]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbserver/linux-low.c
* simple.c (bfd_simple_get_relocated_section_contents): Call
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
CommitLineData
da6d8c04
DJ
1/* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "server.h"
58caa3dc 23#include "linux-low.h"
da6d8c04 24
58caa3dc 25#include <sys/wait.h>
da6d8c04
DJ
26#include <stdio.h>
27#include <sys/param.h>
28#include <sys/dir.h>
29#include <sys/ptrace.h>
30#include <sys/user.h>
31#include <signal.h>
32#include <sys/ioctl.h>
33#include <fcntl.h>
d07c63e7 34#include <string.h>
0a30fbc4
DJ
35#include <stdlib.h>
36#include <unistd.h>
da6d8c04 37
0d62e5e8
DJ
38/* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
39 however. This requires changing the ID in place when we go from !using_threads
40 to using_threads, immediately.
611cb4a5 41
0d62e5e8
DJ
42 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
43 the same as the LWP ID. */
44
45struct inferior_list all_processes;
46
47/* FIXME this is a bit of a hack, and could be removed. */
48int stopping_threads;
49
50/* FIXME make into a target method? */
51int using_threads;
52
53static void linux_resume_one_process (struct inferior_list_entry *entry,
54 int step, int signal);
611cb4a5 55static void linux_resume (int step, int signal);
0d62e5e8
DJ
56static void stop_all_processes (void);
57static int linux_wait_for_event (struct thread_info *child);
58
59struct pending_signals
60{
61 int signal;
62 struct pending_signals *prev;
63};
611cb4a5 64
d844cde6 65#define PTRACE_ARG3_TYPE long
c6ecbae5 66#define PTRACE_XFER_TYPE long
da6d8c04 67
58caa3dc
DJ
68#ifdef HAVE_LINUX_REGSETS
69static int use_regsets_p = 1;
70#endif
71
da6d8c04 72extern int errno;
c6ecbae5 73
0d62e5e8
DJ
74int debug_threads = 0;
75
76#define pid_of(proc) ((proc)->head.id)
77
78/* FIXME: Delete eventually. */
79#define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81/* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103static CORE_ADDR
104get_stop_pc (void)
105{
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112}
ce3a066d 113
0d62e5e8
DJ
114static void *
115add_process (int pid)
611cb4a5 116{
0d62e5e8
DJ
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131}
611cb4a5 132
da6d8c04
DJ
133/* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
ce3a066d
DJ
136static int
137linux_create_inferior (char *program, char **allargs)
da6d8c04 138{
0d62e5e8 139 void *new_process;
da6d8c04
DJ
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
254787d4 150 signal (__SIGRTMIN + 1, SIG_DFL);
0d62e5e8 151
a9fa9f7d
DJ
152 setpgid (0, 0);
153
da6d8c04
DJ
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
d07c63e7 157 strerror (errno));
da6d8c04
DJ
158 fflush (stderr);
159 _exit (0177);
160 }
161
0d62e5e8
DJ
162 new_process = add_process (pid);
163 add_thread (pid, new_process);
611cb4a5 164
a9fa9f7d 165 return pid;
da6d8c04
DJ
166}
167
168/* Attach to an inferior process. */
169
0d62e5e8
DJ
170void
171linux_attach_lwp (int pid, int tid)
da6d8c04 172{
0d62e5e8 173 struct process_info *new_process;
611cb4a5 174
da6d8c04
DJ
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %d: %s (%d)\n", pid,
178 errno < sys_nerr ? sys_errlist[errno] : "unknown error",
179 errno);
180 fflush (stderr);
0d62e5e8
DJ
181
182 /* If we fail to attach to an LWP, just return. */
183 if (!using_threads)
184 _exit (0177);
185 return;
da6d8c04
DJ
186 }
187
0d62e5e8
DJ
188 new_process = (struct process_info *) add_process (pid);
189 add_thread (tid, new_process);
190
191 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
192 brings it to a halt. We should ignore that SIGSTOP and resume the process
193 (unless this is the first process, in which case the flag will be cleared
194 in linux_attach).
