]> git.ipfire.org Git - people/ms/u-boot.git/blob - nand_spl/nand_boot.c
NAND: Add 16bit NAND support for the NDFC
[people/ms/u-boot.git] / nand_spl / nand_boot.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
26
27 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
28 /*
29 * NAND command for small page NAND devices (512)
30 */
31 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
32 {
33 struct nand_chip *this = mtd->priv;
34 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
35
36 while (!this->dev_ready(mtd))
37 ;
38
39 /* Begin command latch cycle */
40 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
41 /* Set ALE and clear CLE to start address cycle */
42 /* Column address */
43 this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
44 this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
45 this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
46 NAND_CTRL_ALE); /* A[24:17] */
47 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
48 /* One more address cycle for devices > 32MiB */
49 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
50 NAND_CTRL_ALE); /* A[28:25] */
51 #endif
52 /* Latch in address */
53 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
54
55 /*
56 * Wait a while for the data to be ready
57 */
58 while (!this->dev_ready(mtd))
59 ;
60
61 return 0;
62 }
63 #else
64 /*
65 * NAND command for large page NAND devices (2k)
66 */
67 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
68 {
69 struct nand_chip *this = mtd->priv;
70 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
71 void (*hwctrl)(struct mtd_info *mtd, int cmd,
72 unsigned int ctrl) = this->cmd_ctrl;
73
74 while (!this->dev_ready(mtd))
75 ;
76
77 /* Emulate NAND_CMD_READOOB */
78 if (cmd == NAND_CMD_READOOB) {
79 offs += CONFIG_SYS_NAND_PAGE_SIZE;
80 cmd = NAND_CMD_READ0;
81 }
82
83 /* Shift the offset from byte addressing to word addressing. */
84 if (this->options & NAND_BUSWIDTH_16)
85 offs >>= 1;
86
87 /* Begin command latch cycle */
88 hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
89 /* Set ALE and clear CLE to start address cycle */
90 /* Column address */
91 hwctrl(mtd, offs & 0xff,
92 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
93 hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
94 /* Row address */
95 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
96 hwctrl(mtd, ((page_addr >> 8) & 0xff),
97 NAND_CTRL_ALE); /* A[27:20] */
98 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
99 /* One more address cycle for devices > 128MiB */
100 hwctrl(mtd, (page_addr >> 16) & 0x0f,
101 NAND_CTRL_ALE); /* A[31:28] */
102 #endif
103 /* Latch in address */
104 hwctrl(mtd, NAND_CMD_READSTART,
105 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
106 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
107
108 /*
109 * Wait a while for the data to be ready
110 */
111 while (!this->dev_ready(mtd))
112 ;
113
114 return 0;
115 }
116 #endif
117
118 static int nand_is_bad_block(struct mtd_info *mtd, int block)
119 {
120 struct nand_chip *this = mtd->priv;
121
122 nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
123
124 /*
125 * Read one byte (or two if it's a 16 bit chip).
126 */
127 if (this->options & NAND_BUSWIDTH_16) {
128 if (readw(this->IO_ADDR_R) != 0xffff)
129 return 1;
130 } else {
131 if (readb(this->IO_ADDR_R) != 0xff)
132 return 1;
133 }
134
135 return 0;
136 }
137
138 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
139 {
140 struct nand_chip *this = mtd->priv;
141 u_char *ecc_calc;
142 u_char *ecc_code;
143 u_char *oob_data;
144 int i;
145 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
146 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
147 int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
148 uint8_t *p = dst;
149 int stat;
150
151 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
152
153 /* No malloc available for now, just use some temporary locations
154 * in SDRAM
155 */
156 ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
157 ecc_code = ecc_calc + 0x100;
158 oob_data = ecc_calc + 0x200;
159
160 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
161 this->ecc.hwctl(mtd, NAND_ECC_READ);
162 this->read_buf(mtd, p, eccsize);
163 this->ecc.calculate(mtd, p, &ecc_calc[i]);
164 }
165 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
166
167 /* Pick the ECC bytes out of the oob data */
168 for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
169 ecc_code[i] = oob_data[nand_ecc_pos[i]];
170
171 eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
172 p = dst;
173
174 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
175 /* No chance to do something with the possible error message
176 * from correct_data(). We just hope that all possible errors
177 * are corrected by this routine.
178 */
179 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
180 }
181
182 return 0;
183 }
184
185 static int nand_load(struct mtd_info *mtd, unsigned int offs,
186 unsigned int uboot_size, uchar *dst)
187 {
188 unsigned int block, lastblock;
189 unsigned int page;
190
191 /*
192 * offs has to be aligned to a page address!
193 */
194 block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
195 lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
196 page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
197
198 while (block <= lastblock) {
199 if (!nand_is_bad_block(mtd, block)) {
200 /*
201 * Skip bad blocks
202 */
203 while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
204 nand_read_page(mtd, block, page, dst);
205 dst += CONFIG_SYS_NAND_PAGE_SIZE;
206 page++;
207 }
208
209 page = 0;
210 } else {
211 lastblock++;
212 }
213
214 block++;
215 }
216
217 return 0;
218 }
219
220 /*
221 * The main entry for NAND booting. It's necessary that SDRAM is already
222 * configured and available since this code loads the main U-Boot image
223 * from NAND into SDRAM and starts it from there.
224 */
225 void nand_boot(void)
226 {
227 struct nand_chip nand_chip;
228 nand_info_t nand_info;
229 int ret;
230 __attribute__((noreturn)) void (*uboot)(void);
231
232 /*
233 * Init board specific nand support
234 */
235 nand_chip.select_chip = NULL;
236 nand_info.priv = &nand_chip;
237 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
238 nand_chip.dev_ready = NULL; /* preset to NULL */
239 nand_chip.options = 0;
240 board_nand_init(&nand_chip);
241
242 if (nand_chip.select_chip)
243 nand_chip.select_chip(&nand_info, 0);
244
245 /*
246 * Load U-Boot image from NAND into RAM
247 */
248 ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
249 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
250
251 #ifdef CONFIG_NAND_ENV_DST
252 nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
253 (uchar *)CONFIG_NAND_ENV_DST);
254
255 #ifdef CONFIG_ENV_OFFSET_REDUND
256 nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
257 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
258 #endif
259 #endif
260
261 if (nand_chip.select_chip)
262 nand_chip.select_chip(&nand_info, -1);
263
264 /*
265 * Jump to U-Boot image
266 */
267 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
268 (*uboot)();
269 }