]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
merge from gcc
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
3d261580
MK
37#include "gdb_assert.h"
38
d2a7c97a
MK
39#include "i386-tdep.h"
40
fc633446
MK
41/* Names of the registers. The first 10 registers match the register
42 numbering scheme used by GCC for stabs and DWARF. */
43static char *i386_register_names[] =
44{
45 "eax", "ecx", "edx", "ebx",
46 "esp", "ebp", "esi", "edi",
47 "eip", "eflags", "cs", "ss",
48 "ds", "es", "fs", "gs",
49 "st0", "st1", "st2", "st3",
50 "st4", "st5", "st6", "st7",
51 "fctrl", "fstat", "ftag", "fiseg",
52 "fioff", "foseg", "fooff", "fop",
53 "xmm0", "xmm1", "xmm2", "xmm3",
54 "xmm4", "xmm5", "xmm6", "xmm7",
55 "mxcsr"
56};
57
1a11ba71 58/* i386_register_offset[i] is the offset into the register file of the
917317f4 59 start of register number i. We initialize this from
1a11ba71 60 i386_register_size. */
1cf88de5 61static int i386_register_offset[I386_SSE_NUM_REGS];
917317f4 62
1a11ba71
MK
63/* i386_register_size[i] is the number of bytes of storage in GDB's
64 register array occupied by register i. */
1cf88de5 65static int i386_register_size[I386_SSE_NUM_REGS] = {
917317f4
JM
66 4, 4, 4, 4,
67 4, 4, 4, 4,
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 10, 10, 10, 10,
71 10, 10, 10, 10,
72 4, 4, 4, 4,
73 4, 4, 4, 4,
74 16, 16, 16, 16,
75 16, 16, 16, 16,
76 4
77};
78
fc633446
MK
79/* Return the name of register REG. */
80
fa88f677 81const char *
fc633446
MK
82i386_register_name (int reg)
83{
84 if (reg < 0)
85 return NULL;
86 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
87 return NULL;
88
89 return i386_register_names[reg];
90}
91
1a11ba71
MK
92/* Return the offset into the register array of the start of register
93 number REG. */
94int
95i386_register_byte (int reg)
96{
97 return i386_register_offset[reg];
98}
99
100/* Return the number of bytes of storage in GDB's register array
101 occupied by register REG. */
102
103int
104i386_register_raw_size (int reg)
105{
106 return i386_register_size[reg];
107}
108
85540d8c
MK
109/* Convert stabs register number REG to the appropriate register
110 number used by GDB. */
111
8201327c 112static int
85540d8c
MK
113i386_stab_reg_to_regnum (int reg)
114{
115 /* This implements what GCC calls the "default" register map. */
116 if (reg >= 0 && reg <= 7)
117 {
118 /* General registers. */
119 return reg;
120 }
121 else if (reg >= 12 && reg <= 19)
122 {
123 /* Floating-point registers. */
124 return reg - 12 + FP0_REGNUM;
125 }
126 else if (reg >= 21 && reg <= 28)
127 {
128 /* SSE registers. */
129 return reg - 21 + XMM0_REGNUM;
130 }
131 else if (reg >= 29 && reg <= 36)
132 {
133 /* MMX registers. */
134 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
135 as pseudo-registers? */
136 return reg - 29 + FP0_REGNUM;
137 }
138
139 /* This will hopefully provoke a warning. */
140 return NUM_REGS + NUM_PSEUDO_REGS;
141}
142
8201327c 143/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
144 number used by GDB. */
145
8201327c 146static int
85540d8c
MK
147i386_dwarf_reg_to_regnum (int reg)
148{
149 /* The DWARF register numbering includes %eip and %eflags, and
150 numbers the floating point registers differently. */
151 if (reg >= 0 && reg <= 9)
152 {
153 /* General registers. */
154 return reg;
155 }
156 else if (reg >= 11 && reg <= 18)
157 {
158 /* Floating-point registers. */
159 return reg - 11 + FP0_REGNUM;
160 }
161 else if (reg >= 21)
162 {
163 /* The SSE and MMX registers have identical numbers as in stabs. */
164 return i386_stab_reg_to_regnum (reg);
165 }
166
167 /* This will hopefully provoke a warning. */
168 return NUM_REGS + NUM_PSEUDO_REGS;
169}
fc338970 170\f
917317f4 171
fc338970
MK
172/* This is the variable that is set with "set disassembly-flavor", and
173 its legitimate values. */
53904c9e
AC
174static const char att_flavor[] = "att";
175static const char intel_flavor[] = "intel";
176static const char *valid_flavors[] =
c5aa993b 177{
c906108c
SS
178 att_flavor,
179 intel_flavor,
180 NULL
181};
53904c9e 182static const char *disassembly_flavor = att_flavor;
c906108c 183
fc338970
MK
184/* Stdio style buffering was used to minimize calls to ptrace, but
185 this buffering did not take into account that the code section
186 being accessed may not be an even number of buffers long (even if
187 the buffer is only sizeof(int) long). In cases where the code
188 section size happened to be a non-integral number of buffers long,
189 attempting to read the last buffer would fail. Simply using
190 target_read_memory and ignoring errors, rather than read_memory, is
191 not the correct solution, since legitimate access errors would then
192 be totally ignored. To properly handle this situation and continue
193 to use buffering would require that this code be able to determine
194 the minimum code section size granularity (not the alignment of the
195 section itself, since the actual failing case that pointed out this
196 problem had a section alignment of 4 but was not a multiple of 4
197 bytes long), on a target by target basis, and then adjust it's
198 buffer size accordingly. This is messy, but potentially feasible.
