs);
2433static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2434static void keep_going (struct execution_control_state *ecs);
104c1213 2435
252fbfc8
PA
2436/* Callback for iterate over threads. If the thread is stopped, but
2437 the user/frontend doesn't know about that yet, go through
2438 normal_stop, as if the thread had just stopped now. ARG points at
2439 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2440 ptid_is_pid(PTID) is true, applies to all threads of the process
2441 pointed at by PTID. Otherwise, apply only to the thread pointed by
2442 PTID. */
2443
2444static int
2445infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2446{
2447 ptid_t ptid = * (ptid_t *) arg;
2448
2449 if ((ptid_equal (info->ptid, ptid)
2450 || ptid_equal (minus_one_ptid, ptid)
2451 || (ptid_is_pid (ptid)
2452 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2453 && is_running (info->ptid)
2454 && !is_executing (info->ptid))
2455 {
2456 struct cleanup *old_chain;
2457 struct execution_control_state ecss;
2458 struct execution_control_state *ecs = &ecss;
2459
2460 memset (ecs, 0, sizeof (*ecs));
2461
2462 old_chain = make_cleanup_restore_current_thread ();
2463
252fbfc8
PA
2464 /* Go through handle_inferior_event/normal_stop, so we always
2465 have consistent output as if the stop event had been
2466 reported. */
2467 ecs->ptid = info->ptid;
e09875d4 2468 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2469 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2470 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2471
2472 handle_inferior_event (ecs);
2473
2474 if (!ecs->wait_some_more)
2475 {
2476 struct thread_info *tp;
2477
2478 normal_stop ();
2479
fa4cd53f 2480 /* Finish off the continuations. */
252fbfc8 2481 tp = inferior_thread ();
fa4cd53f
PA
2482 do_all_intermediate_continuations_thread (tp, 1);
2483 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2484 }
2485
2486 do_cleanups (old_chain);
2487 }
2488
2489 return 0;
2490}
2491
2492/* This function is attached as a "thread_stop_requested" observer.
2493 Cleanup local state that assumed the PTID was to be resumed, and
2494 report the stop to the frontend. */
2495
2c0b251b 2496static void
252fbfc8
PA
2497infrun_thread_stop_requested (ptid_t ptid)
2498{
fc1cf338 2499 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2500
2501 /* PTID was requested to stop. Remove it from the displaced
2502 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2503
2504 for (displaced = displaced_step_inferior_states;
2505 displaced;
2506 displaced = displaced->next)
252fbfc8 2507 {
fc1cf338 2508 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2509
fc1cf338
PA
2510 it = displaced->step_request_queue;
2511 prev_next_p = &displaced->step_request_queue;
2512 while (it)
252fbfc8 2513 {
fc1cf338
PA
2514 if (ptid_match (it->ptid, ptid))
2515 {
2516 *prev_next_p = it->next;
2517 it->next = NULL;
2518 xfree (it);
2519 }
252fbfc8 2520 else
fc1cf338
PA
2521 {
2522 prev_next_p = &it->next;
2523 }
252fbfc8 2524
fc1cf338 2525 it = *prev_next_p;
252fbfc8 2526 }
252fbfc8
PA
2527 }
2528
2529 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2530}
2531
a07daef3
PA
2532static void
2533infrun_thread_thread_exit (struct thread_info *tp, int silent)
2534{
2535 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2536 nullify_last_target_wait_ptid ();
2537}
2538
4e1c45ea
PA
2539/* Callback for iterate_over_threads. */
2540
2541static int
2542delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2543{
2544 if (is_exited (info->ptid))
2545 return 0;
2546
2547 delete_step_resume_breakpoint (info);
186c406b 2548 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2549 return 0;
2550}
2551
2552/* In all-stop, delete the step resume breakpoint of any thread that
2553 had one. In non-stop, delete the step resume breakpoint of the
2554 thread that just stopped. */
2555
2556static void
2557delete_step_thread_step_resume_breakpoint (void)
2558{
2559 if (!target_has_execution
2560 || ptid_equal (inferior_ptid, null_ptid))
2561 /* If the inferior has exited, we have already deleted the step
2562 resume breakpoints out of GDB's lists. */
2563 return;
2564
2565 if (non_stop)
2566 {
2567 /* If in non-stop mode, only delete the step-resume or
2568 longjmp-resume breakpoint of the thread that just stopped
2569 stepping. */
2570 struct thread_info *tp = inferior_thread ();
abbb1732 2571
4e1c45ea 2572 delete_step_resume_breakpoint (tp);
186c406b 2573 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2574 }
2575 else
2576 /* In all-stop mode, delete all step-resume and longjmp-resume
2577 breakpoints of any thread that had them. */
2578 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2579}
2580
1777feb0 2581/* A cleanup wrapper. */
4e1c45ea
PA
2582
2583static void
2584delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2585{
2586 delete_step_thread_step_resume_breakpoint ();
2587}
2588
223698f8
DE
2589/* Pretty print the results of target_wait, for debugging purposes. */
2590
2591static void
2592print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2593 const struct target_waitstatus *ws)
2594{
2595 char *status_string = target_waitstatus_to_string (ws);
2596 struct ui_file *tmp_stream = mem_fileopen ();
2597 char *text;
223698f8
DE
2598
2599 /* The text is split over several lines because it was getting too long.
2600 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2601 output as a unit; we want only one timestamp printed if debug_timestamp
2602 is set. */
2603
2604 fprintf_unfiltered (tmp_stream,
2605 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2606 if (PIDGET (waiton_ptid) != -1)
2607 fprintf_unfiltered (tmp_stream,
2608 " [%s]", target_pid_to_str (waiton_ptid));
2609 fprintf_unfiltered (tmp_stream, ", status) =\n");
2610 fprintf_unfiltered (tmp_stream,
2611 "infrun: %d [%s],\n",
2612 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: %s\n",
2615 status_string);
2616
759ef836 2617 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2618
2619 /* This uses %s in part to handle %'s in the text, but also to avoid
2620 a gcc error: the format attribute requires a string literal. */
2621 fprintf_unfiltered (gdb_stdlog, "%s", text);
2622
2623 xfree (status_string);
2624 xfree (text);
2625 ui_file_delete (tmp_stream);
2626}
2627
24291992
PA
2628/* Prepare and stabilize the inferior for detaching it. E.g.,
2629 detaching while a thread is displaced stepping is a recipe for
2630 crashing it, as nothing would readjust the PC out of the scratch
2631 pad. */
2632
2633void
2634prepare_for_detach (void)
2635{
2636 struct inferior *inf = current_inferior ();
2637 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2638 struct cleanup *old_chain_1;
2639 struct displaced_step_inferior_state *displaced;
2640
2641 displaced = get_displaced_stepping_state (inf->pid);
2642
2643 /* Is any thread of this process displaced stepping? If not,
2644 there's nothing else to do. */
2645 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2646 return;
2647
2648 if (debug_infrun)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "displaced-stepping in-process while detaching");
2651
2652 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2653 inf->detaching = 1;
2654
2655 while (!ptid_equal (displaced->step_ptid, null_ptid))
2656 {
2657 struct cleanup *old_chain_2;
2658 struct execution_control_state ecss;
2659 struct execution_control_state *ecs;
2660
2661 ecs = &ecss;
2662 memset (ecs, 0, sizeof (*ecs));
2663
2664 overlay_cache_invalid = 1;
2665
24291992
PA
2666 if (deprecated_target_wait_hook)
2667 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2668 else
2669 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2670
2671 if (debug_infrun)
2672 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2673
2674 /* If an error happens while handling the event, propagate GDB's
2675 knowledge of the executing state to the frontend/user running
2676 state. */
3e43a32a
MS
2677 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2678 &minus_one_ptid);
24291992
PA
2679
2680 /* Now figure out what to do with the result of the result. */
2681 handle_inferior_event (ecs);
2682
2683 /* No error, don't finish the state yet. */
2684 discard_cleanups (old_chain_2);
2685
2686 /* Breakpoints and watchpoints are not installed on the target
2687 at this point, and signals are passed directly to the
2688 inferior, so this must mean the process is gone. */
2689 if (!ecs->wait_some_more)
2690 {
2691 discard_cleanups (old_chain_1);
2692 error (_("Program exited while detaching"));
2693 }
2694 }
2695
2696 discard_cleanups (old_chain_1);
2697}
2698
cd0fc7c3 2699/* Wait for control to return from inferior to debugger.
ae123ec6 2700
cd0fc7c3
SS
2701 If inferior gets a signal, we may decide to start it up again
2702 instead of returning. That is why there is a loop in this function.
2703 When this function actually returns it means the inferior
2704 should be left stopped and GDB should read more commands. */
2705
2706void
e4c8541f 2707wait_for_inferior (void)
cd0fc7c3
SS
2708{
2709 struct cleanup *old_cleanups;
c906108c 2710
527159b7 2711 if (debug_infrun)
ae123ec6 2712 fprintf_unfiltered
e4c8541f 2713 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2714
4e1c45ea
PA
2715 old_cleanups =
2716 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2717
c906108c
SS
2718 while (1)
2719 {
ae25568b
PA
2720 struct execution_control_state ecss;
2721 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2722 struct cleanup *old_chain;
2723
ae25568b
PA
2724 memset (ecs, 0, sizeof (*ecs));
2725
ec9499be 2726 overlay_cache_invalid = 1;
ec9499be 2727
9a4105ab 2728 if (deprecated_target_wait_hook)
47608cb1 2729 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2730 else
47608cb1 2731 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2732
f00150c9 2733 if (debug_infrun)
223698f8 2734 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2735
29f49a6a
PA
2736 /* If an error happens while handling the event, propagate GDB's
2737 knowledge of the executing state to the frontend/user running
2738 state. */
2739 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2740
cd0fc7c3
SS
2741 /* Now figure out what to do with the result of the result. */
2742 handle_inferior_event (ecs);
c906108c 2743
29f49a6a
PA
2744 /* No error, don't finish the state yet. */
2745 discard_cleanups (old_chain);
2746
cd0fc7c3
SS
2747 if (!ecs->wait_some_more)
2748 break;
2749 }
4e1c45ea 2750
cd0fc7c3
SS
2751 do_cleanups (old_cleanups);
2752}
c906108c 2753
1777feb0 2754/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2755 event loop whenever a change of state is detected on the file
1777feb0
MS
2756 descriptor corresponding to the target. It can be called more than
2757 once to complete a single execution command. In such cases we need
2758 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2759 that this function is called for a single execution command, then
2760 report to the user that the inferior has stopped, and do the
1777feb0 2761 necessary cleanups. */
43ff13b4
JM
2762
2763void
fba45db2 2764fetch_inferior_event (void *client_data)
43ff13b4 2765{
0d1e5fa7 2766 struct execution_control_state ecss;
a474d7c2 2767 struct execution_control_state *ecs = &ecss;
4f8d22e3 2768 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2769 struct cleanup *ts_old_chain;
4f8d22e3 2770 int was_sync = sync_execution;
0f641c01 2771 int cmd_done = 0;
43ff13b4 2772
0d1e5fa7
PA
2773 memset (ecs, 0, sizeof (*ecs));
2774
c5187ac6
PA
2775 /* We're handling a live event, so make sure we're doing live
2776 debugging. If we're looking at traceframes while the target is
2777 running, we're going to need to get back to that mode after
2778 handling the event. */
2779 if (non_stop)
2780 {
2781 make_cleanup_restore_current_traceframe ();
e6e4e701 2782 set_current_traceframe (-1);
c5187ac6
PA
2783 }
2784
4f8d22e3
PA
2785 if (non_stop)
2786 /* In non-stop mode, the user/frontend should not notice a thread
2787 switch due to internal events. Make sure we reverse to the
2788 user selected thread and frame after handling the event and
2789 running any breakpoint commands. */
2790 make_cleanup_restore_current_thread ();
2791
ec9499be 2792 overlay_cache_invalid = 1;
3dd5b83d 2793
32231432
PA
2794 make_cleanup_restore_integer (&execution_direction);
2795 execution_direction = target_execution_direction ();
2796
9a4105ab 2797 if (deprecated_target_wait_hook)
a474d7c2 2798 ecs->ptid =
47608cb1 2799 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2800 else
47608cb1 2801 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2802
f00150c9 2803 if (debug_infrun)
223698f8 2804 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2805
29f49a6a
PA
2806 /* If an error happens while handling the event, propagate GDB's
2807 knowledge of the executing state to the frontend/user running
2808 state. */
2809 if (!non_stop)
2810 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2811 else
2812 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2813
353d1d73
JK
2814 /* Get executed before make_cleanup_restore_current_thread above to apply
2815 still for the thread which has thrown the exception. */
2816 make_bpstat_clear_actions_cleanup ();
2817
43ff13b4 2818 /* Now figure out what to do with the result of the result. */
a474d7c2 2819 handle_inferior_event (ecs);
43ff13b4 2820
a474d7c2 2821 if (!ecs->wait_some_more)
43ff13b4 2822 {
d6b48e9c
PA
2823 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2824
4e1c45ea 2825 delete_step_thread_step_resume_breakpoint ();
f107f563 2826
d6b48e9c 2827 /* We may not find an inferior if this was a process exit. */
16c381f0 2828 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2829 normal_stop ();
2830
af679fd0 2831 if (target_has_execution
0e5bf2a8 2832 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2833 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2834 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2835 && ecs->event_thread->step_multi
16c381f0 2836 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2837 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2838 else
0f641c01
PA
2839 {
2840 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2841 cmd_done = 1;
2842 }
43ff13b4 2843 }
4f8d22e3 2844
29f49a6a
PA
2845 /* No error, don't finish the thread states yet. */
2846 discard_cleanups (ts_old_chain);
2847
4f8d22e3
PA
2848 /* Revert thread and frame. */
2849 do_cleanups (old_chain);
2850
2851 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2852 restore the prompt (a synchronous execution command has finished,
2853 and we're ready for input). */
b4a14fd0 2854 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2855 display_gdb_prompt (0);
0f641c01
PA
2856
2857 if (cmd_done
2858 && !was_sync
2859 && exec_done_display_p
2860 && (ptid_equal (inferior_ptid, null_ptid)
2861 || !is_running (inferior_ptid)))
2862 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2863}
2864
edb3359d
DJ
2865/* Record the frame and location we're currently stepping through. */
2866void
2867set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2868{
2869 struct thread_info *tp = inferior_thread ();
2870
16c381f0
JK
2871 tp->control.step_frame_id = get_frame_id (frame);
2872 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2873
2874 tp->current_symtab = sal.symtab;
2875 tp->current_line = sal.line;
2876}
2877
0d1e5fa7
PA
2878/* Clear context switchable stepping state. */
2879
2880void
4e1c45ea 2881init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2882{
2883 tss->stepping_over_breakpoint = 0;
2884 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2885}
2886
e02bc4cc 2887/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2888 target_wait()/deprecated_target_wait_hook(). The data is actually
2889 cached by handle_inferior_event(), which gets called immediately
2890 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2891
2892void
488f131b 2893get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2894{
39f77062 2895 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2896 *status = target_last_waitstatus;
2897}
2898
ac264b3b
MS
2899void
2900nullify_last_target_wait_ptid (void)
2901{
2902 target_last_wait_ptid = minus_one_ptid;
2903}
2904
dcf4fbde 2905/* Switch thread contexts. */
dd80620e
MS
2906
2907static void
0d1e5fa7 2908context_switch (ptid_t ptid)
dd80620e 2909{
4b51d87b 2910 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2911 {
2912 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2913 target_pid_to_str (inferior_ptid));
2914 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2915 target_pid_to_str (ptid));
fd48f117
DJ
2916 }
2917
0d1e5fa7 2918 switch_to_thread (ptid);
dd80620e
MS
2919}
2920
4fa8626c
DJ
2921static void
2922adjust_pc_after_break (struct execution_control_state *ecs)
2923{
24a73cce
UW
2924 struct regcache *regcache;
2925 struct gdbarch *gdbarch;
6c95b8df 2926 struct address_space *aspace;
8aad930b 2927 CORE_ADDR breakpoint_pc;
4fa8626c 2928
4fa8626c
DJ
2929 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2930 we aren't, just return.
9709f61c
DJ
2931
2932 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2933 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2934 implemented by software breakpoints should be handled through the normal
2935 breakpoint layer.
8fb3e588 2936
4fa8626c
DJ
2937 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2938 different signals (SIGILL or SIGEMT for instance), but it is less
2939 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2940 gdbarch_decr_pc_after_break. I don't know any specific target that
2941 generates these signals at breakpoints (the code has been in GDB since at
2942 least 1992) so I can not guess how to handle them here.
8fb3e588 2943
e6cf7916
UW
2944 In earlier versions of GDB, a target with
2945 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2946 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2947 target with both of these set in GDB history, and it seems unlikely to be
2948 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2949
2950 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2951 return;
2952
a493e3e2 2953 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2954 return;
2955
4058b839
PA
2956 /* In reverse execution, when a breakpoint is hit, the instruction
2957 under it has already been de-executed. The reported PC always
2958 points at the breakpoint address, so adjusting it further would
2959 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2960 architecture:
2961
2962 B1 0x08000000 : INSN1
2963 B2 0x08000001 : INSN2
2964 0x08000002 : INSN3
2965 PC -> 0x08000003 : INSN4
2966
2967 Say you're stopped at 0x08000003 as above. Reverse continuing
2968 from that point should hit B2 as below. Reading the PC when the
2969 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2970 been de-executed already.
2971
2972 B1 0x08000000 : INSN1
2973 B2 PC -> 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 0x08000003 : INSN4
2976
2977 We can't apply the same logic as for forward execution, because
2978 we would wrongly adjust the PC to 0x08000000, since there's a
2979 breakpoint at PC - 1. We'd then report a hit on B1, although
2980 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2981 behaviour. */
2982 if (execution_direction == EXEC_REVERSE)
2983 return;
2984
24a73cce
UW
2985 /* If this target does not decrement the PC after breakpoints, then
2986 we have nothing to do. */
2987 regcache = get_thread_regcache (ecs->ptid);
2988 gdbarch = get_regcache_arch (regcache);
2989 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2990 return;
2991
6c95b8df
PA
2992 aspace = get_regcache_aspace (regcache);
2993
8aad930b
AC
2994 /* Find the location where (if we've hit a breakpoint) the
2995 breakpoint would be. */
515630c5
UW
2996 breakpoint_pc = regcache_read_pc (regcache)
2997 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2998
1c5cfe86
PA
2999 /* Check whether there actually is a software breakpoint inserted at
3000 that location.
3001
3002 If in non-stop mode, a race condition is possible where we've
3003 removed a breakpoint, but stop events for that breakpoint were
3004 already queued and arrive later. To suppress those spurious
3005 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3006 and retire them after a number of stop events are reported. */
6c95b8df
PA
3007 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3008 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3009 {
96429cc8 3010 struct cleanup *old_cleanups = NULL;
abbb1732 3011
96429cc8
HZ
3012 if (RECORD_IS_USED)
3013 old_cleanups = record_gdb_operation_disable_set ();
3014
1c0fdd0e
UW
3015 /* When using hardware single-step, a SIGTRAP is reported for both
3016 a completed single-step and a software breakpoint. Need to
3017 differentiate between the two, as the latter needs adjusting
3018 but the former does not.
3019
3020 The SIGTRAP can be due to a completed hardware single-step only if
3021 - we didn't insert software single-step breakpoints
3022 - the thread to be examined is still the current thread
3023 - this thread is currently being stepped
3024
3025 If any of these events did not occur, we must have stopped due
3026 to hitting a software breakpoint, and have to back up to the
3027 breakpoint address.
3028
3029 As a special case, we could have hardware single-stepped a
3030 software breakpoint. In this case (prev_pc == breakpoint_pc),
3031 we also need to back up to the breakpoint address. */
3032
3033 if (singlestep_breakpoints_inserted_p
3034 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3035 || !currently_stepping (ecs->event_thread)
3036 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3037 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3038
3039 if (RECORD_IS_USED)
3040 do_cleanups (old_cleanups);
8aad930b 3041 }
4fa8626c
DJ
3042}
3043
7a76f5b8 3044static void
0d1e5fa7
PA
3045init_infwait_state (void)
3046{
3047 waiton_ptid = pid_to_ptid (-1);
3048 infwait_state = infwait_normal_state;
3049}
3050
edb3359d
DJ
3051static int
3052stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3053{
3054 for (frame = get_prev_frame (frame);
3055 frame != NULL;
3056 frame = get_prev_frame (frame))
3057 {
3058 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3059 return 1;
3060 if (get_frame_type (frame) != INLINE_FRAME)
3061 break;
3062 }
3063
3064 return 0;
3065}
3066
a96d9b2e
SDJ
3067/* Auxiliary function that handles syscall entry/return events.
