]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Change exp_uses_objfile to return bool
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
3666a048 3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
03070ee9 60#include "ada-exp.h"
ccefe4c4 61
4c4b4cd2 62/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 63 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
64 Copied from valarith.c. */
65
66#ifndef TRUNCATION_TOWARDS_ZERO
67#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68#endif
69
d2e4a39e 70static struct type *desc_base_type (struct type *);
14f9c5c9 71
d2e4a39e 72static struct type *desc_bounds_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct value *desc_bounds (struct value *);
14f9c5c9 75
d2e4a39e 76static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 79
556bdfd4 80static struct type *desc_data_target_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_data (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 89
d2e4a39e 90static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static struct type *desc_index_type (struct type *, int);
14f9c5c9 95
d2e4a39e 96static int desc_arity (struct type *);
14f9c5c9 97
d2e4a39e 98static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 99
d2e4a39e 100static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 101
40bc484c 102static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 103
d1183b06 104static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
14f9c5c9 108
d1183b06
TT
109static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
b5ec771e
PA
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
22cee43f 113
d1183b06 114static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 115
d1183b06
TT
116static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
dda83cd7 118 const struct block *);
14f9c5c9 119
d2e4a39e 120static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 121
4c4b4cd2 122static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 123
d2e4a39e 124static int numeric_type_p (struct type *);
14f9c5c9 125
d2e4a39e 126static int integer_type_p (struct type *);
14f9c5c9 127
d2e4a39e 128static int scalar_type_p (struct type *);
14f9c5c9 129
d2e4a39e 130static int discrete_type_p (struct type *);
14f9c5c9 131
a121b7c1 132static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 133 int, int);
4c4b4cd2 134
b4ba55a1 135static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 136 const char *);
b4ba55a1 137
d2e4a39e 138static int is_dynamic_field (struct type *, int);
14f9c5c9 139
10a2c479 140static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 141 const gdb_byte *,
dda83cd7 142 CORE_ADDR, struct value *);
4c4b4cd2
PH
143
144static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 145
28c85d6c 146static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 147
d2e4a39e 148static struct type *to_static_fixed_type (struct type *);
f192137b 149static struct type *static_unwrap_type (struct type *type);
14f9c5c9 150
d2e4a39e 151static struct value *unwrap_value (struct value *);
14f9c5c9 152
ad82864c 153static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 154
ad82864c 155static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 156
ad82864c
JB
157static long decode_packed_array_bitsize (struct type *);
158
159static struct value *decode_constrained_packed_array (struct value *);
160
ad82864c 161static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 162
d2e4a39e 163static struct value *value_subscript_packed (struct value *, int,
dda83cd7 164 struct value **);
14f9c5c9 165
4c4b4cd2 166static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 167 struct type *);
14f9c5c9 168
d2e4a39e 169static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 170
d2e4a39e 171static int equiv_types (struct type *, struct type *);
14f9c5c9 172
d2e4a39e 173static int is_name_suffix (const char *);
14f9c5c9 174
59c8a30b 175static int advance_wild_match (const char **, const char *, char);
73589123 176
b5ec771e 177static bool wild_match (const char *name, const char *patn);
14f9c5c9 178
d2e4a39e 179static struct value *ada_coerce_ref (struct value *);
14f9c5c9 180
4c4b4cd2
PH
181static LONGEST pos_atr (struct value *);
182
53a47a3e
TT
183static struct value *val_atr (struct type *, LONGEST);
184
4c4b4cd2 185static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 186 domain_enum);
14f9c5c9 187
108d56a4 188static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 189 struct type *);
4c4b4cd2 190
0d5cff50 191static int find_struct_field (const char *, struct type *, int,
dda83cd7 192 struct type **, int *, int *, int *, int *);
4c4b4cd2 193
d1183b06 194static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7
SM
195 struct value **, int, const char *,
196 struct type *, int);
4c4b4cd2 197
4c4b4cd2
PH
198static int ada_is_direct_array_type (struct type *);
199
52ce6436
PH
200static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
cf608cc4 203static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
204
205
852dff6c 206static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
207
208static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
4c4b4cd2
PH
211\f
212
ee01b665
JB
213/* The result of a symbol lookup to be stored in our symbol cache. */
214
215struct cache_entry
216{
217 /* The name used to perform the lookup. */
218 const char *name;
219 /* The namespace used during the lookup. */
fe978cb0 220 domain_enum domain;
ee01b665
JB
221 /* The symbol returned by the lookup, or NULL if no matching symbol
222 was found. */
223 struct symbol *sym;
224 /* The block where the symbol was found, or NULL if no matching
225 symbol was found. */
226 const struct block *block;
227 /* A pointer to the next entry with the same hash. */
228 struct cache_entry *next;
229};
230
231/* The Ada symbol cache, used to store the result of Ada-mode symbol
232 lookups in the course of executing the user's commands.
233
234 The cache is implemented using a simple, fixed-sized hash.
235 The size is fixed on the grounds that there are not likely to be
236 all that many symbols looked up during any given session, regardless
237 of the size of the symbol table. If we decide to go to a resizable
238 table, let's just use the stuff from libiberty instead. */
239
240#define HASH_SIZE 1009
241
242struct ada_symbol_cache
243{
244 /* An obstack used to store the entries in our cache. */
bdcccc56 245 struct auto_obstack cache_space;
ee01b665
JB
246
247 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 248 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
249};
250
4c4b4cd2 251/* Maximum-sized dynamic type. */
14f9c5c9
AS
252static unsigned int varsize_limit;
253
67cb5b2d 254static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
255#ifdef VMS
256 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257#else
14f9c5c9 258 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 259#endif
14f9c5c9 260
4c4b4cd2 261/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 262static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 263 = "__gnat_ada_main_program_name";
14f9c5c9 264
4c4b4cd2
PH
265/* Limit on the number of warnings to raise per expression evaluation. */
266static int warning_limit = 2;
267
268/* Number of warning messages issued; reset to 0 by cleanups after
269 expression evaluation. */
270static int warnings_issued = 0;
271
27087b7f 272static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
273 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
274};
275
27087b7f 276static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
277 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
278};
279
c6044dd1
JB
280/* Maintenance-related settings for this module. */
281
282static struct cmd_list_element *maint_set_ada_cmdlist;
283static struct cmd_list_element *maint_show_ada_cmdlist;
284
c6044dd1
JB
285/* The "maintenance ada set/show ignore-descriptive-type" value. */
286
491144b5 287static bool ada_ignore_descriptive_types_p = false;
c6044dd1 288
e802dbe0
JB
289 /* Inferior-specific data. */
290
291/* Per-inferior data for this module. */
292
293struct ada_inferior_data
294{
295 /* The ada__tags__type_specific_data type, which is used when decoding
296 tagged types. With older versions of GNAT, this type was directly
297 accessible through a component ("tsd") in the object tag. But this
298 is no longer the case, so we cache it for each inferior. */
f37b313d 299 struct type *tsd_type = nullptr;
3eecfa55
JB
300
301 /* The exception_support_info data. This data is used to determine
302 how to implement support for Ada exception catchpoints in a given
303 inferior. */
f37b313d 304 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
305};
306
307/* Our key to this module's inferior data. */
f37b313d 308static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
309
310/* Return our inferior data for the given inferior (INF).
311
312 This function always returns a valid pointer to an allocated
313 ada_inferior_data structure. If INF's inferior data has not
314 been previously set, this functions creates a new one with all
315 fields set to zero, sets INF's inferior to it, and then returns
316 a pointer to that newly allocated ada_inferior_data. */
317
318static struct ada_inferior_data *
319get_ada_inferior_data (struct inferior *inf)
320{
321 struct ada_inferior_data *data;
322
f37b313d 323 data = ada_inferior_data.get (inf);
e802dbe0 324 if (data == NULL)
f37b313d 325 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
326
327 return data;
328}
329
330/* Perform all necessary cleanups regarding our module's inferior data
331 that is required after the inferior INF just exited. */
332
333static void
334ada_inferior_exit (struct inferior *inf)
335{
f37b313d 336 ada_inferior_data.clear (inf);
e802dbe0
JB
337}
338
ee01b665
JB
339
340 /* program-space-specific data. */
341
342/* This module's per-program-space data. */
343struct ada_pspace_data
344{
345 /* The Ada symbol cache. */
bdcccc56 346 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
347};
348
349/* Key to our per-program-space data. */
f37b313d 350static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
351
352/* Return this module's data for the given program space (PSPACE).
353 If not is found, add a zero'ed one now.
354
355 This function always returns a valid object. */
356
357static struct ada_pspace_data *
358get_ada_pspace_data (struct program_space *pspace)
359{
360 struct ada_pspace_data *data;
361
f37b313d 362 data = ada_pspace_data_handle.get (pspace);
ee01b665 363 if (data == NULL)
f37b313d 364 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
365
366 return data;
367}
368
dda83cd7 369 /* Utilities */
4c4b4cd2 370
720d1a40 371/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 372 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398static struct type *
399ada_typedef_target_type (struct type *type)
400{
78134374 401 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404}
405
41d27058
JB
406/* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410static const char *
411ada_unqualified_name (const char *decoded_name)
412{
2b0f535a
JB
413 const char *result;
414
415 /* If the decoded name starts with '<', it means that the encoded
416 name does not follow standard naming conventions, and thus that
417 it is not your typical Ada symbol name. Trying to unqualify it
418 is therefore pointless and possibly erroneous. */
419 if (decoded_name[0] == '<')
420 return decoded_name;
421
422 result = strrchr (decoded_name, '.');
41d27058
JB
423 if (result != NULL)
424 result++; /* Skip the dot... */
425 else
426 result = decoded_name;
427
428 return result;
429}
430
39e7af3e 431/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 432
39e7af3e 433static std::string
41d27058
JB
434add_angle_brackets (const char *str)
435{
39e7af3e 436 return string_printf ("<%s>", str);
41d27058 437}
96d887e8 438
14f9c5c9 439/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 440 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
441
442static int
ebf56fd3 443field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
444{
445 int len = strlen (target);
5b4ee69b 446
d2e4a39e 447 return
4c4b4cd2
PH
448 (strncmp (field_name, target, len) == 0
449 && (field_name[len] == '\0'
dda83cd7
SM
450 || (startswith (field_name + len, "___")
451 && strcmp (field_name + strlen (field_name) - 6,
452 "___XVN") != 0)));
14f9c5c9
AS
453}
454
455
872c8b51
JB
456/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
457 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
458 and return its index. This function also handles fields whose name
459 have ___ suffixes because the compiler sometimes alters their name
460 by adding such a suffix to represent fields with certain constraints.
461 If the field could not be found, return a negative number if
462 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
463
464int
465ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 466 int maybe_missing)
4c4b4cd2
PH
467{
468 int fieldno;
872c8b51
JB
469 struct type *struct_type = check_typedef ((struct type *) type);
470
1f704f76 471 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 472 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
473 return fieldno;
474
475 if (!maybe_missing)
323e0a4a 476 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 477 field_name, struct_type->name ());
4c4b4cd2
PH
478
479 return -1;
480}
481
482/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
483
484int
d2e4a39e 485ada_name_prefix_len (const char *name)
14f9c5c9
AS
486{
487 if (name == NULL)
488 return 0;
d2e4a39e 489 else
14f9c5c9 490 {
d2e4a39e 491 const char *p = strstr (name, "___");
5b4ee69b 492
14f9c5c9 493 if (p == NULL)
dda83cd7 494 return strlen (name);
14f9c5c9 495 else
dda83cd7 496 return p - name;
14f9c5c9
AS
497 }
498}
499
4c4b4cd2
PH
500/* Return non-zero if SUFFIX is a suffix of STR.
501 Return zero if STR is null. */
502
14f9c5c9 503static int
d2e4a39e 504is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
505{
506 int len1, len2;
5b4ee69b 507
14f9c5c9
AS
508 if (str == NULL)
509 return 0;
510 len1 = strlen (str);
511 len2 = strlen (suffix);
4c4b4cd2 512 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
513}
514
4c4b4cd2
PH
515/* The contents of value VAL, treated as a value of type TYPE. The
516 result is an lval in memory if VAL is. */
14f9c5c9 517
d2e4a39e 518static struct value *
4c4b4cd2 519coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 520{
61ee279c 521 type = ada_check_typedef (type);
df407dfe 522 if (value_type (val) == type)
4c4b4cd2 523 return val;
d2e4a39e 524 else
14f9c5c9 525 {
4c4b4cd2
PH
526 struct value *result;
527
528 /* Make sure that the object size is not unreasonable before
dda83cd7 529 trying to allocate some memory for it. */
c1b5a1a6 530 ada_ensure_varsize_limit (type);
4c4b4cd2 531
f73e424f
TT
532 if (value_optimized_out (val))
533 result = allocate_optimized_out_value (type);
534 else if (value_lazy (val)
535 /* Be careful not to make a lazy not_lval value. */
536 || (VALUE_LVAL (val) != not_lval
537 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
41e8491f
JK
538 result = allocate_value_lazy (type);
539 else
540 {
541 result = allocate_value (type);
f73e424f 542 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 543 }
74bcbdf3 544 set_value_component_location (result, val);
9bbda503
AC
545 set_value_bitsize (result, value_bitsize (val));
546 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
547 if (VALUE_LVAL (result) == lval_memory)
548 set_value_address (result, value_address (val));
14f9c5c9
AS
549 return result;
550 }
551}
552
fc1a4b47
AC
553static const gdb_byte *
554cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
555{
556 if (valaddr == NULL)
557 return NULL;
558 else
559 return valaddr + offset;
560}
561
562static CORE_ADDR
ebf56fd3 563cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
564{
565 if (address == 0)
566 return 0;
d2e4a39e 567 else
14f9c5c9
AS
568 return address + offset;
569}
570
4c4b4cd2
PH
571/* Issue a warning (as for the definition of warning in utils.c, but
572 with exactly one argument rather than ...), unless the limit on the
573 number of warnings has passed during the evaluation of the current
574 expression. */
a2249542 575
77109804
AC
576/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
577 provided by "complaint". */
a0b31db1 578static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 579
14f9c5c9 580static void
a2249542 581lim_warning (const char *format, ...)
14f9c5c9 582{
a2249542 583 va_list args;
a2249542 584
5b4ee69b 585 va_start (args, format);
4c4b4cd2
PH
586 warnings_issued += 1;
587 if (warnings_issued <= warning_limit)
a2249542
MK
588 vwarning (format, args);
589
590 va_end (args);
4c4b4cd2
PH
591}
592
714e53ab
PH
593/* Issue an error if the size of an object of type T is unreasonable,
594 i.e. if it would be a bad idea to allocate a value of this type in
595 GDB. */
596
c1b5a1a6
JB
597void
598ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
599{
600 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 601 error (_("object size is larger than varsize-limit"));
714e53ab
PH
602}
603
0963b4bd 604/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 605static LONGEST
c3e5cd34 606max_of_size (int size)
4c4b4cd2 607{
76a01679 608 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 609
76a01679 610 return top_bit | (top_bit - 1);
4c4b4cd2
PH
611}
612
0963b4bd 613/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 614static LONGEST
c3e5cd34 615min_of_size (int size)
4c4b4cd2 616{
c3e5cd34 617 return -max_of_size (size) - 1;
4c4b4cd2
PH
618}
619
0963b4bd 620/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 621static ULONGEST
c3e5cd34 622umax_of_size (int size)
4c4b4cd2 623{
76a01679 624 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 625
76a01679 626 return top_bit | (top_bit - 1);
4c4b4cd2
PH
627}
628
0963b4bd 629/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
630static LONGEST
631max_of_type (struct type *t)
4c4b4cd2 632{
c6d940a9 633 if (t->is_unsigned ())
c3e5cd34
PH
634 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 else
636 return max_of_size (TYPE_LENGTH (t));
637}
638
0963b4bd 639/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
640static LONGEST
641min_of_type (struct type *t)
642{
c6d940a9 643 if (t->is_unsigned ())
c3e5cd34
PH
644 return 0;
645 else
646 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
647}
648
649/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
650LONGEST
651ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 652{
b249d2c2 653 type = resolve_dynamic_type (type, {}, 0);
78134374 654 switch (type->code ())
4c4b4cd2
PH
655 {
656 case TYPE_CODE_RANGE:
d1fd641e
SM
657 {
658 const dynamic_prop &high = type->bounds ()->high;
659
660 if (high.kind () == PROP_CONST)
661 return high.const_val ();
662 else
663 {
664 gdb_assert (high.kind () == PROP_UNDEFINED);
665
666 /* This happens when trying to evaluate a type's dynamic bound
667 without a live target. There is nothing relevant for us to
668 return here, so return 0. */
669 return 0;
670 }
671 }
4c4b4cd2 672 case TYPE_CODE_ENUM:
1f704f76 673 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
674 case TYPE_CODE_BOOL:
675 return 1;
676 case TYPE_CODE_CHAR:
76a01679 677 case TYPE_CODE_INT:
690cc4eb 678 return max_of_type (type);
4c4b4cd2 679 default:
43bbcdc2 680 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
681 }
682}
683
14e75d8e 684/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 687{
b249d2c2 688 type = resolve_dynamic_type (type, {}, 0);
78134374 689 switch (type->code ())
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
d1fd641e
SM
692 {
693 const dynamic_prop &low = type->bounds ()->low;
694
695 if (low.kind () == PROP_CONST)
696 return low.const_val ();
697 else
698 {
699 gdb_assert (low.kind () == PROP_UNDEFINED);
700
701 /* This happens when trying to evaluate a type's dynamic bound
702 without a live target. There is nothing relevant for us to
703 return here, so return 0. */
704 return 0;
705 }
706 }
4c4b4cd2 707 case TYPE_CODE_ENUM:
14e75d8e 708 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
709 case TYPE_CODE_BOOL:
710 return 0;
711 case TYPE_CODE_CHAR:
76a01679 712 case TYPE_CODE_INT:
690cc4eb 713 return min_of_type (type);
4c4b4cd2 714 default:
43bbcdc2 715 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
716 }
717}
718
719/* The identity on non-range types. For range types, the underlying
76a01679 720 non-range scalar type. */
4c4b4cd2
PH
721
722static struct type *
18af8284 723get_base_type (struct type *type)
4c4b4cd2 724{
78134374 725 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 726 {
76a01679 727 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 728 return type;
4c4b4cd2
PH
729 type = TYPE_TARGET_TYPE (type);
730 }
731 return type;
14f9c5c9 732}
41246937
JB
733
734/* Return a decoded version of the given VALUE. This means returning
735 a value whose type is obtained by applying all the GNAT-specific
85102364 736 encodings, making the resulting type a static but standard description
41246937
JB
737 of the initial type. */
738
739struct value *
740ada_get_decoded_value (struct value *value)
741{
742 struct type *type = ada_check_typedef (value_type (value));
743
744 if (ada_is_array_descriptor_type (type)
745 || (ada_is_constrained_packed_array_type (type)
dda83cd7 746 && type->code () != TYPE_CODE_PTR))
41246937 747 {
78134374 748 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 749 value = ada_coerce_to_simple_array_ptr (value);
41246937 750 else
dda83cd7 751 value = ada_coerce_to_simple_array (value);
41246937
JB
752 }
753 else
754 value = ada_to_fixed_value (value);
755
756 return value;
757}
758
759/* Same as ada_get_decoded_value, but with the given TYPE.
760 Because there is no associated actual value for this type,
761 the resulting type might be a best-effort approximation in
762 the case of dynamic types. */
763
764struct type *
765ada_get_decoded_type (struct type *type)
766{
767 type = to_static_fixed_type (type);
768 if (ada_is_constrained_packed_array_type (type))
769 type = ada_coerce_to_simple_array_type (type);
770 return type;
771}
772
4c4b4cd2 773\f
76a01679 774
dda83cd7 775 /* Language Selection */
14f9c5c9
AS
776
777/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 778 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 779
de93309a 780static enum language
ccefe4c4 781ada_update_initial_language (enum language lang)
14f9c5c9 782{
cafb3438 783 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 784 return language_ada;
14f9c5c9
AS
785
786 return lang;
787}
96d887e8
PH
788
789/* If the main procedure is written in Ada, then return its name.
790 The result is good until the next call. Return NULL if the main
791 procedure doesn't appear to be in Ada. */
792
793char *
794ada_main_name (void)
795{
3b7344d5 796 struct bound_minimal_symbol msym;
e83e4e24 797 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 798
96d887e8
PH
799 /* For Ada, the name of the main procedure is stored in a specific
800 string constant, generated by the binder. Look for that symbol,
801 extract its address, and then read that string. If we didn't find
802 that string, then most probably the main procedure is not written
803 in Ada. */
804 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805
3b7344d5 806 if (msym.minsym != NULL)
96d887e8 807 {
66920317 808 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 809 if (main_program_name_addr == 0)
dda83cd7 810 error (_("Invalid address for Ada main program name."));
96d887e8 811
66920317 812 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 813 return main_program_name.get ();
96d887e8
PH
814 }
815
816 /* The main procedure doesn't seem to be in Ada. */
817 return NULL;
818}
14f9c5c9 819\f
dda83cd7 820 /* Symbols */
d2e4a39e 821
4c4b4cd2
PH
822/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
823 of NULLs. */
14f9c5c9 824
d2e4a39e
AS
825const struct ada_opname_map ada_opname_table[] = {
826 {"Oadd", "\"+\"", BINOP_ADD},
827 {"Osubtract", "\"-\"", BINOP_SUB},
828 {"Omultiply", "\"*\"", BINOP_MUL},
829 {"Odivide", "\"/\"", BINOP_DIV},
830 {"Omod", "\"mod\"", BINOP_MOD},
831 {"Orem", "\"rem\"", BINOP_REM},
832 {"Oexpon", "\"**\"", BINOP_EXP},
833 {"Olt", "\"<\"", BINOP_LESS},
834 {"Ole", "\"<=\"", BINOP_LEQ},
835 {"Ogt", "\">\"", BINOP_GTR},
836 {"Oge", "\">=\"", BINOP_GEQ},
837 {"Oeq", "\"=\"", BINOP_EQUAL},
838 {"One", "\"/=\"", BINOP_NOTEQUAL},
839 {"Oand", "\"and\"", BINOP_BITWISE_AND},
840 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
841 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
842 {"Oconcat", "\"&\"", BINOP_CONCAT},
843 {"Oabs", "\"abs\"", UNOP_ABS},
844 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
845 {"Oadd", "\"+\"", UNOP_PLUS},
846 {"Osubtract", "\"-\"", UNOP_NEG},
847 {NULL, NULL}
14f9c5c9
AS
848};
849
5c4258f4 850/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 851 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 852 Otherwise, return the empty string in that case. */
4c4b4cd2 853
5c4258f4 854static std::string
b5ec771e 855ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 856{
4c4b4cd2 857 if (decoded == NULL)
5c4258f4 858 return {};
14f9c5c9 859
5c4258f4
TT
860 std::string encoding_buffer;
861 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 862 {
cdc7bb92 863 if (*p == '.')
5c4258f4 864 encoding_buffer.append ("__");
14f9c5c9 865 else if (*p == '"')
dda83cd7
SM
866 {
867 const struct ada_opname_map *mapping;
868
869 for (mapping = ada_opname_table;
870 mapping->encoded != NULL
871 && !startswith (p, mapping->decoded); mapping += 1)
872 ;
873 if (mapping->encoded == NULL)
b5ec771e
PA
874 {
875 if (throw_errors)
876 error (_("invalid Ada operator name: %s"), p);
877 else
5c4258f4 878 return {};
b5ec771e 879 }
5c4258f4 880 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
881 break;
882 }
d2e4a39e 883 else
5c4258f4 884 encoding_buffer.push_back (*p);
14f9c5c9
AS
885 }
886
4c4b4cd2 887 return encoding_buffer;
14f9c5c9
AS
888}
889
5c4258f4 890/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 891
5c4258f4 892std::string
b5ec771e
PA
893ada_encode (const char *decoded)
894{
895 return ada_encode_1 (decoded, true);
896}
897
14f9c5c9 898/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
899 quotes, unfolded, but with the quotes stripped away. Result good
900 to next call. */
901
5f9febe0 902static const char *
e0802d59 903ada_fold_name (gdb::string_view name)
14f9c5c9 904{
5f9febe0 905 static std::string fold_storage;
14f9c5c9 906
6a780b67 907 if (!name.empty () && name[0] == '\'')
01573d73 908 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
909 else
910 {
01573d73 911 fold_storage = gdb::to_string (name);
5f9febe0
TT
912 for (int i = 0; i < name.size (); i += 1)
913 fold_storage[i] = tolower (fold_storage[i]);
14f9c5c9
AS
914 }
915
5f9febe0 916 return fold_storage.c_str ();
14f9c5c9
AS
917}
918
529cad9c
PH
919/* Return nonzero if C is either a digit or a lowercase alphabet character. */
920
921static int
922is_lower_alphanum (const char c)
923{
924 return (isdigit (c) || (isalpha (c) && islower (c)));
925}
926
c90092fe
JB
927/* ENCODED is the linkage name of a symbol and LEN contains its length.
928 This function saves in LEN the length of that same symbol name but
929 without either of these suffixes:
29480c32
JB
930 . .{DIGIT}+
931 . ${DIGIT}+
932 . ___{DIGIT}+
933 . __{DIGIT}+.
c90092fe 934
29480c32
JB
935 These are suffixes introduced by the compiler for entities such as
936 nested subprogram for instance, in order to avoid name clashes.
937 They do not serve any purpose for the debugger. */
938
939static void
940ada_remove_trailing_digits (const char *encoded, int *len)
941{
942 if (*len > 1 && isdigit (encoded[*len - 1]))
943 {
944 int i = *len - 2;
5b4ee69b 945
29480c32 946 while (i > 0 && isdigit (encoded[i]))
dda83cd7 947 i--;
29480c32 948 if (i >= 0 && encoded[i] == '.')
dda83cd7 949 *len = i;
29480c32 950 else if (i >= 0 && encoded[i] == '$')
dda83cd7 951 *len = i;
61012eef 952 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 953 *len = i - 2;
61012eef 954 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 955 *len = i - 1;
29480c32
JB
956 }
957}
958
959/* Remove the suffix introduced by the compiler for protected object
960 subprograms. */
961
962static void
963ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964{
965 /* Remove trailing N. */
966
967 /* Protected entry subprograms are broken into two
968 separate subprograms: The first one is unprotected, and has
969 a 'N' suffix; the second is the protected version, and has
0963b4bd 970 the 'P' suffix. The second calls the first one after handling
29480c32
JB
971 the protection. Since the P subprograms are internally generated,
972 we leave these names undecoded, giving the user a clue that this
973 entity is internal. */
974
975 if (*len > 1
976 && encoded[*len - 1] == 'N'
977 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
978 *len = *len - 1;
979}
980
981/* If ENCODED follows the GNAT entity encoding conventions, then return
982 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 983 replaced by ENCODED. */
14f9c5c9 984
f945dedf 985std::string
4c4b4cd2 986ada_decode (const char *encoded)
14f9c5c9
AS
987{
988 int i, j;
989 int len0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int at_start_name;
f945dedf 992 std::string decoded;
d2e4a39e 993
0d81f350
JG
994 /* With function descriptors on PPC64, the value of a symbol named
995 ".FN", if it exists, is the entry point of the function "FN". */
996 if (encoded[0] == '.')
997 encoded += 1;
998
29480c32
JB
999 /* The name of the Ada main procedure starts with "_ada_".
1000 This prefix is not part of the decoded name, so skip this part
1001 if we see this prefix. */
61012eef 1002 if (startswith (encoded, "_ada_"))
4c4b4cd2 1003 encoded += 5;
14f9c5c9 1004
29480c32
JB
1005 /* If the name starts with '_', then it is not a properly encoded
1006 name, so do not attempt to decode it. Similarly, if the name
1007 starts with '<', the name should not be decoded. */
4c4b4cd2 1008 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1009 goto Suppress;
1010
4c4b4cd2 1011 len0 = strlen (encoded);
4c4b4cd2 1012
29480c32
JB
1013 ada_remove_trailing_digits (encoded, &len0);
1014 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1015
4c4b4cd2
PH
1016 /* Remove the ___X.* suffix if present. Do not forget to verify that
1017 the suffix is located before the current "end" of ENCODED. We want
1018 to avoid re-matching parts of ENCODED that have previously been
1019 marked as discarded (by decrementing LEN0). */
1020 p = strstr (encoded, "___");
1021 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1022 {
1023 if (p[3] == 'X')
dda83cd7 1024 len0 = p - encoded;
14f9c5c9 1025 else
dda83cd7 1026 goto Suppress;
14f9c5c9 1027 }
4c4b4cd2 1028
29480c32
JB
1029 /* Remove any trailing TKB suffix. It tells us that this symbol
1030 is for the body of a task, but that information does not actually
1031 appear in the decoded name. */
1032
61012eef 1033 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1034 len0 -= 3;
76a01679 1035
a10967fa
JB
1036 /* Remove any trailing TB suffix. The TB suffix is slightly different
1037 from the TKB suffix because it is used for non-anonymous task
1038 bodies. */
1039
61012eef 1040 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1041 len0 -= 2;
1042
29480c32
JB
1043 /* Remove trailing "B" suffixes. */
1044 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1045
61012eef 1046 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1047 len0 -= 1;
1048
4c4b4cd2 1049 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1050
f945dedf 1051 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1052
29480c32
JB
1053 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1054
4c4b4cd2 1055 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1056 {
4c4b4cd2
PH
1057 i = len0 - 2;
1058 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1059 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1060 i -= 1;
4c4b4cd2 1061 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1062 len0 = i - 1;
4c4b4cd2 1063 else if (encoded[i] == '$')
dda83cd7 1064 len0 = i;
d2e4a39e 1065 }
14f9c5c9 1066
29480c32
JB
1067 /* The first few characters that are not alphabetic are not part
1068 of any encoding we use, so we can copy them over verbatim. */
1069
4c4b4cd2
PH
1070 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1071 decoded[j] = encoded[i];
14f9c5c9
AS
1072
1073 at_start_name = 1;
1074 while (i < len0)
1075 {
29480c32 1076 /* Is this a symbol function? */
4c4b4cd2 1077 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1078 {
1079 int k;
1080
1081 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1082 {
1083 int op_len = strlen (ada_opname_table[k].encoded);
1084 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1085 op_len - 1) == 0)
1086 && !isalnum (encoded[i + op_len]))
1087 {
1088 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1089 at_start_name = 0;
1090 i += op_len;
1091 j += strlen (ada_opname_table[k].decoded);
1092 break;
1093 }
1094 }
1095 if (ada_opname_table[k].encoded != NULL)
1096 continue;
1097 }
14f9c5c9
AS
1098 at_start_name = 0;
1099
529cad9c 1100 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1101 into "." (just below). */
529cad9c 1102
61012eef 1103 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1104 i += 2;
529cad9c 1105
29480c32 1106 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1107 be translated into "." (just below). These are internal names
1108 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1109
1110 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1111 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1112 && isdigit (encoded [i+4]))
1113 {
1114 int k = i + 5;
1115
1116 while (k < len0 && isdigit (encoded[k]))
1117 k++; /* Skip any extra digit. */
1118
1119 /* Double-check that the "__B_{DIGITS}+" sequence we found
1120 is indeed followed by "__". */
1121 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 i = k;
1123 }
29480c32 1124
529cad9c
PH
1125 /* Remove _E{DIGITS}+[sb] */
1126
1127 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1128 of subprograms created by the compiler for each entry. The first
1129 one implements the actual entry code, and has a suffix following
1130 the convention above; the second one implements the barrier and
1131 uses the same convention as above, except that the 'E' is replaced
1132 by a 'B'.
529cad9c 1133
dda83cd7
SM
1134 Just as above, we do not decode the name of barrier functions
1135 to give the user a clue that the code he is debugging has been
1136 internally generated. */
529cad9c
PH
1137
1138 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1139 && isdigit (encoded[i+2]))
1140 {
1141 int k = i + 3;
1142
1143 while (k < len0 && isdigit (encoded[k]))
1144 k++;
1145
1146 if (k < len0
1147 && (encoded[k] == 'b' || encoded[k] == 's'))
1148 {
1149 k++;
1150 /* Just as an extra precaution, make sure that if this
1151 suffix is followed by anything else, it is a '_'.
1152 Otherwise, we matched this sequence by accident. */
1153 if (k == len0
1154 || (k < len0 && encoded[k] == '_'))
1155 i = k;
1156 }
1157 }
529cad9c
PH
1158
1159 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1160 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1161
1162 if (i < len0 + 3
dda83cd7
SM
1163 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1164 {
1165 /* Backtrack a bit up until we reach either the begining of
1166 the encoded name, or "__". Make sure that we only find
1167 digits or lowercase characters. */
1168 const char *ptr = encoded + i - 1;
1169
1170 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1171 ptr--;
1172 if (ptr < encoded
1173 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 i++;
1175 }
529cad9c 1176
4c4b4cd2 1177 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1178 {
1179 /* This is a X[bn]* sequence not separated from the previous
1180 part of the name with a non-alpha-numeric character (in other
1181 words, immediately following an alpha-numeric character), then
1182 verify that it is placed at the end of the encoded name. If
1183 not, then the encoding is not valid and we should abort the
1184 decoding. Otherwise, just skip it, it is used in body-nested
1185 package names. */
1186 do
1187 i += 1;
1188 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 if (i < len0)
1190 goto Suppress;
1191 }
cdc7bb92 1192 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1193 {
1194 /* Replace '__' by '.'. */
1195 decoded[j] = '.';
1196 at_start_name = 1;
1197 i += 2;
1198 j += 1;
1199 }
14f9c5c9 1200 else
dda83cd7
SM
1201 {
1202 /* It's a character part of the decoded name, so just copy it
1203 over. */
1204 decoded[j] = encoded[i];
1205 i += 1;
1206 j += 1;
1207 }
14f9c5c9 1208 }
f945dedf 1209 decoded.resize (j);
14f9c5c9 1210
29480c32
JB
1211 /* Decoded names should never contain any uppercase character.
1212 Double-check this, and abort the decoding if we find one. */
1213
f945dedf 1214 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1215 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1216 goto Suppress;
1217
f945dedf 1218 return decoded;
14f9c5c9
AS
1219
1220Suppress:
4c4b4cd2 1221 if (encoded[0] == '<')
f945dedf 1222 decoded = encoded;
14f9c5c9 1223 else
f945dedf 1224 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1225 return decoded;
1226
1227}
1228
1229/* Table for keeping permanent unique copies of decoded names. Once
1230 allocated, names in this table are never released. While this is a
1231 storage leak, it should not be significant unless there are massive
1232 changes in the set of decoded names in successive versions of a
1233 symbol table loaded during a single session. */
1234static struct htab *decoded_names_store;
1235
1236/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1237 in the language-specific part of GSYMBOL, if it has not been
1238 previously computed. Tries to save the decoded name in the same
1239 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1240 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1241 GSYMBOL).
4c4b4cd2
PH
1242 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1243 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1244 when a decoded name is cached in it. */
4c4b4cd2 1245
45e6c716 1246const char *
f85f34ed 1247ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1248{
f85f34ed
TT
1249 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1250 const char **resultp =
615b3f62 1251 &gsymbol->language_specific.demangled_name;
5b4ee69b 1252
f85f34ed 1253 if (!gsymbol->ada_mangled)
4c4b4cd2 1254 {
4d4eaa30 1255 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1256 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1257
f85f34ed 1258 gsymbol->ada_mangled = 1;
5b4ee69b 1259
f85f34ed 1260 if (obstack != NULL)
f945dedf 1261 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1262 else
dda83cd7 1263 {
f85f34ed
TT
1264 /* Sometimes, we can't find a corresponding objfile, in
1265 which case, we put the result on the heap. Since we only
1266 decode when needed, we hope this usually does not cause a
1267 significant memory leak (FIXME). */
1268
dda83cd7
SM
1269 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 decoded.c_str (), INSERT);
5b4ee69b 1271
dda83cd7
SM
1272 if (*slot == NULL)
1273 *slot = xstrdup (decoded.c_str ());
1274 *resultp = *slot;
1275 }
4c4b4cd2 1276 }
14f9c5c9 1277
4c4b4cd2
PH
1278 return *resultp;
1279}
76a01679 1280
2c0b251b 1281static char *
76a01679 1282ada_la_decode (const char *encoded, int options)
4c4b4cd2 1283{
f945dedf 1284 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1285}
1286
14f9c5c9 1287\f
d2e4a39e 1288
dda83cd7 1289 /* Arrays */
14f9c5c9 1290
28c85d6c
JB
1291/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1292 generated by the GNAT compiler to describe the index type used
1293 for each dimension of an array, check whether it follows the latest
1294 known encoding. If not, fix it up to conform to the latest encoding.
1295 Otherwise, do nothing. This function also does nothing if
1296 INDEX_DESC_TYPE is NULL.
1297
85102364 1298 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1299 Initially, the information would be provided through the name of each
1300 field of the structure type only, while the type of these fields was
1301 described as unspecified and irrelevant. The debugger was then expected
1302 to perform a global type lookup using the name of that field in order
1303 to get access to the full index type description. Because these global
1304 lookups can be very expensive, the encoding was later enhanced to make
1305 the global lookup unnecessary by defining the field type as being
1306 the full index type description.
1307
1308 The purpose of this routine is to allow us to support older versions
1309 of the compiler by detecting the use of the older encoding, and by
1310 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1311 we essentially replace each field's meaningless type by the associated
1312 index subtype). */
1313
1314void
1315ada_fixup_array_indexes_type (struct type *index_desc_type)
1316{
1317 int i;
1318
1319 if (index_desc_type == NULL)
1320 return;
1f704f76 1321 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1322
1323 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1324 to check one field only, no need to check them all). If not, return
1325 now.
1326
1327 If our INDEX_DESC_TYPE was generated using the older encoding,
1328 the field type should be a meaningless integer type whose name
1329 is not equal to the field name. */
940da03e
SM
1330 if (index_desc_type->field (0).type ()->name () != NULL
1331 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1332 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1333 return;
1334
1335 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1336 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1337 {
0d5cff50 1338 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1339 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1340
1341 if (raw_type)
5d14b6e5 1342 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1343 }
1344}
1345
4c4b4cd2
PH
1346/* The desc_* routines return primitive portions of array descriptors
1347 (fat pointers). */
14f9c5c9
AS
1348
1349/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1350 level of indirection, if needed. */
1351
d2e4a39e
AS
1352static struct type *
1353desc_base_type (struct type *type)
14f9c5c9
AS
1354{
1355 if (type == NULL)
1356 return NULL;
61ee279c 1357 type = ada_check_typedef (type);
78134374 1358 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1359 type = ada_typedef_target_type (type);
1360
1265e4aa 1361 if (type != NULL
78134374 1362 && (type->code () == TYPE_CODE_PTR
dda83cd7 1363 || type->code () == TYPE_CODE_REF))
61ee279c 1364 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1365 else
1366 return type;
1367}
1368
4c4b4cd2
PH
1369/* True iff TYPE indicates a "thin" array pointer type. */
1370
14f9c5c9 1371static int
d2e4a39e 1372is_thin_pntr (struct type *type)
14f9c5c9 1373{
d2e4a39e 1374 return
14f9c5c9
AS
1375 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1376 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1377}
1378
4c4b4cd2
PH
1379/* The descriptor type for thin pointer type TYPE. */
1380
d2e4a39e
AS
1381static struct type *
1382thin_descriptor_type (struct type *type)
14f9c5c9 1383{
d2e4a39e 1384 struct type *base_type = desc_base_type (type);
5b4ee69b 1385
14f9c5c9
AS
1386 if (base_type == NULL)
1387 return NULL;
1388 if (is_suffix (ada_type_name (base_type), "___XVE"))
1389 return base_type;
d2e4a39e 1390 else
14f9c5c9 1391 {
d2e4a39e 1392 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1393
14f9c5c9 1394 if (alt_type == NULL)
dda83cd7 1395 return base_type;
14f9c5c9 1396 else
dda83cd7 1397 return alt_type;
14f9c5c9
AS
1398 }
1399}
1400
4c4b4cd2
PH
1401/* A pointer to the array data for thin-pointer value VAL. */
1402
d2e4a39e
AS
1403static struct value *
1404thin_data_pntr (struct value *val)
14f9c5c9 1405{
828292f2 1406 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1407 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1408
556bdfd4
UW
1409 data_type = lookup_pointer_type (data_type);
1410
78134374 1411 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1412 return value_cast (data_type, value_copy (val));
d2e4a39e 1413 else
42ae5230 1414 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1415}
1416
4c4b4cd2
PH
1417/* True iff TYPE indicates a "thick" array pointer type. */
1418
14f9c5c9 1419static int
d2e4a39e 1420is_thick_pntr (struct type *type)
14f9c5c9
AS
1421{
1422 type = desc_base_type (type);
78134374 1423 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1424 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1425}
1426
4c4b4cd2
PH
1427/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1428 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1429
d2e4a39e
AS
1430static struct type *
1431desc_bounds_type (struct type *type)
14f9c5c9 1432{
d2e4a39e 1433 struct type *r;
14f9c5c9
AS
1434
1435 type = desc_base_type (type);
1436
1437 if (type == NULL)
1438 return NULL;
1439 else if (is_thin_pntr (type))
1440 {
1441 type = thin_descriptor_type (type);
1442 if (type == NULL)
dda83cd7 1443 return NULL;
14f9c5c9
AS
1444 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 if (r != NULL)
dda83cd7 1446 return ada_check_typedef (r);
14f9c5c9 1447 }
78134374 1448 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1449 {
1450 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 if (r != NULL)
dda83cd7 1452 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1453 }
1454 return NULL;
1455}
1456
1457/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1458 one, a pointer to its bounds data. Otherwise NULL. */
1459
d2e4a39e
AS
1460static struct value *
1461desc_bounds (struct value *arr)
14f9c5c9 1462{
df407dfe 1463 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1464
d2e4a39e 1465 if (is_thin_pntr (type))
14f9c5c9 1466 {
d2e4a39e 1467 struct type *bounds_type =
dda83cd7 1468 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1469 LONGEST addr;
1470
4cdfadb1 1471 if (bounds_type == NULL)
dda83cd7 1472 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1473
1474 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1475 since desc_type is an XVE-encoded type (and shouldn't be),
1476 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1477 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1478 addr = value_as_long (arr);
d2e4a39e 1479 else
dda83cd7 1480 addr = value_address (arr);
14f9c5c9 1481
d2e4a39e 1482 return
dda83cd7
SM
1483 value_from_longest (lookup_pointer_type (bounds_type),
1484 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1485 }
1486
1487 else if (is_thick_pntr (type))
05e522ef
JB
1488 {
1489 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1490 _("Bad GNAT array descriptor"));
1491 struct type *p_bounds_type = value_type (p_bounds);
1492
1493 if (p_bounds_type
78134374 1494 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1495 {
1496 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497
e46d3488 1498 if (target_type->is_stub ())
05e522ef
JB
1499 p_bounds = value_cast (lookup_pointer_type
1500 (ada_check_typedef (target_type)),
1501 p_bounds);
1502 }
1503 else
1504 error (_("Bad GNAT array descriptor"));
1505
1506 return p_bounds;
1507 }
14f9c5c9
AS
1508 else
1509 return NULL;
1510}
1511
4c4b4cd2
PH
1512/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1513 position of the field containing the address of the bounds data. */
1514
14f9c5c9 1515static int
d2e4a39e 1516fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1517{
1518 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1519}
1520
1521/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1522 size of the field containing the address of the bounds data. */
1523
14f9c5c9 1524static int
d2e4a39e 1525fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1526{
1527 type = desc_base_type (type);
1528
d2e4a39e 1529 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1530 return TYPE_FIELD_BITSIZE (type, 1);
1531 else
940da03e 1532 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1533}
1534
4c4b4cd2 1535/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1536 pointer to one, the type of its array data (a array-with-no-bounds type);
1537 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1538 data. */
4c4b4cd2 1539
d2e4a39e 1540static struct type *
556bdfd4 1541desc_data_target_type (struct type *type)
14f9c5c9
AS
1542{
1543 type = desc_base_type (type);
1544
4c4b4cd2 1545 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1546 if (is_thin_pntr (type))
940da03e 1547 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1548 else if (is_thick_pntr (type))
556bdfd4
UW
1549 {
1550 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1551
1552 if (data_type
78134374 1553 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1554 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1555 }
1556
1557 return NULL;
14f9c5c9
AS
1558}
1559
1560/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1561 its array data. */
4c4b4cd2 1562
d2e4a39e
AS
1563static struct value *
1564desc_data (struct value *arr)
14f9c5c9 1565{
df407dfe 1566 struct type *type = value_type (arr);
5b4ee69b 1567
14f9c5c9
AS
1568 if (is_thin_pntr (type))
1569 return thin_data_pntr (arr);
1570 else if (is_thick_pntr (type))
d2e4a39e 1571 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
dda83cd7 1572 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1573 else
1574 return NULL;
1575}
1576
1577
1578/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1579 position of the field containing the address of the data. */
1580
14f9c5c9 1581static int
d2e4a39e 1582fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1583{
1584 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1585}
1586
1587/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1588 size of the field containing the address of the data. */
1589
14f9c5c9 1590static int
d2e4a39e 1591fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1592{
1593 type = desc_base_type (type);
1594
1595 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1596 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1597 else
940da03e 1598 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1599}
1600
4c4b4cd2 1601/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1602 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1603 bound, if WHICH is 1. The first bound is I=1. */
1604
d2e4a39e
AS
1605static struct value *
1606desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1607{
250106a7
TT
1608 char bound_name[20];
1609 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1610 which ? 'U' : 'L', i - 1);
1611 return value_struct_elt (&bounds, NULL, bound_name, NULL,
dda83cd7 1612 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1613}
1614
1615/* If BOUNDS is an array-bounds structure type, return the bit position
1616 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1617 bound, if WHICH is 1. The first bound is I=1. */
1618
14f9c5c9 1619static int
d2e4a39e 1620desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1621{
d2e4a39e 1622 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1623}
1624
1625/* If BOUNDS is an array-bounds structure type, return the bit field size
1626 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1627 bound, if WHICH is 1. The first bound is I=1. */
1628
76a01679 1629static int
d2e4a39e 1630desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
d2e4a39e
AS
1634 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1635 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 else
940da03e 1637 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1638}
1639
1640/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1641 Ith bound (numbering from 1). Otherwise, NULL. */
1642
d2e4a39e
AS
1643static struct type *
1644desc_index_type (struct type *type, int i)
14f9c5c9
AS
1645{
1646 type = desc_base_type (type);
1647
78134374 1648 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1649 {
1650 char bound_name[20];
1651 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1652 return lookup_struct_elt_type (type, bound_name, 1);
1653 }
d2e4a39e 1654 else
14f9c5c9
AS
1655 return NULL;
1656}
1657
4c4b4cd2
PH
1658/* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
14f9c5c9 1661static int
d2e4a39e 1662desc_arity (struct type *type)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1f704f76 1667 return type->num_fields () / 2;
14f9c5c9
AS
1668 return 0;
1669}
1670
4c4b4cd2
PH
1671/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
76a01679
JB
1675static int
1676ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1677{
1678 if (type == NULL)
1679 return 0;
61ee279c 1680 type = ada_check_typedef (type);
78134374 1681 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1682 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1683}
1684
52ce6436 1685/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1686 * to one. */
52ce6436 1687
2c0b251b 1688static int
52ce6436
PH
1689ada_is_array_type (struct type *type)
1690{
78134374
SM
1691 while (type != NULL
1692 && (type->code () == TYPE_CODE_PTR
1693 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696}
1697
4c4b4cd2 1698/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1699
14f9c5c9 1700int
4c4b4cd2 1701ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1702{
1703 if (type == NULL)
1704 return 0;
61ee279c 1705 type = ada_check_typedef (type);
78134374
SM
1706 return (type->code () == TYPE_CODE_ARRAY
1707 || (type->code () == TYPE_CODE_PTR
1708 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1709 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1710}
1711
4c4b4cd2
PH
1712/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1713
14f9c5c9 1714int
4c4b4cd2 1715ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1716{
556bdfd4 1717 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1718
1719 if (type == NULL)
1720 return 0;
61ee279c 1721 type = ada_check_typedef (type);
556bdfd4 1722 return (data_type != NULL
78134374 1723 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1724 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1725}
1726
1727/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1728 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1729 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1730 is still needed. */
1731
14f9c5c9 1732int
ebf56fd3 1733ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1734{
d2e4a39e 1735 return
14f9c5c9 1736 type != NULL
78134374 1737 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1738 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1739 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1740 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1741}
1742
1743
4c4b4cd2 1744/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1745 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1746 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1747 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1748 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1749 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1750 a descriptor. */
de93309a
SM
1751
1752static struct type *
d2e4a39e 1753ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1754{
ad82864c
JB
1755 if (ada_is_constrained_packed_array_type (value_type (arr)))
1756 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1757
df407dfe
AC
1758 if (!ada_is_array_descriptor_type (value_type (arr)))
1759 return value_type (arr);
d2e4a39e
AS
1760
1761 if (!bounds)
ad82864c
JB
1762 {
1763 struct type *array_type =
1764 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765
1766 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1767 TYPE_FIELD_BITSIZE (array_type, 0) =
1768 decode_packed_array_bitsize (value_type (arr));
1769
1770 return array_type;
1771 }
14f9c5c9
AS
1772 else
1773 {
d2e4a39e 1774 struct type *elt_type;
14f9c5c9 1775 int arity;
d2e4a39e 1776 struct value *descriptor;
14f9c5c9 1777
df407dfe
AC
1778 elt_type = ada_array_element_type (value_type (arr), -1);
1779 arity = ada_array_arity (value_type (arr));
14f9c5c9 1780
d2e4a39e 1781 if (elt_type == NULL || arity == 0)
dda83cd7 1782 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1783
1784 descriptor = desc_bounds (arr);
d2e4a39e 1785 if (value_as_long (descriptor) == 0)
dda83cd7 1786 return NULL;
d2e4a39e 1787 while (arity > 0)
dda83cd7
SM
1788 {
1789 struct type *range_type = alloc_type_copy (value_type (arr));
1790 struct type *array_type = alloc_type_copy (value_type (arr));
1791 struct value *low = desc_one_bound (descriptor, arity, 0);
1792 struct value *high = desc_one_bound (descriptor, arity, 1);
1793
1794 arity -= 1;
1795 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1796 longest_to_int (value_as_long (low)),
1797 longest_to_int (value_as_long (high)));
dda83cd7 1798 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1799
1800 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1801 {
1802 /* We need to store the element packed bitsize, as well as
dda83cd7 1803 recompute the array size, because it was previously
e67ad678
JB
1804 computed based on the unpacked element size. */
1805 LONGEST lo = value_as_long (low);
1806 LONGEST hi = value_as_long (high);
1807
1808 TYPE_FIELD_BITSIZE (elt_type, 0) =
1809 decode_packed_array_bitsize (value_type (arr));
1810 /* If the array has no element, then the size is already
dda83cd7 1811 zero, and does not need to be recomputed. */
e67ad678
JB
1812 if (lo < hi)
1813 {
1814 int array_bitsize =
dda83cd7 1815 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1816
1817 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1818 }
1819 }
dda83cd7 1820 }
14f9c5c9
AS
1821
1822 return lookup_pointer_type (elt_type);
1823 }
1824}
1825
1826/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1827 Otherwise, returns either a standard GDB array with bounds set
1828 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1829 GDB array. Returns NULL if ARR is a null fat pointer. */
1830
d2e4a39e
AS
1831struct value *
1832ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1833{
df407dfe 1834 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1835 {
d2e4a39e 1836 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1837
14f9c5c9 1838 if (arrType == NULL)
dda83cd7 1839 return NULL;
14f9c5c9
AS
1840 return value_cast (arrType, value_copy (desc_data (arr)));
1841 }
ad82864c
JB
1842 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1843 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1844 else
1845 return arr;
1846}
1847
1848/* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1850 be ARR itself if it already is in the proper form). */
1851
720d1a40 1852struct value *
d2e4a39e 1853ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1854{
df407dfe 1855 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1856 {
d2e4a39e 1857 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1858
14f9c5c9 1859 if (arrVal == NULL)
dda83cd7 1860 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1861 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1862 return value_ind (arrVal);
1863 }
ad82864c
JB
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
d2e4a39e 1866 else
14f9c5c9
AS
1867 return arr;
1868}
1869
1870/* If TYPE represents a GNAT array type, return it translated to an
1871 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1872 packing). For other types, is the identity. */
1873
d2e4a39e
AS
1874struct type *
1875ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1876{
ad82864c
JB
1877 if (ada_is_constrained_packed_array_type (type))
1878 return decode_constrained_packed_array_type (type);
17280b9f
UW
1879
1880 if (ada_is_array_descriptor_type (type))
556bdfd4 1881 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1882
1883 return type;
14f9c5c9
AS
1884}
1885
4c4b4cd2
PH
1886/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1887
ad82864c 1888static int
57567375 1889ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1890{
1891 if (type == NULL)
1892 return 0;
4c4b4cd2 1893 type = desc_base_type (type);
61ee279c 1894 type = ada_check_typedef (type);
d2e4a39e 1895 return
14f9c5c9
AS
1896 ada_type_name (type) != NULL
1897 && strstr (ada_type_name (type), "___XP") != NULL;
1898}
1899
ad82864c
JB
1900/* Non-zero iff TYPE represents a standard GNAT constrained
1901 packed-array type. */
1902
1903int
1904ada_is_constrained_packed_array_type (struct type *type)
1905{
57567375 1906 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1907 && !ada_is_array_descriptor_type (type);
1908}
1909
1910/* Non-zero iff TYPE represents an array descriptor for a
1911 unconstrained packed-array type. */
1912
1913static int
1914ada_is_unconstrained_packed_array_type (struct type *type)
1915{
57567375
TT
1916 if (!ada_is_array_descriptor_type (type))
1917 return 0;
1918
1919 if (ada_is_gnat_encoded_packed_array_type (type))
1920 return 1;
1921
1922 /* If we saw GNAT encodings, then the above code is sufficient.
