]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
gdb: remove TYPE_LENGTH
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
4a94e368 4 Copyright (C) 1986-2022 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
bab37966 22#include "displaced-stepping.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
400b5eca 60#include "gdbsupport/event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
06cc9596 68#include "gdbsupport/gdb_select.h"
5b6d1e4f 69#include <unordered_map>
93b54c8e 70#include "async-event.h"
b161a60d
SM
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
ba988419 74#include "gdbsupport/common-debug.h"
7904e961 75#include "gdbsupport/buildargv.h"
c906108c
SS
76
77/* Prototypes for local functions */
78
2ea28649 79static void sig_print_info (enum gdb_signal);
c906108c 80
96baa820 81static void sig_print_header (void);
c906108c 82
d83ad864
DB
83static void follow_inferior_reset_breakpoints (void);
84
c4464ade 85static bool currently_stepping (struct thread_info *tp);
a289b8f6 86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
22b11ba9 93static bool maybe_software_singlestep (struct gdbarch *gdbarch);
8550d3b3 94
aff4e175
AB
95static void resume (gdb_signal sig);
96
5b6d1e4f
PA
97static void wait_for_inferior (inferior *inf);
98
d8bbae6e
SM
99static void restart_threads (struct thread_info *event_thread,
100 inferior *inf = nullptr);
101
102static bool start_step_over (void);
103
2b718529
LS
104static bool step_over_info_valid_p (void);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
1eb8556f 123 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
124
125 if (enable)
126 mark_async_event_handler (infrun_async_inferior_event_token);
127 else
128 clear_async_event_handler (infrun_async_inferior_event_token);
129 }
130}
131
0b333c5e
PA
132/* See infrun.h. */
133
134void
135mark_infrun_async_event_handler (void)
136{
137 mark_async_event_handler (infrun_async_inferior_event_token);
138}
139
5fbbeb29
CF
140/* When set, stop the 'step' command if we enter a function which has
141 no line number information. The normal behavior is that we step
142 over such function. */
491144b5 143bool step_stop_if_no_debug = false;
920d2a44
AC
144static void
145show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
6cb06a8c 148 gdb_printf (file, _("Mode of the step operation is %s.\n"), value);
920d2a44 149}
5fbbeb29 150
b9f437de
PA
151/* proceed and normal_stop use this to notify the user when the
152 inferior stopped in a different thread than it had been running
153 in. */
96baa820 154
39f77062 155static ptid_t previous_inferior_ptid;
7a292a7a 156
07107ca6
LM
157/* If set (default for legacy reasons), when following a fork, GDB
158 will detach from one of the fork branches, child or parent.
159 Exactly which branch is detached depends on 'set follow-fork-mode'
160 setting. */
161
491144b5 162static bool detach_fork = true;
6c95b8df 163
94ba44a6 164bool debug_infrun = false;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
6cb06a8c 169 gdb_printf (file, _("Inferior debugging is %s.\n"), value);
920d2a44 170}
527159b7 171
03583c20
UW
172/* Support for disabling address space randomization. */
173
491144b5 174bool disable_randomization = true;
03583c20
UW
175
176static void
177show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 if (target_supports_disable_randomization ())
6cb06a8c
TT
181 gdb_printf (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
03583c20 185 else
0426ad51
TT
186 gdb_puts (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
03583c20
UW
189}
190
191static void
eb4c3f4a 192set_disable_randomization (const char *args, int from_tty,
03583c20
UW
193 struct cmd_list_element *c)
194{
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199}
200
d32dc48e
PA
201/* User interface for non-stop mode. */
202
491144b5
CB
203bool non_stop = false;
204static bool non_stop_1 = false;
d32dc48e
PA
205
206static void
eb4c3f4a 207set_non_stop (const char *args, int from_tty,
d32dc48e
PA
208 struct cmd_list_element *c)
209{
55f6301a 210 if (target_has_execution ())
d32dc48e
PA
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217}
218
219static void
220show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
6cb06a8c
TT
223 gdb_printf (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
d32dc48e
PA
226}
227
d914c394
SS
228/* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
6bd434d6 232static bool observer_mode = false;
491144b5 233static bool observer_mode_1 = false;
d914c394
SS
234
235static void
eb4c3f4a 236set_observer_mode (const char *args, int from_tty,
d914c394
SS
237 struct cmd_list_element *c)
238{
55f6301a 239 if (target_has_execution ())
d914c394
SS
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
491144b5 254 may_insert_fast_tracepoints = true;
d914c394
SS
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
d914c394 262 pagination_enabled = 0;
491144b5 263 non_stop = non_stop_1 = true;
d914c394
SS
264 }
265
266 if (from_tty)
6cb06a8c
TT
267 gdb_printf (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
d914c394
SS
269}
270
271static void
272show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
6cb06a8c 275 gdb_printf (file, _("Observer mode is %s.\n"), value);
d914c394
SS
276}
277
278/* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284void
285update_observer_mode (void)
286{
491144b5
CB
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
d914c394
SS
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
6cb06a8c
TT
295 gdb_printf (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
d914c394
SS
297
298 observer_mode = observer_mode_1 = newval;
299}
c2c6d25f 300
c906108c
SS
301/* Tables of how to react to signals; the user sets them. */
302
adc6a863
PA
303static unsigned char signal_stop[GDB_SIGNAL_LAST];
304static unsigned char signal_print[GDB_SIGNAL_LAST];
305static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 306
ab04a2af
TT
307/* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
309 signal" command. */
310static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 311
2455069d
UW
312/* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
adc6a863 315static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 316
c906108c
SS
317#define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325#define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
9b224c5e
PA
333/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336void
337update_signals_program_target (void)
338{
adc6a863 339 target_program_signals (signal_program);
9b224c5e
PA
340}
341
1777feb0 342/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 343
edb3359d 344#define RESUME_ALL minus_one_ptid
c906108c
SS
345
346/* Command list pointer for the "stop" placeholder. */
347
348static struct cmd_list_element *stop_command;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
f9e14852
GB
353
354/* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357static void
eb4c3f4a
TT
358set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
f9e14852
GB
360{
361 update_solib_breakpoints ();
362}
363
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
6cb06a8c
TT
368 gdb_printf (file, _("Stopping for shared library events is %s.\n"),
369 value);
920d2a44 370}
c906108c 371
c4464ade 372/* True after stop if current stack frame should be printed. */
c906108c 373
c4464ade 374static bool stop_print_frame;
c906108c 375
5b6d1e4f 376/* This is a cached copy of the target/ptid/waitstatus of the last
fb85cece 377 event returned by target_wait().
5b6d1e4f
PA
378 This information is returned by get_last_target_status(). */
379static process_stratum_target *target_last_proc_target;
39f77062 380static ptid_t target_last_wait_ptid;
e02bc4cc
DS
381static struct target_waitstatus target_last_waitstatus;
382
4e1c45ea 383void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 384
53904c9e
AC
385static const char follow_fork_mode_child[] = "child";
386static const char follow_fork_mode_parent[] = "parent";
387
40478521 388static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
389 follow_fork_mode_child,
390 follow_fork_mode_parent,
391 NULL
ef346e04 392};
c906108c 393
53904c9e 394static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
395static void
396show_follow_fork_mode_string (struct ui_file *file, int from_tty,
397 struct cmd_list_element *c, const char *value)
398{
6cb06a8c
TT
399 gdb_printf (file,
400 _("Debugger response to a program "
401 "call of fork or vfork is \"%s\".\n"),
402 value);
920d2a44 403}
c906108c
SS
404\f
405
d83ad864
DB
406/* Handle changes to the inferior list based on the type of fork,
407 which process is being followed, and whether the other process
408 should be detached. On entry inferior_ptid must be the ptid of
409 the fork parent. At return inferior_ptid is the ptid of the
410 followed inferior. */
411
5ab2fbf1
SM
412static bool
413follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864 414{
183be222 415 target_waitkind fork_kind = inferior_thread ()->pending_follow.kind ();
3a849a34
SM
416 gdb_assert (fork_kind == TARGET_WAITKIND_FORKED
417 || fork_kind == TARGET_WAITKIND_VFORKED);
418 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
419 ptid_t parent_ptid = inferior_ptid;
183be222 420 ptid_t child_ptid = inferior_thread ()->pending_follow.child_ptid ();
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
6cb06a8c 432 gdb_printf (gdb_stderr, _("\
d83ad864
DB
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
e97007b6 436 return true;
d83ad864
DB
437 }
438
82d1f134
SM
439 inferior *parent_inf = current_inferior ();
440 inferior *child_inf = nullptr;
ff770835 441
d8bbae6e
SM
442 gdb_assert (parent_inf->thread_waiting_for_vfork_done == nullptr);
443
d83ad864
DB
444 if (!follow_child)
445 {
446 /* Detach new forked process? */
447 if (detach_fork)
448 {
d83ad864
DB
449 /* Before detaching from the child, remove all breakpoints
450 from it. If we forked, then this has already been taken
451 care of by infrun.c. If we vforked however, any
452 breakpoint inserted in the parent is visible in the
453 child, even those added while stopped in a vfork
454 catchpoint. This will remove the breakpoints from the
455 parent also, but they'll be reinserted below. */
456 if (has_vforked)
457 {
458 /* Keep breakpoints list in sync. */
00431a78 459 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
460 }
461
f67c0c91 462 if (print_inferior_events)
d83ad864 463 {
8dd06f7a 464 /* Ensure that we have a process ptid. */
e99b03dc 465 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 466
223ffa71 467 target_terminal::ours_for_output ();
6cb06a8c
TT
468 gdb_printf (_("[Detaching after %s from child %s]\n"),
469 has_vforked ? "vfork" : "fork",
470 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
471 }
472 }
473 else
474 {
d83ad864 475 /* Add process to GDB's tables. */
e99b03dc 476 child_inf = add_inferior (child_ptid.pid ());
d83ad864 477
d83ad864
DB
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
d83ad864
DB
483 child_inf->symfile_flags = SYMFILE_NO_READ;
484
485 /* If this is a vfork child, then the address-space is
486 shared with the parent. */
487 if (has_vforked)
488 {
489 child_inf->pspace = parent_inf->pspace;
490 child_inf->aspace = parent_inf->aspace;
491
82d1f134 492 exec_on_vfork (child_inf);
5b6d1e4f 493
d83ad864
DB
494 /* The parent will be frozen until the child is done
495 with the shared region. Keep track of the
496 parent. */
497 child_inf->vfork_parent = parent_inf;
498 child_inf->pending_detach = 0;
499 parent_inf->vfork_child = child_inf;
500 parent_inf->pending_detach = 0;
501 }
502 else
503 {
b382c166 504 child_inf->aspace = new address_space ();
564b1e3f 505 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864 506 child_inf->removable = 1;
d83ad864 507 clone_program_space (child_inf->pspace, parent_inf->pspace);
d83ad864 508 }
d83ad864
DB
509 }
510
511 if (has_vforked)
512 {
d83ad864
DB
513 /* If we detached from the child, then we have to be careful
514 to not insert breakpoints in the parent until the child
515 is done with the shared memory region. However, if we're
516 staying attached to the child, then we can and should
517 insert breakpoints, so that we can debug it. A
518 subsequent child exec or exit is enough to know when does
519 the child stops using the parent's address space. */
6f5d514f
SM
520 parent_inf->thread_waiting_for_vfork_done
521 = detach_fork ? inferior_thread () : nullptr;
d83ad864
DB
522 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
523 }
524 }
525 else
526 {
527 /* Follow the child. */
d83ad864 528
f67c0c91 529 if (print_inferior_events)
d83ad864 530 {
f67c0c91
SDJ
531 std::string parent_pid = target_pid_to_str (parent_ptid);
532 std::string child_pid = target_pid_to_str (child_ptid);
533
223ffa71 534 target_terminal::ours_for_output ();
6cb06a8c
TT
535 gdb_printf (_("[Attaching after %s %s to child %s]\n"),
536 parent_pid.c_str (),
537 has_vforked ? "vfork" : "fork",
538 child_pid.c_str ());
d83ad864
DB
539 }
540
541 /* Add the new inferior first, so that the target_detach below
542 doesn't unpush the target. */
543
e99b03dc 544 child_inf = add_inferior (child_ptid.pid ());
d83ad864 545
d83ad864
DB
546 child_inf->attach_flag = parent_inf->attach_flag;
547 copy_terminal_info (child_inf, parent_inf);
548 child_inf->gdbarch = parent_inf->gdbarch;
549 copy_inferior_target_desc_info (child_inf, parent_inf);
550
da474da1 551 if (has_vforked)
d83ad864 552 {
da474da1
SM
553 /* If this is a vfork child, then the address-space is shared
554 with the parent. */
555 child_inf->aspace = parent_inf->aspace;
556 child_inf->pspace = parent_inf->pspace;
5b6d1e4f 557
82d1f134 558 exec_on_vfork (child_inf);
d83ad864 559 }
da474da1
SM
560 else if (detach_fork)
561 {
562 /* We follow the child and detach from the parent: move the parent's
563 program space to the child. This simplifies some things, like
564 doing "next" over fork() and landing on the expected line in the
565 child (note, that is broken with "set detach-on-fork off").
566
567 Before assigning brand new spaces for the parent, remove
568 breakpoints from it: because the new pspace won't match
569 currently inserted locations, the normal detach procedure
570 wouldn't remove them, and we would leave them inserted when
571 detaching. */
572 remove_breakpoints_inf (parent_inf);
573
574 child_inf->aspace = parent_inf->aspace;
575 child_inf->pspace = parent_inf->pspace;
b382c166 576 parent_inf->aspace = new address_space ();
da474da1
SM
577 parent_inf->pspace = new program_space (parent_inf->aspace);
578 clone_program_space (parent_inf->pspace, child_inf->pspace);
579
580 /* The parent inferior is still the current one, so keep things
581 in sync. */
582 set_current_program_space (parent_inf->pspace);
583 }
d83ad864
DB
584 else
585 {
b382c166 586 child_inf->aspace = new address_space ();
564b1e3f 587 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
588 child_inf->removable = 1;
589 child_inf->symfile_flags = SYMFILE_NO_READ;
da474da1 590 clone_program_space (child_inf->pspace, parent_inf->pspace);
d83ad864
DB
591 }
592 }
593
82d1f134
SM
594 gdb_assert (current_inferior () == parent_inf);
595
596 /* If we are setting up an inferior for the child, target_follow_fork is
597 responsible for pushing the appropriate targets on the new inferior's
598 target stack and adding the initial thread (with ptid CHILD_PTID).
599
600 If we are not setting up an inferior for the child (because following
601 the parent and detach_fork is true), it is responsible for detaching
602 from CHILD_PTID. */
603 target_follow_fork (child_inf, child_ptid, fork_kind, follow_child,
604 detach_fork);
605
606 /* target_follow_fork must leave the parent as the current inferior. If we
607 want to follow the child, we make it the current one below. */
608 gdb_assert (current_inferior () == parent_inf);
609
610 /* If there is a child inferior, target_follow_fork must have created a thread
611 for it. */
612 if (child_inf != nullptr)
613 gdb_assert (!child_inf->thread_list.empty ());
614
577d2167
SM
615 /* Clear the parent thread's pending follow field. Do this before calling
616 target_detach, so that the target can differentiate the two following
617 cases:
618
619 - We continue past a fork with "follow-fork-mode == child" &&
620 "detach-on-fork on", and therefore detach the parent. In that
621 case the target should not detach the fork child.
622 - We run to a fork catchpoint and the user types "detach". In that
623 case, the target should detach the fork child in addition to the
624 parent.
625
626 The former case will have pending_follow cleared, the later will have
627 pending_follow set. */
628 thread_info *parent_thread = find_thread_ptid (parent_inf, parent_ptid);
629 gdb_assert (parent_thread != nullptr);
630 parent_thread->pending_follow.set_spurious ();
631
82d1f134
SM
632 /* Detach the parent if needed. */
633 if (follow_child)
634 {
635 /* If we're vforking, we want to hold on to the parent until
636 the child exits or execs. At child exec or exit time we
637 can remove the old breakpoints from the parent and detach
638 or resume debugging it. Otherwise, detach the parent now;
639 we'll want to reuse it's program/address spaces, but we
640 can't set them to the child before removing breakpoints
641 from the parent, otherwise, the breakpoints module could
642 decide to remove breakpoints from the wrong process (since
643 they'd be assigned to the same address space). */
644
645 if (has_vforked)
646 {
647 gdb_assert (child_inf->vfork_parent == NULL);
648 gdb_assert (parent_inf->vfork_child == NULL);
649 child_inf->vfork_parent = parent_inf;
650 child_inf->pending_detach = 0;
651 parent_inf->vfork_child = child_inf;
652 parent_inf->pending_detach = detach_fork;
82d1f134
SM
653 }
654 else if (detach_fork)
655 {
656 if (print_inferior_events)
657 {
658 /* Ensure that we have a process ptid. */
659 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
660
661 target_terminal::ours_for_output ();
6cb06a8c
TT
662 gdb_printf (_("[Detaching after fork from "
663 "parent %s]\n"),
664 target_pid_to_str (process_ptid).c_str ());
82d1f134
SM
665 }
666
667 target_detach (parent_inf, 0);
668 }
669 }
e97007b6 670
ff770835
SM
671 /* If we ended up creating a new inferior, call post_create_inferior to inform
672 the various subcomponents. */
82d1f134 673 if (child_inf != nullptr)
ff770835 674 {
82d1f134
SM
675 /* If FOLLOW_CHILD, we leave CHILD_INF as the current inferior
676 (do not restore the parent as the current inferior). */
677 gdb::optional<scoped_restore_current_thread> maybe_restore;
678
679 if (!follow_child)
680 maybe_restore.emplace ();
ff770835 681
82d1f134 682 switch_to_thread (*child_inf->threads ().begin ());
ff770835
SM
683 post_create_inferior (0);
684 }
685
e97007b6 686 return false;
d83ad864
DB
687}
688
e58b0e63
PA
689/* Tell the target to follow the fork we're stopped at. Returns true
690 if the inferior should be resumed; false, if the target for some
691 reason decided it's best not to resume. */
692
5ab2fbf1
SM
693static bool
694follow_fork ()
c906108c 695{
5ab2fbf1
SM
696 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
697 bool should_resume = true;
e58b0e63
PA
698
699 /* Copy user stepping state to the new inferior thread. FIXME: the
700 followed fork child thread should have a copy of most of the
4e3990f4
DE
701 parent thread structure's run control related fields, not just these.
702 Initialized to avoid "may be used uninitialized" warnings from gcc. */
703 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 704 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
705 CORE_ADDR step_range_start = 0;
706 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
707 int current_line = 0;
708 symtab *current_symtab = NULL;
4e3990f4 709 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
710
711 if (!non_stop)
712 {
5b6d1e4f 713 process_stratum_target *wait_target;
e58b0e63
PA
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
5b6d1e4f 718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
183be222
SM
722 if (wait_status.kind () != TARGET_WAITKIND_FORKED
723 && wait_status.kind () != TARGET_WAITKIND_VFORKED)
e58b0e63
PA
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
00431a78 728 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
e58b0e63
PA
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
5b6d1e4f 736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 737 switch_to_thread (wait_thread);
5ab2fbf1 738 should_resume = false;
e58b0e63
PA
739 }
740 }
741
577d2167 742 thread_info *tp = inferior_thread ();
e58b0e63
PA
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
183be222 746 switch (tp->pending_follow.kind ())
e58b0e63
PA
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
573269a8 752 std::unique_ptr<struct thread_fsm> thread_fsm;
e58b0e63
PA
753
754 /* If the user did a next/step, etc, over a fork call,
755 preserve the stepping state in the fork child. */
756 if (follow_child && should_resume)
757 {
8358c15c
JK
758 step_resume_breakpoint = clone_momentary_breakpoint
759 (tp->control.step_resume_breakpoint);
16c381f0
JK
760 step_range_start = tp->control.step_range_start;
761 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
762 current_line = tp->current_line;
763 current_symtab = tp->current_symtab;
16c381f0 764 step_frame_id = tp->control.step_frame_id;
186c406b
TT
765 exception_resume_breakpoint
766 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
573269a8 767 thread_fsm = tp->release_thread_fsm ();
e58b0e63
PA
768
769 /* For now, delete the parent's sr breakpoint, otherwise,
770 parent/child sr breakpoints are considered duplicates,
771 and the child version will not be installed. Remove
772 this when the breakpoints module becomes aware of
773 inferiors and address spaces. */
774 delete_step_resume_breakpoint (tp);
16c381f0
JK
775 tp->control.step_range_start = 0;
776 tp->control.step_range_end = 0;
777 tp->control.step_frame_id = null_frame_id;
186c406b 778 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
779 }
780
781 parent = inferior_ptid;
183be222 782 child = tp->pending_follow.child_ptid ();
e58b0e63 783
d8bbae6e
SM
784 /* If handling a vfork, stop all the inferior's threads, they will be
785 restarted when the vfork shared region is complete. */
786 if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
787 && target_is_non_stop_p ())
788 stop_all_threads ("handling vfork", tp->inf);
789
5b6d1e4f 790 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
791 /* Set up inferior(s) as specified by the caller, and tell the
792 target to do whatever is necessary to follow either parent
793 or child. */
794 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
795 {
796 /* Target refused to follow, or there's some other reason
797 we shouldn't resume. */
798 should_resume = 0;
799 }
800 else
801 {
e58b0e63
PA
802 /* This makes sure we don't try to apply the "Switched
803 over from WAIT_PID" logic above. */
804 nullify_last_target_wait_ptid ();
805
1777feb0 806 /* If we followed the child, switch to it... */
e58b0e63
PA
807 if (follow_child)
808 {
5b6d1e4f 809 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 810 switch_to_thread (child_thr);
e58b0e63
PA
811
812 /* ... and preserve the stepping state, in case the
813 user was stepping over the fork call. */
814 if (should_resume)
815 {
816 tp = inferior_thread ();
8358c15c
JK
817 tp->control.step_resume_breakpoint
818 = step_resume_breakpoint;
16c381f0
JK
819 tp->control.step_range_start = step_range_start;
820 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
821 tp->current_line = current_line;
822 tp->current_symtab = current_symtab;
16c381f0 823 tp->control.step_frame_id = step_frame_id;
186c406b
TT
824 tp->control.exception_resume_breakpoint
825 = exception_resume_breakpoint;
573269a8 826 tp->set_thread_fsm (std::move (thread_fsm));
e58b0e63
PA
827 }
828 else
829 {
830 /* If we get here, it was because we're trying to
831 resume from a fork catchpoint, but, the user
832 has switched threads away from the thread that
833 forked. In that case, the resume command
834 issued is most likely not applicable to the
835 child, so just warn, and refuse to resume. */
3e43a32a 836 warning (_("Not resuming: switched threads "
fd7dcb94 837 "before following fork child."));
e58b0e63
PA
838 }
839
840 /* Reset breakpoints in the child as appropriate. */
841 follow_inferior_reset_breakpoints ();
842 }
e58b0e63
PA
843 }
844 }
845 break;
846 case TARGET_WAITKIND_SPURIOUS:
847 /* Nothing to follow. */
848 break;
849 default:
850 internal_error (__FILE__, __LINE__,
851 "Unexpected pending_follow.kind %d\n",
183be222 852 tp->pending_follow.kind ());
e58b0e63
PA
853 break;
854 }
c906108c 855
e58b0e63 856 return should_resume;
c906108c
SS
857}
858
d83ad864 859static void
6604731b 860follow_inferior_reset_breakpoints (void)
c906108c 861{
4e1c45ea
PA
862 struct thread_info *tp = inferior_thread ();
863
6604731b
DJ
864 /* Was there a step_resume breakpoint? (There was if the user
865 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
866 thread number. Cloned step_resume breakpoints are disabled on
867 creation, so enable it here now that it is associated with the
868 correct thread.
6604731b
DJ
869
870 step_resumes are a form of bp that are made to be per-thread.
871 Since we created the step_resume bp when the parent process
872 was being debugged, and now are switching to the child process,
873 from the breakpoint package's viewpoint, that's a switch of
874 "threads". We must update the bp's notion of which thread
875 it is for, or it'll be ignored when it triggers. */
876
8358c15c 877 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
878 {
879 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
880 tp->control.step_resume_breakpoint->loc->enabled = 1;
881 }
6604731b 882
a1aa2221 883 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 884 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
885 {
886 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
887 tp->control.exception_resume_breakpoint->loc->enabled = 1;
888 }
186c406b 889
6604731b
DJ
890 /* Reinsert all breakpoints in the child. The user may have set
891 breakpoints after catching the fork, in which case those
892 were never set in the child, but only in the parent. This makes
893 sure the inserted breakpoints match the breakpoint list. */
894
895 breakpoint_re_set ();
896 insert_breakpoints ();
c906108c 897}
c906108c 898
69eadcc9
SM
899/* The child has exited or execed: resume THREAD, a thread of the parent,
900 if it was meant to be executing. */
6c95b8df 901
69eadcc9
SM
902static void
903proceed_after_vfork_done (thread_info *thread)
6c95b8df 904{
69eadcc9 905 if (thread->state == THREAD_RUNNING
611841bb 906 && !thread->executing ()
6c95b8df 907 && !thread->stop_requested
1edb66d8 908 && thread->stop_signal () == GDB_SIGNAL_0)
6c95b8df 909 {
1eb8556f 910 infrun_debug_printf ("resuming vfork parent thread %s",
0fab7955 911 thread->ptid.to_string ().c_str ());
6c95b8df 912
00431a78 913 switch_to_thread (thread);
70509625 914 clear_proceed_status (0);
64ce06e4 915 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df 916 }
6c95b8df
PA
917}
918
919/* Called whenever we notice an exec or exit event, to handle
920 detaching or resuming a vfork parent. */
921
922static void
923handle_vfork_child_exec_or_exit (int exec)
924{
925 struct inferior *inf = current_inferior ();
926
927 if (inf->vfork_parent)
928 {
69eadcc9 929 inferior *resume_parent = nullptr;
6c95b8df
PA
930
931 /* This exec or exit marks the end of the shared memory region
b73715df
TV
932 between the parent and the child. Break the bonds. */
933 inferior *vfork_parent = inf->vfork_parent;
934 inf->vfork_parent->vfork_child = NULL;
935 inf->vfork_parent = NULL;
6c95b8df 936
b73715df
TV
937 /* If the user wanted to detach from the parent, now is the
938 time. */
939 if (vfork_parent->pending_detach)
6c95b8df 940 {
6c95b8df
PA
941 struct program_space *pspace;
942 struct address_space *aspace;
943
1777feb0 944 /* follow-fork child, detach-on-fork on. */
6c95b8df 945
b73715df 946 vfork_parent->pending_detach = 0;
68c9da30 947
18493a00 948 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
949
950 /* We're letting loose of the parent. */
18493a00 951 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 952 switch_to_thread (tp);
6c95b8df
PA
953
954 /* We're about to detach from the parent, which implicitly
955 removes breakpoints from its address space. There's a
956 catch here: we want to reuse the spaces for the child,
957 but, parent/child are still sharing the pspace at this
958 point, although the exec in reality makes the kernel give
959 the child a fresh set of new pages. The problem here is
960 that the breakpoints module being unaware of this, would
961 likely chose the child process to write to the parent
962 address space. Swapping the child temporarily away from
963 the spaces has the desired effect. Yes, this is "sort
964 of" a hack. */
965
966 pspace = inf->pspace;
967 aspace = inf->aspace;
968 inf->aspace = NULL;
969 inf->pspace = NULL;
970
f67c0c91 971 if (print_inferior_events)
6c95b8df 972 {
a068643d 973 std::string pidstr
b73715df 974 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 975
223ffa71 976 target_terminal::ours_for_output ();
6c95b8df
PA
977
978 if (exec)
6f259a23 979 {
6cb06a8c
TT
980 gdb_printf (_("[Detaching vfork parent %s "
981 "after child exec]\n"), pidstr.c_str ());
6f259a23 982 }
6c95b8df 983 else
6f259a23 984 {
6cb06a8c
TT
985 gdb_printf (_("[Detaching vfork parent %s "
986 "after child exit]\n"), pidstr.c_str ());
6f259a23 987 }
6c95b8df
PA
988 }
989
b73715df 990 target_detach (vfork_parent, 0);
6c95b8df
PA
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
6c95b8df
PA
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
564b1e3f 1000 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
69eadcc9 1005 resume_parent = vfork_parent;
6c95b8df
PA
1006 }
1007 else
1008 {
6c95b8df
PA
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
18493a00 1018 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
18493a00
PA
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
6c95b8df 1023
53af73bf
PA
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
6c95b8df 1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1029 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1030
69eadcc9 1031 resume_parent = vfork_parent;
6c95b8df
PA
1032 }
1033
6c95b8df
PA
1034 gdb_assert (current_program_space == inf->pspace);
1035
69eadcc9 1036 if (non_stop && resume_parent != nullptr)
6c95b8df
PA
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
5ed8105e 1040 scoped_restore_current_thread restore_thread;
6c95b8df 1041
1eb8556f 1042 infrun_debug_printf ("resuming vfork parent process %d",
69eadcc9 1043 resume_parent->pid);
6c95b8df 1044
69eadcc9
SM
1045 for (thread_info *thread : resume_parent->threads ())
1046 proceed_after_vfork_done (thread);
6c95b8df
PA
1047 }
1048 }
1049}
1050
d8bbae6e
SM
1051/* Handle TARGET_WAITKIND_VFORK_DONE. */
1052
1053static void
1054handle_vfork_done (thread_info *event_thread)
1055{
1056 /* We only care about this event if inferior::thread_waiting_for_vfork_done is
1057 set, that is if we are waiting for a vfork child not under our control
1058 (because we detached it) to exec or exit.
1059
1060 If an inferior has vforked and we are debugging the child, we don't use
1061 the vfork-done event to get notified about the end of the shared address
1062 space window. We rely instead on the child's exec or exit event, and the
1063 inferior::vfork_{parent,child} fields are used instead. See
1064 handle_vfork_child_exec_or_exit for that. */
1065 if (event_thread->inf->thread_waiting_for_vfork_done == nullptr)
1066 {
1067 infrun_debug_printf ("not waiting for a vfork-done event");
1068 return;
1069 }
1070
1071 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1072
1073 /* We stopped all threads (other than the vforking thread) of the inferior in
1074 follow_fork and kept them stopped until now. It should therefore not be
1075 possible for another thread to have reported a vfork during that window.
1076 If THREAD_WAITING_FOR_VFORK_DONE is set, it has to be the same thread whose
1077 vfork-done we are handling right now. */
1078 gdb_assert (event_thread->inf->thread_waiting_for_vfork_done == event_thread);
1079
1080 event_thread->inf->thread_waiting_for_vfork_done = nullptr;
1081 event_thread->inf->pspace->breakpoints_not_allowed = 0;
1082
1083 /* On non-stop targets, we stopped all the inferior's threads in follow_fork,
1084 resume them now. On all-stop targets, everything that needs to be resumed
1085 will be when we resume the event thread. */
1086 if (target_is_non_stop_p ())
1087 {
1088 /* restart_threads and start_step_over may change the current thread, make
1089 sure we leave the event thread as the current thread. */
1090 scoped_restore_current_thread restore_thread;
1091
1092 insert_breakpoints ();
d8bbae6e 1093 start_step_over ();
2b718529
LS
1094
1095 if (!step_over_info_valid_p ())
1096 restart_threads (event_thread, event_thread->inf);
d8bbae6e
SM
1097 }
1098}
1099
eb6c553b 1100/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1101
1102static const char follow_exec_mode_new[] = "new";
1103static const char follow_exec_mode_same[] = "same";
40478521 1104static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1105{
1106 follow_exec_mode_new,
1107 follow_exec_mode_same,
1108 NULL,
1109};
1110
1111static const char *follow_exec_mode_string = follow_exec_mode_same;
1112static void
1113show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1114 struct cmd_list_element *c, const char *value)
1115{
6cb06a8c 1116 gdb_printf (file, _("Follow exec mode is \"%s\".\n"), value);
6c95b8df
PA
1117}
1118
ecf45d2c 1119/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1120
c906108c 1121static void
4ca51187 1122follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1123{
e99b03dc 1124 int pid = ptid.pid ();
94585166 1125 ptid_t process_ptid;
7a292a7a 1126
65d2b333
PW
1127 /* Switch terminal for any messages produced e.g. by
1128 breakpoint_re_set. */
1129 target_terminal::ours_for_output ();
1130
c906108c
SS
1131 /* This is an exec event that we actually wish to pay attention to.
1132 Refresh our symbol table to the newly exec'd program, remove any
1133 momentary bp's, etc.
1134
1135 If there are breakpoints, they aren't really inserted now,
1136 since the exec() transformed our inferior into a fresh set
1137 of instructions.
1138
1139 We want to preserve symbolic breakpoints on the list, since
1140 we have hopes that they can be reset after the new a.out's
1141 symbol table is read.
1142
1143 However, any "raw" breakpoints must be removed from the list
1144 (e.g., the solib bp's), since their address is probably invalid
1145 now.
1146
1147 And, we DON'T want to call delete_breakpoints() here, since
1148 that may write the bp's "shadow contents" (the instruction
85102364 1149 value that was overwritten with a TRAP instruction). Since
1777feb0 1150 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1151
1152 mark_breakpoints_out ();
1153
95e50b27
PA
1154 /* The target reports the exec event to the main thread, even if
1155 some other thread does the exec, and even if the main thread was
1156 stopped or already gone. We may still have non-leader threads of
1157 the process on our list. E.g., on targets that don't have thread
1158 exit events (like remote); or on native Linux in non-stop mode if
1159 there were only two threads in the inferior and the non-leader
1160 one is the one that execs (and nothing forces an update of the
1161 thread list up to here). When debugging remotely, it's best to
1162 avoid extra traffic, when possible, so avoid syncing the thread
1163 list with the target, and instead go ahead and delete all threads
1164 of the process but one that reported the event. Note this must
1165 be done before calling update_breakpoints_after_exec, as
1166 otherwise clearing the threads' resources would reference stale
1167 thread breakpoints -- it may have been one of these threads that
1168 stepped across the exec. We could just clear their stepping
1169 states, but as long as we're iterating, might as well delete
1170 them. Deleting them now rather than at the next user-visible
1171 stop provides a nicer sequence of events for user and MI
1172 notifications. */
08036331 1173 for (thread_info *th : all_threads_safe ())
d7e15655 1174 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1175 delete_thread (th);
95e50b27
PA
1176
1177 /* We also need to clear any left over stale state for the
1178 leader/event thread. E.g., if there was any step-resume
1179 breakpoint or similar, it's gone now. We cannot truly
1180 step-to-next statement through an exec(). */
08036331 1181 thread_info *th = inferior_thread ();
8358c15c 1182 th->control.step_resume_breakpoint = NULL;
186c406b 1183 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1184 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1185 th->control.step_range_start = 0;
1186 th->control.step_range_end = 0;
c906108c 1187
95e50b27
PA
1188 /* The user may have had the main thread held stopped in the
1189 previous image (e.g., schedlock on, or non-stop). Release
1190 it now. */
a75724bc
PA
1191 th->stop_requested = 0;
1192
95e50b27
PA
1193 update_breakpoints_after_exec ();
1194
1777feb0 1195 /* What is this a.out's name? */
f2907e49 1196 process_ptid = ptid_t (pid);
6cb06a8c
TT
1197 gdb_printf (_("%s is executing new program: %s\n"),
1198 target_pid_to_str (process_ptid).c_str (),
1199 exec_file_target);
c906108c
SS
1200
1201 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1202 inferior has essentially been killed & reborn. */
7a292a7a 1203
6ca15a4b 1204 breakpoint_init_inferior (inf_execd);
e85a822c 1205
797bc1cb
TT
1206 gdb::unique_xmalloc_ptr<char> exec_file_host
1207 = exec_file_find (exec_file_target, NULL);
ff862be4 1208
ecf45d2c
SL
1209 /* If we were unable to map the executable target pathname onto a host
1210 pathname, tell the user that. Otherwise GDB's subsequent behavior
1211 is confusing. Maybe it would even be better to stop at this point
1212 so that the user can specify a file manually before continuing. */
1213 if (exec_file_host == NULL)
1214 warning (_("Could not load symbols for executable %s.\n"
1215 "Do you need \"set sysroot\"?"),
1216 exec_file_target);
c906108c 1217
cce9b6bf
PA
1218 /* Reset the shared library package. This ensures that we get a
1219 shlib event when the child reaches "_start", at which point the
1220 dld will have had a chance to initialize the child. */
1221 /* Also, loading a symbol file below may trigger symbol lookups, and
1222 we don't want those to be satisfied by the libraries of the
1223 previous incarnation of this process. */
1224 no_shared_libraries (NULL, 0);
1225
294c36eb
SM
1226 struct inferior *inf = current_inferior ();
1227
6c95b8df
PA
1228 if (follow_exec_mode_string == follow_exec_mode_new)
1229 {
6c95b8df
PA
1230 /* The user wants to keep the old inferior and program spaces
1231 around. Create a new fresh one, and switch to it. */
1232
35ed81d4
SM
1233 /* Do exit processing for the original inferior before setting the new
1234 inferior's pid. Having two inferiors with the same pid would confuse
1235 find_inferior_p(t)id. Transfer the terminal state and info from the
1236 old to the new inferior. */
294c36eb
SM
1237 inferior *new_inferior = add_inferior_with_spaces ();
1238
1239 swap_terminal_info (new_inferior, inf);
1240 exit_inferior_silent (inf);
1241
1242 new_inferior->pid = pid;
1243 target_follow_exec (new_inferior, ptid, exec_file_target);
1244
1245 /* We continue with the new inferior. */
1246 inf = new_inferior;
6c95b8df 1247 }
9107fc8d
PA
1248 else
1249 {
1250 /* The old description may no longer be fit for the new image.
1251 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1252 old description; we'll read a new one below. No need to do
1253 this on "follow-exec-mode new", as the old inferior stays
1254 around (its description is later cleared/refetched on
1255 restart). */
1256 target_clear_description ();
294c36eb 1257 target_follow_exec (inf, ptid, exec_file_target);
9107fc8d 1258 }
6c95b8df 1259
294c36eb 1260 gdb_assert (current_inferior () == inf);
6c95b8df
PA
1261 gdb_assert (current_program_space == inf->pspace);
1262
ecf45d2c
SL
1263 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1264 because the proper displacement for a PIE (Position Independent
1265 Executable) main symbol file will only be computed by
1266 solib_create_inferior_hook below. breakpoint_re_set would fail
1267 to insert the breakpoints with the zero displacement. */
797bc1cb 1268 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1269
9107fc8d
PA
1270 /* If the target can specify a description, read it. Must do this
1271 after flipping to the new executable (because the target supplied
1272 description must be compatible with the executable's
1273 architecture, and the old executable may e.g., be 32-bit, while
1274 the new one 64-bit), and before anything involving memory or
1275 registers. */
1276 target_find_description ();
1277
42a4fec5 1278 gdb::observers::inferior_execd.notify (inf);
4efc6507 1279
c1e56572
JK
1280 breakpoint_re_set ();
1281
c906108c
SS
1282 /* Reinsert all breakpoints. (Those which were symbolic have
1283 been reset to the proper address in the new a.out, thanks
1777feb0 1284 to symbol_file_command...). */
c906108c
SS
1285 insert_breakpoints ();
1286
1287 /* The next resume of this inferior should bring it to the shlib
1288 startup breakpoints. (If the user had also set bp's on
1289 "main" from the old (parent) process, then they'll auto-
1777feb0 1290 matically get reset there in the new process.). */
c906108c
SS
1291}
1292
28d5518b 1293/* The chain of threads that need to do a step-over operation to get
c2829269
PA
1294 past e.g., a breakpoint. What technique is used to step over the
1295 breakpoint/watchpoint does not matter -- all threads end up in the
1296 same queue, to maintain rough temporal order of execution, in order
1297 to avoid starvation, otherwise, we could e.g., find ourselves
1298 constantly stepping the same couple threads past their breakpoints
1299 over and over, if the single-step finish fast enough. */
8b6a69b2 1300thread_step_over_list global_thread_step_over_list;
c2829269 1301
6c4cfb24
PA
1302/* Bit flags indicating what the thread needs to step over. */
1303
8d297bbf 1304enum step_over_what_flag
6c4cfb24
PA
1305 {
1306 /* Step over a breakpoint. */
1307 STEP_OVER_BREAKPOINT = 1,
1308
1309 /* Step past a non-continuable watchpoint, in order to let the
1310 instruction execute so we can evaluate the watchpoint
1311 expression. */
1312 STEP_OVER_WATCHPOINT = 2
1313 };
8d297bbf 1314DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1315
963f9c80 1316/* Info about an instruction that is being stepped over. */
31e77af2
PA
1317
1318struct step_over_info
1319{
963f9c80
PA
1320 /* If we're stepping past a breakpoint, this is the address space
1321 and address of the instruction the breakpoint is set at. We'll
1322 skip inserting all breakpoints here. Valid iff ASPACE is
1323 non-NULL. */
ac7d717c
PA
1324 const address_space *aspace = nullptr;
1325 CORE_ADDR address = 0;
963f9c80
PA
1326
1327 /* The instruction being stepped over triggers a nonsteppable
1328 watchpoint. If true, we'll skip inserting watchpoints. */
ac7d717c 1329 int nonsteppable_watchpoint_p = 0;
21edc42f
YQ
1330
1331 /* The thread's global number. */
ac7d717c 1332 int thread = -1;
31e77af2
PA
1333};
1334
1335/* The step-over info of the location that is being stepped over.
1336
1337 Note that with async/breakpoint always-inserted mode, a user might
1338 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1339 being stepped over. As setting a new breakpoint inserts all
1340 breakpoints, we need to make sure the breakpoint being stepped over
1341 isn't inserted then. We do that by only clearing the step-over
1342 info when the step-over is actually finished (or aborted).
1343
1344 Presently GDB can only step over one breakpoint at any given time.
1345 Given threads that can't run code in the same address space as the
1346 breakpoint's can't really miss the breakpoint, GDB could be taught
1347 to step-over at most one breakpoint per address space (so this info
1348 could move to the address space object if/when GDB is extended).
1349 The set of breakpoints being stepped over will normally be much
1350 smaller than the set of all breakpoints, so a flag in the
1351 breakpoint location structure would be wasteful. A separate list
1352 also saves complexity and run-time, as otherwise we'd have to go
1353 through all breakpoint locations clearing their flag whenever we
1354 start a new sequence. Similar considerations weigh against storing
1355 this info in the thread object. Plus, not all step overs actually
1356 have breakpoint locations -- e.g., stepping past a single-step
1357 breakpoint, or stepping to complete a non-continuable
1358 watchpoint. */
1359static struct step_over_info step_over_info;
1360
1361/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1362 stepping over.
1363 N.B. We record the aspace and address now, instead of say just the thread,
1364 because when we need the info later the thread may be running. */
31e77af2
PA
1365
1366static void
8b86c959 1367set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1368 int nonsteppable_watchpoint_p,
1369 int thread)
31e77af2
PA
1370{
1371 step_over_info.aspace = aspace;
1372 step_over_info.address = address;
963f9c80 1373 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1374 step_over_info.thread = thread;
31e77af2
PA
1375}
1376
1377/* Called when we're not longer stepping over a breakpoint / an
1378 instruction, so all breakpoints are free to be (re)inserted. */
1379
1380static void
1381clear_step_over_info (void)
1382{
1eb8556f 1383 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1384 step_over_info.aspace = NULL;
1385 step_over_info.address = 0;
963f9c80 1386 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1387 step_over_info.thread = -1;
31e77af2
PA
1388}
1389
7f89fd65 1390/* See infrun.h. */
31e77af2
PA
1391
1392int
1393stepping_past_instruction_at (struct address_space *aspace,
1394 CORE_ADDR address)
1395{
1396 return (step_over_info.aspace != NULL
1397 && breakpoint_address_match (aspace, address,
1398 step_over_info.aspace,
1399 step_over_info.address));
1400}
1401
963f9c80
PA
1402/* See infrun.h. */
1403
21edc42f
YQ
1404int
1405thread_is_stepping_over_breakpoint (int thread)
1406{
1407 return (step_over_info.thread != -1
1408 && thread == step_over_info.thread);
1409}
1410
1411/* See infrun.h. */
1412
963f9c80
PA
1413int
1414stepping_past_nonsteppable_watchpoint (void)
1415{
1416 return step_over_info.nonsteppable_watchpoint_p;
1417}
1418
6cc83d2a
PA
1419/* Returns true if step-over info is valid. */
1420
c4464ade 1421static bool
6cc83d2a
PA
1422step_over_info_valid_p (void)
1423{
963f9c80
PA
1424 return (step_over_info.aspace != NULL
1425 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1426}
1427
c906108c 1428\f
237fc4c9
PA
1429/* Displaced stepping. */
1430
1431/* In non-stop debugging mode, we must take special care to manage
1432 breakpoints properly; in particular, the traditional strategy for
1433 stepping a thread past a breakpoint it has hit is unsuitable.
