]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/ppc4xx/44x_spd_ddr2.c
Merge with /home/wd/git/u-boot/custodian/u-boot-ppc4xx
[people/ms/u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2 * cpu/ppc4xx/44x_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4 * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5 *
6 * (C) Copyright 2007
7 * Stefan Roese, DENX Software Engineering, sr@denx.de.
8 *
9 * COPYRIGHT AMCC CORPORATION 2004
10 *
11 * See file CREDITS for list of people who contributed to this
12 * project.
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License as
16 * published by the Free Software Foundation; either version 2 of
17 * the License, or (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27 * MA 02111-1307 USA
28 *
29 */
30
31 /* define DEBUG for debugging output (obviously ;-)) */
32 #if 0
33 #define DEBUG
34 #endif
35
36 #include <common.h>
37 #include <command.h>
38 #include <ppc4xx.h>
39 #include <i2c.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43
44 #if defined(CONFIG_SPD_EEPROM) && \
45 (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
47 /*-----------------------------------------------------------------------------+
48 * Defines
49 *-----------------------------------------------------------------------------*/
50 #ifndef TRUE
51 #define TRUE 1
52 #endif
53 #ifndef FALSE
54 #define FALSE 0
55 #endif
56
57 #define SDRAM_DDR1 1
58 #define SDRAM_DDR2 2
59 #define SDRAM_NONE 0
60
61 #define MAXDIMMS 2
62 #define MAXRANKS 4
63 #define MAXBXCF 4
64 #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
65
66 #define ONE_BILLION 1000000000
67
68 #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
70 #define CMD_NOP (7 << 19)
71 #define CMD_PRECHARGE (2 << 19)
72 #define CMD_REFRESH (1 << 19)
73 #define CMD_EMR (0 << 19)
74 #define CMD_READ (5 << 19)
75 #define CMD_WRITE (4 << 19)
76
77 #define SELECT_MR (0 << 16)
78 #define SELECT_EMR (1 << 16)
79 #define SELECT_EMR2 (2 << 16)
80 #define SELECT_EMR3 (3 << 16)
81
82 /* MR */
83 #define DLL_RESET 0x00000100
84
85 #define WRITE_RECOV_2 (1 << 9)
86 #define WRITE_RECOV_3 (2 << 9)
87 #define WRITE_RECOV_4 (3 << 9)
88 #define WRITE_RECOV_5 (4 << 9)
89 #define WRITE_RECOV_6 (5 << 9)
90
91 #define BURST_LEN_4 0x00000002
92
93 /* EMR */
94 #define ODT_0_OHM 0x00000000
95 #define ODT_50_OHM 0x00000044
96 #define ODT_75_OHM 0x00000004
97 #define ODT_150_OHM 0x00000040
98
99 #define ODS_FULL 0x00000000
100 #define ODS_REDUCED 0x00000002
101
102 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103 #define ODT_EB0R (0x80000000 >> 8)
104 #define ODT_EB0W (0x80000000 >> 7)
105 #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
106 #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
107 #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
108
109 /* Defines for the Read Cycle Delay test */
110 #define NUMMEMTESTS 8
111 #define NUMMEMWORDS 8
112
113 #define CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
114
115 /*
116 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
117 * region. Right now the cache should still be disabled in U-Boot because of the
118 * EMAC driver, that need it's buffer descriptor to be located in non cached
119 * memory.
120 *
121 * If at some time this restriction doesn't apply anymore, just define
122 * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
123 * everything correctly.
124 */
125 #ifdef CFG_ENABLE_SDRAM_CACHE
126 #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
127 #else
128 #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
129 #endif
130
131 /* Private Structure Definitions */
132
133 /* enum only to ease code for cas latency setting */
134 typedef enum ddr_cas_id {
135 DDR_CAS_2 = 20,
136 DDR_CAS_2_5 = 25,
137 DDR_CAS_3 = 30,
138 DDR_CAS_4 = 40,
139 DDR_CAS_5 = 50
140 } ddr_cas_id_t;
141
142 /*-----------------------------------------------------------------------------+
143 * Prototypes
144 *-----------------------------------------------------------------------------*/
145 static unsigned long sdram_memsize(void);
146 void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
147 static void get_spd_info(unsigned long *dimm_populated,
148 unsigned char *iic0_dimm_addr,
149 unsigned long num_dimm_banks);
150 static void check_mem_type(unsigned long *dimm_populated,
151 unsigned char *iic0_dimm_addr,
152 unsigned long num_dimm_banks);
153 static void check_frequency(unsigned long *dimm_populated,
154 unsigned char *iic0_dimm_addr,
155 unsigned long num_dimm_banks);
156 static void check_rank_number(unsigned long *dimm_populated,
157 unsigned char *iic0_dimm_addr,
158 unsigned long num_dimm_banks);
159 static void check_voltage_type(unsigned long *dimm_populated,
160 unsigned char *iic0_dimm_addr,
161 unsigned long num_dimm_banks);
162 static void program_memory_queue(unsigned long *dimm_populated,
163 unsigned char *iic0_dimm_addr,
164 unsigned long num_dimm_banks);
165 static void program_codt(unsigned long *dimm_populated,
166 unsigned char *iic0_dimm_addr,
167 unsigned long num_dimm_banks);
168 static void program_mode(unsigned long *dimm_populated,
169 unsigned char *iic0_dimm_addr,
170 unsigned long num_dimm_banks,
171 ddr_cas_id_t *selected_cas,
172 int *write_recovery);
173 static void program_tr(unsigned long *dimm_populated,
174 unsigned char *iic0_dimm_addr,
175 unsigned long num_dimm_banks);
176 static void program_rtr(unsigned long *dimm_populated,
177 unsigned char *iic0_dimm_addr,
178 unsigned long num_dimm_banks);
179 static void program_bxcf(unsigned long *dimm_populated,
180 unsigned char *iic0_dimm_addr,
181 unsigned long num_dimm_banks);
182 static void program_copt1(unsigned long *dimm_populated,
183 unsigned char *iic0_dimm_addr,
184 unsigned long num_dimm_banks);
185 static void program_initplr(unsigned long *dimm_populated,
186 unsigned char *iic0_dimm_addr,
187 unsigned long num_dimm_banks,
188 ddr_cas_id_t selected_cas,
189 int write_recovery);
190 static unsigned long is_ecc_enabled(void);
191 #ifdef CONFIG_DDR_ECC
192 static void program_ecc(unsigned long *dimm_populated,
193 unsigned char *iic0_dimm_addr,
194 unsigned long num_dimm_banks,
195 unsigned long tlb_word2_i_value);
196 static void program_ecc_addr(unsigned long start_address,
197 unsigned long num_bytes,
198 unsigned long tlb_word2_i_value);
199 #endif
200 static void program_DQS_calibration(unsigned long *dimm_populated,
201 unsigned char *iic0_dimm_addr,
202 unsigned long num_dimm_banks);
203 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
204 static void test(void);
205 #else
206 static void DQS_calibration_process(void);
207 #endif
208 #if defined(DEBUG)
209 static void ppc440sp_sdram_register_dump(void);
210 #endif
211 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
212 void dcbz_area(u32 start_address, u32 num_bytes);
213 void dflush(void);
214
215 static u32 mfdcr_any(u32 dcr)
216 {
217 u32 val;
218
219 switch (dcr) {
220 case SDRAM_R0BAS + 0:
221 val = mfdcr(SDRAM_R0BAS + 0);
222 break;
223 case SDRAM_R0BAS + 1:
224 val = mfdcr(SDRAM_R0BAS + 1);
225 break;
226 case SDRAM_R0BAS + 2:
227 val = mfdcr(SDRAM_R0BAS + 2);
228 break;
229 case SDRAM_R0BAS + 3:
230 val = mfdcr(SDRAM_R0BAS + 3);
231 break;
232 default:
233 printf("DCR %d not defined in case statement!!!\n", dcr);
234 val = 0; /* just to satisfy the compiler */
235 }
236
237 return val;
238 }
239
240 static void mtdcr_any(u32 dcr, u32 val)
241 {
242 switch (dcr) {
243 case SDRAM_R0BAS + 0:
244 mtdcr(SDRAM_R0BAS + 0, val);
245 break;
246 case SDRAM_R0BAS + 1:
247 mtdcr(SDRAM_R0BAS + 1, val);
248 break;
249 case SDRAM_R0BAS + 2:
250 mtdcr(SDRAM_R0BAS + 2, val);
251 break;
252 case SDRAM_R0BAS + 3:
253 mtdcr(SDRAM_R0BAS + 3, val);
254 break;
255 default:
256 printf("DCR %d not defined in case statement!!!\n", dcr);
257 }
258 }
259
260 static unsigned char spd_read(uchar chip, uint addr)
261 {
262 unsigned char data[2];
263
264 if (i2c_probe(chip) == 0)
265 if (i2c_read(chip, addr, 1, data, 1) == 0)
266 return data[0];
267
268 return 0;
269 }
270
271 /*-----------------------------------------------------------------------------+
272 * sdram_memsize
273 *-----------------------------------------------------------------------------*/
274 static unsigned long sdram_memsize(void)
275 {
276 unsigned long mem_size;
277 unsigned long mcopt2;
278 unsigned long mcstat;
279 unsigned long mb0cf;
280 unsigned long sdsz;
281 unsigned long i;
282
283 mem_size = 0;
284
285 mfsdram(SDRAM_MCOPT2, mcopt2);
286 mfsdram(SDRAM_MCSTAT, mcstat);
287
288 /* DDR controller must be enabled and not in self-refresh. */
289 /* Otherwise memsize is zero. */
290 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
291 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
292 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
293 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
294 for (i = 0; i < MAXBXCF; i++) {
295 mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
296 /* Banks enabled */
297 if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
298 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
299
300 switch(sdsz) {
301 case SDRAM_RXBAS_SDSZ_8:
302 mem_size+=8;
303 break;
304 case SDRAM_RXBAS_SDSZ_16:
305 mem_size+=16;
306 break;
307 case SDRAM_RXBAS_SDSZ_32:
308 mem_size+=32;
309 break;
310 case SDRAM_RXBAS_SDSZ_64:
311 mem_size+=64;
312 break;
313 case SDRAM_RXBAS_SDSZ_128:
314 mem_size+=128;
315 break;
316 case SDRAM_RXBAS_SDSZ_256:
317 mem_size+=256;
318 break;
319 case SDRAM_RXBAS_SDSZ_512:
320 mem_size+=512;
321 break;
322 case SDRAM_RXBAS_SDSZ_1024:
323 mem_size+=1024;
324 break;
325 case SDRAM_RXBAS_SDSZ_2048:
326 mem_size+=2048;
327 break;
328 case SDRAM_RXBAS_SDSZ_4096:
329 mem_size+=4096;
330 break;
331 default:
332 mem_size=0;
333 break;
334 }
335 }
336 }
337 }
338
339 mem_size *= 1024 * 1024;
340 return(mem_size);
341 }
342
343 /*-----------------------------------------------------------------------------+
344 * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
345 * Note: This routine runs from flash with a stack set up in the chip's
346 * sram space. It is important that the routine does not require .sbss, .bss or
347 * .data sections. It also cannot call routines that require these sections.
348 *-----------------------------------------------------------------------------*/
349 /*-----------------------------------------------------------------------------
350 * Function: initdram
351 * Description: Configures SDRAM memory banks for DDR operation.
