]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135int step_stop_if_no_debug = 0;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static int detach_fork = 1;
6c95b8df 155
237fc4c9
PA
156int debug_displaced = 0;
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
175int disable_randomization = 1;
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
204int non_stop = 0;
205static int non_stop_1 = 0;
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
d914c394
SS
233int observer_mode = 0;
234static int observer_mode_1 = 0;
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394
SS
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
306static unsigned char *signal_stop;
307static unsigned char *signal_print;
308static unsigned char *signal_program;
309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314static unsigned char *signal_catch;
315
2455069d
UW
316/* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319static unsigned char *signal_pass;
320
c906108c
SS
321#define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329#define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
9b224c5e
PA
337/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340void
341update_signals_program_target (void)
342{
a493e3e2 343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
344}
345
1777feb0 346/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 347
edb3359d 348#define RESUME_ALL minus_one_ptid
c906108c
SS
349
350/* Command list pointer for the "stop" placeholder. */
351
352static struct cmd_list_element *stop_command;
353
c906108c
SS
354/* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
628fe4e4 356int stop_on_solib_events;
f9e14852
GB
357
358/* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361static void
eb4c3f4a
TT
362set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
f9e14852
GB
364{
365 update_solib_breakpoints ();
366}
367
920d2a44
AC
368static void
369show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374}
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
0d1e5fa7
PA
386static void context_switch (ptid_t ptid);
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (info_verbose || debug_infrun)
465 {
8dd06f7a
DB
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
79639e11 471 _("Detaching after %s from child %s.\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
79639e11 481 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
d83ad864 492 add_thread (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = add_program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (info_verbose || debug_infrun)
553 {
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
79639e11
PA
556 _("Attaching after %s %s to child %s.\n"),
557 target_pid_to_str (parent_ptid),
6f259a23 558 has_vforked ? "vfork" : "fork",
79639e11 559 target_pid_to_str (child_ptid));
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
79639e11 565 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
6f259a23
DB
596 {
597 if (info_verbose || debug_infrun)
598 {
8dd06f7a
DB
599 /* Ensure that we have a process ptid. */
600 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
601
223ffa71 602 target_terminal::ours_for_output ();
6f259a23
DB
603 fprintf_filtered (gdb_stdlog,
604 _("Detaching after fork from "
79639e11 605 "child %s.\n"),
8dd06f7a 606 target_pid_to_str (process_ptid));
6f259a23
DB
607 }
608
609 target_detach (NULL, 0);
610 }
d83ad864
DB
611
612 /* Note that the detach above makes PARENT_INF dangling. */
613
614 /* Add the child thread to the appropriate lists, and switch to
615 this new thread, before cloning the program space, and
616 informing the solib layer about this new process. */
617
79639e11 618 inferior_ptid = child_ptid;
d83ad864 619 add_thread (inferior_ptid);
2a00d7ce 620 set_current_inferior (child_inf);
d83ad864
DB
621
622 /* If this is a vfork child, then the address-space is shared
623 with the parent. If we detached from the parent, then we can
624 reuse the parent's program/address spaces. */
625 if (has_vforked || detach_fork)
626 {
627 child_inf->pspace = parent_pspace;
628 child_inf->aspace = child_inf->pspace->aspace;
629 }
630 else
631 {
632 child_inf->aspace = new_address_space ();
633 child_inf->pspace = add_program_space (child_inf->aspace);
634 child_inf->removable = 1;
635 child_inf->symfile_flags = SYMFILE_NO_READ;
636 set_current_program_space (child_inf->pspace);
637 clone_program_space (child_inf->pspace, parent_pspace);
638
639 /* Let the shared library layer (e.g., solib-svr4) learn
640 about this new process, relocate the cloned exec, pull in
641 shared libraries, and install the solib event breakpoint.
642 If a "cloned-VM" event was propagated better throughout
643 the core, this wouldn't be required. */
644 solib_create_inferior_hook (0);
645 }
646 }
647
648 return target_follow_fork (follow_child, detach_fork);
649}
650
e58b0e63
PA
651/* Tell the target to follow the fork we're stopped at. Returns true
652 if the inferior should be resumed; false, if the target for some
653 reason decided it's best not to resume. */
654
6604731b 655static int
4ef3f3be 656follow_fork (void)
c906108c 657{
ea1dd7bc 658 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
659 int should_resume = 1;
660 struct thread_info *tp;
661
662 /* Copy user stepping state to the new inferior thread. FIXME: the
663 followed fork child thread should have a copy of most of the
4e3990f4
DE
664 parent thread structure's run control related fields, not just these.
665 Initialized to avoid "may be used uninitialized" warnings from gcc. */
666 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 667 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
668 CORE_ADDR step_range_start = 0;
669 CORE_ADDR step_range_end = 0;
670 struct frame_id step_frame_id = { 0 };
8980e177 671 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
672
673 if (!non_stop)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* If not stopped at a fork event, then there's nothing else to
682 do. */
683 if (wait_status.kind != TARGET_WAITKIND_FORKED
684 && wait_status.kind != TARGET_WAITKIND_VFORKED)
685 return 1;
686
687 /* Check if we switched over from WAIT_PTID, since the event was
688 reported. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid))
691 {
692 /* We did. Switch back to WAIT_PTID thread, to tell the
693 target to follow it (in either direction). We'll
694 afterwards refuse to resume, and inform the user what
695 happened. */
696 switch_to_thread (wait_ptid);
697 should_resume = 0;
698 }
699 }
700
701 tp = inferior_thread ();
702
703 /* If there were any forks/vforks that were caught and are now to be
704 followed, then do so now. */
705 switch (tp->pending_follow.kind)
706 {
707 case TARGET_WAITKIND_FORKED:
708 case TARGET_WAITKIND_VFORKED:
709 {
710 ptid_t parent, child;
711
712 /* If the user did a next/step, etc, over a fork call,
713 preserve the stepping state in the fork child. */
714 if (follow_child && should_resume)
715 {
8358c15c
JK
716 step_resume_breakpoint = clone_momentary_breakpoint
717 (tp->control.step_resume_breakpoint);
16c381f0
JK
718 step_range_start = tp->control.step_range_start;
719 step_range_end = tp->control.step_range_end;
720 step_frame_id = tp->control.step_frame_id;
186c406b
TT
721 exception_resume_breakpoint
722 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 723 thread_fsm = tp->thread_fsm;
e58b0e63
PA
724
725 /* For now, delete the parent's sr breakpoint, otherwise,
726 parent/child sr breakpoints are considered duplicates,
727 and the child version will not be installed. Remove
728 this when the breakpoints module becomes aware of
729 inferiors and address spaces. */
730 delete_step_resume_breakpoint (tp);
16c381f0
JK
731 tp->control.step_range_start = 0;
732 tp->control.step_range_end = 0;
733 tp->control.step_frame_id = null_frame_id;
186c406b 734 delete_exception_resume_breakpoint (tp);
8980e177 735 tp->thread_fsm = NULL;
e58b0e63
PA
736 }
737
738 parent = inferior_ptid;
739 child = tp->pending_follow.value.related_pid;
740
d83ad864
DB
741 /* Set up inferior(s) as specified by the caller, and tell the
742 target to do whatever is necessary to follow either parent
743 or child. */
744 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
745 {
746 /* Target refused to follow, or there's some other reason
747 we shouldn't resume. */
748 should_resume = 0;
749 }
750 else
751 {
752 /* This pending follow fork event is now handled, one way
753 or another. The previous selected thread may be gone
754 from the lists by now, but if it is still around, need
755 to clear the pending follow request. */
e09875d4 756 tp = find_thread_ptid (parent);
e58b0e63
PA
757 if (tp)
758 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
759
760 /* This makes sure we don't try to apply the "Switched
761 over from WAIT_PID" logic above. */
762 nullify_last_target_wait_ptid ();
763
1777feb0 764 /* If we followed the child, switch to it... */
e58b0e63
PA
765 if (follow_child)
766 {
767 switch_to_thread (child);
768
769 /* ... and preserve the stepping state, in case the
770 user was stepping over the fork call. */
771 if (should_resume)
772 {
773 tp = inferior_thread ();
8358c15c
JK
774 tp->control.step_resume_breakpoint
775 = step_resume_breakpoint;
16c381f0
JK
776 tp->control.step_range_start = step_range_start;
777 tp->control.step_range_end = step_range_end;
778 tp->control.step_frame_id = step_frame_id;
186c406b
TT
779 tp->control.exception_resume_breakpoint
780 = exception_resume_breakpoint;
8980e177 781 tp->thread_fsm = thread_fsm;
e58b0e63
PA
782 }
783 else
784 {
785 /* If we get here, it was because we're trying to
786 resume from a fork catchpoint, but, the user
787 has switched threads away from the thread that
788 forked. In that case, the resume command
789 issued is most likely not applicable to the
790 child, so just warn, and refuse to resume. */
3e43a32a 791 warning (_("Not resuming: switched threads "
fd7dcb94 792 "before following fork child."));
e58b0e63
PA
793 }
794
795 /* Reset breakpoints in the child as appropriate. */
796 follow_inferior_reset_breakpoints ();
797 }
798 else
799 switch_to_thread (parent);
800 }
801 }
802 break;
803 case TARGET_WAITKIND_SPURIOUS:
804 /* Nothing to follow. */
805 break;
806 default:
807 internal_error (__FILE__, __LINE__,
808 "Unexpected pending_follow.kind %d\n",
809 tp->pending_follow.kind);
810 break;
811 }
c906108c 812
e58b0e63 813 return should_resume;
c906108c
SS
814}
815
d83ad864 816static void
6604731b 817follow_inferior_reset_breakpoints (void)
c906108c 818{
4e1c45ea
PA
819 struct thread_info *tp = inferior_thread ();
820
6604731b
DJ
821 /* Was there a step_resume breakpoint? (There was if the user
822 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
823 thread number. Cloned step_resume breakpoints are disabled on
824 creation, so enable it here now that it is associated with the
825 correct thread.
6604731b
DJ
826
827 step_resumes are a form of bp that are made to be per-thread.
828 Since we created the step_resume bp when the parent process
829 was being debugged, and now are switching to the child process,
830 from the breakpoint package's viewpoint, that's a switch of
831 "threads". We must update the bp's notion of which thread
832 it is for, or it'll be ignored when it triggers. */
833
8358c15c 834 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
837 tp->control.step_resume_breakpoint->loc->enabled = 1;
838 }
6604731b 839
a1aa2221 840 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 841 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
842 {
843 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
844 tp->control.exception_resume_breakpoint->loc->enabled = 1;
845 }
186c406b 846
6604731b
DJ
847 /* Reinsert all breakpoints in the child. The user may have set
848 breakpoints after catching the fork, in which case those
849 were never set in the child, but only in the parent. This makes
850 sure the inserted breakpoints match the breakpoint list. */
851
852 breakpoint_re_set ();
853 insert_breakpoints ();
c906108c 854}
c906108c 855
6c95b8df
PA
856/* The child has exited or execed: resume threads of the parent the
857 user wanted to be executing. */
858
859static int
860proceed_after_vfork_done (struct thread_info *thread,
861 void *arg)
862{
863 int pid = * (int *) arg;
864
865 if (ptid_get_pid (thread->ptid) == pid
866 && is_running (thread->ptid)
867 && !is_executing (thread->ptid)
868 && !thread->stop_requested
a493e3e2 869 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
870 {
871 if (debug_infrun)
872 fprintf_unfiltered (gdb_stdlog,
873 "infrun: resuming vfork parent thread %s\n",
874 target_pid_to_str (thread->ptid));
875
876 switch_to_thread (thread->ptid);
70509625 877 clear_proceed_status (0);
64ce06e4 878 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
879 }
880
881 return 0;
882}
883
5ed8105e
PA
884/* Save/restore inferior_ptid, current program space and current
885 inferior. Only use this if the current context points at an exited
886 inferior (and therefore there's no current thread to save). */
887class scoped_restore_exited_inferior
888{
889public:
890 scoped_restore_exited_inferior ()
891 : m_saved_ptid (&inferior_ptid)
892 {}
893
894private:
895 scoped_restore_tmpl<ptid_t> m_saved_ptid;
896 scoped_restore_current_program_space m_pspace;
897 scoped_restore_current_inferior m_inferior;
898};
899
6c95b8df
PA
900/* Called whenever we notice an exec or exit event, to handle
901 detaching or resuming a vfork parent. */
902
903static void
904handle_vfork_child_exec_or_exit (int exec)
905{
906 struct inferior *inf = current_inferior ();
907
908 if (inf->vfork_parent)
909 {
910 int resume_parent = -1;
911
912 /* This exec or exit marks the end of the shared memory region
913 between the parent and the child. If the user wanted to
914 detach from the parent, now is the time. */
915
916 if (inf->vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
68c9da30
PA
924 inf->vfork_parent->pending_detach = 0;
925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_process (inf->vfork_parent->pid);
940 switch_to_thread (tp->ptid);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (debug_infrun || info_verbose)
960 {
223ffa71 961 target_terminal::ours_for_output ();
6c95b8df
PA
962
963 if (exec)
6f259a23
DB
964 {
965 fprintf_filtered (gdb_stdlog,
966 _("Detaching vfork parent process "
967 "%d after child exec.\n"),
968 inf->vfork_parent->pid);
969 }
6c95b8df 970 else
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exit.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df
PA
977 }
978
979 target_detach (NULL, 0);
980
981 /* Put it back. */
982 inf->pspace = pspace;
983 inf->aspace = aspace;
6c95b8df
PA
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
6c95b8df
PA
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
5ed8105e
PA
1012 /* Switch to null_ptid while running clone_program_space, so
1013 that clone_program_space doesn't want to read the
1014 selected frame of a dead process. */
1015 scoped_restore restore_ptid
1016 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
7dcd53a0 1026 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
6c95b8df
PA
1031 resume_parent = inf->vfork_parent->pid;
1032 /* Break the bonds. */
1033 inf->vfork_parent->vfork_child = NULL;
1034 }
1035
1036 inf->vfork_parent = NULL;
1037
1038 gdb_assert (current_program_space == inf->pspace);
1039
1040 if (non_stop && resume_parent != -1)
1041 {
1042 /* If the user wanted the parent to be running, let it go
1043 free now. */
5ed8105e 1044 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1045
1046 if (debug_infrun)
3e43a32a
MS
1047 fprintf_unfiltered (gdb_stdlog,
1048 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1049 resume_parent);
1050
1051 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1052 }
1053 }
1054}
1055
eb6c553b 1056/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1057
1058static const char follow_exec_mode_new[] = "new";
1059static const char follow_exec_mode_same[] = "same";
40478521 1060static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1061{
1062 follow_exec_mode_new,
1063 follow_exec_mode_same,
1064 NULL,
1065};
1066
1067static const char *follow_exec_mode_string = follow_exec_mode_same;
1068static void
1069show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071{
1072 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1073}
1074
ecf45d2c 1075/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1076
c906108c 1077static void
ecf45d2c 1078follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1079{
95e50b27 1080 struct thread_info *th, *tmp;
6c95b8df 1081 struct inferior *inf = current_inferior ();
95e50b27 1082 int pid = ptid_get_pid (ptid);
94585166 1083 ptid_t process_ptid;
ecf45d2c
SL
1084 char *exec_file_host;
1085 struct cleanup *old_chain;
7a292a7a 1086
c906108c
SS
1087 /* This is an exec event that we actually wish to pay attention to.
1088 Refresh our symbol table to the newly exec'd program, remove any
1089 momentary bp's, etc.
1090
1091 If there are breakpoints, they aren't really inserted now,
1092 since the exec() transformed our inferior into a fresh set
1093 of instructions.
1094
1095 We want to preserve symbolic breakpoints on the list, since
1096 we have hopes that they can be reset after the new a.out's
1097 symbol table is read.
1098
1099 However, any "raw" breakpoints must be removed from the list
1100 (e.g., the solib bp's), since their address is probably invalid
1101 now.
1102
1103 And, we DON'T want to call delete_breakpoints() here, since
1104 that may write the bp's "shadow contents" (the instruction
1105 value that was overwritten witha TRAP instruction). Since
1777feb0 1106 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1107
1108 mark_breakpoints_out ();
1109
95e50b27
PA
1110 /* The target reports the exec event to the main thread, even if
1111 some other thread does the exec, and even if the main thread was
1112 stopped or already gone. We may still have non-leader threads of
1113 the process on our list. E.g., on targets that don't have thread
1114 exit events (like remote); or on native Linux in non-stop mode if
1115 there were only two threads in the inferior and the non-leader
1116 one is the one that execs (and nothing forces an update of the
1117 thread list up to here). When debugging remotely, it's best to
1118 avoid extra traffic, when possible, so avoid syncing the thread
1119 list with the target, and instead go ahead and delete all threads
1120 of the process but one that reported the event. Note this must
1121 be done before calling update_breakpoints_after_exec, as
1122 otherwise clearing the threads' resources would reference stale
1123 thread breakpoints -- it may have been one of these threads that
1124 stepped across the exec. We could just clear their stepping
1125 states, but as long as we're iterating, might as well delete
1126 them. Deleting them now rather than at the next user-visible
1127 stop provides a nicer sequence of events for user and MI
1128 notifications. */
8a06aea7 1129 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1130 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1131 delete_thread (th->ptid);
1132
1133 /* We also need to clear any left over stale state for the
1134 leader/event thread. E.g., if there was any step-resume
1135 breakpoint or similar, it's gone now. We cannot truly
1136 step-to-next statement through an exec(). */
1137 th = inferior_thread ();
8358c15c 1138 th->control.step_resume_breakpoint = NULL;
186c406b 1139 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1140 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1141 th->control.step_range_start = 0;
1142 th->control.step_range_end = 0;
c906108c 1143
95e50b27
PA
1144 /* The user may have had the main thread held stopped in the
1145 previous image (e.g., schedlock on, or non-stop). Release
1146 it now. */
a75724bc
PA
1147 th->stop_requested = 0;
1148
95e50b27
PA
1149 update_breakpoints_after_exec ();
1150
1777feb0 1151 /* What is this a.out's name? */
94585166 1152 process_ptid = pid_to_ptid (pid);
6c95b8df 1153 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1154 target_pid_to_str (process_ptid),
ecf45d2c 1155 exec_file_target);
c906108c
SS
1156
1157 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1158 inferior has essentially been killed & reborn. */
7a292a7a 1159
c906108c 1160 gdb_flush (gdb_stdout);
6ca15a4b
PA
1161
1162 breakpoint_init_inferior (inf_execd);
e85a822c 1163
ecf45d2c
SL
1164 exec_file_host = exec_file_find (exec_file_target, NULL);
1165 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1166
ecf45d2c
SL
1167 /* If we were unable to map the executable target pathname onto a host
1168 pathname, tell the user that. Otherwise GDB's subsequent behavior
1169 is confusing. Maybe it would even be better to stop at this point
1170 so that the user can specify a file manually before continuing. */
1171 if (exec_file_host == NULL)
1172 warning (_("Could not load symbols for executable %s.\n"
1173 "Do you need \"set sysroot\"?"),
1174 exec_file_target);
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
ecf45d2c 1196 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166 1199 set_current_program_space (inf->pspace);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1220
ecf45d2c 1221 do_cleanups (old_chain);
c906108c 1222
9107fc8d
PA
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
bf93d7ba
SM
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
268a4a75 1236 solib_create_inferior_hook (0);
c906108c 1237
4efc6507
DE
1238 jit_inferior_created_hook ();
1239
c1e56572
JK
1240 breakpoint_re_set ();
1241
c906108c
SS
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1777feb0 1244 to symbol_file_command...). */
c906108c
SS
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1777feb0 1250 matically get reset there in the new process.). */
c906108c
SS
1251}
1252
c2829269
PA
1253/* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260struct thread_info *step_over_queue_head;
1261
6c4cfb24
PA
1262/* Bit flags indicating what the thread needs to step over. */
1263
8d297bbf 1264enum step_over_what_flag
6c4cfb24
PA
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
8d297bbf 1274DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1275
963f9c80 1276/* Info about an instruction that is being stepped over. */
31e77af2
PA
1277
1278struct step_over_info
1279{
963f9c80
PA
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
8b86c959 1284 const address_space *aspace;
31e77af2 1285 CORE_ADDR address;
963f9c80
PA
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
21edc42f
YQ
1290
1291 /* The thread's global number. */
1292 int thread;
31e77af2
PA
1293};
1294
1295/* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319static struct step_over_info step_over_info;
1320
1321/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
31e77af2
PA
1325
1326static void
8b86c959 1327set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1328 int nonsteppable_watchpoint_p,
1329 int thread)
31e77af2
PA
1330{
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
963f9c80 1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1334 step_over_info.thread = thread;
31e77af2
PA
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
372316f1
PA
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
31e77af2
PA
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
963f9c80 1348 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1349 step_over_info.thread = -1;
31e77af2
PA
1350}
1351
7f89fd65 1352/* See infrun.h. */
31e77af2
PA
1353
1354int
1355stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357{
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362}
1363
963f9c80
PA
1364/* See infrun.h. */
1365
21edc42f
YQ
1366int
1367thread_is_stepping_over_breakpoint (int thread)
1368{
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371}
1372
1373/* See infrun.h. */
1374
963f9c80
PA
1375int
1376stepping_past_nonsteppable_watchpoint (void)
1377{
1378 return step_over_info.nonsteppable_watchpoint_p;
1379}
1380
6cc83d2a
PA
1381/* Returns true if step-over info is valid. */
1382
1383static int
1384step_over_info_valid_p (void)
1385{
963f9c80
PA
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1388}
1389
c906108c 1390\f
237fc4c9
PA
1391/* Displaced stepping. */
1392
1393/* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
237fc4c9
PA
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
cfba9872
SM
1477/* Default destructor for displaced_step_closure. */
1478
1479displaced_step_closure::~displaced_step_closure () = default;
1480
fc1cf338
PA
1481/* Per-inferior displaced stepping state. */
1482struct displaced_step_inferior_state
1483{
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
3fc8eb30
PA
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
fc1cf338
PA
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512};
1513
1514/* The list of states of processes involved in displaced stepping
1515 presently. */
1516static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518/* Get the displaced stepping state of process PID. */
1519
1520static struct displaced_step_inferior_state *
1521get_displaced_stepping_state (int pid)
1522{
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532}
1533
372316f1
PA
1534/* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537static int
1538displaced_step_in_progress_any_inferior (void)
1539{
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549}
1550
c0987663
YQ
1551/* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554static int
1555displaced_step_in_progress_thread (ptid_t ptid)
1556{
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564}
1565
8f572e5c
PA
1566/* Return true if process PID has a thread doing a displaced step. */
1567
1568static int
1569displaced_step_in_progress (int pid)
1570{
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578}
1579
fc1cf338
PA
1580/* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584static struct displaced_step_inferior_state *
1585add_displaced_stepping_state (int pid)
1586{
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
237fc4c9 1594
8d749320 1595 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
237fc4c9 1599
fc1cf338
PA
1600 return state;
1601}
1602
a42244db
YQ
1603/* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607struct displaced_step_closure*
1608get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609{
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619}
1620
fc1cf338 1621/* Remove the displaced stepping state of process PID. */
237fc4c9 1622
fc1cf338
PA
1623static void
1624remove_displaced_stepping_state (int pid)
1625{
1626 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1627
fc1cf338
PA
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644}
1645
1646static void
1647infrun_inferior_exit (struct inferior *inf)
1648{
1649 remove_displaced_stepping_state (inf->pid);
1650}
237fc4c9 1651
fff08868
HZ
1652/* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
72d0e2c5 1660static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1661
237fc4c9
PA
1662static void
1663show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666{
72d0e2c5 1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1671 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1672 else
3e43a32a
MS
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1676}
1677
fff08868 1678/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1679 over breakpoints of thread TP. */
fff08868 1680
237fc4c9 1681static int
3fc8eb30 1682use_displaced_stepping (struct thread_info *tp)
237fc4c9 1683{
3fc8eb30 1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1685 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
fbea99ea
PA
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
72d0e2c5 1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
237fc4c9
PA
1697}
1698
1699/* Clean out any stray displaced stepping state. */
1700static void
fc1cf338 1701displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1702{
1703 /* Indicate that there is no cleanup pending. */
fc1cf338 1704 displaced->step_ptid = null_ptid;
237fc4c9 1705
cfba9872 1706 delete displaced->step_closure;
6d45d4b4 1707 displaced->step_closure = NULL;
237fc4c9
PA
1708}
1709
1710static void
fc1cf338 1711displaced_step_clear_cleanup (void *arg)
237fc4c9 1712{
9a3c8263
SM
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1715
1716 displaced_step_clear (state);
237fc4c9
PA
1717}
1718
1719/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720void
1721displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724{
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730}
1731
1732/* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
237fc4c9 1748static int
3fc8eb30 1749displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1750{
2989a365 1751 struct cleanup *ignore_cleanups;
c1e36e3e 1752 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1753 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1754 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1755 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
fc1cf338 1759 struct displaced_step_inferior_state *displaced;
9e529e1d 1760 int status;
237fc4c9
PA
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
c2829269
PA
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
c1e36e3e
PA
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
fc1cf338
PA
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
237fc4c9 1777
fc1cf338
PA
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
237fc4c9
PA
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
c2829269 1787 "displaced: deferring step of %s\n",
237fc4c9
PA
1788 target_pid_to_str (ptid));
1789
c2829269 1790 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
fc1cf338 1801 displaced_step_clear (displaced);
237fc4c9 1802
2989a365 1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1804 inferior_ptid = ptid;
1805
515630c5 1806 original = regcache_read_pc (regcache);
237fc4c9
PA
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
d35ae833
PA
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
d35ae833
PA
1829 return -1;
1830 }
1831
237fc4c9 1832 /* Save the original contents of the copy area. */
224c3ddb 1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1834 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1835 &displaced->step_saved_copy);
9e529e1d
JK
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1842 if (debug_displaced)
1843 {
5af949e3
UW
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
fc1cf338
PA
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
237fc4c9
PA
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1852 original, copy, regcache);
7f03bd92
PA
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
2989a365 1858 do_cleanups (ignore_cleanups);
7f03bd92
PA
1859 return -1;
1860 }
237fc4c9 1861
9f5a595d
UW
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
fc1cf338
PA
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
9f5a595d 1869
fc1cf338 1870 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1871
1872 /* Resume execution at the copy. */
515630c5 1873 regcache_write_pc (regcache, copy);
237fc4c9 1874
ad53cd71
PA
1875 discard_cleanups (ignore_cleanups);
1876
237fc4c9 1877 if (debug_displaced)
5af949e3
UW
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
237fc4c9 1880
237fc4c9
PA
1881 return 1;
1882}
1883
3fc8eb30
PA
1884/* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887static int
1888displaced_step_prepare (ptid_t ptid)
1889{
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
16b41842
PA
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
fd7dcb94 1915 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927}
1928
237fc4c9 1929static void
3e43a32a
MS
1930write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
237fc4c9 1932{
2989a365 1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1934
237fc4c9
PA
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1937}
1938
e2d96639
YQ
1939/* Restore the contents of the copy area for thread PTID. */
1940
1941static void
1942displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944{
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954}
1955
372316f1
PA
1956/* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962static int
2ea28649 1963displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1964{
1965 struct cleanup *old_cleanups;
fc1cf338
PA
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1968 int ret;
fc1cf338
PA
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
372316f1 1972 return 0;
237fc4c9
PA
1973
1974 /* Was this event for the pid we displaced? */
fc1cf338
PA
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1977 return 0;
237fc4c9 1978
fc1cf338 1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1980
e2d96639 1981 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1982
cb71640d
PA
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
237fc4c9 1988 /* Did the instruction complete successfully? */
cb71640d
PA
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
237fc4c9
PA
1993 {
1994 /* Fix up the resulting state. */
fc1cf338
PA
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
372316f1 2000 ret = 1;
237fc4c9
PA
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
515630c5
UW
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2008
fc1cf338 2009 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2010 regcache_write_pc (regcache, pc);
372316f1 2011 ret = -1;
237fc4c9
PA
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
fc1cf338 2016 displaced->step_ptid = null_ptid;
372316f1
PA
2017
2018 return ret;
c2829269 2019}
1c5cfe86 2020
4d9d9d04
PA
2021/* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023struct execution_control_state
2024{
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042};
2043
2044/* Clear ECS and set it to point at TP. */
c2829269
PA
2045
2046static void
4d9d9d04
PA
2047reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048{
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052}
2053
2054static void keep_going_pass_signal (struct execution_control_state *ecs);
2055static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2056static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2057static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2058
2059/* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062static int
c2829269
PA
2063start_step_over (void)
2064{
2065 struct thread_info *tp, *next;
2066
372316f1
PA
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
c2829269 2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2073 {
4d9d9d04
PA
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
8d297bbf 2076 step_over_what step_what;
372316f1 2077 int must_be_in_line;
c2829269 2078
c65d6b55
PA
2079 gdb_assert (!tp->stop_requested);
2080
c2829269 2081 next = thread_step_over_chain_next (tp);
237fc4c9 2082
c2829269
PA
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
4d9d9d04 2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2086 continue;
2087
372316f1
PA
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2091 && !use_displaced_stepping (tp)));
372316f1
PA
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
c2829269
PA
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
372316f1
PA
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
ad53cd71 2111 {
4d9d9d04
PA
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
372316f1 2114 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
372316f1 2117 tp->resumed,
4d9d9d04 2118 tp->executing);
ad53cd71 2119 }
1c5cfe86 2120
4d9d9d04
PA
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2132 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2133 continue;
8550d3b3 2134
4d9d9d04
PA
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
1c5cfe86 2138
4d9d9d04
PA
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
1c5cfe86 2141
372316f1
PA
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
fbea99ea 2151 if (!target_is_non_stop_p ())
4d9d9d04
PA
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
1c5cfe86 2162 }
c2829269 2163
4d9d9d04
PA
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
237fc4c9 2168 }
4d9d9d04
PA
2169
2170 return 0;
237fc4c9
PA
2171}
2172
5231c1fd
PA
2173/* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175static void
2176infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177{
fc1cf338 2178 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
fc1cf338
PA
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
fc1cf338 2189 }
5231c1fd
PA
2190}
2191
237fc4c9 2192\f
c906108c 2193
53904c9e
AC
2194static const char schedlock_off[] = "off";
2195static const char schedlock_on[] = "on";
2196static const char schedlock_step[] = "step";
f2665db5 2197static const char schedlock_replay[] = "replay";
40478521 2198static const char *const scheduler_enums[] = {
ef346e04
AC
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
f2665db5 2202 schedlock_replay,
ef346e04
AC
2203 NULL
2204};
f2665db5 2205static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2206static void
2207show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209{
3e43a32a
MS
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
920d2a44
AC
2213 value);
2214}
c906108c
SS
2215
2216static void
eb4c3f4a 2217set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2218{
eefe576e
AC
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
c906108c
SS
2224}
2225
d4db2f36
PA
2226/* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229int sched_multi = 0;
2230
2facfe5c
DD
2231/* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237static int
2238maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239{
2240 int hw_step = 1;
2241
f02253f1 2242 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2facfe5c
DD
2246 return hw_step;
2247}
c906108c 2248
f3263aa4
PA
2249/* See infrun.h. */
2250
09cee04b
PA
2251ptid_t
2252user_visible_resume_ptid (int step)
2253{
f3263aa4 2254 ptid_t resume_ptid;
09cee04b 2255
09cee04b
PA
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
03d46957 2263 || (scheduler_mode == schedlock_step && step))
09cee04b 2264 {
f3263aa4
PA
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
09cee04b
PA
2267 resume_ptid = inferior_ptid;
2268 }
f2665db5
MM
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
f3263aa4
PA
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
09cee04b
PA
2287
2288 return resume_ptid;
2289}
2290
fbea99ea
PA
2291/* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297static ptid_t
2298internal_resume_ptid (int user_step)
2299{
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308}
2309
64ce06e4
PA
2310/* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313static void
2314do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315{
2316 struct thread_info *tp = inferior_thread ();
2317
c65d6b55
PA
2318 gdb_assert (!tp->stop_requested);
2319
64ce06e4 2320 /* Install inferior's terminal modes. */
223ffa71 2321 target_terminal::inferior ();
64ce06e4
PA
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
8f572e5c
PA
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2353
2354 target_commit_resume ();
64ce06e4
PA
2355}
2356
d930703d
PA
2357/* Resume the inferior. SIG is the signal to give the inferior
2358 (GDB_SIGNAL_0 for none). */
c906108c 2359
c906108c 2360void
64ce06e4 2361resume (enum gdb_signal sig)
c906108c 2362{
515630c5 2363 struct regcache *regcache = get_current_regcache ();
ac7936df 2364 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2365 struct thread_info *tp = inferior_thread ();
515630c5 2366 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2367 const address_space *aspace = regcache->aspace ();
b0f16a3e 2368 ptid_t resume_ptid;
856e7dd6
PA
2369 /* This represents the user's step vs continue request. When
2370 deciding whether "set scheduler-locking step" applies, it's the
2371 user's intention that counts. */
2372 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2373 /* This represents what we'll actually request the target to do.
2374 This can decay from a step to a continue, if e.g., we need to
2375 implement single-stepping with breakpoints (software
2376 single-step). */
6b403daa 2377 int step;
c7e8a53c 2378
c65d6b55 2379 gdb_assert (!tp->stop_requested);
c2829269
PA
2380 gdb_assert (!thread_is_in_step_over_chain (tp));
2381
372316f1
PA
2382 if (tp->suspend.waitstatus_pending_p)
2383 {
2384 if (debug_infrun)
2385 {
23fdd69e
SM
2386 std::string statstr
2387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2388
372316f1 2389 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2390 "infrun: resume: thread %s has pending wait "
2391 "status %s (currently_stepping=%d).\n",
2392 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2393 currently_stepping (tp));
372316f1
PA
2394 }
2395
2396 tp->resumed = 1;
2397
2398 /* FIXME: What should we do if we are supposed to resume this
2399 thread with a signal? Maybe we should maintain a queue of
2400 pending signals to deliver. */
2401 if (sig != GDB_SIGNAL_0)
2402 {
fd7dcb94 2403 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2404 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2405 }
2406
2407 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2408
2409 if (target_can_async_p ())
2410 target_async (1);
2411 return;
2412 }
2413
2414 tp->stepped_breakpoint = 0;
2415
6b403daa
PA
2416 /* Depends on stepped_breakpoint. */
2417 step = currently_stepping (tp);
2418
74609e71
YQ
2419 if (current_inferior ()->waiting_for_vfork_done)
2420 {
48f9886d
PA
2421 /* Don't try to single-step a vfork parent that is waiting for
2422 the child to get out of the shared memory region (by exec'ing
2423 or exiting). This is particularly important on software
2424 single-step archs, as the child process would trip on the
2425 software single step breakpoint inserted for the parent
2426 process. Since the parent will not actually execute any
2427 instruction until the child is out of the shared region (such
2428 are vfork's semantics), it is safe to simply continue it.
