]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/m68hc11/interp.c
sim: switch config.h usage to defs.h
[thirdparty/binutils-gdb.git] / sim / m68hc11 / interp.c
1 /* interp.c -- Simulator for Motorola 68HC11/68HC12
2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
3 Written by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This must come before any other includes. */
21 #include "defs.h"
22
23 #include "sim-main.h"
24 #include "sim-assert.h"
25 #include "sim-hw.h"
26 #include "sim-options.h"
27 #include "hw-tree.h"
28 #include "hw-device.h"
29 #include "hw-ports.h"
30 #include "elf32-m68hc1x.h"
31
32 #ifndef MONITOR_BASE
33 # define MONITOR_BASE (0x0C000)
34 # define MONITOR_SIZE (0x04000)
35 #endif
36
37 static void sim_get_info (SIM_DESC sd, char *cmd);
38
39 struct sim_info_list
40 {
41 const char *name;
42 const char *device;
43 };
44
45 struct sim_info_list dev_list_68hc11[] = {
46 {"cpu", "/m68hc11"},
47 {"timer", "/m68hc11/m68hc11tim"},
48 {"sio", "/m68hc11/m68hc11sio"},
49 {"spi", "/m68hc11/m68hc11spi"},
50 {"eeprom", "/m68hc11/m68hc11eepr"},
51 {0, 0}
52 };
53
54 struct sim_info_list dev_list_68hc12[] = {
55 {"cpu", "/m68hc12"},
56 {"timer", "/m68hc12/m68hc12tim"},
57 {"sio", "/m68hc12/m68hc12sio"},
58 {"spi", "/m68hc12/m68hc12spi"},
59 {"eeprom", "/m68hc12/m68hc12eepr"},
60 {0, 0}
61 };
62
63 /* Cover function of sim_state_free to free the cpu buffers as well. */
64
65 static void
66 free_state (SIM_DESC sd)
67 {
68 if (STATE_MODULES (sd) != NULL)
69 sim_module_uninstall (sd);
70
71 sim_state_free (sd);
72 }
73
74 /* Give some information about the simulator. */
75 static void
76 sim_get_info (SIM_DESC sd, char *cmd)
77 {
78 sim_cpu *cpu;
79
80 cpu = STATE_CPU (sd, 0);
81 if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
82 {
83 int i;
84 struct hw *hw_dev;
85 struct sim_info_list *dev_list;
86 const struct bfd_arch_info *arch;
87
88 arch = STATE_ARCHITECTURE (sd);
89 cmd++;
90
91 if (arch->arch == bfd_arch_m68hc11)
92 dev_list = dev_list_68hc11;
93 else
94 dev_list = dev_list_68hc12;
95
96 for (i = 0; dev_list[i].name; i++)
97 if (strcmp (cmd, dev_list[i].name) == 0)
98 break;
99
100 if (dev_list[i].name == 0)
101 {
102 sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
103 sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
104 return;
105 }
106 hw_dev = sim_hw_parse (sd, "%s", dev_list[i].device);
107 if (hw_dev == 0)
108 {
109 sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
110 return;
111 }
112 hw_ioctl (hw_dev, 23, 0);
113 return;
114 }
115
116 cpu_info (sd, cpu);
117 interrupts_info (sd, &cpu->cpu_interrupts);
118 }
119
120
121 void
122 sim_board_reset (SIM_DESC sd)
123 {
124 struct hw *hw_cpu;
125 sim_cpu *cpu;
126 const struct bfd_arch_info *arch;
127 const char *cpu_type;
128
129 cpu = STATE_CPU (sd, 0);
130 arch = STATE_ARCHITECTURE (sd);
131
132 /* hw_cpu = sim_hw_parse (sd, "/"); */
133 if (arch->arch == bfd_arch_m68hc11)
134 {
135 cpu->cpu_type = CPU_M6811;
136 cpu_type = "/m68hc11";
137 }
138 else
139 {
140 cpu->cpu_type = CPU_M6812;
141 cpu_type = "/m68hc12";
142 }
143
144 hw_cpu = sim_hw_parse (sd, "%s", cpu_type);
145 if (hw_cpu == 0)
146 {
147 sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
148 return;
149 }
150
151 cpu_reset (cpu);
152 hw_port_event (hw_cpu, 3, 0);
153 cpu_restart (cpu);
154 }
155
156 static int
157 sim_hw_configure (SIM_DESC sd)
158 {
159 const struct bfd_arch_info *arch;
160 struct hw *device_tree;
161 sim_cpu *cpu;
162
163 arch = STATE_ARCHITECTURE (sd);
164 if (arch == 0)
165 return 0;
166
167 cpu = STATE_CPU (sd, 0);
168 cpu->cpu_configured_arch = arch;
169 device_tree = sim_hw_parse (sd, "/");
170 if (arch->arch == bfd_arch_m68hc11)
171 {
172 cpu->cpu_interpretor = cpu_interp_m6811;
173 if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
174 {
175 /* Allocate core managed memory */
176
177 /* the monitor */
