]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * Problems with CONFIG_SYS_64BIT_LBA:
10 *
11 * struct disk_partition.start in include/part.h is sized as ulong.
12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13 * For now, it is cast back to ulong at assignment.
14 *
15 * This limits the maximum size of addressable storage to < 2 Terra Bytes
16 */
17 #include <asm/unaligned.h>
18 #include <common.h>
19 #include <command.h>
20 #include <ide.h>
21 #include <malloc.h>
22 #include <part_efi.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static void uuid_string(unsigned char *uuid, char *str)
67 {
68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
69 12, 13, 14, 15};
70 int i;
71
72 for (i = 0; i < 16; i++) {
73 sprintf(str, "%02x", uuid[le[i]]);
74 str += 2;
75 switch (i) {
76 case 3:
77 case 5:
78 case 7:
79 case 9:
80 *str++ = '-';
81 break;
82 }
83 }
84 }
85
86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
87
88 static inline int is_bootable(gpt_entry *p)
89 {
90 return p->attributes.fields.legacy_bios_bootable ||
91 !memcmp(&(p->partition_type_guid), &system_guid,
92 sizeof(efi_guid_t));
93 }
94
95 #ifdef CONFIG_EFI_PARTITION
96 /*
97 * Public Functions (include/part.h)
98 */
99
100 void print_part_efi(block_dev_desc_t * dev_desc)
101 {
102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
103 gpt_entry *gpt_pte = NULL;
104 int i = 0;
105 char uuid[37];
106
107 if (!dev_desc) {
108 printf("%s: Invalid Argument(s)\n", __func__);
109 return;
110 }
111 /* This function validates AND fills in the GPT header and PTE */
112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
113 gpt_head, &gpt_pte) != 1) {
114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
115 return;
116 }
117
118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
119
120 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
121 printf("\tAttributes\n");
122 printf("\tType UUID\n");
123 printf("\tPartition UUID\n");
124
125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
126 /* Stop at the first non valid PTE */
127 if (!is_pte_valid(&gpt_pte[i]))
128 break;
129
130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
131 le64_to_cpu(gpt_pte[i].starting_lba),
132 le64_to_cpu(gpt_pte[i].ending_lba),
133 print_efiname(&gpt_pte[i]));
134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
136 printf("\ttype:\t%s\n", uuid);
137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
138 printf("\tuuid:\t%s\n", uuid);
139 }
140
141 /* Remember to free pte */
142 free(gpt_pte);
143 return;
144 }
145
146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
147 disk_partition_t * info)
148 {
149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
150 gpt_entry *gpt_pte = NULL;
151
152 /* "part" argument must be at least 1 */
153 if (!dev_desc || !info || part < 1) {
154 printf("%s: Invalid Argument(s)\n", __func__);
155 return -1;
156 }
157
158 /* This function validates AND fills in the GPT header and PTE */
159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
160 gpt_head, &gpt_pte) != 1) {
161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
162 return -1;
163 }
164
165 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
166 !is_pte_valid(&gpt_pte[part - 1])) {
167 printf("%s: *** ERROR: Invalid partition number %d ***\n",
168 __func__, part);
169 return -1;
170 }
171
172 /* The ulong casting limits the maximum disk size to 2 TB */
173 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
174 /* The ending LBA is inclusive, to calculate size, add 1 to it */
175 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
176 - info->start;
177 info->blksz = dev_desc->blksz;
178
179 sprintf((char *)info->name, "%s",
180 print_efiname(&gpt_pte[part - 1]));
181 sprintf((char *)info->type, "U-Boot");
182 info->bootable = is_bootable(&gpt_pte[part - 1]);
183 #ifdef CONFIG_PARTITION_UUIDS
184 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
185 #endif
186
187 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
188 info->start, info->size, info->name);
189
190 /* Remember to free pte */
191 free(gpt_pte);
192 return 0;
193 }
194
195 int test_part_efi(block_dev_desc_t * dev_desc)
196 {
197 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
198
199 /* Read legacy MBR from block 0 and validate it */
200 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
201 || (is_pmbr_valid(legacymbr) != 1)) {
202 return -1;
203 }
204 return 0;
205 }
206
207 /**
208 * set_protective_mbr(): Set the EFI protective MBR
209 * @param dev_desc - block device descriptor
210 *