1923 However, with minimal encodings, we will just have a thick
1924 pointer instead. */
1925 if (is_thick_pntr (type))
1926 {
1927 type = desc_base_type (type);
1928 /* The structure's first field is a pointer to an array, so this
1929 fetches the array type. */
1930 type = TYPE_TARGET_TYPE (type->field (0).type ());
1931 /* Now we can see if the array elements are packed. */
1932 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1933 }
1934
1935 return 0;
ad82864c
JB
1936}
1937
c9a28cbe
TT
1938/* Return true if TYPE is a (Gnat-encoded) constrained packed array
1939 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1940
1941static bool
1942ada_is_any_packed_array_type (struct type *type)
1943{
1944 return (ada_is_constrained_packed_array_type (type)
1945 || (type->code () == TYPE_CODE_ARRAY
1946 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1947}
1948
ad82864c
JB
1949/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1950 return the size of its elements in bits. */
1951
1952static long
1953decode_packed_array_bitsize (struct type *type)
1954{
0d5cff50
DE
1955 const char *raw_name;
1956 const char *tail;
ad82864c
JB
1957 long bits;
1958
720d1a40
JB
1959 /* Access to arrays implemented as fat pointers are encoded as a typedef
1960 of the fat pointer type. We need the name of the fat pointer type
1961 to do the decoding, so strip the typedef layer. */
78134374 1962 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1963 type = ada_typedef_target_type (type);
1964
1965 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1968
1969 if (!raw_name)
1970 return 0;
1971
1972 tail = strstr (raw_name, "___XP");
57567375
TT
1973 if (tail == nullptr)
1974 {
1975 gdb_assert (is_thick_pntr (type));
1976 /* The structure's first field is a pointer to an array, so this
1977 fetches the array type. */
1978 type = TYPE_TARGET_TYPE (type->field (0).type ());
1979 /* Now we can see if the array elements are packed. */
1980 return TYPE_FIELD_BITSIZE (type, 0);
1981 }
ad82864c
JB
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991}
1992
14f9c5c9
AS
1993/* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2000 in bits.
2001
2002 Note that, for arrays whose index type has an XA encoding where
2003 a bound references a record discriminant, getting that discriminant,
2004 and therefore the actual value of that bound, is not possible
2005 because none of the given parameters gives us access to the record.
2006 This function assumes that it is OK in the context where it is being
2007 used to return an array whose bounds are still dynamic and where
2008 the length is arbitrary. */
4c4b4cd2 2009
d2e4a39e 2010static struct type *
ad82864c 2011constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2012{
d2e4a39e
AS
2013 struct type *new_elt_type;
2014 struct type *new_type;
99b1c762
JB
2015 struct type *index_type_desc;
2016 struct type *index_type;
14f9c5c9
AS
2017 LONGEST low_bound, high_bound;
2018
61ee279c 2019 type = ada_check_typedef (type);
78134374 2020 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2021 return type;
2022
99b1c762
JB
2023 index_type_desc = ada_find_parallel_type (type, "___XA");
2024 if (index_type_desc)
940da03e 2025 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2026 NULL);
2027 else
3d967001 2028 index_type = type->index_type ();
99b1c762 2029
e9bb382b 2030 new_type = alloc_type_copy (type);
ad82864c
JB
2031 new_elt_type =
2032 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 elt_bits);
99b1c762 2034 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2035 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2036 new_type->set_name (ada_type_name (type));
14f9c5c9 2037
78134374 2038 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2039 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2040 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2041 low_bound = high_bound = 0;
2042 if (high_bound < low_bound)
2043 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2044 else
14f9c5c9
AS
2045 {
2046 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2047 TYPE_LENGTH (new_type) =
dda83cd7 2048 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2049 }
2050
9cdd0d12 2051 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2052 return new_type;
2053}
2054
ad82864c
JB
2055/* The array type encoded by TYPE, where
2056 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2057
d2e4a39e 2058static struct type *
ad82864c 2059decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2060{
0d5cff50 2061 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2062 char *name;
0d5cff50 2063 const char *tail;
d2e4a39e 2064 struct type *shadow_type;
14f9c5c9 2065 long bits;
14f9c5c9 2066
727e3d2e
JB
2067 if (!raw_name)
2068 raw_name = ada_type_name (desc_base_type (type));
2069
2070 if (!raw_name)
2071 return NULL;
2072
2073 name = (char *) alloca (strlen (raw_name) + 1);
2074 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2075 type = desc_base_type (type);
2076
14f9c5c9
AS
2077 memcpy (name, raw_name, tail - raw_name);
2078 name[tail - raw_name] = '\000';
2079
b4ba55a1
JB
2080 shadow_type = ada_find_parallel_type_with_name (type, name);
2081
2082 if (shadow_type == NULL)
14f9c5c9 2083 {
323e0a4a 2084 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2085 return NULL;
2086 }
f168693b 2087 shadow_type = check_typedef (shadow_type);
14f9c5c9 2088
78134374 2089 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2090 {
0963b4bd
MS
2091 lim_warning (_("could not understand bounds "
2092 "information on packed array"));
14f9c5c9
AS
2093 return NULL;
2094 }
d2e4a39e 2095
ad82864c
JB
2096 bits = decode_packed_array_bitsize (type);
2097 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2098}
2099
a7400e44
TT
2100/* Helper function for decode_constrained_packed_array. Set the field
2101 bitsize on a series of packed arrays. Returns the number of
2102 elements in TYPE. */
2103
2104static LONGEST
2105recursively_update_array_bitsize (struct type *type)
2106{
2107 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2108
2109 LONGEST low, high;
1f8d2881 2110 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2111 || low > high)
2112 return 0;
2113 LONGEST our_len = high - low + 1;
2114
2115 struct type *elt_type = TYPE_TARGET_TYPE (type);
2116 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 {
2118 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2119 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2120 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121
2122 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2123 / HOST_CHAR_BIT);
2124 }
2125
2126 return our_len;
2127}
2128
ad82864c
JB
2129/* Given that ARR is a struct value *indicating a GNAT constrained packed
2130 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2131 standard GDB array type except that the BITSIZEs of the array
2132 target types are set to the number of bits in each element, and the
4c4b4cd2 2133 type length is set appropriately. */
14f9c5c9 2134
d2e4a39e 2135static struct value *
ad82864c 2136decode_constrained_packed_array (struct value *arr)
14f9c5c9 2137{
4c4b4cd2 2138 struct type *type;
14f9c5c9 2139
11aa919a
PMR
2140 /* If our value is a pointer, then dereference it. Likewise if
2141 the value is a reference. Make sure that this operation does not
2142 cause the target type to be fixed, as this would indirectly cause
2143 this array to be decoded. The rest of the routine assumes that
2144 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2145 and "value_ind" routines to perform the dereferencing, as opposed
2146 to using "ada_coerce_ref" or "ada_value_ind". */
2147 arr = coerce_ref (arr);
78134374 2148 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2149 arr = value_ind (arr);
4c4b4cd2 2150
ad82864c 2151 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2152 if (type == NULL)
2153 {
323e0a4a 2154 error (_("can't unpack array"));
14f9c5c9
AS
2155 return NULL;
2156 }
61ee279c 2157
a7400e44
TT
2158 /* Decoding the packed array type could not correctly set the field
2159 bitsizes for any dimension except the innermost, because the
2160 bounds may be variable and were not passed to that function. So,
2161 we further resolve the array bounds here and then update the
2162 sizes. */
2163 const gdb_byte *valaddr = value_contents_for_printing (arr);
2164 CORE_ADDR address = value_address (arr);
2165 gdb::array_view<const gdb_byte> view
2166 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2167 type = resolve_dynamic_type (type, view, address);
2168 recursively_update_array_bitsize (type);
2169
d5a22e77 2170 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2171 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2172 {
2173 /* This is a (right-justified) modular type representing a packed
2174 array with no wrapper. In order to interpret the value through
2175 the (left-justified) packed array type we just built, we must
2176 first left-justify it. */
2177 int bit_size, bit_pos;
2178 ULONGEST mod;
2179
df407dfe 2180 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2181 bit_size = 0;
2182 while (mod > 0)
2183 {
2184 bit_size += 1;
2185 mod >>= 1;
2186 }
df407dfe 2187 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2188 arr = ada_value_primitive_packed_val (arr, NULL,
2189 bit_pos / HOST_CHAR_BIT,
2190 bit_pos % HOST_CHAR_BIT,
2191 bit_size,
2192 type);
2193 }
2194
4c4b4cd2 2195 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2196}
2197
2198
2199/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2200 given in IND. ARR must be a simple array. */
14f9c5c9 2201
d2e4a39e
AS
2202static struct value *
2203value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2204{
2205 int i;
2206 int bits, elt_off, bit_off;
2207 long elt_total_bit_offset;
d2e4a39e
AS
2208 struct type *elt_type;
2209 struct value *v;
14f9c5c9
AS
2210
2211 bits = 0;
2212 elt_total_bit_offset = 0;
df407dfe 2213 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2214 for (i = 0; i < arity; i += 1)
14f9c5c9 2215 {
78134374 2216 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2217 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 error
2219 (_("attempt to do packed indexing of "
0963b4bd 2220 "something other than a packed array"));
14f9c5c9 2221 else
dda83cd7
SM
2222 {
2223 struct type *range_type = elt_type->index_type ();
2224 LONGEST lowerbound, upperbound;
2225 LONGEST idx;
2226
1f8d2881 2227 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2228 {
2229 lim_warning (_("don't know bounds of array"));
2230 lowerbound = upperbound = 0;
2231 }
2232
2233 idx = pos_atr (ind[i]);
2234 if (idx < lowerbound || idx > upperbound)
2235 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2236 (long) idx);
dda83cd7
SM
2237 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2238 elt_total_bit_offset += (idx - lowerbound) * bits;
2239 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2240 }
14f9c5c9
AS
2241 }
2242 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2243 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2244
2245 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2246 bits, elt_type);
14f9c5c9
AS
2247 return v;
2248}
2249
4c4b4cd2 2250/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2251
2252static int
d2e4a39e 2253has_negatives (struct type *type)
14f9c5c9 2254{
78134374 2255 switch (type->code ())
d2e4a39e
AS
2256 {
2257 default:
2258 return 0;
2259 case TYPE_CODE_INT:
c6d940a9 2260 return !type->is_unsigned ();
d2e4a39e 2261 case TYPE_CODE_RANGE:
5537ddd0 2262 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2263 }
14f9c5c9 2264}
d2e4a39e 2265
f93fca70 2266/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2267 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2268 the unpacked buffer.
14f9c5c9 2269
5b639dea
JB
2270 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2271 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272
f93fca70
JB
2273 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2274 zero otherwise.
14f9c5c9 2275
f93fca70 2276 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2277
f93fca70
JB
2278 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2279
2280static void
2281ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2282 gdb_byte *unpacked, int unpacked_len,
2283 int is_big_endian, int is_signed_type,
2284 int is_scalar)
2285{
a1c95e6b
JB
2286 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 int src_idx; /* Index into the source area */
2288 int src_bytes_left; /* Number of source bytes left to process. */
2289 int srcBitsLeft; /* Number of source bits left to move */
2290 int unusedLS; /* Number of bits in next significant
dda83cd7 2291 byte of source that are unused */
a1c95e6b 2292
a1c95e6b
JB
2293 int unpacked_idx; /* Index into the unpacked buffer */
2294 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295
4c4b4cd2 2296 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2297 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2298 unsigned char sign;
a1c95e6b 2299
4c4b4cd2
PH
2300 /* Transmit bytes from least to most significant; delta is the direction
2301 the indices move. */
f93fca70 2302 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2303
5b639dea
JB
2304 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 bits from SRC. .*/
2306 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2307 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2308 bit_size, unpacked_len);
2309
14f9c5c9 2310 srcBitsLeft = bit_size;
086ca51f 2311 src_bytes_left = src_len;
f93fca70 2312 unpacked_bytes_left = unpacked_len;
14f9c5c9 2313 sign = 0;
f93fca70
JB
2314
2315 if (is_big_endian)
14f9c5c9 2316 {
086ca51f 2317 src_idx = src_len - 1;
f93fca70
JB
2318 if (is_signed_type
2319 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2320 sign = ~0;
d2e4a39e
AS
2321
2322 unusedLS =
dda83cd7
SM
2323 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2324 % HOST_CHAR_BIT;
14f9c5c9 2325
f93fca70
JB
2326 if (is_scalar)
2327 {
dda83cd7
SM
2328 accumSize = 0;
2329 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2330 }
2331 else
2332 {
dda83cd7
SM
2333 /* Non-scalar values must be aligned at a byte boundary... */
2334 accumSize =
2335 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2336 /* ... And are placed at the beginning (most-significant) bytes
2337 of the target. */
2338 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2339 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2340 }
14f9c5c9 2341 }
d2e4a39e 2342 else
14f9c5c9
AS
2343 {
2344 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345
086ca51f 2346 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2347 unusedLS = bit_offset;
2348 accumSize = 0;
2349
f93fca70 2350 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2351 sign = ~0;
14f9c5c9 2352 }
d2e4a39e 2353
14f9c5c9 2354 accum = 0;
086ca51f 2355 while (src_bytes_left > 0)
14f9c5c9
AS
2356 {
2357 /* Mask for removing bits of the next source byte that are not
dda83cd7 2358 part of the value. */
d2e4a39e 2359 unsigned int unusedMSMask =
dda83cd7
SM
2360 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 1;
4c4b4cd2 2362 /* Sign-extend bits for this byte. */
14f9c5c9 2363 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2364
d2e4a39e 2365 accum |=
dda83cd7 2366 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2367 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2368 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2369 {
2370 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2371 accumSize -= HOST_CHAR_BIT;
2372 accum >>= HOST_CHAR_BIT;
2373 unpacked_bytes_left -= 1;
2374 unpacked_idx += delta;
2375 }
14f9c5c9
AS
2376 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 unusedLS = 0;
086ca51f
JB
2378 src_bytes_left -= 1;
2379 src_idx += delta;
14f9c5c9 2380 }
086ca51f 2381 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2382 {
2383 accum |= sign << accumSize;
db297a65 2384 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2385 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2386 if (accumSize < 0)
2387 accumSize = 0;
14f9c5c9 2388 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2389 unpacked_bytes_left -= 1;
2390 unpacked_idx += delta;
14f9c5c9 2391 }
f93fca70
JB
2392}
2393
2394/* Create a new value of type TYPE from the contents of OBJ starting
2395 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2396 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2397 assigning through the result will set the field fetched from.
2398 VALADDR is ignored unless OBJ is NULL, in which case,
2399 VALADDR+OFFSET must address the start of storage containing the
2400 packed value. The value returned in this case is never an lval.
2401 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2402
2403struct value *
2404ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2405 long offset, int bit_offset, int bit_size,
dda83cd7 2406 struct type *type)
f93fca70
JB
2407{
2408 struct value *v;
bfb1c796 2409 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2410 gdb_byte *unpacked;
220475ed 2411 const int is_scalar = is_scalar_type (type);
d5a22e77 2412 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2413 gdb::byte_vector staging;
f93fca70
JB
2414
2415 type = ada_check_typedef (type);
2416
d0a9e810 2417 if (obj == NULL)
bfb1c796 2418 src = valaddr + offset;
d0a9e810 2419 else
bfb1c796 2420 src = value_contents (obj) + offset;
d0a9e810
JB
2421
2422 if (is_dynamic_type (type))
2423 {
2424 /* The length of TYPE might by dynamic, so we need to resolve
2425 TYPE in order to know its actual size, which we then use
2426 to create the contents buffer of the value we return.
2427 The difficulty is that the data containing our object is
2428 packed, and therefore maybe not at a byte boundary. So, what
2429 we do, is unpack the data into a byte-aligned buffer, and then
2430 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2431 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2432 staging.resize (staging_len);
d0a9e810
JB
2433
2434 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2435 staging.data (), staging.size (),
d0a9e810
JB
2436 is_big_endian, has_negatives (type),
2437 is_scalar);
b249d2c2 2438 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2439 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 {
2441 /* This happens when the length of the object is dynamic,
2442 and is actually smaller than the space reserved for it.
2443 For instance, in an array of variant records, the bit_size
2444 we're given is the array stride, which is constant and
2445 normally equal to the maximum size of its element.
2446 But, in reality, each element only actually spans a portion
2447 of that stride. */
2448 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2449 }
d0a9e810
JB
2450 }
2451
f93fca70
JB
2452 if (obj == NULL)
2453 {
2454 v = allocate_value (type);
bfb1c796 2455 src = valaddr + offset;
f93fca70
JB
2456 }
2457 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 {
0cafa88c 2459 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2460 gdb_byte *buf;
0cafa88c 2461
f93fca70 2462 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2463 buf = (gdb_byte *) alloca (src_len);
2464 read_memory (value_address (v), buf, src_len);
2465 src = buf;
f93fca70
JB
2466 }
2467 else
2468 {
2469 v = allocate_value (type);
bfb1c796 2470 src = value_contents (obj) + offset;
f93fca70
JB
2471 }
2472
2473 if (obj != NULL)
2474 {
2475 long new_offset = offset;
2476
2477 set_value_component_location (v, obj);
2478 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2479 set_value_bitsize (v, bit_size);
2480 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2481 {
f93fca70 2482 ++new_offset;
dda83cd7
SM
2483 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 }
f93fca70
JB
2485 set_value_offset (v, new_offset);
2486
2487 /* Also set the parent value. This is needed when trying to
2488 assign a new value (in inferior memory). */
2489 set_value_parent (v, obj);
2490 }
2491 else
2492 set_value_bitsize (v, bit_size);
bfb1c796 2493 unpacked = value_contents_writeable (v);
f93fca70
JB
2494
2495 if (bit_size == 0)
2496 {
2497 memset (unpacked, 0, TYPE_LENGTH (type));
2498 return v;
2499 }
2500
d5722aa2 2501 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2502 {
d0a9e810
JB
2503 /* Small short-cut: If we've unpacked the data into a buffer
2504 of the same size as TYPE's length, then we can reuse that,
2505 instead of doing the unpacking again. */
d5722aa2 2506 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2507 }
d0a9e810
JB
2508 else
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 unpacked, TYPE_LENGTH (type),
2511 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2512
14f9c5c9
AS
2513 return v;
2514}
d2e4a39e 2515
14f9c5c9
AS
2516/* Store the contents of FROMVAL into the location of TOVAL.
2517 Return a new value with the location of TOVAL and contents of
2518 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2519 floating-point or non-scalar types. */
14f9c5c9 2520
d2e4a39e
AS
2521static struct value *
2522ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2523{
df407dfe
AC
2524 struct type *type = value_type (toval);
2525 int bits = value_bitsize (toval);
14f9c5c9 2526
52ce6436
PH
2527 toval = ada_coerce_ref (toval);
2528 fromval = ada_coerce_ref (fromval);
2529
2530 if (ada_is_direct_array_type (value_type (toval)))
2531 toval = ada_coerce_to_simple_array (toval);
2532 if (ada_is_direct_array_type (value_type (fromval)))
2533 fromval = ada_coerce_to_simple_array (fromval);
2534
88e3b34b 2535 if (!deprecated_value_modifiable (toval))
323e0a4a 2536 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2537
d2e4a39e 2538 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2539 && bits > 0
78134374 2540 && (type->code () == TYPE_CODE_FLT
dda83cd7 2541 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2542 {
df407dfe
AC
2543 int len = (value_bitpos (toval)
2544 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2545 int from_size;
224c3ddb 2546 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2547 struct value *val;
42ae5230 2548 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2549
78134374 2550 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2551 fromval = value_cast (type, fromval);
14f9c5c9 2552
52ce6436 2553 read_memory (to_addr, buffer, len);
aced2898
PH
2554 from_size = value_bitsize (fromval);
2555 if (from_size == 0)
2556 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2557
d5a22e77 2558 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2559 ULONGEST from_offset = 0;
2560 if (is_big_endian && is_scalar_type (value_type (fromval)))
2561 from_offset = from_size - bits;
2562 copy_bitwise (buffer, value_bitpos (toval),
2563 value_contents (fromval), from_offset,
2564 bits, is_big_endian);
972daa01 2565 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2566
14f9c5c9 2567 val = value_copy (toval);
0fd88904 2568 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2569 TYPE_LENGTH (type));
04624583 2570 deprecated_set_value_type (val, type);
d2e4a39e 2571
14f9c5c9
AS
2572 return val;
2573 }
2574
2575 return value_assign (toval, fromval);
2576}
2577
2578
7c512744
JB
2579/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2580 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2581 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2582 COMPONENT, and not the inferior's memory. The current contents
2583 of COMPONENT are ignored.
2584
2585 Although not part of the initial design, this function also works
2586 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2587 had a null address, and COMPONENT had an address which is equal to
2588 its offset inside CONTAINER. */
2589
52ce6436
PH
2590static void
2591value_assign_to_component (struct value *container, struct value *component,
2592 struct value *val)
2593{
2594 LONGEST offset_in_container =
42ae5230 2595 (LONGEST) (value_address (component) - value_address (container));
7c512744 2596 int bit_offset_in_container =
52ce6436
PH
2597 value_bitpos (component) - value_bitpos (container);
2598 int bits;
7c512744 2599
52ce6436
PH
2600 val = value_cast (value_type (component), val);
2601
2602 if (value_bitsize (component) == 0)
2603 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 else
2605 bits = value_bitsize (component);
2606
d5a22e77 2607 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2608 {
2609 int src_offset;
2610
2611 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2612 src_offset
2a62dfa9
JB
2613 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2614 else
2615 src_offset = 0;
a99bc3d2
JB
2616 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2617 value_bitpos (container) + bit_offset_in_container,
2618 value_contents (val), src_offset, bits, 1);
2a62dfa9 2619 }
52ce6436 2620 else
a99bc3d2
JB
2621 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2622 value_bitpos (container) + bit_offset_in_container,
2623 value_contents (val), 0, bits, 0);
7c512744
JB
2624}
2625
736ade86
XR
2626/* Determine if TYPE is an access to an unconstrained array. */
2627
d91e9ea8 2628bool
736ade86
XR
2629ada_is_access_to_unconstrained_array (struct type *type)
2630{
78134374 2631 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2632 && is_thick_pntr (ada_typedef_target_type (type)));
2633}
2634
4c4b4cd2
PH
2635/* The value of the element of array ARR at the ARITY indices given in IND.
2636 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2637 thereto. */
2638
d2e4a39e
AS
2639struct value *
2640ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2641{
2642 int k;
d2e4a39e
AS
2643 struct value *elt;
2644 struct type *elt_type;
14f9c5c9
AS
2645
2646 elt = ada_coerce_to_simple_array (arr);
2647
df407dfe 2648 elt_type = ada_check_typedef (value_type (elt));
78134374 2649 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2650 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2651 return value_subscript_packed (elt, arity, ind);
2652
2653 for (k = 0; k < arity; k += 1)
2654 {
b9c50e9a
XR
2655 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656
78134374 2657 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2658 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2659
2497b498 2660 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2661
2662 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2663 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2664 {
2665 /* The element is a typedef to an unconstrained array,
2666 except that the value_subscript call stripped the
2667 typedef layer. The typedef layer is GNAT's way to
2668 specify that the element is, at the source level, an
2669 access to the unconstrained array, rather than the
2670 unconstrained array. So, we need to restore that
2671 typedef layer, which we can do by forcing the element's
2672 type back to its original type. Otherwise, the returned
2673 value is going to be printed as the array, rather
2674 than as an access. Another symptom of the same issue
2675 would be that an expression trying to dereference the
2676 element would also be improperly rejected. */
2677 deprecated_set_value_type (elt, saved_elt_type);
2678 }
2679
2680 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2681 }
b9c50e9a 2682
14f9c5c9
AS
2683 return elt;
2684}
2685
deede10c
JB
2686/* Assuming ARR is a pointer to a GDB array, the value of the element
2687 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2688 Does not read the entire array into memory.
2689
2690 Note: Unlike what one would expect, this function is used instead of
2691 ada_value_subscript for basically all non-packed array types. The reason
2692 for this is that a side effect of doing our own pointer arithmetics instead
2693 of relying on value_subscript is that there is no implicit typedef peeling.
2694 This is important for arrays of array accesses, where it allows us to
2695 preserve the fact that the array's element is an array access, where the
2696 access part os encoded in a typedef layer. */
14f9c5c9 2697
2c0b251b 2698static struct value *
deede10c 2699ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2700{
2701 int k;
919e6dbe 2702 struct value *array_ind = ada_value_ind (arr);
deede10c 2703 struct type *type
919e6dbe
PMR
2704 = check_typedef (value_enclosing_type (array_ind));
2705
78134374 2706 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2707 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2708 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 LONGEST lwb, upb;
14f9c5c9 2713
78134374 2714 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2715 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2716 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2717 value_copy (arr));
3d967001 2718 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2719 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2720 type = TYPE_TARGET_TYPE (type);
2721 }
2722
2723 return value_ind (arr);
2724}
2725
0b5d8877 2726/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2727 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2728 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2729 this array is LOW, as per Ada rules. */
0b5d8877 2730static struct value *
f5938064 2731ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2732 int low, int high)
0b5d8877 2733{
b0dd7688 2734 struct type *type0 = ada_check_typedef (type);
3d967001 2735 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2736 struct type *index_type
aa715135 2737 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2738 struct type *slice_type = create_array_type_with_stride
2739 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2740 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2741 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2742 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2743 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2744 CORE_ADDR base;
2745
6244c119
SM
2746 low_pos = discrete_position (base_index_type, low);
2747 base_low_pos = discrete_position (base_index_type, base_low);
2748
2749 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
5b4ee69b 2755
7ff5b937
TT
2756 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 if (stride == 0)
2758 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759
6244c119 2760 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2761 return value_at_lazy (slice_type, base);
0b5d8877
PH
2762}
2763
2764
2765static struct value *
2766ada_value_slice (struct value *array, int low, int high)
2767{
b0dd7688 2768 struct type *type = ada_check_typedef (value_type (array));
3d967001 2769 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2770 struct type *index_type
3d967001 2771 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2772 struct type *slice_type = create_array_type_with_stride
2773 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2774 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2775 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2776 gdb::optional<LONGEST> low_pos, high_pos;
2777
5b4ee69b 2778
6244c119
SM
2779 low_pos = discrete_position (base_index_type, low);
2780 high_pos = discrete_position (base_index_type, high);
2781
2782 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2783 {
2784 warning (_("unable to get positions in slice, use bounds instead"));
2785 low_pos = low;
2786 high_pos = high;
2787 }
2788
2789 return value_cast (slice_type,
6244c119 2790 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2791}
2792
14f9c5c9
AS
2793/* If type is a record type in the form of a standard GNAT array
2794 descriptor, returns the number of dimensions for type. If arr is a
2795 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2796 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2797
2798int
d2e4a39e 2799ada_array_arity (struct type *type)
14f9c5c9
AS
2800{
2801 int arity;
2802
2803 if (type == NULL)
2804 return 0;
2805
2806 type = desc_base_type (type);
2807
2808 arity = 0;
78134374 2809 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2810 return desc_arity (desc_bounds_type (type));
d2e4a39e 2811 else
78134374 2812 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2813 {
dda83cd7
SM
2814 arity += 1;
2815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2816 }
d2e4a39e 2817
14f9c5c9
AS
2818 return arity;
2819}
2820
2821/* If TYPE is a record type in the form of a standard GNAT array
2822 descriptor or a simple array type, returns the element type for
2823 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2824 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2825
d2e4a39e
AS
2826struct type *
2827ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2828{
2829 type = desc_base_type (type);
2830
78134374 2831 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2832 {
2833 int k;
d2e4a39e 2834 struct type *p_array_type;
14f9c5c9 2835
556bdfd4 2836 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2837
2838 k = ada_array_arity (type);
2839 if (k == 0)
dda83cd7 2840 return NULL;
d2e4a39e 2841
4c4b4cd2 2842 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2843 if (nindices >= 0 && k > nindices)
dda83cd7 2844 k = nindices;
d2e4a39e 2845 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2846 {
2847 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2848 k -= 1;
2849 }
14f9c5c9
AS
2850 return p_array_type;
2851 }
78134374 2852 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2853 {
78134374 2854 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2855 {
2856 type = TYPE_TARGET_TYPE (type);
2857 nindices -= 1;
2858 }
14f9c5c9
AS
2859 return type;
2860 }
2861
2862 return NULL;
2863}
2864
08a057e6 2865/* See ada-lang.h. */
14f9c5c9 2866
08a057e6 2867struct type *
1eea4ebd 2868ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2869{
4c4b4cd2
PH
2870 struct type *result_type;
2871
14f9c5c9
AS
2872 type = desc_base_type (type);
2873
1eea4ebd
UW
2874 if (n < 0 || n > ada_array_arity (type))
2875 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2876
4c4b4cd2 2877 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2878 {
2879 int i;
2880
2881 for (i = 1; i < n; i += 1)
dda83cd7 2882 type = TYPE_TARGET_TYPE (type);
3d967001 2883 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2 2884 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2885 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2886 perhaps stabsread.c would make more sense. */
78134374 2887 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2888 result_type = NULL;
14f9c5c9 2889 }
d2e4a39e 2890 else
1eea4ebd
UW
2891 {
2892 result_type = desc_index_type (desc_bounds_type (type), n);
2893 if (result_type == NULL)
2894 error (_("attempt to take bound of something that is not an array"));
2895 }
2896
2897 return result_type;
14f9c5c9
AS
2898}
2899
2900/* Given that arr is an array type, returns the lower bound of the
2901 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2902 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2903 array-descriptor type. It works for other arrays with bounds supplied
2904 by run-time quantities other than discriminants. */
14f9c5c9 2905
abb68b3e 2906static LONGEST
fb5e3d5c 2907ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2908{
8a48ac95 2909 struct type *type, *index_type_desc, *index_type;
1ce677a4 2910 int i;
262452ec
JK
2911
2912 gdb_assert (which == 0 || which == 1);
14f9c5c9 2913
ad82864c
JB
2914 if (ada_is_constrained_packed_array_type (arr_type))
2915 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2916
4c4b4cd2 2917 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2918 return (LONGEST) - which;
14f9c5c9 2919
78134374 2920 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2921 type = TYPE_TARGET_TYPE (arr_type);
2922 else
2923 type = arr_type;
2924
22c4c60c 2925 if (type->is_fixed_instance ())
bafffb51
JB
2926 {
2927 /* The array has already been fixed, so we do not need to
2928 check the parallel ___XA type again. That encoding has
2929 already been applied, so ignore it now. */
2930 index_type_desc = NULL;
2931 }
2932 else
2933 {
2934 index_type_desc = ada_find_parallel_type (type, "___XA");
2935 ada_fixup_array_indexes_type (index_type_desc);
2936 }
2937
262452ec 2938 if (index_type_desc != NULL)
940da03e 2939 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2940 NULL);
262452ec 2941 else
8a48ac95
JB
2942 {
2943 struct type *elt_type = check_typedef (type);
2944
2945 for (i = 1; i < n; i++)
2946 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2947
3d967001 2948 index_type = elt_type->index_type ();
8a48ac95 2949 }
262452ec 2950
43bbcdc2
PH
2951 return
2952 (LONGEST) (which == 0
dda83cd7
SM
2953 ? ada_discrete_type_low_bound (index_type)
2954 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2955}
2956
2957/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2958 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2959 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2960 supplied by run-time quantities other than discriminants. */
14f9c5c9 2961
1eea4ebd 2962static LONGEST
4dc81987 2963ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2964{
eb479039
JB
2965 struct type *arr_type;
2966
78134374 2967 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2968 arr = value_ind (arr);
2969 arr_type = value_enclosing_type (arr);
14f9c5c9 2970
ad82864c
JB
2971 if (ada_is_constrained_packed_array_type (arr_type))
2972 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2973 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2974 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2975 else
1eea4ebd 2976 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2977}
2978
2979/* Given that arr is an array value, returns the length of the
2980 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2981 supplied by run-time quantities other than discriminants.
2982 Does not work for arrays indexed by enumeration types with representation
2983 clauses at the moment. */
14f9c5c9 2984
1eea4ebd 2985static LONGEST
d2e4a39e 2986ada_array_length (struct value *arr, int n)
14f9c5c9 2987{
aa715135
JG
2988 struct type *arr_type, *index_type;
2989 int low, high;
eb479039 2990
78134374 2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
14f9c5c9 2994
ad82864c
JB
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2997
4c4b4cd2 2998 if (ada_is_simple_array_type (arr_type))
aa715135
JG
2999 {
3000 low = ada_array_bound_from_type (arr_type, n, 0);
3001 high = ada_array_bound_from_type (arr_type, n, 1);
3002 }
14f9c5c9 3003 else
aa715135
JG
3004 {
3005 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3006 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3007 }
3008
f168693b 3009 arr_type = check_typedef (arr_type);
7150d33c 3010 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3011 if (index_type != NULL)
3012 {
3013 struct type *base_type;
78134374 3014 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3015 base_type = TYPE_TARGET_TYPE (index_type);
3016 else
3017 base_type = index_type;
3018
3019 low = pos_atr (value_from_longest (base_type, low));
3020 high = pos_atr (value_from_longest (base_type, high));
3021 }
3022 return high - low + 1;
4c4b4cd2
PH
3023}
3024
bff8c71f
TT
3025/* An array whose type is that of ARR_TYPE (an array type), with
3026 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3027 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3028
3029static struct value *
bff8c71f 3030empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3031{
b0dd7688 3032 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3033 struct type *index_type
3034 = create_static_range_type
dda83cd7 3035 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3036 high < low ? low - 1 : high);
b0dd7688 3037 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3038
0b5d8877 3039 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3040}
14f9c5c9 3041\f
d2e4a39e 3042
dda83cd7 3043 /* Name resolution */
14f9c5c9 3044
4c4b4cd2
PH
3045/* The "decoded" name for the user-definable Ada operator corresponding
3046 to OP. */
14f9c5c9 3047
d2e4a39e 3048static const char *
4c4b4cd2 3049ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3050{
3051 int i;
3052
4c4b4cd2 3053 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3054 {
3055 if (ada_opname_table[i].op == op)
dda83cd7 3056 return ada_opname_table[i].decoded;
14f9c5c9 3057 }
323e0a4a 3058 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3059}
3060
de93309a
SM
3061/* Returns true (non-zero) iff decoded name N0 should appear before N1
3062 in a listing of choices during disambiguation (see sort_choices, below).
3063 The idea is that overloadings of a subprogram name from the
3064 same package should sort in their source order. We settle for ordering
3065 such symbols by their trailing number (__N or $N). */
14f9c5c9 3066
de93309a
SM
3067static int
3068encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3069{
de93309a
SM
3070 if (N1 == NULL)
3071 return 0;
3072 else if (N0 == NULL)
3073 return 1;
3074 else
3075 {
3076 int k0, k1;
30b15541 3077
de93309a 3078 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3079 ;
de93309a 3080 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3081 ;
de93309a 3082 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3083 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3084 {
3085 int n0, n1;
3086
3087 n0 = k0;
3088 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3089 n0 -= 1;
3090 n1 = k1;
3091 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3092 n1 -= 1;
3093 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3094 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3095 }
de93309a
SM
3096 return (strcmp (N0, N1) < 0);
3097 }
14f9c5c9
AS
3098}
3099
de93309a
SM
3100/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3101 encoded names. */
14f9c5c9 3102
de93309a
SM
3103static void
3104sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3105{
14f9c5c9 3106 int i;
14f9c5c9 3107
de93309a 3108 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3109 {
de93309a
SM
3110 struct block_symbol sym = syms[i];
3111 int j;
3112
3113 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3114 {
3115 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3116 sym.symbol->linkage_name ()))
3117 break;
3118 syms[j + 1] = syms[j];
3119 }
de93309a
SM
3120 syms[j + 1] = sym;
3121 }
3122}
14f9c5c9 3123
de93309a
SM
3124/* Whether GDB should display formals and return types for functions in the
3125 overloads selection menu. */
3126static bool print_signatures = true;
4c4b4cd2 3127
de93309a
SM
3128/* Print the signature for SYM on STREAM according to the FLAGS options. For
3129 all but functions, the signature is just the name of the symbol. For
3130 functions, this is the name of the function, the list of types for formals
3131 and the return type (if any). */
4c4b4cd2 3132
de93309a
SM
3133static void
3134ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3135 const struct type_print_options *flags)
3136{
3137 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3138
987012b8 3139 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3140 if (!print_signatures
3141 || type == NULL
78134374 3142 || type->code () != TYPE_CODE_FUNC)
de93309a 3143 return;
4c4b4cd2 3144
1f704f76 3145 if (type->num_fields () > 0)
de93309a
SM
3146 {
3147 int i;
14f9c5c9 3148
de93309a 3149 fprintf_filtered (stream, " (");
1f704f76 3150 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3151 {
3152 if (i > 0)
3153 fprintf_filtered (stream, "; ");
940da03e 3154 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3155 flags);
3156 }
3157 fprintf_filtered (stream, ")");
3158 }
3159 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3160 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3161 {
3162 fprintf_filtered (stream, " return ");
3163 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3164 }
3165}
14f9c5c9 3166
de93309a
SM
3167/* Read and validate a set of numeric choices from the user in the
3168 range 0 .. N_CHOICES-1. Place the results in increasing
3169 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3170
de93309a
SM
3171 The user types choices as a sequence of numbers on one line
3172 separated by blanks, encoding them as follows:
14f9c5c9 3173
de93309a
SM
3174 + A choice of 0 means to cancel the selection, throwing an error.
3175 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3176 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3177
de93309a 3178 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3179
de93309a
SM
3180 ANNOTATION_SUFFIX, if present, is used to annotate the input
3181 prompts (for use with the -f switch). */
14f9c5c9 3182
de93309a
SM
3183static int
3184get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3185 int is_all_choice, const char *annotation_suffix)
de93309a 3186{
992a7040 3187 const char *args;
de93309a
SM
3188 const char *prompt;
3189 int n_chosen;
3190 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3191
de93309a
SM
3192 prompt = getenv ("PS2");
3193 if (prompt == NULL)
3194 prompt = "> ";
4c4b4cd2 3195
de93309a 3196 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3197
de93309a
SM
3198 if (args == NULL)
3199 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3200
de93309a 3201 n_chosen = 0;
4c4b4cd2 3202
de93309a
SM
3203 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3204 order, as given in args. Choices are validated. */
3205 while (1)
14f9c5c9 3206 {
de93309a
SM
3207 char *args2;
3208 int choice, j;
76a01679 3209
de93309a
SM
3210 args = skip_spaces (args);
3211 if (*args == '\0' && n_chosen == 0)
dda83cd7 3212 error_no_arg (_("one or more choice numbers"));
de93309a 3213 else if (*args == '\0')
dda83cd7 3214 break;
76a01679 3215
de93309a
SM
3216 choice = strtol (args, &args2, 10);
3217 if (args == args2 || choice < 0
dda83cd7
SM
3218 || choice > n_choices + first_choice - 1)
3219 error (_("Argument must be choice number"));
de93309a 3220 args = args2;
76a01679 3221
de93309a 3222 if (choice == 0)
dda83cd7 3223 error (_("cancelled"));
76a01679 3224
de93309a 3225 if (choice < first_choice)
dda83cd7
SM
3226 {
3227 n_chosen = n_choices;
3228 for (j = 0; j < n_choices; j += 1)
3229 choices[j] = j;
3230 break;
3231 }
de93309a 3232 choice -= first_choice;
76a01679 3233
de93309a 3234 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3235 {
3236 }
4c4b4cd2 3237
de93309a 3238 if (j < 0 || choice != choices[j])
dda83cd7
SM
3239 {
3240 int k;
4c4b4cd2 3241
dda83cd7
SM
3242 for (k = n_chosen - 1; k > j; k -= 1)
3243 choices[k + 1] = choices[k];
3244 choices[j + 1] = choice;
3245 n_chosen += 1;
3246 }
14f9c5c9
AS
3247 }
3248
de93309a
SM
3249 if (n_chosen > max_results)
3250 error (_("Select no more than %d of the above"), max_results);
3251
3252 return n_chosen;
14f9c5c9
AS
3253}
3254
de93309a
SM
3255/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3256 by asking the user (if necessary), returning the number selected,
3257 and setting the first elements of SYMS items. Error if no symbols
3258 selected. */
3259
3260/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3261 to be re-integrated one of these days. */
14f9c5c9
AS
3262
3263static int
de93309a 3264user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3265{
de93309a
SM
3266 int i;
3267 int *chosen = XALLOCAVEC (int , nsyms);
3268 int n_chosen;
3269 int first_choice = (max_results == 1) ? 1 : 2;
3270 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3271
de93309a
SM
3272 if (max_results < 1)
3273 error (_("Request to select 0 symbols!"));
3274 if (nsyms <= 1)
3275 return nsyms;
14f9c5c9 3276
de93309a
SM
3277 if (select_mode == multiple_symbols_cancel)
3278 error (_("\
3279canceled because the command is ambiguous\n\
3280See set/show multiple-symbol."));
14f9c5c9 3281
de93309a
SM
3282 /* If select_mode is "all", then return all possible symbols.
3283 Only do that if more than one symbol can be selected, of course.
3284 Otherwise, display the menu as usual. */
3285 if (select_mode == multiple_symbols_all && max_results > 1)
3286 return nsyms;
14f9c5c9 3287
de93309a
SM
3288 printf_filtered (_("[0] cancel\n"));
3289 if (max_results > 1)
3290 printf_filtered (_("[1] all\n"));
14f9c5c9 3291
de93309a 3292 sort_choices (syms, nsyms);
14f9c5c9 3293
de93309a
SM
3294 for (i = 0; i < nsyms; i += 1)
3295 {
3296 if (syms[i].symbol == NULL)
dda83cd7 3297 continue;
14f9c5c9 3298
de93309a 3299 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3300 {
3301 struct symtab_and_line sal =
3302 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3303
de93309a
SM
3304 printf_filtered ("[%d] ", i + first_choice);
3305 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3306 &type_print_raw_options);
3307 if (sal.symtab == NULL)
3308 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3309 metadata_style.style ().ptr (), nullptr, sal.line);
3310 else
3311 printf_filtered
3312 (_(" at %ps:%d\n"),
3313 styled_string (file_name_style.style (),
3314 symtab_to_filename_for_display (sal.symtab)),
3315 sal.line);
dda83cd7
SM
3316 continue;
3317 }
76a01679 3318 else
dda83cd7
SM
3319 {
3320 int is_enumeral =
3321 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3322 && SYMBOL_TYPE (syms[i].symbol) != NULL
3323 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3324 struct symtab *symtab = NULL;
4c4b4cd2 3325
de93309a
SM
3326 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3327 symtab = symbol_symtab (syms[i].symbol);
3328
dda83cd7 3329 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3330 {
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 printf_filtered (_(" at %s:%d\n"),
3335 symtab_to_filename_for_display (symtab),
3336 SYMBOL_LINE (syms[i].symbol));
3337 }
dda83cd7
SM
3338 else if (is_enumeral
3339 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3340 {
3341 printf_filtered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3343 gdb_stdout, -1, 0, &type_print_raw_options);
3344 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3345 syms[i].symbol->print_name ());
dda83cd7 3346 }
de93309a
SM
3347 else
3348 {
3349 printf_filtered ("[%d] ", i + first_choice);
3350 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3351 &type_print_raw_options);
3352
3353 if (symtab != NULL)
3354 printf_filtered (is_enumeral
3355 ? _(" in %s (enumeral)\n")
3356 : _(" at %s:?\n"),
3357 symtab_to_filename_for_display (symtab));
3358 else
3359 printf_filtered (is_enumeral
3360 ? _(" (enumeral)\n")
3361 : _(" at ?\n"));
3362 }
dda83cd7 3363 }
14f9c5c9 3364 }
14f9c5c9 3365
de93309a 3366 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3367 "overload-choice");
14f9c5c9 3368
de93309a
SM
3369 for (i = 0; i < n_chosen; i += 1)
3370 syms[i] = syms[chosen[i]];
14f9c5c9 3371
de93309a
SM
3372 return n_chosen;
3373}
14f9c5c9 3374
cd9a3148
TT
3375/* See ada-lang.h. */
3376
3377block_symbol
3378ada_find_operator_symbol (enum exp_opcode op, int parse_completion,
3379 int nargs, value *argvec[])
3380{
3381 if (possible_user_operator_p (op, argvec))
3382 {
3383 std::vector<struct block_symbol> candidates
3384 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3385 NULL, VAR_DOMAIN);
3386
3387 int i = ada_resolve_function (candidates, argvec,
3388 nargs, ada_decoded_op_name (op), NULL,
3389 parse_completion);
3390 if (i >= 0)
3391 return candidates[i];
3392 }
3393 return {};
3394}
3395
3396/* See ada-lang.h. */
3397
3398block_symbol
3399ada_resolve_funcall (struct symbol *sym, const struct block *block,
3400 struct type *context_type,
3401 int parse_completion,
3402 int nargs, value *argvec[],
3403 innermost_block_tracker *tracker)
3404{
3405 std::vector<struct block_symbol> candidates
3406 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3407
3408 int i;
3409 if (candidates.size () == 1)
3410 i = 0;
3411 else
3412 {
3413 i = ada_resolve_function
3414 (candidates,
3415 argvec, nargs,
3416 sym->linkage_name (),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"), sym->print_name ());
3420 }
3421
3422 tracker->update (candidates[i]);
3423 return candidates[i];
3424}
3425
3426/* See ada-lang.h. */
3427
3428block_symbol
3429ada_resolve_variable (struct symbol *sym, const struct block *block,
3430 struct type *context_type,
3431 int parse_completion,
3432 int deprocedure_p,
3433 innermost_block_tracker *tracker)
3434{
3435 std::vector<struct block_symbol> candidates
3436 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3437
3438 if (std::any_of (candidates.begin (),
3439 candidates.end (),
3440 [] (block_symbol &bsym)
3441 {
3442 switch (SYMBOL_CLASS (bsym.symbol))
3443 {
3444 case LOC_REGISTER:
3445 case LOC_ARG:
3446 case LOC_REF_ARG:
3447 case LOC_REGPARM_ADDR:
3448 case LOC_LOCAL:
3449 case LOC_COMPUTED:
3450 return true;
3451 default:
3452 return false;
3453 }
3454 }))
3455 {
3456 /* Types tend to get re-introduced locally, so if there
3457 are any local symbols that are not types, first filter
3458 out all types. */
3459 candidates.erase
3460 (std::remove_if
3461 (candidates.begin (),
3462 candidates.end (),
3463 [] (block_symbol &bsym)
3464 {
3465 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3466 }),
3467 candidates.end ());
3468 }
3469
3470 int i;
3471 if (candidates.empty ())
3472 error (_("No definition found for %s"), sym->print_name ());
3473 else if (candidates.size () == 1)
3474 i = 0;
3475 else if (deprocedure_p && !is_nonfunction (candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates, NULL, 0,
3479 sym->linkage_name (),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"), sym->print_name ());
3483 }
3484 else
3485 {
3486 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3487 user_select_syms (candidates.data (), candidates.size (), 1);
3488 i = 0;
3489 }
3490
3491 tracker->update (candidates[i]);
3492 return candidates[i];
3493}
3494
de93309a
SM
3495/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3496 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3497 a non-pointer. */
3498/* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
14f9c5c9 3500
de93309a
SM
3501static int
3502ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3503{
de93309a
SM
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
14f9c5c9 3506
78134374 3507 if (ftype->code () == TYPE_CODE_REF)
de93309a 3508 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3509 if (atype->code () == TYPE_CODE_REF)
de93309a 3510 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3511
78134374 3512 switch (ftype->code ())
14f9c5c9 3513 {
de93309a 3514 default:
78134374 3515 return ftype->code () == atype->code ();
de93309a 3516 case TYPE_CODE_PTR:
78134374 3517 if (atype->code () == TYPE_CODE_PTR)
dda83cd7
SM
3518 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3519 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3520 else
dda83cd7
SM
3521 return (may_deref
3522 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
de93309a
SM
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
78134374 3526 switch (atype->code ())
dda83cd7
SM
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3534 }
d2e4a39e 3535
de93309a 3536 case TYPE_CODE_ARRAY:
78134374 3537 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3538 || ada_is_array_descriptor_type (atype));
14f9c5c9 3539
de93309a
SM
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
de93309a 3544 else
dda83cd7
SM
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3547
de93309a
SM
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
78134374 3550 return (atype->code () == ftype->code ());
de93309a 3551 }
14f9c5c9
AS
3552}
3553
de93309a
SM
3554/* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
14f9c5c9 3558
de93309a
SM
3559static int
3560ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3561{
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3564
de93309a 3565 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3566 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3567 return (n_actuals == 0);
78134374 3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3569 return 0;
14f9c5c9 3570
1f704f76 3571 if (func_type->num_fields () != n_actuals)
de93309a 3572 return 0;
14f9c5c9 3573
de93309a
SM
3574 for (i = 0; i < n_actuals; i += 1)
3575 {
3576 if (actuals[i] == NULL)
dda83cd7 3577 return 0;
de93309a 3578 else
dda83cd7
SM
3579 {
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3582
dda83cd7
SM
3583 if (!ada_type_match (ftype, atype, 1))
3584 return 0;
3585 }
de93309a
SM
3586 }
3587 return 1;
3588}
d2e4a39e 3589
de93309a
SM
3590/* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3594
de93309a
SM
3595static int
3596return_match (struct type *func_type, struct type *context_type)
3597{
3598 struct type *return_type;
d2e4a39e 3599
de93309a
SM
3600 if (func_type == NULL)
3601 return 1;
14f9c5c9 3602
78134374 3603 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
76a01679 3609
de93309a 3610 context_type = get_base_type (context_type);
14f9c5c9 3611
78134374 3612 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
78134374 3615 return return_type->code () != TYPE_CODE_VOID;
de93309a 3616 else
78134374 3617 return return_type->code () == context_type->code ();
de93309a 3618}
14f9c5c9 3619
14f9c5c9 3620
1bfa81ac 3621/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
14f9c5c9 3627
de93309a
SM
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
14f9c5c9 3632
de93309a 3633static int
d1183b06
TT
3634ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
dda83cd7 3636 const char *name, struct type *context_type,
de93309a
SM
3637 int parse_completion)
3638{
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
14f9c5c9 3642
de93309a
SM
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3648 {
d1183b06 3649 for (k = 0; k < syms.size (); k += 1)
dda83cd7
SM
3650 {
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3652
dda83cd7
SM
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3655 {
3656 syms[m] = syms[k];
3657 m += 1;
3658 }
3659 }
14f9c5c9
AS
3660 }
3661
de93309a
SM
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3669 {
3670 printf_filtered (_("Multiple matches for %s\n"), name);
d1183b06 3671 user_select_syms (syms.data (), m, 1);
de93309a
SM
3672 return 0;
3673 }
3674 return 0;
14f9c5c9
AS
3675}
3676
14f9c5c9
AS
3677/* Type-class predicates */
3678
4c4b4cd2
PH
3679/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
14f9c5c9
AS
3681
3682static int
d2e4a39e 3683numeric_type_p (struct type *type)
14f9c5c9
AS
3684{
3685 if (type == NULL)
3686 return 0;
d2e4a39e
AS
3687 else
3688 {
78134374 3689 switch (type->code ())
dda83cd7
SM
3690 {
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 return 1;
3694 case TYPE_CODE_RANGE:
3695 return (type == TYPE_TARGET_TYPE (type)
3696 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3697 default:
3698 return 0;
3699 }
d2e4a39e 3700 }
14f9c5c9
AS
3701}
3702
4c4b4cd2 3703/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3704
3705static int
d2e4a39e 3706integer_type_p (struct type *type)
14f9c5c9
AS
3707{
3708 if (type == NULL)
3709 return 0;
d2e4a39e
AS
3710 else
3711 {
78134374 3712 switch (type->code ())
dda83cd7
SM
3713 {
3714 case TYPE_CODE_INT:
3715 return 1;
3716 case TYPE_CODE_RANGE:
3717 return (type == TYPE_TARGET_TYPE (type)
3718 || integer_type_p (TYPE_TARGET_TYPE (type)));
3719 default:
3720 return 0;
3721 }
d2e4a39e 3722 }
14f9c5c9
AS
3723}
3724
4c4b4cd2 3725/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3726
3727static int
d2e4a39e 3728scalar_type_p (struct type *type)
14f9c5c9
AS
3729{
3730 if (type == NULL)
3731 return 0;
d2e4a39e
AS
3732 else
3733 {
78134374 3734 switch (type->code ())
dda83cd7
SM
3735 {
3736 case TYPE_CODE_INT:
3737 case TYPE_CODE_RANGE:
3738 case TYPE_CODE_ENUM:
3739 case TYPE_CODE_FLT:
3740 return 1;
3741 default:
3742 return 0;
3743 }
d2e4a39e 3744 }
14f9c5c9
AS
3745}
3746
4c4b4cd2 3747/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3748
3749static int
d2e4a39e 3750discrete_type_p (struct type *type)
14f9c5c9
AS
3751{
3752 if (type == NULL)
3753 return 0;
d2e4a39e
AS
3754 else
3755 {
78134374 3756 switch (type->code ())
dda83cd7
SM
3757 {
3758 case TYPE_CODE_INT:
3759 case TYPE_CODE_RANGE:
3760 case TYPE_CODE_ENUM:
3761 case TYPE_CODE_BOOL:
3762 return 1;
3763 default:
3764 return 0;
3765 }
d2e4a39e 3766 }
14f9c5c9
AS
3767}
3768
4c4b4cd2
PH
3769/* Returns non-zero if OP with operands in the vector ARGS could be
3770 a user-defined function. Errs on the side of pre-defined operators
3771 (i.e., result 0). */
14f9c5c9
AS
3772
3773static int
d2e4a39e 3774possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3775{
76a01679 3776 struct type *type0 =
df407dfe 3777 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3778 struct type *type1 =
df407dfe 3779 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3780
4c4b4cd2
PH
3781 if (type0 == NULL)
3782 return 0;
3783
14f9c5c9
AS
3784 switch (op)
3785 {
3786 default:
3787 return 0;
3788
3789 case BINOP_ADD:
3790 case BINOP_SUB:
3791 case BINOP_MUL:
3792 case BINOP_DIV:
d2e4a39e 3793 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3794
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_BITWISE_AND:
3798 case BINOP_BITWISE_IOR:
3799 case BINOP_BITWISE_XOR:
d2e4a39e 3800 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3801
3802 case BINOP_EQUAL:
3803 case BINOP_NOTEQUAL:
3804 case BINOP_LESS:
3805 case BINOP_GTR:
3806 case BINOP_LEQ:
3807 case BINOP_GEQ:
d2e4a39e 3808 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3809
3810 case BINOP_CONCAT:
ee90b9ab 3811 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3812
3813 case BINOP_EXP:
d2e4a39e 3814 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3815
3816 case UNOP_NEG:
3817 case UNOP_PLUS:
3818 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3819 case UNOP_ABS:
3820 return (!numeric_type_p (type0));
14f9c5c9
AS
3821
3822 }
3823}
3824\f
dda83cd7 3825 /* Renaming */
14f9c5c9 3826
aeb5907d
JB
3827/* NOTES:
3828
3829 1. In the following, we assume that a renaming type's name may
3830 have an ___XD suffix. It would be nice if this went away at some
3831 point.