352 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
353 * via the IIC bus and then configures the DDR SDRAM memory
354 * banks appropriately. If Auto Memory Configuration is
355 * not used, it is assumed that no DIMM is plugged
356 *-----------------------------------------------------------------------------*/
357 long int initdram(int board_type)
358 {
359 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
360 unsigned char spd0[MAX_SPD_BYTES];
361 unsigned char spd1[MAX_SPD_BYTES];
362 unsigned char *dimm_spd[MAXDIMMS];
363 unsigned long dimm_populated[MAXDIMMS];
364 unsigned long num_dimm_banks; /* on board dimm banks */
365 unsigned long val;
366 ddr_cas_id_t selected_cas;
367 int write_recovery;
368 unsigned long dram_size = 0;
369
370 num_dimm_banks = sizeof(iic0_dimm_addr);
371
372 /*------------------------------------------------------------------
373 * Set up an array of SPD matrixes.
374 *-----------------------------------------------------------------*/
375 dimm_spd[0] = spd0;
376 dimm_spd[1] = spd1;
377
378 /*------------------------------------------------------------------
379 * Reset the DDR-SDRAM controller.
380 *-----------------------------------------------------------------*/
381 mtsdr(SDR0_SRST, (0x80000000 >> 10));
382 mtsdr(SDR0_SRST, 0x00000000);
383
384 /*
385 * Make sure I2C controller is initialized
386 * before continuing.
387 */
388
389 /* switch to correct I2C bus */
390 I2C_SET_BUS(CFG_SPD_BUS_NUM);
391 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
392
393 /*------------------------------------------------------------------
394 * Clear out the serial presence detect buffers.
395 * Perform IIC reads from the dimm. Fill in the spds.
396 * Check to see if the dimm slots are populated
397 *-----------------------------------------------------------------*/
398 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
399
400 /*------------------------------------------------------------------
401 * Check the memory type for the dimms plugged.
402 *-----------------------------------------------------------------*/
403 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
404
405 /*------------------------------------------------------------------
406 * Check the frequency supported for the dimms plugged.
407 *-----------------------------------------------------------------*/
408 check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
409
410 /*------------------------------------------------------------------
411 * Check the total rank number.
412 *-----------------------------------------------------------------*/
413 check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
414
415 /*------------------------------------------------------------------
416 * Check the voltage type for the dimms plugged.
417 *-----------------------------------------------------------------*/
418 check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
419
420 /*------------------------------------------------------------------
421 * Program SDRAM controller options 2 register
422 * Except Enabling of the memory controller.
423 *-----------------------------------------------------------------*/
424 mfsdram(SDRAM_MCOPT2, val);
425 mtsdram(SDRAM_MCOPT2,
426 (val &
427 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
428 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
429 SDRAM_MCOPT2_ISIE_MASK))
430 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
431 SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
432 SDRAM_MCOPT2_ISIE_ENABLE));
433
434 /*------------------------------------------------------------------
435 * Program SDRAM controller options 1 register
436 * Note: Does not enable the memory controller.
437 *-----------------------------------------------------------------*/
438 program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
439
440 /*------------------------------------------------------------------
441 * Set the SDRAM Controller On Die Termination Register
442 *-----------------------------------------------------------------*/
443 program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
444
445 /*------------------------------------------------------------------
446 * Program SDRAM refresh register.
447 *-----------------------------------------------------------------*/
448 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
449
450 /*------------------------------------------------------------------
451 * Program SDRAM mode register.
452 *-----------------------------------------------------------------*/
453 program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
454 &selected_cas, &write_recovery);
455
456 /*------------------------------------------------------------------
457 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
458 *-----------------------------------------------------------------*/
459 mfsdram(SDRAM_WRDTR, val);
460 mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
461 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
462
463 /*------------------------------------------------------------------
464 * Set the SDRAM Clock Timing Register
465 *-----------------------------------------------------------------*/
466 mfsdram(SDRAM_CLKTR, val);
467 mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
468
469 /*------------------------------------------------------------------
470 * Program the BxCF registers.
471 *-----------------------------------------------------------------*/
472 program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
473
474 /*------------------------------------------------------------------
475 * Program SDRAM timing registers.
476 *-----------------------------------------------------------------*/
477 program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
478
479 /*------------------------------------------------------------------
480 * Set the Extended Mode register
481 *-----------------------------------------------------------------*/
482 mfsdram(SDRAM_MEMODE, val);
483 mtsdram(SDRAM_MEMODE,
484 (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
485 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
486 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
487 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
488
489 /*------------------------------------------------------------------
490 * Program Initialization preload registers.
491 *-----------------------------------------------------------------*/
492 program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
493 selected_cas, write_recovery);
494
495 /*------------------------------------------------------------------
496 * Delay to ensure 200usec have elapsed since reset.
497 *-----------------------------------------------------------------*/
498 udelay(400);
499
500 /*------------------------------------------------------------------
501 * Set the memory queue core base addr.
502 *-----------------------------------------------------------------*/
503 program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
504
505 /*------------------------------------------------------------------
506 * Program SDRAM controller options 2 register
507 * Enable the memory controller.
508 *-----------------------------------------------------------------*/
509 mfsdram(SDRAM_MCOPT2, val);
510 mtsdram(SDRAM_MCOPT2,
511 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
512 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
513 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
514
515 /*------------------------------------------------------------------
516 * Wait for SDRAM_CFG0_DC_EN to complete.
517 *-----------------------------------------------------------------*/
518 do {
519 mfsdram(SDRAM_MCSTAT, val);
520 } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
521
522 /* get installed memory size */
523 dram_size = sdram_memsize();
524
525 /* and program tlb entries for this size (dynamic) */
526 program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
527
528 /*------------------------------------------------------------------
529 * DQS calibration.
530 *-----------------------------------------------------------------*/
531 program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
532
533 #ifdef CONFIG_DDR_ECC
534 /*------------------------------------------------------------------
535 * If ecc is enabled, initialize the parity bits.
536 *-----------------------------------------------------------------*/
537 program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
538 #endif
539
540 #ifdef DEBUG
541 ppc440sp_sdram_register_dump();
542 #endif
543
544 return dram_size;
545 }
546
547 static void get_spd_info(unsigned long *dimm_populated,
548 unsigned char *iic0_dimm_addr,
549 unsigned long num_dimm_banks)
550 {
551 unsigned long dimm_num;
552 unsigned long dimm_found;
553 unsigned char num_of_bytes;
554 unsigned char total_size;
555
556 dimm_found = FALSE;
557 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
558 num_of_bytes = 0;
559 total_size = 0;
560
561 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
562 debug("\nspd_read(0x%x) returned %d\n",
563 iic0_dimm_addr[dimm_num], num_of_bytes);
564 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
565 debug("spd_read(0x%x) returned %d\n",
566 iic0_dimm_addr[dimm_num], total_size);
567
568 if ((num_of_bytes != 0) && (total_size != 0)) {
569 dimm_populated[dimm_num] = TRUE;
570 dimm_found = TRUE;
571 debug("DIMM slot %lu: populated\n", dimm_num);
572 } else {
573 dimm_populated[dimm_num] = FALSE;
574 debug("DIMM slot %lu: Not populated\n", dimm_num);
575 }
576 }
577
578 if (dimm_found == FALSE) {
579 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
580 hang();
581 }
582 }
583
584 #ifdef CONFIG_ADD_RAM_INFO
585 void board_add_ram_info(int use_default)
586 {
587 if (is_ecc_enabled())
588 puts(" (ECC enabled)");
589 else
590 puts(" (ECC not enabled)");
591 }
592 #endif
593
594 /*------------------------------------------------------------------
595 * For the memory DIMMs installed, this routine verifies that they
596 * really are DDR specific DIMMs.
597 *-----------------------------------------------------------------*/
598 static void check_mem_type(unsigned long *dimm_populated,
599 unsigned char *iic0_dimm_addr,
600 unsigned long num_dimm_banks)
601 {
602 unsigned long dimm_num;
603 unsigned long dimm_type;
604
605 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
606 if (dimm_populated[dimm_num] == TRUE) {
607 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
608 switch (dimm_type) {
609 case 1:
610 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
611 "slot %d.\n", (unsigned int)dimm_num);
612 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
613 printf("Replace the DIMM module with a supported DIMM.\n\n");
614 hang();
615 break;
616 case 2:
617 printf("ERROR: EDO DIMM detected in slot %d.\n",
618 (unsigned int)dimm_num);
619 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
620 printf("Replace the DIMM module with a supported DIMM.\n\n");
621 hang();
622 break;
623 case 3:
624 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
625 (unsigned int)dimm_num);
626 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
627 printf("Replace the DIMM module with a supported DIMM.\n\n");
628 hang();
629 break;
630 case 4:
631 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
632 (unsigned int)dimm_num);
633 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
634 printf("Replace the DIMM module with a supported DIMM.\n\n");
635 hang();
636 break;
637 case 5:
638 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
639 (unsigned int)dimm_num);
640 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
641 printf("Replace the DIMM module with a supported DIMM.\n\n");
642 hang();
643 break;
644 case 6:
645 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
646 (unsigned int)dimm_num);
647 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
648 printf("Replace the DIMM module with a supported DIMM.\n\n");
649 hang();
650 break;
651 case 7:
652 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
653 dimm_populated[dimm_num] = SDRAM_DDR1;
654 break;
655 case 8:
656 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
657 dimm_populated[dimm_num] = SDRAM_DDR2;
658 break;
659 default:
660 printf("ERROR: Unknown DIMM detected in slot %d.\n",
661 (unsigned int)dimm_num);
662 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
663 printf("Replace the DIMM module with a supported DIMM.\n\n");
664 hang();
665 break;
666 }
667 }
668 }
669 for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
670 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
671 && (dimm_populated[dimm_num] != SDRAM_NONE)
672 && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
673 printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
674 hang();
675 }
676 }
677 }
678
679 /*------------------------------------------------------------------
680 * For the memory DIMMs installed, this routine verifies that
681 * frequency previously calculated is supported.
682 *-----------------------------------------------------------------*/
683 static void check_frequency(unsigned long *dimm_populated,
684 unsigned char *iic0_dimm_addr,
685 unsigned long num_dimm_banks)
686 {
687 unsigned long dimm_num;
688 unsigned long tcyc_reg;
689 unsigned long cycle_time;
690 unsigned long calc_cycle_time;
691 unsigned long sdram_freq;
692 unsigned long sdr_ddrpll;
693 PPC440_SYS_INFO board_cfg;
694
695 /*------------------------------------------------------------------
696 * Get the board configuration info.
697 *-----------------------------------------------------------------*/
698 get_sys_info(&board_cfg);
699
700 mfsdr(SDR0_DDR0, sdr_ddrpll);
701 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
702
703 /*
704 * calc_cycle_time is calculated from DDR frequency set by board/chip
705 * and is expressed in multiple of 10 picoseconds
706 * to match the way DIMM cycle time is calculated below.
707 */
708 calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
709
710 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
711 if (dimm_populated[dimm_num] != SDRAM_NONE) {
712 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
713 /*
714 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
715 * the higher order nibble (bits 4-7) designates the cycle time
716 * to a granularity of 1ns;
717 * the value presented by the lower order nibble (bits 0-3)
718 * has a granularity of .1ns and is added to the value designated
719 * by the higher nibble. In addition, four lines of the lower order
720 * nibble are assigned to support +.25,+.33, +.66 and +.75.