199 It probably needs the bfd library's help and support. For now, the
200 buffer size is set to 1. (FIXME -fnf) */
201
202#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
203static CORE_ADDR codestream_next_addr;
204static CORE_ADDR codestream_addr;
205static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
206static int codestream_off;
207static int codestream_cnt;
208
209#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
210#define codestream_peek() \
211 (codestream_cnt == 0 ? \
212 codestream_fill(1) : codestream_buf[codestream_off])
213#define codestream_get() \
214 (codestream_cnt-- == 0 ? \
215 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 216
c5aa993b 217static unsigned char
fba45db2 218codestream_fill (int peek_flag)
c906108c
SS
219{
220 codestream_addr = codestream_next_addr;
221 codestream_next_addr += CODESTREAM_BUFSIZ;
222 codestream_off = 0;
223 codestream_cnt = CODESTREAM_BUFSIZ;
224 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 225
c906108c 226 if (peek_flag)
c5aa993b 227 return (codestream_peek ());
c906108c 228 else
c5aa993b 229 return (codestream_get ());
c906108c
SS
230}
231
232static void
fba45db2 233codestream_seek (CORE_ADDR place)
c906108c
SS
234{
235 codestream_next_addr = place / CODESTREAM_BUFSIZ;
236 codestream_next_addr *= CODESTREAM_BUFSIZ;
237 codestream_cnt = 0;
238 codestream_fill (1);
c5aa993b 239 while (codestream_tell () != place)
c906108c
SS
240 codestream_get ();
241}
242
243static void
fba45db2 244codestream_read (unsigned char *buf, int count)
c906108c
SS
245{
246 unsigned char *p;
247 int i;
248 p = buf;
249 for (i = 0; i < count; i++)
250 *p++ = codestream_get ();
251}
fc338970 252\f
c906108c 253
fc338970 254/* If the next instruction is a jump, move to its target. */
c906108c
SS
255
256static void
fba45db2 257i386_follow_jump (void)
c906108c
SS
258{
259 unsigned char buf[4];
260 long delta;
261
262 int data16;
263 CORE_ADDR pos;
264
265 pos = codestream_tell ();
266
267 data16 = 0;
268 if (codestream_peek () == 0x66)
269 {
270 codestream_get ();
271 data16 = 1;
272 }
273
274 switch (codestream_get ())
275 {
276 case 0xe9:
fc338970 277 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
278 if (data16)
279 {
280 codestream_read (buf, 2);
281 delta = extract_signed_integer (buf, 2);
282
fc338970
MK
283 /* Include the size of the jmp instruction (including the
284 0x66 prefix). */
c5aa993b 285 pos += delta + 4;
c906108c
SS
286 }
287 else
288 {
289 codestream_read (buf, 4);
290 delta = extract_signed_integer (buf, 4);
291
292 pos += delta + 5;
293 }
294 break;
295 case 0xeb:
fc338970 296 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
297 codestream_read (buf, 1);
298 /* Sign-extend it. */
299 delta = extract_signed_integer (buf, 1);
300
301 pos += delta + 2;
302 break;
303 }
304 codestream_seek (pos);
305}
306
fc338970
MK
307/* Find & return the amount a local space allocated, and advance the
308 codestream to the first register push (if any).
309
310 If the entry sequence doesn't make sense, return -1, and leave
311 codestream pointer at a random spot. */
c906108c
SS
312
313static long
fba45db2 314i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
315{
316 unsigned char op;
317
318 codestream_seek (pc);
319
320 i386_follow_jump ();
321
322 op = codestream_get ();
323
324 if (op == 0x58) /* popl %eax */
325 {
fc338970
MK
326 /* This function must start with
327
328 popl %eax 0x58
329 xchgl %eax, (%esp) 0x87 0x04 0x24
330 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
331
332 (the System V compiler puts out the second `xchg'
333 instruction, and the assembler doesn't try to optimize it, so
334 the 'sib' form gets generated). This sequence is used to get
335 the address of the return buffer for a function that returns
336 a structure. */
c906108c
SS
337 int pos;
338 unsigned char buf[4];
fc338970
MK
339 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
340 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
341
c906108c
SS
342 pos = codestream_tell ();
343 codestream_read (buf, 4);
344 if (memcmp (buf, proto1, 3) == 0)
345 pos += 3;
346 else if (memcmp (buf, proto2, 4) == 0)
347 pos += 4;
348
349 codestream_seek (pos);
fc338970 350 op = codestream_get (); /* Update next opcode. */
c906108c
SS
351 }
352
353 if (op == 0x68 || op == 0x6a)
354 {
fc338970
MK
355 /* This function may start with
356
357 pushl constant
358 call _probe
359 addl $4, %esp
360
361 followed by
362
363 pushl %ebp
364
365 etc. */
c906108c
SS
366 int pos;
367 unsigned char buf[8];
368
fc338970 369 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
370 or a four-byte operand, depending on the opcode. */
371 pos = codestream_tell ();
372 if (op == 0x68)
373 pos += 4;
374 else
375 pos += 1;
376 codestream_seek (pos);
377
fc338970
MK
378 /* Read the following 8 bytes, which should be "call _probe" (6
379 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
380 codestream_read (buf, sizeof (buf));
381 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
382 pos += sizeof (buf);
383 codestream_seek (pos);
