]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/tsec.c
Merge branch 'testing' into working
[people/ms/u-boot.git] / drivers / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 struct tsec_info_struct {
37 unsigned int phyaddr;
38 u32 flags;
39 unsigned int phyregidx;
40 };
41
42 /* The tsec_info structure contains 3 values which the
43 * driver uses to determine how to operate a given ethernet
44 * device. The information needed is:
45 * phyaddr - The address of the PHY which is attached to
46 * the given device.
47 *
48 * flags - This variable indicates whether the device
49 * supports gigabit speed ethernet, and whether it should be
50 * in reduced mode.
51 *
52 * phyregidx - This variable specifies which ethernet device
53 * controls the MII Management registers which are connected
54 * to the PHY. For now, only TSEC1 (index 0) has
55 * access to the PHYs, so all of the entries have "0".
56 *
57 * The values specified in the table are taken from the board's
58 * config file in include/configs/. When implementing a new
59 * board with ethernet capability, it is necessary to define:
60 * TSECn_PHY_ADDR
61 * TSECn_PHYIDX
62 *
63 * for n = 1,2,3, etc. And for FEC:
64 * FEC_PHY_ADDR
65 * FEC_PHYIDX
66 */
67 static struct tsec_info_struct tsec_info[] = {
68 #if defined(CONFIG_TSEC1)
69 #if defined(CONFIG_MPC8544DS) || defined(CONFIG_MPC8641HPCN)
70 {TSEC1_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC1_PHYIDX},
71 #else
72 {TSEC1_PHY_ADDR, TSEC_GIGABIT, TSEC1_PHYIDX},
73 #endif
74 {0, 0, 0},
75 #endif
76 #if defined(CONFIG_TSEC2)
77 #if defined(CONFIG_MPC8641HPCN)
78 {TSEC2_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC2_PHYIDX},
79 #else
80 {TSEC2_PHY_ADDR, TSEC_GIGABIT, TSEC2_PHYIDX},
81 #endif
82 {0, 0, 0},
83 #endif
84 #ifdef CONFIG_MPC85XX_FEC
85 {FEC_PHY_ADDR, 0, FEC_PHYIDX},
86 #else
87 #if defined(CONFIG_TSEC3)
88 {TSEC3_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC3_PHYIDX},
89 #else
90 {0, 0, 0},
91 #endif
92 #if defined(CONFIG_TSEC4)
93 {TSEC4_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC4_PHYIDX},
94 #else
95 {0, 0, 0},
96 #endif
97 #endif
98 };
99
100 #define MAXCONTROLLERS (4)
101
102 static int relocated = 0;
103
104 static struct tsec_private *privlist[MAXCONTROLLERS];
105
106 #ifdef __GNUC__
107 static RTXBD rtx __attribute__ ((aligned(8)));
108 #else
109 #error "rtx must be 64-bit aligned"
110 #endif
111
112 static int tsec_send(struct eth_device *dev,
113 volatile void *packet, int length);
114 static int tsec_recv(struct eth_device *dev);
115 static int tsec_init(struct eth_device *dev, bd_t * bd);
116 static void tsec_halt(struct eth_device *dev);
117 static void init_registers(volatile tsec_t * regs);
118 static void startup_tsec(struct eth_device *dev);
119 static int init_phy(struct eth_device *dev);
120 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
121 uint read_phy_reg(struct tsec_private *priv, uint regnum);
122 struct phy_info *get_phy_info(struct eth_device *dev);
123 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
124 static void adjust_link(struct eth_device *dev);
125 static void relocate_cmds(void);
126 static int tsec_miiphy_write(char *devname, unsigned char addr,
127 unsigned char reg, unsigned short value);
128 static int tsec_miiphy_read(char *devname, unsigned char addr,
129 unsigned char reg, unsigned short *value);
130
131 /* Initialize device structure. Returns success if PHY
132 * initialization succeeded (i.e. if it recognizes the PHY)
133 */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 struct eth_device *dev;
137 int i;
138 struct tsec_private *priv;
139
140 dev = (struct eth_device *)malloc(sizeof *dev);
141
142 if (NULL == dev)
143 return 0;
144
145 memset(dev, 0, sizeof *dev);
146
147 priv = (struct tsec_private *)malloc(sizeof(*priv));
148
149 if (NULL == priv)
150 return 0;
151
152 privlist[index] = priv;
153 priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 tsec_info[index].phyregidx *
156 TSEC_SIZE);
157
158 priv->phyaddr = tsec_info[index].phyaddr;
159 priv->flags = tsec_info[index].flags;
160
161 sprintf(dev->name, devname);
162 dev->iobase = 0;
163 dev->priv = priv;
164 dev->init = tsec_init;
165 dev->halt = tsec_halt;
166 dev->send = tsec_send;
167 dev->recv = tsec_recv;
168
169 /* Tell u-boot to get the addr from the env */
170 for (i = 0; i < 6; i++)
171 dev->enetaddr[i] = 0;
172
173 eth_register(dev);
174
175 /* Reset the MAC */
176 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
177 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
178
179 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
180 && !defined(BITBANGMII)
181 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
182 #endif
183
184 /* Try to initialize PHY here, and return */
185 return init_phy(dev);
186 }
187
188 /* Initializes data structures and registers for the controller,
189 * and brings the interface up. Returns the link status, meaning
190 * that it returns success if the link is up, failure otherwise.
191 * This allows u-boot to find the first active controller.