721 */
722 /* Convert from hex to decimal */
723 if ((tcyc_reg & 0x0F) == 0x0D)
724 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
725 else if ((tcyc_reg & 0x0F) == 0x0C)
726 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
727 else if ((tcyc_reg & 0x0F) == 0x0B)
728 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
729 else if ((tcyc_reg & 0x0F) == 0x0A)
730 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
731 else
732 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
733 ((tcyc_reg & 0x0F)*10);
734
735 if (cycle_time > (calc_cycle_time + 10)) {
736 /*
737 * the provided sdram cycle_time is too small
738 * for the available DIMM cycle_time.
739 * The additionnal 100ps is here to accept a small incertainty.
740 */
741 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
742 "slot %d \n while calculated cycle time is %d ps.\n",
743 (unsigned int)(cycle_time*10),
744 (unsigned int)dimm_num,
745 (unsigned int)(calc_cycle_time*10));
746 printf("Replace the DIMM, or change DDR frequency via "
747 "strapping bits.\n\n");
748 hang();
749 }
750 }
751 }
752 }
753
754 /*------------------------------------------------------------------
755 * For the memory DIMMs installed, this routine verifies two
756 * ranks/banks maximum are availables.
757 *-----------------------------------------------------------------*/
758 static void check_rank_number(unsigned long *dimm_populated,
759 unsigned char *iic0_dimm_addr,
760 unsigned long num_dimm_banks)
761 {
762 unsigned long dimm_num;
763 unsigned long dimm_rank;
764 unsigned long total_rank = 0;
765
766 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
767 if (dimm_populated[dimm_num] != SDRAM_NONE) {
768 dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
769 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
770 dimm_rank = (dimm_rank & 0x0F) +1;
771 else
772 dimm_rank = dimm_rank & 0x0F;
773
774
775 if (dimm_rank > MAXRANKS) {
776 printf("ERROR: DRAM DIMM detected with %d ranks in "
777 "slot %d is not supported.\n", dimm_rank, dimm_num);
778 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
779 printf("Replace the DIMM module with a supported DIMM.\n\n");
780 hang();
781 } else
782 total_rank += dimm_rank;
783 }
784 if (total_rank > MAXRANKS) {
785 printf("ERROR: DRAM DIMM detected with a total of %d ranks "
786 "for all slots.\n", (unsigned int)total_rank);
787 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
788 printf("Remove one of the DIMM modules.\n\n");
789 hang();
790 }
791 }
792 }
793
794 /*------------------------------------------------------------------
795 * only support 2.5V modules.
796 * This routine verifies this.
797 *-----------------------------------------------------------------*/
798 static void check_voltage_type(unsigned long *dimm_populated,
799 unsigned char *iic0_dimm_addr,
800 unsigned long num_dimm_banks)
801 {
802 unsigned long dimm_num;
803 unsigned long voltage_type;
804
805 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
806 if (dimm_populated[dimm_num] != SDRAM_NONE) {
807 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
808 switch (voltage_type) {
809 case 0x00:
810 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
811 printf("This DIMM is 5.0 Volt/TTL.\n");
812 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
813 (unsigned int)dimm_num);
814 hang();
815 break;
816 case 0x01:
817 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
818 printf("This DIMM is LVTTL.\n");
819 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
820 (unsigned int)dimm_num);
821 hang();
822 break;
823 case 0x02:
824 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
825 printf("This DIMM is 1.5 Volt.\n");
826 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
827 (unsigned int)dimm_num);
828 hang();
829 break;
830 case 0x03:
831 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
832 printf("This DIMM is 3.3 Volt/TTL.\n");
833 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
834 (unsigned int)dimm_num);
835 hang();
836 break;
837 case 0x04:
838 /* 2.5 Voltage only for DDR1 */
839 break;
840 case 0x05:
841 /* 1.8 Voltage only for DDR2 */
842 break;
843 default:
844 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
845 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
846 (unsigned int)dimm_num);
847 hang();
848 break;
849 }
850 }
851 }
852 }
853
854 /*-----------------------------------------------------------------------------+
855 * program_copt1.
856 *-----------------------------------------------------------------------------*/
857 static void program_copt1(unsigned long *dimm_populated,
858 unsigned char *iic0_dimm_addr,
859 unsigned long num_dimm_banks)
860 {
861 unsigned long dimm_num;
862 unsigned long mcopt1;
863 unsigned long ecc_enabled;
864 unsigned long ecc = 0;
865 unsigned long data_width = 0;
866 unsigned long dimm_32bit;
867 unsigned long dimm_64bit;
868 unsigned long registered = 0;
869 unsigned long attribute = 0;
870 unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
871 unsigned long bankcount;
872 unsigned long ddrtype;
873 unsigned long val;
874
875 #ifdef CONFIG_DDR_ECC
876 ecc_enabled = TRUE;
877 #else
878 ecc_enabled = FALSE;
879 #endif
880 dimm_32bit = FALSE;
881 dimm_64bit = FALSE;
882 buf0 = FALSE;
883 buf1 = FALSE;
884
885 /*------------------------------------------------------------------
886 * Set memory controller options reg 1, SDRAM_MCOPT1.
887 *-----------------------------------------------------------------*/
888 mfsdram(SDRAM_MCOPT1, val);
889 mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
890 SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
891 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
892 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
893 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
894 SDRAM_MCOPT1_DREF_MASK);
895
896 mcopt1 |= SDRAM_MCOPT1_QDEP;
897 mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
898 mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
899 mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
900 mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
901 mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
902
903 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
904 if (dimm_populated[dimm_num] != SDRAM_NONE) {
905 /* test ecc support */
906 ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
907 if (ecc != 0x02) /* ecc not supported */
908 ecc_enabled = FALSE;
909
910 /* test bank count */
911 bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
912 if (bankcount == 0x04) /* bank count = 4 */
913 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
914 else /* bank count = 8 */
915 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
916
917 /* test DDR type */
918 ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
919 /* test for buffered/unbuffered, registered, differential clocks */
920 registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
921 attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
922
923 /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
924 if (dimm_num == 0) {
925 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
926 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
927 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
928 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
929 if (registered == 1) { /* DDR2 always buffered */
930 /* TODO: what about above comments ? */
931 mcopt1 |= SDRAM_MCOPT1_RDEN;
932 buf0 = TRUE;
933 } else {
934 /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
935 if ((attribute & 0x02) == 0x00) {
936 /* buffered not supported */
937 buf0 = FALSE;
938 } else {
939 mcopt1 |= SDRAM_MCOPT1_RDEN;
940 buf0 = TRUE;
941 }
942 }
943 }
944 else if (dimm_num == 1) {
945 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
946 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
947 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
948 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
949 if (registered == 1) {
950 /* DDR2 always buffered */
951 mcopt1 |= SDRAM_MCOPT1_RDEN;
952 buf1 = TRUE;
953 } else {
954 if ((attribute & 0x02) == 0x00) {
955 /* buffered not supported */
956 buf1 = FALSE;
957 } else {
958 mcopt1 |= SDRAM_MCOPT1_RDEN;
959 buf1 = TRUE;
960 }
961 }
962 }
963
964 /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
965 data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
966 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
967
968 switch (data_width) {
969 case 72:
970 case 64:
971 dimm_64bit = TRUE;
972 break;
973 case 40:
974 case 32:
975 dimm_32bit = TRUE;
976 break;
977 default:
978 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
979 data_width);
980 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
981 break;
982 }
983 }
984 }
985
986 /* verify matching properties */
987 if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
988 if (buf0 != buf1) {
989 printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
990 hang();
991 }
992 }
993
994 if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
995 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
996 hang();
997 }
998 else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
999 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1000 } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1001 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1002 } else {
1003 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1004 hang();
1005 }
1006
1007 if (ecc_enabled == TRUE)
1008 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1009 else
1010 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1011
1012 mtsdram(SDRAM_MCOPT1, mcopt1);
1013 }
1014
1015 /*-----------------------------------------------------------------------------+
1016 * program_codt.
1017 *-----------------------------------------------------------------------------*/
1018 static void program_codt(unsigned long *dimm_populated,
1019 unsigned char *iic0_dimm_addr,
1020 unsigned long num_dimm_banks)
1021 {
1022 unsigned long codt;
1023 unsigned long modt0 = 0;
1024 unsigned long modt1 = 0;
1025 unsigned long modt2 = 0;
1026 unsigned long modt3 = 0;
1027 unsigned char dimm_num;
1028 unsigned char dimm_rank;
1029 unsigned char total_rank = 0;
1030 unsigned char total_dimm = 0;
1031 unsigned char dimm_type = 0;
1032 unsigned char firstSlot = 0;
1033
1034 /*------------------------------------------------------------------
1035 * Set the SDRAM Controller On Die Termination Register
1036 *-----------------------------------------------------------------*/
1037 mfsdram(SDRAM_CODT, codt);
1038 codt |= (SDRAM_CODT_IO_NMODE
1039 & (~SDRAM_CODT_DQS_SINGLE_END
1040 & ~SDRAM_CODT_CKSE_SINGLE_END
1041 & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1042 & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1043
1044 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1045 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1046 dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1047 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1048 dimm_rank = (dimm_rank & 0x0F) + 1;
1049 dimm_type = SDRAM_DDR2;
1050 } else {
1051 dimm_rank = dimm_rank & 0x0F;
1052 dimm_type = SDRAM_DDR1;
1053 }
1054
1055 total_rank += dimm_rank;
1056 total_dimm++;
1057 if ((dimm_num == 0) && (total_dimm == 1))
1058 firstSlot = TRUE;
1059 else
1060 firstSlot = FALSE;
1061 }
1062 }
1063 if (dimm_type == SDRAM_DDR2) {
1064 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1065 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1066 if (total_rank == 1) {
1067 codt |= CALC_ODT_R(0);
1068 modt0 = CALC_ODT_W(0);
1069 modt1 = 0x00000000;
1070 modt2 = 0x00000000;
1071 modt3 = 0x00000000;
1072 }
1073 if (total_rank == 2) {
1074 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1075 modt0 = CALC_ODT_W(0);
1076 modt1 = CALC_ODT_W(0);
1077 modt2 = 0x00000000;
1078 modt3 = 0x00000000;
1079 }
1080 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1081 if (total_rank == 1) {
1082 codt |= CALC_ODT_R(2);
1083 modt0 = 0x00000000;
1084 modt1 = 0x00000000;
1085 modt2 = CALC_ODT_W(2);
1086 modt3 = 0x00000000;
1087 }
1088 if (total_rank == 2) {
1089 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1090 modt0 = 0x00000000;
1091 modt1 = 0x00000000;
1092 modt2 = CALC_ODT_W(2);
1093 modt3 = CALC_ODT_W(2);
1094 }
1095 }
1096 if (total_dimm == 2) {
1097 if (total_rank == 2) {
1098 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1099 modt0 = CALC_ODT_RW(2);
1100 modt1 = 0x00000000;
1101 modt2 = CALC_ODT_RW(0);
1102 modt3 = 0x00000000;
1103 }
1104 if (total_rank == 4) {
1105 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
1106 modt0 = CALC_ODT_RW(2);
1107 modt1 = 0x00000000;
1108 modt2 = CALC_ODT_RW(0);
1109 modt3 = 0x00000000;
1110 }
1111 }
1112 } else {
1113 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1114 modt0 = 0x00000000;
1115 modt1 = 0x00000000;
1116 modt2 = 0x00000000;
1117 modt3 = 0x00000000;
1118
1119 if (total_dimm == 1) {
1120 if (total_rank == 1)
1121 codt |= 0x00800000;
1122 if (total_rank == 2)
1123 codt |= 0x02800000;
1124 }
1125 if (total_dimm == 2) {
1126 if (total_rank == 2)
1127 codt |= 0x08800000;
1128 if (total_rank == 4)
1129 codt |= 0x2a800000;
1130 }
1131 }
1132
1133 debug("nb of dimm %d\n", total_dimm);
1134 debug("nb of rank %d\n", total_rank);
1135 if (total_dimm == 1)
1136 debug("dimm in slot %d\n", firstSlot);
1137
1138 mtsdram(SDRAM_CODT, codt);
1139 mtsdram(SDRAM_MODT0, modt0);
1140 mtsdram(SDRAM_MODT1, modt1);
1141 mtsdram(SDRAM_MODT2, modt2);
1142 mtsdram(SDRAM_MODT3, modt3);
1143 }
1144
1145 /*-----------------------------------------------------------------------------+
1146 * program_initplr.
