]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/eepro100.c
rename CFG_ macros to CONFIG_SYS
[people/ms/u-boot.git] / drivers / net / eepro100.c
1 /*
2 * (C) Copyright 2002
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <netdev.h>
28 #include <asm/io.h>
29 #include <pci.h>
30 #include <miiphy.h>
31
32 #undef DEBUG
33
34 /* Ethernet chip registers.
35 */
36 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
37 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
38 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
39 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
40 #define SCBPointer 4 /* General purpose pointer. */
41 #define SCBPort 8 /* Misc. commands and operands. */
42 #define SCBflash 12 /* Flash memory control. */
43 #define SCBeeprom 14 /* EEPROM memory control. */
44 #define SCBCtrlMDI 16 /* MDI interface control. */
45 #define SCBEarlyRx 20 /* Early receive byte count. */
46 #define SCBGenControl 28 /* 82559 General Control Register */
47 #define SCBGenStatus 29 /* 82559 General Status register */
48
49 /* 82559 SCB status word defnitions
50 */
51 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
52 #define SCB_STATUS_FR 0x4000 /* frame received */
53 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
54 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
55 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
56 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
57 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
58
59 #define SCB_INTACK_MASK 0xFD00 /* all the above */
60
61 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
62 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
63
64 /* System control block commands
65 */
66 /* CU Commands */
67 #define CU_NOP 0x0000
68 #define CU_START 0x0010
69 #define CU_RESUME 0x0020
70 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
71 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
72 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
73 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
74
75 /* RUC Commands */
76 #define RUC_NOP 0x0000
77 #define RUC_START 0x0001
78 #define RUC_RESUME 0x0002
79 #define RUC_ABORT 0x0004
80 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
81 #define RUC_RESUMENR 0x0007
82
83 #define CU_CMD_MASK 0x00f0
84 #define RU_CMD_MASK 0x0007
85
86 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
87 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
88
89 #define CU_STATUS_MASK 0x00C0
90 #define RU_STATUS_MASK 0x003C
91
92 #define RU_STATUS_IDLE (0<<2)
93 #define RU_STATUS_SUS (1<<2)
94 #define RU_STATUS_NORES (2<<2)
95 #define RU_STATUS_READY (4<<2)
96 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
97 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
98 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
99
100 /* 82559 Port interface commands.
101 */
102 #define I82559_RESET 0x00000000 /* Software reset */
103 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
104 #define I82559_SELECTIVE_RESET 0x00000002
105 #define I82559_DUMP 0x00000003
106 #define I82559_DUMP_WAKEUP 0x00000007
107
108 /* 82559 Eeprom interface.
109 */
110 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
111 #define EE_CS 0x02 /* EEPROM chip select. */
112 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
113 #define EE_WRITE_0 0x01
114 #define EE_WRITE_1 0x05
115 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
116 #define EE_ENB (0x4800 | EE_CS)
117 #define EE_CMD_BITS 3
118 #define EE_DATA_BITS 16
119
120 /* The EEPROM commands include the alway-set leading bit.
121 */
122 #define EE_EWENB_CMD (4 << addr_len)
123 #define EE_WRITE_CMD (5 << addr_len)
124 #define EE_READ_CMD (6 << addr_len)
125 #define EE_ERASE_CMD (7 << addr_len)
126
127 /* Receive frame descriptors.
