]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
* elf64-sparc.c (sparc64_elf_relocate_section): Ignore overflows
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
756fe439 3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
34e8f22d
RE
39
40#include "arm-tdep.h"
26216b98 41#include "gdb/sim-arm.h"
34e8f22d 42
082fc60d
RE
43#include "elf-bfd.h"
44#include "coff/internal.h"
97e03143 45#include "elf/arm.h"
c906108c 46
26216b98
AC
47#include "gdb_assert.h"
48
6529d2dd
AC
49static int arm_debug;
50
2a451106
KB
51/* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
3bb04bdd
AC
72#ifdef SIGCONTEXT_REGISTER_ADDRESS
73#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75#endif
76#else
77#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
79#endif
80
082fc60d
RE
81/* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 83 is used for this purpose.
082fc60d
RE
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
87
88#define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92#define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
afd7eef0
RE
95/* The list of available "set arm ..." and "show arm ..." commands. */
96static struct cmd_list_element *setarmcmdlist = NULL;
97static struct cmd_list_element *showarmcmdlist = NULL;
98
fd50bc42
RE
99/* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101static const char *fp_model_strings[] =
102{
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108};
109
110/* A variable that can be configured by the user. */
111static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112static const char *current_fp_model = "auto";
113
94c30b78 114/* Number of different reg name sets (options). */
afd7eef0 115static int num_disassembly_options;
bc90b915
FN
116
117/* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
94c30b78 120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 121
94c30b78 122/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 123static char * arm_register_name_strings[] =
da59e081
JM
124{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 130 "fps", "cpsr" }; /* 24 25 */
966fbf70 131static char **arm_register_names = arm_register_name_strings;
ed9a39eb 132
afd7eef0
RE
133/* Valid register name styles. */
134static const char **valid_disassembly_styles;
ed9a39eb 135
afd7eef0
RE
136/* Disassembly style to use. Default to "std" register names. */
137static const char *disassembly_style;
94c30b78 138/* Index to that option in the opcodes table. */
da3c6d4a 139static int current_option;
96baa820 140
ed9a39eb 141/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
142 style. */
143static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 144 struct cmd_list_element *);
afd7eef0 145static void set_disassembly_style (void);
ed9a39eb 146
b508a996
RE
147static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
ed9a39eb 151
9b8d791a 152struct arm_prologue_cache
c3b4394c 153{
eb5492fa
DJ
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
c3b4394c
RE
164 int framesize;
165 int frameoffset;
eb5492fa
DJ
166
167 /* The register used to hold the frame pointer for this frame. */
c3b4394c 168 int framereg;
eb5492fa
DJ
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
c3b4394c 172};
ed9a39eb 173
bc90b915
FN
174/* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176#define IS_THUMB_ADDR(addr) ((addr) & 1)
177#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
94c30b78 180/* Set to true if the 32-bit mode is in use. */
c906108c
SS
181
182int arm_apcs_32 = 1;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
c906108c
SS
189
190static int target_is_thumb;
191
ed9a39eb
JM
192/* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
e4a2df64 194 arm_pc_is_thumb. */
c906108c
SS
195
196static int caller_is_thumb;
197
ed9a39eb
JM
198/* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
c906108c 200
34e8f22d 201int
2a451106 202arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 203{
c5aa993b 204 struct minimal_symbol *sym;
c906108c 205
ed9a39eb 206 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
ed9a39eb 210 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
c5aa993b 214 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
215 }
216 else
ed9a39eb
JM
217 {
218 return 0;
219 }
c906108c
SS
220}
221
ed9a39eb
JM
222/* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
c906108c 224
34e8f22d 225int
2a451106 226arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 227{
c5aa993b 228 CORE_ADDR sp = read_sp ();
c906108c 229
dfcd3bfb
JM
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 236 code regions as part of the stack (true for most practical purposes). */
30a4a8e0 237 if (deprecated_pc_in_call_dummy (memaddr))
c906108c
SS
238 return caller_is_thumb;
239 else
240 return 0;
241}
242
181c1381 243/* Remove useless bits from addresses in a running program. */
34e8f22d 244static CORE_ADDR
ed9a39eb 245arm_addr_bits_remove (CORE_ADDR val)
c906108c 246{
a3a2ee65
JT
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 249 else
a3a2ee65 250 return (val & 0x03fffffc);
c906108c
SS
251}
252
181c1381
RE
253/* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
34e8f22d 255static CORE_ADDR
181c1381
RE
256arm_smash_text_address (CORE_ADDR val)
257{
258 return val & ~1;
259}
260
34e8f22d
RE
261/* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266static CORE_ADDR
ed9a39eb 267arm_saved_pc_after_call (struct frame_info *frame)
c906108c 268{
34e8f22d 269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
270}
271
272/* A typical Thumb prologue looks like this:
c5aa993b
JM
273 push {r7, lr}
274 add sp, sp, #-28
275 add r7, sp, #12
c906108c 276 Sometimes the latter instruction may be replaced by:
da59e081
JM
277 mov r7, sp
278
279 or like this:
280 push {r7, lr}
281 mov r7, sp
282 sub sp, #12
283
284 or, on tpcs, like this:
285 sub sp,#16
286 push {r7, lr}
287 (many instructions)
288 mov r7, sp
289 sub sp, #12
290
291 There is always one instruction of three classes:
292 1 - push
293 2 - setting of r7
294 3 - adjusting of sp
295
296 When we have found at least one of each class we are done with the prolog.
297 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 298 */
c906108c
SS
299
300static CORE_ADDR
c7885828 301thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
302{
303 CORE_ADDR current_pc;
da3c6d4a
MS
304 /* findmask:
305 bit 0 - push { rlist }
306 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
307 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
308 */
309 int findmask = 0;
310
94c30b78
MS
311 for (current_pc = pc;
312 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 313 current_pc += 2)
c906108c
SS
314 {
315 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
316
94c30b78 317 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 318 {
94c30b78 319 findmask |= 1; /* push found */
da59e081 320 }
da3c6d4a
MS
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
da59e081 323 {
94c30b78 324 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
325 continue;
326 else
94c30b78 327 findmask |= 4; /* add/sub sp found */
da59e081
JM
328 }
329 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
330 {
94c30b78 331 findmask |= 2; /* setting of r7 found */
da59e081
JM
332 }
333 else if (insn == 0x466f) /* mov r7, sp */
334 {
94c30b78 335 findmask |= 2; /* setting of r7 found */
da59e081 336 }
3d74b771
FF
337 else if (findmask == (4+2+1))
338 {
da3c6d4a
MS
339 /* We have found one of each type of prologue instruction */
340 break;
3d74b771 341 }
da59e081 342 else
94c30b78 343 /* Something in the prolog that we don't care about or some
da3c6d4a 344 instruction from outside the prolog scheduled here for
94c30b78 345 optimization. */
da3c6d4a 346 continue;
c906108c
SS
347 }
348
349 return current_pc;
350}
351
da3c6d4a
MS
352/* Advance the PC across any function entry prologue instructions to
353 reach some "real" code.
34e8f22d
RE
354
355 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 356 prologue:
c906108c 357
c5aa993b
JM
358 mov ip, sp
359 [stmfd sp!, {a1,a2,a3,a4}]
360 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
361 [stfe f7, [sp, #-12]!]
362 [stfe f6, [sp, #-12]!]
363 [stfe f5, [sp, #-12]!]
364 [stfe f4, [sp, #-12]!]
365 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 366
34e8f22d 367static CORE_ADDR
ed9a39eb 368arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
369{
370 unsigned long inst;
371 CORE_ADDR skip_pc;
b8d5e71d 372 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 373 char *func_name;
c906108c
SS
374 struct symtab_and_line sal;
375
848cfffb 376 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 377 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
378 return pc;
379
96baa820 380 /* See what the symbol table says. */
ed9a39eb 381
50f6fb4b 382 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 383 {
50f6fb4b
CV
384 struct symbol *sym;
385
386 /* Found a function. */
176620f1 387 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
388 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
389 {
94c30b78 390 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
391 sal = find_pc_line (func_addr, 0);
392 if ((sal.line != 0) && (sal.end < func_end))
393 return sal.end;
394 }
c906108c
SS
395 }
396
397 /* Check if this is Thumb code. */
398 if (arm_pc_is_thumb (pc))
c7885828 399 return thumb_skip_prologue (pc, func_end);
c906108c
SS
400
401 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 402 by disassembling the instructions. */
c906108c 403
b8d5e71d
MS
404 /* Like arm_scan_prologue, stop no later than pc + 64. */
405 if (func_end == 0 || func_end > pc + 64)
406 func_end = pc + 64;
c906108c 407
b8d5e71d 408 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 409 {
f43845b3 410 inst = read_memory_integer (skip_pc, 4);
f43845b3 411
b8d5e71d
MS
412 /* "mov ip, sp" is no longer a required part of the prologue. */
413 if (inst == 0xe1a0c00d) /* mov ip, sp */
414 continue;
c906108c 415
28cd8767
JG
416 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
417 continue;
418
419 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
420 continue;
421
b8d5e71d
MS
422 /* Some prologues begin with "str lr, [sp, #-4]!". */
423 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
424 continue;
c906108c 425
b8d5e71d
MS
426 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
427 continue;
c906108c 428
b8d5e71d
MS
429 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
430 continue;
11d3b27d 431
b8d5e71d
MS
432 /* Any insns after this point may float into the code, if it makes
433 for better instruction scheduling, so we skip them only if we
434 find them, but still consider the function to be frame-ful. */
f43845b3 435
b8d5e71d
MS
436 /* We may have either one sfmfd instruction here, or several stfe
437 insns, depending on the version of floating point code we
438 support. */
439 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
440 continue;
441
442 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
443 continue;
444
445 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
446 continue;
447
448 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
449 continue;
450
451 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
452 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
453 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
454 continue;
455
456 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
457 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
458 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
459 continue;
460
461 /* Un-recognized instruction; stop scanning. */
462 break;
f43845b3 463 }
c906108c 464
b8d5e71d 465 return skip_pc; /* End of prologue */
c906108c 466}
94c30b78 467
c5aa993b 468/* *INDENT-OFF* */
c906108c
SS
469/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
470 This function decodes a Thumb function prologue to determine:
471 1) the size of the stack frame
472 2) which registers are saved on it
473 3) the offsets of saved regs
474 4) the offset from the stack pointer to the frame pointer
c906108c 475
da59e081
JM
476 A typical Thumb function prologue would create this stack frame
477 (offsets relative to FP)
c906108c
SS
478 old SP -> 24 stack parameters
479 20 LR
480 16 R7
481 R7 -> 0 local variables (16 bytes)
482 SP -> -12 additional stack space (12 bytes)
483 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
484 12 bytes. The frame register is R7.
