]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/mvneta.c
dm: core: Replace of_offset with accessor
[people/ms/u-boot.git] / drivers / net / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * U-Boot version:
5 * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
6 *
7 * Based on the Linux version which is:
8 * Copyright (C) 2012 Marvell
9 *
10 * Rami Rosen <rosenr@marvell.com>
11 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
12 *
13 * SPDX-License-Identifier: GPL-2.0
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <net.h>
19 #include <netdev.h>
20 #include <config.h>
21 #include <malloc.h>
22 #include <asm/io.h>
23 #include <linux/errno.h>
24 #include <phy.h>
25 #include <miiphy.h>
26 #include <watchdog.h>
27 #include <asm/arch/cpu.h>
28 #include <asm/arch/soc.h>
29 #include <linux/compat.h>
30 #include <linux/mbus.h>
31
32 DECLARE_GLOBAL_DATA_PTR;
33
34 #if !defined(CONFIG_PHYLIB)
35 # error Marvell mvneta requires PHYLIB
36 #endif
37
38 /* Some linux -> U-Boot compatibility stuff */
39 #define netdev_err(dev, fmt, args...) \
40 printf(fmt, ##args)
41 #define netdev_warn(dev, fmt, args...) \
42 printf(fmt, ##args)
43 #define netdev_info(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46 #define CONFIG_NR_CPUS 1
47 #define ETH_HLEN 14 /* Total octets in header */
48
49 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
50 #define WRAP (2 + ETH_HLEN + 4 + 32)
51 #define MTU 1500
52 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
53
54 #define MVNETA_SMI_TIMEOUT 10000
55
56 /* Registers */
57 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
58 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
59 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
60 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
61 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
62 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
63 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
64 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
65 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
66 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
67 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
68 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
69 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
70 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
71 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
72 #define MVNETA_PORT_RX_RESET 0x1cc0
73 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
74 #define MVNETA_PHY_ADDR 0x2000
75 #define MVNETA_PHY_ADDR_MASK 0x1f
76 #define MVNETA_SMI 0x2004
77 #define MVNETA_PHY_REG_MASK 0x1f
78 /* SMI register fields */
79 #define MVNETA_SMI_DATA_OFFS 0 /* Data */
80 #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
81 #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
82 #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
83 #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
84 #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
85 #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
86 #define MVNETA_SMI_BUSY (1 << 28) /* Busy */
87 #define MVNETA_MBUS_RETRY 0x2010
88 #define MVNETA_UNIT_INTR_CAUSE 0x2080
89 #define MVNETA_UNIT_CONTROL 0x20B0
90 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
91 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
92 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
93 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
94 #define MVNETA_WIN_SIZE_MASK (0xffff0000)
95 #define MVNETA_BASE_ADDR_ENABLE 0x2290
96 #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
97 #define MVNETA_PORT_ACCESS_PROTECT 0x2294
98 #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
99 #define MVNETA_PORT_CONFIG 0x2400
100 #define MVNETA_UNI_PROMISC_MODE BIT(0)
101 #define MVNETA_DEF_RXQ(q) ((q) << 1)
102 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
103 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
104 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
105 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
106 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
107 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
108 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
109 MVNETA_DEF_RXQ_ARP(q) | \
110 MVNETA_DEF_RXQ_TCP(q) | \
111 MVNETA_DEF_RXQ_UDP(q) | \
112 MVNETA_DEF_RXQ_BPDU(q) | \
113 MVNETA_TX_UNSET_ERR_SUM | \
114 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
115 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
116 #define MVNETA_MAC_ADDR_LOW 0x2414
117 #define MVNETA_MAC_ADDR_HIGH 0x2418
118 #define MVNETA_SDMA_CONFIG 0x241c
119 #define MVNETA_SDMA_BRST_SIZE_16 4
120 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
121 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
122 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
123 #define MVNETA_DESC_SWAP BIT(6)
124 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
125 #define MVNETA_PORT_STATUS 0x2444
126 #define MVNETA_TX_IN_PRGRS BIT(1)
127 #define MVNETA_TX_FIFO_EMPTY BIT(8)
128 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
129 #define MVNETA_SERDES_CFG 0x24A0
130 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
131 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
132 #define MVNETA_TYPE_PRIO 0x24bc
133 #define MVNETA_FORCE_UNI BIT(21)
134 #define MVNETA_TXQ_CMD_1 0x24e4
135 #define MVNETA_TXQ_CMD 0x2448
136 #define MVNETA_TXQ_DISABLE_SHIFT 8
137 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
138 #define MVNETA_ACC_MODE 0x2500
139 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
140 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
141 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
142 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
143
144 /* Exception Interrupt Port/Queue Cause register */
145
146 #define MVNETA_INTR_NEW_CAUSE 0x25a0
147 #define MVNETA_INTR_NEW_MASK 0x25a4
148
149 /* bits 0..7 = TXQ SENT, one bit per queue.
150 * bits 8..15 = RXQ OCCUP, one bit per queue.
151 * bits 16..23 = RXQ FREE, one bit per queue.
152 * bit 29 = OLD_REG_SUM, see old reg ?
