]> git.ipfire.org Git - people/ms/linux.git/blob - fs/fs-writeback.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124
125 list_move(&inode->i_io_list, head);
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133 }
134
135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 spin_lock_irq(&wb->work_lock);
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 spin_unlock_irq(&wb->work_lock);
141 }
142
143 static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
145 {
146 struct wb_completion *done = work->done;
147
148 if (work->auto_free)
149 kfree(work);
150 if (done) {
151 wait_queue_head_t *waitq = done->waitq;
152
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
155 wake_up_all(waitq);
156 }
157 }
158
159 static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
161 {
162 trace_writeback_queue(wb, work);
163
164 if (work->done)
165 atomic_inc(&work->done->cnt);
166
167 spin_lock_irq(&wb->work_lock);
168
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 } else
173 finish_writeback_work(wb, work);
174
175 spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
180 * @done: target wb_completion
181 *
182 * Wait for one or more work items issued to @bdi with their ->done field
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
186 * automatically on completion.
187 */
188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 atomic_dec(&done->cnt); /* put down the initial count */
191 wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
198 * how they're used.
199 *
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
203 *
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
209 *
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
214 */
215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219
220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
228
229 /*
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 */
233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
243
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
246
247 if (page) {
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 } else {
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 css_put(memcg_css);
255 }
256 }
257
258 if (!wb)
259 wb = &bdi->wb;
260
261 /*
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
264 */
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
274 *
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
277 */
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
280 {
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
283
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
287 else
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
290 }
291
292 /**
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
295 *
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
299 */
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
304 {
305 while (true) {
306 struct bdi_writeback *wb = inode_to_wb(inode);
307
308 /*
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
313 */
314 wb_get(wb);
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
317
318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
321 return wb;
322 }
323
324 spin_unlock(&wb->list_lock);
325 wb_put(wb);
326 cpu_relax();
327 spin_lock(&inode->i_lock);
328 }
329 }
330
331 /**
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
334 *
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336 * on entry.
337 */
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
340 {
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346 struct rcu_work work;
347
348 /*
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
355 */
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
358 };
359
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 down_write(&bdi->wb_switch_rwsem);
363 }
364
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 up_write(&bdi->wb_switch_rwsem);
368 }
369
370 static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
372 struct bdi_writeback *new_wb)
373 {
374 struct address_space *mapping = inode->i_mapping;
375 XA_STATE(xas, &mapping->i_pages, 0);
376 struct folio *folio;
377 bool switched = false;
378
379 spin_lock(&inode->i_lock);
380 xa_lock_irq(&mapping->i_pages);
381
382 /*
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
385 */
386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 goto skip_switch;
388
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
394 * folios actually under writeback.
395 */
396 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (folio_test_dirty(folio)) {
398 long nr = folio_nr_pages(folio);
399 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
400 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
401 }
402 }
403
404 xas_set(&xas, 0);
405 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 long nr = folio_nr_pages(folio);
407 WARN_ON_ONCE(!folio_test_writeback(folio));
408 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
409 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
410 }
411
412 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
413 atomic_dec(&old_wb->writeback_inodes);
414 atomic_inc(&new_wb->writeback_inodes);
415 }
416
417 wb_get(new_wb);
418
419 /*
420 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
421 * the specific list @inode was on is ignored and the @inode is put on
422 * ->b_dirty which is always correct including from ->b_dirty_time.
423 * The transfer preserves @inode->dirtied_when ordering. If the @inode
424 * was clean, it means it was on the b_attached list, so move it onto
425 * the b_attached list of @new_wb.
426 */
427 if (!list_empty(&inode->i_io_list)) {
428 inode->i_wb = new_wb;
429
430 if (inode->i_state & I_DIRTY_ALL) {
431 struct inode *pos;
432
433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
434 if (time_after_eq(inode->dirtied_when,
435 pos->dirtied_when))
436 break;
437 inode_io_list_move_locked(inode, new_wb,
438 pos->i_io_list.prev);
439 } else {
440 inode_cgwb_move_to_attached(inode, new_wb);
441 }
442 } else {
443 inode->i_wb = new_wb;
444 }
445
446 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
447 inode->i_wb_frn_winner = 0;
448 inode->i_wb_frn_avg_time = 0;
449 inode->i_wb_frn_history = 0;
450 switched = true;
451 skip_switch:
452 /*
453 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
454 * ensures that the new wb is visible if they see !I_WB_SWITCH.
455 */
456 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
457
458 xa_unlock_irq(&mapping->i_pages);
459 spin_unlock(&inode->i_lock);
460
461 return switched;
462 }
463
464 static void inode_switch_wbs_work_fn(struct work_struct *work)
465 {
466 struct inode_switch_wbs_context *isw =
467 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
468 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
469 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
470 struct bdi_writeback *new_wb = isw->new_wb;
471 unsigned long nr_switched = 0;
472 struct inode **inodep;
473
474 /*
475 * If @inode switches cgwb membership while sync_inodes_sb() is
476 * being issued, sync_inodes_sb() might miss it. Synchronize.
477 */
478 down_read(&bdi->wb_switch_rwsem);
479
480 /*
481 * By the time control reaches here, RCU grace period has passed
482 * since I_WB_SWITCH assertion and all wb stat update transactions
483 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
484 * synchronizing against the i_pages lock.
485 *
486 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
487 * gives us exclusion against all wb related operations on @inode
488 * including IO list manipulations and stat updates.
489 */
490 if (old_wb < new_wb) {
491 spin_lock(&old_wb->list_lock);
492 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
493 } else {
494 spin_lock(&new_wb->list_lock);
495 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
496 }
497
498 for (inodep = isw->inodes; *inodep; inodep++) {
499 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
500 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
501 nr_switched++;
502 }
503
504 spin_unlock(&new_wb->list_lock);
505 spin_unlock(&old_wb->list_lock);
506
507 up_read(&bdi->wb_switch_rwsem);
508
509 if (nr_switched) {
510 wb_wakeup(new_wb);
511 wb_put_many(old_wb, nr_switched);
512 }
513
514 for (inodep = isw->inodes; *inodep; inodep++)
515 iput(*inodep);
516 wb_put(new_wb);
517 kfree(isw);
518 atomic_dec(&isw_nr_in_flight);
519 }
520
521 static bool inode_prepare_wbs_switch(struct inode *inode,
522 struct bdi_writeback *new_wb)
523 {
524 /*
525 * Paired with smp_mb() in cgroup_writeback_umount().
526 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
527 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
528 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
529 */
530 smp_mb();
531
532 if (IS_DAX(inode))
533 return false;
534
535 /* while holding I_WB_SWITCH, no one else can update the association */
536 spin_lock(&inode->i_lock);
537 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
538 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
539 inode_to_wb(inode) == new_wb) {
540 spin_unlock(&inode->i_lock);
541 return false;
542 }
543 inode->i_state |= I_WB_SWITCH;
544 __iget(inode);
545 spin_unlock(&inode->i_lock);
546
547 return true;
548 }
549
550 /**
551 * inode_switch_wbs - change the wb association of an inode
552 * @inode: target inode
553 * @new_wb_id: ID of the new wb
554 *
555 * Switch @inode's wb association to the wb identified by @new_wb_id. The
556 * switching is performed asynchronously and may fail silently.
557 */
558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
559 {
560 struct backing_dev_info *bdi = inode_to_bdi(inode);
561 struct cgroup_subsys_state *memcg_css;
562 struct inode_switch_wbs_context *isw;
563
564 /* noop if seems to be already in progress */
565 if (inode->i_state & I_WB_SWITCH)
566 return;
567
568 /* avoid queueing a new switch if too many are already in flight */
569 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
570 return;
571
572 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
573 if (!isw)
574 return;
575
576 atomic_inc(&isw_nr_in_flight);
577
578 /* find and pin the new wb */
579 rcu_read_lock();
580 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
581 if (memcg_css && !css_tryget(memcg_css))
582 memcg_css = NULL;
583 rcu_read_unlock();
584 if (!memcg_css)
585 goto out_free;
586
587 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
588 css_put(memcg_css);
589 if (!isw->new_wb)
590 goto out_free;
591
592 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
593 goto out_free;
594
595 isw->inodes[0] = inode;
596
597 /*
598 * In addition to synchronizing among switchers, I_WB_SWITCH tells
599 * the RCU protected stat update paths to grab the i_page
600 * lock so that stat transfer can synchronize against them.
601 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
602 */
603 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
604 queue_rcu_work(isw_wq, &isw->work);
605 return;
606
607 out_free:
608 atomic_dec(&isw_nr_in_flight);
609 if (isw->new_wb)
610 wb_put(isw->new_wb);
611 kfree(isw);
612 }
613
614 /**
615 * cleanup_offline_cgwb - detach associated inodes
616 * @wb: target wb
617 *
618 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
619 * to eventually release the dying @wb. Returns %true if not all inodes were
620 * switched and the function has to be restarted.
621 */
622 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
623 {
624 struct cgroup_subsys_state *memcg_css;
625 struct inode_switch_wbs_context *isw;
626 struct inode *inode;
627 int nr;
628 bool restart = false;
629
630 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
631 GFP_KERNEL);
632 if (!isw)
633 return restart;
634
635 atomic_inc(&isw_nr_in_flight);
636
637 for (memcg_css = wb->memcg_css->parent; memcg_css;
638 memcg_css = memcg_css->parent) {
639 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
640 if (isw->new_wb)
641 break;
642 }
643 if (unlikely(!isw->new_wb))
644 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
645
646 nr = 0;
647 spin_lock(&wb->list_lock);
648 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
649 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
650 continue;
651
652 isw->inodes[nr++] = inode;
653
654 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
655 restart = true;
656 break;
657 }
658 }
659 spin_unlock(&wb->list_lock);
660
661 /* no attached inodes? bail out */
662 if (nr == 0) {
663 atomic_dec(&isw_nr_in_flight);
664 wb_put(isw->new_wb);
665 kfree(isw);
666 return restart;
667 }
668
669 /*
670 * In addition to synchronizing among switchers, I_WB_SWITCH tells
671 * the RCU protected stat update paths to grab the i_page
672 * lock so that stat transfer can synchronize against them.
