]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/e1000_spi.c
e1000: Allow direct access to the E1000 SPI EEPROM device
[people/ms/u-boot.git] / drivers / net / e1000_spi.c
1 #include "e1000.h"
2
3 /*-----------------------------------------------------------------------
4 * SPI transfer
5 *
6 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
7 * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
8 *
9 * The source of the outgoing bits is the "dout" parameter and the
10 * destination of the input bits is the "din" parameter. Note that "dout"
11 * and "din" can point to the same memory location, in which case the
12 * input data overwrites the output data (since both are buffered by
13 * temporary variables, this is OK).
14 *
15 * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
16 * never return an error.
17 */
18 static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
19 const void *dout_mem, void *din_mem, boolean_t intr)
20 {
21 const uint8_t *dout = dout_mem;
22 uint8_t *din = din_mem;
23
24 uint8_t mask = 0;
25 uint32_t eecd;
26 unsigned long i;
27
28 /* Pre-read the control register */
29 eecd = E1000_READ_REG(hw, EECD);
30
31 /* Iterate over each bit */
32 for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
33 /* Check for interrupt */
34 if (intr && ctrlc())
35 return -1;
36
37 /* Determine the output bit */
38 if (dout && dout[i >> 3] & mask)
39 eecd |= E1000_EECD_DI;
40 else
41 eecd &= ~E1000_EECD_DI;
42
43 /* Write the output bit and wait 50us */
44 E1000_WRITE_REG(hw, EECD, eecd);
45 E1000_WRITE_FLUSH(hw);
46 udelay(50);
47
48 /* Poke the clock (waits 50us) */
49 e1000_raise_ee_clk(hw, &eecd);
50
51 /* Now read the input bit */
52 eecd = E1000_READ_REG(hw, EECD);
53 if (din) {
54 if (eecd & E1000_EECD_DO)
55 din[i >> 3] |= mask;
56 else
57 din[i >> 3] &= ~mask;
58 }
59
60 /* Poke the clock again (waits 50us) */
61 e1000_lower_ee_clk(hw, &eecd);
62 }
63
64 /* Now clear any remaining bits of the input */
65 if (din && (i & 7))
66 din[i >> 3] &= ~((mask << 1) - 1);
67
68 return 0;
69 }
70
71 #ifdef CONFIG_E1000_SPI_GENERIC
72 static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
73 {
74 return container_of(spi, struct e1000_hw, spi);
75 }
76
77 /* Not sure why all of these are necessary */
78 void spi_init_r(void) { /* Nothing to do */ }
79 void spi_init_f(void) { /* Nothing to do */ }
80 void spi_init(void) { /* Nothing to do */ }
81
82 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
83 unsigned int max_hz, unsigned int mode)
84 {
85 /* Find the right PCI device */
86 struct e1000_hw *hw = e1000_find_card(bus);
87 if (!hw) {
88 printf("ERROR: No such e1000 device: e1000#%u\n", bus);
89 return NULL;
90 }
91
92 /* Make sure it has an SPI chip */
93 if (hw->eeprom.type != e1000_eeprom_spi) {
94 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
95 return NULL;
96 }
97
98 /* Argument sanity checks */
99 if (cs != 0) {
100 E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
101 return NULL;
102 }
103 if (mode != SPI_MODE_0) {
104 E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
105 return NULL;
106 }
107
108 /* TODO: Use max_hz somehow */
109 E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
110 return &hw->spi;
111 }
112
113 void spi_free_slave(struct spi_slave *spi)
114 {
115 struct e1000_hw *hw = e1000_hw_from_spi(spi);
116 E1000_DBG(hw->nic, "EEPROM SPI access released\n");
117 }
118
119 int spi_claim_bus(struct spi_slave *spi)
120 {
121 struct e1000_hw *hw = e1000_hw_from_spi(spi);
122
123 if (e1000_acquire_eeprom(hw)) {
124 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
125 return -1;
126 }
127
128 return 0;
129 }
130
131 void spi_release_bus(struct spi_slave *spi)
132 {
133 struct e1000_hw *hw = e1000_hw_from_spi(spi);
134 e1000_release_eeprom(hw);
135 }
136
137 /* Skinny wrapper around e1000_spi_xfer */