485
da3c6d4a
MS
486 The comments for thumb_skip_prolog() describe the algorithm we use
487 to detect the end of the prolog. */
c5aa993b
JM
488/* *INDENT-ON* */
489
c906108c 490static void
eb5492fa 491thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
492{
493 CORE_ADDR prologue_start;
494 CORE_ADDR prologue_end;
495 CORE_ADDR current_pc;
94c30b78 496 /* Which register has been copied to register n? */
da3c6d4a
MS
497 int saved_reg[16];
498 /* findmask:
499 bit 0 - push { rlist }
500 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
501 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
502 */
503 int findmask = 0;
c5aa993b 504 int i;
c906108c 505
eb5492fa 506 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
507 {
508 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
509
94c30b78 510 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 511 prologue_end = prev_pc;
c906108c 512 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 513 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
514 }
515 else
da3c6d4a
MS
516 /* We're in the boondocks: allow for
517 16 pushes, an add, and "mv fp,sp". */
518 prologue_end = prologue_start + 40;
c906108c 519
eb5492fa 520 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
521
522 /* Initialize the saved register map. When register H is copied to
523 register L, we will put H in saved_reg[L]. */
524 for (i = 0; i < 16; i++)
525 saved_reg[i] = i;
526
527 /* Search the prologue looking for instructions that set up the
da59e081
JM
528 frame pointer, adjust the stack pointer, and save registers.
529 Do this until all basic prolog instructions are found. */
c906108c 530
9b8d791a 531 cache->framesize = 0;
da59e081
JM
532 for (current_pc = prologue_start;
533 (current_pc < prologue_end) && ((findmask & 7) != 7);
534 current_pc += 2)
c906108c
SS
535 {
536 unsigned short insn;
537 int regno;
538 int offset;
539
540 insn = read_memory_unsigned_integer (current_pc, 2);
541
c5aa993b 542 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 543 {
da59e081 544 int mask;
94c30b78 545 findmask |= 1; /* push found */
c906108c
SS
546 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
547 whether to save LR (R14). */
da59e081 548 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 549
b8d5e71d 550 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 551 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 552 if (mask & (1 << regno))
c5aa993b 553 {
9b8d791a 554 cache->framesize += 4;
eb5492fa 555 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
556 /* Reset saved register map. */
557 saved_reg[regno] = regno;
c906108c
SS
558 }
559 }
da3c6d4a
MS
560 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
561 sub sp, #simm */
c906108c 562 {
b8d5e71d 563 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
564 continue;
565 else
94c30b78 566 findmask |= 4; /* add/sub sp found */
da59e081 567
94c30b78
MS
568 offset = (insn & 0x7f) << 2; /* get scaled offset */
569 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 570 {
9b8d791a 571 cache->frameoffset += offset;
da59e081
JM
572 offset = -offset;
573 }
9b8d791a 574 cache->framesize -= offset;
c906108c
SS
575 }
576 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
577 {
94c30b78 578 findmask |= 2; /* setting of r7 found */
9b8d791a 579 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 580 /* get scaled offset */
9b8d791a 581 cache->frameoffset = (insn & 0xff) << 2;
c906108c 582 }
da59e081 583 else if (insn == 0x466f) /* mov r7, sp */
c906108c 584 {
94c30b78 585 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
586 cache->framereg = THUMB_FP_REGNUM;
587 cache->frameoffset = 0;
34e8f22d 588 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
589 }
590 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
591 {
da3c6d4a 592 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 593 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 594 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
595 }
596 else
da3c6d4a
MS
597 /* Something in the prolog that we don't care about or some
598 instruction from outside the prolog scheduled here for
599 optimization. */
600 continue;
c906108c
SS
601 }
602}
603
ed9a39eb 604/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
605 1) the size of the stack frame
606 2) which registers are saved on it
607 3) the offsets of saved regs
608 4) the offset from the stack pointer to the frame pointer
c906108c
SS
609 This information is stored in the "extra" fields of the frame_info.
610
96baa820
JM
611 There are two basic forms for the ARM prologue. The fixed argument
612 function call will look like:
ed9a39eb
JM
613
614 mov ip, sp
615 stmfd sp!, {fp, ip, lr, pc}
616 sub fp, ip, #4
617 [sub sp, sp, #4]
96baa820 618
c906108c 619 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
620 IP -> 4 (caller's stack)
621 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
622 -4 LR (return address in caller)
623 -8 IP (copy of caller's SP)
624 -12 FP (caller's FP)
625 SP -> -28 Local variables
626
c906108c 627 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
628 28 bytes. The stmfd call can also save any of the vN registers it
629 plans to use, which increases the frame size accordingly.
630
631 Note: The stored PC is 8 off of the STMFD instruction that stored it
632 because the ARM Store instructions always store PC + 8 when you read
633 the PC register.
ed9a39eb 634
96baa820
JM
635 A variable argument function call will look like:
636
ed9a39eb
JM
637 mov ip, sp
638 stmfd sp!, {a1, a2, a3, a4}
639 stmfd sp!, {fp, ip, lr, pc}
640 sub fp, ip, #20
641
96baa820 642 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
643 IP -> 20 (caller's stack)
644 16 A4
645 12 A3
646 8 A2
647 4 A1
648 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
649 -4 LR (return address in caller)
650 -8 IP (copy of caller's SP)
651 -12 FP (caller's FP)
652 SP -> -28 Local variables
96baa820
JM
653
654 The frame size would thus be 48 bytes, and the frame offset would be
655 28 bytes.
656
657 There is another potential complication, which is that the optimizer
658 will try to separate the store of fp in the "stmfd" instruction from
659 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
660 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
661
662 Also, note, the original version of the ARM toolchain claimed that there
663 should be an
664
665 instruction at the end of the prologue. I have never seen GCC produce
666 this, and the ARM docs don't mention it. We still test for it below in
667 case it happens...
ed9a39eb
JM
668
669 */
c906108c
SS
670
671static void
eb5492fa 672arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 673{
28cd8767 674 int regno, sp_offset, fp_offset, ip_offset;
c906108c 675 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 676 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 677
c906108c 678 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
679 cache->framereg = ARM_SP_REGNUM;
680 cache->framesize = 0;
681 cache->frameoffset = 0;
c906108c
SS
682
683 /* Check for Thumb prologue. */
eb5492fa 684 if (arm_pc_is_thumb (prev_pc))
c906108c 685 {
eb5492fa 686 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
687 return;
688 }
689
690 /* Find the function prologue. If we can't find the function in
691 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 692 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 693 {
2a451106
KB
694 /* One way to find the end of the prologue (which works well
695 for unoptimized code) is to do the following:
696
697 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
698
699 if (sal.line == 0)
eb5492fa 700 prologue_end = prev_pc;
2a451106
KB
701 else if (sal.end < prologue_end)
702 prologue_end = sal.end;
703
704 This mechanism is very accurate so long as the optimizer
705 doesn't move any instructions from the function body into the
706 prologue. If this happens, sal.end will be the last
707 instruction in the first hunk of prologue code just before
708 the first instruction that the scheduler has moved from
709 the body to the prologue.
710
711 In order to make sure that we scan all of the prologue
712 instructions, we use a slightly less accurate mechanism which
713 may scan more than necessary. To help compensate for this
714 lack of accuracy, the prologue scanning loop below contains
715 several clauses which'll cause the loop to terminate early if
716 an implausible prologue instruction is encountered.
717
718 The expression
719
720 prologue_start + 64
721
722 is a suitable endpoint since it accounts for the largest
723 possible prologue plus up to five instructions inserted by
94c30b78 724 the scheduler. */
2a451106
KB
725
726 if (prologue_end > prologue_start + 64)
727 {
94c30b78 728 prologue_end = prologue_start + 64; /* See above. */
2a451106 729 }
c906108c
SS
730 }
731 else
732 {
eb5492fa
DJ
733 /* We have no symbol information. Our only option is to assume this
734 function has a standard stack frame and the normal frame register.
735 Then, we can find the value of our frame pointer on entrance to
736 the callee (or at the present moment if this is the innermost frame).
737 The value stored there should be the address of the stmfd + 8. */
738 CORE_ADDR frame_loc;
739 LONGEST return_value;
740
741 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
742 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
743 return;
744 else
745 {
746 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 747 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 748 }
c906108c
SS
749 }
750
eb5492fa
DJ
751 if (prev_pc < prologue_end)
752 prologue_end = prev_pc;
753
c906108c 754 /* Now search the prologue looking for instructions that set up the
96baa820 755 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 756
96baa820
JM
757 Be careful, however, and if it doesn't look like a prologue,
758 don't try to scan it. If, for instance, a frameless function
759 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 760 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
761 and other operations that rely on a knowledge of the stack
762 traceback.
763
764 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 765 if we don't see this as the first insn, we will stop.
c906108c 766
f43845b3
MS
767 [Note: This doesn't seem to be true any longer, so it's now an
768 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 769
f43845b3
MS
770 [Note further: The "mov ip,sp" only seems to be missing in
771 frameless functions at optimization level "-O2" or above,
772 in which case it is often (but not always) replaced by
b8d5e71d 773 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 774
28cd8767 775 sp_offset = fp_offset = ip_offset = 0;
f43845b3 776
94c30b78
MS
777 for (current_pc = prologue_start;
778 current_pc < prologue_end;
f43845b3 779 current_pc += 4)
96baa820 780 {
d4473757
KB
781 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
782
94c30b78 783 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 784 {
28cd8767
JG
785 ip_offset = 0;
786 continue;
787 }
788 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
789 {
790 unsigned imm = insn & 0xff; /* immediate value */
791 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
792 imm = (imm >> rot) | (imm << (32 - rot));
793 ip_offset = imm;
794 continue;
795 }
796 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
797 {
798 unsigned imm = insn & 0xff; /* immediate value */
799 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
800 imm = (imm >> rot) | (imm << (32 - rot));
801 ip_offset = -imm;
f43845b3
MS
802 continue;
803 }
94c30b78 804 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 805 {
e28a332c
JG
806 sp_offset -= 4;
807 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
808 continue;
809 }
810 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
811 /* stmfd sp!, {..., fp, ip, lr, pc}
812 or
813 stmfd sp!, {a1, a2, a3, a4} */
c906108c 814 {
d4473757 815 int mask = insn & 0xffff;
ed9a39eb 816
94c30b78 817 /* Calculate offsets of saved registers. */
34e8f22d 818 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
819 if (mask & (1 << regno))
820 {
821 sp_offset -= 4;
eb5492fa 822 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
823 }
824 }
b8d5e71d
MS
825 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
826 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
827 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
828 {
829 /* No need to add this to saved_regs -- it's just an arg reg. */
830 continue;
831 }
832 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
833 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
834 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
835 {
836 /* No need to add this to saved_regs -- it's just an arg reg. */
837 continue;
838 }
d4473757
KB
839 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
840 {
94c30b78
MS
841 unsigned imm = insn & 0xff; /* immediate value */
842 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 843 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 844 fp_offset = -imm + ip_offset;
9b8d791a 845 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
846 }
847 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
848 {
94c30b78
MS
849 unsigned imm = insn & 0xff; /* immediate value */
850 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
851 imm = (imm >> rot) | (imm << (32 - rot));
852 sp_offset -= imm;
853 }
854 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
855 {
856 sp_offset -= 12;
34e8f22d 857 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 858 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
859 }
860 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
861 {
862 int n_saved_fp_regs;
863 unsigned int fp_start_reg, fp_bound_reg;
864
94c30b78 865 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 866 {
d4473757
KB
867 if ((insn & 0x40000) == 0x40000) /* N1 is set */
868 n_saved_fp_regs = 3;
869 else
870 n_saved_fp_regs = 1;
96baa820 871 }
d4473757 872 else
96baa820 873 {
d4473757
KB
874 if ((insn & 0x40000) == 0x40000) /* N1 is set */
875 n_saved_fp_regs = 2;
876 else
877 n_saved_fp_regs = 4;
96baa820 878 }
d4473757 879
34e8f22d 880 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
881 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
882 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
883 {
884 sp_offset -= 12;
eb5492fa 885 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 886 }
c906108c 887 }
d4473757 888 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 889 break; /* Condition not true, exit early */
b8d5e71d 890 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 891 break; /* Don't scan past a block load */
d4473757
KB
892 else
893 /* The optimizer might shove anything into the prologue,
94c30b78 894 so we just skip what we don't recognize. */
d4473757 895 continue;
c906108c
SS
896 }
897
94c30b78
MS
898 /* The frame size is just the negative of the offset (from the
899 original SP) of the last thing thing we pushed on the stack.