673 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
674 */
675 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
676 queue_rcu_work(isw_wq, &isw->work);
677
678 return restart;
679 }
680
681 /**
682 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
683 * @wbc: writeback_control of interest
684 * @inode: target inode
685 *
686 * @inode is locked and about to be written back under the control of @wbc.
687 * Record @inode's writeback context into @wbc and unlock the i_lock. On
688 * writeback completion, wbc_detach_inode() should be called. This is used
689 * to track the cgroup writeback context.
690 */
691 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
692 struct inode *inode)
693 {
694 if (!inode_cgwb_enabled(inode)) {
695 spin_unlock(&inode->i_lock);
696 return;
697 }
698
699 wbc->wb = inode_to_wb(inode);
700 wbc->inode = inode;
701
702 wbc->wb_id = wbc->wb->memcg_css->id;
703 wbc->wb_lcand_id = inode->i_wb_frn_winner;
704 wbc->wb_tcand_id = 0;
705 wbc->wb_bytes = 0;
706 wbc->wb_lcand_bytes = 0;
707 wbc->wb_tcand_bytes = 0;
708
709 wb_get(wbc->wb);
710 spin_unlock(&inode->i_lock);
711
712 /*
713 * A dying wb indicates that either the blkcg associated with the
714 * memcg changed or the associated memcg is dying. In the first
715 * case, a replacement wb should already be available and we should
716 * refresh the wb immediately. In the second case, trying to
717 * refresh will keep failing.
718 */
719 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
720 inode_switch_wbs(inode, wbc->wb_id);
721 }
722 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
723
724 /**
725 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
726 * @wbc: writeback_control of the just finished writeback
727 *
728 * To be called after a writeback attempt of an inode finishes and undoes
729 * wbc_attach_and_unlock_inode(). Can be called under any context.
730 *
731 * As concurrent write sharing of an inode is expected to be very rare and
732 * memcg only tracks page ownership on first-use basis severely confining
733 * the usefulness of such sharing, cgroup writeback tracks ownership
734 * per-inode. While the support for concurrent write sharing of an inode
735 * is deemed unnecessary, an inode being written to by different cgroups at
736 * different points in time is a lot more common, and, more importantly,
737 * charging only by first-use can too readily lead to grossly incorrect
738 * behaviors (single foreign page can lead to gigabytes of writeback to be
739 * incorrectly attributed).
740 *
741 * To resolve this issue, cgroup writeback detects the majority dirtier of
742 * an inode and transfers the ownership to it. To avoid unnecessary
743 * oscillation, the detection mechanism keeps track of history and gives
744 * out the switch verdict only if the foreign usage pattern is stable over
745 * a certain amount of time and/or writeback attempts.
746 *
747 * On each writeback attempt, @wbc tries to detect the majority writer
748 * using Boyer-Moore majority vote algorithm. In addition to the byte
749 * count from the majority voting, it also counts the bytes written for the
750 * current wb and the last round's winner wb (max of last round's current
751 * wb, the winner from two rounds ago, and the last round's majority
752 * candidate). Keeping track of the historical winner helps the algorithm
753 * to semi-reliably detect the most active writer even when it's not the
754 * absolute majority.
755 *
756 * Once the winner of the round is determined, whether the winner is
757 * foreign or not and how much IO time the round consumed is recorded in
758 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
759 * over a certain threshold, the switch verdict is given.
760 */
761 void wbc_detach_inode(struct writeback_control *wbc)
762 {
763 struct bdi_writeback *wb = wbc->wb;
764 struct inode *inode = wbc->inode;
765 unsigned long avg_time, max_bytes, max_time;
766 u16 history;
767 int max_id;
768
769 if (!wb)
770 return;
771
772 history = inode->i_wb_frn_history;
773 avg_time = inode->i_wb_frn_avg_time;
774
775 /* pick the winner of this round */
776 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
777 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
778 max_id = wbc->wb_id;
779 max_bytes = wbc->wb_bytes;
780 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
781 max_id = wbc->wb_lcand_id;
782 max_bytes = wbc->wb_lcand_bytes;
783 } else {
784 max_id = wbc->wb_tcand_id;
785 max_bytes = wbc->wb_tcand_bytes;
786 }
787
788 /*
789 * Calculate the amount of IO time the winner consumed and fold it
790 * into the running average kept per inode. If the consumed IO
791 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
792 * deciding whether to switch or not. This is to prevent one-off
793 * small dirtiers from skewing the verdict.
794 */
795 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
796 wb->avg_write_bandwidth);
797 if (avg_time)
798 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
799 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
800 else
801 avg_time = max_time; /* immediate catch up on first run */
802
803 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
804 int slots;
805
806 /*
807 * The switch verdict is reached if foreign wb's consume
808 * more than a certain proportion of IO time in a
809 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
810 * history mask where each bit represents one sixteenth of
811 * the period. Determine the number of slots to shift into
812 * history from @max_time.
813 */
814 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
815 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
816 history <<= slots;
817 if (wbc->wb_id != max_id)
818 history |= (1U << slots) - 1;
819
820 if (history)
821 trace_inode_foreign_history(inode, wbc, history);
822
823 /*
824 * Switch if the current wb isn't the consistent winner.
825 * If there are multiple closely competing dirtiers, the
826 * inode may switch across them repeatedly over time, which
827 * is okay. The main goal is avoiding keeping an inode on
828 * the wrong wb for an extended period of time.
829 */
830 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
831 inode_switch_wbs(inode, max_id);
832 }
833
834 /*
835 * Multiple instances of this function may race to update the
836 * following fields but we don't mind occassional inaccuracies.
837 */
838 inode->i_wb_frn_winner = max_id;
839 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
840 inode->i_wb_frn_history = history;
841
842 wb_put(wbc->wb);
843 wbc->wb = NULL;
844 }
845 EXPORT_SYMBOL_GPL(wbc_detach_inode);
846
847 /**
848 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
849 * @wbc: writeback_control of the writeback in progress
850 * @page: page being written out
851 * @bytes: number of bytes being written out
852 *
853 * @bytes from @page are about to written out during the writeback
854 * controlled by @wbc. Keep the book for foreign inode detection. See
855 * wbc_detach_inode().
856 */
857 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
858 size_t bytes)
859 {
860 struct cgroup_subsys_state *css;
861 int id;
862
863 /*
864 * pageout() path doesn't attach @wbc to the inode being written
865 * out. This is intentional as we don't want the function to block
866 * behind a slow cgroup. Ultimately, we want pageout() to kick off
867 * regular writeback instead of writing things out itself.
868 */
869 if (!wbc->wb || wbc->no_cgroup_owner)
870 return;
871
872 css = mem_cgroup_css_from_page(page);
873 /* dead cgroups shouldn't contribute to inode ownership arbitration */
874 if (!(css->flags & CSS_ONLINE))
875 return;
876
877 id = css->id;
878
879 if (id == wbc->wb_id) {
880 wbc->wb_bytes += bytes;
881 return;
882 }
883
884 if (id == wbc->wb_lcand_id)
885 wbc->wb_lcand_bytes += bytes;
886
887 /* Boyer-Moore majority vote algorithm */
888 if (!wbc->wb_tcand_bytes)
889 wbc->wb_tcand_id = id;
890 if (id == wbc->wb_tcand_id)
891 wbc->wb_tcand_bytes += bytes;
892 else
893 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
894 }
895 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
896
897 /**
898 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
899 * @wb: target bdi_writeback to split @nr_pages to
900 * @nr_pages: number of pages to write for the whole bdi
901 *
902 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
903 * relation to the total write bandwidth of all wb's w/ dirty inodes on
904 * @wb->bdi.
905 */
906 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
907 {
908 unsigned long this_bw = wb->avg_write_bandwidth;
909 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
910
911 if (nr_pages == LONG_MAX)
912 return LONG_MAX;
913
914 /*
915 * This may be called on clean wb's and proportional distribution
916 * may not make sense, just use the original @nr_pages in those
917 * cases. In general, we wanna err on the side of writing more.
918 */
919 if (!tot_bw || this_bw >= tot_bw)
920 return nr_pages;
921 else
922 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
923 }
924
925 /**
926 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
927 * @bdi: target backing_dev_info
928 * @base_work: wb_writeback_work to issue
929 * @skip_if_busy: skip wb's which already have writeback in progress
930 *
931 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
932 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
933 * distributed to the busy wbs according to each wb's proportion in the
934 * total active write bandwidth of @bdi.