211 * @return - zero on success, otherwise error
212 */
213 static int set_protective_mbr(block_dev_desc_t *dev_desc)
214 {
215 legacy_mbr *p_mbr;
216
217 /* Setup the Protective MBR */
218 p_mbr = calloc(1, sizeof(p_mbr));
219 if (p_mbr == NULL) {
220 printf("%s: calloc failed!\n", __func__);
221 return -1;
222 }
223 /* Append signature */
224 p_mbr->signature = MSDOS_MBR_SIGNATURE;
225 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
226 p_mbr->partition_record[0].start_sect = 1;
227 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
228
229 /* Write MBR sector to the MMC device */
230 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
231 printf("** Can't write to device %d **\n",
232 dev_desc->dev);
233 free(p_mbr);
234 return -1;
235 }
236
237 free(p_mbr);
238 return 0;
239 }
240
241 /**
242 * string_uuid(); Convert UUID stored as string to bytes
243 *
244 * @param uuid - UUID represented as string
245 * @param dst - GUID buffer
246 *
247 * @return return 0 on successful conversion
248 */
249 static int string_uuid(char *uuid, u8 *dst)
250 {
251 efi_guid_t guid;
252 u16 b, c, d;
253 u64 e;
254 u32 a;
255 u8 *p;
256 u8 i;
257
258 const u8 uuid_str_len = 36;
259
260 /* The UUID is written in text: */
261 /* 1 9 14 19 24 */
262 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
263
264 debug("%s: uuid: %s\n", __func__, uuid);
265
266 if (strlen(uuid) != uuid_str_len)
267 return -1;
268
269 for (i = 0; i < uuid_str_len; i++) {
270 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
271 if (uuid[i] != '-')
272 return -1;
273 } else {
274 if (!isxdigit(uuid[i]))
275 return -1;
276 }
277 }
278
279 a = (u32)simple_strtoul(uuid, NULL, 16);
280 b = (u16)simple_strtoul(uuid + 9, NULL, 16);
281 c = (u16)simple_strtoul(uuid + 14, NULL, 16);
282 d = (u16)simple_strtoul(uuid + 19, NULL, 16);
283 e = (u64)simple_strtoull(uuid + 24, NULL, 16);
284
285 p = (u8 *) &e;
286 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
287 *(p + 5), *(p + 4), *(p + 3),
288 *(p + 2), *(p + 1) , *p);
289
290 memcpy(dst, guid.b, sizeof(efi_guid_t));
291
292 return 0;
293 }
294
295 int write_gpt_table(block_dev_desc_t *dev_desc,
296 gpt_header *gpt_h, gpt_entry *gpt_e)
297 {
298 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
299 * sizeof(gpt_entry)), dev_desc);
300 u32 calc_crc32;
301 u64 val;
302
303 debug("max lba: %x\n", (u32) dev_desc->lba);
304 /* Setup the Protective MBR */
305 if (set_protective_mbr(dev_desc) < 0)
306 goto err;
307
308 /* Generate CRC for the Primary GPT Header */
309 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
310 le32_to_cpu(gpt_h->num_partition_entries) *
311 le32_to_cpu(gpt_h->sizeof_partition_entry));
312 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
313
314 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
315 le32_to_cpu(gpt_h->header_size));
316 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
317
318 /* Write the First GPT to the block right after the Legacy MBR */
319 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
320 goto err;
321
322 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
323 != pte_blk_cnt)
324 goto err;
325
326 /* recalculate the values for the Second GPT Header */
327 val = le64_to_cpu(gpt_h->my_lba);
328 gpt_h->my_lba = gpt_h->alternate_lba;
329 gpt_h->alternate_lba = cpu_to_le64(val);
330 gpt_h->header_crc32 = 0;
331
332 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
333 le32_to_cpu(gpt_h->header_size));
334 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
335
336 if (dev_desc->block_write(dev_desc->dev,
337 le32_to_cpu(gpt_h->last_usable_lba + 1),
338 pte_blk_cnt, gpt_e) != pte_blk_cnt)
339 goto err;
340
341 if (dev_desc->block_write(dev_desc->dev,
342 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
343 goto err;
344
345 debug("GPT successfully written to block device!\n");
346 return 0;
347
348 err:
349 printf("** Can't write to device %d **\n", dev_desc->dev);
350 return -1;
351 }
352
353 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
354 disk_partition_t *partitions, int parts)
355 {
356 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
357 ulong start;
358 int i, k;
359 size_t efiname_len, dosname_len;
360 #ifdef CONFIG_PARTITION_UUIDS
361 char *str_uuid;
362 #endif
363
364 for (i = 0; i < parts; i++) {
365 /* partition starting lba */
366 start = partitions[i].start;
367 if (start && (start < offset)) {
368 printf("Partition overlap\n");
369 return -1;
370 }
371 if (start) {
372 gpt_e[i].starting_lba = cpu_to_le64(start);
373 offset = start + partitions[i].size;