128 */
129 struct RxFD {
130 volatile u16 status;
131 volatile u16 control;
132 volatile u32 link; /* struct RxFD * */
133 volatile u32 rx_buf_addr; /* void * */
134 volatile u32 count;
135
136 volatile u8 data[PKTSIZE_ALIGN];
137 };
138
139 #define RFD_STATUS_C 0x8000 /* completion of received frame */
140 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
141
142 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
143 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
144 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
145 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
146
147 #define RFD_COUNT_MASK 0x3fff
148 #define RFD_COUNT_F 0x4000
149 #define RFD_COUNT_EOF 0x8000
150
151 #define RFD_RX_CRC 0x0800 /* crc error */
152 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
153 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
154 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
155 #define RFD_RX_SHORT 0x0080 /* short frame error */
156 #define RFD_RX_LENGTH 0x0020
157 #define RFD_RX_ERROR 0x0010 /* receive error */
158 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
159 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
160 #define RFD_RX_TCO 0x0001 /* TCO indication */
161
162 /* Transmit frame descriptors
163 */
164 struct TxFD { /* Transmit frame descriptor set. */
165 volatile u16 status;
166 volatile u16 command;
167 volatile u32 link; /* void * */
168 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
169 volatile s32 count;
170
171 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
172 volatile s32 tx_buf_size0; /* Length of Tx frame. */
173 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
174 volatile s32 tx_buf_size1; /* Length of Tx frame. */
175 };
176
177 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
178 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
179 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
180 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
181 #define TxCB_CMD_S 0x4000 /* suspend on completion */
182 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
183
184 #define TxCB_COUNT_MASK 0x3fff
185 #define TxCB_COUNT_EOF 0x8000
186
187 /* The Speedo3 Rx and Tx frame/buffer descriptors.
188 */
189 struct descriptor { /* A generic descriptor. */
190 volatile u16 status;
191 volatile u16 command;
192 volatile u32 link; /* struct descriptor * */
193
194 unsigned char params[0];
195 };
196
197 #define CONFIG_SYS_CMD_EL 0x8000
198 #define CONFIG_SYS_CMD_SUSPEND 0x4000
199 #define CONFIG_SYS_CMD_INT 0x2000
200 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
201 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
202
203 #define CONFIG_SYS_STATUS_C 0x8000
204 #define CONFIG_SYS_STATUS_OK 0x2000
205
206 /* Misc.
207 */
208 #define NUM_RX_DESC PKTBUFSRX
209 #define NUM_TX_DESC 1 /* Number of TX descriptors */
210
211 #define TOUT_LOOP 1000000
212
213 #define ETH_ALEN 6
214
215 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
216 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
217 static int rx_next; /* RX descriptor ring pointer */
218 static int tx_next; /* TX descriptor ring pointer */
219 static int tx_threshold;
220
221 /*
222 * The parameters for a CmdConfigure operation.
223 * There are so many options that it would be difficult to document
224 * each bit. We mostly use the default or recommended settings.
225 */
226 static const char i82557_config_cmd[] = {
227 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
228 0, 0x2E, 0, 0x60, 0,
229 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
230 0x3f, 0x05,
231 };
232 static const char i82558_config_cmd[] = {
233 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
234 0, 0x2E, 0, 0x60, 0x08, 0x88,
235 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
236 0x31, 0x05,
237 };
238
239 static void init_rx_ring (struct eth_device *dev);
240 static void purge_tx_ring (struct eth_device *dev);
241
242 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
243
244 static int eepro100_init (struct eth_device *dev, bd_t * bis);
245 static int eepro100_send (struct eth_device *dev, volatile void *packet,
246 int length);
247 static int eepro100_recv (struct eth_device *dev);
248 static void eepro100_halt (struct eth_device *dev);
249
250 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
251 #define bus_to_phys(a) (a)
252 #define phys_to_bus(a) (a)
253 #else
254 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
255 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
256 #endif
257
258 static inline int INW (struct eth_device *dev, u_long addr)
259 {
260 return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
261 }
262
263 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
264 {
265 *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
266 }
267
268 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
269 {
270 *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
271 }
272
273 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
274 static inline int INL (struct eth_device *dev, u_long addr)
275 {
276 return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
277 }
278
279 static int get_phyreg (struct eth_device *dev, unsigned char addr,
280 unsigned char reg, unsigned short *value)
281 {
282 int cmd;
283 int timeout = 50;
284
285 /* read requested data */
286 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
287 OUTL (dev, cmd, SCBCtrlMDI);
288
289 do {
290 udelay(1000);
291 cmd = INL (dev, SCBCtrlMDI);
292 } while (!(cmd & (1 << 28)) && (--timeout));
293
294 if (timeout == 0)
295 return -1;
296
297 *value = (unsigned short) (cmd & 0xffff);
298
299 return 0;
300 }
301
302 static int set_phyreg (struct eth_device *dev, unsigned char addr,
303 unsigned char reg, unsigned short value)
304 {
305 int cmd;
306 int timeout = 50;
307
308 /* write requested data */
309 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
310 OUTL (dev, cmd | value, SCBCtrlMDI);
311
312 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
313 udelay(1000);
314
315 if (timeout == 0)
316 return -1;
317
318 return 0;
319 }
320
321 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
322 * Do this by checking model value field from ID2 register.