178 sim_do_commandf (sd, "memory region 0x%x@%d,0x%x",
179 /* MONITOR_BASE, MONITOR_SIZE */
180 0x8000, M6811_RAM_LEVEL, 0x8000);
181 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
182 M6811_RAM_LEVEL);
183 sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
184 if (cpu->bank_start < cpu->bank_end)
185 {
186 sim_do_commandf (sd, "memory region 0x%x@%d,0x100000",
187 cpu->bank_virtual, M6811_RAM_LEVEL);
188 sim_hw_parse (sd, "/m68hc11/use_bank 1");
189 }
190 }
191 if (cpu->cpu_start_mode)
192 {
193 sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
194 }
195 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
196 {
197 sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
198 sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
199 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
200 }
201 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
202 {
203 /* M68hc11 Timer configuration. */
204 sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
205 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
206 sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
207 }
208
209 /* Create the SPI device. */
210 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
211 {
212 sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
213 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
214 }
215 if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
216 {
217 /* M68hc11 persistent ram configuration. */
218 sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
219 sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
220 sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
221 /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
222 }
223 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
224 {
225 sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
226 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
227 }
228 sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
229 sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
230 sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
231 sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
232 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
233 }
234 else
235 {
236 cpu->cpu_interpretor = cpu_interp_m6812;
237 if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
238 {
239 /* Allocate core external memory. */
240 sim_do_commandf (sd, "memory region 0x%x@%d,0x%x",
241 0x8000, M6811_RAM_LEVEL, 0x8000);
242 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
243 M6811_RAM_LEVEL);
244 if (cpu->bank_start < cpu->bank_end)
245 {
246 sim_do_commandf (sd, "memory region 0x%x@%d,0x100000",
247 cpu->bank_virtual, M6811_RAM_LEVEL);
248 sim_hw_parse (sd, "/m68hc12/use_bank 1");
249 }
250 sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
251 }
252
253 if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
254 {
255 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
256 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
257 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
258 }
259 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
260 {
261 /* M68hc11 Timer configuration. */
262 sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
263 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
264 sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
265 }
266
267 /* Create the SPI device. */
268 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
269 {
270 sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
271 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
272 }
273 if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
274 {
275 /* M68hc11 persistent ram configuration. */
276 sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
277 sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
278 sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
279 }
280 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
281 {