153 * bit 30 = TX_ERR_SUM, one bit for 4 ports
154 * bit 31 = MISC_SUM, one bit for 4 ports
155 */
156 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
157 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
158 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
159 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
160
161 #define MVNETA_INTR_OLD_CAUSE 0x25a8
162 #define MVNETA_INTR_OLD_MASK 0x25ac
163
164 /* Data Path Port/Queue Cause Register */
165 #define MVNETA_INTR_MISC_CAUSE 0x25b0
166 #define MVNETA_INTR_MISC_MASK 0x25b4
167 #define MVNETA_INTR_ENABLE 0x25b8
168
169 #define MVNETA_RXQ_CMD 0x2680
170 #define MVNETA_RXQ_DISABLE_SHIFT 8
171 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
172 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
173 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
174 #define MVNETA_GMAC_CTRL_0 0x2c00
175 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
176 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
177 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
178 #define MVNETA_GMAC_CTRL_2 0x2c08
179 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
180 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
181 #define MVNETA_GMAC2_PORT_RESET BIT(6)
182 #define MVNETA_GMAC_STATUS 0x2c10
183 #define MVNETA_GMAC_LINK_UP BIT(0)
184 #define MVNETA_GMAC_SPEED_1000 BIT(1)
185 #define MVNETA_GMAC_SPEED_100 BIT(2)
186 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
187 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
188 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
189 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
190 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
191 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
192 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
193 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
194 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
195 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
196 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
197 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
198 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
199 #define MVNETA_MIB_COUNTERS_BASE 0x3080
200 #define MVNETA_MIB_LATE_COLLISION 0x7c
201 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
202 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
203 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
204 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
205 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
206 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
207 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
208 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
209 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
210 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
211 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
212 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
213 #define MVNETA_PORT_TX_RESET 0x3cf0
214 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
215 #define MVNETA_TX_MTU 0x3e0c
216 #define MVNETA_TX_TOKEN_SIZE 0x3e14
217 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
218 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
219 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
220
221 /* Descriptor ring Macros */
222 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
223 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
224
225 /* Various constants */
226
227 /* Coalescing */
228 #define MVNETA_TXDONE_COAL_PKTS 16
229 #define MVNETA_RX_COAL_PKTS 32
230 #define MVNETA_RX_COAL_USEC 100
231
232 /* The two bytes Marvell header. Either contains a special value used
233 * by Marvell switches when a specific hardware mode is enabled (not
234 * supported by this driver) or is filled automatically by zeroes on
235 * the RX side. Those two bytes being at the front of the Ethernet
236 * header, they allow to have the IP header aligned on a 4 bytes
237 * boundary automatically: the hardware skips those two bytes on its
238 * own.
239 */
240 #define MVNETA_MH_SIZE 2
241
242 #define MVNETA_VLAN_TAG_LEN 4
243
244 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
245 #define MVNETA_TX_CSUM_MAX_SIZE 9800
246 #define MVNETA_ACC_MODE_EXT 1
247
248 /* Timeout constants */
249 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
250 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
251 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
252
253 #define MVNETA_TX_MTU_MAX 0x3ffff
254
255 /* Max number of Rx descriptors */
256 #define MVNETA_MAX_RXD 16
257
258 /* Max number of Tx descriptors */
259 #define MVNETA_MAX_TXD 16
260
261 /* descriptor aligned size */
262 #define MVNETA_DESC_ALIGNED_SIZE 32
263
264 struct mvneta_port {
265 void __iomem *base;
266 struct mvneta_rx_queue *rxqs;
267 struct mvneta_tx_queue *txqs;
268
269 u8 mcast_count[256];
270 u16 tx_ring_size;
271 u16 rx_ring_size;
272
273 phy_interface_t phy_interface;
274 unsigned int link;
275 unsigned int duplex;
276 unsigned int speed;
277
278 int init;
279 int phyaddr;
280 struct phy_device *phydev;
281 struct mii_dev *bus;
282 };
283
284 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
285 * layout of the transmit and reception DMA descriptors, and their
286 * layout is therefore defined by the hardware design
287 */
288
289 #define MVNETA_TX_L3_OFF_SHIFT 0
290 #define MVNETA_TX_IP_HLEN_SHIFT 8
291 #define MVNETA_TX_L4_UDP BIT(16)
292 #define MVNETA_TX_L3_IP6 BIT(17)
293 #define MVNETA_TXD_IP_CSUM BIT(18)
294 #define MVNETA_TXD_Z_PAD BIT(19)
295 #define MVNETA_TXD_L_DESC BIT(20)
296 #define MVNETA_TXD_F_DESC BIT(21)
297 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
298 MVNETA_TXD_L_DESC | \
299 MVNETA_TXD_F_DESC)
300 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
301 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
302
303 #define MVNETA_RXD_ERR_CRC 0x0
304 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
305 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
306 #define MVNETA_RXD_ERR_LEN BIT(18)
307 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
308 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
309 #define MVNETA_RXD_L3_IP4 BIT(25)
310 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
311 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
312
313 struct mvneta_tx_desc {
314 u32 command; /* Options used by HW for packet transmitting.*/
315 u16 reserverd1; /* csum_l4 (for future use) */
316 u16 data_size; /* Data size of transmitted packet in bytes */
317 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
318 u32 reserved2; /* hw_cmd - (for future use, PMT) */
319 u32 reserved3[4]; /* Reserved - (for future use) */
