]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
07b82ea5 33struct target_section_table;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
fd79ecee 58#include "vec.h"
2aecd87f 59#include "gdb_signals.h"
c906108c 60
c5aa993b
JM
61enum strata
62 {
63 dummy_stratum, /* The lowest of the low */
64 file_stratum, /* Executable files, etc */
4d8ac244 65 core_stratum, /* Core dump files */
d4f3574e 66 process_stratum, /* Executing processes */
81e64f55
HZ
67 thread_stratum, /* Executing threads */
68 record_stratum /* Support record debugging */
c5aa993b 69 };
c906108c 70
c5aa993b
JM
71enum thread_control_capabilities
72 {
0d06e24b
JM
73 tc_none = 0, /* Default: can't control thread execution. */
74 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 75 };
c906108c
SS
76
77/* Stuff for target_wait. */
78
79/* Generally, what has the program done? */
c5aa993b
JM
80enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
c906108c 84
0d06e24b
JM
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
c5aa993b 87 TARGET_WAITKIND_STOPPED,
c906108c 88
c5aa993b
JM
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
c906108c 92
c5aa993b
JM
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
c906108c 96
3a3e9ee3 97 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
c5aa993b 101 TARGET_WAITKIND_FORKED,
c906108c 102
3a3e9ee3 103 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
104 value.related_pid. */
105
c5aa993b 106 TARGET_WAITKIND_VFORKED,
c906108c 107
0d06e24b
JM
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
c5aa993b 111 TARGET_WAITKIND_EXECD,
c906108c 112
0d06e24b
JM
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
c5aa993b
JM
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 119
c5aa993b
JM
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
c4093a6a
JM
123 TARGET_WAITKIND_SPURIOUS,
124
8e7d2c16
DJ
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
c4093a6a
JM
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
0d06e24b 133 like for instance the user typing. */
b2175913
MS
134 TARGET_WAITKIND_IGNORE,
135
136 /* The target has run out of history information,
137 and cannot run backward any further. */
138 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
139 };
140
c5aa993b
JM
141struct target_waitstatus
142 {
143 enum target_waitkind kind;
144
145 /* Forked child pid, execd pathname, exit status or signal number. */
146 union
147 {
148 int integer;
149 enum target_signal sig;
3a3e9ee3 150 ptid_t related_pid;
c5aa993b
JM
151 char *execd_pathname;
152 int syscall_id;
153 }
154 value;
155 };
c906108c 156
47608cb1
PA
157/* Options that can be passed to target_wait. */
158
159/* Return immediately if there's no event already queued. If this
160 options is not requested, target_wait blocks waiting for an
161 event. */
162#define TARGET_WNOHANG 1
163
f00150c9
DE
164/* Return a pretty printed form of target_waitstatus.
165 Space for the result is malloc'd, caller must free. */
166extern char *target_waitstatus_to_string (const struct target_waitstatus *);
167
2acceee2 168/* Possible types of events that the inferior handler will have to
0d06e24b 169 deal with. */
2acceee2
JM
170enum inferior_event_type
171 {
0d06e24b 172 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
173 INF_QUIT_REQ,
174 /* Process a normal inferior event which will result in target_wait
0d06e24b 175 being called. */
2146d243 176 INF_REG_EVENT,
0d06e24b 177 /* Deal with an error on the inferior. */
2acceee2 178 INF_ERROR,
0d06e24b 179 /* We are called because a timer went off. */
2acceee2 180 INF_TIMER,
0d06e24b 181 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
182 INF_EXEC_COMPLETE,
183 /* We are called to do some stuff after the inferior stops, but we
184 are expected to reenter the proceed() and
185 handle_inferior_event() functions. This is used only in case of
0d06e24b 186 'step n' like commands. */
c2d11a7d 187 INF_EXEC_CONTINUE
2acceee2 188 };
c906108c 189\f
13547ab6
DJ
190/* Target objects which can be transfered using target_read,
191 target_write, et cetera. */
1e3ff5ad
AC
192
193enum target_object
194{
1e3ff5ad
AC
195 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
196 TARGET_OBJECT_AVR,
23d964e7
UW
197 /* SPU target specific transfer. See "spu-tdep.c". */
198 TARGET_OBJECT_SPU,
1e3ff5ad 199 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 200 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
201 /* Memory, avoiding GDB's data cache and trusting the executable.
202 Target implementations of to_xfer_partial never need to handle
203 this object, and most callers should not use it. */
204 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
205 /* Kernel Unwind Table. See "ia64-tdep.c". */
206 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
207 /* Transfer auxilliary vector. */
208 TARGET_OBJECT_AUXV,
baf92889 209 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
210 TARGET_OBJECT_WCOOKIE,
211 /* Target memory map in XML format. */
212 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
213 /* Flash memory. This object can be used to write contents to
214 a previously erased flash memory. Using it without erasing
215 flash can have unexpected results. Addresses are physical
216 address on target, and not relative to flash start. */
23181151
DJ
217 TARGET_OBJECT_FLASH,
218 /* Available target-specific features, e.g. registers and coprocessors.
219 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
220 TARGET_OBJECT_AVAILABLE_FEATURES,
221 /* Currently loaded libraries, in XML format. */
07e059b5
VP
222 TARGET_OBJECT_LIBRARIES,
223 /* Get OS specific data. The ANNEX specifies the type (running
224 processes, etc.). */
4aa995e1
PA
225 TARGET_OBJECT_OSDATA,
226 /* Extra signal info. Usually the contents of `siginfo_t' on unix
227 platforms. */
228 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 229 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
230};
231
13547ab6
DJ
232/* Request that OPS transfer up to LEN 8-bit bytes of the target's
233 OBJECT. The OFFSET, for a seekable object, specifies the
234 starting point. The ANNEX can be used to provide additional
235 data-specific information to the target.