192 */
193 int tsec_init(struct eth_device *dev, bd_t * bd)
194 {
195 uint tempval;
196 char tmpbuf[MAC_ADDR_LEN];
197 int i;
198 struct tsec_private *priv = (struct tsec_private *)dev->priv;
199 volatile tsec_t *regs = priv->regs;
200
201 /* Make sure the controller is stopped */
202 tsec_halt(dev);
203
204 /* Init MACCFG2. Defaults to GMII */
205 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
206
207 /* Init ECNTRL */
208 regs->ecntrl = ECNTRL_INIT_SETTINGS;
209
210 /* Copy the station address into the address registers.
211 * Backwards, because little endian MACS are dumb */
212 for (i = 0; i < MAC_ADDR_LEN; i++) {
213 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
214 }
215 regs->macstnaddr1 = *((uint *) (tmpbuf));
216
217 tempval = *((uint *) (tmpbuf + 4));
218
219 regs->macstnaddr2 = tempval;
220
221 /* reset the indices to zero */
222 rxIdx = 0;
223 txIdx = 0;
224
225 /* Clear out (for the most part) the other registers */
226 init_registers(regs);
227
228 /* Ready the device for tx/rx */
229 startup_tsec(dev);
230
231 /* If there's no link, fail */
232 return priv->link;
233
234 }
235
236 /* Write value to the device's PHY through the registers
237 * specified in priv, modifying the register specified in regnum.
238 * It will wait for the write to be done (or for a timeout to
239 * expire) before exiting
240 */
241 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value)
242 {
243 volatile tsec_t *regbase = priv->phyregs;
244 uint phyid = priv->phyaddr;
245 int timeout = 1000000;
246
247 regbase->miimadd = (phyid << 8) | regnum;
248 regbase->miimcon = value;
249 asm("sync");
250
251 timeout = 1000000;
252 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
253 }
254
255 /* Reads register regnum on the device's PHY through the
256 * registers specified in priv. It lowers and raises the read
257 * command, and waits for the data to become valid (miimind
258 * notvalid bit cleared), and the bus to cease activity (miimind
259 * busy bit cleared), and then returns the value
260 */
261 uint read_phy_reg(struct tsec_private *priv, uint regnum)
262 {
263 uint value;
264 volatile tsec_t *regbase = priv->phyregs;
265 uint phyid = priv->phyaddr;
266
267 /* Put the address of the phy, and the register
268 * number into MIIMADD */
269 regbase->miimadd = (phyid << 8) | regnum;
270
271 /* Clear the command register, and wait */
272 regbase->miimcom = 0;
273 asm("sync");
274
275 /* Initiate a read command, and wait */
276 regbase->miimcom = MIIM_READ_COMMAND;
277 asm("sync");
278
279 /* Wait for the the indication that the read is done */
280 while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
281
282 /* Grab the value read from the PHY */
283 value = regbase->miimstat;
284
285 return value;
286 }
287
288 /* Discover which PHY is attached to the device, and configure it
289 * properly. If the PHY is not recognized, then return 0
290 * (failure). Otherwise, return 1
291 */
292 static int init_phy(struct eth_device *dev)
293 {
294 struct tsec_private *priv = (struct tsec_private *)dev->priv;
295 struct phy_info *curphy;
296 volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
297
298 /* Assign a Physical address to the TBI */
299 regs->tbipa = TBIPA_VALUE;
300 regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
301 regs->tbipa = TBIPA_VALUE;
302 asm("sync");
303
304 /* Reset MII (due to new addresses) */
305 priv->phyregs->miimcfg = MIIMCFG_RESET;
306 asm("sync");
307 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
308 asm("sync");
309 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
310
311 if (0 == relocated)
312 relocate_cmds();
313
314 /* Get the cmd structure corresponding to the attached
315 * PHY */
316 curphy = get_phy_info(dev);
317
318 if (curphy == NULL) {
319 priv->phyinfo = NULL;
320 printf("%s: No PHY found\n", dev->name);
321
322 return 0;
323 }
324
325 priv->phyinfo = curphy;
326
327 phy_run_commands(priv, priv->phyinfo->config);
328
329 return 1;
330 }
331
332 /*
333 * Returns which value to write to the control register.
334 * For 10/100, the value is slightly different
335 */
336 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
337 {
338 if (priv->flags & TSEC_GIGABIT)
339 return MIIM_CONTROL_INIT;
340 else
341 return MIIM_CR_INIT;
342 }
343
344 /* Parse the status register for link, and then do
345 * auto-negotiation
346 */
347 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
348 {
349 /*
350 * Wait if PHY is capable of autonegotiation and autonegotiation
351 * is not complete.
352 */
353 mii_reg = read_phy_reg(priv, MIIM_STATUS);
354 if ((mii_reg & PHY_BMSR_AUTN_ABLE)
355 && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
356 int i = 0;
357
358 puts("Waiting for PHY auto negotiation to complete");
359 while (!((mii_reg & PHY_BMSR_AUTN_COMP)
360 && (mii_reg & MIIM_STATUS_LINK))) {
361 /*
362 * Timeout reached ?