2429 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2430 the parent, and tell it to `keep_going', which automatically
2431 re-sets it stepping. */
74609e71
YQ
2432 if (debug_infrun)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "infrun: resume : clear step\n");
a09dd441 2435 step = 0;
74609e71
YQ
2436 }
2437
527159b7 2438 if (debug_infrun)
237fc4c9 2439 fprintf_unfiltered (gdb_stdlog,
c9737c08 2440 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2441 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2442 step, gdb_signal_to_symbol_string (sig),
2443 tp->control.trap_expected,
0d9a9a5f
PA
2444 target_pid_to_str (inferior_ptid),
2445 paddress (gdbarch, pc));
c906108c 2446
c2c6d25f
JM
2447 /* Normally, by the time we reach `resume', the breakpoints are either
2448 removed or inserted, as appropriate. The exception is if we're sitting
2449 at a permanent breakpoint; we need to step over it, but permanent
2450 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2451 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2452 {
af48d08f
PA
2453 if (sig != GDB_SIGNAL_0)
2454 {
2455 /* We have a signal to pass to the inferior. The resume
2456 may, or may not take us to the signal handler. If this
2457 is a step, we'll need to stop in the signal handler, if
2458 there's one, (if the target supports stepping into
2459 handlers), or in the next mainline instruction, if
2460 there's no handler. If this is a continue, we need to be
2461 sure to run the handler with all breakpoints inserted.
2462 In all cases, set a breakpoint at the current address
2463 (where the handler returns to), and once that breakpoint
2464 is hit, resume skipping the permanent breakpoint. If
2465 that breakpoint isn't hit, then we've stepped into the
2466 signal handler (or hit some other event). We'll delete
2467 the step-resume breakpoint then. */
2468
2469 if (debug_infrun)
2470 fprintf_unfiltered (gdb_stdlog,
2471 "infrun: resume: skipping permanent breakpoint, "
2472 "deliver signal first\n");
2473
2474 clear_step_over_info ();
2475 tp->control.trap_expected = 0;
2476
2477 if (tp->control.step_resume_breakpoint == NULL)
2478 {
2479 /* Set a "high-priority" step-resume, as we don't want
2480 user breakpoints at PC to trigger (again) when this
2481 hits. */
2482 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2483 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2484
2485 tp->step_after_step_resume_breakpoint = step;
2486 }
2487
2488 insert_breakpoints ();
2489 }
2490 else
2491 {
2492 /* There's no signal to pass, we can go ahead and skip the
2493 permanent breakpoint manually. */
2494 if (debug_infrun)
2495 fprintf_unfiltered (gdb_stdlog,
2496 "infrun: resume: skipping permanent breakpoint\n");
2497 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2498 /* Update pc to reflect the new address from which we will
2499 execute instructions. */
2500 pc = regcache_read_pc (regcache);
2501
2502 if (step)
2503 {
2504 /* We've already advanced the PC, so the stepping part
2505 is done. Now we need to arrange for a trap to be
2506 reported to handle_inferior_event. Set a breakpoint
2507 at the current PC, and run to it. Don't update
2508 prev_pc, because if we end in
44a1ee51
PA
2509 switch_back_to_stepped_thread, we want the "expected
2510 thread advanced also" branch to be taken. IOW, we
2511 don't want this thread to step further from PC
af48d08f 2512 (overstep). */
1ac806b8 2513 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2514 insert_single_step_breakpoint (gdbarch, aspace, pc);
2515 insert_breakpoints ();
2516
fbea99ea 2517 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2518 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2519 tp->resumed = 1;
af48d08f
PA
2520 return;
2521 }
2522 }
6d350bb5 2523 }
c2c6d25f 2524
c1e36e3e
PA
2525 /* If we have a breakpoint to step over, make sure to do a single
2526 step only. Same if we have software watchpoints. */
2527 if (tp->control.trap_expected || bpstat_should_step ())
2528 tp->control.may_range_step = 0;
2529
237fc4c9
PA
2530 /* If enabled, step over breakpoints by executing a copy of the
2531 instruction at a different address.
2532
2533 We can't use displaced stepping when we have a signal to deliver;
2534 the comments for displaced_step_prepare explain why. The
2535 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2536 signals' explain what we do instead.
2537
2538 We can't use displaced stepping when we are waiting for vfork_done
2539 event, displaced stepping breaks the vfork child similarly as single
2540 step software breakpoint. */
3fc8eb30
PA
2541 if (tp->control.trap_expected
2542 && use_displaced_stepping (tp)
cb71640d 2543 && !step_over_info_valid_p ()
a493e3e2 2544 && sig == GDB_SIGNAL_0
74609e71 2545 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2546 {
3fc8eb30 2547 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2548
3fc8eb30 2549 if (prepared == 0)
d56b7306 2550 {
4d9d9d04
PA
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "Got placed in step-over queue\n");
2554
2555 tp->control.trap_expected = 0;
d56b7306
VP
2556 return;
2557 }
3fc8eb30
PA
2558 else if (prepared < 0)
2559 {
2560 /* Fallback to stepping over the breakpoint in-line. */
2561
2562 if (target_is_non_stop_p ())
2563 stop_all_threads ();
2564
a01bda52 2565 set_step_over_info (regcache->aspace (),
21edc42f 2566 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2567
2568 step = maybe_software_singlestep (gdbarch, pc);
2569
2570 insert_breakpoints ();
2571 }
2572 else if (prepared > 0)
2573 {
2574 struct displaced_step_inferior_state *displaced;
99e40580 2575
3fc8eb30
PA
2576 /* Update pc to reflect the new address from which we will
2577 execute instructions due to displaced stepping. */
2578 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2579
3fc8eb30
PA
2580 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2581 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2582 displaced->step_closure);
2583 }
237fc4c9
PA
2584 }
2585
2facfe5c 2586 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2587 else if (step)
2facfe5c 2588 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2589
30852783
UW
2590 /* Currently, our software single-step implementation leads to different
2591 results than hardware single-stepping in one situation: when stepping
2592 into delivering a signal which has an associated signal handler,
2593 hardware single-step will stop at the first instruction of the handler,
2594 while software single-step will simply skip execution of the handler.
2595
2596 For now, this difference in behavior is accepted since there is no
2597 easy way to actually implement single-stepping into a signal handler
2598 without kernel support.
2599
2600 However, there is one scenario where this difference leads to follow-on
2601 problems: if we're stepping off a breakpoint by removing all breakpoints
2602 and then single-stepping. In this case, the software single-step
2603 behavior means that even if there is a *breakpoint* in the signal
2604 handler, GDB still would not stop.
2605
2606 Fortunately, we can at least fix this particular issue. We detect
2607 here the case where we are about to deliver a signal while software
2608 single-stepping with breakpoints removed. In this situation, we
2609 revert the decisions to remove all breakpoints and insert single-
2610 step breakpoints, and instead we install a step-resume breakpoint
2611 at the current address, deliver the signal without stepping, and
2612 once we arrive back at the step-resume breakpoint, actually step
2613 over the breakpoint we originally wanted to step over. */
34b7e8a6 2614 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2615 && sig != GDB_SIGNAL_0
2616 && step_over_info_valid_p ())
30852783
UW
2617 {
2618 /* If we have nested signals or a pending signal is delivered
2619 immediately after a handler returns, might might already have
2620 a step-resume breakpoint set on the earlier handler. We cannot
2621 set another step-resume breakpoint; just continue on until the
2622 original breakpoint is hit. */
2623 if (tp->control.step_resume_breakpoint == NULL)
2624 {
2c03e5be 2625 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2626 tp->step_after_step_resume_breakpoint = 1;
2627 }
2628
34b7e8a6 2629 delete_single_step_breakpoints (tp);
30852783 2630
31e77af2 2631 clear_step_over_info ();
30852783 2632 tp->control.trap_expected = 0;
31e77af2
PA
2633
2634 insert_breakpoints ();
30852783
UW
2635 }
2636
b0f16a3e
SM
2637 /* If STEP is set, it's a request to use hardware stepping
2638 facilities. But in that case, we should never
2639 use singlestep breakpoint. */
34b7e8a6 2640 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2641
fbea99ea 2642 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2643 if (tp->control.trap_expected)
b0f16a3e
SM
2644 {
2645 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2646 hit, either by single-stepping the thread with the breakpoint
2647 removed, or by displaced stepping, with the breakpoint inserted.
2648 In the former case, we need to single-step only this thread,
2649 and keep others stopped, as they can miss this breakpoint if
2650 allowed to run. That's not really a problem for displaced
2651 stepping, but, we still keep other threads stopped, in case
2652 another thread is also stopped for a breakpoint waiting for
2653 its turn in the displaced stepping queue. */
b0f16a3e
SM
2654 resume_ptid = inferior_ptid;
2655 }
fbea99ea
PA
2656 else
2657 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2658
7f5ef605
PA
2659 if (execution_direction != EXEC_REVERSE
2660 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2661 {
372316f1
PA
2662 /* There are two cases where we currently need to step a
2663 breakpoint instruction when we have a signal to deliver:
2664
2665 - See handle_signal_stop where we handle random signals that
2666 could take out us out of the stepping range. Normally, in
2667 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2668 signal handler with a breakpoint at PC, but there are cases
2669 where we should _always_ single-step, even if we have a
2670 step-resume breakpoint, like when a software watchpoint is
2671 set. Assuming single-stepping and delivering a signal at the
2672 same time would takes us to the signal handler, then we could
2673 have removed the breakpoint at PC to step over it. However,
2674 some hardware step targets (like e.g., Mac OS) can't step
2675 into signal handlers, and for those, we need to leave the
2676 breakpoint at PC inserted, as otherwise if the handler
2677 recurses and executes PC again, it'll miss the breakpoint.
2678 So we leave the breakpoint inserted anyway, but we need to
2679 record that we tried to step a breakpoint instruction, so
372316f1
PA
2680 that adjust_pc_after_break doesn't end up confused.
2681
2682 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2683 in one thread after another thread that was stepping had been
2684 momentarily paused for a step-over. When we re-resume the
2685 stepping thread, it may be resumed from that address with a
2686 breakpoint that hasn't trapped yet. Seen with
2687 gdb.threads/non-stop-fair-events.exp, on targets that don't
2688 do displaced stepping. */
2689
2690 if (debug_infrun)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "infrun: resume: [%s] stepped breakpoint\n",
2693 target_pid_to_str (tp->ptid));
7f5ef605
PA
2694
2695 tp->stepped_breakpoint = 1;
2696
b0f16a3e
SM
2697 /* Most targets can step a breakpoint instruction, thus
2698 executing it normally. But if this one cannot, just
2699 continue and we will hit it anyway. */
7f5ef605 2700 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2701 step = 0;
2702 }
ef5cf84e 2703
b0f16a3e 2704 if (debug_displaced
cb71640d 2705 && tp->control.trap_expected
3fc8eb30 2706 && use_displaced_stepping (tp)
cb71640d 2707 && !step_over_info_valid_p ())
b0f16a3e 2708 {
d9b67d9f 2709 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2710 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2711 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2712 gdb_byte buf[4];
2713
2714 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2715 paddress (resume_gdbarch, actual_pc));
2716 read_memory (actual_pc, buf, sizeof (buf));
2717 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2718 }
237fc4c9 2719
b0f16a3e
SM
2720 if (tp->control.may_range_step)
2721 {
2722 /* If we're resuming a thread with the PC out of the step
2723 range, then we're doing some nested/finer run control
2724 operation, like stepping the thread out of the dynamic
2725 linker or the displaced stepping scratch pad. We
2726 shouldn't have allowed a range step then. */
2727 gdb_assert (pc_in_thread_step_range (pc, tp));
2728 }
c1e36e3e 2729
64ce06e4 2730 do_target_resume (resume_ptid, step, sig);
372316f1 2731 tp->resumed = 1;
c906108c
SS
2732}
2733\f
237fc4c9 2734/* Proceeding. */
c906108c 2735
4c2f2a79
PA
2736/* See infrun.h. */
2737
2738/* Counter that tracks number of user visible stops. This can be used
2739 to tell whether a command has proceeded the inferior past the
2740 current location. This allows e.g., inferior function calls in
2741 breakpoint commands to not interrupt the command list. When the
2742 call finishes successfully, the inferior is standing at the same
2743 breakpoint as if nothing happened (and so we don't call
2744 normal_stop). */
2745static ULONGEST current_stop_id;
2746
2747/* See infrun.h. */
2748
2749ULONGEST
2750get_stop_id (void)
2751{
2752 return current_stop_id;
2753}
2754
2755/* Called when we report a user visible stop. */
2756
2757static void
2758new_stop_id (void)
2759{
2760 current_stop_id++;
2761}
2762
c906108c
SS
2763/* Clear out all variables saying what to do when inferior is continued.
2764 First do this, then set the ones you want, then call `proceed'. */
2765
a7212384
UW
2766static void
2767clear_proceed_status_thread (struct thread_info *tp)
c906108c 2768{
a7212384
UW
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "infrun: clear_proceed_status_thread (%s)\n",
2772 target_pid_to_str (tp->ptid));
d6b48e9c 2773
372316f1
PA
2774 /* If we're starting a new sequence, then the previous finished
2775 single-step is no longer relevant. */
2776 if (tp->suspend.waitstatus_pending_p)
2777 {
2778 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2779 {
2780 if (debug_infrun)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "infrun: clear_proceed_status: pending "
2783 "event of %s was a finished step. "
2784 "Discarding.\n",
2785 target_pid_to_str (tp->ptid));
2786
2787 tp->suspend.waitstatus_pending_p = 0;
2788 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2789 }
2790 else if (debug_infrun)
2791 {
23fdd69e
SM
2792 std::string statstr
2793 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2794
372316f1
PA
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread: thread %s "
2797 "has pending wait status %s "
2798 "(currently_stepping=%d).\n",
23fdd69e 2799 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2800 currently_stepping (tp));
372316f1
PA
2801 }
2802 }
2803
70509625
PA
2804 /* If this signal should not be seen by program, give it zero.
2805 Used for debugging signals. */
2806 if (!signal_pass_state (tp->suspend.stop_signal))
2807 tp->suspend.stop_signal = GDB_SIGNAL_0;
2808
243a9253
PA
2809 thread_fsm_delete (tp->thread_fsm);
2810 tp->thread_fsm = NULL;
2811
16c381f0
JK
2812 tp->control.trap_expected = 0;
2813 tp->control.step_range_start = 0;
2814 tp->control.step_range_end = 0;
c1e36e3e 2815 tp->control.may_range_step = 0;
16c381f0
JK
2816 tp->control.step_frame_id = null_frame_id;
2817 tp->control.step_stack_frame_id = null_frame_id;
2818 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2819 tp->control.step_start_function = NULL;
a7212384 2820 tp->stop_requested = 0;
4e1c45ea 2821
16c381f0 2822 tp->control.stop_step = 0;
32400beb 2823
16c381f0 2824 tp->control.proceed_to_finish = 0;
414c69f7 2825
856e7dd6 2826 tp->control.stepping_command = 0;
17b2616c 2827
a7212384 2828 /* Discard any remaining commands or status from previous stop. */
16c381f0 2829 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2830}
32400beb 2831
a7212384 2832void
70509625 2833clear_proceed_status (int step)
a7212384 2834{
f2665db5
MM
2835 /* With scheduler-locking replay, stop replaying other threads if we're
2836 not replaying the user-visible resume ptid.
2837
2838 This is a convenience feature to not require the user to explicitly
2839 stop replaying the other threads. We're assuming that the user's
2840 intent is to resume tracing the recorded process. */
2841 if (!non_stop && scheduler_mode == schedlock_replay
2842 && target_record_is_replaying (minus_one_ptid)
2843 && !target_record_will_replay (user_visible_resume_ptid (step),
2844 execution_direction))
2845 target_record_stop_replaying ();
2846
6c95b8df
PA
2847 if (!non_stop)
2848 {
70509625
PA
2849 struct thread_info *tp;
2850 ptid_t resume_ptid;
2851
2852 resume_ptid = user_visible_resume_ptid (step);
2853
2854 /* In all-stop mode, delete the per-thread status of all threads
2855 we're about to resume, implicitly and explicitly. */
2856 ALL_NON_EXITED_THREADS (tp)
2857 {
2858 if (!ptid_match (tp->ptid, resume_ptid))
2859 continue;
2860 clear_proceed_status_thread (tp);
2861 }
6c95b8df
PA
2862 }
2863
a7212384
UW
2864 if (!ptid_equal (inferior_ptid, null_ptid))
2865 {
2866 struct inferior *inferior;
2867
2868 if (non_stop)
2869 {
6c95b8df
PA
2870 /* If in non-stop mode, only delete the per-thread status of
2871 the current thread. */
a7212384
UW
2872 clear_proceed_status_thread (inferior_thread ());
2873 }
6c95b8df 2874
d6b48e9c 2875 inferior = current_inferior ();
16c381f0 2876 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2877 }
2878
f3b1572e 2879 observer_notify_about_to_proceed ();
c906108c
SS
2880}
2881
99619bea
PA
2882/* Returns true if TP is still stopped at a breakpoint that needs
2883 stepping-over in order to make progress. If the breakpoint is gone
2884 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2885
2886static int
6c4cfb24 2887thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2888{
2889 if (tp->stepping_over_breakpoint)
2890 {
2891 struct regcache *regcache = get_thread_regcache (tp->ptid);
2892
a01bda52 2893 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2894 regcache_read_pc (regcache))
2895 == ordinary_breakpoint_here)
99619bea
PA
2896 return 1;
2897
2898 tp->stepping_over_breakpoint = 0;
2899 }
2900
2901 return 0;
2902}
2903
6c4cfb24
PA
2904/* Check whether thread TP still needs to start a step-over in order
2905 to make progress when resumed. Returns an bitwise or of enum
2906 step_over_what bits, indicating what needs to be stepped over. */
2907
8d297bbf 2908static step_over_what
6c4cfb24
PA
2909thread_still_needs_step_over (struct thread_info *tp)
2910{
8d297bbf 2911 step_over_what what = 0;
6c4cfb24
PA
2912
2913 if (thread_still_needs_step_over_bp (tp))
2914 what |= STEP_OVER_BREAKPOINT;
2915
2916 if (tp->stepping_over_watchpoint
2917 && !target_have_steppable_watchpoint)
2918 what |= STEP_OVER_WATCHPOINT;
2919
2920 return what;
2921}
2922
483805cf
PA
2923/* Returns true if scheduler locking applies. STEP indicates whether
2924 we're about to do a step/next-like command to a thread. */
2925
2926static int
856e7dd6 2927schedlock_applies (struct thread_info *tp)
483805cf
PA
2928{
2929 return (scheduler_mode == schedlock_on
2930 || (scheduler_mode == schedlock_step
f2665db5
MM
2931 && tp->control.stepping_command)
2932 || (scheduler_mode == schedlock_replay
2933 && target_record_will_replay (minus_one_ptid,
2934 execution_direction)));
483805cf
PA
2935}
2936
c906108c
SS
2937/* Basic routine for continuing the program in various fashions.
2938
2939 ADDR is the address to resume at, or -1 for resume where stopped.
2940 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2941 or -1 for act according to how it stopped.
c906108c 2942 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2943 -1 means return after that and print nothing.
2944 You should probably set various step_... variables
2945 before calling here, if you are stepping.
c906108c
SS
2946
2947 You should call clear_proceed_status before calling proceed. */
2948
2949void
64ce06e4 2950proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2951{
e58b0e63
PA
2952 struct regcache *regcache;
2953 struct gdbarch *gdbarch;
4e1c45ea 2954 struct thread_info *tp;
e58b0e63 2955 CORE_ADDR pc;
4d9d9d04
PA
2956 ptid_t resume_ptid;
2957 struct execution_control_state ecss;
2958 struct execution_control_state *ecs = &ecss;
2959 struct cleanup *old_chain;
2960 int started;
c906108c 2961
e58b0e63
PA
2962 /* If we're stopped at a fork/vfork, follow the branch set by the
2963 "set follow-fork-mode" command; otherwise, we'll just proceed
2964 resuming the current thread. */
2965 if (!follow_fork ())
2966 {
2967 /* The target for some reason decided not to resume. */
2968 normal_stop ();
f148b27e
PA
2969 if (target_can_async_p ())
2970 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2971 return;
2972 }
2973
842951eb
PA
2974 /* We'll update this if & when we switch to a new thread. */
2975 previous_inferior_ptid = inferior_ptid;
2976
e58b0e63 2977 regcache = get_current_regcache ();
ac7936df 2978 gdbarch = regcache->arch ();
8b86c959
YQ
2979 const address_space *aspace = regcache->aspace ();
2980
e58b0e63 2981 pc = regcache_read_pc (regcache);
2adfaa28 2982 tp = inferior_thread ();
e58b0e63 2983
99619bea
PA
2984 /* Fill in with reasonable starting values. */
2985 init_thread_stepping_state (tp);
2986
c2829269
PA
2987 gdb_assert (!thread_is_in_step_over_chain (tp));
2988
2acceee2 2989 if (addr == (CORE_ADDR) -1)
c906108c 2990 {
af48d08f
PA
2991 if (pc == stop_pc
2992 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2993 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2994 /* There is a breakpoint at the address we will resume at,
2995 step one instruction before inserting breakpoints so that
2996 we do not stop right away (and report a second hit at this
b2175913
MS
2997 breakpoint).
2998
2999 Note, we don't do this in reverse, because we won't
3000 actually be executing the breakpoint insn anyway.
3001 We'll be (un-)executing the previous instruction. */
99619bea 3002 tp->stepping_over_breakpoint = 1;
515630c5
UW
3003 else if (gdbarch_single_step_through_delay_p (gdbarch)
3004 && gdbarch_single_step_through_delay (gdbarch,
3005 get_current_frame ()))
3352ef37
AC
3006 /* We stepped onto an instruction that needs to be stepped
3007 again before re-inserting the breakpoint, do so. */
99619bea 3008 tp->stepping_over_breakpoint = 1;
c906108c
SS
3009 }
3010 else
3011 {
515630c5 3012 regcache_write_pc (regcache, addr);
c906108c
SS
3013 }
3014
70509625
PA
3015 if (siggnal != GDB_SIGNAL_DEFAULT)
3016 tp->suspend.stop_signal = siggnal;
3017
4d9d9d04
PA
3018 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3019
3020 /* If an exception is thrown from this point on, make sure to
3021 propagate GDB's knowledge of the executing state to the
3022 frontend/user running state. */
3023 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3024
3025 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3026 threads (e.g., we might need to set threads stepping over
3027 breakpoints first), from the user/frontend's point of view, all
3028 threads in RESUME_PTID are now running. Unless we're calling an
3029 inferior function, as in that case we pretend the inferior
3030 doesn't run at all. */
3031 if (!tp->control.in_infcall)
3032 set_running (resume_ptid, 1);
17b2616c 3033
527159b7 3034 if (debug_infrun)
8a9de0e4 3035 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3036 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3037 paddress (gdbarch, addr),
64ce06e4 3038 gdb_signal_to_symbol_string (siggnal));
527159b7 3039
4d9d9d04
PA
3040 annotate_starting ();
3041
3042 /* Make sure that output from GDB appears before output from the
3043 inferior. */
3044 gdb_flush (gdb_stdout);
3045
d930703d
PA
3046 /* Since we've marked the inferior running, give it the terminal. A
3047 QUIT/Ctrl-C from here on is forwarded to the target (which can
3048 still detect attempts to unblock a stuck connection with repeated
3049 Ctrl-C from within target_pass_ctrlc). */
3050 target_terminal::inferior ();
3051
4d9d9d04
PA
3052 /* In a multi-threaded task we may select another thread and
3053 then continue or step.
3054
3055 But if a thread that we're resuming had stopped at a breakpoint,
3056 it will immediately cause another breakpoint stop without any
3057 execution (i.e. it will report a breakpoint hit incorrectly). So
3058 we must step over it first.
3059
3060 Look for threads other than the current (TP) that reported a
3061 breakpoint hit and haven't been resumed yet since. */
3062
3063 /* If scheduler locking applies, we can avoid iterating over all
3064 threads. */
3065 if (!non_stop && !schedlock_applies (tp))
94cc34af 3066 {
4d9d9d04
PA
3067 struct thread_info *current = tp;
3068
3069 ALL_NON_EXITED_THREADS (tp)
3070 {
3071 /* Ignore the current thread here. It's handled
3072 afterwards. */
3073 if (tp == current)
3074 continue;
99619bea 3075
4d9d9d04
PA
3076 /* Ignore threads of processes we're not resuming. */
3077 if (!ptid_match (tp->ptid, resume_ptid))
3078 continue;
c906108c 3079
4d9d9d04
PA
3080 if (!thread_still_needs_step_over (tp))
3081 continue;
3082
3083 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3084
99619bea
PA
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: need to step-over [%s] first\n",
4d9d9d04 3088 target_pid_to_str (tp->ptid));
99619bea 3089
4d9d9d04 3090 thread_step_over_chain_enqueue (tp);
2adfaa28 3091 }
31e77af2 3092
4d9d9d04 3093 tp = current;
30852783
UW
3094 }
3095
4d9d9d04
PA
3096 /* Enqueue the current thread last, so that we move all other
3097 threads over their breakpoints first. */
3098 if (tp->stepping_over_breakpoint)
3099 thread_step_over_chain_enqueue (tp);
30852783 3100
4d9d9d04
PA
3101 /* If the thread isn't started, we'll still need to set its prev_pc,
3102 so that switch_back_to_stepped_thread knows the thread hasn't
3103 advanced. Must do this before resuming any thread, as in
3104 all-stop/remote, once we resume we can't send any other packet
3105 until the target stops again. */
3106 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3107
a9bc57b9
TT
3108 {
3109 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3110
a9bc57b9 3111 started = start_step_over ();
c906108c 3112
a9bc57b9
TT
3113 if (step_over_info_valid_p ())
3114 {
3115 /* Either this thread started a new in-line step over, or some
3116 other thread was already doing one. In either case, don't
3117 resume anything else until the step-over is finished. */
3118 }
3119 else if (started && !target_is_non_stop_p ())
3120 {
3121 /* A new displaced stepping sequence was started. In all-stop,
3122 we can't talk to the target anymore until it next stops. */
3123 }
3124 else if (!non_stop && target_is_non_stop_p ())
3125 {
3126 /* In all-stop, but the target is always in non-stop mode.
3127 Start all other threads that are implicitly resumed too. */
3128 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3129 {
3130 /* Ignore threads of processes we're not resuming. */
3131 if (!ptid_match (tp->ptid, resume_ptid))
3132 continue;
3133
3134 if (tp->resumed)
3135 {
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "infrun: proceed: [%s] resumed\n",
3139 target_pid_to_str (tp->ptid));
3140 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3141 continue;
3142 }
3143
3144 if (thread_is_in_step_over_chain (tp))
3145 {
3146 if (debug_infrun)
3147 fprintf_unfiltered (gdb_stdlog,
3148 "infrun: proceed: [%s] needs step-over\n",
3149 target_pid_to_str (tp->ptid));
3150 continue;
3151 }
3152
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: resuming %s\n",
3156 target_pid_to_str (tp->ptid));
3157
3158 reset_ecs (ecs, tp);
3159 switch_to_thread (tp->ptid);
3160 keep_going_pass_signal (ecs);
3161 if (!ecs->wait_some_more)
fd7dcb94 3162 error (_("Command aborted."));
fbea99ea 3163 }
a9bc57b9
TT
3164 }
3165 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3166 {
3167 /* The thread wasn't started, and isn't queued, run it now. */
3168 reset_ecs (ecs, tp);
3169 switch_to_thread (tp->ptid);
3170 keep_going_pass_signal (ecs);
3171 if (!ecs->wait_some_more)
3172 error (_("Command aborted."));
3173 }
3174 }
c906108c 3175
85ad3aaf
PA
3176 target_commit_resume ();
3177
4d9d9d04 3178 discard_cleanups (old_chain);
c906108c 3179
0b333c5e
PA
3180 /* Tell the event loop to wait for it to stop. If the target
3181 supports asynchronous execution, it'll do this from within
3182 target_resume. */
362646f5 3183 if (!target_can_async_p ())
0b333c5e 3184 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3185}
c906108c
SS
3186\f
3187
3188/* Start remote-debugging of a machine over a serial link. */
96baa820 3189
c906108c 3190void
8621d6a9 3191start_remote (int from_tty)
c906108c 3192{
d6b48e9c 3193 struct inferior *inferior;
d6b48e9c
PA
3194
3195 inferior = current_inferior ();
16c381f0 3196 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3197
1777feb0 3198 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3199 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3200 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3201 nothing is returned (instead of just blocking). Because of this,
3202 targets expecting an immediate response need to, internally, set
3203 things up so that the target_wait() is forced to eventually
1777feb0 3204 timeout. */
6426a772
JM
3205 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3206 differentiate to its caller what the state of the target is after
3207 the initial open has been performed. Here we're assuming that
3208 the target has stopped. It should be possible to eventually have
3209 target_open() return to the caller an indication that the target
3210 is currently running and GDB state should be set to the same as
1777feb0 3211 for an async run. */
e4c8541f 3212 wait_for_inferior ();
8621d6a9
DJ
3213
3214 /* Now that the inferior has stopped, do any bookkeeping like
3215 loading shared libraries. We want to do this before normal_stop,
3216 so that the displayed frame is up to date. */
3217 post_create_inferior (&current_target, from_tty);
3218
6426a772 3219 normal_stop ();
c906108c
SS
3220}
3221
3222/* Initialize static vars when a new inferior begins. */
3223
3224void
96baa820 3225init_wait_for_inferior (void)
c906108c
SS
3226{
3227 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3228
c906108c
SS
3229 breakpoint_init_inferior (inf_starting);
3230
70509625 3231 clear_proceed_status (0);
9f976b41 3232
ca005067 3233 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3234
842951eb 3235 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3236
edb3359d
DJ
3237 /* Discard any skipped inlined frames. */
3238 clear_inline_frame_state (minus_one_ptid);
c906108c 3239}
237fc4c9 3240
c906108c 3241\f
488f131b 3242
ec9499be 3243static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3244
568d6575
UW
3245static void handle_step_into_function (struct gdbarch *gdbarch,
3246 struct execution_control_state *ecs);
3247static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3248 struct execution_control_state *ecs);
4f5d7f63 3249static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3250static void check_exception_resume (struct execution_control_state *,
28106bc2 3251 struct frame_info *);
611c83ae 3252
bdc36728 3253static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3254static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3255static void keep_going (struct execution_control_state *ecs);
94c57d6a 3256static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3257static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3258
252fbfc8
PA
3259/* This function is attached as a "thread_stop_requested" observer.
3260 Cleanup local state that assumed the PTID was to be resumed, and
3261 report the stop to the frontend. */
3262
2c0b251b 3263static void
252fbfc8
PA
3264infrun_thread_stop_requested (ptid_t ptid)
3265{
c2829269 3266 struct thread_info *tp;
252fbfc8 3267
c65d6b55
PA
3268 /* PTID was requested to stop. If the thread was already stopped,
3269 but the user/frontend doesn't know about that yet (e.g., the
3270 thread had been temporarily paused for some step-over), set up
3271 for reporting the stop now. */
c2829269
PA
3272 ALL_NON_EXITED_THREADS (tp)
3273 if (ptid_match (tp->ptid, ptid))
3274 {
c65d6b55
PA
3275 if (tp->state != THREAD_RUNNING)
3276 continue;
3277 if (tp->executing)
3278 continue;
3279
3280 /* Remove matching threads from the step-over queue, so
3281 start_step_over doesn't try to resume them
3282 automatically. */
c2829269
PA
3283 if (thread_is_in_step_over_chain (tp))
3284 thread_step_over_chain_remove (tp);
252fbfc8 3285
c65d6b55
PA
3286 /* If the thread is stopped, but the user/frontend doesn't
3287 know about that yet, queue a pending event, as if the
3288 thread had just stopped now. Unless the thread already had
3289 a pending event. */
3290 if (!tp->suspend.waitstatus_pending_p)
3291 {
3292 tp->suspend.waitstatus_pending_p = 1;
3293 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3294 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3295 }
3296
3297 /* Clear the inline-frame state, since we're re-processing the
3298 stop. */
3299 clear_inline_frame_state (tp->ptid);
3300
3301 /* If this thread was paused because some other thread was
3302 doing an inline-step over, let that finish first. Once
3303 that happens, we'll restart all threads and consume pending
3304 stop events then. */
3305 if (step_over_info_valid_p ())
3306 continue;
3307
3308 /* Otherwise we can process the (new) pending event now. Set
3309 it so this pending event is considered by
3310 do_target_wait. */
3311 tp->resumed = 1;
3312 }
252fbfc8
PA
3313}
3314
a07daef3
PA
3315static void
3316infrun_thread_thread_exit (struct thread_info *tp, int silent)
3317{
3318 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3319 nullify_last_target_wait_ptid ();
3320}
3321
0cbcdb96
PA
3322/* Delete the step resume, single-step and longjmp/exception resume
3323 breakpoints of TP. */
4e1c45ea 3324
0cbcdb96
PA
3325static void
3326delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3327{
0cbcdb96
PA
3328 delete_step_resume_breakpoint (tp);
3329 delete_exception_resume_breakpoint (tp);
34b7e8a6 3330 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3331}
3332
0cbcdb96
PA
3333/* If the target still has execution, call FUNC for each thread that
3334 just stopped. In all-stop, that's all the non-exited threads; in
3335 non-stop, that's the current thread, only. */
3336
3337typedef void (*for_each_just_stopped_thread_callback_func)
3338 (struct thread_info *tp);
4e1c45ea
PA
3339
3340static void
0cbcdb96 3341for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3342{
0cbcdb96 3343 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3344 return;
3345
fbea99ea 3346 if (target_is_non_stop_p ())
4e1c45ea 3347 {
0cbcdb96
PA
3348 /* If in non-stop mode, only the current thread stopped. */
3349 func (inferior_thread ());
4e1c45ea
PA
3350 }
3351 else
0cbcdb96
PA
3352 {
3353 struct thread_info *tp;
3354
3355 /* In all-stop mode, all threads have stopped. */
3356 ALL_NON_EXITED_THREADS (tp)
3357 {
3358 func (tp);
3359 }
3360 }
3361}
3362
3363/* Delete the step resume and longjmp/exception resume breakpoints of
3364 the threads that just stopped. */
3365
3366static void
3367delete_just_stopped_threads_infrun_breakpoints (void)
3368{
3369 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3370}
3371
3372/* Delete the single-step breakpoints of the threads that just
3373 stopped. */
7c16b83e 3374
34b7e8a6
PA
3375static void
3376delete_just_stopped_threads_single_step_breakpoints (void)
3377{
3378 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3379}
3380
1777feb0 3381/* A cleanup wrapper. */
4e1c45ea
PA
3382
3383static void
0cbcdb96 3384delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3385{
0cbcdb96 3386 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3387}
3388
221e1a37 3389/* See infrun.h. */
223698f8 3390
221e1a37 3391void
223698f8
DE
3392print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3393 const struct target_waitstatus *ws)
3394{
23fdd69e 3395 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3396 string_file stb;
223698f8
DE
3397
3398 /* The text is split over several lines because it was getting too long.