3068 It returns 1 if the inferior should keep going (and GDB
3069 should ignore the event), or 0 if the event deserves to be
3070 processed. */
ca2163eb 3071
a96d9b2e 3072static int
ca2163eb 3073handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3074{
ca2163eb
PA
3075 struct regcache *regcache;
3076 struct gdbarch *gdbarch;
3077 int syscall_number;
3078
3079 if (!ptid_equal (ecs->ptid, inferior_ptid))
3080 context_switch (ecs->ptid);
3081
3082 regcache = get_thread_regcache (ecs->ptid);
3083 gdbarch = get_regcache_arch (regcache);
f90263c1 3084 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3085 stop_pc = regcache_read_pc (regcache);
3086
a96d9b2e
SDJ
3087 if (catch_syscall_enabled () > 0
3088 && catching_syscall_number (syscall_number) > 0)
3089 {
ab04a2af
TT
3090 enum bpstat_signal_value sval;
3091
a96d9b2e
SDJ
3092 if (debug_infrun)
3093 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3094 syscall_number);
a96d9b2e 3095
16c381f0 3096 ecs->event_thread->control.stop_bpstat
6c95b8df 3097 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3098 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3099
3100 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3101 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3102
ca2163eb
PA
3103 if (!ecs->random_signal)
3104 {
3105 /* Catchpoint hit. */
a493e3e2 3106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3107 return 0;
3108 }
a96d9b2e 3109 }
ca2163eb
PA
3110
3111 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3112 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3113 keep_going (ecs);
3114 return 1;
a96d9b2e
SDJ
3115}
3116
7e324e48
GB
3117/* Clear the supplied execution_control_state's stop_func_* fields. */
3118
3119static void
3120clear_stop_func (struct execution_control_state *ecs)
3121{
3122 ecs->stop_func_filled_in = 0;
3123 ecs->stop_func_start = 0;
3124 ecs->stop_func_end = 0;
3125 ecs->stop_func_name = NULL;
3126}
3127
3128/* Lazily fill in the execution_control_state's stop_func_* fields. */
3129
3130static void
3131fill_in_stop_func (struct gdbarch *gdbarch,
3132 struct execution_control_state *ecs)
3133{
3134 if (!ecs->stop_func_filled_in)
3135 {
3136 /* Don't care about return value; stop_func_start and stop_func_name
3137 will both be 0 if it doesn't work. */
3138 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3139 &ecs->stop_func_start, &ecs->stop_func_end);
3140 ecs->stop_func_start
3141 += gdbarch_deprecated_function_start_offset (gdbarch);
3142
3143 ecs->stop_func_filled_in = 1;
3144 }
3145}
3146
cd0fc7c3
SS
3147/* Given an execution control state that has been freshly filled in
3148 by an event from the inferior, figure out what it means and take
3149 appropriate action. */
c906108c 3150
ec9499be 3151static void
96baa820 3152handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3153{
568d6575
UW
3154 struct frame_info *frame;
3155 struct gdbarch *gdbarch;
d983da9c
DJ
3156 int stopped_by_watchpoint;
3157 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3158 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3159 enum stop_kind stop_soon;
3160
28736962
PA
3161 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3162 {
3163 /* We had an event in the inferior, but we are not interested in
3164 handling it at this level. The lower layers have already
3165 done what needs to be done, if anything.
3166
3167 One of the possible circumstances for this is when the
3168 inferior produces output for the console. The inferior has
3169 not stopped, and we are ignoring the event. Another possible
3170 circumstance is any event which the lower level knows will be
3171 reported multiple times without an intervening resume. */
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3174 prepare_to_wait (ecs);
3175 return;
3176 }
3177
0e5bf2a8
PA
3178 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3179 && target_can_async_p () && !sync_execution)
3180 {
3181 /* There were no unwaited-for children left in the target, but,
3182 we're not synchronously waiting for events either. Just
3183 ignore. Otherwise, if we were running a synchronous
3184 execution command, we need to cancel it and give the user
3185 back the terminal. */
3186 if (debug_infrun)
3187 fprintf_unfiltered (gdb_stdlog,
3188 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3189 prepare_to_wait (ecs);
3190 return;
3191 }
3192
d6b48e9c 3193 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3194 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3195 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3196 {
3197 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3198
d6b48e9c 3199 gdb_assert (inf);
16c381f0 3200 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3201 }
3202 else
3203 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3204
1777feb0 3205 /* Cache the last pid/waitstatus. */
39f77062 3206 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3207 target_last_waitstatus = ecs->ws;
e02bc4cc 3208
ca005067 3209 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3210 stop_stack_dummy = STOP_NONE;
ca005067 3211
0e5bf2a8
PA
3212 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3213 {
3214 /* No unwaited-for children left. IOW, all resumed children
3215 have exited. */
3216 if (debug_infrun)
3217 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3218
3219 stop_print_frame = 0;
3220 stop_stepping (ecs);
3221 return;
3222 }
3223
8c90c137 3224 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3225 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3226 {
3227 ecs->event_thread = find_thread_ptid (ecs->ptid);
3228 /* If it's a new thread, add it to the thread database. */
3229 if (ecs->event_thread == NULL)
3230 ecs->event_thread = add_thread (ecs->ptid);
3231 }
88ed393a
JK
3232
3233 /* Dependent on valid ECS->EVENT_THREAD. */
3234 adjust_pc_after_break (ecs);
3235
3236 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3237 reinit_frame_cache ();
3238
28736962
PA
3239 breakpoint_retire_moribund ();
3240
2b009048
DJ
3241 /* First, distinguish signals caused by the debugger from signals
3242 that have to do with the program's own actions. Note that
3243 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244 on the operating system version. Here we detect when a SIGILL or
3245 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3246 something similar for SIGSEGV, since a SIGSEGV will be generated
3247 when we're trying to execute a breakpoint instruction on a
3248 non-executable stack. This happens for call dummy breakpoints
3249 for architectures like SPARC that place call dummies on the
3250 stack. */
2b009048 3251 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3252 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3255 {
de0a0249
UW
3256 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257
3258 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 regcache_read_pc (regcache)))
3260 {
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3264 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3265 }
2b009048
DJ
3266 }
3267
28736962
PA
3268 /* Mark the non-executing threads accordingly. In all-stop, all
3269 threads of all processes are stopped when we get any event
3270 reported. In non-stop mode, only the event thread stops. If
3271 we're handling a process exit in non-stop mode, there's nothing
3272 to do, as threads of the dead process are gone, and threads of
3273 any other process were left running. */
3274 if (!non_stop)
3275 set_executing (minus_one_ptid, 0);
3276 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3278 set_executing (ecs->ptid, 0);
8c90c137 3279
0d1e5fa7 3280 switch (infwait_state)
488f131b
JB
3281 {
3282 case infwait_thread_hop_state:
527159b7 3283 if (debug_infrun)
8a9de0e4 3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3285 break;
b83266a0 3286
488f131b 3287 case infwait_normal_state:
527159b7 3288 if (debug_infrun)
8a9de0e4 3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3290 break;
3291
3292 case infwait_step_watch_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: infwait_step_watch_state\n");
3296
3297 stepped_after_stopped_by_watchpoint = 1;
488f131b 3298 break;
b83266a0 3299
488f131b 3300 case infwait_nonstep_watch_state:
527159b7 3301 if (debug_infrun)
8a9de0e4
AC
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_nonstep_watch_state\n");
488f131b 3304 insert_breakpoints ();
c906108c 3305
488f131b
JB
3306 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3307 handle things like signals arriving and other things happening
3308 in combination correctly? */
3309 stepped_after_stopped_by_watchpoint = 1;
3310 break;
65e82032
AC
3311
3312 default:
e2e0b3e5 3313 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3314 }
ec9499be 3315
0d1e5fa7 3316 infwait_state = infwait_normal_state;
ec9499be 3317 waiton_ptid = pid_to_ptid (-1);
c906108c 3318
488f131b
JB
3319 switch (ecs->ws.kind)
3320 {
3321 case TARGET_WAITKIND_LOADED:
527159b7 3322 if (debug_infrun)
8a9de0e4 3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3324 /* Ignore gracefully during startup of the inferior, as it might
3325 be the shell which has just loaded some objects, otherwise
3326 add the symbols for the newly loaded objects. Also ignore at
3327 the beginning of an attach or remote session; we will query
3328 the full list of libraries once the connection is
3329 established. */
c0236d92 3330 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3331 {
edcc5120 3332 struct regcache *regcache;
ab04a2af 3333 enum bpstat_signal_value sval;
edcc5120
TT
3334
3335 if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 context_switch (ecs->ptid);
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3344
3345 sval
3346 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3347 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3348
3349 if (!ecs->random_signal)
3350 {
3351 /* A catchpoint triggered. */
a493e3e2 3352 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3353 goto process_event_stop_test;
3354 }
488f131b 3355
b0f4b84b
DJ
3356 /* If requested, stop when the dynamic linker notifies
3357 gdb of events. This allows the user to get control
3358 and place breakpoints in initializer routines for
3359 dynamically loaded objects (among other things). */
a493e3e2 3360 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3361 if (stop_on_solib_events)
3362 {
55409f9d
DJ
3363 /* Make sure we print "Stopped due to solib-event" in
3364 normal_stop. */
3365 stop_print_frame = 1;
3366
b0f4b84b
DJ
3367 stop_stepping (ecs);
3368 return;
3369 }
488f131b 3370 }
b0f4b84b
DJ
3371
3372 /* If we are skipping through a shell, or through shared library
3373 loading that we aren't interested in, resume the program. If
3374 we're running the program normally, also resume. But stop if
3375 we're attaching or setting up a remote connection. */
3376 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3377 {
8b3ee56d
PA
3378 if (!ptid_equal (ecs->ptid, inferior_ptid))
3379 context_switch (ecs->ptid);
3380
74960c60
VP
3381 /* Loading of shared libraries might have changed breakpoint
3382 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3383 if (stop_soon == NO_STOP_QUIETLY
3384 && !breakpoints_always_inserted_mode ())
74960c60 3385 insert_breakpoints ();
a493e3e2 3386 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3387 prepare_to_wait (ecs);
3388 return;
3389 }
3390
3391 break;
c5aa993b 3392
488f131b 3393 case TARGET_WAITKIND_SPURIOUS:
527159b7 3394 if (debug_infrun)
8a9de0e4 3395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3396 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3397 context_switch (ecs->ptid);
a493e3e2 3398 resume (0, GDB_SIGNAL_0);
488f131b
JB
3399 prepare_to_wait (ecs);
3400 return;
c5aa993b 3401
488f131b 3402 case TARGET_WAITKIND_EXITED:
940c3c06 3403 case TARGET_WAITKIND_SIGNALLED:
527159b7 3404 if (debug_infrun)
940c3c06
PA
3405 {
3406 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3407 fprintf_unfiltered (gdb_stdlog,
3408 "infrun: TARGET_WAITKIND_EXITED\n");
3409 else
3410 fprintf_unfiltered (gdb_stdlog,
3411 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3412 }
3413
fb66883a 3414 inferior_ptid = ecs->ptid;
6c95b8df
PA
3415 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3416 set_current_program_space (current_inferior ()->pspace);
3417 handle_vfork_child_exec_or_exit (0);
1777feb0 3418 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3419
940c3c06
PA
3420 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3421 {
3422 /* Record the exit code in the convenience variable $_exitcode, so
3423 that the user can inspect this again later. */
3424 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3425 (LONGEST) ecs->ws.value.integer);
3426
3427 /* Also record this in the inferior itself. */
3428 current_inferior ()->has_exit_code = 1;
3429 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3430
940c3c06
PA
3431 print_exited_reason (ecs->ws.value.integer);
3432 }
3433 else
3434 print_signal_exited_reason (ecs->ws.value.sig);
8cf64490 3435
488f131b
JB
3436 gdb_flush (gdb_stdout);
3437 target_mourn_inferior ();
1c0fdd0e 3438 singlestep_breakpoints_inserted_p = 0;
d03285ec 3439 cancel_single_step_breakpoints ();
488f131b
JB
3440 stop_print_frame = 0;
3441 stop_stepping (ecs);
3442 return;
c5aa993b 3443
488f131b 3444 /* The following are the only cases in which we keep going;
1777feb0 3445 the above cases end in a continue or goto. */
488f131b 3446 case TARGET_WAITKIND_FORKED:
deb3b17b 3447 case TARGET_WAITKIND_VFORKED:
527159b7 3448 if (debug_infrun)
fed708ed
PA
3449 {
3450 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3452 else
3453 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3454 }
c906108c 3455
e2d96639
YQ
3456 /* Check whether the inferior is displaced stepping. */
3457 {
3458 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3459 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3460 struct displaced_step_inferior_state *displaced
3461 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3462
3463 /* If checking displaced stepping is supported, and thread
3464 ecs->ptid is displaced stepping. */
3465 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3466 {
3467 struct inferior *parent_inf
3468 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3469 struct regcache *child_regcache;
3470 CORE_ADDR parent_pc;
3471
3472 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3473 indicating that the displaced stepping of syscall instruction
3474 has been done. Perform cleanup for parent process here. Note
3475 that this operation also cleans up the child process for vfork,
3476 because their pages are shared. */
a493e3e2 3477 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3478
3479 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3480 {
3481 /* Restore scratch pad for child process. */
3482 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3483 }
3484
3485 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3486 the child's PC is also within the scratchpad. Set the child's PC
3487 to the parent's PC value, which has already been fixed up.
3488 FIXME: we use the parent's aspace here, although we're touching
3489 the child, because the child hasn't been added to the inferior
3490 list yet at this point. */
3491
3492 child_regcache
3493 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3494 gdbarch,
3495 parent_inf->aspace);
3496 /* Read PC value of parent process. */
3497 parent_pc = regcache_read_pc (regcache);
3498
3499 if (debug_displaced)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "displaced: write child pc from %s to %s\n",
3502 paddress (gdbarch,
3503 regcache_read_pc (child_regcache)),
3504 paddress (gdbarch, parent_pc));
3505
3506 regcache_write_pc (child_regcache, parent_pc);
3507 }
3508 }
3509
5a2901d9 3510 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3511 context_switch (ecs->ptid);
5a2901d9 3512
b242c3c2
PA
3513 /* Immediately detach breakpoints from the child before there's
3514 any chance of letting the user delete breakpoints from the
3515 breakpoint lists. If we don't do this early, it's easy to
3516 leave left over traps in the child, vis: "break foo; catch
3517 fork; c; <fork>; del; c; <child calls foo>". We only follow
3518 the fork on the last `continue', and by that time the
3519 breakpoint at "foo" is long gone from the breakpoint table.
3520 If we vforked, then we don't need to unpatch here, since both
3521 parent and child are sharing the same memory pages; we'll
3522 need to unpatch at follow/detach time instead to be certain
3523 that new breakpoints added between catchpoint hit time and
3524 vfork follow are detached. */
3525 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3526 {
b242c3c2
PA
3527 /* This won't actually modify the breakpoint list, but will
3528 physically remove the breakpoints from the child. */
d80ee84f 3529 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3530 }
3531
d03285ec
UW
3532 if (singlestep_breakpoints_inserted_p)
3533 {
1777feb0 3534 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3535 remove_single_step_breakpoints ();
3536 singlestep_breakpoints_inserted_p = 0;
3537 }
3538
e58b0e63
PA
3539 /* In case the event is caught by a catchpoint, remember that
3540 the event is to be followed at the next resume of the thread,
3541 and not immediately. */
3542 ecs->event_thread->pending_follow = ecs->ws;
3543
fb14de7b 3544 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3545
16c381f0 3546 ecs->event_thread->control.stop_bpstat
6c95b8df 3547 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3548 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3549
67822962
PA
3550 /* Note that we're interested in knowing the bpstat actually
3551 causes a stop, not just if it may explain the signal.
3552 Software watchpoints, for example, always appear in the
3553 bpstat. */
16c381f0
JK
3554 ecs->random_signal
3555 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3556
3557 /* If no catchpoint triggered for this, then keep going. */
3558 if (ecs->random_signal)
3559 {
6c95b8df
PA
3560 ptid_t parent;
3561 ptid_t child;
e58b0e63 3562 int should_resume;
3e43a32a
MS
3563 int follow_child
3564 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3565
a493e3e2 3566 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3567
3568 should_resume = follow_fork ();
3569
6c95b8df
PA
3570 parent = ecs->ptid;
3571 child = ecs->ws.value.related_pid;
3572
3573 /* In non-stop mode, also resume the other branch. */
3574 if (non_stop && !detach_fork)
3575 {
3576 if (follow_child)
3577 switch_to_thread (parent);
3578 else
3579 switch_to_thread (child);
3580
3581 ecs->event_thread = inferior_thread ();
3582 ecs->ptid = inferior_ptid;
3583 keep_going (ecs);
3584 }
3585
3586 if (follow_child)
3587 switch_to_thread (child);
3588 else
3589 switch_to_thread (parent);
3590
e58b0e63
PA
3591 ecs->event_thread = inferior_thread ();
3592 ecs->ptid = inferior_ptid;
3593
3594 if (should_resume)
3595 keep_going (ecs);
3596 else
3597 stop_stepping (ecs);
04e68871
DJ
3598 return;
3599 }
a493e3e2 3600 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3601 goto process_event_stop_test;
3602
6c95b8df
PA
3603 case TARGET_WAITKIND_VFORK_DONE:
3604 /* Done with the shared memory region. Re-insert breakpoints in
3605 the parent, and keep going. */
3606
3607 if (debug_infrun)
3e43a32a
MS
3608 fprintf_unfiltered (gdb_stdlog,
3609 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3610
3611 if (!ptid_equal (ecs->ptid, inferior_ptid))
3612 context_switch (ecs->ptid);
3613
3614 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3615 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3616 /* This also takes care of reinserting breakpoints in the
3617 previously locked inferior. */
3618 keep_going (ecs);
3619 return;
3620
488f131b 3621 case TARGET_WAITKIND_EXECD:
527159b7 3622 if (debug_infrun)
fc5261f2 3623 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3624
5a2901d9 3625 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3626 context_switch (ecs->ptid);
5a2901d9 3627
d03285ec
UW
3628 singlestep_breakpoints_inserted_p = 0;
3629 cancel_single_step_breakpoints ();
3630
fb14de7b 3631 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3632
6c95b8df
PA
3633 /* Do whatever is necessary to the parent branch of the vfork. */
3634 handle_vfork_child_exec_or_exit (1);
3635
795e548f
PA
3636 /* This causes the eventpoints and symbol table to be reset.