195
196 On the other hand, if we are currently trying to stop all threads, we
197 should treat the new thread as if we had sent it a SIGSTOP. This works
198 because we are guaranteed that add_process added us to the end of the
199 list, and so the new thread has not yet reached wait_for_sigstop (but
200 will). */
201 if (! stopping_threads)
202 new_process->stop_expected = 1;
203}
204
205int
206linux_attach (int pid)
207{
208 struct process_info *process;
209
210 linux_attach_lwp (pid, pid);
211
212 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
213 process = (struct process_info *) find_inferior_id (&all_processes, pid);
214 process->stop_expected = 0;
215
da6d8c04
DJ
216 return 0;
217}
218
219/* Kill the inferior process. Make us have no inferior. */
220
ce3a066d 221static void
0d62e5e8 222linux_kill_one_process (struct inferior_list_entry *entry)
da6d8c04 223{
0d62e5e8
DJ
224 struct thread_info *thread = (struct thread_info *) entry;
225 struct process_info *process = get_thread_process (thread);
226 int wstat;
227
228 do
229 {
230 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
231
232 /* Make sure it died. The loop is most likely unnecessary. */
233 wstat = linux_wait_for_event (thread);
234 } while (WIFSTOPPED (wstat));
da6d8c04
DJ
235}
236
237/* Return nonzero if the given thread is still alive. */
0d62e5e8
DJ
238static void
239linux_kill (void)
240{
241 for_each_inferior (&all_threads, linux_kill_one_process);
242}
243
244static int
245linux_thread_alive (int tid)
246{
247 if (find_inferior_id (&all_threads, tid) != NULL)
248 return 1;
249 else
250 return 0;
251}
252
253/* Return nonzero if this process stopped at a breakpoint which
254 no longer appears to be inserted. Also adjust the PC
255 appropriately to resume where the breakpoint used to be. */
ce3a066d 256static int
0d62e5e8 257check_removed_breakpoint (struct process_info *event_child)
da6d8c04 258{
0d62e5e8
DJ
259 CORE_ADDR stop_pc;
260 struct thread_info *saved_inferior;
261
262 if (event_child->pending_is_breakpoint == 0)
263 return 0;
264
265 if (debug_threads)
266 fprintf (stderr, "Checking for breakpoint.\n");
267
268 saved_inferior = current_inferior;
269 current_inferior = get_process_thread (event_child);
270
271 stop_pc = get_stop_pc ();
272
273 /* If the PC has changed since we stopped, then we shouldn't do
274 anything. This happens if, for instance, GDB handled the
275 decr_pc_after_break subtraction itself. */
276 if (stop_pc != event_child->pending_stop_pc)
277 {
278 if (debug_threads)
279 fprintf (stderr, "Ignoring, PC was changed.\n");
280
281 event_child->pending_is_breakpoint = 0;
282 current_inferior = saved_inferior;
283 return 0;
284 }
285
286 /* If the breakpoint is still there, we will report hitting it. */
287 if ((*the_low_target.breakpoint_at) (stop_pc))
288 {
289 if (debug_threads)
290 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
291 current_inferior = saved_inferior;
292 return 0;
293 }
294
295 if (debug_threads)
296 fprintf (stderr, "Removed breakpoint.\n");
297
298 /* For decr_pc_after_break targets, here is where we perform the
299 decrement. We go immediately from this function to resuming,
300 and can not safely call get_stop_pc () again. */
301 if (the_low_target.set_pc != NULL)
302 (*the_low_target.set_pc) (stop_pc);
303
304 /* We consumed the pending SIGTRAP. */
305 event_child->status_pending_p = 0;
306 event_child->status_pending = 0;
307
308 current_inferior = saved_inferior;
da6d8c04
DJ
309 return 1;
310}
311
0d62e5e8
DJ
312/* Return 1 if this process has an interesting status pending. This function
313 may silently resume an inferior process. */
611cb4a5 314static int
0d62e5e8
DJ
315status_pending_p (struct inferior_list_entry *entry, void *dummy)
316{
317 struct process_info *process = (struct process_info *) entry;
318
319 if (process->status_pending_p)
320 if (check_removed_breakpoint (process))
321 {
322 /* This thread was stopped at a breakpoint, and the breakpoint
323 is now gone. We were told to continue (or step...) all threads,
324 so GDB isn't trying to single-step past this breakpoint.
325 So instead of reporting the old SIGTRAP, pretend we got to
326 the breakpoint just after it was removed instead of just
327 before; resume the process. */
328 linux_resume_one_process (&process->head, 0, 0);
329 return 0;
330 }
331
332 return process->status_pending_p;
333}
334
335static void
336linux_wait_for_process (struct process_info **childp, int *wstatp)
611cb4a5 337{
0d62e5e8
DJ
338 int ret;
339 int to_wait_for = -1;
340
341 if (*childp != NULL)
342 to_wait_for = (*childp)->lwpid;
611cb4a5
DJ
343
344 while (1)
345 {
0d62e5e8
DJ
346 ret = waitpid (to_wait_for, wstatp, WNOHANG);
347
348 if (ret == -1)
349 {
350 if (errno != ECHILD)
351 perror_with_name ("waitpid");
352 }
353 else if (ret > 0)
354 break;
355
356 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
357
358 if (ret == -1)
359 {