fc338970 384 op = codestream_get (); /* Update next opcode. */
c906108c
SS
385 }
386
387 if (op == 0x55) /* pushl %ebp */
c5aa993b 388 {
fc338970 389 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
390 switch (codestream_get ())
391 {
392 case 0x8b:
393 if (codestream_get () != 0xec)
fc338970 394 return -1;
c906108c
SS
395 break;
396 case 0x89:
397 if (codestream_get () != 0xe5)
fc338970 398 return -1;
c906108c
SS
399 break;
400 default:
fc338970 401 return -1;
c906108c 402 }
fc338970
MK
403 /* Check for stack adjustment
404
405 subl $XXX, %esp
406
407 NOTE: You can't subtract a 16 bit immediate from a 32 bit
408 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
409 op = codestream_peek ();
410 if (op == 0x83)
411 {
fc338970 412 /* `subl' with 8 bit immediate. */
c906108c
SS
413 codestream_get ();
414 if (codestream_get () != 0xec)
fc338970 415 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
416 {
417 codestream_seek (codestream_tell () - 2);
418 return 0;
419 }
fc338970
MK
420 /* `subl' with signed byte immediate (though it wouldn't
421 make sense to be negative). */
c5aa993b 422 return (codestream_get ());
c906108c
SS
423 }
424 else if (op == 0x81)
425 {
426 char buf[4];
fc338970 427 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 428 codestream_get ();
c906108c 429 if (codestream_get () != 0xec)
fc338970 430 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
431 {
432 codestream_seek (codestream_tell () - 2);
433 return 0;
434 }
fc338970 435 /* It is `subl' with a 32 bit immediate. */
c5aa993b 436 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
437 return extract_signed_integer (buf, 4);
438 }
439 else
440 {
fc338970 441 return 0;
c906108c
SS
442 }
443 }
444 else if (op == 0xc8)
445 {
446 char buf[2];
fc338970 447 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 448 codestream_read ((unsigned char *) buf, 2);
fc338970 449 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
450 return extract_unsigned_integer (buf, 2);
451 }
452 return (-1);
453}
454
c833a37e
MK
455/* Return the chain-pointer for FRAME. In the case of the i386, the
456 frame's nominal address is the address of a 4-byte word containing
457 the calling frame's address. */
458
8201327c 459static CORE_ADDR
c833a37e
MK
460i386_frame_chain (struct frame_info *frame)
461{
462 if (frame->signal_handler_caller)
463 return frame->frame;
464
465 if (! inside_entry_file (frame->pc))
466 return read_memory_unsigned_integer (frame->frame, 4);
467
468 return 0;
469}
470
539ffe0b
MK
471/* Determine whether the function invocation represented by FRAME does
472 not have a from on the stack associated with it. If it does not,
473 return non-zero, otherwise return zero. */
474
3a1e71e3 475static int
539ffe0b
MK
476i386_frameless_function_invocation (struct frame_info *frame)
477{
478 if (frame->signal_handler_caller)
479 return 0;
480
481 return frameless_look_for_prologue (frame);
482}
483
0d17c81d
MK
484/* Return the saved program counter for FRAME. */
485
8201327c 486static CORE_ADDR
0d17c81d
MK
487i386_frame_saved_pc (struct frame_info *frame)
488{
0d17c81d 489 if (frame->signal_handler_caller)
8201327c
MK
490 {
491 CORE_ADDR (*sigtramp_saved_pc) (struct frame_info *);
492 sigtramp_saved_pc = gdbarch_tdep (current_gdbarch)->sigtramp_saved_pc;
0d17c81d 493
8201327c
MK
494 gdb_assert (sigtramp_saved_pc != NULL);
495 return sigtramp_saved_pc (frame);
496 }
0d17c81d 497
8201327c 498 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
499}
500
ed84f6c1
MK
501/* Immediately after a function call, return the saved pc. */
502
8201327c 503static CORE_ADDR
ed84f6c1
MK
504i386_saved_pc_after_call (struct frame_info *frame)
505{
506 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
507}
508
c906108c
SS
509/* Return number of args passed to a frame.
510 Can return -1, meaning no way to tell. */
511
3a1e71e3 512static int
fba45db2 513i386_frame_num_args (struct frame_info *fi)
c906108c
SS
514{
515#if 1
516 return -1;
517#else
518 /* This loses because not only might the compiler not be popping the
fc338970
MK
519 args right after the function call, it might be popping args from
520 both this call and a previous one, and we would say there are
521 more args than there really are. */
c906108c 522
c5aa993b
JM
523 int retpc;
524 unsigned char op;
c906108c
SS
525 struct frame_info *pfi;
526
fc338970 527 /* On the i386, the instruction following the call could be:
c906108c
SS
528 popl %ecx - one arg
529 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 530 anything else - zero args. */
c906108c
SS
531
532 int frameless;
533
392a587b 534 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 535 if (frameless)
fc338970
MK
536 /* In the absence of a frame pointer, GDB doesn't get correct
537 values for nameless arguments. Return -1, so it doesn't print
538 any nameless arguments. */
c906108c
SS
539 return -1;
540
c5aa993b 541 pfi = get_prev_frame (fi);
c906108c
SS
542 if (pfi == 0)
543 {
fc338970
MK
544 /* NOTE: This can happen if we are looking at the frame for
545 main, because FRAME_CHAIN_VALID won't let us go into start.