320 };
321
322 struct mvneta_rx_desc {
323 u32 status; /* Info about received packet */
324 u16 reserved1; /* pnc_info - (for future use, PnC) */
325 u16 data_size; /* Size of received packet in bytes */
326
327 u32 buf_phys_addr; /* Physical address of the buffer */
328 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
329
330 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
331 u16 reserved3; /* prefetch_cmd, for future use */
332 u16 reserved4; /* csum_l4 - (for future use, PnC) */
333
334 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
335 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
336 };
337
338 struct mvneta_tx_queue {
339 /* Number of this TX queue, in the range 0-7 */
340 u8 id;
341
342 /* Number of TX DMA descriptors in the descriptor ring */
343 int size;
344
345 /* Index of last TX DMA descriptor that was inserted */
346 int txq_put_index;
347
348 /* Index of the TX DMA descriptor to be cleaned up */
349 int txq_get_index;
350
351 /* Virtual address of the TX DMA descriptors array */
352 struct mvneta_tx_desc *descs;
353
354 /* DMA address of the TX DMA descriptors array */
355 dma_addr_t descs_phys;
356
357 /* Index of the last TX DMA descriptor */
358 int last_desc;
359
360 /* Index of the next TX DMA descriptor to process */
361 int next_desc_to_proc;
362 };
363
364 struct mvneta_rx_queue {
365 /* rx queue number, in the range 0-7 */
366 u8 id;
367
368 /* num of rx descriptors in the rx descriptor ring */
369 int size;
370
371 /* Virtual address of the RX DMA descriptors array */
372 struct mvneta_rx_desc *descs;
373
374 /* DMA address of the RX DMA descriptors array */
375 dma_addr_t descs_phys;
376
377 /* Index of the last RX DMA descriptor */
378 int last_desc;
379
380 /* Index of the next RX DMA descriptor to process */
381 int next_desc_to_proc;
382 };
383
384 /* U-Boot doesn't use the queues, so set the number to 1 */
385 static int rxq_number = 1;
386 static int txq_number = 1;
387 static int rxq_def;
388
389 struct buffer_location {
390 struct mvneta_tx_desc *tx_descs;
391 struct mvneta_rx_desc *rx_descs;
392 u32 rx_buffers;
393 };
394
395 /*
396 * All 4 interfaces use the same global buffer, since only one interface
397 * can be enabled at once
398 */
399 static struct buffer_location buffer_loc;
400
401 /*
402 * Page table entries are set to 1MB, or multiples of 1MB
403 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
404 */
405 #define BD_SPACE (1 << 20)
406
407 /* Utility/helper methods */
408
409 /* Write helper method */
410 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
411 {
412 writel(data, pp->base + offset);
413 }
414
415 /* Read helper method */
416 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
417 {
418 return readl(pp->base + offset);
419 }
420
421 /* Clear all MIB counters */
422 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
423 {
424 int i;
425
426 /* Perform dummy reads from MIB counters */
427 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
428 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
429 }
430
431 /* Rx descriptors helper methods */
432
433 /* Checks whether the RX descriptor having this status is both the first
434 * and the last descriptor for the RX packet. Each RX packet is currently
435 * received through a single RX descriptor, so not having each RX
436 * descriptor with its first and last bits set is an error
437 */
438 static int mvneta_rxq_desc_is_first_last(u32 status)
439 {
440 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
441 MVNETA_RXD_FIRST_LAST_DESC;
442 }
443
444 /* Add number of descriptors ready to receive new packets */
445 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
446 struct mvneta_rx_queue *rxq,
447 int ndescs)
448 {
449 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
450 * be added at once
451 */
452 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
453 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
454 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
455 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
456 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
457 }
458
459 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
460 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
461 }
462
463 /* Get number of RX descriptors occupied by received packets */
464 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
465 struct mvneta_rx_queue *rxq)
466 {
467 u32 val;
468
469 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
470 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
471 }
472
473 /* Update num of rx desc called upon return from rx path or
474 * from mvneta_rxq_drop_pkts().
475 */
476 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
477 struct mvneta_rx_queue *rxq,
478 int rx_done, int rx_filled)
479 {
480 u32 val;
481
482 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
483 val = rx_done |
484 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
485 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
486 return;
487 }
488
489 /* Only 255 descriptors can be added at once */
490 while ((rx_done > 0) || (rx_filled > 0)) {
491 if (rx_done <= 0xff) {
492 val = rx_done;
493 rx_done = 0;
494 } else {
495 val = 0xff;
496 rx_done -= 0xff;
497 }
498 if (rx_filled <= 0xff) {
499 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
500 rx_filled = 0;
501 } else {
502 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
503 rx_filled -= 0xff;
504 }
505 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
506 }
507 }
508
509 /* Get pointer to next RX descriptor to be processed by SW */
510 static struct mvneta_rx_desc *
511 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
512 {
513 int rx_desc = rxq->next_desc_to_proc;
514
515 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
516 return rxq->descs + rx_desc;
517 }
518
519 /* Tx descriptors helper methods */
520
521 /* Update HW with number of TX descriptors to be sent */
522 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
523 struct mvneta_tx_queue *txq,
524 int pend_desc)
525 {
526 u32 val;
527
528 /* Only 255 descriptors can be added at once ; Assume caller
529 * process TX desriptors in quanta less than 256
530 */
531 val = pend_desc;
532 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
533 }
534
535 /* Get pointer to next TX descriptor to be processed (send) by HW */
536 static struct mvneta_tx_desc *
537 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
538 {
539 int tx_desc = txq->next_desc_to_proc;
540
541 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
542 return txq->descs + tx_desc;
543 }
544
545 /* Set rxq buf size */
546 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
547 struct mvneta_rx_queue *rxq,