1e3ff5ad 236
13547ab6
DJ
237 Return the number of bytes actually transfered, or -1 if the
238 transfer is not supported or otherwise fails. Return of a positive
239 value less than LEN indicates that no further transfer is possible.
240 Unlike the raw to_xfer_partial interface, callers of these
241 functions do not need to retry partial transfers. */
1e3ff5ad 242
1e3ff5ad
AC
243extern LONGEST target_read (struct target_ops *ops,
244 enum target_object object,
1b0ba102 245 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
246 ULONGEST offset, LONGEST len);
247
d5086790
VP
248extern LONGEST target_read_until_error (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, gdb_byte *buf,
251 ULONGEST offset, LONGEST len);
252
1e3ff5ad
AC
253extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
1b0ba102 255 const char *annex, const gdb_byte *buf,
1e3ff5ad 256 ULONGEST offset, LONGEST len);
b6591e8b 257
a76d924d
DJ
258/* Similar to target_write, except that it also calls PROGRESS with
259 the number of bytes written and the opaque BATON after every
260 successful partial write (and before the first write). This is
261 useful for progress reporting and user interaction while writing
262 data. To abort the transfer, the progress callback can throw an
263 exception. */
264
cf7a04e8
DJ
265LONGEST target_write_with_progress (struct target_ops *ops,
266 enum target_object object,
267 const char *annex, const gdb_byte *buf,
268 ULONGEST offset, LONGEST len,
269 void (*progress) (ULONGEST, void *),
270 void *baton);
271
13547ab6
DJ
272/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
273 be read using OPS. The return value will be -1 if the transfer
274 fails or is not supported; 0 if the object is empty; or the length
275 of the object otherwise. If a positive value is returned, a
276 sufficiently large buffer will be allocated using xmalloc and
277 returned in *BUF_P containing the contents of the object.
278
279 This method should be used for objects sufficiently small to store
280 in a single xmalloc'd buffer, when no fixed bound on the object's
281 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
282 through this function. */
283
284extern LONGEST target_read_alloc (struct target_ops *ops,
285 enum target_object object,
286 const char *annex, gdb_byte **buf_p);
287
159f81f3
DJ
288/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
289 returned as a string, allocated using xmalloc. If an error occurs
290 or the transfer is unsupported, NULL is returned. Empty objects
291 are returned as allocated but empty strings. A warning is issued
292 if the result contains any embedded NUL bytes. */
293
294extern char *target_read_stralloc (struct target_ops *ops,
295 enum target_object object,
296 const char *annex);
297
b6591e8b
AC
298/* Wrappers to target read/write that perform memory transfers. They
299 throw an error if the memory transfer fails.
300
301 NOTE: cagney/2003-10-23: The naming schema is lifted from
302 "frame.h". The parameter order is lifted from get_frame_memory,
303 which in turn lifted it from read_memory. */
304
305extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 306 gdb_byte *buf, LONGEST len);
b6591e8b
AC
307extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
308 CORE_ADDR addr, int len);
1e3ff5ad 309\f
0d06e24b
JM
310struct thread_info; /* fwd decl for parameter list below: */
311
c906108c 312struct target_ops
c5aa993b 313 {
258b763a 314 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
315 char *to_shortname; /* Name this target type */
316 char *to_longname; /* Name for printing */
317 char *to_doc; /* Documentation. Does not include trailing
c906108c 318 newline, and starts with a one-line descrip-
0d06e24b 319 tion (probably similar to to_longname). */
bba2d28d
AC
320 /* Per-target scratch pad. */
321 void *to_data;
f1c07ab0
AC
322 /* The open routine takes the rest of the parameters from the
323 command, and (if successful) pushes a new target onto the
324 stack. Targets should supply this routine, if only to provide
325 an error message. */
507f3c78 326 void (*to_open) (char *, int);
f1c07ab0
AC
327 /* Old targets with a static target vector provide "to_close".
328 New re-entrant targets provide "to_xclose" and that is expected
329 to xfree everything (including the "struct target_ops"). */
330 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 331 void (*to_close) (int);
136d6dae 332 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 333 void (*to_post_attach) (int);
136d6dae 334 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 335 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 336 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9 337 ptid_t (*to_wait) (struct target_ops *,
47608cb1 338 ptid_t, struct target_waitstatus *, int);
28439f5e
PA
339 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
340 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 341 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
342
343 /* Transfer LEN bytes of memory between GDB address MYADDR and
344 target address MEMADDR. If WRITE, transfer them to the target, else
345 transfer them from the target. TARGET is the target from which we
346 get this function.
347
348 Return value, N, is one of the following:
349
350 0 means that we can't handle this. If errno has been set, it is the
351 error which prevented us from doing it (FIXME: What about bfd_error?).
352
353 positive (call it N) means that we have transferred N bytes
354 starting at MEMADDR. We might be able to handle more bytes
355 beyond this length, but no promises.
356
357 negative (call its absolute value N) means that we cannot
358 transfer right at MEMADDR, but we could transfer at least
c8e73a31 359 something at MEMADDR + N.