3832 2. We handle both the (old) purely type-based representation of
3833 renamings and the (new) variable-based encoding. At some point,
3834 it is devoutly to be hoped that the former goes away
3835 (FIXME: hilfinger-2007-07-09).
3836 3. Subprogram renamings are not implemented, although the XRS
3837 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3838
3839/* If SYM encodes a renaming,
3840
3841 <renaming> renames <renamed entity>,
3842
3843 sets *LEN to the length of the renamed entity's name,
3844 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3845 the string describing the subcomponent selected from the renamed
0963b4bd 3846 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3847 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3848 are undefined). Otherwise, returns a value indicating the category
3849 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3850 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3851 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3852 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3853 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3854 may be NULL, in which case they are not assigned.
3855
3856 [Currently, however, GCC does not generate subprogram renamings.] */
3857
3858enum ada_renaming_category
3859ada_parse_renaming (struct symbol *sym,
3860 const char **renamed_entity, int *len,
3861 const char **renaming_expr)
3862{
3863 enum ada_renaming_category kind;
3864 const char *info;
3865 const char *suffix;
3866
3867 if (sym == NULL)
3868 return ADA_NOT_RENAMING;
3869 switch (SYMBOL_CLASS (sym))
14f9c5c9 3870 {
aeb5907d
JB
3871 default:
3872 return ADA_NOT_RENAMING;
aeb5907d
JB
3873 case LOC_LOCAL:
3874 case LOC_STATIC:
3875 case LOC_COMPUTED:
3876 case LOC_OPTIMIZED_OUT:
987012b8 3877 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
3878 if (info == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (info[5])
3881 {
3882 case '_':
3883 kind = ADA_OBJECT_RENAMING;
3884 info += 6;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 info += 7;
3889 break;
3890 case 'P':
3891 kind = ADA_PACKAGE_RENAMING;
3892 info += 7;
3893 break;
3894 case 'S':
3895 kind = ADA_SUBPROGRAM_RENAMING;
3896 info += 7;
3897 break;
3898 default:
3899 return ADA_NOT_RENAMING;
3900 }
14f9c5c9 3901 }
4c4b4cd2 3902
de93309a
SM
3903 if (renamed_entity != NULL)
3904 *renamed_entity = info;
3905 suffix = strstr (info, "___XE");
3906 if (suffix == NULL || suffix == info)
3907 return ADA_NOT_RENAMING;
3908 if (len != NULL)
3909 *len = strlen (info) - strlen (suffix);
3910 suffix += 5;
3911 if (renaming_expr != NULL)
3912 *renaming_expr = suffix;
3913 return kind;
3914}
3915
3916/* Compute the value of the given RENAMING_SYM, which is expected to
3917 be a symbol encoding a renaming expression. BLOCK is the block
3918 used to evaluate the renaming. */
3919
3920static struct value *
3921ada_read_renaming_var_value (struct symbol *renaming_sym,
3922 const struct block *block)
3923{
3924 const char *sym_name;
3925
987012b8 3926 sym_name = renaming_sym->linkage_name ();
de93309a
SM
3927 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3928 return evaluate_expression (expr.get ());
3929}
3930\f
3931
dda83cd7 3932 /* Evaluation: Function Calls */
de93309a
SM
3933
3934/* Return an lvalue containing the value VAL. This is the identity on
3935 lvalues, and otherwise has the side-effect of allocating memory
3936 in the inferior where a copy of the value contents is copied. */
3937
3938static struct value *
3939ensure_lval (struct value *val)
3940{
3941 if (VALUE_LVAL (val) == not_lval
3942 || VALUE_LVAL (val) == lval_internalvar)
3943 {
3944 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3945 const CORE_ADDR addr =
dda83cd7 3946 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
3947
3948 VALUE_LVAL (val) = lval_memory;
3949 set_value_address (val, addr);
3950 write_memory (addr, value_contents (val), len);
3951 }
3952
3953 return val;
3954}
3955
3956/* Given ARG, a value of type (pointer or reference to a)*
3957 structure/union, extract the component named NAME from the ultimate
3958 target structure/union and return it as a value with its
3959 appropriate type.
3960
3961 The routine searches for NAME among all members of the structure itself
3962 and (recursively) among all members of any wrapper members
3963 (e.g., '_parent').
3964
3965 If NO_ERR, then simply return NULL in case of error, rather than
3966 calling error. */
3967
3968static struct value *
3969ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3970{
3971 struct type *t, *t1;
3972 struct value *v;
3973 int check_tag;
3974
3975 v = NULL;
3976 t1 = t = ada_check_typedef (value_type (arg));
78134374 3977 if (t->code () == TYPE_CODE_REF)
de93309a
SM
3978 {
3979 t1 = TYPE_TARGET_TYPE (t);
3980 if (t1 == NULL)
3981 goto BadValue;
3982 t1 = ada_check_typedef (t1);
78134374 3983 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
3984 {
3985 arg = coerce_ref (arg);
3986 t = t1;
3987 }
de93309a
SM
3988 }
3989
78134374 3990 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
3991 {
3992 t1 = TYPE_TARGET_TYPE (t);
3993 if (t1 == NULL)
3994 goto BadValue;
3995 t1 = ada_check_typedef (t1);
78134374 3996 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
3997 {
3998 arg = value_ind (arg);
3999 t = t1;
4000 }
de93309a 4001 else
dda83cd7 4002 break;
de93309a 4003 }
aeb5907d 4004
78134374 4005 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4006 goto BadValue;
52ce6436 4007
de93309a
SM
4008 if (t1 == t)
4009 v = ada_search_struct_field (name, arg, 0, t);
4010 else
4011 {
4012 int bit_offset, bit_size, byte_offset;
4013 struct type *field_type;
4014 CORE_ADDR address;
a5ee536b 4015
78134374 4016 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4017 address = value_address (ada_value_ind (arg));
4018 else
4019 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4020
de93309a 4021 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4022 the case where the type is a reference to a tagged type, but
4023 we have to be careful to exclude pointers to tagged types.
4024 The latter should be shown as usual (as a pointer), whereas
4025 a reference should mostly be transparent to the user. */
14f9c5c9 4026
de93309a 4027 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4028 || (t1->code () == TYPE_CODE_REF
4029 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4030 {
4031 /* We first try to find the searched field in the current type.
de93309a 4032 If not found then let's look in the fixed type. */
14f9c5c9 4033
dda83cd7
SM
4034 if (!find_struct_field (name, t1, 0,
4035 &field_type, &byte_offset, &bit_offset,
4036 &bit_size, NULL))
de93309a
SM
4037 check_tag = 1;
4038 else
4039 check_tag = 0;
dda83cd7 4040 }
de93309a
SM
4041 else
4042 check_tag = 0;
c3e5cd34 4043
de93309a
SM
4044 /* Convert to fixed type in all cases, so that we have proper
4045 offsets to each field in unconstrained record types. */
4046 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4047 address, NULL, check_tag);
4048
24aa1b02
TT
4049 /* Resolve the dynamic type as well. */
4050 arg = value_from_contents_and_address (t1, nullptr, address);
4051 t1 = value_type (arg);
4052
de93309a 4053 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4054 &field_type, &byte_offset, &bit_offset,
4055 &bit_size, NULL))
4056 {
4057 if (bit_size != 0)
4058 {
4059 if (t->code () == TYPE_CODE_REF)
4060 arg = ada_coerce_ref (arg);
4061 else
4062 arg = ada_value_ind (arg);
4063 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4064 bit_offset, bit_size,
4065 field_type);
4066 }
4067 else
4068 v = value_at_lazy (field_type, address + byte_offset);
4069 }
c3e5cd34 4070 }
14f9c5c9 4071
de93309a
SM
4072 if (v != NULL || no_err)
4073 return v;
4074 else
4075 error (_("There is no member named %s."), name);
4076
4077 BadValue:
4078 if (no_err)
4079 return NULL;
4080 else
4081 error (_("Attempt to extract a component of "
4082 "a value that is not a record."));
14f9c5c9
AS
4083}
4084
4085/* Return the value ACTUAL, converted to be an appropriate value for a
4086 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4087 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4088 values not residing in memory, updating it as needed. */
14f9c5c9 4089
a93c0eb6 4090struct value *
40bc484c 4091ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4092{
df407dfe 4093 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4094 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4095 struct type *formal_target =
78134374 4096 formal_type->code () == TYPE_CODE_PTR
61ee279c 4097 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4098 struct type *actual_target =
78134374 4099 actual_type->code () == TYPE_CODE_PTR
61ee279c 4100 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4101
4c4b4cd2 4102 if (ada_is_array_descriptor_type (formal_target)
78134374 4103 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4104 return make_array_descriptor (formal_type, actual);
78134374
SM
4105 else if (formal_type->code () == TYPE_CODE_PTR
4106 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4107 {
a84a8a0d 4108 struct value *result;
5b4ee69b 4109
78134374 4110 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4111 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4112 result = desc_data (actual);
78134374 4113 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4114 {
4115 if (VALUE_LVAL (actual) != lval_memory)
4116 {
4117 struct value *val;
4118
4119 actual_type = ada_check_typedef (value_type (actual));
4120 val = allocate_value (actual_type);
4121 memcpy ((char *) value_contents_raw (val),
4122 (char *) value_contents (actual),
4123 TYPE_LENGTH (actual_type));
4124 actual = ensure_lval (val);
4125 }
4126 result = value_addr (actual);
4127 }
a84a8a0d
JB
4128 else
4129 return actual;
b1af9e97 4130 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4131 }
78134374 4132 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4133 return ada_value_ind (actual);
8344af1e
JB
4134 else if (ada_is_aligner_type (formal_type))
4135 {
4136 /* We need to turn this parameter into an aligner type
4137 as well. */
4138 struct value *aligner = allocate_value (formal_type);
4139 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4140
4141 value_assign_to_component (aligner, component, actual);
4142 return aligner;
4143 }
14f9c5c9
AS
4144
4145 return actual;
4146}
4147
438c98a1
JB
4148/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4149 type TYPE. This is usually an inefficient no-op except on some targets
4150 (such as AVR) where the representation of a pointer and an address
4151 differs. */
4152
4153static CORE_ADDR
4154value_pointer (struct value *value, struct type *type)
4155{
438c98a1 4156 unsigned len = TYPE_LENGTH (type);
224c3ddb 4157 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4158 CORE_ADDR addr;
4159
4160 addr = value_address (value);
8ee511af 4161 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4162 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4163 return addr;
4164}
4165
14f9c5c9 4166
4c4b4cd2
PH
4167/* Push a descriptor of type TYPE for array value ARR on the stack at
4168 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4169 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4170 to-descriptor type rather than a descriptor type), a struct value *
4171 representing a pointer to this descriptor. */
14f9c5c9 4172
d2e4a39e 4173static struct value *
40bc484c 4174make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4175{
d2e4a39e
AS
4176 struct type *bounds_type = desc_bounds_type (type);
4177 struct type *desc_type = desc_base_type (type);
4178 struct value *descriptor = allocate_value (desc_type);
4179 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4180 int i;
d2e4a39e 4181
0963b4bd
MS
4182 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4183 i > 0; i -= 1)
14f9c5c9 4184 {
19f220c3
JK
4185 modify_field (value_type (bounds), value_contents_writeable (bounds),
4186 ada_array_bound (arr, i, 0),
4187 desc_bound_bitpos (bounds_type, i, 0),
4188 desc_bound_bitsize (bounds_type, i, 0));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 1),
4191 desc_bound_bitpos (bounds_type, i, 1),
4192 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4193 }
d2e4a39e 4194
40bc484c 4195 bounds = ensure_lval (bounds);
d2e4a39e 4196
19f220c3
JK
4197 modify_field (value_type (descriptor),
4198 value_contents_writeable (descriptor),
4199 value_pointer (ensure_lval (arr),
940da03e 4200 desc_type->field (0).type ()),
19f220c3
JK
4201 fat_pntr_data_bitpos (desc_type),
4202 fat_pntr_data_bitsize (desc_type));
4203
4204 modify_field (value_type (descriptor),
4205 value_contents_writeable (descriptor),
4206 value_pointer (bounds,
940da03e 4207 desc_type->field (1).type ()),
19f220c3
JK
4208 fat_pntr_bounds_bitpos (desc_type),
4209 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4210
40bc484c 4211 descriptor = ensure_lval (descriptor);
14f9c5c9 4212
78134374 4213 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4214 return value_addr (descriptor);
4215 else
4216 return descriptor;
4217}
14f9c5c9 4218\f
dda83cd7 4219 /* Symbol Cache Module */
3d9434b5 4220
3d9434b5 4221/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4222 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4223 on the type of entity being printed, the cache can make it as much
4224 as an order of magnitude faster than without it.
4225
4226 The descriptive type DWARF extension has significantly reduced
4227 the need for this cache, at least when DWARF is being used. However,
4228 even in this case, some expensive name-based symbol searches are still
4229 sometimes necessary - to find an XVZ variable, mostly. */
4230
ee01b665
JB
4231/* Return the symbol cache associated to the given program space PSPACE.
4232 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4233
ee01b665
JB
4234static struct ada_symbol_cache *
4235ada_get_symbol_cache (struct program_space *pspace)
4236{
4237 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4238
bdcccc56
TT
4239 if (pspace_data->sym_cache == nullptr)
4240 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4241
bdcccc56 4242 return pspace_data->sym_cache.get ();
ee01b665 4243}
3d9434b5
JB
4244
4245/* Clear all entries from the symbol cache. */
4246
4247static void
bdcccc56 4248ada_clear_symbol_cache ()
3d9434b5 4249{
bdcccc56
TT
4250 struct ada_pspace_data *pspace_data
4251 = get_ada_pspace_data (current_program_space);
ee01b665 4252
bdcccc56
TT
4253 if (pspace_data->sym_cache != nullptr)
4254 pspace_data->sym_cache.reset ();
3d9434b5
JB
4255}
4256
fe978cb0 4257/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4258 Return it if found, or NULL otherwise. */
4259
4260static struct cache_entry **
fe978cb0 4261find_entry (const char *name, domain_enum domain)
3d9434b5 4262{
ee01b665
JB
4263 struct ada_symbol_cache *sym_cache
4264 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4265 int h = msymbol_hash (name) % HASH_SIZE;
4266 struct cache_entry **e;
4267
ee01b665 4268 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4269 {
fe978cb0 4270 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4271 return e;
3d9434b5
JB
4272 }
4273 return NULL;
4274}
4275
fe978cb0 4276/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4277 Return 1 if found, 0 otherwise.
4278
4279 If an entry was found and SYM is not NULL, set *SYM to the entry's
4280 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4281
96d887e8 4282static int
fe978cb0 4283lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4284 struct symbol **sym, const struct block **block)
96d887e8 4285{
fe978cb0 4286 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4287
4288 if (e == NULL)
4289 return 0;
4290 if (sym != NULL)
4291 *sym = (*e)->sym;
4292 if (block != NULL)
4293 *block = (*e)->block;
4294 return 1;
96d887e8
PH
4295}
4296
3d9434b5 4297/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4298 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4299
96d887e8 4300static void
fe978cb0 4301cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4302 const struct block *block)
96d887e8 4303{
ee01b665
JB
4304 struct ada_symbol_cache *sym_cache
4305 = ada_get_symbol_cache (current_program_space);
3d9434b5 4306 int h;
3d9434b5
JB
4307 struct cache_entry *e;
4308
1994afbf
DE
4309 /* Symbols for builtin types don't have a block.
4310 For now don't cache such symbols. */
4311 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4312 return;
4313
3d9434b5
JB
4314 /* If the symbol is a local symbol, then do not cache it, as a search
4315 for that symbol depends on the context. To determine whether
4316 the symbol is local or not, we check the block where we found it
4317 against the global and static blocks of its associated symtab. */
4318 if (sym
08be3fe3 4319 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4320 GLOBAL_BLOCK) != block
08be3fe3 4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4322 STATIC_BLOCK) != block)
3d9434b5
JB
4323 return;
4324
4325 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4326 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4327 e->next = sym_cache->root[h];
4328 sym_cache->root[h] = e;
2ef5453b 4329 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4330 e->sym = sym;
fe978cb0 4331 e->domain = domain;
3d9434b5 4332 e->block = block;
96d887e8 4333}
4c4b4cd2 4334\f
dda83cd7 4335 /* Symbol Lookup */
4c4b4cd2 4336
b5ec771e
PA
4337/* Return the symbol name match type that should be used used when
4338 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4339
4340 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4341 for Ada lookups. */
c0431670 4342
b5ec771e
PA
4343static symbol_name_match_type
4344name_match_type_from_name (const char *lookup_name)
c0431670 4345{
b5ec771e
PA
4346 return (strstr (lookup_name, "__") == NULL
4347 ? symbol_name_match_type::WILD
4348 : symbol_name_match_type::FULL);
c0431670
JB
4349}
4350
4c4b4cd2
PH
4351/* Return the result of a standard (literal, C-like) lookup of NAME in
4352 given DOMAIN, visible from lexical block BLOCK. */
4353
4354static struct symbol *
4355standard_lookup (const char *name, const struct block *block,
dda83cd7 4356 domain_enum domain)
4c4b4cd2 4357{
acbd605d 4358 /* Initialize it just to avoid a GCC false warning. */
6640a367 4359 struct block_symbol sym = {};
4c4b4cd2 4360
d12307c1
PMR
4361 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4362 return sym.symbol;
a2cd4f14 4363 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4364 cache_symbol (name, domain, sym.symbol, sym.block);
4365 return sym.symbol;
4c4b4cd2
PH
4366}
4367
4368
4369/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4370 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4371 since they contend in overloading in the same way. */
4372static int
d1183b06 4373is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4374{
d1183b06
TT
4375 for (const block_symbol &sym : syms)
4376 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4377 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4378 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
14f9c5c9
AS
4379 return 1;
4380
4381 return 0;
4382}
4383
4384/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4385 struct types. Otherwise, they may not. */
14f9c5c9
AS
4386
4387static int
d2e4a39e 4388equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4389{
d2e4a39e 4390 if (type0 == type1)
14f9c5c9 4391 return 1;
d2e4a39e 4392 if (type0 == NULL || type1 == NULL
78134374 4393 || type0->code () != type1->code ())
14f9c5c9 4394 return 0;
78134374
SM
4395 if ((type0->code () == TYPE_CODE_STRUCT
4396 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4397 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4398 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4399 return 1;
d2e4a39e 4400
14f9c5c9
AS
4401 return 0;
4402}
4403
4404/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4405 no more defined than that of SYM1. */
14f9c5c9
AS
4406
4407static int
d2e4a39e 4408lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4409{
4410 if (sym0 == sym1)
4411 return 1;
176620f1 4412 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4413 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4414 return 0;
4415
d2e4a39e 4416 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4417 {
4418 case LOC_UNDEF:
4419 return 1;
4420 case LOC_TYPEDEF:
4421 {
dda83cd7
SM
4422 struct type *type0 = SYMBOL_TYPE (sym0);
4423 struct type *type1 = SYMBOL_TYPE (sym1);
4424 const char *name0 = sym0->linkage_name ();
4425 const char *name1 = sym1->linkage_name ();
4426 int len0 = strlen (name0);
4427
4428 return
4429 type0->code () == type1->code ()
4430 && (equiv_types (type0, type1)
4431 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4432 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4433 }
4434 case LOC_CONST:
4435 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4436 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4437
4438 case LOC_STATIC:
4439 {
dda83cd7
SM
4440 const char *name0 = sym0->linkage_name ();
4441 const char *name1 = sym1->linkage_name ();
4442 return (strcmp (name0, name1) == 0
4443 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4444 }
4445
d2e4a39e
AS
4446 default:
4447 return 0;
14f9c5c9
AS
4448 }
4449}
4450
d1183b06
TT
4451/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4452 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4453
4454static void
d1183b06 4455add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4456 struct symbol *sym,
4457 const struct block *block)
14f9c5c9 4458{
529cad9c
PH
4459 /* Do not try to complete stub types, as the debugger is probably
4460 already scanning all symbols matching a certain name at the
4461 time when this function is called. Trying to replace the stub
4462 type by its associated full type will cause us to restart a scan
4463 which may lead to an infinite recursion. Instead, the client
4464 collecting the matching symbols will end up collecting several
4465 matches, with at least one of them complete. It can then filter
4466 out the stub ones if needed. */
4467
d1183b06 4468 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4469 {
d1183b06 4470 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4471 return;
d1183b06 4472 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4473 {
d1183b06
TT
4474 result[i].symbol = sym;
4475 result[i].block = block;
dda83cd7
SM
4476 return;
4477 }
4c4b4cd2
PH
4478 }
4479
d1183b06
TT
4480 struct block_symbol info;
4481 info.symbol = sym;
4482 info.block = block;
4483 result.push_back (info);
4c4b4cd2
PH
4484}
4485
7c7b6655
TT
4486/* Return a bound minimal symbol matching NAME according to Ada
4487 decoding rules. Returns an invalid symbol if there is no such
4488 minimal symbol. Names prefixed with "standard__" are handled
4489 specially: "standard__" is first stripped off, and only static and
4490 global symbols are searched. */
4c4b4cd2 4491
7c7b6655 4492struct bound_minimal_symbol
96d887e8 4493ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4494{
7c7b6655 4495 struct bound_minimal_symbol result;
4c4b4cd2 4496
7c7b6655
TT
4497 memset (&result, 0, sizeof (result));
4498
b5ec771e
PA
4499 symbol_name_match_type match_type = name_match_type_from_name (name);
4500 lookup_name_info lookup_name (name, match_type);
4501
4502 symbol_name_matcher_ftype *match_name
4503 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4504
2030c079 4505 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4506 {
7932255d 4507 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4508 {
c9d95fa3 4509 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4510 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4511 {
4512 result.minsym = msymbol;
4513 result.objfile = objfile;
4514 break;
4515 }
4516 }
4517 }
4c4b4cd2 4518
7c7b6655 4519 return result;
96d887e8 4520}
4c4b4cd2 4521
96d887e8
PH
4522/* For all subprograms that statically enclose the subprogram of the
4523 selected frame, add symbols matching identifier NAME in DOMAIN
1bfa81ac 4524 and their blocks to the list of data in RESULT, as for
48b78332
JB
4525 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4526 with a wildcard prefix. */
4c4b4cd2 4527
96d887e8 4528static void
d1183b06 4529add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
b5ec771e
PA
4530 const lookup_name_info &lookup_name,
4531 domain_enum domain)
96d887e8 4532{
96d887e8 4533}
14f9c5c9 4534
96d887e8
PH
4535/* True if TYPE is definitely an artificial type supplied to a symbol
4536 for which no debugging information was given in the symbol file. */
14f9c5c9 4537
96d887e8
PH
4538static int
4539is_nondebugging_type (struct type *type)
4540{
0d5cff50 4541 const char *name = ada_type_name (type);
5b4ee69b 4542
96d887e8
PH
4543 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4544}
4c4b4cd2 4545
8f17729f
JB
4546/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4547 that are deemed "identical" for practical purposes.
4548
4549 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4550 types and that their number of enumerals is identical (in other
1f704f76 4551 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4552
4553static int
4554ada_identical_enum_types_p (struct type *type1, struct type *type2)
4555{
4556 int i;
4557
4558 /* The heuristic we use here is fairly conservative. We consider
4559 that 2 enumerate types are identical if they have the same
4560 number of enumerals and that all enumerals have the same
4561 underlying value and name. */
4562
4563 /* All enums in the type should have an identical underlying value. */
1f704f76 4564 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4565 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4566 return 0;
4567
4568 /* All enumerals should also have the same name (modulo any numerical
4569 suffix). */
1f704f76 4570 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4571 {
0d5cff50
DE
4572 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4573 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4574 int len_1 = strlen (name_1);
4575 int len_2 = strlen (name_2);
4576
4577 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4578 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4579 if (len_1 != len_2
dda83cd7 4580 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4581 TYPE_FIELD_NAME (type2, i),
4582 len_1) != 0)
4583 return 0;
4584 }
4585
4586 return 1;
4587}
4588
4589/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4590 that are deemed "identical" for practical purposes. Sometimes,
4591 enumerals are not strictly identical, but their types are so similar
4592 that they can be considered identical.
4593
4594 For instance, consider the following code:
4595
4596 type Color is (Black, Red, Green, Blue, White);
4597 type RGB_Color is new Color range Red .. Blue;
4598
4599 Type RGB_Color is a subrange of an implicit type which is a copy
4600 of type Color. If we call that implicit type RGB_ColorB ("B" is
4601 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4602 As a result, when an expression references any of the enumeral
4603 by name (Eg. "print green"), the expression is technically
4604 ambiguous and the user should be asked to disambiguate. But
4605 doing so would only hinder the user, since it wouldn't matter
4606 what choice he makes, the outcome would always be the same.
4607 So, for practical purposes, we consider them as the same. */
4608
4609static int
54d343a2 4610symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4611{
4612 int i;
4613
4614 /* Before performing a thorough comparison check of each type,
4615 we perform a series of inexpensive checks. We expect that these
4616 checks will quickly fail in the vast majority of cases, and thus
4617 help prevent the unnecessary use of a more expensive comparison.
4618 Said comparison also expects us to make some of these checks
4619 (see ada_identical_enum_types_p). */
4620
4621 /* Quick check: All symbols should have an enum type. */
54d343a2 4622 for (i = 0; i < syms.size (); i++)
78134374 4623 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4624 return 0;
4625
4626 /* Quick check: They should all have the same value. */
54d343a2 4627 for (i = 1; i < syms.size (); i++)
d12307c1 4628 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4629 return 0;
4630
4631 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4632 for (i = 1; i < syms.size (); i++)
1f704f76 4633 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 4634 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4635 return 0;
4636
4637 /* All the sanity checks passed, so we might have a set of
4638 identical enumeration types. Perform a more complete
4639 comparison of the type of each symbol. */
54d343a2 4640 for (i = 1; i < syms.size (); i++)
d12307c1 4641 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 4642 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4643 return 0;
4644
4645 return 1;
4646}
4647
54d343a2 4648/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4649 duplicate other symbols in the list (The only case I know of where
4650 this happens is when object files containing stabs-in-ecoff are
4651 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 4652 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 4653
d1183b06 4654static void
54d343a2 4655remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4656{
4657 int i, j;
4c4b4cd2 4658
8f17729f
JB
4659 /* We should never be called with less than 2 symbols, as there
4660 cannot be any extra symbol in that case. But it's easy to
4661 handle, since we have nothing to do in that case. */
54d343a2 4662 if (syms->size () < 2)
d1183b06 4663 return;
8f17729f 4664
96d887e8 4665 i = 0;
54d343a2 4666 while (i < syms->size ())
96d887e8 4667 {
a35ddb44 4668 int remove_p = 0;
339c13b6
JB
4669
4670 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 4671 the get rid of the stub. */
339c13b6 4672
e46d3488 4673 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
4674 && (*syms)[i].symbol->linkage_name () != NULL)
4675 {
4676 for (j = 0; j < syms->size (); j++)
4677 {
4678 if (j != i
4679 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4680 && (*syms)[j].symbol->linkage_name () != NULL
4681 && strcmp ((*syms)[i].symbol->linkage_name (),
4682 (*syms)[j].symbol->linkage_name ()) == 0)
4683 remove_p = 1;
4684 }
4685 }
339c13b6
JB
4686
4687 /* Two symbols with the same name, same class and same address
dda83cd7 4688 should be identical. */
339c13b6 4689
987012b8 4690 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
4691 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4692 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4693 {
4694 for (j = 0; j < syms->size (); j += 1)
4695 {
4696 if (i != j
4697 && (*syms)[j].symbol->linkage_name () != NULL
4698 && strcmp ((*syms)[i].symbol->linkage_name (),
4699 (*syms)[j].symbol->linkage_name ()) == 0
4700 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 4701 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
4702 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4703 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4704 remove_p = 1;
4705 }
4706 }
339c13b6 4707
a35ddb44 4708 if (remove_p)
54d343a2 4709 syms->erase (syms->begin () + i);
1b788fb6
TT
4710 else
4711 i += 1;
14f9c5c9 4712 }
8f17729f
JB
4713
4714 /* If all the remaining symbols are identical enumerals, then
4715 just keep the first one and discard the rest.
4716
4717 Unlike what we did previously, we do not discard any entry
4718 unless they are ALL identical. This is because the symbol
4719 comparison is not a strict comparison, but rather a practical
4720 comparison. If all symbols are considered identical, then
4721 we can just go ahead and use the first one and discard the rest.
4722 But if we cannot reduce the list to a single element, we have
4723 to ask the user to disambiguate anyways. And if we have to
4724 present a multiple-choice menu, it's less confusing if the list
4725 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
4726 if (symbols_are_identical_enums (*syms))
4727 syms->resize (1);
14f9c5c9
AS
4728}
4729
96d887e8
PH
4730/* Given a type that corresponds to a renaming entity, use the type name
4731 to extract the scope (package name or function name, fully qualified,
4732 and following the GNAT encoding convention) where this renaming has been
49d83361 4733 defined. */
4c4b4cd2 4734
49d83361 4735static std::string
96d887e8 4736xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4737{
96d887e8 4738 /* The renaming types adhere to the following convention:
0963b4bd 4739 <scope>__<rename>___<XR extension>.
96d887e8
PH
4740 So, to extract the scope, we search for the "___XR" extension,
4741 and then backtrack until we find the first "__". */
76a01679 4742
7d93a1e0 4743 const char *name = renaming_type->name ();
108d56a4
SM
4744 const char *suffix = strstr (name, "___XR");
4745 const char *last;
14f9c5c9 4746
96d887e8
PH
4747 /* Now, backtrack a bit until we find the first "__". Start looking
4748 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4749
96d887e8
PH
4750 for (last = suffix - 3; last > name; last--)
4751 if (last[0] == '_' && last[1] == '_')
4752 break;
76a01679 4753
96d887e8 4754 /* Make a copy of scope and return it. */
49d83361 4755 return std::string (name, last);
4c4b4cd2
PH
4756}
4757
96d887e8 4758/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4759
96d887e8
PH
4760static int
4761is_package_name (const char *name)
4c4b4cd2 4762{
96d887e8
PH
4763 /* Here, We take advantage of the fact that no symbols are generated
4764 for packages, while symbols are generated for each function.
4765 So the condition for NAME represent a package becomes equivalent
4766 to NAME not existing in our list of symbols. There is only one
4767 small complication with library-level functions (see below). */
4c4b4cd2 4768
96d887e8
PH
4769 /* If it is a function that has not been defined at library level,
4770 then we should be able to look it up in the symbols. */
4771 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4772 return 0;
14f9c5c9 4773
96d887e8
PH
4774 /* Library-level function names start with "_ada_". See if function
4775 "_ada_" followed by NAME can be found. */
14f9c5c9 4776
96d887e8 4777 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4778 functions names cannot contain "__" in them. */
96d887e8
PH
4779 if (strstr (name, "__") != NULL)
4780 return 0;
4c4b4cd2 4781
528e1572 4782 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 4783
528e1572 4784 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 4785}
14f9c5c9 4786
96d887e8 4787/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4788 not visible from FUNCTION_NAME. */
14f9c5c9 4789
96d887e8 4790static int
0d5cff50 4791old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4792{
aeb5907d
JB
4793 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4794 return 0;
4795
49d83361 4796 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 4797
96d887e8 4798 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
4799 if (is_package_name (scope.c_str ()))
4800 return 0;
14f9c5c9 4801
96d887e8
PH
4802 /* Check that the rename is in the current function scope by checking
4803 that its name starts with SCOPE. */
76a01679 4804
96d887e8
PH
4805 /* If the function name starts with "_ada_", it means that it is
4806 a library-level function. Strip this prefix before doing the
4807 comparison, as the encoding for the renaming does not contain
4808 this prefix. */
61012eef 4809 if (startswith (function_name, "_ada_"))
96d887e8 4810 function_name += 5;
f26caa11 4811
49d83361 4812 return !startswith (function_name, scope.c_str ());
f26caa11
PH
4813}
4814
aeb5907d
JB
4815/* Remove entries from SYMS that corresponds to a renaming entity that
4816 is not visible from the function associated with CURRENT_BLOCK or
4817 that is superfluous due to the presence of more specific renaming
4818 information. Places surviving symbols in the initial entries of
d1183b06
TT
4819 SYMS.
4820
96d887e8 4821 Rationale:
aeb5907d
JB
4822 First, in cases where an object renaming is implemented as a
4823 reference variable, GNAT may produce both the actual reference
4824 variable and the renaming encoding. In this case, we discard the
4825 latter.
4826
4827 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4828 entity. Unfortunately, STABS currently does not support the definition
4829 of types that are local to a given lexical block, so all renamings types
4830 are emitted at library level. As a consequence, if an application
4831 contains two renaming entities using the same name, and a user tries to
4832 print the value of one of these entities, the result of the ada symbol
4833 lookup will also contain the wrong renaming type.
f26caa11 4834
96d887e8
PH
4835 This function partially covers for this limitation by attempting to
4836 remove from the SYMS list renaming symbols that should be visible
4837 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4838 method with the current information available. The implementation
4839 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4840
4841 - When the user tries to print a rename in a function while there
dda83cd7
SM
4842 is another rename entity defined in a package: Normally, the
4843 rename in the function has precedence over the rename in the
4844 package, so the latter should be removed from the list. This is
4845 currently not the case.
4846
96d887e8 4847 - This function will incorrectly remove valid renames if
dda83cd7
SM
4848 the CURRENT_BLOCK corresponds to a function which symbol name
4849 has been changed by an "Export" pragma. As a consequence,
4850 the user will be unable to print such rename entities. */
4c4b4cd2 4851
d1183b06 4852static void
54d343a2
TT
4853remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4854 const struct block *current_block)
4c4b4cd2
PH
4855{
4856 struct symbol *current_function;
0d5cff50 4857 const char *current_function_name;
4c4b4cd2 4858 int i;
aeb5907d
JB
4859 int is_new_style_renaming;
4860
4861 /* If there is both a renaming foo___XR... encoded as a variable and
4862 a simple variable foo in the same block, discard the latter.
0963b4bd 4863 First, zero out such symbols, then compress. */
aeb5907d 4864 is_new_style_renaming = 0;
54d343a2 4865 for (i = 0; i < syms->size (); i += 1)
aeb5907d 4866 {
54d343a2
TT
4867 struct symbol *sym = (*syms)[i].symbol;
4868 const struct block *block = (*syms)[i].block;
aeb5907d
JB
4869 const char *name;
4870 const char *suffix;
4871
4872 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4873 continue;
987012b8 4874 name = sym->linkage_name ();
aeb5907d
JB
4875 suffix = strstr (name, "___XR");
4876
4877 if (suffix != NULL)
4878 {
4879 int name_len = suffix - name;
4880 int j;
5b4ee69b 4881
aeb5907d 4882 is_new_style_renaming = 1;
54d343a2
TT
4883 for (j = 0; j < syms->size (); j += 1)
4884 if (i != j && (*syms)[j].symbol != NULL
987012b8 4885 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 4886 name_len) == 0
54d343a2
TT
4887 && block == (*syms)[j].block)
4888 (*syms)[j].symbol = NULL;
aeb5907d
JB
4889 }
4890 }
4891 if (is_new_style_renaming)
4892 {
4893 int j, k;
4894
54d343a2
TT
4895 for (j = k = 0; j < syms->size (); j += 1)
4896 if ((*syms)[j].symbol != NULL)
aeb5907d 4897 {
54d343a2 4898 (*syms)[k] = (*syms)[j];
aeb5907d
JB
4899 k += 1;
4900 }
d1183b06
TT
4901 syms->resize (k);
4902 return;
aeb5907d 4903 }
4c4b4cd2
PH
4904
4905 /* Extract the function name associated to CURRENT_BLOCK.
4906 Abort if unable to do so. */
76a01679 4907
4c4b4cd2 4908 if (current_block == NULL)
d1183b06 4909 return;
76a01679 4910
7f0df278 4911 current_function = block_linkage_function (current_block);
4c4b4cd2 4912 if (current_function == NULL)
d1183b06 4913 return;
4c4b4cd2 4914
987012b8 4915 current_function_name = current_function->linkage_name ();
4c4b4cd2 4916 if (current_function_name == NULL)
d1183b06 4917 return;
4c4b4cd2
PH
4918
4919 /* Check each of the symbols, and remove it from the list if it is
4920 a type corresponding to a renaming that is out of the scope of
4921 the current block. */
4922
4923 i = 0;
54d343a2 4924 while (i < syms->size ())
4c4b4cd2 4925 {
54d343a2 4926 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
4927 == ADA_OBJECT_RENAMING
4928 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
4929 current_function_name))
4930 syms->erase (syms->begin () + i);
4c4b4cd2 4931 else
dda83cd7 4932 i += 1;
4c4b4cd2 4933 }
4c4b4cd2
PH
4934}
4935
d1183b06 4936/* Add to RESULT all symbols from BLOCK (and its super-blocks)
339c13b6
JB
4937 whose name and domain match NAME and DOMAIN respectively.
4938 If no match was found, then extend the search to "enclosing"
4939 routines (in other words, if we're inside a nested function,
4940 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4941 If WILD_MATCH_P is nonzero, perform the naming matching in
4942 "wild" mode (see function "wild_match" for more info).
339c13b6 4943
d1183b06 4944 Note: This function assumes that RESULT has 0 (zero) element in it. */
339c13b6
JB
4945
4946static void
d1183b06 4947ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
4948 const lookup_name_info &lookup_name,
4949 const struct block *block, domain_enum domain)
339c13b6
JB
4950{
4951 int block_depth = 0;
4952
4953 while (block != NULL)
4954 {
4955 block_depth += 1;
d1183b06 4956 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6
JB
4957
4958 /* If we found a non-function match, assume that's the one. */
d1183b06 4959 if (is_nonfunction (result))
dda83cd7 4960 return;
339c13b6
JB
4961
4962 block = BLOCK_SUPERBLOCK (block);
4963 }
4964
4965 /* If no luck so far, try to find NAME as a local symbol in some lexically
4966 enclosing subprogram. */
d1183b06
TT
4967 if (result.empty () && block_depth > 2)
4968 add_symbols_from_enclosing_procs (result, lookup_name, domain);
339c13b6
JB
4969}
4970
ccefe4c4 4971/* An object of this type is used as the user_data argument when
40658b94 4972 calling the map_matching_symbols method. */
ccefe4c4 4973
40658b94 4974struct match_data
ccefe4c4 4975{
1bfa81ac
TT
4976 explicit match_data (std::vector<struct block_symbol> *rp)
4977 : resultp (rp)
4978 {
4979 }
4980 DISABLE_COPY_AND_ASSIGN (match_data);
4981
4982 struct objfile *objfile = nullptr;
d1183b06 4983 std::vector<struct block_symbol> *resultp;
1bfa81ac 4984 struct symbol *arg_sym = nullptr;
1178743e 4985 bool found_sym = false;
ccefe4c4
TT
4986};
4987
199b4314
TT
4988/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
4989 to a list of symbols. DATA is a pointer to a struct match_data *
1bfa81ac 4990 containing the vector that collects the symbol list, the file that SYM
40658b94
PH
4991 must come from, a flag indicating whether a non-argument symbol has
4992 been found in the current block, and the last argument symbol
4993 passed in SYM within the current block (if any). When SYM is null,
4994 marking the end of a block, the argument symbol is added if no
4995 other has been found. */
ccefe4c4 4996
199b4314
TT
4997static bool
4998aux_add_nonlocal_symbols (struct block_symbol *bsym,
4999 struct match_data *data)
ccefe4c4 5000{
199b4314
TT
5001 const struct block *block = bsym->block;
5002 struct symbol *sym = bsym->symbol;
5003
40658b94
PH
5004 if (sym == NULL)
5005 {
5006 if (!data->found_sym && data->arg_sym != NULL)
d1183b06 5007 add_defn_to_vec (*data->resultp,
40658b94
PH
5008 fixup_symbol_section (data->arg_sym, data->objfile),
5009 block);
1178743e 5010 data->found_sym = false;
40658b94
PH
5011 data->arg_sym = NULL;
5012 }
5013 else
5014 {
5015 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5016 return true;
40658b94
PH
5017 else if (SYMBOL_IS_ARGUMENT (sym))
5018 data->arg_sym = sym;
5019 else
5020 {
1178743e 5021 data->found_sym = true;
d1183b06 5022 add_defn_to_vec (*data->resultp,
40658b94
PH
5023 fixup_symbol_section (sym, data->objfile),
5024 block);
5025 }
5026 }
199b4314 5027 return true;
40658b94
PH
5028}
5029
b5ec771e
PA
5030/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5031 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5032 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5033
5034static int
d1183b06 5035ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5036 const struct block *block,
b5ec771e
PA
5037 const lookup_name_info &lookup_name,
5038 domain_enum domain)
22cee43f
PMR
5039{
5040 struct using_direct *renaming;
d1183b06 5041 int defns_mark = result.size ();
22cee43f 5042
b5ec771e
PA
5043 symbol_name_matcher_ftype *name_match
5044 = ada_get_symbol_name_matcher (lookup_name);
5045
22cee43f
PMR
5046 for (renaming = block_using (block);
5047 renaming != NULL;
5048 renaming = renaming->next)
5049 {
5050 const char *r_name;
22cee43f
PMR
5051
5052 /* Avoid infinite recursions: skip this renaming if we are actually
5053 already traversing it.
5054
5055 Currently, symbol lookup in Ada don't use the namespace machinery from
5056 C++/Fortran support: skip namespace imports that use them. */
5057 if (renaming->searched
5058 || (renaming->import_src != NULL
5059 && renaming->import_src[0] != '\0')
5060 || (renaming->import_dest != NULL
5061 && renaming->import_dest[0] != '\0'))
5062 continue;
5063 renaming->searched = 1;
5064
5065 /* TODO: here, we perform another name-based symbol lookup, which can
5066 pull its own multiple overloads. In theory, we should be able to do
5067 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5068 not a simple name. But in order to do this, we would need to enhance
5069 the DWARF reader to associate a symbol to this renaming, instead of a
5070 name. So, for now, we do something simpler: re-use the C++/Fortran
5071 namespace machinery. */
5072 r_name = (renaming->alias != NULL
5073 ? renaming->alias
5074 : renaming->declaration);
b5ec771e
PA
5075 if (name_match (r_name, lookup_name, NULL))
5076 {
5077 lookup_name_info decl_lookup_name (renaming->declaration,
5078 lookup_name.match_type ());
d1183b06 5079 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5080 1, NULL);
5081 }
22cee43f
PMR
5082 renaming->searched = 0;
5083 }
d1183b06 5084 return result.size () != defns_mark;
22cee43f
PMR
5085}
5086
db230ce3
JB
5087/* Implements compare_names, but only applying the comparision using
5088 the given CASING. */
5b4ee69b 5089
40658b94 5090static int
db230ce3
JB
5091compare_names_with_case (const char *string1, const char *string2,
5092 enum case_sensitivity casing)
40658b94
PH
5093{
5094 while (*string1 != '\0' && *string2 != '\0')
5095 {
db230ce3
JB
5096 char c1, c2;
5097
40658b94
PH
5098 if (isspace (*string1) || isspace (*string2))
5099 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5100
5101 if (casing == case_sensitive_off)
5102 {
5103 c1 = tolower (*string1);
5104 c2 = tolower (*string2);
5105 }
5106 else
5107 {
5108 c1 = *string1;
5109 c2 = *string2;
5110 }
5111 if (c1 != c2)
40658b94 5112 break;
db230ce3 5113
40658b94
PH
5114 string1 += 1;
5115 string2 += 1;
5116 }
db230ce3 5117
40658b94
PH
5118 switch (*string1)
5119 {
5120 case '(':
5121 return strcmp_iw_ordered (string1, string2);
5122 case '_':
5123 if (*string2 == '\0')
5124 {
052874e8 5125 if (is_name_suffix (string1))
40658b94
PH
5126 return 0;
5127 else
1a1d5513 5128 return 1;
40658b94 5129 }
dbb8534f 5130 /* FALLTHROUGH */
40658b94
PH
5131 default:
5132 if (*string2 == '(')
5133 return strcmp_iw_ordered (string1, string2);
5134 else
db230ce3
JB
5135 {
5136 if (casing == case_sensitive_off)
5137 return tolower (*string1) - tolower (*string2);
5138 else
5139 return *string1 - *string2;
5140 }
40658b94 5141 }
ccefe4c4
TT
5142}
5143
db230ce3
JB
5144/* Compare STRING1 to STRING2, with results as for strcmp.
5145 Compatible with strcmp_iw_ordered in that...
5146
5147 strcmp_iw_ordered (STRING1, STRING2) <= 0
5148
5149 ... implies...
5150
5151 compare_names (STRING1, STRING2) <= 0
5152
5153 (they may differ as to what symbols compare equal). */
5154
5155static int
5156compare_names (const char *string1, const char *string2)
5157{
5158 int result;
5159
5160 /* Similar to what strcmp_iw_ordered does, we need to perform
5161 a case-insensitive comparison first, and only resort to
5162 a second, case-sensitive, comparison if the first one was
5163 not sufficient to differentiate the two strings. */
5164
5165 result = compare_names_with_case (string1, string2, case_sensitive_off);
5166 if (result == 0)
5167 result = compare_names_with_case (string1, string2, case_sensitive_on);
5168
5169 return result;
5170}
5171
b5ec771e
PA
5172/* Convenience function to get at the Ada encoded lookup name for
5173 LOOKUP_NAME, as a C string. */
5174
5175static const char *
5176ada_lookup_name (const lookup_name_info &lookup_name)
5177{
5178 return lookup_name.ada ().lookup_name ().c_str ();
5179}
5180
1bfa81ac 5181/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5182 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5183 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5184 symbols otherwise. */
339c13b6
JB
5185
5186static void
d1183b06 5187add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5188 const lookup_name_info &lookup_name,
5189 domain_enum domain, int global)
339c13b6 5190{
1bfa81ac 5191 struct match_data data (&result);
339c13b6 5192
b5ec771e
PA
5193 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5194
199b4314
TT
5195 auto callback = [&] (struct block_symbol *bsym)
5196 {
5197 return aux_add_nonlocal_symbols (bsym, &data);
5198 };
5199
2030c079 5200 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5201 {
5202 data.objfile = objfile;
5203
1228719f
TT
5204 if (objfile->sf != nullptr)
5205 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5206 domain, global, callback,
5207 (is_wild_match
5208 ? NULL : compare_names));
22cee43f 5209
b669c953 5210 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5211 {
5212 const struct block *global_block
5213 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5214
d1183b06 5215 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5216 domain))
1178743e 5217 data.found_sym = true;
22cee43f 5218 }
40658b94
PH
5219 }
5220
d1183b06 5221 if (result.empty () && global && !is_wild_match)
40658b94 5222 {
b5ec771e 5223 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5224 std::string bracket_name = std::string ("<_ada_") + name + '>';
5225 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5226
2030c079 5227 for (objfile *objfile : current_program_space->objfiles ())
dda83cd7 5228 {
40658b94 5229 data.objfile = objfile;
1228719f
TT
5230 if (objfile->sf != nullptr)
5231 objfile->sf->qf->map_matching_symbols (objfile, name1,
5232 domain, global, callback,
5233 compare_names);
40658b94
PH
5234 }
5235 }
339c13b6
JB
5236}
5237
b5ec771e
PA
5238/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5239 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5240 returning the number of matches. Add these to RESULT.
4eeaa230 5241
22cee43f
PMR
5242 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5243 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5244 is the one match returned (no other matches in that or
d9680e73 5245 enclosing blocks is returned). If there are any matches in or
22cee43f 5246 surrounding BLOCK, then these alone are returned.
4eeaa230 5247
b5ec771e
PA
5248 Names prefixed with "standard__" are handled specially:
5249 "standard__" is first stripped off (by the lookup_name
5250 constructor), and only static and global symbols are searched.
14f9c5c9 5251
22cee43f
PMR
5252 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5253 to lookup global symbols. */
5254
5255static void
d1183b06 5256ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5257 const struct block *block,
b5ec771e 5258 const lookup_name_info &lookup_name,
22cee43f
PMR
5259 domain_enum domain,
5260 int full_search,
5261 int *made_global_lookup_p)
14f9c5c9
AS
5262{
5263 struct symbol *sym;
14f9c5c9 5264
22cee43f
PMR
5265 if (made_global_lookup_p)
5266 *made_global_lookup_p = 0;
339c13b6
JB
5267
5268 /* Special case: If the user specifies a symbol name inside package
5269 Standard, do a non-wild matching of the symbol name without
5270 the "standard__" prefix. This was primarily introduced in order
5271 to allow the user to specifically access the standard exceptions
5272 using, for instance, Standard.Constraint_Error when Constraint_Error
5273 is ambiguous (due to the user defining its own Constraint_Error
5274 entity inside its program). */
b5ec771e
PA
5275 if (lookup_name.ada ().standard_p ())
5276 block = NULL;
4c4b4cd2 5277
339c13b6 5278 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5279
4eeaa230
DE
5280 if (block != NULL)
5281 {
5282 if (full_search)
d1183b06 5283 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5284 else
5285 {
5286 /* In the !full_search case we're are being called by
4009ee92 5287 iterate_over_symbols, and we don't want to search
4eeaa230 5288 superblocks. */
d1183b06 5289 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5290 }
d1183b06 5291 if (!result.empty () || !full_search)
22cee43f 5292 return;
4eeaa230 5293 }
d2e4a39e 5294
339c13b6
JB
5295 /* No non-global symbols found. Check our cache to see if we have
5296 already performed this search before. If we have, then return
5297 the same result. */
5298
b5ec771e
PA
5299 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5300 domain, &sym, &block))
4c4b4cd2
PH
5301 {
5302 if (sym != NULL)
d1183b06 5303 add_defn_to_vec (result, sym, block);
22cee43f 5304 return;
4c4b4cd2 5305 }
14f9c5c9 5306
22cee43f
PMR
5307 if (made_global_lookup_p)
5308 *made_global_lookup_p = 1;
b1eedac9 5309
339c13b6
JB
5310 /* Search symbols from all global blocks. */
5311
d1183b06 5312 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5313
4c4b4cd2 5314 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5315 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5316
d1183b06
TT
5317 if (result.empty ())
5318 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5319}
5320
b5ec771e 5321/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5322 is non-zero, enclosing scope and in global scopes.