900 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
901 cache->framesize = -sp_offset;
902 if (cache->framereg == ARM_FP_REGNUM)
903 cache->frameoffset = fp_offset - sp_offset;
d4473757 904 else
9b8d791a 905 cache->frameoffset = 0;
c906108c
SS
906}
907
eb5492fa
DJ
908static struct arm_prologue_cache *
909arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 910{
eb5492fa
DJ
911 int reg;
912 struct arm_prologue_cache *cache;
913 CORE_ADDR unwound_fp;
c5aa993b 914
eb5492fa
DJ
915 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
916 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 917
eb5492fa 918 arm_scan_prologue (next_frame, cache);
848cfffb 919
eb5492fa
DJ
920 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
921 if (unwound_fp == 0)
922 return cache;
c906108c 923
eb5492fa 924 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 925
eb5492fa
DJ
926 /* Calculate actual addresses of saved registers using offsets
927 determined by arm_scan_prologue. */
928 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 929 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
930 cache->saved_regs[reg].addr += cache->prev_sp;
931
932 return cache;
c906108c
SS
933}
934
eb5492fa
DJ
935/* Our frame ID for a normal frame is the current function's starting PC
936 and the caller's SP when we were called. */
c906108c 937
148754e5 938static void
eb5492fa
DJ
939arm_prologue_this_id (struct frame_info *next_frame,
940 void **this_cache,
941 struct frame_id *this_id)
c906108c 942{
eb5492fa
DJ
943 struct arm_prologue_cache *cache;
944 struct frame_id id;
945 CORE_ADDR func;
f079148d 946
eb5492fa
DJ
947 if (*this_cache == NULL)
948 *this_cache = arm_make_prologue_cache (next_frame);
949 cache = *this_cache;
2a451106 950
eb5492fa 951 func = frame_func_unwind (next_frame);
2a451106 952
eb5492fa
DJ
953 /* This is meant to halt the backtrace at "_start". Make sure we
954 don't halt it at a generic dummy frame. */
9e815ec2 955 if (func <= LOWEST_PC)
eb5492fa 956 return;
5a203e44 957
eb5492fa
DJ
958 /* If we've hit a wall, stop. */
959 if (cache->prev_sp == 0)
960 return;
24de872b 961
eb5492fa 962 id = frame_id_build (cache->prev_sp, func);
eb5492fa 963 *this_id = id;
c906108c
SS
964}
965
eb5492fa
DJ
966static void
967arm_prologue_prev_register (struct frame_info *next_frame,
968 void **this_cache,
969 int prev_regnum,
970 int *optimized,
971 enum lval_type *lvalp,
972 CORE_ADDR *addrp,
973 int *realnump,
974 void *valuep)
24de872b
DJ
975{
976 struct arm_prologue_cache *cache;
977
eb5492fa
DJ
978 if (*this_cache == NULL)
979 *this_cache = arm_make_prologue_cache (next_frame);
980 cache = *this_cache;
24de872b 981
eb5492fa
DJ
982 /* If we are asked to unwind the PC, then we need to return the LR
983 instead. The saved value of PC points into this frame's
984 prologue, not the next frame's resume location. */
985 if (prev_regnum == ARM_PC_REGNUM)
986 prev_regnum = ARM_LR_REGNUM;
24de872b 987
eb5492fa
DJ
988 /* SP is generally not saved to the stack, but this frame is
989 identified by NEXT_FRAME's stack pointer at the time of the call.
990 The value was already reconstructed into PREV_SP. */
991 if (prev_regnum == ARM_SP_REGNUM)
992 {
993 *lvalp = not_lval;
994 if (valuep)
995 store_unsigned_integer (valuep, 4, cache->prev_sp);
996 return;
997 }
998
1f67027d
AC
999 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1000 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
1001}
1002
1003struct frame_unwind arm_prologue_unwind = {
1004 NORMAL_FRAME,
1005 arm_prologue_this_id,
1006 arm_prologue_prev_register
1007};
1008
1009static const struct frame_unwind *
1010arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1011{
1012 return &arm_prologue_unwind;
24de872b
DJ
1013}
1014
1015static CORE_ADDR
eb5492fa 1016arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1017{
1018 struct arm_prologue_cache *cache;
1019
eb5492fa
DJ
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
1023
1024 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1025}
1026
eb5492fa
DJ
1027struct frame_base arm_normal_base = {
1028 &arm_prologue_unwind,
1029 arm_normal_frame_base,
1030 arm_normal_frame_base,
1031 arm_normal_frame_base
1032};
1033
1034static struct arm_prologue_cache *
1035arm_make_sigtramp_cache (struct frame_info *next_frame)
24de872b
DJ
1036{
1037 struct arm_prologue_cache *cache;
eb5492fa
DJ
1038 int reg;
1039
1040 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
24de872b 1041
eb5492fa 1042 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
24de872b 1043
eb5492fa 1044 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
24de872b 1045
eb5492fa
DJ
1046 for (reg = 0; reg < NUM_REGS; reg++)
1047 cache->saved_regs[reg].addr
1048 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1049 frame_pc_unwind (next_frame), reg);
24de872b 1050
eb5492fa
DJ
1051 /* FIXME: What about thumb mode? */
1052 cache->framereg = ARM_SP_REGNUM;
1053 cache->prev_sp
1054 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
7a5ea0d4 1055 register_size (current_gdbarch, cache->framereg));
eb5492fa
DJ
1056
1057 return cache;
24de872b 1058}
c906108c 1059
eb5492fa
DJ
1060static void
1061arm_sigtramp_this_id (struct frame_info *next_frame,
1062 void **this_cache,
1063 struct frame_id *this_id)
1064{
1065 struct arm_prologue_cache *cache;
c906108c 1066
eb5492fa
DJ
1067 if (*this_cache == NULL)
1068 *this_cache = arm_make_sigtramp_cache (next_frame);
1069 cache = *this_cache;
c906108c 1070
eb5492fa
DJ
1071 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1072 the sigtramp frame; the PC should be the beginning of the trampoline. */
1073 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1074}
1075
1076static void
1077arm_sigtramp_prev_register (struct frame_info *next_frame,
1078 void **this_cache,
1079 int prev_regnum,
1080 int *optimized,
1081 enum lval_type *lvalp,
1082 CORE_ADDR *addrp,
1083 int *realnump,
1084 void *valuep)
c906108c 1085{
eb5492fa 1086 struct arm_prologue_cache *cache;
848cfffb 1087
eb5492fa
DJ
1088 if (*this_cache == NULL)
1089 *this_cache = arm_make_sigtramp_cache (next_frame);
1090 cache = *this_cache;
1091
1f67027d
AC
1092 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1093 optimized, lvalp, addrp, realnump, valuep);
c906108c
SS
1094}
1095
eb5492fa
DJ
1096struct frame_unwind arm_sigtramp_unwind = {
1097 SIGTRAMP_FRAME,
1098 arm_sigtramp_this_id,
1099 arm_sigtramp_prev_register
1100};
c906108c 1101
eb5492fa
DJ
1102static const struct frame_unwind *
1103arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
c906108c 1104{
eb5492fa 1105 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
0b281939 1106 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
eb5492fa
DJ
1107 return &arm_sigtramp_unwind;
1108
1109 return NULL;
c906108c
SS
1110}
1111
eb5492fa
DJ
1112/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1113 dummy frame. The frame ID's base needs to match the TOS value
1114 saved by save_dummy_frame_tos() and returned from
1115 arm_push_dummy_call, and the PC needs to match the dummy frame's
1116 breakpoint. */
c906108c 1117
eb5492fa
DJ
1118static struct frame_id
1119arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1120{
eb5492fa
DJ
1121 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1122 frame_pc_unwind (next_frame));
1123}
c3b4394c 1124
eb5492fa
DJ
1125/* Given THIS_FRAME, find the previous frame's resume PC (which will
1126 be used to construct the previous frame's ID, after looking up the
1127 containing function). */
c3b4394c 1128
eb5492fa
DJ
1129static CORE_ADDR
1130arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1131{
1132 CORE_ADDR pc;
1133 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1134 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1135}
1136
1137static CORE_ADDR
1138arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1139{
1140 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1141}
1142
2dd604e7
RE
1143/* When arguments must be pushed onto the stack, they go on in reverse
1144 order. The code below implements a FILO (stack) to do this. */
1145
1146struct stack_item
1147{
1148 int len;
1149 struct stack_item *prev;
1150 void *data;
1151};
1152
1153static struct stack_item *
1154push_stack_item (struct stack_item *prev, void *contents, int len)
1155{
1156 struct stack_item *si;
1157 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1158 si->data = xmalloc (len);
2dd604e7
RE
1159 si->len = len;
1160 si->prev = prev;
1161 memcpy (si->data, contents, len);
1162 return si;
1163}
1164
1165static struct stack_item *
1166pop_stack_item (struct stack_item *si)
1167{
1168 struct stack_item *dead = si;
1169 si = si->prev;
1170 xfree (dead->data);
1171 xfree (dead);
1172 return si;
1173}
1174
1175/* We currently only support passing parameters in integer registers. This
1176 conforms with GCC's default model. Several other variants exist and
1177 we should probably support some of them based on the selected ABI. */
1178
1179static CORE_ADDR
7d9b040b 1180arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1181 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1182 struct value **args, CORE_ADDR sp, int struct_return,
1183 CORE_ADDR struct_addr)
2dd604e7
RE
1184{
1185 int argnum;
1186 int argreg;
1187 int nstack;
1188 struct stack_item *si = NULL;
1189
6a65450a
AC
1190 /* Set the return address. For the ARM, the return breakpoint is
1191 always at BP_ADDR. */
2dd604e7 1192 /* XXX Fix for Thumb. */
6a65450a 1193 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1194
1195 /* Walk through the list of args and determine how large a temporary
1196 stack is required. Need to take care here as structs may be
1197 passed on the stack, and we have to to push them. */
1198 nstack = 0;
1199
1200 argreg = ARM_A1_REGNUM;
1201 nstack = 0;
1202
1203 /* Some platforms require a double-word aligned stack. Make sure sp
1204 is correctly aligned before we start. We always do this even if
1205 it isn't really needed -- it can never hurt things. */
b1e29e33 1206 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1207
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
1225 char *val;
1226
df407dfe 1227 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1228 len = TYPE_LENGTH (arg_type);
