]> git.ipfire.org Git - people/ms/linux.git/blob - mm/mprotect.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / mm / mprotect.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mm/mprotect.c
4 *
5 * (C) Copyright 1994 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 *
8 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
10 */
11
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/fs.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <asm/cacheflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/tlb.h>
38
39 #include "internal.h"
40
41 static inline bool can_change_pte_writable(struct vm_area_struct *vma,
42 unsigned long addr, pte_t pte)
43 {
44 struct page *page;
45
46 VM_BUG_ON(!(vma->vm_flags & VM_WRITE) || pte_write(pte));
47
48 if (pte_protnone(pte) || !pte_dirty(pte))
49 return false;
50
51 /* Do we need write faults for softdirty tracking? */
52 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
53 return false;
54
55 /* Do we need write faults for uffd-wp tracking? */
56 if (userfaultfd_pte_wp(vma, pte))
57 return false;
58
59 if (!(vma->vm_flags & VM_SHARED)) {
60 /*
61 * We can only special-case on exclusive anonymous pages,
62 * because we know that our write-fault handler similarly would
63 * map them writable without any additional checks while holding
64 * the PT lock.
65 */
66 page = vm_normal_page(vma, addr, pte);
67 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
68 return false;
69 }
70
71 return true;
72 }
73
74 static unsigned long change_pte_range(struct mmu_gather *tlb,
75 struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
76 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
77 {
78 pte_t *pte, oldpte;
79 spinlock_t *ptl;
80 unsigned long pages = 0;
81 int target_node = NUMA_NO_NODE;
82 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
83 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
84 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
85
86 tlb_change_page_size(tlb, PAGE_SIZE);
87
88 /*
89 * Can be called with only the mmap_lock for reading by
90 * prot_numa so we must check the pmd isn't constantly
91 * changing from under us from pmd_none to pmd_trans_huge
92 * and/or the other way around.
93 */
94 if (pmd_trans_unstable(pmd))
95 return 0;
96
97 /*
98 * The pmd points to a regular pte so the pmd can't change
99 * from under us even if the mmap_lock is only hold for
100 * reading.
101 */
102 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
103
104 /* Get target node for single threaded private VMAs */
105 if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
106 atomic_read(&vma->vm_mm->mm_users) == 1)
107 target_node = numa_node_id();
108
109 flush_tlb_batched_pending(vma->vm_mm);
110 arch_enter_lazy_mmu_mode();
111 do {
112 oldpte = *pte;
113 if (pte_present(oldpte)) {
114 pte_t ptent;
115 bool preserve_write = prot_numa && pte_write(oldpte);
116
117 /*
118 * Avoid trapping faults against the zero or KSM
119 * pages. See similar comment in change_huge_pmd.
120 */
121 if (prot_numa) {
122 struct page *page;
123 int nid;
124
125 /* Avoid TLB flush if possible */
126 if (pte_protnone(oldpte))
127 continue;
128
129 page = vm_normal_page(vma, addr, oldpte);
130 if (!page || is_zone_device_page(page) || PageKsm(page))
131 continue;
132
133 /* Also skip shared copy-on-write pages */
134 if (is_cow_mapping(vma->vm_flags) &&
135 page_count(page) != 1)
136 continue;
137
138 /*
139 * While migration can move some dirty pages,
140 * it cannot move them all from MIGRATE_ASYNC
141 * context.
142 */
143 if (page_is_file_lru(page) && PageDirty(page))
144 continue;
145
146 /*
147 * Don't mess with PTEs if page is already on the node
148 * a single-threaded process is running on.
149 */
150 nid = page_to_nid(page);
151 if (target_node == nid)
152 continue;
153
154 /*
155 * Skip scanning top tier node if normal numa
156 * balancing is disabled
157 */
158 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
159 node_is_toptier(nid))
160 continue;
161 }
162
163 oldpte = ptep_modify_prot_start(vma, addr, pte);
164 ptent = pte_modify(oldpte, newprot);
165 if (preserve_write)
166 ptent = pte_mk_savedwrite(ptent);
167
168 if (uffd_wp) {
169 ptent = pte_wrprotect(ptent);
170 ptent = pte_mkuffd_wp(ptent);
171 } else if (uffd_wp_resolve) {
172 ptent = pte_clear_uffd_wp(ptent);
173 }
174
175 /*
176 * In some writable, shared mappings, we might want
177 * to catch actual write access -- see
178 * vma_wants_writenotify().