374 } else {
375 gpt_e[i].starting_lba = cpu_to_le64(offset);
376 offset += partitions[i].size;
377 }
378 if (offset >= gpt_h->last_usable_lba) {
379 printf("Partitions layout exceds disk size\n");
380 return -1;
381 }
382 /* partition ending lba */
383 if ((i == parts - 1) && (partitions[i].size == 0))
384 /* extend the last partition to maximuim */
385 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
386 else
387 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
388
389 /* partition type GUID */
390 memcpy(gpt_e[i].partition_type_guid.b,
391 &PARTITION_BASIC_DATA_GUID, 16);
392
393 #ifdef CONFIG_PARTITION_UUIDS
394 str_uuid = partitions[i].uuid;
395 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
396 printf("Partition no. %d: invalid guid: %s\n",
397 i, str_uuid);
398 return -1;
399 }
400 #endif
401
402 /* partition attributes */
403 memset(&gpt_e[i].attributes, 0,
404 sizeof(gpt_entry_attributes));
405
406 /* partition name */
407 efiname_len = sizeof(gpt_e[i].partition_name)
408 / sizeof(efi_char16_t);
409 dosname_len = sizeof(partitions[i].name);
410
411 memset(gpt_e[i].partition_name, 0,
412 sizeof(gpt_e[i].partition_name));
413
414 for (k = 0; k < min(dosname_len, efiname_len); k++)
415 gpt_e[i].partition_name[k] =
416 (efi_char16_t)(partitions[i].name[k]);
417
418 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
419 __func__, partitions[i].name, i,
420 offset, i, partitions[i].size);
421 }
422
423 return 0;
424 }
425
426 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
427 char *str_guid, int parts_count)
428 {
429 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
430 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
431 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
432 gpt_h->my_lba = cpu_to_le64(1);
433 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
434 gpt_h->first_usable_lba = cpu_to_le64(34);
435 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
436 gpt_h->partition_entry_lba = cpu_to_le64(2);
437 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
438 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
439 gpt_h->header_crc32 = 0;
440 gpt_h->partition_entry_array_crc32 = 0;
441
442 if (string_uuid(str_guid, gpt_h->disk_guid.b))
443 return -1;
444
445 return 0;
446 }
447
448 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
449 disk_partition_t *partitions, int parts_count)
450 {
451 int ret;
452
453 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
454 dev_desc));
455 gpt_entry *gpt_e;
456
457 if (gpt_h == NULL) {
458 printf("%s: calloc failed!\n", __func__);
459 return -1;
460 }
461
462 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
463 * sizeof(gpt_entry),
464 dev_desc));
465 if (gpt_e == NULL) {
466 printf("%s: calloc failed!\n", __func__);
467 free(gpt_h);
468 return -1;
469 }
470
471 /* Generate Primary GPT header (LBA1) */
472 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
473 if (ret)
474 goto err;
475
476 /* Generate partition entries */
477 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
478 if (ret)
479 goto err;
480
481 /* Write GPT partition table */
482 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
483
484 err:
485 free(gpt_e);
486 free(gpt_h);
487 return ret;
488 }
489 #endif
490
491 /*
492 * Private functions
493 */
494 /*
495 * pmbr_part_valid(): Check for EFI partition signature
496 *
497 * Returns: 1 if EFI GPT partition type is found.
498 */
499 static int pmbr_part_valid(struct partition *part)
500 {
501 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
502 get_unaligned_le32(&part->start_sect) == 1UL) {
503 return 1;
504 }
505
506 return 0;
507 }
508
509 /*
510 * is_pmbr_valid(): test Protective MBR for validity
511 *
512 * Returns: 1 if PMBR is valid, 0 otherwise.
513 * Validity depends on two things:
514 * 1) MSDOS signature is in the last two bytes of the MBR
515 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
516 */
517 static int is_pmbr_valid(legacy_mbr * mbr)
518 {
519 int i = 0;
520
521 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
522 return 0;
523
524 for (i = 0; i < 4; i++) {
525 if (pmbr_part_valid(&mbr->partition_record[i])) {
526 return 1;
527 }
528 }
529 return 0;
530 }
531
532 /**
533 * is_gpt_valid() - tests one GPT header and PTEs for validity
534 *
535 * lba is the logical block address of the GPT header to test
536 * gpt is a GPT header ptr, filled on return.
537 * ptes is a PTEs ptr, filled on return.
538 *
539 * Description: returns 1 if valid, 0 on error.
540 * If valid, returns pointers to PTEs.