546 If we have debugging symbols, that's not really a big deal;
547 it just means it will only show as many arguments to main as
548 are declared. */
c906108c
SS
549 return -1;
550 }
551 else
552 {
c5aa993b
JM
553 retpc = pfi->pc;
554 op = read_memory_integer (retpc, 1);
fc338970 555 if (op == 0x59) /* pop %ecx */
c5aa993b 556 return 1;
c906108c
SS
557 else if (op == 0x83)
558 {
c5aa993b
JM
559 op = read_memory_integer (retpc + 1, 1);
560 if (op == 0xc4)
561 /* addl $<signed imm 8 bits>, %esp */
562 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
563 else
564 return 0;
565 }
fc338970
MK
566 else if (op == 0x81) /* `add' with 32 bit immediate. */
567 {
c5aa993b
JM
568 op = read_memory_integer (retpc + 1, 1);
569 if (op == 0xc4)
570 /* addl $<imm 32>, %esp */
571 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
572 else
573 return 0;
574 }
575 else
576 {
577 return 0;
578 }
579 }
580#endif
581}
582
fc338970
MK
583/* Parse the first few instructions the function to see what registers
584 were stored.
585
586 We handle these cases:
587
588 The startup sequence can be at the start of the function, or the
589 function can start with a branch to startup code at the end.
590
591 %ebp can be set up with either the 'enter' instruction, or "pushl
592 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
593 once used in the System V compiler).
594
595 Local space is allocated just below the saved %ebp by either the
596 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
597 bit unsigned argument for space to allocate, and the 'addl'
598 instruction could have either a signed byte, or 32 bit immediate.
599
600 Next, the registers used by this function are pushed. With the
601 System V compiler they will always be in the order: %edi, %esi,
602 %ebx (and sometimes a harmless bug causes it to also save but not
603 restore %eax); however, the code below is willing to see the pushes
604 in any order, and will handle up to 8 of them.
605
606 If the setup sequence is at the end of the function, then the next
607 instruction will be a branch back to the start. */
c906108c 608
3a1e71e3 609static void
fba45db2 610i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
611{
612 long locals = -1;
613 unsigned char op;
614 CORE_ADDR dummy_bottom;
fc338970 615 CORE_ADDR addr;
c906108c
SS
616 CORE_ADDR pc;
617 int i;
c5aa993b 618
1211c4e4
AC
619 if (fip->saved_regs)
620 return;
621
622 frame_saved_regs_zalloc (fip);
c5aa993b 623
fc338970
MK
624 /* If the frame is the end of a dummy, compute where the beginning
625 would be. */
c906108c 626 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 627
fc338970 628 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 629 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 630 {
fc338970
MK
631 /* All registers were saved by push_call_dummy. */
632 addr = fip->frame;
c5aa993b 633 for (i = 0; i < NUM_REGS; i++)
c906108c 634 {
fc338970
MK
635 addr -= REGISTER_RAW_SIZE (i);
636 fip->saved_regs[i] = addr;
c906108c
SS
637 }
638 return;
639 }
c5aa993b 640
c906108c
SS
641 pc = get_pc_function_start (fip->pc);
642 if (pc != 0)
643 locals = i386_get_frame_setup (pc);
c5aa993b
JM
644
645 if (locals >= 0)
c906108c 646 {
fc338970 647 addr = fip->frame - 4 - locals;
c5aa993b 648 for (i = 0; i < 8; i++)
c906108c
SS
649 {
650 op = codestream_get ();
651 if (op < 0x50 || op > 0x57)
652 break;
653#ifdef I386_REGNO_TO_SYMMETRY
654 /* Dynix uses different internal numbering. Ick. */
fc338970 655 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 656#else
fc338970 657 fip->saved_regs[op - 0x50] = addr;
c906108c 658#endif
fc338970 659 addr -= 4;
c906108c
SS
660 }
661 }
c5aa993b 662
1211c4e4
AC
663 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
664 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
665}
666
fc338970 667/* Return PC of first real instruction. */
c906108c 668
3a1e71e3 669static CORE_ADDR
93924b6b 670i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
671{
672 unsigned char op;
673 int i;
c5aa993b 674 static unsigned char pic_pat[6] =
fc338970
MK
675 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
676 0x5b, /* popl %ebx */
c5aa993b 677 };
c906108c 678 CORE_ADDR pos;
c5aa993b 679
c906108c
SS
680 if (i386_get_frame_setup (pc) < 0)
681 return (pc);
c5aa993b 682
fc338970
MK
683 /* Found valid frame setup -- codestream now points to start of push
684 instructions for saving registers. */
c5aa993b 685
fc338970 686 /* Skip over register saves. */
c906108c
SS
687 for (i = 0; i < 8; i++)
688 {
689 op = codestream_peek ();
fc338970 690 /* Break if not `pushl' instrunction. */
c5aa993b 691 if (op < 0x50 || op > 0x57)
c906108c
SS
692 break;
693 codestream_get ();
694 }
695
fc338970
MK
696 /* The native cc on SVR4 in -K PIC mode inserts the following code
697 to get the address of the global offset table (GOT) into register
698 %ebx
699
700 call 0x0
701 popl %ebx
702 movl %ebx,x(%ebp) (optional)
703 addl y,%ebx
704
c906108c
SS
705 This code is with the rest of the prologue (at the end of the
706 function), so we have to skip it to get to the first real
707 instruction at the start of the function. */
c5aa993b 708
c906108c
SS
709 pos = codestream_tell ();
710 for (i = 0; i < 6; i++)
711 {
712 op = codestream_get ();
c5aa993b 713 if (pic_pat[i] != op)
c906108c
SS
714 break;
715 }
716 if (i == 6)
717 {
718 unsigned char buf[4];
719 long delta = 6;
720
721 op = codestream_get ();
c5aa993b 722 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
723 {
724 op = codestream_get ();
fc338970 725 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
726 {
727 delta += 3;
728 codestream_read (buf, 1);
729 }
fc338970 730 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
731 {
732 delta += 6;
733 codestream_read (buf, 4);
734 }
fc338970 735 else /* Unexpected instruction. */
c5aa993b
JM
736 delta = -1;
737 op = codestream_get ();
c906108c 738 }
c5aa993b
JM
739 /* addl y,%ebx */
740 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 741 {
c5aa993b 742 pos += delta + 6;
c906108c
SS
743 }
744 }
745 codestream_seek (pos);
c5aa993b 746
c906108c 747 i386_follow_jump ();
c5aa993b 748
c906108c
SS
749 return (codestream_tell ());
750}
751
93924b6b
MK
752/* Use the program counter to determine the contents and size of a
753 breakpoint instruction. Return a pointer to a string of bytes that
754 encode a breakpoint instruction, store the length of the string in
755 *LEN and optionally adjust *PC to point to the correct memory
756 location for inserting the breakpoint.