3399 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3400 output as a unit; we want only one timestamp printed if debug_timestamp
3401 is set. */
3402
d7e74731
PA
3403 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3404 ptid_get_pid (waiton_ptid),
3405 ptid_get_lwp (waiton_ptid),
3406 ptid_get_tid (waiton_ptid));
dfd4cc63 3407 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3408 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3409 stb.printf (", status) =\n");
3410 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3411 ptid_get_pid (result_ptid),
3412 ptid_get_lwp (result_ptid),
3413 ptid_get_tid (result_ptid),
3414 target_pid_to_str (result_ptid));
23fdd69e 3415 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3416
3417 /* This uses %s in part to handle %'s in the text, but also to avoid
3418 a gcc error: the format attribute requires a string literal. */
d7e74731 3419 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3420}
3421
372316f1
PA
3422/* Select a thread at random, out of those which are resumed and have
3423 had events. */
3424
3425static struct thread_info *
3426random_pending_event_thread (ptid_t waiton_ptid)
3427{
3428 struct thread_info *event_tp;
3429 int num_events = 0;
3430 int random_selector;
3431
3432 /* First see how many events we have. Count only resumed threads
3433 that have an event pending. */
3434 ALL_NON_EXITED_THREADS (event_tp)
3435 if (ptid_match (event_tp->ptid, waiton_ptid)
3436 && event_tp->resumed
3437 && event_tp->suspend.waitstatus_pending_p)
3438 num_events++;
3439
3440 if (num_events == 0)
3441 return NULL;
3442
3443 /* Now randomly pick a thread out of those that have had events. */
3444 random_selector = (int)
3445 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3446
3447 if (debug_infrun && num_events > 1)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "infrun: Found %d events, selecting #%d\n",
3450 num_events, random_selector);
3451
3452 /* Select the Nth thread that has had an event. */
3453 ALL_NON_EXITED_THREADS (event_tp)
3454 if (ptid_match (event_tp->ptid, waiton_ptid)
3455 && event_tp->resumed
3456 && event_tp->suspend.waitstatus_pending_p)
3457 if (random_selector-- == 0)
3458 break;
3459
3460 return event_tp;
3461}
3462
3463/* Wrapper for target_wait that first checks whether threads have
3464 pending statuses to report before actually asking the target for
3465 more events. */
3466
3467static ptid_t
3468do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3469{
3470 ptid_t event_ptid;
3471 struct thread_info *tp;
3472
3473 /* First check if there is a resumed thread with a wait status
3474 pending. */
3475 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3476 {
3477 tp = random_pending_event_thread (ptid);
3478 }
3479 else
3480 {
3481 if (debug_infrun)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "infrun: Waiting for specific thread %s.\n",
3484 target_pid_to_str (ptid));
3485
3486 /* We have a specific thread to check. */
3487 tp = find_thread_ptid (ptid);
3488 gdb_assert (tp != NULL);
3489 if (!tp->suspend.waitstatus_pending_p)
3490 tp = NULL;
3491 }
3492
3493 if (tp != NULL
3494 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3495 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3496 {
3497 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3498 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3499 CORE_ADDR pc;
3500 int discard = 0;
3501
3502 pc = regcache_read_pc (regcache);
3503
3504 if (pc != tp->suspend.stop_pc)
3505 {
3506 if (debug_infrun)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: PC of %s changed. was=%s, now=%s\n",
3509 target_pid_to_str (tp->ptid),
3510 paddress (gdbarch, tp->prev_pc),
3511 paddress (gdbarch, pc));
3512 discard = 1;
3513 }
a01bda52 3514 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: previous breakpoint of %s, at %s gone\n",
3519 target_pid_to_str (tp->ptid),
3520 paddress (gdbarch, pc));
3521
3522 discard = 1;
3523 }
3524
3525 if (discard)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: pending event of %s cancelled.\n",
3530 target_pid_to_str (tp->ptid));
3531
3532 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3533 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3534 }
3535 }
3536
3537 if (tp != NULL)
3538 {
3539 if (debug_infrun)
3540 {
23fdd69e
SM
3541 std::string statstr
3542 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3543
372316f1
PA
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3546 statstr.c_str (),
372316f1 3547 target_pid_to_str (tp->ptid));
372316f1
PA
3548 }
3549
3550 /* Now that we've selected our final event LWP, un-adjust its PC
3551 if it was a software breakpoint (and the target doesn't
3552 always adjust the PC itself). */
3553 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3554 && !target_supports_stopped_by_sw_breakpoint ())
3555 {
3556 struct regcache *regcache;
3557 struct gdbarch *gdbarch;
3558 int decr_pc;
3559
3560 regcache = get_thread_regcache (tp->ptid);
ac7936df 3561 gdbarch = regcache->arch ();
372316f1
PA
3562
3563 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3564 if (decr_pc != 0)
3565 {
3566 CORE_ADDR pc;
3567
3568 pc = regcache_read_pc (regcache);
3569 regcache_write_pc (regcache, pc + decr_pc);
3570 }
3571 }
3572
3573 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3574 *status = tp->suspend.waitstatus;
3575 tp->suspend.waitstatus_pending_p = 0;
3576
3577 /* Wake up the event loop again, until all pending events are
3578 processed. */
3579 if (target_is_async_p ())
3580 mark_async_event_handler (infrun_async_inferior_event_token);
3581 return tp->ptid;
3582 }
3583
3584 /* But if we don't find one, we'll have to wait. */
3585
3586 if (deprecated_target_wait_hook)
3587 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3588 else
3589 event_ptid = target_wait (ptid, status, options);
3590
3591 return event_ptid;
3592}
3593
24291992
PA
3594/* Prepare and stabilize the inferior for detaching it. E.g.,
3595 detaching while a thread is displaced stepping is a recipe for
3596 crashing it, as nothing would readjust the PC out of the scratch
3597 pad. */
3598
3599void
3600prepare_for_detach (void)
3601{
3602 struct inferior *inf = current_inferior ();
3603 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3604 struct displaced_step_inferior_state *displaced;
3605
3606 displaced = get_displaced_stepping_state (inf->pid);
3607
3608 /* Is any thread of this process displaced stepping? If not,
3609 there's nothing else to do. */
3610 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3611 return;
3612
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog,
3615 "displaced-stepping in-process while detaching");
3616
9bcb1f16 3617 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3618
3619 while (!ptid_equal (displaced->step_ptid, null_ptid))
3620 {
3621 struct cleanup *old_chain_2;
3622 struct execution_control_state ecss;
3623 struct execution_control_state *ecs;
3624
3625 ecs = &ecss;
3626 memset (ecs, 0, sizeof (*ecs));
3627
3628 overlay_cache_invalid = 1;
f15cb84a
YQ
3629 /* Flush target cache before starting to handle each event.
3630 Target was running and cache could be stale. This is just a
3631 heuristic. Running threads may modify target memory, but we
3632 don't get any event. */
3633 target_dcache_invalidate ();
24291992 3634
372316f1 3635 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3636
3637 if (debug_infrun)
3638 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3639
3640 /* If an error happens while handling the event, propagate GDB's
3641 knowledge of the executing state to the frontend/user running
3642 state. */
3e43a32a
MS
3643 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3644 &minus_one_ptid);
24291992
PA
3645
3646 /* Now figure out what to do with the result of the result. */
3647 handle_inferior_event (ecs);
3648
3649 /* No error, don't finish the state yet. */
3650 discard_cleanups (old_chain_2);
3651
3652 /* Breakpoints and watchpoints are not installed on the target
3653 at this point, and signals are passed directly to the
3654 inferior, so this must mean the process is gone. */
3655 if (!ecs->wait_some_more)
3656 {
9bcb1f16 3657 restore_detaching.release ();
24291992
PA
3658 error (_("Program exited while detaching"));
3659 }
3660 }
3661
9bcb1f16 3662 restore_detaching.release ();
24291992
PA
3663}
3664
cd0fc7c3 3665/* Wait for control to return from inferior to debugger.
ae123ec6 3666
cd0fc7c3
SS
3667 If inferior gets a signal, we may decide to start it up again
3668 instead of returning. That is why there is a loop in this function.
3669 When this function actually returns it means the inferior
3670 should be left stopped and GDB should read more commands. */
3671
3672void
e4c8541f 3673wait_for_inferior (void)
cd0fc7c3
SS
3674{
3675 struct cleanup *old_cleanups;
e6f5c25b 3676 struct cleanup *thread_state_chain;
c906108c 3677
527159b7 3678 if (debug_infrun)
ae123ec6 3679 fprintf_unfiltered
e4c8541f 3680 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3681
0cbcdb96
PA
3682 old_cleanups
3683 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3684 NULL);
cd0fc7c3 3685
e6f5c25b
PA
3686 /* If an error happens while handling the event, propagate GDB's
3687 knowledge of the executing state to the frontend/user running
3688 state. */
3689 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3690
c906108c
SS
3691 while (1)
3692 {
ae25568b
PA
3693 struct execution_control_state ecss;
3694 struct execution_control_state *ecs = &ecss;
963f9c80 3695 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3696
ae25568b
PA
3697 memset (ecs, 0, sizeof (*ecs));
3698
ec9499be 3699 overlay_cache_invalid = 1;
ec9499be 3700
f15cb84a
YQ
3701 /* Flush target cache before starting to handle each event.
3702 Target was running and cache could be stale. This is just a
3703 heuristic. Running threads may modify target memory, but we
3704 don't get any event. */
3705 target_dcache_invalidate ();
3706
372316f1 3707 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3708
f00150c9 3709 if (debug_infrun)
223698f8 3710 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3711
cd0fc7c3
SS
3712 /* Now figure out what to do with the result of the result. */
3713 handle_inferior_event (ecs);
c906108c 3714
cd0fc7c3
SS
3715 if (!ecs->wait_some_more)
3716 break;
3717 }
4e1c45ea 3718
e6f5c25b
PA
3719 /* No error, don't finish the state yet. */
3720 discard_cleanups (thread_state_chain);
3721
cd0fc7c3
SS
3722 do_cleanups (old_cleanups);
3723}
c906108c 3724
d3d4baed
PA
3725/* Cleanup that reinstalls the readline callback handler, if the
3726 target is running in the background. If while handling the target
3727 event something triggered a secondary prompt, like e.g., a
3728 pagination prompt, we'll have removed the callback handler (see
3729 gdb_readline_wrapper_line). Need to do this as we go back to the
3730 event loop, ready to process further input. Note this has no
3731 effect if the handler hasn't actually been removed, because calling
3732 rl_callback_handler_install resets the line buffer, thus losing
3733 input. */
3734
3735static void
3736reinstall_readline_callback_handler_cleanup (void *arg)
3737{
3b12939d
PA
3738 struct ui *ui = current_ui;
3739
3740 if (!ui->async)
6c400b59
PA
3741 {
3742 /* We're not going back to the top level event loop yet. Don't
3743 install the readline callback, as it'd prep the terminal,
3744 readline-style (raw, noecho) (e.g., --batch). We'll install
3745 it the next time the prompt is displayed, when we're ready
3746 for input. */
3747 return;
3748 }
3749
3b12939d 3750 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3751 gdb_rl_callback_handler_reinstall ();
3752}
3753
243a9253
PA
3754/* Clean up the FSMs of threads that are now stopped. In non-stop,
3755 that's just the event thread. In all-stop, that's all threads. */
3756
3757static void
3758clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3759{
3760 struct thread_info *thr = ecs->event_thread;
3761
3762 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3763 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3764
3765 if (!non_stop)
3766 {
3767 ALL_NON_EXITED_THREADS (thr)
3768 {
3769 if (thr->thread_fsm == NULL)
3770 continue;
3771 if (thr == ecs->event_thread)
3772 continue;
3773
3774 switch_to_thread (thr->ptid);
8980e177 3775 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3776 }
3777
3778 if (ecs->event_thread != NULL)
3779 switch_to_thread (ecs->event_thread->ptid);
3780 }
3781}
3782
3b12939d
PA
3783/* Helper for all_uis_check_sync_execution_done that works on the
3784 current UI. */
3785
3786static void
3787check_curr_ui_sync_execution_done (void)
3788{
3789 struct ui *ui = current_ui;
3790
3791 if (ui->prompt_state == PROMPT_NEEDED
3792 && ui->async
3793 && !gdb_in_secondary_prompt_p (ui))
3794 {
223ffa71 3795 target_terminal::ours ();
3b12939d 3796 observer_notify_sync_execution_done ();
3eb7562a 3797 ui_register_input_event_handler (ui);
3b12939d
PA
3798 }
3799}
3800
3801/* See infrun.h. */
3802
3803void
3804all_uis_check_sync_execution_done (void)
3805{
0e454242 3806 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3807 {
3808 check_curr_ui_sync_execution_done ();
3809 }
3810}
3811
a8836c93
PA
3812/* See infrun.h. */
3813
3814void
3815all_uis_on_sync_execution_starting (void)
3816{
0e454242 3817 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3818 {
3819 if (current_ui->prompt_state == PROMPT_NEEDED)
3820 async_disable_stdin ();
3821 }
3822}
3823
1777feb0 3824/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3825 event loop whenever a change of state is detected on the file
1777feb0
MS
3826 descriptor corresponding to the target. It can be called more than
3827 once to complete a single execution command. In such cases we need
3828 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3829 that this function is called for a single execution command, then
3830 report to the user that the inferior has stopped, and do the
1777feb0 3831 necessary cleanups. */
43ff13b4
JM
3832
3833void
fba45db2 3834fetch_inferior_event (void *client_data)
43ff13b4 3835{
0d1e5fa7 3836 struct execution_control_state ecss;
a474d7c2 3837 struct execution_control_state *ecs = &ecss;
4f8d22e3 3838 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3839 struct cleanup *ts_old_chain;
0f641c01 3840 int cmd_done = 0;
963f9c80 3841 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3842
0d1e5fa7
PA
3843 memset (ecs, 0, sizeof (*ecs));
3844
c61db772
PA
3845 /* Events are always processed with the main UI as current UI. This
3846 way, warnings, debug output, etc. are always consistently sent to
3847 the main console. */
4b6749b9 3848 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3849
d3d4baed
PA
3850 /* End up with readline processing input, if necessary. */
3851 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3852
c5187ac6
PA
3853 /* We're handling a live event, so make sure we're doing live
3854 debugging. If we're looking at traceframes while the target is
3855 running, we're going to need to get back to that mode after
3856 handling the event. */
3857 if (non_stop)
3858 {
3859 make_cleanup_restore_current_traceframe ();
e6e4e701 3860 set_current_traceframe (-1);
c5187ac6
PA
3861 }
3862
5ed8105e
PA
3863 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3864
4f8d22e3
PA
3865 if (non_stop)
3866 /* In non-stop mode, the user/frontend should not notice a thread
3867 switch due to internal events. Make sure we reverse to the
3868 user selected thread and frame after handling the event and
3869 running any breakpoint commands. */
5ed8105e 3870 maybe_restore_thread.emplace ();
4f8d22e3 3871
ec9499be 3872 overlay_cache_invalid = 1;
f15cb84a
YQ
3873 /* Flush target cache before starting to handle each event. Target
3874 was running and cache could be stale. This is just a heuristic.
3875 Running threads may modify target memory, but we don't get any
3876 event. */
3877 target_dcache_invalidate ();
3dd5b83d 3878
b7b633e9
TT
3879 scoped_restore save_exec_dir
3880 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3881
0b333c5e
PA
3882 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3883 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3884
f00150c9 3885 if (debug_infrun)
223698f8 3886 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3887
29f49a6a
PA
3888 /* If an error happens while handling the event, propagate GDB's
3889 knowledge of the executing state to the frontend/user running
3890 state. */
fbea99ea 3891 if (!target_is_non_stop_p ())
29f49a6a
PA
3892 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3893 else
3894 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3895
353d1d73
JK
3896 /* Get executed before make_cleanup_restore_current_thread above to apply
3897 still for the thread which has thrown the exception. */
3898 make_bpstat_clear_actions_cleanup ();
3899
7c16b83e
PA
3900 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3901
43ff13b4 3902 /* Now figure out what to do with the result of the result. */
a474d7c2 3903 handle_inferior_event (ecs);
43ff13b4 3904
a474d7c2 3905 if (!ecs->wait_some_more)
43ff13b4 3906 {
c9657e70 3907 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3908 int should_stop = 1;
3909 struct thread_info *thr = ecs->event_thread;
388a7084 3910 int should_notify_stop = 1;
d6b48e9c 3911
0cbcdb96 3912 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3913
243a9253
PA
3914 if (thr != NULL)
3915 {
3916 struct thread_fsm *thread_fsm = thr->thread_fsm;
3917
3918 if (thread_fsm != NULL)
8980e177 3919 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3920 }
3921
3922 if (!should_stop)
3923 {
3924 keep_going (ecs);
3925 }
c2d11a7d 3926 else
0f641c01 3927 {
243a9253
PA
3928 clean_up_just_stopped_threads_fsms (ecs);
3929
388a7084
PA
3930 if (thr != NULL && thr->thread_fsm != NULL)
3931 {
3932 should_notify_stop
3933 = thread_fsm_should_notify_stop (thr->thread_fsm);
3934 }
3935
3936 if (should_notify_stop)
3937 {
4c2f2a79
PA
3938 int proceeded = 0;
3939
388a7084
PA
3940 /* We may not find an inferior if this was a process exit. */
3941 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3942 proceeded = normal_stop ();
243a9253 3943
4c2f2a79
PA
3944 if (!proceeded)
3945 {
3946 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3947 cmd_done = 1;
3948 }
388a7084 3949 }
0f641c01 3950 }
43ff13b4 3951 }
4f8d22e3 3952
29f49a6a
PA
3953 /* No error, don't finish the thread states yet. */
3954 discard_cleanups (ts_old_chain);
3955
4f8d22e3
PA
3956 /* Revert thread and frame. */
3957 do_cleanups (old_chain);
3958
3b12939d
PA
3959 /* If a UI was in sync execution mode, and now isn't, restore its
3960 prompt (a synchronous execution command has finished, and we're
3961 ready for input). */
3962 all_uis_check_sync_execution_done ();
0f641c01
PA
3963
3964 if (cmd_done
0f641c01
PA
3965 && exec_done_display_p
3966 && (ptid_equal (inferior_ptid, null_ptid)
3967 || !is_running (inferior_ptid)))
3968 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3969}
3970
edb3359d
DJ
3971/* Record the frame and location we're currently stepping through. */
3972void
3973set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3974{
3975 struct thread_info *tp = inferior_thread ();
3976
16c381f0
JK
3977 tp->control.step_frame_id = get_frame_id (frame);
3978 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3979
3980 tp->current_symtab = sal.symtab;
3981 tp->current_line = sal.line;
3982}
3983
0d1e5fa7
PA
3984/* Clear context switchable stepping state. */
3985
3986void
4e1c45ea 3987init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3988{
7f5ef605 3989 tss->stepped_breakpoint = 0;
0d1e5fa7 3990 tss->stepping_over_breakpoint = 0;
963f9c80 3991 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3992 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3993}
3994
c32c64b7
DE
3995/* Set the cached copy of the last ptid/waitstatus. */
3996
6efcd9a8 3997void
c32c64b7
DE
3998set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3999{
4000 target_last_wait_ptid = ptid;
4001 target_last_waitstatus = status;
4002}
4003
e02bc4cc 4004/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4005 target_wait()/deprecated_target_wait_hook(). The data is actually
4006 cached by handle_inferior_event(), which gets called immediately
4007 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4008
4009void
488f131b 4010get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4011{
39f77062 4012 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4013 *status = target_last_waitstatus;
4014}
4015
ac264b3b
MS
4016void
4017nullify_last_target_wait_ptid (void)
4018{
4019 target_last_wait_ptid = minus_one_ptid;
4020}
4021
dcf4fbde 4022/* Switch thread contexts. */
dd80620e
MS
4023
4024static void
0d1e5fa7 4025context_switch (ptid_t ptid)
dd80620e 4026{
4b51d87b 4027 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4028 {
4029 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4030 target_pid_to_str (inferior_ptid));
4031 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4032 target_pid_to_str (ptid));
fd48f117
DJ
4033 }
4034
0d1e5fa7 4035 switch_to_thread (ptid);
dd80620e
MS
4036}
4037
d8dd4d5f
PA
4038/* If the target can't tell whether we've hit breakpoints
4039 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4040 check whether that could have been caused by a breakpoint. If so,
4041 adjust the PC, per gdbarch_decr_pc_after_break. */
4042
4fa8626c 4043static void
d8dd4d5f
PA
4044adjust_pc_after_break (struct thread_info *thread,
4045 struct target_waitstatus *ws)
4fa8626c 4046{
24a73cce
UW
4047 struct regcache *regcache;
4048 struct gdbarch *gdbarch;
118e6252 4049 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4050
4fa8626c
DJ
4051 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4052 we aren't, just return.
9709f61c
DJ
4053
4054 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4055 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4056 implemented by software breakpoints should be handled through the normal
4057 breakpoint layer.
8fb3e588 4058
4fa8626c
DJ
4059 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4060 different signals (SIGILL or SIGEMT for instance), but it is less
4061 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4062 gdbarch_decr_pc_after_break. I don't know any specific target that
4063 generates these signals at breakpoints (the code has been in GDB since at
4064 least 1992) so I can not guess how to handle them here.
8fb3e588 4065
e6cf7916
UW
4066 In earlier versions of GDB, a target with
4067 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4068 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4069 target with both of these set in GDB history, and it seems unlikely to be
4070 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4071
d8dd4d5f 4072 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4073 return;
4074
d8dd4d5f 4075 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4076 return;
4077
4058b839
PA
4078 /* In reverse execution, when a breakpoint is hit, the instruction
4079 under it has already been de-executed. The reported PC always
4080 points at the breakpoint address, so adjusting it further would
4081 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4082 architecture:
4083
4084 B1 0x08000000 : INSN1
4085 B2 0x08000001 : INSN2
4086 0x08000002 : INSN3
4087 PC -> 0x08000003 : INSN4
4088
4089 Say you're stopped at 0x08000003 as above. Reverse continuing
4090 from that point should hit B2 as below. Reading the PC when the
4091 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4092 been de-executed already.
4093
4094 B1 0x08000000 : INSN1
4095 B2 PC -> 0x08000001 : INSN2
4096 0x08000002 : INSN3
4097 0x08000003 : INSN4
4098
4099 We can't apply the same logic as for forward execution, because
4100 we would wrongly adjust the PC to 0x08000000, since there's a
4101 breakpoint at PC - 1. We'd then report a hit on B1, although
4102 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4103 behaviour. */
4104 if (execution_direction == EXEC_REVERSE)
4105 return;
4106
1cf4d951
PA
4107 /* If the target can tell whether the thread hit a SW breakpoint,
4108 trust it. Targets that can tell also adjust the PC
4109 themselves. */
4110 if (target_supports_stopped_by_sw_breakpoint ())
4111 return;
4112
4113 /* Note that relying on whether a breakpoint is planted in memory to
4114 determine this can fail. E.g,. the breakpoint could have been
4115 removed since. Or the thread could have been told to step an
4116 instruction the size of a breakpoint instruction, and only
4117 _after_ was a breakpoint inserted at its address. */
4118
24a73cce
UW
4119 /* If this target does not decrement the PC after breakpoints, then
4120 we have nothing to do. */
d8dd4d5f 4121 regcache = get_thread_regcache (thread->ptid);
ac7936df 4122 gdbarch = regcache->arch ();
118e6252 4123
527a273a 4124 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4125 if (decr_pc == 0)
24a73cce
UW
4126 return;
4127
8b86c959 4128 const address_space *aspace = regcache->aspace ();
6c95b8df 4129
8aad930b
AC
4130 /* Find the location where (if we've hit a breakpoint) the
4131 breakpoint would be. */
118e6252 4132 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4133
1cf4d951
PA
4134 /* If the target can't tell whether a software breakpoint triggered,
4135 fallback to figuring it out based on breakpoints we think were
4136 inserted in the target, and on whether the thread was stepped or
4137 continued. */
4138
1c5cfe86
PA
4139 /* Check whether there actually is a software breakpoint inserted at
4140 that location.
4141
4142 If in non-stop mode, a race condition is possible where we've
4143 removed a breakpoint, but stop events for that breakpoint were
4144 already queued and arrive later. To suppress those spurious
4145 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4146 and retire them after a number of stop events are reported. Note
4147 this is an heuristic and can thus get confused. The real fix is
4148 to get the "stopped by SW BP and needs adjustment" info out of
4149 the target/kernel (and thus never reach here; see above). */
6c95b8df 4150 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4151 || (target_is_non_stop_p ()
4152 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4153 {
07036511 4154 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4155
8213266a 4156 if (record_full_is_used ())
07036511
TT
4157 restore_operation_disable.emplace
4158 (record_full_gdb_operation_disable_set ());
96429cc8 4159
1c0fdd0e
UW
4160 /* When using hardware single-step, a SIGTRAP is reported for both
4161 a completed single-step and a software breakpoint. Need to
4162 differentiate between the two, as the latter needs adjusting
4163 but the former does not.
4164
4165 The SIGTRAP can be due to a completed hardware single-step only if
4166 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4167 - this thread is currently being stepped
4168
4169 If any of these events did not occur, we must have stopped due
4170 to hitting a software breakpoint, and have to back up to the
4171 breakpoint address.
4172
4173 As a special case, we could have hardware single-stepped a
4174 software breakpoint. In this case (prev_pc == breakpoint_pc),
4175 we also need to back up to the breakpoint address. */
4176
d8dd4d5f
PA
4177 if (thread_has_single_step_breakpoints_set (thread)
4178 || !currently_stepping (thread)
4179 || (thread->stepped_breakpoint
4180 && thread->prev_pc == breakpoint_pc))
515630c5 4181 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4182 }
4fa8626c
DJ
4183}
4184
edb3359d
DJ
4185static int
4186stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4187{
4188 for (frame = get_prev_frame (frame);
4189 frame != NULL;
4190 frame = get_prev_frame (frame))
4191 {
4192 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4193 return 1;
4194 if (get_frame_type (frame) != INLINE_FRAME)
4195 break;
4196 }
4197
4198 return 0;
4199}
4200
c65d6b55
PA
4201/* If the event thread has the stop requested flag set, pretend it
4202 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4203 target_stop). */
4204
4205static bool
4206handle_stop_requested (struct execution_control_state *ecs)
4207{
4208 if (ecs->event_thread->stop_requested)
4209 {
4210 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4211 ecs->ws.value.sig = GDB_SIGNAL_0;
4212 handle_signal_stop (ecs);
4213 return true;
4214 }
4215 return false;
4216}
4217
a96d9b2e
SDJ
4218/* Auxiliary function that handles syscall entry/return events.
4219 It returns 1 if the inferior should keep going (and GDB
4220 should ignore the event), or 0 if the event deserves to be
4221 processed. */
ca2163eb 4222
a96d9b2e 4223static int
ca2163eb 4224handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4225{
ca2163eb 4226 struct regcache *regcache;
ca2163eb
PA
4227 int syscall_number;
4228
4229 if (!ptid_equal (ecs->ptid, inferior_ptid))
4230 context_switch (ecs->ptid);
4231
4232 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4233 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4234 stop_pc = regcache_read_pc (regcache);
4235
a96d9b2e
SDJ
4236 if (catch_syscall_enabled () > 0
4237 && catching_syscall_number (syscall_number) > 0)
4238 {
4239 if (debug_infrun)
4240 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4241 syscall_number);
a96d9b2e 4242
16c381f0 4243 ecs->event_thread->control.stop_bpstat
a01bda52 4244 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4245 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4246
c65d6b55
PA
4247 if (handle_stop_requested (ecs))
4248 return 0;
4249
ce12b012 4250 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4251 {
4252 /* Catchpoint hit. */
ca2163eb
PA
4253 return 0;
4254 }
a96d9b2e 4255 }
ca2163eb 4256
c65d6b55
PA
4257 if (handle_stop_requested (ecs))
4258 return 0;
4259
ca2163eb 4260 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4261 keep_going (ecs);
4262 return 1;
a96d9b2e
SDJ
4263}
4264
7e324e48
GB
4265/* Lazily fill in the execution_control_state's stop_func_* fields. */
4266
4267static void
4268fill_in_stop_func (struct gdbarch *gdbarch,
4269 struct execution_control_state *ecs)
4270{
4271 if (!ecs->stop_func_filled_in)
4272 {
4273 /* Don't care about return value; stop_func_start and stop_func_name
4274 will both be 0 if it doesn't work. */
4275 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4276 &ecs->stop_func_start, &ecs->stop_func_end);
4277 ecs->stop_func_start
4278 += gdbarch_deprecated_function_start_offset (gdbarch);
4279
591a12a1
UW
4280 if (gdbarch_skip_entrypoint_p (gdbarch))
4281 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4282 ecs->stop_func_start);
4283
7e324e48
GB
4284 ecs->stop_func_filled_in = 1;
4285 }
4286}
4287
4f5d7f63
PA
4288
4289/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4290
4291static enum stop_kind
4292get_inferior_stop_soon (ptid_t ptid)
4293{
c9657e70 4294 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4295
4296 gdb_assert (inf != NULL);
4297 return inf->control.stop_soon;
4298}
4299
372316f1
PA
4300/* Wait for one event. Store the resulting waitstatus in WS, and
4301 return the event ptid. */
4302
4303static ptid_t
4304wait_one (struct target_waitstatus *ws)
4305{
4306 ptid_t event_ptid;
4307 ptid_t wait_ptid = minus_one_ptid;
4308
4309 overlay_cache_invalid = 1;
4310
4311 /* Flush target cache before starting to handle each event.