363 */
364 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
365 puts(" TIMEOUT !\n");
366 priv->link = 0;
367 return 0;
368 }
369
370 if ((i++ % 1000) == 0) {
371 putc('.');
372 }
373 udelay(1000); /* 1 ms */
374 mii_reg = read_phy_reg(priv, MIIM_STATUS);
375 }
376 puts(" done\n");
377 priv->link = 1;
378 udelay(500000); /* another 500 ms (results in faster booting) */
379 } else {
380 priv->link = 1;
381 }
382
383 return 0;
384 }
385
386 /* Generic function which updates the speed and duplex. If
387 * autonegotiation is enabled, it uses the AND of the link
388 * partner's advertised capabilities and our advertised
389 * capabilities. If autonegotiation is disabled, we use the
390 * appropriate bits in the control register.
391 *
392 * Stolen from Linux's mii.c and phy_device.c
393 */
394 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
395 {
396 /* We're using autonegotiation */
397 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
398 uint lpa = 0;
399 uint gblpa = 0;
400
401 /* Check for gigabit capability */
402 if (mii_reg & PHY_BMSR_EXT) {
403 /* We want a list of states supported by
404 * both PHYs in the link
405 */
406 gblpa = read_phy_reg(priv, PHY_1000BTSR);
407 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
408 }
409
410 /* Set the baseline so we only have to set them
411 * if they're different
412 */
413 priv->speed = 10;
414 priv->duplexity = 0;
415
416 /* Check the gigabit fields */
417 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
418 priv->speed = 1000;
419
420 if (gblpa & PHY_1000BTSR_1000FD)
421 priv->duplexity = 1;
422
423 /* We're done! */
424 return 0;
425 }
426
427 lpa = read_phy_reg(priv, PHY_ANAR);
428 lpa &= read_phy_reg(priv, PHY_ANLPAR);
429
430 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
431 priv->speed = 100;
432
433 if (lpa & PHY_ANLPAR_TXFD)
434 priv->duplexity = 1;
435
436 } else if (lpa & PHY_ANLPAR_10FD)
437 priv->duplexity = 1;
438 } else {
439 uint bmcr = read_phy_reg(priv, PHY_BMCR);
440
441 priv->speed = 10;
442 priv->duplexity = 0;
443
444 if (bmcr & PHY_BMCR_DPLX)
445 priv->duplexity = 1;
446
447 if (bmcr & PHY_BMCR_1000_MBPS)
448 priv->speed = 1000;
449 else if (bmcr & PHY_BMCR_100_MBPS)
450 priv->speed = 100;
451 }
452
453 return 0;
454 }
455
456 /*
457 * Parse the BCM54xx status register for speed and duplex information.
458 * The linux sungem_phy has this information, but in a table format.
459 */
460 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
461 {
462
463 switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
464
465 case 1:
466 printf("Enet starting in 10BT/HD\n");
467 priv->duplexity = 0;
468 priv->speed = 10;
469 break;
470
471 case 2:
472 printf("Enet starting in 10BT/FD\n");
473 priv->duplexity = 1;
474 priv->speed = 10;
475 break;
476
477 case 3:
478 printf("Enet starting in 100BT/HD\n");
479 priv->duplexity = 0;
480 priv->speed = 100;
481 break;
482
483 case 5:
484 printf("Enet starting in 100BT/FD\n");
485 priv->duplexity = 1;
486 priv->speed = 100;
487 break;
488
489 case 6:
490 printf("Enet starting in 1000BT/HD\n");
491 priv->duplexity = 0;
492 priv->speed = 1000;
493 break;
494
495 case 7:
496 printf("Enet starting in 1000BT/FD\n");
497 priv->duplexity = 1;
498 priv->speed = 1000;
499 break;
500
501 default:
502 printf("Auto-neg error, defaulting to 10BT/HD\n");
503 priv->duplexity = 0;
504 priv->speed = 10;
505 break;
506 }
507
508 return 0;
509
510 }
511 /* Parse the 88E1011's status register for speed and duplex
512 * information
513 */
514 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
515 {
516 uint speed;
517
518 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
519
520 if (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) &&
521 (mii_reg & MIIM_88E1011_PHYSTAT_LINK))) {
522 int i = 0;
523
524 puts("Waiting for PHY realtime link");
525 while (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) &&
526 (mii_reg & MIIM_88E1011_PHYSTAT_LINK))) {
527 /*
528 * Timeout reached ?