757
758 On the i386 we have a single breakpoint that fits in a single byte
759 and can be inserted anywhere. */
760
761static const unsigned char *
762i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
763{
764 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
765
766 *len = sizeof (break_insn);
767 return break_insn;
768}
769
3a1e71e3 770static void
fba45db2 771i386_push_dummy_frame (void)
c906108c
SS
772{
773 CORE_ADDR sp = read_register (SP_REGNUM);
ec80a8ea 774 CORE_ADDR fp;
c906108c
SS
775 int regnum;
776 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 777
c906108c
SS
778 sp = push_word (sp, read_register (PC_REGNUM));
779 sp = push_word (sp, read_register (FP_REGNUM));
ec80a8ea 780 fp = sp;
c906108c
SS
781 for (regnum = 0; regnum < NUM_REGS; regnum++)
782 {
783 read_register_gen (regnum, regbuf);
784 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
785 }
786 write_register (SP_REGNUM, sp);
ec80a8ea 787 write_register (FP_REGNUM, fp);
c906108c
SS
788}
789
8758dec1
MK
790/* The i386 call dummy sequence:
791
792 call 11223344 (32-bit relative)
793 int 3
794
795 It is 8 bytes long. */
796
797static LONGEST i386_call_dummy_words[] =
798{
799 0x223344e8,
800 0xcc11
801};
802
a7769679
MK
803/* Insert the (relative) function address into the call sequence
804 stored at DYMMY. */
805
3a1e71e3 806static void
a7769679 807i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 808 struct value **args, struct type *type, int gcc_p)
a7769679
MK
809{
810 int from, to, delta, loc;
811
812 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
813 from = loc + 5;
814 to = (int)(fun);
815 delta = to - from;
816
817 *((char *)(dummy) + 1) = (delta & 0xff);
818 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
819 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
820 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
821}
822
3a1e71e3 823static void
fba45db2 824i386_pop_frame (void)
c906108c
SS
825{
826 struct frame_info *frame = get_current_frame ();
827 CORE_ADDR fp;
828 int regnum;
c906108c 829 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 830
c906108c 831 fp = FRAME_FP (frame);
1211c4e4
AC
832 i386_frame_init_saved_regs (frame);
833
c5aa993b 834 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 835 {
fc338970
MK
836 CORE_ADDR addr;
837 addr = frame->saved_regs[regnum];
838 if (addr)
c906108c 839 {
fc338970 840 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
841 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
842 REGISTER_RAW_SIZE (regnum));
843 }
844 }
845 write_register (FP_REGNUM, read_memory_integer (fp, 4));
846 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
847 write_register (SP_REGNUM, fp + 8);
848 flush_cached_frames ();
849}
fc338970 850\f
c906108c 851
fc338970
MK
852/* Figure out where the longjmp will land. Slurp the args out of the
853 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
854 structure from which we extract the address that we will land at.