1434 'Displaced stepping' is a tactic for stepping one thread past a
1435 breakpoint it has hit while ensuring that other threads running
1436 concurrently will hit the breakpoint as they should.
1437
1438 The traditional way to step a thread T off a breakpoint in a
1439 multi-threaded program in all-stop mode is as follows:
1440
1441 a0) Initially, all threads are stopped, and breakpoints are not
1442 inserted.
1443 a1) We single-step T, leaving breakpoints uninserted.
1444 a2) We insert breakpoints, and resume all threads.
1445
1446 In non-stop debugging, however, this strategy is unsuitable: we
1447 don't want to have to stop all threads in the system in order to
1448 continue or step T past a breakpoint. Instead, we use displaced
1449 stepping:
1450
1451 n0) Initially, T is stopped, other threads are running, and
1452 breakpoints are inserted.
1453 n1) We copy the instruction "under" the breakpoint to a separate
1454 location, outside the main code stream, making any adjustments
1455 to the instruction, register, and memory state as directed by
1456 T's architecture.
1457 n2) We single-step T over the instruction at its new location.
1458 n3) We adjust the resulting register and memory state as directed
1459 by T's architecture. This includes resetting T's PC to point
1460 back into the main instruction stream.
1461 n4) We resume T.
1462
1463 This approach depends on the following gdbarch methods:
1464
1465 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1466 indicate where to copy the instruction, and how much space must
1467 be reserved there. We use these in step n1.
1468
1469 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1470 address, and makes any necessary adjustments to the instruction,
1471 register contents, and memory. We use this in step n1.
1472
1473 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1474 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1475 same effect the instruction would have had if we had executed it
1476 at its original address. We use this in step n3.
1477
237fc4c9
PA
1478 The gdbarch_displaced_step_copy_insn and
1479 gdbarch_displaced_step_fixup functions must be written so that
1480 copying an instruction with gdbarch_displaced_step_copy_insn,
1481 single-stepping across the copied instruction, and then applying
1482 gdbarch_displaced_insn_fixup should have the same effects on the
1483 thread's memory and registers as stepping the instruction in place
1484 would have. Exactly which responsibilities fall to the copy and
1485 which fall to the fixup is up to the author of those functions.
1486
1487 See the comments in gdbarch.sh for details.
1488
1489 Note that displaced stepping and software single-step cannot
1490 currently be used in combination, although with some care I think
1491 they could be made to. Software single-step works by placing
1492 breakpoints on all possible subsequent instructions; if the
1493 displaced instruction is a PC-relative jump, those breakpoints
1494 could fall in very strange places --- on pages that aren't
1495 executable, or at addresses that are not proper instruction
1496 boundaries. (We do generally let other threads run while we wait
1497 to hit the software single-step breakpoint, and they might
1498 encounter such a corrupted instruction.) One way to work around
1499 this would be to have gdbarch_displaced_step_copy_insn fully
1500 simulate the effect of PC-relative instructions (and return NULL)
1501 on architectures that use software single-stepping.
1502
1503 In non-stop mode, we can have independent and simultaneous step
1504 requests, so more than one thread may need to simultaneously step
1505 over a breakpoint. The current implementation assumes there is
1506 only one scratch space per process. In this case, we have to
1507 serialize access to the scratch space. If thread A wants to step
1508 over a breakpoint, but we are currently waiting for some other
1509 thread to complete a displaced step, we leave thread A stopped and
1510 place it in the displaced_step_request_queue. Whenever a displaced
1511 step finishes, we pick the next thread in the queue and start a new
1512 displaced step operation on it. See displaced_step_prepare and
7def77a1 1513 displaced_step_finish for details. */
237fc4c9 1514
a46d1843 1515/* Return true if THREAD is doing a displaced step. */
c0987663 1516
c4464ade 1517static bool
00431a78 1518displaced_step_in_progress_thread (thread_info *thread)
c0987663 1519{
00431a78 1520 gdb_assert (thread != NULL);
c0987663 1521
187b041e 1522 return thread->displaced_step_state.in_progress ();
c0987663
YQ
1523}
1524
a46d1843 1525/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1526
c4464ade 1527static bool
00431a78 1528displaced_step_in_progress (inferior *inf)
8f572e5c 1529{
187b041e 1530 return inf->displaced_step_state.in_progress_count > 0;
fc1cf338
PA
1531}
1532
187b041e 1533/* Return true if any thread is doing a displaced step. */
a42244db 1534
187b041e
SM
1535static bool
1536displaced_step_in_progress_any_thread ()
a42244db 1537{
187b041e
SM
1538 for (inferior *inf : all_non_exited_inferiors ())
1539 {
1540 if (displaced_step_in_progress (inf))
1541 return true;
1542 }
a42244db 1543
187b041e 1544 return false;
a42244db
YQ
1545}
1546
fc1cf338
PA
1547static void
1548infrun_inferior_exit (struct inferior *inf)
1549{
d20172fc 1550 inf->displaced_step_state.reset ();
6f5d514f 1551 inf->thread_waiting_for_vfork_done = nullptr;
fc1cf338 1552}
237fc4c9 1553
3b7a962d
SM
1554static void
1555infrun_inferior_execd (inferior *inf)
1556{
187b041e
SM
1557 /* If some threads where was doing a displaced step in this inferior at the
1558 moment of the exec, they no longer exist. Even if the exec'ing thread
3b7a962d
SM
1559 doing a displaced step, we don't want to to any fixup nor restore displaced
1560 stepping buffer bytes. */
1561 inf->displaced_step_state.reset ();
1562
187b041e
SM
1563 for (thread_info *thread : inf->threads ())
1564 thread->displaced_step_state.reset ();
1565
3b7a962d
SM
1566 /* Since an in-line step is done with everything else stopped, if there was
1567 one in progress at the time of the exec, it must have been the exec'ing
1568 thread. */
1569 clear_step_over_info ();
6f5d514f
SM
1570
1571 inf->thread_waiting_for_vfork_done = nullptr;
3b7a962d
SM
1572}
1573
fff08868
HZ
1574/* If ON, and the architecture supports it, GDB will use displaced
1575 stepping to step over breakpoints. If OFF, or if the architecture
1576 doesn't support it, GDB will instead use the traditional
1577 hold-and-step approach. If AUTO (which is the default), GDB will
1578 decide which technique to use to step over breakpoints depending on
9822cb57 1579 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1580
72d0e2c5 1581static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1582
237fc4c9
PA
1583static void
1584show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1585 struct cmd_list_element *c,
1586 const char *value)
1587{
72d0e2c5 1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
6cb06a8c
TT
1589 gdb_printf (file,
1590 _("Debugger's willingness to use displaced stepping "
1591 "to step over breakpoints is %s (currently %s).\n"),
1592 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1593 else
6cb06a8c
TT
1594 gdb_printf (file,
1595 _("Debugger's willingness to use displaced stepping "
1596 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1597}
1598
9822cb57
SM
1599/* Return true if the gdbarch implements the required methods to use
1600 displaced stepping. */
1601
1602static bool
1603gdbarch_supports_displaced_stepping (gdbarch *arch)
1604{
187b041e
SM
1605 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1606 that if `prepare` is provided, so is `finish`. */
1607 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1608}
1609
fff08868 1610/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1611 over breakpoints of thread TP. */
fff08868 1612
9822cb57
SM
1613static bool
1614use_displaced_stepping (thread_info *tp)
237fc4c9 1615{
9822cb57
SM
1616 /* If the user disabled it explicitly, don't use displaced stepping. */
1617 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1618 return false;
1619
1620 /* If "auto", only use displaced stepping if the target operates in a non-stop
1621 way. */
1622 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1623 && !target_is_non_stop_p ())
1624 return false;
1625
1626 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1627
1628 /* If the architecture doesn't implement displaced stepping, don't use
1629 it. */
1630 if (!gdbarch_supports_displaced_stepping (gdbarch))
1631 return false;
1632
1633 /* If recording, don't use displaced stepping. */
1634 if (find_record_target () != nullptr)
1635 return false;
1636
9822cb57
SM
1637 /* If displaced stepping failed before for this inferior, don't bother trying
1638 again. */
f5f01699 1639 if (tp->inf->displaced_step_state.failed_before)
9822cb57
SM
1640 return false;
1641
1642 return true;
237fc4c9
PA
1643}
1644
187b041e 1645/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1646
237fc4c9 1647static void
187b041e 1648displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1649{
d8d83535 1650 displaced->reset ();
237fc4c9
PA
1651}
1652
d8d83535
SM
1653/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1654 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1655
1656using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1657
136821d9
SM
1658/* See infrun.h. */
1659
1660std::string
1661displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1662{
136821d9 1663 std::string ret;
237fc4c9 1664
136821d9
SM
1665 for (size_t i = 0; i < len; i++)
1666 {
1667 if (i == 0)
1668 ret += string_printf ("%02x", buf[i]);
1669 else
1670 ret += string_printf (" %02x", buf[i]);
1671 }
1672
1673 return ret;
237fc4c9
PA
1674}
1675
1676/* Prepare to single-step, using displaced stepping.
1677
1678 Note that we cannot use displaced stepping when we have a signal to
1679 deliver. If we have a signal to deliver and an instruction to step
1680 over, then after the step, there will be no indication from the
1681 target whether the thread entered a signal handler or ignored the
1682 signal and stepped over the instruction successfully --- both cases
1683 result in a simple SIGTRAP. In the first case we mustn't do a
1684 fixup, and in the second case we must --- but we can't tell which.
1685 Comments in the code for 'random signals' in handle_inferior_event
1686 explain how we handle this case instead.
1687
bab37966
SM
1688 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1689 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1690 if displaced stepping this thread got queued; or
1691 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1692 stepped. */
7f03bd92 1693
bab37966 1694static displaced_step_prepare_status
00431a78 1695displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1696{
00431a78 1697 regcache *regcache = get_thread_regcache (tp);
ac7936df 1698 struct gdbarch *gdbarch = regcache->arch ();
187b041e
SM
1699 displaced_step_thread_state &disp_step_thread_state
1700 = tp->displaced_step_state;
237fc4c9
PA
1701
1702 /* We should never reach this function if the architecture does not
1703 support displaced stepping. */
9822cb57 1704 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1705
c2829269
PA
1706 /* Nor if the thread isn't meant to step over a breakpoint. */
1707 gdb_assert (tp->control.trap_expected);
1708
c1e36e3e
PA
1709 /* Disable range stepping while executing in the scratch pad. We
1710 want a single-step even if executing the displaced instruction in
1711 the scratch buffer lands within the stepping range (e.g., a
1712 jump/branch). */
1713 tp->control.may_range_step = 0;
1714
187b041e
SM
1715 /* We are about to start a displaced step for this thread. If one is already
1716 in progress, something's wrong. */
1717 gdb_assert (!disp_step_thread_state.in_progress ());
237fc4c9 1718
187b041e 1719 if (tp->inf->displaced_step_state.unavailable)
237fc4c9 1720 {
187b041e
SM
1721 /* The gdbarch tells us it's not worth asking to try a prepare because
1722 it is likely that it will return unavailable, so don't bother asking. */
237fc4c9 1723
136821d9 1724 displaced_debug_printf ("deferring step of %s",
0fab7955 1725 tp->ptid.to_string ().c_str ());
237fc4c9 1726
28d5518b 1727 global_thread_step_over_chain_enqueue (tp);
bab37966 1728 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
237fc4c9 1729 }
237fc4c9 1730
187b041e 1731 displaced_debug_printf ("displaced-stepping %s now",
0fab7955 1732 tp->ptid.to_string ().c_str ());
237fc4c9 1733
00431a78
PA
1734 scoped_restore_current_thread restore_thread;
1735
1736 switch_to_thread (tp);
ad53cd71 1737
187b041e
SM
1738 CORE_ADDR original_pc = regcache_read_pc (regcache);
1739 CORE_ADDR displaced_pc;
237fc4c9 1740
187b041e
SM
1741 displaced_step_prepare_status status
1742 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
237fc4c9 1743
187b041e 1744 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
d35ae833 1745 {
187b041e 1746 displaced_debug_printf ("failed to prepare (%s)",
0fab7955 1747 tp->ptid.to_string ().c_str ());
d35ae833 1748
bab37966 1749 return DISPLACED_STEP_PREPARE_STATUS_CANT;
d35ae833 1750 }
187b041e 1751 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
7f03bd92 1752 {
187b041e
SM
1753 /* Not enough displaced stepping resources available, defer this
1754 request by placing it the queue. */
1755
1756 displaced_debug_printf ("not enough resources available, "
1757 "deferring step of %s",
0fab7955 1758 tp->ptid.to_string ().c_str ());
187b041e
SM
1759
1760 global_thread_step_over_chain_enqueue (tp);
1761
1762 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
7f03bd92 1763 }
237fc4c9 1764
187b041e
SM
1765 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1766
9f5a595d
UW
1767 /* Save the information we need to fix things up if the step
1768 succeeds. */
187b041e 1769 disp_step_thread_state.set (gdbarch);
9f5a595d 1770
187b041e 1771 tp->inf->displaced_step_state.in_progress_count++;
ad53cd71 1772
187b041e
SM
1773 displaced_debug_printf ("prepared successfully thread=%s, "
1774 "original_pc=%s, displaced_pc=%s",
0fab7955 1775 tp->ptid.to_string ().c_str (),
187b041e
SM
1776 paddress (gdbarch, original_pc),
1777 paddress (gdbarch, displaced_pc));
237fc4c9 1778
bab37966 1779 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1780}
1781
3fc8eb30
PA
1782/* Wrapper for displaced_step_prepare_throw that disabled further
1783 attempts at displaced stepping if we get a memory error. */
1784
bab37966 1785static displaced_step_prepare_status
00431a78 1786displaced_step_prepare (thread_info *thread)
3fc8eb30 1787{
bab37966
SM
1788 displaced_step_prepare_status status
1789 = DISPLACED_STEP_PREPARE_STATUS_CANT;
3fc8eb30 1790
a70b8144 1791 try
3fc8eb30 1792 {
bab37966 1793 status = displaced_step_prepare_throw (thread);
3fc8eb30 1794 }
230d2906 1795 catch (const gdb_exception_error &ex)
3fc8eb30 1796 {
16b41842
PA
1797 if (ex.error != MEMORY_ERROR
1798 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1799 throw;
3fc8eb30 1800
1eb8556f
SM
1801 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1802 ex.what ());
3fc8eb30
PA
1803
1804 /* Be verbose if "set displaced-stepping" is "on", silent if
1805 "auto". */
1806 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1807 {
fd7dcb94 1808 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1809 ex.what ());
3fc8eb30
PA
1810 }
1811
1812 /* Disable further displaced stepping attempts. */
f5f01699 1813 thread->inf->displaced_step_state.failed_before = 1;
3fc8eb30 1814 }
3fc8eb30 1815
bab37966 1816 return status;
3fc8eb30
PA
1817}
1818
bab37966
SM
1819/* If we displaced stepped an instruction successfully, adjust registers and
1820 memory to yield the same effect the instruction would have had if we had
1821 executed it at its original address, and return
1822 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1823 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
372316f1 1824
bab37966
SM
1825 If the thread wasn't displaced stepping, return
1826 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1827
1828static displaced_step_finish_status
7def77a1 1829displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1830{
187b041e 1831 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
fc1cf338 1832
187b041e
SM
1833 /* Was this thread performing a displaced step? */
1834 if (!displaced->in_progress ())
bab37966 1835 return DISPLACED_STEP_FINISH_STATUS_OK;
237fc4c9 1836
187b041e
SM
1837 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1838 event_thread->inf->displaced_step_state.in_progress_count--;
1839
cb71640d
PA
1840 /* Fixup may need to read memory/registers. Switch to the thread
1841 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d 1842 the current thread, and displaced_step_restore performs ptid-dependent
328d42d8 1843 memory accesses using current_inferior(). */
00431a78 1844 switch_to_thread (event_thread);
cb71640d 1845
d43b7a2d
TBA
1846 displaced_step_reset_cleanup cleanup (displaced);
1847
187b041e
SM
1848 /* Do the fixup, and release the resources acquired to do the displaced
1849 step. */
1850 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1851 event_thread, signal);
c2829269 1852}
1c5cfe86 1853
4d9d9d04
PA
1854/* Data to be passed around while handling an event. This data is
1855 discarded between events. */
1856struct execution_control_state
1857{
183be222
SM
1858 execution_control_state ()
1859 {
1860 this->reset ();
1861 }
1862
1863 void reset ()
1864 {
1865 this->target = nullptr;
1866 this->ptid = null_ptid;
1867 this->event_thread = nullptr;
1868 ws = target_waitstatus ();
1869 stop_func_filled_in = 0;
1870 stop_func_start = 0;
1871 stop_func_end = 0;
1872 stop_func_name = nullptr;
1873 wait_some_more = 0;
1874 hit_singlestep_breakpoint = 0;
1875 }
1876
5b6d1e4f 1877 process_stratum_target *target;
4d9d9d04
PA
1878 ptid_t ptid;
1879 /* The thread that got the event, if this was a thread event; NULL
1880 otherwise. */
1881 struct thread_info *event_thread;
1882
1883 struct target_waitstatus ws;
1884 int stop_func_filled_in;
1885 CORE_ADDR stop_func_start;
1886 CORE_ADDR stop_func_end;
1887 const char *stop_func_name;
1888 int wait_some_more;
1889
1890 /* True if the event thread hit the single-step breakpoint of
1891 another thread. Thus the event doesn't cause a stop, the thread
1892 needs to be single-stepped past the single-step breakpoint before
1893 we can switch back to the original stepping thread. */
1894 int hit_singlestep_breakpoint;
1895};
1896
1897/* Clear ECS and set it to point at TP. */
c2829269
PA
1898
1899static void
4d9d9d04
PA
1900reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1901{
183be222 1902 ecs->reset ();
4d9d9d04
PA
1903 ecs->event_thread = tp;
1904 ecs->ptid = tp->ptid;
1905}
1906
1907static void keep_going_pass_signal (struct execution_control_state *ecs);
1908static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1909static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1910static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1911
1912/* Are there any pending step-over requests? If so, run all we can
1913 now and return true. Otherwise, return false. */
1914
c4464ade 1915static bool
c2829269
PA
1916start_step_over (void)
1917{
3ec3145c
SM
1918 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1919
372316f1
PA
1920 /* Don't start a new step-over if we already have an in-line
1921 step-over operation ongoing. */
1922 if (step_over_info_valid_p ())
c4464ade 1923 return false;
372316f1 1924
187b041e
SM
1925 /* Steal the global thread step over chain. As we try to initiate displaced
1926 steps, threads will be enqueued in the global chain if no buffers are
1927 available. If we iterated on the global chain directly, we might iterate
1928 indefinitely. */
8b6a69b2
SM
1929 thread_step_over_list threads_to_step
1930 = std::move (global_thread_step_over_list);
187b041e
SM
1931
1932 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1933 thread_step_over_chain_length (threads_to_step));
1934
1935 bool started = false;
1936
1937 /* On scope exit (whatever the reason, return or exception), if there are
1938 threads left in the THREADS_TO_STEP chain, put back these threads in the
1939 global list. */
1940 SCOPE_EXIT
1941 {
8b6a69b2 1942 if (threads_to_step.empty ())
187b041e
SM
1943 infrun_debug_printf ("step-over queue now empty");
1944 else
1945 {
1946 infrun_debug_printf ("putting back %d threads to step in global queue",
1947 thread_step_over_chain_length (threads_to_step));
1948
8b6a69b2
SM
1949 global_thread_step_over_chain_enqueue_chain
1950 (std::move (threads_to_step));
187b041e
SM
1951 }
1952 };
1953
8b6a69b2
SM
1954 thread_step_over_list_safe_range range
1955 = make_thread_step_over_list_safe_range (threads_to_step);
1956
1957 for (thread_info *tp : range)
237fc4c9 1958 {
4d9d9d04
PA
1959 struct execution_control_state ecss;
1960 struct execution_control_state *ecs = &ecss;
8d297bbf 1961 step_over_what step_what;
372316f1 1962 int must_be_in_line;
c2829269 1963
c65d6b55
PA
1964 gdb_assert (!tp->stop_requested);
1965
187b041e
SM
1966 if (tp->inf->displaced_step_state.unavailable)
1967 {
1968 /* The arch told us to not even try preparing another displaced step
1969 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1970 will get moved to the global chain on scope exit. */
1971 continue;
1972 }
1973
d8bbae6e
SM
1974 if (tp->inf->thread_waiting_for_vfork_done != nullptr)
1975 {
1976 /* When we stop all threads, handling a vfork, any thread in the step
1977 over chain remains there. A user could also try to continue a
1978 thread stopped at a breakpoint while another thread is waiting for
1979 a vfork-done event. In any case, we don't want to start a step
1980 over right now. */
1981 continue;
1982 }
1983
187b041e
SM
1984 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1985 while we try to prepare the displaced step, we don't add it back to
1986 the global step over chain. This is to avoid a thread staying in the
1987 step over chain indefinitely if something goes wrong when resuming it
1988 If the error is intermittent and it still needs a step over, it will
1989 get enqueued again when we try to resume it normally. */
8b6a69b2 1990 threads_to_step.erase (threads_to_step.iterator_to (*tp));
c2829269 1991
372316f1
PA
1992 step_what = thread_still_needs_step_over (tp);
1993 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1994 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1995 && !use_displaced_stepping (tp)));
372316f1
PA
1996
1997 /* We currently stop all threads of all processes to step-over
1998 in-line. If we need to start a new in-line step-over, let
1999 any pending displaced steps finish first. */
187b041e
SM
2000 if (must_be_in_line && displaced_step_in_progress_any_thread ())
2001 {
2002 global_thread_step_over_chain_enqueue (tp);
2003 continue;
2004 }
c2829269 2005
372316f1 2006 if (tp->control.trap_expected
7846f3aa 2007 || tp->resumed ()
611841bb 2008 || tp->executing ())
ad53cd71 2009 {
4d9d9d04
PA
2010 internal_error (__FILE__, __LINE__,
2011 "[%s] has inconsistent state: "
372316f1 2012 "trap_expected=%d, resumed=%d, executing=%d\n",
0fab7955 2013 tp->ptid.to_string ().c_str (),
4d9d9d04 2014 tp->control.trap_expected,
7846f3aa 2015 tp->resumed (),
611841bb 2016 tp->executing ());
ad53cd71 2017 }
1c5cfe86 2018
1eb8556f 2019 infrun_debug_printf ("resuming [%s] for step-over",
0fab7955 2020 tp->ptid.to_string ().c_str ());
4d9d9d04
PA
2021
2022 /* keep_going_pass_signal skips the step-over if the breakpoint
2023 is no longer inserted. In all-stop, we want to keep looking
2024 for a thread that needs a step-over instead of resuming TP,
2025 because we wouldn't be able to resume anything else until the
2026 target stops again. In non-stop, the resume always resumes
2027 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2028 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2029 continue;
8550d3b3 2030
00431a78 2031 switch_to_thread (tp);
4d9d9d04
PA
2032 reset_ecs (ecs, tp);
2033 keep_going_pass_signal (ecs);
1c5cfe86 2034
4d9d9d04
PA
2035 if (!ecs->wait_some_more)
2036 error (_("Command aborted."));
1c5cfe86 2037
187b041e
SM
2038 /* If the thread's step over could not be initiated because no buffers
2039 were available, it was re-added to the global step over chain. */
7846f3aa 2040 if (tp->resumed ())
187b041e
SM
2041 {
2042 infrun_debug_printf ("[%s] was resumed.",
0fab7955 2043 tp->ptid.to_string ().c_str ());
187b041e
SM
2044 gdb_assert (!thread_is_in_step_over_chain (tp));
2045 }
2046 else
2047 {
2048 infrun_debug_printf ("[%s] was NOT resumed.",
0fab7955 2049 tp->ptid.to_string ().c_str ());
187b041e
SM
2050 gdb_assert (thread_is_in_step_over_chain (tp));
2051 }
372316f1
PA
2052
2053 /* If we started a new in-line step-over, we're done. */
2054 if (step_over_info_valid_p ())
2055 {
2056 gdb_assert (tp->control.trap_expected);
187b041e
SM
2057 started = true;
2058 break;
372316f1
PA
2059 }
2060
fbea99ea 2061 if (!target_is_non_stop_p ())
4d9d9d04
PA
2062 {
2063 /* On all-stop, shouldn't have resumed unless we needed a
2064 step over. */
2065 gdb_assert (tp->control.trap_expected
2066 || tp->step_after_step_resume_breakpoint);
2067
2068 /* With remote targets (at least), in all-stop, we can't
2069 issue any further remote commands until the program stops
2070 again. */
187b041e
SM
2071 started = true;
2072 break;
1c5cfe86 2073 }
c2829269 2074
4d9d9d04
PA
2075 /* Either the thread no longer needed a step-over, or a new
2076 displaced stepping sequence started. Even in the latter
2077 case, continue looking. Maybe we can also start another
2078 displaced step on a thread of other process. */
237fc4c9 2079 }
4d9d9d04 2080
187b041e 2081 return started;
237fc4c9
PA
2082}
2083
5231c1fd
PA
2084/* Update global variables holding ptids to hold NEW_PTID if they were
2085 holding OLD_PTID. */
2086static void
b161a60d
SM
2087infrun_thread_ptid_changed (process_stratum_target *target,
2088 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 2089{
b161a60d
SM
2090 if (inferior_ptid == old_ptid
2091 && current_inferior ()->process_target () == target)
5231c1fd 2092 inferior_ptid = new_ptid;
5231c1fd
PA
2093}
2094
237fc4c9 2095\f
c906108c 2096
53904c9e
AC
2097static const char schedlock_off[] = "off";
2098static const char schedlock_on[] = "on";
2099static const char schedlock_step[] = "step";
f2665db5 2100static const char schedlock_replay[] = "replay";
40478521 2101static const char *const scheduler_enums[] = {
ef346e04
AC
2102 schedlock_off,
2103 schedlock_on,
2104 schedlock_step,
f2665db5 2105 schedlock_replay,
ef346e04
AC
2106 NULL
2107};
f2665db5 2108static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2109static void
2110show_scheduler_mode (struct ui_file *file, int from_tty,
2111 struct cmd_list_element *c, const char *value)
2112{
6cb06a8c
TT
2113 gdb_printf (file,
2114 _("Mode for locking scheduler "
2115 "during execution is \"%s\".\n"),
2116 value);
920d2a44 2117}
c906108c
SS
2118
2119static void
eb4c3f4a 2120set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2121{
8a3ecb79 2122 if (!target_can_lock_scheduler ())
eefe576e
AC
2123 {
2124 scheduler_mode = schedlock_off;
d777bf0d
SM
2125 error (_("Target '%s' cannot support this command."),
2126 target_shortname ());
eefe576e 2127 }
c906108c
SS
2128}
2129
d4db2f36
PA
2130/* True if execution commands resume all threads of all processes by
2131 default; otherwise, resume only threads of the current inferior
2132 process. */
491144b5 2133bool sched_multi = false;
d4db2f36 2134
22b11ba9
LS
2135/* Try to setup for software single stepping. Return true if target_resume()
2136 should use hardware single step.
2facfe5c 2137
22b11ba9 2138 GDBARCH the current gdbarch. */
2facfe5c 2139
c4464ade 2140static bool
22b11ba9 2141maybe_software_singlestep (struct gdbarch *gdbarch)
2facfe5c 2142{
c4464ade 2143 bool hw_step = true;
2facfe5c 2144
f02253f1 2145 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2146 && gdbarch_software_single_step_p (gdbarch))
2147 hw_step = !insert_single_step_breakpoints (gdbarch);
2148
2facfe5c
DD
2149 return hw_step;
2150}
c906108c 2151
f3263aa4
PA
2152/* See infrun.h. */
2153
09cee04b
PA
2154ptid_t
2155user_visible_resume_ptid (int step)
2156{
f3263aa4 2157 ptid_t resume_ptid;
09cee04b 2158
09cee04b
PA
2159 if (non_stop)
2160 {
2161 /* With non-stop mode on, threads are always handled
2162 individually. */
2163 resume_ptid = inferior_ptid;
2164 }
2165 else if ((scheduler_mode == schedlock_on)
03d46957 2166 || (scheduler_mode == schedlock_step && step))
09cee04b 2167 {
f3263aa4
PA
2168 /* User-settable 'scheduler' mode requires solo thread
2169 resume. */
09cee04b
PA
2170 resume_ptid = inferior_ptid;
2171 }
f2665db5
MM
2172 else if ((scheduler_mode == schedlock_replay)
2173 && target_record_will_replay (minus_one_ptid, execution_direction))
2174 {
2175 /* User-settable 'scheduler' mode requires solo thread resume in replay
2176 mode. */
2177 resume_ptid = inferior_ptid;
2178 }
f3263aa4
PA
2179 else if (!sched_multi && target_supports_multi_process ())
2180 {
2181 /* Resume all threads of the current process (and none of other
2182 processes). */
e99b03dc 2183 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2184 }
2185 else
2186 {
2187 /* Resume all threads of all processes. */
2188 resume_ptid = RESUME_ALL;
2189 }
09cee04b
PA
2190
2191 return resume_ptid;
2192}
2193
5b6d1e4f
PA
2194/* See infrun.h. */
2195
2196process_stratum_target *
2197user_visible_resume_target (ptid_t resume_ptid)
2198{
2199 return (resume_ptid == minus_one_ptid && sched_multi
2200 ? NULL
2201 : current_inferior ()->process_target ());
2202}
2203
fbea99ea
PA
2204/* Return a ptid representing the set of threads that we will resume,
2205 in the perspective of the target, assuming run control handling
2206 does not require leaving some threads stopped (e.g., stepping past
2207 breakpoint). USER_STEP indicates whether we're about to start the
2208 target for a stepping command. */
2209
2210static ptid_t
2211internal_resume_ptid (int user_step)
2212{
2213 /* In non-stop, we always control threads individually. Note that
2214 the target may always work in non-stop mode even with "set
2215 non-stop off", in which case user_visible_resume_ptid could
2216 return a wildcard ptid. */
2217 if (target_is_non_stop_p ())
2218 return inferior_ptid;
d8bbae6e
SM
2219
2220 /* The rest of the function assumes non-stop==off and
2221 target-non-stop==off.
2222
2223 If a thread is waiting for a vfork-done event, it means breakpoints are out
2224 for this inferior (well, program space in fact). We don't want to resume
2225 any thread other than the one waiting for vfork done, otherwise these other
2226 threads could miss breakpoints. So if a thread in the resumption set is
2227 waiting for a vfork-done event, resume only that thread.
2228
2229 The resumption set width depends on whether schedule-multiple is on or off.
2230
2231 Note that if the target_resume interface was more flexible, we could be
2232 smarter here when schedule-multiple is on. For example, imagine 3
2233 inferiors with 2 threads each (1.1, 1.2, 2.1, 2.2, 3.1 and 3.2). Threads
2234 2.1 and 3.2 are both waiting for a vfork-done event. Then we could ask the
2235 target(s) to resume:
2236
2237 - All threads of inferior 1
2238 - Thread 2.1
2239 - Thread 3.2
2240
2241 Since we don't have that flexibility (we can only pass one ptid), just
2242 resume the first thread waiting for a vfork-done event we find (e.g. thread
2243 2.1). */
2244 if (sched_multi)
2245 {
2246 for (inferior *inf : all_non_exited_inferiors ())
2247 if (inf->thread_waiting_for_vfork_done != nullptr)
2248 return inf->thread_waiting_for_vfork_done->ptid;
2249 }
2250 else if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2251 return current_inferior ()->thread_waiting_for_vfork_done->ptid;
2252
2253 return user_visible_resume_ptid (user_step);
fbea99ea
PA
2254}
2255
64ce06e4
PA
2256/* Wrapper for target_resume, that handles infrun-specific
2257 bookkeeping. */
2258
2259static void
c4464ade 2260do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2261{
2262 struct thread_info *tp = inferior_thread ();
2263
c65d6b55
PA
2264 gdb_assert (!tp->stop_requested);
2265
64ce06e4 2266 /* Install inferior's terminal modes. */
223ffa71 2267 target_terminal::inferior ();
64ce06e4
PA
2268
2269 /* Avoid confusing the next resume, if the next stop/resume
2270 happens to apply to another thread. */
1edb66d8 2271 tp->set_stop_signal (GDB_SIGNAL_0);
64ce06e4 2272
8f572e5c
PA
2273 /* Advise target which signals may be handled silently.
2274
2275 If we have removed breakpoints because we are stepping over one
2276 in-line (in any thread), we need to receive all signals to avoid
2277 accidentally skipping a breakpoint during execution of a signal
2278 handler.
2279
2280 Likewise if we're displaced stepping, otherwise a trap for a
2281 breakpoint in a signal handler might be confused with the
7def77a1 2282 displaced step finishing. We don't make the displaced_step_finish
8f572e5c
PA
2283 step distinguish the cases instead, because:
2284
2285 - a backtrace while stopped in the signal handler would show the
2286 scratch pad as frame older than the signal handler, instead of
2287 the real mainline code.
2288
2289 - when the thread is later resumed, the signal handler would
2290 return to the scratch pad area, which would no longer be
2291 valid. */
2292 if (step_over_info_valid_p ()
00431a78 2293 || displaced_step_in_progress (tp->inf))
adc6a863 2294 target_pass_signals ({});
64ce06e4 2295 else
adc6a863 2296 target_pass_signals (signal_pass);
64ce06e4 2297
05d65a7a
SM
2298 infrun_debug_printf ("resume_ptid=%s, step=%d, sig=%s",
2299 resume_ptid.to_string ().c_str (),
2300 step, gdb_signal_to_symbol_string (sig));
2301
64ce06e4
PA
2302 target_resume (resume_ptid, step, sig);
2303}
2304
d930703d 2305/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2306 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2307 call 'resume', which handles exceptions. */
c906108c 2308
71d378ae
PA
2309static void
2310resume_1 (enum gdb_signal sig)
c906108c 2311{
515630c5 2312 struct regcache *regcache = get_current_regcache ();
ac7936df 2313 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2314 struct thread_info *tp = inferior_thread ();
8b86c959 2315 const address_space *aspace = regcache->aspace ();
b0f16a3e 2316 ptid_t resume_ptid;
856e7dd6
PA
2317 /* This represents the user's step vs continue request. When
2318 deciding whether "set scheduler-locking step" applies, it's the
2319 user's intention that counts. */
2320 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2321 /* This represents what we'll actually request the target to do.
2322 This can decay from a step to a continue, if e.g., we need to
2323 implement single-stepping with breakpoints (software
2324 single-step). */
c4464ade 2325 bool step;
c7e8a53c 2326
c65d6b55 2327 gdb_assert (!tp->stop_requested);
c2829269
PA
2328 gdb_assert (!thread_is_in_step_over_chain (tp));
2329
1edb66d8 2330 if (tp->has_pending_waitstatus ())
372316f1 2331 {
1eb8556f
SM
2332 infrun_debug_printf
2333 ("thread %s has pending wait "
2334 "status %s (currently_stepping=%d).",
0fab7955 2335 tp->ptid.to_string ().c_str (),
7dca2ea7 2336 tp->pending_waitstatus ().to_string ().c_str (),
1eb8556f 2337 currently_stepping (tp));
372316f1 2338
5b6d1e4f 2339 tp->inf->process_target ()->threads_executing = true;
7846f3aa 2340 tp->set_resumed (true);
372316f1
PA
2341
2342 /* FIXME: What should we do if we are supposed to resume this
2343 thread with a signal? Maybe we should maintain a queue of
2344 pending signals to deliver. */
2345 if (sig != GDB_SIGNAL_0)
2346 {
fd7dcb94 2347 warning (_("Couldn't deliver signal %s to %s."),
a068643d 2348 gdb_signal_to_name (sig),
0fab7955 2349 tp->ptid.to_string ().c_str ());
372316f1
PA
2350 }
2351
1edb66d8 2352 tp->set_stop_signal (GDB_SIGNAL_0);
372316f1
PA
2353
2354 if (target_can_async_p ())
9516f85a 2355 {
4a570176 2356 target_async (true);
9516f85a
AB
2357 /* Tell the event loop we have an event to process. */
2358 mark_async_event_handler (infrun_async_inferior_event_token);
2359 }
372316f1
PA
2360 return;
2361 }
2362
2363 tp->stepped_breakpoint = 0;
2364
6b403daa
PA
2365 /* Depends on stepped_breakpoint. */
2366 step = currently_stepping (tp);
2367
6f5d514f 2368 if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
74609e71 2369 {
48f9886d
PA
2370 /* Don't try to single-step a vfork parent that is waiting for
2371 the child to get out of the shared memory region (by exec'ing
2372 or exiting). This is particularly important on software
2373 single-step archs, as the child process would trip on the
2374 software single step breakpoint inserted for the parent
2375 process. Since the parent will not actually execute any
2376 instruction until the child is out of the shared region (such
2377 are vfork's semantics), it is safe to simply continue it.
2378 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2379 the parent, and tell it to `keep_going', which automatically
2380 re-sets it stepping. */
1eb8556f 2381 infrun_debug_printf ("resume : clear step");
c4464ade 2382 step = false;
74609e71
YQ
2383 }
2384
7ca9b62a
TBA
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386
1eb8556f
SM
2387 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2388 "current thread [%s] at %s",
2389 step, gdb_signal_to_symbol_string (sig),
2390 tp->control.trap_expected,
0fab7955 2391 inferior_ptid.to_string ().c_str (),
1eb8556f 2392 paddress (gdbarch, pc));
c906108c 2393
c2c6d25f
JM
2394 /* Normally, by the time we reach `resume', the breakpoints are either
2395 removed or inserted, as appropriate. The exception is if we're sitting
2396 at a permanent breakpoint; we need to step over it, but permanent
2397 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2398 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2399 {
af48d08f
PA
2400 if (sig != GDB_SIGNAL_0)
2401 {
2402 /* We have a signal to pass to the inferior. The resume
2403 may, or may not take us to the signal handler. If this
2404 is a step, we'll need to stop in the signal handler, if
2405 there's one, (if the target supports stepping into
2406 handlers), or in the next mainline instruction, if
2407 there's no handler. If this is a continue, we need to be
2408 sure to run the handler with all breakpoints inserted.
2409 In all cases, set a breakpoint at the current address
2410 (where the handler returns to), and once that breakpoint
2411 is hit, resume skipping the permanent breakpoint. If
2412 that breakpoint isn't hit, then we've stepped into the
2413 signal handler (or hit some other event). We'll delete
2414 the step-resume breakpoint then. */
2415
1eb8556f
SM
2416 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2417 "deliver signal first");
af48d08f
PA
2418
2419 clear_step_over_info ();
2420 tp->control.trap_expected = 0;
2421
2422 if (tp->control.step_resume_breakpoint == NULL)
2423 {
2424 /* Set a "high-priority" step-resume, as we don't want
2425 user breakpoints at PC to trigger (again) when this
2426 hits. */
2427 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2428 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2429
2430 tp->step_after_step_resume_breakpoint = step;
2431 }
2432
2433 insert_breakpoints ();
2434 }
2435 else
2436 {
2437 /* There's no signal to pass, we can go ahead and skip the
2438 permanent breakpoint manually. */
1eb8556f 2439 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2440 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2441 /* Update pc to reflect the new address from which we will
2442 execute instructions. */
2443 pc = regcache_read_pc (regcache);
2444
2445 if (step)
2446 {
2447 /* We've already advanced the PC, so the stepping part
2448 is done. Now we need to arrange for a trap to be
2449 reported to handle_inferior_event. Set a breakpoint
2450 at the current PC, and run to it. Don't update
2451 prev_pc, because if we end in
44a1ee51
PA
2452 switch_back_to_stepped_thread, we want the "expected
2453 thread advanced also" branch to be taken. IOW, we
2454 don't want this thread to step further from PC
af48d08f 2455 (overstep). */
1ac806b8 2456 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2457 insert_single_step_breakpoint (gdbarch, aspace, pc);
2458 insert_breakpoints ();
2459
fbea99ea 2460 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2461 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7846f3aa 2462 tp->set_resumed (true);
af48d08f
PA
2463 return;
2464 }
2465 }
6d350bb5 2466 }
c2c6d25f 2467
c1e36e3e
PA
2468 /* If we have a breakpoint to step over, make sure to do a single
2469 step only. Same if we have software watchpoints. */
2470 if (tp->control.trap_expected || bpstat_should_step ())
2471 tp->control.may_range_step = 0;
2472
7da6a5b9
LM
2473 /* If displaced stepping is enabled, step over breakpoints by executing a
2474 copy of the instruction at a different address.
237fc4c9
PA
2475
2476 We can't use displaced stepping when we have a signal to deliver;
2477 the comments for displaced_step_prepare explain why. The
2478 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2479 signals' explain what we do instead.
2480
2481 We can't use displaced stepping when we are waiting for vfork_done
2482 event, displaced stepping breaks the vfork child similarly as single
2483 step software breakpoint. */
3fc8eb30
PA
2484 if (tp->control.trap_expected
2485 && use_displaced_stepping (tp)
cb71640d 2486 && !step_over_info_valid_p ()
a493e3e2 2487 && sig == GDB_SIGNAL_0
6f5d514f 2488 && current_inferior ()->thread_waiting_for_vfork_done == nullptr)
237fc4c9 2489 {
bab37966
SM
2490 displaced_step_prepare_status prepare_status
2491 = displaced_step_prepare (tp);
fc1cf338 2492
bab37966 2493 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2494 {
1eb8556f 2495 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2496
2497 tp->control.trap_expected = 0;
d56b7306
VP
2498 return;
2499 }
bab37966 2500 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
3fc8eb30
PA
2501 {
2502 /* Fallback to stepping over the breakpoint in-line. */
2503
2504 if (target_is_non_stop_p ())
4f5539f0 2505 stop_all_threads ("displaced stepping falling back on inline stepping");
3fc8eb30 2506
a01bda52 2507 set_step_over_info (regcache->aspace (),
21edc42f 2508 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30 2509
22b11ba9 2510 step = maybe_software_singlestep (gdbarch);
3fc8eb30
PA
2511
2512 insert_breakpoints ();
2513 }
bab37966 2514 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2515 {
3fc8eb30
PA
2516 /* Update pc to reflect the new address from which we will
2517 execute instructions due to displaced stepping. */
00431a78 2518 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2519
40a53766 2520 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2521 }
bab37966 2522 else
557b4d76
SM
2523 gdb_assert_not_reached ("Invalid displaced_step_prepare_status "
2524 "value.");
237fc4c9
PA
2525 }
2526
2facfe5c 2527 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2528 else if (step)
22b11ba9 2529 step = maybe_software_singlestep (gdbarch);
c906108c 2530
30852783
UW
2531 /* Currently, our software single-step implementation leads to different
2532 results than hardware single-stepping in one situation: when stepping
2533 into delivering a signal which has an associated signal handler,
2534 hardware single-step will stop at the first instruction of the handler,
2535 while software single-step will simply skip execution of the handler.
2536
2537 For now, this difference in behavior is accepted since there is no
2538 easy way to actually implement single-stepping into a signal handler
2539 without kernel support.
2540
2541 However, there is one scenario where this difference leads to follow-on
2542 problems: if we're stepping off a breakpoint by removing all breakpoints
2543 and then single-stepping. In this case, the software single-step
2544 behavior means that even if there is a *breakpoint* in the signal
2545 handler, GDB still would not stop.
2546
2547 Fortunately, we can at least fix this particular issue. We detect
2548 here the case where we are about to deliver a signal while software
2549 single-stepping with breakpoints removed. In this situation, we
2550 revert the decisions to remove all breakpoints and insert single-
2551 step breakpoints, and instead we install a step-resume breakpoint
2552 at the current address, deliver the signal without stepping, and
2553 once we arrive back at the step-resume breakpoint, actually step
2554 over the breakpoint we originally wanted to step over. */
34b7e8a6 2555 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2556 && sig != GDB_SIGNAL_0
2557 && step_over_info_valid_p ())
30852783
UW
2558 {
2559 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2560 immediately after a handler returns, might already have
30852783
UW
2561 a step-resume breakpoint set on the earlier handler. We cannot
2562 set another step-resume breakpoint; just continue on until the
2563 original breakpoint is hit. */
2564 if (tp->control.step_resume_breakpoint == NULL)
2565 {
2c03e5be 2566 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2567 tp->step_after_step_resume_breakpoint = 1;
2568 }
2569
34b7e8a6 2570 delete_single_step_breakpoints (tp);
30852783 2571
31e77af2 2572 clear_step_over_info ();
30852783 2573 tp->control.trap_expected = 0;
31e77af2
PA
2574
2575 insert_breakpoints ();
30852783
UW
2576 }
2577
b0f16a3e
SM
2578 /* If STEP is set, it's a request to use hardware stepping
2579 facilities. But in that case, we should never
2580 use singlestep breakpoint. */
34b7e8a6 2581 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2582
fbea99ea 2583 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2584 if (tp->control.trap_expected)
b0f16a3e
SM
2585 {
2586 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2587 hit, either by single-stepping the thread with the breakpoint
2588 removed, or by displaced stepping, with the breakpoint inserted.