4312 Target was running and cache could be stale. This is just a
4313 heuristic. Running threads may modify target memory, but we
4314 don't get any event. */
4315 target_dcache_invalidate ();
4316
4317 if (deprecated_target_wait_hook)
4318 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4319 else
4320 event_ptid = target_wait (wait_ptid, ws, 0);
4321
4322 if (debug_infrun)
4323 print_target_wait_results (wait_ptid, event_ptid, ws);
4324
4325 return event_ptid;
4326}
4327
4328/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4329 instead of the current thread. */
4330#define THREAD_STOPPED_BY(REASON) \
4331static int \
4332thread_stopped_by_ ## REASON (ptid_t ptid) \
4333{ \
2989a365 4334 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4335 inferior_ptid = ptid; \
4336 \
2989a365 4337 return target_stopped_by_ ## REASON (); \
372316f1
PA
4338}
4339
4340/* Generate thread_stopped_by_watchpoint. */
4341THREAD_STOPPED_BY (watchpoint)
4342/* Generate thread_stopped_by_sw_breakpoint. */
4343THREAD_STOPPED_BY (sw_breakpoint)
4344/* Generate thread_stopped_by_hw_breakpoint. */
4345THREAD_STOPPED_BY (hw_breakpoint)
4346
4347/* Cleanups that switches to the PTID pointed at by PTID_P. */
4348
4349static void
4350switch_to_thread_cleanup (void *ptid_p)
4351{
4352 ptid_t ptid = *(ptid_t *) ptid_p;
4353
4354 switch_to_thread (ptid);
4355}
4356
4357/* Save the thread's event and stop reason to process it later. */
4358
4359static void
4360save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4361{
4362 struct regcache *regcache;
372316f1
PA
4363
4364 if (debug_infrun)
4365 {
23fdd69e 4366 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4367
372316f1
PA
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4370 statstr.c_str (),
372316f1
PA
4371 ptid_get_pid (tp->ptid),
4372 ptid_get_lwp (tp->ptid),
4373 ptid_get_tid (tp->ptid));
372316f1
PA
4374 }
4375
4376 /* Record for later. */
4377 tp->suspend.waitstatus = *ws;
4378 tp->suspend.waitstatus_pending_p = 1;
4379
4380 regcache = get_thread_regcache (tp->ptid);
8b86c959 4381 const address_space *aspace = regcache->aspace ();
372316f1
PA
4382
4383 if (ws->kind == TARGET_WAITKIND_STOPPED
4384 && ws->value.sig == GDB_SIGNAL_TRAP)
4385 {
4386 CORE_ADDR pc = regcache_read_pc (regcache);
4387
4388 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4389
4390 if (thread_stopped_by_watchpoint (tp->ptid))
4391 {
4392 tp->suspend.stop_reason
4393 = TARGET_STOPPED_BY_WATCHPOINT;
4394 }
4395 else if (target_supports_stopped_by_sw_breakpoint ()
4396 && thread_stopped_by_sw_breakpoint (tp->ptid))
4397 {
4398 tp->suspend.stop_reason
4399 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4400 }
4401 else if (target_supports_stopped_by_hw_breakpoint ()
4402 && thread_stopped_by_hw_breakpoint (tp->ptid))
4403 {
4404 tp->suspend.stop_reason
4405 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4406 }
4407 else if (!target_supports_stopped_by_hw_breakpoint ()
4408 && hardware_breakpoint_inserted_here_p (aspace,
4409 pc))
4410 {
4411 tp->suspend.stop_reason
4412 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4413 }
4414 else if (!target_supports_stopped_by_sw_breakpoint ()
4415 && software_breakpoint_inserted_here_p (aspace,
4416 pc))
4417 {
4418 tp->suspend.stop_reason
4419 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4420 }
4421 else if (!thread_has_single_step_breakpoints_set (tp)
4422 && currently_stepping (tp))
4423 {
4424 tp->suspend.stop_reason
4425 = TARGET_STOPPED_BY_SINGLE_STEP;
4426 }
4427 }
4428}
4429
65706a29
PA
4430/* A cleanup that disables thread create/exit events. */
4431
4432static void
4433disable_thread_events (void *arg)
4434{
4435 target_thread_events (0);
4436}
4437
6efcd9a8 4438/* See infrun.h. */
372316f1 4439
6efcd9a8 4440void
372316f1
PA
4441stop_all_threads (void)
4442{
4443 /* We may need multiple passes to discover all threads. */
4444 int pass;
4445 int iterations = 0;
4446 ptid_t entry_ptid;
4447 struct cleanup *old_chain;
4448
fbea99ea 4449 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4450
4451 if (debug_infrun)
4452 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4453
4454 entry_ptid = inferior_ptid;
4455 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4456
65706a29
PA
4457 target_thread_events (1);
4458 make_cleanup (disable_thread_events, NULL);
4459
372316f1
PA
4460 /* Request threads to stop, and then wait for the stops. Because
4461 threads we already know about can spawn more threads while we're
4462 trying to stop them, and we only learn about new threads when we
4463 update the thread list, do this in a loop, and keep iterating
4464 until two passes find no threads that need to be stopped. */
4465 for (pass = 0; pass < 2; pass++, iterations++)
4466 {
4467 if (debug_infrun)
4468 fprintf_unfiltered (gdb_stdlog,
4469 "infrun: stop_all_threads, pass=%d, "
4470 "iterations=%d\n", pass, iterations);
4471 while (1)
4472 {
4473 ptid_t event_ptid;
4474 struct target_waitstatus ws;
4475 int need_wait = 0;
4476 struct thread_info *t;
4477
4478 update_thread_list ();
4479
4480 /* Go through all threads looking for threads that we need
4481 to tell the target to stop. */
4482 ALL_NON_EXITED_THREADS (t)
4483 {
4484 if (t->executing)
4485 {
4486 /* If already stopping, don't request a stop again.
4487 We just haven't seen the notification yet. */
4488 if (!t->stop_requested)
4489 {
4490 if (debug_infrun)
4491 fprintf_unfiltered (gdb_stdlog,
4492 "infrun: %s executing, "
4493 "need stop\n",
4494 target_pid_to_str (t->ptid));
4495 target_stop (t->ptid);
4496 t->stop_requested = 1;
4497 }
4498 else
4499 {
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog,
4502 "infrun: %s executing, "
4503 "already stopping\n",
4504 target_pid_to_str (t->ptid));
4505 }
4506
4507 if (t->stop_requested)
4508 need_wait = 1;
4509 }
4510 else
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: %s not executing\n",
4515 target_pid_to_str (t->ptid));
4516
4517 /* The thread may be not executing, but still be
4518 resumed with a pending status to process. */
4519 t->resumed = 0;
4520 }
4521 }
4522
4523 if (!need_wait)
4524 break;
4525
4526 /* If we find new threads on the second iteration, restart
4527 over. We want to see two iterations in a row with all
4528 threads stopped. */
4529 if (pass > 0)
4530 pass = -1;
4531
4532 event_ptid = wait_one (&ws);
4533 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4534 {
4535 /* All resumed threads exited. */
4536 }
65706a29
PA
4537 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4538 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4539 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4540 {
4541 if (debug_infrun)
4542 {
4543 ptid_t ptid = pid_to_ptid (ws.value.integer);
4544
4545 fprintf_unfiltered (gdb_stdlog,
4546 "infrun: %s exited while "
4547 "stopping threads\n",
4548 target_pid_to_str (ptid));
4549 }
4550 }
4551 else
4552 {
6efcd9a8
PA
4553 struct inferior *inf;
4554
372316f1
PA
4555 t = find_thread_ptid (event_ptid);
4556 if (t == NULL)
4557 t = add_thread (event_ptid);
4558
4559 t->stop_requested = 0;
4560 t->executing = 0;
4561 t->resumed = 0;
4562 t->control.may_range_step = 0;
4563
6efcd9a8
PA
4564 /* This may be the first time we see the inferior report
4565 a stop. */
4566 inf = find_inferior_ptid (event_ptid);
4567 if (inf->needs_setup)
4568 {
4569 switch_to_thread_no_regs (t);
4570 setup_inferior (0);
4571 }
4572
372316f1
PA
4573 if (ws.kind == TARGET_WAITKIND_STOPPED
4574 && ws.value.sig == GDB_SIGNAL_0)
4575 {
4576 /* We caught the event that we intended to catch, so
4577 there's no event pending. */
4578 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4579 t->suspend.waitstatus_pending_p = 0;
4580
4581 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4582 {
4583 /* Add it back to the step-over queue. */
4584 if (debug_infrun)
4585 {
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: displaced-step of %s "
4588 "canceled: adding back to the "
4589 "step-over queue\n",
4590 target_pid_to_str (t->ptid));
4591 }
4592 t->control.trap_expected = 0;
4593 thread_step_over_chain_enqueue (t);
4594 }
4595 }
4596 else
4597 {
4598 enum gdb_signal sig;
4599 struct regcache *regcache;
372316f1
PA
4600
4601 if (debug_infrun)
4602 {
23fdd69e 4603 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4604
372316f1
PA
4605 fprintf_unfiltered (gdb_stdlog,
4606 "infrun: target_wait %s, saving "
4607 "status for %d.%ld.%ld\n",
23fdd69e 4608 statstr.c_str (),
372316f1
PA
4609 ptid_get_pid (t->ptid),
4610 ptid_get_lwp (t->ptid),
4611 ptid_get_tid (t->ptid));
372316f1
PA
4612 }
4613
4614 /* Record for later. */
4615 save_waitstatus (t, &ws);
4616
4617 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4618 ? ws.value.sig : GDB_SIGNAL_0);
4619
4620 if (displaced_step_fixup (t->ptid, sig) < 0)
4621 {
4622 /* Add it back to the step-over queue. */
4623 t->control.trap_expected = 0;
4624 thread_step_over_chain_enqueue (t);
4625 }
4626
4627 regcache = get_thread_regcache (t->ptid);
4628 t->suspend.stop_pc = regcache_read_pc (regcache);
4629
4630 if (debug_infrun)
4631 {
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: saved stop_pc=%s for %s "
4634 "(currently_stepping=%d)\n",
4635 paddress (target_gdbarch (),
4636 t->suspend.stop_pc),
4637 target_pid_to_str (t->ptid),
4638 currently_stepping (t));
4639 }
4640 }
4641 }
4642 }
4643 }
4644
4645 do_cleanups (old_chain);
4646
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4649}
4650
f4836ba9
PA
4651/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4652
4653static int
4654handle_no_resumed (struct execution_control_state *ecs)
4655{
4656 struct inferior *inf;
4657 struct thread_info *thread;
4658
3b12939d 4659 if (target_can_async_p ())
f4836ba9 4660 {
3b12939d
PA
4661 struct ui *ui;
4662 int any_sync = 0;
f4836ba9 4663
3b12939d
PA
4664 ALL_UIS (ui)
4665 {
4666 if (ui->prompt_state == PROMPT_BLOCKED)
4667 {
4668 any_sync = 1;
4669 break;
4670 }
4671 }
4672 if (!any_sync)
4673 {
4674 /* There were no unwaited-for children left in the target, but,
4675 we're not synchronously waiting for events either. Just
4676 ignore. */
4677
4678 if (debug_infrun)
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: TARGET_WAITKIND_NO_RESUMED "
4681 "(ignoring: bg)\n");
4682 prepare_to_wait (ecs);
4683 return 1;
4684 }
f4836ba9
PA
4685 }
4686
4687 /* Otherwise, if we were running a synchronous execution command, we
4688 may need to cancel it and give the user back the terminal.
4689
4690 In non-stop mode, the target can't tell whether we've already
4691 consumed previous stop events, so it can end up sending us a
4692 no-resumed event like so:
4693
4694 #0 - thread 1 is left stopped
4695
4696 #1 - thread 2 is resumed and hits breakpoint
4697 -> TARGET_WAITKIND_STOPPED
4698
4699 #2 - thread 3 is resumed and exits
4700 this is the last resumed thread, so
4701 -> TARGET_WAITKIND_NO_RESUMED
4702
4703 #3 - gdb processes stop for thread 2 and decides to re-resume
4704 it.
4705
4706 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4707 thread 2 is now resumed, so the event should be ignored.
4708
4709 IOW, if the stop for thread 2 doesn't end a foreground command,
4710 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4711 event. But it could be that the event meant that thread 2 itself
4712 (or whatever other thread was the last resumed thread) exited.
4713
4714 To address this we refresh the thread list and check whether we
4715 have resumed threads _now_. In the example above, this removes
4716 thread 3 from the thread list. If thread 2 was re-resumed, we
4717 ignore this event. If we find no thread resumed, then we cancel
4718 the synchronous command show "no unwaited-for " to the user. */
4719 update_thread_list ();
4720
4721 ALL_NON_EXITED_THREADS (thread)
4722 {
4723 if (thread->executing
4724 || thread->suspend.waitstatus_pending_p)
4725 {
4726 /* There were no unwaited-for children left in the target at
4727 some point, but there are now. Just ignore. */
4728 if (debug_infrun)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "infrun: TARGET_WAITKIND_NO_RESUMED "
4731 "(ignoring: found resumed)\n");
4732 prepare_to_wait (ecs);
4733 return 1;
4734 }
4735 }
4736
4737 /* Note however that we may find no resumed thread because the whole
4738 process exited meanwhile (thus updating the thread list results
4739 in an empty thread list). In this case we know we'll be getting
4740 a process exit event shortly. */
4741 ALL_INFERIORS (inf)
4742 {
4743 if (inf->pid == 0)
4744 continue;
4745
4746 thread = any_live_thread_of_process (inf->pid);
4747 if (thread == NULL)
4748 {
4749 if (debug_infrun)
4750 fprintf_unfiltered (gdb_stdlog,
4751 "infrun: TARGET_WAITKIND_NO_RESUMED "
4752 "(expect process exit)\n");
4753 prepare_to_wait (ecs);
4754 return 1;
4755 }
4756 }
4757
4758 /* Go ahead and report the event. */
4759 return 0;
4760}
4761
05ba8510
PA
4762/* Given an execution control state that has been freshly filled in by
4763 an event from the inferior, figure out what it means and take
4764 appropriate action.
4765
4766 The alternatives are:
4767
22bcd14b 4768 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4769 debugger.
4770
4771 2) keep_going and return; to wait for the next event (set
4772 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4773 once). */
c906108c 4774
ec9499be 4775static void
0b6e5e10 4776handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4777{
d6b48e9c
PA
4778 enum stop_kind stop_soon;
4779
28736962
PA
4780 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4781 {
4782 /* We had an event in the inferior, but we are not interested in
4783 handling it at this level. The lower layers have already
4784 done what needs to be done, if anything.
4785
4786 One of the possible circumstances for this is when the
4787 inferior produces output for the console. The inferior has
4788 not stopped, and we are ignoring the event. Another possible
4789 circumstance is any event which the lower level knows will be
4790 reported multiple times without an intervening resume. */
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4793 prepare_to_wait (ecs);
4794 return;
4795 }
4796
65706a29
PA
4797 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4798 {
4799 if (debug_infrun)
4800 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4801 prepare_to_wait (ecs);
4802 return;
4803 }
4804
0e5bf2a8 4805 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4806 && handle_no_resumed (ecs))
4807 return;
0e5bf2a8 4808
1777feb0 4809 /* Cache the last pid/waitstatus. */
c32c64b7 4810 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4811
ca005067 4812 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4813 stop_stack_dummy = STOP_NONE;
ca005067 4814
0e5bf2a8
PA
4815 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4816 {
4817 /* No unwaited-for children left. IOW, all resumed children
4818 have exited. */
4819 if (debug_infrun)
4820 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4821
4822 stop_print_frame = 0;
22bcd14b 4823 stop_waiting (ecs);
0e5bf2a8
PA
4824 return;
4825 }
4826
8c90c137 4827 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4828 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4829 {
4830 ecs->event_thread = find_thread_ptid (ecs->ptid);
4831 /* If it's a new thread, add it to the thread database. */
4832 if (ecs->event_thread == NULL)
4833 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4834
4835 /* Disable range stepping. If the next step request could use a
4836 range, this will be end up re-enabled then. */
4837 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4838 }
88ed393a
JK
4839
4840 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4841 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4842
4843 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4844 reinit_frame_cache ();
4845
28736962
PA
4846 breakpoint_retire_moribund ();
4847
2b009048
DJ
4848 /* First, distinguish signals caused by the debugger from signals
4849 that have to do with the program's own actions. Note that
4850 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4851 on the operating system version. Here we detect when a SIGILL or
4852 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4853 something similar for SIGSEGV, since a SIGSEGV will be generated
4854 when we're trying to execute a breakpoint instruction on a
4855 non-executable stack. This happens for call dummy breakpoints
4856 for architectures like SPARC that place call dummies on the
4857 stack. */
2b009048 4858 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4859 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4860 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4861 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4862 {
de0a0249
UW
4863 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4864
a01bda52 4865 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4866 regcache_read_pc (regcache)))
4867 {
4868 if (debug_infrun)
4869 fprintf_unfiltered (gdb_stdlog,
4870 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4871 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4872 }
2b009048
DJ
4873 }
4874
28736962
PA
4875 /* Mark the non-executing threads accordingly. In all-stop, all
4876 threads of all processes are stopped when we get any event
e1316e60 4877 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4878 {
4879 ptid_t mark_ptid;
4880
fbea99ea 4881 if (!target_is_non_stop_p ())
372316f1
PA
4882 mark_ptid = minus_one_ptid;
4883 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4884 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4885 {
4886 /* If we're handling a process exit in non-stop mode, even
4887 though threads haven't been deleted yet, one would think
4888 that there is nothing to do, as threads of the dead process
4889 will be soon deleted, and threads of any other process were
4890 left running. However, on some targets, threads survive a
4891 process exit event. E.g., for the "checkpoint" command,
4892 when the current checkpoint/fork exits, linux-fork.c
4893 automatically switches to another fork from within
4894 target_mourn_inferior, by associating the same
4895 inferior/thread to another fork. We haven't mourned yet at
4896 this point, but we must mark any threads left in the
4897 process as not-executing so that finish_thread_state marks
4898 them stopped (in the user's perspective) if/when we present
4899 the stop to the user. */
4900 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4901 }
4902 else
4903 mark_ptid = ecs->ptid;
4904
4905 set_executing (mark_ptid, 0);
4906
4907 /* Likewise the resumed flag. */
4908 set_resumed (mark_ptid, 0);
4909 }
8c90c137 4910
488f131b
JB
4911 switch (ecs->ws.kind)
4912 {
4913 case TARGET_WAITKIND_LOADED:
527159b7 4914 if (debug_infrun)
8a9de0e4 4915 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4916 if (!ptid_equal (ecs->ptid, inferior_ptid))
4917 context_switch (ecs->ptid);
b0f4b84b
DJ
4918 /* Ignore gracefully during startup of the inferior, as it might
4919 be the shell which has just loaded some objects, otherwise
4920 add the symbols for the newly loaded objects. Also ignore at
4921 the beginning of an attach or remote session; we will query
4922 the full list of libraries once the connection is
4923 established. */
4f5d7f63
PA
4924
4925 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4926 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4927 {
edcc5120
TT
4928 struct regcache *regcache;
4929
edcc5120
TT
4930 regcache = get_thread_regcache (ecs->ptid);
4931
4932 handle_solib_event ();
4933
4934 ecs->event_thread->control.stop_bpstat
a01bda52 4935 = bpstat_stop_status (regcache->aspace (),
edcc5120 4936 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4937
c65d6b55
PA
4938 if (handle_stop_requested (ecs))
4939 return;
4940
ce12b012 4941 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4942 {
4943 /* A catchpoint triggered. */
94c57d6a
PA
4944 process_event_stop_test (ecs);
4945 return;
edcc5120 4946 }
488f131b 4947
b0f4b84b
DJ
4948 /* If requested, stop when the dynamic linker notifies
4949 gdb of events. This allows the user to get control
4950 and place breakpoints in initializer routines for
4951 dynamically loaded objects (among other things). */
a493e3e2 4952 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4953 if (stop_on_solib_events)
4954 {
55409f9d
DJ
4955 /* Make sure we print "Stopped due to solib-event" in
4956 normal_stop. */
4957 stop_print_frame = 1;
4958
22bcd14b 4959 stop_waiting (ecs);
b0f4b84b
DJ
4960 return;
4961 }
488f131b 4962 }
b0f4b84b
DJ
4963
4964 /* If we are skipping through a shell, or through shared library
4965 loading that we aren't interested in, resume the program. If
5c09a2c5 4966 we're running the program normally, also resume. */
b0f4b84b
DJ
4967 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4968 {
74960c60
VP
4969 /* Loading of shared libraries might have changed breakpoint
4970 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4971 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4972 insert_breakpoints ();
64ce06e4 4973 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4974 prepare_to_wait (ecs);
4975 return;
4976 }
4977
5c09a2c5
PA
4978 /* But stop if we're attaching or setting up a remote
4979 connection. */
4980 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4981 || stop_soon == STOP_QUIETLY_REMOTE)
4982 {
4983 if (debug_infrun)
4984 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4985 stop_waiting (ecs);
5c09a2c5
PA
4986 return;
4987 }
4988
4989 internal_error (__FILE__, __LINE__,
4990 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4991
488f131b 4992 case TARGET_WAITKIND_SPURIOUS:
527159b7 4993 if (debug_infrun)
8a9de0e4 4994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4995 if (handle_stop_requested (ecs))
4996 return;
64776a0b 4997 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4998 context_switch (ecs->ptid);
64ce06e4 4999 resume (GDB_SIGNAL_0);
488f131b
JB
5000 prepare_to_wait (ecs);
5001 return;
c5aa993b 5002
65706a29
PA
5003 case TARGET_WAITKIND_THREAD_CREATED:
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5006 if (handle_stop_requested (ecs))
5007 return;
65706a29
PA
5008 if (!ptid_equal (ecs->ptid, inferior_ptid))
5009 context_switch (ecs->ptid);
5010 if (!switch_back_to_stepped_thread (ecs))
5011 keep_going (ecs);
5012 return;
5013
488f131b 5014 case TARGET_WAITKIND_EXITED:
940c3c06 5015 case TARGET_WAITKIND_SIGNALLED:
527159b7 5016 if (debug_infrun)
940c3c06
PA
5017 {
5018 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5019 fprintf_unfiltered (gdb_stdlog,
5020 "infrun: TARGET_WAITKIND_EXITED\n");
5021 else
5022 fprintf_unfiltered (gdb_stdlog,
5023 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5024 }
5025
fb66883a 5026 inferior_ptid = ecs->ptid;
c9657e70 5027 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5028 set_current_program_space (current_inferior ()->pspace);
5029 handle_vfork_child_exec_or_exit (0);
223ffa71 5030 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5031
0c557179
SDJ
5032 /* Clearing any previous state of convenience variables. */
5033 clear_exit_convenience_vars ();
5034
940c3c06
PA
5035 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5036 {
5037 /* Record the exit code in the convenience variable $_exitcode, so
5038 that the user can inspect this again later. */
5039 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5040 (LONGEST) ecs->ws.value.integer);
5041
5042 /* Also record this in the inferior itself. */
5043 current_inferior ()->has_exit_code = 1;
5044 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5045
98eb56a4
PA
5046 /* Support the --return-child-result option. */
5047 return_child_result_value = ecs->ws.value.integer;
5048
fd664c91 5049 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5050 }
5051 else
0c557179
SDJ
5052 {
5053 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5054 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5055
5056 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5057 {
5058 /* Set the value of the internal variable $_exitsignal,
5059 which holds the signal uncaught by the inferior. */
5060 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5061 gdbarch_gdb_signal_to_target (gdbarch,
5062 ecs->ws.value.sig));
5063 }
5064 else
5065 {
5066 /* We don't have access to the target's method used for
5067 converting between signal numbers (GDB's internal
5068 representation <-> target's representation).
5069 Therefore, we cannot do a good job at displaying this
5070 information to the user. It's better to just warn
5071 her about it (if infrun debugging is enabled), and
5072 give up. */
5073 if (debug_infrun)
5074 fprintf_filtered (gdb_stdlog, _("\
5075Cannot fill $_exitsignal with the correct signal number.\n"));
5076 }
5077
fd664c91 5078 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5079 }
8cf64490 5080
488f131b 5081 gdb_flush (gdb_stdout);
bc1e6c81 5082 target_mourn_inferior (inferior_ptid);
488f131b 5083 stop_print_frame = 0;
22bcd14b 5084 stop_waiting (ecs);
488f131b 5085 return;
c5aa993b 5086
488f131b 5087 /* The following are the only cases in which we keep going;
1777feb0 5088 the above cases end in a continue or goto. */
488f131b 5089 case TARGET_WAITKIND_FORKED:
deb3b17b 5090 case TARGET_WAITKIND_VFORKED:
527159b7 5091 if (debug_infrun)
fed708ed
PA
5092 {
5093 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5095 else
5096 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5097 }
c906108c 5098
e2d96639
YQ
5099 /* Check whether the inferior is displaced stepping. */
5100 {
5101 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5102 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5103
5104 /* If checking displaced stepping is supported, and thread
5105 ecs->ptid is displaced stepping. */
c0987663 5106 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5107 {
5108 struct inferior *parent_inf
c9657e70 5109 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5110 struct regcache *child_regcache;
5111 CORE_ADDR parent_pc;
5112
5113 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5114 indicating that the displaced stepping of syscall instruction
5115 has been done. Perform cleanup for parent process here. Note
5116 that this operation also cleans up the child process for vfork,
5117 because their pages are shared. */
a493e3e2 5118 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5119 /* Start a new step-over in another thread if there's one
5120 that needs it. */
5121 start_step_over ();
e2d96639
YQ
5122
5123 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5124 {
c0987663
YQ
5125 struct displaced_step_inferior_state *displaced
5126 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5127
e2d96639
YQ
5128 /* Restore scratch pad for child process. */
5129 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5130 }
5131
5132 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5133 the child's PC is also within the scratchpad. Set the child's PC
5134 to the parent's PC value, which has already been fixed up.
5135 FIXME: we use the parent's aspace here, although we're touching
5136 the child, because the child hasn't been added to the inferior
5137 list yet at this point. */
5138
5139 child_regcache
5140 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5141 gdbarch,
5142 parent_inf->aspace);
5143 /* Read PC value of parent process. */
5144 parent_pc = regcache_read_pc (regcache);
5145
5146 if (debug_displaced)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "displaced: write child pc from %s to %s\n",
5149 paddress (gdbarch,
5150 regcache_read_pc (child_regcache)),
5151 paddress (gdbarch, parent_pc));
5152
5153 regcache_write_pc (child_regcache, parent_pc);
5154 }
5155 }
5156
5a2901d9 5157 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5158 context_switch (ecs->ptid);
5a2901d9 5159
b242c3c2
PA
5160 /* Immediately detach breakpoints from the child before there's
5161 any chance of letting the user delete breakpoints from the
5162 breakpoint lists. If we don't do this early, it's easy to
5163 leave left over traps in the child, vis: "break foo; catch
5164 fork; c; <fork>; del; c; <child calls foo>". We only follow
5165 the fork on the last `continue', and by that time the
5166 breakpoint at "foo" is long gone from the breakpoint table.
5167 If we vforked, then we don't need to unpatch here, since both
5168 parent and child are sharing the same memory pages; we'll
5169 need to unpatch at follow/detach time instead to be certain
5170 that new breakpoints added between catchpoint hit time and
5171 vfork follow are detached. */
5172 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5173 {
b242c3c2
PA
5174 /* This won't actually modify the breakpoint list, but will
5175 physically remove the breakpoints from the child. */
d80ee84f 5176 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5177 }
5178
34b7e8a6 5179 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5180
e58b0e63
PA
5181 /* In case the event is caught by a catchpoint, remember that
5182 the event is to be followed at the next resume of the thread,
5183 and not immediately. */
5184 ecs->event_thread->pending_follow = ecs->ws;
5185
fb14de7b 5186 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5187
16c381f0 5188 ecs->event_thread->control.stop_bpstat
a01bda52 5189 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5190 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5191
c65d6b55
PA
5192 if (handle_stop_requested (ecs))
5193 return;
5194
ce12b012
PA
5195 /* If no catchpoint triggered for this, then keep going. Note
5196 that we're interested in knowing the bpstat actually causes a
5197 stop, not just if it may explain the signal. Software
5198 watchpoints, for example, always appear in the bpstat. */
5199 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5200 {
6c95b8df
PA
5201 ptid_t parent;
5202 ptid_t child;
e58b0e63 5203 int should_resume;
3e43a32a
MS
5204 int follow_child
5205 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5206
a493e3e2 5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5208
5209 should_resume = follow_fork ();
5210
6c95b8df
PA
5211 parent = ecs->ptid;
5212 child = ecs->ws.value.related_pid;
5213
a2077e25
PA
5214 /* At this point, the parent is marked running, and the
5215 child is marked stopped. */
5216
5217 /* If not resuming the parent, mark it stopped. */
5218 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5219 set_running (parent, 0);
5220
5221 /* If resuming the child, mark it running. */
5222 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5223 set_running (child, 1);
5224
6c95b8df 5225 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5226 if (!detach_fork && (non_stop
5227 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5228 {
5229 if (follow_child)
5230 switch_to_thread (parent);
5231 else
5232 switch_to_thread (child);
5233
5234 ecs->event_thread = inferior_thread ();
5235 ecs->ptid = inferior_ptid;
5236 keep_going (ecs);
5237 }
5238
5239 if (follow_child)
5240 switch_to_thread (child);
5241 else
5242 switch_to_thread (parent);
5243
e58b0e63
PA
5244 ecs->event_thread = inferior_thread ();
5245 ecs->ptid = inferior_ptid;
5246
5247 if (should_resume)
5248 keep_going (ecs);
5249 else
22bcd14b 5250 stop_waiting (ecs);
04e68871
DJ
5251 return;
5252 }
94c57d6a
PA
5253 process_event_stop_test (ecs);
5254 return;
488f131b 5255
6c95b8df
PA
5256 case TARGET_WAITKIND_VFORK_DONE:
5257 /* Done with the shared memory region. Re-insert breakpoints in
5258 the parent, and keep going. */
5259
5260 if (debug_infrun)
3e43a32a
MS
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5263
5264 if (!ptid_equal (ecs->ptid, inferior_ptid))
5265 context_switch (ecs->ptid);
5266
5267 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5268 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5269
5270 if (handle_stop_requested (ecs))
5271 return;
5272
6c95b8df
PA
5273 /* This also takes care of reinserting breakpoints in the
5274 previously locked inferior. */
5275 keep_going (ecs);
5276 return;
5277
488f131b 5278 case TARGET_WAITKIND_EXECD:
527159b7 5279 if (debug_infrun)
fc5261f2 5280 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5281
cbd2b4e3
PA
5282 /* Note we can't read registers yet (the stop_pc), because we
5283 don't yet know the inferior's post-exec architecture.
5284 'stop_pc' is explicitly read below instead. */
5a2901d9 5285 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5286 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5287
6c95b8df
PA
5288 /* Do whatever is necessary to the parent branch of the vfork. */
5289 handle_vfork_child_exec_or_exit (1);
5290
795e548f
PA
5291 /* This causes the eventpoints and symbol table to be reset.
5292 Must do this now, before trying to determine whether to
5293 stop. */
71b43ef8 5294 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5295
1bb7c059
SM
5296 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5297
17d8546e
DB
5298 /* In follow_exec we may have deleted the original thread and
5299 created a new one. Make sure that the event thread is the
5300 execd thread for that case (this is a nop otherwise). */
5301 ecs->event_thread = inferior_thread ();
5302
16c381f0 5303 ecs->event_thread->control.stop_bpstat
a01bda52 5304 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5305 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5306
71b43ef8
PA
5307 /* Note that this may be referenced from inside
5308 bpstat_stop_status above, through inferior_has_execd. */
5309 xfree (ecs->ws.value.execd_pathname);
5310 ecs->ws.value.execd_pathname = NULL;
5311
c65d6b55
PA
5312 if (handle_stop_requested (ecs))
5313 return;
5314
04e68871 5315 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5316 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5317 {
a493e3e2 5318 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5319 keep_going (ecs);
5320 return;
5321 }
94c57d6a
PA
5322 process_event_stop_test (ecs);
5323 return;
488f131b 5324
b4dc5ffa
MK
5325 /* Be careful not to try to gather much state about a thread
5326 that's in a syscall. It's frequently a losing proposition. */
488f131b 5327 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5328 if (debug_infrun)
3e43a32a
MS
5329 fprintf_unfiltered (gdb_stdlog,
5330 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5331 /* Getting the current syscall number. */
94c57d6a
PA
5332 if (handle_syscall_event (ecs) == 0)
5333 process_event_stop_test (ecs);
5334 return;
c906108c 5335
488f131b
JB
5336 /* Before examining the threads further, step this thread to
5337 get it entirely out of the syscall. (We get notice of the
5338 event when the thread is just on the verge of exiting a
5339 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5340 into user code.) */
488f131b 5341 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5342 if (debug_infrun)
3e43a32a
MS
5343 fprintf_unfiltered (gdb_stdlog,
5344 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5345 if (handle_syscall_event (ecs) == 0)
5346 process_event_stop_test (ecs);
5347 return;
c906108c 5348
488f131b 5349 case TARGET_WAITKIND_STOPPED:
527159b7 5350 if (debug_infrun)
8a9de0e4 5351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5352 handle_signal_stop (ecs);
5353 return;
c906108c 5354
b2175913 5355 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5358 /* Reverse execution: target ran out of history info. */
eab402df 5359
d1988021
MM
5360 /* Switch to the stopped thread. */
5361 if (!ptid_equal (ecs->ptid, inferior_ptid))
5362 context_switch (ecs->ptid);
5363 if (debug_infrun)
5364 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5365
34b7e8a6 5366 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5367 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5368
5369 if (handle_stop_requested (ecs))
5370 return;
5371
fd664c91 5372 observer_notify_no_history ();
22bcd14b 5373 stop_waiting (ecs);
b2175913 5374 return;
488f131b 5375 }
4f5d7f63
PA
5376}
5377
0b6e5e10
JB
5378/* A wrapper around handle_inferior_event_1, which also makes sure
5379 that all temporary struct value objects that were created during
5380 the handling of the event get deleted at the end. */
5381
5382static void
5383handle_inferior_event (struct execution_control_state *ecs)
5384{
5385 struct value *mark = value_mark ();
5386
5387 handle_inferior_event_1 (ecs);
5388 /* Purge all temporary values created during the event handling,
5389 as it could be a long time before we return to the command level
5390 where such values would otherwise be purged. */
5391 value_free_to_mark (mark);
5392}
5393
372316f1
PA
5394/* Restart threads back to what they were trying to do back when we
5395 paused them for an in-line step-over. The EVENT_THREAD thread is
5396 ignored. */
4d9d9d04
PA
5397
5398static void
372316f1
PA
5399restart_threads (struct thread_info *event_thread)
5400{
5401 struct thread_info *tp;
372316f1
PA
5402
5403 /* In case the instruction just stepped spawned a new thread. */
5404 update_thread_list ();
5405
5406 ALL_NON_EXITED_THREADS (tp)
5407 {
5408 if (tp == event_thread)
5409 {
5410 if (debug_infrun)
5411 fprintf_unfiltered (gdb_stdlog,
5412 "infrun: restart threads: "
5413 "[%s] is event thread\n",
5414 target_pid_to_str (tp->ptid));
5415 continue;
5416 }
5417
5418 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5419 {
5420 if (debug_infrun)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "infrun: restart threads: "
5423 "[%s] not meant to be running\n",
5424 target_pid_to_str (tp->ptid));
5425 continue;
5426 }
5427
5428 if (tp->resumed)
5429 {
5430 if (debug_infrun)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: restart threads: [%s] resumed\n",
5433 target_pid_to_str (tp->ptid));
5434 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5435 continue;
5436 }
5437
5438 if (thread_is_in_step_over_chain (tp))
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: restart threads: "
5443 "[%s] needs step-over\n",
5444 target_pid_to_str (tp->ptid));
5445 gdb_assert (!tp->resumed);
5446 continue;
5447 }
5448
5449
5450 if (tp->suspend.waitstatus_pending_p)
5451 {
5452 if (debug_infrun)
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: restart threads: "
5455 "[%s] has pending status\n",
5456 target_pid_to_str (tp->ptid));
5457 tp->resumed = 1;
5458 continue;
5459 }
5460
c65d6b55
PA
5461 gdb_assert (!tp->stop_requested);
5462
372316f1
PA
5463 /* If some thread needs to start a step-over at this point, it
5464 should still be in the step-over queue, and thus skipped
5465 above. */
5466 if (thread_still_needs_step_over (tp))
5467 {
5468 internal_error (__FILE__, __LINE__,
5469 "thread [%s] needs a step-over, but not in "
5470 "step-over queue\n",
5471 target_pid_to_str (tp->ptid));
5472 }
5473
5474 if (currently_stepping (tp))
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: [%s] was stepping\n",
5479 target_pid_to_str (tp->ptid));
5480 keep_going_stepped_thread (tp);
5481 }
5482 else
5483 {
5484 struct execution_control_state ecss;
5485 struct execution_control_state *ecs = &ecss;
5486
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: restart threads: [%s] continuing\n",
5490 target_pid_to_str (tp->ptid));
5491 reset_ecs (ecs, tp);
5492 switch_to_thread (tp->ptid);
5493 keep_going_pass_signal (ecs);
5494 }
5495 }
5496}
5497
5498/* Callback for iterate_over_threads. Find a resumed thread that has
5499 a pending waitstatus. */
5500
5501static int
5502resumed_thread_with_pending_status (struct thread_info *tp,
5503 void *arg)
5504{
5505 return (tp->resumed
5506 && tp->suspend.waitstatus_pending_p);
5507}
5508
5509/* Called when we get an event that may finish an in-line or
5510 out-of-line (displaced stepping) step-over started previously.