855 This address is copied into PC. This routine returns true on
fc338970 856 success. */
c906108c 857
8201327c
MK
858static int
859i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 860{
8201327c 861 char buf[4];
c906108c 862 CORE_ADDR sp, jb_addr;
8201327c 863 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 864
8201327c
MK
865 /* If JB_PC_OFFSET is -1, we have no way to find out where the
866 longjmp will land. */
867 if (jb_pc_offset == -1)
c906108c
SS
868 return 0;
869
8201327c
MK
870 sp = read_register (SP_REGNUM);
871 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
872 return 0;
873
8201327c
MK
874 jb_addr = extract_address (buf, 4);
875 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
876 return 0;
c906108c 877
8201327c 878 *pc = extract_address (buf, 4);
c906108c
SS
879 return 1;
880}
fc338970 881\f
c906108c 882
3a1e71e3 883static CORE_ADDR
ea7c478f 884i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
885 int struct_return, CORE_ADDR struct_addr)
886{
887 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
888
889 if (struct_return)
890 {
891 char buf[4];
892
893 sp -= 4;
894 store_address (buf, 4, struct_addr);
895 write_memory (sp, buf, 4);
896 }
897
898 return sp;
899}
900
3a1e71e3 901static void
22f8ba57
MK
902i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
903{
904 /* Do nothing. Everything was already done by i386_push_arguments. */
905}
906
1a309862
MK
907/* These registers are used for returning integers (and on some
908 targets also for returning `struct' and `union' values when their
ef9dff19 909 size and alignment match an integer type). */
1a309862
MK
910#define LOW_RETURN_REGNUM 0 /* %eax */
911#define HIGH_RETURN_REGNUM 2 /* %edx */
912
913/* Extract from an array REGBUF containing the (raw) register state, a
914 function return value of TYPE, and copy that, in virtual format,
915 into VALBUF. */
916
3a1e71e3 917static void
1a309862 918i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 919{
1a309862
MK
920 int len = TYPE_LENGTH (type);
921
1e8d0a7b
MK
922 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
923 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
924 {
925 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
926 return;
927 }
1e8d0a7b
MK
928
929 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 930 {
356a6b3e 931 if (FP0_REGNUM == 0)
1a309862
MK
932 {
933 warning ("Cannot find floating-point return value.");
934 memset (valbuf, 0, len);
ef9dff19 935 return;
1a309862
MK
936 }
937
c6ba6f0d
MK
938 /* Floating-point return values can be found in %st(0). Convert
939 its contents to the desired type. This is probably not
940 exactly how it would happen on the target itself, but it is
941 the best we can do. */
942 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
943 builtin_type_i387_ext, valbuf, type);
c906108c
SS
944 }
945 else
c5aa993b 946 {
d4f3574e
SS
947 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
948 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
949
950 if (len <= low_size)
1a309862 951 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
952 else if (len <= (low_size + high_size))
953 {
954 memcpy (valbuf,
1a309862 955 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 956 memcpy (valbuf + low_size,
1a309862 957 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
958 }
959 else
8e65ff28
AC
960 internal_error (__FILE__, __LINE__,
961 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
962 }
963}
964
ef9dff19
MK
965/* Write into the appropriate registers a function return value stored
966 in VALBUF of type TYPE, given in virtual format. */
967
3a1e71e3 968static void
ef9dff19
MK
969i386_store_return_value (struct type *type, char *valbuf)
970{
971 int len = TYPE_LENGTH (type);
972
1e8d0a7b
MK
973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
974 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
975 {
976 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
977 return;
978 }
1e8d0a7b
MK
979
980 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 981 {
ccb945b8 982 unsigned int fstat;
c6ba6f0d 983 char buf[FPU_REG_RAW_SIZE];
ccb945b8 984
356a6b3e 985 if (FP0_REGNUM == 0)
ef9dff19
MK
986 {
987 warning ("Cannot set floating-point return value.");
988 return;
989 }
990
635b0cc1
MK
991 /* Returning floating-point values is a bit tricky. Apart from
992 storing the return value in %st(0), we have to simulate the
993 state of the FPU at function return point. */
994
c6ba6f0d
MK
995 /* Convert the value found in VALBUF to the extended
996 floating-point format used by the FPU. This is probably
997 not exactly how it would happen on the target itself, but
998 it is the best we can do. */
999 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1000 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1001 FPU_REG_RAW_SIZE);
ccb945b8 1002
635b0cc1
MK
1003 /* Set the top of the floating-point register stack to 7. The
1004 actual value doesn't really matter, but 7 is what a normal
1005 function return would end up with if the program started out
1006 with a freshly initialized FPU. */
ccb945b8
MK
1007 fstat = read_register (FSTAT_REGNUM);
1008 fstat |= (7 << 11);
1009 write_register (FSTAT_REGNUM, fstat);
1010
635b0cc1
MK
1011 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1012 the floating-point register stack to 7, the appropriate value
1013 for the tag word is 0x3fff. */
ccb945b8 1014 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1015 }
1016 else
1017 {
1018 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1019 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1020
1021 if (len <= low_size)
1022 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1023 else if (len <= (low_size + high_size))
1024 {
1025 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1026 valbuf, low_size);
1027 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1028 valbuf + low_size, len - low_size);
1029 }
1030 else
8e65ff28
AC
1031 internal_error (__FILE__, __LINE__,
1032 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1033 }
1034}
f7af9647
MK
1035
1036/* Extract from an array REGBUF containing the (raw) register state
1037 the address in which a function should return its structure value,
1038 as a CORE_ADDR. */
1039
3a1e71e3 1040static CORE_ADDR
f7af9647
MK
1041i386_extract_struct_value_address (char *regbuf)
1042{
1043 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1044 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1045}