179 *
180 * In all writable, private mappings, we have to
181 * properly handle COW.
182 *
183 * In both cases, we can sometimes still change PTEs
184 * writable and avoid the write-fault handler, for
185 * example, if a PTE is already dirty and no other
186 * COW or special handling is required.
187 */
188 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
189 !pte_write(ptent) &&
190 can_change_pte_writable(vma, addr, ptent))
191 ptent = pte_mkwrite(ptent);
192
193 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
194 if (pte_needs_flush(oldpte, ptent))
195 tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
196 pages++;
197 } else if (is_swap_pte(oldpte)) {
198 swp_entry_t entry = pte_to_swp_entry(oldpte);
199 pte_t newpte;
200
201 if (is_writable_migration_entry(entry)) {
202 struct page *page = pfn_swap_entry_to_page(entry);
203
204 /*
205 * A protection check is difficult so
206 * just be safe and disable write
207 */
208 if (PageAnon(page))
209 entry = make_readable_exclusive_migration_entry(
210 swp_offset(entry));
211 else
212 entry = make_readable_migration_entry(swp_offset(entry));
213 newpte = swp_entry_to_pte(entry);
214 if (pte_swp_soft_dirty(oldpte))
215 newpte = pte_swp_mksoft_dirty(newpte);
216 if (pte_swp_uffd_wp(oldpte))
217 newpte = pte_swp_mkuffd_wp(newpte);
218 } else if (is_writable_device_private_entry(entry)) {
219 /*
220 * We do not preserve soft-dirtiness. See
221 * copy_one_pte() for explanation.
222 */
223 entry = make_readable_device_private_entry(
224 swp_offset(entry));
225 newpte = swp_entry_to_pte(entry);
226 if (pte_swp_uffd_wp(oldpte))
227 newpte = pte_swp_mkuffd_wp(newpte);
228 } else if (is_writable_device_exclusive_entry(entry)) {
229 entry = make_readable_device_exclusive_entry(
230 swp_offset(entry));
231 newpte = swp_entry_to_pte(entry);
232 if (pte_swp_soft_dirty(oldpte))
233 newpte = pte_swp_mksoft_dirty(newpte);
234 if (pte_swp_uffd_wp(oldpte))
235 newpte = pte_swp_mkuffd_wp(newpte);
236 } else if (pte_marker_entry_uffd_wp(entry)) {
237 /*
238 * If this is uffd-wp pte marker and we'd like
239 * to unprotect it, drop it; the next page
240 * fault will trigger without uffd trapping.
241 */
242 if (uffd_wp_resolve) {
243 pte_clear(vma->vm_mm, addr, pte);
244 pages++;
245 }
246 continue;
247 } else {
248 newpte = oldpte;
249 }
250
251 if (uffd_wp)
252 newpte = pte_swp_mkuffd_wp(newpte);
253 else if (uffd_wp_resolve)
254 newpte = pte_swp_clear_uffd_wp(newpte);
255
256 if (!pte_same(oldpte, newpte)) {
257 set_pte_at(vma->vm_mm, addr, pte, newpte);
258 pages++;
259 }
260 } else {
261 /* It must be an none page, or what else?.. */
262 WARN_ON_ONCE(!pte_none(oldpte));
263 if (unlikely(uffd_wp && !vma_is_anonymous(vma))) {
264 /*
265 * For file-backed mem, we need to be able to
266 * wr-protect a none pte, because even if the
267 * pte is none, the page/swap cache could
268 * exist. Doing that by install a marker.
269 */
270 set_pte_at(vma->vm_mm, addr, pte,
271 make_pte_marker(PTE_MARKER_UFFD_WP));
272 pages++;
273 }
274 }
275 } while (pte++, addr += PAGE_SIZE, addr != end);
276 arch_leave_lazy_mmu_mode();
277 pte_unmap_unlock(pte - 1, ptl);
278
279 return pages;
280 }
281
282 /*
283 * Used when setting automatic NUMA hinting protection where it is
284 * critical that a numa hinting PMD is not confused with a bad PMD.