c5aa993b 360
c8e73a31
AC
361 NOTE: cagney/2004-10-01: This has been entirely superseeded by
362 to_xfer_partial and inferior inheritance. */
363
1b0ba102 364 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
365 int len, int write,
366 struct mem_attrib *attrib,
367 struct target_ops *target);
c906108c 368
507f3c78 369 void (*to_files_info) (struct target_ops *);
a6d9a66e
UW
370 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
371 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7 372 int (*to_can_use_hw_breakpoint) (int, int, int);
a6d9a66e
UW
373 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
374 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7
GS
375 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
376 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
377 int (*to_stopped_by_watchpoint) (void);
74174d2e 378 int to_have_steppable_watchpoint;
7df1a324 379 int to_have_continuable_watchpoint;
4aa7a7f5 380 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
381 int (*to_watchpoint_addr_within_range) (struct target_ops *,
382 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 383 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
384 void (*to_terminal_init) (void);
385 void (*to_terminal_inferior) (void);
386 void (*to_terminal_ours_for_output) (void);
387 void (*to_terminal_ours) (void);
a790ad35 388 void (*to_terminal_save_ours) (void);
507f3c78 389 void (*to_terminal_info) (char *, int);
7d85a9c0 390 void (*to_kill) (struct target_ops *);
507f3c78
KB
391 void (*to_load) (char *, int);
392 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
393 void (*to_create_inferior) (struct target_ops *,
394 char *, char *, char **, int);
39f77062 395 void (*to_post_startup_inferior) (ptid_t);
507f3c78 396 void (*to_acknowledge_created_inferior) (int);
fa113d1a 397 void (*to_insert_fork_catchpoint) (int);
507f3c78 398 int (*to_remove_fork_catchpoint) (int);
fa113d1a 399 void (*to_insert_vfork_catchpoint) (int);
507f3c78 400 int (*to_remove_vfork_catchpoint) (int);
ee057212 401 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 402 void (*to_insert_exec_catchpoint) (int);
507f3c78 403 int (*to_remove_exec_catchpoint) (int);
507f3c78 404 int (*to_has_exited) (int, int, int *);
136d6dae 405 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 406 int (*to_can_run) (void);
39f77062 407 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
408 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
409 void (*to_find_new_threads) (struct target_ops *);
117de6a9 410 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 411 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 412 void (*to_stop) (ptid_t);
d9fcf2fb 413 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 414 char *(*to_pid_to_exec_file) (int pid);
49d03eab 415 void (*to_log_command) (const char *);
07b82ea5 416 struct target_section_table *(*to_get_section_table) (struct target_ops *);
c5aa993b 417 enum strata to_stratum;
c35b1492
PA
418 int (*to_has_all_memory) (struct target_ops *);
419 int (*to_has_memory) (struct target_ops *);
420 int (*to_has_stack) (struct target_ops *);
421 int (*to_has_registers) (struct target_ops *);
422 int (*to_has_execution) (struct target_ops *);
c5aa993b 423 int to_has_thread_control; /* control thread execution */
dc177b7a 424 int to_attach_no_wait;
6426a772
JM
425 /* ASYNC target controls */
426 int (*to_can_async_p) (void);
427 int (*to_is_async_p) (void);
b84876c2
PA
428 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
429 int (*to_async_mask) (int);
9908b566 430 int (*to_supports_non_stop) (void);
2146d243
RM
431 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
432 unsigned long,
433 int, int, int,
434 void *),
be4d1333
MS
435 void *);
436 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
437
438 /* Return the thread-local address at OFFSET in the
439 thread-local storage for the thread PTID and the shared library
440 or executable file given by OBJFILE. If that block of
441 thread-local storage hasn't been allocated yet, this function
442 may return an error. */
117de6a9
PA
443 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
444 ptid_t ptid,
b2756930 445 CORE_ADDR load_module_addr,
3f47be5c
EZ
446 CORE_ADDR offset);
447
13547ab6
DJ
448 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
449 OBJECT. The OFFSET, for a seekable object, specifies the
450 starting point. The ANNEX can be used to provide additional
451 data-specific information to the target.
452
453 Return the number of bytes actually transfered, zero when no
454 further transfer is possible, and -1 when the transfer is not
455 supported. Return of a positive value smaller than LEN does
456 not indicate the end of the object, only the end of the
457 transfer; higher level code should continue transferring if
458 desired. This is handled in target.c.
459
460 The interface does not support a "retry" mechanism. Instead it
461 assumes that at least one byte will be transfered on each
462 successful call.
463
464 NOTE: cagney/2003-10-17: The current interface can lead to
465 fragmented transfers. Lower target levels should not implement
466 hacks, such as enlarging the transfer, in an attempt to
467 compensate for this. Instead, the target stack should be
468 extended so that it implements supply/collect methods and a
469 look-aside object cache. With that available, the lowest
470 target can safely and freely "push" data up the stack.
471
472 See target_read and target_write for more information. One,
473 and only one, of readbuf or writebuf must be non-NULL. */
474
4b8a223f 475 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 476 enum target_object object, const char *annex,
1b0ba102 477 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 478 ULONGEST offset, LONGEST len);
1e3ff5ad 479
fd79ecee
DJ
480 /* Returns the memory map for the target. A return value of NULL
481 means that no memory map is available. If a memory address
482 does not fall within any returned regions, it's assumed to be
483 RAM. The returned memory regions should not overlap.
484
485 The order of regions does not matter; target_memory_map will
486 sort regions by starting address. For that reason, this
487 function should not be called directly except via
488 target_memory_map.
489
490 This method should not cache data; if the memory map could
491 change unexpectedly, it should be invalidated, and higher
492 layers will re-fetch it. */
493 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
494
a76d924d
DJ
495 /* Erases the region of flash memory starting at ADDRESS, of
496 length LENGTH.
497
498 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
499 on flash block boundaries, as reported by 'to_memory_map'. */
500 void (*to_flash_erase) (struct target_ops *,
501 ULONGEST address, LONGEST length);
502
503 /* Finishes a flash memory write sequence. After this operation
504 all flash memory should be available for writing and the result
505 of reading from areas written by 'to_flash_write' should be
506 equal to what was written. */
507 void (*to_flash_done) (struct target_ops *);
508
424163ea
DJ
509 /* Describe the architecture-specific features of this target.
510 Returns the description found, or NULL if no description
511 was available. */
512 const struct target_desc *(*to_read_description) (struct target_ops *ops);
513
0ef643c8
JB
514 /* Build the PTID of the thread on which a given task is running,
515 based on LWP and THREAD. These values are extracted from the
516 task Private_Data section of the Ada Task Control Block, and
517 their interpretation depends on the target. */
518 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
519
c47ffbe3
VP
520 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
521 Return 0 if *READPTR is already at the end of the buffer.
522 Return -1 if there is insufficient buffer for a whole entry.
523 Return 1 if an entry was read into *TYPEP and *VALP. */
524 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
525 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
526
08388c79
DE
527 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
528 sequence of bytes in PATTERN with length PATTERN_LEN.