fc338970 1046\f
ef9dff19 1047
8201327c
MK
1048/* This is the variable that is set with "set struct-convention", and
1049 its legitimate values. */
1050static const char default_struct_convention[] = "default";
1051static const char pcc_struct_convention[] = "pcc";
1052static const char reg_struct_convention[] = "reg";
1053static const char *valid_conventions[] =
1054{
1055 default_struct_convention,
1056 pcc_struct_convention,
1057 reg_struct_convention,
1058 NULL
1059};
1060static const char *struct_convention = default_struct_convention;
1061
1062static int
1063i386_use_struct_convention (int gcc_p, struct type *type)
1064{
1065 enum struct_return struct_return;
1066
1067 if (struct_convention == default_struct_convention)
1068 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1069 else if (struct_convention == pcc_struct_convention)
1070 struct_return = pcc_struct_return;
1071 else
1072 struct_return = reg_struct_return;
1073
1074 return generic_use_struct_convention (struct_return == reg_struct_return,
1075 type);
1076}
1077\f
1078
d7a0d72c
MK
1079/* Return the GDB type object for the "standard" data type of data in
1080 register REGNUM. Perhaps %esi and %edi should go here, but
1081 potentially they could be used for things other than address. */
1082
3a1e71e3 1083static struct type *
d7a0d72c
MK
1084i386_register_virtual_type (int regnum)
1085{
1086 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1087 return lookup_pointer_type (builtin_type_void);
1088
1089 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1090 return builtin_type_i387_ext;
d7a0d72c
MK
1091
1092 if (IS_SSE_REGNUM (regnum))
3139facc 1093 return builtin_type_vec128i;
d7a0d72c
MK
1094
1095 return builtin_type_int;
1096}
1097
1098/* Return true iff register REGNUM's virtual format is different from
1099 its raw format. Note that this definition assumes that the host
1100 supports IEEE 32-bit floats, since it doesn't say that SSE
1101 registers need conversion. Even if we can't find a counterexample,
1102 this is still sloppy. */
1103
3a1e71e3 1104static int
d7a0d72c
MK
1105i386_register_convertible (int regnum)
1106{
1107 return IS_FP_REGNUM (regnum);
1108}
1109
ac27f131 1110/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1111 virtual format with type TYPE in buffer TO. */
ac27f131 1112
3a1e71e3 1113static void
ac27f131
MK
1114i386_register_convert_to_virtual (int regnum, struct type *type,
1115 char *from, char *to)
1116{
c6ba6f0d 1117 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1118
1119 /* We only support floating-point values. */
8d7f6b4a
MK
1120 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1121 {
1122 warning ("Cannot convert floating-point register value "
1123 "to non-floating-point type.");
1124 memset (to, 0, TYPE_LENGTH (type));
1125 return;
1126 }
3d261580 1127
c6ba6f0d
MK
1128 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1129 the extended floating-point format used by the FPU. */
1130 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1131}
1132
1133/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1134 raw format for register REGNUM in buffer TO. */
ac27f131 1135
3a1e71e3 1136static void
ac27f131
MK
1137i386_register_convert_to_raw (struct type *type, int regnum,
1138 char *from, char *to)
1139{
c6ba6f0d
MK
1140 gdb_assert (IS_FP_REGNUM (regnum));
1141
1142 /* We only support floating-point values. */
1143 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1144 {
1145 warning ("Cannot convert non-floating-point type "
1146 "to floating-point register value.");
1147 memset (to, 0, TYPE_LENGTH (type));
1148 return;
1149 }
3d261580 1150
c6ba6f0d
MK
1151 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1152 to the extended floating-point format used by the FPU. */
1153 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1154}
ac27f131 1155\f
fc338970 1156
c906108c 1157#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1158/* SunPRO encodes the static variables. This is not related to C++
1159 mangling, it is done for C too. */
c906108c
SS
1160
1161char *
fba45db2 1162sunpro_static_transform_name (char *name)
c906108c
SS
1163{
1164 char *p;
1165 if (IS_STATIC_TRANSFORM_NAME (name))
1166 {
fc338970
MK
1167 /* For file-local statics there will be a period, a bunch of
1168 junk (the contents of which match a string given in the
c5aa993b
JM
1169 N_OPT), a period and the name. For function-local statics
1170 there will be a bunch of junk (which seems to change the
1171 second character from 'A' to 'B'), a period, the name of the
1172 function, and the name. So just skip everything before the
1173 last period. */
c906108c
SS
1174 p = strrchr (name, '.');
1175 if (p != NULL)
1176 name = p + 1;
1177 }
1178 return name;
1179}
1180#endif /* STATIC_TRANSFORM_NAME */
fc338970 1181\f
c906108c 1182
fc338970 1183/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1184
1185CORE_ADDR
fba45db2 1186skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1187{
fc338970 1188 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1189 {
c5aa993b 1190 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1191 struct minimal_symbol *indsym =
fc338970 1192 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1193 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1194
c5aa993b 1195 if (symname)
c906108c 1196 {
c5aa993b
JM
1197 if (strncmp (symname, "__imp_", 6) == 0
1198 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1199 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1200 }
1201 }
fc338970 1202 return 0; /* Not a trampoline. */
c906108c 1203}
fc338970
MK
1204\f
1205
8201327c
MK
1206/* Return non-zero if PC and NAME show that we are in a signal
1207 trampoline. */
1208
1209static int
1210i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1211{
1212 return (name && strcmp ("_sigtramp", name) == 0);
1213}
1214\f
1215
fc338970
MK
1216/* We have two flavours of disassembly. The machinery on this page
1217 deals with switching between those. */
c906108c
SS
1218
1219static int
fba45db2 1220gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1221{
1222 if (disassembly_flavor == att_flavor)
1223 return print_insn_i386_att (memaddr, info);
1224 else if (disassembly_flavor == intel_flavor)
1225 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1226 /* Never reached -- disassembly_flavour is always either att_flavor
1227 or intel_flavor. */
e1e9e218 1228 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1229}
fc338970 1230\f
3ce1502b 1231