5323
5324 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5325 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5326
5327 When full_search is non-zero, any non-function/non-enumeral
5328 symbol match within the nest of blocks whose innermost member is BLOCK,
5329 is the one match returned (no other matches in that or
5330 enclosing blocks is returned). If there are any matches in or
5331 surrounding BLOCK, then these alone are returned.
5332
5333 Names prefixed with "standard__" are handled specially: "standard__"
5334 is first stripped off, and only static and global symbols are searched. */
5335
d1183b06 5336static std::vector<struct block_symbol>
b5ec771e
PA
5337ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5338 const struct block *block,
22cee43f 5339 domain_enum domain,
22cee43f
PMR
5340 int full_search)
5341{
22cee43f 5342 int syms_from_global_search;
d1183b06 5343 std::vector<struct block_symbol> results;
22cee43f 5344
d1183b06 5345 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5346 domain, full_search, &syms_from_global_search);
14f9c5c9 5347
d1183b06 5348 remove_extra_symbols (&results);
4c4b4cd2 5349
d1183b06 5350 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5351 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5352
d1183b06 5353 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5354 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5355 results[0].symbol, results[0].block);
ec6a20c2 5356
d1183b06
TT
5357 remove_irrelevant_renamings (&results, block);
5358 return results;
14f9c5c9
AS
5359}
5360
b5ec771e 5361/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5362 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5363
4eeaa230
DE
5364 See ada_lookup_symbol_list_worker for further details. */
5365
d1183b06 5366std::vector<struct block_symbol>
b5ec771e 5367ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5368 domain_enum domain)
4eeaa230 5369{
b5ec771e
PA
5370 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5371 lookup_name_info lookup_name (name, name_match_type);
5372
d1183b06 5373 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5374}
5375
4e5c77fe
JB
5376/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5377 to 1, but choosing the first symbol found if there are multiple
5378 choices.
5379
5e2336be
JB
5380 The result is stored in *INFO, which must be non-NULL.
5381 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5382
5383void
5384ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5385 domain_enum domain,
d12307c1 5386 struct block_symbol *info)
14f9c5c9 5387{
b5ec771e
PA
5388 /* Since we already have an encoded name, wrap it in '<>' to force a
5389 verbatim match. Otherwise, if the name happens to not look like
5390 an encoded name (because it doesn't include a "__"),
5391 ada_lookup_name_info would re-encode/fold it again, and that
5392 would e.g., incorrectly lowercase object renaming names like
5393 "R28b" -> "r28b". */
12932e2c 5394 std::string verbatim = add_angle_brackets (name);
b5ec771e 5395
5e2336be 5396 gdb_assert (info != NULL);
65392b3e 5397 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5398}
aeb5907d
JB
5399
5400/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5401 scope and in global scopes, or NULL if none. NAME is folded and
5402 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5403 choosing the first symbol if there are multiple choices. */
4e5c77fe 5404
d12307c1 5405struct block_symbol
aeb5907d 5406ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5407 domain_enum domain)
aeb5907d 5408{
d1183b06
TT
5409 std::vector<struct block_symbol> candidates
5410 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5411
d1183b06 5412 if (candidates.empty ())
54d343a2 5413 return {};
f98fc17b
PA
5414
5415 block_symbol info = candidates[0];
5416 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5417 return info;
4c4b4cd2 5418}
14f9c5c9 5419
14f9c5c9 5420
4c4b4cd2
PH
5421/* True iff STR is a possible encoded suffix of a normal Ada name
5422 that is to be ignored for matching purposes. Suffixes of parallel
5423 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5424 are given by any of the regular expressions:
4c4b4cd2 5425
babe1480
JB
5426 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5427 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5428 TKB [subprogram suffix for task bodies]
babe1480 5429 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5430 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5431
5432 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5433 match is performed. This sequence is used to differentiate homonyms,
5434 is an optional part of a valid name suffix. */
4c4b4cd2 5435
14f9c5c9 5436static int
d2e4a39e 5437is_name_suffix (const char *str)
14f9c5c9
AS
5438{
5439 int k;
4c4b4cd2
PH
5440 const char *matching;
5441 const int len = strlen (str);
5442
babe1480
JB
5443 /* Skip optional leading __[0-9]+. */
5444
4c4b4cd2
PH
5445 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5446 {
babe1480
JB
5447 str += 3;
5448 while (isdigit (str[0]))
dda83cd7 5449 str += 1;
4c4b4cd2 5450 }
babe1480
JB
5451
5452 /* [.$][0-9]+ */
4c4b4cd2 5453
babe1480 5454 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5455 {
babe1480 5456 matching = str + 1;
4c4b4cd2 5457 while (isdigit (matching[0]))
dda83cd7 5458 matching += 1;
4c4b4cd2 5459 if (matching[0] == '\0')
dda83cd7 5460 return 1;
4c4b4cd2
PH
5461 }
5462
5463 /* ___[0-9]+ */
babe1480 5464
4c4b4cd2
PH
5465 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5466 {
5467 matching = str + 3;
5468 while (isdigit (matching[0]))
dda83cd7 5469 matching += 1;
4c4b4cd2 5470 if (matching[0] == '\0')
dda83cd7 5471 return 1;
4c4b4cd2
PH
5472 }
5473
9ac7f98e
JB
5474 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5475
5476 if (strcmp (str, "TKB") == 0)
5477 return 1;
5478
529cad9c
PH
5479#if 0
5480 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5481 with a N at the end. Unfortunately, the compiler uses the same
5482 convention for other internal types it creates. So treating
529cad9c 5483 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5484 some regressions. For instance, consider the case of an enumerated
5485 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5486 name ends with N.
5487 Having a single character like this as a suffix carrying some
0963b4bd 5488 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5489 to be something like "_N" instead. In the meantime, do not do
5490 the following check. */
5491 /* Protected Object Subprograms */
5492 if (len == 1 && str [0] == 'N')
5493 return 1;
5494#endif
5495
5496 /* _E[0-9]+[bs]$ */
5497 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5498 {
5499 matching = str + 3;
5500 while (isdigit (matching[0]))
dda83cd7 5501 matching += 1;
529cad9c 5502 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5503 && matching [1] == '\0')
5504 return 1;
529cad9c
PH
5505 }
5506
4c4b4cd2
PH
5507 /* ??? We should not modify STR directly, as we are doing below. This
5508 is fine in this case, but may become problematic later if we find
5509 that this alternative did not work, and want to try matching
5510 another one from the begining of STR. Since we modified it, we
5511 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5512 if (str[0] == 'X')
5513 {
5514 str += 1;
d2e4a39e 5515 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5516 {
5517 if (str[0] != 'n' && str[0] != 'b')
5518 return 0;
5519 str += 1;
5520 }
14f9c5c9 5521 }
babe1480 5522
14f9c5c9
AS
5523 if (str[0] == '\000')
5524 return 1;
babe1480 5525
d2e4a39e 5526 if (str[0] == '_')
14f9c5c9
AS
5527 {
5528 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5529 return 0;
d2e4a39e 5530 if (str[2] == '_')
dda83cd7
SM
5531 {
5532 if (strcmp (str + 3, "JM") == 0)
5533 return 1;
5534 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5535 the LJM suffix in favor of the JM one. But we will
5536 still accept LJM as a valid suffix for a reasonable
5537 amount of time, just to allow ourselves to debug programs
5538 compiled using an older version of GNAT. */
5539 if (strcmp (str + 3, "LJM") == 0)
5540 return 1;
5541 if (str[3] != 'X')
5542 return 0;
5543 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5544 || str[4] == 'U' || str[4] == 'P')
5545 return 1;
5546 if (str[4] == 'R' && str[5] != 'T')
5547 return 1;
5548 return 0;
5549 }
4c4b4cd2 5550 if (!isdigit (str[2]))
dda83cd7 5551 return 0;
4c4b4cd2 5552 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5553 if (!isdigit (str[k]) && str[k] != '_')
5554 return 0;
14f9c5c9
AS
5555 return 1;
5556 }
4c4b4cd2 5557 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5558 {
4c4b4cd2 5559 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5560 if (!isdigit (str[k]) && str[k] != '_')
5561 return 0;
14f9c5c9
AS
5562 return 1;
5563 }
5564 return 0;
5565}
d2e4a39e 5566
aeb5907d
JB
5567/* Return non-zero if the string starting at NAME and ending before
5568 NAME_END contains no capital letters. */
529cad9c
PH
5569
5570static int
5571is_valid_name_for_wild_match (const char *name0)
5572{
f945dedf 5573 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5574 int i;
5575
5823c3ef
JB
5576 /* If the decoded name starts with an angle bracket, it means that
5577 NAME0 does not follow the GNAT encoding format. It should then
5578 not be allowed as a possible wild match. */
5579 if (decoded_name[0] == '<')
5580 return 0;
5581
529cad9c
PH
5582 for (i=0; decoded_name[i] != '\0'; i++)
5583 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5584 return 0;
5585
5586 return 1;
5587}
5588
59c8a30b
JB
5589/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5590 character which could start a simple name. Assumes that *NAMEP points
5591 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5592
14f9c5c9 5593static int
59c8a30b 5594advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5595{
73589123 5596 const char *name = *namep;
5b4ee69b 5597
5823c3ef 5598 while (1)
14f9c5c9 5599 {
59c8a30b 5600 char t0, t1;
73589123
PH
5601
5602 t0 = *name;
5603 if (t0 == '_')
5604 {
5605 t1 = name[1];
5606 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5607 {
5608 name += 1;
61012eef 5609 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5610 break;
5611 else
5612 name += 1;
5613 }
aa27d0b3
JB
5614 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5615 || name[2] == target0))
73589123
PH
5616 {
5617 name += 2;
5618 break;
5619 }
86b44259
TT
5620 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5621 {
5622 /* Names like "pkg__B_N__name", where N is a number, are
5623 block-local. We can handle these by simply skipping
5624 the "B_" here. */
5625 name += 4;
5626 }
73589123
PH
5627 else
5628 return 0;
5629 }
5630 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5631 name += 1;
5632 else
5823c3ef 5633 return 0;
73589123
PH
5634 }
5635
5636 *namep = name;
5637 return 1;
5638}
5639
b5ec771e
PA
5640/* Return true iff NAME encodes a name of the form prefix.PATN.
5641 Ignores any informational suffixes of NAME (i.e., for which
5642 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5643 simple name. */
73589123 5644
b5ec771e 5645static bool
73589123
PH
5646wild_match (const char *name, const char *patn)
5647{
22e048c9 5648 const char *p;
73589123
PH
5649 const char *name0 = name;
5650
5651 while (1)
5652 {
5653 const char *match = name;
5654
5655 if (*name == *patn)
5656 {
5657 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5658 if (*p != *name)
5659 break;
5660 if (*p == '\0' && is_name_suffix (name))
b5ec771e 5661 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
5662
5663 if (name[-1] == '_')
5664 name -= 1;
5665 }
5666 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 5667 return false;
96d887e8 5668 }
96d887e8
PH
5669}
5670
d1183b06 5671/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 5672 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
5673
5674static void
d1183b06 5675ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5676 const struct block *block,
5677 const lookup_name_info &lookup_name,
5678 domain_enum domain, struct objfile *objfile)
96d887e8 5679{
8157b174 5680 struct block_iterator iter;
96d887e8
PH
5681 /* A matching argument symbol, if any. */
5682 struct symbol *arg_sym;
5683 /* Set true when we find a matching non-argument symbol. */
1178743e 5684 bool found_sym;
96d887e8
PH
5685 struct symbol *sym;
5686
5687 arg_sym = NULL;
1178743e 5688 found_sym = false;
b5ec771e
PA
5689 for (sym = block_iter_match_first (block, lookup_name, &iter);
5690 sym != NULL;
5691 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 5692 {
c1b5c1eb 5693 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
5694 {
5695 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5696 {
5697 if (SYMBOL_IS_ARGUMENT (sym))
5698 arg_sym = sym;
5699 else
5700 {
1178743e 5701 found_sym = true;
d1183b06 5702 add_defn_to_vec (result,
b5ec771e
PA
5703 fixup_symbol_section (sym, objfile),
5704 block);
5705 }
5706 }
5707 }
96d887e8
PH
5708 }
5709
22cee43f
PMR
5710 /* Handle renamings. */
5711
d1183b06 5712 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 5713 found_sym = true;
22cee43f 5714
96d887e8
PH
5715 if (!found_sym && arg_sym != NULL)
5716 {
d1183b06 5717 add_defn_to_vec (result,
dda83cd7
SM
5718 fixup_symbol_section (arg_sym, objfile),
5719 block);
96d887e8
PH
5720 }
5721
b5ec771e 5722 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
5723 {
5724 arg_sym = NULL;
1178743e 5725 found_sym = false;
b5ec771e
PA
5726 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5727 const char *name = ada_lookup_name.c_str ();
5728 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
5729
5730 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5731 {
dda83cd7
SM
5732 if (symbol_matches_domain (sym->language (),
5733 SYMBOL_DOMAIN (sym), domain))
5734 {
5735 int cmp;
5736
5737 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5738 if (cmp == 0)
5739 {
5740 cmp = !startswith (sym->linkage_name (), "_ada_");
5741 if (cmp == 0)
5742 cmp = strncmp (name, sym->linkage_name () + 5,
5743 name_len);
5744 }
5745
5746 if (cmp == 0
5747 && is_name_suffix (sym->linkage_name () + name_len + 5))
5748 {
2a2d4dc3
AS
5749 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5750 {
5751 if (SYMBOL_IS_ARGUMENT (sym))
5752 arg_sym = sym;
5753 else
5754 {
1178743e 5755 found_sym = true;
d1183b06 5756 add_defn_to_vec (result,
2a2d4dc3
AS
5757 fixup_symbol_section (sym, objfile),
5758 block);
5759 }
5760 }
dda83cd7
SM
5761 }
5762 }
76a01679 5763 }
96d887e8
PH
5764
5765 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 5766 They aren't parameters, right? */
96d887e8 5767 if (!found_sym && arg_sym != NULL)
dda83cd7 5768 {
d1183b06 5769 add_defn_to_vec (result,
dda83cd7
SM
5770 fixup_symbol_section (arg_sym, objfile),
5771 block);
5772 }
96d887e8
PH
5773 }
5774}
5775\f
41d27058 5776
dda83cd7 5777 /* Symbol Completion */
41d27058 5778
b5ec771e 5779/* See symtab.h. */
41d27058 5780
b5ec771e
PA
5781bool
5782ada_lookup_name_info::matches
5783 (const char *sym_name,
5784 symbol_name_match_type match_type,
a207cff2 5785 completion_match_result *comp_match_res) const
41d27058 5786{
b5ec771e
PA
5787 bool match = false;
5788 const char *text = m_encoded_name.c_str ();
5789 size_t text_len = m_encoded_name.size ();
41d27058
JB
5790
5791 /* First, test against the fully qualified name of the symbol. */
5792
5793 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5794 match = true;
41d27058 5795
f945dedf 5796 std::string decoded_name = ada_decode (sym_name);
b5ec771e 5797 if (match && !m_encoded_p)
41d27058
JB
5798 {
5799 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
5800 that iff we are doing a verbatim match, the decoded version
5801 of the symbol name starts with '<'. Otherwise, this symbol name
5802 is not a suitable completion. */
41d27058 5803
f945dedf 5804 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 5805 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
5806 }
5807
b5ec771e 5808 if (match && !m_verbatim_p)
41d27058
JB
5809 {
5810 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
5811 be done is to verify that the potentially matching symbol name
5812 does not include capital letters, because the ada-mode would
5813 not be able to understand these symbol names without the
5814 angle bracket notation. */
41d27058
JB
5815 const char *tmp;
5816
5817 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5818 if (*tmp != '\0')
b5ec771e 5819 match = false;
41d27058
JB
5820 }
5821
5822 /* Second: Try wild matching... */
5823
b5ec771e 5824 if (!match && m_wild_match_p)
41d27058
JB
5825 {
5826 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
5827 may represent an unqualified symbol name. We therefore must
5828 also compare TEXT against the unqualified name of the symbol. */
f945dedf 5829 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
5830
5831 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5832 match = true;
41d27058
JB
5833 }
5834
b5ec771e 5835 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
5836
5837 if (!match)
b5ec771e 5838 return false;
41d27058 5839
a207cff2 5840 if (comp_match_res != NULL)
b5ec771e 5841 {
a207cff2 5842 std::string &match_str = comp_match_res->match.storage ();
41d27058 5843
b5ec771e 5844 if (!m_encoded_p)
a207cff2 5845 match_str = ada_decode (sym_name);
b5ec771e
PA
5846 else
5847 {
5848 if (m_verbatim_p)
5849 match_str = add_angle_brackets (sym_name);
5850 else
5851 match_str = sym_name;
41d27058 5852
b5ec771e 5853 }
a207cff2
PA
5854
5855 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
5856 }
5857
b5ec771e 5858 return true;
41d27058
JB
5859}
5860
dda83cd7 5861 /* Field Access */
96d887e8 5862
73fb9985
JB
5863/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5864 for tagged types. */
5865
5866static int
5867ada_is_dispatch_table_ptr_type (struct type *type)
5868{
0d5cff50 5869 const char *name;
73fb9985 5870
78134374 5871 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
5872 return 0;
5873
7d93a1e0 5874 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
5875 if (name == NULL)
5876 return 0;
5877
5878 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5879}
5880
ac4a2da4
JG
5881/* Return non-zero if TYPE is an interface tag. */
5882
5883static int
5884ada_is_interface_tag (struct type *type)
5885{
7d93a1e0 5886 const char *name = type->name ();
ac4a2da4
JG
5887
5888 if (name == NULL)
5889 return 0;
5890
5891 return (strcmp (name, "ada__tags__interface_tag") == 0);
5892}
5893
963a6417
PH
5894/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5895 to be invisible to users. */
96d887e8 5896
963a6417
PH
5897int
5898ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5899{
1f704f76 5900 if (field_num < 0 || field_num > type->num_fields ())
963a6417 5901 return 1;
ffde82bf 5902
73fb9985
JB
5903 /* Check the name of that field. */
5904 {
5905 const char *name = TYPE_FIELD_NAME (type, field_num);
5906
5907 /* Anonymous field names should not be printed.
5908 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 5909 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
5910 if (name == NULL)
5911 return 1;
5912
ffde82bf
JB
5913 /* Normally, fields whose name start with an underscore ("_")
5914 are fields that have been internally generated by the compiler,
5915 and thus should not be printed. The "_parent" field is special,
5916 however: This is a field internally generated by the compiler
5917 for tagged types, and it contains the components inherited from
5918 the parent type. This field should not be printed as is, but
5919 should not be ignored either. */
61012eef 5920 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
5921 return 1;
5922 }
5923
ac4a2da4
JG
5924 /* If this is the dispatch table of a tagged type or an interface tag,
5925 then ignore. */
73fb9985 5926 if (ada_is_tagged_type (type, 1)
940da03e
SM
5927 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5928 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
5929 return 1;
5930
5931 /* Not a special field, so it should not be ignored. */
5932 return 0;
963a6417 5933}
96d887e8 5934
963a6417 5935/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5936 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5937
963a6417
PH
5938int
5939ada_is_tagged_type (struct type *type, int refok)
5940{
988f6b3d 5941 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 5942}
96d887e8 5943
963a6417 5944/* True iff TYPE represents the type of X'Tag */
96d887e8 5945
963a6417
PH
5946int
5947ada_is_tag_type (struct type *type)
5948{
460efde1
JB
5949 type = ada_check_typedef (type);
5950
78134374 5951 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
5952 return 0;
5953 else
96d887e8 5954 {
963a6417 5955 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5956
963a6417 5957 return (name != NULL
dda83cd7 5958 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5959 }
96d887e8
PH
5960}
5961
963a6417 5962/* The type of the tag on VAL. */
76a01679 5963
de93309a 5964static struct type *
963a6417 5965ada_tag_type (struct value *val)
96d887e8 5966{
988f6b3d 5967 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 5968}
96d887e8 5969
b50d69b5
JG
5970/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5971 retired at Ada 05). */
5972
5973static int
5974is_ada95_tag (struct value *tag)
5975{
5976 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5977}
5978
963a6417 5979/* The value of the tag on VAL. */
96d887e8 5980
de93309a 5981static struct value *
963a6417
PH
5982ada_value_tag (struct value *val)
5983{
03ee6b2e 5984 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5985}
5986
963a6417
PH
5987/* The value of the tag on the object of type TYPE whose contents are
5988 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5989 ADDRESS. */
96d887e8 5990
963a6417 5991static struct value *
10a2c479 5992value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5993 const gdb_byte *valaddr,
dda83cd7 5994 CORE_ADDR address)
96d887e8 5995{
b5385fc0 5996 int tag_byte_offset;
963a6417 5997 struct type *tag_type;
5b4ee69b 5998
963a6417 5999 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6000 NULL, NULL, NULL))
96d887e8 6001 {
fc1a4b47 6002 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6003 ? NULL
6004 : valaddr + tag_byte_offset);
963a6417 6005 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6006
963a6417 6007 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6008 }
963a6417
PH
6009 return NULL;
6010}
96d887e8 6011
963a6417
PH
6012static struct type *
6013type_from_tag (struct value *tag)
6014{
f5272a3b 6015 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6016
963a6417 6017 if (type_name != NULL)
5c4258f4 6018 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6019 return NULL;
6020}
96d887e8 6021
b50d69b5
JG
6022/* Given a value OBJ of a tagged type, return a value of this
6023 type at the base address of the object. The base address, as
6024 defined in Ada.Tags, it is the address of the primary tag of
6025 the object, and therefore where the field values of its full
6026 view can be fetched. */
6027
6028struct value *
6029ada_tag_value_at_base_address (struct value *obj)
6030{
b50d69b5
JG
6031 struct value *val;
6032 LONGEST offset_to_top = 0;
6033 struct type *ptr_type, *obj_type;
6034 struct value *tag;
6035 CORE_ADDR base_address;
6036
6037 obj_type = value_type (obj);
6038
6039 /* It is the responsability of the caller to deref pointers. */
6040
78134374 6041 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6042 return obj;
6043
6044 tag = ada_value_tag (obj);
6045 if (!tag)
6046 return obj;
6047
6048 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6049
6050 if (is_ada95_tag (tag))
6051 return obj;
6052
08f49010
XR
6053 ptr_type = language_lookup_primitive_type
6054 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6055 ptr_type = lookup_pointer_type (ptr_type);
6056 val = value_cast (ptr_type, tag);
6057 if (!val)
6058 return obj;
6059
6060 /* It is perfectly possible that an exception be raised while
6061 trying to determine the base address, just like for the tag;
6062 see ada_tag_name for more details. We do not print the error
6063 message for the same reason. */
6064
a70b8144 6065 try
b50d69b5
JG
6066 {
6067 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6068 }
6069
230d2906 6070 catch (const gdb_exception_error &e)
492d29ea
PA
6071 {
6072 return obj;
6073 }
b50d69b5
JG
6074
6075 /* If offset is null, nothing to do. */
6076
6077 if (offset_to_top == 0)
6078 return obj;
6079
6080 /* -1 is a special case in Ada.Tags; however, what should be done
6081 is not quite clear from the documentation. So do nothing for
6082 now. */
6083
6084 if (offset_to_top == -1)
6085 return obj;
6086
08f49010
XR
6087 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6088 from the base address. This was however incompatible with
6089 C++ dispatch table: C++ uses a *negative* value to *add*
6090 to the base address. Ada's convention has therefore been
6091 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6092 use the same convention. Here, we support both cases by
6093 checking the sign of OFFSET_TO_TOP. */
6094
6095 if (offset_to_top > 0)
6096 offset_to_top = -offset_to_top;
6097
6098 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6099 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6100
6101 /* Make sure that we have a proper tag at the new address.
6102 Otherwise, offset_to_top is bogus (which can happen when
6103 the object is not initialized yet). */
6104
6105 if (!tag)
6106 return obj;
6107
6108 obj_type = type_from_tag (tag);
6109
6110 if (!obj_type)
6111 return obj;
6112
6113 return value_from_contents_and_address (obj_type, NULL, base_address);
6114}
6115
1b611343
JB
6116/* Return the "ada__tags__type_specific_data" type. */
6117
6118static struct type *
6119ada_get_tsd_type (struct inferior *inf)
963a6417 6120{
1b611343 6121 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6122
1b611343
JB
6123 if (data->tsd_type == 0)
6124 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6125 return data->tsd_type;
6126}
529cad9c 6127
1b611343
JB
6128/* Return the TSD (type-specific data) associated to the given TAG.
6129 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6130
1b611343 6131 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6132
1b611343
JB
6133static struct value *
6134ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6135{
4c4b4cd2 6136 struct value *val;
1b611343 6137 struct type *type;
5b4ee69b 6138
1b611343
JB
6139 /* First option: The TSD is simply stored as a field of our TAG.
6140 Only older versions of GNAT would use this format, but we have
6141 to test it first, because there are no visible markers for
6142 the current approach except the absence of that field. */
529cad9c 6143
1b611343
JB
6144 val = ada_value_struct_elt (tag, "tsd", 1);
6145 if (val)
6146 return val;
e802dbe0 6147
1b611343
JB
6148 /* Try the second representation for the dispatch table (in which
6149 there is no explicit 'tsd' field in the referent of the tag pointer,
6150 and instead the tsd pointer is stored just before the dispatch
6151 table. */
e802dbe0 6152
1b611343
JB
6153 type = ada_get_tsd_type (current_inferior());
6154 if (type == NULL)
6155 return NULL;
6156 type = lookup_pointer_type (lookup_pointer_type (type));
6157 val = value_cast (type, tag);
6158 if (val == NULL)
6159 return NULL;
6160 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6161}
6162
1b611343
JB
6163/* Given the TSD of a tag (type-specific data), return a string
6164 containing the name of the associated type.
6165
f5272a3b 6166 May return NULL if we are unable to determine the tag name. */
1b611343 6167
f5272a3b 6168static gdb::unique_xmalloc_ptr<char>
1b611343 6169ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6170{
529cad9c 6171 char *p;
1b611343 6172 struct value *val;
529cad9c 6173
1b611343 6174 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6175 if (val == NULL)
1b611343 6176 return NULL;
66920317
TT
6177 gdb::unique_xmalloc_ptr<char> buffer
6178 = target_read_string (value_as_address (val), INT_MAX);
6179 if (buffer == nullptr)
f5272a3b
TT
6180 return nullptr;
6181
6182 for (p = buffer.get (); *p != '\0'; ++p)
6183 {
6184 if (isalpha (*p))
6185 *p = tolower (*p);
6186 }
6187
6188 return buffer;
4c4b4cd2
PH
6189}
6190
6191/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6192 a C string.
6193
6194 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6195 determine the name of that tag. */
4c4b4cd2 6196
f5272a3b 6197gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6198ada_tag_name (struct value *tag)
6199{
f5272a3b 6200 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6201
df407dfe 6202 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6203 return NULL;
1b611343
JB
6204
6205 /* It is perfectly possible that an exception be raised while trying
6206 to determine the TAG's name, even under normal circumstances:
6207 The associated variable may be uninitialized or corrupted, for
6208 instance. We do not let any exception propagate past this point.
6209 instead we return NULL.
6210
6211 We also do not print the error message either (which often is very
6212 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6213 the caller print a more meaningful message if necessary. */
a70b8144 6214 try
1b611343
JB
6215 {
6216 struct value *tsd = ada_get_tsd_from_tag (tag);
6217
6218 if (tsd != NULL)
6219 name = ada_tag_name_from_tsd (tsd);
6220 }
230d2906 6221 catch (const gdb_exception_error &e)
492d29ea
PA
6222 {
6223 }
1b611343
JB
6224
6225 return name;
4c4b4cd2
PH
6226}
6227
6228/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6229
d2e4a39e 6230struct type *
ebf56fd3 6231ada_parent_type (struct type *type)
14f9c5c9
AS
6232{
6233 int i;
6234
61ee279c 6235 type = ada_check_typedef (type);
14f9c5c9 6236
78134374 6237 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6238 return NULL;
6239
1f704f76 6240 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6241 if (ada_is_parent_field (type, i))
0c1f74cf 6242 {
dda83cd7 6243 struct type *parent_type = type->field (i).type ();
0c1f74cf 6244
dda83cd7
SM
6245 /* If the _parent field is a pointer, then dereference it. */
6246 if (parent_type->code () == TYPE_CODE_PTR)
6247 parent_type = TYPE_TARGET_TYPE (parent_type);
6248 /* If there is a parallel XVS type, get the actual base type. */
6249 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6250
dda83cd7 6251 return ada_check_typedef (parent_type);
0c1f74cf 6252 }
14f9c5c9
AS
6253
6254 return NULL;
6255}
6256
4c4b4cd2
PH
6257/* True iff field number FIELD_NUM of structure type TYPE contains the
6258 parent-type (inherited) fields of a derived type. Assumes TYPE is
6259 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6260
6261int
ebf56fd3 6262ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6263{
61ee279c 6264 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6265
4c4b4cd2 6266 return (name != NULL
dda83cd7
SM
6267 && (startswith (name, "PARENT")
6268 || startswith (name, "_parent")));
14f9c5c9
AS
6269}
6270
4c4b4cd2 6271/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6272 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6273 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6274 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6275 structures. */
14f9c5c9
AS
6276
6277int
ebf56fd3 6278ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6279{
d2e4a39e 6280 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6281
dddc0e16
JB
6282 if (name != NULL && strcmp (name, "RETVAL") == 0)
6283 {
6284 /* This happens in functions with "out" or "in out" parameters
6285 which are passed by copy. For such functions, GNAT describes
6286 the function's return type as being a struct where the return
6287 value is in a field called RETVAL, and where the other "out"
6288 or "in out" parameters are fields of that struct. This is not
6289 a wrapper. */
6290 return 0;
6291 }
6292
d2e4a39e 6293 return (name != NULL
dda83cd7
SM
6294 && (startswith (name, "PARENT")
6295 || strcmp (name, "REP") == 0
6296 || startswith (name, "_parent")
6297 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6298}
6299
4c4b4cd2
PH
6300/* True iff field number FIELD_NUM of structure or union type TYPE
6301 is a variant wrapper. Assumes TYPE is a structure type with at least
6302 FIELD_NUM+1 fields. */
14f9c5c9
AS
6303
6304int
ebf56fd3 6305ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6306{
8ecb59f8
TT
6307 /* Only Ada types are eligible. */
6308 if (!ADA_TYPE_P (type))
6309 return 0;
6310
940da03e 6311 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6312
78134374
SM
6313 return (field_type->code () == TYPE_CODE_UNION
6314 || (is_dynamic_field (type, field_num)
6315 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6316 == TYPE_CODE_UNION)));
14f9c5c9
AS
6317}
6318
6319/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6320 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6321 returns the type of the controlling discriminant for the variant.
6322 May return NULL if the type could not be found. */
14f9c5c9 6323
d2e4a39e 6324struct type *
ebf56fd3 6325ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6326{
a121b7c1 6327 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6328
988f6b3d 6329 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6330}
6331
4c4b4cd2 6332/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6333 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6334 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6335
de93309a 6336static int
ebf56fd3 6337ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6338{
d2e4a39e 6339 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6340
14f9c5c9
AS
6341 return (name != NULL && name[0] == 'O');
6342}
6343
6344/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6345 returns the name of the discriminant controlling the variant.
6346 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6347
a121b7c1 6348const char *
ebf56fd3 6349ada_variant_discrim_name (struct type *type0)
14f9c5c9 6350{
5f9febe0 6351 static std::string result;
d2e4a39e
AS
6352 struct type *type;
6353 const char *name;
6354 const char *discrim_end;
6355 const char *discrim_start;
14f9c5c9 6356
78134374 6357 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6358 type = TYPE_TARGET_TYPE (type0);
6359 else
6360 type = type0;
6361
6362 name = ada_type_name (type);
6363
6364 if (name == NULL || name[0] == '\000')
6365 return "";
6366
6367 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6368 discrim_end -= 1)
6369 {
61012eef 6370 if (startswith (discrim_end, "___XVN"))
dda83cd7 6371 break;
14f9c5c9
AS
6372 }
6373 if (discrim_end == name)
6374 return "";
6375
d2e4a39e 6376 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6377 discrim_start -= 1)
6378 {
d2e4a39e 6379 if (discrim_start == name + 1)
dda83cd7 6380 return "";
76a01679 6381 if ((discrim_start > name + 3
dda83cd7
SM
6382 && startswith (discrim_start - 3, "___"))
6383 || discrim_start[-1] == '.')
6384 break;
14f9c5c9
AS
6385 }
6386
5f9febe0
TT
6387 result = std::string (discrim_start, discrim_end - discrim_start);
6388 return result.c_str ();
14f9c5c9
AS
6389}
6390
4c4b4cd2
PH
6391/* Scan STR for a subtype-encoded number, beginning at position K.
6392 Put the position of the character just past the number scanned in
6393 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6394 Return 1 if there was a valid number at the given position, and 0
6395 otherwise. A "subtype-encoded" number consists of the absolute value
6396 in decimal, followed by the letter 'm' to indicate a negative number.
6397 Assumes 0m does not occur. */
14f9c5c9
AS
6398
6399int
d2e4a39e 6400ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6401{
6402 ULONGEST RU;
6403
d2e4a39e 6404 if (!isdigit (str[k]))
14f9c5c9
AS
6405 return 0;
6406
4c4b4cd2 6407 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6408 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6409 LONGEST. */
14f9c5c9
AS
6410 RU = 0;
6411 while (isdigit (str[k]))
6412 {
d2e4a39e 6413 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6414 k += 1;
6415 }
6416
d2e4a39e 6417 if (str[k] == 'm')
14f9c5c9
AS
6418 {
6419 if (R != NULL)
dda83cd7 6420 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6421 k += 1;
6422 }
6423 else if (R != NULL)
6424 *R = (LONGEST) RU;
6425
4c4b4cd2 6426 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6427 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6428 number representable as a LONGEST (although either would probably work
6429 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6430 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6431
6432 if (new_k != NULL)
6433 *new_k = k;
6434 return 1;
6435}
6436
4c4b4cd2
PH
6437/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6438 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6439 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6440
de93309a 6441static int
ebf56fd3 6442ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6443{
d2e4a39e 6444 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6445 int p;
6446
6447 p = 0;
6448 while (1)
6449 {
d2e4a39e 6450 switch (name[p])
dda83cd7
SM
6451 {
6452 case '\0':
6453 return 0;
6454 case 'S':
6455 {
6456 LONGEST W;
6457
6458 if (!ada_scan_number (name, p + 1, &W, &p))
6459 return 0;
6460 if (val == W)
6461 return 1;
6462 break;
6463 }
6464 case 'R':
6465 {
6466 LONGEST L, U;
6467
6468 if (!ada_scan_number (name, p + 1, &L, &p)
6469 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6470 return 0;
6471 if (val >= L && val <= U)
6472 return 1;
6473 break;
6474 }
6475 case 'O':
6476 return 1;
6477 default:
6478 return 0;
6479 }
4c4b4cd2
PH
6480 }
6481}
6482
0963b4bd 6483/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6484
6485/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6486 ARG_TYPE, extract and return the value of one of its (non-static)
6487 fields. FIELDNO says which field. Differs from value_primitive_field
6488 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6489
5eb68a39 6490struct value *
d2e4a39e 6491ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6492 struct type *arg_type)
14f9c5c9 6493{
14f9c5c9
AS
6494 struct type *type;
6495
61ee279c 6496 arg_type = ada_check_typedef (arg_type);
940da03e 6497 type = arg_type->field (fieldno).type ();
14f9c5c9 6498
4504bbde
TT
6499 /* Handle packed fields. It might be that the field is not packed
6500 relative to its containing structure, but the structure itself is
6501 packed; in this case we must take the bit-field path. */
6502 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6503 {
6504 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6505 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6506
0fd88904 6507 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6508 offset + bit_pos / 8,
6509 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6510 }
6511 else
6512 return value_primitive_field (arg1, offset, fieldno, arg_type);
6513}
6514
52ce6436
PH
6515/* Find field with name NAME in object of type TYPE. If found,
6516 set the following for each argument that is non-null:
6517 - *FIELD_TYPE_P to the field's type;
6518 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6519 an object of that type;
6520 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6521 - *BIT_SIZE_P to its size in bits if the field is packed, and
6522 0 otherwise;
6523 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6524 fields up to but not including the desired field, or by the total
6525 number of fields if not found. A NULL value of NAME never
6526 matches; the function just counts visible fields in this case.
6527
828d5846
XR
6528 Notice that we need to handle when a tagged record hierarchy
6529 has some components with the same name, like in this scenario:
6530
6531 type Top_T is tagged record
dda83cd7
SM
6532 N : Integer := 1;
6533 U : Integer := 974;
6534 A : Integer := 48;
828d5846
XR
6535 end record;
6536
6537 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6538 N : Character := 'a';
6539 C : Integer := 3;
828d5846
XR
6540 end record;
6541
6542 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6543 N : Float := 4.0;
6544 C : Character := '5';
6545 X : Integer := 6;
6546 A : Character := 'J';
828d5846
XR
6547 end record;
6548
6549 Let's say we now have a variable declared and initialized as follow:
6550
6551 TC : Top_A := new Bottom_T;
6552
6553 And then we use this variable to call this function
6554
6555 procedure Assign (Obj: in out Top_T; TV : Integer);
6556
6557 as follow:
6558
6559 Assign (Top_T (B), 12);
6560
6561 Now, we're in the debugger, and we're inside that procedure
6562 then and we want to print the value of obj.c:
6563
6564 Usually, the tagged record or one of the parent type owns the
6565 component to print and there's no issue but in this particular
6566 case, what does it mean to ask for Obj.C? Since the actual
6567 type for object is type Bottom_T, it could mean two things: type
6568 component C from the Middle_T view, but also component C from
6569 Bottom_T. So in that "undefined" case, when the component is
6570 not found in the non-resolved type (which includes all the
6571 components of the parent type), then resolve it and see if we
6572 get better luck once expanded.
6573
6574 In the case of homonyms in the derived tagged type, we don't
6575 guaranty anything, and pick the one that's easiest for us
6576 to program.
6577
0963b4bd 6578 Returns 1 if found, 0 otherwise. */
52ce6436 6579
4c4b4cd2 6580static int
0d5cff50 6581find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
6582 struct type **field_type_p,
6583 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 6584 int *index_p)
4c4b4cd2
PH
6585{
6586 int i;
828d5846 6587 int parent_offset = -1;
4c4b4cd2 6588
61ee279c 6589 type = ada_check_typedef (type);
76a01679 6590
52ce6436
PH
6591 if (field_type_p != NULL)
6592 *field_type_p = NULL;
6593 if (byte_offset_p != NULL)
d5d6fca5 6594 *byte_offset_p = 0;
52ce6436
PH
6595 if (bit_offset_p != NULL)
6596 *bit_offset_p = 0;
6597 if (bit_size_p != NULL)
6598 *bit_size_p = 0;
6599
1f704f76 6600 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
6601 {
6602 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6603 int fld_offset = offset + bit_pos / 8;
0d5cff50 6604 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6605
4c4b4cd2 6606 if (t_field_name == NULL)
dda83cd7 6607 continue;
4c4b4cd2 6608
828d5846 6609 else if (ada_is_parent_field (type, i))
dda83cd7 6610 {
828d5846
XR
6611 /* This is a field pointing us to the parent type of a tagged
6612 type. As hinted in this function's documentation, we give
6613 preference to fields in the current record first, so what
6614 we do here is just record the index of this field before
6615 we skip it. If it turns out we couldn't find our field
6616 in the current record, then we'll get back to it and search
6617 inside it whether the field might exist in the parent. */
6618
dda83cd7
SM
6619 parent_offset = i;
6620 continue;
6621 }
828d5846 6622
52ce6436 6623 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
6624 {
6625 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6626
52ce6436 6627 if (field_type_p != NULL)
940da03e 6628 *field_type_p = type->field (i).type ();
52ce6436
PH
6629 if (byte_offset_p != NULL)
6630 *byte_offset_p = fld_offset;
6631 if (bit_offset_p != NULL)
6632 *bit_offset_p = bit_pos % 8;
6633 if (bit_size_p != NULL)
6634 *bit_size_p = bit_size;
dda83cd7
SM
6635 return 1;
6636 }
4c4b4cd2 6637 else if (ada_is_wrapper_field (type, i))
dda83cd7 6638 {
940da03e 6639 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
6640 field_type_p, byte_offset_p, bit_offset_p,
6641 bit_size_p, index_p))
dda83cd7
SM
6642 return 1;
6643 }
4c4b4cd2 6644 else if (ada_is_variant_part (type, i))
dda83cd7 6645 {
52ce6436
PH
6646 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6647 fixed type?? */
dda83cd7
SM
6648 int j;
6649 struct type *field_type
940da03e 6650 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6651
dda83cd7
SM
6652 for (j = 0; j < field_type->num_fields (); j += 1)
6653 {
6654 if (find_struct_field (name, field_type->field (j).type (),
6655 fld_offset
6656 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6657 field_type_p, byte_offset_p,
6658 bit_offset_p, bit_size_p, index_p))
6659 return 1;
6660 }
6661 }
52ce6436
PH
6662 else if (index_p != NULL)
6663 *index_p += 1;
4c4b4cd2 6664 }
828d5846
XR
6665
6666 /* Field not found so far. If this is a tagged type which
6667 has a parent, try finding that field in the parent now. */
6668
6669 if (parent_offset != -1)
6670 {
6671 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6672 int fld_offset = offset + bit_pos / 8;
6673
940da03e 6674 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
6675 fld_offset, field_type_p, byte_offset_p,
6676 bit_offset_p, bit_size_p, index_p))
6677 return 1;
828d5846
XR
6678 }
6679
4c4b4cd2
PH
6680 return 0;
6681}
6682
0963b4bd 6683/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6684
52ce6436
PH
6685static int
6686num_visible_fields (struct type *type)
6687{
6688 int n;
5b4ee69b 6689
52ce6436
PH
6690 n = 0;
6691 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6692 return n;
6693}
14f9c5c9 6694
4c4b4cd2 6695/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6696 and search in it assuming it has (class) type TYPE.
6697 If found, return value, else return NULL.
6698
828d5846
XR
6699 Searches recursively through wrapper fields (e.g., '_parent').
6700
6701 In the case of homonyms in the tagged types, please refer to the
6702 long explanation in find_struct_field's function documentation. */
14f9c5c9 6703
4c4b4cd2 6704static struct value *
108d56a4 6705ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 6706 struct type *type)
14f9c5c9
AS
6707{
6708 int i;
828d5846 6709 int parent_offset = -1;
14f9c5c9 6710
5b4ee69b 6711 type = ada_check_typedef (type);
1f704f76 6712 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6713 {
0d5cff50 6714 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6715
6716 if (t_field_name == NULL)
dda83cd7 6717 continue;
14f9c5c9 6718
828d5846 6719 else if (ada_is_parent_field (type, i))
dda83cd7 6720 {
828d5846
XR
6721 /* This is a field pointing us to the parent type of a tagged
6722 type. As hinted in this function's documentation, we give
6723 preference to fields in the current record first, so what
6724 we do here is just record the index of this field before
6725 we skip it. If it turns out we couldn't find our field
6726 in the current record, then we'll get back to it and search
6727 inside it whether the field might exist in the parent. */
6728
dda83cd7
SM
6729 parent_offset = i;
6730 continue;
6731 }
828d5846 6732
14f9c5c9 6733 else if (field_name_match (t_field_name, name))
dda83cd7 6734 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6735
6736 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6737 {
6738 struct value *v = /* Do not let indent join lines here. */
6739 ada_search_struct_field (name, arg,
6740 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6741 type->field (i).type ());
5b4ee69b 6742
dda83cd7
SM
6743 if (v != NULL)
6744 return v;
6745 }
14f9c5c9
AS
6746
6747 else if (ada_is_variant_part (type, i))
dda83cd7 6748 {
0963b4bd 6749 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
6750 int j;
6751 struct type *field_type = ada_check_typedef (type->field (i).type ());
6752 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 6753
dda83cd7
SM
6754 for (j = 0; j < field_type->num_fields (); j += 1)
6755 {
6756 struct value *v = ada_search_struct_field /* Force line
0963b4bd 6757 break. */
dda83cd7
SM
6758 (name, arg,
6759 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6760 field_type->field (j).type ());
5b4ee69b 6761
dda83cd7
SM
6762 if (v != NULL)
6763 return v;
6764 }
6765 }
14f9c5c9 6766 }
828d5846
XR
6767
6768 /* Field not found so far. If this is a tagged type which
6769 has a parent, try finding that field in the parent now. */
6770
6771 if (parent_offset != -1)
6772 {
6773 struct value *v = ada_search_struct_field (
6774 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 6775 type->field (parent_offset).type ());
828d5846
XR
6776
6777 if (v != NULL)
dda83cd7 6778 return v;
828d5846
XR
6779 }
6780
14f9c5c9
AS
6781 return NULL;
6782}
d2e4a39e 6783
52ce6436
PH
6784static struct value *ada_index_struct_field_1 (int *, struct value *,
6785 int, struct type *);
6786
6787
6788/* Return field #INDEX in ARG, where the index is that returned by
6789 * find_struct_field through its INDEX_P argument. Adjust the address
6790 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6791 * If found, return value, else return NULL. */
52ce6436
PH
6792
6793static struct value *
6794ada_index_struct_field (int index, struct value *arg, int offset,
6795 struct type *type)
6796{
6797 return ada_index_struct_field_1 (&index, arg, offset, type);
6798}
6799
6800
6801/* Auxiliary function for ada_index_struct_field. Like
6802 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6803 * *INDEX_P. */
52ce6436
PH
6804
6805static struct value *
6806ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6807 struct type *type)
6808{
6809 int i;
6810 type = ada_check_typedef (type);
6811
1f704f76 6812 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
6813 {
6814 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 6815 continue;
52ce6436 6816 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6817 {
6818 struct value *v = /* Do not let indent join lines here. */
6819 ada_index_struct_field_1 (index_p, arg,
52ce6436 6820 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 6821 type->field (i).type ());
5b4ee69b 6822
dda83cd7
SM
6823 if (v != NULL)
6824 return v;
6825 }
52ce6436
PH
6826
6827 else if (ada_is_variant_part (type, i))
dda83cd7 6828 {
52ce6436 6829 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6830 find_struct_field. */
52ce6436 6831 error (_("Cannot assign this kind of variant record"));
dda83cd7 6832 }
52ce6436 6833 else if (*index_p == 0)
dda83cd7 6834 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
6835 else
6836 *index_p -= 1;
6837 }
6838 return NULL;
6839}
6840
3b4de39c 6841/* Return a string representation of type TYPE. */
99bbb428 6842
3b4de39c 6843static std::string
99bbb428
PA
6844type_as_string (struct type *type)
6845{
d7e74731 6846 string_file tmp_stream;
99bbb428 6847
d7e74731 6848 type_print (type, "", &tmp_stream, -1);
99bbb428 6849
d7e74731 6850 return std::move (tmp_stream.string ());
99bbb428
PA
6851}
6852
14f9c5c9 6853/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6854 If DISPP is non-null, add its byte displacement from the beginning of a
6855 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6856 work for packed fields).
6857
6858 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6859 followed by "___".
14f9c5c9 6860
0963b4bd 6861 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6862 be a (pointer or reference)+ to a struct or union, and the
6863 ultimate target type will be searched.
14f9c5c9
AS
6864
6865 Looks recursively into variant clauses and parent types.
6866
828d5846
XR
6867 In the case of homonyms in the tagged types, please refer to the
6868 long explanation in find_struct_field's function documentation.
6869
4c4b4cd2
PH
6870 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6871 TYPE is not a type of the right kind. */
14f9c5c9 6872
4c4b4cd2 6873static struct type *
a121b7c1 6874ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 6875 int noerr)
14f9c5c9
AS
6876{
6877 int i;
828d5846 6878 int parent_offset = -1;
14f9c5c9
AS
6879
6880 if (name == NULL)
6881 goto BadName;
6882
76a01679 6883 if (refok && type != NULL)
4c4b4cd2
PH
6884 while (1)
6885 {
dda83cd7
SM
6886 type = ada_check_typedef (type);
6887 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6888 break;
6889 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6890 }
14f9c5c9 6891
76a01679 6892 if (type == NULL
78134374
SM
6893 || (type->code () != TYPE_CODE_STRUCT
6894 && type->code () != TYPE_CODE_UNION))
14f9c5c9 6895 {
4c4b4cd2 6896 if (noerr)
dda83cd7 6897 return NULL;
99bbb428 6898
3b4de39c
PA
6899 error (_("Type %s is not a structure or union type"),
6900 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
6901 }
6902
6903 type = to_static_fixed_type (type);
6904
1f704f76 6905 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6906 {
0d5cff50 6907 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 6908 struct type *t;
d2e4a39e 6909
14f9c5c9 6910 if (t_field_name == NULL)
dda83cd7 6911 continue;
14f9c5c9 6912
828d5846 6913 else if (ada_is_parent_field (type, i))
dda83cd7 6914 {
828d5846
XR
6915 /* This is a field pointing us to the parent type of a tagged
6916 type. As hinted in this function's documentation, we give
6917 preference to fields in the current record first, so what
6918 we do here is just record the index of this field before
6919 we skip it. If it turns out we couldn't find our field
6920 in the current record, then we'll get back to it and search
6921 inside it whether the field might exist in the parent. */
6922
dda83cd7
SM
6923 parent_offset = i;
6924 continue;
6925 }
828d5846 6926
14f9c5c9 6927 else if (field_name_match (t_field_name, name))
940da03e 6928 return type->field (i).type ();
14f9c5c9
AS
6929
6930 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6931 {
6932 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6933 0, 1);
6934 if (t != NULL)
988f6b3d 6935 return t;
dda83cd7 6936 }
14f9c5c9
AS
6937
6938 else if (ada_is_variant_part (type, i))
dda83cd7
SM
6939 {
6940 int j;
6941 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6942
dda83cd7
SM
6943 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6944 {
b1f33ddd 6945 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 6946 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 6947 generates these for unchecked variant types. Revisit
dda83cd7 6948 if the compiler changes this practice. */
0d5cff50 6949 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 6950
b1f33ddd
JB
6951 if (v_field_name != NULL
6952 && field_name_match (v_field_name, name))
940da03e 6953 t = field_type->field (j).type ();
b1f33ddd 6954 else
940da03e 6955 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 6956 name, 0, 1);
b1f33ddd 6957
dda83cd7 6958 if (t != NULL)
988f6b3d 6959 return t;
dda83cd7
SM
6960 }
6961 }
14f9c5c9
AS
6962
6963 }
6964
828d5846
XR
6965 /* Field not found so far. If this is a tagged type which
6966 has a parent, try finding that field in the parent now. */
6967
6968 if (parent_offset != -1)
6969 {
dda83cd7 6970 struct type *t;
828d5846 6971
dda83cd7
SM
6972 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6973 name, 0, 1);
6974 if (t != NULL)
828d5846
XR
6975 return t;
6976 }
6977
14f9c5c9 6978BadName:
d2e4a39e 6979 if (!noerr)
14f9c5c9 6980 {
2b2798cc 6981 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
6982
6983 error (_("Type %s has no component named %s"),
3b4de39c 6984 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
6985 }
6986
6987 return NULL;
6988}
6989
b1f33ddd
JB
6990/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6991 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6992 represents an unchecked union (that is, the variant part of a
0963b4bd 6993 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6994
6995static int
6996is_unchecked_variant (struct type *var_type, struct type *outer_type)
6997{
a121b7c1 6998 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6999
988f6b3d 7000 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7001}
7002
7003
14f9c5c9 7004/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7005 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7006 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7007
d2e4a39e 7008int
d8af9068 7009ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7010{
7011 int others_clause;
7012 int i;
a121b7c1 7013 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7014 struct value *discrim;
14f9c5c9
AS
7015 LONGEST discrim_val;
7016
012370f6
TT
7017 /* Using plain value_from_contents_and_address here causes problems
7018 because we will end up trying to resolve a type that is currently
7019 being constructed. */
0c281816
JB
7020 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7021 if (discrim == NULL)
14f9c5c9 7022 return -1;
0c281816 7023 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7024
7025 others_clause = -1;
1f704f76 7026 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7027 {
7028 if (ada_is_others_clause (var_type, i))
dda83cd7 7029 others_clause = i;
14f9c5c9 7030 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7031 return i;
14f9c5c9
AS
7032 }
7033
7034 return others_clause;
7035}
d2e4a39e 7036\f
14f9c5c9
AS
7037
7038
dda83cd7 7039 /* Dynamic-Sized Records */
14f9c5c9
AS
7040
7041/* Strategy: The type ostensibly attached to a value with dynamic size
7042 (i.e., a size that is not statically recorded in the debugging
7043 data) does not accurately reflect the size or layout of the value.