1147 *-----------------------------------------------------------------------------*/
1148 static void program_initplr(unsigned long *dimm_populated,
1149 unsigned char *iic0_dimm_addr,
1150 unsigned long num_dimm_banks,
1151 ddr_cas_id_t selected_cas,
1152 int write_recovery)
1153 {
1154 u32 cas = 0;
1155 u32 odt = 0;
1156 u32 ods = 0;
1157 u32 mr;
1158 u32 wr;
1159 u32 emr;
1160 u32 emr2;
1161 u32 emr3;
1162 int dimm_num;
1163 int total_dimm = 0;
1164
1165 /******************************************************
1166 ** Assumption: if more than one DIMM, all DIMMs are the same
1167 ** as already checked in check_memory_type
1168 ******************************************************/
1169
1170 if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1171 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1172 mtsdram(SDRAM_INITPLR1, 0x81900400);
1173 mtsdram(SDRAM_INITPLR2, 0x81810000);
1174 mtsdram(SDRAM_INITPLR3, 0xff800162);
1175 mtsdram(SDRAM_INITPLR4, 0x81900400);
1176 mtsdram(SDRAM_INITPLR5, 0x86080000);
1177 mtsdram(SDRAM_INITPLR6, 0x86080000);
1178 mtsdram(SDRAM_INITPLR7, 0x81000062);
1179 } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1180 switch (selected_cas) {
1181 case DDR_CAS_3:
1182 cas = 3 << 4;
1183 break;
1184 case DDR_CAS_4:
1185 cas = 4 << 4;
1186 break;
1187 case DDR_CAS_5:
1188 cas = 5 << 4;
1189 break;
1190 default:
1191 printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1192 hang();
1193 break;
1194 }
1195
1196 #if 0
1197 /*
1198 * ToDo - Still a problem with the write recovery:
1199 * On the Corsair CM2X512-5400C4 module, setting write recovery
1200 * in the INITPLR reg to the value calculated in program_mode()
1201 * results in not correctly working DDR2 memory (crash after
1202 * relocation).
1203 *
1204 * So for now, set the write recovery to 3. This seems to work
1205 * on the Corair module too.
1206 *
1207 * 2007-03-01, sr
1208 */
1209 switch (write_recovery) {
1210 case 3:
1211 wr = WRITE_RECOV_3;
1212 break;
1213 case 4:
1214 wr = WRITE_RECOV_4;
1215 break;
1216 case 5:
1217 wr = WRITE_RECOV_5;
1218 break;
1219 case 6:
1220 wr = WRITE_RECOV_6;
1221 break;
1222 default:
1223 printf("ERROR: write recovery not support (%d)", write_recovery);
1224 hang();
1225 break;
1226 }
1227 #else
1228 wr = WRITE_RECOV_3; /* test-only, see description above */
1229 #endif
1230
1231 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1232 if (dimm_populated[dimm_num] != SDRAM_NONE)
1233 total_dimm++;
1234 if (total_dimm == 1) {
1235 odt = ODT_150_OHM;
1236 ods = ODS_FULL;
1237 } else if (total_dimm == 2) {
1238 odt = ODT_75_OHM;
1239 ods = ODS_REDUCED;
1240 } else {
1241 printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1242 hang();
1243 }
1244
1245 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1246 emr = CMD_EMR | SELECT_EMR | odt | ods;
1247 emr2 = CMD_EMR | SELECT_EMR2;
1248 emr3 = CMD_EMR | SELECT_EMR3;
1249 mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
1250 udelay(1000);
1251 mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1252 mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
1253 mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
1254 mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
1255 mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
1256 udelay(1000);
1257 mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1258 mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1259 mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1260 mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1261 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1262 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
1263 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
1264 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
1265 } else {
1266 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1267 hang();
1268 }
1269 }
1270
1271 /*------------------------------------------------------------------
1272 * This routine programs the SDRAM_MMODE register.
1273 * the selected_cas is an output parameter, that will be passed
1274 * by caller to call the above program_initplr( )
1275 *-----------------------------------------------------------------*/
1276 static void program_mode(unsigned long *dimm_populated,
1277 unsigned char *iic0_dimm_addr,
1278 unsigned long num_dimm_banks,
1279 ddr_cas_id_t *selected_cas,
1280 int *write_recovery)
1281 {
1282 unsigned long dimm_num;
1283 unsigned long sdram_ddr1;
1284 unsigned long t_wr_ns;
1285 unsigned long t_wr_clk;
1286 unsigned long cas_bit;
1287 unsigned long cas_index;
1288 unsigned long sdram_freq;
1289 unsigned long ddr_check;
1290 unsigned long mmode;
1291 unsigned long tcyc_reg;
1292 unsigned long cycle_2_0_clk;
1293 unsigned long cycle_2_5_clk;
1294 unsigned long cycle_3_0_clk;
1295 unsigned long cycle_4_0_clk;
1296 unsigned long cycle_5_0_clk;
1297 unsigned long max_2_0_tcyc_ns_x_100;
1298 unsigned long max_2_5_tcyc_ns_x_100;
1299 unsigned long max_3_0_tcyc_ns_x_100;
1300 unsigned long max_4_0_tcyc_ns_x_100;
1301 unsigned long max_5_0_tcyc_ns_x_100;
1302 unsigned long cycle_time_ns_x_100[3];
1303 PPC440_SYS_INFO board_cfg;
1304 unsigned char cas_2_0_available;
1305 unsigned char cas_2_5_available;
1306 unsigned char cas_3_0_available;
1307 unsigned char cas_4_0_available;
1308 unsigned char cas_5_0_available;
1309 unsigned long sdr_ddrpll;
1310
1311 /*------------------------------------------------------------------
1312 * Get the board configuration info.
1313 *-----------------------------------------------------------------*/
1314 get_sys_info(&board_cfg);
1315
1316 mfsdr(SDR0_DDR0, sdr_ddrpll);
1317 sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1318
1319 /*------------------------------------------------------------------
1320 * Handle the timing. We need to find the worst case timing of all
1321 * the dimm modules installed.
1322 *-----------------------------------------------------------------*/
1323 t_wr_ns = 0;
1324 cas_2_0_available = TRUE;
1325 cas_2_5_available = TRUE;
1326 cas_3_0_available = TRUE;
1327 cas_4_0_available = TRUE;
1328 cas_5_0_available = TRUE;
1329 max_2_0_tcyc_ns_x_100 = 10;
1330 max_2_5_tcyc_ns_x_100 = 10;
1331 max_3_0_tcyc_ns_x_100 = 10;
1332 max_4_0_tcyc_ns_x_100 = 10;
1333 max_5_0_tcyc_ns_x_100 = 10;
1334 sdram_ddr1 = TRUE;
1335
1336 /* loop through all the DIMM slots on the board */
1337 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1338 /* If a dimm is installed in a particular slot ... */
1339 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1340 if (dimm_populated[dimm_num] == SDRAM_DDR1)
1341 sdram_ddr1 = TRUE;
1342 else
1343 sdram_ddr1 = FALSE;
1344
1345 /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
1346 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1347
1348 /* For a particular DIMM, grab the three CAS values it supports */
1349 for (cas_index = 0; cas_index < 3; cas_index++) {
1350 switch (cas_index) {
1351 case 0:
1352 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1353 break;
1354 case 1:
1355 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1356 break;
1357 default:
1358 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1359 break;
1360 }
1361
1362 if ((tcyc_reg & 0x0F) >= 10) {
1363 if ((tcyc_reg & 0x0F) == 0x0D) {
1364 /* Convert from hex to decimal */
1365 cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1366 } else {
1367 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1368 "in slot %d\n", (unsigned int)dimm_num);
1369 hang();
1370 }
1371 } else {
1372 /* Convert from hex to decimal */
1373 cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
1374 ((tcyc_reg & 0x0F)*10);
1375 }
1376 }
1377
1378 /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1379 /* supported for a particular DIMM. */
1380 cas_index = 0;
1381
1382 if (sdram_ddr1) {
1383 /*
1384 * DDR devices use the following bitmask for CAS latency:
1385 * Bit 7 6 5 4 3 2 1 0
1386 * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
1387 */
1388 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1389 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1390 cas_index++;
1391 } else {
1392 if (cas_index != 0)
1393 cas_index++;
1394 cas_4_0_available = FALSE;
1395 }
1396
1397 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1398 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1399 cas_index++;
1400 } else {
1401 if (cas_index != 0)
1402 cas_index++;
1403 cas_3_0_available = FALSE;
1404 }
1405
1406 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1407 max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1408 cas_index++;
1409 } else {
1410 if (cas_index != 0)
1411 cas_index++;
1412 cas_2_5_available = FALSE;
1413 }
1414
1415 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1416 max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1417 cas_index++;
1418 } else {
1419 if (cas_index != 0)
1420 cas_index++;
1421 cas_2_0_available = FALSE;
1422 }
1423 } else {
1424 /*
1425 * DDR2 devices use the following bitmask for CAS latency:
1426 * Bit 7 6 5 4 3 2 1 0
1427 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
1428 */
1429 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1430 max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1431 cas_index++;
1432 } else {
1433 if (cas_index != 0)
1434 cas_index++;
1435 cas_5_0_available = FALSE;
1436 }
1437
1438 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1439 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1440 cas_index++;
1441 } else {
1442 if (cas_index != 0)
1443 cas_index++;
1444 cas_4_0_available = FALSE;
1445 }
1446
1447 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1448 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1449 cas_index++;
1450 } else {
1451 if (cas_index != 0)
1452 cas_index++;
1453 cas_3_0_available = FALSE;
1454 }
1455 }
1456 }
1457 }
1458
1459 /*------------------------------------------------------------------
1460 * Set the SDRAM mode, SDRAM_MMODE
1461 *-----------------------------------------------------------------*/
1462 mfsdram(SDRAM_MMODE, mmode);
1463 mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1464
1465 /* add 10 here because of rounding problems */
1466 cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1467 cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1468 cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1469 cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1470 cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1471
1472 if (sdram_ddr1 == TRUE) { /* DDR1 */
1473 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1474 mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1475 *selected_cas = DDR_CAS_2;
1476 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1477 mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1478 *selected_cas = DDR_CAS_2_5;
1479 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1480 mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1481 *selected_cas = DDR_CAS_3;
1482 } else {
1483 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1484 printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1485 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1486 hang();
1487 }
1488 } else { /* DDR2 */
1489 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1490 mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1491 *selected_cas = DDR_CAS_3;
1492 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1493 mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1494 *selected_cas = DDR_CAS_4;
1495 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1496 mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1497 *selected_cas = DDR_CAS_5;
1498 } else {
1499 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1500 printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1501 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1502 printf("cas3=%d cas4=%d cas5=%d\n",
1503 cas_3_0_available, cas_4_0_available, cas_5_0_available);
1504 printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1505 sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1506 hang();
1507 }
1508 }
1509
1510 if (sdram_ddr1 == TRUE)
1511 mmode |= SDRAM_MMODE_WR_DDR1;
1512 else {
1513
1514 /* loop through all the DIMM slots on the board */
1515 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1516 /* If a dimm is installed in a particular slot ... */
1517 if (dimm_populated[dimm_num] != SDRAM_NONE)
1518 t_wr_ns = max(t_wr_ns,
1519 spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1520 }
1521
1522 /*
1523 * convert from nanoseconds to ddr clocks
1524 * round up if necessary
1525 */
1526 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1527 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1528 if (sdram_freq != ddr_check)
1529 t_wr_clk++;
1530
1531 switch (t_wr_clk) {
1532 case 0:
1533 case 1:
1534 case 2:
1535 case 3:
1536 mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1537 break;
1538 case 4:
1539 mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1540 break;
1541 case 5:
1542 mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1543 break;
1544 default:
1545 mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1546 break;
1547 }
1548 *write_recovery = t_wr_clk;
1549 }
1550
1551 debug("CAS latency = %d\n", *selected_cas);
1552 debug("Write recovery = %d\n", *write_recovery);
1553
1554 mtsdram(SDRAM_MMODE, mmode);
1555 }
1556
1557 /*-----------------------------------------------------------------------------+
1558 * program_rtr.