5511 Return true if the event is processed and we should go back to the
5512 event loop; false if the caller should continue processing the
5513 event. */
5514
5515static int
4d9d9d04
PA
5516finish_step_over (struct execution_control_state *ecs)
5517{
372316f1
PA
5518 int had_step_over_info;
5519
4d9d9d04
PA
5520 displaced_step_fixup (ecs->ptid,
5521 ecs->event_thread->suspend.stop_signal);
5522
372316f1
PA
5523 had_step_over_info = step_over_info_valid_p ();
5524
5525 if (had_step_over_info)
4d9d9d04
PA
5526 {
5527 /* If we're stepping over a breakpoint with all threads locked,
5528 then only the thread that was stepped should be reporting
5529 back an event. */
5530 gdb_assert (ecs->event_thread->control.trap_expected);
5531
c65d6b55 5532 clear_step_over_info ();
4d9d9d04
PA
5533 }
5534
fbea99ea 5535 if (!target_is_non_stop_p ())
372316f1 5536 return 0;
4d9d9d04
PA
5537
5538 /* Start a new step-over in another thread if there's one that
5539 needs it. */
5540 start_step_over ();
372316f1
PA
5541
5542 /* If we were stepping over a breakpoint before, and haven't started
5543 a new in-line step-over sequence, then restart all other threads
5544 (except the event thread). We can't do this in all-stop, as then
5545 e.g., we wouldn't be able to issue any other remote packet until
5546 these other threads stop. */
5547 if (had_step_over_info && !step_over_info_valid_p ())
5548 {
5549 struct thread_info *pending;
5550
5551 /* If we only have threads with pending statuses, the restart
5552 below won't restart any thread and so nothing re-inserts the
5553 breakpoint we just stepped over. But we need it inserted
5554 when we later process the pending events, otherwise if
5555 another thread has a pending event for this breakpoint too,
5556 we'd discard its event (because the breakpoint that
5557 originally caused the event was no longer inserted). */
5558 context_switch (ecs->ptid);
5559 insert_breakpoints ();
5560
5561 restart_threads (ecs->event_thread);
5562
5563 /* If we have events pending, go through handle_inferior_event
5564 again, picking up a pending event at random. This avoids
5565 thread starvation. */
5566
5567 /* But not if we just stepped over a watchpoint in order to let
5568 the instruction execute so we can evaluate its expression.
5569 The set of watchpoints that triggered is recorded in the
5570 breakpoint objects themselves (see bp->watchpoint_triggered).
5571 If we processed another event first, that other event could
5572 clobber this info. */
5573 if (ecs->event_thread->stepping_over_watchpoint)
5574 return 0;
5575
5576 pending = iterate_over_threads (resumed_thread_with_pending_status,
5577 NULL);
5578 if (pending != NULL)
5579 {
5580 struct thread_info *tp = ecs->event_thread;
5581 struct regcache *regcache;
5582
5583 if (debug_infrun)
5584 {
5585 fprintf_unfiltered (gdb_stdlog,
5586 "infrun: found resumed threads with "
5587 "pending events, saving status\n");
5588 }
5589
5590 gdb_assert (pending != tp);
5591
5592 /* Record the event thread's event for later. */
5593 save_waitstatus (tp, &ecs->ws);
5594 /* This was cleared early, by handle_inferior_event. Set it
5595 so this pending event is considered by
5596 do_target_wait. */
5597 tp->resumed = 1;
5598
5599 gdb_assert (!tp->executing);
5600
5601 regcache = get_thread_regcache (tp->ptid);
5602 tp->suspend.stop_pc = regcache_read_pc (regcache);
5603
5604 if (debug_infrun)
5605 {
5606 fprintf_unfiltered (gdb_stdlog,
5607 "infrun: saved stop_pc=%s for %s "
5608 "(currently_stepping=%d)\n",
5609 paddress (target_gdbarch (),
5610 tp->suspend.stop_pc),
5611 target_pid_to_str (tp->ptid),
5612 currently_stepping (tp));
5613 }
5614
5615 /* This in-line step-over finished; clear this so we won't
5616 start a new one. This is what handle_signal_stop would
5617 do, if we returned false. */
5618 tp->stepping_over_breakpoint = 0;
5619
5620 /* Wake up the event loop again. */
5621 mark_async_event_handler (infrun_async_inferior_event_token);
5622
5623 prepare_to_wait (ecs);
5624 return 1;
5625 }
5626 }
5627
5628 return 0;
4d9d9d04
PA
5629}
5630
4f5d7f63
PA
5631/* Come here when the program has stopped with a signal. */
5632
5633static void
5634handle_signal_stop (struct execution_control_state *ecs)
5635{
5636 struct frame_info *frame;
5637 struct gdbarch *gdbarch;
5638 int stopped_by_watchpoint;
5639 enum stop_kind stop_soon;
5640 int random_signal;
c906108c 5641
f0407826
DE
5642 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5643
c65d6b55
PA
5644 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5645
f0407826
DE
5646 /* Do we need to clean up the state of a thread that has
5647 completed a displaced single-step? (Doing so usually affects
5648 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5649 if (finish_step_over (ecs))
5650 return;
f0407826
DE
5651
5652 /* If we either finished a single-step or hit a breakpoint, but
5653 the user wanted this thread to be stopped, pretend we got a
5654 SIG0 (generic unsignaled stop). */
5655 if (ecs->event_thread->stop_requested
5656 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5657 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5658
515630c5 5659 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5660
527159b7 5661 if (debug_infrun)
237fc4c9 5662 {
5af949e3 5663 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5664 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5665 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5666
5667 inferior_ptid = ecs->ptid;
5af949e3
UW
5668
5669 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5670 paddress (gdbarch, stop_pc));
d92524f1 5671 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5672 {
5673 CORE_ADDR addr;
abbb1732 5674
237fc4c9
PA
5675 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5676
5677 if (target_stopped_data_address (&current_target, &addr))
5678 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5679 "infrun: stopped data address = %s\n",
5680 paddress (gdbarch, addr));
237fc4c9
PA
5681 else
5682 fprintf_unfiltered (gdb_stdlog,
5683 "infrun: (no data address available)\n");
5684 }
5685 }
527159b7 5686
36fa8042
PA
5687 /* This is originated from start_remote(), start_inferior() and
5688 shared libraries hook functions. */
5689 stop_soon = get_inferior_stop_soon (ecs->ptid);
5690 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5691 {
5692 if (!ptid_equal (ecs->ptid, inferior_ptid))
5693 context_switch (ecs->ptid);
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5696 stop_print_frame = 1;
22bcd14b 5697 stop_waiting (ecs);
36fa8042
PA
5698 return;
5699 }
5700
36fa8042
PA
5701 /* This originates from attach_command(). We need to overwrite
5702 the stop_signal here, because some kernels don't ignore a
5703 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5704 See more comments in inferior.h. On the other hand, if we
5705 get a non-SIGSTOP, report it to the user - assume the backend
5706 will handle the SIGSTOP if it should show up later.
5707
5708 Also consider that the attach is complete when we see a
5709 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5710 target extended-remote report it instead of a SIGSTOP
5711 (e.g. gdbserver). We already rely on SIGTRAP being our
5712 signal, so this is no exception.
5713
5714 Also consider that the attach is complete when we see a
5715 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5716 the target to stop all threads of the inferior, in case the
5717 low level attach operation doesn't stop them implicitly. If
5718 they weren't stopped implicitly, then the stub will report a
5719 GDB_SIGNAL_0, meaning: stopped for no particular reason
5720 other than GDB's request. */
5721 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5722 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5723 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5724 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5725 {
5726 stop_print_frame = 1;
22bcd14b 5727 stop_waiting (ecs);
36fa8042
PA
5728 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5729 return;
5730 }
5731
488f131b 5732 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5733 so, then switch to that thread. */
5734 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5735 {
527159b7 5736 if (debug_infrun)
8a9de0e4 5737 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5738
0d1e5fa7 5739 context_switch (ecs->ptid);
c5aa993b 5740
9a4105ab 5741 if (deprecated_context_hook)
5d5658a1 5742 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5743 }
c906108c 5744
568d6575
UW
5745 /* At this point, get hold of the now-current thread's frame. */
5746 frame = get_current_frame ();
5747 gdbarch = get_frame_arch (frame);
5748
2adfaa28 5749 /* Pull the single step breakpoints out of the target. */
af48d08f 5750 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5751 {
af48d08f 5752 struct regcache *regcache;
af48d08f 5753 CORE_ADDR pc;
2adfaa28 5754
af48d08f 5755 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5756 const address_space *aspace = regcache->aspace ();
5757
af48d08f 5758 pc = regcache_read_pc (regcache);
34b7e8a6 5759
af48d08f
PA
5760 /* However, before doing so, if this single-step breakpoint was
5761 actually for another thread, set this thread up for moving
5762 past it. */
5763 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5764 aspace, pc))
5765 {
5766 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5767 {
5768 if (debug_infrun)
5769 {
5770 fprintf_unfiltered (gdb_stdlog,
af48d08f 5771 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5772 "single-step breakpoint\n",
5773 target_pid_to_str (ecs->ptid));
2adfaa28 5774 }
af48d08f
PA
5775 ecs->hit_singlestep_breakpoint = 1;
5776 }
5777 }
5778 else
5779 {
5780 if (debug_infrun)
5781 {
5782 fprintf_unfiltered (gdb_stdlog,
5783 "infrun: [%s] hit its "
5784 "single-step breakpoint\n",
5785 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5786 }
5787 }
488f131b 5788 }
af48d08f 5789 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5790
963f9c80
PA
5791 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5792 && ecs->event_thread->control.trap_expected
5793 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5794 stopped_by_watchpoint = 0;
5795 else
5796 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5797
5798 /* If necessary, step over this watchpoint. We'll be back to display
5799 it in a moment. */
5800 if (stopped_by_watchpoint
d92524f1 5801 && (target_have_steppable_watchpoint
568d6575 5802 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5803 {
488f131b
JB
5804 /* At this point, we are stopped at an instruction which has
5805 attempted to write to a piece of memory under control of
5806 a watchpoint. The instruction hasn't actually executed
5807 yet. If we were to evaluate the watchpoint expression
5808 now, we would get the old value, and therefore no change
5809 would seem to have occurred.
5810
5811 In order to make watchpoints work `right', we really need
5812 to complete the memory write, and then evaluate the
d983da9c
DJ
5813 watchpoint expression. We do this by single-stepping the
5814 target.
5815
7f89fd65 5816 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5817 it. For example, the PA can (with some kernel cooperation)
5818 single step over a watchpoint without disabling the watchpoint.
5819
5820 It is far more common to need to disable a watchpoint to step
5821 the inferior over it. If we have non-steppable watchpoints,
5822 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5823 disable all watchpoints.
5824
5825 Any breakpoint at PC must also be stepped over -- if there's
5826 one, it will have already triggered before the watchpoint
5827 triggered, and we either already reported it to the user, or
5828 it didn't cause a stop and we called keep_going. In either
5829 case, if there was a breakpoint at PC, we must be trying to
5830 step past it. */
5831 ecs->event_thread->stepping_over_watchpoint = 1;
5832 keep_going (ecs);
488f131b
JB
5833 return;
5834 }
5835
4e1c45ea 5836 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5837 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5838 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5839 ecs->event_thread->control.stop_step = 0;
488f131b 5840 stop_print_frame = 1;
488f131b 5841 stopped_by_random_signal = 0;
488f131b 5842
edb3359d
DJ
5843 /* Hide inlined functions starting here, unless we just performed stepi or
5844 nexti. After stepi and nexti, always show the innermost frame (not any
5845 inline function call sites). */
16c381f0 5846 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5847 {
8b86c959 5848 const address_space *aspace =
a01bda52 5849 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5850
5851 /* skip_inline_frames is expensive, so we avoid it if we can
5852 determine that the address is one where functions cannot have
5853 been inlined. This improves performance with inferiors that
5854 load a lot of shared libraries, because the solib event
5855 breakpoint is defined as the address of a function (i.e. not
5856 inline). Note that we have to check the previous PC as well
5857 as the current one to catch cases when we have just
5858 single-stepped off a breakpoint prior to reinstating it.
5859 Note that we're assuming that the code we single-step to is
5860 not inline, but that's not definitive: there's nothing
5861 preventing the event breakpoint function from containing
5862 inlined code, and the single-step ending up there. If the
5863 user had set a breakpoint on that inlined code, the missing
5864 skip_inline_frames call would break things. Fortunately
5865 that's an extremely unlikely scenario. */
09ac7c10 5866 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5867 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5868 && ecs->event_thread->control.trap_expected
5869 && pc_at_non_inline_function (aspace,
5870 ecs->event_thread->prev_pc,
09ac7c10 5871 &ecs->ws)))
1c5a993e
MR
5872 {
5873 skip_inline_frames (ecs->ptid);
5874
5875 /* Re-fetch current thread's frame in case that invalidated
5876 the frame cache. */
5877 frame = get_current_frame ();
5878 gdbarch = get_frame_arch (frame);
5879 }
0574c78f 5880 }
edb3359d 5881
a493e3e2 5882 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5883 && ecs->event_thread->control.trap_expected
568d6575 5884 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5885 && currently_stepping (ecs->event_thread))
3352ef37 5886 {
b50d7442 5887 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5888 also on an instruction that needs to be stepped multiple
1777feb0 5889 times before it's been fully executing. E.g., architectures
3352ef37
AC
5890 with a delay slot. It needs to be stepped twice, once for
5891 the instruction and once for the delay slot. */
5892 int step_through_delay
568d6575 5893 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5894
527159b7 5895 if (debug_infrun && step_through_delay)
8a9de0e4 5896 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5897 if (ecs->event_thread->control.step_range_end == 0
5898 && step_through_delay)
3352ef37
AC
5899 {
5900 /* The user issued a continue when stopped at a breakpoint.
5901 Set up for another trap and get out of here. */
4e1c45ea 5902 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5903 keep_going (ecs);
5904 return;
5905 }
5906 else if (step_through_delay)
5907 {
5908 /* The user issued a step when stopped at a breakpoint.
5909 Maybe we should stop, maybe we should not - the delay
5910 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5911 case, don't decide that here, just set
5912 ecs->stepping_over_breakpoint, making sure we
5913 single-step again before breakpoints are re-inserted. */
4e1c45ea 5914 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5915 }
5916 }
5917
ab04a2af
TT
5918 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5919 handles this event. */
5920 ecs->event_thread->control.stop_bpstat
a01bda52 5921 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5922 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5923
ab04a2af
TT
5924 /* Following in case break condition called a
5925 function. */
5926 stop_print_frame = 1;
73dd234f 5927
ab04a2af
TT
5928 /* This is where we handle "moribund" watchpoints. Unlike
5929 software breakpoints traps, hardware watchpoint traps are
5930 always distinguishable from random traps. If no high-level
5931 watchpoint is associated with the reported stop data address
5932 anymore, then the bpstat does not explain the signal ---
5933 simply make sure to ignore it if `stopped_by_watchpoint' is
5934 set. */
5935
5936 if (debug_infrun
5937 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5938 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5939 GDB_SIGNAL_TRAP)
ab04a2af
TT
5940 && stopped_by_watchpoint)
5941 fprintf_unfiltered (gdb_stdlog,
5942 "infrun: no user watchpoint explains "
5943 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5944
bac7d97b 5945 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5946 at one stage in the past included checks for an inferior
5947 function call's call dummy's return breakpoint. The original
5948 comment, that went with the test, read:
03cebad2 5949
ab04a2af
TT
5950 ``End of a stack dummy. Some systems (e.g. Sony news) give
5951 another signal besides SIGTRAP, so check here as well as
5952 above.''
73dd234f 5953
ab04a2af
TT
5954 If someone ever tries to get call dummys on a
5955 non-executable stack to work (where the target would stop
5956 with something like a SIGSEGV), then those tests might need
5957 to be re-instated. Given, however, that the tests were only
5958 enabled when momentary breakpoints were not being used, I
5959 suspect that it won't be the case.
488f131b 5960
ab04a2af
TT
5961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5962 be necessary for call dummies on a non-executable stack on
5963 SPARC. */
488f131b 5964
bac7d97b 5965 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5966 random_signal
5967 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5968 ecs->event_thread->suspend.stop_signal);
bac7d97b 5969
1cf4d951
PA
5970 /* Maybe this was a trap for a software breakpoint that has since
5971 been removed. */
5972 if (random_signal && target_stopped_by_sw_breakpoint ())
5973 {
5974 if (program_breakpoint_here_p (gdbarch, stop_pc))
5975 {
5976 struct regcache *regcache;
5977 int decr_pc;
5978
5979 /* Re-adjust PC to what the program would see if GDB was not
5980 debugging it. */
5981 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5982 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5983 if (decr_pc != 0)
5984 {
07036511
TT
5985 gdb::optional<scoped_restore_tmpl<int>>
5986 restore_operation_disable;
1cf4d951
PA
5987
5988 if (record_full_is_used ())
07036511
TT
5989 restore_operation_disable.emplace
5990 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
5991
5992 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
5993 }
5994 }
5995 else
5996 {
5997 /* A delayed software breakpoint event. Ignore the trap. */
5998 if (debug_infrun)
5999 fprintf_unfiltered (gdb_stdlog,
6000 "infrun: delayed software breakpoint "
6001 "trap, ignoring\n");
6002 random_signal = 0;
6003 }
6004 }
6005
6006 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6007 has since been removed. */
6008 if (random_signal && target_stopped_by_hw_breakpoint ())
6009 {
6010 /* A delayed hardware breakpoint event. Ignore the trap. */
6011 if (debug_infrun)
6012 fprintf_unfiltered (gdb_stdlog,
6013 "infrun: delayed hardware breakpoint/watchpoint "
6014 "trap, ignoring\n");
6015 random_signal = 0;
6016 }
6017
bac7d97b
PA
6018 /* If not, perhaps stepping/nexting can. */
6019 if (random_signal)
6020 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6021 && currently_stepping (ecs->event_thread));
ab04a2af 6022
2adfaa28
PA
6023 /* Perhaps the thread hit a single-step breakpoint of _another_
6024 thread. Single-step breakpoints are transparent to the
6025 breakpoints module. */
6026 if (random_signal)
6027 random_signal = !ecs->hit_singlestep_breakpoint;
6028
bac7d97b
PA
6029 /* No? Perhaps we got a moribund watchpoint. */
6030 if (random_signal)
6031 random_signal = !stopped_by_watchpoint;
ab04a2af 6032
c65d6b55
PA
6033 /* Always stop if the user explicitly requested this thread to
6034 remain stopped. */
6035 if (ecs->event_thread->stop_requested)
6036 {
6037 random_signal = 1;
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6040 }
6041
488f131b
JB
6042 /* For the program's own signals, act according to
6043 the signal handling tables. */
6044
ce12b012 6045 if (random_signal)
488f131b
JB
6046 {
6047 /* Signal not for debugging purposes. */
c9657e70 6048 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6049 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6050
527159b7 6051 if (debug_infrun)
c9737c08
PA
6052 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6053 gdb_signal_to_symbol_string (stop_signal));
527159b7 6054
488f131b
JB
6055 stopped_by_random_signal = 1;
6056
252fbfc8
PA
6057 /* Always stop on signals if we're either just gaining control
6058 of the program, or the user explicitly requested this thread
6059 to remain stopped. */
d6b48e9c 6060 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6061 || ecs->event_thread->stop_requested
24291992 6062 || (!inf->detaching
16c381f0 6063 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6064 {
22bcd14b 6065 stop_waiting (ecs);
488f131b
JB
6066 return;
6067 }
b57bacec
PA
6068
6069 /* Notify observers the signal has "handle print" set. Note we
6070 returned early above if stopping; normal_stop handles the
6071 printing in that case. */
6072 if (signal_print[ecs->event_thread->suspend.stop_signal])
6073 {
6074 /* The signal table tells us to print about this signal. */
223ffa71 6075 target_terminal::ours_for_output ();
b57bacec 6076 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6077 target_terminal::inferior ();
b57bacec 6078 }
488f131b
JB
6079
6080 /* Clear the signal if it should not be passed. */
16c381f0 6081 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6083
fb14de7b 6084 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6085 && ecs->event_thread->control.trap_expected
8358c15c 6086 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6087 {
6088 /* We were just starting a new sequence, attempting to
6089 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6090 Instead this signal arrives. This signal will take us out
68f53502
AC
6091 of the stepping range so GDB needs to remember to, when
6092 the signal handler returns, resume stepping off that
6093 breakpoint. */
6094 /* To simplify things, "continue" is forced to use the same
6095 code paths as single-step - set a breakpoint at the
6096 signal return address and then, once hit, step off that
6097 breakpoint. */
237fc4c9
PA
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: signal arrived while stepping over "
6101 "breakpoint\n");
d3169d93 6102
2c03e5be 6103 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6104 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6105 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6106 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6107
6108 /* If we were nexting/stepping some other thread, switch to
6109 it, so that we don't continue it, losing control. */
6110 if (!switch_back_to_stepped_thread (ecs))
6111 keep_going (ecs);
9d799f85 6112 return;
68f53502 6113 }
9d799f85 6114
e5f8a7cc
PA
6115 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6116 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6117 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6118 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6119 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6120 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6121 {
6122 /* The inferior is about to take a signal that will take it
6123 out of the single step range. Set a breakpoint at the
6124 current PC (which is presumably where the signal handler
6125 will eventually return) and then allow the inferior to
6126 run free.
6127
6128 Note that this is only needed for a signal delivered
6129 while in the single-step range. Nested signals aren't a
6130 problem as they eventually all return. */
237fc4c9
PA
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog,
6133 "infrun: signal may take us out of "
6134 "single-step range\n");
6135
372316f1 6136 clear_step_over_info ();
2c03e5be 6137 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6138 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6139 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6140 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6141 keep_going (ecs);
6142 return;
d303a6c7 6143 }
9d799f85
AC
6144
6145 /* Note: step_resume_breakpoint may be non-NULL. This occures
6146 when either there's a nested signal, or when there's a
6147 pending signal enabled just as the signal handler returns
6148 (leaving the inferior at the step-resume-breakpoint without
6149 actually executing it). Either way continue until the
6150 breakpoint is really hit. */
c447ac0b
PA
6151
6152 if (!switch_back_to_stepped_thread (ecs))
6153 {
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog,
6156 "infrun: random signal, keep going\n");
6157
6158 keep_going (ecs);
6159 }
6160 return;
488f131b 6161 }
94c57d6a
PA
6162
6163 process_event_stop_test (ecs);
6164}
6165
6166/* Come here when we've got some debug event / signal we can explain
6167 (IOW, not a random signal), and test whether it should cause a
6168 stop, or whether we should resume the inferior (transparently).
6169 E.g., could be a breakpoint whose condition evaluates false; we
6170 could be still stepping within the line; etc. */
6171
6172static void
6173process_event_stop_test (struct execution_control_state *ecs)
6174{
6175 struct symtab_and_line stop_pc_sal;
6176 struct frame_info *frame;
6177 struct gdbarch *gdbarch;
cdaa5b73
PA
6178 CORE_ADDR jmp_buf_pc;
6179 struct bpstat_what what;
94c57d6a 6180
cdaa5b73 6181 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6182
cdaa5b73
PA
6183 frame = get_current_frame ();
6184 gdbarch = get_frame_arch (frame);
fcf3daef 6185
cdaa5b73 6186 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6187
cdaa5b73
PA
6188 if (what.call_dummy)
6189 {
6190 stop_stack_dummy = what.call_dummy;
6191 }
186c406b 6192
243a9253
PA
6193 /* A few breakpoint types have callbacks associated (e.g.,
6194 bp_jit_event). Run them now. */
6195 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6196
cdaa5b73
PA
6197 /* If we hit an internal event that triggers symbol changes, the
6198 current frame will be invalidated within bpstat_what (e.g., if we
6199 hit an internal solib event). Re-fetch it. */
6200 frame = get_current_frame ();
6201 gdbarch = get_frame_arch (frame);
e2e4d78b 6202
cdaa5b73
PA
6203 switch (what.main_action)
6204 {
6205 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6206 /* If we hit the breakpoint at longjmp while stepping, we
6207 install a momentary breakpoint at the target of the
6208 jmp_buf. */
186c406b 6209
cdaa5b73
PA
6210 if (debug_infrun)
6211 fprintf_unfiltered (gdb_stdlog,
6212 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6213
cdaa5b73 6214 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6215
cdaa5b73
PA
6216 if (what.is_longjmp)
6217 {
6218 struct value *arg_value;
6219
6220 /* If we set the longjmp breakpoint via a SystemTap probe,
6221 then use it to extract the arguments. The destination PC
6222 is the third argument to the probe. */
6223 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6224 if (arg_value)
8fa0c4f8
AA
6225 {
6226 jmp_buf_pc = value_as_address (arg_value);
6227 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6228 }
cdaa5b73
PA
6229 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6230 || !gdbarch_get_longjmp_target (gdbarch,
6231 frame, &jmp_buf_pc))
e2e4d78b 6232 {
cdaa5b73
PA
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6236 "(!gdbarch_get_longjmp_target)\n");
6237 keep_going (ecs);
6238 return;
e2e4d78b 6239 }
e2e4d78b 6240
cdaa5b73
PA
6241 /* Insert a breakpoint at resume address. */
6242 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6243 }
6244 else
6245 check_exception_resume (ecs, frame);
6246 keep_going (ecs);
6247 return;
e81a37f7 6248
cdaa5b73
PA
6249 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6250 {
6251 struct frame_info *init_frame;
e81a37f7 6252
cdaa5b73 6253 /* There are several cases to consider.
c906108c 6254
cdaa5b73
PA
6255 1. The initiating frame no longer exists. In this case we
6256 must stop, because the exception or longjmp has gone too
6257 far.
2c03e5be 6258
cdaa5b73
PA
6259 2. The initiating frame exists, and is the same as the
6260 current frame. We stop, because the exception or longjmp
6261 has been caught.
2c03e5be 6262
cdaa5b73
PA
6263 3. The initiating frame exists and is different from the
6264 current frame. This means the exception or longjmp has
6265 been caught beneath the initiating frame, so keep going.
c906108c 6266
cdaa5b73
PA
6267 4. longjmp breakpoint has been placed just to protect
6268 against stale dummy frames and user is not interested in
6269 stopping around longjmps. */
c5aa993b 6270
cdaa5b73
PA
6271 if (debug_infrun)
6272 fprintf_unfiltered (gdb_stdlog,
6273 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6274
cdaa5b73
PA
6275 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6276 != NULL);
6277 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6278
cdaa5b73
PA
6279 if (what.is_longjmp)
6280 {
b67a2c6f 6281 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6282
cdaa5b73 6283 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6284 {
cdaa5b73
PA
6285 /* Case 4. */
6286 keep_going (ecs);
6287 return;
e5ef252a 6288 }
cdaa5b73 6289 }
c5aa993b 6290
cdaa5b73 6291 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6292
cdaa5b73
PA
6293 if (init_frame)
6294 {
6295 struct frame_id current_id
6296 = get_frame_id (get_current_frame ());
6297 if (frame_id_eq (current_id,
6298 ecs->event_thread->initiating_frame))
6299 {
6300 /* Case 2. Fall through. */
6301 }
6302 else
6303 {
6304 /* Case 3. */
6305 keep_going (ecs);
6306 return;
6307 }
68f53502 6308 }
488f131b 6309
cdaa5b73
PA
6310 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6311 exists. */
6312 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6313
bdc36728 6314 end_stepping_range (ecs);
cdaa5b73
PA
6315 }
6316 return;
e5ef252a 6317
cdaa5b73
PA
6318 case BPSTAT_WHAT_SINGLE:
6319 if (debug_infrun)
6320 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6321 ecs->event_thread->stepping_over_breakpoint = 1;
6322 /* Still need to check other stuff, at least the case where we
6323 are stepping and step out of the right range. */
6324 break;
e5ef252a 6325
cdaa5b73
PA
6326 case BPSTAT_WHAT_STEP_RESUME:
6327 if (debug_infrun)
6328 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6329
cdaa5b73
PA
6330 delete_step_resume_breakpoint (ecs->event_thread);
6331 if (ecs->event_thread->control.proceed_to_finish
6332 && execution_direction == EXEC_REVERSE)
6333 {
6334 struct thread_info *tp = ecs->event_thread;
6335
6336 /* We are finishing a function in reverse, and just hit the
6337 step-resume breakpoint at the start address of the
6338 function, and we're almost there -- just need to back up
6339 by one more single-step, which should take us back to the
6340 function call. */
6341 tp->control.step_range_start = tp->control.step_range_end = 1;
6342 keep_going (ecs);
e5ef252a 6343 return;
cdaa5b73
PA
6344 }
6345 fill_in_stop_func (gdbarch, ecs);
6346 if (stop_pc == ecs->stop_func_start
6347 && execution_direction == EXEC_REVERSE)
6348 {
6349 /* We are stepping over a function call in reverse, and just
6350 hit the step-resume breakpoint at the start address of
6351 the function. Go back to single-stepping, which should
6352 take us back to the function call. */
6353 ecs->event_thread->stepping_over_breakpoint = 1;
6354 keep_going (ecs);
6355 return;
6356 }
6357 break;
e5ef252a 6358
cdaa5b73
PA
6359 case BPSTAT_WHAT_STOP_NOISY:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6362 stop_print_frame = 1;
e5ef252a 6363
99619bea
PA
6364 /* Assume the thread stopped for a breapoint. We'll still check
6365 whether a/the breakpoint is there when the thread is next
6366 resumed. */
6367 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6368
22bcd14b 6369 stop_waiting (ecs);
cdaa5b73 6370 return;
e5ef252a 6371
cdaa5b73
PA
6372 case BPSTAT_WHAT_STOP_SILENT:
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6375 stop_print_frame = 0;
e5ef252a 6376
99619bea
PA
6377 /* Assume the thread stopped for a breapoint. We'll still check
6378 whether a/the breakpoint is there when the thread is next
6379 resumed. */
6380 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6381 stop_waiting (ecs);
cdaa5b73
PA
6382 return;
6383
6384 case BPSTAT_WHAT_HP_STEP_RESUME:
6385 if (debug_infrun)
6386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6387
6388 delete_step_resume_breakpoint (ecs->event_thread);
6389 if (ecs->event_thread->step_after_step_resume_breakpoint)
6390 {
6391 /* Back when the step-resume breakpoint was inserted, we
6392 were trying to single-step off a breakpoint. Go back to
6393 doing that. */
6394 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6395 ecs->event_thread->stepping_over_breakpoint = 1;
6396 keep_going (ecs);
6397 return;
e5ef252a 6398 }
cdaa5b73
PA
6399 break;
6400
6401 case BPSTAT_WHAT_KEEP_CHECKING:
6402 break;
e5ef252a 6403 }
c906108c 6404
af48d08f
PA
6405 /* If we stepped a permanent breakpoint and we had a high priority
6406 step-resume breakpoint for the address we stepped, but we didn't
6407 hit it, then we must have stepped into the signal handler. The
6408 step-resume was only necessary to catch the case of _not_
6409 stepping into the handler, so delete it, and fall through to
6410 checking whether the step finished. */
6411 if (ecs->event_thread->stepped_breakpoint)
6412 {
6413 struct breakpoint *sr_bp
6414 = ecs->event_thread->control.step_resume_breakpoint;
6415
8d707a12
PA
6416 if (sr_bp != NULL
6417 && sr_bp->loc->permanent
af48d08f
PA
6418 && sr_bp->type == bp_hp_step_resume
6419 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6420 {
6421 if (debug_infrun)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "infrun: stepped permanent breakpoint, stopped in "
6424 "handler\n");
6425 delete_step_resume_breakpoint (ecs->event_thread);
6426 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6427 }
6428 }
6429
cdaa5b73
PA
6430 /* We come here if we hit a breakpoint but should not stop for it.
6431 Possibly we also were stepping and should stop for that. So fall
6432 through and test for stepping. But, if not stepping, do not
6433 stop. */
c906108c 6434
a7212384
UW
6435 /* In all-stop mode, if we're currently stepping but have stopped in
6436 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6437 if (switch_back_to_stepped_thread (ecs))
6438 return;
776f04fa 6439
8358c15c 6440 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6441 {
527159b7 6442 if (debug_infrun)
d3169d93
DJ
6443 fprintf_unfiltered (gdb_stdlog,
6444 "infrun: step-resume breakpoint is inserted\n");
527159b7 6445
488f131b
JB
6446 /* Having a step-resume breakpoint overrides anything
6447 else having to do with stepping commands until
6448 that breakpoint is reached. */
488f131b
JB
6449 keep_going (ecs);
6450 return;
6451 }
c5aa993b 6452
16c381f0 6453 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6454 {
527159b7 6455 if (debug_infrun)
8a9de0e4 6456 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6457 /* Likewise if we aren't even stepping. */
488f131b
JB
6458 keep_going (ecs);
6459 return;
6460 }
c5aa993b 6461
4b7703ad
JB
6462 /* Re-fetch current thread's frame in case the code above caused
6463 the frame cache to be re-initialized, making our FRAME variable
6464 a dangling pointer. */
6465 frame = get_current_frame ();
628fe4e4 6466 gdbarch = get_frame_arch (frame);
7e324e48 6467 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6468
488f131b 6469 /* If stepping through a line, keep going if still within it.
c906108c 6470
488f131b
JB
6471 Note that step_range_end is the address of the first instruction
6472 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6473 within it!