7044 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7045 conventional types that are constructed on the fly. */
14f9c5c9
AS
7046
7047/* There is a subtle and tricky problem here. In general, we cannot
7048 determine the size of dynamic records without its data. However,
7049 the 'struct value' data structure, which GDB uses to represent
7050 quantities in the inferior process (the target), requires the size
7051 of the type at the time of its allocation in order to reserve space
7052 for GDB's internal copy of the data. That's why the
7053 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7054 rather than struct value*s.
14f9c5c9
AS
7055
7056 However, GDB's internal history variables ($1, $2, etc.) are
7057 struct value*s containing internal copies of the data that are not, in
7058 general, the same as the data at their corresponding addresses in
7059 the target. Fortunately, the types we give to these values are all
7060 conventional, fixed-size types (as per the strategy described
7061 above), so that we don't usually have to perform the
7062 'to_fixed_xxx_type' conversions to look at their values.
7063 Unfortunately, there is one exception: if one of the internal
7064 history variables is an array whose elements are unconstrained
7065 records, then we will need to create distinct fixed types for each
7066 element selected. */
7067
7068/* The upshot of all of this is that many routines take a (type, host
7069 address, target address) triple as arguments to represent a value.
7070 The host address, if non-null, is supposed to contain an internal
7071 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7072 target at the target address. */
14f9c5c9
AS
7073
7074/* Assuming that VAL0 represents a pointer value, the result of
7075 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7076 dynamic-sized types. */
14f9c5c9 7077
d2e4a39e
AS
7078struct value *
7079ada_value_ind (struct value *val0)
14f9c5c9 7080{
c48db5ca 7081 struct value *val = value_ind (val0);
5b4ee69b 7082
b50d69b5
JG
7083 if (ada_is_tagged_type (value_type (val), 0))
7084 val = ada_tag_value_at_base_address (val);
7085
4c4b4cd2 7086 return ada_to_fixed_value (val);
14f9c5c9
AS
7087}
7088
7089/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7090 qualifiers on VAL0. */
7091
d2e4a39e
AS
7092static struct value *
7093ada_coerce_ref (struct value *val0)
7094{
78134374 7095 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7096 {
7097 struct value *val = val0;
5b4ee69b 7098
994b9211 7099 val = coerce_ref (val);
b50d69b5
JG
7100
7101 if (ada_is_tagged_type (value_type (val), 0))
7102 val = ada_tag_value_at_base_address (val);
7103
4c4b4cd2 7104 return ada_to_fixed_value (val);
d2e4a39e
AS
7105 }
7106 else
14f9c5c9
AS
7107 return val0;
7108}
7109
4c4b4cd2 7110/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7111
7112static unsigned int
ebf56fd3 7113field_alignment (struct type *type, int f)
14f9c5c9 7114{
d2e4a39e 7115 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7116 int len;
14f9c5c9
AS
7117 int align_offset;
7118
64a1bf19
JB
7119 /* The field name should never be null, unless the debugging information
7120 is somehow malformed. In this case, we assume the field does not
7121 require any alignment. */
7122 if (name == NULL)
7123 return 1;
7124
7125 len = strlen (name);
7126
4c4b4cd2
PH
7127 if (!isdigit (name[len - 1]))
7128 return 1;
14f9c5c9 7129
d2e4a39e 7130 if (isdigit (name[len - 2]))
14f9c5c9
AS
7131 align_offset = len - 2;
7132 else
7133 align_offset = len - 1;
7134
61012eef 7135 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7136 return TARGET_CHAR_BIT;
7137
4c4b4cd2
PH
7138 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7139}
7140
852dff6c 7141/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7142
852dff6c
JB
7143static struct symbol *
7144ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7145{
7146 struct symbol *sym;
7147
7148 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7149 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7150 return sym;
7151
4186eb54
KS
7152 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7153 return sym;
14f9c5c9
AS
7154}
7155
dddfab26
UW
7156/* Find a type named NAME. Ignores ambiguity. This routine will look
7157 solely for types defined by debug info, it will not search the GDB
7158 primitive types. */
4c4b4cd2 7159
852dff6c 7160static struct type *
ebf56fd3 7161ada_find_any_type (const char *name)
14f9c5c9 7162{
852dff6c 7163 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7164
14f9c5c9 7165 if (sym != NULL)
dddfab26 7166 return SYMBOL_TYPE (sym);
14f9c5c9 7167
dddfab26 7168 return NULL;
14f9c5c9
AS
7169}
7170
739593e0
JB
7171/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7172 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7173 symbol, in which case it is returned. Otherwise, this looks for
7174 symbols whose name is that of NAME_SYM suffixed with "___XR".
7175 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7176
c0e70c62
TT
7177static bool
7178ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7179{
987012b8 7180 const char *name = name_sym->linkage_name ();
c0e70c62 7181 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7182}
7183
14f9c5c9 7184/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7185 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7186 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7187 otherwise return 0. */
7188
14f9c5c9 7189int
d2e4a39e 7190ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7191{
7192 if (type1 == NULL)
7193 return 1;
7194 else if (type0 == NULL)
7195 return 0;
78134374 7196 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7197 return 1;
78134374 7198 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7199 return 0;
7d93a1e0 7200 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7201 return 1;
ad82864c 7202 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7203 return 1;
4c4b4cd2 7204 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7205 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7206 return 1;
aeb5907d
JB
7207 else
7208 {
7d93a1e0
SM
7209 const char *type0_name = type0->name ();
7210 const char *type1_name = type1->name ();
aeb5907d
JB
7211
7212 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7213 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7214 return 1;
7215 }
14f9c5c9
AS
7216 return 0;
7217}
7218
e86ca25f
TT
7219/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7220 null. */
4c4b4cd2 7221
0d5cff50 7222const char *
d2e4a39e 7223ada_type_name (struct type *type)
14f9c5c9 7224{
d2e4a39e 7225 if (type == NULL)
14f9c5c9 7226 return NULL;
7d93a1e0 7227 return type->name ();
14f9c5c9
AS
7228}
7229
b4ba55a1
JB
7230/* Search the list of "descriptive" types associated to TYPE for a type
7231 whose name is NAME. */
7232
7233static struct type *
7234find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7235{
931e5bc3 7236 struct type *result, *tmp;
b4ba55a1 7237
c6044dd1
JB
7238 if (ada_ignore_descriptive_types_p)
7239 return NULL;
7240
b4ba55a1
JB
7241 /* If there no descriptive-type info, then there is no parallel type
7242 to be found. */
7243 if (!HAVE_GNAT_AUX_INFO (type))
7244 return NULL;
7245
7246 result = TYPE_DESCRIPTIVE_TYPE (type);
7247 while (result != NULL)
7248 {
0d5cff50 7249 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7250
7251 if (result_name == NULL)
dda83cd7
SM
7252 {
7253 warning (_("unexpected null name on descriptive type"));
7254 return NULL;
7255 }
b4ba55a1
JB
7256
7257 /* If the names match, stop. */
7258 if (strcmp (result_name, name) == 0)
7259 break;
7260
7261 /* Otherwise, look at the next item on the list, if any. */
7262 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7263 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7264 else
7265 tmp = NULL;
7266
7267 /* If not found either, try after having resolved the typedef. */
7268 if (tmp != NULL)
7269 result = tmp;
b4ba55a1 7270 else
931e5bc3 7271 {
f168693b 7272 result = check_typedef (result);
931e5bc3
JG
7273 if (HAVE_GNAT_AUX_INFO (result))
7274 result = TYPE_DESCRIPTIVE_TYPE (result);
7275 else
7276 result = NULL;
7277 }
b4ba55a1
JB
7278 }
7279
7280 /* If we didn't find a match, see whether this is a packed array. With
7281 older compilers, the descriptive type information is either absent or
7282 irrelevant when it comes to packed arrays so the above lookup fails.
7283 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7284 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7285 return ada_find_any_type (name);
7286
7287 return result;
7288}
7289
7290/* Find a parallel type to TYPE with the specified NAME, using the
7291 descriptive type taken from the debugging information, if available,
7292 and otherwise using the (slower) name-based method. */
7293
7294static struct type *
7295ada_find_parallel_type_with_name (struct type *type, const char *name)
7296{
7297 struct type *result = NULL;
7298
7299 if (HAVE_GNAT_AUX_INFO (type))
7300 result = find_parallel_type_by_descriptive_type (type, name);
7301 else
7302 result = ada_find_any_type (name);
7303
7304 return result;
7305}
7306
7307/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7308 SUFFIX to the name of TYPE. */
14f9c5c9 7309
d2e4a39e 7310struct type *
ebf56fd3 7311ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7312{
0d5cff50 7313 char *name;
fe978cb0 7314 const char *type_name = ada_type_name (type);
14f9c5c9 7315 int len;
d2e4a39e 7316
fe978cb0 7317 if (type_name == NULL)
14f9c5c9
AS
7318 return NULL;
7319
fe978cb0 7320 len = strlen (type_name);
14f9c5c9 7321
b4ba55a1 7322 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7323
fe978cb0 7324 strcpy (name, type_name);
14f9c5c9
AS
7325 strcpy (name + len, suffix);
7326
b4ba55a1 7327 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7328}
7329
14f9c5c9 7330/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7331 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7332
d2e4a39e
AS
7333static struct type *
7334dynamic_template_type (struct type *type)
14f9c5c9 7335{
61ee279c 7336 type = ada_check_typedef (type);
14f9c5c9 7337
78134374 7338 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7339 || ada_type_name (type) == NULL)
14f9c5c9 7340 return NULL;
d2e4a39e 7341 else
14f9c5c9
AS
7342 {
7343 int len = strlen (ada_type_name (type));
5b4ee69b 7344
4c4b4cd2 7345 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7346 return type;
14f9c5c9 7347 else
dda83cd7 7348 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7349 }
7350}
7351
7352/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7353 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7354
d2e4a39e
AS
7355static int
7356is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7357{
7358 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7359
d2e4a39e 7360 return name != NULL
940da03e 7361 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7362 && strstr (name, "___XVL") != NULL;
7363}
7364
4c4b4cd2
PH
7365/* The index of the variant field of TYPE, or -1 if TYPE does not
7366 represent a variant record type. */
14f9c5c9 7367
d2e4a39e 7368static int
4c4b4cd2 7369variant_field_index (struct type *type)
14f9c5c9
AS
7370{
7371 int f;
7372
78134374 7373 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7374 return -1;
7375
1f704f76 7376 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7377 {
7378 if (ada_is_variant_part (type, f))
dda83cd7 7379 return f;
4c4b4cd2
PH
7380 }
7381 return -1;
14f9c5c9
AS
7382}
7383
4c4b4cd2
PH
7384/* A record type with no fields. */
7385
d2e4a39e 7386static struct type *
fe978cb0 7387empty_record (struct type *templ)
14f9c5c9 7388{
fe978cb0 7389 struct type *type = alloc_type_copy (templ);
5b4ee69b 7390
67607e24 7391 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7392 INIT_NONE_SPECIFIC (type);
d0e39ea2 7393 type->set_name ("<empty>");
14f9c5c9
AS
7394 TYPE_LENGTH (type) = 0;
7395 return type;
7396}
7397
7398/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7399 the value of type TYPE at VALADDR or ADDRESS (see comments at
7400 the beginning of this section) VAL according to GNAT conventions.
7401 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7402 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7403 an outer-level type (i.e., as opposed to a branch of a variant.) A
7404 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7405 of the variant.
14f9c5c9 7406
4c4b4cd2
PH
7407 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7408 length are not statically known are discarded. As a consequence,
7409 VALADDR, ADDRESS and DVAL0 are ignored.
7410
7411 NOTE: Limitations: For now, we assume that dynamic fields and
7412 variants occupy whole numbers of bytes. However, they need not be
7413 byte-aligned. */
7414
7415struct type *
10a2c479 7416ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7417 const gdb_byte *valaddr,
dda83cd7
SM
7418 CORE_ADDR address, struct value *dval0,
7419 int keep_dynamic_fields)
14f9c5c9 7420{
d2e4a39e
AS
7421 struct value *mark = value_mark ();
7422 struct value *dval;
7423 struct type *rtype;
14f9c5c9 7424 int nfields, bit_len;
4c4b4cd2 7425 int variant_field;
14f9c5c9 7426 long off;
d94e4f4f 7427 int fld_bit_len;
14f9c5c9
AS
7428 int f;
7429
4c4b4cd2
PH
7430 /* Compute the number of fields in this record type that are going
7431 to be processed: unless keep_dynamic_fields, this includes only
7432 fields whose position and length are static will be processed. */
7433 if (keep_dynamic_fields)
1f704f76 7434 nfields = type->num_fields ();
4c4b4cd2
PH
7435 else
7436 {
7437 nfields = 0;
1f704f76 7438 while (nfields < type->num_fields ()
dda83cd7
SM
7439 && !ada_is_variant_part (type, nfields)
7440 && !is_dynamic_field (type, nfields))
7441 nfields++;
4c4b4cd2
PH
7442 }
7443
e9bb382b 7444 rtype = alloc_type_copy (type);
67607e24 7445 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7446 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7447 rtype->set_num_fields (nfields);
3cabb6b0
SM
7448 rtype->set_fields
7449 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7450 rtype->set_name (ada_type_name (type));
9cdd0d12 7451 rtype->set_is_fixed_instance (true);
14f9c5c9 7452
d2e4a39e
AS
7453 off = 0;
7454 bit_len = 0;
4c4b4cd2
PH
7455 variant_field = -1;
7456
14f9c5c9
AS
7457 for (f = 0; f < nfields; f += 1)
7458 {
a89febbd 7459 off = align_up (off, field_alignment (type, f))
6c038f32 7460 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7461 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7462 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7463
d2e4a39e 7464 if (ada_is_variant_part (type, f))
dda83cd7
SM
7465 {
7466 variant_field = f;
7467 fld_bit_len = 0;
7468 }
14f9c5c9 7469 else if (is_dynamic_field (type, f))
dda83cd7 7470 {
284614f0
JB
7471 const gdb_byte *field_valaddr = valaddr;
7472 CORE_ADDR field_address = address;
7473 struct type *field_type =
940da03e 7474 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7475
dda83cd7 7476 if (dval0 == NULL)
b5304971
JG
7477 {
7478 /* rtype's length is computed based on the run-time
7479 value of discriminants. If the discriminants are not
7480 initialized, the type size may be completely bogus and
0963b4bd 7481 GDB may fail to allocate a value for it. So check the
b5304971 7482 size first before creating the value. */
c1b5a1a6 7483 ada_ensure_varsize_limit (rtype);
012370f6
TT
7484 /* Using plain value_from_contents_and_address here
7485 causes problems because we will end up trying to
7486 resolve a type that is currently being
7487 constructed. */
7488 dval = value_from_contents_and_address_unresolved (rtype,
7489 valaddr,
7490 address);
9f1f738a 7491 rtype = value_type (dval);
b5304971 7492 }
dda83cd7
SM
7493 else
7494 dval = dval0;
4c4b4cd2 7495
284614f0
JB
7496 /* If the type referenced by this field is an aligner type, we need
7497 to unwrap that aligner type, because its size might not be set.
7498 Keeping the aligner type would cause us to compute the wrong
7499 size for this field, impacting the offset of the all the fields
7500 that follow this one. */
7501 if (ada_is_aligner_type (field_type))
7502 {
7503 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7504
7505 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7506 field_address = cond_offset_target (field_address, field_offset);
7507 field_type = ada_aligned_type (field_type);
7508 }
7509
7510 field_valaddr = cond_offset_host (field_valaddr,
7511 off / TARGET_CHAR_BIT);
7512 field_address = cond_offset_target (field_address,
7513 off / TARGET_CHAR_BIT);
7514
7515 /* Get the fixed type of the field. Note that, in this case,
7516 we do not want to get the real type out of the tag: if
7517 the current field is the parent part of a tagged record,
7518 we will get the tag of the object. Clearly wrong: the real
7519 type of the parent is not the real type of the child. We
7520 would end up in an infinite loop. */
7521 field_type = ada_get_base_type (field_type);
7522 field_type = ada_to_fixed_type (field_type, field_valaddr,
7523 field_address, dval, 0);
27f2a97b
JB
7524 /* If the field size is already larger than the maximum
7525 object size, then the record itself will necessarily
7526 be larger than the maximum object size. We need to make
7527 this check now, because the size might be so ridiculously
7528 large (due to an uninitialized variable in the inferior)
7529 that it would cause an overflow when adding it to the
7530 record size. */
c1b5a1a6 7531 ada_ensure_varsize_limit (field_type);
284614f0 7532
5d14b6e5 7533 rtype->field (f).set_type (field_type);
dda83cd7 7534 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7535 /* The multiplication can potentially overflow. But because
7536 the field length has been size-checked just above, and
7537 assuming that the maximum size is a reasonable value,
7538 an overflow should not happen in practice. So rather than
7539 adding overflow recovery code to this already complex code,
7540 we just assume that it's not going to happen. */
dda83cd7
SM
7541 fld_bit_len =
7542 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7543 }
14f9c5c9 7544 else
dda83cd7 7545 {
5ded5331
JB
7546 /* Note: If this field's type is a typedef, it is important
7547 to preserve the typedef layer.
7548
7549 Otherwise, we might be transforming a typedef to a fat
7550 pointer (encoding a pointer to an unconstrained array),
7551 into a basic fat pointer (encoding an unconstrained
7552 array). As both types are implemented using the same
7553 structure, the typedef is the only clue which allows us
7554 to distinguish between the two options. Stripping it
7555 would prevent us from printing this field appropriately. */
dda83cd7
SM
7556 rtype->field (f).set_type (type->field (f).type ());
7557 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7558 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7559 fld_bit_len =
7560 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7561 else
5ded5331 7562 {
940da03e 7563 struct type *field_type = type->field (f).type ();
5ded5331
JB
7564
7565 /* We need to be careful of typedefs when computing
7566 the length of our field. If this is a typedef,
7567 get the length of the target type, not the length
7568 of the typedef. */
78134374 7569 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7570 field_type = ada_typedef_target_type (field_type);
7571
dda83cd7
SM
7572 fld_bit_len =
7573 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7574 }
dda83cd7 7575 }
14f9c5c9 7576 if (off + fld_bit_len > bit_len)
dda83cd7 7577 bit_len = off + fld_bit_len;
d94e4f4f 7578 off += fld_bit_len;
4c4b4cd2 7579 TYPE_LENGTH (rtype) =
dda83cd7 7580 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7581 }
4c4b4cd2
PH
7582
7583 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7584 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7585 the record. This can happen in the presence of representation
7586 clauses. */
7587 if (variant_field >= 0)
7588 {
7589 struct type *branch_type;
7590
7591 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7592
7593 if (dval0 == NULL)
9f1f738a 7594 {
012370f6
TT
7595 /* Using plain value_from_contents_and_address here causes
7596 problems because we will end up trying to resolve a type
7597 that is currently being constructed. */
7598 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7599 address);
9f1f738a
SA
7600 rtype = value_type (dval);
7601 }
4c4b4cd2 7602 else
dda83cd7 7603 dval = dval0;
4c4b4cd2
PH
7604
7605 branch_type =
dda83cd7
SM
7606 to_fixed_variant_branch_type
7607 (type->field (variant_field).type (),
7608 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7609 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 7610 if (branch_type == NULL)
dda83cd7
SM
7611 {
7612 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7613 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7614 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 7615 }
4c4b4cd2 7616 else
dda83cd7
SM
7617 {
7618 rtype->field (variant_field).set_type (branch_type);
7619 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7620 fld_bit_len =
7621 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7622 TARGET_CHAR_BIT;
7623 if (off + fld_bit_len > bit_len)
7624 bit_len = off + fld_bit_len;
7625 TYPE_LENGTH (rtype) =
7626 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7627 }
4c4b4cd2
PH
7628 }
7629
714e53ab
PH
7630 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7631 should contain the alignment of that record, which should be a strictly
7632 positive value. If null or negative, then something is wrong, most
7633 probably in the debug info. In that case, we don't round up the size
0963b4bd 7634 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7635 the current RTYPE length might be good enough for our purposes. */
7636 if (TYPE_LENGTH (type) <= 0)
7637 {
7d93a1e0 7638 if (rtype->name ())
cc1defb1 7639 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 7640 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 7641 else
cc1defb1
KS
7642 warning (_("Invalid type size for <unnamed> detected: %s."),
7643 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
7644 }
7645 else
7646 {
a89febbd
TT
7647 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7648 TYPE_LENGTH (type));
714e53ab 7649 }
14f9c5c9
AS
7650
7651 value_free_to_mark (mark);
d2e4a39e 7652 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7653 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7654 return rtype;
7655}
7656
4c4b4cd2
PH
7657/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7658 of 1. */
14f9c5c9 7659
d2e4a39e 7660static struct type *
fc1a4b47 7661template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 7662 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
7663{
7664 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 7665 address, dval0, 1);
4c4b4cd2
PH
7666}
7667
7668/* An ordinary record type in which ___XVL-convention fields and
7669 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7670 static approximations, containing all possible fields. Uses
7671 no runtime values. Useless for use in values, but that's OK,
7672 since the results are used only for type determinations. Works on both
7673 structs and unions. Representation note: to save space, we memorize
7674 the result of this function in the TYPE_TARGET_TYPE of the
7675 template type. */
7676
7677static struct type *
7678template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7679{
7680 struct type *type;
7681 int nfields;
7682 int f;
7683
9e195661 7684 /* No need no do anything if the input type is already fixed. */
22c4c60c 7685 if (type0->is_fixed_instance ())
9e195661
PMR
7686 return type0;
7687
7688 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
7689 if (TYPE_TARGET_TYPE (type0) != NULL)
7690 return TYPE_TARGET_TYPE (type0);
7691
9e195661 7692 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 7693 type = type0;
1f704f76 7694 nfields = type0->num_fields ();
9e195661
PMR
7695
7696 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7697 recompute all over next time. */
7698 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
7699
7700 for (f = 0; f < nfields; f += 1)
7701 {
940da03e 7702 struct type *field_type = type0->field (f).type ();
4c4b4cd2 7703 struct type *new_type;
14f9c5c9 7704
4c4b4cd2 7705 if (is_dynamic_field (type0, f))
460efde1
JB
7706 {
7707 field_type = ada_check_typedef (field_type);
dda83cd7 7708 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 7709 }
14f9c5c9 7710 else
dda83cd7 7711 new_type = static_unwrap_type (field_type);
9e195661
PMR
7712
7713 if (new_type != field_type)
7714 {
7715 /* Clone TYPE0 only the first time we get a new field type. */
7716 if (type == type0)
7717 {
7718 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 7719 type->set_code (type0->code ());
8ecb59f8 7720 INIT_NONE_SPECIFIC (type);
5e33d5f4 7721 type->set_num_fields (nfields);
3cabb6b0
SM
7722
7723 field *fields =
7724 ((struct field *)
7725 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 7726 memcpy (fields, type0->fields (),
9e195661 7727 sizeof (struct field) * nfields);
3cabb6b0
SM
7728 type->set_fields (fields);
7729
d0e39ea2 7730 type->set_name (ada_type_name (type0));
9cdd0d12 7731 type->set_is_fixed_instance (true);
9e195661
PMR
7732 TYPE_LENGTH (type) = 0;
7733 }
5d14b6e5 7734 type->field (f).set_type (new_type);
9e195661
PMR
7735 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7736 }
14f9c5c9 7737 }
9e195661 7738
14f9c5c9
AS
7739 return type;
7740}
7741
4c4b4cd2 7742/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7743 whose address in memory is ADDRESS, returns a revision of TYPE,
7744 which should be a non-dynamic-sized record, in which the variant
7745 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7746 for discriminant values in DVAL0, which can be NULL if the record
7747 contains the necessary discriminant values. */
7748
d2e4a39e 7749static struct type *
fc1a4b47 7750to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 7751 CORE_ADDR address, struct value *dval0)
14f9c5c9 7752{
d2e4a39e 7753 struct value *mark = value_mark ();
4c4b4cd2 7754 struct value *dval;
d2e4a39e 7755 struct type *rtype;
14f9c5c9 7756 struct type *branch_type;
1f704f76 7757 int nfields = type->num_fields ();
4c4b4cd2 7758 int variant_field = variant_field_index (type);
14f9c5c9 7759
4c4b4cd2 7760 if (variant_field == -1)
14f9c5c9
AS
7761 return type;
7762
4c4b4cd2 7763 if (dval0 == NULL)
9f1f738a
SA
7764 {
7765 dval = value_from_contents_and_address (type, valaddr, address);
7766 type = value_type (dval);
7767 }
4c4b4cd2
PH
7768 else
7769 dval = dval0;
7770
e9bb382b 7771 rtype = alloc_type_copy (type);
67607e24 7772 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7773 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7774 rtype->set_num_fields (nfields);
3cabb6b0
SM
7775
7776 field *fields =
d2e4a39e 7777 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 7778 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
7779 rtype->set_fields (fields);
7780
d0e39ea2 7781 rtype->set_name (ada_type_name (type));
9cdd0d12 7782 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
7783 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7784
4c4b4cd2 7785 branch_type = to_fixed_variant_branch_type
940da03e 7786 (type->field (variant_field).type (),
d2e4a39e 7787 cond_offset_host (valaddr,
dda83cd7
SM
7788 TYPE_FIELD_BITPOS (type, variant_field)
7789 / TARGET_CHAR_BIT),
d2e4a39e 7790 cond_offset_target (address,
dda83cd7
SM
7791 TYPE_FIELD_BITPOS (type, variant_field)
7792 / TARGET_CHAR_BIT), dval);
d2e4a39e 7793 if (branch_type == NULL)
14f9c5c9 7794 {
4c4b4cd2 7795 int f;
5b4ee69b 7796
4c4b4cd2 7797 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 7798 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7799 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
7800 }
7801 else
7802 {
5d14b6e5 7803 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
7804 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7805 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7806 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7807 }
940da03e 7808 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 7809
4c4b4cd2 7810 value_free_to_mark (mark);
14f9c5c9
AS
7811 return rtype;
7812}
7813
7814/* An ordinary record type (with fixed-length fields) that describes
7815 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7816 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7817 should be in DVAL, a record value; it may be NULL if the object
7818 at ADDR itself contains any necessary discriminant values.
7819 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7820 values from the record are needed. Except in the case that DVAL,
7821 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7822 unchecked) is replaced by a particular branch of the variant.
7823
7824 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7825 is questionable and may be removed. It can arise during the
7826 processing of an unconstrained-array-of-record type where all the
7827 variant branches have exactly the same size. This is because in
7828 such cases, the compiler does not bother to use the XVS convention
7829 when encoding the record. I am currently dubious of this
7830 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7831
d2e4a39e 7832static struct type *
fc1a4b47 7833to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 7834 CORE_ADDR address, struct value *dval)
14f9c5c9 7835{
d2e4a39e 7836 struct type *templ_type;
14f9c5c9 7837
22c4c60c 7838 if (type0->is_fixed_instance ())
4c4b4cd2
PH
7839 return type0;
7840
d2e4a39e 7841 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7842
7843 if (templ_type != NULL)
7844 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7845 else if (variant_field_index (type0) >= 0)
7846 {
7847 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 7848 return type0;
4c4b4cd2 7849 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 7850 dval);
4c4b4cd2 7851 }
14f9c5c9
AS
7852 else
7853 {
9cdd0d12 7854 type0->set_is_fixed_instance (true);
14f9c5c9
AS
7855 return type0;
7856 }
7857
7858}
7859
7860/* An ordinary record type (with fixed-length fields) that describes
7861 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7862 union type. Any necessary discriminants' values should be in DVAL,
7863 a record value. That is, this routine selects the appropriate
7864 branch of the union at ADDR according to the discriminant value
b1f33ddd 7865 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7866 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7867
d2e4a39e 7868static struct type *
fc1a4b47 7869to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 7870 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7871{
7872 int which;
d2e4a39e
AS
7873 struct type *templ_type;
7874 struct type *var_type;
14f9c5c9 7875
78134374 7876 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 7877 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7878 else
14f9c5c9
AS
7879 var_type = var_type0;
7880
7881 templ_type = ada_find_parallel_type (var_type, "___XVU");
7882
7883 if (templ_type != NULL)
7884 var_type = templ_type;
7885
b1f33ddd
JB
7886 if (is_unchecked_variant (var_type, value_type (dval)))
7887 return var_type0;
d8af9068 7888 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
7889
7890 if (which < 0)
e9bb382b 7891 return empty_record (var_type);
14f9c5c9 7892 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7893 return to_fixed_record_type
940da03e 7894 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 7895 valaddr, address, dval);
940da03e 7896 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
7897 return
7898 to_fixed_record_type
940da03e 7899 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 7900 else
940da03e 7901 return var_type->field (which).type ();
14f9c5c9
AS
7902}
7903
8908fca5
JB
7904/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7905 ENCODING_TYPE, a type following the GNAT conventions for discrete
7906 type encodings, only carries redundant information. */
7907
7908static int
7909ada_is_redundant_range_encoding (struct type *range_type,
7910 struct type *encoding_type)
7911{
108d56a4 7912 const char *bounds_str;
8908fca5
JB
7913 int n;
7914 LONGEST lo, hi;
7915
78134374 7916 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 7917
78134374
SM
7918 if (get_base_type (range_type)->code ()
7919 != get_base_type (encoding_type)->code ())
005e2509
JB
7920 {
7921 /* The compiler probably used a simple base type to describe
7922 the range type instead of the range's actual base type,
7923 expecting us to get the real base type from the encoding
7924 anyway. In this situation, the encoding cannot be ignored
7925 as redundant. */
7926 return 0;
7927 }
7928
8908fca5
JB
7929 if (is_dynamic_type (range_type))
7930 return 0;
7931
7d93a1e0 7932 if (encoding_type->name () == NULL)
8908fca5
JB
7933 return 0;
7934
7d93a1e0 7935 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
7936 if (bounds_str == NULL)
7937 return 0;
7938
7939 n = 8; /* Skip "___XDLU_". */
7940 if (!ada_scan_number (bounds_str, n, &lo, &n))
7941 return 0;
5537ddd0 7942 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
7943 return 0;
7944
7945 n += 2; /* Skip the "__" separator between the two bounds. */
7946 if (!ada_scan_number (bounds_str, n, &hi, &n))
7947 return 0;
5537ddd0 7948 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
7949 return 0;
7950
7951 return 1;
7952}
7953
7954/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7955 a type following the GNAT encoding for describing array type
7956 indices, only carries redundant information. */
7957
7958static int
7959ada_is_redundant_index_type_desc (struct type *array_type,
7960 struct type *desc_type)
7961{
7962 struct type *this_layer = check_typedef (array_type);
7963 int i;
7964
1f704f76 7965 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 7966 {
3d967001 7967 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 7968 desc_type->field (i).type ()))
8908fca5
JB
7969 return 0;
7970 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7971 }
7972
7973 return 1;
7974}
7975
14f9c5c9
AS
7976/* Assuming that TYPE0 is an array type describing the type of a value
7977 at ADDR, and that DVAL describes a record containing any
7978 discriminants used in TYPE0, returns a type for the value that
7979 contains no dynamic components (that is, no components whose sizes
7980 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7981 true, gives an error message if the resulting type's size is over
4c4b4cd2 7982 varsize_limit. */
14f9c5c9 7983
d2e4a39e
AS
7984static struct type *
7985to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 7986 int ignore_too_big)
14f9c5c9 7987{
d2e4a39e
AS
7988 struct type *index_type_desc;
7989 struct type *result;
ad82864c 7990 int constrained_packed_array_p;
931e5bc3 7991 static const char *xa_suffix = "___XA";
14f9c5c9 7992
b0dd7688 7993 type0 = ada_check_typedef (type0);
22c4c60c 7994 if (type0->is_fixed_instance ())
4c4b4cd2 7995 return type0;
14f9c5c9 7996
ad82864c
JB
7997 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7998 if (constrained_packed_array_p)
75fd6a26
TT
7999 {
8000 type0 = decode_constrained_packed_array_type (type0);
8001 if (type0 == nullptr)
8002 error (_("could not decode constrained packed array type"));
8003 }
284614f0 8004
931e5bc3
JG
8005 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8006
8007 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8008 encoding suffixed with 'P' may still be generated. If so,
8009 it should be used to find the XA type. */
8010
8011 if (index_type_desc == NULL)
8012 {
1da0522e 8013 const char *type_name = ada_type_name (type0);
931e5bc3 8014
1da0522e 8015 if (type_name != NULL)
931e5bc3 8016 {
1da0522e 8017 const int len = strlen (type_name);
931e5bc3
JG
8018 char *name = (char *) alloca (len + strlen (xa_suffix));
8019
1da0522e 8020 if (type_name[len - 1] == 'P')
931e5bc3 8021 {
1da0522e 8022 strcpy (name, type_name);
931e5bc3
JG
8023 strcpy (name + len - 1, xa_suffix);
8024 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8025 }
8026 }
8027 }
8028
28c85d6c 8029 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8030 if (index_type_desc != NULL
8031 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8032 {
8033 /* Ignore this ___XA parallel type, as it does not bring any
8034 useful information. This allows us to avoid creating fixed
8035 versions of the array's index types, which would be identical
8036 to the original ones. This, in turn, can also help avoid
8037 the creation of fixed versions of the array itself. */
8038 index_type_desc = NULL;
8039 }
8040
14f9c5c9
AS
8041 if (index_type_desc == NULL)
8042 {
61ee279c 8043 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8044
14f9c5c9 8045 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8046 depend on the contents of the array in properly constructed
8047 debugging data. */
529cad9c 8048 /* Create a fixed version of the array element type.
dda83cd7
SM
8049 We're not providing the address of an element here,
8050 and thus the actual object value cannot be inspected to do
8051 the conversion. This should not be a problem, since arrays of
8052 unconstrained objects are not allowed. In particular, all
8053 the elements of an array of a tagged type should all be of
8054 the same type specified in the debugging info. No need to
8055 consult the object tag. */
1ed6ede0 8056 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8057
284614f0
JB
8058 /* Make sure we always create a new array type when dealing with
8059 packed array types, since we're going to fix-up the array
8060 type length and element bitsize a little further down. */
ad82864c 8061 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8062 result = type0;
14f9c5c9 8063 else
dda83cd7
SM
8064 result = create_array_type (alloc_type_copy (type0),
8065 elt_type, type0->index_type ());
14f9c5c9
AS
8066 }
8067 else
8068 {
8069 int i;
8070 struct type *elt_type0;
8071
8072 elt_type0 = type0;
1f704f76 8073 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8074 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8075
8076 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8077 depend on the contents of the array in properly constructed
8078 debugging data. */
529cad9c 8079 /* Create a fixed version of the array element type.
dda83cd7
SM
8080 We're not providing the address of an element here,
8081 and thus the actual object value cannot be inspected to do
8082 the conversion. This should not be a problem, since arrays of
8083 unconstrained objects are not allowed. In particular, all
8084 the elements of an array of a tagged type should all be of
8085 the same type specified in the debugging info. No need to
8086 consult the object tag. */
1ed6ede0 8087 result =
dda83cd7 8088 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8089
8090 elt_type0 = type0;
1f704f76 8091 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8092 {
8093 struct type *range_type =
8094 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8095
dda83cd7
SM
8096 result = create_array_type (alloc_type_copy (elt_type0),
8097 result, range_type);
1ce677a4 8098 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8099 }
d2e4a39e 8100 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8101 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8102 }
8103
2e6fda7d
JB
8104 /* We want to preserve the type name. This can be useful when
8105 trying to get the type name of a value that has already been
8106 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8107 result->set_name (type0->name ());
2e6fda7d 8108
ad82864c 8109 if (constrained_packed_array_p)
284614f0
JB
8110 {
8111 /* So far, the resulting type has been created as if the original
8112 type was a regular (non-packed) array type. As a result, the
8113 bitsize of the array elements needs to be set again, and the array
8114 length needs to be recomputed based on that bitsize. */
8115 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8116 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8117
8118 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8119 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8120 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8121 TYPE_LENGTH (result)++;
284614f0
JB
8122 }
8123
9cdd0d12 8124 result->set_is_fixed_instance (true);
14f9c5c9 8125 return result;
d2e4a39e 8126}
14f9c5c9
AS
8127
8128
8129/* A standard type (containing no dynamically sized components)
8130 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8131 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8132 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8133 ADDRESS or in VALADDR contains these discriminants.
8134
1ed6ede0
JB
8135 If CHECK_TAG is not null, in the case of tagged types, this function
8136 attempts to locate the object's tag and use it to compute the actual
8137 type. However, when ADDRESS is null, we cannot use it to determine the
8138 location of the tag, and therefore compute the tagged type's actual type.
8139 So we return the tagged type without consulting the tag. */
529cad9c 8140
f192137b
JB
8141static struct type *
8142ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8143 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8144{
61ee279c 8145 type = ada_check_typedef (type);
8ecb59f8
TT
8146
8147 /* Only un-fixed types need to be handled here. */
8148 if (!HAVE_GNAT_AUX_INFO (type))
8149 return type;
8150
78134374 8151 switch (type->code ())
d2e4a39e
AS
8152 {
8153 default:
14f9c5c9 8154 return type;
d2e4a39e 8155 case TYPE_CODE_STRUCT:
4c4b4cd2 8156 {
dda83cd7
SM
8157 struct type *static_type = to_static_fixed_type (type);
8158 struct type *fixed_record_type =
8159 to_fixed_record_type (type, valaddr, address, NULL);
8160
8161 /* If STATIC_TYPE is a tagged type and we know the object's address,
8162 then we can determine its tag, and compute the object's actual
8163 type from there. Note that we have to use the fixed record
8164 type (the parent part of the record may have dynamic fields
8165 and the way the location of _tag is expressed may depend on
8166 them). */
8167
8168 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8169 {
b50d69b5
JG
8170 struct value *tag =
8171 value_tag_from_contents_and_address
8172 (fixed_record_type,
8173 valaddr,
8174 address);
8175 struct type *real_type = type_from_tag (tag);
8176 struct value *obj =
8177 value_from_contents_and_address (fixed_record_type,
8178 valaddr,
8179 address);
dda83cd7
SM
8180 fixed_record_type = value_type (obj);
8181 if (real_type != NULL)
8182 return to_fixed_record_type
b50d69b5
JG
8183 (real_type, NULL,
8184 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8185 }
8186
8187 /* Check to see if there is a parallel ___XVZ variable.
8188 If there is, then it provides the actual size of our type. */
8189 else if (ada_type_name (fixed_record_type) != NULL)
8190 {
8191 const char *name = ada_type_name (fixed_record_type);
8192 char *xvz_name
224c3ddb 8193 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8194 bool xvz_found = false;
dda83cd7 8195 LONGEST size;
4af88198 8196
dda83cd7 8197 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8198 try
eccab96d
JB
8199 {
8200 xvz_found = get_int_var_value (xvz_name, size);
8201 }
230d2906 8202 catch (const gdb_exception_error &except)
eccab96d
JB
8203 {
8204 /* We found the variable, but somehow failed to read
8205 its value. Rethrow the same error, but with a little
8206 bit more information, to help the user understand
8207 what went wrong (Eg: the variable might have been
8208 optimized out). */
8209 throw_error (except.error,
8210 _("unable to read value of %s (%s)"),
3d6e9d23 8211 xvz_name, except.what ());
eccab96d 8212 }
eccab96d 8213
dda83cd7
SM
8214 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8215 {
8216 fixed_record_type = copy_type (fixed_record_type);
8217 TYPE_LENGTH (fixed_record_type) = size;
8218
8219 /* The FIXED_RECORD_TYPE may have be a stub. We have
8220 observed this when the debugging info is STABS, and
8221 apparently it is something that is hard to fix.
8222
8223 In practice, we don't need the actual type definition
8224 at all, because the presence of the XVZ variable allows us
8225 to assume that there must be a XVS type as well, which we
8226 should be able to use later, when we need the actual type
8227 definition.
8228
8229 In the meantime, pretend that the "fixed" type we are
8230 returning is NOT a stub, because this can cause trouble
8231 when using this type to create new types targeting it.
8232 Indeed, the associated creation routines often check
8233 whether the target type is a stub and will try to replace
8234 it, thus using a type with the wrong size. This, in turn,
8235 might cause the new type to have the wrong size too.
8236 Consider the case of an array, for instance, where the size
8237 of the array is computed from the number of elements in
8238 our array multiplied by the size of its element. */
b4b73759 8239 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8240 }
8241 }
8242 return fixed_record_type;
4c4b4cd2 8243 }
d2e4a39e 8244 case TYPE_CODE_ARRAY:
4c4b4cd2 8245 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8246 case TYPE_CODE_UNION:
8247 if (dval == NULL)
dda83cd7 8248 return type;
d2e4a39e 8249 else
dda83cd7 8250 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8251 }
14f9c5c9
AS
8252}
8253
f192137b
JB
8254/* The same as ada_to_fixed_type_1, except that it preserves the type
8255 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8256
8257 The typedef layer needs be preserved in order to differentiate between
8258 arrays and array pointers when both types are implemented using the same
8259 fat pointer. In the array pointer case, the pointer is encoded as
8260 a typedef of the pointer type. For instance, considering:
8261
8262 type String_Access is access String;
8263 S1 : String_Access := null;
8264
8265 To the debugger, S1 is defined as a typedef of type String. But
8266 to the user, it is a pointer. So if the user tries to print S1,
8267 we should not dereference the array, but print the array address
8268 instead.
8269
8270 If we didn't preserve the typedef layer, we would lose the fact that
8271 the type is to be presented as a pointer (needs de-reference before
8272 being printed). And we would also use the source-level type name. */
f192137b
JB
8273
8274struct type *
8275ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8276 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8277
8278{
8279 struct type *fixed_type =
8280 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8281
96dbd2c1
JB
8282 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8283 then preserve the typedef layer.
8284
8285 Implementation note: We can only check the main-type portion of
8286 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8287 from TYPE now returns a type that has the same instance flags
8288 as TYPE. For instance, if TYPE is a "typedef const", and its
8289 target type is a "struct", then the typedef elimination will return
8290 a "const" version of the target type. See check_typedef for more
8291 details about how the typedef layer elimination is done.
8292
8293 brobecker/2010-11-19: It seems to me that the only case where it is
8294 useful to preserve the typedef layer is when dealing with fat pointers.
8295 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8296 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8297 because we call check_typedef/ada_check_typedef pretty much everywhere.
8298 */
78134374 8299 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8300 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8301 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8302 return type;
8303
8304 return fixed_type;
8305}
8306
14f9c5c9 8307/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8308 TYPE0, but based on no runtime data. */
14f9c5c9 8309
d2e4a39e
AS
8310static struct type *
8311to_static_fixed_type (struct type *type0)
14f9c5c9 8312{
d2e4a39e 8313 struct type *type;
14f9c5c9
AS
8314
8315 if (type0 == NULL)
8316 return NULL;
8317
22c4c60c 8318 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8319 return type0;
8320
61ee279c 8321 type0 = ada_check_typedef (type0);
d2e4a39e 8322
78134374 8323 switch (type0->code ())
14f9c5c9
AS
8324 {
8325 default:
8326 return type0;
8327 case TYPE_CODE_STRUCT:
8328 type = dynamic_template_type (type0);
d2e4a39e 8329 if (type != NULL)
dda83cd7 8330 return template_to_static_fixed_type (type);
4c4b4cd2 8331 else
dda83cd7 8332 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8333 case TYPE_CODE_UNION:
8334 type = ada_find_parallel_type (type0, "___XVU");
8335 if (type != NULL)
dda83cd7 8336 return template_to_static_fixed_type (type);
4c4b4cd2 8337 else
dda83cd7 8338 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8339 }
8340}
8341
4c4b4cd2
PH
8342/* A static approximation of TYPE with all type wrappers removed. */
8343
d2e4a39e
AS
8344static struct type *
8345static_unwrap_type (struct type *type)
14f9c5c9
AS
8346{
8347 if (ada_is_aligner_type (type))
8348 {
940da03e 8349 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8350 if (ada_type_name (type1) == NULL)
d0e39ea2 8351 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8352
8353 return static_unwrap_type (type1);
8354 }
d2e4a39e 8355 else
14f9c5c9 8356 {
d2e4a39e 8357 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8358
d2e4a39e 8359 if (raw_real_type == type)
dda83cd7 8360 return type;
14f9c5c9 8361 else
dda83cd7 8362 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8363 }
8364}
8365
8366/* In some cases, incomplete and private types require
4c4b4cd2 8367 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8368 type Foo;
8369 type FooP is access Foo;
8370 V: FooP;
8371 type Foo is array ...;
4c4b4cd2 8372 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8373 cross-references to such types, we instead substitute for FooP a
8374 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8375 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8376
8377/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8378 exists, otherwise TYPE. */
8379
d2e4a39e 8380struct type *
61ee279c 8381ada_check_typedef (struct type *type)
14f9c5c9 8382{
727e3d2e
JB
8383 if (type == NULL)
8384 return NULL;
8385
736ade86
XR
8386 /* If our type is an access to an unconstrained array, which is encoded
8387 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8388 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8389 what allows us to distinguish between fat pointers that represent
8390 array types, and fat pointers that represent array access types
8391 (in both cases, the compiler implements them as fat pointers). */
736ade86 8392 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8393 return type;
8394
f168693b 8395 type = check_typedef (type);
78134374 8396 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8397 || !type->is_stub ()
7d93a1e0 8398 || type->name () == NULL)
14f9c5c9 8399 return type;
d2e4a39e 8400 else
14f9c5c9 8401 {
7d93a1e0 8402 const char *name = type->name ();
d2e4a39e 8403 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8404
05e522ef 8405 if (type1 == NULL)
dda83cd7 8406 return type;
05e522ef
JB
8407
8408 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8409 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8410 types, only for the typedef-to-array types). If that's the case,
8411 strip the typedef layer. */
78134374 8412 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8413 type1 = ada_check_typedef (type1);
8414
8415 return type1;
14f9c5c9
AS
8416 }
8417}
8418
8419/* A value representing the data at VALADDR/ADDRESS as described by
8420 type TYPE0, but with a standard (static-sized) type that correctly
8421 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8422 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8423 creation of struct values]. */
14f9c5c9 8424
4c4b4cd2
PH
8425static struct value *
8426ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8427 struct value *val0)
14f9c5c9 8428{
1ed6ede0 8429 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8430
14f9c5c9
AS
8431 if (type == type0 && val0 != NULL)
8432 return val0;
cc0e770c
JB
8433
8434 if (VALUE_LVAL (val0) != lval_memory)
8435 {
8436 /* Our value does not live in memory; it could be a convenience
8437 variable, for instance. Create a not_lval value using val0's
8438 contents. */
8439 return value_from_contents (type, value_contents (val0));
8440 }
8441
8442 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8443}
8444
8445/* A value representing VAL, but with a standard (static-sized) type
8446 that correctly describes it. Does not necessarily create a new
8447 value. */
8448
0c3acc09 8449struct value *
4c4b4cd2
PH
8450ada_to_fixed_value (struct value *val)
8451{
c48db5ca 8452 val = unwrap_value (val);
d8ce9127 8453 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8454 return val;
14f9c5c9 8455}
d2e4a39e 8456\f
14f9c5c9 8457
14f9c5c9
AS
8458/* Attributes */
8459
4c4b4cd2
PH
8460/* Table mapping attribute numbers to names.
8461 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8462
27087b7f 8463static const char * const attribute_names[] = {
14f9c5c9
AS
8464 "<?>",
8465
d2e4a39e 8466 "first",
14f9c5c9
AS
8467 "last",
8468 "length",
8469 "image",
14f9c5c9
AS
8470 "max",
8471 "min",
4c4b4cd2
PH
8472 "modulus",
8473 "pos",
8474 "size",
8475 "tag",
14f9c5c9 8476 "val",
14f9c5c9
AS
8477 0
8478};
8479
de93309a 8480static const char *
4c4b4cd2 8481ada_attribute_name (enum exp_opcode n)
14f9c5c9 8482{
4c4b4cd2
PH
8483 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8484 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8485 else
8486 return attribute_names[0];
8487}
8488
4c4b4cd2 8489/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8490
4c4b4cd2
PH
8491static LONGEST
8492pos_atr (struct value *arg)
14f9c5c9 8493{
24209737
PH
8494 struct value *val = coerce_ref (arg);
8495 struct type *type = value_type (val);
14f9c5c9 8496
d2e4a39e 8497 if (!discrete_type_p (type))
323e0a4a 8498 error (_("'POS only defined on discrete types"));
14f9c5c9 8499
6244c119
SM
8500 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8501 if (!result.has_value ())
aa715135 8502 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8503
6244c119 8504 return *result;
4c4b4cd2
PH
8505}
8506
7631cf6c 8507struct value *
7992accc
TT
8508ada_pos_atr (struct type *expect_type,
8509 struct expression *exp,
8510 enum noside noside, enum exp_opcode op,
8511 struct value *arg)
4c4b4cd2 8512{
7992accc
TT
8513 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8515 return value_zero (type, not_lval);
3cb382c9 8516 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8517}
8518
4c4b4cd2 8519/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8520
d2e4a39e 8521static struct value *
53a47a3e 8522val_atr (struct type *type, LONGEST val)
14f9c5c9 8523{
53a47a3e 8524 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8525 if (type->code () == TYPE_CODE_RANGE)
8526 type = TYPE_TARGET_TYPE (type);
78134374 8527 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8528 {
53a47a3e 8529 if (val < 0 || val >= type->num_fields ())
dda83cd7 8530 error (_("argument to 'VAL out of range"));
53a47a3e 8531 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8532 }
53a47a3e
TT
8533 return value_from_longest (type, val);
8534}
8535
9e99f48f 8536struct value *
3848abd6 8537ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8538{
3848abd6
TT
8539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8540 return value_zero (type, not_lval);
8541
53a47a3e
TT
8542 if (!discrete_type_p (type))
8543 error (_("'VAL only defined on discrete types"));
8544 if (!integer_type_p (value_type (arg)))
8545 error (_("'VAL requires integral argument"));
8546
8547 return val_atr (type, value_as_long (arg));
14f9c5c9 8548}
14f9c5c9 8549\f
d2e4a39e 8550
dda83cd7 8551 /* Evaluation */
14f9c5c9 8552
4c4b4cd2
PH
8553/* True if TYPE appears to be an Ada character type.
8554 [At the moment, this is true only for Character and Wide_Character;
8555 It is a heuristic test that could stand improvement]. */
14f9c5c9 8556
fc913e53 8557bool
d2e4a39e 8558ada_is_character_type (struct type *type)
14f9c5c9 8559{
7b9f71f2
JB
8560 const char *name;
8561
8562 /* If the type code says it's a character, then assume it really is,
8563 and don't check any further. */
78134374 8564 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8565 return true;
7b9f71f2
JB
8566
8567 /* Otherwise, assume it's a character type iff it is a discrete type
8568 with a known character type name. */
8569 name = ada_type_name (type);
8570 return (name != NULL
dda83cd7
SM
8571 && (type->code () == TYPE_CODE_INT
8572 || type->code () == TYPE_CODE_RANGE)
8573 && (strcmp (name, "character") == 0
8574 || strcmp (name, "wide_character") == 0
8575 || strcmp (name, "wide_wide_character") == 0
8576 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8577}
8578
4c4b4cd2 8579/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8580
fc913e53 8581bool
ebf56fd3 8582ada_is_string_type (struct type *type)
14f9c5c9 8583{
61ee279c 8584 type = ada_check_typedef (type);
d2e4a39e 8585 if (type != NULL
78134374 8586 && type->code () != TYPE_CODE_PTR
76a01679 8587 && (ada_is_simple_array_type (type)
dda83cd7 8588 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8589 && ada_array_arity (type) == 1)
8590 {
8591 struct type *elttype = ada_array_element_type (type, 1);
8592
8593 return ada_is_character_type (elttype);
8594 }
d2e4a39e 8595 else
fc913e53 8596 return false;
14f9c5c9
AS
8597}
8598
5bf03f13
JB
8599/* The compiler sometimes provides a parallel XVS type for a given
8600 PAD type. Normally, it is safe to follow the PAD type directly,
8601 but older versions of the compiler have a bug that causes the offset
8602 of its "F" field to be wrong. Following that field in that case
8603 would lead to incorrect results, but this can be worked around
8604 by ignoring the PAD type and using the associated XVS type instead.
8605
8606 Set to True if the debugger should trust the contents of PAD types.
8607 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 8608static bool trust_pad_over_xvs = true;
14f9c5c9
AS
8609
8610/* True if TYPE is a struct type introduced by the compiler to force the
8611 alignment of a value. Such types have a single field with a
4c4b4cd2 8612 distinctive name. */
14f9c5c9
AS
8613
8614int
ebf56fd3 8615ada_is_aligner_type (struct type *type)
14f9c5c9 8616{
61ee279c 8617 type = ada_check_typedef (type);
714e53ab 8618
5bf03f13 8619 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8620 return 0;
8621
78134374 8622 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
8623 && type->num_fields () == 1
8624 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8625}
8626
8627/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8628 the parallel type. */
14f9c5c9 8629
d2e4a39e
AS
8630struct type *
8631ada_get_base_type (struct type *raw_type)
14f9c5c9 8632{
d2e4a39e
AS
8633 struct type *real_type_namer;
8634 struct type *raw_real_type;
14f9c5c9 8635
78134374 8636 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
8637 return raw_type;
8638
284614f0
JB
8639 if (ada_is_aligner_type (raw_type))
8640 /* The encoding specifies that we should always use the aligner type.