1559 *-----------------------------------------------------------------------------*/
1560 static void program_rtr(unsigned long *dimm_populated,
1561 unsigned char *iic0_dimm_addr,
1562 unsigned long num_dimm_banks)
1563 {
1564 PPC440_SYS_INFO board_cfg;
1565 unsigned long max_refresh_rate;
1566 unsigned long dimm_num;
1567 unsigned long refresh_rate_type;
1568 unsigned long refresh_rate;
1569 unsigned long rint;
1570 unsigned long sdram_freq;
1571 unsigned long sdr_ddrpll;
1572 unsigned long val;
1573
1574 /*------------------------------------------------------------------
1575 * Get the board configuration info.
1576 *-----------------------------------------------------------------*/
1577 get_sys_info(&board_cfg);
1578
1579 /*------------------------------------------------------------------
1580 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1581 *-----------------------------------------------------------------*/
1582 mfsdr(SDR0_DDR0, sdr_ddrpll);
1583 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1584
1585 max_refresh_rate = 0;
1586 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1587 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1588
1589 refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1590 refresh_rate_type &= 0x7F;
1591 switch (refresh_rate_type) {
1592 case 0:
1593 refresh_rate = 15625;
1594 break;
1595 case 1:
1596 refresh_rate = 3906;
1597 break;
1598 case 2:
1599 refresh_rate = 7812;
1600 break;
1601 case 3:
1602 refresh_rate = 31250;
1603 break;
1604 case 4:
1605 refresh_rate = 62500;
1606 break;
1607 case 5:
1608 refresh_rate = 125000;
1609 break;
1610 default:
1611 refresh_rate = 0;
1612 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1613 (unsigned int)dimm_num);
1614 printf("Replace the DIMM module with a supported DIMM.\n\n");
1615 hang();
1616 break;
1617 }
1618
1619 max_refresh_rate = max(max_refresh_rate, refresh_rate);
1620 }
1621 }
1622
1623 rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1624 mfsdram(SDRAM_RTR, val);
1625 mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1626 (SDRAM_RTR_RINT_ENCODE(rint)));
1627 }
1628
1629 /*------------------------------------------------------------------
1630 * This routine programs the SDRAM_TRx registers.
1631 *-----------------------------------------------------------------*/
1632 static void program_tr(unsigned long *dimm_populated,
1633 unsigned char *iic0_dimm_addr,
1634 unsigned long num_dimm_banks)
1635 {
1636 unsigned long dimm_num;
1637 unsigned long sdram_ddr1;
1638 unsigned long t_rp_ns;
1639 unsigned long t_rcd_ns;
1640 unsigned long t_rrd_ns;
1641 unsigned long t_ras_ns;
1642 unsigned long t_rc_ns;
1643 unsigned long t_rfc_ns;
1644 unsigned long t_wpc_ns;
1645 unsigned long t_wtr_ns;
1646 unsigned long t_rpc_ns;
1647 unsigned long t_rp_clk;
1648 unsigned long t_rcd_clk;
1649 unsigned long t_rrd_clk;
1650 unsigned long t_ras_clk;
1651 unsigned long t_rc_clk;
1652 unsigned long t_rfc_clk;
1653 unsigned long t_wpc_clk;
1654 unsigned long t_wtr_clk;
1655 unsigned long t_rpc_clk;
1656 unsigned long sdtr1, sdtr2, sdtr3;
1657 unsigned long ddr_check;
1658 unsigned long sdram_freq;
1659 unsigned long sdr_ddrpll;
1660
1661 PPC440_SYS_INFO board_cfg;
1662
1663 /*------------------------------------------------------------------
1664 * Get the board configuration info.
1665 *-----------------------------------------------------------------*/
1666 get_sys_info(&board_cfg);
1667
1668 mfsdr(SDR0_DDR0, sdr_ddrpll);
1669 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1670
1671 /*------------------------------------------------------------------
1672 * Handle the timing. We need to find the worst case timing of all
1673 * the dimm modules installed.
1674 *-----------------------------------------------------------------*/
1675 t_rp_ns = 0;
1676 t_rrd_ns = 0;
1677 t_rcd_ns = 0;
1678 t_ras_ns = 0;
1679 t_rc_ns = 0;
1680 t_rfc_ns = 0;
1681 t_wpc_ns = 0;
1682 t_wtr_ns = 0;
1683 t_rpc_ns = 0;
1684 sdram_ddr1 = TRUE;
1685
1686 /* loop through all the DIMM slots on the board */
1687 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1688 /* If a dimm is installed in a particular slot ... */
1689 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1690 if (dimm_populated[dimm_num] == SDRAM_DDR2)
1691 sdram_ddr1 = TRUE;
1692 else
1693 sdram_ddr1 = FALSE;
1694
1695 t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1696 t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1697 t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1698 t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1699 t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
1700 t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1701 }
1702 }
1703
1704 /*------------------------------------------------------------------
1705 * Set the SDRAM Timing Reg 1, SDRAM_TR1
1706 *-----------------------------------------------------------------*/
1707 mfsdram(SDRAM_SDTR1, sdtr1);
1708 sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1709 SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1710
1711 /* default values */
1712 sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1713 sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1714
1715 /* normal operations */
1716 sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1717 sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1718
1719 mtsdram(SDRAM_SDTR1, sdtr1);
1720
1721 /*------------------------------------------------------------------
1722 * Set the SDRAM Timing Reg 2, SDRAM_TR2
1723 *-----------------------------------------------------------------*/
1724 mfsdram(SDRAM_SDTR2, sdtr2);
1725 sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
1726 SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1727 SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
1728 SDRAM_SDTR2_RRD_MASK);
1729
1730 /*
1731 * convert t_rcd from nanoseconds to ddr clocks
1732 * round up if necessary
1733 */
1734 t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1735 ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1736 if (sdram_freq != ddr_check)
1737 t_rcd_clk++;
1738
1739 switch (t_rcd_clk) {
1740 case 0:
1741 case 1:
1742 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1743 break;
1744 case 2:
1745 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1746 break;
1747 case 3:
1748 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1749 break;
1750 case 4:
1751 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1752 break;
1753 default:
1754 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1755 break;
1756 }
1757
1758 if (sdram_ddr1 == TRUE) { /* DDR1 */
1759 if (sdram_freq < 200000000) {
1760 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1761 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1762 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1763 } else {
1764 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1765 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1766 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1767 }
1768 } else { /* DDR2 */
1769 /* loop through all the DIMM slots on the board */
1770 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1771 /* If a dimm is installed in a particular slot ... */
1772 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1773 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1774 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1775 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1776 }
1777 }
1778
1779 /*
1780 * convert from nanoseconds to ddr clocks
1781 * round up if necessary
1782 */
1783 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1784 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1785 if (sdram_freq != ddr_check)
1786 t_wpc_clk++;
1787
1788 switch (t_wpc_clk) {
1789 case 0:
1790 case 1:
1791 case 2:
1792 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1793 break;
1794 case 3:
1795 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1796 break;
1797 case 4:
1798 sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1799 break;
1800 case 5:
1801 sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1802 break;
1803 default:
1804 sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1805 break;
1806 }
1807
1808 /*
1809 * convert from nanoseconds to ddr clocks
1810 * round up if necessary
1811 */
1812 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1813 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1814 if (sdram_freq != ddr_check)
1815 t_wtr_clk++;
1816
1817 switch (t_wtr_clk) {
1818 case 0:
1819 case 1:
1820 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1821 break;
1822 case 2:
1823 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1824 break;
1825 case 3:
1826 sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1827 break;
1828 default:
1829 sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1830 break;
1831 }
1832
1833 /*
1834 * convert from nanoseconds to ddr clocks
1835 * round up if necessary
1836 */
1837 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1838 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1839 if (sdram_freq != ddr_check)
1840 t_rpc_clk++;
1841
1842 switch (t_rpc_clk) {
1843 case 0:
1844 case 1:
1845 case 2:
1846 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1847 break;
1848 case 3:
1849 sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1850 break;
1851 default:
1852 sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1853 break;
1854 }
1855 }
1856
1857 /* default value */
1858 sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1859
1860 /*
1861 * convert t_rrd from nanoseconds to ddr clocks
1862 * round up if necessary
1863 */
1864 t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1865 ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1866 if (sdram_freq != ddr_check)
1867 t_rrd_clk++;
1868
1869 if (t_rrd_clk == 3)
1870 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1871 else
1872 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1873
1874 /*
1875 * convert t_rp from nanoseconds to ddr clocks
1876 * round up if necessary
1877 */
1878 t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1879 ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1880 if (sdram_freq != ddr_check)
1881 t_rp_clk++;
1882
1883 switch (t_rp_clk) {
1884 case 0:
1885 case 1:
1886 case 2:
1887 case 3:
1888 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1889 break;
1890 case 4:
1891 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1892 break;
1893 case 5:
1894 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1895 break;
1896 case 6:
1897 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1898 break;
1899 default:
1900 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1901 break;
1902 }
1903
1904 mtsdram(SDRAM_SDTR2, sdtr2);
1905
1906 /*------------------------------------------------------------------
1907 * Set the SDRAM Timing Reg 3, SDRAM_TR3
1908 *-----------------------------------------------------------------*/
1909 mfsdram(SDRAM_SDTR3, sdtr3);
1910 sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
1911 SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1912
1913 /*
1914 * convert t_ras from nanoseconds to ddr clocks
1915 * round up if necessary
1916 */
1917 t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1918 ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1919 if (sdram_freq != ddr_check)
1920 t_ras_clk++;
1921
1922 sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1923
1924 /*
1925 * convert t_rc from nanoseconds to ddr clocks
1926 * round up if necessary
1927 */
1928 t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1929 ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1930 if (sdram_freq != ddr_check)
1931 t_rc_clk++;
1932
1933 sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1934
1935 /* default xcs value */
1936 sdtr3 |= SDRAM_SDTR3_XCS;
1937
1938 /*
1939 * convert t_rfc from nanoseconds to ddr clocks
1940 * round up if necessary
1941 */
1942 t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1943 ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1944 if (sdram_freq != ddr_check)
1945 t_rfc_clk++;
1946
1947 sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
1948
1949 mtsdram(SDRAM_SDTR3, sdtr3);
1950 }
1951
1952 /*-----------------------------------------------------------------------------+
1953 * program_bxcf.