1229 target_type = TYPE_TARGET_TYPE (arg_type);
1230 typecode = TYPE_CODE (arg_type);
1231 val = VALUE_CONTENTS (args[argnum]);
1232
1233 /* If the argument is a pointer to a function, and it is a
1234 Thumb function, create a LOCAL copy of the value and set
1235 the THUMB bit in it. */
1236 if (TYPE_CODE_PTR == typecode
1237 && target_type != NULL
1238 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1239 {
7c0b4a20 1240 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1241 if (arm_pc_is_thumb (regval))
1242 {
1243 val = alloca (len);
fbd9dcd3 1244 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1245 }
1246 }
1247
1248 /* Copy the argument to general registers or the stack in
1249 register-sized pieces. Large arguments are split between
1250 registers and stack. */
1251 while (len > 0)
1252 {
b1e29e33 1253 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1254
1255 if (argreg <= ARM_LAST_ARG_REGNUM)
1256 {
1257 /* The argument is being passed in a general purpose
1258 register. */
7c0b4a20 1259 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1260 if (arm_debug)
1261 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1262 argnum, REGISTER_NAME (argreg),
b1e29e33 1263 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1264 regcache_cooked_write_unsigned (regcache, argreg, regval);
1265 argreg++;
1266 }
1267 else
1268 {
1269 /* Push the arguments onto the stack. */
1270 if (arm_debug)
1271 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1272 argnum, nstack);
b1e29e33
AC
1273 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1274 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1275 }
1276
1277 len -= partial_len;
1278 val += partial_len;
1279 }
1280 }
1281 /* If we have an odd number of words to push, then decrement the stack
1282 by one word now, so first stack argument will be dword aligned. */
1283 if (nstack & 4)
1284 sp -= 4;
1285
1286 while (si)
1287 {
1288 sp -= si->len;
1289 write_memory (sp, si->data, si->len);
1290 si = pop_stack_item (si);
1291 }
1292
1293 /* Finally, update teh SP register. */
1294 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1295
1296 return sp;
1297}
1298
c906108c 1299static void
ed9a39eb 1300print_fpu_flags (int flags)
c906108c 1301{
c5aa993b
JM
1302 if (flags & (1 << 0))
1303 fputs ("IVO ", stdout);
1304 if (flags & (1 << 1))
1305 fputs ("DVZ ", stdout);
1306 if (flags & (1 << 2))
1307 fputs ("OFL ", stdout);
1308 if (flags & (1 << 3))
1309 fputs ("UFL ", stdout);
1310 if (flags & (1 << 4))
1311 fputs ("INX ", stdout);
1312 putchar ('\n');
c906108c
SS
1313}
1314
5e74b15c
RE
1315/* Print interesting information about the floating point processor
1316 (if present) or emulator. */
34e8f22d 1317static void
d855c300 1318arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1319 struct frame_info *frame, const char *args)
c906108c 1320{
52f0bd74 1321 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1322 int type;
1323
1324 type = (status >> 24) & 127;
1325 printf ("%s FPU type %d\n",
ed9a39eb 1326 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1327 type);
1328 fputs ("mask: ", stdout);
1329 print_fpu_flags (status >> 16);
1330 fputs ("flags: ", stdout);
1331 print_fpu_flags (status);
c906108c
SS
1332}
1333
34e8f22d
RE
1334/* Return the GDB type object for the "standard" data type of data in
1335 register N. */
1336
1337static struct type *
7a5ea0d4 1338arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1339{
34e8f22d 1340 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1341 {
d7449b42 1342 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1343 return builtin_type_arm_ext_big;
1344 else
1345 return builtin_type_arm_ext_littlebyte_bigword;
1346 }
1347 else
1348 return builtin_type_int32;
1349}
1350
34e8f22d
RE
1351/* Index within `registers' of the first byte of the space for
1352 register N. */
1353
1354static int
1355arm_register_byte (int regnum)
1356{
1357 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1358 return regnum * INT_REGISTER_SIZE;
34e8f22d 1359 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1360 return (NUM_GREGS * INT_REGISTER_SIZE
1361 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1362 else
7a5ea0d4
DJ
1363 return (NUM_GREGS * INT_REGISTER_SIZE
1364 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1365 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1366}
1367
26216b98
AC
1368/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1369static int
1370arm_register_sim_regno (int regnum)
1371{
1372 int reg = regnum;
1373 gdb_assert (reg >= 0 && reg < NUM_REGS);
1374
1375 if (reg < NUM_GREGS)
1376 return SIM_ARM_R0_REGNUM + reg;
1377 reg -= NUM_GREGS;
1378
1379 if (reg < NUM_FREGS)
1380 return SIM_ARM_FP0_REGNUM + reg;
1381 reg -= NUM_FREGS;
1382
1383 if (reg < NUM_SREGS)
1384 return SIM_ARM_FPS_REGNUM + reg;
1385 reg -= NUM_SREGS;
1386
1387 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1388}
34e8f22d 1389
a37b3cc0
AC
1390/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1391 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1392 It is thought that this is is the floating-point register format on
1393 little-endian systems. */
c906108c 1394
ed9a39eb 1395static void
b508a996
RE
1396convert_from_extended (const struct floatformat *fmt, const void *ptr,
1397 void *dbl)
c906108c 1398{
a37b3cc0 1399 DOUBLEST d;
d7449b42 1400 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1401 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1402 else
1403 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1404 ptr, &d);
b508a996 1405 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1406}
1407
34e8f22d 1408static void
b508a996 1409convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1410{
a37b3cc0 1411 DOUBLEST d;
b508a996 1412 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1413 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1414 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1415 else
1416 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1417 &d, dbl);
c906108c 1418}
ed9a39eb 1419
c906108c 1420static int
ed9a39eb 1421condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1422{
1423 if (cond == INST_AL || cond == INST_NV)
1424 return 1;
1425
1426 switch (cond)
1427 {
1428 case INST_EQ:
1429 return ((status_reg & FLAG_Z) != 0);
1430 case INST_NE:
1431 return ((status_reg & FLAG_Z) == 0);
1432 case INST_CS:
1433 return ((status_reg & FLAG_C) != 0);
1434 case INST_CC:
1435 return ((status_reg & FLAG_C) == 0);
1436 case INST_MI:
1437 return ((status_reg & FLAG_N) != 0);
1438 case INST_PL:
1439 return ((status_reg & FLAG_N) == 0);
1440 case INST_VS:
1441 return ((status_reg & FLAG_V) != 0);
1442 case INST_VC:
1443 return ((status_reg & FLAG_V) == 0);
1444 case INST_HI:
1445 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1446 case INST_LS:
1447 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1448 case INST_GE:
1449 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1450 case INST_LT:
1451 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1452 case INST_GT:
1453 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1454 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1455 case INST_LE:
1456 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1457 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1458 }
1459 return 1;
1460}
1461
9512d7fd 1462/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1463#define submask(x) ((1L << ((x) + 1)) - 1)
1464#define bit(obj,st) (((obj) >> (st)) & 1)
1465#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1466#define sbits(obj,st,fn) \
1467 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1468#define BranchDest(addr,instr) \
1469 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1470#define ARM_PC_32 1
1471
1472static unsigned long
ed9a39eb
JM
1473shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1474 unsigned long status_reg)
c906108c
SS
1475{
1476 unsigned long res, shift;
1477 int rm = bits (inst, 0, 3);
1478 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1479
1480 if (bit (inst, 4))
c906108c
SS
1481 {
1482 int rs = bits (inst, 8, 11);
1483 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1484 }
1485 else
1486 shift = bits (inst, 7, 11);
c5aa993b
JM
1487
1488 res = (rm == 15
c906108c 1489 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1490 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1491 : read_register (rm));
1492
1493 switch (shifttype)
1494 {
c5aa993b 1495 case 0: /* LSL */
c906108c
SS
1496 res = shift >= 32 ? 0 : res << shift;
1497 break;
c5aa993b
JM
1498
1499 case 1: /* LSR */
c906108c
SS
1500 res = shift >= 32 ? 0 : res >> shift;
1501 break;
1502
c5aa993b
JM
1503 case 2: /* ASR */
1504 if (shift >= 32)
1505 shift = 31;
c906108c
SS
1506 res = ((res & 0x80000000L)
1507 ? ~((~res) >> shift) : res >> shift);
1508 break;
1509
c5aa993b 1510 case 3: /* ROR/RRX */
c906108c
SS
1511 shift &= 31;
1512 if (shift == 0)
1513 res = (res >> 1) | (carry ? 0x80000000L : 0);
1514 else
c5aa993b 1515 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1516 break;
1517 }
1518
1519 return res & 0xffffffff;
1520}
1521
c906108c
SS
1522/* Return number of 1-bits in VAL. */
1523
1524static int
ed9a39eb 1525bitcount (unsigned long val)
c906108c
SS
1526{
1527 int nbits;
1528 for (nbits = 0; val != 0; nbits++)
c5aa993b 1529 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1530 return nbits;
1531}
1532
34e8f22d 1533CORE_ADDR
ed9a39eb 1534thumb_get_next_pc (CORE_ADDR pc)
c906108c 1535{
c5aa993b 1536 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1537 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1538 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1539 unsigned long offset;
1540
1541 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1542 {
1543 CORE_ADDR sp;
1544
1545 /* Fetch the saved PC from the stack. It's stored above
1546 all of the other registers. */
b1e29e33 1547 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1548 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1549 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1550 nextpc = ADDR_BITS_REMOVE (nextpc);
1551 if (nextpc == pc)
1552 error ("Infinite loop detected");
1553 }