935 */
936 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
937 struct wb_writeback_work *base_work,
938 bool skip_if_busy)
939 {
940 struct bdi_writeback *last_wb = NULL;
941 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
942 struct bdi_writeback, bdi_node);
943
944 might_sleep();
945 restart:
946 rcu_read_lock();
947 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
948 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
949 struct wb_writeback_work fallback_work;
950 struct wb_writeback_work *work;
951 long nr_pages;
952
953 if (last_wb) {
954 wb_put(last_wb);
955 last_wb = NULL;
956 }
957
958 /* SYNC_ALL writes out I_DIRTY_TIME too */
959 if (!wb_has_dirty_io(wb) &&
960 (base_work->sync_mode == WB_SYNC_NONE ||
961 list_empty(&wb->b_dirty_time)))
962 continue;
963 if (skip_if_busy && writeback_in_progress(wb))
964 continue;
965
966 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
967
968 work = kmalloc(sizeof(*work), GFP_ATOMIC);
969 if (work) {
970 *work = *base_work;
971 work->nr_pages = nr_pages;
972 work->auto_free = 1;
973 wb_queue_work(wb, work);
974 continue;
975 }
976
977 /* alloc failed, execute synchronously using on-stack fallback */
978 work = &fallback_work;
979 *work = *base_work;
980 work->nr_pages = nr_pages;
981 work->auto_free = 0;
982 work->done = &fallback_work_done;
983
984 wb_queue_work(wb, work);
985
986 /*
987 * Pin @wb so that it stays on @bdi->wb_list. This allows
988 * continuing iteration from @wb after dropping and
989 * regrabbing rcu read lock.
990 */
991 wb_get(wb);
992 last_wb = wb;
993
994 rcu_read_unlock();
995 wb_wait_for_completion(&fallback_work_done);
996 goto restart;
997 }
998 rcu_read_unlock();
999
1000 if (last_wb)
1001 wb_put(last_wb);
1002 }
1003
1004 /**
1005 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1006 * @bdi_id: target bdi id
1007 * @memcg_id: target memcg css id
1008 * @reason: reason why some writeback work initiated
1009 * @done: target wb_completion
1010 *
1011 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1012 * with the specified parameters.
1013 */
1014 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1015 enum wb_reason reason, struct wb_completion *done)
1016 {
1017 struct backing_dev_info *bdi;
1018 struct cgroup_subsys_state *memcg_css;
1019 struct bdi_writeback *wb;
1020 struct wb_writeback_work *work;
1021 unsigned long dirty;
1022 int ret;
1023
1024 /* lookup bdi and memcg */
1025 bdi = bdi_get_by_id(bdi_id);
1026 if (!bdi)
1027 return -ENOENT;
1028
1029 rcu_read_lock();
1030 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1031 if (memcg_css && !css_tryget(memcg_css))
1032 memcg_css = NULL;
1033 rcu_read_unlock();
1034 if (!memcg_css) {
1035 ret = -ENOENT;
1036 goto out_bdi_put;
1037 }
1038
1039 /*
1040 * And find the associated wb. If the wb isn't there already
1041 * there's nothing to flush, don't create one.
1042 */
1043 wb = wb_get_lookup(bdi, memcg_css);
1044 if (!wb) {
1045 ret = -ENOENT;
1046 goto out_css_put;
1047 }
1048
1049 /*
1050 * The caller is attempting to write out most of
1051 * the currently dirty pages. Let's take the current dirty page
1052 * count and inflate it by 25% which should be large enough to
1053 * flush out most dirty pages while avoiding getting livelocked by
1054 * concurrent dirtiers.
1055 *
1056 * BTW the memcg stats are flushed periodically and this is best-effort
1057 * estimation, so some potential error is ok.
1058 */
1059 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1060 dirty = dirty * 10 / 8;
1061
1062 /* issue the writeback work */
1063 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1064 if (work) {
1065 work->nr_pages = dirty;
1066 work->sync_mode = WB_SYNC_NONE;
1067 work->range_cyclic = 1;
1068 work->reason = reason;
1069 work->done = done;
1070 work->auto_free = 1;
1071 wb_queue_work(wb, work);
1072 ret = 0;
1073 } else {
1074 ret = -ENOMEM;
1075 }
1076
1077 wb_put(wb);
1078 out_css_put:
1079 css_put(memcg_css);
1080 out_bdi_put:
1081 bdi_put(bdi);
1082 return ret;
1083 }
1084
1085 /**
1086 * cgroup_writeback_umount - flush inode wb switches for umount
1087 *
1088 * This function is called when a super_block is about to be destroyed and
1089 * flushes in-flight inode wb switches. An inode wb switch goes through
1090 * RCU and then workqueue, so the two need to be flushed in order to ensure
1091 * that all previously scheduled switches are finished. As wb switches are
1092 * rare occurrences and synchronize_rcu() can take a while, perform
1093 * flushing iff wb switches are in flight.
1094 */
1095 void cgroup_writeback_umount(void)
1096 {
1097 /*
1098 * SB_ACTIVE should be reliably cleared before checking
1099 * isw_nr_in_flight, see generic_shutdown_super().
1100 */
1101 smp_mb();
1102
1103 if (atomic_read(&isw_nr_in_flight)) {
1104 /*
1105 * Use rcu_barrier() to wait for all pending callbacks to
1106 * ensure that all in-flight wb switches are in the workqueue.
1107 */
1108 rcu_barrier();
1109 flush_workqueue(isw_wq);
1110 }
1111 }
1112
1113 static int __init cgroup_writeback_init(void)
1114 {
1115 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1116 if (!isw_wq)
1117 return -ENOMEM;
1118 return 0;
1119 }
1120 fs_initcall(cgroup_writeback_init);
1121
1122 #else /* CONFIG_CGROUP_WRITEBACK */
1123
1124 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1125 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1126
1127 static void inode_cgwb_move_to_attached(struct inode *inode,
1128 struct bdi_writeback *wb)
1129 {
1130 assert_spin_locked(&wb->list_lock);
1131 assert_spin_locked(&inode->i_lock);
1132
1133 inode->i_state &= ~I_SYNC_QUEUED;
1134 list_del_init(&inode->i_io_list);
1135 wb_io_lists_depopulated(wb);
1136 }
1137
1138 static struct bdi_writeback *
1139 locked_inode_to_wb_and_lock_list(struct inode *inode)
1140 __releases(&inode->i_lock)
1141 __acquires(&wb->list_lock)
1142 {
1143 struct bdi_writeback *wb = inode_to_wb(inode);
1144
1145 spin_unlock(&inode->i_lock);
1146 spin_lock(&wb->list_lock);
1147 return wb;
1148 }
1149
1150 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1151 __acquires(&wb->list_lock)
1152 {
1153 struct bdi_writeback *wb = inode_to_wb(inode);
1154
1155 spin_lock(&wb->list_lock);
1156 return wb;
1157 }
1158
1159 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1160 {
1161 return nr_pages;
1162 }
1163
1164 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1165 struct wb_writeback_work *base_work,
1166 bool skip_if_busy)
1167 {
1168 might_sleep();
1169
1170 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1171 base_work->auto_free = 0;
1172 wb_queue_work(&bdi->wb, base_work);
1173 }
1174 }
1175
1176 #endif /* CONFIG_CGROUP_WRITEBACK */
1177
1178 /*
1179 * Add in the number of potentially dirty inodes, because each inode
1180 * write can dirty pagecache in the underlying blockdev.
1181 */
1182 static unsigned long get_nr_dirty_pages(void)
1183 {
1184 return global_node_page_state(NR_FILE_DIRTY) +
1185 get_nr_dirty_inodes();
1186 }
1187
1188 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1189 {
1190 if (!wb_has_dirty_io(wb))
1191 return;
1192
1193 /*
1194 * All callers of this function want to start writeback of all
1195 * dirty pages. Places like vmscan can call this at a very
1196 * high frequency, causing pointless allocations of tons of
1197 * work items and keeping the flusher threads busy retrieving
1198 * that work. Ensure that we only allow one of them pending and
1199 * inflight at the time.
1200 */
1201 if (test_bit(WB_start_all, &wb->state) ||
1202 test_and_set_bit(WB_start_all, &wb->state))
1203 return;
1204
1205 wb->start_all_reason = reason;
1206 wb_wakeup(wb);
1207 }
1208
1209 /**
1210 * wb_start_background_writeback - start background writeback
1211 * @wb: bdi_writback to write from
1212 *
1213 * Description:
1214 * This makes sure WB_SYNC_NONE background writeback happens. When
1215 * this function returns, it is only guaranteed that for given wb
1216 * some IO is happening if we are over background dirty threshold.
1217 * Caller need not hold sb s_umount semaphore.
1218 */
1219 void wb_start_background_writeback(struct bdi_writeback *wb)
1220 {
1221 /*
1222 * We just wake up the flusher thread. It will perform background
1223 * writeback as soon as there is no other work to do.
1224 */
1225 trace_writeback_wake_background(wb);
1226 wb_wakeup(wb);
1227 }
1228
1229 /*
1230 * Remove the inode from the writeback list it is on.
1231 */
1232 void inode_io_list_del(struct inode *inode)
1233 {
1234 struct bdi_writeback *wb;
1235
1236 wb = inode_to_wb_and_lock_list(inode);
1237 spin_lock(&inode->i_lock);
1238
1239 inode->i_state &= ~I_SYNC_QUEUED;
1240 list_del_init(&inode->i_io_list);
1241 wb_io_lists_depopulated(wb);
1242
1243 spin_unlock(&inode->i_lock);
1244 spin_unlock(&wb->list_lock);
1245 }
1246 EXPORT_SYMBOL(inode_io_list_del);
1247
1248 /*
1249 * mark an inode as under writeback on the sb
1250 */
1251 void sb_mark_inode_writeback(struct inode *inode)
1252 {
1253 struct super_block *sb = inode->i_sb;
1254 unsigned long flags;
1255
1256 if (list_empty(&inode->i_wb_list)) {
1257 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1258 if (list_empty(&inode->i_wb_list)) {
1259 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1260 trace_sb_mark_inode_writeback(inode);
1261 }
1262 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1263 }
1264 }
1265
1266 /*
1267 * clear an inode as under writeback on the sb
1268 */
1269 void sb_clear_inode_writeback(struct inode *inode)
1270 {
1271 struct super_block *sb = inode->i_sb;
1272 unsigned long flags;
1273
1274 if (!list_empty(&inode->i_wb_list)) {
1275 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1276 if (!list_empty(&inode->i_wb_list)) {
1277 list_del_init(&inode->i_wb_list);
1278 trace_sb_clear_inode_writeback(inode);
1279 }
1280 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1281 }
1282 }
1283
1284 /*
1285 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1286 * furthest end of its superblock's dirty-inode list.