2589 In the former case, we need to single-step only this thread,
2590 and keep others stopped, as they can miss this breakpoint if
2591 allowed to run. That's not really a problem for displaced
2592 stepping, but, we still keep other threads stopped, in case
2593 another thread is also stopped for a breakpoint waiting for
2594 its turn in the displaced stepping queue. */
b0f16a3e
SM
2595 resume_ptid = inferior_ptid;
2596 }
fbea99ea
PA
2597 else
2598 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2599
7f5ef605
PA
2600 if (execution_direction != EXEC_REVERSE
2601 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2602 {
372316f1
PA
2603 /* There are two cases where we currently need to step a
2604 breakpoint instruction when we have a signal to deliver:
2605
2606 - See handle_signal_stop where we handle random signals that
2607 could take out us out of the stepping range. Normally, in
2608 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2609 signal handler with a breakpoint at PC, but there are cases
2610 where we should _always_ single-step, even if we have a
2611 step-resume breakpoint, like when a software watchpoint is
2612 set. Assuming single-stepping and delivering a signal at the
2613 same time would takes us to the signal handler, then we could
2614 have removed the breakpoint at PC to step over it. However,
2615 some hardware step targets (like e.g., Mac OS) can't step
2616 into signal handlers, and for those, we need to leave the
2617 breakpoint at PC inserted, as otherwise if the handler
2618 recurses and executes PC again, it'll miss the breakpoint.
2619 So we leave the breakpoint inserted anyway, but we need to
2620 record that we tried to step a breakpoint instruction, so
372316f1
PA
2621 that adjust_pc_after_break doesn't end up confused.
2622
dda83cd7 2623 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2624 in one thread after another thread that was stepping had been
2625 momentarily paused for a step-over. When we re-resume the
2626 stepping thread, it may be resumed from that address with a
2627 breakpoint that hasn't trapped yet. Seen with
2628 gdb.threads/non-stop-fair-events.exp, on targets that don't
2629 do displaced stepping. */
2630
1eb8556f 2631 infrun_debug_printf ("resume: [%s] stepped breakpoint",
0fab7955 2632 tp->ptid.to_string ().c_str ());
7f5ef605
PA
2633
2634 tp->stepped_breakpoint = 1;
2635
b0f16a3e
SM
2636 /* Most targets can step a breakpoint instruction, thus
2637 executing it normally. But if this one cannot, just
2638 continue and we will hit it anyway. */
7f5ef605 2639 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2640 step = false;
b0f16a3e 2641 }
ef5cf84e 2642
b0f16a3e 2643 if (debug_displaced
cb71640d 2644 && tp->control.trap_expected
3fc8eb30 2645 && use_displaced_stepping (tp)
cb71640d 2646 && !step_over_info_valid_p ())
b0f16a3e 2647 {
00431a78 2648 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2649 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2650 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2651 gdb_byte buf[4];
2652
b0f16a3e 2653 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2654 displaced_debug_printf ("run %s: %s",
2655 paddress (resume_gdbarch, actual_pc),
2656 displaced_step_dump_bytes
2657 (buf, sizeof (buf)).c_str ());
b0f16a3e 2658 }
237fc4c9 2659
b0f16a3e
SM
2660 if (tp->control.may_range_step)
2661 {
2662 /* If we're resuming a thread with the PC out of the step
2663 range, then we're doing some nested/finer run control
2664 operation, like stepping the thread out of the dynamic
2665 linker or the displaced stepping scratch pad. We
2666 shouldn't have allowed a range step then. */
2667 gdb_assert (pc_in_thread_step_range (pc, tp));
2668 }
c1e36e3e 2669
64ce06e4 2670 do_target_resume (resume_ptid, step, sig);
7846f3aa 2671 tp->set_resumed (true);
c906108c 2672}
71d378ae
PA
2673
2674/* Resume the inferior. SIG is the signal to give the inferior
2675 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2676 rolls back state on error. */
2677
aff4e175 2678static void
71d378ae
PA
2679resume (gdb_signal sig)
2680{
a70b8144 2681 try
71d378ae
PA
2682 {
2683 resume_1 (sig);
2684 }
230d2906 2685 catch (const gdb_exception &ex)
71d378ae
PA
2686 {
2687 /* If resuming is being aborted for any reason, delete any
2688 single-step breakpoint resume_1 may have created, to avoid
2689 confusing the following resumption, and to avoid leaving
2690 single-step breakpoints perturbing other threads, in case
2691 we're running in non-stop mode. */
2692 if (inferior_ptid != null_ptid)
2693 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2694 throw;
71d378ae 2695 }
71d378ae
PA
2696}
2697
c906108c 2698\f
237fc4c9 2699/* Proceeding. */
c906108c 2700
4c2f2a79
PA
2701/* See infrun.h. */
2702
2703/* Counter that tracks number of user visible stops. This can be used
2704 to tell whether a command has proceeded the inferior past the
2705 current location. This allows e.g., inferior function calls in
2706 breakpoint commands to not interrupt the command list. When the
2707 call finishes successfully, the inferior is standing at the same
2708 breakpoint as if nothing happened (and so we don't call
2709 normal_stop). */
2710static ULONGEST current_stop_id;
2711
2712/* See infrun.h. */
2713
2714ULONGEST
2715get_stop_id (void)
2716{
2717 return current_stop_id;
2718}
2719
2720/* Called when we report a user visible stop. */
2721
2722static void
2723new_stop_id (void)
2724{
2725 current_stop_id++;
2726}
2727
c906108c
SS
2728/* Clear out all variables saying what to do when inferior is continued.
2729 First do this, then set the ones you want, then call `proceed'. */
2730
a7212384
UW
2731static void
2732clear_proceed_status_thread (struct thread_info *tp)
c906108c 2733{
0fab7955 2734 infrun_debug_printf ("%s", tp->ptid.to_string ().c_str ());
d6b48e9c 2735
372316f1
PA
2736 /* If we're starting a new sequence, then the previous finished
2737 single-step is no longer relevant. */
1edb66d8 2738 if (tp->has_pending_waitstatus ())
372316f1 2739 {
1edb66d8 2740 if (tp->stop_reason () == TARGET_STOPPED_BY_SINGLE_STEP)
372316f1 2741 {
1eb8556f
SM
2742 infrun_debug_printf ("pending event of %s was a finished step. "
2743 "Discarding.",
0fab7955 2744 tp->ptid.to_string ().c_str ());
372316f1 2745
1edb66d8
SM
2746 tp->clear_pending_waitstatus ();
2747 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
372316f1 2748 }
1eb8556f 2749 else
372316f1 2750 {
1eb8556f
SM
2751 infrun_debug_printf
2752 ("thread %s has pending wait status %s (currently_stepping=%d).",
0fab7955 2753 tp->ptid.to_string ().c_str (),
7dca2ea7 2754 tp->pending_waitstatus ().to_string ().c_str (),
1eb8556f 2755 currently_stepping (tp));
372316f1
PA
2756 }
2757 }
2758
70509625
PA
2759 /* If this signal should not be seen by program, give it zero.
2760 Used for debugging signals. */
1edb66d8
SM
2761 if (!signal_pass_state (tp->stop_signal ()))
2762 tp->set_stop_signal (GDB_SIGNAL_0);
70509625 2763
573269a8 2764 tp->release_thread_fsm ();
243a9253 2765
16c381f0
JK
2766 tp->control.trap_expected = 0;
2767 tp->control.step_range_start = 0;
2768 tp->control.step_range_end = 0;
c1e36e3e 2769 tp->control.may_range_step = 0;
16c381f0
JK
2770 tp->control.step_frame_id = null_frame_id;
2771 tp->control.step_stack_frame_id = null_frame_id;
2772 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2773 tp->control.step_start_function = NULL;
a7212384 2774 tp->stop_requested = 0;
4e1c45ea 2775
16c381f0 2776 tp->control.stop_step = 0;
32400beb 2777
16c381f0 2778 tp->control.proceed_to_finish = 0;
414c69f7 2779
856e7dd6 2780 tp->control.stepping_command = 0;
17b2616c 2781
a7212384 2782 /* Discard any remaining commands or status from previous stop. */
16c381f0 2783 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2784}
32400beb 2785
a7212384 2786void
70509625 2787clear_proceed_status (int step)
a7212384 2788{
f2665db5
MM
2789 /* With scheduler-locking replay, stop replaying other threads if we're
2790 not replaying the user-visible resume ptid.
2791
2792 This is a convenience feature to not require the user to explicitly
2793 stop replaying the other threads. We're assuming that the user's
2794 intent is to resume tracing the recorded process. */
2795 if (!non_stop && scheduler_mode == schedlock_replay
2796 && target_record_is_replaying (minus_one_ptid)
2797 && !target_record_will_replay (user_visible_resume_ptid (step),
2798 execution_direction))
2799 target_record_stop_replaying ();
2800
08036331 2801 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2802 {
08036331 2803 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2804 process_stratum_target *resume_target
2805 = user_visible_resume_target (resume_ptid);
70509625
PA
2806
2807 /* In all-stop mode, delete the per-thread status of all threads
2808 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2809 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2810 clear_proceed_status_thread (tp);
6c95b8df
PA
2811 }
2812
d7e15655 2813 if (inferior_ptid != null_ptid)
a7212384
UW
2814 {
2815 struct inferior *inferior;
2816
2817 if (non_stop)
2818 {
6c95b8df
PA
2819 /* If in non-stop mode, only delete the per-thread status of
2820 the current thread. */
a7212384
UW
2821 clear_proceed_status_thread (inferior_thread ());
2822 }
6c95b8df 2823
d6b48e9c 2824 inferior = current_inferior ();
16c381f0 2825 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2826 }
2827
76727919 2828 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2829}
2830
99619bea
PA
2831/* Returns true if TP is still stopped at a breakpoint that needs
2832 stepping-over in order to make progress. If the breakpoint is gone
2833 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2834
c4464ade 2835static bool
6c4cfb24 2836thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2837{
2838 if (tp->stepping_over_breakpoint)
2839 {
00431a78 2840 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2841
a01bda52 2842 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2843 regcache_read_pc (regcache))
2844 == ordinary_breakpoint_here)
c4464ade 2845 return true;
99619bea
PA
2846
2847 tp->stepping_over_breakpoint = 0;
2848 }
2849
c4464ade 2850 return false;
99619bea
PA
2851}
2852
6c4cfb24
PA
2853/* Check whether thread TP still needs to start a step-over in order
2854 to make progress when resumed. Returns an bitwise or of enum
2855 step_over_what bits, indicating what needs to be stepped over. */
2856
8d297bbf 2857static step_over_what
6c4cfb24
PA
2858thread_still_needs_step_over (struct thread_info *tp)
2859{
8d297bbf 2860 step_over_what what = 0;
6c4cfb24
PA
2861
2862 if (thread_still_needs_step_over_bp (tp))
2863 what |= STEP_OVER_BREAKPOINT;
2864
2865 if (tp->stepping_over_watchpoint
9aed480c 2866 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2867 what |= STEP_OVER_WATCHPOINT;
2868
2869 return what;
2870}
2871
483805cf
PA
2872/* Returns true if scheduler locking applies. STEP indicates whether
2873 we're about to do a step/next-like command to a thread. */
2874
c4464ade 2875static bool
856e7dd6 2876schedlock_applies (struct thread_info *tp)
483805cf
PA
2877{
2878 return (scheduler_mode == schedlock_on
2879 || (scheduler_mode == schedlock_step
f2665db5
MM
2880 && tp->control.stepping_command)
2881 || (scheduler_mode == schedlock_replay
2882 && target_record_will_replay (minus_one_ptid,
2883 execution_direction)));
483805cf
PA
2884}
2885
1192f124
SM
2886/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2887 stacks that have threads executing and don't have threads with
2888 pending events. */
5b6d1e4f
PA
2889
2890static void
1192f124
SM
2891maybe_set_commit_resumed_all_targets ()
2892{
b4b1a226
SM
2893 scoped_restore_current_thread restore_thread;
2894
1192f124
SM
2895 for (inferior *inf : all_non_exited_inferiors ())
2896 {
2897 process_stratum_target *proc_target = inf->process_target ();
2898
2899 if (proc_target->commit_resumed_state)
2900 {
2901 /* We already set this in a previous iteration, via another
2902 inferior sharing the process_stratum target. */
2903 continue;
2904 }
2905
2906 /* If the target has no resumed threads, it would be useless to
2907 ask it to commit the resumed threads. */
2908 if (!proc_target->threads_executing)
2909 {
2910 infrun_debug_printf ("not requesting commit-resumed for target "
2911 "%s, no resumed threads",
2912 proc_target->shortname ());
2913 continue;
2914 }
2915
2916 /* As an optimization, if a thread from this target has some
2917 status to report, handle it before requiring the target to
2918 commit its resumed threads: handling the status might lead to
2919 resuming more threads. */
273dadf2 2920 if (proc_target->has_resumed_with_pending_wait_status ())
1192f124
SM
2921 {
2922 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2923 " thread has a pending waitstatus",
2924 proc_target->shortname ());
2925 continue;
2926 }
2927
b4b1a226
SM
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (target_has_pending_events ())
2931 {
2932 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2933 "target has pending events",
2934 proc_target->shortname ());
2935 continue;
2936 }
2937
1192f124
SM
2938 infrun_debug_printf ("enabling commit-resumed for target %s",
2939 proc_target->shortname ());
2940
2941 proc_target->commit_resumed_state = true;
2942 }
2943}
2944
2945/* See infrun.h. */
2946
2947void
2948maybe_call_commit_resumed_all_targets ()
5b6d1e4f
PA
2949{
2950 scoped_restore_current_thread restore_thread;
2951
1192f124
SM
2952 for (inferior *inf : all_non_exited_inferiors ())
2953 {
2954 process_stratum_target *proc_target = inf->process_target ();
2955
2956 if (!proc_target->commit_resumed_state)
2957 continue;
2958
2959 switch_to_inferior_no_thread (inf);
2960
2961 infrun_debug_printf ("calling commit_resumed for target %s",
2962 proc_target->shortname());
2963
2964 target_commit_resumed ();
2965 }
2966}
2967
2968/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2969 that only the outermost one attempts to re-enable
2970 commit-resumed. */
2971static bool enable_commit_resumed = true;
2972
2973/* See infrun.h. */
2974
2975scoped_disable_commit_resumed::scoped_disable_commit_resumed
2976 (const char *reason)
2977 : m_reason (reason),
2978 m_prev_enable_commit_resumed (enable_commit_resumed)
2979{
2980 infrun_debug_printf ("reason=%s", m_reason);
2981
2982 enable_commit_resumed = false;
5b6d1e4f
PA
2983
2984 for (inferior *inf : all_non_exited_inferiors ())
1192f124
SM
2985 {
2986 process_stratum_target *proc_target = inf->process_target ();
5b6d1e4f 2987
1192f124
SM
2988 if (m_prev_enable_commit_resumed)
2989 {
2990 /* This is the outermost instance: force all
2991 COMMIT_RESUMED_STATE to false. */
2992 proc_target->commit_resumed_state = false;
2993 }
2994 else
2995 {
2996 /* This is not the outermost instance, we expect
2997 COMMIT_RESUMED_STATE to have been cleared by the
2998 outermost instance. */
2999 gdb_assert (!proc_target->commit_resumed_state);
3000 }
3001 }
3002}
3003
3004/* See infrun.h. */
3005
3006void
3007scoped_disable_commit_resumed::reset ()
3008{
3009 if (m_reset)
3010 return;
3011 m_reset = true;
3012
3013 infrun_debug_printf ("reason=%s", m_reason);
3014
3015 gdb_assert (!enable_commit_resumed);
3016
3017 enable_commit_resumed = m_prev_enable_commit_resumed;
3018
3019 if (m_prev_enable_commit_resumed)
5b6d1e4f 3020 {
1192f124
SM
3021 /* This is the outermost instance, re-enable
3022 COMMIT_RESUMED_STATE on the targets where it's possible. */
3023 maybe_set_commit_resumed_all_targets ();
3024 }
3025 else
3026 {
3027 /* This is not the outermost instance, we expect
3028 COMMIT_RESUMED_STATE to still be false. */
3029 for (inferior *inf : all_non_exited_inferiors ())
3030 {
3031 process_stratum_target *proc_target = inf->process_target ();
3032 gdb_assert (!proc_target->commit_resumed_state);
3033 }
3034 }
3035}
3036
3037/* See infrun.h. */
3038
3039scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
3040{
3041 reset ();
3042}
3043
3044/* See infrun.h. */
3045
3046void
3047scoped_disable_commit_resumed::reset_and_commit ()
3048{
3049 reset ();
3050 maybe_call_commit_resumed_all_targets ();
3051}
3052
3053/* See infrun.h. */
3054
3055scoped_enable_commit_resumed::scoped_enable_commit_resumed
3056 (const char *reason)
3057 : m_reason (reason),
3058 m_prev_enable_commit_resumed (enable_commit_resumed)
3059{
3060 infrun_debug_printf ("reason=%s", m_reason);
3061
3062 if (!enable_commit_resumed)
3063 {
3064 enable_commit_resumed = true;
3065
3066 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
3067 possible. */
3068 maybe_set_commit_resumed_all_targets ();
3069
3070 maybe_call_commit_resumed_all_targets ();
3071 }
3072}
3073
3074/* See infrun.h. */
3075
3076scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
3077{
3078 infrun_debug_printf ("reason=%s", m_reason);
3079
3080 gdb_assert (enable_commit_resumed);
3081
3082 enable_commit_resumed = m_prev_enable_commit_resumed;
3083
3084 if (!enable_commit_resumed)
3085 {
3086 /* Force all COMMIT_RESUMED_STATE back to false. */
3087 for (inferior *inf : all_non_exited_inferiors ())
3088 {
3089 process_stratum_target *proc_target = inf->process_target ();
3090 proc_target->commit_resumed_state = false;
3091 }
5b6d1e4f
PA
3092 }
3093}
3094
2f4fcf00
PA
3095/* Check that all the targets we're about to resume are in non-stop
3096 mode. Ideally, we'd only care whether all targets support
3097 target-async, but we're not there yet. E.g., stop_all_threads
3098 doesn't know how to handle all-stop targets. Also, the remote
3099 protocol in all-stop mode is synchronous, irrespective of
3100 target-async, which means that things like a breakpoint re-set
3101 triggered by one target would try to read memory from all targets
3102 and fail. */
3103
3104static void
3105check_multi_target_resumption (process_stratum_target *resume_target)
3106{
3107 if (!non_stop && resume_target == nullptr)
3108 {
3109 scoped_restore_current_thread restore_thread;
3110
3111 /* This is used to track whether we're resuming more than one
3112 target. */
3113 process_stratum_target *first_connection = nullptr;
3114
3115 /* The first inferior we see with a target that does not work in
3116 always-non-stop mode. */
3117 inferior *first_not_non_stop = nullptr;
3118
f058c521 3119 for (inferior *inf : all_non_exited_inferiors ())
2f4fcf00
PA
3120 {
3121 switch_to_inferior_no_thread (inf);
3122
55f6301a 3123 if (!target_has_execution ())
2f4fcf00
PA
3124 continue;
3125
3126 process_stratum_target *proc_target
3127 = current_inferior ()->process_target();
3128
3129 if (!target_is_non_stop_p ())
3130 first_not_non_stop = inf;
3131
3132 if (first_connection == nullptr)
3133 first_connection = proc_target;
3134 else if (first_connection != proc_target
3135 && first_not_non_stop != nullptr)
3136 {
3137 switch_to_inferior_no_thread (first_not_non_stop);
3138
3139 proc_target = current_inferior ()->process_target();
3140
3141 error (_("Connection %d (%s) does not support "
3142 "multi-target resumption."),
3143 proc_target->connection_number,
3144 make_target_connection_string (proc_target).c_str ());
3145 }
3146 }
3147 }
3148}
3149
c906108c
SS
3150/* Basic routine for continuing the program in various fashions.
3151
3152 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
3153 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3154 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
3155
3156 You should call clear_proceed_status before calling proceed. */
3157
3158void
64ce06e4 3159proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 3160{
3ec3145c
SM
3161 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3162
e58b0e63
PA
3163 struct regcache *regcache;
3164 struct gdbarch *gdbarch;
e58b0e63 3165 CORE_ADDR pc;
4d9d9d04
PA
3166 struct execution_control_state ecss;
3167 struct execution_control_state *ecs = &ecss;
c906108c 3168
e58b0e63
PA
3169 /* If we're stopped at a fork/vfork, follow the branch set by the
3170 "set follow-fork-mode" command; otherwise, we'll just proceed
3171 resuming the current thread. */
3172 if (!follow_fork ())
3173 {
3174 /* The target for some reason decided not to resume. */
3175 normal_stop ();
f148b27e 3176 if (target_can_async_p ())
b1a35af2 3177 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
3178 return;
3179 }
3180
842951eb
PA
3181 /* We'll update this if & when we switch to a new thread. */
3182 previous_inferior_ptid = inferior_ptid;
3183
e58b0e63 3184 regcache = get_current_regcache ();
ac7936df 3185 gdbarch = regcache->arch ();
8b86c959
YQ
3186 const address_space *aspace = regcache->aspace ();
3187
fc75c28b
TBA
3188 pc = regcache_read_pc_protected (regcache);
3189
08036331 3190 thread_info *cur_thr = inferior_thread ();
e58b0e63 3191
99619bea 3192 /* Fill in with reasonable starting values. */
08036331 3193 init_thread_stepping_state (cur_thr);
99619bea 3194
08036331 3195 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3196
5b6d1e4f
PA
3197 ptid_t resume_ptid
3198 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3199 process_stratum_target *resume_target
3200 = user_visible_resume_target (resume_ptid);
3201
2f4fcf00
PA
3202 check_multi_target_resumption (resume_target);
3203
2acceee2 3204 if (addr == (CORE_ADDR) -1)
c906108c 3205 {
351031f2
AB
3206 if (cur_thr->stop_pc_p ()
3207 && pc == cur_thr->stop_pc ()
af48d08f 3208 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3209 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3210 /* There is a breakpoint at the address we will resume at,
3211 step one instruction before inserting breakpoints so that
3212 we do not stop right away (and report a second hit at this
b2175913
MS
3213 breakpoint).
3214
3215 Note, we don't do this in reverse, because we won't
3216 actually be executing the breakpoint insn anyway.
3217 We'll be (un-)executing the previous instruction. */
08036331 3218 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3219 else if (gdbarch_single_step_through_delay_p (gdbarch)
3220 && gdbarch_single_step_through_delay (gdbarch,
3221 get_current_frame ()))
3352ef37
AC
3222 /* We stepped onto an instruction that needs to be stepped
3223 again before re-inserting the breakpoint, do so. */
08036331 3224 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3225 }
3226 else
3227 {
515630c5 3228 regcache_write_pc (regcache, addr);
c906108c
SS
3229 }
3230
70509625 3231 if (siggnal != GDB_SIGNAL_DEFAULT)
1edb66d8 3232 cur_thr->set_stop_signal (siggnal);
70509625 3233
4d9d9d04
PA
3234 /* If an exception is thrown from this point on, make sure to
3235 propagate GDB's knowledge of the executing state to the
3236 frontend/user running state. */
5b6d1e4f 3237 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3238
3239 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3240 threads (e.g., we might need to set threads stepping over
3241 breakpoints first), from the user/frontend's point of view, all
3242 threads in RESUME_PTID are now running. Unless we're calling an
3243 inferior function, as in that case we pretend the inferior
3244 doesn't run at all. */
08036331 3245 if (!cur_thr->control.in_infcall)
719546c4 3246 set_running (resume_target, resume_ptid, true);
17b2616c 3247
1eb8556f
SM
3248 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3249 gdb_signal_to_symbol_string (siggnal));
527159b7 3250
4d9d9d04
PA
3251 annotate_starting ();
3252
3253 /* Make sure that output from GDB appears before output from the
3254 inferior. */
3255 gdb_flush (gdb_stdout);
3256
d930703d
PA
3257 /* Since we've marked the inferior running, give it the terminal. A
3258 QUIT/Ctrl-C from here on is forwarded to the target (which can
3259 still detect attempts to unblock a stuck connection with repeated
3260 Ctrl-C from within target_pass_ctrlc). */
3261 target_terminal::inferior ();
3262
4d9d9d04
PA
3263 /* In a multi-threaded task we may select another thread and
3264 then continue or step.
3265
3266 But if a thread that we're resuming had stopped at a breakpoint,
3267 it will immediately cause another breakpoint stop without any
3268 execution (i.e. it will report a breakpoint hit incorrectly). So
3269 we must step over it first.
3270
3271 Look for threads other than the current (TP) that reported a
3272 breakpoint hit and haven't been resumed yet since. */
3273
3274 /* If scheduler locking applies, we can avoid iterating over all
3275 threads. */
08036331 3276 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3277 {
5b6d1e4f
PA
3278 for (thread_info *tp : all_non_exited_threads (resume_target,
3279 resume_ptid))
08036331 3280 {
f3f8ece4
PA
3281 switch_to_thread_no_regs (tp);
3282
4d9d9d04
PA
3283 /* Ignore the current thread here. It's handled
3284 afterwards. */
08036331 3285 if (tp == cur_thr)
4d9d9d04 3286 continue;
c906108c 3287
4d9d9d04
PA
3288 if (!thread_still_needs_step_over (tp))
3289 continue;
3290
3291 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3292
1eb8556f 3293 infrun_debug_printf ("need to step-over [%s] first",
0fab7955 3294 tp->ptid.to_string ().c_str ());
99619bea 3295
28d5518b 3296 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3297 }
f3f8ece4
PA
3298
3299 switch_to_thread (cur_thr);
30852783
UW
3300 }
3301
4d9d9d04
PA
3302 /* Enqueue the current thread last, so that we move all other
3303 threads over their breakpoints first. */
08036331 3304 if (cur_thr->stepping_over_breakpoint)
28d5518b 3305 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3306
4d9d9d04
PA
3307 /* If the thread isn't started, we'll still need to set its prev_pc,
3308 so that switch_back_to_stepped_thread knows the thread hasn't
3309 advanced. Must do this before resuming any thread, as in
3310 all-stop/remote, once we resume we can't send any other packet
3311 until the target stops again. */
fc75c28b 3312 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3313
a9bc57b9 3314 {
1192f124 3315 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
8bf10e2e 3316 bool step_over_started = start_step_over ();
c906108c 3317
a9bc57b9
TT
3318 if (step_over_info_valid_p ())
3319 {
3320 /* Either this thread started a new in-line step over, or some
3321 other thread was already doing one. In either case, don't
3322 resume anything else until the step-over is finished. */
3323 }
8bf10e2e 3324 else if (step_over_started && !target_is_non_stop_p ())
a9bc57b9
TT
3325 {
3326 /* A new displaced stepping sequence was started. In all-stop,
3327 we can't talk to the target anymore until it next stops. */
3328 }
3329 else if (!non_stop && target_is_non_stop_p ())
3330 {
3ec3145c
SM
3331 INFRUN_SCOPED_DEBUG_START_END
3332 ("resuming threads, all-stop-on-top-of-non-stop");
3333
a9bc57b9
TT
3334 /* In all-stop, but the target is always in non-stop mode.
3335 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3336 for (thread_info *tp : all_non_exited_threads (resume_target,
3337 resume_ptid))
3338 {
3339 switch_to_thread_no_regs (tp);
3340
f9fac3c8
SM
3341 if (!tp->inf->has_execution ())
3342 {
1eb8556f 3343 infrun_debug_printf ("[%s] target has no execution",
0fab7955 3344 tp->ptid.to_string ().c_str ());
f9fac3c8
SM
3345 continue;
3346 }
f3f8ece4 3347
7846f3aa 3348 if (tp->resumed ())
f9fac3c8 3349 {
1eb8556f 3350 infrun_debug_printf ("[%s] resumed",
0fab7955 3351 tp->ptid.to_string ().c_str ());
611841bb 3352 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
f9fac3c8
SM
3353 continue;
3354 }
fbea99ea 3355
f9fac3c8
SM
3356 if (thread_is_in_step_over_chain (tp))
3357 {
1eb8556f 3358 infrun_debug_printf ("[%s] needs step-over",
0fab7955 3359 tp->ptid.to_string ().c_str ());
f9fac3c8
SM
3360 continue;
3361 }
fbea99ea 3362
d8bbae6e
SM
3363 /* If a thread of that inferior is waiting for a vfork-done
3364 (for a detached vfork child to exec or exit), breakpoints are
3365 removed. We must not resume any thread of that inferior, other
3366 than the one waiting for the vfork-done. */
3367 if (tp->inf->thread_waiting_for_vfork_done != nullptr
3368 && tp != tp->inf->thread_waiting_for_vfork_done)
3369 {
3370 infrun_debug_printf ("[%s] another thread of this inferior is "
3371 "waiting for vfork-done",
3372 tp->ptid.to_string ().c_str ());
3373 continue;
3374 }
3375
1eb8556f 3376 infrun_debug_printf ("resuming %s",
0fab7955 3377 tp->ptid.to_string ().c_str ());
fbea99ea 3378
f9fac3c8
SM
3379 reset_ecs (ecs, tp);
3380 switch_to_thread (tp);
3381 keep_going_pass_signal (ecs);
3382 if (!ecs->wait_some_more)
3383 error (_("Command aborted."));
3384 }
a9bc57b9 3385 }
d8bbae6e
SM
3386 else if (!cur_thr->resumed ()
3387 && !thread_is_in_step_over_chain (cur_thr)
3388 /* In non-stop, forbid resuming a thread if some other thread of
3389 that inferior is waiting for a vfork-done event (this means
3390 breakpoints are out for this inferior). */
3391 && !(non_stop
3392 && cur_thr->inf->thread_waiting_for_vfork_done != nullptr))
a9bc57b9
TT
3393 {
3394 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3395 reset_ecs (ecs, cur_thr);
3396 switch_to_thread (cur_thr);
a9bc57b9
TT
3397 keep_going_pass_signal (ecs);
3398 if (!ecs->wait_some_more)
3399 error (_("Command aborted."));
3400 }
c906108c 3401
1192f124
SM
3402 disable_commit_resumed.reset_and_commit ();
3403 }
85ad3aaf 3404
731f534f 3405 finish_state.release ();
c906108c 3406
873657b9
PA
3407 /* If we've switched threads above, switch back to the previously
3408 current thread. We don't want the user to see a different
3409 selected thread. */
3410 switch_to_thread (cur_thr);
3411
0b333c5e
PA
3412 /* Tell the event loop to wait for it to stop. If the target
3413 supports asynchronous execution, it'll do this from within
3414 target_resume. */
362646f5 3415 if (!target_can_async_p ())
0b333c5e 3416 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3417}
c906108c
SS
3418\f
3419
3420/* Start remote-debugging of a machine over a serial link. */
96baa820 3421
c906108c 3422void
8621d6a9 3423start_remote (int from_tty)
c906108c 3424{
5b6d1e4f
PA
3425 inferior *inf = current_inferior ();
3426 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3427
1777feb0 3428 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3429 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3430 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3431 nothing is returned (instead of just blocking). Because of this,
3432 targets expecting an immediate response need to, internally, set
3433 things up so that the target_wait() is forced to eventually
1777feb0 3434 timeout. */
6426a772
JM
3435 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3436 differentiate to its caller what the state of the target is after
3437 the initial open has been performed. Here we're assuming that
3438 the target has stopped. It should be possible to eventually have
3439 target_open() return to the caller an indication that the target
3440 is currently running and GDB state should be set to the same as
1777feb0 3441 for an async run. */
5b6d1e4f 3442 wait_for_inferior (inf);
8621d6a9
DJ
3443
3444 /* Now that the inferior has stopped, do any bookkeeping like
3445 loading shared libraries. We want to do this before normal_stop,
3446 so that the displayed frame is up to date. */
a7aba266 3447 post_create_inferior (from_tty);
8621d6a9 3448
6426a772 3449 normal_stop ();
c906108c
SS
3450}
3451
3452/* Initialize static vars when a new inferior begins. */
3453
3454void
96baa820 3455init_wait_for_inferior (void)
c906108c
SS
3456{
3457 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3458
c906108c
SS
3459 breakpoint_init_inferior (inf_starting);
3460
70509625 3461 clear_proceed_status (0);
9f976b41 3462
ab1ddbcf 3463 nullify_last_target_wait_ptid ();
237fc4c9 3464
842951eb 3465 previous_inferior_ptid = inferior_ptid;
c906108c 3466}
237fc4c9 3467
c906108c 3468\f
488f131b 3469
ec9499be 3470static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3471
568d6575
UW
3472static void handle_step_into_function (struct gdbarch *gdbarch,
3473 struct execution_control_state *ecs);
3474static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3475 struct execution_control_state *ecs);
4f5d7f63 3476static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3477static void check_exception_resume (struct execution_control_state *,
28106bc2 3478 struct frame_info *);
611c83ae 3479
bdc36728 3480static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3481static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3482static void keep_going (struct execution_control_state *ecs);
94c57d6a 3483static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3484static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3485
252fbfc8
PA
3486/* This function is attached as a "thread_stop_requested" observer.
3487 Cleanup local state that assumed the PTID was to be resumed, and
3488 report the stop to the frontend. */
3489
2c0b251b 3490static void
252fbfc8
PA
3491infrun_thread_stop_requested (ptid_t ptid)
3492{
5b6d1e4f
PA
3493 process_stratum_target *curr_target = current_inferior ()->process_target ();
3494
c65d6b55
PA
3495 /* PTID was requested to stop. If the thread was already stopped,
3496 but the user/frontend doesn't know about that yet (e.g., the
3497 thread had been temporarily paused for some step-over), set up
3498 for reporting the stop now. */
5b6d1e4f 3499 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3500 {
3501 if (tp->state != THREAD_RUNNING)
3502 continue;
611841bb 3503 if (tp->executing ())
08036331 3504 continue;
c65d6b55 3505
08036331
PA
3506 /* Remove matching threads from the step-over queue, so
3507 start_step_over doesn't try to resume them
3508 automatically. */
3509 if (thread_is_in_step_over_chain (tp))
28d5518b 3510 global_thread_step_over_chain_remove (tp);
c65d6b55 3511
08036331
PA
3512 /* If the thread is stopped, but the user/frontend doesn't
3513 know about that yet, queue a pending event, as if the
3514 thread had just stopped now. Unless the thread already had
3515 a pending event. */
1edb66d8 3516 if (!tp->has_pending_waitstatus ())
08036331 3517 {
1edb66d8 3518 target_waitstatus ws;
183be222 3519 ws.set_stopped (GDB_SIGNAL_0);
1edb66d8 3520 tp->set_pending_waitstatus (ws);
08036331 3521 }
c65d6b55 3522
08036331
PA
3523 /* Clear the inline-frame state, since we're re-processing the
3524 stop. */
5b6d1e4f 3525 clear_inline_frame_state (tp);
c65d6b55 3526
08036331
PA
3527 /* If this thread was paused because some other thread was
3528 doing an inline-step over, let that finish first. Once
3529 that happens, we'll restart all threads and consume pending
3530 stop events then. */
3531 if (step_over_info_valid_p ())
3532 continue;
3533
3534 /* Otherwise we can process the (new) pending event now. Set
3535 it so this pending event is considered by
3536 do_target_wait. */
7846f3aa 3537 tp->set_resumed (true);
08036331 3538 }
252fbfc8
PA
3539}
3540
a07daef3
PA
3541static void
3542infrun_thread_thread_exit (struct thread_info *tp, int silent)
3543{
5b6d1e4f
PA
3544 if (target_last_proc_target == tp->inf->process_target ()
3545 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3546 nullify_last_target_wait_ptid ();
3547}
3548
0cbcdb96
PA
3549/* Delete the step resume, single-step and longjmp/exception resume
3550 breakpoints of TP. */
4e1c45ea 3551
0cbcdb96
PA
3552static void
3553delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3554{
0cbcdb96
PA
3555 delete_step_resume_breakpoint (tp);
3556 delete_exception_resume_breakpoint (tp);
34b7e8a6 3557 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3558}
3559
0cbcdb96
PA
3560/* If the target still has execution, call FUNC for each thread that
3561 just stopped. In all-stop, that's all the non-exited threads; in
3562 non-stop, that's the current thread, only. */
3563
3564typedef void (*for_each_just_stopped_thread_callback_func)
3565 (struct thread_info *tp);
4e1c45ea
PA
3566
3567static void
0cbcdb96 3568for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3569{
55f6301a 3570 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3571 return;
3572
fbea99ea 3573 if (target_is_non_stop_p ())
4e1c45ea 3574 {
0cbcdb96
PA
3575 /* If in non-stop mode, only the current thread stopped. */
3576 func (inferior_thread ());
4e1c45ea
PA
3577 }
3578 else
0cbcdb96 3579 {
0cbcdb96 3580 /* In all-stop mode, all threads have stopped. */
08036331
PA
3581 for (thread_info *tp : all_non_exited_threads ())
3582 func (tp);
0cbcdb96
PA
3583 }
3584}
3585
3586/* Delete the step resume and longjmp/exception resume breakpoints of
3587 the threads that just stopped. */
3588
3589static void
3590delete_just_stopped_threads_infrun_breakpoints (void)
3591{
3592 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3593}
3594
3595/* Delete the single-step breakpoints of the threads that just
3596 stopped. */
7c16b83e 3597
34b7e8a6
PA
3598static void
3599delete_just_stopped_threads_single_step_breakpoints (void)
3600{
3601 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3602}
3603
221e1a37 3604/* See infrun.h. */
223698f8 3605
221e1a37 3606void
223698f8 3607print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
c272a98c 3608 const struct target_waitstatus &ws)
223698f8 3609{
17e971f7
SM
3610 infrun_debug_printf ("target_wait (%s [%s], status) =",
3611 waiton_ptid.to_string ().c_str (),
e71daf80 3612 target_pid_to_str (waiton_ptid).c_str ());
17e971f7
SM
3613 infrun_debug_printf (" %s [%s],",
3614 result_ptid.to_string ().c_str (),
e71daf80 3615 target_pid_to_str (result_ptid).c_str ());
c272a98c 3616 infrun_debug_printf (" %s", ws.to_string ().c_str ());
223698f8
DE
3617}
3618
372316f1
PA
3619/* Select a thread at random, out of those which are resumed and have
3620 had events. */
3621
3622static struct thread_info *
5b6d1e4f 3623random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3624{
71a23490
SM
3625 process_stratum_target *proc_target = inf->process_target ();
3626 thread_info *thread
3627 = proc_target->random_resumed_with_pending_wait_status (inf, waiton_ptid);
08036331 3628
71a23490 3629 if (thread == nullptr)
08036331 3630 {
71a23490
SM
3631 infrun_debug_printf ("None found.");
3632 return nullptr;
3633 }
372316f1 3634
0fab7955 3635 infrun_debug_printf ("Found %s.", thread->ptid.to_string ().c_str ());
71a23490
SM
3636 gdb_assert (thread->resumed ());
3637 gdb_assert (thread->has_pending_waitstatus ());
372316f1 3638
71a23490 3639 return thread;
372316f1
PA
3640}
3641
3642/* Wrapper for target_wait that first checks whether threads have
3643 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3644 more events. INF is the inferior we're using to call target_wait
3645 on. */
372316f1
PA
3646
3647static ptid_t
5b6d1e4f 3648do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3649 target_waitstatus *status, target_wait_flags options)
372316f1 3650{
372316f1
PA
3651 struct thread_info *tp;
3652
24ed6739
AB
3653 /* We know that we are looking for an event in the target of inferior
3654 INF, but we don't know which thread the event might come from. As
3655 such we want to make sure that INFERIOR_PTID is reset so that none of
3656 the wait code relies on it - doing so is always a mistake. */
3657 switch_to_inferior_no_thread (inf);
3658
372316f1
PA
3659 /* First check if there is a resumed thread with a wait status
3660 pending. */
d7e15655 3661 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3662 {
5b6d1e4f 3663 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3664 }
3665 else
3666 {
1eb8556f 3667 infrun_debug_printf ("Waiting for specific thread %s.",
0fab7955 3668 ptid.to_string ().c_str ());
372316f1
PA
3669
3670 /* We have a specific thread to check. */
5b6d1e4f 3671 tp = find_thread_ptid (inf, ptid);
372316f1 3672 gdb_assert (tp != NULL);
1edb66d8 3673 if (!tp->has_pending_waitstatus ())
372316f1
PA
3674 tp = NULL;
3675 }
3676
3677 if (tp != NULL
1edb66d8
SM
3678 && (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3679 || tp->stop_reason () == TARGET_STOPPED_BY_HW_BREAKPOINT))
372316f1 3680 {
00431a78 3681 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3682 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3683 CORE_ADDR pc;
3684 int discard = 0;
3685
3686 pc = regcache_read_pc (regcache);
3687
1edb66d8 3688 if (pc != tp->stop_pc ())
372316f1 3689 {
1eb8556f 3690 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
0fab7955 3691 tp->ptid.to_string ().c_str (),
1edb66d8 3692 paddress (gdbarch, tp->stop_pc ()),
1eb8556f 3693 paddress (gdbarch, pc));
372316f1
PA
3694 discard = 1;
3695 }
a01bda52 3696 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3697 {
1eb8556f 3698 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
0fab7955 3699 tp->ptid.to_string ().c_str (),
1eb8556f 3700 paddress (gdbarch, pc));
372316f1
PA
3701
3702 discard = 1;
3703 }
3704
3705 if (discard)
3706 {
1eb8556f 3707 infrun_debug_printf ("pending event of %s cancelled.",
0fab7955 3708 tp->ptid.to_string ().c_str ());
372316f1 3709
1edb66d8
SM
3710 tp->clear_pending_waitstatus ();
3711 target_waitstatus ws;
183be222 3712 ws.set_spurious ();
1edb66d8
SM
3713 tp->set_pending_waitstatus (ws);
3714 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
372316f1
PA
3715 }
3716 }
3717
3718 if (tp != NULL)
3719 {
1eb8556f 3720 infrun_debug_printf ("Using pending wait status %s for %s.",
7dca2ea7 3721 tp->pending_waitstatus ().to_string ().c_str (),
0fab7955 3722 tp->ptid.to_string ().c_str ());
372316f1
PA
3723
3724 /* Now that we've selected our final event LWP, un-adjust its PC
3725 if it was a software breakpoint (and the target doesn't
3726 always adjust the PC itself). */
1edb66d8 3727 if (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
372316f1
PA
3728 && !target_supports_stopped_by_sw_breakpoint ())
3729 {
3730 struct regcache *regcache;
3731 struct gdbarch *gdbarch;
3732 int decr_pc;
3733
00431a78 3734 regcache = get_thread_regcache (tp);
ac7936df 3735 gdbarch = regcache->arch ();
372316f1
PA
3736
3737 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3738 if (decr_pc != 0)
3739 {
3740 CORE_ADDR pc;
3741
3742 pc = regcache_read_pc (regcache);
3743 regcache_write_pc (regcache, pc + decr_pc);
3744 }
3745 }
3746
1edb66d8
SM
3747 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3748 *status = tp->pending_waitstatus ();
3749 tp->clear_pending_waitstatus ();
372316f1
PA
3750
3751 /* Wake up the event loop again, until all pending events are
3752 processed. */
3753 if (target_is_async_p ())
3754 mark_async_event_handler (infrun_async_inferior_event_token);
3755 return tp->ptid;
3756 }
3757
3758 /* But if we don't find one, we'll have to wait. */
3759
d3a07122
SM
3760 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3761 a blocking wait. */
71247709 3762 if (!target_can_async_p ())
d3a07122
SM
3763 options &= ~TARGET_WNOHANG;
3764
fb85cece 3765 return target_wait (ptid, status, options);
372316f1
PA
3766}
3767
5b6d1e4f
PA
3768/* Wrapper for target_wait that first checks whether threads have
3769 pending statuses to report before actually asking the target for
b3e3a4c1 3770 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3771
3772static bool
ac0d67ed 3773do_target_wait (execution_control_state *ecs, target_wait_flags options)
5b6d1e4f
PA
3774{
3775 int num_inferiors = 0;
3776 int random_selector;
3777
b3e3a4c1
SM
3778 /* For fairness, we pick the first inferior/target to poll at random
3779 out of all inferiors that may report events, and then continue
3780 polling the rest of the inferior list starting from that one in a
3781 circular fashion until the whole list is polled once. */
5b6d1e4f 3782
ac0d67ed 3783 auto inferior_matches = [] (inferior *inf)
5b6d1e4f 3784 {
ac0d67ed 3785 return inf->process_target () != nullptr;
5b6d1e4f
PA
3786 };
3787
b3e3a4c1 3788 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3789 for (inferior *inf : all_inferiors ())
3790 if (inferior_matches (inf))
3791 num_inferiors++;
3792
3793 if (num_inferiors == 0)
3794 {
183be222 3795 ecs->ws.set_ignore ();
5b6d1e4f
PA
3796 return false;
3797 }
3798
b3e3a4c1 3799 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3800 random_selector = (int)
3801 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3802
1eb8556f
SM
3803 if (num_inferiors > 1)
3804 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3805 num_inferiors, random_selector);
5b6d1e4f 3806
b3e3a4c1 3807 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3808
3809 inferior *selected = nullptr;
3810
3811 for (inferior *inf : all_inferiors ())
3812 if (inferior_matches (inf))
3813 if (random_selector-- == 0)
3814 {
3815 selected = inf;
3816 break;
3817 }
3818
b3e3a4c1 3819 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3820 targets, starting from the selected one. */
3821
3822 auto do_wait = [&] (inferior *inf)
3823 {
ac0d67ed 3824 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
5b6d1e4f 3825 ecs->target = inf->process_target ();
183be222 3826 return (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
5b6d1e4f
PA
3827 };
3828
b3e3a4c1
SM
3829 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3830 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3831 reported the stop to the user, polling for events. */
3832 scoped_restore_current_thread restore_thread;
3833
08bdefb5
PA
3834 intrusive_list_iterator<inferior> start
3835 = inferior_list.iterator_to (*selected);
3836
3837 for (intrusive_list_iterator<inferior> it = start;
3838 it != inferior_list.end ();
3839 ++it)
3840 {
3841 inferior *inf = &*it;
3842
3843 if (inferior_matches (inf) && do_wait (inf))
5b6d1e4f 3844 return true;
08bdefb5 3845 }
5b6d1e4f 3846
08bdefb5
PA
3847 for (intrusive_list_iterator<inferior> it = inferior_list.begin ();
3848 it != start;
3849 ++it)
3850 {
3851 inferior *inf = &*it;
3852
3853 if (inferior_matches (inf) && do_wait (inf))
5b6d1e4f 3854 return true;
08bdefb5 3855 }
5b6d1e4f 3856
183be222 3857 ecs->ws.set_ignore ();
5b6d1e4f
PA
3858 return false;
3859}
3860
8ff53139
PA
3861/* An event reported by wait_one. */
3862
3863struct wait_one_event
3864{
3865 /* The target the event came out of. */
3866 process_stratum_target *target;
3867
3868 /* The PTID the event was for. */
3869 ptid_t ptid;
3870
3871 /* The waitstatus. */
3872 target_waitstatus ws;
3873};
3874
3875static bool handle_one (const wait_one_event &event);
3876
24291992
PA
3877/* Prepare and stabilize the inferior for detaching it. E.g.,
3878 detaching while a thread is displaced stepping is a recipe for
3879 crashing it, as nothing would readjust the PC out of the scratch
3880 pad. */
3881
3882void
3883prepare_for_detach (void)
3884{
3885 struct inferior *inf = current_inferior ();
f2907e49 3886 ptid_t pid_ptid = ptid_t (inf->pid);
8ff53139 3887 scoped_restore_current_thread restore_thread;
24291992 3888
9bcb1f16 3889 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3890
8ff53139
PA
3891 /* Remove all threads of INF from the global step-over chain. We
3892 want to stop any ongoing step-over, not start any new one. */
8b6a69b2
SM
3893 thread_step_over_list_safe_range range
3894 = make_thread_step_over_list_safe_range (global_thread_step_over_list);
3895
3896 for (thread_info *tp : range)
3897 if (tp->inf == inf)
3898 {
3899 infrun_debug_printf ("removing thread %s from global step over chain",
0fab7955 3900 tp->ptid.to_string ().c_str ());
8ff53139 3901 global_thread_step_over_chain_remove (tp);
8b6a69b2 3902 }
24291992 3903
ac7d717c
PA
3904 /* If we were already in the middle of an inline step-over, and the
3905 thread stepping belongs to the inferior we're detaching, we need
3906 to restart the threads of other inferiors. */
3907 if (step_over_info.thread != -1)
3908 {
3909 infrun_debug_printf ("inline step-over in-process while detaching");
3910
3911 thread_info *thr = find_thread_global_id (step_over_info.thread);
3912 if (thr->inf == inf)
3913 {
3914 /* Since we removed threads of INF from the step-over chain,
3915 we know this won't start a step-over for INF. */
3916 clear_step_over_info ();
3917
3918 if (target_is_non_stop_p ())
3919 {
3920 /* Start a new step-over in another thread if there's
3921 one that needs it. */
3922 start_step_over ();
3923
3924 /* Restart all other threads (except the
3925 previously-stepping thread, since that one is still
3926 running). */
3927 if (!step_over_info_valid_p ())
3928 restart_threads (thr);
3929 }
3930 }
3931 }
3932
8ff53139
PA
3933 if (displaced_step_in_progress (inf))
3934 {
3935 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3936
8ff53139 3937 /* Stop threads currently displaced stepping, aborting it. */
24291992 3938
8ff53139
PA
3939 for (thread_info *thr : inf->non_exited_threads ())
3940 {
3941 if (thr->displaced_step_state.in_progress ())
3942 {
611841bb 3943 if (thr->executing ())
8ff53139
PA
3944 {
3945 if (!thr->stop_requested)
3946 {
3947 target_stop (thr->ptid);
3948 thr->stop_requested = true;
3949 }
3950 }
3951 else
7846f3aa 3952 thr->set_resumed (false);
8ff53139
PA
3953 }
3954 }
24291992 3955
8ff53139
PA
3956 while (displaced_step_in_progress (inf))
3957 {
3958 wait_one_event event;
24291992 3959
8ff53139
PA
3960 event.target = inf->process_target ();
3961 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
24291992 3962
8ff53139 3963 if (debug_infrun)
c272a98c 3964 print_target_wait_results (pid_ptid, event.ptid, event.ws);
24291992 3965
8ff53139
PA
3966 handle_one (event);
3967 }
24291992 3968
8ff53139
PA
3969 /* It's OK to leave some of the threads of INF stopped, since
3970 they'll be detached shortly. */
24291992 3971 }
24291992
PA
3972}
3973
e0c01ce6
PA
3974/* If all-stop, but there exists a non-stop target, stop all threads
3975 now that we're presenting the stop to the user. */
3976
3977static void
3978stop_all_threads_if_all_stop_mode ()
3979{
3980 if (!non_stop && exists_non_stop_target ())
3981 stop_all_threads ("presenting stop to user in all-stop");
3982}
3983
cd0fc7c3 3984/* Wait for control to return from inferior to debugger.
ae123ec6 3985
cd0fc7c3
SS
3986 If inferior gets a signal, we may decide to start it up again
3987 instead of returning. That is why there is a loop in this function.