138 int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
139 const void *dout_mem, void *din_mem, unsigned long flags)
140 {
141 struct e1000_hw *hw = e1000_hw_from_spi(spi);
142 int ret;
143
144 if (flags & SPI_XFER_BEGIN)
145 e1000_standby_eeprom(hw);
146
147 ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE);
148
149 if (flags & SPI_XFER_END)
150 e1000_standby_eeprom(hw);
151
152 return ret;
153 }
154
155 #endif /* not CONFIG_E1000_SPI_GENERIC */
156
157 #ifdef CONFIG_CMD_E1000
158
159 /* The EEPROM opcodes */
160 #define SPI_EEPROM_ENABLE_WR 0x06
161 #define SPI_EEPROM_DISABLE_WR 0x04
162 #define SPI_EEPROM_WRITE_STATUS 0x01
163 #define SPI_EEPROM_READ_STATUS 0x05
164 #define SPI_EEPROM_WRITE_PAGE 0x02
165 #define SPI_EEPROM_READ_PAGE 0x03
166
167 /* The EEPROM status bits */
168 #define SPI_EEPROM_STATUS_BUSY 0x01
169 #define SPI_EEPROM_STATUS_WREN 0x02
170
171 static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr)
172 {
173 u8 op[] = { SPI_EEPROM_ENABLE_WR };
174 e1000_standby_eeprom(hw);
175 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
176 }
177
178 /*
179 * These have been tested to perform correctly, but they are not used by any
180 * of the EEPROM commands at this time.
181 */
182 #if 0
183 static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr)
184 {
185 u8 op[] = { SPI_EEPROM_DISABLE_WR };
186 e1000_standby_eeprom(hw);
187 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
188 }
189
190 static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
191 u8 status, boolean_t intr)
192 {
193 u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
194 e1000_standby_eeprom(hw);
195 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
196 }
197 #endif
198
199 static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr)
200 {
201 u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
202 e1000_standby_eeprom(hw);
203 if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
204 return -1;
205 return op[1];
206 }
207
208 static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
209 const void *data, u16 off, u16 len, boolean_t intr)
210 {
211 u8 op[] = {
212 SPI_EEPROM_WRITE_PAGE,
213 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
214 };
215
216 e1000_standby_eeprom(hw);
217
218 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
219 return -1;
220 if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
221 return -1;
222
223 return 0;
224 }
225
226 static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
227 void *data, u16 off, u16 len, boolean_t intr)
228 {
229 u8 op[] = {
230 SPI_EEPROM_READ_PAGE,
231 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
232 };
233
234 e1000_standby_eeprom(hw);
235
236 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
237 return -1;
238 if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
239 return -1;
240
241 return 0;
242 }
243
244 static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr)
245 {
246 int status;
247 while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
248 if (!(status & SPI_EEPROM_STATUS_BUSY))
249 return 0;
250 }
251 return -1;
252 }
253
254 static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
255 void *data, u16 off, unsigned int len, boolean_t intr)
256 {
257 /* Interruptibly wait for the EEPROM to be ready */
258 if (e1000_spi_eeprom_poll_ready(hw, intr))
259 return -1;
260
261 /* Dump each page in sequence */
262 while (len) {
263 /* Calculate the data bytes on this page */
264 u16 pg_off = off & (hw->eeprom.page_size - 1);
265 u16 pg_len = hw->eeprom.page_size - pg_off;
266 if (pg_len > len)
267 pg_len = len;
268
269 /* Now dump the page */
270 if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
271 return -1;
272
273 /* Otherwise go on to the next page */
274 len -= pg_len;
275 off += pg_len;
276 data += pg_len;
277 }
278
279 /* We're done! */
280 return 0;
281 }
282