3637 Must do this now, before trying to determine whether to
3638 stop. */
71b43ef8 3639 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3640
16c381f0 3641 ecs->event_thread->control.stop_bpstat
6c95b8df 3642 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3643 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3644 ecs->random_signal
ab04a2af
TT
3645 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3646 == BPSTAT_SIGNAL_NO);
795e548f 3647
71b43ef8
PA
3648 /* Note that this may be referenced from inside
3649 bpstat_stop_status above, through inferior_has_execd. */
3650 xfree (ecs->ws.value.execd_pathname);
3651 ecs->ws.value.execd_pathname = NULL;
3652
04e68871
DJ
3653 /* If no catchpoint triggered for this, then keep going. */
3654 if (ecs->random_signal)
3655 {
a493e3e2 3656 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3657 keep_going (ecs);
3658 return;
3659 }
a493e3e2 3660 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3661 goto process_event_stop_test;
3662
b4dc5ffa
MK
3663 /* Be careful not to try to gather much state about a thread
3664 that's in a syscall. It's frequently a losing proposition. */
488f131b 3665 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3666 if (debug_infrun)
3e43a32a
MS
3667 fprintf_unfiltered (gdb_stdlog,
3668 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3669 /* Getting the current syscall number. */
ca2163eb 3670 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3671 return;
3672 goto process_event_stop_test;
c906108c 3673
488f131b
JB
3674 /* Before examining the threads further, step this thread to
3675 get it entirely out of the syscall. (We get notice of the
3676 event when the thread is just on the verge of exiting a
3677 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3678 into user code.) */
488f131b 3679 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3680 if (debug_infrun)
3e43a32a
MS
3681 fprintf_unfiltered (gdb_stdlog,
3682 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3683 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3684 return;
3685 goto process_event_stop_test;
c906108c 3686
488f131b 3687 case TARGET_WAITKIND_STOPPED:
527159b7 3688 if (debug_infrun)
8a9de0e4 3689 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3690 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3691 break;
c906108c 3692
b2175913 3693 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3694 if (debug_infrun)
3695 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3696 /* Reverse execution: target ran out of history info. */
eab402df
PA
3697
3698 /* Pull the single step breakpoints out of the target. */
3699 if (singlestep_breakpoints_inserted_p)
3700 {
3701 if (!ptid_equal (ecs->ptid, inferior_ptid))
3702 context_switch (ecs->ptid);
3703 remove_single_step_breakpoints ();
3704 singlestep_breakpoints_inserted_p = 0;
3705 }
fb14de7b 3706 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3707 print_no_history_reason ();
b2175913
MS
3708 stop_stepping (ecs);
3709 return;
488f131b 3710 }
c906108c 3711
2020b7ab 3712 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3713 {
3714 /* Do we need to clean up the state of a thread that has
3715 completed a displaced single-step? (Doing so usually affects
3716 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3717 displaced_step_fixup (ecs->ptid,
3718 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3719
3720 /* If we either finished a single-step or hit a breakpoint, but
3721 the user wanted this thread to be stopped, pretend we got a
3722 SIG0 (generic unsignaled stop). */
3723
3724 if (ecs->event_thread->stop_requested
a493e3e2
PA
3725 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3726 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3727 }
237fc4c9 3728
515630c5 3729 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3730
527159b7 3731 if (debug_infrun)
237fc4c9 3732 {
5af949e3
UW
3733 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3734 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3735 struct cleanup *old_chain = save_inferior_ptid ();
3736
3737 inferior_ptid = ecs->ptid;
5af949e3
UW
3738
3739 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3740 paddress (gdbarch, stop_pc));
d92524f1 3741 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3742 {
3743 CORE_ADDR addr;
abbb1732 3744
237fc4c9
PA
3745 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3746
3747 if (target_stopped_data_address (&current_target, &addr))
3748 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3749 "infrun: stopped data address = %s\n",
3750 paddress (gdbarch, addr));
237fc4c9
PA
3751 else
3752 fprintf_unfiltered (gdb_stdlog,
3753 "infrun: (no data address available)\n");
3754 }
7f82dfc7
JK
3755
3756 do_cleanups (old_chain);
237fc4c9 3757 }
527159b7 3758
9f976b41
DJ
3759 if (stepping_past_singlestep_breakpoint)
3760 {
1c0fdd0e 3761 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3762 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3763 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3764
3765 stepping_past_singlestep_breakpoint = 0;
3766
3767 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3768 breakpoint, or stopped for some other reason. It would be nice if
3769 we could tell, but we can't reliably. */
a493e3e2 3770 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3771 {
527159b7 3772 if (debug_infrun)
3e43a32a
MS
3773 fprintf_unfiltered (gdb_stdlog,
3774 "infrun: stepping_past_"
3775 "singlestep_breakpoint\n");
9f976b41 3776 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3777 if (!ptid_equal (ecs->ptid, inferior_ptid))
3778 context_switch (ecs->ptid);
e0cd558a 3779 remove_single_step_breakpoints ();
9f976b41
DJ
3780 singlestep_breakpoints_inserted_p = 0;
3781
3782 ecs->random_signal = 0;
16c381f0 3783 ecs->event_thread->control.trap_expected = 0;
9f976b41 3784
0d1e5fa7 3785 context_switch (saved_singlestep_ptid);
9a4105ab 3786 if (deprecated_context_hook)
de9f1b68 3787 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3788
a493e3e2 3789 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3790 prepare_to_wait (ecs);
3791 return;
3792 }
3793 }
3794
ca67fcb8 3795 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3796 {
94cc34af
PA
3797 /* In non-stop mode, there's never a deferred_step_ptid set. */
3798 gdb_assert (!non_stop);
3799
6a6b96b9
UW
3800 /* If we stopped for some other reason than single-stepping, ignore
3801 the fact that we were supposed to switch back. */
a493e3e2 3802 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3803 {
3804 if (debug_infrun)
3805 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3806 "infrun: handling deferred step\n");
6a6b96b9
UW
3807
3808 /* Pull the single step breakpoints out of the target. */
3809 if (singlestep_breakpoints_inserted_p)
3810 {
8b3ee56d
PA
3811 if (!ptid_equal (ecs->ptid, inferior_ptid))
3812 context_switch (ecs->ptid);
6a6b96b9
UW
3813 remove_single_step_breakpoints ();
3814 singlestep_breakpoints_inserted_p = 0;
3815 }
3816
cd3da28e
PA
3817 ecs->event_thread->control.trap_expected = 0;
3818
d25f45d9 3819 context_switch (deferred_step_ptid);
ca67fcb8 3820 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3821 /* Suppress spurious "Switching to ..." message. */
3822 previous_inferior_ptid = inferior_ptid;
3823
a493e3e2 3824 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3825 prepare_to_wait (ecs);
3826 return;
3827 }
ca67fcb8
VP
3828
3829 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3830 }
3831
488f131b
JB
3832 /* See if a thread hit a thread-specific breakpoint that was meant for
3833 another thread. If so, then step that thread past the breakpoint,
3834 and continue it. */
3835
a493e3e2 3836 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3837 {
9f976b41 3838 int thread_hop_needed = 0;
cf00dfa7
VP
3839 struct address_space *aspace =
3840 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3841
f8d40ec8 3842 /* Check if a regular breakpoint has been hit before checking
1777feb0 3843 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3844 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3845 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3846 {
c5aa993b 3847 ecs->random_signal = 0;
6c95b8df 3848 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3849 thread_hop_needed = 1;
3850 }
1c0fdd0e 3851 else if (singlestep_breakpoints_inserted_p)
9f976b41 3852 {
fd48f117
DJ
3853 /* We have not context switched yet, so this should be true
3854 no matter which thread hit the singlestep breakpoint. */
3855 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3856 if (debug_infrun)
3857 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3858 "trap for %s\n",
3859 target_pid_to_str (ecs->ptid));
3860
9f976b41
DJ
3861 ecs->random_signal = 0;
3862 /* The call to in_thread_list is necessary because PTIDs sometimes
3863 change when we go from single-threaded to multi-threaded. If
3864 the singlestep_ptid is still in the list, assume that it is
3865 really different from ecs->ptid. */
3866 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3867 && in_thread_list (singlestep_ptid))
3868 {
fd48f117
DJ
3869 /* If the PC of the thread we were trying to single-step
3870 has changed, discard this event (which we were going
3871 to ignore anyway), and pretend we saw that thread
3872 trap. This prevents us continuously moving the
3873 single-step breakpoint forward, one instruction at a
3874 time. If the PC has changed, then the thread we were
3875 trying to single-step has trapped or been signalled,
3876 but the event has not been reported to GDB yet.
3877
3878 There might be some cases where this loses signal
3879 information, if a signal has arrived at exactly the
3880 same time that the PC changed, but this is the best
3881 we can do with the information available. Perhaps we
3882 should arrange to report all events for all threads
3883 when they stop, or to re-poll the remote looking for
3884 this particular thread (i.e. temporarily enable
3885 schedlock). */
515630c5
UW
3886
3887 CORE_ADDR new_singlestep_pc
3888 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3889
3890 if (new_singlestep_pc != singlestep_pc)
fd48f117 3891 {
2ea28649 3892 enum gdb_signal stop_signal;
2020b7ab 3893
fd48f117
DJ
3894 if (debug_infrun)
3895 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3896 " but expected thread advanced also\n");
3897
3898 /* The current context still belongs to
3899 singlestep_ptid. Don't swap here, since that's
3900 the context we want to use. Just fudge our
3901 state and continue. */
16c381f0 3902 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3903 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3904 ecs->ptid = singlestep_ptid;
e09875d4 3905 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3906 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3907 stop_pc = new_singlestep_pc;
fd48f117
DJ
3908 }
3909 else
3910 {
3911 if (debug_infrun)
3912 fprintf_unfiltered (gdb_stdlog,
3913 "infrun: unexpected thread\n");
3914
3915 thread_hop_needed = 1;
3916 stepping_past_singlestep_breakpoint = 1;
3917 saved_singlestep_ptid = singlestep_ptid;
3918 }
9f976b41
DJ
3919 }
3920 }
3921
3922 if (thread_hop_needed)
8fb3e588 3923 {
9f5a595d 3924 struct regcache *thread_regcache;
237fc4c9 3925 int remove_status = 0;
8fb3e588 3926
527159b7 3927 if (debug_infrun)
8a9de0e4 3928 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3929
b3444185
PA
3930 /* Switch context before touching inferior memory, the
3931 previous thread may have exited. */
3932 if (!ptid_equal (inferior_ptid, ecs->ptid))
3933 context_switch (ecs->ptid);
3934
8fb3e588 3935 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3936 Just continue. */
8fb3e588 3937
1c0fdd0e 3938 if (singlestep_breakpoints_inserted_p)
488f131b 3939 {
1777feb0 3940 /* Pull the single step breakpoints out of the target. */
e0cd558a 3941 remove_single_step_breakpoints ();
8fb3e588
AC
3942 singlestep_breakpoints_inserted_p = 0;
3943 }
3944
237fc4c9
PA
3945 /* If the arch can displace step, don't remove the
3946 breakpoints. */
9f5a595d
UW
3947 thread_regcache = get_thread_regcache (ecs->ptid);
3948 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3949 remove_status = remove_breakpoints ();
3950
8fb3e588
AC
3951 /* Did we fail to remove breakpoints? If so, try
3952 to set the PC past the bp. (There's at least
3953 one situation in which we can fail to remove
3954 the bp's: On HP-UX's that use ttrace, we can't
3955 change the address space of a vforking child
3956 process until the child exits (well, okay, not
1777feb0 3957 then either :-) or execs. */
8fb3e588 3958 if (remove_status != 0)
9d9cd7ac 3959 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3960 else
3961 { /* Single step */
94cc34af
PA
3962 if (!non_stop)
3963 {
3964 /* Only need to require the next event from this
3965 thread in all-stop mode. */
3966 waiton_ptid = ecs->ptid;
3967 infwait_state = infwait_thread_hop_state;
3968 }
8fb3e588 3969
4e1c45ea 3970 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3971 keep_going (ecs);
8fb3e588
AC
3972 return;
3973 }
488f131b 3974 }
1c0fdd0e 3975 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3976 {
8fb3e588
AC
3977 ecs->random_signal = 0;
3978 }
488f131b
JB
3979 }
3980 else
3981 ecs->random_signal = 1;
c906108c 3982
488f131b 3983 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3984 so, then switch to that thread. */
3985 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3986 {
527159b7 3987 if (debug_infrun)
8a9de0e4 3988 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3989
0d1e5fa7 3990 context_switch (ecs->ptid);
c5aa993b 3991
9a4105ab
AC
3992 if (deprecated_context_hook)
3993 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3994 }
c906108c 3995
568d6575
UW
3996 /* At this point, get hold of the now-current thread's frame. */
3997 frame = get_current_frame ();
3998 gdbarch = get_frame_arch (frame);
3999
1c0fdd0e 4000 if (singlestep_breakpoints_inserted_p)
488f131b 4001 {
1777feb0 4002 /* Pull the single step breakpoints out of the target. */
e0cd558a 4003 remove_single_step_breakpoints ();
488f131b
JB
4004 singlestep_breakpoints_inserted_p = 0;
4005 }
c906108c 4006
d983da9c
DJ
4007 if (stepped_after_stopped_by_watchpoint)
4008 stopped_by_watchpoint = 0;
4009 else
4010 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4011
4012 /* If necessary, step over this watchpoint. We'll be back to display
4013 it in a moment. */
4014 if (stopped_by_watchpoint
d92524f1 4015 && (target_have_steppable_watchpoint
568d6575 4016 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4017 {
488f131b
JB
4018 /* At this point, we are stopped at an instruction which has
4019 attempted to write to a piece of memory under control of
4020 a watchpoint. The instruction hasn't actually executed
4021 yet. If we were to evaluate the watchpoint expression
4022 now, we would get the old value, and therefore no change
4023 would seem to have occurred.
4024
4025 In order to make watchpoints work `right', we really need
4026 to complete the memory write, and then evaluate the
d983da9c
DJ
4027 watchpoint expression. We do this by single-stepping the
4028 target.
4029
4030 It may not be necessary to disable the watchpoint to stop over
4031 it. For example, the PA can (with some kernel cooperation)
4032 single step over a watchpoint without disabling the watchpoint.
4033
4034 It is far more common to need to disable a watchpoint to step
4035 the inferior over it. If we have non-steppable watchpoints,
4036 we must disable the current watchpoint; it's simplest to
4037 disable all watchpoints and breakpoints. */
2facfe5c
DD
4038 int hw_step = 1;
4039
d92524f1 4040 if (!target_have_steppable_watchpoint)
2455069d
UW
4041 {
4042 remove_breakpoints ();
4043 /* See comment in resume why we need to stop bypassing signals
4044 while breakpoints have been removed. */
4045 target_pass_signals (0, NULL);
4046 }
2facfe5c 4047 /* Single step */
568d6575 4048 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4049 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4050 waiton_ptid = ecs->ptid;
d92524f1 4051 if (target_have_steppable_watchpoint)
0d1e5fa7 4052 infwait_state = infwait_step_watch_state;
d983da9c 4053 else
0d1e5fa7 4054 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4055 prepare_to_wait (ecs);
4056 return;
4057 }
4058
7e324e48 4059 clear_stop_func (ecs);
4e1c45ea 4060 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4061 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4062 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4063 stop_print_frame = 1;
4064 ecs->random_signal = 0;
4065 stopped_by_random_signal = 0;
488f131b 4066
edb3359d
DJ
4067 /* Hide inlined functions starting here, unless we just performed stepi or
4068 nexti. After stepi and nexti, always show the innermost frame (not any
4069 inline function call sites). */
16c381f0 4070 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4071 {
4072 struct address_space *aspace =
4073 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4074
4075 /* skip_inline_frames is expensive, so we avoid it if we can
4076 determine that the address is one where functions cannot have
4077 been inlined. This improves performance with inferiors that
4078 load a lot of shared libraries, because the solib event
4079 breakpoint is defined as the address of a function (i.e. not
4080 inline). Note that we have to check the previous PC as well
4081 as the current one to catch cases when we have just
4082 single-stepped off a breakpoint prior to reinstating it.
4083 Note that we're assuming that the code we single-step to is
4084 not inline, but that's not definitive: there's nothing
4085 preventing the event breakpoint function from containing
4086 inlined code, and the single-step ending up there. If the
4087 user had set a breakpoint on that inlined code, the missing
4088 skip_inline_frames call would break things. Fortunately
4089 that's an extremely unlikely scenario. */
09ac7c10 4090 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4091 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4092 && ecs->event_thread->control.trap_expected
4093 && pc_at_non_inline_function (aspace,
4094 ecs->event_thread->prev_pc,
09ac7c10 4095 &ecs->ws)))
1c5a993e
MR
4096 {
4097 skip_inline_frames (ecs->ptid);
4098
4099 /* Re-fetch current thread's frame in case that invalidated
4100 the frame cache. */
4101 frame = get_current_frame ();
4102 gdbarch = get_frame_arch (frame);
4103 }
0574c78f 4104 }
edb3359d 4105
a493e3e2 4106 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4107 && ecs->event_thread->control.trap_expected
568d6575 4108 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4109 && currently_stepping (ecs->event_thread))
3352ef37 4110 {
b50d7442 4111 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4112 also on an instruction that needs to be stepped multiple
1777feb0 4113 times before it's been fully executing. E.g., architectures
3352ef37
AC
4114 with a delay slot. It needs to be stepped twice, once for
4115 the instruction and once for the delay slot. */
4116 int step_through_delay
568d6575 4117 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4118
527159b7 4119 if (debug_infrun && step_through_delay)
8a9de0e4 4120 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4121 if (ecs->event_thread->control.step_range_end == 0
4122 && step_through_delay)
3352ef37
AC
4123 {
4124 /* The user issued a continue when stopped at a breakpoint.
4125 Set up for another trap and get out of here. */
4e1c45ea 4126 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4127 keep_going (ecs);
4128 return;
4129 }
4130 else if (step_through_delay)
4131 {
4132 /* The user issued a step when stopped at a breakpoint.
4133 Maybe we should stop, maybe we should not - the delay
4134 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4135 case, don't decide that here, just set
4136 ecs->stepping_over_breakpoint, making sure we
4137 single-step again before breakpoints are re-inserted. */
4e1c45ea 4138 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4139 }
4140 }
4141
488f131b
JB
4142 /* Look at the cause of the stop, and decide what to do.
4143 The alternatives are:
0d1e5fa7
PA
4144 1) stop_stepping and return; to really stop and return to the debugger,
4145 2) keep_going and return to start up again
4e1c45ea 4146 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4147 3) set ecs->random_signal to 1, and the decision between 1 and 2
4148 will be made according to the signal handling tables. */
4149
a493e3e2 4150 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4151 && stop_after_trap)
488f131b 4152 {
ab04a2af
TT
4153 if (debug_infrun)
4154 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4155 stop_print_frame = 0;
4156 stop_stepping (ecs);
4157 return;
4158 }
488f131b 4159
ab04a2af
TT
4160 /* This is originated from start_remote(), start_inferior() and
4161 shared libraries hook functions. */
4162 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4163 {
4164 if (debug_infrun)
4165 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4166 stop_stepping (ecs);
4167 return;
4168 }
c54cfec8 4169
ab04a2af
TT
4170 /* This originates from attach_command(). We need to overwrite
4171 the stop_signal here, because some kernels don't ignore a
4172 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4173 See more comments in inferior.h. On the other hand, if we
4174 get a non-SIGSTOP, report it to the user - assume the backend
4175 will handle the SIGSTOP if it should show up later.
4176
4177 Also consider that the attach is complete when we see a
4178 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4179 target extended-remote report it instead of a SIGSTOP
4180 (e.g. gdbserver). We already rely on SIGTRAP being our
4181 signal, so this is no exception.
4182
4183 Also consider that the attach is complete when we see a
4184 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4185 the target to stop all threads of the inferior, in case the
4186 low level attach operation doesn't stop them implicitly. If
4187 they weren't stopped implicitly, then the stub will report a
4188 GDB_SIGNAL_0, meaning: stopped for no particular reason
4189 other than GDB's request. */
4190 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4191 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4192 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4193 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4194 {
4195 stop_stepping (ecs);
4196 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4197 return;
4198 }
6c95b8df 4199
ab04a2af
TT
4200 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4201 handles this event. */
4202 ecs->event_thread->control.stop_bpstat
4203 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4204 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4205
ab04a2af
TT
4206 /* Following in case break condition called a
4207 function. */
4208 stop_print_frame = 1;
73dd234f 4209
ab04a2af
TT
4210 /* This is where we handle "moribund" watchpoints. Unlike
4211 software breakpoints traps, hardware watchpoint traps are
4212 always distinguishable from random traps. If no high-level
4213 watchpoint is associated with the reported stop data address
4214 anymore, then the bpstat does not explain the signal ---
4215 simply make sure to ignore it if `stopped_by_watchpoint' is
4216 set. */
4217
4218 if (debug_infrun
4219 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4220 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4221 == BPSTAT_SIGNAL_NO)
4222 && stopped_by_watchpoint)
4223 fprintf_unfiltered (gdb_stdlog,
4224 "infrun: no user watchpoint explains "
4225 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4226
ab04a2af
TT
4227 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4228 at one stage in the past included checks for an inferior
4229 function call's call dummy's return breakpoint. The original
4230 comment, that went with the test, read:
03cebad2 4231
ab04a2af
TT
4232 ``End of a stack dummy. Some systems (e.g. Sony news) give
4233 another signal besides SIGTRAP, so check here as well as
4234 above.''
73dd234f 4235
ab04a2af
TT
4236 If someone ever tries to get call dummys on a
4237 non-executable stack to work (where the target would stop
4238 with something like a SIGSEGV), then those tests might need
4239 to be re-instated. Given, however, that the tests were only
4240 enabled when momentary breakpoints were not being used, I
4241 suspect that it won't be the case.
488f131b 4242
ab04a2af
TT
4243 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4244 be necessary for call dummies on a non-executable stack on
4245 SPARC. */
488f131b 4246
ab04a2af
TT
4247 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4248 ecs->random_signal
4249 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4250 != BPSTAT_SIGNAL_NO)
4251 || stopped_by_watchpoint
4252 || ecs->event_thread->control.trap_expected
4253 || (ecs->event_thread->control.step_range_end
4254 && (ecs->event_thread->control.step_resume_breakpoint
4255 == NULL)));
488f131b 4256 else
ab04a2af
TT
4257 {
4258 enum bpstat_signal_value sval;
4259
4260 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
4261 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4262
4263 if (sval == BPSTAT_SIGNAL_HIDE)
4264 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4265 }
488f131b 4266
04e68871 4267process_event_stop_test:
568d6575
UW
4268
4269 /* Re-fetch current thread's frame in case we did a
4270 "goto process_event_stop_test" above. */
4271 frame = get_current_frame ();
4272 gdbarch = get_frame_arch (frame);
4273
488f131b
JB
4274 /* For the program's own signals, act according to
4275 the signal handling tables. */
4276
4277 if (ecs->random_signal)
4278 {
4279 /* Signal not for debugging purposes. */
4280 int printed = 0;
24291992 4281 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4282
527159b7 4283 if (debug_infrun)
2020b7ab 4284 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4285 ecs->event_thread->suspend.stop_signal);
527159b7 4286
488f131b
JB
4287 stopped_by_random_signal = 1;
4288
16c381f0 4289 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4290 {
4291 printed = 1;
4292 target_terminal_ours_for_output ();
16c381f0
JK
4293 print_signal_received_reason
4294 (ecs->event_thread->suspend.stop_signal);
488f131b 4295 }
252fbfc8
PA
4296 /* Always stop on signals if we're either just gaining control
4297 of the program, or the user explicitly requested this thread
4298 to remain stopped. */
d6b48e9c 4299 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4300 || ecs->event_thread->stop_requested
24291992 4301 || (!inf->detaching
16c381f0 4302 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4303 {
4304 stop_stepping (ecs);
4305 return;
4306 }
4307 /* If not going to stop, give terminal back
4308 if we took it away. */
4309 else if (printed)
4310 target_terminal_inferior ();
4311
4312 /* Clear the signal if it should not be passed. */
16c381f0 4313 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4314 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4315
fb14de7b 4316 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4317 && ecs->event_thread->control.trap_expected
8358c15c 4318 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4319 {
4320 /* We were just starting a new sequence, attempting to
4321 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4322 Instead this signal arrives. This signal will take us out
68f53502
AC
4323 of the stepping range so GDB needs to remember to, when
4324 the signal handler returns, resume stepping off that
4325 breakpoint. */
4326 /* To simplify things, "continue" is forced to use the same
4327 code paths as single-step - set a breakpoint at the
4328 signal return address and then, once hit, step off that
4329 breakpoint. */
237fc4c9
PA
4330 if (debug_infrun)
4331 fprintf_unfiltered (gdb_stdlog,
4332 "infrun: signal arrived while stepping over "
4333 "breakpoint\n");
d3169d93 4334
2c03e5be 4335 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4336 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4337 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4338 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4339 keep_going (ecs);
4340 return;
68f53502 4341 }
9d799f85 4342
16c381f0 4343 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4344 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
16c381f0
JK
4345 && (ecs->event_thread->control.step_range_start <= stop_pc
4346 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4347 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4348 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4349 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4350 {
4351 /* The inferior is about to take a signal that will take it
4352 out of the single step range. Set a breakpoint at the
4353 current PC (which is presumably where the signal handler
4354 will eventually return) and then allow the inferior to
4355 run free.