529
530 The result is 1 if found, 0 if not found, and -1 if there was an error
531 requiring halting of the search (e.g. memory read error).
532 If the pattern is found the address is recorded in FOUND_ADDRP. */
533 int (*to_search_memory) (struct target_ops *ops,
534 CORE_ADDR start_addr, ULONGEST search_space_len,
535 const gdb_byte *pattern, ULONGEST pattern_len,
536 CORE_ADDR *found_addrp);
537
b2175913 538 /* Can target execute in reverse? */
2c0b251b 539 int (*to_can_execute_reverse) (void);
b2175913 540
8a305172
PA
541 /* Does this target support debugging multiple processes
542 simultaneously? */
543 int (*to_supports_multi_process) (void);
544
c2250ad1
UW
545 /* Determine current architecture of thread PTID. */
546 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
547
c5aa993b 548 int to_magic;
0d06e24b
JM
549 /* Need sub-structure for target machine related rather than comm related?
550 */
c5aa993b 551 };
c906108c
SS
552
553/* Magic number for checking ops size. If a struct doesn't end with this
554 number, somebody changed the declaration but didn't change all the
555 places that initialize one. */
556
557#define OPS_MAGIC 3840
558
559/* The ops structure for our "current" target process. This should
560 never be NULL. If there is no target, it points to the dummy_target. */
561
c5aa993b 562extern struct target_ops current_target;
c906108c 563
c906108c
SS
564/* Define easy words for doing these operations on our current target. */
565
566#define target_shortname (current_target.to_shortname)
567#define target_longname (current_target.to_longname)
568
f1c07ab0
AC
569/* Does whatever cleanup is required for a target that we are no
570 longer going to be calling. QUITTING indicates that GDB is exiting
571 and should not get hung on an error (otherwise it is important to
572 perform clean termination, even if it takes a while). This routine
573 is automatically always called when popping the target off the
574 target stack (to_beneath is undefined). Closing file descriptors
575 and freeing all memory allocated memory are typical things it
576 should do. */
577
578void target_close (struct target_ops *targ, int quitting);
c906108c
SS
579
580/* Attaches to a process on the target side. Arguments are as passed
581 to the `attach' command by the user. This routine can be called
582 when the target is not on the target-stack, if the target_can_run
2146d243 583 routine returns 1; in that case, it must push itself onto the stack.
c906108c 584 Upon exit, the target should be ready for normal operations, and
2146d243 585 should be ready to deliver the status of the process immediately
c906108c
SS
586 (without waiting) to an upcoming target_wait call. */
587
136d6dae 588void target_attach (char *, int);
c906108c 589
dc177b7a
PA
590/* Some targets don't generate traps when attaching to the inferior,
591 or their target_attach implementation takes care of the waiting.
592 These targets must set to_attach_no_wait. */
593
594#define target_attach_no_wait \
595 (current_target.to_attach_no_wait)
596
c906108c
SS
597/* The target_attach operation places a process under debugger control,
598 and stops the process.
599
600 This operation provides a target-specific hook that allows the
0d06e24b 601 necessary bookkeeping to be performed after an attach completes. */
c906108c 602#define target_post_attach(pid) \
0d06e24b 603 (*current_target.to_post_attach) (pid)
c906108c 604
c906108c
SS
605/* Takes a program previously attached to and detaches it.
606 The program may resume execution (some targets do, some don't) and will
607 no longer stop on signals, etc. We better not have left any breakpoints
608 in the program or it'll die when it hits one. ARGS is arguments
609 typed by the user (e.g. a signal to send the process). FROM_TTY
610 says whether to be verbose or not. */
611
a14ed312 612extern void target_detach (char *, int);
c906108c 613
6ad8ae5c
DJ
614/* Disconnect from the current target without resuming it (leaving it
615 waiting for a debugger). */
616
617extern void target_disconnect (char *, int);
618
39f77062 619/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
620 single-step or to run free; SIGGNAL is the signal to be given to
621 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
622 pass TARGET_SIGNAL_DEFAULT. */
623
e1ac3328 624extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 625
b5a2688f
AC
626/* Wait for process pid to do something. PTID = -1 to wait for any
627 pid to do something. Return pid of child, or -1 in case of error;
c906108c 628 store status through argument pointer STATUS. Note that it is
b5a2688f 629 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
630 the debugging target from the stack; GDB isn't prepared to get back
631 to the prompt with a debugging target but without the frame cache,
47608cb1
PA
632 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
633 options. */
c906108c 634
47608cb1
PA
635extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
636 int options);
c906108c 637
17dee195 638/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 639
28439f5e 640extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
641
642/* Store at least register REGNO, or all regs if REGNO == -1.