283 static int e1000_spi_eeprom_program(struct e1000_hw *hw,
284 const void *data, u16 off, u16 len, boolean_t intr)
285 {
286 /* Program each page in sequence */
287 while (len) {
288 /* Calculate the data bytes on this page */
289 u16 pg_off = off & (hw->eeprom.page_size - 1);
290 u16 pg_len = hw->eeprom.page_size - pg_off;
291 if (pg_len > len)
292 pg_len = len;
293
294 /* Interruptibly wait for the EEPROM to be ready */
295 if (e1000_spi_eeprom_poll_ready(hw, intr))
296 return -1;
297
298 /* Enable write access */
299 if (e1000_spi_eeprom_enable_wr(hw, intr))
300 return -1;
301
302 /* Now program the page */
303 if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
304 return -1;
305
306 /* Otherwise go on to the next page */
307 len -= pg_len;
308 off += pg_len;
309 data += pg_len;
310 }
311
312 /* Wait for the last write to complete */
313 if (e1000_spi_eeprom_poll_ready(hw, intr))
314 return -1;
315
316 /* We're done! */
317 return 0;
318 }
319
320 static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
321 int argc, char * const argv[])
322 {
323 unsigned int length = 0;
324 u16 i, offset = 0;
325 u8 *buffer;
326 int err;
327
328 if (argc > 2) {
329 cmd_usage(cmdtp);
330 return 1;
331 }
332
333 /* Parse the offset and length */
334 if (argc >= 1)
335 offset = simple_strtoul(argv[0], NULL, 0);
336 if (argc == 2)
337 length = simple_strtoul(argv[1], NULL, 0);
338 else if (offset < (hw->eeprom.word_size << 1))
339 length = (hw->eeprom.word_size << 1) - offset;
340
341 /* Extra sanity checks */
342 if (!length) {
343 E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
344 return 1;
345 }
346 if ((0x10000 < length) || (0x10000 - length < offset)) {
347 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
348 return 1;
349 }
350
351 /* Allocate a buffer to hold stuff */
352 buffer = malloc(length);
353 if (!buffer) {
354 E1000_ERR(hw->nic, "Out of Memory!\n");
355 return 1;
356 }
357
358 /* Acquire the EEPROM and perform the dump */
359 if (e1000_acquire_eeprom(hw)) {
360 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
361 free(buffer);
362 return 1;
363 }
364 err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE);
365 e1000_release_eeprom(hw);
366 if (err) {
367 E1000_ERR(hw->nic, "Interrupted!\n");
368 free(buffer);
369 return 1;
370 }
371
372 /* Now hexdump the result */
373 printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
374 hw->nic->name, offset, offset + length - 1);
375 for (i = 0; i < length; i++) {
376 if ((i & 0xF) == 0)
377 printf("\n%s: %04hX: ", hw->nic->name, offset + i);
378 else if ((i & 0xF) == 0x8)
379 printf(" ");
380 printf(" %02hx", buffer[i]);
381 }
382 printf("\n");
383
384 /* Success! */
385 free(buffer);
386 return 0;
387 }
388
389 static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
390 int argc, char * const argv[])
391 {
392 unsigned int length;
393 u16 offset;
394 void *dest;
395
396 if (argc != 3) {
397 cmd_usage(cmdtp);
398 return 1;
399 }
400
401 /* Parse the arguments */
402 dest = (void *)simple_strtoul(argv[0], NULL, 16);
403 offset = simple_strtoul(argv[1], NULL, 0);
404 length = simple_strtoul(argv[2], NULL, 0);
405
406 /* Extra sanity checks */
407 if (!length) {
408 E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
409 return 1;
410 }
411 if ((0x10000 < length) || (0x10000 - length < offset)) {
412 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
413 return 1;
414 }
415
416 /* Acquire the EEPROM */
417 if (e1000_acquire_eeprom(hw)) {
418 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
419 return 1;
420 }
421
422 /* Perform the programming operation */
423 if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) {
424 E1000_ERR(hw->nic, "Interrupted!\n");
425 e1000_release_eeprom(hw);
426 return 1;
427 }
428
429 e1000_release_eeprom(hw);
430 printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
431 return 0;
432 }
433