8641 So, even if this aligner type has an associated XVS type, we should
8642 simply ignore it.
8643
8644 According to the compiler gurus, an XVS type parallel to an aligner
8645 type may exist because of a stabs limitation. In stabs, aligner
8646 types are empty because the field has a variable-sized type, and
8647 thus cannot actually be used as an aligner type. As a result,
8648 we need the associated parallel XVS type to decode the type.
8649 Since the policy in the compiler is to not change the internal
8650 representation based on the debugging info format, we sometimes
8651 end up having a redundant XVS type parallel to the aligner type. */
8652 return raw_type;
8653
14f9c5c9 8654 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8655 if (real_type_namer == NULL
78134374 8656 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 8657 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
8658 return raw_type;
8659
940da03e 8660 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
8661 {
8662 /* This is an older encoding form where the base type needs to be
85102364 8663 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
8664 more efficient. */
8665 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8666 if (raw_real_type == NULL)
8667 return raw_type;
8668 else
8669 return raw_real_type;
8670 }
8671
8672 /* The field in our XVS type is a reference to the base type. */
940da03e 8673 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 8674}
14f9c5c9 8675
4c4b4cd2 8676/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8677
d2e4a39e
AS
8678struct type *
8679ada_aligned_type (struct type *type)
14f9c5c9
AS
8680{
8681 if (ada_is_aligner_type (type))
940da03e 8682 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
8683 else
8684 return ada_get_base_type (type);
8685}
8686
8687
8688/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8690
fc1a4b47
AC
8691const gdb_byte *
8692ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8693{
d2e4a39e 8694 if (ada_is_aligner_type (type))
940da03e 8695 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
8696 valaddr +
8697 TYPE_FIELD_BITPOS (type,
8698 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8699 else
8700 return valaddr;
8701}
8702
4c4b4cd2
PH
8703
8704
14f9c5c9 8705/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8706 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8707const char *
8708ada_enum_name (const char *name)
14f9c5c9 8709{
5f9febe0 8710 static std::string storage;
e6a959d6 8711 const char *tmp;
14f9c5c9 8712
4c4b4cd2
PH
8713 /* First, unqualify the enumeration name:
8714 1. Search for the last '.' character. If we find one, then skip
177b42fe 8715 all the preceding characters, the unqualified name starts
76a01679 8716 right after that dot.
4c4b4cd2 8717 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8718 translates dots into "__". Search forward for double underscores,
8719 but stop searching when we hit an overloading suffix, which is
8720 of the form "__" followed by digits. */
4c4b4cd2 8721
c3e5cd34
PH
8722 tmp = strrchr (name, '.');
8723 if (tmp != NULL)
4c4b4cd2
PH
8724 name = tmp + 1;
8725 else
14f9c5c9 8726 {
4c4b4cd2 8727 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
8728 {
8729 if (isdigit (tmp[2]))
8730 break;
8731 else
8732 name = tmp + 2;
8733 }
14f9c5c9
AS
8734 }
8735
8736 if (name[0] == 'Q')
8737 {
14f9c5c9 8738 int v;
5b4ee69b 8739
14f9c5c9 8740 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
8741 {
8742 if (sscanf (name + 2, "%x", &v) != 1)
8743 return name;
8744 }
272560b5
TT
8745 else if (((name[1] >= '0' && name[1] <= '9')
8746 || (name[1] >= 'a' && name[1] <= 'z'))
8747 && name[2] == '\0')
8748 {
5f9febe0
TT
8749 storage = string_printf ("'%c'", name[1]);
8750 return storage.c_str ();
272560b5 8751 }
14f9c5c9 8752 else
dda83cd7 8753 return name;
14f9c5c9
AS
8754
8755 if (isascii (v) && isprint (v))
5f9febe0 8756 storage = string_printf ("'%c'", v);
14f9c5c9 8757 else if (name[1] == 'U')
5f9febe0 8758 storage = string_printf ("[\"%02x\"]", v);
14f9c5c9 8759 else
5f9febe0 8760 storage = string_printf ("[\"%04x\"]", v);
14f9c5c9 8761
5f9febe0 8762 return storage.c_str ();
14f9c5c9 8763 }
d2e4a39e 8764 else
4c4b4cd2 8765 {
c3e5cd34
PH
8766 tmp = strstr (name, "__");
8767 if (tmp == NULL)
8768 tmp = strstr (name, "$");
8769 if (tmp != NULL)
dda83cd7 8770 {
5f9febe0
TT
8771 storage = std::string (name, tmp - name);
8772 return storage.c_str ();
dda83cd7 8773 }
4c4b4cd2
PH
8774
8775 return name;
8776 }
14f9c5c9
AS
8777}
8778
14f9c5c9 8779/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8780 value it wraps. */
14f9c5c9 8781
d2e4a39e
AS
8782static struct value *
8783unwrap_value (struct value *val)
14f9c5c9 8784{
df407dfe 8785 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8786
14f9c5c9
AS
8787 if (ada_is_aligner_type (type))
8788 {
de4d072f 8789 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8790 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8791
14f9c5c9 8792 if (ada_type_name (val_type) == NULL)
d0e39ea2 8793 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
8794
8795 return unwrap_value (v);
8796 }
d2e4a39e 8797 else
14f9c5c9 8798 {
d2e4a39e 8799 struct type *raw_real_type =
dda83cd7 8800 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8801
5bf03f13
JB
8802 /* If there is no parallel XVS or XVE type, then the value is
8803 already unwrapped. Return it without further modification. */
8804 if ((type == raw_real_type)
8805 && ada_find_parallel_type (type, "___XVE") == NULL)
8806 return val;
14f9c5c9 8807
d2e4a39e 8808 return
dda83cd7
SM
8809 coerce_unspec_val_to_type
8810 (val, ada_to_fixed_type (raw_real_type, 0,
8811 value_address (val),
8812 NULL, 1));
14f9c5c9
AS
8813 }
8814}
d2e4a39e 8815
d99dcf51
JB
8816/* Given two array types T1 and T2, return nonzero iff both arrays
8817 contain the same number of elements. */
8818
8819static int
8820ada_same_array_size_p (struct type *t1, struct type *t2)
8821{
8822 LONGEST lo1, hi1, lo2, hi2;
8823
8824 /* Get the array bounds in order to verify that the size of
8825 the two arrays match. */
8826 if (!get_array_bounds (t1, &lo1, &hi1)
8827 || !get_array_bounds (t2, &lo2, &hi2))
8828 error (_("unable to determine array bounds"));
8829
8830 /* To make things easier for size comparison, normalize a bit
8831 the case of empty arrays by making sure that the difference
8832 between upper bound and lower bound is always -1. */
8833 if (lo1 > hi1)
8834 hi1 = lo1 - 1;
8835 if (lo2 > hi2)
8836 hi2 = lo2 - 1;
8837
8838 return (hi1 - lo1 == hi2 - lo2);
8839}
8840
8841/* Assuming that VAL is an array of integrals, and TYPE represents
8842 an array with the same number of elements, but with wider integral
8843 elements, return an array "casted" to TYPE. In practice, this
8844 means that the returned array is built by casting each element
8845 of the original array into TYPE's (wider) element type. */
8846
8847static struct value *
8848ada_promote_array_of_integrals (struct type *type, struct value *val)
8849{
8850 struct type *elt_type = TYPE_TARGET_TYPE (type);
8851 LONGEST lo, hi;
8852 struct value *res;
8853 LONGEST i;
8854
8855 /* Verify that both val and type are arrays of scalars, and
8856 that the size of val's elements is smaller than the size
8857 of type's element. */
78134374 8858 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 8859 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 8860 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
8861 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8862 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8863 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8864
8865 if (!get_array_bounds (type, &lo, &hi))
8866 error (_("unable to determine array bounds"));
8867
8868 res = allocate_value (type);
8869
8870 /* Promote each array element. */
8871 for (i = 0; i < hi - lo + 1; i++)
8872 {
8873 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8874
8875 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8876 value_contents_all (elt), TYPE_LENGTH (elt_type));
8877 }
8878
8879 return res;
8880}
8881
4c4b4cd2
PH
8882/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8883 return the converted value. */
8884
d2e4a39e
AS
8885static struct value *
8886coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8887{
df407dfe 8888 struct type *type2 = value_type (val);
5b4ee69b 8889
14f9c5c9
AS
8890 if (type == type2)
8891 return val;
8892
61ee279c
PH
8893 type2 = ada_check_typedef (type2);
8894 type = ada_check_typedef (type);
14f9c5c9 8895
78134374
SM
8896 if (type2->code () == TYPE_CODE_PTR
8897 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
8898 {
8899 val = ada_value_ind (val);
df407dfe 8900 type2 = value_type (val);
14f9c5c9
AS
8901 }
8902
78134374
SM
8903 if (type2->code () == TYPE_CODE_ARRAY
8904 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 8905 {
d99dcf51
JB
8906 if (!ada_same_array_size_p (type, type2))
8907 error (_("cannot assign arrays of different length"));
8908
8909 if (is_integral_type (TYPE_TARGET_TYPE (type))
8910 && is_integral_type (TYPE_TARGET_TYPE (type2))
8911 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8912 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8913 {
8914 /* Allow implicit promotion of the array elements to
8915 a wider type. */
8916 return ada_promote_array_of_integrals (type, val);
8917 }
8918
8919 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
8920 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8921 error (_("Incompatible types in assignment"));
04624583 8922 deprecated_set_value_type (val, type);
14f9c5c9 8923 }
d2e4a39e 8924 return val;
14f9c5c9
AS
8925}
8926
4c4b4cd2
PH
8927static struct value *
8928ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8929{
8930 struct value *val;
8931 struct type *type1, *type2;
8932 LONGEST v, v1, v2;
8933
994b9211
AC
8934 arg1 = coerce_ref (arg1);
8935 arg2 = coerce_ref (arg2);
18af8284
JB
8936 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8937 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8938
78134374
SM
8939 if (type1->code () != TYPE_CODE_INT
8940 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
8941 return value_binop (arg1, arg2, op);
8942
76a01679 8943 switch (op)
4c4b4cd2
PH
8944 {
8945 case BINOP_MOD:
8946 case BINOP_DIV:
8947 case BINOP_REM:
8948 break;
8949 default:
8950 return value_binop (arg1, arg2, op);
8951 }
8952
8953 v2 = value_as_long (arg2);
8954 if (v2 == 0)
b0f9164c
TT
8955 {
8956 const char *name;
8957 if (op == BINOP_MOD)
8958 name = "mod";
8959 else if (op == BINOP_DIV)
8960 name = "/";
8961 else
8962 {
8963 gdb_assert (op == BINOP_REM);
8964 name = "rem";
8965 }
8966
8967 error (_("second operand of %s must not be zero."), name);
8968 }
4c4b4cd2 8969
c6d940a9 8970 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
8971 return value_binop (arg1, arg2, op);
8972
8973 v1 = value_as_long (arg1);
8974 switch (op)
8975 {
8976 case BINOP_DIV:
8977 v = v1 / v2;
76a01679 8978 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 8979 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8980 break;
8981 case BINOP_REM:
8982 v = v1 % v2;
76a01679 8983 if (v * v1 < 0)
dda83cd7 8984 v -= v2;
4c4b4cd2
PH
8985 break;
8986 default:
8987 /* Should not reach this point. */
8988 v = 0;
8989 }
8990
8991 val = allocate_value (type1);
990a07ab 8992 store_unsigned_integer (value_contents_raw (val),
dda83cd7 8993 TYPE_LENGTH (value_type (val)),
34877895 8994 type_byte_order (type1), v);
4c4b4cd2
PH
8995 return val;
8996}
8997
8998static int
8999ada_value_equal (struct value *arg1, struct value *arg2)
9000{
df407dfe
AC
9001 if (ada_is_direct_array_type (value_type (arg1))
9002 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9003 {
79e8fcaa
JB
9004 struct type *arg1_type, *arg2_type;
9005
f58b38bf 9006 /* Automatically dereference any array reference before
dda83cd7 9007 we attempt to perform the comparison. */
f58b38bf
JB
9008 arg1 = ada_coerce_ref (arg1);
9009 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9010
4c4b4cd2
PH
9011 arg1 = ada_coerce_to_simple_array (arg1);
9012 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9013
9014 arg1_type = ada_check_typedef (value_type (arg1));
9015 arg2_type = ada_check_typedef (value_type (arg2));
9016
78134374 9017 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9018 || arg2_type->code () != TYPE_CODE_ARRAY)
9019 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9020 /* FIXME: The following works only for types whose
dda83cd7
SM
9021 representations use all bits (no padding or undefined bits)
9022 and do not have user-defined equality. */
79e8fcaa
JB
9023 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9024 && memcmp (value_contents (arg1), value_contents (arg2),
9025 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9026 }
9027 return value_equal (arg1, arg2);
9028}
9029
d3c54a1c
TT
9030namespace expr
9031{
9032
9033bool
9034check_objfile (const std::unique_ptr<ada_component> &comp,
9035 struct objfile *objfile)
9036{
9037 return comp->uses_objfile (objfile);
9038}
9039
9040/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9041 component of LHS (a simple array or a record). Does not modify the
9042 inferior's memory, nor does it modify LHS (unless LHS ==
9043 CONTAINER). */
52ce6436
PH
9044
9045static void
9046assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9047 struct expression *exp, operation_up &arg)
52ce6436 9048{
d3c54a1c
TT
9049 scoped_value_mark mark;
9050
52ce6436 9051 struct value *elt;
0e2da9f0 9052 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9053
78134374 9054 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9055 {
22601c15
UW
9056 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9057 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9058
52ce6436
PH
9059 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9060 }
9061 else
9062 {
9063 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9064 elt = ada_to_fixed_value (elt);
52ce6436
PH
9065 }
9066
d3c54a1c
TT
9067 ada_aggregate_operation *ag_op
9068 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9069 if (ag_op != nullptr)
9070 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9071 else
d3c54a1c
TT
9072 value_assign_to_component (container, elt,
9073 arg->evaluate (nullptr, exp,
9074 EVAL_NORMAL));
9075}
52ce6436 9076
d3c54a1c
TT
9077bool
9078ada_aggregate_component::uses_objfile (struct objfile *objfile)
9079{
9080 for (const auto &item : m_components)
9081 if (item->uses_objfile (objfile))
9082 return true;
9083 return false;
9084}
9085
9086void
9087ada_aggregate_component::dump (ui_file *stream, int depth)
9088{
9089 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9090 for (const auto &item : m_components)
9091 item->dump (stream, depth + 1);
9092}
9093
9094void
9095ada_aggregate_component::assign (struct value *container,
9096 struct value *lhs, struct expression *exp,
9097 std::vector<LONGEST> &indices,
9098 LONGEST low, LONGEST high)
9099{
9100 for (auto &item : m_components)
9101 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9102}
9103
9104/* Assuming that LHS represents an lvalue having a record or array
d3c54a1c
TT
9105 type, evaluate an assignment of this aggregate's value to LHS.
9106 CONTAINER is an lvalue containing LHS (possibly LHS itself). Does
9107 not modify the inferior's memory, nor does it modify the contents
9108 of LHS (unless == CONTAINER). */
52ce6436 9109
d3c54a1c
TT
9110void
9111ada_aggregate_operation::assign_aggregate (struct value *container,
9112 struct value *lhs,
9113 struct expression *exp)
52ce6436
PH
9114{
9115 struct type *lhs_type;
52ce6436 9116 LONGEST low_index, high_index;
52ce6436
PH
9117
9118 container = ada_coerce_ref (container);
9119 if (ada_is_direct_array_type (value_type (container)))
9120 container = ada_coerce_to_simple_array (container);
9121 lhs = ada_coerce_ref (lhs);
9122 if (!deprecated_value_modifiable (lhs))
9123 error (_("Left operand of assignment is not a modifiable lvalue."));
9124
0e2da9f0 9125 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9126 if (ada_is_direct_array_type (lhs_type))
9127 {
9128 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9129 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9130 low_index = lhs_type->bounds ()->low.const_val ();
9131 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9132 }
78134374 9133 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9134 {
9135 low_index = 0;
9136 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9137 }
9138 else
9139 error (_("Left-hand side must be array or record."));
9140
cf608cc4 9141 std::vector<LONGEST> indices (4);
52ce6436
PH
9142 indices[0] = indices[1] = low_index - 1;
9143 indices[2] = indices[3] = high_index + 1;
52ce6436 9144
d3c54a1c
TT
9145 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9146 low_index, high_index);
9147}
9148
9149bool
9150ada_positional_component::uses_objfile (struct objfile *objfile)
9151{
9152 return m_op->uses_objfile (objfile);
9153}
52ce6436 9154
d3c54a1c
TT
9155void
9156ada_positional_component::dump (ui_file *stream, int depth)
9157{
9158 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9159 depth, "", m_index);
9160 m_op->dump (stream, depth + 1);
52ce6436 9161}
d3c54a1c 9162
52ce6436 9163/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9164 construct, given that the positions are relative to lower bound
9165 LOW, where HIGH is the upper bound. Record the position in
9166 INDICES. CONTAINER is as for assign_aggregate. */
9167void
9168ada_positional_component::assign (struct value *container,
9169 struct value *lhs, struct expression *exp,
9170 std::vector<LONGEST> &indices,
9171 LONGEST low, LONGEST high)
52ce6436 9172{
d3c54a1c
TT
9173 LONGEST ind = m_index + low;
9174
52ce6436 9175 if (ind - 1 == high)
e1d5a0d2 9176 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9177 if (ind <= high)
9178 {
cf608cc4 9179 add_component_interval (ind, ind, indices);
d3c54a1c 9180 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9181 }
52ce6436
PH
9182}
9183
d3c54a1c
TT
9184bool
9185ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9186{
9187 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9188}
9189
9190void
9191ada_discrete_range_association::dump (ui_file *stream, int depth)
9192{
9193 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9194 m_low->dump (stream, depth + 1);
9195 m_high->dump (stream, depth + 1);
9196}
9197
9198void
9199ada_discrete_range_association::assign (struct value *container,
9200 struct value *lhs,
9201 struct expression *exp,
9202 std::vector<LONGEST> &indices,
9203 LONGEST low, LONGEST high,
9204 operation_up &op)
9205{
9206 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9207 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9208
9209 if (lower <= upper && (lower < low || upper > high))
9210 error (_("Index in component association out of bounds."));
9211
9212 add_component_interval (lower, upper, indices);
9213 while (lower <= upper)
9214 {
9215 assign_component (container, lhs, lower, exp, op);
9216 lower += 1;
9217 }
9218}
9219
9220bool
9221ada_name_association::uses_objfile (struct objfile *objfile)
9222{
9223 return m_val->uses_objfile (objfile);
9224}
9225
9226void
9227ada_name_association::dump (ui_file *stream, int depth)
9228{
9229 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9230 m_val->dump (stream, depth + 1);
9231}
9232
9233void
9234ada_name_association::assign (struct value *container,
9235 struct value *lhs,
9236 struct expression *exp,
9237 std::vector<LONGEST> &indices,
9238 LONGEST low, LONGEST high,
9239 operation_up &op)
9240{
9241 int index;
9242
9243 if (ada_is_direct_array_type (value_type (lhs)))
9244 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9245 EVAL_NORMAL)));
9246 else
9247 {
9248 ada_string_operation *strop
9249 = dynamic_cast<ada_string_operation *> (m_val.get ());
9250
9251 const char *name;
9252 if (strop != nullptr)
9253 name = strop->get_name ();
9254 else
9255 {
9256 ada_var_value_operation *vvo
9257 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9258 if (vvo != nullptr)
9259 error (_("Invalid record component association."));
9260 name = vvo->get_symbol ()->natural_name ();
9261 }
9262
9263 index = 0;
9264 if (! find_struct_field (name, value_type (lhs), 0,
9265 NULL, NULL, NULL, NULL, &index))
9266 error (_("Unknown component name: %s."), name);
9267 }
9268
9269 add_component_interval (index, index, indices);
9270 assign_component (container, lhs, index, exp, op);
9271}
9272
9273bool
9274ada_choices_component::uses_objfile (struct objfile *objfile)
9275{
9276 if (m_op->uses_objfile (objfile))
9277 return true;
9278 for (const auto &item : m_assocs)
9279 if (item->uses_objfile (objfile))
9280 return true;
9281 return false;
9282}
9283
9284void
9285ada_choices_component::dump (ui_file *stream, int depth)
9286{
9287 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9288 m_op->dump (stream, depth + 1);
9289 for (const auto &item : m_assocs)
9290 item->dump (stream, depth + 1);
9291}
9292
9293/* Assign into the components of LHS indexed by the OP_CHOICES
9294 construct at *POS, updating *POS past the construct, given that
9295 the allowable indices are LOW..HIGH. Record the indices assigned
9296 to in INDICES. CONTAINER is as for assign_aggregate. */
9297void
9298ada_choices_component::assign (struct value *container,
9299 struct value *lhs, struct expression *exp,
9300 std::vector<LONGEST> &indices,
9301 LONGEST low, LONGEST high)
9302{
9303 for (auto &item : m_assocs)
9304 item->assign (container, lhs, exp, indices, low, high, m_op);
9305}
9306
9307bool
9308ada_others_component::uses_objfile (struct objfile *objfile)
9309{
9310 return m_op->uses_objfile (objfile);
9311}
9312
9313void
9314ada_others_component::dump (ui_file *stream, int depth)
9315{
9316 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9317 m_op->dump (stream, depth + 1);
9318}
9319
9320/* Assign the value of the expression in the OP_OTHERS construct in
9321 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9322 have not been previously assigned. The index intervals already assigned
9323 are in INDICES. CONTAINER is as for assign_aggregate. */
9324void
9325ada_others_component::assign (struct value *container,
9326 struct value *lhs, struct expression *exp,
9327 std::vector<LONGEST> &indices,
9328 LONGEST low, LONGEST high)
9329{
9330 int num_indices = indices.size ();
9331 for (int i = 0; i < num_indices - 2; i += 2)
9332 {
9333 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9334 assign_component (container, lhs, ind, exp, m_op);
9335 }
9336}
9337
9338struct value *
9339ada_assign_operation::evaluate (struct type *expect_type,
9340 struct expression *exp,
9341 enum noside noside)
9342{
9343 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9344
9345 ada_aggregate_operation *ag_op
9346 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9347 if (ag_op != nullptr)
9348 {
9349 if (noside != EVAL_NORMAL)
9350 return arg1;
9351
9352 ag_op->assign_aggregate (arg1, arg1, exp);
9353 return ada_value_assign (arg1, arg1);
9354 }
9355 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9356 except if the lhs of our assignment is a convenience variable.
9357 In the case of assigning to a convenience variable, the lhs
9358 should be exactly the result of the evaluation of the rhs. */
9359 struct type *type = value_type (arg1);
9360 if (VALUE_LVAL (arg1) == lval_internalvar)
9361 type = NULL;
9362 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9364 return arg1;
9365 if (VALUE_LVAL (arg1) == lval_internalvar)
9366 {
9367 /* Nothing. */
9368 }
9369 else
9370 arg2 = coerce_for_assign (value_type (arg1), arg2);
9371 return ada_value_assign (arg1, arg2);
9372}
9373
9374} /* namespace expr */
9375
cf608cc4
TT
9376/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9377 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9378 overlap. */
52ce6436
PH
9379static void
9380add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9381 std::vector<LONGEST> &indices)
52ce6436
PH
9382{
9383 int i, j;
5b4ee69b 9384
cf608cc4
TT
9385 int size = indices.size ();
9386 for (i = 0; i < size; i += 2) {
52ce6436
PH
9387 if (high >= indices[i] && low <= indices[i + 1])
9388 {
9389 int kh;
5b4ee69b 9390
cf608cc4 9391 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9392 if (high < indices[kh])
9393 break;
9394 if (low < indices[i])
9395 indices[i] = low;
9396 indices[i + 1] = indices[kh - 1];
9397 if (high > indices[i + 1])
9398 indices[i + 1] = high;
cf608cc4
TT
9399 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9400 indices.resize (kh - i - 2);
52ce6436
PH
9401 return;
9402 }
9403 else if (high < indices[i])
9404 break;
9405 }
9406
cf608cc4 9407 indices.resize (indices.size () + 2);
d4813f10 9408 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9409 indices[j] = indices[j - 2];
9410 indices[i] = low;
9411 indices[i + 1] = high;
9412}
9413
6e48bd2c
JB
9414/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9415 is different. */
9416
9417static struct value *
b7e22850 9418ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9419{
9420 if (type == ada_check_typedef (value_type (arg2)))
9421 return arg2;
9422
6e48bd2c
JB
9423 return value_cast (type, arg2);
9424}
9425
284614f0
JB
9426/* Evaluating Ada expressions, and printing their result.
9427 ------------------------------------------------------
9428
21649b50
JB
9429 1. Introduction:
9430 ----------------
9431
284614f0
JB
9432 We usually evaluate an Ada expression in order to print its value.
9433 We also evaluate an expression in order to print its type, which
9434 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9435 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9436 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9437 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9438 similar.
9439
9440 Evaluating expressions is a little more complicated for Ada entities
9441 than it is for entities in languages such as C. The main reason for
9442 this is that Ada provides types whose definition might be dynamic.
9443 One example of such types is variant records. Or another example
9444 would be an array whose bounds can only be known at run time.
9445
9446 The following description is a general guide as to what should be
9447 done (and what should NOT be done) in order to evaluate an expression
9448 involving such types, and when. This does not cover how the semantic
9449 information is encoded by GNAT as this is covered separatly. For the
9450 document used as the reference for the GNAT encoding, see exp_dbug.ads
9451 in the GNAT sources.
9452
9453 Ideally, we should embed each part of this description next to its
9454 associated code. Unfortunately, the amount of code is so vast right
9455 now that it's hard to see whether the code handling a particular
9456 situation might be duplicated or not. One day, when the code is
9457 cleaned up, this guide might become redundant with the comments
9458 inserted in the code, and we might want to remove it.
9459
21649b50
JB
9460 2. ``Fixing'' an Entity, the Simple Case:
9461 -----------------------------------------
9462
284614f0
JB
9463 When evaluating Ada expressions, the tricky issue is that they may
9464 reference entities whose type contents and size are not statically
9465 known. Consider for instance a variant record:
9466
9467 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9468 case Empty is
9469 when True => null;
9470 when False => Value : Integer;
9471 end case;
284614f0
JB
9472 end record;
9473 Yes : Rec := (Empty => False, Value => 1);
9474 No : Rec := (empty => True);
9475
9476 The size and contents of that record depends on the value of the
9477 descriminant (Rec.Empty). At this point, neither the debugging
9478 information nor the associated type structure in GDB are able to
9479 express such dynamic types. So what the debugger does is to create
9480 "fixed" versions of the type that applies to the specific object.
30baf67b 9481 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9482 which means creating its associated fixed type.
9483
9484 Example: when printing the value of variable "Yes" above, its fixed
9485 type would look like this:
9486
9487 type Rec is record
dda83cd7
SM
9488 Empty : Boolean;
9489 Value : Integer;
284614f0
JB
9490 end record;
9491
9492 On the other hand, if we printed the value of "No", its fixed type
9493 would become:
9494
9495 type Rec is record
dda83cd7 9496 Empty : Boolean;
284614f0
JB
9497 end record;
9498
9499 Things become a little more complicated when trying to fix an entity
9500 with a dynamic type that directly contains another dynamic type,
9501 such as an array of variant records, for instance. There are
9502 two possible cases: Arrays, and records.
9503
21649b50
JB
9504 3. ``Fixing'' Arrays:
9505 ---------------------
9506
9507 The type structure in GDB describes an array in terms of its bounds,
9508 and the type of its elements. By design, all elements in the array
9509 have the same type and we cannot represent an array of variant elements
9510 using the current type structure in GDB. When fixing an array,
9511 we cannot fix the array element, as we would potentially need one
9512 fixed type per element of the array. As a result, the best we can do
9513 when fixing an array is to produce an array whose bounds and size
9514 are correct (allowing us to read it from memory), but without having
9515 touched its element type. Fixing each element will be done later,
9516 when (if) necessary.
9517
9518 Arrays are a little simpler to handle than records, because the same
9519 amount of memory is allocated for each element of the array, even if
1b536f04 9520 the amount of space actually used by each element differs from element
21649b50 9521 to element. Consider for instance the following array of type Rec:
284614f0
JB
9522
9523 type Rec_Array is array (1 .. 2) of Rec;
9524
1b536f04
JB
9525 The actual amount of memory occupied by each element might be different
9526 from element to element, depending on the value of their discriminant.
21649b50 9527 But the amount of space reserved for each element in the array remains
1b536f04 9528 fixed regardless. So we simply need to compute that size using
21649b50
JB
9529 the debugging information available, from which we can then determine
9530 the array size (we multiply the number of elements of the array by
9531 the size of each element).
9532
9533 The simplest case is when we have an array of a constrained element
9534 type. For instance, consider the following type declarations:
9535
dda83cd7
SM
9536 type Bounded_String (Max_Size : Integer) is
9537 Length : Integer;
9538 Buffer : String (1 .. Max_Size);
9539 end record;
9540 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9541
9542 In this case, the compiler describes the array as an array of
9543 variable-size elements (identified by its XVS suffix) for which
9544 the size can be read in the parallel XVZ variable.
9545
9546 In the case of an array of an unconstrained element type, the compiler
9547 wraps the array element inside a private PAD type. This type should not
9548 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9549 that we also use the adjective "aligner" in our code to designate
9550 these wrapper types.
9551
1b536f04 9552 In some cases, the size allocated for each element is statically
21649b50
JB
9553 known. In that case, the PAD type already has the correct size,
9554 and the array element should remain unfixed.
9555
9556 But there are cases when this size is not statically known.
9557 For instance, assuming that "Five" is an integer variable:
284614f0 9558
dda83cd7
SM
9559 type Dynamic is array (1 .. Five) of Integer;
9560 type Wrapper (Has_Length : Boolean := False) is record
9561 Data : Dynamic;
9562 case Has_Length is
9563 when True => Length : Integer;
9564 when False => null;
9565 end case;
9566 end record;
9567 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9568
dda83cd7
SM
9569 Hello : Wrapper_Array := (others => (Has_Length => True,
9570 Data => (others => 17),
9571 Length => 1));
284614f0
JB
9572
9573
9574 The debugging info would describe variable Hello as being an
9575 array of a PAD type. The size of that PAD type is not statically
9576 known, but can be determined using a parallel XVZ variable.
9577 In that case, a copy of the PAD type with the correct size should
9578 be used for the fixed array.
9579
21649b50
JB
9580 3. ``Fixing'' record type objects:
9581 ----------------------------------
9582
9583 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9584 record types. In this case, in order to compute the associated
9585 fixed type, we need to determine the size and offset of each of
9586 its components. This, in turn, requires us to compute the fixed
9587 type of each of these components.
9588
9589 Consider for instance the example:
9590
dda83cd7
SM
9591 type Bounded_String (Max_Size : Natural) is record
9592 Str : String (1 .. Max_Size);
9593 Length : Natural;
9594 end record;
9595 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9596
9597 In that case, the position of field "Length" depends on the size
9598 of field Str, which itself depends on the value of the Max_Size
21649b50 9599 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9600 we need to fix the type of field Str. Therefore, fixing a variant
9601 record requires us to fix each of its components.
9602
9603 However, if a component does not have a dynamic size, the component
9604 should not be fixed. In particular, fields that use a PAD type
9605 should not fixed. Here is an example where this might happen
9606 (assuming type Rec above):
9607
9608 type Container (Big : Boolean) is record
dda83cd7
SM
9609 First : Rec;
9610 After : Integer;
9611 case Big is
9612 when True => Another : Integer;
9613 when False => null;
9614 end case;
284614f0
JB
9615 end record;
9616 My_Container : Container := (Big => False,
dda83cd7
SM
9617 First => (Empty => True),
9618 After => 42);
284614f0
JB
9619
9620 In that example, the compiler creates a PAD type for component First,
9621 whose size is constant, and then positions the component After just
9622 right after it. The offset of component After is therefore constant
9623 in this case.
9624
9625 The debugger computes the position of each field based on an algorithm
9626 that uses, among other things, the actual position and size of the field
21649b50
JB
9627 preceding it. Let's now imagine that the user is trying to print
9628 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9629 end up computing the offset of field After based on the size of the
9630 fixed version of field First. And since in our example First has
9631 only one actual field, the size of the fixed type is actually smaller
9632 than the amount of space allocated to that field, and thus we would
9633 compute the wrong offset of field After.
9634
21649b50
JB
9635 To make things more complicated, we need to watch out for dynamic
9636 components of variant records (identified by the ___XVL suffix in
9637 the component name). Even if the target type is a PAD type, the size
9638 of that type might not be statically known. So the PAD type needs
9639 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9640 we might end up with the wrong size for our component. This can be
9641 observed with the following type declarations:
284614f0 9642
dda83cd7
SM
9643 type Octal is new Integer range 0 .. 7;
9644 type Octal_Array is array (Positive range <>) of Octal;
9645 pragma Pack (Octal_Array);
284614f0 9646
dda83cd7
SM
9647 type Octal_Buffer (Size : Positive) is record
9648 Buffer : Octal_Array (1 .. Size);
9649 Length : Integer;
9650 end record;
284614f0
JB
9651
9652 In that case, Buffer is a PAD type whose size is unset and needs
9653 to be computed by fixing the unwrapped type.
9654
21649b50
JB
9655 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9656 ----------------------------------------------------------
9657
9658 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9659 thus far, be actually fixed?
9660
9661 The answer is: Only when referencing that element. For instance
9662 when selecting one component of a record, this specific component
9663 should be fixed at that point in time. Or when printing the value
9664 of a record, each component should be fixed before its value gets
9665 printed. Similarly for arrays, the element of the array should be
9666 fixed when printing each element of the array, or when extracting
9667 one element out of that array. On the other hand, fixing should
9668 not be performed on the elements when taking a slice of an array!
9669
31432a67 9670 Note that one of the side effects of miscomputing the offset and
284614f0
JB
9671 size of each field is that we end up also miscomputing the size
9672 of the containing type. This can have adverse results when computing
9673 the value of an entity. GDB fetches the value of an entity based
9674 on the size of its type, and thus a wrong size causes GDB to fetch
9675 the wrong amount of memory. In the case where the computed size is
9676 too small, GDB fetches too little data to print the value of our
31432a67 9677 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
9678 past the buffer containing the data =:-o. */
9679
62d4bd94
TT
9680/* A helper function for TERNOP_IN_RANGE. */
9681
9682static value *
9683eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9684 enum noside noside,
9685 value *arg1, value *arg2, value *arg3)
9686{
62d4bd94
TT
9687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9689 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9690 return
9691 value_from_longest (type,
9692 (value_less (arg1, arg3)
9693 || value_equal (arg1, arg3))
9694 && (value_less (arg2, arg1)
9695 || value_equal (arg2, arg1)));
9696}
9697
82390ab8
TT
9698/* A helper function for UNOP_NEG. */
9699
7c15d377 9700value *
82390ab8
TT
9701ada_unop_neg (struct type *expect_type,
9702 struct expression *exp,
9703 enum noside noside, enum exp_opcode op,
9704 struct value *arg1)
9705{
82390ab8
TT
9706 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9707 return value_neg (arg1);
9708}
9709
7efc87ff
TT
9710/* A helper function for UNOP_IN_RANGE. */
9711
95d49dfb 9712value *
7efc87ff
TT
9713ada_unop_in_range (struct type *expect_type,
9714 struct expression *exp,
9715 enum noside noside, enum exp_opcode op,
9716 struct value *arg1, struct type *type)
9717{
7efc87ff
TT
9718 struct value *arg2, *arg3;
9719 switch (type->code ())
9720 {
9721 default:
9722 lim_warning (_("Membership test incompletely implemented; "
9723 "always returns true"));
9724 type = language_bool_type (exp->language_defn, exp->gdbarch);
9725 return value_from_longest (type, (LONGEST) 1);
9726
9727 case TYPE_CODE_RANGE:
9728 arg2 = value_from_longest (type,
9729 type->bounds ()->low.const_val ());
9730 arg3 = value_from_longest (type,
9731 type->bounds ()->high.const_val ());
9732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9733 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9734 type = language_bool_type (exp->language_defn, exp->gdbarch);
9735 return
9736 value_from_longest (type,
9737 (value_less (arg1, arg3)
9738 || value_equal (arg1, arg3))
9739 && (value_less (arg2, arg1)
9740 || value_equal (arg2, arg1)));
9741 }
9742}
9743
020dbabe
TT
9744/* A helper function for OP_ATR_TAG. */
9745
7c15d377 9746value *
020dbabe
TT
9747ada_atr_tag (struct type *expect_type,
9748 struct expression *exp,
9749 enum noside noside, enum exp_opcode op,
9750 struct value *arg1)
9751{
9752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9753 return value_zero (ada_tag_type (arg1), not_lval);
9754
9755 return ada_value_tag (arg1);
9756}
9757
68c75735
TT
9758/* A helper function for OP_ATR_SIZE. */
9759
7c15d377 9760value *
68c75735
TT
9761ada_atr_size (struct type *expect_type,
9762 struct expression *exp,
9763 enum noside noside, enum exp_opcode op,
9764 struct value *arg1)
9765{
9766 struct type *type = value_type (arg1);
9767
9768 /* If the argument is a reference, then dereference its type, since
9769 the user is really asking for the size of the actual object,
9770 not the size of the pointer. */
9771 if (type->code () == TYPE_CODE_REF)
9772 type = TYPE_TARGET_TYPE (type);
9773
0b2b0b82 9774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
9775 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9776 else
9777 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9778 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9779}
9780
d05e24e6
TT
9781/* A helper function for UNOP_ABS. */
9782
7c15d377 9783value *
d05e24e6
TT
9784ada_abs (struct type *expect_type,
9785 struct expression *exp,
9786 enum noside noside, enum exp_opcode op,
9787 struct value *arg1)
9788{
9789 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9790 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9791 return value_neg (arg1);
9792 else
9793 return arg1;
9794}
9795
faa1dfd7
TT
9796/* A helper function for BINOP_MUL. */
9797
d9e7db06 9798value *
faa1dfd7
TT
9799ada_mult_binop (struct type *expect_type,
9800 struct expression *exp,
9801 enum noside noside, enum exp_opcode op,
9802 struct value *arg1, struct value *arg2)
9803{
9804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9805 {
9806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9807 return value_zero (value_type (arg1), not_lval);
9808 }
9809 else
9810 {
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9812 return ada_value_binop (arg1, arg2, op);
9813 }
9814}
9815
214b13ac
TT
9816/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9817
6e8fb7b7 9818value *
214b13ac
TT
9819ada_equal_binop (struct type *expect_type,
9820 struct expression *exp,
9821 enum noside noside, enum exp_opcode op,
9822 struct value *arg1, struct value *arg2)
9823{
9824 int tem;
9825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9826 tem = 0;
9827 else
9828 {
9829 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9830 tem = ada_value_equal (arg1, arg2);
9831 }
9832 if (op == BINOP_NOTEQUAL)
9833 tem = !tem;
9834 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9835 return value_from_longest (type, (LONGEST) tem);
9836}
9837
5ce19db8
TT
9838/* A helper function for TERNOP_SLICE. */
9839
1b1ebfab 9840value *
5ce19db8
TT
9841ada_ternop_slice (struct expression *exp,
9842 enum noside noside,
9843 struct value *array, struct value *low_bound_val,
9844 struct value *high_bound_val)
9845{
9846 LONGEST low_bound;
9847 LONGEST high_bound;
9848
9849 low_bound_val = coerce_ref (low_bound_val);
9850 high_bound_val = coerce_ref (high_bound_val);
9851 low_bound = value_as_long (low_bound_val);
9852 high_bound = value_as_long (high_bound_val);
9853
9854 /* If this is a reference to an aligner type, then remove all
9855 the aligners. */
9856 if (value_type (array)->code () == TYPE_CODE_REF
9857 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9858 TYPE_TARGET_TYPE (value_type (array)) =
9859 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9860
9861 if (ada_is_any_packed_array_type (value_type (array)))
9862 error (_("cannot slice a packed array"));
9863
9864 /* If this is a reference to an array or an array lvalue,
9865 convert to a pointer. */
9866 if (value_type (array)->code () == TYPE_CODE_REF
9867 || (value_type (array)->code () == TYPE_CODE_ARRAY
9868 && VALUE_LVAL (array) == lval_memory))
9869 array = value_addr (array);
9870
9871 if (noside == EVAL_AVOID_SIDE_EFFECTS
9872 && ada_is_array_descriptor_type (ada_check_typedef
9873 (value_type (array))))
9874 return empty_array (ada_type_of_array (array, 0), low_bound,
9875 high_bound);
9876
9877 array = ada_coerce_to_simple_array_ptr (array);
9878
9879 /* If we have more than one level of pointer indirection,
9880 dereference the value until we get only one level. */
9881 while (value_type (array)->code () == TYPE_CODE_PTR
9882 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9883 == TYPE_CODE_PTR))
9884 array = value_ind (array);
9885
9886 /* Make sure we really do have an array type before going further,
9887 to avoid a SEGV when trying to get the index type or the target
9888 type later down the road if the debug info generated by
9889 the compiler is incorrect or incomplete. */
9890 if (!ada_is_simple_array_type (value_type (array)))
9891 error (_("cannot take slice of non-array"));
9892
9893 if (ada_check_typedef (value_type (array))->code ()
9894 == TYPE_CODE_PTR)
9895 {
9896 struct type *type0 = ada_check_typedef (value_type (array));
9897
9898 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9899 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9900 else
9901 {
9902 struct type *arr_type0 =
9903 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9904
9905 return ada_value_slice_from_ptr (array, arr_type0,
9906 longest_to_int (low_bound),
9907 longest_to_int (high_bound));
9908 }
9909 }
9910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9911 return array;
9912 else if (high_bound < low_bound)
9913 return empty_array (value_type (array), low_bound, high_bound);
9914 else
9915 return ada_value_slice (array, longest_to_int (low_bound),
9916 longest_to_int (high_bound));
9917}
9918
b467efaa
TT
9919/* A helper function for BINOP_IN_BOUNDS. */
9920
82c3886e 9921value *
b467efaa
TT
9922ada_binop_in_bounds (struct expression *exp, enum noside noside,
9923 struct value *arg1, struct value *arg2, int n)
9924{
9925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9926 {
9927 struct type *type = language_bool_type (exp->language_defn,
9928 exp->gdbarch);
9929 return value_zero (type, not_lval);
9930 }
9931
9932 struct type *type = ada_index_type (value_type (arg2), n, "range");
9933 if (!type)
9934 type = value_type (arg1);
9935
9936 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9937 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9938
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9940 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9941 type = language_bool_type (exp->language_defn, exp->gdbarch);
9942 return value_from_longest (type,
9943 (value_less (arg1, arg3)
9944 || value_equal (arg1, arg3))
9945 && (value_less (arg2, arg1)
9946 || value_equal (arg2, arg1)));
9947}
9948
b84564fc
TT
9949/* A helper function for some attribute operations. */
9950
9951static value *
9952ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9953 struct value *arg1, struct type *type_arg, int tem)
9954{
9955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9956 {
9957 if (type_arg == NULL)
9958 type_arg = value_type (arg1);
9959
9960 if (ada_is_constrained_packed_array_type (type_arg))
9961 type_arg = decode_constrained_packed_array_type (type_arg);
9962
9963 if (!discrete_type_p (type_arg))
9964 {
9965 switch (op)
9966 {
9967 default: /* Should never happen. */
9968 error (_("unexpected attribute encountered"));
9969 case OP_ATR_FIRST:
9970 case OP_ATR_LAST:
9971 type_arg = ada_index_type (type_arg, tem,
9972 ada_attribute_name (op));
9973 break;
9974 case OP_ATR_LENGTH:
9975 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9976 break;
9977 }
9978 }
9979
9980 return value_zero (type_arg, not_lval);
9981 }
9982 else if (type_arg == NULL)
9983 {
9984 arg1 = ada_coerce_ref (arg1);
9985
9986 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9987 arg1 = ada_coerce_to_simple_array (arg1);
9988
9989 struct type *type;
9990 if (op == OP_ATR_LENGTH)
9991 type = builtin_type (exp->gdbarch)->builtin_int;
9992 else
9993 {
9994 type = ada_index_type (value_type (arg1), tem,
9995 ada_attribute_name (op));
9996 if (type == NULL)
9997 type = builtin_type (exp->gdbarch)->builtin_int;
9998 }
9999
10000 switch (op)
10001 {
10002 default: /* Should never happen. */
10003 error (_("unexpected attribute encountered"));
10004 case OP_ATR_FIRST:
10005 return value_from_longest
10006 (type, ada_array_bound (arg1, tem, 0));
10007 case OP_ATR_LAST:
10008 return value_from_longest
10009 (type, ada_array_bound (arg1, tem, 1));
10010 case OP_ATR_LENGTH:
10011 return value_from_longest
10012 (type, ada_array_length (arg1, tem));
10013 }
10014 }
10015 else if (discrete_type_p (type_arg))
10016 {
10017 struct type *range_type;
10018 const char *name = ada_type_name (type_arg);
10019
10020 range_type = NULL;
10021 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10022 range_type = to_fixed_range_type (type_arg, NULL);
10023 if (range_type == NULL)
10024 range_type = type_arg;
10025 switch (op)
10026 {
10027 default:
10028 error (_("unexpected attribute encountered"));
10029 case OP_ATR_FIRST:
10030 return value_from_longest
10031 (range_type, ada_discrete_type_low_bound (range_type));
10032 case OP_ATR_LAST:
10033 return value_from_longest
10034 (range_type, ada_discrete_type_high_bound (range_type));
10035 case OP_ATR_LENGTH:
10036 error (_("the 'length attribute applies only to array types"));
10037 }
10038 }
10039 else if (type_arg->code () == TYPE_CODE_FLT)
10040 error (_("unimplemented type attribute"));
10041 else
10042 {
10043 LONGEST low, high;
10044
10045 if (ada_is_constrained_packed_array_type (type_arg))
10046 type_arg = decode_constrained_packed_array_type (type_arg);
10047
10048 struct type *type;
10049 if (op == OP_ATR_LENGTH)
10050 type = builtin_type (exp->gdbarch)->builtin_int;
10051 else
10052 {
10053 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10054 if (type == NULL)
10055 type = builtin_type (exp->gdbarch)->builtin_int;
10056 }
10057
10058 switch (op)
10059 {
10060 default:
10061 error (_("unexpected attribute encountered"));
10062 case OP_ATR_FIRST:
10063 low = ada_array_bound_from_type (type_arg, tem, 0);
10064 return value_from_longest (type, low);
10065 case OP_ATR_LAST:
10066 high = ada_array_bound_from_type (type_arg, tem, 1);
10067 return value_from_longest (type, high);
10068 case OP_ATR_LENGTH:
10069 low = ada_array_bound_from_type (type_arg, tem, 0);
10070 high = ada_array_bound_from_type (type_arg, tem, 1);
10071 return value_from_longest (type, high - low + 1);
10072 }
10073 }
10074}
10075
38dc70cf
TT
10076/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10077
6ad3b8bf 10078struct value *
38dc70cf
TT
10079ada_binop_minmax (struct type *expect_type,
10080 struct expression *exp,
10081 enum noside noside, enum exp_opcode op,
10082 struct value *arg1, struct value *arg2)
10083{
10084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10085 return value_zero (value_type (arg1), not_lval);
10086 else
10087 {
10088 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10089 return value_binop (arg1, arg2, op);
38dc70cf
TT
10090 }
10091}
10092
dd5fd283
TT
10093/* A helper function for BINOP_EXP. */
10094
065ec826 10095struct value *
dd5fd283
TT
10096ada_binop_exp (struct type *expect_type,
10097 struct expression *exp,
10098 enum noside noside, enum exp_opcode op,
10099 struct value *arg1, struct value *arg2)
10100{
10101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10102 return value_zero (value_type (arg1), not_lval);
10103 else
10104 {
10105 /* For integer exponentiation operations,
10106 only promote the first argument. */
10107 if (is_integral_type (value_type (arg2)))
10108 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10109 else
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10111
10112 return value_binop (arg1, arg2, op);
10113 }
10114}
10115
03070ee9
TT
10116namespace expr
10117{
10118
10119value *
10120ada_wrapped_operation::evaluate (struct type *expect_type,
10121 struct expression *exp,
10122 enum noside noside)
10123{
10124 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10125 if (noside == EVAL_NORMAL)
10126 result = unwrap_value (result);
10127
10128 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10129 then we need to perform the conversion manually, because
10130 evaluate_subexp_standard doesn't do it. This conversion is
10131 necessary in Ada because the different kinds of float/fixed
10132 types in Ada have different representations.
10133
10134 Similarly, we need to perform the conversion from OP_LONG
10135 ourselves. */
10136 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10137 result = ada_value_cast (expect_type, result);
10138
10139 return result;
10140}
10141
42fecb61
TT
10142value *
10143ada_string_operation::evaluate (struct type *expect_type,
10144 struct expression *exp,
10145 enum noside noside)
10146{
10147 value *result = string_operation::evaluate (expect_type, exp, noside);
10148 /* The result type will have code OP_STRING, bashed there from
10149 OP_ARRAY. Bash it back. */
10150 if (value_type (result)->code () == TYPE_CODE_STRING)
10151 value_type (result)->set_code (TYPE_CODE_ARRAY);
10152 return result;
10153}
10154
cc6bd32e
TT
10155value *
10156ada_qual_operation::evaluate (struct type *expect_type,
10157 struct expression *exp,
10158 enum noside noside)
10159{
10160 struct type *type = std::get<1> (m_storage);
10161 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10162}
10163
fc715eb2
TT
10164value *
10165ada_ternop_range_operation::evaluate (struct type *expect_type,
10166 struct expression *exp,
10167 enum noside noside)
10168{
10169 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10170 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10171 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10172 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10173}
10174
73796c73
TT
10175value *
10176ada_binop_addsub_operation::evaluate (struct type *expect_type,
10177 struct expression *exp,
10178 enum noside noside)
10179{
10180 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10181 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10182
10183 auto do_op = [=] (LONGEST x, LONGEST y)
10184 {
10185 if (std::get<0> (m_storage) == BINOP_ADD)
10186 return x + y;
10187 return x - y;
10188 };
10189
10190 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10191 return (value_from_longest
10192 (value_type (arg1),
10193 do_op (value_as_long (arg1), value_as_long (arg2))));
10194 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10195 return (value_from_longest
10196 (value_type (arg2),
10197 do_op (value_as_long (arg1), value_as_long (arg2))));
10198 /* Preserve the original type for use by the range case below.
10199 We cannot cast the result to a reference type, so if ARG1 is
10200 a reference type, find its underlying type. */
10201 struct type *type = value_type (arg1);
10202 while (type->code () == TYPE_CODE_REF)
10203 type = TYPE_TARGET_TYPE (type);
10204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10205 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10206 /* We need to special-case the result with a range.
10207 This is done for the benefit of "ptype". gdb's Ada support
10208 historically used the LHS to set the result type here, so
10209 preserve this behavior. */
10210 if (type->code () == TYPE_CODE_RANGE)
10211 arg1 = value_cast (type, arg1);
10212 return arg1;
10213}
10214
60fa02ca
TT
10215value *
10216ada_unop_atr_operation::evaluate (struct type *expect_type,
10217 struct expression *exp,
10218 enum noside noside)
10219{
10220 struct type *type_arg = nullptr;
10221 value *val = nullptr;
10222
10223 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10224 {
10225 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10226 EVAL_AVOID_SIDE_EFFECTS);
10227 type_arg = value_type (tem);
10228 }
10229 else
10230 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10231
10232 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10233 val, type_arg, std::get<2> (m_storage));
10234}
10235
3f4a0053
TT
10236value *
10237ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10238 struct expression *exp,
10239 enum noside noside)
10240{
10241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10242 return value_zero (expect_type, not_lval);
10243
10244 value *val = evaluate_var_msym_value (noside,
10245 std::get<1> (m_storage),
10246 std::get<0> (m_storage));
10247
10248 val = ada_value_cast (expect_type, val);
10249
10250 /* Follow the Ada language semantics that do not allow taking
10251 an address of the result of a cast (view conversion in Ada). */
10252 if (VALUE_LVAL (val) == lval_memory)
10253 {
10254 if (value_lazy (val))
10255 value_fetch_lazy (val);
10256 VALUE_LVAL (val) = not_lval;
10257 }
10258 return val;
10259}
10260
99a3b1e7
TT
10261value *
10262ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10263 struct expression *exp,
10264 enum noside noside)
10265{
10266 value *val = evaluate_var_value (noside,
10267 std::get<1> (m_storage),
10268 std::get<0> (m_storage));
10269
10270 val = ada_value_cast (expect_type, val);
10271
10272 /* Follow the Ada language semantics that do not allow taking
10273 an address of the result of a cast (view conversion in Ada). */
10274 if (VALUE_LVAL (val) == lval_memory)
10275 {
10276 if (value_lazy (val))
10277 value_fetch_lazy (val);
10278 VALUE_LVAL (val) = not_lval;
10279 }
10280 return val;
10281}
10282
10283value *
10284ada_var_value_operation::evaluate (struct type *expect_type,
10285 struct expression *exp,
10286 enum noside noside)
10287{
10288 symbol *sym = std::get<0> (m_storage);
10289
10290 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10291 /* Only encountered when an unresolved symbol occurs in a
10292 context other than a function call, in which case, it is
10293 invalid. */
10294 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10295 sym->print_name ());
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 {
10299 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10300 /* Check to see if this is a tagged type. We also need to handle
10301 the case where the type is a reference to a tagged type, but
10302 we have to be careful to exclude pointers to tagged types.