6474
6475 Note also that during reverse execution, we may be stepping
6476 through a function epilogue and therefore must detect when
6477 the current-frame changes in the middle of a line. */
6478
ce4c476a 6479 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6480 && (execution_direction != EXEC_REVERSE
388a8562 6481 || frame_id_eq (get_frame_id (frame),
16c381f0 6482 ecs->event_thread->control.step_frame_id)))
488f131b 6483 {
527159b7 6484 if (debug_infrun)
5af949e3
UW
6485 fprintf_unfiltered
6486 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6487 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6488 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6489
c1e36e3e
PA
6490 /* Tentatively re-enable range stepping; `resume' disables it if
6491 necessary (e.g., if we're stepping over a breakpoint or we
6492 have software watchpoints). */
6493 ecs->event_thread->control.may_range_step = 1;
6494
b2175913
MS
6495 /* When stepping backward, stop at beginning of line range
6496 (unless it's the function entry point, in which case
6497 keep going back to the call point). */
16c381f0 6498 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6499 && stop_pc != ecs->stop_func_start
6500 && execution_direction == EXEC_REVERSE)
bdc36728 6501 end_stepping_range (ecs);
b2175913
MS
6502 else
6503 keep_going (ecs);
6504
488f131b
JB
6505 return;
6506 }
c5aa993b 6507
488f131b 6508 /* We stepped out of the stepping range. */
c906108c 6509
488f131b 6510 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6511 loader dynamic symbol resolution code...
6512
6513 EXEC_FORWARD: we keep on single stepping until we exit the run
6514 time loader code and reach the callee's address.
6515
6516 EXEC_REVERSE: we've already executed the callee (backward), and
6517 the runtime loader code is handled just like any other
6518 undebuggable function call. Now we need only keep stepping
6519 backward through the trampoline code, and that's handled further
6520 down, so there is nothing for us to do here. */
6521
6522 if (execution_direction != EXEC_REVERSE
16c381f0 6523 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6524 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6525 {
4c8c40e6 6526 CORE_ADDR pc_after_resolver =
568d6575 6527 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6528
527159b7 6529 if (debug_infrun)
3e43a32a
MS
6530 fprintf_unfiltered (gdb_stdlog,
6531 "infrun: stepped into dynsym resolve code\n");
527159b7 6532
488f131b
JB
6533 if (pc_after_resolver)
6534 {
6535 /* Set up a step-resume breakpoint at the address
6536 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6537 symtab_and_line sr_sal;
488f131b 6538 sr_sal.pc = pc_after_resolver;
6c95b8df 6539 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6540
a6d9a66e
UW
6541 insert_step_resume_breakpoint_at_sal (gdbarch,
6542 sr_sal, null_frame_id);
c5aa993b 6543 }
c906108c 6544
488f131b
JB
6545 keep_going (ecs);
6546 return;
6547 }
c906108c 6548
16c381f0
JK
6549 if (ecs->event_thread->control.step_range_end != 1
6550 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6551 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6552 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6553 {
527159b7 6554 if (debug_infrun)
3e43a32a
MS
6555 fprintf_unfiltered (gdb_stdlog,
6556 "infrun: stepped into signal trampoline\n");
42edda50 6557 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6558 a signal trampoline (either by a signal being delivered or by
6559 the signal handler returning). Just single-step until the
6560 inferior leaves the trampoline (either by calling the handler
6561 or returning). */
488f131b
JB
6562 keep_going (ecs);
6563 return;
6564 }
c906108c 6565
14132e89
MR
6566 /* If we're in the return path from a shared library trampoline,
6567 we want to proceed through the trampoline when stepping. */
6568 /* macro/2012-04-25: This needs to come before the subroutine
6569 call check below as on some targets return trampolines look
6570 like subroutine calls (MIPS16 return thunks). */
6571 if (gdbarch_in_solib_return_trampoline (gdbarch,
6572 stop_pc, ecs->stop_func_name)
6573 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6574 {
6575 /* Determine where this trampoline returns. */
6576 CORE_ADDR real_stop_pc;
6577
6578 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6579
6580 if (debug_infrun)
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into solib return tramp\n");
6583
6584 /* Only proceed through if we know where it's going. */
6585 if (real_stop_pc)
6586 {
6587 /* And put the step-breakpoint there and go until there. */
51abb421 6588 symtab_and_line sr_sal;
14132e89
MR
6589 sr_sal.pc = real_stop_pc;
6590 sr_sal.section = find_pc_overlay (sr_sal.pc);
6591 sr_sal.pspace = get_frame_program_space (frame);
6592
6593 /* Do not specify what the fp should be when we stop since
6594 on some machines the prologue is where the new fp value
6595 is established. */
6596 insert_step_resume_breakpoint_at_sal (gdbarch,
6597 sr_sal, null_frame_id);
6598
6599 /* Restart without fiddling with the step ranges or
6600 other state. */
6601 keep_going (ecs);
6602 return;
6603 }
6604 }
6605
c17eaafe
DJ
6606 /* Check for subroutine calls. The check for the current frame
6607 equalling the step ID is not necessary - the check of the
6608 previous frame's ID is sufficient - but it is a common case and
6609 cheaper than checking the previous frame's ID.
14e60db5
DJ
6610
6611 NOTE: frame_id_eq will never report two invalid frame IDs as
6612 being equal, so to get into this block, both the current and
6613 previous frame must have valid frame IDs. */
005ca36a
JB
6614 /* The outer_frame_id check is a heuristic to detect stepping
6615 through startup code. If we step over an instruction which
6616 sets the stack pointer from an invalid value to a valid value,
6617 we may detect that as a subroutine call from the mythical
6618 "outermost" function. This could be fixed by marking
6619 outermost frames as !stack_p,code_p,special_p. Then the
6620 initial outermost frame, before sp was valid, would
ce6cca6d 6621 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6622 for more. */
edb3359d 6623 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6624 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6625 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6626 ecs->event_thread->control.step_stack_frame_id)
6627 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6628 outer_frame_id)
885eeb5b
PA
6629 || (ecs->event_thread->control.step_start_function
6630 != find_pc_function (stop_pc)))))
488f131b 6631 {
95918acb 6632 CORE_ADDR real_stop_pc;
8fb3e588 6633
527159b7 6634 if (debug_infrun)
8a9de0e4 6635 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6636
b7a084be 6637 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6638 {
6639 /* I presume that step_over_calls is only 0 when we're
6640 supposed to be stepping at the assembly language level
6641 ("stepi"). Just stop. */
388a8562 6642 /* And this works the same backward as frontward. MVS */
bdc36728 6643 end_stepping_range (ecs);
95918acb
AC
6644 return;
6645 }
8fb3e588 6646
388a8562
MS
6647 /* Reverse stepping through solib trampolines. */
6648
6649 if (execution_direction == EXEC_REVERSE
16c381f0 6650 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6651 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6652 || (ecs->stop_func_start == 0
6653 && in_solib_dynsym_resolve_code (stop_pc))))
6654 {
6655 /* Any solib trampoline code can be handled in reverse
6656 by simply continuing to single-step. We have already
6657 executed the solib function (backwards), and a few
6658 steps will take us back through the trampoline to the
6659 caller. */
6660 keep_going (ecs);
6661 return;
6662 }
6663
16c381f0 6664 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6665 {
b2175913
MS
6666 /* We're doing a "next".
6667
6668 Normal (forward) execution: set a breakpoint at the
6669 callee's return address (the address at which the caller
6670 will resume).
6671
6672 Reverse (backward) execution. set the step-resume
6673 breakpoint at the start of the function that we just
6674 stepped into (backwards), and continue to there. When we
6130d0b7 6675 get there, we'll need to single-step back to the caller. */
b2175913
MS
6676
6677 if (execution_direction == EXEC_REVERSE)
6678 {
acf9414f
JK
6679 /* If we're already at the start of the function, we've either
6680 just stepped backward into a single instruction function,
6681 or stepped back out of a signal handler to the first instruction
6682 of the function. Just keep going, which will single-step back
6683 to the caller. */
58c48e72 6684 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6685 {
acf9414f 6686 /* Normal function call return (static or dynamic). */
51abb421 6687 symtab_and_line sr_sal;
acf9414f
JK
6688 sr_sal.pc = ecs->stop_func_start;
6689 sr_sal.pspace = get_frame_program_space (frame);
6690 insert_step_resume_breakpoint_at_sal (gdbarch,
6691 sr_sal, null_frame_id);
6692 }
b2175913
MS
6693 }
6694 else
568d6575 6695 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6696
8567c30f
AC
6697 keep_going (ecs);
6698 return;
6699 }
a53c66de 6700
95918acb 6701 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6702 calling routine and the real function), locate the real
6703 function. That's what tells us (a) whether we want to step
6704 into it at all, and (b) what prologue we want to run to the
6705 end of, if we do step into it. */
568d6575 6706 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6707 if (real_stop_pc == 0)
568d6575 6708 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6709 if (real_stop_pc != 0)
6710 ecs->stop_func_start = real_stop_pc;
8fb3e588 6711
db5f024e 6712 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6713 {
51abb421 6714 symtab_and_line sr_sal;
1b2bfbb9 6715 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6716 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6717
a6d9a66e
UW
6718 insert_step_resume_breakpoint_at_sal (gdbarch,
6719 sr_sal, null_frame_id);
8fb3e588
AC
6720 keep_going (ecs);
6721 return;
1b2bfbb9
RC
6722 }
6723
95918acb 6724 /* If we have line number information for the function we are
1bfeeb0f
JL
6725 thinking of stepping into and the function isn't on the skip
6726 list, step into it.
95918acb 6727
8fb3e588
AC
6728 If there are several symtabs at that PC (e.g. with include
6729 files), just want to know whether *any* of them have line
6730 numbers. find_pc_line handles this. */
95918acb
AC
6731 {
6732 struct symtab_and_line tmp_sal;
8fb3e588 6733
95918acb 6734 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6735 if (tmp_sal.line != 0
85817405 6736 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6737 tmp_sal))
95918acb 6738 {
b2175913 6739 if (execution_direction == EXEC_REVERSE)
568d6575 6740 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6741 else
568d6575 6742 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6743 return;
6744 }
6745 }
6746
6747 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6748 set, we stop the step so that the user has a chance to switch
6749 in assembly mode. */
16c381f0 6750 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6751 && step_stop_if_no_debug)
95918acb 6752 {
bdc36728 6753 end_stepping_range (ecs);
95918acb
AC
6754 return;
6755 }
6756
b2175913
MS
6757 if (execution_direction == EXEC_REVERSE)
6758 {
acf9414f
JK
6759 /* If we're already at the start of the function, we've either just
6760 stepped backward into a single instruction function without line
6761 number info, or stepped back out of a signal handler to the first
6762 instruction of the function without line number info. Just keep
6763 going, which will single-step back to the caller. */
6764 if (ecs->stop_func_start != stop_pc)
6765 {
6766 /* Set a breakpoint at callee's start address.
6767 From there we can step once and be back in the caller. */
51abb421 6768 symtab_and_line sr_sal;
acf9414f
JK
6769 sr_sal.pc = ecs->stop_func_start;
6770 sr_sal.pspace = get_frame_program_space (frame);
6771 insert_step_resume_breakpoint_at_sal (gdbarch,
6772 sr_sal, null_frame_id);
6773 }
b2175913
MS
6774 }
6775 else
6776 /* Set a breakpoint at callee's return address (the address
6777 at which the caller will resume). */
568d6575 6778 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6779
95918acb 6780 keep_going (ecs);
488f131b 6781 return;
488f131b 6782 }
c906108c 6783
fdd654f3
MS
6784 /* Reverse stepping through solib trampolines. */
6785
6786 if (execution_direction == EXEC_REVERSE
16c381f0 6787 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6788 {
6789 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6790 || (ecs->stop_func_start == 0
6791 && in_solib_dynsym_resolve_code (stop_pc)))
6792 {
6793 /* Any solib trampoline code can be handled in reverse
6794 by simply continuing to single-step. We have already
6795 executed the solib function (backwards), and a few
6796 steps will take us back through the trampoline to the
6797 caller. */
6798 keep_going (ecs);
6799 return;
6800 }
6801 else if (in_solib_dynsym_resolve_code (stop_pc))
6802 {
6803 /* Stepped backward into the solib dynsym resolver.
6804 Set a breakpoint at its start and continue, then
6805 one more step will take us out. */
51abb421 6806 symtab_and_line sr_sal;
fdd654f3 6807 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6808 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6809 insert_step_resume_breakpoint_at_sal (gdbarch,
6810 sr_sal, null_frame_id);
6811 keep_going (ecs);
6812 return;
6813 }
6814 }
6815
2afb61aa 6816 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6817
1b2bfbb9
RC
6818 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6819 the trampoline processing logic, however, there are some trampolines
6820 that have no names, so we should do trampoline handling first. */
16c381f0 6821 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6822 && ecs->stop_func_name == NULL
2afb61aa 6823 && stop_pc_sal.line == 0)
1b2bfbb9 6824 {
527159b7 6825 if (debug_infrun)
3e43a32a
MS
6826 fprintf_unfiltered (gdb_stdlog,
6827 "infrun: stepped into undebuggable function\n");
527159b7 6828
1b2bfbb9 6829 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6830 undebuggable function (where there is no debugging information
6831 and no line number corresponding to the address where the
1b2bfbb9
RC
6832 inferior stopped). Since we want to skip this kind of code,
6833 we keep going until the inferior returns from this
14e60db5
DJ
6834 function - unless the user has asked us not to (via
6835 set step-mode) or we no longer know how to get back
6836 to the call site. */
6837 if (step_stop_if_no_debug
c7ce8faa 6838 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6839 {
6840 /* If we have no line number and the step-stop-if-no-debug
6841 is set, we stop the step so that the user has a chance to
6842 switch in assembly mode. */
bdc36728 6843 end_stepping_range (ecs);
1b2bfbb9
RC
6844 return;
6845 }
6846 else
6847 {
6848 /* Set a breakpoint at callee's return address (the address
6849 at which the caller will resume). */
568d6575 6850 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6851 keep_going (ecs);
6852 return;
6853 }
6854 }
6855
16c381f0 6856 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6857 {
6858 /* It is stepi or nexti. We always want to stop stepping after
6859 one instruction. */
527159b7 6860 if (debug_infrun)
8a9de0e4 6861 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6862 end_stepping_range (ecs);
1b2bfbb9
RC
6863 return;
6864 }
6865
2afb61aa 6866 if (stop_pc_sal.line == 0)
488f131b
JB
6867 {
6868 /* We have no line number information. That means to stop
6869 stepping (does this always happen right after one instruction,
6870 when we do "s" in a function with no line numbers,
6871 or can this happen as a result of a return or longjmp?). */
527159b7 6872 if (debug_infrun)
8a9de0e4 6873 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6874 end_stepping_range (ecs);
488f131b
JB
6875 return;
6876 }
c906108c 6877
edb3359d
DJ
6878 /* Look for "calls" to inlined functions, part one. If the inline
6879 frame machinery detected some skipped call sites, we have entered
6880 a new inline function. */
6881
6882 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6883 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6884 && inline_skipped_frames (ecs->ptid))
6885 {
edb3359d
DJ
6886 if (debug_infrun)
6887 fprintf_unfiltered (gdb_stdlog,
6888 "infrun: stepped into inlined function\n");
6889
51abb421 6890 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6891
16c381f0 6892 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6893 {
6894 /* For "step", we're going to stop. But if the call site
6895 for this inlined function is on the same source line as
6896 we were previously stepping, go down into the function
6897 first. Otherwise stop at the call site. */
6898
6899 if (call_sal.line == ecs->event_thread->current_line
6900 && call_sal.symtab == ecs->event_thread->current_symtab)
6901 step_into_inline_frame (ecs->ptid);
6902
bdc36728 6903 end_stepping_range (ecs);
edb3359d
DJ
6904 return;
6905 }
6906 else
6907 {
6908 /* For "next", we should stop at the call site if it is on a
6909 different source line. Otherwise continue through the
6910 inlined function. */
6911 if (call_sal.line == ecs->event_thread->current_line
6912 && call_sal.symtab == ecs->event_thread->current_symtab)
6913 keep_going (ecs);
6914 else
bdc36728 6915 end_stepping_range (ecs);
edb3359d
DJ
6916 return;
6917 }
6918 }
6919
6920 /* Look for "calls" to inlined functions, part two. If we are still
6921 in the same real function we were stepping through, but we have
6922 to go further up to find the exact frame ID, we are stepping
6923 through a more inlined call beyond its call site. */
6924
6925 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6926 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6927 ecs->event_thread->control.step_frame_id)
edb3359d 6928 && stepped_in_from (get_current_frame (),
16c381f0 6929 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6930 {
6931 if (debug_infrun)
6932 fprintf_unfiltered (gdb_stdlog,
6933 "infrun: stepping through inlined function\n");
6934
16c381f0 6935 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6936 keep_going (ecs);
6937 else
bdc36728 6938 end_stepping_range (ecs);
edb3359d
DJ
6939 return;
6940 }
6941
2afb61aa 6942 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6943 && (ecs->event_thread->current_line != stop_pc_sal.line
6944 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6945 {
6946 /* We are at the start of a different line. So stop. Note that
6947 we don't stop if we step into the middle of a different line.
6948 That is said to make things like for (;;) statements work
6949 better. */
527159b7 6950 if (debug_infrun)
3e43a32a
MS
6951 fprintf_unfiltered (gdb_stdlog,
6952 "infrun: stepped to a different line\n");
bdc36728 6953 end_stepping_range (ecs);
488f131b
JB
6954 return;
6955 }
c906108c 6956
488f131b 6957 /* We aren't done stepping.
c906108c 6958
488f131b
JB
6959 Optimize by setting the stepping range to the line.
6960 (We might not be in the original line, but if we entered a
6961 new line in mid-statement, we continue stepping. This makes
6962 things like for(;;) statements work better.) */
c906108c 6963
16c381f0
JK
6964 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6965 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6966 ecs->event_thread->control.may_range_step = 1;
edb3359d 6967 set_step_info (frame, stop_pc_sal);
488f131b 6968
527159b7 6969 if (debug_infrun)
8a9de0e4 6970 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6971 keep_going (ecs);
104c1213
JM
6972}
6973
c447ac0b
PA
6974/* In all-stop mode, if we're currently stepping but have stopped in
6975 some other thread, we may need to switch back to the stepped
6976 thread. Returns true we set the inferior running, false if we left
6977 it stopped (and the event needs further processing). */
6978
6979static int
6980switch_back_to_stepped_thread (struct execution_control_state *ecs)
6981{
fbea99ea 6982 if (!target_is_non_stop_p ())
c447ac0b
PA
6983 {
6984 struct thread_info *tp;
99619bea
PA
6985 struct thread_info *stepping_thread;
6986
6987 /* If any thread is blocked on some internal breakpoint, and we
6988 simply need to step over that breakpoint to get it going
6989 again, do that first. */
6990
6991 /* However, if we see an event for the stepping thread, then we
6992 know all other threads have been moved past their breakpoints
6993 already. Let the caller check whether the step is finished,
6994 etc., before deciding to move it past a breakpoint. */
6995 if (ecs->event_thread->control.step_range_end != 0)
6996 return 0;
6997
6998 /* Check if the current thread is blocked on an incomplete
6999 step-over, interrupted by a random signal. */
7000 if (ecs->event_thread->control.trap_expected
7001 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7002 {
99619bea
PA
7003 if (debug_infrun)
7004 {
7005 fprintf_unfiltered (gdb_stdlog,
7006 "infrun: need to finish step-over of [%s]\n",
7007 target_pid_to_str (ecs->event_thread->ptid));
7008 }
7009 keep_going (ecs);
7010 return 1;
7011 }
2adfaa28 7012
99619bea
PA
7013 /* Check if the current thread is blocked by a single-step
7014 breakpoint of another thread. */
7015 if (ecs->hit_singlestep_breakpoint)
7016 {
7017 if (debug_infrun)
7018 {
7019 fprintf_unfiltered (gdb_stdlog,
7020 "infrun: need to step [%s] over single-step "
7021 "breakpoint\n",
7022 target_pid_to_str (ecs->ptid));
7023 }
7024 keep_going (ecs);
7025 return 1;
7026 }
7027
4d9d9d04
PA
7028 /* If this thread needs yet another step-over (e.g., stepping
7029 through a delay slot), do it first before moving on to
7030 another thread. */
7031 if (thread_still_needs_step_over (ecs->event_thread))
7032 {
7033 if (debug_infrun)
7034 {
7035 fprintf_unfiltered (gdb_stdlog,
7036 "infrun: thread [%s] still needs step-over\n",
7037 target_pid_to_str (ecs->event_thread->ptid));
7038 }
7039 keep_going (ecs);
7040 return 1;
7041 }
70509625 7042
483805cf
PA
7043 /* If scheduler locking applies even if not stepping, there's no
7044 need to walk over threads. Above we've checked whether the
7045 current thread is stepping. If some other thread not the
7046 event thread is stepping, then it must be that scheduler
7047 locking is not in effect. */
856e7dd6 7048 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7049 return 0;
7050
4d9d9d04
PA
7051 /* Otherwise, we no longer expect a trap in the current thread.
7052 Clear the trap_expected flag before switching back -- this is
7053 what keep_going does as well, if we call it. */
7054 ecs->event_thread->control.trap_expected = 0;
7055
7056 /* Likewise, clear the signal if it should not be passed. */
7057 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7058 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7059
7060 /* Do all pending step-overs before actually proceeding with
483805cf 7061 step/next/etc. */
4d9d9d04
PA
7062 if (start_step_over ())
7063 {
7064 prepare_to_wait (ecs);
7065 return 1;
7066 }
7067
7068 /* Look for the stepping/nexting thread. */
483805cf 7069 stepping_thread = NULL;
4d9d9d04 7070
034f788c 7071 ALL_NON_EXITED_THREADS (tp)
483805cf 7072 {
fbea99ea
PA
7073 /* Ignore threads of processes the caller is not
7074 resuming. */
483805cf 7075 if (!sched_multi
1afd5965 7076 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7077 continue;
7078
7079 /* When stepping over a breakpoint, we lock all threads
7080 except the one that needs to move past the breakpoint.
7081 If a non-event thread has this set, the "incomplete
7082 step-over" check above should have caught it earlier. */
372316f1
PA
7083 if (tp->control.trap_expected)
7084 {
7085 internal_error (__FILE__, __LINE__,
7086 "[%s] has inconsistent state: "
7087 "trap_expected=%d\n",
7088 target_pid_to_str (tp->ptid),
7089 tp->control.trap_expected);
7090 }
483805cf
PA
7091
7092 /* Did we find the stepping thread? */
7093 if (tp->control.step_range_end)
7094 {
7095 /* Yep. There should only one though. */
7096 gdb_assert (stepping_thread == NULL);
7097
7098 /* The event thread is handled at the top, before we
7099 enter this loop. */
7100 gdb_assert (tp != ecs->event_thread);
7101
7102 /* If some thread other than the event thread is
7103 stepping, then scheduler locking can't be in effect,
7104 otherwise we wouldn't have resumed the current event
7105 thread in the first place. */
856e7dd6 7106 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7107
7108 stepping_thread = tp;
7109 }
99619bea
PA
7110 }
7111
483805cf 7112 if (stepping_thread != NULL)
99619bea 7113 {
c447ac0b
PA
7114 if (debug_infrun)
7115 fprintf_unfiltered (gdb_stdlog,
7116 "infrun: switching back to stepped thread\n");
7117
2ac7589c
PA
7118 if (keep_going_stepped_thread (stepping_thread))
7119 {
7120 prepare_to_wait (ecs);
7121 return 1;
7122 }
7123 }
7124 }
2adfaa28 7125
2ac7589c
PA
7126 return 0;
7127}
2adfaa28 7128
2ac7589c
PA
7129/* Set a previously stepped thread back to stepping. Returns true on
7130 success, false if the resume is not possible (e.g., the thread
7131 vanished). */
7132
7133static int
7134keep_going_stepped_thread (struct thread_info *tp)
7135{
7136 struct frame_info *frame;
2ac7589c
PA
7137 struct execution_control_state ecss;
7138 struct execution_control_state *ecs = &ecss;
2adfaa28 7139
2ac7589c
PA
7140 /* If the stepping thread exited, then don't try to switch back and
7141 resume it, which could fail in several different ways depending
7142 on the target. Instead, just keep going.
2adfaa28 7143
2ac7589c
PA
7144 We can find a stepping dead thread in the thread list in two
7145 cases:
2adfaa28 7146
2ac7589c
PA
7147 - The target supports thread exit events, and when the target
7148 tries to delete the thread from the thread list, inferior_ptid
7149 pointed at the exiting thread. In such case, calling
7150 delete_thread does not really remove the thread from the list;
7151 instead, the thread is left listed, with 'exited' state.
64ce06e4 7152
2ac7589c
PA
7153 - The target's debug interface does not support thread exit
7154 events, and so we have no idea whatsoever if the previously
7155 stepping thread is still alive. For that reason, we need to
7156 synchronously query the target now. */
2adfaa28 7157
2ac7589c
PA
7158 if (is_exited (tp->ptid)
7159 || !target_thread_alive (tp->ptid))
7160 {
7161 if (debug_infrun)
7162 fprintf_unfiltered (gdb_stdlog,
7163 "infrun: not resuming previously "
7164 "stepped thread, it has vanished\n");
7165
7166 delete_thread (tp->ptid);
7167 return 0;
c447ac0b 7168 }
2ac7589c
PA
7169
7170 if (debug_infrun)
7171 fprintf_unfiltered (gdb_stdlog,
7172 "infrun: resuming previously stepped thread\n");
7173
7174 reset_ecs (ecs, tp);
7175 switch_to_thread (tp->ptid);
7176
7177 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7178 frame = get_current_frame ();
2ac7589c
PA
7179
7180 /* If the PC of the thread we were trying to single-step has
7181 changed, then that thread has trapped or been signaled, but the
7182 event has not been reported to GDB yet. Re-poll the target
7183 looking for this particular thread's event (i.e. temporarily
7184 enable schedlock) by:
7185
7186 - setting a break at the current PC
7187 - resuming that particular thread, only (by setting trap
7188 expected)
7189
7190 This prevents us continuously moving the single-step breakpoint
7191 forward, one instruction at a time, overstepping. */
7192
7193 if (stop_pc != tp->prev_pc)
7194 {
7195 ptid_t resume_ptid;
7196
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: expected thread advanced also (%s -> %s)\n",
7200 paddress (target_gdbarch (), tp->prev_pc),
7201 paddress (target_gdbarch (), stop_pc));
7202
7203 /* Clear the info of the previous step-over, as it's no longer
7204 valid (if the thread was trying to step over a breakpoint, it
7205 has already succeeded). It's what keep_going would do too,
7206 if we called it. Do this before trying to insert the sss
7207 breakpoint, otherwise if we were previously trying to step
7208 over this exact address in another thread, the breakpoint is
7209 skipped. */
7210 clear_step_over_info ();
7211 tp->control.trap_expected = 0;
7212
7213 insert_single_step_breakpoint (get_frame_arch (frame),
7214 get_frame_address_space (frame),
7215 stop_pc);
7216
372316f1 7217 tp->resumed = 1;
fbea99ea 7218 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7219 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7220 }
7221 else
7222 {
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: expected thread still hasn't advanced\n");
7226
7227 keep_going_pass_signal (ecs);
7228 }
7229 return 1;
c447ac0b
PA
7230}
7231
8b061563
PA
7232/* Is thread TP in the middle of (software or hardware)
7233 single-stepping? (Note the result of this function must never be
7234 passed directly as target_resume's STEP parameter.) */
104c1213 7235
a289b8f6 7236static int
b3444185 7237currently_stepping (struct thread_info *tp)
a7212384 7238{
8358c15c
JK
7239 return ((tp->control.step_range_end
7240 && tp->control.step_resume_breakpoint == NULL)
7241 || tp->control.trap_expected
af48d08f 7242 || tp->stepped_breakpoint
8358c15c 7243 || bpstat_should_step ());
a7212384
UW
7244}
7245
b2175913
MS
7246/* Inferior has stepped into a subroutine call with source code that
7247 we should not step over. Do step to the first line of code in
7248 it. */
c2c6d25f
JM
7249
7250static void
568d6575
UW
7251handle_step_into_function (struct gdbarch *gdbarch,
7252 struct execution_control_state *ecs)
c2c6d25f 7253{
7e324e48
GB
7254 fill_in_stop_func (gdbarch, ecs);
7255
51abb421 7256 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7257 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7258 ecs->stop_func_start
7259 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7260
51abb421 7261 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7262 /* Use the step_resume_break to step until the end of the prologue,
7263 even if that involves jumps (as it seems to on the vax under
7264 4.2). */
7265 /* If the prologue ends in the middle of a source line, continue to
7266 the end of that source line (if it is still within the function).
7267 Otherwise, just go to end of prologue. */
2afb61aa
PA
7268 if (stop_func_sal.end
7269 && stop_func_sal.pc != ecs->stop_func_start
7270 && stop_func_sal.end < ecs->stop_func_end)
7271 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7272
2dbd5e30
KB
7273 /* Architectures which require breakpoint adjustment might not be able
7274 to place a breakpoint at the computed address. If so, the test
7275 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7276 ecs->stop_func_start to an address at which a breakpoint may be
7277 legitimately placed.
8fb3e588 7278
2dbd5e30
KB
7279 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7280 made, GDB will enter an infinite loop when stepping through
7281 optimized code consisting of VLIW instructions which contain
7282 subinstructions corresponding to different source lines. On
7283 FR-V, it's not permitted to place a breakpoint on any but the
7284 first subinstruction of a VLIW instruction. When a breakpoint is
7285 set, GDB will adjust the breakpoint address to the beginning of
7286 the VLIW instruction. Thus, we need to make the corresponding
7287 adjustment here when computing the stop address. */
8fb3e588 7288
568d6575 7289 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7290 {
7291 ecs->stop_func_start
568d6575 7292 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7293 ecs->stop_func_start);
2dbd5e30
KB
7294 }
7295
c2c6d25f
JM
7296 if (ecs->stop_func_start == stop_pc)
7297 {
7298 /* We are already there: stop now. */
bdc36728 7299 end_stepping_range (ecs);
c2c6d25f
JM
7300 return;
7301 }
7302 else
7303 {
7304 /* Put the step-breakpoint there and go until there. */
51abb421 7305 symtab_and_line sr_sal;
c2c6d25f
JM
7306 sr_sal.pc = ecs->stop_func_start;
7307 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7308 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7309
c2c6d25f 7310 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7311 some machines the prologue is where the new fp value is
7312 established. */
a6d9a66e 7313 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7314
7315 /* And make sure stepping stops right away then. */
16c381f0
JK
7316 ecs->event_thread->control.step_range_end
7317 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7318 }
7319 keep_going (ecs);
7320}
d4f3574e 7321
b2175913
MS
7322/* Inferior has stepped backward into a subroutine call with source
7323 code that we should not step over. Do step to the beginning of the
7324 last line of code in it. */
7325
7326static void
568d6575
UW
7327handle_step_into_function_backward (struct gdbarch *gdbarch,
7328 struct execution_control_state *ecs)
b2175913 7329{
43f3e411 7330 struct compunit_symtab *cust;
167e4384 7331 struct symtab_and_line stop_func_sal;
b2175913 7332
7e324e48
GB
7333 fill_in_stop_func (gdbarch, ecs);
7334
43f3e411
DE
7335 cust = find_pc_compunit_symtab (stop_pc);
7336 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7337 ecs->stop_func_start
7338 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7339
7340 stop_func_sal = find_pc_line (stop_pc, 0);
7341
7342 /* OK, we're just going to keep stepping here. */
7343 if (stop_func_sal.pc == stop_pc)
7344 {
7345 /* We're there already. Just stop stepping now. */
bdc36728 7346 end_stepping_range (ecs);
b2175913
MS
7347 }
7348 else
7349 {
7350 /* Else just reset the step range and keep going.
7351 No step-resume breakpoint, they don't work for
7352 epilogues, which can have multiple entry paths. */
16c381f0
JK
7353 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7354 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7355 keep_going (ecs);
7356 }
7357 return;
7358}
7359
d3169d93 7360/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7361 This is used to both functions and to skip over code. */
7362
7363static void
2c03e5be
PA
7364insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7365 struct symtab_and_line sr_sal,
7366 struct frame_id sr_id,
7367 enum bptype sr_type)
44cbf7b5 7368{
611c83ae
PA
7369 /* There should never be more than one step-resume or longjmp-resume
7370 breakpoint per thread, so we should never be setting a new
44cbf7b5 7371 step_resume_breakpoint when one is already active. */
8358c15c 7372 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7373 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7374
7375 if (debug_infrun)
7376 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7377 "infrun: inserting step-resume breakpoint at %s\n",
7378 paddress (gdbarch, sr_sal.pc));
d3169d93 7379
8358c15c 7380 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7381 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7382}
7383
9da8c2a0 7384void
2c03e5be
PA
7385insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7386 struct symtab_and_line sr_sal,
7387 struct frame_id sr_id)
7388{
7389 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7390 sr_sal, sr_id,
7391 bp_step_resume);
44cbf7b5 7392}
7ce450bd 7393
2c03e5be
PA
7394/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7395 This is used to skip a potential signal handler.
7ce450bd 7396
14e60db5
DJ
7397 This is called with the interrupted function's frame. The signal
7398 handler, when it returns, will resume the interrupted function at
7399 RETURN_FRAME.pc. */
d303a6c7
AC
7400
7401static void
2c03e5be 7402insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7403{
f4c1edd8 7404 gdb_assert (return_frame != NULL);
d303a6c7 7405
51abb421
PA
7406 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7407
7408 symtab_and_line sr_sal;
568d6575 7409 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7410 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7411 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7412
2c03e5be
PA
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7414 get_stack_frame_id (return_frame),
7415 bp_hp_step_resume);
d303a6c7
AC
7416}
7417
2c03e5be
PA
7418/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7419 is used to skip a function after stepping into it (for "next" or if
7420 the called function has no debugging information).