282 sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
283 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
284 }
285
286 sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
287 sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
288 sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
289 sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
290 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
291 }
292 return 1;
293 }
294
295 /* Get the memory bank parameters by looking at the global symbols
296 defined by the linker. */
297 static int
298 sim_get_bank_parameters (SIM_DESC sd)
299 {
300 sim_cpu *cpu;
301 unsigned size;
302 bfd_vma addr;
303
304 cpu = STATE_CPU (sd, 0);
305
306 addr = trace_sym_value (sd, BFD_M68HC11_BANK_START_NAME);
307 if (addr != -1)
308 cpu->bank_start = addr;
309
310 size = trace_sym_value (sd, BFD_M68HC11_BANK_SIZE_NAME);
311 if (size == -1)
312 size = 0;
313
314 addr = trace_sym_value (sd, BFD_M68HC11_BANK_VIRTUAL_NAME);
315 if (addr != -1)
316 cpu->bank_virtual = addr;
317
318 cpu->bank_end = cpu->bank_start + size;
319 cpu->bank_shift = 0;
320 for (; size > 1; size >>= 1)
321 cpu->bank_shift++;
322
323 return 0;
324 }
325
326 static int
327 sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
328 {
329 sim_cpu *cpu;
330 int elf_flags = 0;
331
332 cpu = STATE_CPU (sd, 0);
333
334 if (abfd != NULL)
335 {
336 asection *s;
337
338 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
339 elf_flags = elf_elfheader (abfd)->e_flags;
340
341 cpu->cpu_elf_start = bfd_get_start_address (abfd);
342 /* See if any section sets the reset address */
343 cpu->cpu_use_elf_start = 1;
344 for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
345 {
346 if (s->flags & SEC_LOAD)
347 {
348 bfd_size_type size;
349
350 size = bfd_section_size (s);
351 if (size > 0)
352 {
353 bfd_vma lma;
354
355 if (STATE_LOAD_AT_LMA_P (sd))
356 lma = bfd_section_lma (s);
357 else
358 lma = bfd_section_vma (s);
359
360 if (lma <= 0xFFFE && lma+size >= 0x10000)
361 cpu->cpu_use_elf_start = 0;
362 }
363 }
364 }
365
366 if (elf_flags & E_M68HC12_BANKS)
367 {
368 if (sim_get_bank_parameters (sd) != 0)
369 sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
370 }
371 }
372
373 if (!sim_hw_configure (sd))
374 return SIM_RC_FAIL;
375
376 /* reset all state information */
377 sim_board_reset (sd);
378
379 return SIM_RC_OK;
380 }
381
382 static sim_cia
383 m68hc11_pc_get (sim_cpu *cpu)
384 {
385 return cpu_get_pc (cpu);
386 }
387
388 static void
389 m68hc11_pc_set (sim_cpu *cpu, sim_cia pc)
390 {
391 cpu_set_pc (cpu, pc);
392 }
393
394 static int m68hc11_reg_fetch (SIM_CPU *, int, unsigned char *, int);
395 static int m68hc11_reg_store (SIM_CPU *, int, unsigned char *, int);
396
397 SIM_DESC
398 sim_open (SIM_OPEN_KIND kind, host_callback *callback,
399 bfd *abfd, char * const *argv)
400 {
401 int i;
402 SIM_DESC sd;
403 sim_cpu *cpu;
404
405 sd = sim_state_alloc (kind, callback);
406
407 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
408
409 /* The cpu data is kept in a separately allocated chunk of memory. */
410 if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK)
411 {
412 free_state (sd);
413 return 0;
414 }
415
416 cpu = STATE_CPU (sd, 0);
417
418 cpu_initialize (sd, cpu);
419
420 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
421 {
422 free_state (sd);
423 return 0;
424 }
425
426 /* The parser will print an error message for us, so we silently return. */
427 if (sim_parse_args (sd, argv) != SIM_RC_OK)
428 {
429 /* Uninstall the modules to avoid memory leaks,
430 file descriptor leaks, etc. */
431 free_state (sd);
432 return 0;
433 }
434
435 /* Check for/establish the a reference program image. */
436 if (sim_analyze_program (sd,
437 (STATE_PROG_ARGV (sd) != NULL
438 ? *STATE_PROG_ARGV (sd)
439 : NULL), abfd) != SIM_RC_OK)
440 {
441 free_state (sd);
442 return 0;
443 }
444