1954 *-----------------------------------------------------------------------------*/
1955 static void program_bxcf(unsigned long *dimm_populated,
1956 unsigned char *iic0_dimm_addr,
1957 unsigned long num_dimm_banks)
1958 {
1959 unsigned long dimm_num;
1960 unsigned long num_col_addr;
1961 unsigned long num_ranks;
1962 unsigned long num_banks;
1963 unsigned long mode;
1964 unsigned long ind_rank;
1965 unsigned long ind;
1966 unsigned long ind_bank;
1967 unsigned long bank_0_populated;
1968
1969 /*------------------------------------------------------------------
1970 * Set the BxCF regs. First, wipe out the bank config registers.
1971 *-----------------------------------------------------------------*/
1972 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
1973 mtdcr(SDRAMC_CFGDATA, 0x00000000);
1974 mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
1975 mtdcr(SDRAMC_CFGDATA, 0x00000000);
1976 mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
1977 mtdcr(SDRAMC_CFGDATA, 0x00000000);
1978 mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
1979 mtdcr(SDRAMC_CFGDATA, 0x00000000);
1980
1981 mode = SDRAM_BXCF_M_BE_ENABLE;
1982
1983 bank_0_populated = 0;
1984
1985 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1986 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1987 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
1988 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
1989 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
1990 num_ranks = (num_ranks & 0x0F) +1;
1991 else
1992 num_ranks = num_ranks & 0x0F;
1993
1994 num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
1995
1996 for (ind_bank = 0; ind_bank < 2; ind_bank++) {
1997 if (num_banks == 4)
1998 ind = 0;
1999 else
2000 ind = 5;
2001 switch (num_col_addr) {
2002 case 0x08:
2003 mode |= (SDRAM_BXCF_M_AM_0 + ind);
2004 break;
2005 case 0x09:
2006 mode |= (SDRAM_BXCF_M_AM_1 + ind);
2007 break;
2008 case 0x0A:
2009 mode |= (SDRAM_BXCF_M_AM_2 + ind);
2010 break;
2011 case 0x0B:
2012 mode |= (SDRAM_BXCF_M_AM_3 + ind);
2013 break;
2014 case 0x0C:
2015 mode |= (SDRAM_BXCF_M_AM_4 + ind);
2016 break;
2017 default:
2018 printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2019 (unsigned int)dimm_num);
2020 printf("ERROR: Unsupported value for number of "
2021 "column addresses: %d.\n", (unsigned int)num_col_addr);
2022 printf("Replace the DIMM module with a supported DIMM.\n\n");
2023 hang();
2024 }
2025 }
2026
2027 if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2028 bank_0_populated = 1;
2029
2030 for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2031 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2032 mtdcr(SDRAMC_CFGDATA, mode);
2033 }
2034 }
2035 }
2036 }
2037
2038 /*------------------------------------------------------------------
2039 * program memory queue.
2040 *-----------------------------------------------------------------*/
2041 static void program_memory_queue(unsigned long *dimm_populated,
2042 unsigned char *iic0_dimm_addr,
2043 unsigned long num_dimm_banks)
2044 {
2045 unsigned long dimm_num;
2046 unsigned long rank_base_addr;
2047 unsigned long rank_reg;
2048 unsigned long rank_size_bytes;
2049 unsigned long rank_size_id;
2050 unsigned long num_ranks;
2051 unsigned long baseadd_size;
2052 unsigned long i;
2053 unsigned long bank_0_populated = 0;
2054
2055 /*------------------------------------------------------------------
2056 * Reset the rank_base_address.
2057 *-----------------------------------------------------------------*/
2058 rank_reg = SDRAM_R0BAS;
2059
2060 rank_base_addr = 0x00000000;
2061
2062 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2063 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2064 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2065 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2066 num_ranks = (num_ranks & 0x0F) + 1;
2067 else
2068 num_ranks = num_ranks & 0x0F;
2069
2070 rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2071
2072 /*------------------------------------------------------------------
2073 * Set the sizes
2074 *-----------------------------------------------------------------*/
2075 baseadd_size = 0;
2076 rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
2077 switch (rank_size_id) {
2078 case 0x02:
2079 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2080 break;
2081 case 0x04:
2082 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2083 break;
2084 case 0x08:
2085 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2086 break;
2087 case 0x10:
2088 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2089 break;
2090 case 0x20:
2091 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2092 break;
2093 case 0x40:
2094 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2095 break;
2096 case 0x80:
2097 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2098 break;
2099 default:
2100 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2101 (unsigned int)dimm_num);
2102 printf("ERROR: Unsupported value for the banksize: %d.\n",
2103 (unsigned int)rank_size_id);
2104 printf("Replace the DIMM module with a supported DIMM.\n\n");
2105 hang();
2106 }
2107
2108 if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2109 bank_0_populated = 1;
2110
2111 for (i = 0; i < num_ranks; i++) {
2112 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2113 (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2114 baseadd_size));
2115 rank_base_addr += rank_size_bytes;
2116 }
2117 }
2118 }
2119 }
2120
2121 /*-----------------------------------------------------------------------------+
2122 * is_ecc_enabled.
2123 *-----------------------------------------------------------------------------*/
2124 static unsigned long is_ecc_enabled(void)
2125 {
2126 unsigned long dimm_num;
2127 unsigned long ecc;
2128 unsigned long val;
2129
2130 ecc = 0;
2131 /* loop through all the DIMM slots on the board */
2132 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2133 mfsdram(SDRAM_MCOPT1, val);
2134 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2135 }
2136
2137 return ecc;
2138 }
2139
2140 #ifdef CONFIG_DDR_ECC
2141 /*-----------------------------------------------------------------------------+
2142 * program_ecc.
2143 *-----------------------------------------------------------------------------*/
2144 static void program_ecc(unsigned long *dimm_populated,
2145 unsigned char *iic0_dimm_addr,
2146 unsigned long num_dimm_banks,
2147 unsigned long tlb_word2_i_value)
2148 {
2149 unsigned long mcopt1;
2150 unsigned long mcopt2;
2151 unsigned long mcstat;
2152 unsigned long dimm_num;
2153 unsigned long ecc;
2154
2155 ecc = 0;
2156 /* loop through all the DIMM slots on the board */
2157 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2158 /* If a dimm is installed in a particular slot ... */
2159 if (dimm_populated[dimm_num] != SDRAM_NONE)
2160 ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2161 }
2162 if (ecc == 0)
2163 return;
2164
2165 mfsdram(SDRAM_MCOPT1, mcopt1);
2166 mfsdram(SDRAM_MCOPT2, mcopt2);
2167
2168 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2169 /* DDR controller must be enabled and not in self-refresh. */
2170 mfsdram(SDRAM_MCSTAT, mcstat);
2171 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2172 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2173 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2174 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2175
2176 program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2177 }
2178 }
2179
2180 return;
2181 }
2182
2183 #ifdef CONFIG_ECC_ERROR_RESET
2184 /*
2185 * Check for ECC errors and reset board upon any error here
2186 *
2187 * On the Katmai 440SPe eval board, from time to time, the first
2188 * lword write access after DDR2 initializazion with ECC checking
2189 * enabled, leads to an ECC error. I couldn't find a configuration
2190 * without this happening. On my board with the current setup it
2191 * happens about 1 from 10 times.
2192 *
2193 * The ECC modules used for testing are:
2194 * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2195 *
2196 * This has to get fixed for the Katmai and tested for the other
2197 * board (440SP/440SPe) that will eventually use this code in the
2198 * future.
2199 *
2200 * 2007-03-01, sr
2201 */
2202 static void check_ecc(void)
2203 {
2204 u32 val;
2205
2206 mfsdram(SDRAM_ECCCR, val);
2207 if (val != 0) {
2208 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2209 val, mfdcr(0x4c), mfdcr(0x4e));
2210 printf("ECC error occured, resetting board...\n");
2211 do_reset(NULL, 0, 0, NULL);
2212 }
2213 }
2214 #endif
2215
2216 static void wait_ddr_idle(void)
2217 {
2218 u32 val;
2219
2220 do {
2221 mfsdram(SDRAM_MCSTAT, val);
2222 } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2223 }
2224
2225 /*-----------------------------------------------------------------------------+
2226 * program_ecc_addr.
2227 *-----------------------------------------------------------------------------*/
2228 static void program_ecc_addr(unsigned long start_address,
2229 unsigned long num_bytes,
2230 unsigned long tlb_word2_i_value)
2231 {
2232 unsigned long current_address;
2233 unsigned long end_address;
2234 unsigned long address_increment;
2235 unsigned long mcopt1;
2236 char str[] = "ECC generation...";
2237 int i;
2238
2239 current_address = start_address;
2240 mfsdram(SDRAM_MCOPT1, mcopt1);
2241 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2242 mtsdram(SDRAM_MCOPT1,
2243 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2244 sync();
2245 eieio();
2246 wait_ddr_idle();
2247
2248 puts(str);
2249 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2250 /* ECC bit set method for non-cached memory */
2251 if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2252 address_increment = 4;
2253 else
2254 address_increment = 8;
2255 end_address = current_address + num_bytes;
2256
2257 while (current_address < end_address) {
2258 *((unsigned long *)current_address) = 0x00000000;
2259 current_address += address_increment;
2260 }
2261 } else {
2262 /* ECC bit set method for cached memory */
2263 dcbz_area(start_address, num_bytes);
2264 dflush();
2265 }
2266 for (i=0; i<strlen(str); i++)
2267 putc('\b');
2268
2269 sync();
2270 eieio();
2271 wait_ddr_idle();
2272
2273 /* clear ECC error repoting registers */
2274 mtsdram(SDRAM_ECCCR, 0xffffffff);
2275 mtdcr(0x4c, 0xffffffff);
2276
2277 mtsdram(SDRAM_MCOPT1,
2278 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2279 sync();
2280 eieio();
2281 wait_ddr_idle();
2282
2283 #ifdef CONFIG_ECC_ERROR_RESET
2284 /*
2285 * One write to 0 is enough to trigger this ECC error
2286 * (see description above)
2287 */
2288 out_be32(0, 0x12345678);
2289 check_ecc();
2290 #endif
2291 }
2292 }
2293 #endif
2294
2295 /*-----------------------------------------------------------------------------+
2296 * program_DQS_calibration.