1287 *
1288 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1289 * already the most-recently-dirtied inode on the b_dirty list. If that is
1290 * the case then the inode must have been redirtied while it was being written
1291 * out and we don't reset its dirtied_when.
1292 */
1293 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1294 {
1295 assert_spin_locked(&inode->i_lock);
1296
1297 if (!list_empty(&wb->b_dirty)) {
1298 struct inode *tail;
1299
1300 tail = wb_inode(wb->b_dirty.next);
1301 if (time_before(inode->dirtied_when, tail->dirtied_when))
1302 inode->dirtied_when = jiffies;
1303 }
1304 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1305 inode->i_state &= ~I_SYNC_QUEUED;
1306 }
1307
1308 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1309 {
1310 spin_lock(&inode->i_lock);
1311 redirty_tail_locked(inode, wb);
1312 spin_unlock(&inode->i_lock);
1313 }
1314
1315 /*
1316 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1317 */
1318 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1319 {
1320 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1321 }
1322
1323 static void inode_sync_complete(struct inode *inode)
1324 {
1325 inode->i_state &= ~I_SYNC;
1326 /* If inode is clean an unused, put it into LRU now... */
1327 inode_add_lru(inode);
1328 /* Waiters must see I_SYNC cleared before being woken up */
1329 smp_mb();
1330 wake_up_bit(&inode->i_state, __I_SYNC);
1331 }
1332
1333 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1334 {
1335 bool ret = time_after(inode->dirtied_when, t);
1336 #ifndef CONFIG_64BIT
1337 /*
1338 * For inodes being constantly redirtied, dirtied_when can get stuck.
1339 * It _appears_ to be in the future, but is actually in distant past.
1340 * This test is necessary to prevent such wrapped-around relative times
1341 * from permanently stopping the whole bdi writeback.
1342 */
1343 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1344 #endif
1345 return ret;
1346 }
1347
1348 #define EXPIRE_DIRTY_ATIME 0x0001
1349
1350 /*
1351 * Move expired (dirtied before dirtied_before) dirty inodes from
1352 * @delaying_queue to @dispatch_queue.
1353 */
1354 static int move_expired_inodes(struct list_head *delaying_queue,
1355 struct list_head *dispatch_queue,
1356 unsigned long dirtied_before)
1357 {
1358 LIST_HEAD(tmp);
1359 struct list_head *pos, *node;
1360 struct super_block *sb = NULL;
1361 struct inode *inode;
1362 int do_sb_sort = 0;
1363 int moved = 0;
1364
1365 while (!list_empty(delaying_queue)) {
1366 inode = wb_inode(delaying_queue->prev);
1367 if (inode_dirtied_after(inode, dirtied_before))
1368 break;
1369 spin_lock(&inode->i_lock);
1370 list_move(&inode->i_io_list, &tmp);
1371 moved++;
1372 inode->i_state |= I_SYNC_QUEUED;
1373 spin_unlock(&inode->i_lock);
1374 if (sb_is_blkdev_sb(inode->i_sb))
1375 continue;
1376 if (sb && sb != inode->i_sb)
1377 do_sb_sort = 1;
1378 sb = inode->i_sb;
1379 }
1380
1381 /* just one sb in list, splice to dispatch_queue and we're done */
1382 if (!do_sb_sort) {
1383 list_splice(&tmp, dispatch_queue);
1384 goto out;
1385 }
1386
1387 /*
1388 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1389 * we don't take inode->i_lock here because it is just a pointless overhead.
1390 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1391 * fully under our control.
1392 */
1393 while (!list_empty(&tmp)) {
1394 sb = wb_inode(tmp.prev)->i_sb;
1395 list_for_each_prev_safe(pos, node, &tmp) {
1396 inode = wb_inode(pos);
1397 if (inode->i_sb == sb)
1398 list_move(&inode->i_io_list, dispatch_queue);
1399 }
1400 }
1401 out:
1402 return moved;
1403 }
1404
1405 /*
1406 * Queue all expired dirty inodes for io, eldest first.
1407 * Before
1408 * newly dirtied b_dirty b_io b_more_io
1409 * =============> gf edc BA
1410 * After
1411 * newly dirtied b_dirty b_io b_more_io
1412 * =============> g fBAedc
1413 * |
1414 * +--> dequeue for IO
1415 */
1416 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1417 unsigned long dirtied_before)
1418 {
1419 int moved;
1420 unsigned long time_expire_jif = dirtied_before;
1421
1422 assert_spin_locked(&wb->list_lock);
1423 list_splice_init(&wb->b_more_io, &wb->b_io);
1424 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1425 if (!work->for_sync)
1426 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1427 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1428 time_expire_jif);
1429 if (moved)
1430 wb_io_lists_populated(wb);
1431 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1432 }
1433
1434 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436 int ret;
1437
1438 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1439 trace_writeback_write_inode_start(inode, wbc);
1440 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1441 trace_writeback_write_inode(inode, wbc);
1442 return ret;
1443 }
1444 return 0;
1445 }
1446
1447 /*
1448 * Wait for writeback on an inode to complete. Called with i_lock held.
1449 * Caller must make sure inode cannot go away when we drop i_lock.
1450 */
1451 static void __inode_wait_for_writeback(struct inode *inode)
1452 __releases(inode->i_lock)
1453 __acquires(inode->i_lock)
1454 {
1455 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1456 wait_queue_head_t *wqh;
1457
1458 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1459 while (inode->i_state & I_SYNC) {
1460 spin_unlock(&inode->i_lock);
1461 __wait_on_bit(wqh, &wq, bit_wait,
1462 TASK_UNINTERRUPTIBLE);
1463 spin_lock(&inode->i_lock);
1464 }
1465 }
1466
1467 /*
1468 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1469 */
1470 void inode_wait_for_writeback(struct inode *inode)
1471 {
1472 spin_lock(&inode->i_lock);
1473 __inode_wait_for_writeback(inode);
1474 spin_unlock(&inode->i_lock);
1475 }
1476
1477 /*
1478 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1479 * held and drops it. It is aimed for callers not holding any inode reference
1480 * so once i_lock is dropped, inode can go away.
1481 */
1482 static void inode_sleep_on_writeback(struct inode *inode)
1483 __releases(inode->i_lock)
1484 {
1485 DEFINE_WAIT(wait);
1486 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1487 int sleep;
1488
1489 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1490 sleep = inode->i_state & I_SYNC;
1491 spin_unlock(&inode->i_lock);
1492 if (sleep)
1493 schedule();
1494 finish_wait(wqh, &wait);
1495 }
1496
1497 /*
1498 * Find proper writeback list for the inode depending on its current state and
1499 * possibly also change of its state while we were doing writeback. Here we
1500 * handle things such as livelock prevention or fairness of writeback among
1501 * inodes. This function can be called only by flusher thread - noone else
1502 * processes all inodes in writeback lists and requeueing inodes behind flusher
1503 * thread's back can have unexpected consequences.
1504 */
1505 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1506 struct writeback_control *wbc)
1507 {
1508 if (inode->i_state & I_FREEING)
1509 return;
1510
1511 /*
1512 * Sync livelock prevention. Each inode is tagged and synced in one
1513 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1514 * the dirty time to prevent enqueue and sync it again.
1515 */
1516 if ((inode->i_state & I_DIRTY) &&
1517 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1518 inode->dirtied_when = jiffies;
1519
1520 if (wbc->pages_skipped) {
1521 /*
1522 * writeback is not making progress due to locked
1523 * buffers. Skip this inode for now.
1524 */
1525 redirty_tail_locked(inode, wb);
1526 return;
1527 }
1528
1529 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1530 /*
1531 * We didn't write back all the pages. nfs_writepages()
1532 * sometimes bales out without doing anything.
1533 */
1534 if (wbc->nr_to_write <= 0) {
1535 /* Slice used up. Queue for next turn. */
1536 requeue_io(inode, wb);
1537 } else {
1538 /*
1539 * Writeback blocked by something other than
1540 * congestion. Delay the inode for some time to
1541 * avoid spinning on the CPU (100% iowait)
1542 * retrying writeback of the dirty page/inode
1543 * that cannot be performed immediately.
1544 */
1545 redirty_tail_locked(inode, wb);
1546 }
1547 } else if (inode->i_state & I_DIRTY) {
1548 /*
1549 * Filesystems can dirty the inode during writeback operations,
1550 * such as delayed allocation during submission or metadata
1551 * updates after data IO completion.
1552 */
1553 redirty_tail_locked(inode, wb);
1554 } else if (inode->i_state & I_DIRTY_TIME) {
1555 inode->dirtied_when = jiffies;
1556 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1557 inode->i_state &= ~I_SYNC_QUEUED;
1558 } else {
1559 /* The inode is clean. Remove from writeback lists. */
1560 inode_cgwb_move_to_attached(inode, wb);
1561 }
1562 }
1563
1564 /*
1565 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1566 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1567 *
1568 * This doesn't remove the inode from the writeback list it is on, except
1569 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1570 * expiration. The caller is otherwise responsible for writeback list handling.