529 */
530 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
531 puts(" TIMEOUT !\n");
532 priv->link = 0;
533 break;
534 }
535
536 if ((i++ % 1000) == 0) {
537 putc('.');
538 }
539 udelay(1000); /* 1 ms */
540 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
541 }
542 puts(" done\n");
543 udelay(500000); /* another 500 ms (results in faster booting) */
544 }
545
546 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
547 priv->duplexity = 1;
548 else
549 priv->duplexity = 0;
550
551 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
552
553 switch (speed) {
554 case MIIM_88E1011_PHYSTAT_GBIT:
555 priv->speed = 1000;
556 break;
557 case MIIM_88E1011_PHYSTAT_100:
558 priv->speed = 100;
559 break;
560 default:
561 priv->speed = 10;
562 }
563
564 return 0;
565 }
566
567 /* Parse the cis8201's status register for speed and duplex
568 * information
569 */
570 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
571 {
572 uint speed;
573
574 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
575 priv->duplexity = 1;
576 else
577 priv->duplexity = 0;
578
579 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
580 switch (speed) {
581 case MIIM_CIS8201_AUXCONSTAT_GBIT:
582 priv->speed = 1000;
583 break;
584 case MIIM_CIS8201_AUXCONSTAT_100:
585 priv->speed = 100;
586 break;
587 default:
588 priv->speed = 10;
589 break;
590 }
591
592 return 0;
593 }
594
595 /* Parse the vsc8244's status register for speed and duplex
596 * information
597 */
598 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
599 {
600 uint speed;
601
602 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
603 priv->duplexity = 1;
604 else
605 priv->duplexity = 0;
606
607 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
608 switch (speed) {
609 case MIIM_VSC8244_AUXCONSTAT_GBIT:
610 priv->speed = 1000;
611 break;
612 case MIIM_VSC8244_AUXCONSTAT_100:
613 priv->speed = 100;
614 break;
615 default:
616 priv->speed = 10;
617 break;
618 }
619
620 return 0;
621 }
622
623 /* Parse the DM9161's status register for speed and duplex
624 * information
625 */
626 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
627 {
628 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
629 priv->speed = 100;
630 else
631 priv->speed = 10;
632
633 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
634 priv->duplexity = 1;
635 else
636 priv->duplexity = 0;
637
638 return 0;
639 }
640
641 /*
642 * Hack to write all 4 PHYs with the LED values
643 */
644 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
645 {
646 uint phyid;
647 volatile tsec_t *regbase = priv->phyregs;
648 int timeout = 1000000;
649
650 for (phyid = 0; phyid < 4; phyid++) {
651 regbase->miimadd = (phyid << 8) | mii_reg;
652 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
653 asm("sync");
654
655 timeout = 1000000;
656 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
657 }
658
659 return MIIM_CIS8204_SLEDCON_INIT;
660 }
661
662 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
663 {
664 if (priv->flags & TSEC_REDUCED)
665 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
666 else
667 return MIIM_CIS8204_EPHYCON_INIT;
668 }
669
670 /* Initialized required registers to appropriate values, zeroing
671 * those we don't care about (unless zero is bad, in which case,
672 * choose a more appropriate value)
673 */
674 static void init_registers(volatile tsec_t * regs)
675 {
676 /* Clear IEVENT */
677 regs->ievent = IEVENT_INIT_CLEAR;
678
679 regs->imask = IMASK_INIT_CLEAR;
680
681 regs->hash.iaddr0 = 0;
682 regs->hash.iaddr1 = 0;
683 regs->hash.iaddr2 = 0;
684 regs->hash.iaddr3 = 0;
685 regs->hash.iaddr4 = 0;
686 regs->hash.iaddr5 = 0;
687 regs->hash.iaddr6 = 0;
688 regs->hash.iaddr7 = 0;
689
690 regs->hash.gaddr0 = 0;
691 regs->hash.gaddr1 = 0;
692 regs->hash.gaddr2 = 0;
693 regs->hash.gaddr3 = 0;
694 regs->hash.gaddr4 = 0;
695 regs->hash.gaddr5 = 0;
696 regs->hash.gaddr6 = 0;
697 regs->hash.gaddr7 = 0;
698
699 regs->rctrl = 0x00000000;
700
701 /* Init RMON mib registers */
702 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
703
704 regs->rmon.cam1 = 0xffffffff;
705 regs->rmon.cam2 = 0xffffffff;
706
707 regs->mrblr = MRBLR_INIT_SETTINGS;
708
709 regs->minflr = MINFLR_INIT_SETTINGS;
710
711 regs->attr = ATTR_INIT_SETTINGS;
712 regs->attreli = ATTRELI_INIT_SETTINGS;
713
714 }
715
716 /* Configure maccfg2 based on negotiated speed and duplex
717 * reported by PHY handling code
718 */
719 static void adjust_link(struct eth_device *dev)
720 {
721 struct tsec_private *priv = (struct tsec_private *)dev->priv;
722 volatile tsec_t *regs = priv->regs;
723
724 if (priv->link) {
725 if (priv->duplexity != 0)
726 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
727 else
728 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
729
730 switch (priv->speed) {
731 case 1000:
732 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
733 | MACCFG2_GMII);
734 break;
735 case 100:
736 case 10:
737 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
738 | MACCFG2_MII);
739
740 /* Set R100 bit in all modes although
741 * it is only used in RGMII mode
742 */
743 if (priv->speed == 100)
744 regs->ecntrl |= ECNTRL_R100;
745 else
746 regs->ecntrl &= ~(ECNTRL_R100);
747 break;
748 default:
749 printf("%s: Speed was bad\n", dev->name);
750 break;
751 }
752