2297 *-----------------------------------------------------------------------------*/
2298 static void program_DQS_calibration(unsigned long *dimm_populated,
2299 unsigned char *iic0_dimm_addr,
2300 unsigned long num_dimm_banks)
2301 {
2302 unsigned long val;
2303
2304 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2305 mtsdram(SDRAM_RQDC, 0x80000037);
2306 mtsdram(SDRAM_RDCC, 0x40000000);
2307 mtsdram(SDRAM_RFDC, 0x000001DF);
2308
2309 test();
2310 #else
2311 /*------------------------------------------------------------------
2312 * Program RDCC register
2313 * Read sample cycle auto-update enable
2314 *-----------------------------------------------------------------*/
2315
2316 /*
2317 * Modified for the Katmai platform: with some DIMMs, the DDR2
2318 * controller automatically selects the T2 read cycle, but this
2319 * proves unreliable. Go ahead and force the DDR2 controller
2320 * to use the T4 sample and disable the automatic update of the
2321 * RDSS field.
2322 */
2323 mfsdram(SDRAM_RDCC, val);
2324 mtsdram(SDRAM_RDCC,
2325 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2326 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2327
2328 /*------------------------------------------------------------------
2329 * Program RQDC register
2330 * Internal DQS delay mechanism enable
2331 *-----------------------------------------------------------------*/
2332 mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2333
2334 /*------------------------------------------------------------------
2335 * Program RFDC register
2336 * Set Feedback Fractional Oversample
2337 * Auto-detect read sample cycle enable
2338 *-----------------------------------------------------------------*/
2339 mfsdram(SDRAM_RFDC, val);
2340 mtsdram(SDRAM_RFDC,
2341 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2342 SDRAM_RFDC_RFFD_MASK))
2343 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2344 SDRAM_RFDC_RFFD_ENCODE(0)));
2345
2346 DQS_calibration_process();
2347 #endif
2348 }
2349
2350 static u32 short_mem_test(void)
2351 {
2352 u32 *membase;
2353 u32 bxcr_num;
2354 u32 bxcf;
2355 int i;
2356 int j;
2357 u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2358 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2359 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2360 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2361 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2362 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2363 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2364 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2365 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2366 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2367 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2368 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2369 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2370 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2371 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2372 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2373 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2374
2375 for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2376 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2377
2378 /* Banks enabled */
2379 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2380
2381 /* Bank is enabled */
2382 membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2383
2384 /*------------------------------------------------------------------
2385 * Run the short memory test.
2386 *-----------------------------------------------------------------*/
2387 for (i = 0; i < NUMMEMTESTS; i++) {
2388 for (j = 0; j < NUMMEMWORDS; j++) {
2389 membase[j] = test[i][j];
2390 ppcDcbf((u32)&(membase[j]));
2391 }
2392 sync();
2393 for (j = 0; j < NUMMEMWORDS; j++) {
2394 if (membase[j] != test[i][j]) {
2395 ppcDcbf((u32)&(membase[j]));
2396 break;
2397 }
2398 ppcDcbf((u32)&(membase[j]));
2399 }
2400 sync();
2401 if (j < NUMMEMWORDS)
2402 break;
2403 }
2404 if (i < NUMMEMTESTS)
2405 break;
2406 } /* if bank enabled */
2407 } /* for bxcf_num */
2408
2409 return bxcr_num;
2410 }
2411
2412 #ifndef HARD_CODED_DQS
2413 /*-----------------------------------------------------------------------------+
2414 * DQS_calibration_process.
2415 *-----------------------------------------------------------------------------*/
2416 static void DQS_calibration_process(void)
2417 {
2418 unsigned long ecc_temp;
2419 unsigned long rfdc_reg;
2420 unsigned long rffd;
2421 unsigned long rqdc_reg;
2422 unsigned long rqfd;
2423 unsigned long bxcr_num;
2424 unsigned long val;
2425 long rqfd_average;
2426 long rffd_average;
2427 long max_start;
2428 long min_end;
2429 unsigned long begin_rqfd[MAXRANKS];
2430 unsigned long begin_rffd[MAXRANKS];
2431 unsigned long end_rqfd[MAXRANKS];
2432 unsigned long end_rffd[MAXRANKS];
2433 char window_found;
2434 unsigned long dlycal;
2435 unsigned long dly_val;
2436 unsigned long max_pass_length;
2437 unsigned long current_pass_length;
2438 unsigned long current_fail_length;
2439 unsigned long current_start;
2440 long max_end;
2441 unsigned char fail_found;
2442 unsigned char pass_found;
2443
2444 /*------------------------------------------------------------------
2445 * Test to determine the best read clock delay tuning bits.
2446 *
2447 * Before the DDR controller can be used, the read clock delay needs to be
2448 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2449 * This value cannot be hardcoded into the program because it changes
2450 * depending on the board's setup and environment.
2451 * To do this, all delay values are tested to see if they
2452 * work or not. By doing this, you get groups of fails with groups of
2453 * passing values. The idea is to find the start and end of a passing
2454 * window and take the center of it to use as the read clock delay.
2455 *
2456 * A failure has to be seen first so that when we hit a pass, we know
2457 * that it is truely the start of the window. If we get passing values
2458 * to start off with, we don't know if we are at the start of the window.
2459 *
2460 * The code assumes that a failure will always be found.
2461 * If a failure is not found, there is no easy way to get the middle
2462 * of the passing window. I guess we can pretty much pick any value
2463 * but some values will be better than others. Since the lowest speed
2464 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2465 * from experimentation it is safe to say you will always have a failure.
2466 *-----------------------------------------------------------------*/
2467 mfsdram(SDRAM_MCOPT1, ecc_temp);
2468 ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2469 mfsdram(SDRAM_MCOPT1, val);
2470 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2471 SDRAM_MCOPT1_MCHK_NON);
2472
2473 max_start = 0;
2474 min_end = 0;
2475 begin_rqfd[0] = 0;
2476 begin_rffd[0] = 0;
2477 begin_rqfd[1] = 0;
2478 begin_rffd[1] = 0;
2479 end_rqfd[0] = 0;
2480 end_rffd[0] = 0;
2481 end_rqfd[1] = 0;
2482 end_rffd[1] = 0;
2483 window_found = FALSE;
2484
2485 max_pass_length = 0;
2486 max_start = 0;
2487 max_end = 0;
2488 current_pass_length = 0;
2489 current_fail_length = 0;
2490 current_start = 0;
2491 window_found = FALSE;
2492 fail_found = FALSE;
2493 pass_found = FALSE;
2494
2495 /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2496 /* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
2497
2498 /*
2499 * get the delay line calibration register value
2500 */
2501 mfsdram(SDRAM_DLCR, dlycal);
2502 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2503
2504 for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2505 mfsdram(SDRAM_RFDC, rfdc_reg);
2506 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2507
2508 /*------------------------------------------------------------------
2509 * Set the timing reg for the test.
2510 *-----------------------------------------------------------------*/
2511 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2512
2513 /* do the small memory test */
2514 bxcr_num = short_mem_test();
2515
2516 /*------------------------------------------------------------------
2517 * See if the rffd value passed.
2518 *-----------------------------------------------------------------*/
2519 if (bxcr_num == MAXBXCF) {
2520 if (fail_found == TRUE) {
2521 pass_found = TRUE;
2522 if (current_pass_length == 0)
2523 current_start = rffd;
2524
2525 current_fail_length = 0;
2526 current_pass_length++;
2527
2528 if (current_pass_length > max_pass_length) {
2529 max_pass_length = current_pass_length;
2530 max_start = current_start;
2531 max_end = rffd;
2532 }
2533 }
2534 } else {
2535 current_pass_length = 0;
2536 current_fail_length++;
2537
2538 if (current_fail_length >= (dly_val >> 2)) {
2539 if (fail_found == FALSE) {
2540 fail_found = TRUE;
2541 } else if (pass_found == TRUE) {
2542 window_found = TRUE;
2543 break;
2544 }
2545 }
2546 }
2547 } /* for rffd */
2548
2549 /*------------------------------------------------------------------
2550 * Set the average RFFD value
2551 *-----------------------------------------------------------------*/
2552 rffd_average = ((max_start + max_end) >> 1);
2553
2554 if (rffd_average < 0)
2555 rffd_average = 0;
2556
2557 if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2558 rffd_average = SDRAM_RFDC_RFFD_MAX;
2559 /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2560 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2561
2562 max_pass_length = 0;
2563 max_start = 0;
2564 max_end = 0;
2565 current_pass_length = 0;
2566 current_fail_length = 0;
2567 current_start = 0;
2568 window_found = FALSE;
2569 fail_found = FALSE;
2570 pass_found = FALSE;
2571
2572 for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2573 mfsdram(SDRAM_RQDC, rqdc_reg);
2574 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2575
2576 /*------------------------------------------------------------------
2577 * Set the timing reg for the test.
2578 *-----------------------------------------------------------------*/
2579 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2580
2581 /* do the small memory test */
2582 bxcr_num = short_mem_test();
2583
2584 /*------------------------------------------------------------------
2585 * See if the rffd value passed.
2586 *-----------------------------------------------------------------*/
2587 if (bxcr_num == MAXBXCF) {
2588 if (fail_found == TRUE) {
2589 pass_found = TRUE;
2590 if (current_pass_length == 0)
2591 current_start = rqfd;
2592
2593 current_fail_length = 0;
2594 current_pass_length++;
2595
2596 if (current_pass_length > max_pass_length) {
2597 max_pass_length = current_pass_length;
2598 max_start = current_start;
2599 max_end = rqfd;
2600 }
2601 }
2602 } else {
2603 current_pass_length = 0;
2604 current_fail_length++;
2605
2606 if (fail_found == FALSE) {
2607 fail_found = TRUE;
2608 } else if (pass_found == TRUE) {
2609 window_found = TRUE;
2610 break;
2611 }
2612 }
2613 }
2614
2615 /*------------------------------------------------------------------
2616 * Make sure we found the valid read passing window. Halt if not
2617 *-----------------------------------------------------------------*/
2618 if (window_found == FALSE) {
2619 printf("ERROR: Cannot determine a common read delay for the "
2620 "DIMM(s) installed.\n");
2621 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2622 hang();
2623 }
2624
2625 rqfd_average = ((max_start + max_end) >> 1);
2626
2627 if (rqfd_average < 0)
2628 rqfd_average = 0;
2629
2630 if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2631 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2632
2633 /*------------------------------------------------------------------
2634 * Restore the ECC variable to what it originally was
2635 *-----------------------------------------------------------------*/
2636 mfsdram(SDRAM_MCOPT1, val);
2637 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
2638
2639 mtsdram(SDRAM_RQDC,
2640 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2641 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2642
2643 mfsdram(SDRAM_DLCR, val);
2644 debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2645 mfsdram(SDRAM_RQDC, val);
2646 debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2647 mfsdram(SDRAM_RFDC, val);
2648 debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2649 }
2650 #else /* calibration test with hardvalues */
2651 /*-----------------------------------------------------------------------------+
2652 * DQS_calibration_process.