10303 The latter should be shown as usual (as a pointer), whereas
10304 a reference should mostly be transparent to the user. */
10305 if (ada_is_tagged_type (type, 0)
10306 || (type->code () == TYPE_CODE_REF
10307 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10308 {
10309 /* Tagged types are a little special in the fact that the real
10310 type is dynamic and can only be determined by inspecting the
10311 object's tag. This means that we need to get the object's
10312 value first (EVAL_NORMAL) and then extract the actual object
10313 type from its tag.
10314
10315 Note that we cannot skip the final step where we extract
10316 the object type from its tag, because the EVAL_NORMAL phase
10317 results in dynamic components being resolved into fixed ones.
10318 This can cause problems when trying to print the type
10319 description of tagged types whose parent has a dynamic size:
10320 We use the type name of the "_parent" component in order
10321 to print the name of the ancestor type in the type description.
10322 If that component had a dynamic size, the resolution into
10323 a fixed type would result in the loss of that type name,
10324 thus preventing us from printing the name of the ancestor
10325 type in the type description. */
10326 value *arg1 = var_value_operation::evaluate (nullptr, exp,
10327 EVAL_NORMAL);
10328
10329 if (type->code () != TYPE_CODE_REF)
10330 {
10331 struct type *actual_type;
10332
10333 actual_type = type_from_tag (ada_value_tag (arg1));
10334 if (actual_type == NULL)
10335 /* If, for some reason, we were unable to determine
10336 the actual type from the tag, then use the static
10337 approximation that we just computed as a fallback.
10338 This can happen if the debugging information is
10339 incomplete, for instance. */
10340 actual_type = type;
10341 return value_zero (actual_type, not_lval);
10342 }
10343 else
10344 {
10345 /* In the case of a ref, ada_coerce_ref takes care
10346 of determining the actual type. But the evaluation
10347 should return a ref as it should be valid to ask
10348 for its address; so rebuild a ref after coerce. */
10349 arg1 = ada_coerce_ref (arg1);
10350 return value_ref (arg1, TYPE_CODE_REF);
10351 }
10352 }
10353
10354 /* Records and unions for which GNAT encodings have been
10355 generated need to be statically fixed as well.
10356 Otherwise, non-static fixing produces a type where
10357 all dynamic properties are removed, which prevents "ptype"
10358 from being able to completely describe the type.
10359 For instance, a case statement in a variant record would be
10360 replaced by the relevant components based on the actual
10361 value of the discriminants. */
10362 if ((type->code () == TYPE_CODE_STRUCT
10363 && dynamic_template_type (type) != NULL)
10364 || (type->code () == TYPE_CODE_UNION
10365 && ada_find_parallel_type (type, "___XVU") != NULL))
10366 return value_zero (to_static_fixed_type (type), not_lval);
10367 }
10368
10369 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10370 return ada_to_fixed_value (arg1);
10371}
10372
d8a4ed8a
TT
10373bool
10374ada_var_value_operation::resolve (struct expression *exp,
10375 bool deprocedure_p,
10376 bool parse_completion,
10377 innermost_block_tracker *tracker,
10378 struct type *context_type)
10379{
10380 symbol *sym = std::get<0> (m_storage);
10381 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10382 {
10383 block_symbol resolved
10384 = ada_resolve_variable (sym, std::get<1> (m_storage),
10385 context_type, parse_completion,
10386 deprocedure_p, tracker);
10387 std::get<0> (m_storage) = resolved.symbol;
10388 std::get<1> (m_storage) = resolved.block;
10389 }
10390
10391 if (deprocedure_p
10392 && SYMBOL_TYPE (std::get<0> (m_storage))->code () == TYPE_CODE_FUNC)
10393 return true;
10394
10395 return false;
10396}
10397
9e99f48f
TT
10398value *
10399ada_atr_val_operation::evaluate (struct type *expect_type,
10400 struct expression *exp,
10401 enum noside noside)
10402{
10403 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10404 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10405}
10406
e8c33fa1
TT
10407value *
10408ada_unop_ind_operation::evaluate (struct type *expect_type,
10409 struct expression *exp,
10410 enum noside noside)
10411{
10412 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10413
10414 struct type *type = ada_check_typedef (value_type (arg1));
10415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10416 {
10417 if (ada_is_array_descriptor_type (type))
10418 /* GDB allows dereferencing GNAT array descriptors. */
10419 {
10420 struct type *arrType = ada_type_of_array (arg1, 0);
10421
10422 if (arrType == NULL)
10423 error (_("Attempt to dereference null array pointer."));
10424 return value_at_lazy (arrType, 0);
10425 }
10426 else if (type->code () == TYPE_CODE_PTR
10427 || type->code () == TYPE_CODE_REF
10428 /* In C you can dereference an array to get the 1st elt. */
10429 || type->code () == TYPE_CODE_ARRAY)
10430 {
10431 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10432 only be determined by inspecting the object's tag.
10433 This means that we need to evaluate completely the
10434 expression in order to get its type. */
10435
10436 if ((type->code () == TYPE_CODE_REF
10437 || type->code () == TYPE_CODE_PTR)
10438 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10439 {
10440 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10441 EVAL_NORMAL);
10442 type = value_type (ada_value_ind (arg1));
10443 }
10444 else
10445 {
10446 type = to_static_fixed_type
10447 (ada_aligned_type
10448 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10449 }
10450 ada_ensure_varsize_limit (type);
10451 return value_zero (type, lval_memory);
10452 }
10453 else if (type->code () == TYPE_CODE_INT)
10454 {
10455 /* GDB allows dereferencing an int. */
10456 if (expect_type == NULL)
10457 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10458 lval_memory);
10459 else
10460 {
10461 expect_type =
10462 to_static_fixed_type (ada_aligned_type (expect_type));
10463 return value_zero (expect_type, lval_memory);
10464 }
10465 }
10466 else
10467 error (_("Attempt to take contents of a non-pointer value."));
10468 }
10469 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10470 type = ada_check_typedef (value_type (arg1));
10471
10472 if (type->code () == TYPE_CODE_INT)
10473 /* GDB allows dereferencing an int. If we were given
10474 the expect_type, then use that as the target type.
10475 Otherwise, assume that the target type is an int. */
10476 {
10477 if (expect_type != NULL)
10478 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10479 arg1));
10480 else
10481 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10482 (CORE_ADDR) value_as_address (arg1));
10483 }
10484
10485 if (ada_is_array_descriptor_type (type))
10486 /* GDB allows dereferencing GNAT array descriptors. */
10487 return ada_coerce_to_simple_array (arg1);
10488 else
10489 return ada_value_ind (arg1);
10490}
10491
ebc06ad8
TT
10492value *
10493ada_structop_operation::evaluate (struct type *expect_type,
10494 struct expression *exp,
10495 enum noside noside)
10496{
10497 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10498 const char *str = std::get<1> (m_storage).c_str ();
10499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10500 {
10501 struct type *type;
10502 struct type *type1 = value_type (arg1);
10503
10504 if (ada_is_tagged_type (type1, 1))
10505 {
10506 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10507
10508 /* If the field is not found, check if it exists in the
10509 extension of this object's type. This means that we
10510 need to evaluate completely the expression. */
10511
10512 if (type == NULL)
10513 {
10514 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10515 EVAL_NORMAL);
10516 arg1 = ada_value_struct_elt (arg1, str, 0);
10517 arg1 = unwrap_value (arg1);
10518 type = value_type (ada_to_fixed_value (arg1));
10519 }
10520 }
10521 else
10522 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10523
10524 return value_zero (ada_aligned_type (type), lval_memory);
10525 }
10526 else
10527 {
10528 arg1 = ada_value_struct_elt (arg1, str, 0);
10529 arg1 = unwrap_value (arg1);
10530 return ada_to_fixed_value (arg1);
10531 }
10532}
10533
efe3af2f
TT
10534value *
10535ada_funcall_operation::evaluate (struct type *expect_type,
10536 struct expression *exp,
10537 enum noside noside)
10538{
10539 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10540 int nargs = args_up.size ();
10541 std::vector<value *> argvec (nargs);
10542 operation_up &callee_op = std::get<0> (m_storage);
10543
10544 ada_var_value_operation *avv
10545 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10546 if (avv != nullptr
10547 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10548 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10549 avv->get_symbol ()->print_name ());
10550
10551 value *callee = callee_op->evaluate (nullptr, exp, noside);
10552 for (int i = 0; i < args_up.size (); ++i)
10553 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10554
10555 if (ada_is_constrained_packed_array_type
10556 (desc_base_type (value_type (callee))))
10557 callee = ada_coerce_to_simple_array (callee);
10558 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10559 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10560 /* This is a packed array that has already been fixed, and
10561 therefore already coerced to a simple array. Nothing further
10562 to do. */
10563 ;
10564 else if (value_type (callee)->code () == TYPE_CODE_REF)
10565 {
10566 /* Make sure we dereference references so that all the code below
10567 feels like it's really handling the referenced value. Wrapping
10568 types (for alignment) may be there, so make sure we strip them as
10569 well. */
10570 callee = ada_to_fixed_value (coerce_ref (callee));
10571 }
10572 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10573 && VALUE_LVAL (callee) == lval_memory)
10574 callee = value_addr (callee);
10575
10576 struct type *type = ada_check_typedef (value_type (callee));
10577
10578 /* Ada allows us to implicitly dereference arrays when subscripting
10579 them. So, if this is an array typedef (encoding use for array
10580 access types encoded as fat pointers), strip it now. */
10581 if (type->code () == TYPE_CODE_TYPEDEF)
10582 type = ada_typedef_target_type (type);
10583
10584 if (type->code () == TYPE_CODE_PTR)
10585 {
10586 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10587 {
10588 case TYPE_CODE_FUNC:
10589 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10590 break;
10591 case TYPE_CODE_ARRAY:
10592 break;
10593 case TYPE_CODE_STRUCT:
10594 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10595 callee = ada_value_ind (callee);
10596 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10597 break;
10598 default:
10599 error (_("cannot subscript or call something of type `%s'"),
10600 ada_type_name (value_type (callee)));
10601 break;
10602 }
10603 }
10604
10605 switch (type->code ())
10606 {
10607 case TYPE_CODE_FUNC:
10608 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10609 {
10610 if (TYPE_TARGET_TYPE (type) == NULL)
10611 error_call_unknown_return_type (NULL);
10612 return allocate_value (TYPE_TARGET_TYPE (type));
10613 }
10614 return call_function_by_hand (callee, NULL, argvec);
10615 case TYPE_CODE_INTERNAL_FUNCTION:
10616 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10617 /* We don't know anything about what the internal
10618 function might return, but we have to return
10619 something. */
10620 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10621 not_lval);
10622 else
10623 return call_internal_function (exp->gdbarch, exp->language_defn,
10624 callee, nargs,
10625 argvec.data ());
10626
d3c54a1c
TT
10627 case TYPE_CODE_STRUCT:
10628 {
10629 int arity;
4c4b4cd2 10630
d3c54a1c
TT
10631 arity = ada_array_arity (type);
10632 type = ada_array_element_type (type, nargs);
10633 if (type == NULL)
10634 error (_("cannot subscript or call a record"));
10635 if (arity != nargs)
10636 error (_("wrong number of subscripts; expecting %d"), arity);
10637 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10638 return value_zero (ada_aligned_type (type), lval_memory);
10639 return
10640 unwrap_value (ada_value_subscript
10641 (callee, nargs, argvec.data ()));
10642 }
10643 case TYPE_CODE_ARRAY:
14f9c5c9 10644 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10645 {
d3c54a1c
TT
10646 type = ada_array_element_type (type, nargs);
10647 if (type == NULL)
10648 error (_("element type of array unknown"));
dda83cd7 10649 else
d3c54a1c 10650 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10651 }
d3c54a1c
TT
10652 return
10653 unwrap_value (ada_value_subscript
10654 (ada_coerce_to_simple_array (callee),
10655 nargs, argvec.data ()));
10656 case TYPE_CODE_PTR: /* Pointer to array */
10657 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10658 {
d3c54a1c
TT
10659 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10660 type = ada_array_element_type (type, nargs);
10661 if (type == NULL)
10662 error (_("element type of array unknown"));
96967637 10663 else
d3c54a1c 10664 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10665 }
d3c54a1c
TT
10666 return
10667 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10668 argvec.data ()));
6b0d7253 10669
d3c54a1c
TT
10670 default:
10671 error (_("Attempt to index or call something other than an "
10672 "array or function"));
10673 }
10674}
5b4ee69b 10675
d3c54a1c
TT
10676bool
10677ada_funcall_operation::resolve (struct expression *exp,
10678 bool deprocedure_p,
10679 bool parse_completion,
10680 innermost_block_tracker *tracker,
10681 struct type *context_type)
10682{
10683 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 10684
d3c54a1c
TT
10685 ada_var_value_operation *avv
10686 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10687 if (avv == nullptr)
10688 return false;
5ec18f2b 10689
d3c54a1c
TT
10690 symbol *sym = avv->get_symbol ();
10691 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10692 return false;
dda83cd7 10693
d3c54a1c
TT
10694 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10695 int nargs = args_up.size ();
10696 std::vector<value *> argvec (nargs);
284614f0 10697
d3c54a1c
TT
10698 for (int i = 0; i < args_up.size (); ++i)
10699 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 10700
d3c54a1c
TT
10701 const block *block = avv->get_block ();
10702 block_symbol resolved
10703 = ada_resolve_funcall (sym, block,
10704 context_type, parse_completion,
10705 nargs, argvec.data (),
10706 tracker);
10707
10708 std::get<0> (m_storage)
10709 = make_operation<ada_var_value_operation> (resolved.symbol,
10710 resolved.block);
10711 return false;
10712}
10713
10714bool
10715ada_ternop_slice_operation::resolve (struct expression *exp,
10716 bool deprocedure_p,
10717 bool parse_completion,
10718 innermost_block_tracker *tracker,
10719 struct type *context_type)
10720{
10721 /* Historically this check was done during resolution, so we
10722 continue that here. */
10723 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10724 EVAL_AVOID_SIDE_EFFECTS);
10725 if (ada_is_any_packed_array_type (value_type (v)))
10726 error (_("cannot slice a packed array"));
10727 return false;
10728}
14f9c5c9 10729
14f9c5c9 10730}
d3c54a1c 10731
14f9c5c9 10732\f
d2e4a39e 10733
4c4b4cd2
PH
10734/* Return non-zero iff TYPE represents a System.Address type. */
10735
10736int
10737ada_is_system_address_type (struct type *type)
10738{
7d93a1e0 10739 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
10740}
10741
14f9c5c9 10742\f
d2e4a39e 10743
dda83cd7 10744 /* Range types */
14f9c5c9
AS
10745
10746/* Scan STR beginning at position K for a discriminant name, and
10747 return the value of that discriminant field of DVAL in *PX. If
10748 PNEW_K is not null, put the position of the character beyond the
10749 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10750 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10751
10752static int
108d56a4 10753scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 10754 int *pnew_k)
14f9c5c9 10755{
5f9febe0 10756 static std::string storage;
5da1a4d3 10757 const char *pstart, *pend, *bound;
d2e4a39e 10758 struct value *bound_val;
14f9c5c9
AS
10759
10760 if (dval == NULL || str == NULL || str[k] == '\0')
10761 return 0;
10762
5da1a4d3
SM
10763 pstart = str + k;
10764 pend = strstr (pstart, "__");
14f9c5c9
AS
10765 if (pend == NULL)
10766 {
5da1a4d3 10767 bound = pstart;
14f9c5c9
AS
10768 k += strlen (bound);
10769 }
d2e4a39e 10770 else
14f9c5c9 10771 {
5da1a4d3
SM
10772 int len = pend - pstart;
10773
10774 /* Strip __ and beyond. */
5f9febe0
TT
10775 storage = std::string (pstart, len);
10776 bound = storage.c_str ();
d2e4a39e 10777 k = pend - str;
14f9c5c9 10778 }
d2e4a39e 10779
df407dfe 10780 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10781 if (bound_val == NULL)
10782 return 0;
10783
10784 *px = value_as_long (bound_val);
10785 if (pnew_k != NULL)
10786 *pnew_k = k;
10787 return 1;
10788}
10789
25a1127b
TT
10790/* Value of variable named NAME. Only exact matches are considered.
10791 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10792 otherwise causes an error with message ERR_MSG. */
10793
d2e4a39e 10794static struct value *
edb0c9cb 10795get_var_value (const char *name, const char *err_msg)
14f9c5c9 10796{
25a1127b
TT
10797 std::string quoted_name = add_angle_brackets (name);
10798
10799 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 10800
d1183b06
TT
10801 std::vector<struct block_symbol> syms
10802 = ada_lookup_symbol_list_worker (lookup_name,
10803 get_selected_block (0),
10804 VAR_DOMAIN, 1);
14f9c5c9 10805
d1183b06 10806 if (syms.size () != 1)
14f9c5c9
AS
10807 {
10808 if (err_msg == NULL)
dda83cd7 10809 return 0;
14f9c5c9 10810 else
dda83cd7 10811 error (("%s"), err_msg);
14f9c5c9
AS
10812 }
10813
54d343a2 10814 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 10815}
d2e4a39e 10816
edb0c9cb
PA
10817/* Value of integer variable named NAME in the current environment.
10818 If no such variable is found, returns false. Otherwise, sets VALUE
10819 to the variable's value and returns true. */
4c4b4cd2 10820
edb0c9cb
PA
10821bool
10822get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 10823{
4c4b4cd2 10824 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10825
14f9c5c9 10826 if (var_val == 0)
edb0c9cb
PA
10827 return false;
10828
10829 value = value_as_long (var_val);
10830 return true;
14f9c5c9 10831}
d2e4a39e 10832
14f9c5c9
AS
10833
10834/* Return a range type whose base type is that of the range type named
10835 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10836 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10837 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10838 corresponding range type from debug information; fall back to using it
10839 if symbol lookup fails. If a new type must be created, allocate it
10840 like ORIG_TYPE was. The bounds information, in general, is encoded
10841 in NAME, the base type given in the named range type. */
14f9c5c9 10842
d2e4a39e 10843static struct type *
28c85d6c 10844to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10845{
0d5cff50 10846 const char *name;
14f9c5c9 10847 struct type *base_type;
108d56a4 10848 const char *subtype_info;
14f9c5c9 10849
28c85d6c 10850 gdb_assert (raw_type != NULL);
7d93a1e0 10851 gdb_assert (raw_type->name () != NULL);
dddfab26 10852
78134374 10853 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
10854 base_type = TYPE_TARGET_TYPE (raw_type);
10855 else
10856 base_type = raw_type;
10857
7d93a1e0 10858 name = raw_type->name ();
14f9c5c9
AS
10859 subtype_info = strstr (name, "___XD");
10860 if (subtype_info == NULL)
690cc4eb 10861 {
43bbcdc2
PH
10862 LONGEST L = ada_discrete_type_low_bound (raw_type);
10863 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10864
690cc4eb
PH
10865 if (L < INT_MIN || U > INT_MAX)
10866 return raw_type;
10867 else
0c9c3474
SA
10868 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10869 L, U);
690cc4eb 10870 }
14f9c5c9
AS
10871 else
10872 {
14f9c5c9
AS
10873 int prefix_len = subtype_info - name;
10874 LONGEST L, U;
10875 struct type *type;
108d56a4 10876 const char *bounds_str;
14f9c5c9
AS
10877 int n;
10878
14f9c5c9
AS
10879 subtype_info += 5;
10880 bounds_str = strchr (subtype_info, '_');
10881 n = 1;
10882
d2e4a39e 10883 if (*subtype_info == 'L')
dda83cd7
SM
10884 {
10885 if (!ada_scan_number (bounds_str, n, &L, &n)
10886 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10887 return raw_type;
10888 if (bounds_str[n] == '_')
10889 n += 2;
10890 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10891 n += 1;
10892 subtype_info += 1;
10893 }
d2e4a39e 10894 else
dda83cd7 10895 {
5f9febe0
TT
10896 std::string name_buf = std::string (name, prefix_len) + "___L";
10897 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
10898 {
10899 lim_warning (_("Unknown lower bound, using 1."));
10900 L = 1;
10901 }
10902 }
14f9c5c9 10903
d2e4a39e 10904 if (*subtype_info == 'U')
dda83cd7
SM
10905 {
10906 if (!ada_scan_number (bounds_str, n, &U, &n)
10907 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10908 return raw_type;
10909 }
d2e4a39e 10910 else
dda83cd7 10911 {
5f9febe0
TT
10912 std::string name_buf = std::string (name, prefix_len) + "___U";
10913 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
10914 {
10915 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10916 U = L;
10917 }
10918 }
14f9c5c9 10919
0c9c3474
SA
10920 type = create_static_range_type (alloc_type_copy (raw_type),
10921 base_type, L, U);
f5a91472 10922 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
10923 to match the size of the base_type, which is not what we want.
10924 Set it back to the original range type's length. */
f5a91472 10925 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 10926 type->set_name (name);
14f9c5c9
AS
10927 return type;
10928 }
10929}
10930
4c4b4cd2
PH
10931/* True iff NAME is the name of a range type. */
10932
14f9c5c9 10933int
d2e4a39e 10934ada_is_range_type_name (const char *name)
14f9c5c9
AS
10935{
10936 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10937}
14f9c5c9 10938\f
d2e4a39e 10939
dda83cd7 10940 /* Modular types */
4c4b4cd2
PH
10941
10942/* True iff TYPE is an Ada modular type. */
14f9c5c9 10943
14f9c5c9 10944int
d2e4a39e 10945ada_is_modular_type (struct type *type)
14f9c5c9 10946{
18af8284 10947 struct type *subranged_type = get_base_type (type);
14f9c5c9 10948
78134374 10949 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
10950 && subranged_type->code () == TYPE_CODE_INT
10951 && subranged_type->is_unsigned ());
14f9c5c9
AS
10952}
10953
4c4b4cd2
PH
10954/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10955
61ee279c 10956ULONGEST
0056e4d5 10957ada_modulus (struct type *type)
14f9c5c9 10958{
5e500d33
SM
10959 const dynamic_prop &high = type->bounds ()->high;
10960
10961 if (high.kind () == PROP_CONST)
10962 return (ULONGEST) high.const_val () + 1;
10963
10964 /* If TYPE is unresolved, the high bound might be a location list. Return
10965 0, for lack of a better value to return. */
10966 return 0;
14f9c5c9 10967}
d2e4a39e 10968\f
f7f9143b
JB
10969
10970/* Ada exception catchpoint support:
10971 ---------------------------------
10972
10973 We support 3 kinds of exception catchpoints:
10974 . catchpoints on Ada exceptions
10975 . catchpoints on unhandled Ada exceptions
10976 . catchpoints on failed assertions
10977
10978 Exceptions raised during failed assertions, or unhandled exceptions
10979 could perfectly be caught with the general catchpoint on Ada exceptions.
10980 However, we can easily differentiate these two special cases, and having
10981 the option to distinguish these two cases from the rest can be useful
10982 to zero-in on certain situations.
10983
10984 Exception catchpoints are a specialized form of breakpoint,
10985 since they rely on inserting breakpoints inside known routines
10986 of the GNAT runtime. The implementation therefore uses a standard
10987 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10988 of breakpoint_ops.
10989
0259addd
JB
10990 Support in the runtime for exception catchpoints have been changed
10991 a few times already, and these changes affect the implementation
10992 of these catchpoints. In order to be able to support several
10993 variants of the runtime, we use a sniffer that will determine
28010a5d 10994 the runtime variant used by the program being debugged. */
f7f9143b 10995
82eacd52
JB
10996/* Ada's standard exceptions.
10997
10998 The Ada 83 standard also defined Numeric_Error. But there so many
10999 situations where it was unclear from the Ada 83 Reference Manual
11000 (RM) whether Constraint_Error or Numeric_Error should be raised,
11001 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11002 Interpretation saying that anytime the RM says that Numeric_Error
11003 should be raised, the implementation may raise Constraint_Error.
11004 Ada 95 went one step further and pretty much removed Numeric_Error
11005 from the list of standard exceptions (it made it a renaming of
11006 Constraint_Error, to help preserve compatibility when compiling
11007 an Ada83 compiler). As such, we do not include Numeric_Error from
11008 this list of standard exceptions. */
3d0b0fa3 11009
27087b7f 11010static const char * const standard_exc[] = {
3d0b0fa3
JB
11011 "constraint_error",
11012 "program_error",
11013 "storage_error",
11014 "tasking_error"
11015};
11016
0259addd
JB
11017typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11018
11019/* A structure that describes how to support exception catchpoints
11020 for a given executable. */
11021
11022struct exception_support_info
11023{
11024 /* The name of the symbol to break on in order to insert
11025 a catchpoint on exceptions. */
11026 const char *catch_exception_sym;
11027
11028 /* The name of the symbol to break on in order to insert
11029 a catchpoint on unhandled exceptions. */
11030 const char *catch_exception_unhandled_sym;
11031
11032 /* The name of the symbol to break on in order to insert
11033 a catchpoint on failed assertions. */
11034 const char *catch_assert_sym;
11035
9f757bf7
XR
11036 /* The name of the symbol to break on in order to insert
11037 a catchpoint on exception handling. */
11038 const char *catch_handlers_sym;
11039
0259addd
JB
11040 /* Assuming that the inferior just triggered an unhandled exception
11041 catchpoint, this function is responsible for returning the address
11042 in inferior memory where the name of that exception is stored.
11043 Return zero if the address could not be computed. */
11044 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11045};
11046
11047static CORE_ADDR ada_unhandled_exception_name_addr (void);
11048static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11049
11050/* The following exception support info structure describes how to
11051 implement exception catchpoints with the latest version of the
ca683e3a 11052 Ada runtime (as of 2019-08-??). */
0259addd
JB
11053
11054static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11055{
11056 "__gnat_debug_raise_exception", /* catch_exception_sym */
11057 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11058 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11059 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11060 ada_unhandled_exception_name_addr
11061};
11062
11063/* The following exception support info structure describes how to
11064 implement exception catchpoints with an earlier version of the
11065 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11066
11067static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11068{
11069 "__gnat_debug_raise_exception", /* catch_exception_sym */
11070 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11071 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11072 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11073 ada_unhandled_exception_name_addr
11074};
11075
11076/* The following exception support info structure describes how to
11077 implement exception catchpoints with a slightly older version
11078 of the Ada runtime. */
11079
11080static const struct exception_support_info exception_support_info_fallback =
11081{
11082 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11083 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11084 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11085 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11086 ada_unhandled_exception_name_addr_from_raise
11087};
11088
f17011e0
JB
11089/* Return nonzero if we can detect the exception support routines
11090 described in EINFO.
11091
11092 This function errors out if an abnormal situation is detected
11093 (for instance, if we find the exception support routines, but
11094 that support is found to be incomplete). */
11095
11096static int
11097ada_has_this_exception_support (const struct exception_support_info *einfo)
11098{
11099 struct symbol *sym;
11100
11101 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11102 that should be compiled with debugging information. As a result, we
11103 expect to find that symbol in the symtabs. */
11104
11105 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11106 if (sym == NULL)
a6af7abe
JB
11107 {
11108 /* Perhaps we did not find our symbol because the Ada runtime was
11109 compiled without debugging info, or simply stripped of it.
11110 It happens on some GNU/Linux distributions for instance, where
11111 users have to install a separate debug package in order to get
11112 the runtime's debugging info. In that situation, let the user
11113 know why we cannot insert an Ada exception catchpoint.
11114
11115 Note: Just for the purpose of inserting our Ada exception
11116 catchpoint, we could rely purely on the associated minimal symbol.
11117 But we would be operating in degraded mode anyway, since we are
11118 still lacking the debugging info needed later on to extract
11119 the name of the exception being raised (this name is printed in
11120 the catchpoint message, and is also used when trying to catch
11121 a specific exception). We do not handle this case for now. */
3b7344d5 11122 struct bound_minimal_symbol msym
1c8e84b0
JB
11123 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11124
3b7344d5 11125 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11126 error (_("Your Ada runtime appears to be missing some debugging "
11127 "information.\nCannot insert Ada exception catchpoint "
11128 "in this configuration."));
11129
11130 return 0;
11131 }
f17011e0
JB
11132
11133 /* Make sure that the symbol we found corresponds to a function. */
11134
11135 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11136 {
11137 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11138 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11139 return 0;
11140 }
11141
11142 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11143 if (sym == NULL)
11144 {
11145 struct bound_minimal_symbol msym
11146 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11147
11148 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11149 error (_("Your Ada runtime appears to be missing some debugging "
11150 "information.\nCannot insert Ada exception catchpoint "
11151 "in this configuration."));
11152
11153 return 0;
11154 }
11155
11156 /* Make sure that the symbol we found corresponds to a function. */
11157
11158 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11159 {
11160 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11161 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11162 return 0;
11163 }
f17011e0
JB
11164
11165 return 1;
11166}
11167
0259addd
JB
11168/* Inspect the Ada runtime and determine which exception info structure
11169 should be used to provide support for exception catchpoints.
11170
3eecfa55
JB
11171 This function will always set the per-inferior exception_info,
11172 or raise an error. */
0259addd
JB
11173
11174static void
11175ada_exception_support_info_sniffer (void)
11176{
3eecfa55 11177 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11178
11179 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11180 if (data->exception_info != NULL)
0259addd
JB
11181 return;
11182
11183 /* Check the latest (default) exception support info. */
f17011e0 11184 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11185 {
3eecfa55 11186 data->exception_info = &default_exception_support_info;
0259addd
JB
11187 return;
11188 }
11189
ca683e3a
AO
11190 /* Try the v0 exception suport info. */
11191 if (ada_has_this_exception_support (&exception_support_info_v0))
11192 {
11193 data->exception_info = &exception_support_info_v0;
11194 return;
11195 }
11196
0259addd 11197 /* Try our fallback exception suport info. */
f17011e0 11198 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11199 {
3eecfa55 11200 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11201 return;
11202 }
11203
11204 /* Sometimes, it is normal for us to not be able to find the routine
11205 we are looking for. This happens when the program is linked with
11206 the shared version of the GNAT runtime, and the program has not been
11207 started yet. Inform the user of these two possible causes if
11208 applicable. */
11209
ccefe4c4 11210 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11211 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11212
11213 /* If the symbol does not exist, then check that the program is
11214 already started, to make sure that shared libraries have been
11215 loaded. If it is not started, this may mean that the symbol is
11216 in a shared library. */
11217
e99b03dc 11218 if (inferior_ptid.pid () == 0)
0259addd
JB
11219 error (_("Unable to insert catchpoint. Try to start the program first."));
11220
11221 /* At this point, we know that we are debugging an Ada program and
11222 that the inferior has been started, but we still are not able to
0963b4bd 11223 find the run-time symbols. That can mean that we are in
0259addd
JB
11224 configurable run time mode, or that a-except as been optimized
11225 out by the linker... In any case, at this point it is not worth
11226 supporting this feature. */
11227
7dda8cff 11228 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11229}
11230
f7f9143b
JB
11231/* True iff FRAME is very likely to be that of a function that is
11232 part of the runtime system. This is all very heuristic, but is
11233 intended to be used as advice as to what frames are uninteresting
11234 to most users. */
11235
11236static int
11237is_known_support_routine (struct frame_info *frame)
11238{
692465f1 11239 enum language func_lang;
f7f9143b 11240 int i;
f35a17b5 11241 const char *fullname;
f7f9143b 11242
4ed6b5be
JB
11243 /* If this code does not have any debugging information (no symtab),
11244 This cannot be any user code. */
f7f9143b 11245
51abb421 11246 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11247 if (sal.symtab == NULL)
11248 return 1;
11249
4ed6b5be
JB
11250 /* If there is a symtab, but the associated source file cannot be
11251 located, then assume this is not user code: Selecting a frame
11252 for which we cannot display the code would not be very helpful
11253 for the user. This should also take care of case such as VxWorks
11254 where the kernel has some debugging info provided for a few units. */
f7f9143b 11255
f35a17b5
JK
11256 fullname = symtab_to_fullname (sal.symtab);
11257 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11258 return 1;
11259
85102364 11260 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11261 We also check the name of the objfile against the name of some
11262 known system libraries that sometimes come with debugging info
11263 too. */
11264
f7f9143b
JB
11265 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11266 {
11267 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11268 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11269 return 1;
eb822aa6 11270 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11271 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11272 return 1;
f7f9143b
JB
11273 }
11274
4ed6b5be 11275 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11276
c6dc63a1
TT
11277 gdb::unique_xmalloc_ptr<char> func_name
11278 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11279 if (func_name == NULL)
11280 return 1;
11281
11282 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11283 {
11284 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11285 if (re_exec (func_name.get ()))
11286 return 1;
f7f9143b
JB
11287 }
11288
11289 return 0;
11290}
11291
11292/* Find the first frame that contains debugging information and that is not
11293 part of the Ada run-time, starting from FI and moving upward. */
11294
0ef643c8 11295void
f7f9143b
JB
11296ada_find_printable_frame (struct frame_info *fi)
11297{
11298 for (; fi != NULL; fi = get_prev_frame (fi))
11299 {
11300 if (!is_known_support_routine (fi))
dda83cd7
SM
11301 {
11302 select_frame (fi);
11303 break;
11304 }
f7f9143b
JB
11305 }
11306
11307}
11308
11309/* Assuming that the inferior just triggered an unhandled exception
11310 catchpoint, return the address in inferior memory where the name
11311 of the exception is stored.
11312
11313 Return zero if the address could not be computed. */
11314
11315static CORE_ADDR
11316ada_unhandled_exception_name_addr (void)
0259addd
JB
11317{
11318 return parse_and_eval_address ("e.full_name");
11319}
11320
11321/* Same as ada_unhandled_exception_name_addr, except that this function
11322 should be used when the inferior uses an older version of the runtime,
11323 where the exception name needs to be extracted from a specific frame
11324 several frames up in the callstack. */
11325
11326static CORE_ADDR
11327ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11328{
11329 int frame_level;
11330 struct frame_info *fi;
3eecfa55 11331 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11332
11333 /* To determine the name of this exception, we need to select
11334 the frame corresponding to RAISE_SYM_NAME. This frame is
11335 at least 3 levels up, so we simply skip the first 3 frames
11336 without checking the name of their associated function. */
11337 fi = get_current_frame ();
11338 for (frame_level = 0; frame_level < 3; frame_level += 1)
11339 if (fi != NULL)
11340 fi = get_prev_frame (fi);
11341
11342 while (fi != NULL)
11343 {
692465f1
JB
11344 enum language func_lang;
11345
c6dc63a1
TT
11346 gdb::unique_xmalloc_ptr<char> func_name
11347 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11348 if (func_name != NULL)
11349 {
dda83cd7 11350 if (strcmp (func_name.get (),
55b87a52
KS
11351 data->exception_info->catch_exception_sym) == 0)
11352 break; /* We found the frame we were looking for... */
55b87a52 11353 }
fb44b1a7 11354 fi = get_prev_frame (fi);
f7f9143b
JB
11355 }
11356
11357 if (fi == NULL)
11358 return 0;
11359
11360 select_frame (fi);
11361 return parse_and_eval_address ("id.full_name");
11362}
11363
11364/* Assuming the inferior just triggered an Ada exception catchpoint
11365 (of any type), return the address in inferior memory where the name
11366 of the exception is stored, if applicable.
11367
45db7c09
PA
11368 Assumes the selected frame is the current frame.
11369
f7f9143b
JB
11370 Return zero if the address could not be computed, or if not relevant. */
11371
11372static CORE_ADDR
761269c8 11373ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11374 struct breakpoint *b)
f7f9143b 11375{
3eecfa55
JB
11376 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11377
f7f9143b
JB
11378 switch (ex)
11379 {
761269c8 11380 case ada_catch_exception:
dda83cd7
SM
11381 return (parse_and_eval_address ("e.full_name"));
11382 break;
f7f9143b 11383
761269c8 11384 case ada_catch_exception_unhandled:
dda83cd7
SM
11385 return data->exception_info->unhandled_exception_name_addr ();
11386 break;
9f757bf7
XR
11387
11388 case ada_catch_handlers:
dda83cd7 11389 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11390 name. */
dda83cd7 11391 break;
9f757bf7 11392
761269c8 11393 case ada_catch_assert:
dda83cd7
SM
11394 return 0; /* Exception name is not relevant in this case. */
11395 break;
f7f9143b
JB
11396
11397 default:
dda83cd7
SM
11398 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11399 break;
f7f9143b
JB
11400 }
11401
11402 return 0; /* Should never be reached. */
11403}
11404
e547c119
JB
11405/* Assuming the inferior is stopped at an exception catchpoint,
11406 return the message which was associated to the exception, if
11407 available. Return NULL if the message could not be retrieved.
11408
e547c119
JB
11409 Note: The exception message can be associated to an exception
11410 either through the use of the Raise_Exception function, or
11411 more simply (Ada 2005 and later), via:
11412
11413 raise Exception_Name with "exception message";
11414
11415 */
11416
6f46ac85 11417static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11418ada_exception_message_1 (void)
11419{
11420 struct value *e_msg_val;
e547c119 11421 int e_msg_len;
e547c119
JB
11422
11423 /* For runtimes that support this feature, the exception message
11424 is passed as an unbounded string argument called "message". */
11425 e_msg_val = parse_and_eval ("message");
11426 if (e_msg_val == NULL)
11427 return NULL; /* Exception message not supported. */
11428
11429 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11430 gdb_assert (e_msg_val != NULL);
11431 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11432
11433 /* If the message string is empty, then treat it as if there was
11434 no exception message. */
11435 if (e_msg_len <= 0)
11436 return NULL;
11437
15f3b077
TT
11438 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11439 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11440 e_msg_len);
11441 e_msg.get ()[e_msg_len] = '\0';
11442
11443 return e_msg;
e547c119
JB
11444}
11445
11446/* Same as ada_exception_message_1, except that all exceptions are
11447 contained here (returning NULL instead). */
11448
6f46ac85 11449static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11450ada_exception_message (void)
11451{
6f46ac85 11452 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11453
a70b8144 11454 try
e547c119
JB
11455 {
11456 e_msg = ada_exception_message_1 ();
11457 }
230d2906 11458 catch (const gdb_exception_error &e)
e547c119 11459 {
6f46ac85 11460 e_msg.reset (nullptr);
e547c119 11461 }
e547c119
JB
11462
11463 return e_msg;
11464}
11465
f7f9143b
JB
11466/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11467 any error that ada_exception_name_addr_1 might cause to be thrown.
11468 When an error is intercepted, a warning with the error message is printed,
11469 and zero is returned. */
11470
11471static CORE_ADDR
761269c8 11472ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 11473 struct breakpoint *b)
f7f9143b 11474{
f7f9143b
JB
11475 CORE_ADDR result = 0;
11476
a70b8144 11477 try
f7f9143b
JB
11478 {
11479 result = ada_exception_name_addr_1 (ex, b);
11480 }
11481
230d2906 11482 catch (const gdb_exception_error &e)
f7f9143b 11483 {
3d6e9d23 11484 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
11485 return 0;
11486 }
11487
11488 return result;
11489}
11490
cb7de75e 11491static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
11492 (const char *excep_string,
11493 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
11494
11495/* Ada catchpoints.
11496
11497 In the case of catchpoints on Ada exceptions, the catchpoint will
11498 stop the target on every exception the program throws. When a user
11499 specifies the name of a specific exception, we translate this
11500 request into a condition expression (in text form), and then parse
11501 it into an expression stored in each of the catchpoint's locations.
11502 We then use this condition to check whether the exception that was
11503 raised is the one the user is interested in. If not, then the
11504 target is resumed again. We store the name of the requested
11505 exception, in order to be able to re-set the condition expression
11506 when symbols change. */
11507
11508/* An instance of this type is used to represent an Ada catchpoint
5625a286 11509 breakpoint location. */
28010a5d 11510
5625a286 11511class ada_catchpoint_location : public bp_location
28010a5d 11512{
5625a286 11513public:
5f486660 11514 ada_catchpoint_location (breakpoint *owner)
f06f1252 11515 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 11516 {}
28010a5d
PA
11517
11518 /* The condition that checks whether the exception that was raised
11519 is the specific exception the user specified on catchpoint
11520 creation. */
4d01a485 11521 expression_up excep_cond_expr;
28010a5d
PA
11522};
11523
c1fc2657 11524/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 11525
c1fc2657 11526struct ada_catchpoint : public breakpoint
28010a5d 11527{
37f6a7f4
TT
11528 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11529 : m_kind (kind)
11530 {
11531 }
11532
28010a5d 11533 /* The name of the specific exception the user specified. */
bc18fbb5 11534 std::string excep_string;
37f6a7f4
TT
11535
11536 /* What kind of catchpoint this is. */
11537 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
11538};
11539
11540/* Parse the exception condition string in the context of each of the
11541 catchpoint's locations, and store them for later evaluation. */
11542
11543static void
9f757bf7 11544create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 11545 enum ada_exception_catchpoint_kind ex)
28010a5d 11546{
fccf9de1
TT
11547 struct bp_location *bl;
11548
28010a5d 11549 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 11550 if (c->excep_string.empty ())
28010a5d
PA
11551 return;
11552
11553 /* Same if there are no locations... */
c1fc2657 11554 if (c->loc == NULL)
28010a5d
PA
11555 return;
11556
fccf9de1
TT
11557 /* Compute the condition expression in text form, from the specific
11558 expection we want to catch. */
11559 std::string cond_string
11560 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 11561
fccf9de1
TT
11562 /* Iterate over all the catchpoint's locations, and parse an
11563 expression for each. */
11564 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
11565 {
11566 struct ada_catchpoint_location *ada_loc
fccf9de1 11567 = (struct ada_catchpoint_location *) bl;
4d01a485 11568 expression_up exp;
28010a5d 11569
fccf9de1 11570 if (!bl->shlib_disabled)
28010a5d 11571 {
bbc13ae3 11572 const char *s;
28010a5d 11573
cb7de75e 11574 s = cond_string.c_str ();
a70b8144 11575 try
28010a5d 11576 {
fccf9de1
TT
11577 exp = parse_exp_1 (&s, bl->address,
11578 block_for_pc (bl->address),
036e657b 11579 0);
28010a5d 11580 }
230d2906 11581 catch (const gdb_exception_error &e)
849f2b52
JB
11582 {
11583 warning (_("failed to reevaluate internal exception condition "
11584 "for catchpoint %d: %s"),
3d6e9d23 11585 c->number, e.what ());
849f2b52 11586 }
28010a5d
PA
11587 }
11588
b22e99fd 11589 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 11590 }
28010a5d
PA
11591}
11592
28010a5d
PA
11593/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11594 structure for all exception catchpoint kinds. */
11595
11596static struct bp_location *
37f6a7f4 11597allocate_location_exception (struct breakpoint *self)
28010a5d 11598{
5f486660 11599 return new ada_catchpoint_location (self);
28010a5d
PA
11600}
11601
11602/* Implement the RE_SET method in the breakpoint_ops structure for all
11603 exception catchpoint kinds. */
11604
11605static void
37f6a7f4 11606re_set_exception (struct breakpoint *b)
28010a5d
PA
11607{
11608 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11609
11610 /* Call the base class's method. This updates the catchpoint's
11611 locations. */
2060206e 11612 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11613
11614 /* Reparse the exception conditional expressions. One for each
11615 location. */
37f6a7f4 11616 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
11617}
11618
11619/* Returns true if we should stop for this breakpoint hit. If the
11620 user specified a specific exception, we only want to cause a stop
11621 if the program thrown that exception. */
11622
11623static int
11624should_stop_exception (const struct bp_location *bl)
11625{
11626 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11627 const struct ada_catchpoint_location *ada_loc
11628 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
11629 int stop;
11630
37f6a7f4
TT
11631 struct internalvar *var = lookup_internalvar ("_ada_exception");
11632 if (c->m_kind == ada_catch_assert)
11633 clear_internalvar (var);
11634 else
11635 {
11636 try
11637 {
11638 const char *expr;
11639
11640 if (c->m_kind == ada_catch_handlers)
11641 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11642 ".all.occurrence.id");
11643 else
11644 expr = "e";
11645
11646 struct value *exc = parse_and_eval (expr);
11647 set_internalvar (var, exc);
11648 }
11649 catch (const gdb_exception_error &ex)
11650 {
11651 clear_internalvar (var);
11652 }
11653 }
11654
28010a5d 11655 /* With no specific exception, should always stop. */
bc18fbb5 11656 if (c->excep_string.empty ())
28010a5d
PA
11657 return 1;
11658
11659 if (ada_loc->excep_cond_expr == NULL)
11660 {
11661 /* We will have a NULL expression if back when we were creating
11662 the expressions, this location's had failed to parse. */
11663 return 1;
11664 }
11665
11666 stop = 1;
a70b8144 11667 try
28010a5d
PA
11668 {
11669 struct value *mark;
11670
11671 mark = value_mark ();
4d01a485 11672 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
11673 value_free_to_mark (mark);
11674 }
230d2906 11675 catch (const gdb_exception &ex)
492d29ea
PA
11676 {
11677 exception_fprintf (gdb_stderr, ex,
11678 _("Error in testing exception condition:\n"));
11679 }
492d29ea 11680
28010a5d
PA
11681 return stop;
11682}
11683
11684/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11685 for all exception catchpoint kinds. */
11686
11687static void
37f6a7f4 11688check_status_exception (bpstat bs)
28010a5d 11689{
b6433ede 11690 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
11691}
11692
f7f9143b
JB
11693/* Implement the PRINT_IT method in the breakpoint_ops structure
11694 for all exception catchpoint kinds. */
11695
11696static enum print_stop_action
37f6a7f4 11697print_it_exception (bpstat bs)
f7f9143b 11698{
79a45e25 11699 struct ui_out *uiout = current_uiout;
348d480f
PA
11700 struct breakpoint *b = bs->breakpoint_at;
11701
956a9fb9 11702 annotate_catchpoint (b->number);
f7f9143b 11703
112e8700 11704 if (uiout->is_mi_like_p ())
f7f9143b 11705 {
112e8700 11706 uiout->field_string ("reason",
956a9fb9 11707 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 11708 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
11709 }
11710
112e8700
SM
11711 uiout->text (b->disposition == disp_del
11712 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 11713 uiout->field_signed ("bkptno", b->number);
112e8700 11714 uiout->text (", ");
f7f9143b 11715
45db7c09
PA
11716 /* ada_exception_name_addr relies on the selected frame being the
11717 current frame. Need to do this here because this function may be
11718 called more than once when printing a stop, and below, we'll
11719 select the first frame past the Ada run-time (see
11720 ada_find_printable_frame). */
11721 select_frame (get_current_frame ());
11722
37f6a7f4
TT
11723 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11724 switch (c->m_kind)
f7f9143b 11725 {
761269c8
JB
11726 case ada_catch_exception:
11727 case ada_catch_exception_unhandled:
9f757bf7 11728 case ada_catch_handlers:
956a9fb9 11729 {
37f6a7f4 11730 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
11731 char exception_name[256];
11732
11733 if (addr != 0)
11734 {
c714b426
PA
11735 read_memory (addr, (gdb_byte *) exception_name,
11736 sizeof (exception_name) - 1);
956a9fb9
JB
11737 exception_name [sizeof (exception_name) - 1] = '\0';
11738 }
11739 else
11740 {
11741 /* For some reason, we were unable to read the exception
11742 name. This could happen if the Runtime was compiled
11743 without debugging info, for instance. In that case,
11744 just replace the exception name by the generic string
11745 "exception" - it will read as "an exception" in the
11746 notification we are about to print. */
967cff16 11747 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11748 }
11749 /* In the case of unhandled exception breakpoints, we print
11750 the exception name as "unhandled EXCEPTION_NAME", to make
11751 it clearer to the user which kind of catchpoint just got
11752 hit. We used ui_out_text to make sure that this extra
11753 info does not pollute the exception name in the MI case. */
37f6a7f4 11754 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
11755 uiout->text ("unhandled ");
11756 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
11757 }
11758 break;
761269c8 11759 case ada_catch_assert:
956a9fb9
JB
11760 /* In this case, the name of the exception is not really
11761 important. Just print "failed assertion" to make it clearer
11762 that his program just hit an assertion-failure catchpoint.
11763 We used ui_out_text because this info does not belong in
11764 the MI output. */
112e8700 11765 uiout->text ("failed assertion");
956a9fb9 11766 break;
f7f9143b 11767 }
e547c119 11768
6f46ac85 11769 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
11770 if (exception_message != NULL)
11771 {
e547c119 11772 uiout->text (" (");
6f46ac85 11773 uiout->field_string ("exception-message", exception_message.get ());
e547c119 11774 uiout->text (")");
e547c119
JB
11775 }
11776
112e8700 11777 uiout->text (" at ");
956a9fb9 11778 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11779
11780 return PRINT_SRC_AND_LOC;
11781}
11782
11783/* Implement the PRINT_ONE method in the breakpoint_ops structure
11784 for all exception catchpoint kinds. */
11785
11786static void
37f6a7f4 11787print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11788{
79a45e25 11789 struct ui_out *uiout = current_uiout;
28010a5d 11790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11791 struct value_print_options opts;
11792
11793 get_user_print_options (&opts);
f06f1252 11794
79a45b7d 11795 if (opts.addressprint)
f06f1252 11796 uiout->field_skip ("addr");
f7f9143b
JB
11797
11798 annotate_field (5);
37f6a7f4 11799 switch (c->m_kind)
f7f9143b 11800 {
761269c8 11801 case ada_catch_exception:
dda83cd7
SM
11802 if (!c->excep_string.empty ())
11803 {
bc18fbb5
TT
11804 std::string msg = string_printf (_("`%s' Ada exception"),
11805 c->excep_string.c_str ());
28010a5d 11806
dda83cd7
SM
11807 uiout->field_string ("what", msg);
11808 }
11809 else
11810 uiout->field_string ("what", "all Ada exceptions");
11811
11812 break;
f7f9143b 11813
761269c8 11814 case ada_catch_exception_unhandled:
dda83cd7
SM
11815 uiout->field_string ("what", "unhandled Ada exceptions");
11816 break;
f7f9143b 11817
9f757bf7 11818 case ada_catch_handlers:
dda83cd7
SM
11819 if (!c->excep_string.empty ())
11820 {
9f757bf7
XR
11821 uiout->field_fmt ("what",
11822 _("`%s' Ada exception handlers"),
bc18fbb5 11823 c->excep_string.c_str ());
dda83cd7
SM
11824 }
11825 else
9f757bf7 11826 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 11827 break;
9f757bf7 11828
761269c8 11829 case ada_catch_assert:
dda83cd7
SM
11830 uiout->field_string ("what", "failed Ada assertions");
11831 break;
f7f9143b
JB
11832
11833 default:
dda83cd7
SM
11834 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11835 break;
f7f9143b
JB
11836 }
11837}
11838
11839/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11840 for all exception catchpoint kinds. */
11841
11842static void
37f6a7f4 11843print_mention_exception (struct breakpoint *b)
f7f9143b 11844{
28010a5d 11845 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11846 struct ui_out *uiout = current_uiout;
28010a5d 11847
112e8700 11848 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 11849 : _("Catchpoint "));
381befee 11850 uiout->field_signed ("bkptno", b->number);
112e8700 11851 uiout->text (": ");
00eb2c4a 11852
37f6a7f4 11853 switch (c->m_kind)
f7f9143b 11854 {
761269c8 11855 case ada_catch_exception:
dda83cd7 11856 if (!c->excep_string.empty ())
00eb2c4a 11857 {
862d101a 11858 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 11859 c->excep_string.c_str ());
862d101a 11860 uiout->text (info.c_str ());
00eb2c4a 11861 }
dda83cd7
SM
11862 else
11863 uiout->text (_("all Ada exceptions"));
11864 break;
f7f9143b 11865
761269c8 11866 case ada_catch_exception_unhandled:
dda83cd7
SM
11867 uiout->text (_("unhandled Ada exceptions"));
11868 break;
9f757bf7
XR
11869
11870 case ada_catch_handlers:
dda83cd7 11871 if (!c->excep_string.empty ())
9f757bf7
XR
11872 {
11873 std::string info
11874 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 11875 c->excep_string.c_str ());
9f757bf7
XR
11876 uiout->text (info.c_str ());
11877 }
dda83cd7
SM
11878 else
11879 uiout->text (_("all Ada exceptions handlers"));
11880 break;
9f757bf7 11881
761269c8 11882 case ada_catch_assert:
dda83cd7
SM
11883 uiout->text (_("failed Ada assertions"));
11884 break;
f7f9143b
JB
11885
11886 default:
dda83cd7
SM
11887 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11888 break;
f7f9143b
JB
11889 }
11890}
11891
6149aea9
PA
11892/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11893 for all exception catchpoint kinds. */
11894
11895static void
37f6a7f4 11896print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 11897{
28010a5d
PA
11898 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11899
37f6a7f4 11900 switch (c->m_kind)
6149aea9 11901 {
761269c8 11902 case ada_catch_exception:
6149aea9 11903 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
11904 if (!c->excep_string.empty ())
11905 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
11906 break;
11907
761269c8 11908 case ada_catch_exception_unhandled:
78076abc 11909 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11910 break;
11911
9f757bf7
XR
11912 case ada_catch_handlers:
11913 fprintf_filtered (fp, "catch handlers");
11914 break;
11915
761269c8 11916 case ada_catch_assert:
6149aea9
PA
11917 fprintf_filtered (fp, "catch assert");
11918 break;
11919
11920 default:
11921 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11922 }
d9b3f62e 11923 print_recreate_thread (b, fp);
6149aea9
PA
11924}
11925
37f6a7f4 11926/* Virtual tables for various breakpoint types. */
2060206e 11927static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 11928static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 11929static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
11930static struct breakpoint_ops catch_handlers_breakpoint_ops;
11931
f06f1252
TT
11932/* See ada-lang.h. */
11933
11934bool
11935is_ada_exception_catchpoint (breakpoint *bp)
11936{
11937 return (bp->ops == &catch_exception_breakpoint_ops
11938 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11939 || bp->ops == &catch_assert_breakpoint_ops
11940 || bp->ops == &catch_handlers_breakpoint_ops);
11941}
11942
f7f9143b
JB
11943/* Split the arguments specified in a "catch exception" command.