445 /* Establish any remaining configuration options. */
446 if (sim_config (sd) != SIM_RC_OK)
447 {
448 free_state (sd);
449 return 0;
450 }
451
452 if (sim_post_argv_init (sd) != SIM_RC_OK)
453 {
454 /* Uninstall the modules to avoid memory leaks,
455 file descriptor leaks, etc. */
456 free_state (sd);
457 return 0;
458 }
459 if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
460 {
461 free_state (sd);
462 return 0;
463 }
464
465 /* CPU specific initialization. */
466 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
467 {
468 SIM_CPU *cpu = STATE_CPU (sd, i);
469
470 CPU_REG_FETCH (cpu) = m68hc11_reg_fetch;
471 CPU_REG_STORE (cpu) = m68hc11_reg_store;
472 CPU_PC_FETCH (cpu) = m68hc11_pc_get;
473 CPU_PC_STORE (cpu) = m68hc11_pc_set;
474 }
475
476 return sd;
477 }
478
479 /* Generic implementation of sim_engine_run that works within the
480 sim_engine setjmp/longjmp framework. */
481
482 void
483 sim_engine_run (SIM_DESC sd,
484 int next_cpu_nr, /* ignore */
485 int nr_cpus, /* ignore */
486 int siggnal) /* ignore */
487 {
488 sim_cpu *cpu;
489
490 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
491 cpu = STATE_CPU (sd, 0);
492 while (1)
493 {
494 cpu_single_step (cpu);
495
496 /* process any events */
497 if (sim_events_tickn (sd, cpu->cpu_current_cycle))
498 {
499 sim_events_process (sd);
500 }
501 }
502 }
503
504 void
505 sim_info (SIM_DESC sd, int verbose)
506 {
507 const char *cpu_type;
508 const struct bfd_arch_info *arch;
509
510 /* Nothing to do if there is no verbose flag set. */
511 if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
512 return;
513
514 arch = STATE_ARCHITECTURE (sd);
515 if (arch->arch == bfd_arch_m68hc11)
516 cpu_type = "68HC11";
517 else
518 cpu_type = "68HC12";
519
520 sim_io_eprintf (sd, "Simulator info:\n");
521 sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type);
522 sim_get_info (sd, 0);
523 sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
524 }
525
526 SIM_RC
527 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
528 char * const *argv, char * const *env)
529 {
530 return sim_prepare_for_program (sd, abfd);
531 }
532
533 static int
534 m68hc11_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
535 {
536 uint16 val;
537 int size = 2;
538
539 switch (rn)
540 {
541 case A_REGNUM:
542 val = cpu_get_a (cpu);
543 size = 1;
544 break;
545
546 case B_REGNUM:
547 val = cpu_get_b (cpu);
548 size = 1;
549 break;
550
551 case D_REGNUM:
552 val = cpu_get_d (cpu);
553 break;
554
555 case X_REGNUM:
556 val = cpu_get_x (cpu);
557 break;
558
559 case Y_REGNUM:
560 val = cpu_get_y (cpu);
561 break;
562
563 case SP_REGNUM:
564 val = cpu_get_sp (cpu);
565 break;
566
567 case PC_REGNUM:
568 val = cpu_get_pc (cpu);
569 break;
570
571 case PSW_REGNUM:
572 val = cpu_get_ccr (cpu);
573 size = 1;
574 break;
575
576 case PAGE_REGNUM:
577 val = cpu_get_page (cpu);
578 size = 1;
579 break;
580
581 default:
582 val = 0;
583 break;
584 }
585 if (size == 1)
586 {
587 memory[0] = val;
588 }
589 else
590 {
591 memory[0] = val >> 8;
592 memory[1] = val & 0x0FF;
593 }
594 return size;
595 }
596
597 static int
598 m68hc11_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
599 {
600 uint16 val;
601
602 val = *memory++;
603 if (length == 2)
604 val = (val << 8) | *memory;
605
606 switch (rn)
607 {
608 case D_REGNUM:
609 cpu_set_d (cpu, val);
610 break;
611
612 case A_REGNUM:
613 cpu_set_a (cpu, val);
614 return 1;
615
616 case B_REGNUM:
617 cpu_set_b (cpu, val);
618 return 1;
619
620 case X_REGNUM:
621 cpu_set_x (cpu, val);
622 break;
623
624 case Y_REGNUM:
625 cpu_set_y (cpu, val);
626 break;
627
628 case SP_REGNUM:
629 cpu_set_sp (cpu, val);
630 break;
631
632 case PC_REGNUM:
633 cpu_set_pc (cpu, val);
634 break;
635
636 case PSW_REGNUM:
637 cpu_set_ccr (cpu, val);
638 return 1;
639
640 case PAGE_REGNUM:
641 cpu_set_page (cpu, val);
642 return 1;
643
644 default:
645 break;
646 }
647
648 return 2;
649 }