323 */
324 static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
325 {
326 struct eth_device *dev;
327 unsigned short value;
328 unsigned char model;
329
330 dev = eth_get_dev_by_name(devname);
331 if (dev == NULL) {
332 printf("%s: no such device\n", devname);
333 return NULL;
334 }
335
336 /* read id2 register */
337 if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
338 printf("%s: mii read timeout!\n", devname);
339 return NULL;
340 }
341
342 /* get model */
343 model = (unsigned char)((value >> 4) & 0x003f);
344
345 if (model == 0) {
346 printf("%s: no PHY at address %d\n", devname, addr);
347 return NULL;
348 }
349
350 return dev;
351 }
352
353 static int eepro100_miiphy_read (char *devname, unsigned char addr,
354 unsigned char reg, unsigned short *value)
355 {
356 struct eth_device *dev;
357
358 dev = verify_phyaddr(devname, addr);
359 if (dev == NULL)
360 return -1;
361
362 if (get_phyreg(dev, addr, reg, value) != 0) {
363 printf("%s: mii read timeout!\n", devname);
364 return -1;
365 }
366
367 return 0;
368 }
369
370 static int eepro100_miiphy_write (char *devname, unsigned char addr,
371 unsigned char reg, unsigned short value)
372 {
373 struct eth_device *dev;
374
375 dev = verify_phyaddr(devname, addr);
376 if (dev == NULL)
377 return -1;
378
379 if (set_phyreg(dev, addr, reg, value) != 0) {
380 printf("%s: mii write timeout!\n", devname);
381 return -1;
382 }
383
384 return 0;
385 }
386
387 #endif
388
389 /* Wait for the chip get the command.
390 */
391 static int wait_for_eepro100 (struct eth_device *dev)
392 {
393 int i;
394
395 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
396 if (i >= TOUT_LOOP) {
397 return 0;
398 }
399 }
400
401 return 1;
402 }
403
404 static struct pci_device_id supported[] = {
405 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
406 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
407 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
408 {}
409 };
410
411 int eepro100_initialize (bd_t * bis)
412 {
413 pci_dev_t devno;
414 int card_number = 0;
415 struct eth_device *dev;
416 u32 iobase, status;
417 int idx = 0;
418
419 while (1) {
420 /* Find PCI device
421 */
422 if ((devno = pci_find_devices (supported, idx++)) < 0) {
423 break;
424 }
425
426 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
427 iobase &= ~0xf;
428
429 #ifdef DEBUG
430 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
431 iobase);
432 #endif
433
434 pci_write_config_dword (devno,
435 PCI_COMMAND,
436 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
437
438 /* Check if I/O accesses and Bus Mastering are enabled.
439 */
440 pci_read_config_dword (devno, PCI_COMMAND, &status);
441 if (!(status & PCI_COMMAND_MEMORY)) {
442 printf ("Error: Can not enable MEM access.\n");
443 continue;
444 }
445
446 if (!(status & PCI_COMMAND_MASTER)) {
447 printf ("Error: Can not enable Bus Mastering.\n");
448 continue;
449 }
450
451 dev = (struct eth_device *) malloc (sizeof *dev);
452
453 sprintf (dev->name, "i82559#%d", card_number);
454 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
455 dev->iobase = bus_to_phys (iobase);
456 dev->init = eepro100_init;
457 dev->halt = eepro100_halt;
458 dev->send = eepro100_send;
459 dev->recv = eepro100_recv;
460
461 eth_register (dev);
462
463 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
464 /* register mii command access routines */
465 miiphy_register(dev->name,
466 eepro100_miiphy_read, eepro100_miiphy_write);
467 #endif
468
469 card_number++;
470
471 /* Set the latency timer for value.