643 It can store as many registers as it wants to, so target_prepare_to_store
644 must have been previously called. Calls error() if there are problems. */
645
28439f5e 646extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
647
648/* Get ready to modify the registers array. On machines which store
649 individual registers, this doesn't need to do anything. On machines
650 which store all the registers in one fell swoop, this makes sure
651 that REGISTERS contains all the registers from the program being
652 debugged. */
653
316f2060
UW
654#define target_prepare_to_store(regcache) \
655 (*current_target.to_prepare_to_store) (regcache)
c906108c 656
8a305172
PA
657/* Returns true if this target can debug multiple processes
658 simultaneously. */
659
660#define target_supports_multi_process() \
661 (*current_target.to_supports_multi_process) ()
662
4930751a
C
663extern DCACHE *target_dcache;
664
a14ed312 665extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 666
fc1a4b47 667extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 668
fc1a4b47 669extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 670 int len);
c906108c 671
fd79ecee
DJ
672/* Fetches the target's memory map. If one is found it is sorted
673 and returned, after some consistency checking. Otherwise, NULL
674 is returned. */
675VEC(mem_region_s) *target_memory_map (void);
676
a76d924d
DJ
677/* Erase the specified flash region. */
678void target_flash_erase (ULONGEST address, LONGEST length);
679
680/* Finish a sequence of flash operations. */
681void target_flash_done (void);
682
683/* Describes a request for a memory write operation. */
684struct memory_write_request
685 {
686 /* Begining address that must be written. */
687 ULONGEST begin;
688 /* Past-the-end address. */
689 ULONGEST end;
690 /* The data to write. */
691 gdb_byte *data;
692 /* A callback baton for progress reporting for this request. */
693 void *baton;
694 };
695typedef struct memory_write_request memory_write_request_s;
696DEF_VEC_O(memory_write_request_s);
697
698/* Enumeration specifying different flash preservation behaviour. */
699enum flash_preserve_mode
700 {
701 flash_preserve,
702 flash_discard
703 };
704
705/* Write several memory blocks at once. This version can be more
706 efficient than making several calls to target_write_memory, in
707 particular because it can optimize accesses to flash memory.
708
709 Moreover, this is currently the only memory access function in gdb
710 that supports writing to flash memory, and it should be used for
711 all cases where access to flash memory is desirable.
712
713 REQUESTS is the vector (see vec.h) of memory_write_request.
714 PRESERVE_FLASH_P indicates what to do with blocks which must be
715 erased, but not completely rewritten.
716 PROGRESS_CB is a function that will be periodically called to provide
717 feedback to user. It will be called with the baton corresponding
718 to the request currently being written. It may also be called
719 with a NULL baton, when preserved flash sectors are being rewritten.
720
721 The function returns 0 on success, and error otherwise. */
722int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
723 enum flash_preserve_mode preserve_flash_p,
724 void (*progress_cb) (ULONGEST, void *));
725
47932f85
DJ
726/* From infrun.c. */
727
3a3e9ee3 728extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 729
3a3e9ee3 730extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 731
3a3e9ee3 732extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 733
c906108c
SS
734/* Print a line about the current target. */
735
736#define target_files_info() \
0d06e24b 737 (*current_target.to_files_info) (&current_target)
c906108c 738
8181d85f
DJ
739/* Insert a breakpoint at address BP_TGT->placed_address in the target
740 machine. Result is 0 for success, or an errno value. */
c906108c 741
a6d9a66e
UW
742#define target_insert_breakpoint(gdbarch, bp_tgt) \
743 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
c906108c 744
8181d85f
DJ
745/* Remove a breakpoint at address BP_TGT->placed_address in the target
746 machine. Result is 0 for success, or an errno value. */
c906108c 747
a6d9a66e
UW
748#define target_remove_breakpoint(gdbarch, bp_tgt) \
749 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
c906108c
SS
750
751/* Initialize the terminal settings we record for the inferior,
752 before we actually run the inferior. */
753
754#define target_terminal_init() \
0d06e24b 755 (*current_target.to_terminal_init) ()
c906108c
SS
756
757/* Put the inferior's terminal settings into effect.
758 This is preparation for starting or resuming the inferior. */
759
d9d2d8b6 760extern void target_terminal_inferior (void);
c906108c
SS
761
762/* Put some of our terminal settings into effect,
763 enough to get proper results from our output,
764 but do not change into or out of RAW mode
765 so that no input is discarded.
766
767 After doing this, either terminal_ours or terminal_inferior
768 should be called to get back to a normal state of affairs. */
769
770#define target_terminal_ours_for_output() \
0d06e24b 771 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
772
773/* Put our terminal settings into effect.
774 First record the inferior's terminal settings
775 so they can be restored properly later. */
776
777#define target_terminal_ours() \
0d06e24b 778 (*current_target.to_terminal_ours) ()
c906108c 779
a790ad35
SC
780/* Save our terminal settings.
781 This is called from TUI after entering or leaving the curses
782 mode. Since curses modifies our terminal this call is here
783 to take this change into account. */
784
785#define target_terminal_save_ours() \
786 (*current_target.to_terminal_save_ours) ()
787
c906108c
SS
788/* Print useful information about our terminal status, if such a thing
789 exists. */
790
791#define target_terminal_info(arg, from_tty) \
0d06e24b 792 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
793
794/* Kill the inferior process. Make it go away. */
795
7d85a9c0 796extern void target_kill (void);
c906108c 797
0d06e24b
JM
798/* Load an executable file into the target process. This is expected
799 to not only bring new code into the target process, but also to
1986bccd
AS
800 update GDB's symbol tables to match.
801
802 ARG contains command-line arguments, to be broken down with
803 buildargv (). The first non-switch argument is the filename to
804 load, FILE; the second is a number (as parsed by strtoul (..., ...,
805 0)), which is an offset to apply to the load addresses of FILE's
806 sections. The target may define switches, or other non-switch
807 arguments, as it pleases. */
c906108c 808
11cf8741 809extern void target_load (char *arg, int from_tty);
c906108c
SS
810
811/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
812 name. ADDRP is a CORE_ADDR * pointing to where the value of the
813 symbol should be returned. The result is 0 if successful, nonzero
814 if the symbol does not exist in the target environment. This
815 function should not call error() if communication with the target
816 is interrupted, since it is called from symbol reading, but should
817 return nonzero, possibly doing a complain(). */
c906108c 818
0d06e24b
JM
819#define target_lookup_symbol(name, addrp) \
820 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 821
39f77062 822/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
823 EXEC_FILE is the file to run.
824 ALLARGS is a string containing the arguments to the program.
825 ENV is the environment vector to pass. Errors reported with error().
826 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 827
136d6dae
VP
828void target_create_inferior (char *exec_file, char *args,
829 char **env, int from_tty);
c906108c
SS
830
831/* Some targets (such as ttrace-based HPUX) don't allow us to request
832 notification of inferior events such as fork and vork immediately
833 after the inferior is created. (This because of how gdb gets an
834 inferior created via invoking a shell to do it. In such a scenario,
835 if the shell init file has commands in it, the shell will fork and
836 exec for each of those commands, and we will see each such fork
837 event. Very bad.)