3988 When this function actually returns it means the inferior
3989 should be left stopped and GDB should read more commands. */
3990
5b6d1e4f
PA
3991static void
3992wait_for_inferior (inferior *inf)
cd0fc7c3 3993{
1eb8556f 3994 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3995
4c41382a 3996 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3997
e6f5c25b
PA
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
5b6d1e4f
PA
4001 scoped_finish_thread_state finish_state
4002 (inf->process_target (), minus_one_ptid);
e6f5c25b 4003
c906108c
SS
4004 while (1)
4005 {
ae25568b
PA
4006 struct execution_control_state ecss;
4007 struct execution_control_state *ecs = &ecss;
29f49a6a 4008
ec9499be 4009 overlay_cache_invalid = 1;
ec9499be 4010
f15cb84a
YQ
4011 /* Flush target cache before starting to handle each event.
4012 Target was running and cache could be stale. This is just a
4013 heuristic. Running threads may modify target memory, but we
4014 don't get any event. */
4015 target_dcache_invalidate ();
4016
5b6d1e4f
PA
4017 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
4018 ecs->target = inf->process_target ();
c906108c 4019
f00150c9 4020 if (debug_infrun)
c272a98c 4021 print_target_wait_results (minus_one_ptid, ecs->ptid, ecs->ws);
f00150c9 4022
cd0fc7c3
SS
4023 /* Now figure out what to do with the result of the result. */
4024 handle_inferior_event (ecs);
c906108c 4025
cd0fc7c3
SS
4026 if (!ecs->wait_some_more)
4027 break;
4028 }
4e1c45ea 4029
e0c01ce6
PA
4030 stop_all_threads_if_all_stop_mode ();
4031
e6f5c25b 4032 /* No error, don't finish the state yet. */
731f534f 4033 finish_state.release ();
cd0fc7c3 4034}
c906108c 4035
d3d4baed
PA
4036/* Cleanup that reinstalls the readline callback handler, if the
4037 target is running in the background. If while handling the target
4038 event something triggered a secondary prompt, like e.g., a
4039 pagination prompt, we'll have removed the callback handler (see
4040 gdb_readline_wrapper_line). Need to do this as we go back to the
4041 event loop, ready to process further input. Note this has no
4042 effect if the handler hasn't actually been removed, because calling
4043 rl_callback_handler_install resets the line buffer, thus losing
4044 input. */
4045
4046static void
d238133d 4047reinstall_readline_callback_handler_cleanup ()
d3d4baed 4048{
3b12939d
PA
4049 struct ui *ui = current_ui;
4050
4051 if (!ui->async)
6c400b59
PA
4052 {
4053 /* We're not going back to the top level event loop yet. Don't
4054 install the readline callback, as it'd prep the terminal,
4055 readline-style (raw, noecho) (e.g., --batch). We'll install
4056 it the next time the prompt is displayed, when we're ready
4057 for input. */
4058 return;
4059 }
4060
3b12939d 4061 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
4062 gdb_rl_callback_handler_reinstall ();
4063}
4064
243a9253
PA
4065/* Clean up the FSMs of threads that are now stopped. In non-stop,
4066 that's just the event thread. In all-stop, that's all threads. */
4067
4068static void
4069clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
4070{
22517040
SM
4071 /* The first clean_up call below assumes the event thread is the current
4072 one. */
4073 if (ecs->event_thread != nullptr)
4074 gdb_assert (ecs->event_thread == inferior_thread ());
4075
573269a8
LS
4076 if (ecs->event_thread != nullptr
4077 && ecs->event_thread->thread_fsm () != nullptr)
4078 ecs->event_thread->thread_fsm ()->clean_up (ecs->event_thread);
243a9253
PA
4079
4080 if (!non_stop)
4081 {
22517040
SM
4082 scoped_restore_current_thread restore_thread;
4083
08036331 4084 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 4085 {
573269a8 4086 if (thr->thread_fsm () == nullptr)
243a9253
PA
4087 continue;
4088 if (thr == ecs->event_thread)
4089 continue;
4090
00431a78 4091 switch_to_thread (thr);
573269a8 4092 thr->thread_fsm ()->clean_up (thr);
243a9253 4093 }
243a9253
PA
4094 }
4095}
4096
3b12939d
PA
4097/* Helper for all_uis_check_sync_execution_done that works on the
4098 current UI. */
4099
4100static void
4101check_curr_ui_sync_execution_done (void)
4102{
4103 struct ui *ui = current_ui;
4104
4105 if (ui->prompt_state == PROMPT_NEEDED
4106 && ui->async
4107 && !gdb_in_secondary_prompt_p (ui))
4108 {
223ffa71 4109 target_terminal::ours ();
76727919 4110 gdb::observers::sync_execution_done.notify ();
8f7f9b3a 4111 ui->register_file_handler ();
3b12939d
PA
4112 }
4113}
4114
4115/* See infrun.h. */
4116
4117void
4118all_uis_check_sync_execution_done (void)
4119{
0e454242 4120 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
4121 {
4122 check_curr_ui_sync_execution_done ();
4123 }
4124}
4125
a8836c93
PA
4126/* See infrun.h. */
4127
4128void
4129all_uis_on_sync_execution_starting (void)
4130{
0e454242 4131 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
4132 {
4133 if (current_ui->prompt_state == PROMPT_NEEDED)
4134 async_disable_stdin ();
4135 }
4136}
4137
1777feb0 4138/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 4139 event loop whenever a change of state is detected on the file
1777feb0
MS
4140 descriptor corresponding to the target. It can be called more than
4141 once to complete a single execution command. In such cases we need
4142 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
4143 that this function is called for a single execution command, then
4144 report to the user that the inferior has stopped, and do the
1777feb0 4145 necessary cleanups. */
43ff13b4
JM
4146
4147void
b1a35af2 4148fetch_inferior_event ()
43ff13b4 4149{
3ec3145c
SM
4150 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4151
0d1e5fa7 4152 struct execution_control_state ecss;
a474d7c2 4153 struct execution_control_state *ecs = &ecss;
0f641c01 4154 int cmd_done = 0;
43ff13b4 4155
c61db772
PA
4156 /* Events are always processed with the main UI as current UI. This
4157 way, warnings, debug output, etc. are always consistently sent to
4158 the main console. */
4b6749b9 4159 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 4160
b78b3a29
TBA
4161 /* Temporarily disable pagination. Otherwise, the user would be
4162 given an option to press 'q' to quit, which would cause an early
4163 exit and could leave GDB in a half-baked state. */
4164 scoped_restore save_pagination
4165 = make_scoped_restore (&pagination_enabled, false);
4166
d3d4baed 4167 /* End up with readline processing input, if necessary. */
d238133d
TT
4168 {
4169 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4170
4171 /* We're handling a live event, so make sure we're doing live
4172 debugging. If we're looking at traceframes while the target is
4173 running, we're going to need to get back to that mode after
4174 handling the event. */
4175 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4176 if (non_stop)
4177 {
4178 maybe_restore_traceframe.emplace ();
4179 set_current_traceframe (-1);
4180 }
43ff13b4 4181
873657b9
PA
4182 /* The user/frontend should not notice a thread switch due to
4183 internal events. Make sure we revert to the user selected
4184 thread and frame after handling the event and running any
4185 breakpoint commands. */
4186 scoped_restore_current_thread restore_thread;
d238133d
TT
4187
4188 overlay_cache_invalid = 1;
4189 /* Flush target cache before starting to handle each event. Target
4190 was running and cache could be stale. This is just a heuristic.
4191 Running threads may modify target memory, but we don't get any
4192 event. */
4193 target_dcache_invalidate ();
4194
4195 scoped_restore save_exec_dir
4196 = make_scoped_restore (&execution_direction,
4197 target_execution_direction ());
4198
1192f124
SM
4199 /* Allow targets to pause their resumed threads while we handle
4200 the event. */
4201 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4202
ac0d67ed 4203 if (!do_target_wait (ecs, TARGET_WNOHANG))
1192f124
SM
4204 {
4205 infrun_debug_printf ("do_target_wait returned no event");
4206 disable_commit_resumed.reset_and_commit ();
4207 return;
4208 }
5b6d1e4f 4209
183be222 4210 gdb_assert (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
5b6d1e4f
PA
4211
4212 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
4213 target calls. */
4214 switch_to_target_no_thread (ecs->target);
d238133d
TT
4215
4216 if (debug_infrun)
c272a98c 4217 print_target_wait_results (minus_one_ptid, ecs->ptid, ecs->ws);
d238133d
TT
4218
4219 /* If an error happens while handling the event, propagate GDB's
4220 knowledge of the executing state to the frontend/user running
4221 state. */
4222 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4223 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4224
979a0d13 4225 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4226 still for the thread which has thrown the exception. */
4227 auto defer_bpstat_clear
4228 = make_scope_exit (bpstat_clear_actions);
4229 auto defer_delete_threads
4230 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4231
4232 /* Now figure out what to do with the result of the result. */
4233 handle_inferior_event (ecs);
4234
4235 if (!ecs->wait_some_more)
4236 {
5b6d1e4f 4237 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 4238 bool should_stop = true;
d238133d 4239 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4240
d238133d 4241 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4242
573269a8
LS
4243 if (thr != nullptr && thr->thread_fsm () != nullptr)
4244 should_stop = thr->thread_fsm ()->should_stop (thr);
243a9253 4245
d238133d
TT
4246 if (!should_stop)
4247 {
4248 keep_going (ecs);
4249 }
4250 else
4251 {
46e3ed7f 4252 bool should_notify_stop = true;
d238133d 4253 int proceeded = 0;
1840d81a 4254
e0c01ce6
PA
4255 stop_all_threads_if_all_stop_mode ();
4256
d238133d 4257 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4258
573269a8
LS
4259 if (thr != nullptr && thr->thread_fsm () != nullptr)
4260 should_notify_stop
4261 = thr->thread_fsm ()->should_notify_stop ();
388a7084 4262
d238133d
TT
4263 if (should_notify_stop)
4264 {
4265 /* We may not find an inferior if this was a process exit. */
4266 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4267 proceeded = normal_stop ();
4268 }
243a9253 4269
d238133d
TT
4270 if (!proceeded)
4271 {
b1a35af2 4272 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4273 cmd_done = 1;
4274 }
873657b9
PA
4275
4276 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4277 previously selected thread is gone. We have two
4278 choices - switch to no thread selected, or restore the
4279 previously selected thread (now exited). We chose the
4280 later, just because that's what GDB used to do. After
4281 this, "info threads" says "The current thread <Thread
4282 ID 2> has terminated." instead of "No thread
4283 selected.". */
4284 if (!non_stop
4285 && cmd_done
183be222 4286 && ecs->ws.kind () != TARGET_WAITKIND_NO_RESUMED)
873657b9 4287 restore_thread.dont_restore ();
d238133d
TT
4288 }
4289 }
4f8d22e3 4290
d238133d
TT
4291 defer_delete_threads.release ();
4292 defer_bpstat_clear.release ();
29f49a6a 4293
d238133d
TT
4294 /* No error, don't finish the thread states yet. */
4295 finish_state.release ();
731f534f 4296
1192f124
SM
4297 disable_commit_resumed.reset_and_commit ();
4298
d238133d
TT
4299 /* This scope is used to ensure that readline callbacks are
4300 reinstalled here. */
4301 }
4f8d22e3 4302
152a1749
SM
4303 /* Handling this event might have caused some inferiors to become prunable.
4304 For example, the exit of an inferior that was automatically added. Try
4305 to get rid of them. Keeping those around slows down things linearly.
4306
4307 Note that this never removes the current inferior. Therefore, call this
4308 after RESTORE_THREAD went out of scope, in case the event inferior (which was
4309 temporarily made the current inferior) is meant to be deleted.
4310
4311 Call this before all_uis_check_sync_execution_done, so that notifications about
4312 removed inferiors appear before the prompt. */
4313 prune_inferiors ();
4314
3b12939d
PA
4315 /* If a UI was in sync execution mode, and now isn't, restore its
4316 prompt (a synchronous execution command has finished, and we're
4317 ready for input). */
4318 all_uis_check_sync_execution_done ();
0f641c01
PA
4319
4320 if (cmd_done
0f641c01 4321 && exec_done_display_p
00431a78
PA
4322 && (inferior_ptid == null_ptid
4323 || inferior_thread ()->state != THREAD_RUNNING))
6cb06a8c 4324 gdb_printf (_("completed.\n"));
43ff13b4
JM
4325}
4326
29734269
SM
4327/* See infrun.h. */
4328
edb3359d 4329void
29734269
SM
4330set_step_info (thread_info *tp, struct frame_info *frame,
4331 struct symtab_and_line sal)
edb3359d 4332{
29734269
SM
4333 /* This can be removed once this function no longer implicitly relies on the
4334 inferior_ptid value. */
4335 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4336
16c381f0
JK
4337 tp->control.step_frame_id = get_frame_id (frame);
4338 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4339
4340 tp->current_symtab = sal.symtab;
4341 tp->current_line = sal.line;
c8353d68
AB
4342
4343 infrun_debug_printf
4344 ("symtab = %s, line = %d, step_frame_id = %s, step_stack_frame_id = %s",
b7e07722
PA
4345 tp->current_symtab != nullptr ? tp->current_symtab->filename : "<null>",
4346 tp->current_line,
c8353d68
AB
4347 tp->control.step_frame_id.to_string ().c_str (),
4348 tp->control.step_stack_frame_id.to_string ().c_str ());
edb3359d
DJ
4349}
4350
0d1e5fa7
PA
4351/* Clear context switchable stepping state. */
4352
4353void
4e1c45ea 4354init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4355{
7f5ef605 4356 tss->stepped_breakpoint = 0;
0d1e5fa7 4357 tss->stepping_over_breakpoint = 0;
963f9c80 4358 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4359 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4360}
4361
ab1ddbcf 4362/* See infrun.h. */
c32c64b7 4363
6efcd9a8 4364void
5b6d1e4f 4365set_last_target_status (process_stratum_target *target, ptid_t ptid,
183be222 4366 const target_waitstatus &status)
c32c64b7 4367{
5b6d1e4f 4368 target_last_proc_target = target;
c32c64b7
DE
4369 target_last_wait_ptid = ptid;
4370 target_last_waitstatus = status;
4371}
4372
ab1ddbcf 4373/* See infrun.h. */
e02bc4cc
DS
4374
4375void
5b6d1e4f
PA
4376get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4377 target_waitstatus *status)
e02bc4cc 4378{
5b6d1e4f
PA
4379 if (target != nullptr)
4380 *target = target_last_proc_target;
ab1ddbcf
PA
4381 if (ptid != nullptr)
4382 *ptid = target_last_wait_ptid;
4383 if (status != nullptr)
4384 *status = target_last_waitstatus;
e02bc4cc
DS
4385}
4386
ab1ddbcf
PA
4387/* See infrun.h. */
4388
ac264b3b
MS
4389void
4390nullify_last_target_wait_ptid (void)
4391{
5b6d1e4f 4392 target_last_proc_target = nullptr;
ac264b3b 4393 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4394 target_last_waitstatus = {};
ac264b3b
MS
4395}
4396
dcf4fbde 4397/* Switch thread contexts. */
dd80620e
MS
4398
4399static void
00431a78 4400context_switch (execution_control_state *ecs)
dd80620e 4401{
1eb8556f 4402 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4403 && (inferior_ptid == null_ptid
4404 || ecs->event_thread != inferior_thread ()))
fd48f117 4405 {
1eb8556f 4406 infrun_debug_printf ("Switching context from %s to %s",
0fab7955
SM
4407 inferior_ptid.to_string ().c_str (),
4408 ecs->ptid.to_string ().c_str ());
fd48f117
DJ
4409 }
4410
00431a78 4411 switch_to_thread (ecs->event_thread);
dd80620e
MS
4412}
4413
d8dd4d5f
PA
4414/* If the target can't tell whether we've hit breakpoints
4415 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4416 check whether that could have been caused by a breakpoint. If so,
4417 adjust the PC, per gdbarch_decr_pc_after_break. */
4418
4fa8626c 4419static void
d8dd4d5f 4420adjust_pc_after_break (struct thread_info *thread,
c272a98c 4421 const target_waitstatus &ws)
4fa8626c 4422{
24a73cce
UW
4423 struct regcache *regcache;
4424 struct gdbarch *gdbarch;
118e6252 4425 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4426
4fa8626c
DJ
4427 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4428 we aren't, just return.
9709f61c
DJ
4429
4430 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4431 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4432 implemented by software breakpoints should be handled through the normal
4433 breakpoint layer.
8fb3e588 4434
4fa8626c
DJ
4435 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4436 different signals (SIGILL or SIGEMT for instance), but it is less
4437 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4438 gdbarch_decr_pc_after_break. I don't know any specific target that
4439 generates these signals at breakpoints (the code has been in GDB since at
4440 least 1992) so I can not guess how to handle them here.
8fb3e588 4441
e6cf7916
UW
4442 In earlier versions of GDB, a target with
4443 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4444 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4445 target with both of these set in GDB history, and it seems unlikely to be
4446 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4447
c272a98c 4448 if (ws.kind () != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4449 return;
4450
c272a98c 4451 if (ws.sig () != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4452 return;
4453
4058b839
PA
4454 /* In reverse execution, when a breakpoint is hit, the instruction
4455 under it has already been de-executed. The reported PC always
4456 points at the breakpoint address, so adjusting it further would
4457 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4458 architecture:
4459
4460 B1 0x08000000 : INSN1
4461 B2 0x08000001 : INSN2
4462 0x08000002 : INSN3
4463 PC -> 0x08000003 : INSN4
4464
4465 Say you're stopped at 0x08000003 as above. Reverse continuing
4466 from that point should hit B2 as below. Reading the PC when the
4467 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4468 been de-executed already.
4469
4470 B1 0x08000000 : INSN1
4471 B2 PC -> 0x08000001 : INSN2
4472 0x08000002 : INSN3
4473 0x08000003 : INSN4
4474
4475 We can't apply the same logic as for forward execution, because
4476 we would wrongly adjust the PC to 0x08000000, since there's a
4477 breakpoint at PC - 1. We'd then report a hit on B1, although
4478 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4479 behaviour. */
4480 if (execution_direction == EXEC_REVERSE)
4481 return;
4482
1cf4d951
PA
4483 /* If the target can tell whether the thread hit a SW breakpoint,
4484 trust it. Targets that can tell also adjust the PC
4485 themselves. */
4486 if (target_supports_stopped_by_sw_breakpoint ())
4487 return;
4488
4489 /* Note that relying on whether a breakpoint is planted in memory to
4490 determine this can fail. E.g,. the breakpoint could have been
4491 removed since. Or the thread could have been told to step an
4492 instruction the size of a breakpoint instruction, and only
4493 _after_ was a breakpoint inserted at its address. */
4494
24a73cce
UW
4495 /* If this target does not decrement the PC after breakpoints, then
4496 we have nothing to do. */
00431a78 4497 regcache = get_thread_regcache (thread);
ac7936df 4498 gdbarch = regcache->arch ();
118e6252 4499
527a273a 4500 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4501 if (decr_pc == 0)
24a73cce
UW
4502 return;
4503
8b86c959 4504 const address_space *aspace = regcache->aspace ();
6c95b8df 4505
8aad930b
AC
4506 /* Find the location where (if we've hit a breakpoint) the
4507 breakpoint would be. */
118e6252 4508 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4509
1cf4d951
PA
4510 /* If the target can't tell whether a software breakpoint triggered,
4511 fallback to figuring it out based on breakpoints we think were
4512 inserted in the target, and on whether the thread was stepped or
4513 continued. */
4514
1c5cfe86
PA
4515 /* Check whether there actually is a software breakpoint inserted at
4516 that location.
4517
4518 If in non-stop mode, a race condition is possible where we've
4519 removed a breakpoint, but stop events for that breakpoint were
4520 already queued and arrive later. To suppress those spurious
4521 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4522 and retire them after a number of stop events are reported. Note
4523 this is an heuristic and can thus get confused. The real fix is
4524 to get the "stopped by SW BP and needs adjustment" info out of
4525 the target/kernel (and thus never reach here; see above). */
6c95b8df 4526 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4527 || (target_is_non_stop_p ()
4528 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4529 {
07036511 4530 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4531
8213266a 4532 if (record_full_is_used ())
07036511
TT
4533 restore_operation_disable.emplace
4534 (record_full_gdb_operation_disable_set ());
96429cc8 4535
1c0fdd0e
UW
4536 /* When using hardware single-step, a SIGTRAP is reported for both
4537 a completed single-step and a software breakpoint. Need to
4538 differentiate between the two, as the latter needs adjusting
4539 but the former does not.
4540
4541 The SIGTRAP can be due to a completed hardware single-step only if
4542 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4543 - this thread is currently being stepped
4544
4545 If any of these events did not occur, we must have stopped due
4546 to hitting a software breakpoint, and have to back up to the
4547 breakpoint address.
4548
4549 As a special case, we could have hardware single-stepped a
4550 software breakpoint. In this case (prev_pc == breakpoint_pc),
4551 we also need to back up to the breakpoint address. */
4552
d8dd4d5f
PA
4553 if (thread_has_single_step_breakpoints_set (thread)
4554 || !currently_stepping (thread)
4555 || (thread->stepped_breakpoint
4556 && thread->prev_pc == breakpoint_pc))
515630c5 4557 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4558 }
4fa8626c
DJ
4559}
4560
c4464ade 4561static bool
edb3359d
DJ
4562stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4563{
4564 for (frame = get_prev_frame (frame);
4565 frame != NULL;
4566 frame = get_prev_frame (frame))
4567 {
4568 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4569 return true;
4570
edb3359d
DJ
4571 if (get_frame_type (frame) != INLINE_FRAME)
4572 break;
4573 }
4574
c4464ade 4575 return false;
edb3359d
DJ
4576}
4577
4a4c04f1
BE
4578/* Look for an inline frame that is marked for skip.
4579 If PREV_FRAME is TRUE start at the previous frame,
4580 otherwise start at the current frame. Stop at the
4581 first non-inline frame, or at the frame where the
4582 step started. */
4583
4584static bool
4585inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4586{
4587 struct frame_info *frame = get_current_frame ();
4588
4589 if (prev_frame)
4590 frame = get_prev_frame (frame);
4591
4592 for (; frame != NULL; frame = get_prev_frame (frame))
4593 {
4594 const char *fn = NULL;
4595 symtab_and_line sal;
4596 struct symbol *sym;
4597
4598 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4599 break;
4600 if (get_frame_type (frame) != INLINE_FRAME)
4601 break;
4602
4603 sal = find_frame_sal (frame);
4604 sym = get_frame_function (frame);
4605
4606 if (sym != NULL)
4607 fn = sym->print_name ();
4608
4609 if (sal.line != 0
4610 && function_name_is_marked_for_skip (fn, sal))
4611 return true;
4612 }
4613
4614 return false;
4615}
4616
c65d6b55
PA
4617/* If the event thread has the stop requested flag set, pretend it
4618 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4619 target_stop). */
4620
4621static bool
4622handle_stop_requested (struct execution_control_state *ecs)
4623{
4624 if (ecs->event_thread->stop_requested)
4625 {
183be222 4626 ecs->ws.set_stopped (GDB_SIGNAL_0);
c65d6b55
PA
4627 handle_signal_stop (ecs);
4628 return true;
4629 }
4630 return false;
4631}
4632
a96d9b2e 4633/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4634 It returns true if the inferior should keep going (and GDB
4635 should ignore the event), or false if the event deserves to be
a96d9b2e 4636 processed. */
ca2163eb 4637
c4464ade 4638static bool
ca2163eb 4639handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4640{
ca2163eb 4641 struct regcache *regcache;
ca2163eb
PA
4642 int syscall_number;
4643
00431a78 4644 context_switch (ecs);
ca2163eb 4645
00431a78 4646 regcache = get_thread_regcache (ecs->event_thread);
183be222 4647 syscall_number = ecs->ws.syscall_number ();
1edb66d8 4648 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
ca2163eb 4649
a96d9b2e 4650 if (catch_syscall_enabled () > 0
9fe3819e 4651 && catching_syscall_number (syscall_number))
a96d9b2e 4652 {
1eb8556f 4653 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4654
16c381f0 4655 ecs->event_thread->control.stop_bpstat
d37e0847
PA
4656 = bpstat_stop_status_nowatch (regcache->aspace (),
4657 ecs->event_thread->stop_pc (),
4658 ecs->event_thread, ecs->ws);
ab04a2af 4659
c65d6b55 4660 if (handle_stop_requested (ecs))
c4464ade 4661 return false;
c65d6b55 4662
ce12b012 4663 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4664 {
4665 /* Catchpoint hit. */
c4464ade 4666 return false;
ca2163eb 4667 }
a96d9b2e 4668 }
ca2163eb 4669
c65d6b55 4670 if (handle_stop_requested (ecs))
c4464ade 4671 return false;
c65d6b55 4672
ca2163eb 4673 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4674 keep_going (ecs);
c4464ade
SM
4675
4676 return true;
a96d9b2e
SDJ
4677}
4678
7e324e48
GB
4679/* Lazily fill in the execution_control_state's stop_func_* fields. */
4680
4681static void
4682fill_in_stop_func (struct gdbarch *gdbarch,
4683 struct execution_control_state *ecs)
4684{
4685 if (!ecs->stop_func_filled_in)
4686 {
98a617f8 4687 const block *block;
fe830662 4688 const general_symbol_info *gsi;
98a617f8 4689
7e324e48
GB
4690 /* Don't care about return value; stop_func_start and stop_func_name
4691 will both be 0 if it doesn't work. */
1edb66d8 4692 find_pc_partial_function_sym (ecs->event_thread->stop_pc (),
fe830662
TT
4693 &gsi,
4694 &ecs->stop_func_start,
4695 &ecs->stop_func_end,
4696 &block);
4697 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4698
4699 /* The call to find_pc_partial_function, above, will set
4700 stop_func_start and stop_func_end to the start and end
4701 of the range containing the stop pc. If this range
4702 contains the entry pc for the block (which is always the
4703 case for contiguous blocks), advance stop_func_start past
4704 the function's start offset and entrypoint. Note that
4705 stop_func_start is NOT advanced when in a range of a
4706 non-contiguous block that does not contain the entry pc. */
4707 if (block != nullptr
6395b628
SM
4708 && ecs->stop_func_start <= block->entry_pc ()
4709 && block->entry_pc () < ecs->stop_func_end)
98a617f8
KB
4710 {
4711 ecs->stop_func_start
4712 += gdbarch_deprecated_function_start_offset (gdbarch);
4713
4714 if (gdbarch_skip_entrypoint_p (gdbarch))
4715 ecs->stop_func_start
4716 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4717 }
591a12a1 4718
7e324e48
GB
4719 ecs->stop_func_filled_in = 1;
4720 }
4721}
4722
4f5d7f63 4723
00431a78 4724/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4725
4726static enum stop_kind
00431a78 4727get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4728{
5b6d1e4f 4729 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4730
4731 gdb_assert (inf != NULL);
4732 return inf->control.stop_soon;
4733}
4734
5b6d1e4f
PA
4735/* Poll for one event out of the current target. Store the resulting
4736 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4737
4738static ptid_t
5b6d1e4f 4739poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4740{
4741 ptid_t event_ptid;
372316f1
PA
4742
4743 overlay_cache_invalid = 1;
4744
4745 /* Flush target cache before starting to handle each event.
4746 Target was running and cache could be stale. This is just a
4747 heuristic. Running threads may modify target memory, but we
4748 don't get any event. */
4749 target_dcache_invalidate ();
4750
fb85cece 4751 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4752
4753 if (debug_infrun)
c272a98c 4754 print_target_wait_results (minus_one_ptid, event_ptid, *ws);
372316f1
PA
4755
4756 return event_ptid;
4757}
4758
5b6d1e4f
PA
4759/* Wait for one event out of any target. */
4760
4761static wait_one_event
4762wait_one ()
4763{
4764 while (1)
4765 {
4766 for (inferior *inf : all_inferiors ())
4767 {
4768 process_stratum_target *target = inf->process_target ();
4769 if (target == NULL
4770 || !target->is_async_p ()
4771 || !target->threads_executing)
4772 continue;
4773
4774 switch_to_inferior_no_thread (inf);
4775
4776 wait_one_event event;
4777 event.target = target;
4778 event.ptid = poll_one_curr_target (&event.ws);
4779
183be222 4780 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
4781 {
4782 /* If nothing is resumed, remove the target from the
4783 event loop. */
4a570176 4784 target_async (false);
5b6d1e4f 4785 }
183be222 4786 else if (event.ws.kind () != TARGET_WAITKIND_IGNORE)
5b6d1e4f
PA
4787 return event;
4788 }
4789
4790 /* Block waiting for some event. */
4791
4792 fd_set readfds;
4793 int nfds = 0;
4794
4795 FD_ZERO (&readfds);
4796
4797 for (inferior *inf : all_inferiors ())
4798 {
4799 process_stratum_target *target = inf->process_target ();
4800 if (target == NULL
4801 || !target->is_async_p ()
4802 || !target->threads_executing)
4803 continue;
4804
4805 int fd = target->async_wait_fd ();
4806 FD_SET (fd, &readfds);
4807 if (nfds <= fd)
4808 nfds = fd + 1;
4809 }
4810
4811 if (nfds == 0)
4812 {
4813 /* No waitable targets left. All must be stopped. */
183be222
SM
4814 target_waitstatus ws;
4815 ws.set_no_resumed ();
4816 return {NULL, minus_one_ptid, std::move (ws)};
5b6d1e4f
PA
4817 }
4818
4819 QUIT;
4820
4821 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4822 if (numfds < 0)
4823 {
4824 if (errno == EINTR)
4825 continue;
4826 else
4827 perror_with_name ("interruptible_select");
4828 }
4829 }
4830}
4831
372316f1
PA
4832/* Save the thread's event and stop reason to process it later. */
4833
4834static void
c272a98c 4835save_waitstatus (struct thread_info *tp, const target_waitstatus &ws)
372316f1 4836{
96bbe3ef 4837 infrun_debug_printf ("saving status %s for %s",
c272a98c 4838 ws.to_string ().c_str (),
96bbe3ef 4839 tp->ptid.to_string ().c_str ());
372316f1
PA
4840
4841 /* Record for later. */
c272a98c 4842 tp->set_pending_waitstatus (ws);
372316f1 4843
c272a98c
SM
4844 if (ws.kind () == TARGET_WAITKIND_STOPPED
4845 && ws.sig () == GDB_SIGNAL_TRAP)
372316f1 4846 {
89ba430c
SM
4847 struct regcache *regcache = get_thread_regcache (tp);
4848 const address_space *aspace = regcache->aspace ();
372316f1
PA
4849 CORE_ADDR pc = regcache_read_pc (regcache);
4850
c272a98c 4851 adjust_pc_after_break (tp, tp->pending_waitstatus ());
372316f1 4852
18493a00
PA
4853 scoped_restore_current_thread restore_thread;
4854 switch_to_thread (tp);
4855
4856 if (target_stopped_by_watchpoint ())
1edb66d8 4857 tp->set_stop_reason (TARGET_STOPPED_BY_WATCHPOINT);
372316f1 4858 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4859 && target_stopped_by_sw_breakpoint ())
1edb66d8 4860 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
372316f1 4861 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4862 && target_stopped_by_hw_breakpoint ())
1edb66d8 4863 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
372316f1 4864 else if (!target_supports_stopped_by_hw_breakpoint ()
1edb66d8
SM
4865 && hardware_breakpoint_inserted_here_p (aspace, pc))
4866 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
372316f1 4867 else if (!target_supports_stopped_by_sw_breakpoint ()
1edb66d8
SM
4868 && software_breakpoint_inserted_here_p (aspace, pc))
4869 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
372316f1
PA
4870 else if (!thread_has_single_step_breakpoints_set (tp)
4871 && currently_stepping (tp))
1edb66d8 4872 tp->set_stop_reason (TARGET_STOPPED_BY_SINGLE_STEP);
372316f1
PA
4873 }
4874}
4875
293b3ebc
TBA
4876/* Mark the non-executing threads accordingly. In all-stop, all
4877 threads of all processes are stopped when we get any event
4878 reported. In non-stop mode, only the event thread stops. */
4879
4880static void
4881mark_non_executing_threads (process_stratum_target *target,
4882 ptid_t event_ptid,
183be222 4883 const target_waitstatus &ws)
293b3ebc
TBA
4884{
4885 ptid_t mark_ptid;
4886
4887 if (!target_is_non_stop_p ())
4888 mark_ptid = minus_one_ptid;
183be222
SM
4889 else if (ws.kind () == TARGET_WAITKIND_SIGNALLED
4890 || ws.kind () == TARGET_WAITKIND_EXITED)
293b3ebc
TBA
4891 {
4892 /* If we're handling a process exit in non-stop mode, even
4893 though threads haven't been deleted yet, one would think
4894 that there is nothing to do, as threads of the dead process
4895 will be soon deleted, and threads of any other process were
4896 left running. However, on some targets, threads survive a
4897 process exit event. E.g., for the "checkpoint" command,
4898 when the current checkpoint/fork exits, linux-fork.c
4899 automatically switches to another fork from within
4900 target_mourn_inferior, by associating the same
4901 inferior/thread to another fork. We haven't mourned yet at
4902 this point, but we must mark any threads left in the
4903 process as not-executing so that finish_thread_state marks
4904 them stopped (in the user's perspective) if/when we present
4905 the stop to the user. */
4906 mark_ptid = ptid_t (event_ptid.pid ());
4907 }
4908 else
4909 mark_ptid = event_ptid;
4910
4911 set_executing (target, mark_ptid, false);
4912
4913 /* Likewise the resumed flag. */
4914 set_resumed (target, mark_ptid, false);
4915}
4916
d758e62c
PA
4917/* Handle one event after stopping threads. If the eventing thread
4918 reports back any interesting event, we leave it pending. If the
4919 eventing thread was in the middle of a displaced step, we
8ff53139
PA
4920 cancel/finish it, and unless the thread's inferior is being
4921 detached, put the thread back in the step-over chain. Returns true
4922 if there are no resumed threads left in the target (thus there's no
4923 point in waiting further), false otherwise. */
d758e62c
PA
4924
4925static bool
4926handle_one (const wait_one_event &event)
4927{
4928 infrun_debug_printf
7dca2ea7 4929 ("%s %s", event.ws.to_string ().c_str (),
0fab7955 4930 event.ptid.to_string ().c_str ());
d758e62c 4931
183be222 4932 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
d758e62c
PA
4933 {
4934 /* All resumed threads exited. */
4935 return true;
4936 }
183be222
SM
4937 else if (event.ws.kind () == TARGET_WAITKIND_THREAD_EXITED
4938 || event.ws.kind () == TARGET_WAITKIND_EXITED
4939 || event.ws.kind () == TARGET_WAITKIND_SIGNALLED)
d758e62c
PA
4940 {
4941 /* One thread/process exited/signalled. */
4942
4943 thread_info *t = nullptr;
4944
4945 /* The target may have reported just a pid. If so, try
4946 the first non-exited thread. */
4947 if (event.ptid.is_pid ())
4948 {
4949 int pid = event.ptid.pid ();
4950 inferior *inf = find_inferior_pid (event.target, pid);
4951 for (thread_info *tp : inf->non_exited_threads ())
4952 {
4953 t = tp;
4954 break;
4955 }
4956
4957 /* If there is no available thread, the event would
4958 have to be appended to a per-inferior event list,
4959 which does not exist (and if it did, we'd have
4960 to adjust run control command to be able to
4961 resume such an inferior). We assert here instead
4962 of going into an infinite loop. */
4963 gdb_assert (t != nullptr);
4964
4965 infrun_debug_printf
0fab7955 4966 ("using %s", t->ptid.to_string ().c_str ());
d758e62c
PA
4967 }
4968 else
4969 {
4970 t = find_thread_ptid (event.target, event.ptid);
4971 /* Check if this is the first time we see this thread.