1571 *
1572 * The caller is also responsible for setting the I_SYNC flag beforehand and
1573 * calling inode_sync_complete() to clear it afterwards.
1574 */
1575 static int
1576 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1577 {
1578 struct address_space *mapping = inode->i_mapping;
1579 long nr_to_write = wbc->nr_to_write;
1580 unsigned dirty;
1581 int ret;
1582
1583 WARN_ON(!(inode->i_state & I_SYNC));
1584
1585 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1586
1587 ret = do_writepages(mapping, wbc);
1588
1589 /*
1590 * Make sure to wait on the data before writing out the metadata.
1591 * This is important for filesystems that modify metadata on data
1592 * I/O completion. We don't do it for sync(2) writeback because it has a
1593 * separate, external IO completion path and ->sync_fs for guaranteeing
1594 * inode metadata is written back correctly.
1595 */
1596 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1597 int err = filemap_fdatawait(mapping);
1598 if (ret == 0)
1599 ret = err;
1600 }
1601
1602 /*
1603 * If the inode has dirty timestamps and we need to write them, call
1604 * mark_inode_dirty_sync() to notify the filesystem about it and to
1605 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1606 */
1607 if ((inode->i_state & I_DIRTY_TIME) &&
1608 (wbc->sync_mode == WB_SYNC_ALL ||
1609 time_after(jiffies, inode->dirtied_time_when +
1610 dirtytime_expire_interval * HZ))) {
1611 trace_writeback_lazytime(inode);
1612 mark_inode_dirty_sync(inode);
1613 }
1614
1615 /*
1616 * Get and clear the dirty flags from i_state. This needs to be done
1617 * after calling writepages because some filesystems may redirty the
1618 * inode during writepages due to delalloc. It also needs to be done
1619 * after handling timestamp expiration, as that may dirty the inode too.
1620 */
1621 spin_lock(&inode->i_lock);
1622 dirty = inode->i_state & I_DIRTY;
1623 inode->i_state &= ~dirty;
1624
1625 /*
1626 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1627 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1628 * either they see the I_DIRTY bits cleared or we see the dirtied
1629 * inode.
1630 *
1631 * I_DIRTY_PAGES is always cleared together above even if @mapping
1632 * still has dirty pages. The flag is reinstated after smp_mb() if
1633 * necessary. This guarantees that either __mark_inode_dirty()
1634 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1635 */
1636 smp_mb();
1637
1638 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1639 inode->i_state |= I_DIRTY_PAGES;
1640 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1641 if (!(inode->i_state & I_DIRTY_PAGES)) {
1642 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1643 wbc->unpinned_fscache_wb = true;
1644 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1645 }
1646 }
1647
1648 spin_unlock(&inode->i_lock);
1649
1650 /* Don't write the inode if only I_DIRTY_PAGES was set */
1651 if (dirty & ~I_DIRTY_PAGES) {
1652 int err = write_inode(inode, wbc);
1653 if (ret == 0)
1654 ret = err;
1655 }
1656 wbc->unpinned_fscache_wb = false;
1657 trace_writeback_single_inode(inode, wbc, nr_to_write);
1658 return ret;
1659 }
1660
1661 /*
1662 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1663 * the regular batched writeback done by the flusher threads in
1664 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1665 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1666 *
1667 * To prevent the inode from going away, either the caller must have a reference
1668 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1669 */
1670 static int writeback_single_inode(struct inode *inode,
1671 struct writeback_control *wbc)
1672 {
1673 struct bdi_writeback *wb;
1674 int ret = 0;
1675
1676 spin_lock(&inode->i_lock);
1677 if (!atomic_read(&inode->i_count))
1678 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1679 else
1680 WARN_ON(inode->i_state & I_WILL_FREE);
1681
1682 if (inode->i_state & I_SYNC) {
1683 /*
1684 * Writeback is already running on the inode. For WB_SYNC_NONE,
1685 * that's enough and we can just return. For WB_SYNC_ALL, we
1686 * must wait for the existing writeback to complete, then do
1687 * writeback again if there's anything left.
1688 */
1689 if (wbc->sync_mode != WB_SYNC_ALL)
1690 goto out;
1691 __inode_wait_for_writeback(inode);
1692 }
1693 WARN_ON(inode->i_state & I_SYNC);
1694 /*
1695 * If the inode is already fully clean, then there's nothing to do.
1696 *
1697 * For data-integrity syncs we also need to check whether any pages are
1698 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1699 * there are any such pages, we'll need to wait for them.
1700 */
1701 if (!(inode->i_state & I_DIRTY_ALL) &&
1702 (wbc->sync_mode != WB_SYNC_ALL ||
1703 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1704 goto out;
1705 inode->i_state |= I_SYNC;
1706 wbc_attach_and_unlock_inode(wbc, inode);
1707
1708 ret = __writeback_single_inode(inode, wbc);
1709
1710 wbc_detach_inode(wbc);
1711
1712 wb = inode_to_wb_and_lock_list(inode);
1713 spin_lock(&inode->i_lock);
1714 /*
1715 * If the inode is now fully clean, then it can be safely removed from
1716 * its writeback list (if any). Otherwise the flusher threads are
1717 * responsible for the writeback lists.
1718 */
1719 if (!(inode->i_state & I_DIRTY_ALL))
1720 inode_cgwb_move_to_attached(inode, wb);
1721 else if (!(inode->i_state & I_SYNC_QUEUED) &&
1722 (inode->i_state & I_DIRTY))
1723 redirty_tail_locked(inode, wb);
1724
1725 spin_unlock(&wb->list_lock);
1726 inode_sync_complete(inode);
1727 out:
1728 spin_unlock(&inode->i_lock);
1729 return ret;
1730 }
1731
1732 static long writeback_chunk_size(struct bdi_writeback *wb,
1733 struct wb_writeback_work *work)
1734 {
1735 long pages;
1736
1737 /*
1738 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1739 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1740 * here avoids calling into writeback_inodes_wb() more than once.
1741 *
1742 * The intended call sequence for WB_SYNC_ALL writeback is:
1743 *
1744 * wb_writeback()
1745 * writeback_sb_inodes() <== called only once
1746 * write_cache_pages() <== called once for each inode
1747 * (quickly) tag currently dirty pages
1748 * (maybe slowly) sync all tagged pages
1749 */
1750 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1751 pages = LONG_MAX;
1752 else {
1753 pages = min(wb->avg_write_bandwidth / 2,
1754 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1755 pages = min(pages, work->nr_pages);
1756 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1757 MIN_WRITEBACK_PAGES);
1758 }
1759
1760 return pages;
1761 }
1762
1763 /*
1764 * Write a portion of b_io inodes which belong to @sb.
1765 *
1766 * Return the number of pages and/or inodes written.
1767 *
1768 * NOTE! This is called with wb->list_lock held, and will
1769 * unlock and relock that for each inode it ends up doing
1770 * IO for.
1771 */
1772 static long writeback_sb_inodes(struct super_block *sb,
1773 struct bdi_writeback *wb,
1774 struct wb_writeback_work *work)
1775 {
1776 struct writeback_control wbc = {
1777 .sync_mode = work->sync_mode,
1778 .tagged_writepages = work->tagged_writepages,
1779 .for_kupdate = work->for_kupdate,
1780 .for_background = work->for_background,
1781 .for_sync = work->for_sync,
1782 .range_cyclic = work->range_cyclic,
1783 .range_start = 0,
1784 .range_end = LLONG_MAX,
1785 };
1786 unsigned long start_time = jiffies;
1787 long write_chunk;
1788 long total_wrote = 0; /* count both pages and inodes */
1789
1790 while (!list_empty(&wb->b_io)) {
1791 struct inode *inode = wb_inode(wb->b_io.prev);
1792 struct bdi_writeback *tmp_wb;
1793 long wrote;
1794
1795 if (inode->i_sb != sb) {
1796 if (work->sb) {
1797 /*
1798 * We only want to write back data for this
1799 * superblock, move all inodes not belonging
1800 * to it back onto the dirty list.
1801 */
1802 redirty_tail(inode, wb);
1803 continue;
1804 }
1805
1806 /*
1807 * The inode belongs to a different superblock.
1808 * Bounce back to the caller to unpin this and
1809 * pin the next superblock.
1810 */
1811 break;
1812 }
1813
1814 /*
1815 * Don't bother with new inodes or inodes being freed, first
1816 * kind does not need periodic writeout yet, and for the latter
1817 * kind writeout is handled by the freer.
1818 */
1819 spin_lock(&inode->i_lock);
1820 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1821 redirty_tail_locked(inode, wb);
1822 spin_unlock(&inode->i_lock);
1823 continue;
1824 }
1825 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1826 /*
1827 * If this inode is locked for writeback and we are not
1828 * doing writeback-for-data-integrity, move it to
1829 * b_more_io so that writeback can proceed with the
1830 * other inodes on s_io.
1831 *
1832 * We'll have another go at writing back this inode
1833 * when we completed a full scan of b_io.
1834 */
1835 requeue_io(inode, wb);
1836 spin_unlock(&inode->i_lock);
1837 trace_writeback_sb_inodes_requeue(inode);
1838 continue;
1839 }
1840 spin_unlock(&wb->list_lock);
1841
1842 /*
1843 * We already requeued the inode if it had I_SYNC set and we
1844 * are doing WB_SYNC_NONE writeback. So this catches only the
1845 * WB_SYNC_ALL case.