1554 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1555 {
34e8f22d 1556 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1557 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1558 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1559 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1560 }
1561 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1562 {
1563 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1564 }
aa17d93e 1565 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1566 {
1567 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1568 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1569 nextpc = pc_val + offset;
aa17d93e
DJ
1570 /* For BLX make sure to clear the low bits. */
1571 if (bits (inst2, 11, 12) == 1)
1572 nextpc = nextpc & 0xfffffffc;
c906108c 1573 }
aa17d93e 1574 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1575 {
1576 if (bits (inst1, 3, 6) == 0x0f)
1577 nextpc = pc_val;
1578 else
1579 nextpc = read_register (bits (inst1, 3, 6));
1580
1581 nextpc = ADDR_BITS_REMOVE (nextpc);
1582 if (nextpc == pc)
1583 error ("Infinite loop detected");
1584 }
c906108c
SS
1585
1586 return nextpc;
1587}
1588
34e8f22d 1589CORE_ADDR
ed9a39eb 1590arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1591{
1592 unsigned long pc_val;
1593 unsigned long this_instr;
1594 unsigned long status;
1595 CORE_ADDR nextpc;
1596
1597 if (arm_pc_is_thumb (pc))
1598 return thumb_get_next_pc (pc);
1599
1600 pc_val = (unsigned long) pc;
1601 this_instr = read_memory_integer (pc, 4);
34e8f22d 1602 status = read_register (ARM_PS_REGNUM);
c5aa993b 1603 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1604
1605 if (condition_true (bits (this_instr, 28, 31), status))
1606 {
1607 switch (bits (this_instr, 24, 27))
1608 {
c5aa993b 1609 case 0x0:
94c30b78 1610 case 0x1: /* data processing */
c5aa993b
JM
1611 case 0x2:
1612 case 0x3:
c906108c
SS
1613 {
1614 unsigned long operand1, operand2, result = 0;
1615 unsigned long rn;
1616 int c;
c5aa993b 1617
c906108c
SS
1618 if (bits (this_instr, 12, 15) != 15)
1619 break;
1620
1621 if (bits (this_instr, 22, 25) == 0
c5aa993b 1622 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1623 error ("Illegal update to pc in instruction");
1624
9498281f
DJ
1625 /* BX <reg>, BLX <reg> */
1626 if (bits (this_instr, 4, 28) == 0x12fff1
1627 || bits (this_instr, 4, 28) == 0x12fff3)
1628 {
1629 rn = bits (this_instr, 0, 3);
1630 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1631 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1632
1633 if (nextpc == pc)
1634 error ("Infinite loop detected");
1635
1636 return nextpc;
1637 }
1638
c906108c
SS
1639 /* Multiply into PC */
1640 c = (status & FLAG_C) ? 1 : 0;
1641 rn = bits (this_instr, 16, 19);
1642 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1643
c906108c
SS
1644 if (bit (this_instr, 25))
1645 {
1646 unsigned long immval = bits (this_instr, 0, 7);
1647 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1648 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1649 & 0xffffffff;
c906108c 1650 }
c5aa993b 1651 else /* operand 2 is a shifted register */
c906108c 1652 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1653
c906108c
SS
1654 switch (bits (this_instr, 21, 24))
1655 {
c5aa993b 1656 case 0x0: /*and */
c906108c
SS
1657 result = operand1 & operand2;
1658 break;
1659
c5aa993b 1660 case 0x1: /*eor */
c906108c
SS
1661 result = operand1 ^ operand2;
1662 break;
1663
c5aa993b 1664 case 0x2: /*sub */
c906108c
SS
1665 result = operand1 - operand2;
1666 break;
1667
c5aa993b 1668 case 0x3: /*rsb */
c906108c
SS
1669 result = operand2 - operand1;
1670 break;
1671
c5aa993b 1672 case 0x4: /*add */
c906108c
SS
1673 result = operand1 + operand2;
1674 break;
1675
c5aa993b 1676 case 0x5: /*adc */
c906108c
SS
1677 result = operand1 + operand2 + c;
1678 break;
1679
c5aa993b 1680 case 0x6: /*sbc */
c906108c
SS
1681 result = operand1 - operand2 + c;
1682 break;
1683
c5aa993b 1684 case 0x7: /*rsc */
c906108c
SS
1685 result = operand2 - operand1 + c;
1686 break;
1687
c5aa993b
JM
1688 case 0x8:
1689 case 0x9:
1690 case 0xa:
1691 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1692 result = (unsigned long) nextpc;
1693 break;
1694
c5aa993b 1695 case 0xc: /*orr */
c906108c
SS
1696 result = operand1 | operand2;
1697 break;
1698
c5aa993b 1699 case 0xd: /*mov */
c906108c
SS
1700 /* Always step into a function. */
1701 result = operand2;
c5aa993b 1702 break;
c906108c 1703
c5aa993b 1704 case 0xe: /*bic */
c906108c
SS
1705 result = operand1 & ~operand2;
1706 break;
1707
c5aa993b 1708 case 0xf: /*mvn */
c906108c
SS
1709 result = ~operand2;
1710 break;
1711 }
1712 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1713
1714 if (nextpc == pc)
1715 error ("Infinite loop detected");
1716 break;
1717 }
c5aa993b
JM
1718
1719 case 0x4:
1720 case 0x5: /* data transfer */
1721 case 0x6:
1722 case 0x7:
c906108c
SS
1723 if (bit (this_instr, 20))
1724 {
1725 /* load */
1726 if (bits (this_instr, 12, 15) == 15)
1727 {
1728 /* rd == pc */
c5aa993b 1729 unsigned long rn;
c906108c 1730 unsigned long base;
c5aa993b 1731
c906108c
SS
1732 if (bit (this_instr, 22))
1733 error ("Illegal update to pc in instruction");
1734
1735 /* byte write to PC */
1736 rn = bits (this_instr, 16, 19);
1737 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1738 if (bit (this_instr, 24))
1739 {
1740 /* pre-indexed */
1741 int c = (status & FLAG_C) ? 1 : 0;
1742 unsigned long offset =
c5aa993b 1743 (bit (this_instr, 25)
ed9a39eb 1744 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1745 : bits (this_instr, 0, 11));
c906108c
SS
1746
1747 if (bit (this_instr, 23))
1748 base += offset;
1749 else
1750 base -= offset;
1751 }
c5aa993b 1752 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1753 4);
c5aa993b 1754
c906108c
SS
1755 nextpc = ADDR_BITS_REMOVE (nextpc);
1756
1757 if (nextpc == pc)
1758 error ("Infinite loop detected");
1759 }
1760 }
1761 break;
c5aa993b
JM
1762
1763 case 0x8:
1764 case 0x9: /* block transfer */
c906108c
SS
1765 if (bit (this_instr, 20))
1766 {
1767 /* LDM */
1768 if (bit (this_instr, 15))
1769 {
1770 /* loading pc */
1771 int offset = 0;
1772
1773 if (bit (this_instr, 23))
1774 {
1775 /* up */
1776 unsigned long reglist = bits (this_instr, 0, 14);
1777 offset = bitcount (reglist) * 4;
c5aa993b 1778 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1779 offset += 4;
1780 }
1781 else if (bit (this_instr, 24))
1782 offset = -4;
c5aa993b 1783
c906108c 1784 {
c5aa993b
JM
1785 unsigned long rn_val =
1786 read_register (bits (this_instr, 16, 19));
c906108c
SS
1787 nextpc =
1788 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1789 + offset),
c906108c
SS
1790 4);
1791 }
1792 nextpc = ADDR_BITS_REMOVE (nextpc);
1793 if (nextpc == pc)
1794 error ("Infinite loop detected");
1795 }
1796 }
1797 break;
c5aa993b
JM
1798
1799 case 0xb: /* branch & link */
1800 case 0xa: /* branch */
c906108c
SS
1801 {
1802 nextpc = BranchDest (pc, this_instr);
1803
9498281f
DJ
1804 /* BLX */
1805 if (bits (this_instr, 28, 31) == INST_NV)
1806 nextpc |= bit (this_instr, 24) << 1;
1807
c906108c
SS
1808 nextpc = ADDR_BITS_REMOVE (nextpc);
1809 if (nextpc == pc)
1810 error ("Infinite loop detected");
1811 break;
1812 }
c5aa993b
JM
1813
1814 case 0xc:
1815 case 0xd:
1816 case 0xe: /* coproc ops */
1817 case 0xf: /* SWI */
c906108c
SS
1818 break;
1819
1820 default:
97e03143 1821 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1822 return (pc);
1823 }
1824 }
1825
1826 return nextpc;
1827}
1828
9512d7fd
FN
1829/* single_step() is called just before we want to resume the inferior,
1830 if we want to single-step it but there is no hardware or kernel
1831 single-step support. We find the target of the coming instruction
1832 and breakpoint it.
1833
94c30b78
MS
1834 single_step() is also called just after the inferior stops. If we
1835 had set up a simulated single-step, we undo our damage. */
9512d7fd 1836
34e8f22d
RE
1837static void
1838arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1839{
b8d5e71d 1840 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1841 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1842
1843 if (insert_bpt)
1844 {
34e8f22d 1845 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1846 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1847 }
1848 else
80fcf3f0 1849 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1850}
9512d7fd 1851
c906108c
SS
1852#include "bfd-in2.h"
1853#include "libcoff.h"
1854
1855static int
ed9a39eb 1856gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1857{
1858 if (arm_pc_is_thumb (memaddr))
1859 {
c5aa993b
JM
1860 static asymbol *asym;
1861 static combined_entry_type ce;
1862 static struct coff_symbol_struct csym;
27cddce2 1863 static struct bfd fake_bfd;
c5aa993b 1864 static bfd_target fake_target;
c906108c
SS
1865
1866 if (csym.native == NULL)
1867 {
da3c6d4a
MS
1868 /* Create a fake symbol vector containing a Thumb symbol.
1869 This is solely so that the code in print_insn_little_arm()
1870 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1871 the presence of a Thumb symbol and switch to decoding
1872 Thumb instructions. */
c5aa993b
JM
1873
1874 fake_target.flavour = bfd_target_coff_flavour;
1875 fake_bfd.xvec = &fake_target;
c906108c 1876 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1877 csym.native = &ce;
1878 csym.symbol.the_bfd = &fake_bfd;
1879 csym.symbol.name = "fake";
1880 asym = (asymbol *) & csym;
c906108c 1881 }
c5aa993b 1882
c906108c 1883 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1884 info->symbols = &asym;
c906108c
SS
1885 }
1886 else
1887 info->symbols = NULL;
c5aa993b 1888
d7449b42 1889 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1890 return print_insn_big_arm (memaddr, info);
1891 else
1892 return print_insn_little_arm (memaddr, info);
1893}
1894
66e810cd
RE
1895/* The following define instruction sequences that will cause ARM
1896 cpu's to take an undefined instruction trap. These are used to
1897 signal a breakpoint to GDB.
1898
1899 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1900 modes. A different instruction is required for each mode. The ARM
1901 cpu's can also be big or little endian. Thus four different
1902 instructions are needed to support all cases.