360 if (errno != ECHILD)
361 perror_with_name ("waitpid (WCLONE)");
362 }
363 else if (ret > 0)
364 break;
365
366 usleep (1000);
367 }
368
369 if (debug_threads
370 && (!WIFSTOPPED (*wstatp)
371 || (WSTOPSIG (*wstatp) != 32
372 && WSTOPSIG (*wstatp) != 33)))
373 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
374
375 if (to_wait_for == -1)
376 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
377
378 (*childp)->stopped = 1;
379 (*childp)->pending_is_breakpoint = 0;
380
381 if (debug_threads
382 && WIFSTOPPED (*wstatp))
383 {
384 current_inferior = (struct thread_info *)
385 find_inferior_id (&all_threads, (*childp)->tid);
386 /* For testing only; i386_stop_pc prints out a diagnostic. */
387 if (the_low_target.get_pc != NULL)
388 get_stop_pc ();
389 }
390}
611cb4a5 391
0d62e5e8
DJ
392static int
393linux_wait_for_event (struct thread_info *child)
394{
395 CORE_ADDR stop_pc;
396 struct process_info *event_child;
397 int wstat;
398
399 /* Check for a process with a pending status. */
400 /* It is possible that the user changed the pending task's registers since
401 it stopped. We correctly handle the change of PC if we hit a breakpoint
402 (in check_removed_breakpoints); signals should be reported anyway. */
403 if (child == NULL)
404 {
405 event_child = (struct process_info *)
406 find_inferior (&all_processes, status_pending_p, NULL);
407 if (debug_threads && event_child)
408 fprintf (stderr, "Got a pending child %d\n", event_child->lwpid);
409 }
410 else
411 {
412 event_child = get_thread_process (child);
413 if (event_child->status_pending_p
414 && check_removed_breakpoint (event_child))
415 event_child = NULL;
416 }
611cb4a5 417
0d62e5e8
DJ
418 if (event_child != NULL)
419 {
420 if (event_child->status_pending_p)
611cb4a5 421 {
0d62e5e8
DJ
422 if (debug_threads)
423 fprintf (stderr, "Got an event from pending child %d (%04x)\n",
424 event_child->lwpid, event_child->status_pending);
425 wstat = event_child->status_pending;
426 event_child->status_pending_p = 0;
427 event_child->status_pending = 0;
428 current_inferior = get_process_thread (event_child);
429 return wstat;
430 }
431 }
432
433 /* We only enter this loop if no process has a pending wait status. Thus
434 any action taken in response to a wait status inside this loop is
435 responding as soon as we detect the status, not after any pending
436 events. */
437 while (1)
438 {
439 if (child == NULL)
440 event_child = NULL;
441 else
442 event_child = get_thread_process (child);
443
444 linux_wait_for_process (&event_child, &wstat);
445
446 if (event_child == NULL)
447 error ("event from unknown child");
611cb4a5 448
0d62e5e8
DJ
449 current_inferior = (struct thread_info *)
450 find_inferior_id (&all_threads, event_child->tid);
451
452 if (using_threads)
453 {
454 /* Check for thread exit. */
455 if (! WIFSTOPPED (wstat))
611cb4a5 456 {
0d62e5e8
DJ
457 if (debug_threads)
458 fprintf (stderr, "Thread %d (LWP %d) exiting\n",
459 event_child->tid, event_child->head.id);
460
461 /* If the last thread is exiting, just return. */
462 if (all_threads.head == all_threads.tail)
463 return wstat;
464
465 dead_thread_notify (event_child->tid);
466
467 remove_inferior (&all_processes, &event_child->head);
468 free (event_child);
469 remove_thread (current_inferior);
470 current_inferior = (struct thread_info *) all_threads.head;
471
472 /* If we were waiting for this particular child to do something...
473 well, it did something. */
474 if (child != NULL)
475 return wstat;
476
477 /* Wait for a more interesting event. */
611cb4a5
DJ
478 continue;
479 }
480
0d62e5e8
DJ
481 if (WIFSTOPPED (wstat)
482 && WSTOPSIG (wstat) == SIGSTOP
483 && event_child->stop_expected)
484 {
485 if (debug_threads)
486 fprintf (stderr, "Expected stop.\n");
487 event_child->stop_expected = 0;
488 linux_resume_one_process (&event_child->head,
489 event_child->stepping, 0);
490 continue;
491 }
611cb4a5 492
0d62e5e8
DJ
493 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
494 thread library? */
495 if (WIFSTOPPED (wstat)
254787d4
DJ
496 && (WSTOPSIG (wstat) == __SIGRTMIN
497 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
611cb4a5 498 {
0d62e5e8
DJ
499 if (debug_threads)
500 fprintf (stderr, "Ignored signal %d for %d (LWP %d).\n",
501 WSTOPSIG (wstat), event_child->tid,
502 event_child->head.id);
503 linux_resume_one_process (&event_child->head,
504 event_child->stepping,
505 WSTOPSIG (wstat));
506 continue;
507 }
508 }
611cb4a5 509
0d62e5e8
DJ
510 /* If this event was not handled above, and is not a SIGTRAP, report
511 it. */
512 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
513 return wstat;
611cb4a5 514
0d62e5e8
DJ
515 /* If this target does not support breakpoints, we simply report the
516 SIGTRAP; it's of no concern to us. */
517 if (the_low_target.get_pc == NULL)
518 return wstat;
519
520 stop_pc = get_stop_pc ();
521
522 /* bp_reinsert will only be set if we were single-stepping.