753 printf("Speed: %d, %s duplex\n", priv->speed,
754 (priv->duplexity) ? "full" : "half");
755
756 } else {
757 printf("%s: No link.\n", dev->name);
758 }
759 }
760
761 /* Set up the buffers and their descriptors, and bring up the
762 * interface
763 */
764 static void startup_tsec(struct eth_device *dev)
765 {
766 int i;
767 struct tsec_private *priv = (struct tsec_private *)dev->priv;
768 volatile tsec_t *regs = priv->regs;
769
770 /* Point to the buffer descriptors */
771 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
772 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
773
774 /* Initialize the Rx Buffer descriptors */
775 for (i = 0; i < PKTBUFSRX; i++) {
776 rtx.rxbd[i].status = RXBD_EMPTY;
777 rtx.rxbd[i].length = 0;
778 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
779 }
780 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
781
782 /* Initialize the TX Buffer Descriptors */
783 for (i = 0; i < TX_BUF_CNT; i++) {
784 rtx.txbd[i].status = 0;
785 rtx.txbd[i].length = 0;
786 rtx.txbd[i].bufPtr = 0;
787 }
788 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
789
790 /* Start up the PHY */
791 if(priv->phyinfo)
792 phy_run_commands(priv, priv->phyinfo->startup);
793
794 adjust_link(dev);
795
796 /* Enable Transmit and Receive */
797 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
798
799 /* Tell the DMA it is clear to go */
800 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
801 regs->tstat = TSTAT_CLEAR_THALT;
802 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
803 }
804
805 /* This returns the status bits of the device. The return value
806 * is never checked, and this is what the 8260 driver did, so we
807 * do the same. Presumably, this would be zero if there were no
808 * errors
809 */
810 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
811 {
812 int i;
813 int result = 0;
814 struct tsec_private *priv = (struct tsec_private *)dev->priv;
815 volatile tsec_t *regs = priv->regs;
816
817 /* Find an empty buffer descriptor */
818 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
819 if (i >= TOUT_LOOP) {
820 debug("%s: tsec: tx buffers full\n", dev->name);
821 return result;
822 }
823 }
824
825 rtx.txbd[txIdx].bufPtr = (uint) packet;
826 rtx.txbd[txIdx].length = length;
827 rtx.txbd[txIdx].status |=
828 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
829
830 /* Tell the DMA to go */
831 regs->tstat = TSTAT_CLEAR_THALT;
832
833 /* Wait for buffer to be transmitted */
834 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
835 if (i >= TOUT_LOOP) {
836 debug("%s: tsec: tx error\n", dev->name);
837 return result;
838 }
839 }
840
841 txIdx = (txIdx + 1) % TX_BUF_CNT;
842 result = rtx.txbd[txIdx].status & TXBD_STATS;
843
844 return result;
845 }
846
847 static int tsec_recv(struct eth_device *dev)
848 {
849 int length;
850 struct tsec_private *priv = (struct tsec_private *)dev->priv;
851 volatile tsec_t *regs = priv->regs;
852
853 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
854
855 length = rtx.rxbd[rxIdx].length;
856
857 /* Send the packet up if there were no errors */
858 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
859 NetReceive(NetRxPackets[rxIdx], length - 4);
860 } else {
861 printf("Got error %x\n",
862 (rtx.rxbd[rxIdx].status & RXBD_STATS));
863 }
864
865 rtx.rxbd[rxIdx].length = 0;
866
867 /* Set the wrap bit if this is the last element in the list */
868 rtx.rxbd[rxIdx].status =
869 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
870
871 rxIdx = (rxIdx + 1) % PKTBUFSRX;
872 }
873
874 if (regs->ievent & IEVENT_BSY) {
875 regs->ievent = IEVENT_BSY;
876 regs->rstat = RSTAT_CLEAR_RHALT;
877 }
878
879 return -1;
880
881 }
882
883 /* Stop the interface */
884 static void tsec_halt(struct eth_device *dev)
885 {
886 struct tsec_private *priv = (struct tsec_private *)dev->priv;
887 volatile tsec_t *regs = priv->regs;
888
889 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
890 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
891
892 while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
893
894 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
895
896 /* Shut down the PHY, as needed */
897 if(priv->phyinfo)
898 phy_run_commands(priv, priv->phyinfo->shutdown);
899 }
900
901 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
902 struct phy_info phy_info_BCM5461S = {
903 0x02060c1, /* 5461 ID */
904 "Broadcom BCM5461S",
905 0, /* not clear to me what minor revisions we can shift away */
906 (struct phy_cmd[]) { /* config */
907 /* Reset and configure the PHY */
908 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
909 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
910 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
911 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
912 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
913 {miim_end,}
914 },
915 (struct phy_cmd[]) { /* startup */
916 /* Status is read once to clear old link state */
917 {MIIM_STATUS, miim_read, NULL},
918 /* Auto-negotiate */
919 {MIIM_STATUS, miim_read, &mii_parse_sr},
920 /* Read the status */
921 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
922 {miim_end,}
923 },
924 (struct phy_cmd[]) { /* shutdown */
925 {miim_end,}
926 },
927 };
928
929 struct phy_info phy_info_BCM5464S = {
930 0x02060b1, /* 5464 ID */