548 int buf_size)
549 {
550 u32 val;
551
552 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
553
554 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
555 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
556
557 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
558 }
559
560 /* Start the Ethernet port RX and TX activity */
561 static void mvneta_port_up(struct mvneta_port *pp)
562 {
563 int queue;
564 u32 q_map;
565
566 /* Enable all initialized TXs. */
567 mvneta_mib_counters_clear(pp);
568 q_map = 0;
569 for (queue = 0; queue < txq_number; queue++) {
570 struct mvneta_tx_queue *txq = &pp->txqs[queue];
571 if (txq->descs != NULL)
572 q_map |= (1 << queue);
573 }
574 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
575
576 /* Enable all initialized RXQs. */
577 q_map = 0;
578 for (queue = 0; queue < rxq_number; queue++) {
579 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
580 if (rxq->descs != NULL)
581 q_map |= (1 << queue);
582 }
583 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
584 }
585
586 /* Stop the Ethernet port activity */
587 static void mvneta_port_down(struct mvneta_port *pp)
588 {
589 u32 val;
590 int count;
591
592 /* Stop Rx port activity. Check port Rx activity. */
593 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
594
595 /* Issue stop command for active channels only */
596 if (val != 0)
597 mvreg_write(pp, MVNETA_RXQ_CMD,
598 val << MVNETA_RXQ_DISABLE_SHIFT);
599
600 /* Wait for all Rx activity to terminate. */
601 count = 0;
602 do {
603 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
604 netdev_warn(pp->dev,
605 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
606 val);
607 break;
608 }
609 mdelay(1);
610
611 val = mvreg_read(pp, MVNETA_RXQ_CMD);
612 } while (val & 0xff);
613
614 /* Stop Tx port activity. Check port Tx activity. Issue stop
615 * command for active channels only
616 */
617 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
618
619 if (val != 0)
620 mvreg_write(pp, MVNETA_TXQ_CMD,
621 (val << MVNETA_TXQ_DISABLE_SHIFT));
622
623 /* Wait for all Tx activity to terminate. */
624 count = 0;
625 do {
626 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
627 netdev_warn(pp->dev,
628 "TIMEOUT for TX stopped status=0x%08x\n",
629 val);
630 break;
631 }
632 mdelay(1);
633
634 /* Check TX Command reg that all Txqs are stopped */
635 val = mvreg_read(pp, MVNETA_TXQ_CMD);
636
637 } while (val & 0xff);
638
639 /* Double check to verify that TX FIFO is empty */
640 count = 0;
641 do {
642 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
643 netdev_warn(pp->dev,
644 "TX FIFO empty timeout status=0x08%x\n",
645 val);
646 break;
647 }
648 mdelay(1);
649
650 val = mvreg_read(pp, MVNETA_PORT_STATUS);
651 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
652 (val & MVNETA_TX_IN_PRGRS));
653
654 udelay(200);
655 }
656
657 /* Enable the port by setting the port enable bit of the MAC control register */
658 static void mvneta_port_enable(struct mvneta_port *pp)
659 {
660 u32 val;
661
662 /* Enable port */
663 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
664 val |= MVNETA_GMAC0_PORT_ENABLE;
665 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
666 }
667
668 /* Disable the port and wait for about 200 usec before retuning */
669 static void mvneta_port_disable(struct mvneta_port *pp)
670 {
671 u32 val;
672
673 /* Reset the Enable bit in the Serial Control Register */
674 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
675 val &= ~MVNETA_GMAC0_PORT_ENABLE;
676 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
677
678 udelay(200);
679 }
680
681 /* Multicast tables methods */
682
683 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
684 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
685 {
686 int offset;
687 u32 val;
688
689 if (queue == -1) {
690 val = 0;
691 } else {
692 val = 0x1 | (queue << 1);
693 val |= (val << 24) | (val << 16) | (val << 8);
694 }
695
696 for (offset = 0; offset <= 0xc; offset += 4)
697 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
698 }
699
700 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
701 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
702 {
703 int offset;
704 u32 val;
705
706 if (queue == -1) {
707 val = 0;
708 } else {
709 val = 0x1 | (queue << 1);
710 val |= (val << 24) | (val << 16) | (val << 8);
711 }
712
713 for (offset = 0; offset <= 0xfc; offset += 4)
714 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
715 }
716
717 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
718 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
719 {
720 int offset;
721 u32 val;
722
723 if (queue == -1) {
724 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
725 val = 0;
726 } else {
727 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
728 val = 0x1 | (queue << 1);
729 val |= (val << 24) | (val << 16) | (val << 8);
730 }
731
732 for (offset = 0; offset <= 0xfc; offset += 4)
733 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
734 }
735
736 /* This method sets defaults to the NETA port:
737 * Clears interrupt Cause and Mask registers.
738 * Clears all MAC tables.
739 * Sets defaults to all registers.
740 * Resets RX and TX descriptor rings.
741 * Resets PHY.
742 * This method can be called after mvneta_port_down() to return the port
743 * settings to defaults.
744 */
745 static void mvneta_defaults_set(struct mvneta_port *pp)
746 {
747 int cpu;
748 int queue;
749 u32 val;
750
751 /* Clear all Cause registers */
752 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
753 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
754 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
755
756 /* Mask all interrupts */
757 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
758 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
759 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
760 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
761
762 /* Enable MBUS Retry bit16 */
763 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
764
765 /* Set CPU queue access map - all CPUs have access to all RX
766 * queues and to all TX queues
767 */
768 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
769 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
770 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
771 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
772
773 /* Reset RX and TX DMAs */
774 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
775 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
776
777 /* Disable Legacy WRR, Disable EJP, Release from reset */
778 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
779 for (queue = 0; queue < txq_number; queue++) {