523 Notice that we will resume the process after hitting
524 a gdbserver breakpoint; single-stepping to/over one
525 is not supported (yet). */
526 if (event_child->bp_reinsert != 0)
527 {
528 if (debug_threads)
529 fprintf (stderr, "Reinserted breakpoint.\n");
530 reinsert_breakpoint (event_child->bp_reinsert);
531 event_child->bp_reinsert = 0;
532
533 /* Clear the single-stepping flag and SIGTRAP as we resume. */
534 linux_resume_one_process (&event_child->head, 0, 0);
535 continue;
536 }
537
538 if (debug_threads)
539 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
540
541 if (check_breakpoints (stop_pc) != 0)
542 {
543 /* We hit one of our own breakpoints. We mark it as a pending
544 breakpoint, so that check_removed_breakpoints () will do the PC
545 adjustment for us at the appropriate time. */
546 event_child->pending_is_breakpoint = 1;
547 event_child->pending_stop_pc = stop_pc;
548
549 /* Now we need to put the breakpoint back. We continue in the event
550 loop instead of simply replacing the breakpoint right away,
551 in order to not lose signals sent to the thread that hit the
552 breakpoint. Unfortunately this increases the window where another
553 thread could sneak past the removed breakpoint. For the current
554 use of server-side breakpoints (thread creation) this is
555 acceptable; but it needs to be considered before this breakpoint
556 mechanism can be used in more general ways. For some breakpoints
557 it may be necessary to stop all other threads, but that should
558 be avoided where possible.
559
560 If breakpoint_reinsert_addr is NULL, that means that we can
561 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
562 mark it for reinsertion, and single-step.
563
564 Otherwise, call the target function to figure out where we need
565 our temporary breakpoint, create it, and continue executing this
566 process. */
567 if (the_low_target.breakpoint_reinsert_addr == NULL)
568 {
569 event_child->bp_reinsert = stop_pc;
570 uninsert_breakpoint (stop_pc);
571 linux_resume_one_process (&event_child->head, 1, 0);
572 }
573 else
574 {
575 reinsert_breakpoint_by_bp
576 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
577 linux_resume_one_process (&event_child->head, 0, 0);
611cb4a5 578 }
0d62e5e8
DJ
579
580 continue;
581 }
582
583 /* If we were single-stepping, we definitely want to report the
584 SIGTRAP. The single-step operation has completed, so also
585 clear the stepping flag; in general this does not matter,
586 because the SIGTRAP will be reported to the client, which
587 will give us a new action for this thread, but clear it for
588 consistency anyway. It's safe to clear the stepping flag
589 because the only consumer of get_stop_pc () after this point
590 is check_removed_breakpoints, and pending_is_breakpoint is not
591 set. It might be wiser to use a step_completed flag instead. */
592 if (event_child->stepping)
593 {
594 event_child->stepping = 0;
595 return wstat;
596 }
597
598 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
599 Check if it is a breakpoint, and if so mark the process information
600 accordingly. This will handle both the necessary fiddling with the
601 PC on decr_pc_after_break targets and suppressing extra threads
602 hitting a breakpoint if two hit it at once and then GDB removes it
603 after the first is reported. Arguably it would be better to report
604 multiple threads hitting breakpoints simultaneously, but the current
605 remote protocol does not allow this. */
606 if ((*the_low_target.breakpoint_at) (stop_pc))
607 {
608 event_child->pending_is_breakpoint = 1;
609 event_child->pending_stop_pc = stop_pc;
611cb4a5
DJ
610 }
611
612 return wstat;
613 }
0d62e5e8 614
611cb4a5
DJ
615 /* NOTREACHED */
616 return 0;
617}
618
0d62e5e8 619/* Wait for process, returns status. */
da6d8c04 620
ce3a066d
DJ
621static unsigned char
622linux_wait (char *status)
da6d8c04 623{
e5f1222d 624 int w;
0d62e5e8
DJ
625 struct thread_info *child = NULL;
626
627retry:
628 /* If we were only supposed to resume one thread, only wait for
629 that thread - if it's still alive. If it died, however - which
630 can happen if we're coming from the thread death case below -
631 then we need to make sure we restart the other threads. We could
632 pick a thread at random or restart all; restarting all is less
633 arbitrary. */
634 if (cont_thread > 0)
635 {
636 child = (struct thread_info *) find_inferior_id (&all_threads,
637 cont_thread);
638
639 /* No stepping, no signal - unless one is pending already, of course. */
640 if (child == NULL)
641 linux_resume (0, 0);
642 }
da6d8c04
DJ
643
644 enable_async_io ();
0d62e5e8
DJ
645 w = linux_wait_for_event (child);
646 stop_all_processes ();
da6d8c04 647 disable_async_io ();
da6d8c04 648
0d62e5e8
DJ
649 /* If we are waiting for a particular child, and it exited,
650 linux_wait_for_event will return its exit status. Similarly if
651 the last child exited. If this is not the last child, however,
652 do not report it as exited until there is a 'thread exited' response
653 available in the remote protocol. Instead, just wait for another event.