4356
4357 Note that this is only needed for a signal delivered
4358 while in the single-step range. Nested signals aren't a
4359 problem as they eventually all return. */
237fc4c9
PA
4360 if (debug_infrun)
4361 fprintf_unfiltered (gdb_stdlog,
4362 "infrun: signal may take us out of "
4363 "single-step range\n");
4364
2c03e5be 4365 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4366 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4367 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4368 keep_going (ecs);
4369 return;
d303a6c7 4370 }
9d799f85
AC
4371
4372 /* Note: step_resume_breakpoint may be non-NULL. This occures
4373 when either there's a nested signal, or when there's a
4374 pending signal enabled just as the signal handler returns
4375 (leaving the inferior at the step-resume-breakpoint without
4376 actually executing it). Either way continue until the
4377 breakpoint is really hit. */
488f131b 4378 }
e5ef252a
PA
4379 else
4380 {
4381 /* Handle cases caused by hitting a breakpoint. */
488f131b 4382
e5ef252a
PA
4383 CORE_ADDR jmp_buf_pc;
4384 struct bpstat_what what;
611c83ae 4385
e5ef252a 4386 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4387
e5ef252a 4388 if (what.call_dummy)
e81a37f7 4389 {
e5ef252a
PA
4390 stop_stack_dummy = what.call_dummy;
4391 }
186c406b 4392
e5ef252a
PA
4393 /* If we hit an internal event that triggers symbol changes, the
4394 current frame will be invalidated within bpstat_what (e.g.,
4395 if we hit an internal solib event). Re-fetch it. */
4396 frame = get_current_frame ();
4397 gdbarch = get_frame_arch (frame);
e2e4d78b 4398
e5ef252a
PA
4399 switch (what.main_action)
4400 {
4401 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4402 /* If we hit the breakpoint at longjmp while stepping, we
4403 install a momentary breakpoint at the target of the
4404 jmp_buf. */
186c406b 4405
e81a37f7
TT
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4408 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4409
e5ef252a 4410 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4411
e2e4d78b
JK
4412 if (what.is_longjmp)
4413 {
e5ef252a
PA
4414 struct value *arg_value;
4415
4416 /* If we set the longjmp breakpoint via a SystemTap
4417 probe, then use it to extract the arguments. The
4418 destination PC is the third argument to the
4419 probe. */
4420 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4421 if (arg_value)
4422 jmp_buf_pc = value_as_address (arg_value);
4423 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4424 || !gdbarch_get_longjmp_target (gdbarch,
4425 frame, &jmp_buf_pc))
e2e4d78b 4426 {
e5ef252a
PA
4427 if (debug_infrun)
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4430 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4431 keep_going (ecs);
4432 return;
4433 }
e5ef252a
PA
4434
4435 /* Insert a breakpoint at resume address. */
4436 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4437 }
e5ef252a
PA
4438 else
4439 check_exception_resume (ecs, frame);
4440 keep_going (ecs);
4441 return;
e2e4d78b 4442
e5ef252a
PA
4443 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4444 {
4445 struct frame_info *init_frame;
e2e4d78b 4446
e5ef252a 4447 /* There are several cases to consider.
e81a37f7 4448
e5ef252a
PA
4449 1. The initiating frame no longer exists. In this case
4450 we must stop, because the exception or longjmp has gone
4451 too far.
e81a37f7 4452
e5ef252a
PA
4453 2. The initiating frame exists, and is the same as the
4454 current frame. We stop, because the exception or
4455 longjmp has been caught.
c906108c 4456
e5ef252a
PA
4457 3. The initiating frame exists and is different from
4458 the current frame. This means the exception or longjmp
4459 has been caught beneath the initiating frame, so keep
4460 going.
2c03e5be 4461
e5ef252a
PA
4462 4. longjmp breakpoint has been placed just to protect
4463 against stale dummy frames and user is not interested
4464 in stopping around longjmps. */
2c03e5be 4465
e5ef252a
PA
4466 if (debug_infrun)
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4469
e5ef252a
PA
4470 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4471 != NULL);
4472 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4473
e5ef252a
PA
4474 if (what.is_longjmp)
4475 {
4476 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4477
e5ef252a
PA
4478 if (!frame_id_p (ecs->event_thread->initiating_frame))
4479 {
4480 /* Case 4. */
4481 keep_going (ecs);
4482 return;
4483 }
4484 }
c5aa993b 4485
e5ef252a 4486 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4487
e5ef252a
PA
4488 if (init_frame)
4489 {
4490 struct frame_id current_id
4491 = get_frame_id (get_current_frame ());
4492 if (frame_id_eq (current_id,
4493 ecs->event_thread->initiating_frame))
4494 {
4495 /* Case 2. Fall through. */
4496 }
4497 else
4498 {
4499 /* Case 3. */
4500 keep_going (ecs);
4501 return;
4502 }
4503 }
c5aa993b 4504
e5ef252a
PA
4505 /* For Cases 1 and 2, remove the step-resume breakpoint,
4506 if it exists. */
4507 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4508
e5ef252a
PA
4509 ecs->event_thread->control.stop_step = 1;
4510 print_end_stepping_range_reason ();
4511 stop_stepping (ecs);
68f53502 4512 }
e5ef252a 4513 return;
488f131b 4514
e5ef252a
PA
4515 case BPSTAT_WHAT_SINGLE:
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4518 ecs->event_thread->stepping_over_breakpoint = 1;
4519 /* Still need to check other stuff, at least the case where
4520 we are stepping and step out of the right range. */
4521 break;
4522
4523 case BPSTAT_WHAT_STEP_RESUME:
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4526
4527 delete_step_resume_breakpoint (ecs->event_thread);
4528 if (ecs->event_thread->control.proceed_to_finish
4529 && execution_direction == EXEC_REVERSE)
4530 {
4531 struct thread_info *tp = ecs->event_thread;
4532
4533 /* We are finishing a function in reverse, and just hit
4534 the step-resume breakpoint at the start address of
4535 the function, and we're almost there -- just need to
4536 back up by one more single-step, which should take us
4537 back to the function call. */
4538 tp->control.step_range_start = tp->control.step_range_end = 1;
4539 keep_going (ecs);
4540 return;
4541 }
4542 fill_in_stop_func (gdbarch, ecs);
4543 if (stop_pc == ecs->stop_func_start
4544 && execution_direction == EXEC_REVERSE)
4545 {
4546 /* We are stepping over a function call in reverse, and
4547 just hit the step-resume breakpoint at the start
4548 address of the function. Go back to single-stepping,
4549 which should take us back to the function call. */
4550 ecs->event_thread->stepping_over_breakpoint = 1;
4551 keep_going (ecs);
4552 return;
4553 }
4554 break;
4555
4556 case BPSTAT_WHAT_STOP_NOISY:
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4559 stop_print_frame = 1;
4560
4561 /* We are about to nuke the step_resume_breakpointt via the
4562 cleanup chain, so no need to worry about it here. */
4563
4564 stop_stepping (ecs);
4565 return;
4566
4567 case BPSTAT_WHAT_STOP_SILENT:
4568 if (debug_infrun)
4569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4570 stop_print_frame = 0;
4571
4572 /* We are about to nuke the step_resume_breakpoin via the
4573 cleanup chain, so no need to worry about it here. */
4574
4575 stop_stepping (ecs);
4576 return;
4577
4578 case BPSTAT_WHAT_HP_STEP_RESUME:
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4581
4582 delete_step_resume_breakpoint (ecs->event_thread);
4583 if (ecs->event_thread->step_after_step_resume_breakpoint)
4584 {
4585 /* Back when the step-resume breakpoint was inserted, we
4586 were trying to single-step off a breakpoint. Go back
4587 to doing that. */
4588 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4589 ecs->event_thread->stepping_over_breakpoint = 1;
4590 keep_going (ecs);
4591 return;
4592 }
4593 break;
4594
4595 case BPSTAT_WHAT_KEEP_CHECKING:
4596 break;
4597 }
4598 }
c906108c 4599
488f131b
JB
4600 /* We come here if we hit a breakpoint but should not
4601 stop for it. Possibly we also were stepping
4602 and should stop for that. So fall through and
4603 test for stepping. But, if not stepping,
4604 do not stop. */
c906108c 4605
a7212384
UW
4606 /* In all-stop mode, if we're currently stepping but have stopped in
4607 some other thread, we need to switch back to the stepped thread. */
4608 if (!non_stop)
4609 {
4610 struct thread_info *tp;
abbb1732 4611
b3444185 4612 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4613 ecs->event_thread);
4614 if (tp)
4615 {
4616 /* However, if the current thread is blocked on some internal
4617 breakpoint, and we simply need to step over that breakpoint
4618 to get it going again, do that first. */
16c381f0 4619 if ((ecs->event_thread->control.trap_expected
a493e3e2 4620 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4621 || ecs->event_thread->stepping_over_breakpoint)
4622 {
4623 keep_going (ecs);
4624 return;
4625 }
4626
66852e9c
PA
4627 /* If the stepping thread exited, then don't try to switch
4628 back and resume it, which could fail in several different
4629 ways depending on the target. Instead, just keep going.
4630
4631 We can find a stepping dead thread in the thread list in
4632 two cases:
4633
4634 - The target supports thread exit events, and when the
4635 target tries to delete the thread from the thread list,
4636 inferior_ptid pointed at the exiting thread. In such
4637 case, calling delete_thread does not really remove the
4638 thread from the list; instead, the thread is left listed,
4639 with 'exited' state.
4640
4641 - The target's debug interface does not support thread
4642 exit events, and so we have no idea whatsoever if the
4643 previously stepping thread is still alive. For that
4644 reason, we need to synchronously query the target
4645 now. */
b3444185
PA
4646 if (is_exited (tp->ptid)
4647 || !target_thread_alive (tp->ptid))
4648 {
4649 if (debug_infrun)
3e43a32a
MS
4650 fprintf_unfiltered (gdb_stdlog,
4651 "infrun: not switching back to "
4652 "stepped thread, it has vanished\n");
b3444185
PA
4653
4654 delete_thread (tp->ptid);
4655 keep_going (ecs);
4656 return;
4657 }
4658
a7212384
UW
4659 /* Otherwise, we no longer expect a trap in the current thread.
4660 Clear the trap_expected flag before switching back -- this is
4661 what keep_going would do as well, if we called it. */
16c381f0 4662 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4663
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog,
4666 "infrun: switching back to stepped thread\n");
4667
4668 ecs->event_thread = tp;
4669 ecs->ptid = tp->ptid;
4670 context_switch (ecs->ptid);
4671 keep_going (ecs);
4672 return;
4673 }
4674 }
4675
8358c15c 4676 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4677 {
527159b7 4678 if (debug_infrun)
d3169d93
DJ
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: step-resume breakpoint is inserted\n");
527159b7 4681
488f131b
JB
4682 /* Having a step-resume breakpoint overrides anything
4683 else having to do with stepping commands until
4684 that breakpoint is reached. */
488f131b
JB
4685 keep_going (ecs);
4686 return;
4687 }
c5aa993b 4688
16c381f0 4689 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4690 {
527159b7 4691 if (debug_infrun)
8a9de0e4 4692 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4693 /* Likewise if we aren't even stepping. */
488f131b
JB
4694 keep_going (ecs);
4695 return;
4696 }
c5aa993b 4697
4b7703ad
JB
4698 /* Re-fetch current thread's frame in case the code above caused
4699 the frame cache to be re-initialized, making our FRAME variable
4700 a dangling pointer. */
4701 frame = get_current_frame ();
628fe4e4 4702 gdbarch = get_frame_arch (frame);
7e324e48 4703 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4704
488f131b 4705 /* If stepping through a line, keep going if still within it.
c906108c 4706
488f131b
JB
4707 Note that step_range_end is the address of the first instruction
4708 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4709 within it!
4710
4711 Note also that during reverse execution, we may be stepping
4712 through a function epilogue and therefore must detect when
4713 the current-frame changes in the middle of a line. */
4714
16c381f0
JK
4715 if (stop_pc >= ecs->event_thread->control.step_range_start
4716 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4717 && (execution_direction != EXEC_REVERSE
388a8562 4718 || frame_id_eq (get_frame_id (frame),
16c381f0 4719 ecs->event_thread->control.step_frame_id)))
488f131b 4720 {
527159b7 4721 if (debug_infrun)
5af949e3
UW
4722 fprintf_unfiltered
4723 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4724 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4725 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4726
4727 /* When stepping backward, stop at beginning of line range
4728 (unless it's the function entry point, in which case
4729 keep going back to the call point). */
16c381f0 4730 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4731 && stop_pc != ecs->stop_func_start
4732 && execution_direction == EXEC_REVERSE)
4733 {
16c381f0 4734 ecs->event_thread->control.stop_step = 1;
33d62d64 4735 print_end_stepping_range_reason ();
b2175913
MS
4736 stop_stepping (ecs);
4737 }
4738 else
4739 keep_going (ecs);
4740
488f131b
JB
4741 return;
4742 }
c5aa993b 4743
488f131b 4744 /* We stepped out of the stepping range. */
c906108c 4745
488f131b 4746 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4747 loader dynamic symbol resolution code...
4748
4749 EXEC_FORWARD: we keep on single stepping until we exit the run
4750 time loader code and reach the callee's address.
4751
4752 EXEC_REVERSE: we've already executed the callee (backward), and
4753 the runtime loader code is handled just like any other
4754 undebuggable function call. Now we need only keep stepping
4755 backward through the trampoline code, and that's handled further
4756 down, so there is nothing for us to do here. */
4757
4758 if (execution_direction != EXEC_REVERSE
16c381f0 4759 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4760 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4761 {
4c8c40e6 4762 CORE_ADDR pc_after_resolver =
568d6575 4763 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4764
527159b7 4765 if (debug_infrun)
3e43a32a
MS
4766 fprintf_unfiltered (gdb_stdlog,
4767 "infrun: stepped into dynsym resolve code\n");
527159b7 4768
488f131b
JB
4769 if (pc_after_resolver)
4770 {
4771 /* Set up a step-resume breakpoint at the address
4772 indicated by SKIP_SOLIB_RESOLVER. */
4773 struct symtab_and_line sr_sal;
abbb1732 4774
fe39c653 4775 init_sal (&sr_sal);
488f131b 4776 sr_sal.pc = pc_after_resolver;
6c95b8df 4777 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4778
a6d9a66e
UW
4779 insert_step_resume_breakpoint_at_sal (gdbarch,
4780 sr_sal, null_frame_id);
c5aa993b 4781 }
c906108c 4782
488f131b
JB
4783 keep_going (ecs);
4784 return;
4785 }
c906108c 4786
16c381f0
JK
4787 if (ecs->event_thread->control.step_range_end != 1
4788 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4789 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4790 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4791 {
527159b7 4792 if (debug_infrun)
3e43a32a
MS
4793 fprintf_unfiltered (gdb_stdlog,
4794 "infrun: stepped into signal trampoline\n");
42edda50 4795 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4796 a signal trampoline (either by a signal being delivered or by
4797 the signal handler returning). Just single-step until the
4798 inferior leaves the trampoline (either by calling the handler
4799 or returning). */
488f131b
JB
4800 keep_going (ecs);
4801 return;
4802 }
c906108c 4803
14132e89
MR
4804 /* If we're in the return path from a shared library trampoline,
4805 we want to proceed through the trampoline when stepping. */
4806 /* macro/2012-04-25: This needs to come before the subroutine
4807 call check below as on some targets return trampolines look
4808 like subroutine calls (MIPS16 return thunks). */
4809 if (gdbarch_in_solib_return_trampoline (gdbarch,
4810 stop_pc, ecs->stop_func_name)
4811 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4812 {
4813 /* Determine where this trampoline returns. */
4814 CORE_ADDR real_stop_pc;
4815
4816 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4817
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog,
4820 "infrun: stepped into solib return tramp\n");
4821
4822 /* Only proceed through if we know where it's going. */
4823 if (real_stop_pc)
4824 {
4825 /* And put the step-breakpoint there and go until there. */
4826 struct symtab_and_line sr_sal;
4827
4828 init_sal (&sr_sal); /* initialize to zeroes */
4829 sr_sal.pc = real_stop_pc;
4830 sr_sal.section = find_pc_overlay (sr_sal.pc);
4831 sr_sal.pspace = get_frame_program_space (frame);
4832
4833 /* Do not specify what the fp should be when we stop since
4834 on some machines the prologue is where the new fp value
4835 is established. */
4836 insert_step_resume_breakpoint_at_sal (gdbarch,
4837 sr_sal, null_frame_id);
4838
4839 /* Restart without fiddling with the step ranges or
4840 other state. */
4841 keep_going (ecs);
4842 return;
4843 }
4844 }
4845
c17eaafe
DJ
4846 /* Check for subroutine calls. The check for the current frame
4847 equalling the step ID is not necessary - the check of the
4848 previous frame's ID is sufficient - but it is a common case and
4849 cheaper than checking the previous frame's ID.
14e60db5
DJ
4850
4851 NOTE: frame_id_eq will never report two invalid frame IDs as
4852 being equal, so to get into this block, both the current and
4853 previous frame must have valid frame IDs. */
005ca36a
JB
4854 /* The outer_frame_id check is a heuristic to detect stepping
4855 through startup code. If we step over an instruction which
4856 sets the stack pointer from an invalid value to a valid value,
4857 we may detect that as a subroutine call from the mythical
4858 "outermost" function. This could be fixed by marking
4859 outermost frames as !stack_p,code_p,special_p. Then the
4860 initial outermost frame, before sp was valid, would
ce6cca6d 4861 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4862 for more. */
edb3359d 4863 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4864 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4865 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4866 ecs->event_thread->control.step_stack_frame_id)
4867 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4868 outer_frame_id)
4869 || step_start_function != find_pc_function (stop_pc))))
488f131b 4870 {
95918acb 4871 CORE_ADDR real_stop_pc;
8fb3e588 4872
527159b7 4873 if (debug_infrun)
8a9de0e4 4874 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4875
16c381f0
JK
4876 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4877 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4878 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4879 ecs->stop_func_start)))
95918acb
AC
4880 {
4881 /* I presume that step_over_calls is only 0 when we're
4882 supposed to be stepping at the assembly language level
4883 ("stepi"). Just stop. */
4884 /* Also, maybe we just did a "nexti" inside a prolog, so we
4885 thought it was a subroutine call but it was not. Stop as
4886 well. FENN */
388a8562 4887 /* And this works the same backward as frontward. MVS */
16c381f0 4888 ecs->event_thread->control.stop_step = 1;
33d62d64 4889 print_end_stepping_range_reason ();
95918acb
AC
4890 stop_stepping (ecs);
4891 return;
4892 }
8fb3e588 4893
388a8562
MS
4894 /* Reverse stepping through solib trampolines. */
4895
4896 if (execution_direction == EXEC_REVERSE
16c381f0 4897 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4898 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4899 || (ecs->stop_func_start == 0
4900 && in_solib_dynsym_resolve_code (stop_pc))))
4901 {
4902 /* Any solib trampoline code can be handled in reverse
4903 by simply continuing to single-step. We have already
4904 executed the solib function (backwards), and a few
4905 steps will take us back through the trampoline to the
4906 caller. */
4907 keep_going (ecs);
4908 return;
4909 }
4910
16c381f0 4911 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4912 {
b2175913
MS
4913 /* We're doing a "next".
4914
4915 Normal (forward) execution: set a breakpoint at the
4916 callee's return address (the address at which the caller
4917 will resume).
4918
4919 Reverse (backward) execution. set the step-resume
4920 breakpoint at the start of the function that we just
4921 stepped into (backwards), and continue to there. When we
6130d0b7 4922 get there, we'll need to single-step back to the caller. */
b2175913
MS
4923
4924 if (execution_direction == EXEC_REVERSE)
4925 {
acf9414f
JK
4926 /* If we're already at the start of the function, we've either
4927 just stepped backward into a single instruction function,
4928 or stepped back out of a signal handler to the first instruction
4929 of the function. Just keep going, which will single-step back
4930 to the caller. */
4931 if (ecs->stop_func_start != stop_pc)
4932 {
4933 struct symtab_and_line sr_sal;
4934
4935 /* Normal function call return (static or dynamic). */
4936 init_sal (&sr_sal);
4937 sr_sal.pc = ecs->stop_func_start;
4938 sr_sal.pspace = get_frame_program_space (frame);
4939 insert_step_resume_breakpoint_at_sal (gdbarch,
4940 sr_sal, null_frame_id);
4941 }
b2175913
MS
4942 }
4943 else
568d6575 4944 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4945
8567c30f
AC
4946 keep_going (ecs);
4947 return;
4948 }
a53c66de 4949
95918acb 4950 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4951 calling routine and the real function), locate the real
4952 function. That's what tells us (a) whether we want to step
4953 into it at all, and (b) what prologue we want to run to the
4954 end of, if we do step into it. */
568d6575 4955 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4956 if (real_stop_pc == 0)
568d6575 4957 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4958 if (real_stop_pc != 0)
4959 ecs->stop_func_start = real_stop_pc;
8fb3e588 4960
db5f024e 4961 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4962 {
4963 struct symtab_and_line sr_sal;
abbb1732 4964
1b2bfbb9
RC
4965 init_sal (&sr_sal);
4966 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4967 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4968
a6d9a66e
UW
4969 insert_step_resume_breakpoint_at_sal (gdbarch,
4970 sr_sal, null_frame_id);
8fb3e588
AC
4971 keep_going (ecs);
4972 return;
1b2bfbb9
RC
4973 }
4974
95918acb 4975 /* If we have line number information for the function we are
1bfeeb0f
JL
4976 thinking of stepping into and the function isn't on the skip
4977 list, step into it.