780 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
781 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
782 }
783
784 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
785 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
786
787 /* Set Port Acceleration Mode */
788 val = MVNETA_ACC_MODE_EXT;
789 mvreg_write(pp, MVNETA_ACC_MODE, val);
790
791 /* Update val of portCfg register accordingly with all RxQueue types */
792 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
793 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
794
795 val = 0;
796 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
797 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
798
799 /* Build PORT_SDMA_CONFIG_REG */
800 val = 0;
801
802 /* Default burst size */
803 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
804 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
805 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
806
807 /* Assign port SDMA configuration */
808 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
809
810 /* Enable PHY polling in hardware for U-Boot */
811 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
812 val |= MVNETA_PHY_POLLING_ENABLE;
813 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
814
815 mvneta_set_ucast_table(pp, -1);
816 mvneta_set_special_mcast_table(pp, -1);
817 mvneta_set_other_mcast_table(pp, -1);
818 }
819
820 /* Set unicast address */
821 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
822 int queue)
823 {
824 unsigned int unicast_reg;
825 unsigned int tbl_offset;
826 unsigned int reg_offset;
827
828 /* Locate the Unicast table entry */
829 last_nibble = (0xf & last_nibble);
830
831 /* offset from unicast tbl base */
832 tbl_offset = (last_nibble / 4) * 4;
833
834 /* offset within the above reg */
835 reg_offset = last_nibble % 4;
836
837 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
838
839 if (queue == -1) {
840 /* Clear accepts frame bit at specified unicast DA tbl entry */
841 unicast_reg &= ~(0xff << (8 * reg_offset));
842 } else {
843 unicast_reg &= ~(0xff << (8 * reg_offset));
844 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
845 }
846
847 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
848 }
849
850 /* Set mac address */
851 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
852 int queue)
853 {
854 unsigned int mac_h;
855 unsigned int mac_l;
856
857 if (queue != -1) {
858 mac_l = (addr[4] << 8) | (addr[5]);
859 mac_h = (addr[0] << 24) | (addr[1] << 16) |
860 (addr[2] << 8) | (addr[3] << 0);
861
862 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
863 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
864 }
865
866 /* Accept frames of this address */
867 mvneta_set_ucast_addr(pp, addr[5], queue);
868 }
869
870 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
871 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
872 u32 phys_addr, u32 cookie)
873 {
874 rx_desc->buf_cookie = cookie;
875 rx_desc->buf_phys_addr = phys_addr;
876 }
877
878 /* Decrement sent descriptors counter */
879 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
880 struct mvneta_tx_queue *txq,
881 int sent_desc)
882 {
883 u32 val;
884
885 /* Only 255 TX descriptors can be updated at once */
886 while (sent_desc > 0xff) {
887 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
888 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
889 sent_desc = sent_desc - 0xff;
890 }
891
892 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
893 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
894 }
895
896 /* Get number of TX descriptors already sent by HW */
897 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
898 struct mvneta_tx_queue *txq)
899 {
900 u32 val;
901 int sent_desc;
902
903 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
904 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
905 MVNETA_TXQ_SENT_DESC_SHIFT;
906
907 return sent_desc;
908 }
909
910 /* Display more error info */
911 static void mvneta_rx_error(struct mvneta_port *pp,
912 struct mvneta_rx_desc *rx_desc)
913 {
914 u32 status = rx_desc->status;
915
916 if (!mvneta_rxq_desc_is_first_last(status)) {
917 netdev_err(pp->dev,
918 "bad rx status %08x (buffer oversize), size=%d\n",
919 status, rx_desc->data_size);
920 return;
921 }
922
923 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
924 case MVNETA_RXD_ERR_CRC:
925 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
926 status, rx_desc->data_size);
927 break;
928 case MVNETA_RXD_ERR_OVERRUN:
929 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
930 status, rx_desc->data_size);
931 break;
932 case MVNETA_RXD_ERR_LEN:
933 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
934 status, rx_desc->data_size);
935 break;
936 case MVNETA_RXD_ERR_RESOURCE:
937 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
938 status, rx_desc->data_size);
939 break;
940 }
941 }
942
943 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
944 int rxq)
945 {
946 return &pp->rxqs[rxq];
947 }
948
949
950 /* Drop packets received by the RXQ and free buffers */
951 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
952 struct mvneta_rx_queue *rxq)
953 {
954 int rx_done;
955
956 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
957 if (rx_done)
958 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
959 }
960
961 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
962 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
963 int num)
964 {
965 int i;
966
967 for (i = 0; i < num; i++) {
968 u32 addr;
969
970 /* U-Boot special: Fill in the rx buffer addresses */
971 addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
972 mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
973 }
974
975 /* Add this number of RX descriptors as non occupied (ready to
976 * get packets)
977 */
978 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
979
980 return 0;
981 }
982
983 /* Rx/Tx queue initialization/cleanup methods */
984
985 /* Create a specified RX queue */
986 static int mvneta_rxq_init(struct mvneta_port *pp,
987 struct mvneta_rx_queue *rxq)
988
989 {
990 rxq->size = pp->rx_ring_size;
991
992 /* Allocate memory for RX descriptors */
993 rxq->descs_phys = (dma_addr_t)rxq->descs;
994 if (rxq->descs == NULL)
995 return -ENOMEM;
996
997 rxq->last_desc = rxq->size - 1;
998
999 /* Set Rx descriptors queue starting address */
1000 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1001 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1002
1003 /* Fill RXQ with buffers from RX pool */
1004 mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1005 mvneta_rxq_fill(pp, rxq, rxq->size);
1006
1007 return 0;
1008 }
1009
1010 /* Cleanup Rx queue */