c5aa993b 838
0d06e24b
JM
839 Such targets will supply an appropriate definition for this function. */
840
39f77062
KB
841#define target_post_startup_inferior(ptid) \
842 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
843
844/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
845 some synchronization between gdb and the new inferior process, PID. */
846
c906108c 847#define target_acknowledge_created_inferior(pid) \
0d06e24b 848 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 849
0d06e24b
JM
850/* On some targets, we can catch an inferior fork or vfork event when
851 it occurs. These functions insert/remove an already-created
852 catchpoint for such events. */
c906108c 853
c906108c 854#define target_insert_fork_catchpoint(pid) \
0d06e24b 855 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
856
857#define target_remove_fork_catchpoint(pid) \
0d06e24b 858 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
859
860#define target_insert_vfork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
862
863#define target_remove_vfork_catchpoint(pid) \
0d06e24b 864 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 865
6604731b
DJ
866/* If the inferior forks or vforks, this function will be called at
867 the next resume in order to perform any bookkeeping and fiddling
868 necessary to continue debugging either the parent or child, as
869 requested, and releasing the other. Information about the fork
870 or vfork event is available via get_last_target_status ().
871 This function returns 1 if the inferior should not be resumed
872 (i.e. there is another event pending). */
0d06e24b 873
ee057212 874int target_follow_fork (int follow_child);
c906108c
SS
875
876/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
877 occurs. These functions insert/remove an already-created
878 catchpoint for such events. */
879
c906108c 880#define target_insert_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 882
c906108c 883#define target_remove_exec_catchpoint(pid) \
0d06e24b 884 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 885
c906108c 886/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
887 exit code of PID, if any. */
888
c906108c 889#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 890 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
891
892/* The debugger has completed a blocking wait() call. There is now
2146d243 893 some process event that must be processed. This function should
c906108c 894 be defined by those targets that require the debugger to perform
0d06e24b 895 cleanup or internal state changes in response to the process event. */
c906108c
SS
896
897/* The inferior process has died. Do what is right. */
898
136d6dae 899void target_mourn_inferior (void);
c906108c
SS
900
901/* Does target have enough data to do a run or attach command? */
902
903#define target_can_run(t) \
0d06e24b 904 ((t)->to_can_run) ()
c906108c
SS
905
906/* post process changes to signal handling in the inferior. */
907
39f77062
KB
908#define target_notice_signals(ptid) \
909 (*current_target.to_notice_signals) (ptid)
c906108c
SS
910
911/* Check to see if a thread is still alive. */
912
28439f5e 913extern int target_thread_alive (ptid_t ptid);
c906108c 914
b83266a0
SS
915/* Query for new threads and add them to the thread list. */
916
28439f5e 917extern void target_find_new_threads (void);
b83266a0 918
0d06e24b
JM
919/* Make target stop in a continuable fashion. (For instance, under
920 Unix, this should act like SIGSTOP). This function is normally
921 used by GUIs to implement a stop button. */
c906108c 922
94cc34af 923#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 924
96baa820
JM
925/* Send the specified COMMAND to the target's monitor
926 (shell,interpreter) for execution. The result of the query is
0d06e24b 927 placed in OUTBUF. */
96baa820
JM
928
929#define target_rcmd(command, outbuf) \
930 (*current_target.to_rcmd) (command, outbuf)
931
932
c906108c
SS
933/* Does the target include all of memory, or only part of it? This
934 determines whether we look up the target chain for other parts of
935 memory if this target can't satisfy a request. */
936
c35b1492
PA
937extern int target_has_all_memory_1 (void);
938#define target_has_all_memory target_has_all_memory_1 ()
c906108c
SS
939
940/* Does the target include memory? (Dummy targets don't.) */
941
c35b1492
PA
942extern int target_has_memory_1 (void);
943#define target_has_memory target_has_memory_1 ()
c906108c
SS
944
945/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
946 we start a process.) */
c5aa993b 947
c35b1492
PA
948extern int target_has_stack_1 (void);
949#define target_has_stack target_has_stack_1 ()
c906108c
SS
950
951/* Does the target have registers? (Exec files don't.) */
952
c35b1492
PA
953extern int target_has_registers_1 (void);
954#define target_has_registers target_has_registers_1 ()
c906108c
SS
955
956/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
957 hoops), or pop its stack a few times? This means that the current
958 target is currently executing; for some targets, that's the same as
959 whether or not the target is capable of execution, but there are
960 also targets which can be current while not executing. In that
961 case this will become true after target_create_inferior or
962 target_attach. */
c906108c 963
c35b1492
PA
964extern int target_has_execution_1 (void);
965#define target_has_execution target_has_execution_1 ()
966
967/* Default implementations for process_stratum targets. Return true
968 if there's a selected inferior, false otherwise. */
969
970extern int default_child_has_all_memory (struct target_ops *ops);
971extern int default_child_has_memory (struct target_ops *ops);
972extern int default_child_has_stack (struct target_ops *ops);
973extern int default_child_has_registers (struct target_ops *ops);
974extern int default_child_has_execution (struct target_ops *ops);
c906108c
SS
975
976/* Can the target support the debugger control of thread execution?