472 */
473 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
474
475 udelay (10 * 1000);
476
477 read_hw_addr (dev, bis);
478 }
479
480 return card_number;
481 }
482
483
484 static int eepro100_init (struct eth_device *dev, bd_t * bis)
485 {
486 int i, status = -1;
487 int tx_cur;
488 struct descriptor *ias_cmd, *cfg_cmd;
489
490 /* Reset the ethernet controller
491 */
492 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
493 udelay (20);
494
495 OUTL (dev, I82559_RESET, SCBPort);
496 udelay (20);
497
498 if (!wait_for_eepro100 (dev)) {
499 printf ("Error: Can not reset ethernet controller.\n");
500 goto Done;
501 }
502 OUTL (dev, 0, SCBPointer);
503 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
504
505 if (!wait_for_eepro100 (dev)) {
506 printf ("Error: Can not reset ethernet controller.\n");
507 goto Done;
508 }
509 OUTL (dev, 0, SCBPointer);
510 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
511
512 /* Initialize Rx and Tx rings.
513 */
514 init_rx_ring (dev);
515 purge_tx_ring (dev);
516
517 /* Tell the adapter where the RX ring is located.
518 */
519 if (!wait_for_eepro100 (dev)) {
520 printf ("Error: Can not reset ethernet controller.\n");
521 goto Done;
522 }
523
524 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
525 OUTW (dev, SCB_M | RUC_START, SCBCmd);
526
527 /* Send the Configure frame */
528 tx_cur = tx_next;
529 tx_next = ((tx_next + 1) % NUM_TX_DESC);
530
531 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
532 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
533 cfg_cmd->status = 0;
534 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
535
536 memcpy (cfg_cmd->params, i82558_config_cmd,
537 sizeof (i82558_config_cmd));
538
539 if (!wait_for_eepro100 (dev)) {
540 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
541 goto Done;
542 }
543
544 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
545 OUTW (dev, SCB_M | CU_START, SCBCmd);
546
547 for (i = 0;
548 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
549 i++) {
550 if (i >= TOUT_LOOP) {
551 printf ("%s: Tx error buffer not ready\n", dev->name);
552 goto Done;
553 }
554 }
555
556 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
557 printf ("TX error status = 0x%08X\n",
558 le16_to_cpu (tx_ring[tx_cur].status));
559 goto Done;
560 }
561
562 /* Send the Individual Address Setup frame
563 */
564 tx_cur = tx_next;
565 tx_next = ((tx_next + 1) % NUM_TX_DESC);
566
567 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
568 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
569 ias_cmd->status = 0;
570 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
571
572 memcpy (ias_cmd->params, dev->enetaddr, 6);
573
574 /* Tell the adapter where the TX ring is located.
575 */
576 if (!wait_for_eepro100 (dev)) {
577 printf ("Error: Can not reset ethernet controller.\n");
578 goto Done;
579 }
580
581 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
582 OUTW (dev, SCB_M | CU_START, SCBCmd);
583
584 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
585 i++) {
586 if (i >= TOUT_LOOP) {
587 printf ("%s: Tx error buffer not ready\n",
588 dev->name);
589 goto Done;
590 }
591 }
592
593 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
594 printf ("TX error status = 0x%08X\n",
595 le16_to_cpu (tx_ring[tx_cur].status));
596 goto Done;
597 }
598
599 status = 0;
600
601 Done:
602 return status;
603 }
604
605 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
606 {
607 int i, status = -1;
608 int tx_cur;
609
610 if (length <= 0) {
611 printf ("%s: bad packet size: %d\n", dev->name, length);
612 goto Done;
613 }
614
615 tx_cur = tx_next;
616 tx_next = (tx_next + 1) % NUM_TX_DESC;
617
618 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
619 TxCB_CMD_SF |
620 TxCB_CMD_S |
621 TxCB_CMD_EL );
622 tx_ring[tx_cur].status = 0;
623 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
624 tx_ring[tx_cur].link =
625 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
626 tx_ring[tx_cur].tx_desc_addr =
627 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
628 tx_ring[tx_cur].tx_buf_addr0 =
629 cpu_to_le32 (phys_to_bus ((u_long) packet));
630 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
631
632 if (!wait_for_eepro100 (dev)) {
633 printf ("%s: Tx error ethernet controller not ready.\n",
634 dev->name);
635 goto Done;
636 }
637
638 /* Send the packet.