1011 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1012 struct mvneta_rx_queue *rxq)
1013 {
1014 mvneta_rxq_drop_pkts(pp, rxq);
1015
1016 rxq->descs = NULL;
1017 rxq->last_desc = 0;
1018 rxq->next_desc_to_proc = 0;
1019 rxq->descs_phys = 0;
1020 }
1021
1022 /* Create and initialize a tx queue */
1023 static int mvneta_txq_init(struct mvneta_port *pp,
1024 struct mvneta_tx_queue *txq)
1025 {
1026 txq->size = pp->tx_ring_size;
1027
1028 /* Allocate memory for TX descriptors */
1029 txq->descs_phys = (dma_addr_t)txq->descs;
1030 if (txq->descs == NULL)
1031 return -ENOMEM;
1032
1033 txq->last_desc = txq->size - 1;
1034
1035 /* Set maximum bandwidth for enabled TXQs */
1036 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1037 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1038
1039 /* Set Tx descriptors queue starting address */
1040 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1041 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1042
1043 return 0;
1044 }
1045
1046 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1047 static void mvneta_txq_deinit(struct mvneta_port *pp,
1048 struct mvneta_tx_queue *txq)
1049 {
1050 txq->descs = NULL;
1051 txq->last_desc = 0;
1052 txq->next_desc_to_proc = 0;
1053 txq->descs_phys = 0;
1054
1055 /* Set minimum bandwidth for disabled TXQs */
1056 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1057 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1058
1059 /* Set Tx descriptors queue starting address and size */
1060 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1061 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1062 }
1063
1064 /* Cleanup all Tx queues */
1065 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1066 {
1067 int queue;
1068
1069 for (queue = 0; queue < txq_number; queue++)
1070 mvneta_txq_deinit(pp, &pp->txqs[queue]);
1071 }
1072
1073 /* Cleanup all Rx queues */
1074 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1075 {
1076 int queue;
1077
1078 for (queue = 0; queue < rxq_number; queue++)
1079 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1080 }
1081
1082
1083 /* Init all Rx queues */
1084 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1085 {
1086 int queue;
1087
1088 for (queue = 0; queue < rxq_number; queue++) {
1089 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1090 if (err) {
1091 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1092 __func__, queue);
1093 mvneta_cleanup_rxqs(pp);
1094 return err;
1095 }
1096 }
1097
1098 return 0;
1099 }
1100
1101 /* Init all tx queues */
1102 static int mvneta_setup_txqs(struct mvneta_port *pp)
1103 {
1104 int queue;
1105
1106 for (queue = 0; queue < txq_number; queue++) {
1107 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1108 if (err) {
1109 netdev_err(pp->dev, "%s: can't create txq=%d\n",
1110 __func__, queue);
1111 mvneta_cleanup_txqs(pp);
1112 return err;
1113 }
1114 }
1115
1116 return 0;
1117 }
1118
1119 static void mvneta_start_dev(struct mvneta_port *pp)
1120 {
1121 /* start the Rx/Tx activity */
1122 mvneta_port_enable(pp);
1123 }
1124
1125 static void mvneta_adjust_link(struct udevice *dev)
1126 {
1127 struct mvneta_port *pp = dev_get_priv(dev);
1128 struct phy_device *phydev = pp->phydev;
1129 int status_change = 0;
1130
1131 if (phydev->link) {
1132 if ((pp->speed != phydev->speed) ||
1133 (pp->duplex != phydev->duplex)) {
1134 u32 val;
1135
1136 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1137 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1138 MVNETA_GMAC_CONFIG_GMII_SPEED |
1139 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1140 MVNETA_GMAC_AN_SPEED_EN |
1141 MVNETA_GMAC_AN_DUPLEX_EN);
1142
1143 if (phydev->duplex)
1144 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1145
1146 if (phydev->speed == SPEED_1000)
1147 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1148 else
1149 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1150
1151 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1152
1153 pp->duplex = phydev->duplex;
1154 pp->speed = phydev->speed;
1155 }
1156 }
1157
1158 if (phydev->link != pp->link) {
1159 if (!phydev->link) {
1160 pp->duplex = -1;
1161 pp->speed = 0;
1162 }
1163
1164 pp->link = phydev->link;
1165 status_change = 1;
1166 }
1167
1168 if (status_change) {
1169 if (phydev->link) {
1170 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1171 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1172 MVNETA_GMAC_FORCE_LINK_DOWN);
1173 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1174 mvneta_port_up(pp);
1175 } else {
1176 mvneta_port_down(pp);
1177 }
1178 }
1179 }
1180
1181 static int mvneta_open(struct udevice *dev)
1182 {
1183 struct mvneta_port *pp = dev_get_priv(dev);
1184 int ret;
1185
1186 ret = mvneta_setup_rxqs(pp);
1187 if (ret)
1188 return ret;
1189
1190 ret = mvneta_setup_txqs(pp);
1191 if (ret)
1192 return ret;
1193
1194 mvneta_adjust_link(dev);
1195
1196 mvneta_start_dev(pp);
1197
1198 return 0;
1199 }
1200
1201 /* Initialize hw */
1202 static int mvneta_init2(struct mvneta_port *pp)
1203 {
1204 int queue;
1205
1206 /* Disable port */
1207 mvneta_port_disable(pp);
1208
1209 /* Set port default values */
1210 mvneta_defaults_set(pp);
1211
1212 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1213 GFP_KERNEL);
1214 if (!pp->txqs)
1215 return -ENOMEM;
1216
1217 /* U-Boot special: use preallocated area */
1218 pp->txqs[0].descs = buffer_loc.tx_descs;
1219
1220 /* Initialize TX descriptor rings */
1221 for (queue = 0; queue < txq_number; queue++) {
1222 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1223 txq->id = queue;
1224 txq->size = pp->tx_ring_size;
1225 }
1226
1227 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1228 GFP_KERNEL);
1229 if (!pp->rxqs) {
1230 kfree(pp->txqs);
1231 return -ENOMEM;
1232 }
1233
1234 /* U-Boot special: use preallocated area */
1235 pp->rxqs[0].descs = buffer_loc.rx_descs;
1236
1237 /* Create Rx descriptor rings */
1238 for (queue = 0; queue < rxq_number; queue++) {
1239 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1240 rxq->id = queue;
1241 rxq->size = pp->rx_ring_size;
1242 }
1243
1244 return 0;
1245 }
1246
1247 /* platform glue : initialize decoding windows */
1248
1249 /*
1250 * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1251 * First layer is: GbE Address window that resides inside the GBE unit,
1252 * Second layer is: Fabric address window which is located in the NIC400
1253 * (South Fabric).
1254 * To simplify the address decode configuration for Armada3700, we bypass the
1255 * first layer of GBE decode window by setting the first window to 4GB.
1256 */
1257 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1258 {
1259 /*
1260 * Set window size to 4GB, to bypass GBE address decode, leave the