d6350901 977 Can it lock the thread scheduler? */
c906108c
SS
978
979#define target_can_lock_scheduler \
0d06e24b 980 (current_target.to_has_thread_control & tc_schedlock)
c906108c 981
c6ebd6cf
VP
982/* Should the target enable async mode if it is supported? Temporary
983 cludge until async mode is a strict superset of sync mode. */
984extern int target_async_permitted;
985
6426a772
JM
986/* Can the target support asynchronous execution? */
987#define target_can_async_p() (current_target.to_can_async_p ())
988
989/* Is the target in asynchronous execution mode? */
b84876c2 990#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 991
9908b566
VP
992int target_supports_non_stop (void);
993
6426a772 994/* Put the target in async mode with the specified callback function. */
0d06e24b 995#define target_async(CALLBACK,CONTEXT) \
b84876c2 996 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 997
04714b91
AC
998/* This is to be used ONLY within call_function_by_hand(). It provides
999 a workaround, to have inferior function calls done in sychronous
1000 mode, even though the target is asynchronous. After
ed9a39eb
JM
1001 target_async_mask(0) is called, calls to target_can_async_p() will
1002 return FALSE , so that target_resume() will not try to start the
1003 target asynchronously. After the inferior stops, we IMMEDIATELY
1004 restore the previous nature of the target, by calling
1005 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1006 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1007
1008 FIXME ezannoni 1999-12-13: we won't need this once we move
1009 the turning async on and off to the single execution commands,
0d06e24b 1010 from where it is done currently, in remote_resume(). */
ed9a39eb 1011
b84876c2
PA
1012#define target_async_mask(MASK) \
1013 (current_target.to_async_mask (MASK))
ed9a39eb 1014
c906108c
SS
1015/* Converts a process id to a string. Usually, the string just contains
1016 `process xyz', but on some systems it may contain
1017 `process xyz thread abc'. */
1018
117de6a9 1019extern char *target_pid_to_str (ptid_t ptid);
c906108c 1020
39f77062 1021extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1022
0d06e24b
JM
1023/* Return a short string describing extra information about PID,
1024 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1025 is okay. */
1026
1027#define target_extra_thread_info(TP) \
1028 (current_target.to_extra_thread_info (TP))
ed9a39eb 1029
c906108c
SS
1030/* Attempts to find the pathname of the executable file
1031 that was run to create a specified process.
1032
1033 The process PID must be stopped when this operation is used.
c5aa993b 1034
c906108c
SS
1035 If the executable file cannot be determined, NULL is returned.
1036
1037 Else, a pointer to a character string containing the pathname
1038 is returned. This string should be copied into a buffer by
1039 the client if the string will not be immediately used, or if
0d06e24b 1040 it must persist. */
c906108c
SS
1041
1042#define target_pid_to_exec_file(pid) \
0d06e24b 1043 (current_target.to_pid_to_exec_file) (pid)
c906108c 1044
c2250ad1
UW
1045/* Determine current architecture of thread PTID. */
1046
1047#define target_thread_architecture(ptid) \
1048 (current_target.to_thread_architecture (&current_target, ptid))
1049
be4d1333
MS
1050/*
1051 * Iterator function for target memory regions.
1052 * Calls a callback function once for each memory region 'mapped'
1053 * in the child process. Defined as a simple macro rather than
2146d243 1054 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1055 */
1056
1057#define target_find_memory_regions(FUNC, DATA) \
1058 (current_target.to_find_memory_regions) (FUNC, DATA)
1059
1060/*
1061 * Compose corefile .note section.
1062 */
1063
1064#define target_make_corefile_notes(BFD, SIZE_P) \
1065 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1066
c906108c
SS
1067/* Hardware watchpoint interfaces. */
1068
1069/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1070 write). */
1071
d92524f1
PM
1072#define target_stopped_by_watchpoint \
1073 (*current_target.to_stopped_by_watchpoint)
7df1a324 1074
74174d2e
UW
1075/* Non-zero if we have steppable watchpoints */
1076
d92524f1 1077#define target_have_steppable_watchpoint \
74174d2e 1078 (current_target.to_have_steppable_watchpoint)
74174d2e 1079
7df1a324
KW
1080/* Non-zero if we have continuable watchpoints */
1081
d92524f1 1082#define target_have_continuable_watchpoint \
7df1a324 1083 (current_target.to_have_continuable_watchpoint)
c906108c 1084
ccaa32c7 1085/* Provide defaults for hardware watchpoint functions. */
c906108c 1086
2146d243 1087/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1088 elsewhere use the definitions in the target vector. */
c906108c
SS
1089
1090/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1091 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1092 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1093 (including this one?). OTHERTYPE is who knows what... */
1094
d92524f1 1095#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
ccaa32c7 1096 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
c906108c 1097
d92524f1 1098#define target_region_ok_for_hw_watchpoint(addr, len) \
e0d24f8d 1099 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
e0d24f8d 1100
c906108c
SS
1101
1102/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1103 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1104 success, non-zero for failure. */
1105
ccaa32c7
GS
1106#define target_insert_watchpoint(addr, len, type) \
1107 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1108
ccaa32c7
GS
1109#define target_remove_watchpoint(addr, len, type) \
1110 (*current_target.to_remove_watchpoint) (addr, len, type)
c906108c 1111
a6d9a66e
UW
1112#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1113 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
ccaa32c7 1114
a6d9a66e
UW
1115#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1116 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
c906108c 1117
4aa7a7f5
JJ
1118#define target_stopped_data_address(target, x) \
1119 (*target.to_stopped_data_address) (target, x)
c906108c 1120
5009afc5
AS
1121#define target_watchpoint_addr_within_range(target, addr, start, length) \
1122 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1123
b2175913
MS
1124/* Target can execute in reverse? */
1125#define target_can_execute_reverse \
1126 (current_target.to_can_execute_reverse ? \
1127 current_target.to_can_execute_reverse () : 0)
1128
424163ea
DJ
1129extern const struct target_desc *target_read_description (struct target_ops *);
1130
0ef643c8
JB
1131#define target_get_ada_task_ptid(lwp, tid) \
1132 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1133
08388c79
DE
1134/* Utility implementation of searching memory. */
1135extern int simple_search_memory (struct target_ops* ops,
1136 CORE_ADDR start_addr,
1137 ULONGEST search_space_len,
1138 const gdb_byte *pattern,
1139 ULONGEST pattern_len,
1140 CORE_ADDR *found_addrp);
1141
1142/* Main entry point for searching memory. */
1143extern int target_search_memory (CORE_ADDR start_addr,
1144 ULONGEST search_space_len,
1145 const gdb_byte *pattern,
1146 ULONGEST pattern_len,
1147 CORE_ADDR *found_addrp);
1148
49d03eab
MR
1149/* Command logging facility. */
1150
1151#define target_log_command(p) \
1152 do \
1153 if (current_target.to_log_command) \
1154 (*current_target.to_log_command) (p); \
1155 while (0)
1156
c906108c
SS
1157/* Routines for maintenance of the target structures...