1846 */
1847 if (inode->i_state & I_SYNC) {
1848 /* Wait for I_SYNC. This function drops i_lock... */
1849 inode_sleep_on_writeback(inode);
1850 /* Inode may be gone, start again */
1851 spin_lock(&wb->list_lock);
1852 continue;
1853 }
1854 inode->i_state |= I_SYNC;
1855 wbc_attach_and_unlock_inode(&wbc, inode);
1856
1857 write_chunk = writeback_chunk_size(wb, work);
1858 wbc.nr_to_write = write_chunk;
1859 wbc.pages_skipped = 0;
1860
1861 /*
1862 * We use I_SYNC to pin the inode in memory. While it is set
1863 * evict_inode() will wait so the inode cannot be freed.
1864 */
1865 __writeback_single_inode(inode, &wbc);
1866
1867 wbc_detach_inode(&wbc);
1868 work->nr_pages -= write_chunk - wbc.nr_to_write;
1869 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1870 wrote = wrote < 0 ? 0 : wrote;
1871 total_wrote += wrote;
1872
1873 if (need_resched()) {
1874 /*
1875 * We're trying to balance between building up a nice
1876 * long list of IOs to improve our merge rate, and
1877 * getting those IOs out quickly for anyone throttling
1878 * in balance_dirty_pages(). cond_resched() doesn't
1879 * unplug, so get our IOs out the door before we
1880 * give up the CPU.
1881 */
1882 blk_flush_plug(current->plug, false);
1883 cond_resched();
1884 }
1885
1886 /*
1887 * Requeue @inode if still dirty. Be careful as @inode may
1888 * have been switched to another wb in the meantime.
1889 */
1890 tmp_wb = inode_to_wb_and_lock_list(inode);
1891 spin_lock(&inode->i_lock);
1892 if (!(inode->i_state & I_DIRTY_ALL))
1893 total_wrote++;
1894 requeue_inode(inode, tmp_wb, &wbc);
1895 inode_sync_complete(inode);
1896 spin_unlock(&inode->i_lock);
1897
1898 if (unlikely(tmp_wb != wb)) {
1899 spin_unlock(&tmp_wb->list_lock);
1900 spin_lock(&wb->list_lock);
1901 }
1902
1903 /*
1904 * bail out to wb_writeback() often enough to check
1905 * background threshold and other termination conditions.
1906 */
1907 if (total_wrote) {
1908 if (time_is_before_jiffies(start_time + HZ / 10UL))
1909 break;
1910 if (work->nr_pages <= 0)
1911 break;
1912 }
1913 }
1914 return total_wrote;
1915 }
1916
1917 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1918 struct wb_writeback_work *work)
1919 {
1920 unsigned long start_time = jiffies;
1921 long wrote = 0;
1922
1923 while (!list_empty(&wb->b_io)) {
1924 struct inode *inode = wb_inode(wb->b_io.prev);
1925 struct super_block *sb = inode->i_sb;
1926
1927 if (!trylock_super(sb)) {
1928 /*
1929 * trylock_super() may fail consistently due to
1930 * s_umount being grabbed by someone else. Don't use
1931 * requeue_io() to avoid busy retrying the inode/sb.
1932 */
1933 redirty_tail(inode, wb);
1934 continue;
1935 }
1936 wrote += writeback_sb_inodes(sb, wb, work);
1937 up_read(&sb->s_umount);
1938
1939 /* refer to the same tests at the end of writeback_sb_inodes */
1940 if (wrote) {
1941 if (time_is_before_jiffies(start_time + HZ / 10UL))
1942 break;
1943 if (work->nr_pages <= 0)
1944 break;
1945 }
1946 }
1947 /* Leave any unwritten inodes on b_io */
1948 return wrote;
1949 }
1950
1951 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1952 enum wb_reason reason)
1953 {
1954 struct wb_writeback_work work = {
1955 .nr_pages = nr_pages,
1956 .sync_mode = WB_SYNC_NONE,
1957 .range_cyclic = 1,
1958 .reason = reason,
1959 };
1960 struct blk_plug plug;
1961
1962 blk_start_plug(&plug);
1963 spin_lock(&wb->list_lock);
1964 if (list_empty(&wb->b_io))
1965 queue_io(wb, &work, jiffies);
1966 __writeback_inodes_wb(wb, &work);
1967 spin_unlock(&wb->list_lock);
1968 blk_finish_plug(&plug);
1969
1970 return nr_pages - work.nr_pages;
1971 }
1972
1973 /*
1974 * Explicit flushing or periodic writeback of "old" data.
1975 *
1976 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1977 * dirtying-time in the inode's address_space. So this periodic writeback code
1978 * just walks the superblock inode list, writing back any inodes which are
1979 * older than a specific point in time.
1980 *
1981 * Try to run once per dirty_writeback_interval. But if a writeback event
1982 * takes longer than a dirty_writeback_interval interval, then leave a
1983 * one-second gap.
1984 *
1985 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1986 * all dirty pages if they are all attached to "old" mappings.
1987 */
1988 static long wb_writeback(struct bdi_writeback *wb,
1989 struct wb_writeback_work *work)
1990 {
1991 long nr_pages = work->nr_pages;
1992 unsigned long dirtied_before = jiffies;
1993 struct inode *inode;
1994 long progress;
1995 struct blk_plug plug;
1996
1997 blk_start_plug(&plug);
1998 spin_lock(&wb->list_lock);
1999 for (;;) {
2000 /*
2001 * Stop writeback when nr_pages has been consumed
2002 */
2003 if (work->nr_pages <= 0)
2004 break;
2005
2006 /*
2007 * Background writeout and kupdate-style writeback may
2008 * run forever. Stop them if there is other work to do
2009 * so that e.g. sync can proceed. They'll be restarted
2010 * after the other works are all done.
2011 */
2012 if ((work->for_background || work->for_kupdate) &&
2013 !list_empty(&wb->work_list))
2014 break;
2015
2016 /*
2017 * For background writeout, stop when we are below the
2018 * background dirty threshold
2019 */
2020 if (work->for_background && !wb_over_bg_thresh(wb))
2021 break;
2022
2023 /*
2024 * Kupdate and background works are special and we want to
2025 * include all inodes that need writing. Livelock avoidance is
2026 * handled by these works yielding to any other work so we are
2027 * safe.
2028 */
2029 if (work->for_kupdate) {
2030 dirtied_before = jiffies -
2031 msecs_to_jiffies(dirty_expire_interval * 10);
2032 } else if (work->for_background)
2033 dirtied_before = jiffies;
2034
2035 trace_writeback_start(wb, work);
2036 if (list_empty(&wb->b_io))
2037 queue_io(wb, work, dirtied_before);
2038 if (work->sb)
2039 progress = writeback_sb_inodes(work->sb, wb, work);
2040 else
2041 progress = __writeback_inodes_wb(wb, work);
2042 trace_writeback_written(wb, work);
2043
2044 /*
2045 * Did we write something? Try for more
2046 *
2047 * Dirty inodes are moved to b_io for writeback in batches.
2048 * The completion of the current batch does not necessarily
2049 * mean the overall work is done. So we keep looping as long
2050 * as made some progress on cleaning pages or inodes.
2051 */
2052 if (progress)
2053 continue;
2054 /*
2055 * No more inodes for IO, bail
2056 */
2057 if (list_empty(&wb->b_more_io))
2058 break;
2059 /*
2060 * Nothing written. Wait for some inode to
2061 * become available for writeback. Otherwise
2062 * we'll just busyloop.
2063 */
2064 trace_writeback_wait(wb, work);
2065 inode = wb_inode(wb->b_more_io.prev);
2066 spin_lock(&inode->i_lock);
2067 spin_unlock(&wb->list_lock);
2068 /* This function drops i_lock... */
2069 inode_sleep_on_writeback(inode);
2070 spin_lock(&wb->list_lock);
2071 }
2072 spin_unlock(&wb->list_lock);
2073 blk_finish_plug(&plug);
2074
2075 return nr_pages - work->nr_pages;
2076 }
2077
2078 /*
2079 * Return the next wb_writeback_work struct that hasn't been processed yet.