639 */
640 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
641 OUTW (dev, SCB_M | CU_START, SCBCmd);
642
643 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
644 i++) {
645 if (i >= TOUT_LOOP) {
646 printf ("%s: Tx error buffer not ready\n", dev->name);
647 goto Done;
648 }
649 }
650
651 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
652 printf ("TX error status = 0x%08X\n",
653 le16_to_cpu (tx_ring[tx_cur].status));
654 goto Done;
655 }
656
657 status = length;
658
659 Done:
660 return status;
661 }
662
663 static int eepro100_recv (struct eth_device *dev)
664 {
665 u16 status, stat;
666 int rx_prev, length = 0;
667
668 stat = INW (dev, SCBStatus);
669 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
670
671 for (;;) {
672 status = le16_to_cpu (rx_ring[rx_next].status);
673
674 if (!(status & RFD_STATUS_C)) {
675 break;
676 }
677
678 /* Valid frame status.
679 */
680 if ((status & RFD_STATUS_OK)) {
681 /* A valid frame received.
682 */
683 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
684
685 /* Pass the packet up to the protocol
686 * layers.
687 */
688 NetReceive (rx_ring[rx_next].data, length);
689 } else {
690 /* There was an error.
691 */
692 printf ("RX error status = 0x%08X\n", status);
693 }
694
695 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
696 rx_ring[rx_next].status = 0;
697 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
698
699 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
700 rx_ring[rx_prev].control = 0;
701
702 /* Update entry information.
703 */
704 rx_next = (rx_next + 1) % NUM_RX_DESC;
705 }
706
707 if (stat & SCB_STATUS_RNR) {
708
709 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
710
711 /* Reinitialize Rx ring.
712 */
713 init_rx_ring (dev);
714
715 if (!wait_for_eepro100 (dev)) {
716 printf ("Error: Can not restart ethernet controller.\n");
717 goto Done;
718 }
719
720 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
721 OUTW (dev, SCB_M | RUC_START, SCBCmd);
722 }
723
724 Done:
725 return length;
726 }
727
728 static void eepro100_halt (struct eth_device *dev)
729 {
730 /* Reset the ethernet controller
731 */
732 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
733 udelay (20);
734
735 OUTL (dev, I82559_RESET, SCBPort);
736 udelay (20);
737
738 if (!wait_for_eepro100 (dev)) {
739 printf ("Error: Can not reset ethernet controller.\n");
740 goto Done;
741 }
742 OUTL (dev, 0, SCBPointer);
743 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
744
745 if (!wait_for_eepro100 (dev)) {
746 printf ("Error: Can not reset ethernet controller.\n");
747 goto Done;
748 }
749 OUTL (dev, 0, SCBPointer);
750 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
751
752 Done:
753 return;
754 }
755
756 /* SROM Read.