931 "Broadcom BCM5464S",
932 0, /* not clear to me what minor revisions we can shift away */
933 (struct phy_cmd[]) { /* config */
934 /* Reset and configure the PHY */
935 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
936 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
937 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
938 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
939 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
940 {miim_end,}
941 },
942 (struct phy_cmd[]) { /* startup */
943 /* Status is read once to clear old link state */
944 {MIIM_STATUS, miim_read, NULL},
945 /* Auto-negotiate */
946 {MIIM_STATUS, miim_read, &mii_parse_sr},
947 /* Read the status */
948 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
949 {miim_end,}
950 },
951 (struct phy_cmd[]) { /* shutdown */
952 {miim_end,}
953 },
954 };
955
956 struct phy_info phy_info_M88E1011S = {
957 0x01410c6,
958 "Marvell 88E1011S",
959 4,
960 (struct phy_cmd[]){ /* config */
961 /* Reset and configure the PHY */
962 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
963 {0x1d, 0x1f, NULL},
964 {0x1e, 0x200c, NULL},
965 {0x1d, 0x5, NULL},
966 {0x1e, 0x0, NULL},
967 {0x1e, 0x100, NULL},
968 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
969 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
970 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
971 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
972 {miim_end,}
973 },
974 (struct phy_cmd[]){ /* startup */
975 /* Status is read once to clear old link state */
976 {MIIM_STATUS, miim_read, NULL},
977 /* Auto-negotiate */
978 {MIIM_STATUS, miim_read, &mii_parse_sr},
979 /* Read the status */
980 {MIIM_88E1011_PHY_STATUS, miim_read,
981 &mii_parse_88E1011_psr},
982 {miim_end,}
983 },
984 (struct phy_cmd[]){ /* shutdown */
985 {miim_end,}
986 },
987 };
988
989 struct phy_info phy_info_M88E1111S = {
990 0x01410cc,
991 "Marvell 88E1111S",
992 4,
993 (struct phy_cmd[]){ /* config */
994 /* Reset and configure the PHY */
995 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
996 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
997 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
998 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
999 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1000 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1001 {miim_end,}
1002 },
1003 (struct phy_cmd[]){ /* startup */
1004 /* Status is read once to clear old link state */
1005 {MIIM_STATUS, miim_read, NULL},
1006 /* Auto-negotiate */
1007 {MIIM_STATUS, miim_read, &mii_parse_sr},
1008 /* Read the status */
1009 {MIIM_88E1011_PHY_STATUS, miim_read,
1010 &mii_parse_88E1011_psr},
1011 {miim_end,}
1012 },
1013 (struct phy_cmd[]){ /* shutdown */
1014 {miim_end,}
1015 },
1016 };
1017
1018 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1019 {
1020 uint mii_data = read_phy_reg(priv, mii_reg);
1021
1022 /* Setting MIIM_88E1145_PHY_EXT_CR */
1023 if (priv->flags & TSEC_REDUCED)
1024 return mii_data |
1025 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1026 else
1027 return mii_data;
1028 }
1029
1030 static struct phy_info phy_info_M88E1145 = {
1031 0x01410cd,
1032 "Marvell 88E1145",
1033 4,
1034 (struct phy_cmd[]){ /* config */
1035 /* Reset the PHY */
1036 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1037
1038 /* Errata E0, E1 */
1039 {29, 0x001b, NULL},
1040 {30, 0x418f, NULL},
1041 {29, 0x0016, NULL},
1042 {30, 0xa2da, NULL},
1043
1044 /* Configure the PHY */
1045 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1046 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1047 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1048 NULL},
1049 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1050 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1051 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1052 {miim_end,}
1053 },
1054 (struct phy_cmd[]){ /* startup */
1055 /* Status is read once to clear old link state */
1056 {MIIM_STATUS, miim_read, NULL},
1057 /* Auto-negotiate */
1058 {MIIM_STATUS, miim_read, &mii_parse_sr},
1059 {MIIM_88E1111_PHY_LED_CONTROL,
1060 MIIM_88E1111_PHY_LED_DIRECT, NULL},
1061 /* Read the Status */
1062 {MIIM_88E1011_PHY_STATUS, miim_read,
1063 &mii_parse_88E1011_psr},
1064 {miim_end,}
1065 },
1066 (struct phy_cmd[]){ /* shutdown */
1067 {miim_end,}
1068 },
1069 };
1070
1071 struct phy_info phy_info_cis8204 = {
1072 0x3f11,
1073 "Cicada Cis8204",
1074 6,
1075 (struct phy_cmd[]){ /* config */
1076 /* Override PHY config settings */
1077 {MIIM_CIS8201_AUX_CONSTAT,
1078 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1079 /* Configure some basic stuff */
1080 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1081 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1082 &mii_cis8204_fixled},
1083 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1084 &mii_cis8204_setmode},
1085 {miim_end,}
1086 },
1087 (struct phy_cmd[]){ /* startup */
1088 /* Read the Status (2x to make sure link is right) */
1089 {MIIM_STATUS, miim_read, NULL},
1090 /* Auto-negotiate */
1091 {MIIM_STATUS, miim_read, &mii_parse_sr},
1092 /* Read the status */
1093 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1094 &mii_parse_cis8201},
1095 {miim_end,}
1096 },
1097 (struct phy_cmd[]){ /* shutdown */