285 */
286 static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
287 {
288 pmd_t pmdval = pmd_read_atomic(pmd);
289
290 /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
291 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
292 barrier();
293 #endif
294
295 if (pmd_none(pmdval))
296 return 1;
297 if (pmd_trans_huge(pmdval))
298 return 0;
299 if (unlikely(pmd_bad(pmdval))) {
300 pmd_clear_bad(pmd);
301 return 1;
302 }
303
304 return 0;
305 }
306
307 /* Return true if we're uffd wr-protecting file-backed memory, or false */
308 static inline bool
309 uffd_wp_protect_file(struct vm_area_struct *vma, unsigned long cp_flags)
310 {
311 return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
312 }
313
314 /*
315 * If wr-protecting the range for file-backed, populate pgtable for the case
316 * when pgtable is empty but page cache exists. When {pte|pmd|...}_alloc()
317 * failed it means no memory, we don't have a better option but stop.
318 */
319 #define change_pmd_prepare(vma, pmd, cp_flags) \
320 do { \
321 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \
322 if (WARN_ON_ONCE(pte_alloc(vma->vm_mm, pmd))) \
323 break; \
324 } \
325 } while (0)
326 /*
327 * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
328 * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
329 * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
330 */
331 #define change_prepare(vma, high, low, addr, cp_flags) \
332 do { \
333 if (unlikely(uffd_wp_protect_file(vma, cp_flags))) { \
334 low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
335 if (WARN_ON_ONCE(p == NULL)) \
336 break; \
337 } \
338 } while (0)
339
340 static inline unsigned long change_pmd_range(struct mmu_gather *tlb,
341 struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
342 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
343 {
344 pmd_t *pmd;
345 unsigned long next;
346 unsigned long pages = 0;
347 unsigned long nr_huge_updates = 0;
348 struct mmu_notifier_range range;
349
350 range.start = 0;
351
352 pmd = pmd_offset(pud, addr);
353 do {
354 unsigned long this_pages;
355
356 next = pmd_addr_end(addr, end);
357
358 change_pmd_prepare(vma, pmd, cp_flags);
359 /*
360 * Automatic NUMA balancing walks the tables with mmap_lock
361 * held for read. It's possible a parallel update to occur
362 * between pmd_trans_huge() and a pmd_none_or_clear_bad()
363 * check leading to a false positive and clearing.
364 * Hence, it's necessary to atomically read the PMD value
365 * for all the checks.
366 */
367 if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
368 pmd_none_or_clear_bad_unless_trans_huge(pmd))
369 goto next;
370
371 /* invoke the mmu notifier if the pmd is populated */
372 if (!range.start) {
373 mmu_notifier_range_init(&range,
374 MMU_NOTIFY_PROTECTION_VMA, 0,
375 vma, vma->vm_mm, addr, end);
376 mmu_notifier_invalidate_range_start(&range);
377 }
378
379 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
380 if ((next - addr != HPAGE_PMD_SIZE) ||
381 uffd_wp_protect_file(vma, cp_flags)) {
382 __split_huge_pmd(vma, pmd, addr, false, NULL);
383 /*
384 * For file-backed, the pmd could have been
385 * cleared; make sure pmd populated if
386 * necessary, then fall-through to pte level.
387 */
388 change_pmd_prepare(vma, pmd, cp_flags);
389 } else {
390 /*
391 * change_huge_pmd() does not defer TLB flushes,
392 * so no need to propagate the tlb argument.