95918acb 4978
8fb3e588
AC
4979 If there are several symtabs at that PC (e.g. with include
4980 files), just want to know whether *any* of them have line
4981 numbers. find_pc_line handles this. */
95918acb
AC
4982 {
4983 struct symtab_and_line tmp_sal;
8fb3e588 4984
95918acb 4985 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4986 if (tmp_sal.line != 0
85817405
JK
4987 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4988 &tmp_sal))
95918acb 4989 {
b2175913 4990 if (execution_direction == EXEC_REVERSE)
568d6575 4991 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4992 else
568d6575 4993 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4994 return;
4995 }
4996 }
4997
4998 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4999 set, we stop the step so that the user has a chance to switch
5000 in assembly mode. */
16c381f0 5001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5002 && step_stop_if_no_debug)
95918acb 5003 {
16c381f0 5004 ecs->event_thread->control.stop_step = 1;
33d62d64 5005 print_end_stepping_range_reason ();
95918acb
AC
5006 stop_stepping (ecs);
5007 return;
5008 }
5009
b2175913
MS
5010 if (execution_direction == EXEC_REVERSE)
5011 {
acf9414f
JK
5012 /* If we're already at the start of the function, we've either just
5013 stepped backward into a single instruction function without line
5014 number info, or stepped back out of a signal handler to the first
5015 instruction of the function without line number info. Just keep
5016 going, which will single-step back to the caller. */
5017 if (ecs->stop_func_start != stop_pc)
5018 {
5019 /* Set a breakpoint at callee's start address.
5020 From there we can step once and be back in the caller. */
5021 struct symtab_and_line sr_sal;
abbb1732 5022
acf9414f
JK
5023 init_sal (&sr_sal);
5024 sr_sal.pc = ecs->stop_func_start;
5025 sr_sal.pspace = get_frame_program_space (frame);
5026 insert_step_resume_breakpoint_at_sal (gdbarch,
5027 sr_sal, null_frame_id);
5028 }
b2175913
MS
5029 }
5030 else
5031 /* Set a breakpoint at callee's return address (the address
5032 at which the caller will resume). */
568d6575 5033 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5034
95918acb 5035 keep_going (ecs);
488f131b 5036 return;
488f131b 5037 }
c906108c 5038
fdd654f3
MS
5039 /* Reverse stepping through solib trampolines. */
5040
5041 if (execution_direction == EXEC_REVERSE
16c381f0 5042 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5043 {
5044 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5045 || (ecs->stop_func_start == 0
5046 && in_solib_dynsym_resolve_code (stop_pc)))
5047 {
5048 /* Any solib trampoline code can be handled in reverse
5049 by simply continuing to single-step. We have already
5050 executed the solib function (backwards), and a few
5051 steps will take us back through the trampoline to the
5052 caller. */
5053 keep_going (ecs);
5054 return;
5055 }
5056 else if (in_solib_dynsym_resolve_code (stop_pc))
5057 {
5058 /* Stepped backward into the solib dynsym resolver.
5059 Set a breakpoint at its start and continue, then
5060 one more step will take us out. */
5061 struct symtab_and_line sr_sal;
abbb1732 5062
fdd654f3
MS
5063 init_sal (&sr_sal);
5064 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5065 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5066 insert_step_resume_breakpoint_at_sal (gdbarch,
5067 sr_sal, null_frame_id);
5068 keep_going (ecs);
5069 return;
5070 }
5071 }
5072
2afb61aa 5073 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5074
1b2bfbb9
RC
5075 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5076 the trampoline processing logic, however, there are some trampolines
5077 that have no names, so we should do trampoline handling first. */
16c381f0 5078 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5079 && ecs->stop_func_name == NULL
2afb61aa 5080 && stop_pc_sal.line == 0)
1b2bfbb9 5081 {
527159b7 5082 if (debug_infrun)
3e43a32a
MS
5083 fprintf_unfiltered (gdb_stdlog,
5084 "infrun: stepped into undebuggable function\n");
527159b7 5085
1b2bfbb9 5086 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5087 undebuggable function (where there is no debugging information
5088 and no line number corresponding to the address where the
1b2bfbb9
RC
5089 inferior stopped). Since we want to skip this kind of code,
5090 we keep going until the inferior returns from this
14e60db5
DJ
5091 function - unless the user has asked us not to (via
5092 set step-mode) or we no longer know how to get back
5093 to the call site. */
5094 if (step_stop_if_no_debug
c7ce8faa 5095 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5096 {
5097 /* If we have no line number and the step-stop-if-no-debug
5098 is set, we stop the step so that the user has a chance to
5099 switch in assembly mode. */
16c381f0 5100 ecs->event_thread->control.stop_step = 1;
33d62d64 5101 print_end_stepping_range_reason ();
1b2bfbb9
RC
5102 stop_stepping (ecs);
5103 return;
5104 }
5105 else
5106 {
5107 /* Set a breakpoint at callee's return address (the address
5108 at which the caller will resume). */
568d6575 5109 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5110 keep_going (ecs);
5111 return;
5112 }
5113 }
5114
16c381f0 5115 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5116 {
5117 /* It is stepi or nexti. We always want to stop stepping after
5118 one instruction. */
527159b7 5119 if (debug_infrun)
8a9de0e4 5120 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5121 ecs->event_thread->control.stop_step = 1;
33d62d64 5122 print_end_stepping_range_reason ();
1b2bfbb9
RC
5123 stop_stepping (ecs);
5124 return;
5125 }
5126
2afb61aa 5127 if (stop_pc_sal.line == 0)
488f131b
JB
5128 {
5129 /* We have no line number information. That means to stop
5130 stepping (does this always happen right after one instruction,
5131 when we do "s" in a function with no line numbers,
5132 or can this happen as a result of a return or longjmp?). */
527159b7 5133 if (debug_infrun)
8a9de0e4 5134 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5135 ecs->event_thread->control.stop_step = 1;
33d62d64 5136 print_end_stepping_range_reason ();
488f131b
JB
5137 stop_stepping (ecs);
5138 return;
5139 }
c906108c 5140
edb3359d
DJ
5141 /* Look for "calls" to inlined functions, part one. If the inline
5142 frame machinery detected some skipped call sites, we have entered
5143 a new inline function. */
5144
5145 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5146 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5147 && inline_skipped_frames (ecs->ptid))
5148 {
5149 struct symtab_and_line call_sal;
5150
5151 if (debug_infrun)
5152 fprintf_unfiltered (gdb_stdlog,
5153 "infrun: stepped into inlined function\n");
5154
5155 find_frame_sal (get_current_frame (), &call_sal);
5156
16c381f0 5157 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5158 {
5159 /* For "step", we're going to stop. But if the call site
5160 for this inlined function is on the same source line as
5161 we were previously stepping, go down into the function
5162 first. Otherwise stop at the call site. */
5163
5164 if (call_sal.line == ecs->event_thread->current_line
5165 && call_sal.symtab == ecs->event_thread->current_symtab)
5166 step_into_inline_frame (ecs->ptid);
5167
16c381f0 5168 ecs->event_thread->control.stop_step = 1;
33d62d64 5169 print_end_stepping_range_reason ();
edb3359d
DJ
5170 stop_stepping (ecs);
5171 return;
5172 }
5173 else
5174 {
5175 /* For "next", we should stop at the call site if it is on a
5176 different source line. Otherwise continue through the
5177 inlined function. */
5178 if (call_sal.line == ecs->event_thread->current_line
5179 && call_sal.symtab == ecs->event_thread->current_symtab)
5180 keep_going (ecs);
5181 else
5182 {
16c381f0 5183 ecs->event_thread->control.stop_step = 1;
33d62d64 5184 print_end_stepping_range_reason ();
edb3359d
DJ
5185 stop_stepping (ecs);
5186 }
5187 return;
5188 }
5189 }
5190
5191 /* Look for "calls" to inlined functions, part two. If we are still
5192 in the same real function we were stepping through, but we have
5193 to go further up to find the exact frame ID, we are stepping
5194 through a more inlined call beyond its call site. */
5195
5196 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5197 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5198 ecs->event_thread->control.step_frame_id)
edb3359d 5199 && stepped_in_from (get_current_frame (),
16c381f0 5200 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5201 {
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: stepping through inlined function\n");
5205
16c381f0 5206 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5207 keep_going (ecs);
5208 else
5209 {
16c381f0 5210 ecs->event_thread->control.stop_step = 1;
33d62d64 5211 print_end_stepping_range_reason ();
edb3359d
DJ
5212 stop_stepping (ecs);
5213 }
5214 return;
5215 }
5216
2afb61aa 5217 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5218 && (ecs->event_thread->current_line != stop_pc_sal.line
5219 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5220 {
5221 /* We are at the start of a different line. So stop. Note that
5222 we don't stop if we step into the middle of a different line.
5223 That is said to make things like for (;;) statements work
5224 better. */
527159b7 5225 if (debug_infrun)
3e43a32a
MS
5226 fprintf_unfiltered (gdb_stdlog,
5227 "infrun: stepped to a different line\n");
16c381f0 5228 ecs->event_thread->control.stop_step = 1;
33d62d64 5229 print_end_stepping_range_reason ();
488f131b
JB
5230 stop_stepping (ecs);
5231 return;
5232 }
c906108c 5233
488f131b 5234 /* We aren't done stepping.
c906108c 5235
488f131b
JB
5236 Optimize by setting the stepping range to the line.
5237 (We might not be in the original line, but if we entered a
5238 new line in mid-statement, we continue stepping. This makes
5239 things like for(;;) statements work better.) */
c906108c 5240
16c381f0
JK
5241 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5242 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5243 set_step_info (frame, stop_pc_sal);
488f131b 5244
527159b7 5245 if (debug_infrun)
8a9de0e4 5246 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5247 keep_going (ecs);
104c1213
JM
5248}
5249
b3444185 5250/* Is thread TP in the middle of single-stepping? */
104c1213 5251
a289b8f6 5252static int
b3444185 5253currently_stepping (struct thread_info *tp)
a7212384 5254{
8358c15c
JK
5255 return ((tp->control.step_range_end
5256 && tp->control.step_resume_breakpoint == NULL)
5257 || tp->control.trap_expected
8358c15c 5258 || bpstat_should_step ());
a7212384
UW
5259}
5260
b3444185
PA
5261/* Returns true if any thread *but* the one passed in "data" is in the
5262 middle of stepping or of handling a "next". */
a7212384 5263
104c1213 5264static int
b3444185 5265currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5266{
b3444185
PA
5267 if (tp == data)
5268 return 0;
5269
16c381f0 5270 return (tp->control.step_range_end
ede1849f 5271 || tp->control.trap_expected);
104c1213 5272}
c906108c 5273
b2175913
MS
5274/* Inferior has stepped into a subroutine call with source code that
5275 we should not step over. Do step to the first line of code in
5276 it. */
c2c6d25f
JM
5277
5278static void
568d6575
UW
5279handle_step_into_function (struct gdbarch *gdbarch,
5280 struct execution_control_state *ecs)
c2c6d25f
JM
5281{
5282 struct symtab *s;
2afb61aa 5283 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5284
7e324e48
GB
5285 fill_in_stop_func (gdbarch, ecs);
5286
c2c6d25f
JM
5287 s = find_pc_symtab (stop_pc);
5288 if (s && s->language != language_asm)
568d6575 5289 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5290 ecs->stop_func_start);
c2c6d25f 5291
2afb61aa 5292 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5293 /* Use the step_resume_break to step until the end of the prologue,
5294 even if that involves jumps (as it seems to on the vax under
5295 4.2). */
5296 /* If the prologue ends in the middle of a source line, continue to
5297 the end of that source line (if it is still within the function).
5298 Otherwise, just go to end of prologue. */
2afb61aa
PA
5299 if (stop_func_sal.end
5300 && stop_func_sal.pc != ecs->stop_func_start
5301 && stop_func_sal.end < ecs->stop_func_end)
5302 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5303
2dbd5e30
KB
5304 /* Architectures which require breakpoint adjustment might not be able
5305 to place a breakpoint at the computed address. If so, the test
5306 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5307 ecs->stop_func_start to an address at which a breakpoint may be
5308 legitimately placed.
8fb3e588 5309
2dbd5e30
KB
5310 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5311 made, GDB will enter an infinite loop when stepping through
5312 optimized code consisting of VLIW instructions which contain
5313 subinstructions corresponding to different source lines. On
5314 FR-V, it's not permitted to place a breakpoint on any but the
5315 first subinstruction of a VLIW instruction. When a breakpoint is
5316 set, GDB will adjust the breakpoint address to the beginning of
5317 the VLIW instruction. Thus, we need to make the corresponding
5318 adjustment here when computing the stop address. */
8fb3e588 5319
568d6575 5320 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5321 {
5322 ecs->stop_func_start
568d6575 5323 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5324 ecs->stop_func_start);
2dbd5e30
KB
5325 }
5326
c2c6d25f
JM
5327 if (ecs->stop_func_start == stop_pc)
5328 {
5329 /* We are already there: stop now. */
16c381f0 5330 ecs->event_thread->control.stop_step = 1;
33d62d64 5331 print_end_stepping_range_reason ();
c2c6d25f
JM
5332 stop_stepping (ecs);
5333 return;
5334 }
5335 else
5336 {
5337 /* Put the step-breakpoint there and go until there. */
fe39c653 5338 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5339 sr_sal.pc = ecs->stop_func_start;
5340 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5341 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5342
c2c6d25f 5343 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5344 some machines the prologue is where the new fp value is
5345 established. */
a6d9a66e 5346 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5347
5348 /* And make sure stepping stops right away then. */
16c381f0
JK
5349 ecs->event_thread->control.step_range_end
5350 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5351 }
5352 keep_going (ecs);
5353}
d4f3574e 5354
b2175913
MS
5355/* Inferior has stepped backward into a subroutine call with source
5356 code that we should not step over. Do step to the beginning of the
5357 last line of code in it. */
5358
5359static void
568d6575
UW
5360handle_step_into_function_backward (struct gdbarch *gdbarch,
5361 struct execution_control_state *ecs)
b2175913
MS
5362{
5363 struct symtab *s;
167e4384 5364 struct symtab_and_line stop_func_sal;
b2175913 5365
7e324e48
GB
5366 fill_in_stop_func (gdbarch, ecs);
5367
b2175913
MS
5368 s = find_pc_symtab (stop_pc);
5369 if (s && s->language != language_asm)
568d6575 5370 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5371 ecs->stop_func_start);
5372
5373 stop_func_sal = find_pc_line (stop_pc, 0);
5374
5375 /* OK, we're just going to keep stepping here. */
5376 if (stop_func_sal.pc == stop_pc)
5377 {
5378 /* We're there already. Just stop stepping now. */
16c381f0 5379 ecs->event_thread->control.stop_step = 1;
33d62d64 5380 print_end_stepping_range_reason ();
b2175913
MS
5381 stop_stepping (ecs);
5382 }
5383 else
5384 {
5385 /* Else just reset the step range and keep going.
5386 No step-resume breakpoint, they don't work for
5387 epilogues, which can have multiple entry paths. */
16c381f0
JK
5388 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5389 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5390 keep_going (ecs);
5391 }
5392 return;
5393}
5394
d3169d93 5395/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5396 This is used to both functions and to skip over code. */
5397
5398static void
2c03e5be
PA
5399insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5400 struct symtab_and_line sr_sal,
5401 struct frame_id sr_id,
5402 enum bptype sr_type)
44cbf7b5 5403{
611c83ae
PA
5404 /* There should never be more than one step-resume or longjmp-resume
5405 breakpoint per thread, so we should never be setting a new
44cbf7b5 5406 step_resume_breakpoint when one is already active. */
8358c15c 5407 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5408 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5409
5410 if (debug_infrun)
5411 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5412 "infrun: inserting step-resume breakpoint at %s\n",
5413 paddress (gdbarch, sr_sal.pc));
d3169d93 5414
8358c15c 5415 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5416 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5417}
5418
9da8c2a0 5419void
2c03e5be
PA
5420insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5421 struct symtab_and_line sr_sal,
5422 struct frame_id sr_id)
5423{
5424 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5425 sr_sal, sr_id,
5426 bp_step_resume);
44cbf7b5 5427}
7ce450bd 5428
2c03e5be
PA
5429/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5430 This is used to skip a potential signal handler.
7ce450bd 5431
14e60db5
DJ
5432 This is called with the interrupted function's frame. The signal
5433 handler, when it returns, will resume the interrupted function at
5434 RETURN_FRAME.pc. */
d303a6c7
AC
5435
5436static void
2c03e5be 5437insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5438{
5439 struct symtab_and_line sr_sal;
a6d9a66e 5440 struct gdbarch *gdbarch;
d303a6c7 5441
f4c1edd8 5442 gdb_assert (return_frame != NULL);
d303a6c7
AC
5443 init_sal (&sr_sal); /* initialize to zeros */
5444
a6d9a66e 5445 gdbarch = get_frame_arch (return_frame);
568d6575 5446 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5447 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5448 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5449
2c03e5be
PA
5450 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5451 get_stack_frame_id (return_frame),
5452 bp_hp_step_resume);
d303a6c7
AC
5453}
5454
2c03e5be
PA
5455/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5456 is used to skip a function after stepping into it (for "next" or if
5457 the called function has no debugging information).
14e60db5
DJ
5458
5459 The current function has almost always been reached by single
5460 stepping a call or return instruction. NEXT_FRAME belongs to the
5461 current function, and the breakpoint will be set at the caller's
5462 resume address.
5463
5464 This is a separate function rather than reusing
2c03e5be 5465 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5466 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5467 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5468
5469static void
5470insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5471{
5472 struct symtab_and_line sr_sal;
a6d9a66e 5473 struct gdbarch *gdbarch;
14e60db5
DJ
5474
5475 /* We shouldn't have gotten here if we don't know where the call site
5476 is. */
c7ce8faa 5477 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5478
5479 init_sal (&sr_sal); /* initialize to zeros */
5480
a6d9a66e 5481 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5482 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5483 frame_unwind_caller_pc (next_frame));
14e60db5 5484 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5485 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5486
a6d9a66e 5487 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5488 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5489}
5490
611c83ae
PA
5491/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5492 new breakpoint at the target of a jmp_buf. The handling of
5493 longjmp-resume uses the same mechanisms used for handling
5494 "step-resume" breakpoints. */
5495
5496static void
a6d9a66e 5497insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5498{
e81a37f7
TT
5499 /* There should never be more than one longjmp-resume breakpoint per
5500 thread, so we should never be setting a new
611c83ae 5501 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5502 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5503
5504 if (debug_infrun)
5505 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5506 "infrun: inserting longjmp-resume breakpoint at %s\n",
5507 paddress (gdbarch, pc));
611c83ae 5508
e81a37f7 5509 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5510 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5511}
5512
186c406b
TT
5513/* Insert an exception resume breakpoint. TP is the thread throwing
5514 the exception. The block B is the block of the unwinder debug hook
5515 function. FRAME is the frame corresponding to the call to this
5516 function. SYM is the symbol of the function argument holding the
5517 target PC of the exception. */
5518
5519static void
5520insert_exception_resume_breakpoint (struct thread_info *tp,
5521 struct block *b,
5522 struct frame_info *frame,
5523 struct symbol *sym)
5524{
bfd189b1 5525 volatile struct gdb_exception e;
186c406b
TT
5526
5527 /* We want to ignore errors here. */
5528 TRY_CATCH (e, RETURN_MASK_ERROR)
5529 {
5530 struct symbol *vsym;
5531 struct value *value;
5532 CORE_ADDR handler;
5533 struct breakpoint *bp;
5534
5535 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5536 value = read_var_value (vsym, frame);
5537 /* If the value was optimized out, revert to the old behavior. */
5538 if (! value_optimized_out (value))
5539 {
5540 handler = value_as_address (value);
5541
5542 if (debug_infrun)
5543 fprintf_unfiltered (gdb_stdlog,
5544 "infrun: exception resume at %lx\n",
5545 (unsigned long) handler);
5546
5547 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5548 handler, bp_exception_resume);
c70a6932
JK
5549
5550 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5551 frame = NULL;
5552
186c406b
TT
5553 bp->thread = tp->num;
5554 inferior_thread ()->control.exception_resume_breakpoint = bp;
5555 }
5556 }
5557}
5558
28106bc2
SDJ
5559/* A helper for check_exception_resume that sets an
5560 exception-breakpoint based on a SystemTap probe. */
5561
5562static void
5563insert_exception_resume_from_probe (struct thread_info *tp,
5564 const struct probe *probe,
28106bc2
SDJ
5565 struct frame_info *frame)
5566{
5567 struct value *arg_value;
5568 CORE_ADDR handler;
5569 struct breakpoint *bp;
5570
5571 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5572 if (!arg_value)
5573 return;
5574
5575 handler = value_as_address (arg_value);
5576
5577 if (debug_infrun)
5578 fprintf_unfiltered (gdb_stdlog,
5579 "infrun: exception resume at %s\n",
6bac7473 5580 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5581 handler));
5582
5583 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5584 handler, bp_exception_resume);
5585 bp->thread = tp->num;
5586 inferior_thread ()->control.exception_resume_breakpoint = bp;
5587}
5588
186c406b
TT
5589/* This is called when an exception has been intercepted. Check to
5590 see whether the exception's destination is of interest, and if so,
5591 set an exception resume breakpoint there. */
5592
5593static void
5594check_exception_resume (struct execution_control_state *ecs,
28106bc2 5595 struct frame_info *frame)
186c406b 5596{
bfd189b1 5597 volatile struct gdb_exception e;
28106bc2
SDJ
5598 const struct probe *probe;
5599 struct symbol *func;
5600
5601 /* First see if this exception unwinding breakpoint was set via a
5602 SystemTap probe point. If so, the probe has two arguments: the
5603 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5604 set a breakpoint there. */
6bac7473 5605 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5606 if (probe)
5607 {
6bac7473 5608 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5609 return;
5610 }
5611
5612 func = get_frame_function (frame);
5613 if (!func)
5614 return;
186c406b
TT
5615
5616 TRY_CATCH (e, RETURN_MASK_ERROR)
5617 {
5618 struct block *b;
8157b174 5619 struct block_iterator iter;
186c406b
TT
5620 struct symbol *sym;
5621 int argno = 0;
5622
5623 /* The exception breakpoint is a thread-specific breakpoint on
5624 the unwinder's debug hook, declared as:
5625
5626 void _Unwind_DebugHook (void *cfa, void *handler);
5627
5628 The CFA argument indicates the frame to which control is
5629 about to be transferred. HANDLER is the destination PC.