654 This should be safe, because if the thread crashed we will already
655 have reported the termination signal to GDB; that should stop any
656 in-progress stepping operations, etc.
657
658 Report the exit status of the last thread to exit. This matches
659 LinuxThreads' behavior. */
660
661 if (all_threads.head == all_threads.tail)
da6d8c04 662 {
0d62e5e8
DJ
663 if (WIFEXITED (w))
664 {
665 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
666 *status = 'W';
667 clear_inferiors ();
668 return ((unsigned char) WEXITSTATUS (w));
669 }
670 else if (!WIFSTOPPED (w))
671 {
672 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
673 clear_inferiors ();
674 *status = 'X';
675 return ((unsigned char) WTERMSIG (w));
676 }
da6d8c04 677 }
0d62e5e8 678 else
da6d8c04 679 {
0d62e5e8
DJ
680 if (!WIFSTOPPED (w))
681 goto retry;
da6d8c04
DJ
682 }
683
da6d8c04
DJ
684 *status = 'T';
685 return ((unsigned char) WSTOPSIG (w));
686}
687
0d62e5e8
DJ
688static void
689send_sigstop (struct inferior_list_entry *entry)
690{
691 struct process_info *process = (struct process_info *) entry;
692
693 if (process->stopped)
694 return;
695
696 /* If we already have a pending stop signal for this process, don't
697 send another. */
698 if (process->stop_expected)
699 {
700 process->stop_expected = 0;
701 return;
702 }
703
704 if (debug_threads)
705 fprintf (stderr, "Sending sigstop to process %d\n", process->head.id);
706
707 kill (process->head.id, SIGSTOP);
708 process->sigstop_sent = 1;
709}
710
711static void
712wait_for_sigstop (struct inferior_list_entry *entry)
713{
714 struct process_info *process = (struct process_info *) entry;
715 struct thread_info *saved_inferior, *thread;
716 int wstat, saved_tid;
717
718 if (process->stopped)
719 return;
720
721 saved_inferior = current_inferior;
722 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
723 thread = (struct thread_info *) find_inferior_id (&all_threads,
724 process->tid);
725 wstat = linux_wait_for_event (thread);
726
727 /* If we stopped with a non-SIGSTOP signal, save it for later
728 and record the pending SIGSTOP. If the process exited, just
729 return. */
730 if (WIFSTOPPED (wstat)
731 && WSTOPSIG (wstat) != SIGSTOP)
732 {
733 if (debug_threads)
734 fprintf (stderr, "Stopped with non-sigstop signal\n");
735 process->status_pending_p = 1;
736 process->status_pending = wstat;
737 process->stop_expected = 1;
738 }
739
740 if (linux_thread_alive (saved_tid))
741 current_inferior = saved_inferior;
742 else
743 {
744 if (debug_threads)
745 fprintf (stderr, "Previously current thread died.\n");
746
747 /* Set a valid thread as current. */
748 set_desired_inferior (0);
749 }
750}
751
752static void
753stop_all_processes (void)
754{
755 stopping_threads = 1;
756 for_each_inferior (&all_processes, send_sigstop);
757 for_each_inferior (&all_processes, wait_for_sigstop);
758 stopping_threads = 0;
759}
760
da6d8c04
DJ
761/* Resume execution of the inferior process.
762 If STEP is nonzero, single-step it.
763 If SIGNAL is nonzero, give it that signal. */
764
ce3a066d 765static void
0d62e5e8
DJ
766linux_resume_one_process (struct inferior_list_entry *entry,
767 int step, int signal)
da6d8c04 768{
0d62e5e8
DJ
769 struct process_info *process = (struct process_info *) entry;
770 struct thread_info *saved_inferior;
771
772 if (process->stopped == 0)
773 return;
774
775 /* If we have pending signals or status, and a new signal, enqueue the
776 signal. Also enqueue the signal if we are waiting to reinsert a
777 breakpoint; it will be picked up again below. */
778 if (signal != 0
779 && (process->status_pending_p || process->pending_signals != NULL
780 || process->bp_reinsert != 0))
781 {
782 struct pending_signals *p_sig;
783 p_sig = malloc (sizeof (*p_sig));
784 p_sig->prev = process->pending_signals;
785 p_sig->signal = signal;
786 process->pending_signals = p_sig;
787 }
788
789 if (process->status_pending_p)
790 return;
791
792 saved_inferior = current_inferior;
793 current_inferior = get_process_thread (process);
794
795 if (debug_threads)
796 fprintf (stderr, "Resuming process %d (%s, signal %d, stop %s)\n", inferior_pid,
797 step ? "step" : "continue", signal,
798 process->stop_expected ? "expected" : "not expected");
799
800 /* This bit needs some thinking about. If we get a signal that
801 we must report while a single-step reinsert is still pending,
802 we often end up resuming the thread. It might be better to
803 (ew) allow a stack of pending events; then we could be sure that
804 the reinsert happened right away and not lose any signals.