1261 * work to MBUS decode window
1262 */
1263 mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1264
1265 /* Enable GBE address decode window 0 by set bit 0 to 0 */
1266 clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1267 MVNETA_BASE_ADDR_ENABLE_BIT);
1268
1269 /* Set GBE address decode window 0 to full Access (read or write) */
1270 setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1271 MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1272 }
1273
1274 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1275 {
1276 const struct mbus_dram_target_info *dram;
1277 u32 win_enable;
1278 u32 win_protect;
1279 int i;
1280
1281 dram = mvebu_mbus_dram_info();
1282 for (i = 0; i < 6; i++) {
1283 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1284 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1285
1286 if (i < 4)
1287 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1288 }
1289
1290 win_enable = 0x3f;
1291 win_protect = 0;
1292
1293 for (i = 0; i < dram->num_cs; i++) {
1294 const struct mbus_dram_window *cs = dram->cs + i;
1295 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1296 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1297
1298 mvreg_write(pp, MVNETA_WIN_SIZE(i),
1299 (cs->size - 1) & 0xffff0000);
1300
1301 win_enable &= ~(1 << i);
1302 win_protect |= 3 << (2 * i);
1303 }
1304
1305 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1306 }
1307
1308 /* Power up the port */
1309 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1310 {
1311 u32 ctrl;
1312
1313 /* MAC Cause register should be cleared */
1314 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1315
1316 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1317
1318 /* Even though it might look weird, when we're configured in
1319 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1320 */
1321 switch (phy_mode) {
1322 case PHY_INTERFACE_MODE_QSGMII:
1323 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1324 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1325 break;
1326 case PHY_INTERFACE_MODE_SGMII:
1327 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1328 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1329 break;
1330 case PHY_INTERFACE_MODE_RGMII:
1331 case PHY_INTERFACE_MODE_RGMII_ID:
1332 ctrl |= MVNETA_GMAC2_PORT_RGMII;
1333 break;
1334 default:
1335 return -EINVAL;
1336 }
1337
1338 /* Cancel Port Reset */
1339 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1340 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1341
1342 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1343 MVNETA_GMAC2_PORT_RESET) != 0)
1344 continue;
1345
1346 return 0;
1347 }
1348
1349 /* Device initialization routine */
1350 static int mvneta_init(struct udevice *dev)
1351 {
1352 struct eth_pdata *pdata = dev_get_platdata(dev);
1353 struct mvneta_port *pp = dev_get_priv(dev);
1354 int err;
1355
1356 pp->tx_ring_size = MVNETA_MAX_TXD;
1357 pp->rx_ring_size = MVNETA_MAX_RXD;
1358
1359 err = mvneta_init2(pp);
1360 if (err < 0) {
1361 dev_err(&pdev->dev, "can't init eth hal\n");
1362 return err;
1363 }
1364
1365 mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1366
1367 err = mvneta_port_power_up(pp, pp->phy_interface);
1368 if (err < 0) {
1369 dev_err(&pdev->dev, "can't power up port\n");
1370 return err;
1371 }
1372
1373 /* Call open() now as it needs to be done before runing send() */
1374 mvneta_open(dev);
1375
1376 return 0;
1377 }
1378
1379 /* U-Boot only functions follow here */
1380
1381 /* SMI / MDIO functions */
1382
1383 static int smi_wait_ready(struct mvneta_port *pp)
1384 {
1385 u32 timeout = MVNETA_SMI_TIMEOUT;
1386 u32 smi_reg;
1387
1388 /* wait till the SMI is not busy */
1389 do {
1390 /* read smi register */
1391 smi_reg = mvreg_read(pp, MVNETA_SMI);
1392 if (timeout-- == 0) {
1393 printf("Error: SMI busy timeout\n");
1394 return -EFAULT;
1395 }
1396 } while (smi_reg & MVNETA_SMI_BUSY);
1397
1398 return 0;
1399 }
1400
1401 /*
1402 * mvneta_mdio_read - miiphy_read callback function.
1403 *
1404 * Returns 16bit phy register value, or 0xffff on error
1405 */
1406 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1407 {
1408 struct mvneta_port *pp = bus->priv;
1409 u32 smi_reg;
1410 u32 timeout;
1411
1412 /* check parameters */
1413 if (addr > MVNETA_PHY_ADDR_MASK) {
1414 printf("Error: Invalid PHY address %d\n", addr);
1415 return -EFAULT;
1416 }
1417
1418 if (reg > MVNETA_PHY_REG_MASK) {
1419 printf("Err: Invalid register offset %d\n", reg);
1420 return -EFAULT;
1421 }
1422
1423 /* wait till the SMI is not busy */
1424 if (smi_wait_ready(pp) < 0)
1425 return -EFAULT;
1426
1427 /* fill the phy address and regiser offset and read opcode */
1428 smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1429 | (reg << MVNETA_SMI_REG_ADDR_OFFS)
1430 | MVNETA_SMI_OPCODE_READ;
1431
1432 /* write the smi register */
1433 mvreg_write(pp, MVNETA_SMI, smi_reg);
1434
1435 /* wait till read value is ready */
1436 timeout = MVNETA_SMI_TIMEOUT;
1437
1438 do {
1439 /* read smi register */
1440 smi_reg = mvreg_read(pp, MVNETA_SMI);
1441 if (timeout-- == 0) {
1442 printf("Err: SMI read ready timeout\n");
1443 return -EFAULT;
1444 }
1445 } while (!(smi_reg & MVNETA_SMI_READ_VALID));
1446
1447 /* Wait for the data to update in the SMI register */
1448 for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1449 ;
1450
1451 return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1452 }
1453
1454 /*
1455 * mvneta_mdio_write - miiphy_write callback function.
1456 *
1457 * Returns 0 if write succeed, -EINVAL on bad parameters
1458 * -ETIME on timeout
1459 */
1460 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1461 u16 value)
1462 {
1463 struct mvneta_port *pp = bus->priv;
1464 u32 smi_reg;
1465
1466 /* check parameters */
1467 if (addr > MVNETA_PHY_ADDR_MASK) {
1468 printf("Error: Invalid PHY address %d\n", addr);
1469 return -EFAULT;
1470 }
1471
1472 if (reg > MVNETA_PHY_REG_MASK) {
1473 printf("Err: Invalid register offset %d\n", reg);
1474 return -EFAULT;
1475 }
1476
1477 /* wait till the SMI is not busy */
1478 if (smi_wait_ready(pp) < 0)
1479 return -EFAULT;
1480
1481 /* fill the phy addr and reg offset and write opcode and data */
1482 smi_reg = value << MVNETA_SMI_DATA_OFFS;
1483 smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1484 | (reg << MVNETA_SMI_REG_ADDR_OFFS);
1485 smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1486
1487 /* write the smi register */
1488 mvreg_write(pp, MVNETA_SMI, smi_reg);
1489
1490 return 0;
1491 }
1492
1493 static int mvneta_start(struct udevice *dev)
1494 {
1495 struct mvneta_port *pp = dev_get_priv(dev);
1496 struct phy_device *phydev;
1497
1498 mvneta_port_power_up(pp, pp->phy_interface);