5630
5631 We ignore the CFA and set a temporary breakpoint at HANDLER.
5632 This is not extremely efficient but it avoids issues in gdb
5633 with computing the DWARF CFA, and it also works even in weird
5634 cases such as throwing an exception from inside a signal
5635 handler. */
5636
5637 b = SYMBOL_BLOCK_VALUE (func);
5638 ALL_BLOCK_SYMBOLS (b, iter, sym)
5639 {
5640 if (!SYMBOL_IS_ARGUMENT (sym))
5641 continue;
5642
5643 if (argno == 0)
5644 ++argno;
5645 else
5646 {
5647 insert_exception_resume_breakpoint (ecs->event_thread,
5648 b, frame, sym);
5649 break;
5650 }
5651 }
5652 }
5653}
5654
104c1213
JM
5655static void
5656stop_stepping (struct execution_control_state *ecs)
5657{
527159b7 5658 if (debug_infrun)
8a9de0e4 5659 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5660
cd0fc7c3
SS
5661 /* Let callers know we don't want to wait for the inferior anymore. */
5662 ecs->wait_some_more = 0;
5663}
5664
d4f3574e
SS
5665/* This function handles various cases where we need to continue
5666 waiting for the inferior. */
1777feb0 5667/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5668
5669static void
5670keep_going (struct execution_control_state *ecs)
5671{
c4dbc9af
PA
5672 /* Make sure normal_stop is called if we get a QUIT handled before
5673 reaching resume. */
5674 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5675
d4f3574e 5676 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5677 ecs->event_thread->prev_pc
5678 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5679
d4f3574e
SS
5680 /* If we did not do break;, it means we should keep running the
5681 inferior and not return to debugger. */
5682
16c381f0 5683 if (ecs->event_thread->control.trap_expected
a493e3e2 5684 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5685 {
5686 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5687 the inferior, else we'd not get here) and we haven't yet
5688 gotten our trap. Simply continue. */
c4dbc9af
PA
5689
5690 discard_cleanups (old_cleanups);
2020b7ab 5691 resume (currently_stepping (ecs->event_thread),
16c381f0 5692 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5693 }
5694 else
5695 {
5696 /* Either the trap was not expected, but we are continuing
488f131b
JB
5697 anyway (the user asked that this signal be passed to the
5698 child)
5699 -- or --
5700 The signal was SIGTRAP, e.g. it was our signal, but we
5701 decided we should resume from it.
d4f3574e 5702
c36b740a 5703 We're going to run this baby now!
d4f3574e 5704
c36b740a
VP
5705 Note that insert_breakpoints won't try to re-insert
5706 already inserted breakpoints. Therefore, we don't
5707 care if breakpoints were already inserted, or not. */
5708
4e1c45ea 5709 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5710 {
9f5a595d 5711 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5712
9f5a595d 5713 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5714 /* Since we can't do a displaced step, we have to remove
5715 the breakpoint while we step it. To keep things
5716 simple, we remove them all. */
5717 remove_breakpoints ();
45e8c884
VP
5718 }
5719 else
d4f3574e 5720 {
bfd189b1 5721 volatile struct gdb_exception e;
abbb1732 5722
569631c6
UW
5723 /* Stop stepping when inserting breakpoints
5724 has failed. */
e236ba44
VP
5725 TRY_CATCH (e, RETURN_MASK_ERROR)
5726 {
5727 insert_breakpoints ();
5728 }
5729 if (e.reason < 0)
d4f3574e 5730 {
97bd5475 5731 exception_print (gdb_stderr, e);
d4f3574e
SS
5732 stop_stepping (ecs);
5733 return;
5734 }
d4f3574e
SS
5735 }
5736
16c381f0
JK
5737 ecs->event_thread->control.trap_expected
5738 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5739
5740 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5741 specifies that such a signal should be delivered to the
5742 target program).
5743
5744 Typically, this would occure when a user is debugging a
5745 target monitor on a simulator: the target monitor sets a
5746 breakpoint; the simulator encounters this break-point and
5747 halts the simulation handing control to GDB; GDB, noteing
5748 that the break-point isn't valid, returns control back to the
5749 simulator; the simulator then delivers the hardware
1777feb0 5750 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5751
a493e3e2 5752 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5753 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5754 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5755
c4dbc9af 5756 discard_cleanups (old_cleanups);
2020b7ab 5757 resume (currently_stepping (ecs->event_thread),
16c381f0 5758 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5759 }
5760
488f131b 5761 prepare_to_wait (ecs);
d4f3574e
SS
5762}
5763
104c1213
JM
5764/* This function normally comes after a resume, before
5765 handle_inferior_event exits. It takes care of any last bits of
5766 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5767
104c1213
JM
5768static void
5769prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5770{
527159b7 5771 if (debug_infrun)
8a9de0e4 5772 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5773
104c1213
JM
5774 /* This is the old end of the while loop. Let everybody know we
5775 want to wait for the inferior some more and get called again
5776 soon. */
5777 ecs->wait_some_more = 1;
c906108c 5778}
11cf8741 5779
33d62d64
JK
5780/* Several print_*_reason functions to print why the inferior has stopped.
5781 We always print something when the inferior exits, or receives a signal.
5782 The rest of the cases are dealt with later on in normal_stop and
5783 print_it_typical. Ideally there should be a call to one of these
5784 print_*_reason functions functions from handle_inferior_event each time
5785 stop_stepping is called. */
5786
5787/* Print why the inferior has stopped.
5788 We are done with a step/next/si/ni command, print why the inferior has
5789 stopped. For now print nothing. Print a message only if not in the middle
5790 of doing a "step n" operation for n > 1. */
5791
5792static void
5793print_end_stepping_range_reason (void)
5794{
16c381f0
JK
5795 if ((!inferior_thread ()->step_multi
5796 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5797 && ui_out_is_mi_like_p (current_uiout))
5798 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5799 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5800}
5801
5802/* The inferior was terminated by a signal, print why it stopped. */
5803
11cf8741 5804static void
2ea28649 5805print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5806{
79a45e25
PA
5807 struct ui_out *uiout = current_uiout;
5808
33d62d64
JK
5809 annotate_signalled ();
5810 if (ui_out_is_mi_like_p (uiout))
5811 ui_out_field_string
5812 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5813 ui_out_text (uiout, "\nProgram terminated with signal ");
5814 annotate_signal_name ();
5815 ui_out_field_string (uiout, "signal-name",
2ea28649 5816 gdb_signal_to_name (siggnal));
33d62d64
JK
5817 annotate_signal_name_end ();
5818 ui_out_text (uiout, ", ");
5819 annotate_signal_string ();
5820 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5821 gdb_signal_to_string (siggnal));
33d62d64
JK
5822 annotate_signal_string_end ();
5823 ui_out_text (uiout, ".\n");
5824 ui_out_text (uiout, "The program no longer exists.\n");
5825}
5826
5827/* The inferior program is finished, print why it stopped. */
5828
5829static void
5830print_exited_reason (int exitstatus)
5831{
fda326dd
TT
5832 struct inferior *inf = current_inferior ();
5833 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5834 struct ui_out *uiout = current_uiout;
fda326dd 5835
33d62d64
JK
5836 annotate_exited (exitstatus);
5837 if (exitstatus)
5838 {
5839 if (ui_out_is_mi_like_p (uiout))
5840 ui_out_field_string (uiout, "reason",
5841 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5842 ui_out_text (uiout, "[Inferior ");
5843 ui_out_text (uiout, plongest (inf->num));
5844 ui_out_text (uiout, " (");
5845 ui_out_text (uiout, pidstr);
5846 ui_out_text (uiout, ") exited with code ");
33d62d64 5847 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5848 ui_out_text (uiout, "]\n");
33d62d64
JK
5849 }
5850 else
11cf8741 5851 {
9dc5e2a9 5852 if (ui_out_is_mi_like_p (uiout))
034dad6f 5853 ui_out_field_string
33d62d64 5854 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5855 ui_out_text (uiout, "[Inferior ");
5856 ui_out_text (uiout, plongest (inf->num));
5857 ui_out_text (uiout, " (");
5858 ui_out_text (uiout, pidstr);
5859 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5860 }
5861 /* Support the --return-child-result option. */
5862 return_child_result_value = exitstatus;
5863}
5864
5865/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5866 tells us to print about it. */
33d62d64
JK
5867
5868static void
2ea28649 5869print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5870{
79a45e25
PA
5871 struct ui_out *uiout = current_uiout;
5872
33d62d64
JK
5873 annotate_signal ();
5874
a493e3e2 5875 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5876 {
5877 struct thread_info *t = inferior_thread ();
5878
5879 ui_out_text (uiout, "\n[");
5880 ui_out_field_string (uiout, "thread-name",
5881 target_pid_to_str (t->ptid));
5882 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5883 ui_out_text (uiout, " stopped");
5884 }
5885 else
5886 {
5887 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5888 annotate_signal_name ();
33d62d64
JK
5889 if (ui_out_is_mi_like_p (uiout))
5890 ui_out_field_string
5891 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5892 ui_out_field_string (uiout, "signal-name",
2ea28649 5893 gdb_signal_to_name (siggnal));
8b93c638
JM
5894 annotate_signal_name_end ();
5895 ui_out_text (uiout, ", ");
5896 annotate_signal_string ();
488f131b 5897 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5898 gdb_signal_to_string (siggnal));
8b93c638 5899 annotate_signal_string_end ();
33d62d64
JK
5900 }
5901 ui_out_text (uiout, ".\n");
5902}
252fbfc8 5903
33d62d64
JK
5904/* Reverse execution: target ran out of history info, print why the inferior
5905 has stopped. */
252fbfc8 5906
33d62d64
JK
5907static void
5908print_no_history_reason (void)
5909{
79a45e25 5910 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5911}
43ff13b4 5912
c906108c
SS
5913/* Here to return control to GDB when the inferior stops for real.
5914 Print appropriate messages, remove breakpoints, give terminal our modes.
5915
5916 STOP_PRINT_FRAME nonzero means print the executing frame
5917 (pc, function, args, file, line number and line text).
5918 BREAKPOINTS_FAILED nonzero means stop was due to error
5919 attempting to insert breakpoints. */
5920
5921void
96baa820 5922normal_stop (void)
c906108c 5923{
73b65bb0
DJ
5924 struct target_waitstatus last;
5925 ptid_t last_ptid;
29f49a6a 5926 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5927
5928 get_last_target_status (&last_ptid, &last);
5929
29f49a6a
PA
5930 /* If an exception is thrown from this point on, make sure to
5931 propagate GDB's knowledge of the executing state to the
5932 frontend/user running state. A QUIT is an easy exception to see
5933 here, so do this before any filtered output. */
c35b1492
PA
5934 if (!non_stop)
5935 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5936 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5937 && last.kind != TARGET_WAITKIND_EXITED
5938 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5939 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5940
4f8d22e3
PA
5941 /* In non-stop mode, we don't want GDB to switch threads behind the
5942 user's back, to avoid races where the user is typing a command to
5943 apply to thread x, but GDB switches to thread y before the user
5944 finishes entering the command. */
5945
c906108c
SS
5946 /* As with the notification of thread events, we want to delay
5947 notifying the user that we've switched thread context until
5948 the inferior actually stops.
5949
73b65bb0
DJ
5950 There's no point in saying anything if the inferior has exited.
5951 Note that SIGNALLED here means "exited with a signal", not
5952 "received a signal". */
4f8d22e3
PA
5953 if (!non_stop
5954 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5955 && target_has_execution
5956 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5957 && last.kind != TARGET_WAITKIND_EXITED
5958 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5959 {
5960 target_terminal_ours_for_output ();
a3f17187 5961 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5962 target_pid_to_str (inferior_ptid));
b8fa951a 5963 annotate_thread_changed ();
39f77062 5964 previous_inferior_ptid = inferior_ptid;
c906108c 5965 }
c906108c 5966
0e5bf2a8
PA
5967 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5968 {
5969 gdb_assert (sync_execution || !target_can_async_p ());
5970
5971 target_terminal_ours_for_output ();
5972 printf_filtered (_("No unwaited-for children left.\n"));
5973 }
5974
74960c60 5975 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5976 {
5977 if (remove_breakpoints ())
5978 {
5979 target_terminal_ours_for_output ();
3e43a32a
MS
5980 printf_filtered (_("Cannot remove breakpoints because "
5981 "program is no longer writable.\nFurther "
5982 "execution is probably impossible.\n"));
c906108c
SS
5983 }
5984 }
c906108c 5985
c906108c
SS
5986 /* If an auto-display called a function and that got a signal,
5987 delete that auto-display to avoid an infinite recursion. */
5988
5989 if (stopped_by_random_signal)
5990 disable_current_display ();
5991
5992 /* Don't print a message if in the middle of doing a "step n"
5993 operation for n > 1 */
af679fd0
PA
5994 if (target_has_execution
5995 && last.kind != TARGET_WAITKIND_SIGNALLED
5996 && last.kind != TARGET_WAITKIND_EXITED
5997 && inferior_thread ()->step_multi
16c381f0 5998 && inferior_thread ()->control.stop_step)
c906108c
SS
5999 goto done;
6000
6001 target_terminal_ours ();
0f641c01 6002 async_enable_stdin ();
c906108c 6003
7abfe014
DJ
6004 /* Set the current source location. This will also happen if we
6005 display the frame below, but the current SAL will be incorrect
6006 during a user hook-stop function. */
d729566a 6007 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6008 set_current_sal_from_frame (get_current_frame (), 1);
6009
dd7e2d2b
PA
6010 /* Let the user/frontend see the threads as stopped. */
6011 do_cleanups (old_chain);
6012
6013 /* Look up the hook_stop and run it (CLI internally handles problem
6014 of stop_command's pre-hook not existing). */
6015 if (stop_command)
6016 catch_errors (hook_stop_stub, stop_command,
6017 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6018
d729566a 6019 if (!has_stack_frames ())
d51fd4c8 6020 goto done;
c906108c 6021
32400beb
PA
6022 if (last.kind == TARGET_WAITKIND_SIGNALLED
6023 || last.kind == TARGET_WAITKIND_EXITED)
6024 goto done;
6025
c906108c
SS
6026 /* Select innermost stack frame - i.e., current frame is frame 0,
6027 and current location is based on that.
6028 Don't do this on return from a stack dummy routine,
1777feb0 6029 or if the program has exited. */
c906108c
SS
6030
6031 if (!stop_stack_dummy)
6032 {
0f7d239c 6033 select_frame (get_current_frame ());
c906108c
SS
6034
6035 /* Print current location without a level number, if
c5aa993b
JM
6036 we have changed functions or hit a breakpoint.
6037 Print source line if we have one.
6038 bpstat_print() contains the logic deciding in detail
1777feb0 6039 what to print, based on the event(s) that just occurred. */
c906108c 6040
d01a8610
AS
6041 /* If --batch-silent is enabled then there's no need to print the current
6042 source location, and to try risks causing an error message about
6043 missing source files. */
6044 if (stop_print_frame && !batch_silent)
c906108c
SS
6045 {
6046 int bpstat_ret;
6047 int source_flag;
917317f4 6048 int do_frame_printing = 1;
347bddb7 6049 struct thread_info *tp = inferior_thread ();
c906108c 6050
36dfb11c 6051 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6052 switch (bpstat_ret)
6053 {
6054 case PRINT_UNKNOWN:
aa0cd9c1 6055 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6056 (or should) carry around the function and does (or
6057 should) use that when doing a frame comparison. */
16c381f0
JK
6058 if (tp->control.stop_step
6059 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6060 get_frame_id (get_current_frame ()))
917317f4 6061 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6062 source_flag = SRC_LINE; /* Finished step, just
6063 print source line. */
917317f4 6064 else
1777feb0
MS
6065 source_flag = SRC_AND_LOC; /* Print location and
6066 source line. */
917317f4
JM
6067 break;
6068 case PRINT_SRC_AND_LOC:
1777feb0
MS
6069 source_flag = SRC_AND_LOC; /* Print location and
6070 source line. */
917317f4
JM
6071 break;
6072 case PRINT_SRC_ONLY:
c5394b80 6073 source_flag = SRC_LINE;
917317f4
JM
6074 break;
6075 case PRINT_NOTHING:
488f131b 6076 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6077 do_frame_printing = 0;
6078 break;
6079 default:
e2e0b3e5 6080 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6081 }
c906108c
SS
6082
6083 /* The behavior of this routine with respect to the source
6084 flag is:
c5394b80
JM
6085 SRC_LINE: Print only source line
6086 LOCATION: Print only location
1777feb0 6087 SRC_AND_LOC: Print location and source line. */
917317f4 6088 if (do_frame_printing)
b04f3ab4 6089 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6090
6091 /* Display the auto-display expressions. */
6092 do_displays ();
6093 }
6094 }
6095
6096 /* Save the function value return registers, if we care.
6097 We might be about to restore their previous contents. */
9da8c2a0
PA
6098 if (inferior_thread ()->control.proceed_to_finish
6099 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6100 {
6101 /* This should not be necessary. */
6102 if (stop_registers)
6103 regcache_xfree (stop_registers);
6104
6105 /* NB: The copy goes through to the target picking up the value of
6106 all the registers. */
6107 stop_registers = regcache_dup (get_current_regcache ());
6108 }
c906108c 6109
aa7d318d 6110 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6111 {
b89667eb
DE
6112 /* Pop the empty frame that contains the stack dummy.
6113 This also restores inferior state prior to the call
16c381f0 6114 (struct infcall_suspend_state). */
b89667eb 6115 struct frame_info *frame = get_current_frame ();
abbb1732 6116
b89667eb
DE
6117 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6118 frame_pop (frame);
3e43a32a
MS
6119 /* frame_pop() calls reinit_frame_cache as the last thing it
6120 does which means there's currently no selected frame. We
6121 don't need to re-establish a selected frame if the dummy call
6122 returns normally, that will be done by
6123 restore_infcall_control_state. However, we do have to handle
6124 the case where the dummy call is returning after being
6125 stopped (e.g. the dummy call previously hit a breakpoint).
6126 We can't know which case we have so just always re-establish
6127 a selected frame here. */
0f7d239c 6128 select_frame (get_current_frame ());
c906108c
SS
6129 }
6130
c906108c
SS
6131done:
6132 annotate_stopped ();
41d2bdb4
PA
6133
6134 /* Suppress the stop observer if we're in the middle of:
6135
6136 - a step n (n > 1), as there still more steps to be done.
6137
6138 - a "finish" command, as the observer will be called in
6139 finish_command_continuation, so it can include the inferior
6140 function's return value.
6141
6142 - calling an inferior function, as we pretend we inferior didn't
6143 run at all. The return value of the call is handled by the
6144 expression evaluator, through call_function_by_hand. */
6145
6146 if (!target_has_execution
6147 || last.kind == TARGET_WAITKIND_SIGNALLED
6148 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6149 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6150 || (!(inferior_thread ()->step_multi
6151 && inferior_thread ()->control.stop_step)
16c381f0
JK
6152 && !(inferior_thread ()->control.stop_bpstat
6153 && inferior_thread ()->control.proceed_to_finish)
6154 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6155 {
6156 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6157 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6158 stop_print_frame);
347bddb7 6159 else
1d33d6ba 6160 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6161 }
347bddb7 6162
48844aa6
PA
6163 if (target_has_execution)
6164 {
6165 if (last.kind != TARGET_WAITKIND_SIGNALLED
6166 && last.kind != TARGET_WAITKIND_EXITED)
6167 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6168 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6169 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6170 }
6c95b8df
PA
6171
6172 /* Try to get rid of automatically added inferiors that are no
6173 longer needed. Keeping those around slows down things linearly.