393 */
394 int nr_ptes = change_huge_pmd(tlb, vma, pmd,
395 addr, newprot, cp_flags);
396
397 if (nr_ptes) {
398 if (nr_ptes == HPAGE_PMD_NR) {
399 pages += HPAGE_PMD_NR;
400 nr_huge_updates++;
401 }
402
403 /* huge pmd was handled */
404 goto next;
405 }
406 }
407 /* fall through, the trans huge pmd just split */
408 }
409 this_pages = change_pte_range(tlb, vma, pmd, addr, next,
410 newprot, cp_flags);
411 pages += this_pages;
412 next:
413 cond_resched();
414 } while (pmd++, addr = next, addr != end);
415
416 if (range.start)
417 mmu_notifier_invalidate_range_end(&range);
418
419 if (nr_huge_updates)
420 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
421 return pages;
422 }
423
424 static inline unsigned long change_pud_range(struct mmu_gather *tlb,
425 struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
426 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
427 {
428 pud_t *pud;
429 unsigned long next;
430 unsigned long pages = 0;
431
432 pud = pud_offset(p4d, addr);
433 do {
434 next = pud_addr_end(addr, end);
435 change_prepare(vma, pud, pmd, addr, cp_flags);
436 if (pud_none_or_clear_bad(pud))
437 continue;
438 pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
439 cp_flags);
440 } while (pud++, addr = next, addr != end);
441
442 return pages;
443 }
444
445 static inline unsigned long change_p4d_range(struct mmu_gather *tlb,
446 struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
447 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
448 {
449 p4d_t *p4d;
450 unsigned long next;
451 unsigned long pages = 0;
452
453 p4d = p4d_offset(pgd, addr);
454 do {
455 next = p4d_addr_end(addr, end);
456 change_prepare(vma, p4d, pud, addr, cp_flags);
457 if (p4d_none_or_clear_bad(p4d))
458 continue;
459 pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
460 cp_flags);
461 } while (p4d++, addr = next, addr != end);
462
463 return pages;
464 }
465
466 static unsigned long change_protection_range(struct mmu_gather *tlb,
467 struct vm_area_struct *vma, unsigned long addr,
468 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
469 {
470 struct mm_struct *mm = vma->vm_mm;
471 pgd_t *pgd;
472 unsigned long next;
473 unsigned long pages = 0;
474
475 BUG_ON(addr >= end);
476 pgd = pgd_offset(mm, addr);
477 tlb_start_vma(tlb, vma);
478 do {
479 next = pgd_addr_end(addr, end);
480 change_prepare(vma, pgd, p4d, addr, cp_flags);
481 if (pgd_none_or_clear_bad(pgd))
482 continue;
483 pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
484 cp_flags);
485 } while (pgd++, addr = next, addr != end);
486
487 tlb_end_vma(tlb, vma);
488
489 return pages;
490 }
491
492 unsigned long change_protection(struct mmu_gather *tlb,
493 struct vm_area_struct *vma, unsigned long start,
494 unsigned long end, pgprot_t newprot,
495 unsigned long cp_flags)
496 {
497 unsigned long pages;
498
499 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
500
501 if (is_vm_hugetlb_page(vma))
502 pages = hugetlb_change_protection(vma, start, end, newprot,
503 cp_flags);
504 else
505 pages = change_protection_range(tlb, vma, start, end, newprot,
506 cp_flags);
507
508 return pages;
509 }
510
511 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
512 unsigned long next, struct mm_walk *walk)
513 {
514 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
515 0 : -EACCES;
516 }
517
518 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
519 unsigned long addr, unsigned long next,
520 struct mm_walk *walk)
521 {
522 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
523 0 : -EACCES;
524 }
525
526 static int prot_none_test(unsigned long addr, unsigned long next,
527 struct mm_walk *walk)
528 {
529 return 0;
530 }
531
532 static const struct mm_walk_ops prot_none_walk_ops = {
533 .pte_entry = prot_none_pte_entry,
534 .hugetlb_entry = prot_none_hugetlb_entry,
535 .test_walk = prot_none_test,
536 };
537
538 int
539 mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
540 struct vm_area_struct **pprev, unsigned long start,
541 unsigned long end, unsigned long newflags)
542 {
543 struct mm_struct *mm = vma->vm_mm;
544 unsigned long oldflags = vma->vm_flags;
545 long nrpages = (end - start) >> PAGE_SHIFT;
546 unsigned long charged = 0;
547 bool try_change_writable;
548 pgoff_t pgoff;
549 int error;
550
551 if (newflags == oldflags) {
552 *pprev = vma;
553 return 0;
554 }
555
556 /*
557 * Do PROT_NONE PFN permission checks here when we can still
558 * bail out without undoing a lot of state. This is a rather
559 * uncommon case, so doesn't need to be very optimized.