14e60db5
DJ
7421
7422 The current function has almost always been reached by single
7423 stepping a call or return instruction. NEXT_FRAME belongs to the
7424 current function, and the breakpoint will be set at the caller's
7425 resume address.
7426
7427 This is a separate function rather than reusing
2c03e5be 7428 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7429 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7430 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7431
7432static void
7433insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7434{
14e60db5
DJ
7435 /* We shouldn't have gotten here if we don't know where the call site
7436 is. */
c7ce8faa 7437 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7438
51abb421 7439 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7440
51abb421 7441 symtab_and_line sr_sal;
c7ce8faa
DJ
7442 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7443 frame_unwind_caller_pc (next_frame));
14e60db5 7444 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7445 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7446
a6d9a66e 7447 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7448 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7449}
7450
611c83ae
PA
7451/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7452 new breakpoint at the target of a jmp_buf. The handling of
7453 longjmp-resume uses the same mechanisms used for handling
7454 "step-resume" breakpoints. */
7455
7456static void
a6d9a66e 7457insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7458{
e81a37f7
TT
7459 /* There should never be more than one longjmp-resume breakpoint per
7460 thread, so we should never be setting a new
611c83ae 7461 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7462 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7463
7464 if (debug_infrun)
7465 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7466 "infrun: inserting longjmp-resume breakpoint at %s\n",
7467 paddress (gdbarch, pc));
611c83ae 7468
e81a37f7 7469 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7470 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7471}
7472
186c406b
TT
7473/* Insert an exception resume breakpoint. TP is the thread throwing
7474 the exception. The block B is the block of the unwinder debug hook
7475 function. FRAME is the frame corresponding to the call to this
7476 function. SYM is the symbol of the function argument holding the
7477 target PC of the exception. */
7478
7479static void
7480insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7481 const struct block *b,
186c406b
TT
7482 struct frame_info *frame,
7483 struct symbol *sym)
7484{
492d29ea 7485 TRY
186c406b 7486 {
63e43d3a 7487 struct block_symbol vsym;
186c406b
TT
7488 struct value *value;
7489 CORE_ADDR handler;
7490 struct breakpoint *bp;
7491
63e43d3a
PMR
7492 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7493 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7494 /* If the value was optimized out, revert to the old behavior. */
7495 if (! value_optimized_out (value))
7496 {
7497 handler = value_as_address (value);
7498
7499 if (debug_infrun)
7500 fprintf_unfiltered (gdb_stdlog,
7501 "infrun: exception resume at %lx\n",
7502 (unsigned long) handler);
7503
7504 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7505 handler,
7506 bp_exception_resume).release ();
c70a6932
JK
7507
7508 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7509 frame = NULL;
7510
5d5658a1 7511 bp->thread = tp->global_num;
186c406b
TT
7512 inferior_thread ()->control.exception_resume_breakpoint = bp;
7513 }
7514 }
492d29ea
PA
7515 CATCH (e, RETURN_MASK_ERROR)
7516 {
7517 /* We want to ignore errors here. */
7518 }
7519 END_CATCH
186c406b
TT
7520}
7521
28106bc2
SDJ
7522/* A helper for check_exception_resume that sets an
7523 exception-breakpoint based on a SystemTap probe. */
7524
7525static void
7526insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7527 const struct bound_probe *probe,
28106bc2
SDJ
7528 struct frame_info *frame)
7529{
7530 struct value *arg_value;
7531 CORE_ADDR handler;
7532 struct breakpoint *bp;
7533
7534 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7535 if (!arg_value)
7536 return;
7537
7538 handler = value_as_address (arg_value);
7539
7540 if (debug_infrun)
7541 fprintf_unfiltered (gdb_stdlog,
7542 "infrun: exception resume at %s\n",
6bac7473 7543 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7544 handler));
7545
7546 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7547 handler, bp_exception_resume).release ();
5d5658a1 7548 bp->thread = tp->global_num;
28106bc2
SDJ
7549 inferior_thread ()->control.exception_resume_breakpoint = bp;
7550}
7551
186c406b
TT
7552/* This is called when an exception has been intercepted. Check to
7553 see whether the exception's destination is of interest, and if so,
7554 set an exception resume breakpoint there. */
7555
7556static void
7557check_exception_resume (struct execution_control_state *ecs,
28106bc2 7558 struct frame_info *frame)
186c406b 7559{
729662a5 7560 struct bound_probe probe;
28106bc2
SDJ
7561 struct symbol *func;
7562
7563 /* First see if this exception unwinding breakpoint was set via a
7564 SystemTap probe point. If so, the probe has two arguments: the
7565 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7566 set a breakpoint there. */
6bac7473 7567 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7568 if (probe.prob)
28106bc2 7569 {
729662a5 7570 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7571 return;
7572 }
7573
7574 func = get_frame_function (frame);
7575 if (!func)
7576 return;
186c406b 7577
492d29ea 7578 TRY
186c406b 7579 {
3977b71f 7580 const struct block *b;
8157b174 7581 struct block_iterator iter;
186c406b
TT
7582 struct symbol *sym;
7583 int argno = 0;
7584
7585 /* The exception breakpoint is a thread-specific breakpoint on
7586 the unwinder's debug hook, declared as:
7587
7588 void _Unwind_DebugHook (void *cfa, void *handler);
7589
7590 The CFA argument indicates the frame to which control is
7591 about to be transferred. HANDLER is the destination PC.
7592
7593 We ignore the CFA and set a temporary breakpoint at HANDLER.
7594 This is not extremely efficient but it avoids issues in gdb
7595 with computing the DWARF CFA, and it also works even in weird
7596 cases such as throwing an exception from inside a signal
7597 handler. */
7598
7599 b = SYMBOL_BLOCK_VALUE (func);
7600 ALL_BLOCK_SYMBOLS (b, iter, sym)
7601 {
7602 if (!SYMBOL_IS_ARGUMENT (sym))
7603 continue;
7604
7605 if (argno == 0)
7606 ++argno;
7607 else
7608 {
7609 insert_exception_resume_breakpoint (ecs->event_thread,
7610 b, frame, sym);
7611 break;
7612 }
7613 }
7614 }
492d29ea
PA
7615 CATCH (e, RETURN_MASK_ERROR)
7616 {
7617 }
7618 END_CATCH
186c406b
TT
7619}
7620
104c1213 7621static void
22bcd14b 7622stop_waiting (struct execution_control_state *ecs)
104c1213 7623{
527159b7 7624 if (debug_infrun)
22bcd14b 7625 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7626
cd0fc7c3
SS
7627 /* Let callers know we don't want to wait for the inferior anymore. */
7628 ecs->wait_some_more = 0;
fbea99ea
PA
7629
7630 /* If all-stop, but the target is always in non-stop mode, stop all
7631 threads now that we're presenting the stop to the user. */
7632 if (!non_stop && target_is_non_stop_p ())
7633 stop_all_threads ();
cd0fc7c3
SS
7634}
7635
4d9d9d04
PA
7636/* Like keep_going, but passes the signal to the inferior, even if the
7637 signal is set to nopass. */
d4f3574e
SS
7638
7639static void
4d9d9d04 7640keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7641{
4d9d9d04 7642 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7643 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7644
d4f3574e 7645 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7646 ecs->event_thread->prev_pc
7647 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7648
4d9d9d04 7649 if (ecs->event_thread->control.trap_expected)
d4f3574e 7650 {
4d9d9d04
PA
7651 struct thread_info *tp = ecs->event_thread;
7652
7653 if (debug_infrun)
7654 fprintf_unfiltered (gdb_stdlog,
7655 "infrun: %s has trap_expected set, "
7656 "resuming to collect trap\n",
7657 target_pid_to_str (tp->ptid));
7658
a9ba6bae
PA
7659 /* We haven't yet gotten our trap, and either: intercepted a
7660 non-signal event (e.g., a fork); or took a signal which we
7661 are supposed to pass through to the inferior. Simply
7662 continue. */
64ce06e4 7663 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7664 }
372316f1
PA
7665 else if (step_over_info_valid_p ())
7666 {
7667 /* Another thread is stepping over a breakpoint in-line. If
7668 this thread needs a step-over too, queue the request. In
7669 either case, this resume must be deferred for later. */
7670 struct thread_info *tp = ecs->event_thread;
7671
7672 if (ecs->hit_singlestep_breakpoint
7673 || thread_still_needs_step_over (tp))
7674 {
7675 if (debug_infrun)
7676 fprintf_unfiltered (gdb_stdlog,
7677 "infrun: step-over already in progress: "
7678 "step-over for %s deferred\n",
7679 target_pid_to_str (tp->ptid));
7680 thread_step_over_chain_enqueue (tp);
7681 }
7682 else
7683 {
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: step-over in progress: "
7687 "resume of %s deferred\n",
7688 target_pid_to_str (tp->ptid));
7689 }
372316f1 7690 }
d4f3574e
SS
7691 else
7692 {
31e77af2 7693 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7694 int remove_bp;
7695 int remove_wps;
8d297bbf 7696 step_over_what step_what;
31e77af2 7697
d4f3574e 7698 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7699 anyway (if we got a signal, the user asked it be passed to
7700 the child)
7701 -- or --
7702 We got our expected trap, but decided we should resume from
7703 it.
d4f3574e 7704
a9ba6bae 7705 We're going to run this baby now!
d4f3574e 7706
c36b740a
VP
7707 Note that insert_breakpoints won't try to re-insert
7708 already inserted breakpoints. Therefore, we don't
7709 care if breakpoints were already inserted, or not. */
a9ba6bae 7710
31e77af2
PA
7711 /* If we need to step over a breakpoint, and we're not using
7712 displaced stepping to do so, insert all breakpoints
7713 (watchpoints, etc.) but the one we're stepping over, step one
7714 instruction, and then re-insert the breakpoint when that step
7715 is finished. */
963f9c80 7716
6c4cfb24
PA
7717 step_what = thread_still_needs_step_over (ecs->event_thread);
7718
963f9c80 7719 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7720 || (step_what & STEP_OVER_BREAKPOINT));
7721 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7722
cb71640d
PA
7723 /* We can't use displaced stepping if we need to step past a
7724 watchpoint. The instruction copied to the scratch pad would
7725 still trigger the watchpoint. */
7726 if (remove_bp
3fc8eb30 7727 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7728 {
a01bda52 7729 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7730 regcache_read_pc (regcache), remove_wps,
7731 ecs->event_thread->global_num);
45e8c884 7732 }
963f9c80 7733 else if (remove_wps)
21edc42f 7734 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7735
7736 /* If we now need to do an in-line step-over, we need to stop
7737 all other threads. Note this must be done before
7738 insert_breakpoints below, because that removes the breakpoint
7739 we're about to step over, otherwise other threads could miss
7740 it. */
fbea99ea 7741 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7742 stop_all_threads ();
abbb1732 7743
31e77af2 7744 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7745 TRY
31e77af2
PA
7746 {
7747 insert_breakpoints ();
7748 }
492d29ea 7749 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7750 {
7751 exception_print (gdb_stderr, e);
22bcd14b 7752 stop_waiting (ecs);
31e77af2 7753 return;
d4f3574e 7754 }
492d29ea 7755 END_CATCH
d4f3574e 7756
963f9c80 7757 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7758
64ce06e4 7759 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7760 }
7761
488f131b 7762 prepare_to_wait (ecs);
d4f3574e
SS
7763}
7764
4d9d9d04
PA
7765/* Called when we should continue running the inferior, because the
7766 current event doesn't cause a user visible stop. This does the
7767 resuming part; waiting for the next event is done elsewhere. */
7768
7769static void
7770keep_going (struct execution_control_state *ecs)
7771{
7772 if (ecs->event_thread->control.trap_expected
7773 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7774 ecs->event_thread->control.trap_expected = 0;
7775
7776 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7777 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7778 keep_going_pass_signal (ecs);
7779}
7780
104c1213
JM
7781/* This function normally comes after a resume, before
7782 handle_inferior_event exits. It takes care of any last bits of
7783 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7784
104c1213
JM
7785static void
7786prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7787{
527159b7 7788 if (debug_infrun)
8a9de0e4 7789 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7790
104c1213 7791 ecs->wait_some_more = 1;
0b333c5e
PA
7792
7793 if (!target_is_async_p ())
7794 mark_infrun_async_event_handler ();
c906108c 7795}
11cf8741 7796
fd664c91 7797/* We are done with the step range of a step/next/si/ni command.
b57bacec 7798 Called once for each n of a "step n" operation. */
fd664c91
PA
7799
7800static void
bdc36728 7801end_stepping_range (struct execution_control_state *ecs)
fd664c91 7802{
bdc36728 7803 ecs->event_thread->control.stop_step = 1;
bdc36728 7804 stop_waiting (ecs);
fd664c91
PA
7805}
7806
33d62d64
JK
7807/* Several print_*_reason functions to print why the inferior has stopped.
7808 We always print something when the inferior exits, or receives a signal.
7809 The rest of the cases are dealt with later on in normal_stop and
7810 print_it_typical. Ideally there should be a call to one of these
7811 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7812 stop_waiting is called.
33d62d64 7813
fd664c91
PA
7814 Note that we don't call these directly, instead we delegate that to
7815 the interpreters, through observers. Interpreters then call these
7816 with whatever uiout is right. */
33d62d64 7817
fd664c91
PA
7818void
7819print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7820{
fd664c91 7821 /* For CLI-like interpreters, print nothing. */
33d62d64 7822
112e8700 7823 if (uiout->is_mi_like_p ())
fd664c91 7824 {
112e8700 7825 uiout->field_string ("reason",
fd664c91
PA
7826 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7827 }
7828}
33d62d64 7829
fd664c91
PA
7830void
7831print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7832{
33d62d64 7833 annotate_signalled ();
112e8700
SM
7834 if (uiout->is_mi_like_p ())
7835 uiout->field_string
7836 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7837 uiout->text ("\nProgram terminated with signal ");
33d62d64 7838 annotate_signal_name ();
112e8700 7839 uiout->field_string ("signal-name",
2ea28649 7840 gdb_signal_to_name (siggnal));
33d62d64 7841 annotate_signal_name_end ();
112e8700 7842 uiout->text (", ");
33d62d64 7843 annotate_signal_string ();
112e8700 7844 uiout->field_string ("signal-meaning",
2ea28649 7845 gdb_signal_to_string (siggnal));
33d62d64 7846 annotate_signal_string_end ();
112e8700
SM
7847 uiout->text (".\n");
7848 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7849}
7850
fd664c91
PA
7851void
7852print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7853{
fda326dd
TT
7854 struct inferior *inf = current_inferior ();
7855 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7856
33d62d64
JK
7857 annotate_exited (exitstatus);
7858 if (exitstatus)
7859 {
112e8700
SM
7860 if (uiout->is_mi_like_p ())
7861 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7862 uiout->text ("[Inferior ");
7863 uiout->text (plongest (inf->num));
7864 uiout->text (" (");
7865 uiout->text (pidstr);
7866 uiout->text (") exited with code ");
7867 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7868 uiout->text ("]\n");
33d62d64
JK
7869 }
7870 else
11cf8741 7871 {
112e8700
SM
7872 if (uiout->is_mi_like_p ())
7873 uiout->field_string
7874 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7875 uiout->text ("[Inferior ");
7876 uiout->text (plongest (inf->num));
7877 uiout->text (" (");
7878 uiout->text (pidstr);
7879 uiout->text (") exited normally]\n");
33d62d64 7880 }
33d62d64
JK
7881}
7882
012b3a21
WT
7883/* Some targets/architectures can do extra processing/display of
7884 segmentation faults. E.g., Intel MPX boundary faults.
7885 Call the architecture dependent function to handle the fault. */
7886
7887static void
7888handle_segmentation_fault (struct ui_out *uiout)
7889{
7890 struct regcache *regcache = get_current_regcache ();
ac7936df 7891 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7892
7893 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7894 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7895}
7896
fd664c91
PA
7897void
7898print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7899{
f303dbd6
PA
7900 struct thread_info *thr = inferior_thread ();
7901
33d62d64
JK
7902 annotate_signal ();
7903
112e8700 7904 if (uiout->is_mi_like_p ())
f303dbd6
PA
7905 ;
7906 else if (show_thread_that_caused_stop ())
33d62d64 7907 {
f303dbd6 7908 const char *name;
33d62d64 7909
112e8700
SM
7910 uiout->text ("\nThread ");
7911 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7912
7913 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7914 if (name != NULL)
7915 {
112e8700
SM
7916 uiout->text (" \"");
7917 uiout->field_fmt ("name", "%s", name);
7918 uiout->text ("\"");
f303dbd6 7919 }
33d62d64 7920 }
f303dbd6 7921 else
112e8700 7922 uiout->text ("\nProgram");
f303dbd6 7923
112e8700
SM
7924 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7925 uiout->text (" stopped");
33d62d64
JK
7926 else
7927 {
112e8700 7928 uiout->text (" received signal ");
8b93c638 7929 annotate_signal_name ();
112e8700
SM
7930 if (uiout->is_mi_like_p ())
7931 uiout->field_string
7932 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7933 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7934 annotate_signal_name_end ();
112e8700 7935 uiout->text (", ");
8b93c638 7936 annotate_signal_string ();
112e8700 7937 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7938
7939 if (siggnal == GDB_SIGNAL_SEGV)
7940 handle_segmentation_fault (uiout);
7941
8b93c638 7942 annotate_signal_string_end ();
33d62d64 7943 }
112e8700 7944 uiout->text (".\n");
33d62d64 7945}
252fbfc8 7946
fd664c91
PA
7947void
7948print_no_history_reason (struct ui_out *uiout)
33d62d64 7949{
112e8700 7950 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7951}
43ff13b4 7952
0c7e1a46
PA
7953/* Print current location without a level number, if we have changed
7954 functions or hit a breakpoint. Print source line if we have one.
7955 bpstat_print contains the logic deciding in detail what to print,
7956 based on the event(s) that just occurred. */
7957
243a9253
PA
7958static void
7959print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7960{
7961 int bpstat_ret;
f486487f 7962 enum print_what source_flag;
0c7e1a46
PA
7963 int do_frame_printing = 1;
7964 struct thread_info *tp = inferior_thread ();
7965
7966 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7967 switch (bpstat_ret)
7968 {
7969 case PRINT_UNKNOWN:
7970 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7971 should) carry around the function and does (or should) use
7972 that when doing a frame comparison. */
7973 if (tp->control.stop_step
7974 && frame_id_eq (tp->control.step_frame_id,
7975 get_frame_id (get_current_frame ()))
885eeb5b 7976 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7977 {
7978 /* Finished step, just print source line. */
7979 source_flag = SRC_LINE;
7980 }
7981 else
7982 {
7983 /* Print location and source line. */
7984 source_flag = SRC_AND_LOC;
7985 }
7986 break;
7987 case PRINT_SRC_AND_LOC:
7988 /* Print location and source line. */
7989 source_flag = SRC_AND_LOC;
7990 break;
7991 case PRINT_SRC_ONLY:
7992 source_flag = SRC_LINE;
7993 break;
7994 case PRINT_NOTHING:
7995 /* Something bogus. */
7996 source_flag = SRC_LINE;
7997 do_frame_printing = 0;
7998 break;
7999 default:
8000 internal_error (__FILE__, __LINE__, _("Unknown value."));
8001 }
8002
8003 /* The behavior of this routine with respect to the source
8004 flag is:
8005 SRC_LINE: Print only source line
8006 LOCATION: Print only location
8007 SRC_AND_LOC: Print location and source line. */
8008 if (do_frame_printing)
8009 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8010}
8011
243a9253
PA
8012/* See infrun.h. */
8013
8014void
8015print_stop_event (struct ui_out *uiout)
8016{
243a9253
PA
8017 struct target_waitstatus last;
8018 ptid_t last_ptid;
8019 struct thread_info *tp;
8020
8021 get_last_target_status (&last_ptid, &last);
8022
67ad9399
TT
8023 {
8024 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8025
67ad9399 8026 print_stop_location (&last);
243a9253 8027
67ad9399
TT
8028 /* Display the auto-display expressions. */
8029 do_displays ();
8030 }
243a9253
PA
8031
8032 tp = inferior_thread ();
8033 if (tp->thread_fsm != NULL
8034 && thread_fsm_finished_p (tp->thread_fsm))
8035 {
8036 struct return_value_info *rv;
8037
8038 rv = thread_fsm_return_value (tp->thread_fsm);
8039 if (rv != NULL)
8040 print_return_value (uiout, rv);
8041 }
0c7e1a46
PA
8042}
8043
388a7084
PA
8044/* See infrun.h. */
8045
8046void
8047maybe_remove_breakpoints (void)
8048{
8049 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8050 {
8051 if (remove_breakpoints ())
8052 {
223ffa71 8053 target_terminal::ours_for_output ();
388a7084
PA
8054 printf_filtered (_("Cannot remove breakpoints because "
8055 "program is no longer writable.\nFurther "
8056 "execution is probably impossible.\n"));
8057 }
8058 }
8059}
8060
4c2f2a79
PA
8061/* The execution context that just caused a normal stop. */
8062
8063struct stop_context
8064{
8065 /* The stop ID. */
8066 ULONGEST stop_id;
c906108c 8067
4c2f2a79 8068 /* The event PTID. */
c906108c 8069
4c2f2a79
PA
8070 ptid_t ptid;
8071
8072 /* If stopp for a thread event, this is the thread that caused the
8073 stop. */
8074 struct thread_info *thread;
8075
8076 /* The inferior that caused the stop. */
8077 int inf_num;
8078};
8079
8080/* Returns a new stop context. If stopped for a thread event, this
8081 takes a strong reference to the thread. */
8082
8083static struct stop_context *
8084save_stop_context (void)
8085{
224c3ddb 8086 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8087
8088 sc->stop_id = get_stop_id ();
8089 sc->ptid = inferior_ptid;
8090 sc->inf_num = current_inferior ()->num;
8091
8092 if (!ptid_equal (inferior_ptid, null_ptid))
8093 {
8094 /* Take a strong reference so that the thread can't be deleted
8095 yet. */
8096 sc->thread = inferior_thread ();
803bdfe4 8097 sc->thread->incref ();
4c2f2a79
PA
8098 }
8099 else
8100 sc->thread = NULL;
8101
8102 return sc;
8103}
8104
8105/* Release a stop context previously created with save_stop_context.
8106 Releases the strong reference to the thread as well. */
8107
8108static void
8109release_stop_context_cleanup (void *arg)
8110{
9a3c8263 8111 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8112
8113 if (sc->thread != NULL)
803bdfe4 8114 sc->thread->decref ();
4c2f2a79
PA
8115 xfree (sc);
8116}
8117
8118/* Return true if the current context no longer matches the saved stop
8119 context. */
8120
8121static int
8122stop_context_changed (struct stop_context *prev)
8123{
8124 if (!ptid_equal (prev->ptid, inferior_ptid))
8125 return 1;
8126 if (prev->inf_num != current_inferior ()->num)
8127 return 1;
8128 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8129 return 1;
8130 if (get_stop_id () != prev->stop_id)
8131 return 1;
8132 return 0;
8133}
8134
8135/* See infrun.h. */
8136
8137int
96baa820 8138normal_stop (void)
c906108c 8139{
73b65bb0
DJ
8140 struct target_waitstatus last;
8141 ptid_t last_ptid;
29f49a6a 8142 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8143 ptid_t pid_ptid;
73b65bb0
DJ
8144
8145 get_last_target_status (&last_ptid, &last);
8146
4c2f2a79
PA
8147 new_stop_id ();
8148
29f49a6a
PA
8149 /* If an exception is thrown from this point on, make sure to
8150 propagate GDB's knowledge of the executing state to the
8151 frontend/user running state. A QUIT is an easy exception to see
8152 here, so do this before any filtered output. */
c35b1492
PA
8153 if (!non_stop)
8154 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8155 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8156 || last.kind == TARGET_WAITKIND_EXITED)
8157 {
8158 /* On some targets, we may still have live threads in the
8159 inferior when we get a process exit event. E.g., for
8160 "checkpoint", when the current checkpoint/fork exits,
8161 linux-fork.c automatically switches to another fork from
8162 within target_mourn_inferior. */
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 {
8165 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8166 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8167 }
8168 }
8169 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8170 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8171
b57bacec
PA
8172 /* As we're presenting a stop, and potentially removing breakpoints,
8173 update the thread list so we can tell whether there are threads
8174 running on the target. With target remote, for example, we can
8175 only learn about new threads when we explicitly update the thread
8176 list. Do this before notifying the interpreters about signal
8177 stops, end of stepping ranges, etc., so that the "new thread"
8178 output is emitted before e.g., "Program received signal FOO",
8179 instead of after. */
8180 update_thread_list ();
8181
8182 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8183 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8184
c906108c
SS
8185 /* As with the notification of thread events, we want to delay
8186 notifying the user that we've switched thread context until
8187 the inferior actually stops.
8188
73b65bb0
DJ
8189 There's no point in saying anything if the inferior has exited.
8190 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8191 "received a signal".
8192
8193 Also skip saying anything in non-stop mode. In that mode, as we
8194 don't want GDB to switch threads behind the user's back, to avoid
8195 races where the user is typing a command to apply to thread x,
8196 but GDB switches to thread y before the user finishes entering
8197 the command, fetch_inferior_event installs a cleanup to restore
8198 the current thread back to the thread the user had selected right
8199 after this event is handled, so we're not really switching, only
8200 informing of a stop. */
4f8d22e3
PA
8201 if (!non_stop
8202 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8203 && target_has_execution
8204 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8205 && last.kind != TARGET_WAITKIND_EXITED
8206 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8207 {
0e454242 8208 SWITCH_THRU_ALL_UIS ()
3b12939d 8209 {
223ffa71 8210 target_terminal::ours_for_output ();
3b12939d
PA
8211 printf_filtered (_("[Switching to %s]\n"),
8212 target_pid_to_str (inferior_ptid));
8213 annotate_thread_changed ();
8214 }
39f77062 8215 previous_inferior_ptid = inferior_ptid;
c906108c 8216 }
c906108c 8217
0e5bf2a8
PA
8218 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8219 {
0e454242 8220 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8221 if (current_ui->prompt_state == PROMPT_BLOCKED)
8222 {
223ffa71 8223 target_terminal::ours_for_output ();
3b12939d
PA
8224 printf_filtered (_("No unwaited-for children left.\n"));
8225 }
0e5bf2a8
PA
8226 }
8227
b57bacec 8228 /* Note: this depends on the update_thread_list call above. */
388a7084 8229 maybe_remove_breakpoints ();
c906108c 8230
c906108c
SS
8231 /* If an auto-display called a function and that got a signal,
8232 delete that auto-display to avoid an infinite recursion. */
8233
8234 if (stopped_by_random_signal)
8235 disable_current_display ();
8236
0e454242 8237 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8238 {
8239 async_enable_stdin ();
8240 }
c906108c 8241
388a7084
PA
8242 /* Let the user/frontend see the threads as stopped. */
8243 do_cleanups (old_chain);
8244
8245 /* Select innermost stack frame - i.e., current frame is frame 0,
8246 and current location is based on that. Handle the case where the
8247 dummy call is returning after being stopped. E.g. the dummy call
8248 previously hit a breakpoint. (If the dummy call returns
8249 normally, we won't reach here.) Do this before the stop hook is
8250 run, so that it doesn't get to see the temporary dummy frame,
8251 which is not where we'll present the stop. */
8252 if (has_stack_frames ())
8253 {
8254 if (stop_stack_dummy == STOP_STACK_DUMMY)
8255 {
8256 /* Pop the empty frame that contains the stack dummy. This
8257 also restores inferior state prior to the call (struct
8258 infcall_suspend_state). */
8259 struct frame_info *frame = get_current_frame ();
8260
8261 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8262 frame_pop (frame);
8263 /* frame_pop calls reinit_frame_cache as the last thing it
8264 does which means there's now no selected frame. */
8265 }
8266
8267 select_frame (get_current_frame ());
8268
8269 /* Set the current source location. */
8270 set_current_sal_from_frame (get_current_frame ());
8271 }
dd7e2d2b
PA
8272
8273 /* Look up the hook_stop and run it (CLI internally handles problem
8274 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8275 if (stop_command != NULL)
8276 {
8277 struct stop_context *saved_context = save_stop_context ();
8278 struct cleanup *old_chain
8279 = make_cleanup (release_stop_context_cleanup, saved_context);
8280
bf469271
PA
8281 TRY
8282 {
8283 execute_cmd_pre_hook (stop_command);
8284 }
8285 CATCH (ex, RETURN_MASK_ALL)
8286 {
8287 exception_fprintf (gdb_stderr, ex,
8288 "Error while running hook_stop:\n");
8289 }
8290 END_CATCH
4c2f2a79
PA
8291
8292 /* If the stop hook resumes the target, then there's no point in
8293 trying to notify about the previous stop; its context is
8294 gone. Likewise if the command switches thread or inferior --
8295 the observers would print a stop for the wrong
8296 thread/inferior. */
8297 if (stop_context_changed (saved_context))
8298 {
8299 do_cleanups (old_chain);
8300 return 1;
8301 }
8302 do_cleanups (old_chain);
8303 }
dd7e2d2b 8304
388a7084
PA
8305 /* Notify observers about the stop. This is where the interpreters
8306 print the stop event. */
8307 if (!ptid_equal (inferior_ptid, null_ptid))
8308 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8309 stop_print_frame);
8310 else
8311 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8312
243a9253
PA
8313 annotate_stopped ();
8314
48844aa6
PA
8315 if (target_has_execution)
8316 {
8317 if (last.kind != TARGET_WAITKIND_SIGNALLED
8318 && last.kind != TARGET_WAITKIND_EXITED)
8319 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8320 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8321 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8322 }
6c95b8df
PA
8323
8324 /* Try to get rid of automatically added inferiors that are no
8325 longer needed. Keeping those around slows down things linearly.