6174 Note that this never removes the current inferior. */
6175 prune_inferiors ();
c906108c
SS
6176}
6177
6178static int
96baa820 6179hook_stop_stub (void *cmd)
c906108c 6180{
5913bcb0 6181 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6182 return (0);
6183}
6184\f
c5aa993b 6185int
96baa820 6186signal_stop_state (int signo)
c906108c 6187{
d6b48e9c 6188 return signal_stop[signo];
c906108c
SS
6189}
6190
c5aa993b 6191int
96baa820 6192signal_print_state (int signo)
c906108c
SS
6193{
6194 return signal_print[signo];
6195}
6196
c5aa993b 6197int
96baa820 6198signal_pass_state (int signo)
c906108c
SS
6199{
6200 return signal_program[signo];
6201}
6202
2455069d
UW
6203static void
6204signal_cache_update (int signo)
6205{
6206 if (signo == -1)
6207 {
a493e3e2 6208 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6209 signal_cache_update (signo);
6210
6211 return;
6212 }
6213
6214 signal_pass[signo] = (signal_stop[signo] == 0
6215 && signal_print[signo] == 0
ab04a2af
TT
6216 && signal_program[signo] == 1
6217 && signal_catch[signo] == 0);
2455069d
UW
6218}
6219
488f131b 6220int
7bda5e4a 6221signal_stop_update (int signo, int state)
d4f3574e
SS
6222{
6223 int ret = signal_stop[signo];
abbb1732 6224
d4f3574e 6225 signal_stop[signo] = state;
2455069d 6226 signal_cache_update (signo);
d4f3574e
SS
6227 return ret;
6228}
6229
488f131b 6230int
7bda5e4a 6231signal_print_update (int signo, int state)
d4f3574e
SS
6232{
6233 int ret = signal_print[signo];
abbb1732 6234
d4f3574e 6235 signal_print[signo] = state;
2455069d 6236 signal_cache_update (signo);
d4f3574e
SS
6237 return ret;
6238}
6239
488f131b 6240int
7bda5e4a 6241signal_pass_update (int signo, int state)
d4f3574e
SS
6242{
6243 int ret = signal_program[signo];
abbb1732 6244
d4f3574e 6245 signal_program[signo] = state;
2455069d 6246 signal_cache_update (signo);
d4f3574e
SS
6247 return ret;
6248}
6249
ab04a2af
TT
6250/* Update the global 'signal_catch' from INFO and notify the
6251 target. */
6252
6253void
6254signal_catch_update (const unsigned int *info)
6255{
6256 int i;
6257
6258 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6259 signal_catch[i] = info[i] > 0;
6260 signal_cache_update (-1);
6261 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6262}
6263
c906108c 6264static void
96baa820 6265sig_print_header (void)
c906108c 6266{
3e43a32a
MS
6267 printf_filtered (_("Signal Stop\tPrint\tPass "
6268 "to program\tDescription\n"));
c906108c
SS
6269}
6270
6271static void
2ea28649 6272sig_print_info (enum gdb_signal oursig)
c906108c 6273{
2ea28649 6274 const char *name = gdb_signal_to_name (oursig);
c906108c 6275 int name_padding = 13 - strlen (name);
96baa820 6276
c906108c
SS
6277 if (name_padding <= 0)
6278 name_padding = 0;
6279
6280 printf_filtered ("%s", name);
488f131b 6281 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6282 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6283 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6284 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6285 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6286}
6287
6288/* Specify how various signals in the inferior should be handled. */
6289
6290static void
96baa820 6291handle_command (char *args, int from_tty)
c906108c
SS
6292{
6293 char **argv;
6294 int digits, wordlen;
6295 int sigfirst, signum, siglast;
2ea28649 6296 enum gdb_signal oursig;
c906108c
SS
6297 int allsigs;
6298 int nsigs;
6299 unsigned char *sigs;
6300 struct cleanup *old_chain;
6301
6302 if (args == NULL)
6303 {
e2e0b3e5 6304 error_no_arg (_("signal to handle"));
c906108c
SS
6305 }
6306
1777feb0 6307 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6308
a493e3e2 6309 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6310 sigs = (unsigned char *) alloca (nsigs);
6311 memset (sigs, 0, nsigs);
6312
1777feb0 6313 /* Break the command line up into args. */
c906108c 6314
d1a41061 6315 argv = gdb_buildargv (args);
7a292a7a 6316 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6317
6318 /* Walk through the args, looking for signal oursigs, signal names, and
6319 actions. Signal numbers and signal names may be interspersed with
6320 actions, with the actions being performed for all signals cumulatively
1777feb0 6321 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6322
6323 while (*argv != NULL)
6324 {
6325 wordlen = strlen (*argv);
6326 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6327 {;
6328 }
6329 allsigs = 0;
6330 sigfirst = siglast = -1;
6331
6332 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6333 {
6334 /* Apply action to all signals except those used by the
1777feb0 6335 debugger. Silently skip those. */
c906108c
SS
6336 allsigs = 1;
6337 sigfirst = 0;
6338 siglast = nsigs - 1;
6339 }
6340 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6341 {
6342 SET_SIGS (nsigs, sigs, signal_stop);
6343 SET_SIGS (nsigs, sigs, signal_print);
6344 }
6345 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6346 {
6347 UNSET_SIGS (nsigs, sigs, signal_program);
6348 }
6349 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6350 {
6351 SET_SIGS (nsigs, sigs, signal_print);
6352 }
6353 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6354 {
6355 SET_SIGS (nsigs, sigs, signal_program);
6356 }
6357 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6358 {
6359 UNSET_SIGS (nsigs, sigs, signal_stop);
6360 }
6361 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6362 {
6363 SET_SIGS (nsigs, sigs, signal_program);
6364 }
6365 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6366 {
6367 UNSET_SIGS (nsigs, sigs, signal_print);
6368 UNSET_SIGS (nsigs, sigs, signal_stop);
6369 }
6370 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6371 {
6372 UNSET_SIGS (nsigs, sigs, signal_program);
6373 }
6374 else if (digits > 0)
6375 {
6376 /* It is numeric. The numeric signal refers to our own
6377 internal signal numbering from target.h, not to host/target
6378 signal number. This is a feature; users really should be
6379 using symbolic names anyway, and the common ones like
6380 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6381
6382 sigfirst = siglast = (int)
2ea28649 6383 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6384 if ((*argv)[digits] == '-')
6385 {
6386 siglast = (int)
2ea28649 6387 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6388 }
6389 if (sigfirst > siglast)
6390 {
1777feb0 6391 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6392 signum = sigfirst;
6393 sigfirst = siglast;
6394 siglast = signum;
6395 }
6396 }
6397 else
6398 {
2ea28649 6399 oursig = gdb_signal_from_name (*argv);
a493e3e2 6400 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6401 {
6402 sigfirst = siglast = (int) oursig;
6403 }
6404 else
6405 {
6406 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6407 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6408 }
6409 }
6410
6411 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6412 which signals to apply actions to. */
c906108c
SS
6413
6414 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6415 {
2ea28649 6416 switch ((enum gdb_signal) signum)
c906108c 6417 {
a493e3e2
PA
6418 case GDB_SIGNAL_TRAP:
6419 case GDB_SIGNAL_INT:
c906108c
SS
6420 if (!allsigs && !sigs[signum])
6421 {
9e2f0ad4 6422 if (query (_("%s is used by the debugger.\n\
3e43a32a 6423Are you sure you want to change it? "),
2ea28649 6424 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6425 {
6426 sigs[signum] = 1;
6427 }
6428 else
6429 {
a3f17187 6430 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6431 gdb_flush (gdb_stdout);
6432 }
6433 }
6434 break;
a493e3e2
PA
6435 case GDB_SIGNAL_0:
6436 case GDB_SIGNAL_DEFAULT:
6437 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6438 /* Make sure that "all" doesn't print these. */
6439 break;
6440 default:
6441 sigs[signum] = 1;
6442 break;
6443 }
6444 }
6445
6446 argv++;
6447 }
6448
3a031f65
PA
6449 for (signum = 0; signum < nsigs; signum++)
6450 if (sigs[signum])
6451 {
2455069d 6452 signal_cache_update (-1);
a493e3e2
PA
6453 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6454 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6455
3a031f65
PA
6456 if (from_tty)
6457 {
6458 /* Show the results. */
6459 sig_print_header ();
6460 for (; signum < nsigs; signum++)
6461 if (sigs[signum])
6462 sig_print_info (signum);
6463 }
6464
6465 break;
6466 }
c906108c
SS
6467
6468 do_cleanups (old_chain);
6469}
6470
de0bea00
MF
6471/* Complete the "handle" command. */
6472
6473static VEC (char_ptr) *
6474handle_completer (struct cmd_list_element *ignore,
6475 char *text, char *word)
6476{
6477 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6478 static const char * const keywords[] =
6479 {
6480 "all",
6481 "stop",
6482 "ignore",
6483 "print",
6484 "pass",
6485 "nostop",
6486 "noignore",
6487 "noprint",
6488 "nopass",
6489 NULL,
6490 };
6491
6492 vec_signals = signal_completer (ignore, text, word);
6493 vec_keywords = complete_on_enum (keywords, word, word);
6494
6495 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6496 VEC_free (char_ptr, vec_signals);
6497 VEC_free (char_ptr, vec_keywords);
6498 return return_val;
6499}
6500
c906108c 6501static void
96baa820 6502xdb_handle_command (char *args, int from_tty)
c906108c
SS
6503{
6504 char **argv;
6505 struct cleanup *old_chain;
6506
d1a41061
PP
6507 if (args == NULL)
6508 error_no_arg (_("xdb command"));
6509
1777feb0 6510 /* Break the command line up into args. */
c906108c 6511
d1a41061 6512 argv = gdb_buildargv (args);
7a292a7a 6513 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6514 if (argv[1] != (char *) NULL)
6515 {
6516 char *argBuf;
6517 int bufLen;
6518
6519 bufLen = strlen (argv[0]) + 20;
6520 argBuf = (char *) xmalloc (bufLen);
6521 if (argBuf)
6522 {
6523 int validFlag = 1;
2ea28649 6524 enum gdb_signal oursig;
c906108c 6525
2ea28649 6526 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6527 memset (argBuf, 0, bufLen);
6528 if (strcmp (argv[1], "Q") == 0)
6529 sprintf (argBuf, "%s %s", argv[0], "noprint");
6530 else
6531 {
6532 if (strcmp (argv[1], "s") == 0)
6533 {
6534 if (!signal_stop[oursig])
6535 sprintf (argBuf, "%s %s", argv[0], "stop");
6536 else
6537 sprintf (argBuf, "%s %s", argv[0], "nostop");
6538 }
6539 else if (strcmp (argv[1], "i") == 0)
6540 {
6541 if (!signal_program[oursig])
6542 sprintf (argBuf, "%s %s", argv[0], "pass");
6543 else
6544 sprintf (argBuf, "%s %s", argv[0], "nopass");
6545 }
6546 else if (strcmp (argv[1], "r") == 0)
6547 {
6548 if (!signal_print[oursig])
6549 sprintf (argBuf, "%s %s", argv[0], "print");
6550 else
6551 sprintf (argBuf, "%s %s", argv[0], "noprint");
6552 }
6553 else
6554 validFlag = 0;
6555 }
6556 if (validFlag)
6557 handle_command (argBuf, from_tty);
6558 else
a3f17187 6559 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6560 if (argBuf)
b8c9b27d 6561 xfree (argBuf);
c906108c
SS
6562 }
6563 }
6564 do_cleanups (old_chain);
6565}
6566
2ea28649
PA
6567enum gdb_signal
6568gdb_signal_from_command (int num)
ed01b82c
PA
6569{
6570 if (num >= 1 && num <= 15)
2ea28649 6571 return (enum gdb_signal) num;
ed01b82c
PA
6572 error (_("Only signals 1-15 are valid as numeric signals.\n\
6573Use \"info signals\" for a list of symbolic signals."));
6574}
6575
c906108c
SS
6576/* Print current contents of the tables set by the handle command.
6577 It is possible we should just be printing signals actually used
6578 by the current target (but for things to work right when switching
6579 targets, all signals should be in the signal tables). */
6580
6581static void
96baa820 6582signals_info (char *signum_exp, int from_tty)
c906108c 6583{
2ea28649 6584 enum gdb_signal oursig;
abbb1732 6585
c906108c
SS
6586 sig_print_header ();
6587
6588 if (signum_exp)
6589 {
6590 /* First see if this is a symbol name. */
2ea28649 6591 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6592 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6593 {
6594 /* No, try numeric. */
6595 oursig =
2ea28649 6596 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6597 }
6598 sig_print_info (oursig);
6599 return;
6600 }
6601
6602 printf_filtered ("\n");
6603 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6604 for (oursig = GDB_SIGNAL_FIRST;
6605 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6606 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6607 {
6608 QUIT;
6609
a493e3e2
PA
6610 if (oursig != GDB_SIGNAL_UNKNOWN
6611 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6612 sig_print_info (oursig);
6613 }
6614
3e43a32a
MS
6615 printf_filtered (_("\nUse the \"handle\" command "
6616 "to change these tables.\n"));
c906108c 6617}
4aa995e1 6618
c709acd1
PA
6619/* Check if it makes sense to read $_siginfo from the current thread
6620 at this point. If not, throw an error. */
6621
6622static void
6623validate_siginfo_access (void)
6624{
6625 /* No current inferior, no siginfo. */
6626 if (ptid_equal (inferior_ptid, null_ptid))
6627 error (_("No thread selected."));
6628
6629 /* Don't try to read from a dead thread. */
6630 if (is_exited (inferior_ptid))
6631 error (_("The current thread has terminated"));
6632
6633 /* ... or from a spinning thread. */
6634 if (is_running (inferior_ptid))
6635 error (_("Selected thread is running."));
6636}
6637
4aa995e1
PA
6638/* The $_siginfo convenience variable is a bit special. We don't know
6639 for sure the type of the value until we actually have a chance to
7a9dd1b2 6640 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6641 also dependent on which thread you have selected.
6642
6643 1. making $_siginfo be an internalvar that creates a new value on
6644 access.
6645
6646 2. making the value of $_siginfo be an lval_computed value. */
6647
6648/* This function implements the lval_computed support for reading a
6649 $_siginfo value. */
6650
6651static void
6652siginfo_value_read (struct value *v)
6653{
6654 LONGEST transferred;
6655
c709acd1
PA
6656 validate_siginfo_access ();
6657
4aa995e1
PA
6658 transferred =
6659 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6660 NULL,
6661 value_contents_all_raw (v),
6662 value_offset (v),
6663 TYPE_LENGTH (value_type (v)));
6664
6665 if (transferred != TYPE_LENGTH (value_type (v)))
6666 error (_("Unable to read siginfo"));
6667}
6668
6669/* This function implements the lval_computed support for writing a
6670 $_siginfo value. */
6671
6672static void
6673siginfo_value_write (struct value *v, struct value *fromval)
6674{
6675 LONGEST transferred;
6676
c709acd1
PA
6677 validate_siginfo_access ();
6678
4aa995e1
PA
6679 transferred = target_write (&current_target,
6680 TARGET_OBJECT_SIGNAL_INFO,
6681 NULL,
6682 value_contents_all_raw (fromval),
6683 value_offset (v),
6684 TYPE_LENGTH (value_type (fromval)));
6685
6686 if (transferred != TYPE_LENGTH (value_type (fromval)))
6687 error (_("Unable to write siginfo"));
6688}
6689
c8f2448a 6690static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6691 {
6692 siginfo_value_read,
6693 siginfo_value_write
6694 };
6695
6696/* Return a new value with the correct type for the siginfo object of
78267919
UW
6697 the current thread using architecture GDBARCH. Return a void value
6698 if there's no object available. */
4aa995e1 6699
2c0b251b 6700static struct value *
22d2b532
SDJ
6701siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6702 void *ignore)
4aa995e1 6703{
4aa995e1 6704 if (target_has_stack
78267919
UW
6705 && !ptid_equal (inferior_ptid, null_ptid)
6706 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6707 {
78267919 6708 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6709
78267919 6710 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6711 }
6712
78267919 6713 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6714}
6715
c906108c 6716\f
16c381f0
JK
6717/* infcall_suspend_state contains state about the program itself like its
6718 registers and any signal it received when it last stopped.