805
806 Making this stack would also shrink the window in which breakpoints are
807 uninserted (see comment in linux_wait_for_process) but not enough for
808 complete correctness, so it won't solve that problem. It may be
809 worthwhile just to solve this one, however. */
810 if (process->bp_reinsert != 0)
811 {
812 if (debug_threads)
813 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
814 if (step == 0)
815 fprintf (stderr, "BAD - reinserting but not stepping.\n");
816 step = 1;
817
818 /* Postpone any pending signal. It was enqueued above. */
819 signal = 0;
820 }
821
822 check_removed_breakpoint (process);
823
824 if (debug_threads && the_low_target.get_pc != NULL)
825 {
826 fprintf (stderr, " ");
827 (long) (*the_low_target.get_pc) ();
828 }
829
830 /* If we have pending signals, consume one unless we are trying to reinsert
831 a breakpoint. */
832 if (process->pending_signals != NULL && process->bp_reinsert == 0)
833 {
834 struct pending_signals **p_sig;
835
836 p_sig = &process->pending_signals;
837 while ((*p_sig)->prev != NULL)
838 p_sig = &(*p_sig)->prev;
839
840 signal = (*p_sig)->signal;
841 free (*p_sig);
842 *p_sig = NULL;
843 }
844
845 regcache_invalidate_one ((struct inferior_list_entry *)
846 get_process_thread (process));
da6d8c04 847 errno = 0;
0d62e5e8
DJ
848 process->stopped = 0;
849 process->stepping = step;
850 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
851
852 current_inferior = saved_inferior;
da6d8c04
DJ
853 if (errno)
854 perror_with_name ("ptrace");
855}
856
0d62e5e8
DJ
857/* This function is called once per process other than the first
858 one. The first process we are told the signal to continue
859 with, and whether to step or continue; for all others, any
860 existing signals will be marked in status_pending_p to be
861 reported momentarily, and we preserve the stepping flag. */
862static void
863linux_continue_one_process (struct inferior_list_entry *entry)
864{
865 struct process_info *process;
c6ecbae5 866
0d62e5e8
DJ
867 process = (struct process_info *) entry;
868 linux_resume_one_process (entry, process->stepping, 0);
869}
870
871static void
872linux_resume (int step, int signal)
873{
874 struct process_info *process;
875
876 process = get_thread_process (current_inferior);
877
878 /* If the current process has a status pending, this signal will
879 be enqueued and sent later. */
880 linux_resume_one_process (&process->head, step, signal);
c6ecbae5 881
0d62e5e8
DJ
882 if (cont_thread == 0 || cont_thread == -1)
883 for_each_inferior (&all_processes, linux_continue_one_process);
884}
885
886#ifdef HAVE_LINUX_USRREGS
da6d8c04
DJ
887
888int
0a30fbc4 889register_addr (int regnum)
da6d8c04
DJ
890{
891 int addr;
892
2ec06d2e 893 if (regnum < 0 || regnum >= the_low_target.num_regs)
da6d8c04
DJ
894 error ("Invalid register number %d.", regnum);
895
2ec06d2e 896 addr = the_low_target.regmap[regnum];
da6d8c04
DJ
897
898 return addr;
899}
900
58caa3dc 901/* Fetch one register. */
da6d8c04
DJ
902static void
903fetch_register (int regno)
904{
905 CORE_ADDR regaddr;
906 register int i;
0d62e5e8 907 char *buf;
da6d8c04 908
2ec06d2e 909 if (regno >= the_low_target.num_regs)
0a30fbc4 910 return;
2ec06d2e 911 if ((*the_low_target.cannot_fetch_register) (regno))
0a30fbc4 912 return;
da6d8c04 913
0a30fbc4
DJ
914 regaddr = register_addr (regno);
915 if (regaddr == -1)
916 return;
0d62e5e8
DJ
917 buf = alloca (register_size (regno));
918 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
da6d8c04
DJ
919 {
920 errno = 0;
0d62e5e8 921 *(PTRACE_XFER_TYPE *) (buf + i) =
da6d8c04
DJ
922 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
923 regaddr += sizeof (PTRACE_XFER_TYPE);
924 if (errno != 0)
925 {
926 /* Warning, not error, in case we are attached; sometimes the
927 kernel doesn't let us at the registers. */
928 char *err = strerror (errno);
929 char *msg = alloca (strlen (err) + 128);
930 sprintf (msg, "reading register %d: %s", regno, err);
931 error (msg);
932 goto error_exit;
933 }
934 }
0d62e5e8
DJ
935 supply_register (regno, buf);
936
da6d8c04
DJ
937error_exit:;
938}
939
940/* Fetch all registers, or just one, from the child process. */
58caa3dc
DJ
941static void
942usr_fetch_inferior_registers (int regno)
da6d8c04
DJ
943{
944 if (regno == -1 || regno == 0)
2ec06d2e 945 for (regno = 0; regno < the_low_target.num_regs; regno++)
da6d8c04
DJ
946 fetch_register (regno);
947 else
948 fetch_register (regno);
949}
950
951/* Store our register values back into the inferior.