2080 */
2081 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2082 {
2083 struct wb_writeback_work *work = NULL;
2084
2085 spin_lock_irq(&wb->work_lock);
2086 if (!list_empty(&wb->work_list)) {
2087 work = list_entry(wb->work_list.next,
2088 struct wb_writeback_work, list);
2089 list_del_init(&work->list);
2090 }
2091 spin_unlock_irq(&wb->work_lock);
2092 return work;
2093 }
2094
2095 static long wb_check_background_flush(struct bdi_writeback *wb)
2096 {
2097 if (wb_over_bg_thresh(wb)) {
2098
2099 struct wb_writeback_work work = {
2100 .nr_pages = LONG_MAX,
2101 .sync_mode = WB_SYNC_NONE,
2102 .for_background = 1,
2103 .range_cyclic = 1,
2104 .reason = WB_REASON_BACKGROUND,
2105 };
2106
2107 return wb_writeback(wb, &work);
2108 }
2109
2110 return 0;
2111 }
2112
2113 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2114 {
2115 unsigned long expired;
2116 long nr_pages;
2117
2118 /*
2119 * When set to zero, disable periodic writeback
2120 */
2121 if (!dirty_writeback_interval)
2122 return 0;
2123
2124 expired = wb->last_old_flush +
2125 msecs_to_jiffies(dirty_writeback_interval * 10);
2126 if (time_before(jiffies, expired))
2127 return 0;
2128
2129 wb->last_old_flush = jiffies;
2130 nr_pages = get_nr_dirty_pages();
2131
2132 if (nr_pages) {
2133 struct wb_writeback_work work = {
2134 .nr_pages = nr_pages,
2135 .sync_mode = WB_SYNC_NONE,
2136 .for_kupdate = 1,
2137 .range_cyclic = 1,
2138 .reason = WB_REASON_PERIODIC,
2139 };
2140
2141 return wb_writeback(wb, &work);
2142 }
2143
2144 return 0;
2145 }
2146
2147 static long wb_check_start_all(struct bdi_writeback *wb)
2148 {
2149 long nr_pages;
2150
2151 if (!test_bit(WB_start_all, &wb->state))
2152 return 0;
2153
2154 nr_pages = get_nr_dirty_pages();
2155 if (nr_pages) {
2156 struct wb_writeback_work work = {
2157 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2158 .sync_mode = WB_SYNC_NONE,
2159 .range_cyclic = 1,
2160 .reason = wb->start_all_reason,
2161 };
2162
2163 nr_pages = wb_writeback(wb, &work);
2164 }
2165
2166 clear_bit(WB_start_all, &wb->state);
2167 return nr_pages;
2168 }
2169
2170
2171 /*
2172 * Retrieve work items and do the writeback they describe
2173 */
2174 static long wb_do_writeback(struct bdi_writeback *wb)
2175 {
2176 struct wb_writeback_work *work;
2177 long wrote = 0;
2178
2179 set_bit(WB_writeback_running, &wb->state);
2180 while ((work = get_next_work_item(wb)) != NULL) {
2181 trace_writeback_exec(wb, work);
2182 wrote += wb_writeback(wb, work);
2183 finish_writeback_work(wb, work);
2184 }
2185
2186 /*
2187 * Check for a flush-everything request
2188 */
2189 wrote += wb_check_start_all(wb);
2190
2191 /*
2192 * Check for periodic writeback, kupdated() style
2193 */
2194 wrote += wb_check_old_data_flush(wb);
2195 wrote += wb_check_background_flush(wb);
2196 clear_bit(WB_writeback_running, &wb->state);
2197
2198 return wrote;
2199 }
2200
2201 /*
2202 * Handle writeback of dirty data for the device backed by this bdi. Also
2203 * reschedules periodically and does kupdated style flushing.
2204 */
2205 void wb_workfn(struct work_struct *work)
2206 {
2207 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2208 struct bdi_writeback, dwork);
2209 long pages_written;
2210
2211 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2212
2213 if (likely(!current_is_workqueue_rescuer() ||
2214 !test_bit(WB_registered, &wb->state))) {
2215 /*
2216 * The normal path. Keep writing back @wb until its
2217 * work_list is empty. Note that this path is also taken
2218 * if @wb is shutting down even when we're running off the
2219 * rescuer as work_list needs to be drained.
2220 */
2221 do {
2222 pages_written = wb_do_writeback(wb);
2223 trace_writeback_pages_written(pages_written);
2224 } while (!list_empty(&wb->work_list));
2225 } else {
2226 /*
2227 * bdi_wq can't get enough workers and we're running off
2228 * the emergency worker. Don't hog it. Hopefully, 1024 is
2229 * enough for efficient IO.
2230 */
2231 pages_written = writeback_inodes_wb(wb, 1024,
2232 WB_REASON_FORKER_THREAD);
2233 trace_writeback_pages_written(pages_written);
2234 }
2235
2236 if (!list_empty(&wb->work_list))
2237 wb_wakeup(wb);
2238 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2239 wb_wakeup_delayed(wb);
2240 }
2241
2242 /*
2243 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2244 * write back the whole world.
2245 */
2246 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2247 enum wb_reason reason)
2248 {
2249 struct bdi_writeback *wb;
2250
2251 if (!bdi_has_dirty_io(bdi))
2252 return;
2253
2254 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2255 wb_start_writeback(wb, reason);
2256 }
2257
2258 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2259 enum wb_reason reason)
2260 {
2261 rcu_read_lock();
2262 __wakeup_flusher_threads_bdi(bdi, reason);
2263 rcu_read_unlock();
2264 }
2265
2266 /*
2267 * Wakeup the flusher threads to start writeback of all currently dirty pages
2268 */
2269 void wakeup_flusher_threads(enum wb_reason reason)
2270 {
2271 struct backing_dev_info *bdi;
2272
2273 /*
2274 * If we are expecting writeback progress we must submit plugged IO.
2275 */
2276 blk_flush_plug(current->plug, true);
2277
2278 rcu_read_lock();
2279 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2280 __wakeup_flusher_threads_bdi(bdi, reason);
2281 rcu_read_unlock();
2282 }
2283
2284 /*
2285 * Wake up bdi's periodically to make sure dirtytime inodes gets
2286 * written back periodically. We deliberately do *not* check the
2287 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2288 * kernel to be constantly waking up once there are any dirtytime
2289 * inodes on the system. So instead we define a separate delayed work
2290 * function which gets called much more rarely. (By default, only
2291 * once every 12 hours.)
2292 *
2293 * If there is any other write activity going on in the file system,
2294 * this function won't be necessary. But if the only thing that has
2295 * happened on the file system is a dirtytime inode caused by an atime
2296 * update, we need this infrastructure below to make sure that inode
2297 * eventually gets pushed out to disk.
2298 */
2299 static void wakeup_dirtytime_writeback(struct work_struct *w);
2300 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2301
2302 static void wakeup_dirtytime_writeback(struct work_struct *w)
2303 {
2304 struct backing_dev_info *bdi;
2305
2306 rcu_read_lock();
2307 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2308 struct bdi_writeback *wb;
2309
2310 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2311 if (!list_empty(&wb->b_dirty_time))
2312 wb_wakeup(wb);
2313 }
2314 rcu_read_unlock();
2315 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2316 }
2317
2318 static int __init start_dirtytime_writeback(void)
2319 {
2320 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2321 return 0;
2322 }
2323 __initcall(start_dirtytime_writeback);
2324
2325 int dirtytime_interval_handler(struct ctl_table *table, int write,
2326 void *buffer, size_t *lenp, loff_t *ppos)
2327 {
2328 int ret;
2329
2330 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2331 if (ret == 0 && write)
2332 mod_delayed_work(system_wq, &dirtytime_work, 0);
2333 return ret;
2334 }
2335
2336 /**
2337 * __mark_inode_dirty - internal function to mark an inode dirty
2338 *
2339 * @inode: inode to mark
2340 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2341 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2342 * with I_DIRTY_PAGES.
2343 *
2344 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2345 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2346 *
2347 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2348 * instead of calling this directly.
2349 *
2350 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2351 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2352 * even if they are later hashed, as they will have been marked dirty already.
2353 *
2354 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2355 *
2356 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2357 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2358 * the kernel-internal blockdev inode represents the dirtying time of the
2359 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2360 * page->mapping->host, so the page-dirtying time is recorded in the internal
2361 * blockdev inode.
2362 */
2363 void __mark_inode_dirty(struct inode *inode, int flags)
2364 {
2365 struct super_block *sb = inode->i_sb;
2366 int dirtytime = 0;
2367 struct bdi_writeback *wb = NULL;
2368
2369 trace_writeback_mark_inode_dirty(inode, flags);
2370
2371 if (flags & I_DIRTY_INODE) {
2372 /*
2373 * Notify the filesystem about the inode being dirtied, so that
2374 * (if needed) it can update on-disk fields and journal the
2375 * inode. This is only needed when the inode itself is being
2376 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2377 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2378 */
2379 trace_writeback_dirty_inode_start(inode, flags);
2380 if (sb->s_op->dirty_inode)
2381 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2382 trace_writeback_dirty_inode(inode, flags);
2383
2384 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2385 flags &= ~I_DIRTY_TIME;
2386 } else {
2387 /*
2388 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2389 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2390 * in one call to __mark_inode_dirty().)
2391 */
2392 dirtytime = flags & I_DIRTY_TIME;
2393 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2394 }
2395
2396 /*
2397 * Paired with smp_mb() in __writeback_single_inode() for the
2398 * following lockless i_state test. See there for details.
2399 */
2400 smp_mb();
2401
2402 if (((inode->i_state & flags) == flags) ||
2403 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2404 return;
2405
2406 spin_lock(&inode->i_lock);
2407 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2408 goto out_unlock_inode;
2409 if ((inode->i_state & flags) != flags) {
2410 const int was_dirty = inode->i_state & I_DIRTY;
2411
2412 inode_attach_wb(inode, NULL);
2413
2414 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2415 if (flags & I_DIRTY_INODE)
2416 inode->i_state &= ~I_DIRTY_TIME;
2417 inode->i_state |= flags;
2418
2419 /*
2420 * Grab inode's wb early because it requires dropping i_lock and we
2421 * need to make sure following checks happen atomically with dirty
2422 * list handling so that we don't move inodes under flush worker's
2423 * hands.
2424 */
2425 if (!was_dirty) {
2426 wb = locked_inode_to_wb_and_lock_list(inode);
2427 spin_lock(&inode->i_lock);
2428 }
2429
2430 /*
2431 * If the inode is queued for writeback by flush worker, just
2432 * update its dirty state. Once the flush worker is done with
2433 * the inode it will place it on the appropriate superblock
2434 * list, based upon its state.
2435 */
2436 if (inode->i_state & I_SYNC_QUEUED)
2437 goto out_unlock;
2438
2439 /*
2440 * Only add valid (hashed) inodes to the superblock's
2441 * dirty list. Add blockdev inodes as well.