4972 Don't bother adding if it individually exited. */
4973 if (t == nullptr
183be222 4974 && event.ws.kind () != TARGET_WAITKIND_THREAD_EXITED)
d758e62c
PA
4975 t = add_thread (event.target, event.ptid);
4976 }
4977
4978 if (t != nullptr)
4979 {
4980 /* Set the threads as non-executing to avoid
4981 another stop attempt on them. */
4982 switch_to_thread_no_regs (t);
4983 mark_non_executing_threads (event.target, event.ptid,
4984 event.ws);
c272a98c 4985 save_waitstatus (t, event.ws);
d758e62c
PA
4986 t->stop_requested = false;
4987 }
4988 }
4989 else
4990 {
4991 thread_info *t = find_thread_ptid (event.target, event.ptid);
4992 if (t == NULL)
4993 t = add_thread (event.target, event.ptid);
4994
4995 t->stop_requested = 0;
611841bb 4996 t->set_executing (false);
7846f3aa 4997 t->set_resumed (false);
d758e62c
PA
4998 t->control.may_range_step = 0;
4999
5000 /* This may be the first time we see the inferior report
5001 a stop. */
3db13541 5002 if (t->inf->needs_setup)
d758e62c
PA
5003 {
5004 switch_to_thread_no_regs (t);
5005 setup_inferior (0);
5006 }
5007
183be222
SM
5008 if (event.ws.kind () == TARGET_WAITKIND_STOPPED
5009 && event.ws.sig () == GDB_SIGNAL_0)
d758e62c
PA
5010 {
5011 /* We caught the event that we intended to catch, so
1edb66d8 5012 there's no event to save as pending. */
d758e62c
PA
5013
5014 if (displaced_step_finish (t, GDB_SIGNAL_0)
5015 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
5016 {
5017 /* Add it back to the step-over queue. */
5018 infrun_debug_printf
5019 ("displaced-step of %s canceled",
0fab7955 5020 t->ptid.to_string ().c_str ());
d758e62c
PA
5021
5022 t->control.trap_expected = 0;
8ff53139
PA
5023 if (!t->inf->detaching)
5024 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
5025 }
5026 }
5027 else
5028 {
5029 enum gdb_signal sig;
5030 struct regcache *regcache;
5031
5032 infrun_debug_printf
96bbe3ef 5033 ("target_wait %s, saving status for %s",
7dca2ea7 5034 event.ws.to_string ().c_str (),
96bbe3ef 5035 t->ptid.to_string ().c_str ());
d758e62c
PA
5036
5037 /* Record for later. */
c272a98c 5038 save_waitstatus (t, event.ws);
d758e62c 5039
183be222
SM
5040 sig = (event.ws.kind () == TARGET_WAITKIND_STOPPED
5041 ? event.ws.sig () : GDB_SIGNAL_0);
d758e62c
PA
5042
5043 if (displaced_step_finish (t, sig)
5044 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
5045 {
5046 /* Add it back to the step-over queue. */
5047 t->control.trap_expected = 0;
8ff53139
PA
5048 if (!t->inf->detaching)
5049 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
5050 }
5051
5052 regcache = get_thread_regcache (t);
1edb66d8 5053 t->set_stop_pc (regcache_read_pc (regcache));
d758e62c
PA
5054
5055 infrun_debug_printf ("saved stop_pc=%s for %s "
5056 "(currently_stepping=%d)",
1edb66d8 5057 paddress (target_gdbarch (), t->stop_pc ()),
0fab7955 5058 t->ptid.to_string ().c_str (),
d758e62c
PA
5059 currently_stepping (t));
5060 }
5061 }
5062
5063 return false;
5064}
5065
6efcd9a8 5066/* See infrun.h. */
372316f1 5067
6efcd9a8 5068void
148cf134 5069stop_all_threads (const char *reason, inferior *inf)
372316f1
PA
5070{
5071 /* We may need multiple passes to discover all threads. */
5072 int pass;
5073 int iterations = 0;
372316f1 5074
53cccef1 5075 gdb_assert (exists_non_stop_target ());
372316f1 5076
148cf134
SM
5077 INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason,
5078 inf != nullptr ? inf->num : -1);
372316f1 5079
1f9d9e32
AB
5080 infrun_debug_show_threads ("non-exited threads",
5081 all_non_exited_threads ());
5082
00431a78 5083 scoped_restore_current_thread restore_thread;
372316f1 5084
148cf134 5085 /* Enable thread events on relevant targets. */
6ad82919
TBA
5086 for (auto *target : all_non_exited_process_targets ())
5087 {
148cf134
SM
5088 if (inf != nullptr && inf->process_target () != target)
5089 continue;
5090
6ad82919
TBA
5091 switch_to_target_no_thread (target);
5092 target_thread_events (true);
5093 }
5094
5095 SCOPE_EXIT
5096 {
148cf134 5097 /* Disable thread events on relevant targets. */
6ad82919
TBA
5098 for (auto *target : all_non_exited_process_targets ())
5099 {
148cf134
SM
5100 if (inf != nullptr && inf->process_target () != target)
5101 continue;
5102
6ad82919
TBA
5103 switch_to_target_no_thread (target);
5104 target_thread_events (false);
5105 }
5106
17417fb0 5107 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 5108 name. */
6ad82919 5109 if (debug_infrun)
17417fb0 5110 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 5111 };
65706a29 5112
372316f1
PA
5113 /* Request threads to stop, and then wait for the stops. Because
5114 threads we already know about can spawn more threads while we're
5115 trying to stop them, and we only learn about new threads when we
5116 update the thread list, do this in a loop, and keep iterating
5117 until two passes find no threads that need to be stopped. */
5118 for (pass = 0; pass < 2; pass++, iterations++)
5119 {
1eb8556f 5120 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
5121 while (1)
5122 {
29d6859f 5123 int waits_needed = 0;
372316f1 5124
a05575d3
TBA
5125 for (auto *target : all_non_exited_process_targets ())
5126 {
148cf134
SM
5127 if (inf != nullptr && inf->process_target () != target)
5128 continue;
5129
a05575d3
TBA
5130 switch_to_target_no_thread (target);
5131 update_thread_list ();
5132 }
372316f1
PA
5133
5134 /* Go through all threads looking for threads that we need
5135 to tell the target to stop. */
08036331 5136 for (thread_info *t : all_non_exited_threads ())
372316f1 5137 {
148cf134
SM
5138 if (inf != nullptr && t->inf != inf)
5139 continue;
5140
53cccef1
TBA
5141 /* For a single-target setting with an all-stop target,
5142 we would not even arrive here. For a multi-target
5143 setting, until GDB is able to handle a mixture of
5144 all-stop and non-stop targets, simply skip all-stop
5145 targets' threads. This should be fine due to the
5146 protection of 'check_multi_target_resumption'. */
5147
5148 switch_to_thread_no_regs (t);
5149 if (!target_is_non_stop_p ())
5150 continue;
5151
611841bb 5152 if (t->executing ())
372316f1
PA
5153 {
5154 /* If already stopping, don't request a stop again.
5155 We just haven't seen the notification yet. */
5156 if (!t->stop_requested)
5157 {
1eb8556f 5158 infrun_debug_printf (" %s executing, need stop",
0fab7955 5159 t->ptid.to_string ().c_str ());
372316f1
PA
5160 target_stop (t->ptid);
5161 t->stop_requested = 1;
5162 }
5163 else
5164 {
1eb8556f 5165 infrun_debug_printf (" %s executing, already stopping",
0fab7955 5166 t->ptid.to_string ().c_str ());
372316f1
PA
5167 }
5168
5169 if (t->stop_requested)
29d6859f 5170 waits_needed++;
372316f1
PA
5171 }
5172 else
5173 {
1eb8556f 5174 infrun_debug_printf (" %s not executing",
0fab7955 5175 t->ptid.to_string ().c_str ());
372316f1
PA
5176
5177 /* The thread may be not executing, but still be
5178 resumed with a pending status to process. */
7846f3aa 5179 t->set_resumed (false);
372316f1
PA
5180 }
5181 }
5182
29d6859f 5183 if (waits_needed == 0)
372316f1
PA
5184 break;
5185
5186 /* If we find new threads on the second iteration, restart
5187 over. We want to see two iterations in a row with all
5188 threads stopped. */
5189 if (pass > 0)
5190 pass = -1;
5191
29d6859f 5192 for (int i = 0; i < waits_needed; i++)
c29705b7 5193 {
29d6859f 5194 wait_one_event event = wait_one ();
d758e62c
PA
5195 if (handle_one (event))
5196 break;
372316f1
PA
5197 }
5198 }
5199 }
372316f1
PA
5200}
5201
f4836ba9
PA
5202/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5203
c4464ade 5204static bool
f4836ba9
PA
5205handle_no_resumed (struct execution_control_state *ecs)
5206{
3b12939d 5207 if (target_can_async_p ())
f4836ba9 5208 {
c4464ade 5209 bool any_sync = false;
f4836ba9 5210
2dab0c7b 5211 for (ui *ui : all_uis ())
3b12939d
PA
5212 {
5213 if (ui->prompt_state == PROMPT_BLOCKED)
5214 {
c4464ade 5215 any_sync = true;
3b12939d
PA
5216 break;
5217 }
5218 }
5219 if (!any_sync)
5220 {
5221 /* There were no unwaited-for children left in the target, but,
5222 we're not synchronously waiting for events either. Just
5223 ignore. */
5224
1eb8556f 5225 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 5226 prepare_to_wait (ecs);
c4464ade 5227 return true;
3b12939d 5228 }
f4836ba9
PA
5229 }
5230
5231 /* Otherwise, if we were running a synchronous execution command, we
5232 may need to cancel it and give the user back the terminal.
5233
5234 In non-stop mode, the target can't tell whether we've already
5235 consumed previous stop events, so it can end up sending us a
5236 no-resumed event like so:
5237
5238 #0 - thread 1 is left stopped
5239
5240 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 5241 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
5242
5243 #2 - thread 3 is resumed and exits
dda83cd7 5244 this is the last resumed thread, so
f4836ba9
PA
5245 -> TARGET_WAITKIND_NO_RESUMED
5246
5247 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 5248 it.
f4836ba9
PA
5249
5250 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 5251 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
5252
5253 IOW, if the stop for thread 2 doesn't end a foreground command,
5254 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5255 event. But it could be that the event meant that thread 2 itself
5256 (or whatever other thread was the last resumed thread) exited.
5257
5258 To address this we refresh the thread list and check whether we
5259 have resumed threads _now_. In the example above, this removes
5260 thread 3 from the thread list. If thread 2 was re-resumed, we
5261 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
5262 the synchronous command and show "no unwaited-for " to the
5263 user. */
f4836ba9 5264
d6cc5d98 5265 inferior *curr_inf = current_inferior ();
7d3badc6 5266
d6cc5d98 5267 scoped_restore_current_thread restore_thread;
1e864019 5268 update_thread_list ();
d6cc5d98
PA
5269
5270 /* If:
5271
5272 - the current target has no thread executing, and
5273 - the current inferior is native, and
5274 - the current inferior is the one which has the terminal, and
5275 - we did nothing,
5276
5277 then a Ctrl-C from this point on would remain stuck in the
5278 kernel, until a thread resumes and dequeues it. That would
5279 result in the GDB CLI not reacting to Ctrl-C, not able to
5280 interrupt the program. To address this, if the current inferior
5281 no longer has any thread executing, we give the terminal to some
5282 other inferior that has at least one thread executing. */
5283 bool swap_terminal = true;
5284
5285 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5286 whether to report it to the user. */
5287 bool ignore_event = false;
7d3badc6
PA
5288
5289 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5290 {
611841bb 5291 if (swap_terminal && thread->executing ())
d6cc5d98
PA
5292 {
5293 if (thread->inf != curr_inf)
5294 {
5295 target_terminal::ours ();
5296
5297 switch_to_thread (thread);
5298 target_terminal::inferior ();
5299 }
5300 swap_terminal = false;
5301 }
5302
4d772ea2 5303 if (!ignore_event && thread->resumed ())
f4836ba9 5304 {
7d3badc6
PA
5305 /* Either there were no unwaited-for children left in the
5306 target at some point, but there are now, or some target
5307 other than the eventing one has unwaited-for children
5308 left. Just ignore. */
1eb8556f
SM
5309 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5310 "(ignoring: found resumed)");
d6cc5d98
PA
5311
5312 ignore_event = true;
f4836ba9 5313 }
d6cc5d98
PA
5314
5315 if (ignore_event && !swap_terminal)
5316 break;
5317 }
5318
5319 if (ignore_event)
5320 {
5321 switch_to_inferior_no_thread (curr_inf);
5322 prepare_to_wait (ecs);
c4464ade 5323 return true;
f4836ba9
PA
5324 }
5325
5326 /* Go ahead and report the event. */
c4464ade 5327 return false;
f4836ba9
PA
5328}
5329
05ba8510
PA
5330/* Given an execution control state that has been freshly filled in by
5331 an event from the inferior, figure out what it means and take
5332 appropriate action.
5333
5334 The alternatives are:
5335
22bcd14b 5336 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5337 debugger.
5338
5339 2) keep_going and return; to wait for the next event (set
5340 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5341 once). */
c906108c 5342
ec9499be 5343static void
595915c1 5344handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5345{
595915c1
TT
5346 /* Make sure that all temporary struct value objects that were
5347 created during the handling of the event get deleted at the
5348 end. */
5349 scoped_value_mark free_values;
5350
7dca2ea7 5351 infrun_debug_printf ("%s", ecs->ws.to_string ().c_str ());
c29705b7 5352
183be222 5353 if (ecs->ws.kind () == TARGET_WAITKIND_IGNORE)
28736962
PA
5354 {
5355 /* We had an event in the inferior, but we are not interested in
5356 handling it at this level. The lower layers have already
5357 done what needs to be done, if anything.
5358
5359 One of the possible circumstances for this is when the
5360 inferior produces output for the console. The inferior has
5361 not stopped, and we are ignoring the event. Another possible
5362 circumstance is any event which the lower level knows will be
5363 reported multiple times without an intervening resume. */
28736962
PA
5364 prepare_to_wait (ecs);
5365 return;
5366 }
5367
183be222 5368 if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
65706a29 5369 {
65706a29
PA
5370 prepare_to_wait (ecs);
5371 return;
5372 }
5373
183be222 5374 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5375 && handle_no_resumed (ecs))
5376 return;
0e5bf2a8 5377
5b6d1e4f
PA
5378 /* Cache the last target/ptid/waitstatus. */
5379 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5380
ca005067 5381 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5382 stop_stack_dummy = STOP_NONE;
ca005067 5383
183be222 5384 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED)
0e5bf2a8
PA
5385 {
5386 /* No unwaited-for children left. IOW, all resumed children
5387 have exited. */
c4464ade 5388 stop_print_frame = false;
22bcd14b 5389 stop_waiting (ecs);
0e5bf2a8
PA
5390 return;
5391 }
5392
183be222
SM
5393 if (ecs->ws.kind () != TARGET_WAITKIND_EXITED
5394 && ecs->ws.kind () != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5395 {
5b6d1e4f 5396 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5397 /* If it's a new thread, add it to the thread database. */
5398 if (ecs->event_thread == NULL)
5b6d1e4f 5399 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5400
5401 /* Disable range stepping. If the next step request could use a
5402 range, this will be end up re-enabled then. */
5403 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5404 }
88ed393a
JK
5405
5406 /* Dependent on valid ECS->EVENT_THREAD. */
c272a98c 5407 adjust_pc_after_break (ecs->event_thread, ecs->ws);
88ed393a
JK
5408
5409 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5410 reinit_frame_cache ();
5411
28736962
PA
5412 breakpoint_retire_moribund ();
5413
2b009048
DJ
5414 /* First, distinguish signals caused by the debugger from signals
5415 that have to do with the program's own actions. Note that
5416 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5417 on the operating system version. Here we detect when a SIGILL or
5418 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5419 something similar for SIGSEGV, since a SIGSEGV will be generated
5420 when we're trying to execute a breakpoint instruction on a
5421 non-executable stack. This happens for call dummy breakpoints
5422 for architectures like SPARC that place call dummies on the
5423 stack. */
183be222
SM
5424 if (ecs->ws.kind () == TARGET_WAITKIND_STOPPED
5425 && (ecs->ws.sig () == GDB_SIGNAL_ILL
5426 || ecs->ws.sig () == GDB_SIGNAL_SEGV
5427 || ecs->ws.sig () == GDB_SIGNAL_EMT))
2b009048 5428 {
00431a78 5429 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5430
a01bda52 5431 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5432 regcache_read_pc (regcache)))
5433 {
1eb8556f 5434 infrun_debug_printf ("Treating signal as SIGTRAP");
183be222 5435 ecs->ws.set_stopped (GDB_SIGNAL_TRAP);
de0a0249 5436 }
2b009048
DJ
5437 }
5438
293b3ebc 5439 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5440
183be222 5441 switch (ecs->ws.kind ())
488f131b
JB
5442 {
5443 case TARGET_WAITKIND_LOADED:
72d383bb
SM
5444 {
5445 context_switch (ecs);
5446 /* Ignore gracefully during startup of the inferior, as it might
5447 be the shell which has just loaded some objects, otherwise
5448 add the symbols for the newly loaded objects. Also ignore at
5449 the beginning of an attach or remote session; we will query
5450 the full list of libraries once the connection is
5451 established. */
5452
5453 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5454 if (stop_soon == NO_STOP_QUIETLY)
5455 {
5456 struct regcache *regcache;
edcc5120 5457
72d383bb 5458 regcache = get_thread_regcache (ecs->event_thread);
edcc5120 5459
72d383bb 5460 handle_solib_event ();
ab04a2af 5461
9279eb5c 5462 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
72d383bb 5463 ecs->event_thread->control.stop_bpstat
d37e0847
PA
5464 = bpstat_stop_status_nowatch (regcache->aspace (),
5465 ecs->event_thread->stop_pc (),
5466 ecs->event_thread, ecs->ws);
c65d6b55 5467
72d383bb 5468 if (handle_stop_requested (ecs))
94c57d6a 5469 return;
488f131b 5470
72d383bb
SM
5471 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5472 {
5473 /* A catchpoint triggered. */
5474 process_event_stop_test (ecs);
5475 return;
5476 }
55409f9d 5477
72d383bb
SM
5478 /* If requested, stop when the dynamic linker notifies
5479 gdb of events. This allows the user to get control
5480 and place breakpoints in initializer routines for
5481 dynamically loaded objects (among other things). */
1edb66d8 5482 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
72d383bb
SM
5483 if (stop_on_solib_events)
5484 {
5485 /* Make sure we print "Stopped due to solib-event" in
5486 normal_stop. */
5487 stop_print_frame = true;
b0f4b84b 5488
72d383bb
SM
5489 stop_waiting (ecs);
5490 return;
5491 }
5492 }
b0f4b84b 5493
72d383bb
SM
5494 /* If we are skipping through a shell, or through shared library
5495 loading that we aren't interested in, resume the program. If
5496 we're running the program normally, also resume. */
5497 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5498 {
5499 /* Loading of shared libraries might have changed breakpoint
5500 addresses. Make sure new breakpoints are inserted. */
5501 if (stop_soon == NO_STOP_QUIETLY)
5502 insert_breakpoints ();
5503 resume (GDB_SIGNAL_0);
5504 prepare_to_wait (ecs);
5505 return;
5506 }
5c09a2c5 5507
72d383bb
SM
5508 /* But stop if we're attaching or setting up a remote
5509 connection. */
5510 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5511 || stop_soon == STOP_QUIETLY_REMOTE)
5512 {
5513 infrun_debug_printf ("quietly stopped");
5514 stop_waiting (ecs);
5515 return;
5516 }
5517
5518 internal_error (__FILE__, __LINE__,
5519 _("unhandled stop_soon: %d"), (int) stop_soon);
5520 }
c5aa993b 5521
488f131b 5522 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5523 if (handle_stop_requested (ecs))
5524 return;
00431a78 5525 context_switch (ecs);
64ce06e4 5526 resume (GDB_SIGNAL_0);
488f131b
JB
5527 prepare_to_wait (ecs);
5528 return;
c5aa993b 5529
65706a29 5530 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5531 if (handle_stop_requested (ecs))
5532 return;
00431a78 5533 context_switch (ecs);
65706a29
PA
5534 if (!switch_back_to_stepped_thread (ecs))
5535 keep_going (ecs);
5536 return;
5537
488f131b 5538 case TARGET_WAITKIND_EXITED:
940c3c06 5539 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5540 {
5541 /* Depending on the system, ecs->ptid may point to a thread or
5542 to a process. On some targets, target_mourn_inferior may
5543 need to have access to the just-exited thread. That is the
5544 case of GNU/Linux's "checkpoint" support, for example.
5545 Call the switch_to_xxx routine as appropriate. */
5546 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5547 if (thr != nullptr)
5548 switch_to_thread (thr);
5549 else
5550 {
5551 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5552 switch_to_inferior_no_thread (inf);
5553 }
5554 }
6c95b8df 5555 handle_vfork_child_exec_or_exit (0);
223ffa71 5556 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5557
0c557179
SDJ
5558 /* Clearing any previous state of convenience variables. */
5559 clear_exit_convenience_vars ();
5560
183be222 5561 if (ecs->ws.kind () == TARGET_WAITKIND_EXITED)
940c3c06
PA
5562 {
5563 /* Record the exit code in the convenience variable $_exitcode, so
5564 that the user can inspect this again later. */
5565 set_internalvar_integer (lookup_internalvar ("_exitcode"),
183be222 5566 (LONGEST) ecs->ws.exit_status ());
940c3c06
PA
5567
5568 /* Also record this in the inferior itself. */
5569 current_inferior ()->has_exit_code = 1;
183be222 5570 current_inferior ()->exit_code = (LONGEST) ecs->ws.exit_status ();
8cf64490 5571
98eb56a4 5572 /* Support the --return-child-result option. */
183be222 5573 return_child_result_value = ecs->ws.exit_status ();
98eb56a4 5574
183be222 5575 gdb::observers::exited.notify (ecs->ws.exit_status ());
940c3c06
PA
5576 }
5577 else
0c557179 5578 {
00431a78 5579 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5580
5581 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5582 {
5583 /* Set the value of the internal variable $_exitsignal,
5584 which holds the signal uncaught by the inferior. */
5585 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5586 gdbarch_gdb_signal_to_target (gdbarch,
183be222 5587 ecs->ws.sig ()));
0c557179
SDJ
5588 }
5589 else
5590 {
5591 /* We don't have access to the target's method used for
5592 converting between signal numbers (GDB's internal
5593 representation <-> target's representation).
5594 Therefore, we cannot do a good job at displaying this
5595 information to the user. It's better to just warn
5596 her about it (if infrun debugging is enabled), and
5597 give up. */
1eb8556f
SM
5598 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5599 "signal number.");
0c557179
SDJ
5600 }
5601
183be222 5602 gdb::observers::signal_exited.notify (ecs->ws.sig ());
0c557179 5603 }
8cf64490 5604
488f131b 5605 gdb_flush (gdb_stdout);
bc1e6c81 5606 target_mourn_inferior (inferior_ptid);
c4464ade 5607 stop_print_frame = false;
22bcd14b 5608 stop_waiting (ecs);
488f131b 5609 return;
c5aa993b 5610
488f131b 5611 case TARGET_WAITKIND_FORKED:
deb3b17b 5612 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5613 /* Check whether the inferior is displaced stepping. */
5614 {
00431a78 5615 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5616 struct gdbarch *gdbarch = regcache->arch ();
c0aba012 5617 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639 5618
aeeb758d
JB
5619 /* If this is a fork (child gets its own address space copy)
5620 and some displaced step buffers were in use at the time of
5621 the fork, restore the displaced step buffer bytes in the
5622 child process.
5623
5624 Architectures which support displaced stepping and fork
5625 events must supply an implementation of
5626 gdbarch_displaced_step_restore_all_in_ptid. This is not
5627 enforced during gdbarch validation to support architectures
5628 which support displaced stepping but not forks. */
183be222 5629 if (ecs->ws.kind () == TARGET_WAITKIND_FORKED
aeeb758d 5630 && gdbarch_supports_displaced_stepping (gdbarch))
187b041e 5631 gdbarch_displaced_step_restore_all_in_ptid
183be222 5632 (gdbarch, parent_inf, ecs->ws.child_ptid ());
c0aba012
SM
5633
5634 /* If displaced stepping is supported, and thread ecs->ptid is
5635 displaced stepping. */
00431a78 5636 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639 5637 {
e2d96639
YQ
5638 struct regcache *child_regcache;
5639 CORE_ADDR parent_pc;
5640
5641 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5642 indicating that the displaced stepping of syscall instruction
5643 has been done. Perform cleanup for parent process here. Note
5644 that this operation also cleans up the child process for vfork,
5645 because their pages are shared. */
7def77a1 5646 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5647 /* Start a new step-over in another thread if there's one
5648 that needs it. */
5649 start_step_over ();
e2d96639 5650
e2d96639
YQ
5651 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5652 the child's PC is also within the scratchpad. Set the child's PC
5653 to the parent's PC value, which has already been fixed up.
5654 FIXME: we use the parent's aspace here, although we're touching
5655 the child, because the child hasn't been added to the inferior
5656 list yet at this point. */
5657
5658 child_regcache
5b6d1e4f 5659 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
183be222 5660 ecs->ws.child_ptid (),
e2d96639
YQ
5661 gdbarch,
5662 parent_inf->aspace);
5663 /* Read PC value of parent process. */
5664 parent_pc = regcache_read_pc (regcache);
5665
136821d9
SM
5666 displaced_debug_printf ("write child pc from %s to %s",
5667 paddress (gdbarch,
5668 regcache_read_pc (child_regcache)),
5669 paddress (gdbarch, parent_pc));
e2d96639
YQ
5670
5671 regcache_write_pc (child_regcache, parent_pc);
5672 }
5673 }
5674
00431a78 5675 context_switch (ecs);
5a2901d9 5676
b242c3c2
PA
5677 /* Immediately detach breakpoints from the child before there's
5678 any chance of letting the user delete breakpoints from the
5679 breakpoint lists. If we don't do this early, it's easy to
5680 leave left over traps in the child, vis: "break foo; catch
5681 fork; c; <fork>; del; c; <child calls foo>". We only follow
5682 the fork on the last `continue', and by that time the
5683 breakpoint at "foo" is long gone from the breakpoint table.
5684 If we vforked, then we don't need to unpatch here, since both
5685 parent and child are sharing the same memory pages; we'll
5686 need to unpatch at follow/detach time instead to be certain
5687 that new breakpoints added between catchpoint hit time and
5688 vfork follow are detached. */
183be222 5689 if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED)
b242c3c2 5690 {
b242c3c2
PA
5691 /* This won't actually modify the breakpoint list, but will
5692 physically remove the breakpoints from the child. */
183be222 5693 detach_breakpoints (ecs->ws.child_ptid ());
b242c3c2
PA
5694 }
5695
34b7e8a6 5696 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5697
e58b0e63
PA
5698 /* In case the event is caught by a catchpoint, remember that
5699 the event is to be followed at the next resume of the thread,
5700 and not immediately. */
5701 ecs->event_thread->pending_follow = ecs->ws;
5702
1edb66d8
SM
5703 ecs->event_thread->set_stop_pc
5704 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
675bf4cb 5705
16c381f0 5706 ecs->event_thread->control.stop_bpstat
d37e0847
PA
5707 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5708 ecs->event_thread->stop_pc (),
5709 ecs->event_thread, ecs->ws);
675bf4cb 5710
c65d6b55
PA
5711 if (handle_stop_requested (ecs))
5712 return;
5713
ce12b012
PA
5714 /* If no catchpoint triggered for this, then keep going. Note
5715 that we're interested in knowing the bpstat actually causes a
5716 stop, not just if it may explain the signal. Software
5717 watchpoints, for example, always appear in the bpstat. */
5718 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5719 {
5ab2fbf1 5720 bool follow_child
3e43a32a 5721 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5722
1edb66d8 5723 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
e58b0e63 5724
5b6d1e4f
PA
5725 process_stratum_target *targ
5726 = ecs->event_thread->inf->process_target ();
5727
5ab2fbf1 5728 bool should_resume = follow_fork ();
e58b0e63 5729
5b6d1e4f
PA
5730 /* Note that one of these may be an invalid pointer,
5731 depending on detach_fork. */
00431a78 5732 thread_info *parent = ecs->event_thread;
183be222 5733 thread_info *child = find_thread_ptid (targ, ecs->ws.child_ptid ());
6c95b8df 5734
a2077e25
PA
5735 /* At this point, the parent is marked running, and the
5736 child is marked stopped. */
5737
5738 /* If not resuming the parent, mark it stopped. */
5739 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5740 parent->set_running (false);
a2077e25
PA
5741
5742 /* If resuming the child, mark it running. */
5743 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5744 child->set_running (true);
a2077e25 5745
6c95b8df 5746 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5747 if (!detach_fork && (non_stop
5748 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5749 {
5750 if (follow_child)
5751 switch_to_thread (parent);
5752 else
5753 switch_to_thread (child);
5754
5755 ecs->event_thread = inferior_thread ();
5756 ecs->ptid = inferior_ptid;
5757 keep_going (ecs);
5758 }
5759
5760 if (follow_child)
5761 switch_to_thread (child);
5762 else
5763 switch_to_thread (parent);
5764
e58b0e63
PA
5765 ecs->event_thread = inferior_thread ();
5766 ecs->ptid = inferior_ptid;
5767
5768 if (should_resume)
27f9f649
SM
5769 {
5770 /* Never call switch_back_to_stepped_thread if we are waiting for
5771 vfork-done (waiting for an external vfork child to exec or
5772 exit). We will resume only the vforking thread for the purpose
5773 of collecting the vfork-done event, and we will restart any
5774 step once the critical shared address space window is done. */
5775 if ((!follow_child
5776 && detach_fork
5777 && parent->inf->thread_waiting_for_vfork_done != nullptr)
5778 || !switch_back_to_stepped_thread (ecs))
5779 keep_going (ecs);
5780 }
e58b0e63 5781 else
22bcd14b 5782 stop_waiting (ecs);
04e68871
DJ
5783 return;
5784 }
94c57d6a
PA
5785 process_event_stop_test (ecs);
5786 return;
488f131b 5787
6c95b8df
PA
5788 case TARGET_WAITKIND_VFORK_DONE:
5789 /* Done with the shared memory region. Re-insert breakpoints in
5790 the parent, and keep going. */
5791
00431a78 5792 context_switch (ecs);
6c95b8df 5793
d8bbae6e
SM
5794 handle_vfork_done (ecs->event_thread);
5795 gdb_assert (inferior_thread () == ecs->event_thread);
c65d6b55
PA
5796
5797 if (handle_stop_requested (ecs))
5798 return;
5799
27f9f649
SM
5800 if (!switch_back_to_stepped_thread (ecs))
5801 {
5802 gdb_assert (inferior_thread () == ecs->event_thread);
5803 /* This also takes care of reinserting breakpoints in the
5804 previously locked inferior. */
5805 keep_going (ecs);
5806 }
6c95b8df
PA
5807 return;
5808
488f131b 5809 case TARGET_WAITKIND_EXECD:
488f131b 5810
cbd2b4e3
PA
5811 /* Note we can't read registers yet (the stop_pc), because we
5812 don't yet know the inferior's post-exec architecture.
5813 'stop_pc' is explicitly read below instead. */
00431a78 5814 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5815
6c95b8df
PA
5816 /* Do whatever is necessary to the parent branch of the vfork. */
5817 handle_vfork_child_exec_or_exit (1);
5818
795e548f 5819 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5820 Must do this now, before trying to determine whether to
5821 stop. */
183be222 5822 follow_exec (inferior_ptid, ecs->ws.execd_pathname ());
795e548f 5823
17d8546e
DB
5824 /* In follow_exec we may have deleted the original thread and
5825 created a new one. Make sure that the event thread is the
5826 execd thread for that case (this is a nop otherwise). */
5827 ecs->event_thread = inferior_thread ();
5828
1edb66d8
SM
5829 ecs->event_thread->set_stop_pc
5830 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
ecdc3a72 5831
16c381f0 5832 ecs->event_thread->control.stop_bpstat
d37e0847
PA
5833 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5834 ecs->event_thread->stop_pc (),
5835 ecs->event_thread, ecs->ws);
795e548f 5836
c65d6b55
PA
5837 if (handle_stop_requested (ecs))
5838 return;
5839
04e68871 5840 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5841 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5842 {
1edb66d8 5843 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
04e68871
DJ
5844 keep_going (ecs);
5845 return;
5846 }
94c57d6a
PA
5847 process_event_stop_test (ecs);
5848 return;
488f131b 5849
b4dc5ffa 5850 /* Be careful not to try to gather much state about a thread
dda83cd7 5851 that's in a syscall. It's frequently a losing proposition. */
488f131b 5852 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5853 /* Getting the current syscall number. */
94c57d6a
PA
5854 if (handle_syscall_event (ecs) == 0)
5855 process_event_stop_test (ecs);
5856 return;
c906108c 5857
488f131b 5858 /* Before examining the threads further, step this thread to
dda83cd7
SM
5859 get it entirely out of the syscall. (We get notice of the
5860 event when the thread is just on the verge of exiting a
5861 syscall. Stepping one instruction seems to get it back
5862 into user code.) */
488f131b 5863 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5864 if (handle_syscall_event (ecs) == 0)
5865 process_event_stop_test (ecs);
5866 return;
c906108c 5867
488f131b 5868 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5869 handle_signal_stop (ecs);
5870 return;
c906108c 5871
b2175913
MS
5872 case TARGET_WAITKIND_NO_HISTORY:
5873 /* Reverse execution: target ran out of history info. */
eab402df 5874
d1988021 5875 /* Switch to the stopped thread. */
00431a78 5876 context_switch (ecs);
1eb8556f 5877 infrun_debug_printf ("stopped");
d1988021 5878
34b7e8a6 5879 delete_just_stopped_threads_single_step_breakpoints ();
1edb66d8
SM
5880 ecs->event_thread->set_stop_pc
5881 (regcache_read_pc (get_thread_regcache (inferior_thread ())));
c65d6b55
PA
5882
5883 if (handle_stop_requested (ecs))
5884 return;
5885
76727919 5886 gdb::observers::no_history.notify ();
22bcd14b 5887 stop_waiting (ecs);
b2175913 5888 return;
488f131b 5889 }
4f5d7f63
PA
5890}
5891
372316f1 5892/* Restart threads back to what they were trying to do back when we
148cf134
SM
5893 paused them (because of an in-line step-over or vfork, for example).
5894 The EVENT_THREAD thread is ignored (not restarted).
5895
5896 If INF is non-nullptr, only resume threads from INF. */
4d9d9d04
PA
5897
5898static void
148cf134 5899restart_threads (struct thread_info *event_thread, inferior *inf)
372316f1 5900{
148cf134
SM
5901 INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d",
5902 event_thread->ptid.to_string ().c_str (),
5903 inf != nullptr ? inf->num : -1);
5904
2b718529
LS
5905 gdb_assert (!step_over_info_valid_p ());
5906
372316f1
PA
5907 /* In case the instruction just stepped spawned a new thread. */
5908 update_thread_list ();
5909
08036331 5910 for (thread_info *tp : all_non_exited_threads ())
372316f1 5911 {
148cf134
SM
5912 if (inf != nullptr && tp->inf != inf)
5913 continue;
5914
ac7d717c
PA
5915 if (tp->inf->detaching)
5916 {
5917 infrun_debug_printf ("restart threads: [%s] inferior detaching",
0fab7955 5918 tp->ptid.to_string ().c_str ());
ac7d717c
PA
5919 continue;
5920 }
5921
f3f8ece4
PA
5922 switch_to_thread_no_regs (tp);
5923
372316f1
PA
5924 if (tp == event_thread)
5925 {
1eb8556f 5926 infrun_debug_printf ("restart threads: [%s] is event thread",
0fab7955 5927 tp->ptid.to_string ().c_str ());
372316f1
PA
5928 continue;
5929 }
5930
5931 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5932 {
1eb8556f 5933 infrun_debug_printf ("restart threads: [%s] not meant to be running",
0fab7955 5934 tp->ptid.to_string ().c_str ());
372316f1
PA
5935 continue;
5936 }
5937
7846f3aa 5938 if (tp->resumed ())
372316f1 5939 {
1eb8556f 5940 infrun_debug_printf ("restart threads: [%s] resumed",
0fab7955 5941 tp->ptid.to_string ().c_str ());
611841bb 5942 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
372316f1
PA
5943 continue;
5944 }
5945
5946 if (thread_is_in_step_over_chain (tp))
5947 {
1eb8556f 5948 infrun_debug_printf ("restart threads: [%s] needs step-over",
0fab7955 5949 tp->ptid.to_string ().c_str ());
7846f3aa 5950 gdb_assert (!tp->resumed ());
372316f1
PA
5951 continue;
5952 }
5953
5954
1edb66d8 5955 if (tp->has_pending_waitstatus ())
372316f1 5956 {
1eb8556f 5957 infrun_debug_printf ("restart threads: [%s] has pending status",
0fab7955 5958 tp->ptid.to_string ().c_str ());
7846f3aa 5959 tp->set_resumed (true);
372316f1
PA
5960 continue;
5961 }
5962
c65d6b55
PA
5963 gdb_assert (!tp->stop_requested);
5964
372316f1
PA
5965 /* If some thread needs to start a step-over at this point, it
5966 should still be in the step-over queue, and thus skipped
5967 above. */
5968 if (thread_still_needs_step_over (tp))
5969 {
5970 internal_error (__FILE__, __LINE__,
5971 "thread [%s] needs a step-over, but not in "
5972 "step-over queue\n",
0fab7955 5973 tp->ptid.to_string ().c_str ());
372316f1
PA
5974 }
5975
5976 if (currently_stepping (tp))
5977 {
1eb8556f 5978 infrun_debug_printf ("restart threads: [%s] was stepping",
0fab7955 5979 tp->ptid.to_string ().c_str ());
372316f1
PA
5980 keep_going_stepped_thread (tp);
5981 }
5982 else
5983 {
5984 struct execution_control_state ecss;
5985 struct execution_control_state *ecs = &ecss;
5986
1eb8556f 5987 infrun_debug_printf ("restart threads: [%s] continuing",
0fab7955 5988 tp->ptid.to_string ().c_str ());
372316f1 5989 reset_ecs (ecs, tp);
00431a78 5990 switch_to_thread (tp);
372316f1
PA
5991 keep_going_pass_signal (ecs);
5992 }
5993 }
5994}
5995
5996/* Callback for iterate_over_threads. Find a resumed thread that has
5997 a pending waitstatus. */
5998
5999static int
6000resumed_thread_with_pending_status (struct thread_info *tp,
6001 void *arg)
6002{
1edb66d8 6003 return tp->resumed () && tp->has_pending_waitstatus ();
372316f1
PA
6004}
6005
6006/* Called when we get an event that may finish an in-line or
6007 out-of-line (displaced stepping) step-over started previously.
6008 Return true if the event is processed and we should go back to the
6009 event loop; false if the caller should continue processing the
6010 event. */
6011
6012static int
4d9d9d04
PA
6013finish_step_over (struct execution_control_state *ecs)
6014{
1edb66d8 6015 displaced_step_finish (ecs->event_thread, ecs->event_thread->stop_signal ());
4d9d9d04 6016
c4464ade 6017 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
6018
6019 if (had_step_over_info)
4d9d9d04
PA
6020 {
6021 /* If we're stepping over a breakpoint with all threads locked,
6022 then only the thread that was stepped should be reporting
6023 back an event. */
6024 gdb_assert (ecs->event_thread->control.trap_expected);
6025
c65d6b55 6026 clear_step_over_info ();
4d9d9d04
PA
6027 }
6028
fbea99ea 6029 if (!target_is_non_stop_p ())
372316f1 6030 return 0;
4d9d9d04
PA
6031
6032 /* Start a new step-over in another thread if there's one that
6033 needs it. */
6034 start_step_over ();
372316f1
PA
6035
6036 /* If we were stepping over a breakpoint before, and haven't started
6037 a new in-line step-over sequence, then restart all other threads
6038 (except the event thread). We can't do this in all-stop, as then
6039 e.g., we wouldn't be able to issue any other remote packet until
6040 these other threads stop. */
6041 if (had_step_over_info && !step_over_info_valid_p ())
6042 {
6043 struct thread_info *pending;
6044
6045 /* If we only have threads with pending statuses, the restart
6046 below won't restart any thread and so nothing re-inserts the
6047 breakpoint we just stepped over. But we need it inserted
6048 when we later process the pending events, otherwise if
6049 another thread has a pending event for this breakpoint too,
6050 we'd discard its event (because the breakpoint that
6051 originally caused the event was no longer inserted). */
00431a78 6052 context_switch (ecs);
372316f1
PA
6053 insert_breakpoints ();
6054
6055 restart_threads (ecs->event_thread);
6056
6057 /* If we have events pending, go through handle_inferior_event
6058 again, picking up a pending event at random. This avoids
6059 thread starvation. */
6060
6061 /* But not if we just stepped over a watchpoint in order to let
6062 the instruction execute so we can evaluate its expression.
6063 The set of watchpoints that triggered is recorded in the
6064 breakpoint objects themselves (see bp->watchpoint_triggered).
6065 If we processed another event first, that other event could
6066 clobber this info. */
6067 if (ecs->event_thread->stepping_over_watchpoint)
6068 return 0;
6069
6070 pending = iterate_over_threads (resumed_thread_with_pending_status,
6071 NULL);
6072 if (pending != NULL)
6073 {
6074 struct thread_info *tp = ecs->event_thread;
6075 struct regcache *regcache;
6076
1eb8556f
SM
6077 infrun_debug_printf ("found resumed threads with "
6078 "pending events, saving status");
372316f1
PA
6079
6080 gdb_assert (pending != tp);
6081
6082 /* Record the event thread's event for later. */
c272a98c 6083 save_waitstatus (tp, ecs->ws);
372316f1
PA
6084 /* This was cleared early, by handle_inferior_event. Set it
6085 so this pending event is considered by
6086 do_target_wait. */
7846f3aa 6087 tp->set_resumed (true);
372316f1 6088
611841bb 6089 gdb_assert (!tp->executing ());
372316f1 6090
00431a78 6091 regcache = get_thread_regcache (tp);
1edb66d8 6092 tp->set_stop_pc (regcache_read_pc (regcache));
372316f1 6093
1eb8556f
SM
6094 infrun_debug_printf ("saved stop_pc=%s for %s "
6095 "(currently_stepping=%d)",
1edb66d8 6096 paddress (target_gdbarch (), tp->stop_pc ()),
0fab7955 6097 tp->ptid.to_string ().c_str (),
1eb8556f 6098 currently_stepping (tp));
372316f1
PA
6099
6100 /* This in-line step-over finished; clear this so we won't
6101 start a new one. This is what handle_signal_stop would
6102 do, if we returned false. */
6103 tp->stepping_over_breakpoint = 0;
6104
6105 /* Wake up the event loop again. */
6106 mark_async_event_handler (infrun_async_inferior_event_token);
6107
6108 prepare_to_wait (ecs);
6109 return 1;
6110 }
6111 }
6112
6113 return 0;
4d9d9d04
PA
6114}
6115
4f5d7f63
PA
6116/* Come here when the program has stopped with a signal. */
6117
6118static void
6119handle_signal_stop (struct execution_control_state *ecs)
6120{
6121 struct frame_info *frame;
6122 struct gdbarch *gdbarch;
6123 int stopped_by_watchpoint;
6124 enum stop_kind stop_soon;
6125 int random_signal;
c906108c 6126
183be222 6127 gdb_assert (ecs->ws.kind () == TARGET_WAITKIND_STOPPED);
f0407826 6128
183be222 6129 ecs->event_thread->set_stop_signal (ecs->ws.sig ());
c65d6b55 6130
f0407826
DE
6131 /* Do we need to clean up the state of a thread that has
6132 completed a displaced single-step? (Doing so usually affects
6133 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
6134 if (finish_step_over (ecs))
6135 return;
f0407826
DE
6136
6137 /* If we either finished a single-step or hit a breakpoint, but
6138 the user wanted this thread to be stopped, pretend we got a
6139 SIG0 (generic unsignaled stop). */
6140 if (ecs->event_thread->stop_requested
1edb66d8
SM
6141 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6142 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
237fc4c9 6143
1edb66d8
SM
6144 ecs->event_thread->set_stop_pc
6145 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
488f131b 6146
2ab76a18
PA
6147 context_switch (ecs);
6148
6149 if (deprecated_context_hook)
6150 deprecated_context_hook (ecs->event_thread->global_num);
6151
527159b7 6152 if (debug_infrun)
237fc4c9 6153 {
00431a78 6154 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 6155 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 6156
1edb66d8
SM
6157 infrun_debug_printf
6158 ("stop_pc=%s", paddress (reg_gdbarch, ecs->event_thread->stop_pc ()));
d92524f1 6159 if (target_stopped_by_watchpoint ())
237fc4c9 6160 {
dda83cd7 6161 CORE_ADDR addr;
abbb1732 6162
1eb8556f 6163 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 6164
328d42d8
SM
6165 if (target_stopped_data_address (current_inferior ()->top_target (),
6166 &addr))
1eb8556f 6167 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
6168 paddress (reg_gdbarch, addr));
6169 else
1eb8556f 6170 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
6171 }
6172 }
527159b7 6173
36fa8042
PA
6174 /* This is originated from start_remote(), start_inferior() and
6175 shared libraries hook functions. */
00431a78 6176 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
6177 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6178 {
1eb8556f 6179 infrun_debug_printf ("quietly stopped");
c4464ade 6180 stop_print_frame = true;
22bcd14b 6181 stop_waiting (ecs);
36fa8042
PA
6182 return;
6183 }
6184
36fa8042
PA
6185 /* This originates from attach_command(). We need to overwrite
6186 the stop_signal here, because some kernels don't ignore a
6187 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6188 See more comments in inferior.h. On the other hand, if we
6189 get a non-SIGSTOP, report it to the user - assume the backend
6190 will handle the SIGSTOP if it should show up later.
6191
6192 Also consider that the attach is complete when we see a
6193 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6194 target extended-remote report it instead of a SIGSTOP
6195 (e.g. gdbserver). We already rely on SIGTRAP being our
6196 signal, so this is no exception.
6197
6198 Also consider that the attach is complete when we see a
6199 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6200 the target to stop all threads of the inferior, in case the
6201 low level attach operation doesn't stop them implicitly. If
6202 they weren't stopped implicitly, then the stub will report a
6203 GDB_SIGNAL_0, meaning: stopped for no particular reason
6204 other than GDB's request. */
6205 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
1edb66d8
SM
6206 && (ecs->event_thread->stop_signal () == GDB_SIGNAL_STOP
6207 || ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6208 || ecs->event_thread->stop_signal () == GDB_SIGNAL_0))
36fa8042 6209 {
c4464ade 6210 stop_print_frame = true;
22bcd14b 6211 stop_waiting (ecs);
1edb66d8 6212 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
36fa8042
PA
6213 return;
6214 }
6215
568d6575
UW
6216 /* At this point, get hold of the now-current thread's frame. */
6217 frame = get_current_frame ();
6218 gdbarch = get_frame_arch (frame);
6219
2adfaa28 6220 /* Pull the single step breakpoints out of the target. */
1edb66d8 6221 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
488f131b 6222 {
af48d08f 6223 struct regcache *regcache;
af48d08f 6224 CORE_ADDR pc;
2adfaa28 6225
00431a78 6226 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6227 const address_space *aspace = regcache->aspace ();
6228
af48d08f 6229 pc = regcache_read_pc (regcache);
34b7e8a6 6230
af48d08f
PA
6231 /* However, before doing so, if this single-step breakpoint was
6232 actually for another thread, set this thread up for moving
6233 past it. */
6234 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6235 aspace, pc))
6236 {
6237 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 6238 {
1eb8556f
SM
6239 infrun_debug_printf ("[%s] hit another thread's single-step "
6240 "breakpoint",
0fab7955 6241 ecs->ptid.to_string ().c_str ());
af48d08f
PA
6242 ecs->hit_singlestep_breakpoint = 1;
6243 }
6244 }
6245 else
6246 {
1eb8556f 6247 infrun_debug_printf ("[%s] hit its single-step breakpoint",
0fab7955 6248 ecs->ptid.to_string ().c_str ());
2adfaa28 6249 }
488f131b 6250 }
af48d08f 6251 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6252
1edb66d8 6253 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
963f9c80
PA
6254 && ecs->event_thread->control.trap_expected
6255 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6256 stopped_by_watchpoint = 0;
6257 else
c272a98c 6258 stopped_by_watchpoint = watchpoints_triggered (ecs->ws);
d983da9c
DJ
6259
6260 /* If necessary, step over this watchpoint. We'll be back to display
6261 it in a moment. */
6262 if (stopped_by_watchpoint
9aed480c 6263 && (target_have_steppable_watchpoint ()
568d6575 6264 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6265 {
488f131b 6266 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
6267 attempted to write to a piece of memory under control of
6268 a watchpoint. The instruction hasn't actually executed
6269 yet. If we were to evaluate the watchpoint expression
6270 now, we would get the old value, and therefore no change
6271 would seem to have occurred.