952 If REGNO is -1, do this for all registers.
953 Otherwise, REGNO specifies which register (so we can save time). */
58caa3dc
DJ
954static void
955usr_store_inferior_registers (int regno)
da6d8c04
DJ
956{
957 CORE_ADDR regaddr;
958 int i;
0d62e5e8 959 char *buf;
da6d8c04
DJ
960
961 if (regno >= 0)
962 {
2ec06d2e 963 if (regno >= the_low_target.num_regs)
0a30fbc4
DJ
964 return;
965
bc1e36ca 966 if ((*the_low_target.cannot_store_register) (regno) == 1)
0a30fbc4
DJ
967 return;
968
969 regaddr = register_addr (regno);
970 if (regaddr == -1)
da6d8c04 971 return;
da6d8c04 972 errno = 0;
0d62e5e8
DJ
973 buf = alloca (register_size (regno));
974 collect_register (regno, buf);
975 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
da6d8c04 976 {
0a30fbc4
DJ
977 errno = 0;
978 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
2ff29de4 979 *(PTRACE_XFER_TYPE *) (buf + i));
da6d8c04
DJ
980 if (errno != 0)
981 {
bc1e36ca
DJ
982 if ((*the_low_target.cannot_store_register) (regno) == 0)
983 {
984 char *err = strerror (errno);
985 char *msg = alloca (strlen (err) + 128);
986 sprintf (msg, "writing register %d: %s",
987 regno, err);
988 error (msg);
989 return;
990 }
da6d8c04 991 }
2ff29de4 992 regaddr += sizeof (PTRACE_XFER_TYPE);
da6d8c04 993 }
da6d8c04
DJ
994 }
995 else
2ec06d2e 996 for (regno = 0; regno < the_low_target.num_regs; regno++)
0d62e5e8 997 usr_store_inferior_registers (regno);
da6d8c04 998}
58caa3dc
DJ
999#endif /* HAVE_LINUX_USRREGS */
1000
1001
1002
1003#ifdef HAVE_LINUX_REGSETS
1004
1005static int
0d62e5e8 1006regsets_fetch_inferior_registers ()
58caa3dc
DJ
1007{
1008 struct regset_info *regset;
1009
1010 regset = target_regsets;
1011
1012 while (regset->size >= 0)
1013 {
1014 void *buf;
1015 int res;
1016
1017 if (regset->size == 0)
1018 {
1019 regset ++;
1020 continue;
1021 }
1022
1023 buf = malloc (regset->size);
d06f167a 1024 res = ptrace (regset->get_request, inferior_pid, 0, buf);
58caa3dc
DJ
1025 if (res < 0)
1026 {
1027 if (errno == EIO)
1028 {
1029 /* If we get EIO on the first regset, do not try regsets again.
1030 If we get EIO on a later regset, disable that regset. */
1031 if (regset == target_regsets)
1032 {
1033 use_regsets_p = 0;
1034 return -1;
1035 }
1036 else
1037 {
1038 regset->size = 0;
1039 continue;
1040 }
1041 }
1042 else
1043 {
0d62e5e8
DJ
1044 char s[256];
1045 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
1046 inferior_pid);
1047 perror (s);
58caa3dc
DJ
1048 }
1049 }
1050 regset->store_function (buf);
1051 regset ++;
1052 }
ce3a066d 1053 return 0;
58caa3dc
DJ
1054}
1055
1056static int
0d62e5e8 1057regsets_store_inferior_registers ()
58caa3dc
DJ
1058{
1059 struct regset_info *regset;
1060
1061 regset = target_regsets;
1062
1063 while (regset->size >= 0)
1064 {
1065 void *buf;
1066 int res;
1067
1068 if (regset->size == 0)
1069 {
1070 regset ++;
1071 continue;
1072 }
1073
1074 buf = malloc (regset->size);
1075 regset->fill_function (buf);
d06f167a 1076 res = ptrace (regset->set_request, inferior_pid, 0, buf);
58caa3dc
DJ
1077 if (res < 0)
1078 {
1079 if (errno == EIO)
1080 {
1081 /* If we get EIO on the first regset, do not try regsets again.