560 */
561 if (arch_has_pfn_modify_check() &&
562 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
563 (newflags & VM_ACCESS_FLAGS) == 0) {
564 pgprot_t new_pgprot = vm_get_page_prot(newflags);
565
566 error = walk_page_range(current->mm, start, end,
567 &prot_none_walk_ops, &new_pgprot);
568 if (error)
569 return error;
570 }
571
572 /*
573 * If we make a private mapping writable we increase our commit;
574 * but (without finer accounting) cannot reduce our commit if we
575 * make it unwritable again. hugetlb mapping were accounted for
576 * even if read-only so there is no need to account for them here
577 */
578 if (newflags & VM_WRITE) {
579 /* Check space limits when area turns into data. */
580 if (!may_expand_vm(mm, newflags, nrpages) &&
581 may_expand_vm(mm, oldflags, nrpages))
582 return -ENOMEM;
583 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
584 VM_SHARED|VM_NORESERVE))) {
585 charged = nrpages;
586 if (security_vm_enough_memory_mm(mm, charged))
587 return -ENOMEM;
588 newflags |= VM_ACCOUNT;
589 }
590 }
591
592 /*
593 * First try to merge with previous and/or next vma.
594 */
595 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
596 *pprev = vma_merge(mm, *pprev, start, end, newflags,
597 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
598 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
599 if (*pprev) {
600 vma = *pprev;
601 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
602 goto success;
603 }
604
605 *pprev = vma;
606
607 if (start != vma->vm_start) {
608 error = split_vma(mm, vma, start, 1);
609 if (error)
610 goto fail;
611 }
612
613 if (end != vma->vm_end) {
614 error = split_vma(mm, vma, end, 0);
615 if (error)
616 goto fail;
617 }
618
619 success:
620 /*
621 * vm_flags and vm_page_prot are protected by the mmap_lock
622 * held in write mode.
623 */
624 vma->vm_flags = newflags;
625 /*
626 * We want to check manually if we can change individual PTEs writable
627 * if we can't do that automatically for all PTEs in a mapping. For
628 * private mappings, that's always the case when we have write
629 * permissions as we properly have to handle COW.
630 */
631 if (vma->vm_flags & VM_SHARED)
632 try_change_writable = vma_wants_writenotify(vma, vma->vm_page_prot);
633 else
634 try_change_writable = !!(vma->vm_flags & VM_WRITE);
635 vma_set_page_prot(vma);
636
637 change_protection(tlb, vma, start, end, vma->vm_page_prot,
638 try_change_writable ? MM_CP_TRY_CHANGE_WRITABLE : 0);
639
640 /*
641 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
642 * fault on access.
643 */
644 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
645 (newflags & VM_WRITE)) {
646 populate_vma_page_range(vma, start, end, NULL);
647 }
648
649 vm_stat_account(mm, oldflags, -nrpages);
650 vm_stat_account(mm, newflags, nrpages);
651 perf_event_mmap(vma);
652 return 0;
653
654 fail:
655 vm_unacct_memory(charged);
656 return error;
657 }
658
659 /*
660 * pkey==-1 when doing a legacy mprotect()
661 */
662 static int do_mprotect_pkey(unsigned long start, size_t len,
663 unsigned long prot, int pkey)
664 {
665 unsigned long nstart, end, tmp, reqprot;
666 struct vm_area_struct *vma, *prev;
667 int error;
668 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
669 const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
670 (prot & PROT_READ);
671 struct mmu_gather tlb;
672
673 start = untagged_addr(start);
674
675 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
676 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
677 return -EINVAL;
678
679 if (start & ~PAGE_MASK)
680 return -EINVAL;
681 if (!len)
682 return 0;
683 len = PAGE_ALIGN(len);
684 end = start + len;
685 if (end <= start)
686 return -ENOMEM;
687 if (!arch_validate_prot(prot, start))
688 return -EINVAL;
689
690 reqprot = prot;
691
692 if (mmap_write_lock_killable(current->mm))
693 return -EINTR;
694
695 /*
696 * If userspace did not allocate the pkey, do not let
697 * them use it here.