2653 *-----------------------------------------------------------------------------*/
2654 static void test(void)
2655 {
2656 unsigned long dimm_num;
2657 unsigned long ecc_temp;
2658 unsigned long i, j;
2659 unsigned long *membase;
2660 unsigned long bxcf[MAXRANKS];
2661 unsigned long val;
2662 char window_found;
2663 char begin_found[MAXDIMMS];
2664 char end_found[MAXDIMMS];
2665 char search_end[MAXDIMMS];
2666 unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2667 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2668 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2669 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2670 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2671 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2672 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2673 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2674 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2675 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2676 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2677 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2678 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2679 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2680 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2681 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2682 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2683
2684 /*------------------------------------------------------------------
2685 * Test to determine the best read clock delay tuning bits.
2686 *
2687 * Before the DDR controller can be used, the read clock delay needs to be
2688 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2689 * This value cannot be hardcoded into the program because it changes
2690 * depending on the board's setup and environment.
2691 * To do this, all delay values are tested to see if they
2692 * work or not. By doing this, you get groups of fails with groups of
2693 * passing values. The idea is to find the start and end of a passing
2694 * window and take the center of it to use as the read clock delay.
2695 *
2696 * A failure has to be seen first so that when we hit a pass, we know
2697 * that it is truely the start of the window. If we get passing values
2698 * to start off with, we don't know if we are at the start of the window.
2699 *
2700 * The code assumes that a failure will always be found.
2701 * If a failure is not found, there is no easy way to get the middle
2702 * of the passing window. I guess we can pretty much pick any value
2703 * but some values will be better than others. Since the lowest speed
2704 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2705 * from experimentation it is safe to say you will always have a failure.
2706 *-----------------------------------------------------------------*/
2707 mfsdram(SDRAM_MCOPT1, ecc_temp);
2708 ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2709 mfsdram(SDRAM_MCOPT1, val);
2710 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2711 SDRAM_MCOPT1_MCHK_NON);
2712
2713 window_found = FALSE;
2714 begin_found[0] = FALSE;
2715 end_found[0] = FALSE;
2716 search_end[0] = FALSE;
2717 begin_found[1] = FALSE;
2718 end_found[1] = FALSE;
2719 search_end[1] = FALSE;
2720
2721 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2722 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2723
2724 /* Banks enabled */
2725 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2726
2727 /* Bank is enabled */
2728 membase =
2729 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2730
2731 /*------------------------------------------------------------------
2732 * Run the short memory test.
2733 *-----------------------------------------------------------------*/
2734 for (i = 0; i < NUMMEMTESTS; i++) {
2735 for (j = 0; j < NUMMEMWORDS; j++) {
2736 membase[j] = test[i][j];
2737 ppcDcbf((u32)&(membase[j]));
2738 }
2739 sync();
2740 for (j = 0; j < NUMMEMWORDS; j++) {
2741 if (membase[j] != test[i][j]) {
2742 ppcDcbf((u32)&(membase[j]));
2743 break;
2744 }
2745 ppcDcbf((u32)&(membase[j]));
2746 }
2747 sync();
2748 if (j < NUMMEMWORDS)
2749 break;
2750 }
2751
2752 /*------------------------------------------------------------------
2753 * See if the rffd value passed.
2754 *-----------------------------------------------------------------*/
2755 if (i < NUMMEMTESTS) {
2756 if ((end_found[dimm_num] == FALSE) &&
2757 (search_end[dimm_num] == TRUE)) {
2758 end_found[dimm_num] = TRUE;
2759 }
2760 if ((end_found[0] == TRUE) &&
2761 (end_found[1] == TRUE))
2762 break;
2763 } else {
2764 if (begin_found[dimm_num] == FALSE) {
2765 begin_found[dimm_num] = TRUE;
2766 search_end[dimm_num] = TRUE;
2767 }
2768 }
2769 } else {
2770 begin_found[dimm_num] = TRUE;
2771 end_found[dimm_num] = TRUE;
2772 }
2773 }
2774
2775 if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2776 window_found = TRUE;
2777
2778 /*------------------------------------------------------------------
2779 * Make sure we found the valid read passing window. Halt if not
2780 *-----------------------------------------------------------------*/
2781 if (window_found == FALSE) {
2782 printf("ERROR: Cannot determine a common read delay for the "
2783 "DIMM(s) installed.\n");
2784 hang();
2785 }
2786
2787 /*------------------------------------------------------------------
2788 * Restore the ECC variable to what it originally was
2789 *-----------------------------------------------------------------*/
2790 mtsdram(SDRAM_MCOPT1,
2791 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2792 | ecc_temp);
2793 }
2794 #endif
2795
2796 #if defined(DEBUG)
2797 static void ppc440sp_sdram_register_dump(void)
2798 {
2799 unsigned int sdram_reg;
2800 unsigned int sdram_data;
2801 unsigned int dcr_data;
2802
2803 printf("\n Register Dump:\n");
2804 sdram_reg = SDRAM_MCSTAT;
2805 mfsdram(sdram_reg, sdram_data);
2806 printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
2807 sdram_reg = SDRAM_MCOPT1;
2808 mfsdram(sdram_reg, sdram_data);
2809 printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
2810 sdram_reg = SDRAM_MCOPT2;
2811 mfsdram(sdram_reg, sdram_data);
2812 printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
2813 sdram_reg = SDRAM_MODT0;
2814 mfsdram(sdram_reg, sdram_data);
2815 printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
2816 sdram_reg = SDRAM_MODT1;
2817 mfsdram(sdram_reg, sdram_data);
2818 printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
2819 sdram_reg = SDRAM_MODT2;
2820 mfsdram(sdram_reg, sdram_data);
2821 printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
2822 sdram_reg = SDRAM_MODT3;
2823 mfsdram(sdram_reg, sdram_data);
2824 printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
2825 sdram_reg = SDRAM_CODT;
2826 mfsdram(sdram_reg, sdram_data);
2827 printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
2828 sdram_reg = SDRAM_VVPR;
2829 mfsdram(sdram_reg, sdram_data);
2830 printf(" SDRAM_VVPR = 0x%08X", sdram_data);
2831 sdram_reg = SDRAM_OPARS;
2832 mfsdram(sdram_reg, sdram_data);
2833 printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
2834 /*
2835 * OPAR2 is only used as a trigger register.
2836 * No data is contained in this register, and reading or writing
2837 * to is can cause bad things to happen (hangs). Just skip it
2838 * and report NA
2839 * sdram_reg = SDRAM_OPAR2;
2840 * mfsdram(sdram_reg, sdram_data);
2841 * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
2842 */
2843 printf(" SDRAM_OPART = N/A ");
2844 sdram_reg = SDRAM_RTR;
2845 mfsdram(sdram_reg, sdram_data);
2846 printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
2847 sdram_reg = SDRAM_MB0CF;
2848 mfsdram(sdram_reg, sdram_data);
2849 printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
2850 sdram_reg = SDRAM_MB1CF;
2851 mfsdram(sdram_reg, sdram_data);
2852 printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
2853 sdram_reg = SDRAM_MB2CF;
2854 mfsdram(sdram_reg, sdram_data);
2855 printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
2856 sdram_reg = SDRAM_MB3CF;
2857 mfsdram(sdram_reg, sdram_data);
2858 printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
2859 sdram_reg = SDRAM_INITPLR0;
2860 mfsdram(sdram_reg, sdram_data);
2861 printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
2862 sdram_reg = SDRAM_INITPLR1;
2863 mfsdram(sdram_reg, sdram_data);
2864 printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
2865 sdram_reg = SDRAM_INITPLR2;
2866 mfsdram(sdram_reg, sdram_data);
2867 printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
2868 sdram_reg = SDRAM_INITPLR3;
2869 mfsdram(sdram_reg, sdram_data);
2870 printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
2871 sdram_reg = SDRAM_INITPLR4;
2872 mfsdram(sdram_reg, sdram_data);
2873 printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
2874 sdram_reg = SDRAM_INITPLR5;
2875 mfsdram(sdram_reg, sdram_data);
2876 printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
2877 sdram_reg = SDRAM_INITPLR6;
2878 mfsdram(sdram_reg, sdram_data);
2879 printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
2880 sdram_reg = SDRAM_INITPLR7;
2881 mfsdram(sdram_reg, sdram_data);
2882 printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
2883 sdram_reg = SDRAM_INITPLR8;
2884 mfsdram(sdram_reg, sdram_data);
2885 printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
2886 sdram_reg = SDRAM_INITPLR9;
2887 mfsdram(sdram_reg, sdram_data);
2888 printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
2889 sdram_reg = SDRAM_INITPLR10;
2890 mfsdram(sdram_reg, sdram_data);
2891 printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
2892 sdram_reg = SDRAM_INITPLR11;
2893 mfsdram(sdram_reg, sdram_data);
2894 printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2895 sdram_reg = SDRAM_INITPLR12;
2896 mfsdram(sdram_reg, sdram_data);
2897 printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
2898 sdram_reg = SDRAM_INITPLR13;
2899 mfsdram(sdram_reg, sdram_data);
2900 printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2901 sdram_reg = SDRAM_INITPLR14;
2902 mfsdram(sdram_reg, sdram_data);
2903 printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
2904 sdram_reg = SDRAM_INITPLR15;
2905 mfsdram(sdram_reg, sdram_data);
2906 printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2907 sdram_reg = SDRAM_RQDC;
2908 mfsdram(sdram_reg, sdram_data);
2909 printf(" SDRAM_RQDC = 0x%08X", sdram_data);
2910 sdram_reg = SDRAM_RFDC;
2911 mfsdram(sdram_reg, sdram_data);
2912 printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
2913 sdram_reg = SDRAM_RDCC;
2914 mfsdram(sdram_reg, sdram_data);
2915 printf(" SDRAM_RDCC = 0x%08X", sdram_data);
2916 sdram_reg = SDRAM_DLCR;
2917 mfsdram(sdram_reg, sdram_data);
2918 printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
2919 sdram_reg = SDRAM_CLKTR;
2920 mfsdram(sdram_reg, sdram_data);
2921 printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
2922 sdram_reg = SDRAM_WRDTR;
2923 mfsdram(sdram_reg, sdram_data);
2924 printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
2925 sdram_reg = SDRAM_SDTR1;
2926 mfsdram(sdram_reg, sdram_data);
2927 printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
2928 sdram_reg = SDRAM_SDTR2;
2929 mfsdram(sdram_reg, sdram_data);
2930 printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
2931 sdram_reg = SDRAM_SDTR3;
2932 mfsdram(sdram_reg, sdram_data);
2933 printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
2934 sdram_reg = SDRAM_MMODE;
2935 mfsdram(sdram_reg, sdram_data);
2936 printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
2937 sdram_reg = SDRAM_MEMODE;
2938 mfsdram(sdram_reg, sdram_data);
2939 printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
2940 sdram_reg = SDRAM_ECCCR;
2941 mfsdram(sdram_reg, sdram_data);
2942 printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
2943
2944 dcr_data = mfdcr(SDRAM_R0BAS);
2945 printf(" MQ0_B0BAS = 0x%08X", dcr_data);
2946 dcr_data = mfdcr(SDRAM_R1BAS);
2947 printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
2948 dcr_data = mfdcr(SDRAM_R2BAS);
2949 printf(" MQ2_B0BAS = 0x%08X", dcr_data);
2950 dcr_data = mfdcr(SDRAM_R3BAS);
2951 printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
2952 }
2953 #endif
2954 #endif /* CONFIG_SPD_EEPROM */