1499
1500 if (!pp->init || pp->link == 0) {
1501 /* Set phy address of the port */
1502 mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1503 phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1504 pp->phy_interface);
1505
1506 pp->phydev = phydev;
1507 phy_config(phydev);
1508 phy_startup(phydev);
1509 if (!phydev->link) {
1510 printf("%s: No link.\n", phydev->dev->name);
1511 return -1;
1512 }
1513
1514 /* Full init on first call */
1515 mvneta_init(dev);
1516 pp->init = 1;
1517 } else {
1518 /* Upon all following calls, this is enough */
1519 mvneta_port_up(pp);
1520 mvneta_port_enable(pp);
1521 }
1522
1523 return 0;
1524 }
1525
1526 static int mvneta_send(struct udevice *dev, void *packet, int length)
1527 {
1528 struct mvneta_port *pp = dev_get_priv(dev);
1529 struct mvneta_tx_queue *txq = &pp->txqs[0];
1530 struct mvneta_tx_desc *tx_desc;
1531 int sent_desc;
1532 u32 timeout = 0;
1533
1534 /* Get a descriptor for the first part of the packet */
1535 tx_desc = mvneta_txq_next_desc_get(txq);
1536
1537 tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1538 tx_desc->data_size = length;
1539 flush_dcache_range((ulong)packet,
1540 (ulong)packet + ALIGN(length, PKTALIGN));
1541
1542 /* First and Last descriptor */
1543 tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1544 mvneta_txq_pend_desc_add(pp, txq, 1);
1545
1546 /* Wait for packet to be sent (queue might help with speed here) */
1547 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1548 while (!sent_desc) {
1549 if (timeout++ > 10000) {
1550 printf("timeout: packet not sent\n");
1551 return -1;
1552 }
1553 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1554 }
1555
1556 /* txDone has increased - hw sent packet */
1557 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1558
1559 return 0;
1560 }
1561
1562 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1563 {
1564 struct mvneta_port *pp = dev_get_priv(dev);
1565 int rx_done;
1566 struct mvneta_rx_queue *rxq;
1567 int rx_bytes = 0;
1568
1569 /* get rx queue */
1570 rxq = mvneta_rxq_handle_get(pp, rxq_def);
1571 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1572
1573 if (rx_done) {
1574 struct mvneta_rx_desc *rx_desc;
1575 unsigned char *data;
1576 u32 rx_status;
1577
1578 /*
1579 * No cache invalidation needed here, since the desc's are
1580 * located in a uncached memory region
1581 */
1582 rx_desc = mvneta_rxq_next_desc_get(rxq);
1583
1584 rx_status = rx_desc->status;
1585 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1586 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1587 mvneta_rx_error(pp, rx_desc);
1588 /* leave the descriptor untouched */
1589 return -EIO;
1590 }
1591
1592 /* 2 bytes for marvell header. 4 bytes for crc */
1593 rx_bytes = rx_desc->data_size - 6;
1594
1595 /* give packet to stack - skip on first 2 bytes */
1596 data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1597 /*
1598 * No cache invalidation needed here, since the rx_buffer's are
1599 * located in a uncached memory region
1600 */
1601 *packetp = data;
1602
1603 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1604 }
1605
1606 return rx_bytes;
1607 }
1608
1609 static int mvneta_probe(struct udevice *dev)
1610 {
1611 struct eth_pdata *pdata = dev_get_platdata(dev);
1612 struct mvneta_port *pp = dev_get_priv(dev);
1613 void *blob = (void *)gd->fdt_blob;
1614 int node = dev_of_offset(dev);
1615 struct mii_dev *bus;
1616 unsigned long addr;
1617 void *bd_space;
1618
1619 /*
1620 * Allocate buffer area for descs and rx_buffers. This is only
1621 * done once for all interfaces. As only one interface can
1622 * be active. Make this area DMA safe by disabling the D-cache
1623 */
1624 if (!buffer_loc.tx_descs) {
1625 /* Align buffer area for descs and rx_buffers to 1MiB */
1626 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1627 mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1628 DCACHE_OFF);
1629 buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1630 buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1631 ((phys_addr_t)bd_space +
1632 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
1633 buffer_loc.rx_buffers = (phys_addr_t)
1634 (bd_space +
1635 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
1636 MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
1637 }
1638
1639 pp->base = (void __iomem *)pdata->iobase;
1640
1641 /* Configure MBUS address windows */
1642 if (of_device_is_compatible(dev, "marvell,armada-3700-neta"))
1643 mvneta_bypass_mbus_windows(pp);
1644 else
1645 mvneta_conf_mbus_windows(pp);
1646
1647 /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1648 pp->phy_interface = pdata->phy_interface;
1649
1650 /* Now read phyaddr from DT */
1651 addr = fdtdec_get_int(blob, node, "phy", 0);
1652 addr = fdt_node_offset_by_phandle(blob, addr);
1653 pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1654
1655 bus = mdio_alloc();
1656 if (!bus) {
1657 printf("Failed to allocate MDIO bus\n");
1658 return -ENOMEM;
1659 }
1660
1661 bus->read = mvneta_mdio_read;
1662 bus->write = mvneta_mdio_write;
1663 snprintf(bus->name, sizeof(bus->name), dev->name);
1664 bus->priv = (void *)pp;
1665 pp->bus = bus;
1666
1667 return mdio_register(bus);
1668 }
1669
1670 static void mvneta_stop(struct udevice *dev)
1671 {
1672 struct mvneta_port *pp = dev_get_priv(dev);
1673
1674 mvneta_port_down(pp);
1675 mvneta_port_disable(pp);
1676 }
1677
1678 static const struct eth_ops mvneta_ops = {
1679 .start = mvneta_start,
1680 .send = mvneta_send,
1681 .recv = mvneta_recv,
1682 .stop = mvneta_stop,
1683 };
1684
1685 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1686 {
1687 struct eth_pdata *pdata = dev_get_platdata(dev);
1688 const char *phy_mode;
1689
1690 pdata->iobase = dev_get_addr(dev);
1691
1692 /* Get phy-mode / phy_interface from DT */
1693 pdata->phy_interface = -1;
1694 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1695 NULL);
1696 if (phy_mode)
1697 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1698 if (pdata->phy_interface == -1) {
1699 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1700 return -EINVAL;
1701 }
1702
1703 return 0;
1704 }
1705
1706 static const struct udevice_id mvneta_ids[] = {
1707 { .compatible = "marvell,armada-370-neta" },
1708 { .compatible = "marvell,armada-xp-neta" },
1709 { .compatible = "marvell,armada-3700-neta" },
1710 { }
1711 };
1712
1713 U_BOOT_DRIVER(mvneta) = {
1714 .name = "mvneta",
1715 .id = UCLASS_ETH,
1716 .of_match = mvneta_ids,
1717 .ofdata_to_platdata = mvneta_ofdata_to_platdata,
1718 .probe = mvneta_probe,
1719 .ops = &mvneta_ops,
1720 .priv_auto_alloc_size = sizeof(struct mvneta_port),
1721 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1722 };