6272
6273 In order to make watchpoints work `right', we really need
6274 to complete the memory write, and then evaluate the
6275 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
6276 target.
6277
7f89fd65 6278 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6279 it. For example, the PA can (with some kernel cooperation)
6280 single step over a watchpoint without disabling the watchpoint.
6281
6282 It is far more common to need to disable a watchpoint to step
6283 the inferior over it. If we have non-steppable watchpoints,
6284 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6285 disable all watchpoints.
6286
6287 Any breakpoint at PC must also be stepped over -- if there's
6288 one, it will have already triggered before the watchpoint
6289 triggered, and we either already reported it to the user, or
6290 it didn't cause a stop and we called keep_going. In either
6291 case, if there was a breakpoint at PC, we must be trying to
6292 step past it. */
6293 ecs->event_thread->stepping_over_watchpoint = 1;
6294 keep_going (ecs);
488f131b
JB
6295 return;
6296 }
6297
4e1c45ea 6298 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6299 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6300 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6301 ecs->event_thread->control.stop_step = 0;
c4464ade 6302 stop_print_frame = true;
488f131b 6303 stopped_by_random_signal = 0;
313f3b21 6304 bpstat *stop_chain = nullptr;
488f131b 6305
edb3359d
DJ
6306 /* Hide inlined functions starting here, unless we just performed stepi or
6307 nexti. After stepi and nexti, always show the innermost frame (not any
6308 inline function call sites). */
16c381f0 6309 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6310 {
00431a78
PA
6311 const address_space *aspace
6312 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6313
6314 /* skip_inline_frames is expensive, so we avoid it if we can
6315 determine that the address is one where functions cannot have
6316 been inlined. This improves performance with inferiors that
6317 load a lot of shared libraries, because the solib event
6318 breakpoint is defined as the address of a function (i.e. not
6319 inline). Note that we have to check the previous PC as well
6320 as the current one to catch cases when we have just
6321 single-stepped off a breakpoint prior to reinstating it.
6322 Note that we're assuming that the code we single-step to is
6323 not inline, but that's not definitive: there's nothing
6324 preventing the event breakpoint function from containing
6325 inlined code, and the single-step ending up there. If the
6326 user had set a breakpoint on that inlined code, the missing
6327 skip_inline_frames call would break things. Fortunately
6328 that's an extremely unlikely scenario. */
f2ffa92b 6329 if (!pc_at_non_inline_function (aspace,
1edb66d8 6330 ecs->event_thread->stop_pc (),
c272a98c 6331 ecs->ws)
1edb66d8 6332 && !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
a210c238
MR
6333 && ecs->event_thread->control.trap_expected
6334 && pc_at_non_inline_function (aspace,
6335 ecs->event_thread->prev_pc,
c272a98c 6336 ecs->ws)))
1c5a993e 6337 {
f2ffa92b 6338 stop_chain = build_bpstat_chain (aspace,
1edb66d8 6339 ecs->event_thread->stop_pc (),
c272a98c 6340 ecs->ws);
00431a78 6341 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6342
6343 /* Re-fetch current thread's frame in case that invalidated
6344 the frame cache. */
6345 frame = get_current_frame ();
6346 gdbarch = get_frame_arch (frame);
6347 }
0574c78f 6348 }
edb3359d 6349
1edb66d8 6350 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
16c381f0 6351 && ecs->event_thread->control.trap_expected
568d6575 6352 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6353 && currently_stepping (ecs->event_thread))
3352ef37 6354 {
b50d7442 6355 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6356 also on an instruction that needs to be stepped multiple
1777feb0 6357 times before it's been fully executing. E.g., architectures
3352ef37
AC
6358 with a delay slot. It needs to be stepped twice, once for
6359 the instruction and once for the delay slot. */
6360 int step_through_delay
568d6575 6361 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6362
1eb8556f
SM
6363 if (step_through_delay)
6364 infrun_debug_printf ("step through delay");
6365
16c381f0
JK
6366 if (ecs->event_thread->control.step_range_end == 0
6367 && step_through_delay)
3352ef37
AC
6368 {
6369 /* The user issued a continue when stopped at a breakpoint.
6370 Set up for another trap and get out of here. */
dda83cd7
SM
6371 ecs->event_thread->stepping_over_breakpoint = 1;
6372 keep_going (ecs);
6373 return;
3352ef37
AC
6374 }
6375 else if (step_through_delay)
6376 {
6377 /* The user issued a step when stopped at a breakpoint.
6378 Maybe we should stop, maybe we should not - the delay
6379 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6380 case, don't decide that here, just set
6381 ecs->stepping_over_breakpoint, making sure we
6382 single-step again before breakpoints are re-inserted. */
4e1c45ea 6383 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6384 }
6385 }
6386
ab04a2af
TT
6387 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6388 handles this event. */
6389 ecs->event_thread->control.stop_bpstat
a01bda52 6390 = bpstat_stop_status (get_current_regcache ()->aspace (),
1edb66d8 6391 ecs->event_thread->stop_pc (),
c272a98c 6392 ecs->event_thread, ecs->ws, stop_chain);
db82e815 6393
ab04a2af
TT
6394 /* Following in case break condition called a
6395 function. */
c4464ade 6396 stop_print_frame = true;
73dd234f 6397
ab04a2af
TT
6398 /* This is where we handle "moribund" watchpoints. Unlike
6399 software breakpoints traps, hardware watchpoint traps are
6400 always distinguishable from random traps. If no high-level
6401 watchpoint is associated with the reported stop data address
6402 anymore, then the bpstat does not explain the signal ---
6403 simply make sure to ignore it if `stopped_by_watchpoint' is
6404 set. */
6405
1edb66d8 6406 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
47591c29 6407 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6408 GDB_SIGNAL_TRAP)
ab04a2af 6409 && stopped_by_watchpoint)
1eb8556f
SM
6410 {
6411 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6412 "ignoring");
6413 }
73dd234f 6414
bac7d97b 6415 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6416 at one stage in the past included checks for an inferior
6417 function call's call dummy's return breakpoint. The original
6418 comment, that went with the test, read:
03cebad2 6419
ab04a2af
TT
6420 ``End of a stack dummy. Some systems (e.g. Sony news) give
6421 another signal besides SIGTRAP, so check here as well as
6422 above.''
73dd234f 6423
ab04a2af
TT
6424 If someone ever tries to get call dummys on a
6425 non-executable stack to work (where the target would stop
6426 with something like a SIGSEGV), then those tests might need
6427 to be re-instated. Given, however, that the tests were only
6428 enabled when momentary breakpoints were not being used, I
6429 suspect that it won't be the case.
488f131b 6430
ab04a2af
TT
6431 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6432 be necessary for call dummies on a non-executable stack on
6433 SPARC. */
488f131b 6434
bac7d97b 6435 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6436 random_signal
6437 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
1edb66d8 6438 ecs->event_thread->stop_signal ());
bac7d97b 6439
1cf4d951
PA
6440 /* Maybe this was a trap for a software breakpoint that has since
6441 been removed. */
6442 if (random_signal && target_stopped_by_sw_breakpoint ())
6443 {
5133a315 6444 if (gdbarch_program_breakpoint_here_p (gdbarch,
1edb66d8 6445 ecs->event_thread->stop_pc ()))
1cf4d951
PA
6446 {
6447 struct regcache *regcache;
6448 int decr_pc;
6449
6450 /* Re-adjust PC to what the program would see if GDB was not
6451 debugging it. */
00431a78 6452 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6453 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6454 if (decr_pc != 0)
6455 {
07036511
TT
6456 gdb::optional<scoped_restore_tmpl<int>>
6457 restore_operation_disable;
1cf4d951
PA
6458
6459 if (record_full_is_used ())
07036511
TT
6460 restore_operation_disable.emplace
6461 (record_full_gdb_operation_disable_set ());
1cf4d951 6462
f2ffa92b 6463 regcache_write_pc (regcache,
1edb66d8 6464 ecs->event_thread->stop_pc () + decr_pc);
1cf4d951
PA
6465 }
6466 }
6467 else
6468 {
6469 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6470 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6471 random_signal = 0;
6472 }
6473 }
6474
6475 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6476 has since been removed. */
6477 if (random_signal && target_stopped_by_hw_breakpoint ())
6478 {
6479 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6480 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6481 "trap, ignoring");
1cf4d951
PA
6482 random_signal = 0;
6483 }
6484
bac7d97b
PA
6485 /* If not, perhaps stepping/nexting can. */
6486 if (random_signal)
1edb66d8 6487 random_signal = !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
bac7d97b 6488 && currently_stepping (ecs->event_thread));
ab04a2af 6489
2adfaa28
PA
6490 /* Perhaps the thread hit a single-step breakpoint of _another_
6491 thread. Single-step breakpoints are transparent to the
6492 breakpoints module. */
6493 if (random_signal)
6494 random_signal = !ecs->hit_singlestep_breakpoint;
6495
bac7d97b
PA
6496 /* No? Perhaps we got a moribund watchpoint. */
6497 if (random_signal)
6498 random_signal = !stopped_by_watchpoint;
ab04a2af 6499
c65d6b55
PA
6500 /* Always stop if the user explicitly requested this thread to
6501 remain stopped. */
6502 if (ecs->event_thread->stop_requested)
6503 {
6504 random_signal = 1;
1eb8556f 6505 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6506 }
6507
488f131b
JB
6508 /* For the program's own signals, act according to
6509 the signal handling tables. */
6510
ce12b012 6511 if (random_signal)
488f131b
JB
6512 {
6513 /* Signal not for debugging purposes. */
1edb66d8 6514 enum gdb_signal stop_signal = ecs->event_thread->stop_signal ();
488f131b 6515
1eb8556f
SM
6516 infrun_debug_printf ("random signal (%s)",
6517 gdb_signal_to_symbol_string (stop_signal));
527159b7 6518
488f131b
JB
6519 stopped_by_random_signal = 1;
6520
252fbfc8
PA
6521 /* Always stop on signals if we're either just gaining control
6522 of the program, or the user explicitly requested this thread
6523 to remain stopped. */
d6b48e9c 6524 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6525 || ecs->event_thread->stop_requested
1edb66d8 6526 || signal_stop_state (ecs->event_thread->stop_signal ()))
488f131b 6527 {
22bcd14b 6528 stop_waiting (ecs);
488f131b
JB
6529 return;
6530 }
b57bacec
PA
6531
6532 /* Notify observers the signal has "handle print" set. Note we
6533 returned early above if stopping; normal_stop handles the
6534 printing in that case. */
1edb66d8 6535 if (signal_print[ecs->event_thread->stop_signal ()])
b57bacec
PA
6536 {
6537 /* The signal table tells us to print about this signal. */
223ffa71 6538 target_terminal::ours_for_output ();
1edb66d8 6539 gdb::observers::signal_received.notify (ecs->event_thread->stop_signal ());
223ffa71 6540 target_terminal::inferior ();
b57bacec 6541 }
488f131b
JB
6542
6543 /* Clear the signal if it should not be passed. */
1edb66d8
SM
6544 if (signal_program[ecs->event_thread->stop_signal ()] == 0)
6545 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
488f131b 6546
1edb66d8 6547 if (ecs->event_thread->prev_pc == ecs->event_thread->stop_pc ()
16c381f0 6548 && ecs->event_thread->control.trap_expected
8358c15c 6549 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6550 {
6551 /* We were just starting a new sequence, attempting to
6552 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6553 Instead this signal arrives. This signal will take us out
68f53502
AC
6554 of the stepping range so GDB needs to remember to, when
6555 the signal handler returns, resume stepping off that
6556 breakpoint. */
6557 /* To simplify things, "continue" is forced to use the same
6558 code paths as single-step - set a breakpoint at the
6559 signal return address and then, once hit, step off that
6560 breakpoint. */
1eb8556f 6561 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6562
2c03e5be 6563 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6564 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6565 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6566 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6567
6568 /* If we were nexting/stepping some other thread, switch to
6569 it, so that we don't continue it, losing control. */
6570 if (!switch_back_to_stepped_thread (ecs))
6571 keep_going (ecs);
9d799f85 6572 return;
68f53502 6573 }
9d799f85 6574
1edb66d8
SM
6575 if (ecs->event_thread->stop_signal () != GDB_SIGNAL_0
6576 && (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
f2ffa92b 6577 ecs->event_thread)
e5f8a7cc 6578 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6579 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6580 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6581 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6582 {
6583 /* The inferior is about to take a signal that will take it
6584 out of the single step range. Set a breakpoint at the
6585 current PC (which is presumably where the signal handler
6586 will eventually return) and then allow the inferior to
6587 run free.
6588
6589 Note that this is only needed for a signal delivered
6590 while in the single-step range. Nested signals aren't a
6591 problem as they eventually all return. */
1eb8556f 6592 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6593
372316f1 6594 clear_step_over_info ();
2c03e5be 6595 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6596 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6597 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6598 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6599 keep_going (ecs);
6600 return;
d303a6c7 6601 }
9d799f85 6602
85102364 6603 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6604 when either there's a nested signal, or when there's a
6605 pending signal enabled just as the signal handler returns
6606 (leaving the inferior at the step-resume-breakpoint without
6607 actually executing it). Either way continue until the
6608 breakpoint is really hit. */
c447ac0b
PA
6609
6610 if (!switch_back_to_stepped_thread (ecs))
6611 {
1eb8556f 6612 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6613
6614 keep_going (ecs);
6615 }
6616 return;
488f131b 6617 }
94c57d6a
PA
6618
6619 process_event_stop_test (ecs);
6620}
6621
6622/* Come here when we've got some debug event / signal we can explain
6623 (IOW, not a random signal), and test whether it should cause a
6624 stop, or whether we should resume the inferior (transparently).
6625 E.g., could be a breakpoint whose condition evaluates false; we
6626 could be still stepping within the line; etc. */
6627
6628static void
6629process_event_stop_test (struct execution_control_state *ecs)
6630{
6631 struct symtab_and_line stop_pc_sal;
6632 struct frame_info *frame;
6633 struct gdbarch *gdbarch;
cdaa5b73
PA
6634 CORE_ADDR jmp_buf_pc;
6635 struct bpstat_what what;
94c57d6a 6636
cdaa5b73 6637 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6638
cdaa5b73
PA
6639 frame = get_current_frame ();
6640 gdbarch = get_frame_arch (frame);
fcf3daef 6641
cdaa5b73 6642 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6643
cdaa5b73
PA
6644 if (what.call_dummy)
6645 {
6646 stop_stack_dummy = what.call_dummy;
6647 }
186c406b 6648
243a9253
PA
6649 /* A few breakpoint types have callbacks associated (e.g.,
6650 bp_jit_event). Run them now. */
6651 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6652
cdaa5b73
PA
6653 /* If we hit an internal event that triggers symbol changes, the
6654 current frame will be invalidated within bpstat_what (e.g., if we
6655 hit an internal solib event). Re-fetch it. */
6656 frame = get_current_frame ();
6657 gdbarch = get_frame_arch (frame);
e2e4d78b 6658
cdaa5b73
PA
6659 switch (what.main_action)
6660 {
6661 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6662 /* If we hit the breakpoint at longjmp while stepping, we
6663 install a momentary breakpoint at the target of the
6664 jmp_buf. */
186c406b 6665
1eb8556f 6666 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6667
cdaa5b73 6668 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6669
cdaa5b73
PA
6670 if (what.is_longjmp)
6671 {
6672 struct value *arg_value;
6673
6674 /* If we set the longjmp breakpoint via a SystemTap probe,
6675 then use it to extract the arguments. The destination PC
6676 is the third argument to the probe. */
6677 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6678 if (arg_value)
8fa0c4f8
AA
6679 {
6680 jmp_buf_pc = value_as_address (arg_value);
6681 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6682 }
cdaa5b73
PA
6683 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6684 || !gdbarch_get_longjmp_target (gdbarch,
6685 frame, &jmp_buf_pc))
e2e4d78b 6686 {
1eb8556f
SM
6687 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6688 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6689 keep_going (ecs);
6690 return;
e2e4d78b 6691 }
e2e4d78b 6692
cdaa5b73
PA
6693 /* Insert a breakpoint at resume address. */
6694 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6695 }
6696 else
6697 check_exception_resume (ecs, frame);
6698 keep_going (ecs);
6699 return;
e81a37f7 6700
cdaa5b73
PA
6701 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6702 {
6703 struct frame_info *init_frame;
e81a37f7 6704
cdaa5b73 6705 /* There are several cases to consider.
c906108c 6706
cdaa5b73
PA
6707 1. The initiating frame no longer exists. In this case we
6708 must stop, because the exception or longjmp has gone too
6709 far.
2c03e5be 6710
cdaa5b73
PA
6711 2. The initiating frame exists, and is the same as the
6712 current frame. We stop, because the exception or longjmp
6713 has been caught.
2c03e5be 6714
cdaa5b73
PA
6715 3. The initiating frame exists and is different from the
6716 current frame. This means the exception or longjmp has
6717 been caught beneath the initiating frame, so keep going.
c906108c 6718
cdaa5b73
PA
6719 4. longjmp breakpoint has been placed just to protect
6720 against stale dummy frames and user is not interested in
6721 stopping around longjmps. */
c5aa993b 6722
1eb8556f 6723 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6724
cdaa5b73
PA
6725 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6726 != NULL);
6727 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6728
cdaa5b73
PA
6729 if (what.is_longjmp)
6730 {
b67a2c6f 6731 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6732
cdaa5b73 6733 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6734 {
cdaa5b73
PA
6735 /* Case 4. */
6736 keep_going (ecs);
6737 return;
e5ef252a 6738 }
cdaa5b73 6739 }
c5aa993b 6740
cdaa5b73 6741 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6742
cdaa5b73
PA
6743 if (init_frame)
6744 {
6745 struct frame_id current_id
6746 = get_frame_id (get_current_frame ());
6747 if (frame_id_eq (current_id,
6748 ecs->event_thread->initiating_frame))
6749 {
6750 /* Case 2. Fall through. */
6751 }
6752 else
6753 {
6754 /* Case 3. */
6755 keep_going (ecs);
6756 return;
6757 }
68f53502 6758 }
488f131b 6759
cdaa5b73
PA
6760 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6761 exists. */
6762 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6763
bdc36728 6764 end_stepping_range (ecs);
cdaa5b73
PA
6765 }
6766 return;
e5ef252a 6767
cdaa5b73 6768 case BPSTAT_WHAT_SINGLE:
1eb8556f 6769 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6770 ecs->event_thread->stepping_over_breakpoint = 1;
6771 /* Still need to check other stuff, at least the case where we
6772 are stepping and step out of the right range. */
6773 break;
e5ef252a 6774
cdaa5b73 6775 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6776 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6777
cdaa5b73
PA
6778 delete_step_resume_breakpoint (ecs->event_thread);
6779 if (ecs->event_thread->control.proceed_to_finish
6780 && execution_direction == EXEC_REVERSE)
6781 {
6782 struct thread_info *tp = ecs->event_thread;
6783
6784 /* We are finishing a function in reverse, and just hit the
6785 step-resume breakpoint at the start address of the
6786 function, and we're almost there -- just need to back up
6787 by one more single-step, which should take us back to the
6788 function call. */
6789 tp->control.step_range_start = tp->control.step_range_end = 1;
6790 keep_going (ecs);
e5ef252a 6791 return;
cdaa5b73
PA
6792 }
6793 fill_in_stop_func (gdbarch, ecs);
1edb66d8 6794 if (ecs->event_thread->stop_pc () == ecs->stop_func_start
cdaa5b73
PA
6795 && execution_direction == EXEC_REVERSE)
6796 {
6797 /* We are stepping over a function call in reverse, and just
6798 hit the step-resume breakpoint at the start address of
6799 the function. Go back to single-stepping, which should
6800 take us back to the function call. */
6801 ecs->event_thread->stepping_over_breakpoint = 1;
6802 keep_going (ecs);
6803 return;
6804 }
6805 break;
e5ef252a 6806
cdaa5b73 6807 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6808 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6809 stop_print_frame = true;
e5ef252a 6810
33bf4c5c 6811 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6812 whether a/the breakpoint is there when the thread is next
6813 resumed. */
6814 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6815
22bcd14b 6816 stop_waiting (ecs);
cdaa5b73 6817 return;
e5ef252a 6818
cdaa5b73 6819 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6820 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6821 stop_print_frame = false;
e5ef252a 6822
33bf4c5c 6823 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6824 whether a/the breakpoint is there when the thread is next
6825 resumed. */
6826 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6827 stop_waiting (ecs);
cdaa5b73
PA
6828 return;
6829
6830 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6831 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6832
6833 delete_step_resume_breakpoint (ecs->event_thread);
6834 if (ecs->event_thread->step_after_step_resume_breakpoint)
6835 {
6836 /* Back when the step-resume breakpoint was inserted, we
6837 were trying to single-step off a breakpoint. Go back to
6838 doing that. */
6839 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6840 ecs->event_thread->stepping_over_breakpoint = 1;
6841 keep_going (ecs);
6842 return;
e5ef252a 6843 }
cdaa5b73
PA
6844 break;
6845
6846 case BPSTAT_WHAT_KEEP_CHECKING:
6847 break;
e5ef252a 6848 }
c906108c 6849
af48d08f
PA
6850 /* If we stepped a permanent breakpoint and we had a high priority
6851 step-resume breakpoint for the address we stepped, but we didn't
6852 hit it, then we must have stepped into the signal handler. The
6853 step-resume was only necessary to catch the case of _not_
6854 stepping into the handler, so delete it, and fall through to
6855 checking whether the step finished. */
6856 if (ecs->event_thread->stepped_breakpoint)
6857 {
6858 struct breakpoint *sr_bp
6859 = ecs->event_thread->control.step_resume_breakpoint;
6860
8d707a12
PA
6861 if (sr_bp != NULL
6862 && sr_bp->loc->permanent
af48d08f
PA
6863 && sr_bp->type == bp_hp_step_resume
6864 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6865 {
1eb8556f 6866 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6867 delete_step_resume_breakpoint (ecs->event_thread);
6868 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6869 }
6870 }
6871
cdaa5b73
PA
6872 /* We come here if we hit a breakpoint but should not stop for it.
6873 Possibly we also were stepping and should stop for that. So fall
6874 through and test for stepping. But, if not stepping, do not
6875 stop. */
c906108c 6876
a7212384
UW
6877 /* In all-stop mode, if we're currently stepping but have stopped in
6878 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6879 if (switch_back_to_stepped_thread (ecs))
6880 return;
776f04fa 6881
8358c15c 6882 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6883 {
1eb8556f 6884 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6885
488f131b 6886 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6887 else having to do with stepping commands until
6888 that breakpoint is reached. */
488f131b
JB
6889 keep_going (ecs);
6890 return;
6891 }
c5aa993b 6892
16c381f0 6893 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6894 {
1eb8556f 6895 infrun_debug_printf ("no stepping, continue");
488f131b 6896 /* Likewise if we aren't even stepping. */
488f131b
JB
6897 keep_going (ecs);
6898 return;
6899 }
c5aa993b 6900
4b7703ad
JB
6901 /* Re-fetch current thread's frame in case the code above caused
6902 the frame cache to be re-initialized, making our FRAME variable
6903 a dangling pointer. */
6904 frame = get_current_frame ();
628fe4e4 6905 gdbarch = get_frame_arch (frame);
7e324e48 6906 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6907
488f131b 6908 /* If stepping through a line, keep going if still within it.
c906108c 6909
488f131b
JB
6910 Note that step_range_end is the address of the first instruction
6911 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6912 within it!
6913
6914 Note also that during reverse execution, we may be stepping
6915 through a function epilogue and therefore must detect when
6916 the current-frame changes in the middle of a line. */
6917
1edb66d8 6918 if (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
f2ffa92b 6919 ecs->event_thread)
31410e84 6920 && (execution_direction != EXEC_REVERSE
388a8562 6921 || frame_id_eq (get_frame_id (frame),
16c381f0 6922 ecs->event_thread->control.step_frame_id)))
488f131b 6923 {
1eb8556f
SM
6924 infrun_debug_printf
6925 ("stepping inside range [%s-%s]",
6926 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6927 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6928
c1e36e3e
PA
6929 /* Tentatively re-enable range stepping; `resume' disables it if
6930 necessary (e.g., if we're stepping over a breakpoint or we
6931 have software watchpoints). */
6932 ecs->event_thread->control.may_range_step = 1;
6933
b2175913
MS
6934 /* When stepping backward, stop at beginning of line range
6935 (unless it's the function entry point, in which case
6936 keep going back to the call point). */
1edb66d8 6937 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
16c381f0 6938 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6939 && stop_pc != ecs->stop_func_start
6940 && execution_direction == EXEC_REVERSE)
bdc36728 6941 end_stepping_range (ecs);
b2175913
MS
6942 else
6943 keep_going (ecs);
6944
488f131b
JB
6945 return;
6946 }
c5aa993b 6947
488f131b 6948 /* We stepped out of the stepping range. */
c906108c 6949
488f131b 6950 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6951 loader dynamic symbol resolution code...
6952
6953 EXEC_FORWARD: we keep on single stepping until we exit the run
6954 time loader code and reach the callee's address.
6955
6956 EXEC_REVERSE: we've already executed the callee (backward), and
6957 the runtime loader code is handled just like any other
6958 undebuggable function call. Now we need only keep stepping
6959 backward through the trampoline code, and that's handled further
6960 down, so there is nothing for us to do here. */
6961
6962 if (execution_direction != EXEC_REVERSE
16c381f0 6963 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
1edb66d8 6964 && in_solib_dynsym_resolve_code (ecs->event_thread->stop_pc ()))
488f131b 6965 {
4c8c40e6 6966 CORE_ADDR pc_after_resolver =
1edb66d8 6967 gdbarch_skip_solib_resolver (gdbarch, ecs->event_thread->stop_pc ());
c906108c 6968
1eb8556f 6969 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6970
488f131b
JB
6971 if (pc_after_resolver)
6972 {
6973 /* Set up a step-resume breakpoint at the address
6974 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6975 symtab_and_line sr_sal;
488f131b 6976 sr_sal.pc = pc_after_resolver;
6c95b8df 6977 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6978
a6d9a66e
UW
6979 insert_step_resume_breakpoint_at_sal (gdbarch,
6980 sr_sal, null_frame_id);
c5aa993b 6981 }
c906108c 6982
488f131b
JB
6983 keep_going (ecs);
6984 return;
6985 }
c906108c 6986
1d509aa6
MM
6987 /* Step through an indirect branch thunk. */
6988 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b 6989 && gdbarch_in_indirect_branch_thunk (gdbarch,
1edb66d8 6990 ecs->event_thread->stop_pc ()))
1d509aa6 6991 {
1eb8556f 6992 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6993 keep_going (ecs);
6994 return;
6995 }
6996
16c381f0
JK
6997 if (ecs->event_thread->control.step_range_end != 1
6998 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6999 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 7000 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 7001 {
1eb8556f 7002 infrun_debug_printf ("stepped into signal trampoline");
42edda50 7003 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
7004 a signal trampoline (either by a signal being delivered or by
7005 the signal handler returning). Just single-step until the
7006 inferior leaves the trampoline (either by calling the handler
7007 or returning). */
488f131b
JB
7008 keep_going (ecs);
7009 return;
7010 }
c906108c 7011
14132e89
MR
7012 /* If we're in the return path from a shared library trampoline,
7013 we want to proceed through the trampoline when stepping. */
7014 /* macro/2012-04-25: This needs to come before the subroutine
7015 call check below as on some targets return trampolines look
7016 like subroutine calls (MIPS16 return thunks). */
7017 if (gdbarch_in_solib_return_trampoline (gdbarch,
1edb66d8 7018 ecs->event_thread->stop_pc (),
f2ffa92b 7019 ecs->stop_func_name)
14132e89
MR
7020 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7021 {
7022 /* Determine where this trampoline returns. */
1edb66d8 7023 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
f2ffa92b
PA
7024 CORE_ADDR real_stop_pc
7025 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 7026
1eb8556f 7027 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
7028
7029 /* Only proceed through if we know where it's going. */
7030 if (real_stop_pc)
7031 {
7032 /* And put the step-breakpoint there and go until there. */
51abb421 7033 symtab_and_line sr_sal;
14132e89
MR
7034 sr_sal.pc = real_stop_pc;
7035 sr_sal.section = find_pc_overlay (sr_sal.pc);
7036 sr_sal.pspace = get_frame_program_space (frame);
7037
7038 /* Do not specify what the fp should be when we stop since
7039 on some machines the prologue is where the new fp value
7040 is established. */
7041 insert_step_resume_breakpoint_at_sal (gdbarch,
7042 sr_sal, null_frame_id);
7043
7044 /* Restart without fiddling with the step ranges or
7045 other state. */
7046 keep_going (ecs);
7047 return;
7048 }
7049 }
7050
c17eaafe
DJ
7051 /* Check for subroutine calls. The check for the current frame
7052 equalling the step ID is not necessary - the check of the
7053 previous frame's ID is sufficient - but it is a common case and
7054 cheaper than checking the previous frame's ID.
14e60db5
DJ
7055
7056 NOTE: frame_id_eq will never report two invalid frame IDs as
7057 being equal, so to get into this block, both the current and
7058 previous frame must have valid frame IDs. */
005ca36a
JB
7059 /* The outer_frame_id check is a heuristic to detect stepping
7060 through startup code. If we step over an instruction which
7061 sets the stack pointer from an invalid value to a valid value,
7062 we may detect that as a subroutine call from the mythical
7063 "outermost" function. This could be fixed by marking
7064 outermost frames as !stack_p,code_p,special_p. Then the
7065 initial outermost frame, before sp was valid, would
ce6cca6d 7066 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 7067 for more. */
edb3359d 7068 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 7069 ecs->event_thread->control.step_stack_frame_id)
005ca36a 7070 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
7071 ecs->event_thread->control.step_stack_frame_id)
7072 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 7073 outer_frame_id)
885eeb5b 7074 || (ecs->event_thread->control.step_start_function
1edb66d8 7075 != find_pc_function (ecs->event_thread->stop_pc ())))))
488f131b 7076 {
1edb66d8 7077 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
95918acb 7078 CORE_ADDR real_stop_pc;
8fb3e588 7079
1eb8556f 7080 infrun_debug_printf ("stepped into subroutine");
527159b7 7081
b7a084be 7082 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
7083 {
7084 /* I presume that step_over_calls is only 0 when we're
7085 supposed to be stepping at the assembly language level
7086 ("stepi"). Just stop. */
388a8562 7087 /* And this works the same backward as frontward. MVS */
bdc36728 7088 end_stepping_range (ecs);
95918acb
AC
7089 return;
7090 }
8fb3e588 7091
388a8562
MS
7092 /* Reverse stepping through solib trampolines. */
7093
7094 if (execution_direction == EXEC_REVERSE
16c381f0 7095 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
7096 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7097 || (ecs->stop_func_start == 0
7098 && in_solib_dynsym_resolve_code (stop_pc))))
7099 {
7100 /* Any solib trampoline code can be handled in reverse
7101 by simply continuing to single-step. We have already
7102 executed the solib function (backwards), and a few
7103 steps will take us back through the trampoline to the
7104 caller. */
7105 keep_going (ecs);
7106 return;
7107 }
7108
16c381f0 7109 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 7110 {
b2175913
MS
7111 /* We're doing a "next".
7112
7113 Normal (forward) execution: set a breakpoint at the
7114 callee's return address (the address at which the caller
7115 will resume).
7116
7117 Reverse (backward) execution. set the step-resume
7118 breakpoint at the start of the function that we just
7119 stepped into (backwards), and continue to there. When we
6130d0b7 7120 get there, we'll need to single-step back to the caller. */
b2175913
MS
7121
7122 if (execution_direction == EXEC_REVERSE)
7123 {
acf9414f
JK
7124 /* If we're already at the start of the function, we've either
7125 just stepped backward into a single instruction function,
7126 or stepped back out of a signal handler to the first instruction
7127 of the function. Just keep going, which will single-step back
7128 to the caller. */
58c48e72 7129 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 7130 {
acf9414f 7131 /* Normal function call return (static or dynamic). */
51abb421 7132 symtab_and_line sr_sal;
acf9414f
JK
7133 sr_sal.pc = ecs->stop_func_start;
7134 sr_sal.pspace = get_frame_program_space (frame);
7135 insert_step_resume_breakpoint_at_sal (gdbarch,
7136 sr_sal, null_frame_id);
7137 }
b2175913
MS
7138 }
7139 else
568d6575 7140 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7141
8567c30f
AC
7142 keep_going (ecs);
7143 return;
7144 }
a53c66de 7145
95918acb 7146 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
7147 calling routine and the real function), locate the real
7148 function. That's what tells us (a) whether we want to step
7149 into it at all, and (b) what prologue we want to run to the
7150 end of, if we do step into it. */
568d6575 7151 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7152 if (real_stop_pc == 0)
568d6575 7153 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7154 if (real_stop_pc != 0)
7155 ecs->stop_func_start = real_stop_pc;
8fb3e588 7156
db5f024e 7157 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7158 {
51abb421 7159 symtab_and_line sr_sal;
1b2bfbb9 7160 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7161 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7162
a6d9a66e
UW
7163 insert_step_resume_breakpoint_at_sal (gdbarch,
7164 sr_sal, null_frame_id);
8fb3e588
AC
7165 keep_going (ecs);
7166 return;
1b2bfbb9
RC
7167 }
7168
95918acb 7169 /* If we have line number information for the function we are
1bfeeb0f
JL
7170 thinking of stepping into and the function isn't on the skip
7171 list, step into it.
95918acb 7172
dda83cd7
SM
7173 If there are several symtabs at that PC (e.g. with include
7174 files), just want to know whether *any* of them have line
7175 numbers. find_pc_line handles this. */
95918acb
AC
7176 {
7177 struct symtab_and_line tmp_sal;
8fb3e588 7178
95918acb 7179 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7180 if (tmp_sal.line != 0
85817405 7181 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7182 tmp_sal)
7183 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7184 {
b2175913 7185 if (execution_direction == EXEC_REVERSE)
568d6575 7186 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7187 else
568d6575 7188 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7189 return;
7190 }
7191 }
7192
7193 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
7194 set, we stop the step so that the user has a chance to switch
7195 in assembly mode. */
16c381f0 7196 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7197 && step_stop_if_no_debug)
95918acb 7198 {
bdc36728 7199 end_stepping_range (ecs);
95918acb
AC
7200 return;
7201 }
7202
b2175913
MS
7203 if (execution_direction == EXEC_REVERSE)
7204 {
acf9414f
JK
7205 /* If we're already at the start of the function, we've either just
7206 stepped backward into a single instruction function without line
7207 number info, or stepped back out of a signal handler to the first
7208 instruction of the function without line number info. Just keep
7209 going, which will single-step back to the caller. */
7210 if (ecs->stop_func_start != stop_pc)
7211 {
7212 /* Set a breakpoint at callee's start address.
7213 From there we can step once and be back in the caller. */
51abb421 7214 symtab_and_line sr_sal;
acf9414f
JK
7215 sr_sal.pc = ecs->stop_func_start;
7216 sr_sal.pspace = get_frame_program_space (frame);
7217 insert_step_resume_breakpoint_at_sal (gdbarch,
7218 sr_sal, null_frame_id);
7219 }
b2175913
MS
7220 }
7221 else
7222 /* Set a breakpoint at callee's return address (the address
7223 at which the caller will resume). */
568d6575 7224 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7225
95918acb 7226 keep_going (ecs);
488f131b 7227 return;
488f131b 7228 }
c906108c 7229
fdd654f3
MS
7230 /* Reverse stepping through solib trampolines. */
7231
7232 if (execution_direction == EXEC_REVERSE
16c381f0 7233 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7234 {
1edb66d8 7235 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
f2ffa92b 7236
fdd654f3
MS
7237 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7238 || (ecs->stop_func_start == 0
7239 && in_solib_dynsym_resolve_code (stop_pc)))
7240 {
7241 /* Any solib trampoline code can be handled in reverse
7242 by simply continuing to single-step. We have already
7243 executed the solib function (backwards), and a few
7244 steps will take us back through the trampoline to the
7245 caller. */
7246 keep_going (ecs);
7247 return;
7248 }
7249 else if (in_solib_dynsym_resolve_code (stop_pc))
7250 {
7251 /* Stepped backward into the solib dynsym resolver.
7252 Set a breakpoint at its start and continue, then
7253 one more step will take us out. */
51abb421 7254 symtab_and_line sr_sal;
fdd654f3 7255 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7256 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7257 insert_step_resume_breakpoint_at_sal (gdbarch,
7258 sr_sal, null_frame_id);
7259 keep_going (ecs);
7260 return;
7261 }
7262 }
7263
8c95582d
AB
7264 /* This always returns the sal for the inner-most frame when we are in a
7265 stack of inlined frames, even if GDB actually believes that it is in a
7266 more outer frame. This is checked for below by calls to
7267 inline_skipped_frames. */
1edb66d8 7268 stop_pc_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7ed0fe66 7269
1b2bfbb9
RC
7270 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7271 the trampoline processing logic, however, there are some trampolines
7272 that have no names, so we should do trampoline handling first. */
16c381f0 7273 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7274 && ecs->stop_func_name == NULL
2afb61aa 7275 && stop_pc_sal.line == 0)
1b2bfbb9 7276 {
1eb8556f 7277 infrun_debug_printf ("stepped into undebuggable function");
527159b7 7278
1b2bfbb9 7279 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
7280 undebuggable function (where there is no debugging information
7281 and no line number corresponding to the address where the
7282 inferior stopped). Since we want to skip this kind of code,
7283 we keep going until the inferior returns from this
7284 function - unless the user has asked us not to (via
7285 set step-mode) or we no longer know how to get back
7286 to the call site. */
14e60db5 7287 if (step_stop_if_no_debug
c7ce8faa 7288 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7289 {
7290 /* If we have no line number and the step-stop-if-no-debug
7291 is set, we stop the step so that the user has a chance to
7292 switch in assembly mode. */
bdc36728 7293 end_stepping_range (ecs);
1b2bfbb9
RC
7294 return;
7295 }
7296 else
7297 {
7298 /* Set a breakpoint at callee's return address (the address
7299 at which the caller will resume). */
568d6575 7300 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7301 keep_going (ecs);
7302 return;
7303 }
7304 }
7305
16c381f0 7306 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7307 {
7308 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 7309 one instruction. */
1eb8556f 7310 infrun_debug_printf ("stepi/nexti");
bdc36728 7311 end_stepping_range (ecs);
1b2bfbb9
RC
7312 return;
7313 }
7314
2afb61aa 7315 if (stop_pc_sal.line == 0)
488f131b
JB
7316 {
7317 /* We have no line number information. That means to stop
dda83cd7
SM
7318 stepping (does this always happen right after one instruction,
7319 when we do "s" in a function with no line numbers,
7320 or can this happen as a result of a return or longjmp?). */
1eb8556f 7321 infrun_debug_printf ("line number info");
bdc36728 7322 end_stepping_range (ecs);
488f131b
JB
7323 return;
7324 }
c906108c 7325
edb3359d
DJ
7326 /* Look for "calls" to inlined functions, part one. If the inline
7327 frame machinery detected some skipped call sites, we have entered
7328 a new inline function. */
7329
7330 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7331 ecs->event_thread->control.step_frame_id)
00431a78 7332 && inline_skipped_frames (ecs->event_thread))
edb3359d 7333 {
1eb8556f 7334 infrun_debug_printf ("stepped into inlined function");
edb3359d 7335
51abb421 7336 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7337
16c381f0 7338 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7339 {
7340 /* For "step", we're going to stop. But if the call site
7341 for this inlined function is on the same source line as
7342 we were previously stepping, go down into the function
7343 first. Otherwise stop at the call site. */
7344
7345 if (call_sal.line == ecs->event_thread->current_line
7346 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7347 {
7348 step_into_inline_frame (ecs->event_thread);
7349 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7350 {
7351 keep_going (ecs);
7352 return;
7353 }
7354 }
edb3359d 7355
bdc36728 7356 end_stepping_range (ecs);
edb3359d
DJ
7357 return;
7358 }
7359 else
7360 {
7361 /* For "next", we should stop at the call site if it is on a
7362 different source line. Otherwise continue through the
7363 inlined function. */
7364 if (call_sal.line == ecs->event_thread->current_line
7365 && call_sal.symtab == ecs->event_thread->current_symtab)
7366 keep_going (ecs);
7367 else
bdc36728 7368 end_stepping_range (ecs);
edb3359d
DJ
7369 return;
7370 }
7371 }
7372
7373 /* Look for "calls" to inlined functions, part two. If we are still
7374 in the same real function we were stepping through, but we have
7375 to go further up to find the exact frame ID, we are stepping
7376 through a more inlined call beyond its call site. */
7377
7378 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7379 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7380 ecs->event_thread->control.step_frame_id)
edb3359d 7381 && stepped_in_from (get_current_frame (),
16c381f0 7382 ecs->event_thread->control.step_frame_id))
edb3359d 7383 {
1eb8556f 7384 infrun_debug_printf ("stepping through inlined function");
edb3359d 7385
4a4c04f1
BE
7386 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7387 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7388 keep_going (ecs);
7389 else
bdc36728 7390 end_stepping_range (ecs);
edb3359d
DJ
7391 return;
7392 }
7393
8c95582d 7394 bool refresh_step_info = true;
1edb66d8 7395 if ((ecs->event_thread->stop_pc () == stop_pc_sal.pc)
4e1c45ea 7396 && (ecs->event_thread->current_line != stop_pc_sal.line
24b21115 7397 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7398 {
ebde6f2d
TV
7399 /* We are at a different line. */
7400
8c95582d
AB
7401 if (stop_pc_sal.is_stmt)
7402 {
ebde6f2d
TV
7403 /* We are at the start of a statement.
7404
7405 So stop. Note that we don't stop if we step into the middle of a
7406 statement. That is said to make things like for (;;) statements
7407 work better. */
1eb8556f 7408 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7409 end_stepping_range (ecs);
7410 return;
7411 }
7412 else if (frame_id_eq (get_frame_id (get_current_frame ()),
ebde6f2d 7413 ecs->event_thread->control.step_frame_id))
8c95582d 7414 {
ebde6f2d
TV
7415 /* We are not at the start of a statement, and we have not changed
7416 frame.
7417
7418 We ignore this line table entry, and continue stepping forward,
8c95582d
AB
7419 looking for a better place to stop. */
7420 refresh_step_info = false;
1eb8556f
SM
7421 infrun_debug_printf ("stepped to a different line, but "
7422 "it's not the start of a statement");
8c95582d 7423 }
ebde6f2d
TV
7424 else
7425 {
7426 /* We are not the start of a statement, and we have changed frame.
7427
7428 We ignore this line table entry, and continue stepping forward,
7429 looking for a better place to stop. Keep refresh_step_info at
7430 true to note that the frame has changed, but ignore the line
7431 number to make sure we don't ignore a subsequent entry with the
7432 same line number. */
7433 stop_pc_sal.line = 0;
7434 infrun_debug_printf ("stepped to a different frame, but "
7435 "it's not the start of a statement");
7436 }
488f131b 7437 }
c906108c 7438
488f131b 7439 /* We aren't done stepping.
c906108c 7440
488f131b
JB
7441 Optimize by setting the stepping range to the line.
7442 (We might not be in the original line, but if we entered a
7443 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7444 things like for(;;) statements work better.)
7445
7446 If we entered a SAL that indicates a non-statement line table entry,
7447 then we update the stepping range, but we don't update the step info,
7448 which includes things like the line number we are stepping away from.