434 static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
435 int argc, char * const argv[])
436 {
437 unsigned int length;
438 const void *source;
439 u16 offset;
440
441 if (argc != 3) {
442 cmd_usage(cmdtp);
443 return 1;
444 }
445
446 /* Parse the arguments */
447 source = (const void *)simple_strtoul(argv[0], NULL, 16);
448 offset = simple_strtoul(argv[1], NULL, 0);
449 length = simple_strtoul(argv[2], NULL, 0);
450
451 /* Acquire the EEPROM */
452 if (e1000_acquire_eeprom(hw)) {
453 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
454 return 1;
455 }
456
457 /* Perform the programming operation */
458 if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) {
459 E1000_ERR(hw->nic, "Interrupted!\n");
460 e1000_release_eeprom(hw);
461 return 1;
462 }
463
464 e1000_release_eeprom(hw);
465 printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
466 return 0;
467 }
468
469 static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
470 int argc, char * const argv[])
471 {
472 uint16_t i, length, checksum, checksum_reg;
473 uint16_t *buffer;
474 boolean_t upd;
475
476 if (argc == 0)
477 upd = 0;
478 else if ((argc == 1) && !strcmp(argv[0], "update"))
479 upd = 1;
480 else {
481 cmd_usage(cmdtp);
482 return 1;
483 }
484
485 /* Allocate a temporary buffer */
486 length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
487 buffer = malloc(length);
488 if (!buffer) {
489 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
490 return 1;
491 }
492
493 /* Acquire the EEPROM */
494 if (e1000_acquire_eeprom(hw)) {
495 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
496 return 1;
497 }
498
499 /* Read the EEPROM */
500 if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) {
501 E1000_ERR(hw->nic, "Interrupted!\n");
502 e1000_release_eeprom(hw);
503 return 1;
504 }
505
506 /* Compute the checksum and read the expected value */
507 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
508 checksum += le16_to_cpu(buffer[i]);
509 checksum = ((uint16_t)EEPROM_SUM) - checksum;
510 checksum_reg = le16_to_cpu(buffer[i]);
511
512 /* Verify it! */
513 if (checksum_reg == checksum) {
514 printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
515 hw->nic->name, checksum);
516 e1000_release_eeprom(hw);
517 return 0;
518 }
519
520 /* Hrm, verification failed, print an error */
521 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
522 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
523 checksum_reg, checksum);
524
525 /* If they didn't ask us to update it, just return an error */
526 if (!upd) {
527 e1000_release_eeprom(hw);
528 return 1;
529 }
530
531 /* Ok, correct it! */
532 printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
533 buffer[i] = cpu_to_le16(checksum);
534 if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
535 sizeof(uint16_t), TRUE)) {
536 E1000_ERR(hw->nic, "Interrupted!\n");
537 e1000_release_eeprom(hw);
538 return 1;
539 }
540
541 e1000_release_eeprom(hw);
542 return 0;
543 }
544
545 int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
546 int argc, char * const argv[])
547 {
548 if (argc < 1) {
549 cmd_usage(cmdtp);
550 return 1;
551 }
552
553 /* Make sure it has an SPI chip */
554 if (hw->eeprom.type != e1000_eeprom_spi) {
555 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
556 return 1;
557 }
558
559 /* Check the eeprom sub-sub-command arguments */
560 if (!strcmp(argv[0], "show"))
561 return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
562
563 if (!strcmp(argv[0], "dump"))
564 return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
565
566 if (!strcmp(argv[0], "program"))
567 return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
568
569 if (!strcmp(argv[0], "checksum"))
570 return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
571
572 cmd_usage(cmdtp);
573 return 1;
574 }
575
576 #endif /* not CONFIG_CMD_E1000 */