541 */
542 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
543 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
544 {
545 u32 crc32_backup = 0;
546 u32 calc_crc32;
547 unsigned long long lastlba;
548
549 if (!dev_desc || !pgpt_head) {
550 printf("%s: Invalid Argument(s)\n", __func__);
551 return 0;
552 }
553
554 /* Read GPT Header from device */
555 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
556 printf("*** ERROR: Can't read GPT header ***\n");
557 return 0;
558 }
559
560 /* Check the GPT header signature */
561 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
562 printf("GUID Partition Table Header signature is wrong:"
563 "0x%llX != 0x%llX\n",
564 le64_to_cpu(pgpt_head->signature),
565 GPT_HEADER_SIGNATURE);
566 return 0;
567 }
568
569 /* Check the GUID Partition Table CRC */
570 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
571 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
572
573 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
574 le32_to_cpu(pgpt_head->header_size));
575
576 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
577
578 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
579 printf("GUID Partition Table Header CRC is wrong:"
580 "0x%x != 0x%x\n",
581 le32_to_cpu(crc32_backup), calc_crc32);
582 return 0;
583 }
584
585 /* Check that the my_lba entry points to the LBA that contains the GPT */
586 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
587 printf("GPT: my_lba incorrect: %llX != %llX\n",
588 le64_to_cpu(pgpt_head->my_lba),
589 lba);
590 return 0;
591 }
592
593 /* Check the first_usable_lba and last_usable_lba are within the disk. */
594 lastlba = (unsigned long long)dev_desc->lba;
595 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
596 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
597 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
598 return 0;
599 }
600 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
601 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
602 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
603 return 0;
604 }
605
606 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
607 le64_to_cpu(pgpt_head->first_usable_lba),
608 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
609
610 /* Read and allocate Partition Table Entries */
611 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
612 if (*pgpt_pte == NULL) {
613 printf("GPT: Failed to allocate memory for PTE\n");
614 return 0;
615 }
616
617 /* Check the GUID Partition Table Entry Array CRC */
618 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
619 le32_to_cpu(pgpt_head->num_partition_entries) *
620 le32_to_cpu(pgpt_head->sizeof_partition_entry));
621
622 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
623 printf("GUID Partition Table Entry Array CRC is wrong:"
624 "0x%x != 0x%x\n",
625 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
626 calc_crc32);
627
628 free(*pgpt_pte);
629 return 0;
630 }
631
632 /* We're done, all's well */
633 return 1;
634 }
635
636 /**
637 * alloc_read_gpt_entries(): reads partition entries from disk
638 * @dev_desc
639 * @gpt - GPT header
640 *
641 * Description: Returns ptes on success, NULL on error.
642 * Allocates space for PTEs based on information found in @gpt.
643 * Notes: remember to free pte when you're done!
644 */
645 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
646 gpt_header * pgpt_head)
647 {
648 size_t count = 0, blk_cnt;
649 gpt_entry *pte = NULL;
650
651 if (!dev_desc || !pgpt_head) {
652 printf("%s: Invalid Argument(s)\n", __func__);
653 return NULL;
654 }
655
656 count = le32_to_cpu(pgpt_head->num_partition_entries) *
657 le32_to_cpu(pgpt_head->sizeof_partition_entry);
658
659 debug("%s: count = %u * %u = %zu\n", __func__,
660 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
661 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
662
663 /* Allocate memory for PTE, remember to FREE */
664 if (count != 0) {
665 pte = memalign(ARCH_DMA_MINALIGN,
666 PAD_TO_BLOCKSIZE(count, dev_desc));
667 }
668
669 if (count == 0 || pte == NULL) {
670 printf("%s: ERROR: Can't allocate 0x%zX "
671 "bytes for GPT Entries\n",
672 __func__, count);
673 return NULL;
674 }
675
676 /* Read GPT Entries from device */
677 blk_cnt = BLOCK_CNT(count, dev_desc);
678 if (dev_desc->block_read (dev_desc->dev,
679 le64_to_cpu(pgpt_head->partition_entry_lba),
680 (lbaint_t) (blk_cnt), pte)
681 != blk_cnt) {
682
683 printf("*** ERROR: Can't read GPT Entries ***\n");
684 free(pte);
685 return NULL;
686 }
687 return pte;
688 }
689
690 /**
691 * is_pte_valid(): validates a single Partition Table Entry
692 * @gpt_entry - Pointer to a single Partition Table Entry
693 *
694 * Description: returns 1 if valid, 0 on error.
695 */
696 static int is_pte_valid(gpt_entry * pte)
697 {
698 efi_guid_t unused_guid;
699
700 if (!pte) {
701 printf("%s: Invalid Argument(s)\n", __func__);
702 return 0;
703 }
704
705 /* Only one validation for now:
706 * The GUID Partition Type != Unused Entry (ALL-ZERO)
707 */
708 memset(unused_guid.b, 0, sizeof(unused_guid.b));
709
710 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
711 sizeof(unused_guid.b)) == 0) {
712
713 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
714 (unsigned int)(uintptr_t)pte);
715
716 return 0;
717 } else {
718 return 1;
719 }
720 }
721 #endif