7449 This means we will stop when we find a line table entry that is marked
7450 as is-statement, even if it matches the non-statement one we just
7451 stepped into. */
c906108c 7452
16c381f0
JK
7453 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7454 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7455 ecs->event_thread->control.may_range_step = 1;
c8353d68
AB
7456 infrun_debug_printf
7457 ("updated step range, start = %s, end = %s, may_range_step = %d",
7458 paddress (gdbarch, ecs->event_thread->control.step_range_start),
7459 paddress (gdbarch, ecs->event_thread->control.step_range_end),
7460 ecs->event_thread->control.may_range_step);
8c95582d
AB
7461 if (refresh_step_info)
7462 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7463
1eb8556f 7464 infrun_debug_printf ("keep going");
488f131b 7465 keep_going (ecs);
104c1213
JM
7466}
7467
408f6686
PA
7468static bool restart_stepped_thread (process_stratum_target *resume_target,
7469 ptid_t resume_ptid);
7470
c447ac0b
PA
7471/* In all-stop mode, if we're currently stepping but have stopped in
7472 some other thread, we may need to switch back to the stepped
7473 thread. Returns true we set the inferior running, false if we left
7474 it stopped (and the event needs further processing). */
7475
c4464ade 7476static bool
c447ac0b
PA
7477switch_back_to_stepped_thread (struct execution_control_state *ecs)
7478{
fbea99ea 7479 if (!target_is_non_stop_p ())
c447ac0b 7480 {
99619bea
PA
7481 /* If any thread is blocked on some internal breakpoint, and we
7482 simply need to step over that breakpoint to get it going
7483 again, do that first. */
7484
7485 /* However, if we see an event for the stepping thread, then we
7486 know all other threads have been moved past their breakpoints
7487 already. Let the caller check whether the step is finished,
7488 etc., before deciding to move it past a breakpoint. */
7489 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7490 return false;
99619bea
PA
7491
7492 /* Check if the current thread is blocked on an incomplete
7493 step-over, interrupted by a random signal. */
7494 if (ecs->event_thread->control.trap_expected
1edb66d8 7495 && ecs->event_thread->stop_signal () != GDB_SIGNAL_TRAP)
c447ac0b 7496 {
1eb8556f
SM
7497 infrun_debug_printf
7498 ("need to finish step-over of [%s]",
0fab7955 7499 ecs->event_thread->ptid.to_string ().c_str ());
99619bea 7500 keep_going (ecs);
c4464ade 7501 return true;
99619bea 7502 }
2adfaa28 7503
99619bea
PA
7504 /* Check if the current thread is blocked by a single-step
7505 breakpoint of another thread. */
7506 if (ecs->hit_singlestep_breakpoint)
7507 {
1eb8556f 7508 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
0fab7955 7509 ecs->ptid.to_string ().c_str ());
99619bea 7510 keep_going (ecs);
c4464ade 7511 return true;
99619bea
PA
7512 }
7513
4d9d9d04
PA
7514 /* If this thread needs yet another step-over (e.g., stepping
7515 through a delay slot), do it first before moving on to
7516 another thread. */
7517 if (thread_still_needs_step_over (ecs->event_thread))
7518 {
1eb8556f
SM
7519 infrun_debug_printf
7520 ("thread [%s] still needs step-over",
0fab7955 7521 ecs->event_thread->ptid.to_string ().c_str ());
4d9d9d04 7522 keep_going (ecs);
c4464ade 7523 return true;
4d9d9d04 7524 }
70509625 7525
483805cf
PA
7526 /* If scheduler locking applies even if not stepping, there's no
7527 need to walk over threads. Above we've checked whether the
7528 current thread is stepping. If some other thread not the
7529 event thread is stepping, then it must be that scheduler
7530 locking is not in effect. */
856e7dd6 7531 if (schedlock_applies (ecs->event_thread))
c4464ade 7532 return false;
483805cf 7533
4d9d9d04
PA
7534 /* Otherwise, we no longer expect a trap in the current thread.
7535 Clear the trap_expected flag before switching back -- this is
7536 what keep_going does as well, if we call it. */
7537 ecs->event_thread->control.trap_expected = 0;
7538
7539 /* Likewise, clear the signal if it should not be passed. */
1edb66d8
SM
7540 if (!signal_program[ecs->event_thread->stop_signal ()])
7541 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
4d9d9d04 7542
408f6686 7543 if (restart_stepped_thread (ecs->target, ecs->ptid))
4d9d9d04
PA
7544 {
7545 prepare_to_wait (ecs);
c4464ade 7546 return true;
4d9d9d04
PA
7547 }
7548
408f6686
PA
7549 switch_to_thread (ecs->event_thread);
7550 }
4d9d9d04 7551
408f6686
PA
7552 return false;
7553}
f3f8ece4 7554
408f6686
PA
7555/* Look for the thread that was stepping, and resume it.
7556 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7557 is resuming. Return true if a thread was started, false
7558 otherwise. */
483805cf 7559
408f6686
PA
7560static bool
7561restart_stepped_thread (process_stratum_target *resume_target,
7562 ptid_t resume_ptid)
7563{
7564 /* Do all pending step-overs before actually proceeding with
7565 step/next/etc. */
7566 if (start_step_over ())
7567 return true;
483805cf 7568
408f6686
PA
7569 for (thread_info *tp : all_threads_safe ())
7570 {
7571 if (tp->state == THREAD_EXITED)
7572 continue;
7573
1edb66d8 7574 if (tp->has_pending_waitstatus ())
408f6686 7575 continue;
483805cf 7576
408f6686
PA
7577 /* Ignore threads of processes the caller is not
7578 resuming. */
7579 if (!sched_multi
7580 && (tp->inf->process_target () != resume_target
7581 || tp->inf->pid != resume_ptid.pid ()))
7582 continue;
483805cf 7583
408f6686
PA
7584 if (tp->control.trap_expected)
7585 {
7586 infrun_debug_printf ("switching back to stepped thread (step-over)");
483805cf 7587
408f6686
PA
7588 if (keep_going_stepped_thread (tp))
7589 return true;
99619bea 7590 }
408f6686
PA
7591 }
7592
7593 for (thread_info *tp : all_threads_safe ())
7594 {
7595 if (tp->state == THREAD_EXITED)
7596 continue;
7597
1edb66d8 7598 if (tp->has_pending_waitstatus ())
408f6686 7599 continue;
99619bea 7600
408f6686
PA
7601 /* Ignore threads of processes the caller is not
7602 resuming. */
7603 if (!sched_multi
7604 && (tp->inf->process_target () != resume_target
7605 || tp->inf->pid != resume_ptid.pid ()))
7606 continue;
7607
7608 /* Did we find the stepping thread? */
7609 if (tp->control.step_range_end)
99619bea 7610 {
408f6686 7611 infrun_debug_printf ("switching back to stepped thread (stepping)");
c447ac0b 7612
408f6686
PA
7613 if (keep_going_stepped_thread (tp))
7614 return true;
2ac7589c
PA
7615 }
7616 }
2adfaa28 7617
c4464ade 7618 return false;
2ac7589c 7619}
2adfaa28 7620
408f6686
PA
7621/* See infrun.h. */
7622
7623void
7624restart_after_all_stop_detach (process_stratum_target *proc_target)
7625{
7626 /* Note we don't check target_is_non_stop_p() here, because the
7627 current inferior may no longer have a process_stratum target
7628 pushed, as we just detached. */
7629
7630 /* See if we have a THREAD_RUNNING thread that need to be
7631 re-resumed. If we have any thread that is already executing,
7632 then we don't need to resume the target -- it is already been
7633 resumed. With the remote target (in all-stop), it's even
7634 impossible to issue another resumption if the target is already
7635 resumed, until the target reports a stop. */
7636 for (thread_info *thr : all_threads (proc_target))
7637 {
7638 if (thr->state != THREAD_RUNNING)
7639 continue;
7640
7641 /* If we have any thread that is already executing, then we
7642 don't need to resume the target -- it is already been
7643 resumed. */
611841bb 7644 if (thr->executing ())
408f6686
PA
7645 return;
7646
7647 /* If we have a pending event to process, skip resuming the
7648 target and go straight to processing it. */
1edb66d8 7649 if (thr->resumed () && thr->has_pending_waitstatus ())
408f6686
PA
7650 return;
7651 }
7652
7653 /* Alright, we need to re-resume the target. If a thread was
7654 stepping, we need to restart it stepping. */
7655 if (restart_stepped_thread (proc_target, minus_one_ptid))
7656 return;
7657
7658 /* Otherwise, find the first THREAD_RUNNING thread and resume
7659 it. */
7660 for (thread_info *thr : all_threads (proc_target))
7661 {
7662 if (thr->state != THREAD_RUNNING)
7663 continue;
7664
7665 execution_control_state ecs;
7666 reset_ecs (&ecs, thr);
7667 switch_to_thread (thr);
7668 keep_going (&ecs);
7669 return;
7670 }
7671}
7672
2ac7589c
PA
7673/* Set a previously stepped thread back to stepping. Returns true on
7674 success, false if the resume is not possible (e.g., the thread
7675 vanished). */
7676
c4464ade 7677static bool
2ac7589c
PA
7678keep_going_stepped_thread (struct thread_info *tp)
7679{
7680 struct frame_info *frame;
2ac7589c
PA
7681 struct execution_control_state ecss;
7682 struct execution_control_state *ecs = &ecss;
2adfaa28 7683
2ac7589c
PA
7684 /* If the stepping thread exited, then don't try to switch back and
7685 resume it, which could fail in several different ways depending
7686 on the target. Instead, just keep going.
2adfaa28 7687
2ac7589c
PA
7688 We can find a stepping dead thread in the thread list in two
7689 cases:
2adfaa28 7690
2ac7589c
PA
7691 - The target supports thread exit events, and when the target
7692 tries to delete the thread from the thread list, inferior_ptid
7693 pointed at the exiting thread. In such case, calling
7694 delete_thread does not really remove the thread from the list;
7695 instead, the thread is left listed, with 'exited' state.
64ce06e4 7696
2ac7589c
PA
7697 - The target's debug interface does not support thread exit
7698 events, and so we have no idea whatsoever if the previously
7699 stepping thread is still alive. For that reason, we need to
7700 synchronously query the target now. */
2adfaa28 7701
00431a78 7702 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7703 {
1eb8556f
SM
7704 infrun_debug_printf ("not resuming previously stepped thread, it has "
7705 "vanished");
2ac7589c 7706
00431a78 7707 delete_thread (tp);
c4464ade 7708 return false;
c447ac0b 7709 }
2ac7589c 7710
1eb8556f 7711 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7712
7713 reset_ecs (ecs, tp);
00431a78 7714 switch_to_thread (tp);
2ac7589c 7715
1edb66d8 7716 tp->set_stop_pc (regcache_read_pc (get_thread_regcache (tp)));
2ac7589c 7717 frame = get_current_frame ();
2ac7589c
PA
7718
7719 /* If the PC of the thread we were trying to single-step has
7720 changed, then that thread has trapped or been signaled, but the
7721 event has not been reported to GDB yet. Re-poll the target
7722 looking for this particular thread's event (i.e. temporarily
7723 enable schedlock) by:
7724
7725 - setting a break at the current PC
7726 - resuming that particular thread, only (by setting trap
7727 expected)
7728
7729 This prevents us continuously moving the single-step breakpoint
7730 forward, one instruction at a time, overstepping. */
7731
1edb66d8 7732 if (tp->stop_pc () != tp->prev_pc)
2ac7589c
PA
7733 {
7734 ptid_t resume_ptid;
7735
1eb8556f
SM
7736 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7737 paddress (target_gdbarch (), tp->prev_pc),
1edb66d8 7738 paddress (target_gdbarch (), tp->stop_pc ()));
2ac7589c
PA
7739
7740 /* Clear the info of the previous step-over, as it's no longer
7741 valid (if the thread was trying to step over a breakpoint, it
7742 has already succeeded). It's what keep_going would do too,
7743 if we called it. Do this before trying to insert the sss
7744 breakpoint, otherwise if we were previously trying to step
7745 over this exact address in another thread, the breakpoint is
7746 skipped. */
7747 clear_step_over_info ();
7748 tp->control.trap_expected = 0;
7749
7750 insert_single_step_breakpoint (get_frame_arch (frame),
7751 get_frame_address_space (frame),
1edb66d8 7752 tp->stop_pc ());
2ac7589c 7753
7846f3aa 7754 tp->set_resumed (true);
fbea99ea 7755 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7756 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7757 }
7758 else
7759 {
1eb8556f 7760 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7761
7762 keep_going_pass_signal (ecs);
7763 }
c4464ade
SM
7764
7765 return true;
c447ac0b
PA
7766}
7767
8b061563
PA
7768/* Is thread TP in the middle of (software or hardware)
7769 single-stepping? (Note the result of this function must never be
7770 passed directly as target_resume's STEP parameter.) */
104c1213 7771
c4464ade 7772static bool
b3444185 7773currently_stepping (struct thread_info *tp)
a7212384 7774{
8358c15c
JK
7775 return ((tp->control.step_range_end
7776 && tp->control.step_resume_breakpoint == NULL)
7777 || tp->control.trap_expected
af48d08f 7778 || tp->stepped_breakpoint
8358c15c 7779 || bpstat_should_step ());
a7212384
UW
7780}
7781
b2175913
MS
7782/* Inferior has stepped into a subroutine call with source code that
7783 we should not step over. Do step to the first line of code in
7784 it. */
c2c6d25f
JM
7785
7786static void
568d6575
UW
7787handle_step_into_function (struct gdbarch *gdbarch,
7788 struct execution_control_state *ecs)
c2c6d25f 7789{
7e324e48
GB
7790 fill_in_stop_func (gdbarch, ecs);
7791
f2ffa92b 7792 compunit_symtab *cust
1edb66d8 7793 = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
43f3e411 7794 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7795 ecs->stop_func_start
7796 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7797
51abb421 7798 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7799 /* Use the step_resume_break to step until the end of the prologue,
7800 even if that involves jumps (as it seems to on the vax under
7801 4.2). */
7802 /* If the prologue ends in the middle of a source line, continue to
7803 the end of that source line (if it is still within the function).
7804 Otherwise, just go to end of prologue. */
2afb61aa
PA
7805 if (stop_func_sal.end
7806 && stop_func_sal.pc != ecs->stop_func_start
7807 && stop_func_sal.end < ecs->stop_func_end)
7808 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7809
2dbd5e30
KB
7810 /* Architectures which require breakpoint adjustment might not be able
7811 to place a breakpoint at the computed address. If so, the test
7812 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7813 ecs->stop_func_start to an address at which a breakpoint may be
7814 legitimately placed.
8fb3e588 7815
2dbd5e30
KB
7816 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7817 made, GDB will enter an infinite loop when stepping through
7818 optimized code consisting of VLIW instructions which contain
7819 subinstructions corresponding to different source lines. On
7820 FR-V, it's not permitted to place a breakpoint on any but the
7821 first subinstruction of a VLIW instruction. When a breakpoint is
7822 set, GDB will adjust the breakpoint address to the beginning of
7823 the VLIW instruction. Thus, we need to make the corresponding
7824 adjustment here when computing the stop address. */
8fb3e588 7825
568d6575 7826 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7827 {
7828 ecs->stop_func_start
568d6575 7829 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7830 ecs->stop_func_start);
2dbd5e30
KB
7831 }
7832
1edb66d8 7833 if (ecs->stop_func_start == ecs->event_thread->stop_pc ())
c2c6d25f
JM
7834 {
7835 /* We are already there: stop now. */
bdc36728 7836 end_stepping_range (ecs);
c2c6d25f
JM
7837 return;
7838 }
7839 else
7840 {
7841 /* Put the step-breakpoint there and go until there. */
51abb421 7842 symtab_and_line sr_sal;
c2c6d25f
JM
7843 sr_sal.pc = ecs->stop_func_start;
7844 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7845 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7846
c2c6d25f 7847 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7848 some machines the prologue is where the new fp value is
7849 established. */
a6d9a66e 7850 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7851
7852 /* And make sure stepping stops right away then. */
16c381f0 7853 ecs->event_thread->control.step_range_end
dda83cd7 7854 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7855 }
7856 keep_going (ecs);
7857}
d4f3574e 7858
b2175913
MS
7859/* Inferior has stepped backward into a subroutine call with source
7860 code that we should not step over. Do step to the beginning of the
7861 last line of code in it. */
7862
7863static void
568d6575
UW
7864handle_step_into_function_backward (struct gdbarch *gdbarch,
7865 struct execution_control_state *ecs)
b2175913 7866{
43f3e411 7867 struct compunit_symtab *cust;
167e4384 7868 struct symtab_and_line stop_func_sal;
b2175913 7869
7e324e48
GB
7870 fill_in_stop_func (gdbarch, ecs);
7871
1edb66d8 7872 cust = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
43f3e411 7873 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7874 ecs->stop_func_start
7875 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7876
1edb66d8 7877 stop_func_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
b2175913
MS
7878
7879 /* OK, we're just going to keep stepping here. */
1edb66d8 7880 if (stop_func_sal.pc == ecs->event_thread->stop_pc ())
b2175913
MS
7881 {
7882 /* We're there already. Just stop stepping now. */
bdc36728 7883 end_stepping_range (ecs);
b2175913
MS
7884 }
7885 else
7886 {
7887 /* Else just reset the step range and keep going.
7888 No step-resume breakpoint, they don't work for
7889 epilogues, which can have multiple entry paths. */
16c381f0
JK
7890 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7891 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7892 keep_going (ecs);
7893 }
7894 return;
7895}
7896
d3169d93 7897/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7898 This is used to both functions and to skip over code. */
7899
7900static void
2c03e5be
PA
7901insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7902 struct symtab_and_line sr_sal,
7903 struct frame_id sr_id,
7904 enum bptype sr_type)
44cbf7b5 7905{
611c83ae
PA
7906 /* There should never be more than one step-resume or longjmp-resume
7907 breakpoint per thread, so we should never be setting a new
44cbf7b5 7908 step_resume_breakpoint when one is already active. */
8358c15c 7909 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7910 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7911
1eb8556f
SM
7912 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7913 paddress (gdbarch, sr_sal.pc));
d3169d93 7914
8358c15c 7915 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7916 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7917}
7918
9da8c2a0 7919void
2c03e5be
PA
7920insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7921 struct symtab_and_line sr_sal,
7922 struct frame_id sr_id)
7923{
7924 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7925 sr_sal, sr_id,
7926 bp_step_resume);
44cbf7b5 7927}
7ce450bd 7928
2c03e5be
PA
7929/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7930 This is used to skip a potential signal handler.
7ce450bd 7931
14e60db5
DJ
7932 This is called with the interrupted function's frame. The signal
7933 handler, when it returns, will resume the interrupted function at
7934 RETURN_FRAME.pc. */
d303a6c7
AC
7935
7936static void
2c03e5be 7937insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7938{
f4c1edd8 7939 gdb_assert (return_frame != NULL);
d303a6c7 7940
51abb421
PA
7941 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7942
7943 symtab_and_line sr_sal;
568d6575 7944 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7945 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7946 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7947
2c03e5be
PA
7948 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7949 get_stack_frame_id (return_frame),
7950 bp_hp_step_resume);
d303a6c7
AC
7951}
7952
2c03e5be
PA
7953/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7954 is used to skip a function after stepping into it (for "next" or if
7955 the called function has no debugging information).
14e60db5
DJ
7956
7957 The current function has almost always been reached by single
7958 stepping a call or return instruction. NEXT_FRAME belongs to the
7959 current function, and the breakpoint will be set at the caller's
7960 resume address.
7961
7962 This is a separate function rather than reusing
2c03e5be 7963 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7964 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7965 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7966
7967static void
7968insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7969{
14e60db5
DJ
7970 /* We shouldn't have gotten here if we don't know where the call site
7971 is. */
c7ce8faa 7972 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7973
51abb421 7974 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7975
51abb421 7976 symtab_and_line sr_sal;
c7ce8faa
DJ
7977 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7978 frame_unwind_caller_pc (next_frame));
14e60db5 7979 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7980 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7981
a6d9a66e 7982 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7983 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7984}
7985
611c83ae
PA
7986/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7987 new breakpoint at the target of a jmp_buf. The handling of
7988 longjmp-resume uses the same mechanisms used for handling
7989 "step-resume" breakpoints. */
7990
7991static void
a6d9a66e 7992insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7993{
e81a37f7
TT
7994 /* There should never be more than one longjmp-resume breakpoint per
7995 thread, so we should never be setting a new
611c83ae 7996 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7997 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7998
1eb8556f
SM
7999 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
8000 paddress (gdbarch, pc));
611c83ae 8001
e81a37f7 8002 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 8003 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
8004}
8005
186c406b
TT
8006/* Insert an exception resume breakpoint. TP is the thread throwing
8007 the exception. The block B is the block of the unwinder debug hook
8008 function. FRAME is the frame corresponding to the call to this
8009 function. SYM is the symbol of the function argument holding the
8010 target PC of the exception. */
8011
8012static void
8013insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 8014 const struct block *b,
186c406b
TT
8015 struct frame_info *frame,
8016 struct symbol *sym)
8017{
a70b8144 8018 try
186c406b 8019 {
63e43d3a 8020 struct block_symbol vsym;
186c406b
TT
8021 struct value *value;
8022 CORE_ADDR handler;
8023 struct breakpoint *bp;
8024
987012b8 8025 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 8026 b, VAR_DOMAIN);
63e43d3a 8027 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
8028 /* If the value was optimized out, revert to the old behavior. */
8029 if (! value_optimized_out (value))
8030 {
8031 handler = value_as_address (value);
8032
1eb8556f
SM
8033 infrun_debug_printf ("exception resume at %lx",
8034 (unsigned long) handler);
186c406b
TT
8035
8036 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
8037 handler,
8038 bp_exception_resume).release ();
c70a6932
JK
8039
8040 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
8041 frame = NULL;
8042
5d5658a1 8043 bp->thread = tp->global_num;
186c406b
TT
8044 inferior_thread ()->control.exception_resume_breakpoint = bp;
8045 }
8046 }
230d2906 8047 catch (const gdb_exception_error &e)
492d29ea
PA
8048 {
8049 /* We want to ignore errors here. */
8050 }
186c406b
TT
8051}
8052
28106bc2
SDJ
8053/* A helper for check_exception_resume that sets an
8054 exception-breakpoint based on a SystemTap probe. */
8055
8056static void
8057insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 8058 const struct bound_probe *probe,
28106bc2
SDJ
8059 struct frame_info *frame)
8060{
8061 struct value *arg_value;
8062 CORE_ADDR handler;
8063 struct breakpoint *bp;
8064
8065 arg_value = probe_safe_evaluate_at_pc (frame, 1);
8066 if (!arg_value)
8067 return;
8068
8069 handler = value_as_address (arg_value);
8070
1eb8556f
SM
8071 infrun_debug_printf ("exception resume at %s",
8072 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
8073
8074 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 8075 handler, bp_exception_resume).release ();
5d5658a1 8076 bp->thread = tp->global_num;
28106bc2
SDJ
8077 inferior_thread ()->control.exception_resume_breakpoint = bp;
8078}
8079
186c406b
TT
8080/* This is called when an exception has been intercepted. Check to
8081 see whether the exception's destination is of interest, and if so,
8082 set an exception resume breakpoint there. */
8083
8084static void
8085check_exception_resume (struct execution_control_state *ecs,
28106bc2 8086 struct frame_info *frame)
186c406b 8087{
729662a5 8088 struct bound_probe probe;
28106bc2
SDJ
8089 struct symbol *func;
8090
8091 /* First see if this exception unwinding breakpoint was set via a
8092 SystemTap probe point. If so, the probe has two arguments: the
8093 CFA and the HANDLER. We ignore the CFA, extract the handler, and
8094 set a breakpoint there. */
6bac7473 8095 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 8096 if (probe.prob)
28106bc2 8097 {
729662a5 8098 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
8099 return;
8100 }
8101
8102 func = get_frame_function (frame);
8103 if (!func)
8104 return;
186c406b 8105
a70b8144 8106 try
186c406b 8107 {
3977b71f 8108 const struct block *b;
8157b174 8109 struct block_iterator iter;
186c406b
TT
8110 struct symbol *sym;
8111 int argno = 0;
8112
8113 /* The exception breakpoint is a thread-specific breakpoint on
8114 the unwinder's debug hook, declared as:
8115
8116 void _Unwind_DebugHook (void *cfa, void *handler);
8117
8118 The CFA argument indicates the frame to which control is
8119 about to be transferred. HANDLER is the destination PC.
8120
8121 We ignore the CFA and set a temporary breakpoint at HANDLER.
8122 This is not extremely efficient but it avoids issues in gdb
8123 with computing the DWARF CFA, and it also works even in weird
8124 cases such as throwing an exception from inside a signal
8125 handler. */
8126
4aeddc50 8127 b = func->value_block ();
186c406b
TT
8128 ALL_BLOCK_SYMBOLS (b, iter, sym)
8129 {
d9743061 8130 if (!sym->is_argument ())
186c406b
TT
8131 continue;
8132
8133 if (argno == 0)
8134 ++argno;
8135 else
8136 {
8137 insert_exception_resume_breakpoint (ecs->event_thread,
8138 b, frame, sym);
8139 break;
8140 }
8141 }
8142 }
230d2906 8143 catch (const gdb_exception_error &e)
492d29ea
PA
8144 {
8145 }
186c406b
TT
8146}
8147
104c1213 8148static void
22bcd14b 8149stop_waiting (struct execution_control_state *ecs)
104c1213 8150{
1eb8556f 8151 infrun_debug_printf ("stop_waiting");
527159b7 8152
cd0fc7c3
SS
8153 /* Let callers know we don't want to wait for the inferior anymore. */
8154 ecs->wait_some_more = 0;
8155}
8156
4d9d9d04
PA
8157/* Like keep_going, but passes the signal to the inferior, even if the
8158 signal is set to nopass. */
d4f3574e
SS
8159
8160static void
4d9d9d04 8161keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8162{
d7e15655 8163 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7846f3aa 8164 gdb_assert (!ecs->event_thread->resumed ());
4d9d9d04 8165
d4f3574e 8166 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8167 ecs->event_thread->prev_pc
fc75c28b 8168 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8169
4d9d9d04 8170 if (ecs->event_thread->control.trap_expected)
d4f3574e 8171 {
4d9d9d04
PA
8172 struct thread_info *tp = ecs->event_thread;
8173
1eb8556f
SM
8174 infrun_debug_printf ("%s has trap_expected set, "
8175 "resuming to collect trap",
0fab7955 8176 tp->ptid.to_string ().c_str ());
4d9d9d04 8177
a9ba6bae
PA
8178 /* We haven't yet gotten our trap, and either: intercepted a
8179 non-signal event (e.g., a fork); or took a signal which we
8180 are supposed to pass through to the inferior. Simply
8181 continue. */
1edb66d8 8182 resume (ecs->event_thread->stop_signal ());
d4f3574e 8183 }
372316f1
PA
8184 else if (step_over_info_valid_p ())
8185 {
8186 /* Another thread is stepping over a breakpoint in-line. If
8187 this thread needs a step-over too, queue the request. In
8188 either case, this resume must be deferred for later. */
8189 struct thread_info *tp = ecs->event_thread;
8190
8191 if (ecs->hit_singlestep_breakpoint
8192 || thread_still_needs_step_over (tp))
8193 {
1eb8556f
SM
8194 infrun_debug_printf ("step-over already in progress: "
8195 "step-over for %s deferred",
0fab7955 8196 tp->ptid.to_string ().c_str ());
28d5518b 8197 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
8198 }
8199 else
0fab7955
SM
8200 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8201 tp->ptid.to_string ().c_str ());
372316f1 8202 }
d4f3574e
SS
8203 else
8204 {
31e77af2 8205 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8206 int remove_bp;
8207 int remove_wps;
8d297bbf 8208 step_over_what step_what;
31e77af2 8209
d4f3574e 8210 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8211 anyway (if we got a signal, the user asked it be passed to
8212 the child)
8213 -- or --
8214 We got our expected trap, but decided we should resume from
8215 it.
d4f3574e 8216
a9ba6bae 8217 We're going to run this baby now!
d4f3574e 8218
c36b740a
VP
8219 Note that insert_breakpoints won't try to re-insert
8220 already inserted breakpoints. Therefore, we don't
8221 care if breakpoints were already inserted, or not. */
a9ba6bae 8222
31e77af2
PA
8223 /* If we need to step over a breakpoint, and we're not using
8224 displaced stepping to do so, insert all breakpoints
8225 (watchpoints, etc.) but the one we're stepping over, step one
8226 instruction, and then re-insert the breakpoint when that step
8227 is finished. */
963f9c80 8228
6c4cfb24
PA
8229 step_what = thread_still_needs_step_over (ecs->event_thread);
8230
963f9c80 8231 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8232 || (step_what & STEP_OVER_BREAKPOINT));
8233 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8234
cb71640d
PA
8235 /* We can't use displaced stepping if we need to step past a
8236 watchpoint. The instruction copied to the scratch pad would
8237 still trigger the watchpoint. */
8238 if (remove_bp
3fc8eb30 8239 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8240 {
a01bda52 8241 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8242 regcache_read_pc (regcache), remove_wps,
8243 ecs->event_thread->global_num);
45e8c884 8244 }
963f9c80 8245 else if (remove_wps)
21edc42f 8246 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8247
8248 /* If we now need to do an in-line step-over, we need to stop
8249 all other threads. Note this must be done before
8250 insert_breakpoints below, because that removes the breakpoint
8251 we're about to step over, otherwise other threads could miss
8252 it. */
fbea99ea 8253 if (step_over_info_valid_p () && target_is_non_stop_p ())
4f5539f0 8254 stop_all_threads ("starting in-line step-over");
abbb1732 8255
31e77af2 8256 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8257 try
31e77af2
PA
8258 {
8259 insert_breakpoints ();
8260 }
230d2906 8261 catch (const gdb_exception_error &e)
31e77af2
PA
8262 {
8263 exception_print (gdb_stderr, e);
22bcd14b 8264 stop_waiting (ecs);
bdf2a94a 8265 clear_step_over_info ();
31e77af2 8266 return;
d4f3574e
SS
8267 }
8268
963f9c80 8269 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8270
1edb66d8 8271 resume (ecs->event_thread->stop_signal ());
d4f3574e
SS
8272 }
8273
488f131b 8274 prepare_to_wait (ecs);
d4f3574e
SS
8275}
8276
4d9d9d04
PA
8277/* Called when we should continue running the inferior, because the
8278 current event doesn't cause a user visible stop. This does the
8279 resuming part; waiting for the next event is done elsewhere. */
8280
8281static void
8282keep_going (struct execution_control_state *ecs)
8283{
8284 if (ecs->event_thread->control.trap_expected
1edb66d8 8285 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
4d9d9d04
PA
8286 ecs->event_thread->control.trap_expected = 0;
8287
1edb66d8
SM
8288 if (!signal_program[ecs->event_thread->stop_signal ()])
8289 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
4d9d9d04
PA
8290 keep_going_pass_signal (ecs);
8291}
8292
104c1213
JM
8293/* This function normally comes after a resume, before
8294 handle_inferior_event exits. It takes care of any last bits of
8295 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8296
104c1213
JM
8297static void
8298prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8299{
1eb8556f 8300 infrun_debug_printf ("prepare_to_wait");
104c1213 8301
104c1213 8302 ecs->wait_some_more = 1;
0b333c5e 8303
42bd97a6
PA
8304 /* If the target can't async, emulate it by marking the infrun event
8305 handler such that as soon as we get back to the event-loop, we
8306 immediately end up in fetch_inferior_event again calling
8307 target_wait. */
8308 if (!target_can_async_p ())
0b333c5e 8309 mark_infrun_async_event_handler ();
c906108c 8310}
11cf8741 8311
fd664c91 8312/* We are done with the step range of a step/next/si/ni command.
b57bacec 8313 Called once for each n of a "step n" operation. */
fd664c91
PA
8314
8315static void
bdc36728 8316end_stepping_range (struct execution_control_state *ecs)
fd664c91 8317{
bdc36728 8318 ecs->event_thread->control.stop_step = 1;
bdc36728 8319 stop_waiting (ecs);
fd664c91
PA
8320}
8321
33d62d64
JK
8322/* Several print_*_reason functions to print why the inferior has stopped.
8323 We always print something when the inferior exits, or receives a signal.
8324 The rest of the cases are dealt with later on in normal_stop and
8325 print_it_typical. Ideally there should be a call to one of these
8326 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8327 stop_waiting is called.
33d62d64 8328
fd664c91
PA
8329 Note that we don't call these directly, instead we delegate that to
8330 the interpreters, through observers. Interpreters then call these
8331 with whatever uiout is right. */
33d62d64 8332
fd664c91
PA
8333void
8334print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8335{
fd664c91 8336 /* For CLI-like interpreters, print nothing. */
33d62d64 8337
112e8700 8338 if (uiout->is_mi_like_p ())
fd664c91 8339 {
112e8700 8340 uiout->field_string ("reason",
fd664c91
PA
8341 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8342 }
8343}
33d62d64 8344
fd664c91
PA
8345void
8346print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8347{
33d62d64 8348 annotate_signalled ();
112e8700
SM
8349 if (uiout->is_mi_like_p ())
8350 uiout->field_string
8351 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8352 uiout->text ("\nProgram terminated with signal ");
33d62d64 8353 annotate_signal_name ();
112e8700 8354 uiout->field_string ("signal-name",
2ea28649 8355 gdb_signal_to_name (siggnal));
33d62d64 8356 annotate_signal_name_end ();
112e8700 8357 uiout->text (", ");
33d62d64 8358 annotate_signal_string ();
112e8700 8359 uiout->field_string ("signal-meaning",
2ea28649 8360 gdb_signal_to_string (siggnal));
33d62d64 8361 annotate_signal_string_end ();
112e8700
SM
8362 uiout->text (".\n");
8363 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8364}
8365
fd664c91
PA
8366void
8367print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8368{
fda326dd 8369 struct inferior *inf = current_inferior ();
a068643d 8370 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8371
33d62d64
JK
8372 annotate_exited (exitstatus);
8373 if (exitstatus)
8374 {
112e8700
SM
8375 if (uiout->is_mi_like_p ())
8376 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8377 std::string exit_code_str
8378 = string_printf ("0%o", (unsigned int) exitstatus);
8379 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8380 plongest (inf->num), pidstr.c_str (),
8381 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8382 }
8383 else
11cf8741 8384 {
112e8700
SM
8385 if (uiout->is_mi_like_p ())
8386 uiout->field_string
8387 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8388 uiout->message ("[Inferior %s (%s) exited normally]\n",
8389 plongest (inf->num), pidstr.c_str ());
33d62d64 8390 }
33d62d64
JK
8391}
8392
fd664c91
PA
8393void
8394print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8395{
f303dbd6
PA
8396 struct thread_info *thr = inferior_thread ();
8397
33d62d64
JK
8398 annotate_signal ();
8399
112e8700 8400 if (uiout->is_mi_like_p ())
f303dbd6
PA
8401 ;
8402 else if (show_thread_that_caused_stop ())
33d62d64 8403 {
112e8700 8404 uiout->text ("\nThread ");
33eca680 8405 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6 8406
25558938 8407 const char *name = thread_name (thr);
f303dbd6
PA
8408 if (name != NULL)
8409 {
112e8700 8410 uiout->text (" \"");
33eca680 8411 uiout->field_string ("name", name);
112e8700 8412 uiout->text ("\"");
f303dbd6 8413 }
33d62d64 8414 }
f303dbd6 8415 else
112e8700 8416 uiout->text ("\nProgram");
f303dbd6 8417
112e8700
SM
8418 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8419 uiout->text (" stopped");
33d62d64
JK
8420 else
8421 {
112e8700 8422 uiout->text (" received signal ");
8b93c638 8423 annotate_signal_name ();
112e8700
SM
8424 if (uiout->is_mi_like_p ())
8425 uiout->field_string
8426 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8427 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8428 annotate_signal_name_end ();
112e8700 8429 uiout->text (", ");
8b93c638 8430 annotate_signal_string ();
112e8700 8431 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8432
272bb05c
JB
8433 struct regcache *regcache = get_current_regcache ();
8434 struct gdbarch *gdbarch = regcache->arch ();
8435 if (gdbarch_report_signal_info_p (gdbarch))
8436 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8437
8b93c638 8438 annotate_signal_string_end ();
33d62d64 8439 }
112e8700 8440 uiout->text (".\n");
33d62d64 8441}
252fbfc8 8442
fd664c91
PA
8443void
8444print_no_history_reason (struct ui_out *uiout)
33d62d64 8445{
112e8700 8446 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8447}
43ff13b4 8448
0c7e1a46
PA
8449/* Print current location without a level number, if we have changed
8450 functions or hit a breakpoint. Print source line if we have one.
8451 bpstat_print contains the logic deciding in detail what to print,
8452 based on the event(s) that just occurred. */
8453
243a9253 8454static void
c272a98c 8455print_stop_location (const target_waitstatus &ws)
0c7e1a46
PA
8456{
8457 int bpstat_ret;
f486487f 8458 enum print_what source_flag;
0c7e1a46
PA
8459 int do_frame_printing = 1;
8460 struct thread_info *tp = inferior_thread ();
8461
c272a98c 8462 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws.kind ());
0c7e1a46
PA
8463 switch (bpstat_ret)
8464 {
8465 case PRINT_UNKNOWN:
8466 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8467 should) carry around the function and does (or should) use
8468 that when doing a frame comparison. */
8469 if (tp->control.stop_step
8470 && frame_id_eq (tp->control.step_frame_id,
8471 get_frame_id (get_current_frame ()))
f2ffa92b 8472 && (tp->control.step_start_function
1edb66d8 8473 == find_pc_function (tp->stop_pc ())))
0c7e1a46
PA
8474 {
8475 /* Finished step, just print source line. */
8476 source_flag = SRC_LINE;
8477 }
8478 else
8479 {
8480 /* Print location and source line. */
8481 source_flag = SRC_AND_LOC;
8482 }
8483 break;
8484 case PRINT_SRC_AND_LOC:
8485 /* Print location and source line. */
8486 source_flag = SRC_AND_LOC;
8487 break;
8488 case PRINT_SRC_ONLY:
8489 source_flag = SRC_LINE;
8490 break;
8491 case PRINT_NOTHING:
8492 /* Something bogus. */
8493 source_flag = SRC_LINE;
8494 do_frame_printing = 0;
8495 break;
8496 default:
8497 internal_error (__FILE__, __LINE__, _("Unknown value."));
8498 }
8499
8500 /* The behavior of this routine with respect to the source
8501 flag is:
8502 SRC_LINE: Print only source line
8503 LOCATION: Print only location
8504 SRC_AND_LOC: Print location and source line. */
8505 if (do_frame_printing)
8506 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8507}
8508
243a9253
PA
8509/* See infrun.h. */
8510
8511void
4c7d57e7 8512print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8513{
243a9253 8514 struct target_waitstatus last;
243a9253
PA
8515 struct thread_info *tp;
8516
5b6d1e4f 8517 get_last_target_status (nullptr, nullptr, &last);
243a9253 8518
67ad9399
TT
8519 {
8520 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8521
c272a98c 8522 print_stop_location (last);
243a9253 8523
67ad9399 8524 /* Display the auto-display expressions. */
4c7d57e7
TT
8525 if (displays)
8526 do_displays ();
67ad9399 8527 }
243a9253
PA
8528
8529 tp = inferior_thread ();
573269a8
LS
8530 if (tp->thread_fsm () != nullptr
8531 && tp->thread_fsm ()->finished_p ())
243a9253
PA
8532 {
8533 struct return_value_info *rv;
8534
573269a8
LS
8535 rv = tp->thread_fsm ()->return_value ();
8536 if (rv != nullptr)
243a9253
PA
8537 print_return_value (uiout, rv);
8538 }
0c7e1a46
PA
8539}
8540
388a7084
PA
8541/* See infrun.h. */
8542
8543void
8544maybe_remove_breakpoints (void)
8545{
55f6301a 8546 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8547 {
8548 if (remove_breakpoints ())
8549 {
223ffa71 8550 target_terminal::ours_for_output ();
6cb06a8c
TT
8551 gdb_printf (_("Cannot remove breakpoints because "
8552 "program is no longer writable.\nFurther "
8553 "execution is probably impossible.\n"));
388a7084
PA
8554 }
8555 }
8556}
8557
4c2f2a79
PA
8558/* The execution context that just caused a normal stop. */
8559
8560struct stop_context
8561{
2d844eaf 8562 stop_context ();
2d844eaf
TT
8563
8564 DISABLE_COPY_AND_ASSIGN (stop_context);
8565
8566 bool changed () const;
8567
4c2f2a79
PA
8568 /* The stop ID. */
8569 ULONGEST stop_id;
c906108c 8570
4c2f2a79 8571 /* The event PTID. */
c906108c 8572
4c2f2a79
PA
8573 ptid_t ptid;
8574
8575 /* If stopp for a thread event, this is the thread that caused the
8576 stop. */
d634cd0b 8577 thread_info_ref thread;
4c2f2a79
PA
8578
8579 /* The inferior that caused the stop. */
8580 int inf_num;
8581};
8582
2d844eaf 8583/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8584 takes a strong reference to the thread. */
8585
2d844eaf 8586stop_context::stop_context ()
4c2f2a79 8587{
2d844eaf
TT
8588 stop_id = get_stop_id ();
8589 ptid = inferior_ptid;
8590 inf_num = current_inferior ()->num;
4c2f2a79 8591
d7e15655 8592 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8593 {
8594 /* Take a strong reference so that the thread can't be deleted
8595 yet. */
d634cd0b 8596 thread = thread_info_ref::new_reference (inferior_thread ());
4c2f2a79 8597 }
4c2f2a79
PA
8598}
8599
8600/* Return true if the current context no longer matches the saved stop
8601 context. */
8602
2d844eaf
TT
8603bool
8604stop_context::changed () const
8605{
8606 if (ptid != inferior_ptid)
8607 return true;
8608 if (inf_num != current_inferior ()->num)
8609 return true;
8610 if (thread != NULL && thread->state != THREAD_STOPPED)
8611 return true;
8612 if (get_stop_id () != stop_id)
8613 return true;
8614 return false;
4c2f2a79
PA
8615}
8616
8617/* See infrun.h. */
8618
8619int
96baa820 8620normal_stop (void)
c906108c 8621{
73b65bb0 8622 struct target_waitstatus last;
73b65bb0 8623
5b6d1e4f 8624 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8625
4c2f2a79
PA
8626 new_stop_id ();
8627
29f49a6a
PA
8628 /* If an exception is thrown from this point on, make sure to
8629 propagate GDB's knowledge of the executing state to the
8630 frontend/user running state. A QUIT is an easy exception to see
8631 here, so do this before any filtered output. */
731f534f 8632
5b6d1e4f 8633 ptid_t finish_ptid = null_ptid;
731f534f 8634
c35b1492 8635 if (!non_stop)
5b6d1e4f 8636 finish_ptid = minus_one_ptid;
183be222
SM
8637 else if (last.kind () == TARGET_WAITKIND_SIGNALLED
8638 || last.kind () == TARGET_WAITKIND_EXITED)
e1316e60
PA
8639 {
8640 /* On some targets, we may still have live threads in the
8641 inferior when we get a process exit event. E.g., for
8642 "checkpoint", when the current checkpoint/fork exits,
8643 linux-fork.c automatically switches to another fork from
8644 within target_mourn_inferior. */
731f534f 8645 if (inferior_ptid != null_ptid)
5b6d1e4f 8646 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60 8647 }
183be222 8648 else if (last.kind () != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8649 finish_ptid = inferior_ptid;
8650
8651 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8652 if (finish_ptid != null_ptid)
8653 {
8654 maybe_finish_thread_state.emplace
8655 (user_visible_resume_target (finish_ptid), finish_ptid);
8656 }
29f49a6a 8657
b57bacec
PA
8658 /* As we're presenting a stop, and potentially removing breakpoints,
8659 update the thread list so we can tell whether there are threads
8660 running on the target. With target remote, for example, we can
8661 only learn about new threads when we explicitly update the thread
8662 list. Do this before notifying the interpreters about signal
8663 stops, end of stepping ranges, etc., so that the "new thread"
8664 output is emitted before e.g., "Program received signal FOO",
8665 instead of after. */
8666 update_thread_list ();
8667
183be222 8668 if (last.kind () == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
1edb66d8 8669 gdb::observers::signal_received.notify (inferior_thread ()->stop_signal ());
b57bacec 8670
c906108c
SS
8671 /* As with the notification of thread events, we want to delay
8672 notifying the user that we've switched thread context until
8673 the inferior actually stops.
8674
73b65bb0
DJ
8675 There's no point in saying anything if the inferior has exited.
8676 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8677 "received a signal".