1903
1904 Note: ARMv4 defines several new instructions that will take the
1905 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1906 not in fact add the new instructions. The new undefined
1907 instructions in ARMv4 are all instructions that had no defined
1908 behaviour in earlier chips. There is no guarantee that they will
1909 raise an exception, but may be treated as NOP's. In practice, it
1910 may only safe to rely on instructions matching:
1911
1912 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1913 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1914 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1915
1916 Even this may only true if the condition predicate is true. The
1917 following use a condition predicate of ALWAYS so it is always TRUE.
1918
1919 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1920 and NetBSD all use a software interrupt rather than an undefined
1921 instruction to force a trap. This can be handled by by the
1922 abi-specific code during establishment of the gdbarch vector. */
1923
1924
d7b486e7
RE
1925/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1926 override these definitions. */
66e810cd
RE
1927#ifndef ARM_LE_BREAKPOINT
1928#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1929#endif
1930#ifndef ARM_BE_BREAKPOINT
1931#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1932#endif
1933#ifndef THUMB_LE_BREAKPOINT
1934#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1935#endif
1936#ifndef THUMB_BE_BREAKPOINT
1937#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1938#endif
1939
1940static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1941static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1942static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1943static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1944
34e8f22d
RE
1945/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1946 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1947 breakpoint should be used. It returns a pointer to a string of
1948 bytes that encode a breakpoint instruction, stores the length of
1949 the string to *lenptr, and adjusts the program counter (if
1950 necessary) to point to the actual memory location where the
c906108c
SS
1951 breakpoint should be inserted. */
1952
34e8f22d
RE
1953/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1954 breakpoints and storing their handles instread of what was in
1955 memory. It is nice that this is the same size as a handle -
94c30b78 1956 otherwise remote-rdp will have to change. */
34e8f22d 1957
ab89facf 1958static const unsigned char *
ed9a39eb 1959arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1960{
66e810cd
RE
1961 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1962
c906108c
SS
1963 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1964 {
66e810cd
RE
1965 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1966 *lenptr = tdep->thumb_breakpoint_size;
1967 return tdep->thumb_breakpoint;
c906108c
SS
1968 }
1969 else
1970 {
66e810cd
RE
1971 *lenptr = tdep->arm_breakpoint_size;
1972 return tdep->arm_breakpoint;
c906108c
SS
1973 }
1974}
ed9a39eb
JM
1975
1976/* Extract from an array REGBUF containing the (raw) register state a
1977 function return value of type TYPE, and copy that, in virtual
1978 format, into VALBUF. */
1979
34e8f22d 1980static void
ed9a39eb 1981arm_extract_return_value (struct type *type,
b508a996
RE
1982 struct regcache *regs,
1983 void *dst)
ed9a39eb 1984{
b508a996
RE
1985 bfd_byte *valbuf = dst;
1986
ed9a39eb 1987 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 1988 {
fd50bc42 1989 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
1990 {
1991 case ARM_FLOAT_FPA:
b508a996
RE
1992 {
1993 /* The value is in register F0 in internal format. We need to
1994 extract the raw value and then convert it to the desired
1995 internal type. */
7a5ea0d4 1996 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
1997
1998 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
1999 convert_from_extended (floatformat_from_type (type), tmpbuf,
2000 valbuf);
2001 }
08216dd7
RE
2002 break;
2003
fd50bc42 2004 case ARM_FLOAT_SOFT_FPA:
08216dd7 2005 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2006 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2007 if (TYPE_LENGTH (type) > 4)
2008 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2009 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2010 break;
2011
2012 default:
2013 internal_error
2014 (__FILE__, __LINE__,
2015 "arm_extract_return_value: Floating point model not supported");
2016 break;
2017 }
2018 }
b508a996
RE
2019 else if (TYPE_CODE (type) == TYPE_CODE_INT
2020 || TYPE_CODE (type) == TYPE_CODE_CHAR
2021 || TYPE_CODE (type) == TYPE_CODE_BOOL
2022 || TYPE_CODE (type) == TYPE_CODE_PTR
2023 || TYPE_CODE (type) == TYPE_CODE_REF
2024 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2025 {
2026 /* If the the type is a plain integer, then the access is
2027 straight-forward. Otherwise we have to play around a bit more. */
2028 int len = TYPE_LENGTH (type);
2029 int regno = ARM_A1_REGNUM;
2030 ULONGEST tmp;
2031
2032 while (len > 0)
2033 {
2034 /* By using store_unsigned_integer we avoid having to do
2035 anything special for small big-endian values. */
2036 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2037 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2038 (len > INT_REGISTER_SIZE
2039 ? INT_REGISTER_SIZE : len),
b508a996 2040 tmp);
7a5ea0d4
DJ
2041 len -= INT_REGISTER_SIZE;
2042 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2043 }
2044 }
ed9a39eb 2045 else
b508a996
RE
2046 {
2047 /* For a structure or union the behaviour is as if the value had
2048 been stored to word-aligned memory and then loaded into
2049 registers with 32-bit load instruction(s). */
2050 int len = TYPE_LENGTH (type);
2051 int regno = ARM_A1_REGNUM;
7a5ea0d4 2052 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2053
2054 while (len > 0)
2055 {
2056 regcache_cooked_read (regs, regno++, tmpbuf);
2057 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2058 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2059 len -= INT_REGISTER_SIZE;
2060 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2061 }
2062 }
34e8f22d
RE
2063}
2064
67255d04
RE
2065/* Extract from an array REGBUF containing the (raw) register state
2066 the address in which a function should return its structure value. */
2067
2068static CORE_ADDR
95f95911 2069arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2070{
95f95911
MS
2071 ULONGEST ret;
2072
2073 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2074 return ret;
67255d04
RE
2075}
2076
2077/* Will a function return an aggregate type in memory or in a
2078 register? Return 0 if an aggregate type can be returned in a
2079 register, 1 if it must be returned in memory. */
2080
2081static int
2082arm_use_struct_convention (int gcc_p, struct type *type)
2083{
2084 int nRc;
52f0bd74 2085 enum type_code code;
67255d04 2086
44e1a9eb
DJ
2087 CHECK_TYPEDEF (type);
2088
67255d04
RE
2089 /* In the ARM ABI, "integer" like aggregate types are returned in
2090 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2091 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2092 offset of each addressable subfield must be zero. Note that bit
2093 fields are not addressable, and all addressable subfields of
2094 unions always start at offset zero.
67255d04
RE
2095
2096 This function is based on the behaviour of GCC 2.95.1.
2097 See: gcc/arm.c: arm_return_in_memory() for details.
2098
2099 Note: All versions of GCC before GCC 2.95.2 do not set up the
2100 parameters correctly for a function returning the following
2101 structure: struct { float f;}; This should be returned in memory,
2102 not a register. Richard Earnshaw sent me a patch, but I do not
2103 know of any way to detect if a function like the above has been
2104 compiled with the correct calling convention. */
2105
2106 /* All aggregate types that won't fit in a register must be returned
2107 in memory. */
b1e29e33 2108 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2109 {
2110 return 1;
2111 }
2112
2113 /* The only aggregate types that can be returned in a register are
2114 structs and unions. Arrays must be returned in memory. */
2115 code = TYPE_CODE (type);
2116 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2117 {
2118 return 1;
2119 }
2120
2121 /* Assume all other aggregate types can be returned in a register.
2122 Run a check for structures, unions and arrays. */
2123 nRc = 0;
2124
2125 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2126 {
2127 int i;
2128 /* Need to check if this struct/union is "integer" like. For
2129 this to be true, its size must be less than or equal to
b1e29e33
AC
2130 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2131 subfield must be zero. Note that bit fields are not
2132 addressable, and unions always start at offset zero. If any
2133 of the subfields is a floating point type, the struct/union
2134 cannot be an integer type. */
67255d04
RE
2135
2136 /* For each field in the object, check:
2137 1) Is it FP? --> yes, nRc = 1;
2138 2) Is it addressable (bitpos != 0) and
2139 not packed (bitsize == 0)?