8326 Note that this never removes the current inferior. */
8327 prune_inferiors ();
4c2f2a79
PA
8328
8329 return 0;
c906108c 8330}
c906108c 8331\f
c5aa993b 8332int
96baa820 8333signal_stop_state (int signo)
c906108c 8334{
d6b48e9c 8335 return signal_stop[signo];
c906108c
SS
8336}
8337
c5aa993b 8338int
96baa820 8339signal_print_state (int signo)
c906108c
SS
8340{
8341 return signal_print[signo];
8342}
8343
c5aa993b 8344int
96baa820 8345signal_pass_state (int signo)
c906108c
SS
8346{
8347 return signal_program[signo];
8348}
8349
2455069d
UW
8350static void
8351signal_cache_update (int signo)
8352{
8353 if (signo == -1)
8354 {
a493e3e2 8355 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8356 signal_cache_update (signo);
8357
8358 return;
8359 }
8360
8361 signal_pass[signo] = (signal_stop[signo] == 0
8362 && signal_print[signo] == 0
ab04a2af
TT
8363 && signal_program[signo] == 1
8364 && signal_catch[signo] == 0);
2455069d
UW
8365}
8366
488f131b 8367int
7bda5e4a 8368signal_stop_update (int signo, int state)
d4f3574e
SS
8369{
8370 int ret = signal_stop[signo];
abbb1732 8371
d4f3574e 8372 signal_stop[signo] = state;
2455069d 8373 signal_cache_update (signo);
d4f3574e
SS
8374 return ret;
8375}
8376
488f131b 8377int
7bda5e4a 8378signal_print_update (int signo, int state)
d4f3574e
SS
8379{
8380 int ret = signal_print[signo];
abbb1732 8381
d4f3574e 8382 signal_print[signo] = state;
2455069d 8383 signal_cache_update (signo);
d4f3574e
SS
8384 return ret;
8385}
8386
488f131b 8387int
7bda5e4a 8388signal_pass_update (int signo, int state)
d4f3574e
SS
8389{
8390 int ret = signal_program[signo];
abbb1732 8391
d4f3574e 8392 signal_program[signo] = state;
2455069d 8393 signal_cache_update (signo);
d4f3574e
SS
8394 return ret;
8395}
8396
ab04a2af
TT
8397/* Update the global 'signal_catch' from INFO and notify the
8398 target. */
8399
8400void
8401signal_catch_update (const unsigned int *info)
8402{
8403 int i;
8404
8405 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8406 signal_catch[i] = info[i] > 0;
8407 signal_cache_update (-1);
8408 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8409}
8410
c906108c 8411static void
96baa820 8412sig_print_header (void)
c906108c 8413{
3e43a32a
MS
8414 printf_filtered (_("Signal Stop\tPrint\tPass "
8415 "to program\tDescription\n"));
c906108c
SS
8416}
8417
8418static void
2ea28649 8419sig_print_info (enum gdb_signal oursig)
c906108c 8420{
2ea28649 8421 const char *name = gdb_signal_to_name (oursig);
c906108c 8422 int name_padding = 13 - strlen (name);
96baa820 8423
c906108c
SS
8424 if (name_padding <= 0)
8425 name_padding = 0;
8426
8427 printf_filtered ("%s", name);
488f131b 8428 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8429 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8430 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8431 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8432 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8433}
8434
8435/* Specify how various signals in the inferior should be handled. */
8436
8437static void
0b39b52e 8438handle_command (const char *args, int from_tty)
c906108c 8439{
c906108c
SS
8440 int digits, wordlen;
8441 int sigfirst, signum, siglast;
2ea28649 8442 enum gdb_signal oursig;
c906108c
SS
8443 int allsigs;
8444 int nsigs;
8445 unsigned char *sigs;
c906108c
SS
8446
8447 if (args == NULL)
8448 {
e2e0b3e5 8449 error_no_arg (_("signal to handle"));
c906108c
SS
8450 }
8451
1777feb0 8452 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8453
a493e3e2 8454 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8455 sigs = (unsigned char *) alloca (nsigs);
8456 memset (sigs, 0, nsigs);
8457
1777feb0 8458 /* Break the command line up into args. */
c906108c 8459
773a1edc 8460 gdb_argv built_argv (args);
c906108c
SS
8461
8462 /* Walk through the args, looking for signal oursigs, signal names, and
8463 actions. Signal numbers and signal names may be interspersed with
8464 actions, with the actions being performed for all signals cumulatively
1777feb0 8465 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8466
773a1edc 8467 for (char *arg : built_argv)
c906108c 8468 {
773a1edc
TT
8469 wordlen = strlen (arg);
8470 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8471 {;
8472 }
8473 allsigs = 0;
8474 sigfirst = siglast = -1;
8475
773a1edc 8476 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8477 {
8478 /* Apply action to all signals except those used by the
1777feb0 8479 debugger. Silently skip those. */
c906108c
SS
8480 allsigs = 1;
8481 sigfirst = 0;
8482 siglast = nsigs - 1;
8483 }
773a1edc 8484 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8485 {
8486 SET_SIGS (nsigs, sigs, signal_stop);
8487 SET_SIGS (nsigs, sigs, signal_print);
8488 }
773a1edc 8489 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8490 {
8491 UNSET_SIGS (nsigs, sigs, signal_program);
8492 }
773a1edc 8493 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8494 {
8495 SET_SIGS (nsigs, sigs, signal_print);
8496 }
773a1edc 8497 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8498 {
8499 SET_SIGS (nsigs, sigs, signal_program);
8500 }
773a1edc 8501 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8502 {
8503 UNSET_SIGS (nsigs, sigs, signal_stop);
8504 }
773a1edc 8505 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8506 {
8507 SET_SIGS (nsigs, sigs, signal_program);
8508 }
773a1edc 8509 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8510 {
8511 UNSET_SIGS (nsigs, sigs, signal_print);
8512 UNSET_SIGS (nsigs, sigs, signal_stop);
8513 }
773a1edc 8514 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8515 {
8516 UNSET_SIGS (nsigs, sigs, signal_program);
8517 }
8518 else if (digits > 0)
8519 {
8520 /* It is numeric. The numeric signal refers to our own
8521 internal signal numbering from target.h, not to host/target
8522 signal number. This is a feature; users really should be
8523 using symbolic names anyway, and the common ones like
8524 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8525
8526 sigfirst = siglast = (int)
773a1edc
TT
8527 gdb_signal_from_command (atoi (arg));
8528 if (arg[digits] == '-')
c906108c
SS
8529 {
8530 siglast = (int)
773a1edc 8531 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8532 }
8533 if (sigfirst > siglast)
8534 {
1777feb0 8535 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8536 signum = sigfirst;
8537 sigfirst = siglast;
8538 siglast = signum;
8539 }
8540 }
8541 else
8542 {
773a1edc 8543 oursig = gdb_signal_from_name (arg);
a493e3e2 8544 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8545 {
8546 sigfirst = siglast = (int) oursig;
8547 }
8548 else
8549 {
8550 /* Not a number and not a recognized flag word => complain. */
773a1edc 8551 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8552 }
8553 }
8554
8555 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8556 which signals to apply actions to. */
c906108c
SS
8557
8558 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8559 {
2ea28649 8560 switch ((enum gdb_signal) signum)
c906108c 8561 {
a493e3e2
PA
8562 case GDB_SIGNAL_TRAP:
8563 case GDB_SIGNAL_INT:
c906108c
SS
8564 if (!allsigs && !sigs[signum])
8565 {
9e2f0ad4 8566 if (query (_("%s is used by the debugger.\n\
3e43a32a 8567Are you sure you want to change it? "),
2ea28649 8568 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8569 {
8570 sigs[signum] = 1;
8571 }
8572 else
8573 {
a3f17187 8574 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8575 gdb_flush (gdb_stdout);
8576 }
8577 }
8578 break;
a493e3e2
PA
8579 case GDB_SIGNAL_0:
8580 case GDB_SIGNAL_DEFAULT:
8581 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8582 /* Make sure that "all" doesn't print these. */
8583 break;
8584 default:
8585 sigs[signum] = 1;
8586 break;
8587 }
8588 }
c906108c
SS
8589 }
8590
3a031f65
PA
8591 for (signum = 0; signum < nsigs; signum++)
8592 if (sigs[signum])
8593 {
2455069d 8594 signal_cache_update (-1);
a493e3e2
PA
8595 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8596 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8597
3a031f65
PA
8598 if (from_tty)
8599 {
8600 /* Show the results. */
8601 sig_print_header ();
8602 for (; signum < nsigs; signum++)
8603 if (sigs[signum])
aead7601 8604 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8605 }
8606
8607 break;
8608 }
c906108c
SS
8609}
8610
de0bea00
MF
8611/* Complete the "handle" command. */
8612
eb3ff9a5 8613static void
de0bea00 8614handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8615 completion_tracker &tracker,
6f937416 8616 const char *text, const char *word)
de0bea00 8617{
de0bea00
MF
8618 static const char * const keywords[] =
8619 {
8620 "all",
8621 "stop",
8622 "ignore",
8623 "print",
8624 "pass",
8625 "nostop",
8626 "noignore",
8627 "noprint",
8628 "nopass",
8629 NULL,
8630 };
8631
eb3ff9a5
PA
8632 signal_completer (ignore, tracker, text, word);
8633 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8634}
8635
2ea28649
PA
8636enum gdb_signal
8637gdb_signal_from_command (int num)
ed01b82c
PA
8638{
8639 if (num >= 1 && num <= 15)
2ea28649 8640 return (enum gdb_signal) num;
ed01b82c
PA
8641 error (_("Only signals 1-15 are valid as numeric signals.\n\
8642Use \"info signals\" for a list of symbolic signals."));
8643}
8644
c906108c
SS
8645/* Print current contents of the tables set by the handle command.
8646 It is possible we should just be printing signals actually used
8647 by the current target (but for things to work right when switching
8648 targets, all signals should be in the signal tables). */
8649
8650static void
1d12d88f 8651info_signals_command (const char *signum_exp, int from_tty)
c906108c 8652{
2ea28649 8653 enum gdb_signal oursig;
abbb1732 8654
c906108c
SS
8655 sig_print_header ();
8656
8657 if (signum_exp)
8658 {
8659 /* First see if this is a symbol name. */
2ea28649 8660 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8661 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8662 {
8663 /* No, try numeric. */
8664 oursig =
2ea28649 8665 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8666 }
8667 sig_print_info (oursig);
8668 return;
8669 }
8670
8671 printf_filtered ("\n");
8672 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8673 for (oursig = GDB_SIGNAL_FIRST;
8674 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8675 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8676 {
8677 QUIT;
8678
a493e3e2
PA
8679 if (oursig != GDB_SIGNAL_UNKNOWN
8680 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8681 sig_print_info (oursig);
8682 }
8683
3e43a32a
MS
8684 printf_filtered (_("\nUse the \"handle\" command "
8685 "to change these tables.\n"));
c906108c 8686}
4aa995e1
PA
8687
8688/* The $_siginfo convenience variable is a bit special. We don't know
8689 for sure the type of the value until we actually have a chance to
7a9dd1b2 8690 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8691 also dependent on which thread you have selected.
8692
8693 1. making $_siginfo be an internalvar that creates a new value on
8694 access.
8695
8696 2. making the value of $_siginfo be an lval_computed value. */
8697
8698/* This function implements the lval_computed support for reading a
8699 $_siginfo value. */
8700
8701static void
8702siginfo_value_read (struct value *v)
8703{
8704 LONGEST transferred;
8705
a911d87a
PA
8706 /* If we can access registers, so can we access $_siginfo. Likewise
8707 vice versa. */
8708 validate_registers_access ();
c709acd1 8709
4aa995e1
PA
8710 transferred =
8711 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8712 NULL,
8713 value_contents_all_raw (v),
8714 value_offset (v),
8715 TYPE_LENGTH (value_type (v)));
8716
8717 if (transferred != TYPE_LENGTH (value_type (v)))
8718 error (_("Unable to read siginfo"));
8719}
8720
8721/* This function implements the lval_computed support for writing a
8722 $_siginfo value. */
8723
8724static void
8725siginfo_value_write (struct value *v, struct value *fromval)
8726{
8727 LONGEST transferred;
8728
a911d87a
PA
8729 /* If we can access registers, so can we access $_siginfo. Likewise
8730 vice versa. */
8731 validate_registers_access ();
c709acd1 8732
4aa995e1
PA
8733 transferred = target_write (&current_target,
8734 TARGET_OBJECT_SIGNAL_INFO,
8735 NULL,
8736 value_contents_all_raw (fromval),
8737 value_offset (v),
8738 TYPE_LENGTH (value_type (fromval)));
8739
8740 if (transferred != TYPE_LENGTH (value_type (fromval)))
8741 error (_("Unable to write siginfo"));
8742}
8743
c8f2448a 8744static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8745 {
8746 siginfo_value_read,
8747 siginfo_value_write
8748 };
8749
8750/* Return a new value with the correct type for the siginfo object of
78267919
UW
8751 the current thread using architecture GDBARCH. Return a void value
8752 if there's no object available. */
4aa995e1 8753
2c0b251b 8754static struct value *
22d2b532
SDJ
8755siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8756 void *ignore)
4aa995e1 8757{
4aa995e1 8758 if (target_has_stack
78267919
UW
8759 && !ptid_equal (inferior_ptid, null_ptid)
8760 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8761 {
78267919 8762 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8763
78267919 8764 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8765 }
8766
78267919 8767 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8768}
8769
c906108c 8770\f
16c381f0
JK
8771/* infcall_suspend_state contains state about the program itself like its
8772 registers and any signal it received when it last stopped.
8773 This state must be restored regardless of how the inferior function call
8774 ends (either successfully, or after it hits a breakpoint or signal)
8775 if the program is to properly continue where it left off. */
8776
8777struct infcall_suspend_state
7a292a7a 8778{
16c381f0 8779 struct thread_suspend_state thread_suspend;
16c381f0
JK
8780
8781 /* Other fields: */
7a292a7a 8782 CORE_ADDR stop_pc;
b89667eb 8783 struct regcache *registers;
1736ad11 8784
35515841 8785 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8786 struct gdbarch *siginfo_gdbarch;
8787
8788 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8789 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8790 content would be invalid. */
8791 gdb_byte *siginfo_data;
b89667eb
DE
8792};
8793
16c381f0
JK
8794struct infcall_suspend_state *
8795save_infcall_suspend_state (void)
b89667eb 8796{
16c381f0 8797 struct infcall_suspend_state *inf_state;
b89667eb 8798 struct thread_info *tp = inferior_thread ();
1736ad11 8799 struct regcache *regcache = get_current_regcache ();
ac7936df 8800 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8801 gdb_byte *siginfo_data = NULL;
8802
8803 if (gdbarch_get_siginfo_type_p (gdbarch))
8804 {
8805 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8806 size_t len = TYPE_LENGTH (type);
8807 struct cleanup *back_to;
8808
224c3ddb 8809 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8810 back_to = make_cleanup (xfree, siginfo_data);
8811
8812 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8813 siginfo_data, 0, len) == len)
8814 discard_cleanups (back_to);
8815 else
8816 {
8817 /* Errors ignored. */
8818 do_cleanups (back_to);
8819 siginfo_data = NULL;
8820 }
8821 }
8822
41bf6aca 8823 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8824
8825 if (siginfo_data)
8826 {
8827 inf_state->siginfo_gdbarch = gdbarch;
8828 inf_state->siginfo_data = siginfo_data;
8829 }
b89667eb 8830
16c381f0 8831 inf_state->thread_suspend = tp->suspend;
16c381f0 8832
35515841 8833 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8834 GDB_SIGNAL_0 anyway. */
8835 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8836
b89667eb
DE
8837 inf_state->stop_pc = stop_pc;
8838
1736ad11 8839 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8840
8841 return inf_state;
8842}
8843
8844/* Restore inferior session state to INF_STATE. */
8845
8846void
16c381f0 8847restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8848{
8849 struct thread_info *tp = inferior_thread ();
1736ad11 8850 struct regcache *regcache = get_current_regcache ();
ac7936df 8851 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8852
16c381f0 8853 tp->suspend = inf_state->thread_suspend;
16c381f0 8854
b89667eb
DE
8855 stop_pc = inf_state->stop_pc;
8856
1736ad11
JK
8857 if (inf_state->siginfo_gdbarch == gdbarch)
8858 {
8859 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8860
8861 /* Errors ignored. */
8862 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8863 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8864 }
8865
b89667eb
DE
8866 /* The inferior can be gone if the user types "print exit(0)"
8867 (and perhaps other times). */
8868 if (target_has_execution)
8869 /* NB: The register write goes through to the target. */
1736ad11 8870 regcache_cpy (regcache, inf_state->registers);
803b5f95 8871
16c381f0 8872 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8873}
8874
8875static void
16c381f0 8876do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8877{
9a3c8263 8878 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8879}
8880
8881struct cleanup *
16c381f0
JK
8882make_cleanup_restore_infcall_suspend_state
8883 (struct infcall_suspend_state *inf_state)
b89667eb 8884{
16c381f0 8885 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8886}
8887
8888void
16c381f0 8889discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8890{
c0e383c6 8891 delete inf_state->registers;
803b5f95 8892 xfree (inf_state->siginfo_data);
b89667eb
DE
8893 xfree (inf_state);
8894}
8895
8896struct regcache *
16c381f0 8897get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8898{
8899 return inf_state->registers;
8900}
8901
16c381f0
JK
8902/* infcall_control_state contains state regarding gdb's control of the
8903 inferior itself like stepping control. It also contains session state like
8904 the user's currently selected frame. */
b89667eb 8905
16c381f0 8906struct infcall_control_state
b89667eb 8907{
16c381f0
JK
8908 struct thread_control_state thread_control;
8909 struct inferior_control_state inferior_control;
d82142e2
JK
8910
8911 /* Other fields: */
8912 enum stop_stack_kind stop_stack_dummy;
8913 int stopped_by_random_signal;
7a292a7a 8914
b89667eb 8915 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8916 struct frame_id selected_frame_id;
7a292a7a
SS
8917};
8918
c906108c 8919/* Save all of the information associated with the inferior<==>gdb
b89667eb 8920 connection. */
c906108c 8921
16c381f0
JK
8922struct infcall_control_state *
8923save_infcall_control_state (void)
c906108c 8924{
8d749320
SM
8925 struct infcall_control_state *inf_status =
8926 XNEW (struct infcall_control_state);
4e1c45ea 8927 struct thread_info *tp = inferior_thread ();
d6b48e9c 8928 struct inferior *inf = current_inferior ();
7a292a7a 8929
16c381f0
JK
8930 inf_status->thread_control = tp->control;
8931 inf_status->inferior_control = inf->control;
d82142e2 8932
8358c15c 8933 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8934 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8935
16c381f0
JK
8936 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8937 chain. If caller's caller is walking the chain, they'll be happier if we
8938 hand them back the original chain when restore_infcall_control_state is
8939 called. */
8940 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8941
8942 /* Other fields: */
8943 inf_status->stop_stack_dummy = stop_stack_dummy;
8944 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8945
206415a3 8946 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8947
7a292a7a 8948 return inf_status;
c906108c
SS
8949}
8950
bf469271
PA
8951static void
8952restore_selected_frame (const frame_id &fid)
c906108c 8953{
bf469271 8954 frame_info *frame = frame_find_by_id (fid);
c906108c 8955
aa0cd9c1
AC
8956 /* If inf_status->selected_frame_id is NULL, there was no previously
8957 selected frame. */
101dcfbe 8958 if (frame == NULL)
c906108c 8959 {
8a3fe4f8 8960 warning (_("Unable to restore previously selected frame."));
bf469271 8961 return;
c906108c
SS
8962 }
8963
0f7d239c 8964 select_frame (frame);
c906108c
SS
8965}
8966
b89667eb
DE
8967/* Restore inferior session state to INF_STATUS. */
8968
c906108c 8969void
16c381f0 8970restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8971{
4e1c45ea 8972 struct thread_info *tp = inferior_thread ();
d6b48e9c 8973 struct inferior *inf = current_inferior ();
4e1c45ea 8974
8358c15c
JK
8975 if (tp->control.step_resume_breakpoint)
8976 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8977
5b79abe7
TT
8978 if (tp->control.exception_resume_breakpoint)
8979 tp->control.exception_resume_breakpoint->disposition
8980 = disp_del_at_next_stop;
8981
d82142e2 8982 /* Handle the bpstat_copy of the chain. */
16c381f0 8983 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8984
16c381f0
JK
8985 tp->control = inf_status->thread_control;
8986 inf->control = inf_status->inferior_control;
d82142e2
JK
8987
8988 /* Other fields: */
8989 stop_stack_dummy = inf_status->stop_stack_dummy;
8990 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8991
b89667eb 8992 if (target_has_stack)
c906108c 8993 {
bf469271 8994 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8995 walking the stack might encounter a garbage pointer and
8996 error() trying to dereference it. */
bf469271
PA
8997 TRY
8998 {
8999 restore_selected_frame (inf_status->selected_frame_id);
9000 }
9001 CATCH (ex, RETURN_MASK_ERROR)
9002 {
9003 exception_fprintf (gdb_stderr, ex,
9004 "Unable to restore previously selected frame:\n");
9005 /* Error in restoring the selected frame. Select the
9006 innermost frame. */
9007 select_frame (get_current_frame ());
9008 }
9009 END_CATCH
c906108c 9010 }
c906108c 9011
72cec141 9012 xfree (inf_status);
7a292a7a 9013}
c906108c 9014
74b7792f 9015static void
16c381f0 9016do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9017{
9a3c8263 9018 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9019}
9020
9021struct cleanup *
16c381f0
JK
9022make_cleanup_restore_infcall_control_state
9023 (struct infcall_control_state *inf_status)
74b7792f 9024{
16c381f0 9025 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9026}
9027
c906108c 9028void
16c381f0 9029discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9030{
8358c15c
JK
9031 if (inf_status->thread_control.step_resume_breakpoint)
9032 inf_status->thread_control.step_resume_breakpoint->disposition
9033 = disp_del_at_next_stop;
9034
5b79abe7
TT
9035 if (inf_status->thread_control.exception_resume_breakpoint)
9036 inf_status->thread_control.exception_resume_breakpoint->disposition
9037 = disp_del_at_next_stop;
9038
1777feb0 9039 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9040 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9041
72cec141 9042 xfree (inf_status);
7a292a7a 9043}
b89667eb 9044\f
7f89fd65 9045/* See infrun.h. */
0c557179
SDJ
9046
9047void
9048clear_exit_convenience_vars (void)
9049{
9050 clear_internalvar (lookup_internalvar ("_exitsignal"));
9051 clear_internalvar (lookup_internalvar ("_exitcode"));
9052}
c5aa993b 9053\f
488f131b 9054
b2175913
MS
9055/* User interface for reverse debugging:
9056 Set exec-direction / show exec-direction commands
9057 (returns error unless target implements to_set_exec_direction method). */
9058
170742de 9059enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9060static const char exec_forward[] = "forward";
9061static const char exec_reverse[] = "reverse";
9062static const char *exec_direction = exec_forward;
40478521 9063static const char *const exec_direction_names[] = {
b2175913
MS
9064 exec_forward,
9065 exec_reverse,
9066 NULL
9067};
9068
9069static void
eb4c3f4a 9070set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9071 struct cmd_list_element *cmd)
9072{
9073 if (target_can_execute_reverse)
9074 {
9075 if (!strcmp (exec_direction, exec_forward))
9076 execution_direction = EXEC_FORWARD;
9077 else if (!strcmp (exec_direction, exec_reverse))
9078 execution_direction = EXEC_REVERSE;
9079 }
8bbed405
MS
9080 else
9081 {
9082 exec_direction = exec_forward;
9083 error (_("Target does not support this operation."));
9084 }
b2175913
MS
9085}
9086
9087static void
9088show_exec_direction_func (struct ui_file *out, int from_tty,
9089 struct cmd_list_element *cmd, const char *value)
9090{
9091 switch (execution_direction) {
9092 case EXEC_FORWARD:
9093 fprintf_filtered (out, _("Forward.\n"));
9094 break;
9095 case EXEC_REVERSE:
9096 fprintf_filtered (out, _("Reverse.\n"));
9097 break;
b2175913 9098 default:
d8b34453
PA
9099 internal_error (__FILE__, __LINE__,
9100 _("bogus execution_direction value: %d"),
9101 (int) execution_direction);
b2175913
MS
9102 }
9103}
9104
d4db2f36
PA
9105static void
9106show_schedule_multiple (struct ui_file *file, int from_tty,
9107 struct cmd_list_element *c, const char *value)
9108{
3e43a32a
MS
9109 fprintf_filtered (file, _("Resuming the execution of threads "
9110 "of all processes is %s.\n"), value);
d4db2f36 9111}
ad52ddc6 9112
22d2b532
SDJ
9113/* Implementation of `siginfo' variable. */
9114
9115static const struct internalvar_funcs siginfo_funcs =
9116{
9117 siginfo_make_value,
9118 NULL,
9119 NULL
9120};
9121
372316f1
PA
9122/* Callback for infrun's target events source. This is marked when a
9123 thread has a pending status to process. */
9124
9125static void
9126infrun_async_inferior_event_handler (gdb_client_data data)
9127{
372316f1
PA
9128 inferior_event_handler (INF_REG_EVENT, NULL);
9129}
9130
c906108c 9131void
96baa820 9132_initialize_infrun (void)
c906108c 9133{
52f0bd74
AC
9134 int i;
9135 int numsigs;
de0bea00 9136 struct cmd_list_element *c;
c906108c 9137
372316f1
PA
9138 /* Register extra event sources in the event loop. */
9139 infrun_async_inferior_event_token
9140 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9141
11db9430 9142 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9143What debugger does when program gets various signals.\n\
9144Specify a signal as argument to print info on that signal only."));
c906108c
SS
9145 add_info_alias ("handle", "signals", 0);
9146
de0bea00 9147 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9148Specify how to handle signals.\n\
486c7739 9149Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9150Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9151If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9152will be displayed instead.\n\
9153\n\
c906108c
SS
9154Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9155from 1-15 are allowed for compatibility with old versions of GDB.\n\
9156Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9157The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9158used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9159\n\
1bedd215 9160Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9161\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9162Stop means reenter debugger if this signal happens (implies print).\n\
9163Print means print a message if this signal happens.\n\
9164Pass means let program see this signal; otherwise program doesn't know.\n\
9165Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9166Pass and Stop may be combined.\n\
9167\n\
9168Multiple signals may be specified. Signal numbers and signal names\n\
9169may be interspersed with actions, with the actions being performed for\n\
9170all signals cumulatively specified."));
de0bea00 9171 set_cmd_completer (c, handle_completer);
486c7739 9172
c906108c 9173 if (!dbx_commands)
1a966eab
AC
9174 stop_command = add_cmd ("stop", class_obscure,
9175 not_just_help_class_command, _("\
9176There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9177This allows you to set a list of commands to be run each time execution\n\
1a966eab 9178of the program stops."), &cmdlist);
c906108c 9179
ccce17b0 9180 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9181Set inferior debugging."), _("\
9182Show inferior debugging."), _("\
9183When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9184 NULL,
9185 show_debug_infrun,
9186 &setdebuglist, &showdebuglist);
527159b7 9187
3e43a32a
MS
9188 add_setshow_boolean_cmd ("displaced", class_maintenance,
9189 &debug_displaced, _("\
237fc4c9
PA
9190Set displaced stepping debugging."), _("\
9191Show displaced stepping debugging."), _("\
9192When non-zero, displaced stepping specific debugging is enabled."),
9193 NULL,
9194 show_debug_displaced,
9195 &setdebuglist, &showdebuglist);
9196
ad52ddc6
PA
9197 add_setshow_boolean_cmd ("non-stop", no_class,
9198 &non_stop_1, _("\
9199Set whether gdb controls the inferior in non-stop mode."), _("\
9200Show whether gdb controls the inferior in non-stop mode."), _("\
9201When debugging a multi-threaded program and this setting is\n\
9202off (the default, also called all-stop mode), when one thread stops\n\
9203(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9204all other threads in the program while you interact with the thread of\n\
9205interest. When you continue or step a thread, you can allow the other\n\
9206threads to run, or have them remain stopped, but while you inspect any\n\
9207thread's state, all threads stop.\n\
9208\n\
9209In non-stop mode, when one thread stops, other threads can continue\n\
9210to run freely. You'll be able to step each thread independently,\n\
9211leave it stopped or free to run as needed."),
9212 set_non_stop,
9213 show_non_stop,
9214 &setlist,
9215 &showlist);
9216
a493e3e2 9217 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9218 signal_stop = XNEWVEC (unsigned char, numsigs);
9219 signal_print = XNEWVEC (unsigned char, numsigs);
9220 signal_program = XNEWVEC (unsigned char, numsigs);
9221 signal_catch = XNEWVEC (unsigned char, numsigs);
9222 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9223 for (i = 0; i < numsigs; i++)
9224 {
9225 signal_stop[i] = 1;
9226 signal_print[i] = 1;
9227 signal_program[i] = 1;
ab04a2af 9228 signal_catch[i] = 0;
c906108c
SS
9229 }
9230
4d9d9d04
PA
9231 /* Signals caused by debugger's own actions should not be given to
9232 the program afterwards.
9233
9234 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9235 explicitly specifies that it should be delivered to the target
9236 program. Typically, that would occur when a user is debugging a
9237 target monitor on a simulator: the target monitor sets a
9238 breakpoint; the simulator encounters this breakpoint and halts
9239 the simulation handing control to GDB; GDB, noting that the stop
9240 address doesn't map to any known breakpoint, returns control back
9241 to the simulator; the simulator then delivers the hardware
9242 equivalent of a GDB_SIGNAL_TRAP to the program being
9243 debugged. */
a493e3e2
PA
9244 signal_program[GDB_SIGNAL_TRAP] = 0;
9245 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9246
9247 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9248 signal_stop[GDB_SIGNAL_ALRM] = 0;
9249 signal_print[GDB_SIGNAL_ALRM] = 0;
9250 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9251 signal_print[GDB_SIGNAL_VTALRM] = 0;
9252 signal_stop[GDB_SIGNAL_PROF] = 0;
9253 signal_print[GDB_SIGNAL_PROF] = 0;
9254 signal_stop[GDB_SIGNAL_CHLD] = 0;
9255 signal_print[GDB_SIGNAL_CHLD] = 0;
9256 signal_stop[GDB_SIGNAL_IO] = 0;
9257 signal_print[GDB_SIGNAL_IO] = 0;
9258 signal_stop[GDB_SIGNAL_POLL] = 0;
9259 signal_print[GDB_SIGNAL_POLL] = 0;
9260 signal_stop[GDB_SIGNAL_URG] = 0;
9261 signal_print[GDB_SIGNAL_URG] = 0;
9262 signal_stop[GDB_SIGNAL_WINCH] = 0;
9263 signal_print[GDB_SIGNAL_WINCH] = 0;
9264 signal_stop[GDB_SIGNAL_PRIO] = 0;
9265 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9266
cd0fc7c3
SS
9267 /* These signals are used internally by user-level thread
9268 implementations. (See signal(5) on Solaris.) Like the above
9269 signals, a healthy program receives and handles them as part of
9270 its normal operation. */
a493e3e2
PA
9271 signal_stop[GDB_SIGNAL_LWP] = 0;
9272 signal_print[GDB_SIGNAL_LWP] = 0;
9273 signal_stop[GDB_SIGNAL_WAITING] = 0;
9274 signal_print[GDB_SIGNAL_WAITING] = 0;
9275 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9276 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9277 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9278 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9279
2455069d
UW
9280 /* Update cached state. */
9281 signal_cache_update (-1);
9282
85c07804
AC
9283 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9284 &stop_on_solib_events, _("\
9285Set stopping for shared library events."), _("\
9286Show stopping for shared library events."), _("\
c906108c
SS
9287If nonzero, gdb will give control to the user when the dynamic linker\n\
9288notifies gdb of shared library events. The most common event of interest\n\
85c07804 9289to the user would be loading/unloading of a new library."),
f9e14852 9290 set_stop_on_solib_events,
920d2a44 9291 show_stop_on_solib_events,
85c07804 9292 &setlist, &showlist);
c906108c 9293
7ab04401
AC
9294 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9295 follow_fork_mode_kind_names,
9296 &follow_fork_mode_string, _("\
9297Set debugger response to a program call of fork or vfork."), _("\
9298Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9299A fork or vfork creates a new process. follow-fork-mode can be:\n\
9300 parent - the original process is debugged after a fork\n\
9301 child - the new process is debugged after a fork\n\
ea1dd7bc 9302The unfollowed process will continue to run.\n\
7ab04401
AC
9303By default, the debugger will follow the parent process."),
9304 NULL,
920d2a44 9305 show_follow_fork_mode_string,
7ab04401
AC
9306 &setlist, &showlist);
9307
6c95b8df
PA
9308 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9309 follow_exec_mode_names,
9310 &follow_exec_mode_string, _("\
9311Set debugger response to a program call of exec."), _("\
9312Show debugger response to a program call of exec."), _("\
9313An exec call replaces the program image of a process.\n\
9314\n\
9315follow-exec-mode can be:\n\
9316\n\
cce7e648 9317 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9318to this new inferior. The program the process was running before\n\
9319the exec call can be restarted afterwards by restarting the original\n\
9320inferior.\n\
9321\n\
9322 same - the debugger keeps the process bound to the same inferior.\n\
9323The new executable image replaces the previous executable loaded in\n\
9324the inferior. Restarting the inferior after the exec call restarts\n\
9325the executable the process was running after the exec call.\n\
9326\n\
9327By default, the debugger will use the same inferior."),
9328 NULL,
9329 show_follow_exec_mode_string,
9330 &setlist, &showlist);
9331
7ab04401
AC
9332 add_setshow_enum_cmd ("scheduler-locking", class_run,
9333 scheduler_enums, &scheduler_mode, _("\
9334Set mode for locking scheduler during execution."), _("\
9335Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9336off == no locking (threads may preempt at any time)\n\
9337on == full locking (no thread except the current thread may run)\n\
9338 This applies to both normal execution and replay mode.\n\
9339step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9340 In this mode, other threads may run during other commands.\n\
9341 This applies to both normal execution and replay mode.\n\
9342replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9343 set_schedlock_func, /* traps on target vector */
920d2a44 9344 show_scheduler_mode,
7ab04401 9345 &setlist, &showlist);
5fbbeb29 9346
d4db2f36
PA
9347 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9348Set mode for resuming threads of all processes."), _("\
9349Show mode for resuming threads of all processes."), _("\
9350When on, execution commands (such as 'continue' or 'next') resume all\n\
9351threads of all processes. When off (which is the default), execution\n\
9352commands only resume the threads of the current process. The set of\n\
9353threads that are resumed is further refined by the scheduler-locking\n\
9354mode (see help set scheduler-locking)."),
9355 NULL,
9356 show_schedule_multiple,
9357 &setlist, &showlist);
9358
5bf193a2
AC
9359 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9360Set mode of the step operation."), _("\
9361Show mode of the step operation."), _("\
9362When set, doing a step over a function without debug line information\n\
9363will stop at the first instruction of that function. Otherwise, the\n\
9364function is skipped and the step command stops at a different source line."),
9365 NULL,
920d2a44 9366 show_step_stop_if_no_debug,
5bf193a2 9367 &setlist, &showlist);
ca6724c1 9368
72d0e2c5
YQ
9369 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9370 &can_use_displaced_stepping, _("\
237fc4c9
PA
9371Set debugger's willingness to use displaced stepping."), _("\
9372Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9373If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9374supported by the target architecture. If off, gdb will not use displaced\n\
9375stepping to step over breakpoints, even if such is supported by the target\n\
9376architecture. If auto (which is the default), gdb will use displaced stepping\n\
9377if the target architecture supports it and non-stop mode is active, but will not\n\
9378use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9379 NULL,
9380 show_can_use_displaced_stepping,
9381 &setlist, &showlist);
237fc4c9 9382
b2175913
MS
9383 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9384 &exec_direction, _("Set direction of execution.\n\
9385Options are 'forward' or 'reverse'."),
9386 _("Show direction of execution (forward/reverse)."),
9387 _("Tells gdb whether to execute forward or backward."),
9388 set_exec_direction_func, show_exec_direction_func,
9389 &setlist, &showlist);
9390
6c95b8df
PA
9391 /* Set/show detach-on-fork: user-settable mode. */
9392
9393 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9394Set whether gdb will detach the child of a fork."), _("\
9395Show whether gdb will detach the child of a fork."), _("\
9396Tells gdb whether to detach the child of a fork."),
9397 NULL, NULL, &setlist, &showlist);
9398
03583c20
UW
9399 /* Set/show disable address space randomization mode. */
9400
9401 add_setshow_boolean_cmd ("disable-randomization", class_support,
9402 &disable_randomization, _("\
9403Set disabling of debuggee's virtual address space randomization."), _("\
9404Show disabling of debuggee's virtual address space randomization."), _("\
9405When this mode is on (which is the default), randomization of the virtual\n\
9406address space is disabled. Standalone programs run with the randomization\n\
9407enabled by default on some platforms."),
9408 &set_disable_randomization,
9409 &show_disable_randomization,
9410 &setlist, &showlist);
9411
ca6724c1 9412 /* ptid initializations */
ca6724c1
KB
9413 inferior_ptid = null_ptid;
9414 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9415
9416 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9417 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9418 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9419 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9420
9421 /* Explicitly create without lookup, since that tries to create a
9422 value with a void typed value, and when we get here, gdbarch
9423 isn't initialized yet. At this point, we're quite sure there
9424 isn't another convenience variable of the same name. */
22d2b532 9425 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9426
9427 add_setshow_boolean_cmd ("observer", no_class,
9428 &observer_mode_1, _("\
9429Set whether gdb controls the inferior in observer mode."), _("\
9430Show whether gdb controls the inferior in observer mode."), _("\
9431In observer mode, GDB can get data from the inferior, but not\n\
9432affect its execution. Registers and memory may not be changed,\n\
9433breakpoints may not be set, and the program cannot be interrupted\n\
9434or signalled."),
9435 set_observer_mode,
9436 show_observer_mode,
9437 &setlist,
9438 &showlist);
c906108c 9439}