698 */
699 error = -EINVAL;
700 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
701 goto out;
702
703 vma = find_vma(current->mm, start);
704 error = -ENOMEM;
705 if (!vma)
706 goto out;
707
708 if (unlikely(grows & PROT_GROWSDOWN)) {
709 if (vma->vm_start >= end)
710 goto out;
711 start = vma->vm_start;
712 error = -EINVAL;
713 if (!(vma->vm_flags & VM_GROWSDOWN))
714 goto out;
715 } else {
716 if (vma->vm_start > start)
717 goto out;
718 if (unlikely(grows & PROT_GROWSUP)) {
719 end = vma->vm_end;
720 error = -EINVAL;
721 if (!(vma->vm_flags & VM_GROWSUP))
722 goto out;
723 }
724 }
725
726 if (start > vma->vm_start)
727 prev = vma;
728 else
729 prev = vma->vm_prev;
730
731 tlb_gather_mmu(&tlb, current->mm);
732 for (nstart = start ; ; ) {
733 unsigned long mask_off_old_flags;
734 unsigned long newflags;
735 int new_vma_pkey;
736
737 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
738
739 /* Does the application expect PROT_READ to imply PROT_EXEC */
740 if (rier && (vma->vm_flags & VM_MAYEXEC))
741 prot |= PROT_EXEC;
742
743 /*
744 * Each mprotect() call explicitly passes r/w/x permissions.
745 * If a permission is not passed to mprotect(), it must be
746 * cleared from the VMA.
747 */
748 mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
749 VM_FLAGS_CLEAR;
750
751 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
752 newflags = calc_vm_prot_bits(prot, new_vma_pkey);
753 newflags |= (vma->vm_flags & ~mask_off_old_flags);
754
755 /* newflags >> 4 shift VM_MAY% in place of VM_% */
756 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
757 error = -EACCES;
758 break;
759 }
760
761 /* Allow architectures to sanity-check the new flags */
762 if (!arch_validate_flags(newflags)) {
763 error = -EINVAL;
764 break;
765 }
766
767 error = security_file_mprotect(vma, reqprot, prot);
768 if (error)
769 break;
770
771 tmp = vma->vm_end;
772 if (tmp > end)
773 tmp = end;
774
775 if (vma->vm_ops && vma->vm_ops->mprotect) {
776 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
777 if (error)
778 break;
779 }
780
781 error = mprotect_fixup(&tlb, vma, &prev, nstart, tmp, newflags);
782 if (error)
783 break;
784
785 nstart = tmp;
786
787 if (nstart < prev->vm_end)
788 nstart = prev->vm_end;
789 if (nstart >= end)
790 break;
791
792 vma = prev->vm_next;
793 if (!vma || vma->vm_start != nstart) {
794 error = -ENOMEM;
795 break;
796 }
797 prot = reqprot;
798 }
799 tlb_finish_mmu(&tlb);
800 out:
801 mmap_write_unlock(current->mm);
802 return error;
803 }
804
805 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
806 unsigned long, prot)
807 {
808 return do_mprotect_pkey(start, len, prot, -1);
809 }
810
811 #ifdef CONFIG_ARCH_HAS_PKEYS
812
813 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
814 unsigned long, prot, int, pkey)
815 {
816 return do_mprotect_pkey(start, len, prot, pkey);
817 }
818
819 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
820 {
821 int pkey;
822 int ret;
823
824 /* No flags supported yet. */
825 if (flags)
826 return -EINVAL;
827 /* check for unsupported init values */
828 if (init_val & ~PKEY_ACCESS_MASK)
829 return -EINVAL;
830
831 mmap_write_lock(current->mm);
832 pkey = mm_pkey_alloc(current->mm);
833
834 ret = -ENOSPC;
835 if (pkey == -1)
836 goto out;
837
838 ret = arch_set_user_pkey_access(current, pkey, init_val);
839 if (ret) {
840 mm_pkey_free(current->mm, pkey);
841 goto out;
842 }
843 ret = pkey;
844 out:
845 mmap_write_unlock(current->mm);
846 return ret;
847 }
848
849 SYSCALL_DEFINE1(pkey_free, int, pkey)
850 {
851 int ret;
852
853 mmap_write_lock(current->mm);
854 ret = mm_pkey_free(current->mm, pkey);
855 mmap_write_unlock(current->mm);
856
857 /*
858 * We could provide warnings or errors if any VMA still
859 * has the pkey set here.
860 */
861 return ret;
862 }
863
864 #endif /* CONFIG_ARCH_HAS_PKEYS */