2140 --> yes, nRc = 1
2141 */
2142
2143 for (i = 0; i < TYPE_NFIELDS (type); i++)
2144 {
2145 enum type_code field_type_code;
44e1a9eb 2146 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2147
2148 /* Is it a floating point type field? */
2149 if (field_type_code == TYPE_CODE_FLT)
2150 {
2151 nRc = 1;
2152 break;
2153 }
2154
2155 /* If bitpos != 0, then we have to care about it. */
2156 if (TYPE_FIELD_BITPOS (type, i) != 0)
2157 {
2158 /* Bitfields are not addressable. If the field bitsize is
2159 zero, then the field is not packed. Hence it cannot be
2160 a bitfield or any other packed type. */
2161 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2162 {
2163 nRc = 1;
2164 break;
2165 }
2166 }
2167 }
2168 }
2169
2170 return nRc;
2171}
2172
34e8f22d
RE
2173/* Write into appropriate registers a function return value of type
2174 TYPE, given in virtual format. */
2175
2176static void
b508a996
RE
2177arm_store_return_value (struct type *type, struct regcache *regs,
2178 const void *src)
34e8f22d 2179{
b508a996
RE
2180 const bfd_byte *valbuf = src;
2181
34e8f22d
RE
2182 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2183 {
7a5ea0d4 2184 char buf[MAX_REGISTER_SIZE];
34e8f22d 2185
fd50bc42 2186 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2187 {
2188 case ARM_FLOAT_FPA:
2189
b508a996
RE
2190 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2191 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2192 break;
2193
fd50bc42 2194 case ARM_FLOAT_SOFT_FPA:
08216dd7 2195 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2196 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2197 if (TYPE_LENGTH (type) > 4)
2198 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2199 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2200 break;
2201
2202 default:
2203 internal_error
2204 (__FILE__, __LINE__,
2205 "arm_store_return_value: Floating point model not supported");
2206 break;
2207 }
34e8f22d 2208 }
b508a996
RE
2209 else if (TYPE_CODE (type) == TYPE_CODE_INT
2210 || TYPE_CODE (type) == TYPE_CODE_CHAR
2211 || TYPE_CODE (type) == TYPE_CODE_BOOL
2212 || TYPE_CODE (type) == TYPE_CODE_PTR
2213 || TYPE_CODE (type) == TYPE_CODE_REF
2214 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2215 {
2216 if (TYPE_LENGTH (type) <= 4)
2217 {
2218 /* Values of one word or less are zero/sign-extended and
2219 returned in r0. */
7a5ea0d4 2220 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2221 LONGEST val = unpack_long (type, valbuf);
2222
7a5ea0d4 2223 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2224 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2225 }
2226 else
2227 {
2228 /* Integral values greater than one word are stored in consecutive
2229 registers starting with r0. This will always be a multiple of
2230 the regiser size. */
2231 int len = TYPE_LENGTH (type);
2232 int regno = ARM_A1_REGNUM;
2233
2234 while (len > 0)
2235 {
2236 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2237 len -= INT_REGISTER_SIZE;
2238 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2239 }
2240 }
2241 }
34e8f22d 2242 else
b508a996
RE
2243 {
2244 /* For a structure or union the behaviour is as if the value had
2245 been stored to word-aligned memory and then loaded into
2246 registers with 32-bit load instruction(s). */
2247 int len = TYPE_LENGTH (type);
2248 int regno = ARM_A1_REGNUM;
7a5ea0d4 2249 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2250
2251 while (len > 0)
2252 {
2253 memcpy (tmpbuf, valbuf,
7a5ea0d4 2254 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2255 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2256 len -= INT_REGISTER_SIZE;
2257 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2258 }
2259 }
34e8f22d
RE
2260}
2261
9df628e0
RE
2262static int
2263arm_get_longjmp_target (CORE_ADDR *pc)
2264{
2265 CORE_ADDR jb_addr;
7a5ea0d4 2266 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2267 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2268
2269 jb_addr = read_register (ARM_A1_REGNUM);
2270
2271 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2272 INT_REGISTER_SIZE))
9df628e0
RE
2273 return 0;
2274
7a5ea0d4 2275 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2276 return 1;
2277}
2278
ed9a39eb 2279/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2280
2281int
ed9a39eb 2282arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2283{
2284 CORE_ADDR start_addr;
2285
ed9a39eb
JM
2286 /* Find the starting address of the function containing the PC. If
2287 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2288 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2289 &start_addr, NULL))
c906108c
SS
2290 return 0;
2291
2292 return strncmp (name, "_call_via_r", 11) == 0;
2293}
2294
ed9a39eb
JM
2295/* If PC is in a Thumb call or return stub, return the address of the
2296 target PC, which is in a register. The thunk functions are called
2297 _called_via_xx, where x is the register name. The possible names
2298 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2299
2300CORE_ADDR
ed9a39eb 2301arm_skip_stub (CORE_ADDR pc)
c906108c 2302{
c5aa993b 2303 char *name;
c906108c
SS
2304 CORE_ADDR start_addr;
2305
2306 /* Find the starting address and name of the function containing the PC. */
2307 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2308 return 0;
2309
2310 /* Call thunks always start with "_call_via_". */
2311 if (strncmp (name, "_call_via_", 10) == 0)
2312 {
ed9a39eb
JM
2313 /* Use the name suffix to determine which register contains the
2314 target PC. */
c5aa993b
JM
2315 static char *table[15] =
2316 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2317 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2318 };
c906108c
SS
2319 int regno;
2320
2321 for (regno = 0; regno <= 14; regno++)
2322 if (strcmp (&name[10], table[regno]) == 0)
2323 return read_register (regno);
2324 }
ed9a39eb 2325
c5aa993b 2326 return 0; /* not a stub */
c906108c
SS
2327}
2328
afd7eef0
RE
2329static void
2330set_arm_command (char *args, int from_tty)
2331{
2332 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2333 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2334}
2335
2336static void
2337show_arm_command (char *args, int from_tty)
2338{
26304000 2339 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2340}
2341
fd50bc42
RE
2342enum arm_float_model
2343arm_get_fp_model (struct gdbarch *gdbarch)
2344{
2345 if (arm_fp_model == ARM_FLOAT_AUTO)
2346 return gdbarch_tdep (gdbarch)->fp_model;
2347
2348 return arm_fp_model;
2349}
2350
2351static void
2352arm_set_fp (struct gdbarch *gdbarch)
2353{
2354 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2355
2356 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2357 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2358 {
2359 set_gdbarch_double_format (gdbarch,
2360 &floatformat_ieee_double_littlebyte_bigword);
2361 set_gdbarch_long_double_format
2362 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2363 }
2364 else
2365 {
2366 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2367 set_gdbarch_long_double_format (gdbarch,
2368 &floatformat_ieee_double_little);
2369 }
2370}
2371
2372static void
2373set_fp_model_sfunc (char *args, int from_tty,
2374 struct cmd_list_element *c)
2375{
2376 enum arm_float_model fp_model;
2377
2378 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2379 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2380 {
2381 arm_fp_model = fp_model;
2382 break;
2383 }
2384
2385 if (fp_model == ARM_FLOAT_LAST)
2386 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2387 current_fp_model);
2388
2389 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2390 arm_set_fp (current_gdbarch);
2391}
2392
2393static void
2394show_fp_model (char *args, int from_tty,
2395 struct cmd_list_element *c)
2396{
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2398
2399 if (arm_fp_model == ARM_FLOAT_AUTO
2400 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2401 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2402 fp_model_strings[tdep->fp_model]);
2403}
2404
afd7eef0
RE
2405/* If the user changes the register disassembly style used for info
2406 register and other commands, we have to also switch the style used
2407 in opcodes for disassembly output. This function is run in the "set
2408 arm disassembly" command, and does that. */
bc90b915
FN
2409
2410static void
afd7eef0 2411set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2412 struct cmd_list_element *c)
2413{
afd7eef0 2414 set_disassembly_style ();
bc90b915
FN
2415}
2416\f
966fbf70 2417/* Return the ARM register name corresponding to register I. */
a208b0cb 2418static const char *
34e8f22d 2419arm_register_name (int i)
966fbf70
RE
2420{
2421 return arm_register_names[i];
2422}
2423
bc90b915 2424static void
afd7eef0 2425set_disassembly_style (void)
bc90b915
FN
2426{
2427 const char *setname, *setdesc, **regnames;
2428 int numregs, j;
2429
afd7eef0 2430 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2431 int current = 0;
2432 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2433 while ((disassembly_style != setname)
2434 && (current < num_disassembly_options))
bc90b915
FN
2435 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2436 current_option = current;
2437
94c30b78 2438 /* Fill our copy. */
bc90b915
FN
2439 for (j = 0; j < numregs; j++)
2440 arm_register_names[j] = (char *) regnames[j];
2441
94c30b78 2442 /* Adjust case. */
34e8f22d 2443 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2444 {
34e8f22d
RE
2445 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2446 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2447 }
2448 else
2449 {
34e8f22d
RE
2450 arm_register_names[ARM_FPS_REGNUM] = "fps";
2451 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2452 }
2453
94c30b78 2454 /* Synchronize the disassembler. */
bc90b915
FN
2455 set_arm_regname_option (current);
2456}
2457
afd7eef0
RE
2458/* arm_othernames implements the "othernames" command. This is deprecated
2459 by the "set arm disassembly" command. */
bc90b915
FN
2460
2461static void
2462arm_othernames (char *names, int n)
2463{
94c30b78 2464 /* Circle through the various flavors. */
afd7eef0 2465 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2466
afd7eef0
RE
2467 disassembly_style = valid_disassembly_styles[current_option];
2468 set_disassembly_style ();
bc90b915
FN
2469}
2470
082fc60d
RE
2471/* Test whether the coff symbol specific value corresponds to a Thumb
2472 function. */
2473
2474static int
2475coff_sym_is_thumb (int val)
2476{
2477 return (val == C_THUMBEXT ||
2478 val == C_THUMBSTAT ||
2479 val == C_THUMBEXTFUNC ||
2480 val == C_THUMBSTATFUNC ||
2481 val == C_THUMBLABEL);
2482}
2483
2484/* arm_coff_make_msymbol_special()
2485 arm_elf_make_msymbol_special()
2486
2487 These functions test whether the COFF or ELF symbol corresponds to
2488 an address in thumb code, and set a "special" bit in a minimal
2489 symbol to indicate that it does. */
2490
34e8f22d 2491static void
082fc60d
RE
2492arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2493{
2494 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2495 STT_ARM_TFUNC). */
2496 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2497 == STT_LOPROC)
2498 MSYMBOL_SET_SPECIAL (msym);
2499}
2500
34e8f22d 2501static void
082fc60d
RE
2502arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2503{
2504 if (coff_sym_is_thumb (val))
2505 MSYMBOL_SET_SPECIAL (msym);
2506}
2507
756fe439
DJ
2508static void
2509arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2510{
2511 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2512
2513 /* If necessary, set the T bit. */
2514 if (arm_apcs_32)
2515 {
2516 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2517 if (arm_pc_is_thumb (pc))
2518 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2519 else
2520 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2521 }
2522}
97e03143 2523\f
70f80edf
JT
2524static enum gdb_osabi
2525arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2526{
70f80edf
JT
2527 unsigned int elfosabi, eflags;
2528 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2529
70f80edf 2530 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2531
70f80edf 2532 switch (elfosabi)
97e03143 2533 {
70f80edf
JT
2534 case ELFOSABI_NONE:
2535 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2536 file are conforming to the base specification for that machine
2537 (there are no OS-specific extensions). In order to determine the
2538 real OS in use we must look for OS notes that have been added. */
2539 bfd_map_over_sections (abfd,
2540 generic_elf_osabi_sniff_abi_tag_sections,
2541 &osabi);
2542 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2543 {
70f80edf
JT
2544 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2545 field for more information. */
2546 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2547 switch (eflags)
97e03143 2548 {
70f80edf
JT
2549 case EF_ARM_EABI_VER1:
2550 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2551 break;
2552
70f80edf
JT
2553 case EF_ARM_EABI_VER2:
2554 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2555 break;
2556
70f80edf
JT
2557 case EF_ARM_EABI_UNKNOWN:
2558 /* Assume GNU tools. */
2559 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2560 break;
2561
70f80edf
JT
2562 default:
2563 internal_error (__FILE__, __LINE__,
2564 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2565 "version 0x%x", eflags);
97e03143
RE
2566 }
2567 }
70f80edf 2568 break;
97e03143 2569
70f80edf
JT
2570 case ELFOSABI_ARM:
2571 /* GNU tools use this value. Check note sections in this case,
2572 as well. */
97e03143 2573 bfd_map_over_sections (abfd,
70f80edf
JT
2574 generic_elf_osabi_sniff_abi_tag_sections,
2575 &osabi);
2576 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2577 {
70f80edf
JT
2578 /* Assume APCS ABI. */
2579 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2580 }
2581 break;
2582
97e03143 2583 case ELFOSABI_FREEBSD:
70f80edf
JT
2584 osabi = GDB_OSABI_FREEBSD_ELF;
2585 break;
97e03143 2586
70f80edf
JT
2587 case ELFOSABI_NETBSD:
2588 osabi = GDB_OSABI_NETBSD_ELF;
2589 break;
97e03143 2590
70f80edf
JT
2591 case ELFOSABI_LINUX:
2592 osabi = GDB_OSABI_LINUX;
2593 break;
97e03143
RE
2594 }
2595
70f80edf 2596 return osabi;
97e03143
RE
2597}
2598
70f80edf 2599\f
da3c6d4a
MS
2600/* Initialize the current architecture based on INFO. If possible,
2601 re-use an architecture from ARCHES, which is a list of
2602 architectures already created during this debugging session.