6719 This state must be restored regardless of how the inferior function call
6720 ends (either successfully, or after it hits a breakpoint or signal)
6721 if the program is to properly continue where it left off. */
6722
6723struct infcall_suspend_state
7a292a7a 6724{
16c381f0 6725 struct thread_suspend_state thread_suspend;
dd80ea3c 6726#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6727 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6728#endif
16c381f0
JK
6729
6730 /* Other fields: */
7a292a7a 6731 CORE_ADDR stop_pc;
b89667eb 6732 struct regcache *registers;
1736ad11 6733
35515841 6734 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6735 struct gdbarch *siginfo_gdbarch;
6736
6737 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6738 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6739 content would be invalid. */
6740 gdb_byte *siginfo_data;
b89667eb
DE
6741};
6742
16c381f0
JK
6743struct infcall_suspend_state *
6744save_infcall_suspend_state (void)
b89667eb 6745{
16c381f0 6746 struct infcall_suspend_state *inf_state;
b89667eb 6747 struct thread_info *tp = inferior_thread ();
16c381f0 6748 struct inferior *inf = current_inferior ();
1736ad11
JK
6749 struct regcache *regcache = get_current_regcache ();
6750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6751 gdb_byte *siginfo_data = NULL;
6752
6753 if (gdbarch_get_siginfo_type_p (gdbarch))
6754 {
6755 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6756 size_t len = TYPE_LENGTH (type);
6757 struct cleanup *back_to;
6758
6759 siginfo_data = xmalloc (len);
6760 back_to = make_cleanup (xfree, siginfo_data);
6761
6762 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6763 siginfo_data, 0, len) == len)
6764 discard_cleanups (back_to);
6765 else
6766 {
6767 /* Errors ignored. */
6768 do_cleanups (back_to);
6769 siginfo_data = NULL;
6770 }
6771 }
6772
16c381f0 6773 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6774
6775 if (siginfo_data)
6776 {
6777 inf_state->siginfo_gdbarch = gdbarch;
6778 inf_state->siginfo_data = siginfo_data;
6779 }
b89667eb 6780
16c381f0 6781 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6782#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6783 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6784#endif
16c381f0 6785
35515841 6786 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6787 GDB_SIGNAL_0 anyway. */
6788 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6789
b89667eb
DE
6790 inf_state->stop_pc = stop_pc;
6791
1736ad11 6792 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6793
6794 return inf_state;
6795}
6796
6797/* Restore inferior session state to INF_STATE. */
6798
6799void
16c381f0 6800restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6801{
6802 struct thread_info *tp = inferior_thread ();
16c381f0 6803 struct inferior *inf = current_inferior ();
1736ad11
JK
6804 struct regcache *regcache = get_current_regcache ();
6805 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6806
16c381f0 6807 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6808#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6809 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6810#endif
16c381f0 6811
b89667eb
DE
6812 stop_pc = inf_state->stop_pc;
6813
1736ad11
JK
6814 if (inf_state->siginfo_gdbarch == gdbarch)
6815 {
6816 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6817
6818 /* Errors ignored. */
6819 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6820 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6821 }
6822
b89667eb
DE
6823 /* The inferior can be gone if the user types "print exit(0)"
6824 (and perhaps other times). */
6825 if (target_has_execution)
6826 /* NB: The register write goes through to the target. */
1736ad11 6827 regcache_cpy (regcache, inf_state->registers);
803b5f95 6828
16c381f0 6829 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6830}
6831
6832static void
16c381f0 6833do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6834{
16c381f0 6835 restore_infcall_suspend_state (state);
b89667eb
DE
6836}
6837
6838struct cleanup *
16c381f0
JK
6839make_cleanup_restore_infcall_suspend_state
6840 (struct infcall_suspend_state *inf_state)
b89667eb 6841{
16c381f0 6842 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6843}
6844
6845void
16c381f0 6846discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6847{
6848 regcache_xfree (inf_state->registers);
803b5f95 6849 xfree (inf_state->siginfo_data);
b89667eb
DE
6850 xfree (inf_state);
6851}
6852
6853struct regcache *
16c381f0 6854get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6855{
6856 return inf_state->registers;
6857}
6858
16c381f0
JK
6859/* infcall_control_state contains state regarding gdb's control of the
6860 inferior itself like stepping control. It also contains session state like
6861 the user's currently selected frame. */
b89667eb 6862
16c381f0 6863struct infcall_control_state
b89667eb 6864{
16c381f0
JK
6865 struct thread_control_state thread_control;
6866 struct inferior_control_state inferior_control;
d82142e2
JK
6867
6868 /* Other fields: */
6869 enum stop_stack_kind stop_stack_dummy;
6870 int stopped_by_random_signal;
7a292a7a 6871 int stop_after_trap;
7a292a7a 6872
b89667eb 6873 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6874 struct frame_id selected_frame_id;
7a292a7a
SS
6875};
6876
c906108c 6877/* Save all of the information associated with the inferior<==>gdb
b89667eb 6878 connection. */
c906108c 6879
16c381f0
JK
6880struct infcall_control_state *
6881save_infcall_control_state (void)
c906108c 6882{
16c381f0 6883 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6884 struct thread_info *tp = inferior_thread ();
d6b48e9c 6885 struct inferior *inf = current_inferior ();
7a292a7a 6886
16c381f0
JK
6887 inf_status->thread_control = tp->control;
6888 inf_status->inferior_control = inf->control;
d82142e2 6889
8358c15c 6890 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6891 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6892
16c381f0
JK
6893 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6894 chain. If caller's caller is walking the chain, they'll be happier if we
6895 hand them back the original chain when restore_infcall_control_state is
6896 called. */
6897 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6898
6899 /* Other fields: */
6900 inf_status->stop_stack_dummy = stop_stack_dummy;
6901 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6902 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6903
206415a3 6904 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6905
7a292a7a 6906 return inf_status;
c906108c
SS
6907}
6908
c906108c 6909static int
96baa820 6910restore_selected_frame (void *args)
c906108c 6911{
488f131b 6912 struct frame_id *fid = (struct frame_id *) args;
c906108c 6913 struct frame_info *frame;
c906108c 6914
101dcfbe 6915 frame = frame_find_by_id (*fid);
c906108c 6916
aa0cd9c1
AC
6917 /* If inf_status->selected_frame_id is NULL, there was no previously
6918 selected frame. */
101dcfbe 6919 if (frame == NULL)
c906108c 6920 {
8a3fe4f8 6921 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6922 return 0;
6923 }
6924
0f7d239c 6925 select_frame (frame);
c906108c
SS
6926
6927 return (1);
6928}
6929
b89667eb
DE
6930/* Restore inferior session state to INF_STATUS. */
6931
c906108c 6932void
16c381f0 6933restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6934{
4e1c45ea 6935 struct thread_info *tp = inferior_thread ();
d6b48e9c 6936 struct inferior *inf = current_inferior ();
4e1c45ea 6937
8358c15c
JK
6938 if (tp->control.step_resume_breakpoint)
6939 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6940
5b79abe7
TT
6941 if (tp->control.exception_resume_breakpoint)
6942 tp->control.exception_resume_breakpoint->disposition
6943 = disp_del_at_next_stop;
6944
d82142e2 6945 /* Handle the bpstat_copy of the chain. */
16c381f0 6946 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6947
16c381f0
JK
6948 tp->control = inf_status->thread_control;
6949 inf->control = inf_status->inferior_control;
d82142e2
JK
6950
6951 /* Other fields: */
6952 stop_stack_dummy = inf_status->stop_stack_dummy;
6953 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6954 stop_after_trap = inf_status->stop_after_trap;
c906108c 6955
b89667eb 6956 if (target_has_stack)
c906108c 6957 {
c906108c 6958 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6959 walking the stack might encounter a garbage pointer and
6960 error() trying to dereference it. */
488f131b
JB
6961 if (catch_errors
6962 (restore_selected_frame, &inf_status->selected_frame_id,
6963 "Unable to restore previously selected frame:\n",
6964 RETURN_MASK_ERROR) == 0)
c906108c
SS
6965 /* Error in restoring the selected frame. Select the innermost
6966 frame. */
0f7d239c 6967 select_frame (get_current_frame ());
c906108c 6968 }
c906108c 6969
72cec141 6970 xfree (inf_status);
7a292a7a 6971}
c906108c 6972
74b7792f 6973static void
16c381f0 6974do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6975{
16c381f0 6976 restore_infcall_control_state (sts);
74b7792f
AC
6977}
6978
6979struct cleanup *
16c381f0
JK
6980make_cleanup_restore_infcall_control_state
6981 (struct infcall_control_state *inf_status)
74b7792f 6982{
16c381f0 6983 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6984}
6985
c906108c 6986void
16c381f0 6987discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6988{
8358c15c
JK
6989 if (inf_status->thread_control.step_resume_breakpoint)
6990 inf_status->thread_control.step_resume_breakpoint->disposition
6991 = disp_del_at_next_stop;
6992
5b79abe7
TT
6993 if (inf_status->thread_control.exception_resume_breakpoint)
6994 inf_status->thread_control.exception_resume_breakpoint->disposition
6995 = disp_del_at_next_stop;
6996
1777feb0 6997 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6998 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6999
72cec141 7000 xfree (inf_status);
7a292a7a 7001}
b89667eb 7002\f
0723dbf5
PA
7003int
7004ptid_match (ptid_t ptid, ptid_t filter)
7005{
0723dbf5
PA
7006 if (ptid_equal (filter, minus_one_ptid))
7007 return 1;
7008 if (ptid_is_pid (filter)
7009 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7010 return 1;
7011 else if (ptid_equal (ptid, filter))
7012 return 1;
7013
7014 return 0;
7015}
7016
ca6724c1
KB
7017/* restore_inferior_ptid() will be used by the cleanup machinery
7018 to restore the inferior_ptid value saved in a call to
7019 save_inferior_ptid(). */
ce696e05
KB
7020
7021static void
7022restore_inferior_ptid (void *arg)
7023{
7024 ptid_t *saved_ptid_ptr = arg;
abbb1732 7025
ce696e05
KB
7026 inferior_ptid = *saved_ptid_ptr;
7027 xfree (arg);
7028}
7029
7030/* Save the value of inferior_ptid so that it may be restored by a
7031 later call to do_cleanups(). Returns the struct cleanup pointer
7032 needed for later doing the cleanup. */
7033
7034struct cleanup *
7035save_inferior_ptid (void)
7036{
7037 ptid_t *saved_ptid_ptr;
7038
7039 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7040 *saved_ptid_ptr = inferior_ptid;
7041 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7042}
c5aa993b 7043\f
488f131b 7044
b2175913
MS
7045/* User interface for reverse debugging:
7046 Set exec-direction / show exec-direction commands
7047 (returns error unless target implements to_set_exec_direction method). */
7048
32231432 7049int execution_direction = EXEC_FORWARD;
b2175913
MS
7050static const char exec_forward[] = "forward";
7051static const char exec_reverse[] = "reverse";
7052static const char *exec_direction = exec_forward;
40478521 7053static const char *const exec_direction_names[] = {
b2175913
MS
7054 exec_forward,
7055 exec_reverse,
7056 NULL
7057};
7058
7059static void
7060set_exec_direction_func (char *args, int from_tty,
7061 struct cmd_list_element *cmd)
7062{
7063 if (target_can_execute_reverse)
7064 {
7065 if (!strcmp (exec_direction, exec_forward))
7066 execution_direction = EXEC_FORWARD;
7067 else if (!strcmp (exec_direction, exec_reverse))
7068 execution_direction = EXEC_REVERSE;
7069 }
8bbed405
MS
7070 else
7071 {
7072 exec_direction = exec_forward;
7073 error (_("Target does not support this operation."));
7074 }
b2175913
MS
7075}
7076
7077static void
7078show_exec_direction_func (struct ui_file *out, int from_tty,
7079 struct cmd_list_element *cmd, const char *value)
7080{
7081 switch (execution_direction) {
7082 case EXEC_FORWARD:
7083 fprintf_filtered (out, _("Forward.\n"));
7084 break;
7085 case EXEC_REVERSE:
7086 fprintf_filtered (out, _("Reverse.\n"));
7087 break;
b2175913 7088 default:
d8b34453
PA
7089 internal_error (__FILE__, __LINE__,
7090 _("bogus execution_direction value: %d"),
7091 (int) execution_direction);
b2175913
MS
7092 }
7093}
7094
7095/* User interface for non-stop mode. */
7096
ad52ddc6 7097int non_stop = 0;
ad52ddc6
PA
7098
7099static void
7100set_non_stop (char *args, int from_tty,
7101 struct cmd_list_element *c)
7102{
7103 if (target_has_execution)
7104 {
7105 non_stop_1 = non_stop;
7106 error (_("Cannot change this setting while the inferior is running."));
7107 }
7108
7109 non_stop = non_stop_1;
7110}
7111
7112static void
7113show_non_stop (struct ui_file *file, int from_tty,
7114 struct cmd_list_element *c, const char *value)
7115{
7116 fprintf_filtered (file,
7117 _("Controlling the inferior in non-stop mode is %s.\n"),
7118 value);
7119}
7120
d4db2f36
PA
7121static void
7122show_schedule_multiple (struct ui_file *file, int from_tty,
7123 struct cmd_list_element *c, const char *value)
7124{
3e43a32a
MS
7125 fprintf_filtered (file, _("Resuming the execution of threads "
7126 "of all processes is %s.\n"), value);
d4db2f36 7127}
ad52ddc6 7128
22d2b532
SDJ
7129/* Implementation of `siginfo' variable. */
7130
7131static const struct internalvar_funcs siginfo_funcs =
7132{
7133 siginfo_make_value,
7134 NULL,
7135 NULL
7136};
7137
c906108c 7138void
96baa820 7139_initialize_infrun (void)
c906108c 7140{
52f0bd74
AC
7141 int i;
7142 int numsigs;
de0bea00 7143 struct cmd_list_element *c;
c906108c 7144
1bedd215
AC
7145 add_info ("signals", signals_info, _("\
7146What debugger does when program gets various signals.\n\
7147Specify a signal as argument to print info on that signal only."));
c906108c
SS
7148 add_info_alias ("handle", "signals", 0);
7149
de0bea00 7150 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7151Specify how to handle signals.\n\
486c7739 7152Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7153Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7154If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7155will be displayed instead.\n\
7156\n\
c906108c
SS
7157Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7158from 1-15 are allowed for compatibility with old versions of GDB.\n\
7159Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7160The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7161used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7162\n\
1bedd215 7163Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7164\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7165Stop means reenter debugger if this signal happens (implies print).\n\
7166Print means print a message if this signal happens.\n\
7167Pass means let program see this signal; otherwise program doesn't know.\n\
7168Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7169Pass and Stop may be combined.\n\
7170\n\
7171Multiple signals may be specified. Signal numbers and signal names\n\
7172may be interspersed with actions, with the actions being performed for\n\
7173all signals cumulatively specified."));
de0bea00 7174 set_cmd_completer (c, handle_completer);
486c7739 7175
c906108c
SS
7176 if (xdb_commands)
7177 {
1bedd215
AC
7178 add_com ("lz", class_info, signals_info, _("\
7179What debugger does when program gets various signals.\n\
7180Specify a signal as argument to print info on that signal only."));
7181 add_com ("z", class_run, xdb_handle_command, _("\
7182Specify how to handle a signal.\n\
c906108c
SS
7183Args are signals and actions to apply to those signals.\n\
7184Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7185from 1-15 are allowed for compatibility with old versions of GDB.\n\
7186Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7187The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7188used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7189Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7190\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7191nopass), \"Q\" (noprint)\n\
7192Stop means reenter debugger if this signal happens (implies print).\n\
7193Print means print a message if this signal happens.\n\
7194Pass means let program see this signal; otherwise program doesn't know.\n\
7195Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7196Pass and Stop may be combined."));
c906108c
SS
7197 }
7198
7199 if (!dbx_commands)
1a966eab
AC
7200 stop_command = add_cmd ("stop", class_obscure,
7201 not_just_help_class_command, _("\
7202There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7203This allows you to set a list of commands to be run each time execution\n\
1a966eab 7204of the program stops."), &cmdlist);
c906108c 7205
ccce17b0 7206 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7207Set inferior debugging."), _("\
7208Show inferior debugging."), _("\
7209When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7210 NULL,
7211 show_debug_infrun,
7212 &setdebuglist, &showdebuglist);
527159b7 7213
3e43a32a
MS
7214 add_setshow_boolean_cmd ("displaced", class_maintenance,
7215 &debug_displaced, _("\
237fc4c9
PA
7216Set displaced stepping debugging."), _("\
7217Show displaced stepping debugging."), _("\
7218When non-zero, displaced stepping specific debugging is enabled."),
7219 NULL,
7220 show_debug_displaced,
7221 &setdebuglist, &showdebuglist);
7222
ad52ddc6
PA
7223 add_setshow_boolean_cmd ("non-stop", no_class,
7224 &non_stop_1, _("\
7225Set whether gdb controls the inferior in non-stop mode."), _("\
7226Show whether gdb controls the inferior in non-stop mode."), _("\
7227When debugging a multi-threaded program and this setting is\n\
7228off (the default, also called all-stop mode), when one thread stops\n\
7229(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7230all other threads in the program while you interact with the thread of\n\
7231interest. When you continue or step a thread, you can allow the other\n\
7232threads to run, or have them remain stopped, but while you inspect any\n\
7233thread's state, all threads stop.\n\
7234\n\
7235In non-stop mode, when one thread stops, other threads can continue\n\
7236to run freely. You'll be able to step each thread independently,\n\
7237leave it stopped or free to run as needed."),
7238 set_non_stop,
7239 show_non_stop,
7240 &setlist,
7241 &showlist);
7242
a493e3e2 7243 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7244 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7245 signal_print = (unsigned char *)
7246 xmalloc (sizeof (signal_print[0]) * numsigs);
7247 signal_program = (unsigned char *)
7248 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7249 signal_catch = (unsigned char *)
7250 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7251 signal_pass = (unsigned char *)
7252 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7253 for (i = 0; i < numsigs; i++)
7254 {
7255 signal_stop[i] = 1;
7256 signal_print[i] = 1;
7257 signal_program[i] = 1;
ab04a2af 7258 signal_catch[i] = 0;
c906108c
SS
7259 }
7260
7261 /* Signals caused by debugger's own actions
7262 should not be given to the program afterwards. */
a493e3e2
PA
7263 signal_program[GDB_SIGNAL_TRAP] = 0;
7264 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7265
7266 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7267 signal_stop[GDB_SIGNAL_ALRM] = 0;
7268 signal_print[GDB_SIGNAL_ALRM] = 0;
7269 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7270 signal_print[GDB_SIGNAL_VTALRM] = 0;
7271 signal_stop[GDB_SIGNAL_PROF] = 0;
7272 signal_print[GDB_SIGNAL_PROF] = 0;
7273 signal_stop[GDB_SIGNAL_CHLD] = 0;
7274 signal_print[GDB_SIGNAL_CHLD] = 0;
7275 signal_stop[GDB_SIGNAL_IO] = 0;
7276 signal_print[GDB_SIGNAL_IO] = 0;
7277 signal_stop[GDB_SIGNAL_POLL] = 0;
7278 signal_print[GDB_SIGNAL_POLL] = 0;
7279 signal_stop[GDB_SIGNAL_URG] = 0;
7280 signal_print[GDB_SIGNAL_URG] = 0;
7281 signal_stop[GDB_SIGNAL_WINCH] = 0;
7282 signal_print[GDB_SIGNAL_WINCH] = 0;
7283 signal_stop[GDB_SIGNAL_PRIO] = 0;
7284 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7285
cd0fc7c3
SS
7286 /* These signals are used internally by user-level thread
7287 implementations. (See signal(5) on Solaris.) Like the above
7288 signals, a healthy program receives and handles them as part of
7289 its normal operation. */
a493e3e2
PA
7290 signal_stop[GDB_SIGNAL_LWP] = 0;
7291 signal_print[GDB_SIGNAL_LWP] = 0;
7292 signal_stop[GDB_SIGNAL_WAITING] = 0;
7293 signal_print[GDB_SIGNAL_WAITING] = 0;
7294 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7295 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7296
2455069d
UW
7297 /* Update cached state. */
7298 signal_cache_update (-1);
7299
85c07804
AC
7300 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7301 &stop_on_solib_events, _("\
7302Set stopping for shared library events."), _("\
7303Show stopping for shared library events."), _("\
c906108c
SS
7304If nonzero, gdb will give control to the user when the dynamic linker\n\
7305notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7306to the user would be loading/unloading of a new library."),
7307 NULL,
920d2a44 7308 show_stop_on_solib_events,
85c07804 7309 &setlist, &showlist);
c906108c 7310
7ab04401
AC
7311 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7312 follow_fork_mode_kind_names,
7313 &follow_fork_mode_string, _("\
7314Set debugger response to a program call of fork or vfork."), _("\
7315Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7316A fork or vfork creates a new process. follow-fork-mode can be:\n\
7317 parent - the original process is debugged after a fork\n\
7318 child - the new process is debugged after a fork\n\
ea1dd7bc 7319The unfollowed process will continue to run.\n\
7ab04401
AC
7320By default, the debugger will follow the parent process."),
7321 NULL,
920d2a44 7322 show_follow_fork_mode_string,
7ab04401
AC
7323 &setlist, &showlist);
7324
6c95b8df
PA
7325 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7326 follow_exec_mode_names,
7327 &follow_exec_mode_string, _("\
7328Set debugger response to a program call of exec."), _("\
7329Show debugger response to a program call of exec."), _("\
7330An exec call replaces the program image of a process.\n\
7331\n\
7332follow-exec-mode can be:\n\
7333\n\
cce7e648 7334 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7335to this new inferior. The program the process was running before\n\
7336the exec call can be restarted afterwards by restarting the original\n\
7337inferior.\n\
7338\n\
7339 same - the debugger keeps the process bound to the same inferior.\n\
7340The new executable image replaces the previous executable loaded in\n\
7341the inferior. Restarting the inferior after the exec call restarts\n\
7342the executable the process was running after the exec call.\n\
7343\n\
7344By default, the debugger will use the same inferior."),
7345 NULL,
7346 show_follow_exec_mode_string,
7347 &setlist, &showlist);
7348
7ab04401
AC
7349 add_setshow_enum_cmd ("scheduler-locking", class_run,
7350 scheduler_enums, &scheduler_mode, _("\
7351Set mode for locking scheduler during execution."), _("\
7352Show mode for locking scheduler during execution."), _("\
c906108c
SS
7353off == no locking (threads may preempt at any time)\n\
7354on == full locking (no thread except the current thread may run)\n\
7355step == scheduler locked during every single-step operation.\n\
7356 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7357 Other threads may run while stepping over a function call ('next')."),
7358 set_schedlock_func, /* traps on target vector */
920d2a44 7359 show_scheduler_mode,
7ab04401 7360 &setlist, &showlist);
5fbbeb29 7361
d4db2f36
PA
7362 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7363Set mode for resuming threads of all processes."), _("\
7364Show mode for resuming threads of all processes."), _("\
7365When on, execution commands (such as 'continue' or 'next') resume all\n\
7366threads of all processes. When off (which is the default), execution\n\
7367commands only resume the threads of the current process. The set of\n\
7368threads that are resumed is further refined by the scheduler-locking\n\
7369mode (see help set scheduler-locking)."),
7370 NULL,
7371 show_schedule_multiple,
7372 &setlist, &showlist);
7373
5bf193a2
AC
7374 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7375Set mode of the step operation."), _("\
7376Show mode of the step operation."), _("\
7377When set, doing a step over a function without debug line information\n\
7378will stop at the first instruction of that function. Otherwise, the\n\
7379function is skipped and the step command stops at a different source line."),
7380 NULL,
920d2a44 7381 show_step_stop_if_no_debug,
5bf193a2 7382 &setlist, &showlist);
ca6724c1 7383
72d0e2c5
YQ
7384 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7385 &can_use_displaced_stepping, _("\
237fc4c9
PA
7386Set debugger's willingness to use displaced stepping."), _("\
7387Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7388If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7389supported by the target architecture. If off, gdb will not use displaced\n\
7390stepping to step over breakpoints, even if such is supported by the target\n\
7391architecture. If auto (which is the default), gdb will use displaced stepping\n\
7392if the target architecture supports it and non-stop mode is active, but will not\n\
7393use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7394 NULL,
7395 show_can_use_displaced_stepping,
7396 &setlist, &showlist);
237fc4c9 7397
b2175913
MS
7398 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7399 &exec_direction, _("Set direction of execution.\n\
7400Options are 'forward' or 'reverse'."),
7401 _("Show direction of execution (forward/reverse)."),
7402 _("Tells gdb whether to execute forward or backward."),
7403 set_exec_direction_func, show_exec_direction_func,
7404 &setlist, &showlist);
7405
6c95b8df
PA
7406 /* Set/show detach-on-fork: user-settable mode. */
7407
7408 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7409Set whether gdb will detach the child of a fork."), _("\
7410Show whether gdb will detach the child of a fork."), _("\
7411Tells gdb whether to detach the child of a fork."),
7412 NULL, NULL, &setlist, &showlist);
7413
03583c20
UW
7414 /* Set/show disable address space randomization mode. */
7415
7416 add_setshow_boolean_cmd ("disable-randomization", class_support,
7417 &disable_randomization, _("\
7418Set disabling of debuggee's virtual address space randomization."), _("\
7419Show disabling of debuggee's virtual address space randomization."), _("\
7420When this mode is on (which is the default), randomization of the virtual\n\
7421address space is disabled. Standalone programs run with the randomization\n\
7422enabled by default on some platforms."),
7423 &set_disable_randomization,
7424 &show_disable_randomization,
7425 &setlist, &showlist);
7426
ca6724c1 7427 /* ptid initializations */
ca6724c1
KB
7428 inferior_ptid = null_ptid;
7429 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7430
7431 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7432 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7433 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7434 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7435
7436 /* Explicitly create without lookup, since that tries to create a
7437 value with a void typed value, and when we get here, gdbarch
7438 isn't initialized yet. At this point, we're quite sure there
7439 isn't another convenience variable of the same name. */
22d2b532 7440 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7441
7442 add_setshow_boolean_cmd ("observer", no_class,
7443 &observer_mode_1, _("\
7444Set whether gdb controls the inferior in observer mode."), _("\
7445Show whether gdb controls the inferior in observer mode."), _("\
7446In observer mode, GDB can get data from the inferior, but not\n\
7447affect its execution. Registers and memory may not be changed,\n\
7448breakpoints may not be set, and the program cannot be interrupted\n\
7449or signalled."),
7450 set_observer_mode,
7451 show_observer_mode,
7452 &setlist,
7453 &showlist);
c906108c 7454}