757 */
758 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
759 {
760 unsigned short retval = 0;
761 int read_cmd = location | EE_READ_CMD;
762 int i;
763
764 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
765 OUTW (dev, EE_ENB, SCBeeprom);
766
767 /* Shift the read command bits out. */
768 for (i = 12; i >= 0; i--) {
769 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
770
771 OUTW (dev, EE_ENB | dataval, SCBeeprom);
772 udelay (1);
773 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
774 udelay (1);
775 }
776 OUTW (dev, EE_ENB, SCBeeprom);
777
778 for (i = 15; i >= 0; i--) {
779 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
780 udelay (1);
781 retval = (retval << 1) |
782 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
783 OUTW (dev, EE_ENB, SCBeeprom);
784 udelay (1);
785 }
786
787 /* Terminate the EEPROM access. */
788 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
789 return retval;
790 }
791
792 #ifdef CONFIG_EEPRO100_SROM_WRITE
793 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
794 {
795 unsigned short dataval;
796 int enable_cmd = 0x3f | EE_EWENB_CMD;
797 int write_cmd = location | EE_WRITE_CMD;
798 int i;
799 unsigned long datalong, tmplong;
800
801 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
802 udelay(1);
803 OUTW(dev, EE_ENB, SCBeeprom);
804
805 /* Shift the enable command bits out. */
806 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
807 {
808 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
809 OUTW(dev, EE_ENB | dataval, SCBeeprom);
810 udelay(1);
811 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
812 udelay(1);
813 }
814
815 OUTW(dev, EE_ENB, SCBeeprom);
816 udelay(1);
817 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
818 udelay(1);
819 OUTW(dev, EE_ENB, SCBeeprom);
820
821
822 /* Shift the write command bits out. */
823 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
824 {
825 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
826 OUTW(dev, EE_ENB | dataval, SCBeeprom);
827 udelay(1);
828 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
829 udelay(1);
830 }
831
832 /* Write the data */
833 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
834
835 for (i = 0; i< EE_DATA_BITS; i++)
836 {
837 /* Extract and move data bit to bit DI */
838 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
839
840 OUTW(dev, EE_ENB | dataval, SCBeeprom);
841 udelay(1);
842 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
843 udelay(1);
844 OUTW(dev, EE_ENB | dataval, SCBeeprom);
845 udelay(1);
846
847 datalong = datalong << 1; /* Adjust significant data bit*/
848 }
849
850 /* Finish up command (toggle CS) */
851 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
852 udelay(1); /* delay for more than 250 ns */
853 OUTW(dev, EE_ENB, SCBeeprom);
854
855 /* Wait for programming ready (D0 = 1) */
856 tmplong = 10;
857 do
858 {
859 dataval = INW(dev, SCBeeprom);
860 if (dataval & EE_DATA_READ)
861 break;
862 udelay(10000);
863 }
864 while (-- tmplong);
865
866 if (tmplong == 0)
867 {
868 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
869 return -1;
870 }
871
872 /* Terminate the EEPROM access. */
873 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
874
875 return 0;
876 }
877 #endif
878
879 static void init_rx_ring (struct eth_device *dev)
880 {
881 int i;
882
883 for (i = 0; i < NUM_RX_DESC; i++) {
884 rx_ring[i].status = 0;
885 rx_ring[i].control =
886 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
887 rx_ring[i].link =
888 cpu_to_le32 (phys_to_bus
889 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
890 rx_ring[i].rx_buf_addr = 0xffffffff;
891 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
892 }
893
894 rx_next = 0;
895 }
896
897 static void purge_tx_ring (struct eth_device *dev)
898 {
899 int i;
900
901 tx_next = 0;
902 tx_threshold = 0x01208000;
903
904 for (i = 0; i < NUM_TX_DESC; i++) {
905 tx_ring[i].status = 0;
906 tx_ring[i].command = 0;
907 tx_ring[i].link = 0;
908 tx_ring[i].tx_desc_addr = 0;
909 tx_ring[i].count = 0;
910
911 tx_ring[i].tx_buf_addr0 = 0;
912 tx_ring[i].tx_buf_size0 = 0;
913 tx_ring[i].tx_buf_addr1 = 0;
914 tx_ring[i].tx_buf_size1 = 0;
915 }
916 }
917
918 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
919 {
920 u16 eeprom[0x40];
921 u16 sum = 0;
922 int i, j;
923 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
924
925 for (j = 0, i = 0; i < 0x40; i++) {
926 u16 value = read_eeprom (dev, i, addr_len);
927
928 eeprom[i] = value;
929 sum += value;
930 if (i < 3) {
931 dev->enetaddr[j++] = value;
932 dev->enetaddr[j++] = value >> 8;
933 }
934 }
935
936 if (sum != 0xBABA) {
937 memset (dev->enetaddr, 0, ETH_ALEN);
938 #ifdef DEBUG
939 printf ("%s: Invalid EEPROM checksum %#4.4x, "
940 "check settings before activating this device!\n",
941 dev->name, sum);
942 #endif
943 }
944 }