1098 {miim_end,}
1099 },
1100 };
1101
1102 /* Cicada 8201 */
1103 struct phy_info phy_info_cis8201 = {
1104 0xfc41,
1105 "CIS8201",
1106 4,
1107 (struct phy_cmd[]){ /* config */
1108 /* Override PHY config settings */
1109 {MIIM_CIS8201_AUX_CONSTAT,
1110 MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1111 /* Set up the interface mode */
1112 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1113 NULL},
1114 /* Configure some basic stuff */
1115 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1116 {miim_end,}
1117 },
1118 (struct phy_cmd[]){ /* startup */
1119 /* Read the Status (2x to make sure link is right) */
1120 {MIIM_STATUS, miim_read, NULL},
1121 /* Auto-negotiate */
1122 {MIIM_STATUS, miim_read, &mii_parse_sr},
1123 /* Read the status */
1124 {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1125 &mii_parse_cis8201},
1126 {miim_end,}
1127 },
1128 (struct phy_cmd[]){ /* shutdown */
1129 {miim_end,}
1130 },
1131 };
1132 struct phy_info phy_info_VSC8244 = {
1133 0x3f1b,
1134 "Vitesse VSC8244",
1135 6,
1136 (struct phy_cmd[]){ /* config */
1137 /* Override PHY config settings */
1138 /* Configure some basic stuff */
1139 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1140 {miim_end,}
1141 },
1142 (struct phy_cmd[]){ /* startup */
1143 /* Read the Status (2x to make sure link is right) */
1144 {MIIM_STATUS, miim_read, NULL},
1145 /* Auto-negotiate */
1146 {MIIM_STATUS, miim_read, &mii_parse_sr},
1147 /* Read the status */
1148 {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1149 &mii_parse_vsc8244},
1150 {miim_end,}
1151 },
1152 (struct phy_cmd[]){ /* shutdown */
1153 {miim_end,}
1154 },
1155 };
1156
1157 struct phy_info phy_info_dm9161 = {
1158 0x0181b88,
1159 "Davicom DM9161E",
1160 4,
1161 (struct phy_cmd[]){ /* config */
1162 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1163 /* Do not bypass the scrambler/descrambler */
1164 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1165 /* Clear 10BTCSR to default */
1166 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1167 NULL},
1168 /* Configure some basic stuff */
1169 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1170 /* Restart Auto Negotiation */
1171 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1172 {miim_end,}
1173 },
1174 (struct phy_cmd[]){ /* startup */
1175 /* Status is read once to clear old link state */
1176 {MIIM_STATUS, miim_read, NULL},
1177 /* Auto-negotiate */
1178 {MIIM_STATUS, miim_read, &mii_parse_sr},
1179 /* Read the status */
1180 {MIIM_DM9161_SCSR, miim_read,
1181 &mii_parse_dm9161_scsr},
1182 {miim_end,}
1183 },
1184 (struct phy_cmd[]){ /* shutdown */
1185 {miim_end,}
1186 },
1187 };
1188 /* a generic flavor. */
1189 struct phy_info phy_info_generic = {
1190 0,
1191 "Unknown/Generic PHY",
1192 32,
1193 (struct phy_cmd[]) { /* config */
1194 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1195 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1196 {miim_end,}
1197 },
1198 (struct phy_cmd[]) { /* startup */
1199 {PHY_BMSR, miim_read, NULL},
1200 {PHY_BMSR, miim_read, &mii_parse_sr},
1201 {PHY_BMSR, miim_read, &mii_parse_link},
1202 {miim_end,}
1203 },
1204 (struct phy_cmd[]) { /* shutdown */
1205 {miim_end,}
1206 }
1207 };
1208
1209
1210 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1211 {
1212 unsigned int speed;
1213 if (priv->link) {
1214 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1215
1216 switch (speed) {
1217 case MIIM_LXT971_SR2_10HDX:
1218 priv->speed = 10;
1219 priv->duplexity = 0;
1220 break;
1221 case MIIM_LXT971_SR2_10FDX:
1222 priv->speed = 10;
1223 priv->duplexity = 1;
1224 break;
1225 case MIIM_LXT971_SR2_100HDX:
1226 priv->speed = 100;
1227 priv->duplexity = 0;
1228 default:
1229 priv->speed = 100;
1230 priv->duplexity = 1;
1231 break;
1232 }
1233 } else {
1234 priv->speed = 0;
1235 priv->duplexity = 0;
1236 }
1237
1238 return 0;
1239 }
1240
1241 static struct phy_info phy_info_lxt971 = {
1242 0x0001378e,
1243 "LXT971",
1244 4,
1245 (struct phy_cmd[]){ /* config */
1246 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1247 {miim_end,}
1248 },
1249 (struct phy_cmd[]){ /* startup - enable interrupts */
1250 /* { 0x12, 0x00f2, NULL }, */
1251 {MIIM_STATUS, miim_read, NULL},
1252 {MIIM_STATUS, miim_read, &mii_parse_sr},
1253 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1254 {miim_end,}
1255 },
1256 (struct phy_cmd[]){ /* shutdown - disable interrupts */
1257 {miim_end,}
1258 },
1259 };
1260
1261 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1262 * information
1263 */
1264 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1265 {
1266 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1267
1268 case MIIM_DP83865_SPD_1000:
1269 priv->speed = 1000;
1270 break;
1271
1272 case MIIM_DP83865_SPD_100:
1273 priv->speed = 100;
1274 break;
1275
1276 default:
1277 priv->speed = 10;
1278 break;
1279
1280 }
1281
1282 if (mii_reg & MIIM_DP83865_DPX_FULL)
1283 priv->duplexity = 1;
1284 else
1285 priv->duplexity = 0;
1286
1287 return 0;
1288 }
1289
1290 struct phy_info phy_info_dp83865 = {
1291 0x20005c7,
1292 "NatSemi DP83865",
1293 4,
1294 (struct phy_cmd[]){ /* config */
1295 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1296 {miim_end,}
1297 },
1298 (struct phy_cmd[]){ /* startup */
1299 /* Status is read once to clear old link state */