1082 If we get EIO on a later regset, disable that regset. */
1083 if (regset == target_regsets)
1084 {
1085 use_regsets_p = 0;
1086 return -1;
1087 }
1088 else
1089 {
1090 regset->size = 0;
1091 continue;
1092 }
1093 }
1094 else
1095 {
ce3a066d 1096 perror ("Warning: ptrace(regsets_store_inferior_registers)");
58caa3dc
DJ
1097 }
1098 }
1099 regset ++;
09ec9b38 1100 free (buf);
58caa3dc 1101 }
ce3a066d 1102 return 0;
58caa3dc
DJ
1103}
1104
1105#endif /* HAVE_LINUX_REGSETS */
1106
1107
1108void
ce3a066d 1109linux_fetch_registers (int regno)
58caa3dc
DJ
1110{
1111#ifdef HAVE_LINUX_REGSETS
1112 if (use_regsets_p)
1113 {
1114 if (regsets_fetch_inferior_registers () == 0)
1115 return;
1116 }
1117#endif
1118#ifdef HAVE_LINUX_USRREGS
1119 usr_fetch_inferior_registers (regno);
1120#endif
1121}
1122
1123void
ce3a066d 1124linux_store_registers (int regno)
58caa3dc
DJ
1125{
1126#ifdef HAVE_LINUX_REGSETS
1127 if (use_regsets_p)
1128 {
1129 if (regsets_store_inferior_registers () == 0)
1130 return;
1131 }
1132#endif
1133#ifdef HAVE_LINUX_USRREGS
1134 usr_store_inferior_registers (regno);
1135#endif
1136}
1137
da6d8c04 1138
da6d8c04
DJ
1139/* Copy LEN bytes from inferior's memory starting at MEMADDR
1140 to debugger memory starting at MYADDR. */
1141
ce3a066d
DJ
1142static void
1143linux_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
da6d8c04
DJ
1144{
1145 register int i;
1146 /* Round starting address down to longword boundary. */
1147 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1148 /* Round ending address up; get number of longwords that makes. */
1149 register int count
1150 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1151 / sizeof (PTRACE_XFER_TYPE);
1152 /* Allocate buffer of that many longwords. */
1153 register PTRACE_XFER_TYPE *buffer
1154 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1155
1156 /* Read all the longwords */
1157 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1158 {
d844cde6 1159 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
da6d8c04
DJ
1160 }
1161
1162 /* Copy appropriate bytes out of the buffer. */
1163 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1164}
1165
1166/* Copy LEN bytes of data from debugger memory at MYADDR
1167 to inferior's memory at MEMADDR.
1168 On failure (cannot write the inferior)
1169 returns the value of errno. */
1170
ce3a066d 1171static int
611cb4a5 1172linux_write_memory (CORE_ADDR memaddr, const char *myaddr, int len)
da6d8c04
DJ
1173{
1174 register int i;
1175 /* Round starting address down to longword boundary. */
1176 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1177 /* Round ending address up; get number of longwords that makes. */
1178 register int count
1179 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1180 /* Allocate buffer of that many longwords. */
1181 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1182 extern int errno;
1183
0d62e5e8
DJ
1184 if (debug_threads)
1185 {
1186 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1187 }
1188
da6d8c04
DJ
1189 /* Fill start and end extra bytes of buffer with existing memory data. */
1190
d844cde6
DJ
1191 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1192 (PTRACE_ARG3_TYPE) addr, 0);
da6d8c04
DJ
1193
1194 if (count > 1)
1195 {
1196 buffer[count - 1]
1197 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
d844cde6
DJ
1198 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1199 * sizeof (PTRACE_XFER_TYPE)),
1200 0);
da6d8c04
DJ
1201 }
1202
1203 /* Copy data to be written over corresponding part of buffer */
1204
1205 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1206
1207 /* Write the entire buffer. */
1208
1209 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1210 {
1211 errno = 0;
d844cde6 1212 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
da6d8c04
DJ
1213 if (errno)
1214 return errno;
1215 }
1216
1217 return 0;
1218}
2f2893d9
DJ
1219
1220static void
1221linux_look_up_symbols (void)
1222{
0d62e5e8
DJ
1223#ifdef USE_THREAD_DB
1224 if (using_threads)
1225 return;
1226
1227 using_threads = thread_db_init ();
1228#endif
1229}
1230
da6d8c04 1231\f
ce3a066d
DJ
1232static struct target_ops linux_target_ops = {
1233 linux_create_inferior,
1234 linux_attach,
1235 linux_kill,
1236 linux_thread_alive,
1237 linux_resume,
1238 linux_wait,
1239 linux_fetch_registers,
1240 linux_store_registers,
1241 linux_read_memory,
1242 linux_write_memory,
2f2893d9 1243 linux_look_up_symbols,
ce3a066d
DJ
1244};
1245
0d62e5e8
DJ
1246static void
1247linux_init_signals ()
1248{
1249 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1250 to find what the cancel signal actually is. */
254787d4 1251 signal (__SIGRTMIN+1, SIG_IGN);
0d62e5e8
DJ
1252}
1253
da6d8c04
DJ
1254void
1255initialize_low (void)
1256{
0d62e5e8 1257 using_threads = 0;
ce3a066d 1258 set_target_ops (&linux_target_ops);
611cb4a5
DJ
1259 set_breakpoint_data (the_low_target.breakpoint,
1260 the_low_target.breakpoint_len);
0a30fbc4 1261 init_registers ();
0d62e5e8 1262 linux_init_signals ();
da6d8c04 1263}