8678
8679 Also skip saying anything in non-stop mode. In that mode, as we
8680 don't want GDB to switch threads behind the user's back, to avoid
8681 races where the user is typing a command to apply to thread x,
8682 but GDB switches to thread y before the user finishes entering
8683 the command, fetch_inferior_event installs a cleanup to restore
8684 the current thread back to the thread the user had selected right
8685 after this event is handled, so we're not really switching, only
8686 informing of a stop. */
4f8d22e3 8687 if (!non_stop
731f534f 8688 && previous_inferior_ptid != inferior_ptid
55f6301a 8689 && target_has_execution ()
183be222
SM
8690 && last.kind () != TARGET_WAITKIND_SIGNALLED
8691 && last.kind () != TARGET_WAITKIND_EXITED
8692 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
c906108c 8693 {
0e454242 8694 SWITCH_THRU_ALL_UIS ()
3b12939d 8695 {
223ffa71 8696 target_terminal::ours_for_output ();
6cb06a8c
TT
8697 gdb_printf (_("[Switching to %s]\n"),
8698 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8699 annotate_thread_changed ();
8700 }
39f77062 8701 previous_inferior_ptid = inferior_ptid;
c906108c 8702 }
c906108c 8703
183be222 8704 if (last.kind () == TARGET_WAITKIND_NO_RESUMED)
0e5bf2a8 8705 {
0e454242 8706 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8707 if (current_ui->prompt_state == PROMPT_BLOCKED)
8708 {
223ffa71 8709 target_terminal::ours_for_output ();
6cb06a8c 8710 gdb_printf (_("No unwaited-for children left.\n"));
3b12939d 8711 }
0e5bf2a8
PA
8712 }
8713
b57bacec 8714 /* Note: this depends on the update_thread_list call above. */
388a7084 8715 maybe_remove_breakpoints ();
c906108c 8716
c906108c
SS
8717 /* If an auto-display called a function and that got a signal,
8718 delete that auto-display to avoid an infinite recursion. */
8719
8720 if (stopped_by_random_signal)
8721 disable_current_display ();
8722
0e454242 8723 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8724 {
8725 async_enable_stdin ();
8726 }
c906108c 8727
388a7084 8728 /* Let the user/frontend see the threads as stopped. */
731f534f 8729 maybe_finish_thread_state.reset ();
388a7084
PA
8730
8731 /* Select innermost stack frame - i.e., current frame is frame 0,
8732 and current location is based on that. Handle the case where the
8733 dummy call is returning after being stopped. E.g. the dummy call
8734 previously hit a breakpoint. (If the dummy call returns
8735 normally, we won't reach here.) Do this before the stop hook is
8736 run, so that it doesn't get to see the temporary dummy frame,
8737 which is not where we'll present the stop. */
8738 if (has_stack_frames ())
8739 {
8740 if (stop_stack_dummy == STOP_STACK_DUMMY)
8741 {
8742 /* Pop the empty frame that contains the stack dummy. This
8743 also restores inferior state prior to the call (struct
8744 infcall_suspend_state). */
8745 struct frame_info *frame = get_current_frame ();
8746
8747 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8748 frame_pop (frame);
8749 /* frame_pop calls reinit_frame_cache as the last thing it
8750 does which means there's now no selected frame. */
8751 }
8752
8753 select_frame (get_current_frame ());
8754
8755 /* Set the current source location. */
8756 set_current_sal_from_frame (get_current_frame ());
8757 }
dd7e2d2b
PA
8758
8759 /* Look up the hook_stop and run it (CLI internally handles problem
8760 of stop_command's pre-hook not existing). */
49a82d50 8761 stop_context saved_context;
4c2f2a79 8762
49a82d50
TT
8763 try
8764 {
8765 execute_cmd_pre_hook (stop_command);
4c2f2a79 8766 }
49a82d50
TT
8767 catch (const gdb_exception &ex)
8768 {
8769 exception_fprintf (gdb_stderr, ex,
8770 "Error while running hook_stop:\n");
8771 }
8772
8773 /* If the stop hook resumes the target, then there's no point in
8774 trying to notify about the previous stop; its context is
8775 gone. Likewise if the command switches thread or inferior --
8776 the observers would print a stop for the wrong
8777 thread/inferior. */
8778 if (saved_context.changed ())
8779 return 1;
dd7e2d2b 8780
388a7084
PA
8781 /* Notify observers about the stop. This is where the interpreters
8782 print the stop event. */
d7e15655 8783 if (inferior_ptid != null_ptid)
76727919 8784 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
24a7f1b5 8785 stop_print_frame);
388a7084 8786 else
76727919 8787 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8788
243a9253
PA
8789 annotate_stopped ();
8790
55f6301a 8791 if (target_has_execution ())
48844aa6 8792 {
183be222
SM
8793 if (last.kind () != TARGET_WAITKIND_SIGNALLED
8794 && last.kind () != TARGET_WAITKIND_EXITED
8795 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8796 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8797 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8798 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8799 }
6c95b8df 8800
4c2f2a79 8801 return 0;
c906108c 8802}
c906108c 8803\f
c5aa993b 8804int
96baa820 8805signal_stop_state (int signo)
c906108c 8806{
d6b48e9c 8807 return signal_stop[signo];
c906108c
SS
8808}
8809
c5aa993b 8810int
96baa820 8811signal_print_state (int signo)
c906108c
SS
8812{
8813 return signal_print[signo];
8814}
8815
c5aa993b 8816int
96baa820 8817signal_pass_state (int signo)
c906108c
SS
8818{
8819 return signal_program[signo];
8820}
8821
2455069d
UW
8822static void
8823signal_cache_update (int signo)
8824{
8825 if (signo == -1)
8826 {
a493e3e2 8827 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8828 signal_cache_update (signo);
8829
8830 return;
8831 }
8832
8833 signal_pass[signo] = (signal_stop[signo] == 0
8834 && signal_print[signo] == 0
ab04a2af
TT
8835 && signal_program[signo] == 1
8836 && signal_catch[signo] == 0);
2455069d
UW
8837}
8838
488f131b 8839int
7bda5e4a 8840signal_stop_update (int signo, int state)
d4f3574e
SS
8841{
8842 int ret = signal_stop[signo];
abbb1732 8843
d4f3574e 8844 signal_stop[signo] = state;
2455069d 8845 signal_cache_update (signo);
d4f3574e
SS
8846 return ret;
8847}
8848
488f131b 8849int
7bda5e4a 8850signal_print_update (int signo, int state)
d4f3574e
SS
8851{
8852 int ret = signal_print[signo];
abbb1732 8853
d4f3574e 8854 signal_print[signo] = state;
2455069d 8855 signal_cache_update (signo);
d4f3574e
SS
8856 return ret;
8857}
8858
488f131b 8859int
7bda5e4a 8860signal_pass_update (int signo, int state)
d4f3574e
SS
8861{
8862 int ret = signal_program[signo];
abbb1732 8863
d4f3574e 8864 signal_program[signo] = state;
2455069d 8865 signal_cache_update (signo);
d4f3574e
SS
8866 return ret;
8867}
8868
ab04a2af
TT
8869/* Update the global 'signal_catch' from INFO and notify the
8870 target. */
8871
8872void
8873signal_catch_update (const unsigned int *info)
8874{
8875 int i;
8876
8877 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8878 signal_catch[i] = info[i] > 0;
8879 signal_cache_update (-1);
adc6a863 8880 target_pass_signals (signal_pass);
ab04a2af
TT
8881}
8882
c906108c 8883static void
96baa820 8884sig_print_header (void)
c906108c 8885{
6cb06a8c
TT
8886 gdb_printf (_("Signal Stop\tPrint\tPass "
8887 "to program\tDescription\n"));
c906108c
SS
8888}
8889
8890static void
2ea28649 8891sig_print_info (enum gdb_signal oursig)
c906108c 8892{
2ea28649 8893 const char *name = gdb_signal_to_name (oursig);
c906108c 8894 int name_padding = 13 - strlen (name);
96baa820 8895
c906108c
SS
8896 if (name_padding <= 0)
8897 name_padding = 0;
8898
6cb06a8c
TT
8899 gdb_printf ("%s", name);
8900 gdb_printf ("%*.*s ", name_padding, name_padding, " ");
8901 gdb_printf ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8902 gdb_printf ("%s\t", signal_print[oursig] ? "Yes" : "No");
8903 gdb_printf ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8904 gdb_printf ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8905}
8906
8907/* Specify how various signals in the inferior should be handled. */
8908
8909static void
0b39b52e 8910handle_command (const char *args, int from_tty)
c906108c 8911{
c906108c 8912 int digits, wordlen;
b926417a 8913 int sigfirst, siglast;
2ea28649 8914 enum gdb_signal oursig;
c906108c 8915 int allsigs;
c906108c
SS
8916
8917 if (args == NULL)
8918 {
e2e0b3e5 8919 error_no_arg (_("signal to handle"));
c906108c
SS
8920 }
8921
1777feb0 8922 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8923
adc6a863
PA
8924 const size_t nsigs = GDB_SIGNAL_LAST;
8925 unsigned char sigs[nsigs] {};
c906108c 8926
1777feb0 8927 /* Break the command line up into args. */
c906108c 8928
773a1edc 8929 gdb_argv built_argv (args);
c906108c
SS
8930
8931 /* Walk through the args, looking for signal oursigs, signal names, and
8932 actions. Signal numbers and signal names may be interspersed with
8933 actions, with the actions being performed for all signals cumulatively
1777feb0 8934 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8935
773a1edc 8936 for (char *arg : built_argv)
c906108c 8937 {
773a1edc
TT
8938 wordlen = strlen (arg);
8939 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8940 {;
8941 }
8942 allsigs = 0;
8943 sigfirst = siglast = -1;
8944
773a1edc 8945 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8946 {
8947 /* Apply action to all signals except those used by the
1777feb0 8948 debugger. Silently skip those. */
c906108c
SS
8949 allsigs = 1;
8950 sigfirst = 0;
8951 siglast = nsigs - 1;
8952 }
773a1edc 8953 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8954 {
8955 SET_SIGS (nsigs, sigs, signal_stop);
8956 SET_SIGS (nsigs, sigs, signal_print);
8957 }
773a1edc 8958 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8959 {
8960 UNSET_SIGS (nsigs, sigs, signal_program);
8961 }
773a1edc 8962 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8963 {
8964 SET_SIGS (nsigs, sigs, signal_print);
8965 }
773a1edc 8966 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8967 {
8968 SET_SIGS (nsigs, sigs, signal_program);
8969 }
773a1edc 8970 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8971 {
8972 UNSET_SIGS (nsigs, sigs, signal_stop);
8973 }
773a1edc 8974 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8975 {
8976 SET_SIGS (nsigs, sigs, signal_program);
8977 }
773a1edc 8978 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8979 {
8980 UNSET_SIGS (nsigs, sigs, signal_print);
8981 UNSET_SIGS (nsigs, sigs, signal_stop);
8982 }
773a1edc 8983 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8984 {
8985 UNSET_SIGS (nsigs, sigs, signal_program);
8986 }
8987 else if (digits > 0)
8988 {
8989 /* It is numeric. The numeric signal refers to our own
8990 internal signal numbering from target.h, not to host/target
8991 signal number. This is a feature; users really should be
8992 using symbolic names anyway, and the common ones like
8993 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8994
8995 sigfirst = siglast = (int)
773a1edc
TT
8996 gdb_signal_from_command (atoi (arg));
8997 if (arg[digits] == '-')
c906108c
SS
8998 {
8999 siglast = (int)
773a1edc 9000 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
9001 }
9002 if (sigfirst > siglast)
9003 {
1777feb0 9004 /* Bet he didn't figure we'd think of this case... */
b926417a 9005 std::swap (sigfirst, siglast);
c906108c
SS
9006 }
9007 }
9008 else
9009 {
773a1edc 9010 oursig = gdb_signal_from_name (arg);
a493e3e2 9011 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
9012 {
9013 sigfirst = siglast = (int) oursig;
9014 }
9015 else
9016 {
9017 /* Not a number and not a recognized flag word => complain. */
773a1edc 9018 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
9019 }
9020 }
9021
9022 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 9023 which signals to apply actions to. */
c906108c 9024
b926417a 9025 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 9026 {
2ea28649 9027 switch ((enum gdb_signal) signum)
c906108c 9028 {
a493e3e2
PA
9029 case GDB_SIGNAL_TRAP:
9030 case GDB_SIGNAL_INT:
c906108c
SS
9031 if (!allsigs && !sigs[signum])
9032 {
9e2f0ad4 9033 if (query (_("%s is used by the debugger.\n\
3e43a32a 9034Are you sure you want to change it? "),
2ea28649 9035 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
9036 {
9037 sigs[signum] = 1;
9038 }
9039 else
6cb06a8c 9040 gdb_printf (_("Not confirmed, unchanged.\n"));
c906108c
SS
9041 }
9042 break;
a493e3e2
PA
9043 case GDB_SIGNAL_0:
9044 case GDB_SIGNAL_DEFAULT:
9045 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
9046 /* Make sure that "all" doesn't print these. */
9047 break;
9048 default:
9049 sigs[signum] = 1;
9050 break;
9051 }
9052 }
c906108c
SS
9053 }
9054
b926417a 9055 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
9056 if (sigs[signum])
9057 {
2455069d 9058 signal_cache_update (-1);
adc6a863
PA
9059 target_pass_signals (signal_pass);
9060 target_program_signals (signal_program);
c906108c 9061
3a031f65
PA
9062 if (from_tty)
9063 {
9064 /* Show the results. */
9065 sig_print_header ();
9066 for (; signum < nsigs; signum++)
9067 if (sigs[signum])
aead7601 9068 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
9069 }
9070
9071 break;
9072 }
c906108c
SS
9073}
9074
de0bea00
MF
9075/* Complete the "handle" command. */
9076
eb3ff9a5 9077static void
de0bea00 9078handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 9079 completion_tracker &tracker,
6f937416 9080 const char *text, const char *word)
de0bea00 9081{
de0bea00
MF
9082 static const char * const keywords[] =
9083 {
9084 "all",
9085 "stop",
9086 "ignore",
9087 "print",
9088 "pass",
9089 "nostop",
9090 "noignore",
9091 "noprint",
9092 "nopass",
9093 NULL,
9094 };
9095
eb3ff9a5
PA
9096 signal_completer (ignore, tracker, text, word);
9097 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
9098}
9099
2ea28649
PA
9100enum gdb_signal
9101gdb_signal_from_command (int num)
ed01b82c
PA
9102{
9103 if (num >= 1 && num <= 15)
2ea28649 9104 return (enum gdb_signal) num;
ed01b82c
PA
9105 error (_("Only signals 1-15 are valid as numeric signals.\n\
9106Use \"info signals\" for a list of symbolic signals."));
9107}
9108
c906108c
SS
9109/* Print current contents of the tables set by the handle command.
9110 It is possible we should just be printing signals actually used
9111 by the current target (but for things to work right when switching
9112 targets, all signals should be in the signal tables). */
9113
9114static void
1d12d88f 9115info_signals_command (const char *signum_exp, int from_tty)
c906108c 9116{
2ea28649 9117 enum gdb_signal oursig;
abbb1732 9118
c906108c
SS
9119 sig_print_header ();
9120
9121 if (signum_exp)
9122 {
9123 /* First see if this is a symbol name. */
2ea28649 9124 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 9125 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
9126 {
9127 /* No, try numeric. */
9128 oursig =
2ea28649 9129 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
9130 }
9131 sig_print_info (oursig);
9132 return;
9133 }
9134
6cb06a8c 9135 gdb_printf ("\n");
c906108c 9136 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9137 for (oursig = GDB_SIGNAL_FIRST;
9138 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9139 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9140 {
9141 QUIT;
9142
a493e3e2
PA
9143 if (oursig != GDB_SIGNAL_UNKNOWN
9144 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9145 sig_print_info (oursig);
9146 }
9147
6cb06a8c
TT
9148 gdb_printf (_("\nUse the \"handle\" command "
9149 "to change these tables.\n"));
c906108c 9150}
4aa995e1
PA
9151
9152/* The $_siginfo convenience variable is a bit special. We don't know
9153 for sure the type of the value until we actually have a chance to
7a9dd1b2 9154 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9155 also dependent on which thread you have selected.
9156
9157 1. making $_siginfo be an internalvar that creates a new value on
9158 access.
9159
9160 2. making the value of $_siginfo be an lval_computed value. */
9161
9162/* This function implements the lval_computed support for reading a
9163 $_siginfo value. */
9164
9165static void
9166siginfo_value_read (struct value *v)
9167{
9168 LONGEST transferred;
9169
a911d87a
PA
9170 /* If we can access registers, so can we access $_siginfo. Likewise
9171 vice versa. */
9172 validate_registers_access ();
c709acd1 9173
4aa995e1 9174 transferred =
328d42d8
SM
9175 target_read (current_inferior ()->top_target (),
9176 TARGET_OBJECT_SIGNAL_INFO,
4aa995e1 9177 NULL,
50888e42 9178 value_contents_all_raw (v).data (),
4aa995e1 9179 value_offset (v),
df86565b 9180 value_type (v)->length ());
4aa995e1 9181
df86565b 9182 if (transferred != value_type (v)->length ())
4aa995e1
PA
9183 error (_("Unable to read siginfo"));
9184}
9185
9186/* This function implements the lval_computed support for writing a
9187 $_siginfo value. */
9188
9189static void
9190siginfo_value_write (struct value *v, struct value *fromval)
9191{
9192 LONGEST transferred;
9193
a911d87a
PA
9194 /* If we can access registers, so can we access $_siginfo. Likewise
9195 vice versa. */
9196 validate_registers_access ();
c709acd1 9197
328d42d8 9198 transferred = target_write (current_inferior ()->top_target (),
4aa995e1
PA
9199 TARGET_OBJECT_SIGNAL_INFO,
9200 NULL,
50888e42 9201 value_contents_all_raw (fromval).data (),
4aa995e1 9202 value_offset (v),
df86565b 9203 value_type (fromval)->length ());
4aa995e1 9204
df86565b 9205 if (transferred != value_type (fromval)->length ())
4aa995e1
PA
9206 error (_("Unable to write siginfo"));
9207}
9208
c8f2448a 9209static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9210 {
9211 siginfo_value_read,
9212 siginfo_value_write
9213 };
9214
9215/* Return a new value with the correct type for the siginfo object of
78267919
UW
9216 the current thread using architecture GDBARCH. Return a void value
9217 if there's no object available. */
4aa995e1 9218
2c0b251b 9219static struct value *
22d2b532
SDJ
9220siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9221 void *ignore)
4aa995e1 9222{
841de120 9223 if (target_has_stack ()
d7e15655 9224 && inferior_ptid != null_ptid
78267919 9225 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9226 {
78267919 9227 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9228
78267919 9229 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9230 }
9231
78267919 9232 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9233}
9234
c906108c 9235\f
16c381f0
JK
9236/* infcall_suspend_state contains state about the program itself like its
9237 registers and any signal it received when it last stopped.
9238 This state must be restored regardless of how the inferior function call
9239 ends (either successfully, or after it hits a breakpoint or signal)
9240 if the program is to properly continue where it left off. */
9241
6bf78e29 9242class infcall_suspend_state
7a292a7a 9243{
6bf78e29
AB
9244public:
9245 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9246 once the inferior function call has finished. */
9247 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
9248 const struct thread_info *tp,
9249 struct regcache *regcache)
1edb66d8 9250 : m_registers (new readonly_detached_regcache (*regcache))
6bf78e29 9251 {
1edb66d8
SM
9252 tp->save_suspend_to (m_thread_suspend);
9253
6bf78e29
AB
9254 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9255
9256 if (gdbarch_get_siginfo_type_p (gdbarch))
9257 {
dda83cd7 9258 struct type *type = gdbarch_get_siginfo_type (gdbarch);
df86565b 9259 size_t len = type->length ();
6bf78e29 9260
dda83cd7 9261 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 9262
328d42d8
SM
9263 if (target_read (current_inferior ()->top_target (),
9264 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7
SM
9265 siginfo_data.get (), 0, len) != len)
9266 {
9267 /* Errors ignored. */
9268 siginfo_data.reset (nullptr);
9269 }
6bf78e29
AB
9270 }
9271
9272 if (siginfo_data)
9273 {
dda83cd7
SM
9274 m_siginfo_gdbarch = gdbarch;
9275 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
9276 }
9277 }
9278
9279 /* Return a pointer to the stored register state. */
16c381f0 9280
6bf78e29
AB
9281 readonly_detached_regcache *registers () const
9282 {
9283 return m_registers.get ();
9284 }
9285
9286 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9287
9288 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
9289 struct thread_info *tp,
9290 struct regcache *regcache) const
6bf78e29 9291 {
1edb66d8 9292 tp->restore_suspend_from (m_thread_suspend);
6bf78e29
AB
9293
9294 if (m_siginfo_gdbarch == gdbarch)
9295 {
dda83cd7 9296 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 9297
dda83cd7 9298 /* Errors ignored. */
328d42d8
SM
9299 target_write (current_inferior ()->top_target (),
9300 TARGET_OBJECT_SIGNAL_INFO, NULL,
df86565b 9301 m_siginfo_data.get (), 0, type->length ());
6bf78e29
AB
9302 }
9303
9304 /* The inferior can be gone if the user types "print exit(0)"
9305 (and perhaps other times). */
55f6301a 9306 if (target_has_execution ())
6bf78e29
AB
9307 /* NB: The register write goes through to the target. */
9308 regcache->restore (registers ());
9309 }
9310
9311private:
9312 /* How the current thread stopped before the inferior function call was
9313 executed. */
9314 struct thread_suspend_state m_thread_suspend;
9315
9316 /* The registers before the inferior function call was executed. */
9317 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9318
35515841 9319 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9320 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9321
9322 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
df86565b 9323 gdbarch_get_siginfo_type ()->length (). For different gdbarch the
1736ad11 9324 content would be invalid. */
6bf78e29 9325 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9326};
9327
cb524840
TT
9328infcall_suspend_state_up
9329save_infcall_suspend_state ()
b89667eb 9330{
b89667eb 9331 struct thread_info *tp = inferior_thread ();
1736ad11 9332 struct regcache *regcache = get_current_regcache ();
ac7936df 9333 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9334
6bf78e29
AB
9335 infcall_suspend_state_up inf_state
9336 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9337
6bf78e29
AB
9338 /* Having saved the current state, adjust the thread state, discarding
9339 any stop signal information. The stop signal is not useful when
9340 starting an inferior function call, and run_inferior_call will not use
9341 the signal due to its `proceed' call with GDB_SIGNAL_0. */
1edb66d8 9342 tp->set_stop_signal (GDB_SIGNAL_0);
35515841 9343
b89667eb
DE
9344 return inf_state;
9345}
9346
9347/* Restore inferior session state to INF_STATE. */
9348
9349void
16c381f0 9350restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9351{
9352 struct thread_info *tp = inferior_thread ();
1736ad11 9353 struct regcache *regcache = get_current_regcache ();
ac7936df 9354 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9355
6bf78e29 9356 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9357 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9358}
9359
b89667eb 9360void
16c381f0 9361discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9362{
dd848631 9363 delete inf_state;
b89667eb
DE
9364}
9365
daf6667d 9366readonly_detached_regcache *
16c381f0 9367get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9368{
6bf78e29 9369 return inf_state->registers ();
b89667eb
DE
9370}
9371
16c381f0
JK
9372/* infcall_control_state contains state regarding gdb's control of the
9373 inferior itself like stepping control. It also contains session state like
9374 the user's currently selected frame. */
b89667eb 9375
16c381f0 9376struct infcall_control_state
b89667eb 9377{
16c381f0
JK
9378 struct thread_control_state thread_control;
9379 struct inferior_control_state inferior_control;
d82142e2
JK
9380
9381 /* Other fields: */
ee841dd8
TT
9382 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9383 int stopped_by_random_signal = 0;
7a292a7a 9384
79952e69
PA
9385 /* ID and level of the selected frame when the inferior function
9386 call was made. */
ee841dd8 9387 struct frame_id selected_frame_id {};
79952e69 9388 int selected_frame_level = -1;
7a292a7a
SS
9389};
9390
c906108c 9391/* Save all of the information associated with the inferior<==>gdb
b89667eb 9392 connection. */
c906108c 9393
cb524840
TT
9394infcall_control_state_up
9395save_infcall_control_state ()
c906108c 9396{
cb524840 9397 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9398 struct thread_info *tp = inferior_thread ();
d6b48e9c 9399 struct inferior *inf = current_inferior ();
7a292a7a 9400
16c381f0
JK
9401 inf_status->thread_control = tp->control;
9402 inf_status->inferior_control = inf->control;
d82142e2 9403
8358c15c 9404 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9405 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9406
16c381f0
JK
9407 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9408 chain. If caller's caller is walking the chain, they'll be happier if we
9409 hand them back the original chain when restore_infcall_control_state is
9410 called. */
9411 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9412
9413 /* Other fields: */
9414 inf_status->stop_stack_dummy = stop_stack_dummy;
9415 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9416
79952e69
PA
9417 save_selected_frame (&inf_status->selected_frame_id,
9418 &inf_status->selected_frame_level);
b89667eb 9419
7a292a7a 9420 return inf_status;
c906108c
SS
9421}
9422
b89667eb
DE
9423/* Restore inferior session state to INF_STATUS. */
9424
c906108c 9425void
16c381f0 9426restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9427{
4e1c45ea 9428 struct thread_info *tp = inferior_thread ();
d6b48e9c 9429 struct inferior *inf = current_inferior ();
4e1c45ea 9430
8358c15c
JK
9431 if (tp->control.step_resume_breakpoint)
9432 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9433
5b79abe7
TT
9434 if (tp->control.exception_resume_breakpoint)
9435 tp->control.exception_resume_breakpoint->disposition
9436 = disp_del_at_next_stop;
9437
d82142e2 9438 /* Handle the bpstat_copy of the chain. */
16c381f0 9439 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9440
16c381f0
JK
9441 tp->control = inf_status->thread_control;
9442 inf->control = inf_status->inferior_control;
d82142e2
JK
9443
9444 /* Other fields: */
9445 stop_stack_dummy = inf_status->stop_stack_dummy;
9446 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9447
841de120 9448 if (target_has_stack ())
c906108c 9449 {
79952e69
PA
9450 restore_selected_frame (inf_status->selected_frame_id,
9451 inf_status->selected_frame_level);
c906108c 9452 }
c906108c 9453
ee841dd8 9454 delete inf_status;
7a292a7a 9455}
c906108c
SS
9456
9457void
16c381f0 9458discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9459{
8358c15c
JK
9460 if (inf_status->thread_control.step_resume_breakpoint)
9461 inf_status->thread_control.step_resume_breakpoint->disposition
9462 = disp_del_at_next_stop;
9463
5b79abe7
TT
9464 if (inf_status->thread_control.exception_resume_breakpoint)
9465 inf_status->thread_control.exception_resume_breakpoint->disposition
9466 = disp_del_at_next_stop;
9467
1777feb0 9468 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9469 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9470
ee841dd8 9471 delete inf_status;
7a292a7a 9472}
b89667eb 9473\f
7f89fd65 9474/* See infrun.h. */
0c557179
SDJ
9475
9476void
9477clear_exit_convenience_vars (void)
9478{
9479 clear_internalvar (lookup_internalvar ("_exitsignal"));
9480 clear_internalvar (lookup_internalvar ("_exitcode"));
9481}
c5aa993b 9482\f
488f131b 9483
b2175913
MS
9484/* User interface for reverse debugging:
9485 Set exec-direction / show exec-direction commands
9486 (returns error unless target implements to_set_exec_direction method). */
9487
170742de 9488enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9489static const char exec_forward[] = "forward";
9490static const char exec_reverse[] = "reverse";
9491static const char *exec_direction = exec_forward;
40478521 9492static const char *const exec_direction_names[] = {
b2175913
MS
9493 exec_forward,
9494 exec_reverse,
9495 NULL
9496};
9497
9498static void
eb4c3f4a 9499set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9500 struct cmd_list_element *cmd)
9501{
05374cfd 9502 if (target_can_execute_reverse ())
b2175913
MS
9503 {
9504 if (!strcmp (exec_direction, exec_forward))
9505 execution_direction = EXEC_FORWARD;
9506 else if (!strcmp (exec_direction, exec_reverse))
9507 execution_direction = EXEC_REVERSE;
9508 }
8bbed405
MS
9509 else
9510 {
9511 exec_direction = exec_forward;
9512 error (_("Target does not support this operation."));
9513 }
b2175913
MS
9514}
9515
9516static void
9517show_exec_direction_func (struct ui_file *out, int from_tty,
9518 struct cmd_list_element *cmd, const char *value)
9519{
9520 switch (execution_direction) {
9521 case EXEC_FORWARD:
6cb06a8c 9522 gdb_printf (out, _("Forward.\n"));
b2175913
MS
9523 break;
9524 case EXEC_REVERSE:
6cb06a8c 9525 gdb_printf (out, _("Reverse.\n"));
b2175913 9526 break;
b2175913 9527 default:
d8b34453
PA
9528 internal_error (__FILE__, __LINE__,
9529 _("bogus execution_direction value: %d"),
9530 (int) execution_direction);
b2175913
MS
9531 }
9532}
9533
d4db2f36
PA
9534static void
9535show_schedule_multiple (struct ui_file *file, int from_tty,
9536 struct cmd_list_element *c, const char *value)
9537{
6cb06a8c
TT
9538 gdb_printf (file, _("Resuming the execution of threads "
9539 "of all processes is %s.\n"), value);
d4db2f36 9540}
ad52ddc6 9541
22d2b532
SDJ
9542/* Implementation of `siginfo' variable. */
9543
9544static const struct internalvar_funcs siginfo_funcs =
9545{
9546 siginfo_make_value,
9547 NULL,
22d2b532
SDJ
9548};
9549
372316f1
PA
9550/* Callback for infrun's target events source. This is marked when a
9551 thread has a pending status to process. */
9552
9553static void
9554infrun_async_inferior_event_handler (gdb_client_data data)
9555{
6b36ddeb 9556 clear_async_event_handler (infrun_async_inferior_event_token);
b1a35af2 9557 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9558}
9559
8087c3fa 9560#if GDB_SELF_TEST
b161a60d
SM
9561namespace selftests
9562{
9563
9564/* Verify that when two threads with the same ptid exist (from two different
9565 targets) and one of them changes ptid, we only update inferior_ptid if
9566 it is appropriate. */
9567
9568static void
9569infrun_thread_ptid_changed ()
9570{
9571 gdbarch *arch = current_inferior ()->gdbarch;
9572
9573 /* The thread which inferior_ptid represents changes ptid. */
9574 {
9575 scoped_restore_current_pspace_and_thread restore;
9576
9577 scoped_mock_context<test_target_ops> target1 (arch);
9578 scoped_mock_context<test_target_ops> target2 (arch);
b161a60d
SM
9579
9580 ptid_t old_ptid (111, 222);
9581 ptid_t new_ptid (111, 333);
9582
9583 target1.mock_inferior.pid = old_ptid.pid ();
9584 target1.mock_thread.ptid = old_ptid;
922cc93d
SM
9585 target1.mock_inferior.ptid_thread_map.clear ();
9586 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9587
b161a60d
SM
9588 target2.mock_inferior.pid = old_ptid.pid ();
9589 target2.mock_thread.ptid = old_ptid;
922cc93d
SM
9590 target2.mock_inferior.ptid_thread_map.clear ();
9591 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
b161a60d
SM
9592
9593 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9594 set_current_inferior (&target1.mock_inferior);
9595
9596 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9597
9598 gdb_assert (inferior_ptid == new_ptid);
9599 }
9600
9601 /* A thread with the same ptid as inferior_ptid, but from another target,
9602 changes ptid. */
9603 {
9604 scoped_restore_current_pspace_and_thread restore;
9605
9606 scoped_mock_context<test_target_ops> target1 (arch);
9607 scoped_mock_context<test_target_ops> target2 (arch);
b161a60d
SM
9608
9609 ptid_t old_ptid (111, 222);
9610 ptid_t new_ptid (111, 333);
9611
9612 target1.mock_inferior.pid = old_ptid.pid ();
9613 target1.mock_thread.ptid = old_ptid;
922cc93d
SM
9614 target1.mock_inferior.ptid_thread_map.clear ();
9615 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9616
b161a60d
SM
9617 target2.mock_inferior.pid = old_ptid.pid ();
9618 target2.mock_thread.ptid = old_ptid;
922cc93d
SM
9619 target2.mock_inferior.ptid_thread_map.clear ();
9620 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
b161a60d
SM
9621
9622 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9623 set_current_inferior (&target2.mock_inferior);
9624
9625 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9626
9627 gdb_assert (inferior_ptid == old_ptid);
9628 }
9629}
9630
9631} /* namespace selftests */
9632
8087c3fa
JB
9633#endif /* GDB_SELF_TEST */
9634
6c265988 9635void _initialize_infrun ();
c906108c 9636void
6c265988 9637_initialize_infrun ()
c906108c 9638{
de0bea00 9639 struct cmd_list_element *c;
c906108c 9640
372316f1
PA
9641 /* Register extra event sources in the event loop. */
9642 infrun_async_inferior_event_token
db20ebdf
SM
9643 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9644 "infrun");
372316f1 9645
e0f25bd9
SM
9646 cmd_list_element *info_signals_cmd
9647 = add_info ("signals", info_signals_command, _("\
1bedd215
AC
9648What debugger does when program gets various signals.\n\
9649Specify a signal as argument to print info on that signal only."));
e0f25bd9 9650 add_info_alias ("handle", info_signals_cmd, 0);
c906108c 9651
de0bea00 9652 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9653Specify how to handle signals.\n\
486c7739 9654Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9655Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9656If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9657will be displayed instead.\n\
9658\n\
c906108c
SS
9659Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9660from 1-15 are allowed for compatibility with old versions of GDB.\n\
9661Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9662The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9663used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9664\n\
1bedd215 9665Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9666\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9667Stop means reenter debugger if this signal happens (implies print).\n\
9668Print means print a message if this signal happens.\n\
9669Pass means let program see this signal; otherwise program doesn't know.\n\
9670Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9671Pass and Stop may be combined.\n\
9672\n\
9673Multiple signals may be specified. Signal numbers and signal names\n\
9674may be interspersed with actions, with the actions being performed for\n\
9675all signals cumulatively specified."));
de0bea00 9676 set_cmd_completer (c, handle_completer);
486c7739 9677
49a82d50
TT
9678 stop_command = add_cmd ("stop", class_obscure,
9679 not_just_help_class_command, _("\
1a966eab 9680There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9681This allows you to set a list of commands to be run each time execution\n\
1a966eab 9682of the program stops."), &cmdlist);
c906108c 9683
94ba44a6
SM
9684 add_setshow_boolean_cmd
9685 ("infrun", class_maintenance, &debug_infrun,
9686 _("Set inferior debugging."),
9687 _("Show inferior debugging."),
9688 _("When non-zero, inferior specific debugging is enabled."),
9689 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
527159b7 9690
ad52ddc6
PA
9691 add_setshow_boolean_cmd ("non-stop", no_class,
9692 &non_stop_1, _("\
9693Set whether gdb controls the inferior in non-stop mode."), _("\
9694Show whether gdb controls the inferior in non-stop mode."), _("\
9695When debugging a multi-threaded program and this setting is\n\
9696off (the default, also called all-stop mode), when one thread stops\n\
9697(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9698all other threads in the program while you interact with the thread of\n\
9699interest. When you continue or step a thread, you can allow the other\n\
9700threads to run, or have them remain stopped, but while you inspect any\n\
9701thread's state, all threads stop.\n\
9702\n\
9703In non-stop mode, when one thread stops, other threads can continue\n\
9704to run freely. You'll be able to step each thread independently,\n\
9705leave it stopped or free to run as needed."),
9706 set_non_stop,
9707 show_non_stop,
9708 &setlist,
9709 &showlist);
9710
adc6a863 9711 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9712 {
9713 signal_stop[i] = 1;
9714 signal_print[i] = 1;
9715 signal_program[i] = 1;
ab04a2af 9716 signal_catch[i] = 0;
c906108c
SS
9717 }
9718
4d9d9d04
PA
9719 /* Signals caused by debugger's own actions should not be given to
9720 the program afterwards.
9721
9722 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9723 explicitly specifies that it should be delivered to the target
9724 program. Typically, that would occur when a user is debugging a
9725 target monitor on a simulator: the target monitor sets a
9726 breakpoint; the simulator encounters this breakpoint and halts
9727 the simulation handing control to GDB; GDB, noting that the stop
9728 address doesn't map to any known breakpoint, returns control back
9729 to the simulator; the simulator then delivers the hardware
9730 equivalent of a GDB_SIGNAL_TRAP to the program being
9731 debugged. */
a493e3e2
PA
9732 signal_program[GDB_SIGNAL_TRAP] = 0;
9733 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9734
9735 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9736 signal_stop[GDB_SIGNAL_ALRM] = 0;
9737 signal_print[GDB_SIGNAL_ALRM] = 0;
9738 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9739 signal_print[GDB_SIGNAL_VTALRM] = 0;
9740 signal_stop[GDB_SIGNAL_PROF] = 0;
9741 signal_print[GDB_SIGNAL_PROF] = 0;
9742 signal_stop[GDB_SIGNAL_CHLD] = 0;
9743 signal_print[GDB_SIGNAL_CHLD] = 0;
9744 signal_stop[GDB_SIGNAL_IO] = 0;
9745 signal_print[GDB_SIGNAL_IO] = 0;
9746 signal_stop[GDB_SIGNAL_POLL] = 0;
9747 signal_print[GDB_SIGNAL_POLL] = 0;
9748 signal_stop[GDB_SIGNAL_URG] = 0;
9749 signal_print[GDB_SIGNAL_URG] = 0;
9750 signal_stop[GDB_SIGNAL_WINCH] = 0;
9751 signal_print[GDB_SIGNAL_WINCH] = 0;
9752 signal_stop[GDB_SIGNAL_PRIO] = 0;
9753 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9754
cd0fc7c3
SS
9755 /* These signals are used internally by user-level thread
9756 implementations. (See signal(5) on Solaris.) Like the above
9757 signals, a healthy program receives and handles them as part of
9758 its normal operation. */
a493e3e2
PA
9759 signal_stop[GDB_SIGNAL_LWP] = 0;
9760 signal_print[GDB_SIGNAL_LWP] = 0;
9761 signal_stop[GDB_SIGNAL_WAITING] = 0;
9762 signal_print[GDB_SIGNAL_WAITING] = 0;
9763 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9764 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9765 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9766 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9767
2455069d
UW
9768 /* Update cached state. */
9769 signal_cache_update (-1);
9770
85c07804
AC
9771 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9772 &stop_on_solib_events, _("\
9773Set stopping for shared library events."), _("\
9774Show stopping for shared library events."), _("\
c906108c
SS
9775If nonzero, gdb will give control to the user when the dynamic linker\n\
9776notifies gdb of shared library events. The most common event of interest\n\
85c07804 9777to the user would be loading/unloading of a new library."),
f9e14852 9778 set_stop_on_solib_events,
920d2a44 9779 show_stop_on_solib_events,
85c07804 9780 &setlist, &showlist);
c906108c 9781
7ab04401
AC
9782 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9783 follow_fork_mode_kind_names,
9784 &follow_fork_mode_string, _("\
9785Set debugger response to a program call of fork or vfork."), _("\
9786Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9787A fork or vfork creates a new process. follow-fork-mode can be:\n\
9788 parent - the original process is debugged after a fork\n\
9789 child - the new process is debugged after a fork\n\
ea1dd7bc 9790The unfollowed process will continue to run.\n\
7ab04401
AC
9791By default, the debugger will follow the parent process."),
9792 NULL,
920d2a44 9793 show_follow_fork_mode_string,
7ab04401
AC
9794 &setlist, &showlist);
9795
6c95b8df
PA
9796 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9797 follow_exec_mode_names,
9798 &follow_exec_mode_string, _("\
9799Set debugger response to a program call of exec."), _("\
9800Show debugger response to a program call of exec."), _("\
9801An exec call replaces the program image of a process.\n\
9802\n\
9803follow-exec-mode can be:\n\
9804\n\
cce7e648 9805 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9806to this new inferior. The program the process was running before\n\
9807the exec call can be restarted afterwards by restarting the original\n\
9808inferior.\n\
9809\n\
9810 same - the debugger keeps the process bound to the same inferior.\n\
9811The new executable image replaces the previous executable loaded in\n\
9812the inferior. Restarting the inferior after the exec call restarts\n\
9813the executable the process was running after the exec call.\n\
9814\n\
9815By default, the debugger will use the same inferior."),
9816 NULL,
9817 show_follow_exec_mode_string,
9818 &setlist, &showlist);
9819
7ab04401
AC
9820 add_setshow_enum_cmd ("scheduler-locking", class_run,
9821 scheduler_enums, &scheduler_mode, _("\
9822Set mode for locking scheduler during execution."), _("\
9823Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9824off == no locking (threads may preempt at any time)\n\
9825on == full locking (no thread except the current thread may run)\n\
dda83cd7 9826 This applies to both normal execution and replay mode.\n\
f2665db5 9827step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9828 In this mode, other threads may run during other commands.\n\
9829 This applies to both normal execution and replay mode.\n\
f2665db5 9830replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9831 set_schedlock_func, /* traps on target vector */
920d2a44 9832 show_scheduler_mode,
7ab04401 9833 &setlist, &showlist);
5fbbeb29 9834
d4db2f36
PA
9835 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9836Set mode for resuming threads of all processes."), _("\
9837Show mode for resuming threads of all processes."), _("\
9838When on, execution commands (such as 'continue' or 'next') resume all\n\
9839threads of all processes. When off (which is the default), execution\n\
9840commands only resume the threads of the current process. The set of\n\
9841threads that are resumed is further refined by the scheduler-locking\n\
9842mode (see help set scheduler-locking)."),
9843 NULL,
9844 show_schedule_multiple,
9845 &setlist, &showlist);
9846
5bf193a2
AC
9847 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9848Set mode of the step operation."), _("\
9849Show mode of the step operation."), _("\
9850When set, doing a step over a function without debug line information\n\
9851will stop at the first instruction of that function. Otherwise, the\n\
9852function is skipped and the step command stops at a different source line."),
9853 NULL,
920d2a44 9854 show_step_stop_if_no_debug,
5bf193a2 9855 &setlist, &showlist);
ca6724c1 9856
72d0e2c5
YQ
9857 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9858 &can_use_displaced_stepping, _("\
237fc4c9
PA
9859Set debugger's willingness to use displaced stepping."), _("\
9860Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9861If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9862supported by the target architecture. If off, gdb will not use displaced\n\
9863stepping to step over breakpoints, even if such is supported by the target\n\
9864architecture. If auto (which is the default), gdb will use displaced stepping\n\
9865if the target architecture supports it and non-stop mode is active, but will not\n\
9866use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9867 NULL,
9868 show_can_use_displaced_stepping,
9869 &setlist, &showlist);
237fc4c9 9870
b2175913
MS
9871 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9872 &exec_direction, _("Set direction of execution.\n\
9873Options are 'forward' or 'reverse'."),
9874 _("Show direction of execution (forward/reverse)."),
9875 _("Tells gdb whether to execute forward or backward."),
9876 set_exec_direction_func, show_exec_direction_func,
9877 &setlist, &showlist);
9878
6c95b8df
PA
9879 /* Set/show detach-on-fork: user-settable mode. */
9880
9881 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9882Set whether gdb will detach the child of a fork."), _("\
9883Show whether gdb will detach the child of a fork."), _("\
9884Tells gdb whether to detach the child of a fork."),
9885 NULL, NULL, &setlist, &showlist);
9886
03583c20
UW
9887 /* Set/show disable address space randomization mode. */
9888
9889 add_setshow_boolean_cmd ("disable-randomization", class_support,
9890 &disable_randomization, _("\
9891Set disabling of debuggee's virtual address space randomization."), _("\
9892Show disabling of debuggee's virtual address space randomization."), _("\
9893When this mode is on (which is the default), randomization of the virtual\n\
9894address space is disabled. Standalone programs run with the randomization\n\
9895enabled by default on some platforms."),
9896 &set_disable_randomization,
9897 &show_disable_randomization,
9898 &setlist, &showlist);
9899
ca6724c1 9900 /* ptid initializations */
ca6724c1
KB
9901 inferior_ptid = null_ptid;
9902 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9903
c90e7d63
SM
9904 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9905 "infrun");
9906 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9907 "infrun");
9908 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9909 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9910 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
4aa995e1
PA
9911
9912 /* Explicitly create without lookup, since that tries to create a
9913 value with a void typed value, and when we get here, gdbarch
9914 isn't initialized yet. At this point, we're quite sure there
9915 isn't another convenience variable of the same name. */
22d2b532 9916 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9917
9918 add_setshow_boolean_cmd ("observer", no_class,
9919 &observer_mode_1, _("\
9920Set whether gdb controls the inferior in observer mode."), _("\
9921Show whether gdb controls the inferior in observer mode."), _("\
9922In observer mode, GDB can get data from the inferior, but not\n\
9923affect its execution. Registers and memory may not be changed,\n\
9924breakpoints may not be set, and the program cannot be interrupted\n\
9925or signalled."),
9926 set_observer_mode,
9927 show_observer_mode,
9928 &setlist,
9929 &showlist);
b161a60d
SM
9930
9931#if GDB_SELF_TEST
9932 selftests::register_test ("infrun_thread_ptid_changed",
9933 selftests::infrun_thread_ptid_changed);
9934#endif
c906108c 9935}