2442 */
2443 if (!S_ISBLK(inode->i_mode)) {
2444 if (inode_unhashed(inode))
2445 goto out_unlock;
2446 }
2447 if (inode->i_state & I_FREEING)
2448 goto out_unlock;
2449
2450 /*
2451 * If the inode was already on b_dirty/b_io/b_more_io, don't
2452 * reposition it (that would break b_dirty time-ordering).
2453 */
2454 if (!was_dirty) {
2455 struct list_head *dirty_list;
2456 bool wakeup_bdi = false;
2457
2458 inode->dirtied_when = jiffies;
2459 if (dirtytime)
2460 inode->dirtied_time_when = jiffies;
2461
2462 if (inode->i_state & I_DIRTY)
2463 dirty_list = &wb->b_dirty;
2464 else
2465 dirty_list = &wb->b_dirty_time;
2466
2467 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2468 dirty_list);
2469
2470 spin_unlock(&wb->list_lock);
2471 spin_unlock(&inode->i_lock);
2472 trace_writeback_dirty_inode_enqueue(inode);
2473
2474 /*
2475 * If this is the first dirty inode for this bdi,
2476 * we have to wake-up the corresponding bdi thread
2477 * to make sure background write-back happens
2478 * later.
2479 */
2480 if (wakeup_bdi &&
2481 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2482 wb_wakeup_delayed(wb);
2483 return;
2484 }
2485 }
2486 out_unlock:
2487 if (wb)
2488 spin_unlock(&wb->list_lock);
2489 out_unlock_inode:
2490 spin_unlock(&inode->i_lock);
2491 }
2492 EXPORT_SYMBOL(__mark_inode_dirty);
2493
2494 /*
2495 * The @s_sync_lock is used to serialise concurrent sync operations
2496 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2497 * Concurrent callers will block on the s_sync_lock rather than doing contending
2498 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2499 * has been issued up to the time this function is enter is guaranteed to be
2500 * completed by the time we have gained the lock and waited for all IO that is
2501 * in progress regardless of the order callers are granted the lock.
2502 */
2503 static void wait_sb_inodes(struct super_block *sb)
2504 {
2505 LIST_HEAD(sync_list);
2506
2507 /*
2508 * We need to be protected against the filesystem going from
2509 * r/o to r/w or vice versa.
2510 */
2511 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2512
2513 mutex_lock(&sb->s_sync_lock);
2514
2515 /*
2516 * Splice the writeback list onto a temporary list to avoid waiting on
2517 * inodes that have started writeback after this point.
2518 *
2519 * Use rcu_read_lock() to keep the inodes around until we have a
2520 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2521 * the local list because inodes can be dropped from either by writeback
2522 * completion.
2523 */
2524 rcu_read_lock();
2525 spin_lock_irq(&sb->s_inode_wblist_lock);
2526 list_splice_init(&sb->s_inodes_wb, &sync_list);
2527
2528 /*
2529 * Data integrity sync. Must wait for all pages under writeback, because
2530 * there may have been pages dirtied before our sync call, but which had
2531 * writeout started before we write it out. In which case, the inode
2532 * may not be on the dirty list, but we still have to wait for that
2533 * writeout.
2534 */
2535 while (!list_empty(&sync_list)) {
2536 struct inode *inode = list_first_entry(&sync_list, struct inode,
2537 i_wb_list);
2538 struct address_space *mapping = inode->i_mapping;
2539
2540 /*
2541 * Move each inode back to the wb list before we drop the lock
2542 * to preserve consistency between i_wb_list and the mapping
2543 * writeback tag. Writeback completion is responsible to remove
2544 * the inode from either list once the writeback tag is cleared.
2545 */
2546 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2547
2548 /*
2549 * The mapping can appear untagged while still on-list since we
2550 * do not have the mapping lock. Skip it here, wb completion
2551 * will remove it.
2552 */
2553 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2554 continue;
2555
2556 spin_unlock_irq(&sb->s_inode_wblist_lock);
2557
2558 spin_lock(&inode->i_lock);
2559 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2560 spin_unlock(&inode->i_lock);
2561
2562 spin_lock_irq(&sb->s_inode_wblist_lock);
2563 continue;
2564 }
2565 __iget(inode);
2566 spin_unlock(&inode->i_lock);
2567 rcu_read_unlock();
2568
2569 /*
2570 * We keep the error status of individual mapping so that
2571 * applications can catch the writeback error using fsync(2).
2572 * See filemap_fdatawait_keep_errors() for details.
2573 */
2574 filemap_fdatawait_keep_errors(mapping);
2575
2576 cond_resched();
2577
2578 iput(inode);
2579
2580 rcu_read_lock();
2581 spin_lock_irq(&sb->s_inode_wblist_lock);
2582 }
2583 spin_unlock_irq(&sb->s_inode_wblist_lock);
2584 rcu_read_unlock();
2585 mutex_unlock(&sb->s_sync_lock);
2586 }
2587
2588 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2589 enum wb_reason reason, bool skip_if_busy)
2590 {
2591 struct backing_dev_info *bdi = sb->s_bdi;
2592 DEFINE_WB_COMPLETION(done, bdi);
2593 struct wb_writeback_work work = {
2594 .sb = sb,
2595 .sync_mode = WB_SYNC_NONE,
2596 .tagged_writepages = 1,
2597 .done = &done,
2598 .nr_pages = nr,
2599 .reason = reason,
2600 };
2601
2602 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2603 return;
2604 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2605
2606 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2607 wb_wait_for_completion(&done);
2608 }
2609
2610 /**
2611 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2612 * @sb: the superblock
2613 * @nr: the number of pages to write
2614 * @reason: reason why some writeback work initiated
2615 *
2616 * Start writeback on some inodes on this super_block. No guarantees are made
2617 * on how many (if any) will be written, and this function does not wait
2618 * for IO completion of submitted IO.
2619 */
2620 void writeback_inodes_sb_nr(struct super_block *sb,
2621 unsigned long nr,
2622 enum wb_reason reason)
2623 {
2624 __writeback_inodes_sb_nr(sb, nr, reason, false);
2625 }
2626 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2627
2628 /**
2629 * writeback_inodes_sb - writeback dirty inodes from given super_block
2630 * @sb: the superblock
2631 * @reason: reason why some writeback work was initiated
2632 *
2633 * Start writeback on some inodes on this super_block. No guarantees are made
2634 * on how many (if any) will be written, and this function does not wait
2635 * for IO completion of submitted IO.
2636 */
2637 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2638 {
2639 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2640 }
2641 EXPORT_SYMBOL(writeback_inodes_sb);
2642
2643 /**
2644 * try_to_writeback_inodes_sb - try to start writeback if none underway
2645 * @sb: the superblock
2646 * @reason: reason why some writeback work was initiated
2647 *
2648 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2649 */
2650 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2651 {
2652 if (!down_read_trylock(&sb->s_umount))
2653 return;
2654
2655 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2656 up_read(&sb->s_umount);
2657 }
2658 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2659
2660 /**
2661 * sync_inodes_sb - sync sb inode pages
2662 * @sb: the superblock
2663 *
2664 * This function writes and waits on any dirty inode belonging to this
2665 * super_block.
2666 */
2667 void sync_inodes_sb(struct super_block *sb)
2668 {
2669 struct backing_dev_info *bdi = sb->s_bdi;
2670 DEFINE_WB_COMPLETION(done, bdi);
2671 struct wb_writeback_work work = {
2672 .sb = sb,
2673 .sync_mode = WB_SYNC_ALL,
2674 .nr_pages = LONG_MAX,
2675 .range_cyclic = 0,
2676 .done = &done,
2677 .reason = WB_REASON_SYNC,
2678 .for_sync = 1,
2679 };
2680
2681 /*
2682 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2683 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2684 * bdi_has_dirty() need to be written out too.
2685 */
2686 if (bdi == &noop_backing_dev_info)
2687 return;
2688 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2689
2690 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2691 bdi_down_write_wb_switch_rwsem(bdi);
2692 bdi_split_work_to_wbs(bdi, &work, false);
2693 wb_wait_for_completion(&done);
2694 bdi_up_write_wb_switch_rwsem(bdi);
2695
2696 wait_sb_inodes(sb);
2697 }
2698 EXPORT_SYMBOL(sync_inodes_sb);
2699
2700 /**
2701 * write_inode_now - write an inode to disk
2702 * @inode: inode to write to disk
2703 * @sync: whether the write should be synchronous or not
2704 *
2705 * This function commits an inode to disk immediately if it is dirty. This is
2706 * primarily needed by knfsd.
2707 *
2708 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2709 */
2710 int write_inode_now(struct inode *inode, int sync)
2711 {
2712 struct writeback_control wbc = {
2713 .nr_to_write = LONG_MAX,
2714 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2715 .range_start = 0,
2716 .range_end = LLONG_MAX,
2717 };
2718
2719 if (!mapping_can_writeback(inode->i_mapping))
2720 wbc.nr_to_write = 0;
2721
2722 might_sleep();
2723 return writeback_single_inode(inode, &wbc);
2724 }
2725 EXPORT_SYMBOL(write_inode_now);
2726
2727 /**
2728 * sync_inode_metadata - write an inode to disk
2729 * @inode: the inode to sync
2730 * @wait: wait for I/O to complete.
2731 *
2732 * Write an inode to disk and adjust its dirty state after completion.
2733 *
2734 * Note: only writes the actual inode, no associated data or other metadata.
2735 */
2736 int sync_inode_metadata(struct inode *inode, int wait)
2737 {
2738 struct writeback_control wbc = {
2739 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2740 .nr_to_write = 0, /* metadata-only */
2741 };
2742
2743 return writeback_single_inode(inode, &wbc);
2744 }
2745 EXPORT_SYMBOL(sync_inode_metadata);