97e03143 2603
da3c6d4a
MS
2604 Called e.g. at program startup, when reading a core file, and when
2605 reading a binary file. */
97e03143 2606
39bbf761
RE
2607static struct gdbarch *
2608arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2609{
97e03143 2610 struct gdbarch_tdep *tdep;
39bbf761
RE
2611 struct gdbarch *gdbarch;
2612
97e03143 2613 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2614
4be87837 2615 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2616 {
4be87837 2617 switch (bfd_get_flavour (info.abfd))
97e03143 2618 {
4be87837
DJ
2619 case bfd_target_aout_flavour:
2620 /* Assume it's an old APCS-style ABI. */
2621 info.osabi = GDB_OSABI_ARM_APCS;
2622 break;
97e03143 2623
4be87837
DJ
2624 case bfd_target_coff_flavour:
2625 /* Assume it's an old APCS-style ABI. */
2626 /* XXX WinCE? */
2627 info.osabi = GDB_OSABI_ARM_APCS;
2628 break;
97e03143 2629
4be87837
DJ
2630 default:
2631 /* Leave it as "unknown". */
50ceaba5 2632 break;
97e03143
RE
2633 }
2634 }
2635
4be87837
DJ
2636 /* If there is already a candidate, use it. */
2637 arches = gdbarch_list_lookup_by_info (arches, &info);
2638 if (arches != NULL)
2639 return arches->gdbarch;
97e03143
RE
2640
2641 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2642 gdbarch = gdbarch_alloc (&info, tdep);
2643
fd50bc42
RE
2644 /* We used to default to FPA for generic ARM, but almost nobody uses that
2645 now, and we now provide a way for the user to force the model. So
2646 default to the most useful variant. */
2647 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2648
2649 /* Breakpoints. */
67255d04
RE
2650 switch (info.byte_order)
2651 {
2652 case BFD_ENDIAN_BIG:
66e810cd
RE
2653 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2654 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2655 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2656 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2657
67255d04
RE
2658 break;
2659
2660 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2661 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2662 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2663 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2664 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2665
67255d04
RE
2666 break;
2667
2668 default:
2669 internal_error (__FILE__, __LINE__,
2670 "arm_gdbarch_init: bad byte order for float format");
2671 }
2672
d7b486e7
RE
2673 /* On ARM targets char defaults to unsigned. */
2674 set_gdbarch_char_signed (gdbarch, 0);
2675
9df628e0 2676 /* This should be low enough for everything. */
97e03143 2677 tdep->lowest_pc = 0x20;
94c30b78 2678 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2679
2dd604e7 2680 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2681
756fe439
DJ
2682 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2683
148754e5 2684 /* Frame handling. */
eb5492fa
DJ
2685 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2686 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2687 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2688
eb5492fa 2689 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2690
34e8f22d
RE
2691 /* Address manipulation. */
2692 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2693 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2694
34e8f22d
RE
2695 /* Advance PC across function entry code. */
2696 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2697
2698 /* Get the PC when a frame might not be available. */
6913c89a 2699 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2700
2701 /* The stack grows downward. */
2702 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2703
2704 /* Breakpoint manipulation. */
2705 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2706
2707 /* Information about registers, etc. */
2708 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2709 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2710 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2711 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2712 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
34e8f22d 2713 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2714 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2715
26216b98
AC
2716 /* Internal <-> external register number maps. */
2717 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2718
34e8f22d 2719 /* Integer registers are 4 bytes. */
b1e29e33 2720 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2721 set_gdbarch_register_name (gdbarch, arm_register_name);
2722
2723 /* Returning results. */
b508a996
RE
2724 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2725 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
b5622e8d 2726 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
74055713 2727 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
34e8f22d
RE
2728
2729 /* Single stepping. */
2730 /* XXX For an RDI target we should ask the target if it can single-step. */
2731 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2732
03d48a7d
RE
2733 /* Disassembly. */
2734 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2735
34e8f22d
RE
2736 /* Minsymbol frobbing. */
2737 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2738 set_gdbarch_coff_make_msymbol_special (gdbarch,
2739 arm_coff_make_msymbol_special);
2740
97e03143 2741 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2742 gdbarch_init_osabi (info, gdbarch);
97e03143 2743
eb5492fa
DJ
2744 /* Add some default predicates. */
2745 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2746 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2747
97e03143
RE
2748 /* Now we have tuned the configuration, set a few final things,
2749 based on what the OS ABI has told us. */
2750
9df628e0
RE
2751 if (tdep->jb_pc >= 0)
2752 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2753
08216dd7
RE
2754 /* Floating point sizes and format. */
2755 switch (info.byte_order)
2756 {
2757 case BFD_ENDIAN_BIG:
2758 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2759 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2760 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2761
2762 break;
2763
2764 case BFD_ENDIAN_LITTLE:
2765 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 2766 arm_set_fp (gdbarch);
08216dd7
RE
2767 break;
2768
2769 default:
2770 internal_error (__FILE__, __LINE__,
2771 "arm_gdbarch_init: bad byte order for float format");
2772 }
2773
39bbf761
RE
2774 return gdbarch;
2775}
2776
97e03143
RE
2777static void
2778arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2779{
2780 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2781
2782 if (tdep == NULL)
2783 return;
2784
97e03143
RE
2785 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2786 (unsigned long) tdep->lowest_pc);
2787}
2788
2789static void
2790arm_init_abi_eabi_v1 (struct gdbarch_info info,
2791 struct gdbarch *gdbarch)
2792{
2793 /* Place-holder. */
2794}
2795
2796static void
2797arm_init_abi_eabi_v2 (struct gdbarch_info info,
2798 struct gdbarch *gdbarch)
2799{
2800 /* Place-holder. */
2801}
2802
2803static void
2804arm_init_abi_apcs (struct gdbarch_info info,
2805 struct gdbarch *gdbarch)
2806{
2807 /* Place-holder. */
2808}
2809
a78f21af
AC
2810extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2811
c906108c 2812void
ed9a39eb 2813_initialize_arm_tdep (void)
c906108c 2814{
bc90b915
FN
2815 struct ui_file *stb;
2816 long length;
26304000 2817 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2818 const char *setname;
2819 const char *setdesc;
2820 const char **regnames;
bc90b915
FN
2821 int numregs, i, j;
2822 static char *helptext;
085dd6e6 2823
42cf1509 2824 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2825
70f80edf
JT
2826 /* Register an ELF OS ABI sniffer for ARM binaries. */
2827 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2828 bfd_target_elf_flavour,
2829 arm_elf_osabi_sniffer);
2830
97e03143 2831 /* Register some ABI variants for embedded systems. */
05816f70 2832 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 2833 arm_init_abi_eabi_v1);
05816f70 2834 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 2835 arm_init_abi_eabi_v2);
05816f70 2836 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 2837 arm_init_abi_apcs);
39bbf761 2838
94c30b78 2839 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2840 num_disassembly_options = get_arm_regname_num_options ();
2841
2842 /* Add root prefix command for all "set arm"/"show arm" commands. */
2843 add_prefix_cmd ("arm", no_class, set_arm_command,
2844 "Various ARM-specific commands.",
2845 &setarmcmdlist, "set arm ", 0, &setlist);
2846
2847 add_prefix_cmd ("arm", no_class, show_arm_command,
2848 "Various ARM-specific commands.",
2849 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2850
94c30b78 2851 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2852 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2853
94c30b78 2854 /* Begin creating the help text. */
bc90b915 2855 stb = mem_fileopen ();
afd7eef0
RE
2856 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2857 "The valid values are:\n");
ed9a39eb 2858
94c30b78 2859 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
2860 valid_disassembly_styles
2861 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2862 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2863 {
2864 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2865 valid_disassembly_styles[i] = setname;
bc90b915
FN
2866 fprintf_unfiltered (stb, "%s - %s\n", setname,
2867 setdesc);
94c30b78 2868 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2869 if (!strcmp (setname, "std"))
2870 {
afd7eef0 2871 disassembly_style = setname;
bc90b915
FN
2872 current_option = i;
2873 for (j = 0; j < numregs; j++)
2874 arm_register_names[j] = (char *) regnames[j];
2875 set_arm_regname_option (i);
2876 }
2877 }
94c30b78 2878 /* Mark the end of valid options. */
afd7eef0 2879 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2880
94c30b78 2881 /* Finish the creation of the help text. */
bc90b915
FN
2882 fprintf_unfiltered (stb, "The default is \"std\".");
2883 helptext = ui_file_xstrdup (stb, &length);
2884 ui_file_delete (stb);
ed9a39eb 2885
afd7eef0 2886 /* Add the deprecated disassembly-flavor command. */
26304000 2887 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
2888 valid_disassembly_styles,
2889 &disassembly_style,
bc90b915 2890 helptext,
ed9a39eb 2891 &setlist);
26304000
RE
2892 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2893 deprecate_cmd (new_set, "set arm disassembly");
cb1a6d5f 2894 deprecate_cmd (deprecated_add_show_from_set (new_set, &showlist),
afd7eef0
RE
2895 "show arm disassembly");
2896
2897 /* And now add the new interface. */
30757f90 2898 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
2899 valid_disassembly_styles, &disassembly_style,
2900 helptext, &setarmcmdlist);
2901
fd50bc42 2902 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
cb1a6d5f 2903 deprecated_add_show_from_set (new_set, &showarmcmdlist);
26304000 2904
3b64bf98
AC
2905 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, "\
2906Set usage of ARM 32-bit mode.", "\
2907Show usage of ARM 32-bit mode.", "\
2908When off, a 26-bit PC will be used.\n\
2909When off, a 26-bit PC will be used.", "\
2910Usage of ARM 32-bit mode is %s.",
26304000
RE
2911 NULL, NULL,
2912 &setarmcmdlist, &showarmcmdlist);
c906108c 2913
fd50bc42
RE
2914 /* Add a command to allow the user to force the FPU model. */
2915 new_set = add_set_enum_cmd
2916 ("fpu", no_class, fp_model_strings, &current_fp_model,
2917 "Set the floating point type.\n"
2918 "auto - Determine the FP typefrom the OS-ABI.\n"
2919 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2920 "fpa - FPA co-processor (GCC compiled).\n"
2921 "softvfp - Software FP with pure-endian doubles.\n"
2922 "vfp - VFP co-processor.",
2923 &setarmcmdlist);
2924 set_cmd_sfunc (new_set, set_fp_model_sfunc);
cb1a6d5f
AC
2925 set_cmd_sfunc (deprecated_add_show_from_set (new_set, &showarmcmdlist),
2926 show_fp_model);
fd50bc42 2927
94c30b78 2928 /* Add the deprecated "othernames" command. */
afd7eef0
RE
2929 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2930 "Switch to the next set of register names."),
2931 "set arm disassembly");
c3b4394c 2932
6529d2dd 2933 /* Debugging flag. */
3b64bf98
AC
2934 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, "\
2935Set ARM debugging.", "\
2936Show ARM debugging.", "\
2937When on, arm-specific debugging is enabled.", "\
2938ARM debugging is %s.",
26304000
RE
2939 NULL, NULL,
2940 &setdebuglist, &showdebuglist);
c906108c 2941}