1300 {MIIM_STATUS, miim_read, NULL},
1301 /* Auto-negotiate */
1302 {MIIM_STATUS, miim_read, &mii_parse_sr},
1303 /* Read the link and auto-neg status */
1304 {MIIM_DP83865_LANR, miim_read,
1305 &mii_parse_dp83865_lanr},
1306 {miim_end,}
1307 },
1308 (struct phy_cmd[]){ /* shutdown */
1309 {miim_end,}
1310 },
1311 };
1312
1313 struct phy_info *phy_info[] = {
1314 &phy_info_cis8204,
1315 &phy_info_cis8201,
1316 &phy_info_BCM5461S,
1317 &phy_info_BCM5464S,
1318 &phy_info_M88E1011S,
1319 &phy_info_M88E1111S,
1320 &phy_info_M88E1145,
1321 &phy_info_dm9161,
1322 &phy_info_lxt971,
1323 &phy_info_VSC8244,
1324 &phy_info_dp83865,
1325 &phy_info_generic,
1326 NULL
1327 };
1328
1329 /* Grab the identifier of the device's PHY, and search through
1330 * all of the known PHYs to see if one matches. If so, return
1331 * it, if not, return NULL
1332 */
1333 struct phy_info *get_phy_info(struct eth_device *dev)
1334 {
1335 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1336 uint phy_reg, phy_ID;
1337 int i;
1338 struct phy_info *theInfo = NULL;
1339
1340 /* Grab the bits from PHYIR1, and put them in the upper half */
1341 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1342 phy_ID = (phy_reg & 0xffff) << 16;
1343
1344 /* Grab the bits from PHYIR2, and put them in the lower half */
1345 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1346 phy_ID |= (phy_reg & 0xffff);
1347
1348 /* loop through all the known PHY types, and find one that */
1349 /* matches the ID we read from the PHY. */
1350 for (i = 0; phy_info[i]; i++) {
1351 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1352 theInfo = phy_info[i];
1353 break;
1354 }
1355 }
1356
1357 if (theInfo == NULL) {
1358 printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1359 return NULL;
1360 } else {
1361 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1362 }
1363
1364 return theInfo;
1365 }
1366
1367 /* Execute the given series of commands on the given device's
1368 * PHY, running functions as necessary
1369 */
1370 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1371 {
1372 int i;
1373 uint result;
1374 volatile tsec_t *phyregs = priv->phyregs;
1375
1376 phyregs->miimcfg = MIIMCFG_RESET;
1377
1378 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1379
1380 while (phyregs->miimind & MIIMIND_BUSY) ;
1381
1382 for (i = 0; cmd->mii_reg != miim_end; i++) {
1383 if (cmd->mii_data == miim_read) {
1384 result = read_phy_reg(priv, cmd->mii_reg);
1385
1386 if (cmd->funct != NULL)
1387 (*(cmd->funct)) (result, priv);
1388
1389 } else {
1390 if (cmd->funct != NULL)
1391 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1392 else
1393 result = cmd->mii_data;
1394
1395 write_phy_reg(priv, cmd->mii_reg, result);
1396
1397 }
1398 cmd++;
1399 }
1400 }
1401
1402 /* Relocate the function pointers in the phy cmd lists */
1403 static void relocate_cmds(void)
1404 {
1405 struct phy_cmd **cmdlistptr;
1406 struct phy_cmd *cmd;
1407 int i, j, k;
1408
1409 for (i = 0; phy_info[i]; i++) {
1410 /* First thing's first: relocate the pointers to the
1411 * PHY command structures (the structs were done) */
1412 phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1413 + gd->reloc_off);
1414 phy_info[i]->name += gd->reloc_off;
1415 phy_info[i]->config =
1416 (struct phy_cmd *)((uint) phy_info[i]->config
1417 + gd->reloc_off);
1418 phy_info[i]->startup =
1419 (struct phy_cmd *)((uint) phy_info[i]->startup
1420 + gd->reloc_off);
1421 phy_info[i]->shutdown =
1422 (struct phy_cmd *)((uint) phy_info[i]->shutdown
1423 + gd->reloc_off);
1424
1425 cmdlistptr = &phy_info[i]->config;
1426 j = 0;
1427 for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1428 k = 0;
1429 for (cmd = *cmdlistptr;
1430 cmd->mii_reg != miim_end;
1431 cmd++) {
1432 /* Only relocate non-NULL pointers */
1433 if (cmd->funct)
1434 cmd->funct += gd->reloc_off;
1435
1436 k++;
1437 }
1438 j++;
1439 }
1440 }
1441
1442 relocated = 1;
1443 }
1444
1445 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1446 && !defined(BITBANGMII)
1447
1448 struct tsec_private *get_priv_for_phy(unsigned char phyaddr)
1449 {
1450 int i;
1451
1452 for (i = 0; i < MAXCONTROLLERS; i++) {
1453 if (privlist[i]->phyaddr == phyaddr)
1454 return privlist[i];
1455 }
1456
1457 return NULL;
1458 }
1459
1460 /*
1461 * Read a MII PHY register.
1462 *
1463 * Returns:
1464 * 0 on success
1465 */
1466 static int tsec_miiphy_read(char *devname, unsigned char addr,
1467 unsigned char reg, unsigned short *value)
1468 {
1469 unsigned short ret;
1470 struct tsec_private *priv = get_priv_for_phy(addr);
1471
1472 if (NULL == priv) {
1473 printf("Can't read PHY at address %d\n", addr);
1474 return -1;
1475 }
1476
1477 ret = (unsigned short)read_phy_reg(priv, reg);
1478 *value = ret;
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Write a MII PHY register.
1485 *
1486 * Returns:
1487 * 0 on success
1488 */
1489 static int tsec_miiphy_write(char *devname, unsigned char addr,
1490 unsigned char reg, unsigned short value)
1491 {
1492 struct tsec_private *priv = get_priv_for_phy(addr);
1493
1494 if (NULL == priv) {
1495 printf("Can't write PHY at address %d\n", addr);
1496 return -1;
1497 }
1498
1499 write_phy_reg(priv, reg, value);
1500
1501 return 0;
1502 }
1503
1504 #endif
1505
1506 #endif /* CONFIG_TSEC_ENET */