11944 Set EX to the appropriate catchpoint type.
28010a5d 11945 Set EXCEP_STRING to the name of the specific exception if
5845583d 11946 specified by the user.
9f757bf7
XR
11947 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11948 "catch handlers" command. False otherwise.
5845583d
JB
11949 If a condition is found at the end of the arguments, the condition
11950 expression is stored in COND_STRING (memory must be deallocated
11951 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11952
11953static void
a121b7c1 11954catch_ada_exception_command_split (const char *args,
9f757bf7 11955 bool is_catch_handlers_cmd,
dda83cd7 11956 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
11957 std::string *excep_string,
11958 std::string *cond_string)
f7f9143b 11959{
bc18fbb5 11960 std::string exception_name;
f7f9143b 11961
bc18fbb5
TT
11962 exception_name = extract_arg (&args);
11963 if (exception_name == "if")
5845583d
JB
11964 {
11965 /* This is not an exception name; this is the start of a condition
11966 expression for a catchpoint on all exceptions. So, "un-get"
11967 this token, and set exception_name to NULL. */
bc18fbb5 11968 exception_name.clear ();
5845583d
JB
11969 args -= 2;
11970 }
f7f9143b 11971
5845583d 11972 /* Check to see if we have a condition. */
f7f9143b 11973
f1735a53 11974 args = skip_spaces (args);
61012eef 11975 if (startswith (args, "if")
5845583d
JB
11976 && (isspace (args[2]) || args[2] == '\0'))
11977 {
11978 args += 2;
f1735a53 11979 args = skip_spaces (args);
5845583d
JB
11980
11981 if (args[0] == '\0')
dda83cd7 11982 error (_("Condition missing after `if' keyword"));
bc18fbb5 11983 *cond_string = args;
5845583d
JB
11984
11985 args += strlen (args);
11986 }
11987
11988 /* Check that we do not have any more arguments. Anything else
11989 is unexpected. */
f7f9143b
JB
11990
11991 if (args[0] != '\0')
11992 error (_("Junk at end of expression"));
11993
9f757bf7
XR
11994 if (is_catch_handlers_cmd)
11995 {
11996 /* Catch handling of exceptions. */
11997 *ex = ada_catch_handlers;
11998 *excep_string = exception_name;
11999 }
bc18fbb5 12000 else if (exception_name.empty ())
f7f9143b
JB
12001 {
12002 /* Catch all exceptions. */
761269c8 12003 *ex = ada_catch_exception;
bc18fbb5 12004 excep_string->clear ();
f7f9143b 12005 }
bc18fbb5 12006 else if (exception_name == "unhandled")
f7f9143b
JB
12007 {
12008 /* Catch unhandled exceptions. */
761269c8 12009 *ex = ada_catch_exception_unhandled;
bc18fbb5 12010 excep_string->clear ();
f7f9143b
JB
12011 }
12012 else
12013 {
12014 /* Catch a specific exception. */
761269c8 12015 *ex = ada_catch_exception;
28010a5d 12016 *excep_string = exception_name;
f7f9143b
JB
12017 }
12018}
12019
12020/* Return the name of the symbol on which we should break in order to
12021 implement a catchpoint of the EX kind. */
12022
12023static const char *
761269c8 12024ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12025{
3eecfa55
JB
12026 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12027
12028 gdb_assert (data->exception_info != NULL);
0259addd 12029
f7f9143b
JB
12030 switch (ex)
12031 {
761269c8 12032 case ada_catch_exception:
dda83cd7
SM
12033 return (data->exception_info->catch_exception_sym);
12034 break;
761269c8 12035 case ada_catch_exception_unhandled:
dda83cd7
SM
12036 return (data->exception_info->catch_exception_unhandled_sym);
12037 break;
761269c8 12038 case ada_catch_assert:
dda83cd7
SM
12039 return (data->exception_info->catch_assert_sym);
12040 break;
9f757bf7 12041 case ada_catch_handlers:
dda83cd7
SM
12042 return (data->exception_info->catch_handlers_sym);
12043 break;
f7f9143b 12044 default:
dda83cd7
SM
12045 internal_error (__FILE__, __LINE__,
12046 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12047 }
12048}
12049
12050/* Return the breakpoint ops "virtual table" used for catchpoints
12051 of the EX kind. */
12052
c0a91b2b 12053static const struct breakpoint_ops *
761269c8 12054ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12055{
12056 switch (ex)
12057 {
761269c8 12058 case ada_catch_exception:
dda83cd7
SM
12059 return (&catch_exception_breakpoint_ops);
12060 break;
761269c8 12061 case ada_catch_exception_unhandled:
dda83cd7
SM
12062 return (&catch_exception_unhandled_breakpoint_ops);
12063 break;
761269c8 12064 case ada_catch_assert:
dda83cd7
SM
12065 return (&catch_assert_breakpoint_ops);
12066 break;
9f757bf7 12067 case ada_catch_handlers:
dda83cd7
SM
12068 return (&catch_handlers_breakpoint_ops);
12069 break;
f7f9143b 12070 default:
dda83cd7
SM
12071 internal_error (__FILE__, __LINE__,
12072 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12073 }
12074}
12075
12076/* Return the condition that will be used to match the current exception
12077 being raised with the exception that the user wants to catch. This
12078 assumes that this condition is used when the inferior just triggered
12079 an exception catchpoint.
cb7de75e 12080 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12081
cb7de75e 12082static std::string
9f757bf7 12083ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12084 enum ada_exception_catchpoint_kind ex)
f7f9143b 12085{
3d0b0fa3 12086 int i;
fccf9de1 12087 bool is_standard_exc = false;
cb7de75e 12088 std::string result;
9f757bf7
XR
12089
12090 if (ex == ada_catch_handlers)
12091 {
12092 /* For exception handlers catchpoints, the condition string does
dda83cd7 12093 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12094 result = ("long_integer (GNAT_GCC_exception_Access"
12095 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12096 }
12097 else
fccf9de1 12098 result = "long_integer (e)";
3d0b0fa3 12099
0963b4bd 12100 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12101 runtime units that have been compiled without debugging info; if
28010a5d 12102 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12103 exception (e.g. "constraint_error") then, during the evaluation
12104 of the condition expression, the symbol lookup on this name would
0963b4bd 12105 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12106 may then be set only on user-defined exceptions which have the
12107 same not-fully-qualified name (e.g. my_package.constraint_error).
12108
12109 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12110 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12111 exception constraint_error" is rewritten into "catch exception
12112 standard.constraint_error".
12113
85102364 12114 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12115 the inferior program, then the only way to specify this exception as a
12116 breakpoint condition is to use its fully-qualified named:
fccf9de1 12117 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12118
12119 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12120 {
28010a5d 12121 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12122 {
fccf9de1 12123 is_standard_exc = true;
9f757bf7 12124 break;
3d0b0fa3
JB
12125 }
12126 }
9f757bf7 12127
fccf9de1
TT
12128 result += " = ";
12129
12130 if (is_standard_exc)
12131 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12132 else
12133 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12134
9f757bf7 12135 return result;
f7f9143b
JB
12136}
12137
12138/* Return the symtab_and_line that should be used to insert an exception
12139 catchpoint of the TYPE kind.
12140
28010a5d
PA
12141 ADDR_STRING returns the name of the function where the real
12142 breakpoint that implements the catchpoints is set, depending on the
12143 type of catchpoint we need to create. */
f7f9143b
JB
12144
12145static struct symtab_and_line
bc18fbb5 12146ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12147 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12148{
12149 const char *sym_name;
12150 struct symbol *sym;
f7f9143b 12151
0259addd
JB
12152 /* First, find out which exception support info to use. */
12153 ada_exception_support_info_sniffer ();
12154
12155 /* Then lookup the function on which we will break in order to catch
f7f9143b 12156 the Ada exceptions requested by the user. */
f7f9143b
JB
12157 sym_name = ada_exception_sym_name (ex);
12158 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12159
57aff202
JB
12160 if (sym == NULL)
12161 error (_("Catchpoint symbol not found: %s"), sym_name);
12162
12163 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12164 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12165
12166 /* Set ADDR_STRING. */
cc12f4a8 12167 *addr_string = sym_name;
f7f9143b 12168
f7f9143b 12169 /* Set OPS. */
4b9eee8c 12170 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12171
f17011e0 12172 return find_function_start_sal (sym, 1);
f7f9143b
JB
12173}
12174
b4a5b78b 12175/* Create an Ada exception catchpoint.
f7f9143b 12176
b4a5b78b 12177 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12178
bc18fbb5 12179 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12180 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12181 of the exception to which this catchpoint applies.
2df4d1d5 12182
bc18fbb5 12183 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12184
b4a5b78b
JB
12185 TEMPFLAG, if nonzero, means that the underlying breakpoint
12186 should be temporary.
28010a5d 12187
b4a5b78b 12188 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12189
349774ef 12190void
28010a5d 12191create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12192 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12193 const std::string &excep_string,
56ecd069 12194 const std::string &cond_string,
28010a5d 12195 int tempflag,
349774ef 12196 int disabled,
28010a5d
PA
12197 int from_tty)
12198{
cc12f4a8 12199 std::string addr_string;
b4a5b78b 12200 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12201 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12202
37f6a7f4 12203 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12204 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12205 ops, tempflag, disabled, from_tty);
28010a5d 12206 c->excep_string = excep_string;
9f757bf7 12207 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12208 if (!cond_string.empty ())
733d554a 12209 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12210 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12211}
12212
9ac4176b
PA
12213/* Implement the "catch exception" command. */
12214
12215static void
eb4c3f4a 12216catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12217 struct cmd_list_element *command)
12218{
a121b7c1 12219 const char *arg = arg_entry;
9ac4176b
PA
12220 struct gdbarch *gdbarch = get_current_arch ();
12221 int tempflag;
761269c8 12222 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12223 std::string excep_string;
56ecd069 12224 std::string cond_string;
9ac4176b
PA
12225
12226 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227
12228 if (!arg)
12229 arg = "";
9f757bf7 12230 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12231 &cond_string);
9f757bf7
XR
12232 create_ada_exception_catchpoint (gdbarch, ex_kind,
12233 excep_string, cond_string,
12234 tempflag, 1 /* enabled */,
12235 from_tty);
12236}
12237
12238/* Implement the "catch handlers" command. */
12239
12240static void
12241catch_ada_handlers_command (const char *arg_entry, int from_tty,
12242 struct cmd_list_element *command)
12243{
12244 const char *arg = arg_entry;
12245 struct gdbarch *gdbarch = get_current_arch ();
12246 int tempflag;
12247 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12248 std::string excep_string;
56ecd069 12249 std::string cond_string;
9f757bf7
XR
12250
12251 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12252
12253 if (!arg)
12254 arg = "";
12255 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12256 &cond_string);
b4a5b78b
JB
12257 create_ada_exception_catchpoint (gdbarch, ex_kind,
12258 excep_string, cond_string,
349774ef
JB
12259 tempflag, 1 /* enabled */,
12260 from_tty);
9ac4176b
PA
12261}
12262
71bed2db
TT
12263/* Completion function for the Ada "catch" commands. */
12264
12265static void
12266catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12267 const char *text, const char *word)
12268{
12269 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12270
12271 for (const ada_exc_info &info : exceptions)
12272 {
12273 if (startswith (info.name, word))
b02f78f9 12274 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12275 }
12276}
12277
b4a5b78b 12278/* Split the arguments specified in a "catch assert" command.
5845583d 12279
b4a5b78b
JB
12280 ARGS contains the command's arguments (or the empty string if
12281 no arguments were passed).
5845583d
JB
12282
12283 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12284 (the memory needs to be deallocated after use). */
5845583d 12285
b4a5b78b 12286static void
56ecd069 12287catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12288{
f1735a53 12289 args = skip_spaces (args);
f7f9143b 12290
5845583d 12291 /* Check whether a condition was provided. */
61012eef 12292 if (startswith (args, "if")
5845583d 12293 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12294 {
5845583d 12295 args += 2;
f1735a53 12296 args = skip_spaces (args);
5845583d 12297 if (args[0] == '\0')
dda83cd7 12298 error (_("condition missing after `if' keyword"));
56ecd069 12299 cond_string.assign (args);
f7f9143b
JB
12300 }
12301
5845583d
JB
12302 /* Otherwise, there should be no other argument at the end of
12303 the command. */
12304 else if (args[0] != '\0')
12305 error (_("Junk at end of arguments."));
f7f9143b
JB
12306}
12307
9ac4176b
PA
12308/* Implement the "catch assert" command. */
12309
12310static void
eb4c3f4a 12311catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12312 struct cmd_list_element *command)
12313{
a121b7c1 12314 const char *arg = arg_entry;
9ac4176b
PA
12315 struct gdbarch *gdbarch = get_current_arch ();
12316 int tempflag;
56ecd069 12317 std::string cond_string;
9ac4176b
PA
12318
12319 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12320
12321 if (!arg)
12322 arg = "";
56ecd069 12323 catch_ada_assert_command_split (arg, cond_string);
761269c8 12324 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12325 "", cond_string,
349774ef
JB
12326 tempflag, 1 /* enabled */,
12327 from_tty);
9ac4176b 12328}
778865d3
JB
12329
12330/* Return non-zero if the symbol SYM is an Ada exception object. */
12331
12332static int
12333ada_is_exception_sym (struct symbol *sym)
12334{
7d93a1e0 12335 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12336
12337 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12338 && SYMBOL_CLASS (sym) != LOC_BLOCK
12339 && SYMBOL_CLASS (sym) != LOC_CONST
12340 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12341 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12342}
12343
12344/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12345 Ada exception object. This matches all exceptions except the ones
12346 defined by the Ada language. */
12347
12348static int
12349ada_is_non_standard_exception_sym (struct symbol *sym)
12350{
12351 int i;
12352
12353 if (!ada_is_exception_sym (sym))
12354 return 0;
12355
12356 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12357 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12358 return 0; /* A standard exception. */
12359
12360 /* Numeric_Error is also a standard exception, so exclude it.
12361 See the STANDARD_EXC description for more details as to why
12362 this exception is not listed in that array. */
987012b8 12363 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12364 return 0;
12365
12366 return 1;
12367}
12368
ab816a27 12369/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12370 objects.
12371
12372 The comparison is determined first by exception name, and then
12373 by exception address. */
12374
ab816a27 12375bool
cc536b21 12376ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12377{
778865d3
JB
12378 int result;
12379
ab816a27
TT
12380 result = strcmp (name, other.name);
12381 if (result < 0)
12382 return true;
12383 if (result == 0 && addr < other.addr)
12384 return true;
12385 return false;
12386}
778865d3 12387
ab816a27 12388bool
cc536b21 12389ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12390{
12391 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12392}
12393
12394/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12395 routine, but keeping the first SKIP elements untouched.
12396
12397 All duplicates are also removed. */
12398
12399static void
ab816a27 12400sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12401 int skip)
12402{
ab816a27
TT
12403 std::sort (exceptions->begin () + skip, exceptions->end ());
12404 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12405 exceptions->end ());
778865d3
JB
12406}
12407
778865d3
JB
12408/* Add all exceptions defined by the Ada standard whose name match
12409 a regular expression.
12410
12411 If PREG is not NULL, then this regexp_t object is used to
12412 perform the symbol name matching. Otherwise, no name-based
12413 filtering is performed.
12414
12415 EXCEPTIONS is a vector of exceptions to which matching exceptions
12416 gets pushed. */
12417
12418static void
2d7cc5c7 12419ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12420 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12421{
12422 int i;
12423
12424 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12425 {
12426 if (preg == NULL
2d7cc5c7 12427 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12428 {
12429 struct bound_minimal_symbol msymbol
12430 = ada_lookup_simple_minsym (standard_exc[i]);
12431
12432 if (msymbol.minsym != NULL)
12433 {
12434 struct ada_exc_info info
77e371c0 12435 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12436
ab816a27 12437 exceptions->push_back (info);
778865d3
JB
12438 }
12439 }
12440 }
12441}
12442
12443/* Add all Ada exceptions defined locally and accessible from the given
12444 FRAME.
12445
12446 If PREG is not NULL, then this regexp_t object is used to
12447 perform the symbol name matching. Otherwise, no name-based
12448 filtering is performed.
12449
12450 EXCEPTIONS is a vector of exceptions to which matching exceptions
12451 gets pushed. */
12452
12453static void
2d7cc5c7
PA
12454ada_add_exceptions_from_frame (compiled_regex *preg,
12455 struct frame_info *frame,
ab816a27 12456 std::vector<ada_exc_info> *exceptions)
778865d3 12457{
3977b71f 12458 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12459
12460 while (block != 0)
12461 {
12462 struct block_iterator iter;
12463 struct symbol *sym;
12464
12465 ALL_BLOCK_SYMBOLS (block, iter, sym)
12466 {
12467 switch (SYMBOL_CLASS (sym))
12468 {
12469 case LOC_TYPEDEF:
12470 case LOC_BLOCK:
12471 case LOC_CONST:
12472 break;
12473 default:
12474 if (ada_is_exception_sym (sym))
12475 {
987012b8 12476 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12477 SYMBOL_VALUE_ADDRESS (sym)};
12478
ab816a27 12479 exceptions->push_back (info);
778865d3
JB
12480 }
12481 }
12482 }
12483 if (BLOCK_FUNCTION (block) != NULL)
12484 break;
12485 block = BLOCK_SUPERBLOCK (block);
12486 }
12487}
12488
14bc53a8
PA
12489/* Return true if NAME matches PREG or if PREG is NULL. */
12490
12491static bool
2d7cc5c7 12492name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
12493{
12494 return (preg == NULL
f945dedf 12495 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
12496}
12497
778865d3
JB
12498/* Add all exceptions defined globally whose name name match
12499 a regular expression, excluding standard exceptions.
12500
12501 The reason we exclude standard exceptions is that they need
12502 to be handled separately: Standard exceptions are defined inside
12503 a runtime unit which is normally not compiled with debugging info,
12504 and thus usually do not show up in our symbol search. However,
12505 if the unit was in fact built with debugging info, we need to
12506 exclude them because they would duplicate the entry we found
12507 during the special loop that specifically searches for those
12508 standard exceptions.
12509
12510 If PREG is not NULL, then this regexp_t object is used to
12511 perform the symbol name matching. Otherwise, no name-based
12512 filtering is performed.
12513
12514 EXCEPTIONS is a vector of exceptions to which matching exceptions
12515 gets pushed. */
12516
12517static void
2d7cc5c7 12518ada_add_global_exceptions (compiled_regex *preg,
ab816a27 12519 std::vector<ada_exc_info> *exceptions)
778865d3 12520{
14bc53a8
PA
12521 /* In Ada, the symbol "search name" is a linkage name, whereas the
12522 regular expression used to do the matching refers to the natural
12523 name. So match against the decoded name. */
12524 expand_symtabs_matching (NULL,
b5ec771e 12525 lookup_name_info::match_any (),
14bc53a8
PA
12526 [&] (const char *search_name)
12527 {
f945dedf
CB
12528 std::string decoded = ada_decode (search_name);
12529 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
12530 },
12531 NULL,
12532 VARIABLES_DOMAIN);
778865d3 12533
2030c079 12534 for (objfile *objfile : current_program_space->objfiles ())
778865d3 12535 {
b669c953 12536 for (compunit_symtab *s : objfile->compunits ())
778865d3 12537 {
d8aeb77f
TT
12538 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12539 int i;
778865d3 12540
d8aeb77f
TT
12541 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12542 {
582942f4 12543 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
12544 struct block_iterator iter;
12545 struct symbol *sym;
778865d3 12546
d8aeb77f
TT
12547 ALL_BLOCK_SYMBOLS (b, iter, sym)
12548 if (ada_is_non_standard_exception_sym (sym)
987012b8 12549 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
12550 {
12551 struct ada_exc_info info
987012b8 12552 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
12553
12554 exceptions->push_back (info);
12555 }
12556 }
778865d3
JB
12557 }
12558 }
12559}
12560
12561/* Implements ada_exceptions_list with the regular expression passed
12562 as a regex_t, rather than a string.
12563
12564 If not NULL, PREG is used to filter out exceptions whose names
12565 do not match. Otherwise, all exceptions are listed. */
12566
ab816a27 12567static std::vector<ada_exc_info>
2d7cc5c7 12568ada_exceptions_list_1 (compiled_regex *preg)
778865d3 12569{
ab816a27 12570 std::vector<ada_exc_info> result;
778865d3
JB
12571 int prev_len;
12572
12573 /* First, list the known standard exceptions. These exceptions
12574 need to be handled separately, as they are usually defined in
12575 runtime units that have been compiled without debugging info. */
12576
12577 ada_add_standard_exceptions (preg, &result);
12578
12579 /* Next, find all exceptions whose scope is local and accessible
12580 from the currently selected frame. */
12581
12582 if (has_stack_frames ())
12583 {
ab816a27 12584 prev_len = result.size ();
778865d3
JB
12585 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12586 &result);
ab816a27 12587 if (result.size () > prev_len)
778865d3
JB
12588 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12589 }
12590
12591 /* Add all exceptions whose scope is global. */
12592
ab816a27 12593 prev_len = result.size ();
778865d3 12594 ada_add_global_exceptions (preg, &result);
ab816a27 12595 if (result.size () > prev_len)
778865d3
JB
12596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12597
778865d3
JB
12598 return result;
12599}
12600
12601/* Return a vector of ada_exc_info.
12602
12603 If REGEXP is NULL, all exceptions are included in the result.
12604 Otherwise, it should contain a valid regular expression,
12605 and only the exceptions whose names match that regular expression
12606 are included in the result.
12607
12608 The exceptions are sorted in the following order:
12609 - Standard exceptions (defined by the Ada language), in
12610 alphabetical order;
12611 - Exceptions only visible from the current frame, in
12612 alphabetical order;
12613 - Exceptions whose scope is global, in alphabetical order. */
12614
ab816a27 12615std::vector<ada_exc_info>
778865d3
JB
12616ada_exceptions_list (const char *regexp)
12617{
2d7cc5c7
PA
12618 if (regexp == NULL)
12619 return ada_exceptions_list_1 (NULL);
778865d3 12620
2d7cc5c7
PA
12621 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12622 return ada_exceptions_list_1 (&reg);
778865d3
JB
12623}
12624
12625/* Implement the "info exceptions" command. */
12626
12627static void
1d12d88f 12628info_exceptions_command (const char *regexp, int from_tty)
778865d3 12629{
778865d3 12630 struct gdbarch *gdbarch = get_current_arch ();
778865d3 12631
ab816a27 12632 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
12633
12634 if (regexp != NULL)
12635 printf_filtered
12636 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12637 else
12638 printf_filtered (_("All defined Ada exceptions:\n"));
12639
ab816a27
TT
12640 for (const ada_exc_info &info : exceptions)
12641 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
12642}
12643
6c038f32
PH
12644\f
12645 /* Language vector */
12646
b5ec771e
PA
12647/* symbol_name_matcher_ftype adapter for wild_match. */
12648
12649static bool
12650do_wild_match (const char *symbol_search_name,
12651 const lookup_name_info &lookup_name,
a207cff2 12652 completion_match_result *comp_match_res)
b5ec771e
PA
12653{
12654 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12655}
12656
12657/* symbol_name_matcher_ftype adapter for full_match. */
12658
12659static bool
12660do_full_match (const char *symbol_search_name,
12661 const lookup_name_info &lookup_name,
a207cff2 12662 completion_match_result *comp_match_res)
b5ec771e 12663{
959d6a67
TT
12664 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12665
12666 /* If both symbols start with "_ada_", just let the loop below
12667 handle the comparison. However, if only the symbol name starts
12668 with "_ada_", skip the prefix and let the match proceed as
12669 usual. */
12670 if (startswith (symbol_search_name, "_ada_")
12671 && !startswith (lname, "_ada"))
86b44259
TT
12672 symbol_search_name += 5;
12673
86b44259
TT
12674 int uscore_count = 0;
12675 while (*lname != '\0')
12676 {
12677 if (*symbol_search_name != *lname)
12678 {
12679 if (*symbol_search_name == 'B' && uscore_count == 2
12680 && symbol_search_name[1] == '_')
12681 {
12682 symbol_search_name += 2;
12683 while (isdigit (*symbol_search_name))
12684 ++symbol_search_name;
12685 if (symbol_search_name[0] == '_'
12686 && symbol_search_name[1] == '_')
12687 {
12688 symbol_search_name += 2;
12689 continue;
12690 }
12691 }
12692 return false;
12693 }
12694
12695 if (*symbol_search_name == '_')
12696 ++uscore_count;
12697 else
12698 uscore_count = 0;
12699
12700 ++symbol_search_name;
12701 ++lname;
12702 }
12703
12704 return is_name_suffix (symbol_search_name);
b5ec771e
PA
12705}
12706
a2cd4f14
JB
12707/* symbol_name_matcher_ftype for exact (verbatim) matches. */
12708
12709static bool
12710do_exact_match (const char *symbol_search_name,
12711 const lookup_name_info &lookup_name,
12712 completion_match_result *comp_match_res)
12713{
12714 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12715}
12716
b5ec771e
PA
12717/* Build the Ada lookup name for LOOKUP_NAME. */
12718
12719ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12720{
e0802d59 12721 gdb::string_view user_name = lookup_name.name ();
b5ec771e 12722
6a780b67 12723 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
12724 {
12725 if (user_name.back () == '>')
e0802d59 12726 m_encoded_name
5ac58899 12727 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 12728 else
e0802d59 12729 m_encoded_name
5ac58899 12730 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
12731 m_encoded_p = true;
12732 m_verbatim_p = true;
12733 m_wild_match_p = false;
12734 m_standard_p = false;
12735 }
12736 else
12737 {
12738 m_verbatim_p = false;
12739
e0802d59 12740 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
12741
12742 if (!m_encoded_p)
12743 {
e0802d59 12744 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
12745 m_encoded_name = ada_encode_1 (folded, false);
12746 if (m_encoded_name.empty ())
5ac58899 12747 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12748 }
12749 else
5ac58899 12750 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12751
12752 /* Handle the 'package Standard' special case. See description
12753 of m_standard_p. */
12754 if (startswith (m_encoded_name.c_str (), "standard__"))
12755 {
12756 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12757 m_standard_p = true;
12758 }
12759 else
12760 m_standard_p = false;
74ccd7f5 12761
b5ec771e
PA
12762 /* If the name contains a ".", then the user is entering a fully
12763 qualified entity name, and the match must not be done in wild
12764 mode. Similarly, if the user wants to complete what looks
12765 like an encoded name, the match must not be done in wild
12766 mode. Also, in the standard__ special case always do
12767 non-wild matching. */
12768 m_wild_match_p
12769 = (lookup_name.match_type () != symbol_name_match_type::FULL
12770 && !m_encoded_p
12771 && !m_standard_p
12772 && user_name.find ('.') == std::string::npos);
12773 }
12774}
12775
12776/* symbol_name_matcher_ftype method for Ada. This only handles
12777 completion mode. */
12778
12779static bool
12780ada_symbol_name_matches (const char *symbol_search_name,
12781 const lookup_name_info &lookup_name,
a207cff2 12782 completion_match_result *comp_match_res)
74ccd7f5 12783{
b5ec771e
PA
12784 return lookup_name.ada ().matches (symbol_search_name,
12785 lookup_name.match_type (),
a207cff2 12786 comp_match_res);
b5ec771e
PA
12787}
12788
de63c46b
PA
12789/* A name matcher that matches the symbol name exactly, with
12790 strcmp. */
12791
12792static bool
12793literal_symbol_name_matcher (const char *symbol_search_name,
12794 const lookup_name_info &lookup_name,
12795 completion_match_result *comp_match_res)
12796{
e0802d59 12797 gdb::string_view name_view = lookup_name.name ();
de63c46b 12798
e0802d59
TT
12799 if (lookup_name.completion_mode ()
12800 ? (strncmp (symbol_search_name, name_view.data (),
12801 name_view.size ()) == 0)
12802 : symbol_search_name == name_view)
de63c46b
PA
12803 {
12804 if (comp_match_res != NULL)
12805 comp_match_res->set_match (symbol_search_name);
12806 return true;
12807 }
12808 else
12809 return false;
12810}
12811
c9debfb9 12812/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
12813 Ada. */
12814
12815static symbol_name_matcher_ftype *
12816ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12817{
de63c46b
PA
12818 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12819 return literal_symbol_name_matcher;
12820
b5ec771e
PA
12821 if (lookup_name.completion_mode ())
12822 return ada_symbol_name_matches;
74ccd7f5 12823 else
b5ec771e
PA
12824 {
12825 if (lookup_name.ada ().wild_match_p ())
12826 return do_wild_match;
a2cd4f14
JB
12827 else if (lookup_name.ada ().verbatim_p ())
12828 return do_exact_match;
b5ec771e
PA
12829 else
12830 return do_full_match;
12831 }
74ccd7f5
JB
12832}
12833
0874fd07
AB
12834/* Class representing the Ada language. */
12835
12836class ada_language : public language_defn
12837{
12838public:
12839 ada_language ()
0e25e767 12840 : language_defn (language_ada)
0874fd07 12841 { /* Nothing. */ }
5bd40f2a 12842
6f7664a9
AB
12843 /* See language.h. */
12844
12845 const char *name () const override
12846 { return "ada"; }
12847
12848 /* See language.h. */
12849
12850 const char *natural_name () const override
12851 { return "Ada"; }
12852
e171d6f1
AB
12853 /* See language.h. */
12854
12855 const std::vector<const char *> &filename_extensions () const override
12856 {
12857 static const std::vector<const char *> extensions
12858 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12859 return extensions;
12860 }
12861
5bd40f2a
AB
12862 /* Print an array element index using the Ada syntax. */
12863
12864 void print_array_index (struct type *index_type,
12865 LONGEST index,
12866 struct ui_file *stream,
12867 const value_print_options *options) const override
12868 {
12869 struct value *index_value = val_atr (index_type, index);
12870
00c696a6 12871 value_print (index_value, stream, options);
5bd40f2a
AB
12872 fprintf_filtered (stream, " => ");
12873 }
15e5fd35
AB
12874
12875 /* Implement the "read_var_value" language_defn method for Ada. */
12876
12877 struct value *read_var_value (struct symbol *var,
12878 const struct block *var_block,
12879 struct frame_info *frame) const override
12880 {
12881 /* The only case where default_read_var_value is not sufficient
12882 is when VAR is a renaming... */
12883 if (frame != nullptr)
12884 {
12885 const struct block *frame_block = get_frame_block (frame, NULL);
12886 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12887 return ada_read_renaming_var_value (var, frame_block);
12888 }
12889
12890 /* This is a typical case where we expect the default_read_var_value
12891 function to work. */
12892 return language_defn::read_var_value (var, var_block, frame);
12893 }
1fb314aa
AB
12894
12895 /* See language.h. */
12896 void language_arch_info (struct gdbarch *gdbarch,
12897 struct language_arch_info *lai) const override
12898 {
12899 const struct builtin_type *builtin = builtin_type (gdbarch);
12900
7bea47f0
AB
12901 /* Helper function to allow shorter lines below. */
12902 auto add = [&] (struct type *t)
12903 {
12904 lai->add_primitive_type (t);
12905 };
12906
12907 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12908 0, "integer"));
12909 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12910 0, "long_integer"));
12911 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12912 0, "short_integer"));
12913 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12914 0, "character");
12915 lai->set_string_char_type (char_type);
12916 add (char_type);
12917 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12918 "float", gdbarch_float_format (gdbarch)));
12919 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12920 "long_float", gdbarch_double_format (gdbarch)));
12921 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12922 0, "long_long_integer"));
12923 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12924 "long_long_float",
12925 gdbarch_long_double_format (gdbarch)));
12926 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12927 0, "natural"));
12928 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12929 0, "positive"));
12930 add (builtin->builtin_void);
12931
12932 struct type *system_addr_ptr
1fb314aa
AB
12933 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12934 "void"));
7bea47f0
AB
12935 system_addr_ptr->set_name ("system__address");
12936 add (system_addr_ptr);
1fb314aa
AB
12937
12938 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12939 type. This is a signed integral type whose size is the same as
12940 the size of addresses. */
7bea47f0
AB
12941 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12942 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12943 "storage_offset"));
1fb314aa 12944
7bea47f0 12945 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 12946 }
4009ee92
AB
12947
12948 /* See language.h. */
12949
12950 bool iterate_over_symbols
12951 (const struct block *block, const lookup_name_info &name,
12952 domain_enum domain,
12953 gdb::function_view<symbol_found_callback_ftype> callback) const override
12954 {
d1183b06
TT
12955 std::vector<struct block_symbol> results
12956 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
12957 for (block_symbol &sym : results)
12958 {
12959 if (!callback (&sym))
12960 return false;
12961 }
12962
12963 return true;
12964 }
6f827019
AB
12965
12966 /* See language.h. */
12967 bool sniff_from_mangled_name (const char *mangled,
12968 char **out) const override
12969 {
12970 std::string demangled = ada_decode (mangled);
12971
12972 *out = NULL;
12973
12974 if (demangled != mangled && demangled[0] != '<')
12975 {
12976 /* Set the gsymbol language to Ada, but still return 0.
12977 Two reasons for that:
12978
12979 1. For Ada, we prefer computing the symbol's decoded name
12980 on the fly rather than pre-compute it, in order to save
12981 memory (Ada projects are typically very large).
12982
12983 2. There are some areas in the definition of the GNAT
12984 encoding where, with a bit of bad luck, we might be able
12985 to decode a non-Ada symbol, generating an incorrect
12986 demangled name (Eg: names ending with "TB" for instance
12987 are identified as task bodies and so stripped from
12988 the decoded name returned).
12989
12990 Returning true, here, but not setting *DEMANGLED, helps us get
12991 a little bit of the best of both worlds. Because we're last,
12992 we should not affect any of the other languages that were
12993 able to demangle the symbol before us; we get to correctly
12994 tag Ada symbols as such; and even if we incorrectly tagged a
12995 non-Ada symbol, which should be rare, any routing through the
12996 Ada language should be transparent (Ada tries to behave much
12997 like C/C++ with non-Ada symbols). */
12998 return true;
12999 }
13000
13001 return false;
13002 }
fbfb0a46
AB
13003
13004 /* See language.h. */
13005
5399db93 13006 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13007 {
13008 return ada_la_decode (mangled, options);
13009 }
13010
13011 /* See language.h. */
13012
fbfb0a46
AB
13013 void print_type (struct type *type, const char *varstring,
13014 struct ui_file *stream, int show, int level,
13015 const struct type_print_options *flags) const override
13016 {
13017 ada_print_type (type, varstring, stream, show, level, flags);
13018 }
c9debfb9 13019
53fc67f8
AB
13020 /* See language.h. */
13021
13022 const char *word_break_characters (void) const override
13023 {
13024 return ada_completer_word_break_characters;
13025 }
13026
7e56227d
AB
13027 /* See language.h. */
13028
13029 void collect_symbol_completion_matches (completion_tracker &tracker,
13030 complete_symbol_mode mode,
13031 symbol_name_match_type name_match_type,
13032 const char *text, const char *word,
13033 enum type_code code) const override
13034 {
13035 struct symbol *sym;
13036 const struct block *b, *surrounding_static_block = 0;
13037 struct block_iterator iter;
13038
13039 gdb_assert (code == TYPE_CODE_UNDEF);
13040
13041 lookup_name_info lookup_name (text, name_match_type, true);
13042
13043 /* First, look at the partial symtab symbols. */
13044 expand_symtabs_matching (NULL,
13045 lookup_name,
13046 NULL,
13047 NULL,
13048 ALL_DOMAIN);
13049
13050 /* At this point scan through the misc symbol vectors and add each
13051 symbol you find to the list. Eventually we want to ignore
13052 anything that isn't a text symbol (everything else will be
13053 handled by the psymtab code above). */
13054
13055 for (objfile *objfile : current_program_space->objfiles ())
13056 {
13057 for (minimal_symbol *msymbol : objfile->msymbols ())
13058 {
13059 QUIT;
13060
13061 if (completion_skip_symbol (mode, msymbol))
13062 continue;
13063
13064 language symbol_language = msymbol->language ();
13065
13066 /* Ada minimal symbols won't have their language set to Ada. If
13067 we let completion_list_add_name compare using the
13068 default/C-like matcher, then when completing e.g., symbols in a
13069 package named "pck", we'd match internal Ada symbols like
13070 "pckS", which are invalid in an Ada expression, unless you wrap
13071 them in '<' '>' to request a verbatim match.
13072
13073 Unfortunately, some Ada encoded names successfully demangle as
13074 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13075 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13076 with the wrong language set. Paper over that issue here. */
13077 if (symbol_language == language_auto
13078 || symbol_language == language_cplus)
13079 symbol_language = language_ada;
13080
13081 completion_list_add_name (tracker,
13082 symbol_language,
13083 msymbol->linkage_name (),
13084 lookup_name, text, word);
13085 }
13086 }
13087
13088 /* Search upwards from currently selected frame (so that we can
13089 complete on local vars. */
13090
13091 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13092 {
13093 if (!BLOCK_SUPERBLOCK (b))
13094 surrounding_static_block = b; /* For elmin of dups */
13095
13096 ALL_BLOCK_SYMBOLS (b, iter, sym)
13097 {
13098 if (completion_skip_symbol (mode, sym))
13099 continue;
13100
13101 completion_list_add_name (tracker,
13102 sym->language (),
13103 sym->linkage_name (),
13104 lookup_name, text, word);
13105 }
13106 }
13107
13108 /* Go through the symtabs and check the externs and statics for
13109 symbols which match. */
13110
13111 for (objfile *objfile : current_program_space->objfiles ())
13112 {
13113 for (compunit_symtab *s : objfile->compunits ())
13114 {
13115 QUIT;
13116 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13117 ALL_BLOCK_SYMBOLS (b, iter, sym)
13118 {
13119 if (completion_skip_symbol (mode, sym))
13120 continue;
13121
13122 completion_list_add_name (tracker,
13123 sym->language (),
13124 sym->linkage_name (),
13125 lookup_name, text, word);
13126 }
13127 }
13128 }
13129
13130 for (objfile *objfile : current_program_space->objfiles ())
13131 {
13132 for (compunit_symtab *s : objfile->compunits ())
13133 {
13134 QUIT;
13135 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13136 /* Don't do this block twice. */
13137 if (b == surrounding_static_block)
13138 continue;
13139 ALL_BLOCK_SYMBOLS (b, iter, sym)
13140 {
13141 if (completion_skip_symbol (mode, sym))
13142 continue;
13143
13144 completion_list_add_name (tracker,
13145 sym->language (),
13146 sym->linkage_name (),
13147 lookup_name, text, word);
13148 }
13149 }
13150 }
13151 }
13152
f16a9f57
AB
13153 /* See language.h. */
13154
13155 gdb::unique_xmalloc_ptr<char> watch_location_expression
13156 (struct type *type, CORE_ADDR addr) const override
13157 {
13158 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13159 std::string name = type_to_string (type);
13160 return gdb::unique_xmalloc_ptr<char>
13161 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13162 }
13163
a1d1fa3e
AB
13164 /* See language.h. */
13165
13166 void value_print (struct value *val, struct ui_file *stream,
13167 const struct value_print_options *options) const override
13168 {
13169 return ada_value_print (val, stream, options);
13170 }
13171
ebe2334e
AB
13172 /* See language.h. */
13173
13174 void value_print_inner
13175 (struct value *val, struct ui_file *stream, int recurse,
13176 const struct value_print_options *options) const override
13177 {
13178 return ada_value_print_inner (val, stream, recurse, options);
13179 }
13180
a78a19b1
AB
13181 /* See language.h. */
13182
13183 struct block_symbol lookup_symbol_nonlocal
13184 (const char *name, const struct block *block,
13185 const domain_enum domain) const override
13186 {
13187 struct block_symbol sym;
13188
13189 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13190 if (sym.symbol != NULL)
13191 return sym;
13192
13193 /* If we haven't found a match at this point, try the primitive
13194 types. In other languages, this search is performed before
13195 searching for global symbols in order to short-circuit that
13196 global-symbol search if it happens that the name corresponds
13197 to a primitive type. But we cannot do the same in Ada, because
13198 it is perfectly legitimate for a program to declare a type which
13199 has the same name as a standard type. If looking up a type in
13200 that situation, we have traditionally ignored the primitive type
13201 in favor of user-defined types. This is why, unlike most other
13202 languages, we search the primitive types this late and only after
13203 having searched the global symbols without success. */
13204
13205 if (domain == VAR_DOMAIN)
13206 {
13207 struct gdbarch *gdbarch;
13208
13209 if (block == NULL)
13210 gdbarch = target_gdbarch ();
13211 else
13212 gdbarch = block_gdbarch (block);
13213 sym.symbol
13214 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13215 if (sym.symbol != NULL)
13216 return sym;
13217 }
13218
13219 return {};
13220 }
13221
87afa652
AB
13222 /* See language.h. */
13223
13224 int parser (struct parser_state *ps) const override
13225 {
13226 warnings_issued = 0;
13227 return ada_parse (ps);
13228 }
13229
ec8cec5b
AB
13230 /* See language.h. */
13231
13232 void emitchar (int ch, struct type *chtype,
13233 struct ui_file *stream, int quoter) const override
13234 {
13235 ada_emit_char (ch, chtype, stream, quoter, 1);
13236 }
13237
52b50f2c
AB
13238 /* See language.h. */
13239
13240 void printchar (int ch, struct type *chtype,
13241 struct ui_file *stream) const override
13242 {
13243 ada_printchar (ch, chtype, stream);
13244 }
13245
d711ee67
AB
13246 /* See language.h. */
13247
13248 void printstr (struct ui_file *stream, struct type *elttype,
13249 const gdb_byte *string, unsigned int length,
13250 const char *encoding, int force_ellipses,
13251 const struct value_print_options *options) const override
13252 {
13253 ada_printstr (stream, elttype, string, length, encoding,
13254 force_ellipses, options);
13255 }
13256
4ffc13fb
AB
13257 /* See language.h. */
13258
13259 void print_typedef (struct type *type, struct symbol *new_symbol,
13260 struct ui_file *stream) const override
13261 {
13262 ada_print_typedef (type, new_symbol, stream);
13263 }
13264
39e7ecca
AB
13265 /* See language.h. */
13266
13267 bool is_string_type_p (struct type *type) const override
13268 {
13269 return ada_is_string_type (type);
13270 }
13271
22e3f3ed
AB
13272 /* See language.h. */
13273
13274 const char *struct_too_deep_ellipsis () const override
13275 { return "(...)"; }
39e7ecca 13276
67bd3fd5
AB
13277 /* See language.h. */
13278
13279 bool c_style_arrays_p () const override
13280 { return false; }
13281
d3355e4d
AB
13282 /* See language.h. */
13283
13284 bool store_sym_names_in_linkage_form_p () const override
13285 { return true; }
13286
b63a3f3f
AB
13287 /* See language.h. */
13288
13289 const struct lang_varobj_ops *varobj_ops () const override
13290 { return &ada_varobj_ops; }
13291
c9debfb9
AB
13292protected:
13293 /* See language.h. */
13294
13295 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13296 (const lookup_name_info &lookup_name) const override
13297 {
13298 return ada_get_symbol_name_matcher (lookup_name);
13299 }
0874fd07
AB
13300};
13301
13302/* Single instance of the Ada language class. */
13303
13304static ada_language ada_language_defn;
13305
5bf03f13
JB
13306/* Command-list for the "set/show ada" prefix command. */
13307static struct cmd_list_element *set_ada_list;
13308static struct cmd_list_element *show_ada_list;
13309
2060206e
PA
13310static void
13311initialize_ada_catchpoint_ops (void)
13312{
13313 struct breakpoint_ops *ops;
13314
13315 initialize_breakpoint_ops ();
13316
13317 ops = &catch_exception_breakpoint_ops;
13318 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13319 ops->allocate_location = allocate_location_exception;
13320 ops->re_set = re_set_exception;
13321 ops->check_status = check_status_exception;
13322 ops->print_it = print_it_exception;
13323 ops->print_one = print_one_exception;
13324 ops->print_mention = print_mention_exception;
13325 ops->print_recreate = print_recreate_exception;
2060206e
PA
13326
13327 ops = &catch_exception_unhandled_breakpoint_ops;
13328 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13329 ops->allocate_location = allocate_location_exception;
13330 ops->re_set = re_set_exception;
13331 ops->check_status = check_status_exception;
13332 ops->print_it = print_it_exception;
13333 ops->print_one = print_one_exception;
13334 ops->print_mention = print_mention_exception;
13335 ops->print_recreate = print_recreate_exception;
2060206e
PA
13336
13337 ops = &catch_assert_breakpoint_ops;
13338 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13339 ops->allocate_location = allocate_location_exception;
13340 ops->re_set = re_set_exception;
13341 ops->check_status = check_status_exception;
13342 ops->print_it = print_it_exception;
13343 ops->print_one = print_one_exception;
13344 ops->print_mention = print_mention_exception;
13345 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
13346
13347 ops = &catch_handlers_breakpoint_ops;
13348 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13349 ops->allocate_location = allocate_location_exception;
13350 ops->re_set = re_set_exception;
13351 ops->check_status = check_status_exception;
13352 ops->print_it = print_it_exception;
13353 ops->print_one = print_one_exception;
13354 ops->print_mention = print_mention_exception;
13355 ops->print_recreate = print_recreate_exception;
2060206e
PA
13356}
13357
3d9434b5
JB
13358/* This module's 'new_objfile' observer. */
13359
13360static void
13361ada_new_objfile_observer (struct objfile *objfile)
13362{
13363 ada_clear_symbol_cache ();
13364}
13365
13366/* This module's 'free_objfile' observer. */
13367
13368static void
13369ada_free_objfile_observer (struct objfile *objfile)
13370{
13371 ada_clear_symbol_cache ();
13372}
13373
6c265988 13374void _initialize_ada_language ();
d2e4a39e 13375void
6c265988 13376_initialize_ada_language ()
14f9c5c9 13377{
2060206e
PA
13378 initialize_ada_catchpoint_ops ();
13379
0743fc83
TT
13380 add_basic_prefix_cmd ("ada", no_class,
13381 _("Prefix command for changing Ada-specific settings."),
13382 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 13383
0743fc83
TT
13384 add_show_prefix_cmd ("ada", no_class,
13385 _("Generic command for showing Ada-specific settings."),
13386 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
13387
13388 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13389 &trust_pad_over_xvs, _("\
590042fc
PW
13390Enable or disable an optimization trusting PAD types over XVS types."), _("\
13391Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13392 _("\
5bf03f13
JB
13393This is related to the encoding used by the GNAT compiler. The debugger\n\
13394should normally trust the contents of PAD types, but certain older versions\n\
13395of GNAT have a bug that sometimes causes the information in the PAD type\n\
13396to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13397work around this bug. It is always safe to turn this option \"off\", but\n\
13398this incurs a slight performance penalty, so it is recommended to NOT change\n\
13399this option to \"off\" unless necessary."),
dda83cd7 13400 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13401
d72413e6
PMR
13402 add_setshow_boolean_cmd ("print-signatures", class_vars,
13403 &print_signatures, _("\
13404Enable or disable the output of formal and return types for functions in the \
590042fc 13405overloads selection menu."), _("\
d72413e6 13406Show whether the output of formal and return types for functions in the \
590042fc 13407overloads selection menu is activated."),
d72413e6
PMR
13408 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13409
9ac4176b
PA
13410 add_catch_command ("exception", _("\
13411Catch Ada exceptions, when raised.\n\
9bf7038b 13412Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
13413Without any argument, stop when any Ada exception is raised.\n\
13414If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13415being raised does not have a handler (and will therefore lead to the task's\n\
13416termination).\n\
13417Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
13418raised is the same as ARG.\n\
13419CONDITION is a boolean expression that is evaluated to see whether the\n\
13420exception should cause a stop."),
9ac4176b 13421 catch_ada_exception_command,
71bed2db 13422 catch_ada_completer,
9ac4176b
PA
13423 CATCH_PERMANENT,
13424 CATCH_TEMPORARY);
9f757bf7
XR
13425
13426 add_catch_command ("handlers", _("\
13427Catch Ada exceptions, when handled.\n\
9bf7038b
TT
13428Usage: catch handlers [ARG] [if CONDITION]\n\
13429Without any argument, stop when any Ada exception is handled.\n\
13430With an argument, catch only exceptions with the given name.\n\
13431CONDITION is a boolean expression that is evaluated to see whether the\n\
13432exception should cause a stop."),
9f757bf7 13433 catch_ada_handlers_command,
dda83cd7 13434 catch_ada_completer,
9f757bf7
XR
13435 CATCH_PERMANENT,
13436 CATCH_TEMPORARY);
9ac4176b
PA
13437 add_catch_command ("assert", _("\
13438Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
13439Usage: catch assert [if CONDITION]\n\
13440CONDITION is a boolean expression that is evaluated to see whether the\n\
13441exception should cause a stop."),
9ac4176b 13442 catch_assert_command,
dda83cd7 13443 NULL,
9ac4176b
PA
13444 CATCH_PERMANENT,
13445 CATCH_TEMPORARY);
13446
6c038f32 13447 varsize_limit = 65536;
3fcded8f
JB
13448 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13449 &varsize_limit, _("\
13450Set the maximum number of bytes allowed in a variable-size object."), _("\
13451Show the maximum number of bytes allowed in a variable-size object."), _("\
13452Attempts to access an object whose size is not a compile-time constant\n\
13453and exceeds this limit will cause an error."),
13454 NULL, NULL, &setlist, &showlist);
6c038f32 13455
778865d3
JB
13456 add_info ("exceptions", info_exceptions_command,
13457 _("\
13458List all Ada exception names.\n\
9bf7038b 13459Usage: info exceptions [REGEXP]\n\
778865d3
JB
13460If a regular expression is passed as an argument, only those matching\n\
13461the regular expression are listed."));
13462
0743fc83
TT
13463 add_basic_prefix_cmd ("ada", class_maintenance,
13464 _("Set Ada maintenance-related variables."),
13465 &maint_set_ada_cmdlist, "maintenance set ada ",
13466 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 13467
0743fc83
TT
13468 add_show_prefix_cmd ("ada", class_maintenance,
13469 _("Show Ada maintenance-related variables."),
13470 &maint_show_ada_cmdlist, "maintenance show ada ",
13471 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
13472
13473 add_setshow_boolean_cmd
13474 ("ignore-descriptive-types", class_maintenance,
13475 &ada_ignore_descriptive_types_p,
13476 _("Set whether descriptive types generated by GNAT should be ignored."),
13477 _("Show whether descriptive types generated by GNAT should be ignored."),
13478 _("\
13479When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13480DWARF attribute."),
13481 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13482
459a2e4c
TT
13483 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
13484 NULL, xcalloc, xfree);
6b69afc4 13485
3d9434b5 13486 /* The ada-lang observers. */
76727919
TT
13487 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
13488 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
13489 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 13490}