1158
1159 add_target: Add a target to the list of all possible targets.
1160
1161 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1162 targets, within its particular stratum of the stack. Result
1163 is 0 if now atop the stack, nonzero if not on top (maybe
1164 should warn user).
c906108c
SS
1165
1166 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1167 no matter where it is on the list. Returns 0 if no
1168 change, 1 if removed from stack.
c906108c 1169
c5aa993b 1170 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1171
a14ed312 1172extern void add_target (struct target_ops *);
c906108c 1173
a14ed312 1174extern int push_target (struct target_ops *);
c906108c 1175
a14ed312 1176extern int unpush_target (struct target_ops *);
c906108c 1177
fd79ecee
DJ
1178extern void target_pre_inferior (int);
1179
a14ed312 1180extern void target_preopen (int);
c906108c 1181
a14ed312 1182extern void pop_target (void);
c906108c 1183
aa76d38d
PA
1184/* Does whatever cleanup is required to get rid of all pushed targets.
1185 QUITTING is propagated to target_close; it indicates that GDB is
1186 exiting and should not get hung on an error (otherwise it is
1187 important to perform clean termination, even if it takes a
1188 while). */
1189extern void pop_all_targets (int quitting);
1190
87ab71f0
PA
1191/* Like pop_all_targets, but pops only targets whose stratum is
1192 strictly above ABOVE_STRATUM. */
1193extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1194
9e35dae4
DJ
1195extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1196 CORE_ADDR offset);
1197
0542c86d 1198/* Struct target_section maps address ranges to file sections. It is
c906108c
SS
1199 mostly used with BFD files, but can be used without (e.g. for handling
1200 raw disks, or files not in formats handled by BFD). */
1201
0542c86d 1202struct target_section
c5aa993b
JM
1203 {
1204 CORE_ADDR addr; /* Lowest address in section */
1205 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1206
7be0c536 1207 struct bfd_section *the_bfd_section;
c906108c 1208
c5aa993b
JM
1209 bfd *bfd; /* BFD file pointer */
1210 };
c906108c 1211
07b82ea5
PA
1212/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1213
1214struct target_section_table
1215{
1216 struct target_section *sections;
1217 struct target_section *sections_end;
1218};
1219
8db32d44 1220/* Return the "section" containing the specified address. */
0542c86d
PA
1221struct target_section *target_section_by_addr (struct target_ops *target,
1222 CORE_ADDR addr);
8db32d44 1223
07b82ea5
PA
1224/* Return the target section table this target (or the targets
1225 beneath) currently manipulate. */
1226
1227extern struct target_section_table *target_get_section_table
1228 (struct target_ops *target);
1229
c906108c
SS
1230/* From mem-break.c */
1231
a6d9a66e 1232extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1233
a6d9a66e 1234extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1235
ae4b2284 1236extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1237
ae4b2284 1238extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1239
c906108c
SS
1240
1241/* From target.c */
1242
a14ed312 1243extern void initialize_targets (void);
c906108c 1244
117de6a9 1245extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1246
8edfe269
DJ
1247extern void target_require_runnable (void);
1248
136d6dae 1249extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1250
136d6dae
VP
1251extern void find_default_create_inferior (struct target_ops *,
1252 char *, char *, char **, int);
c906108c 1253
a14ed312 1254extern struct target_ops *find_run_target (void);
7a292a7a 1255
a14ed312 1256extern struct target_ops *find_core_target (void);
6426a772 1257
a14ed312 1258extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1259
e0665bc8
PA
1260/* Read OS data object of type TYPE from the target, and return it in
1261 XML format. The result is NUL-terminated and returned as a string,
1262 allocated using xmalloc. If an error occurs or the transfer is
1263 unsupported, NULL is returned. Empty objects are returned as
1264 allocated but empty strings. */
1265
07e059b5
VP
1266extern char *target_get_osdata (const char *type);
1267
c906108c
SS
1268\f
1269/* Stuff that should be shared among the various remote targets. */
1270
1271/* Debugging level. 0 is off, and non-zero values mean to print some debug
1272 information (higher values, more information). */
1273extern int remote_debug;
1274
1275/* Speed in bits per second, or -1 which means don't mess with the speed. */
1276extern int baud_rate;
1277/* Timeout limit for response from target. */
1278extern int remote_timeout;
1279
c906108c
SS
1280\f
1281/* Functions for helping to write a native target. */
1282
1283/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1284extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1285
2aecd87f 1286/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1287extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1288 int);
1289extern int default_target_signal_to_host (struct gdbarch *,
1290 enum target_signal);
1291
c906108c 1292/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1293extern enum target_signal target_signal_from_command (int);
2aecd87f 1294/* End of files in common/signals.c. */
c906108c 1295
8defab1a
DJ
1296/* Set the show memory breakpoints mode to show, and installs a cleanup
1297 to restore it back to the current value. */
1298extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1299
c906108c
SS
1300\f
1301/* Imported from machine dependent code */
1302
c906108c 1303/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1304void target_ignore (void);
c906108c 1305
1df84f13 1306extern struct target_ops deprecated_child_ops;
5ac10fd1 1307
c5aa993b 1308#endif /* !defined (TARGET_H) */