8201327c
MK
1232/* There are a few i386 architecture variants that differ only
1233 slightly from the generic i386 target. For now, we don't give them
1234 their own source file, but include them here. As a consequence,
1235 they'll always be included. */
3ce1502b 1236
8201327c 1237/* System V Release 4 (SVR4). */
3ce1502b 1238
8201327c
MK
1239static int
1240i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1241{
8201327c
MK
1242 return (name && (strcmp ("_sigreturn", name) == 0
1243 || strcmp ("_sigacthandler", name) == 0
1244 || strcmp ("sigvechandler", name) == 0));
1245}
d2a7c97a 1246
8201327c
MK
1247/* Get saved user PC for sigtramp from the pushed ucontext on the
1248 stack for all three variants of SVR4 sigtramps. */
3ce1502b 1249
3a1e71e3 1250static CORE_ADDR
8201327c
MK
1251i386_svr4_sigtramp_saved_pc (struct frame_info *frame)
1252{
1253 CORE_ADDR saved_pc_offset = 4;
1254 char *name = NULL;
1255
1256 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1257 if (name)
d2a7c97a 1258 {
8201327c
MK
1259 if (strcmp (name, "_sigreturn") == 0)
1260 saved_pc_offset = 132 + 14 * 4;
1261 else if (strcmp (name, "_sigacthandler") == 0)
1262 saved_pc_offset = 80 + 14 * 4;
1263 else if (strcmp (name, "sigvechandler") == 0)
1264 saved_pc_offset = 120 + 14 * 4;
1265 }
3ce1502b 1266
8201327c
MK
1267 if (frame->next)
1268 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1269 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1270}
1271\f
3ce1502b 1272
8201327c 1273/* DJGPP. */
d2a7c97a 1274
8201327c
MK
1275static int
1276i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1277{
1278 /* DJGPP doesn't have any special frames for signal handlers. */
1279 return 0;
1280}
1281\f
d2a7c97a 1282
8201327c 1283/* Generic ELF. */
d2a7c97a 1284
8201327c
MK
1285void
1286i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1287{
1288 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1289 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1290}
3ce1502b 1291
8201327c 1292/* System V Release 4 (SVR4). */
3ce1502b 1293
8201327c
MK
1294void
1295i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1296{
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1298
8201327c
MK
1299 /* System V Release 4 uses ELF. */
1300 i386_elf_init_abi (info, gdbarch);
3ce1502b 1301
8201327c
MK
1302 /* FIXME: kettenis/20020511: Why do we override this function here? */
1303 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3ce1502b 1304
8201327c
MK
1305 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1306 tdep->sigtramp_saved_pc = i386_svr4_sigtramp_saved_pc;
3ce1502b 1307
8201327c 1308 tdep->jb_pc_offset = 20;
3ce1502b
MK
1309}
1310
8201327c 1311/* DJGPP. */
3ce1502b 1312
3a1e71e3 1313static void
8201327c 1314i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1315{
8201327c 1316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1317
8201327c 1318 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1319
8201327c 1320 tdep->jb_pc_offset = 36;
3ce1502b
MK
1321}
1322
8201327c 1323/* NetWare. */
3ce1502b 1324
3a1e71e3 1325static void
8201327c 1326i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1327{
8201327c 1328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1329
8201327c
MK
1330 /* FIXME: kettenis/20020511: Why do we override this function here? */
1331 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1332
1333 tdep->jb_pc_offset = 24;
d2a7c97a 1334}
8201327c 1335\f
2acceee2 1336
3a1e71e3 1337static struct gdbarch *
a62cc96e
AC
1338i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1339{
cd3c07fc 1340 struct gdbarch_tdep *tdep;
a62cc96e 1341 struct gdbarch *gdbarch;
8201327c 1342 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1343
8201327c 1344 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1345 if (info.abfd != NULL)
8201327c 1346 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1347
3ce1502b 1348 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1349 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1350 arches != NULL;
1351 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1352 {
8201327c 1353 /* Make sure the OS ABI selection matches. */
65d6d66a 1354 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1355 if (tdep && tdep->osabi == osabi)
65d6d66a 1356 return arches->gdbarch;
d2a7c97a 1357 }
a62cc96e
AC
1358
1359 /* Allocate space for the new architecture. */
1360 tdep = XMALLOC (struct gdbarch_tdep);
1361 gdbarch = gdbarch_alloc (&info, tdep);
1362
8201327c
MK
1363 tdep->osabi = osabi;
1364
1365 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1366 FIXME: kettenis/20020614: They do include the FPU registers for
1367 now, which probably is not quite right. */
8201327c 1368 tdep->num_xmm_regs = 0;
d2a7c97a 1369
8201327c
MK
1370 tdep->jb_pc_offset = -1;
1371 tdep->struct_return = pcc_struct_return;
1372 tdep->sigtramp_saved_pc = NULL;
1373 tdep->sigtramp_start = 0;
1374 tdep->sigtramp_end = 0;
1375 tdep->sc_pc_offset = -1;
1376
896fb97d
MK
1377 /* The format used for `long double' on almost all i386 targets is
1378 the i387 extended floating-point format. In fact, of all targets
1379 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1380 on having a `long double' that's not `long' at all. */
1381 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1382
1383 /* Although the i386 extended floating-point has only 80 significant
1384 bits, a `long double' actually takes up 96, probably to enforce
1385 alignment. */
1386 set_gdbarch_long_double_bit (gdbarch, 96);
1387
356a6b3e
MK
1388 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1389 tm-symmetry.h currently override this. Sigh. */
1390 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1391
1392 set_gdbarch_sp_regnum (gdbarch, 4);
1393 set_gdbarch_fp_regnum (gdbarch, 5);
1394 set_gdbarch_pc_regnum (gdbarch, 8);
1395 set_gdbarch_ps_regnum (gdbarch, 9);
1396 set_gdbarch_fp0_regnum (gdbarch, 16);
1397
1398 /* Use the "default" register numbering scheme for stabs and COFF. */
1399 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1400 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1401
1402 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1403 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1404 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1405
1406 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1407 be in use on any of the supported i386 targets. */
1408
1409 set_gdbarch_register_name (gdbarch, i386_register_name);
1410 set_gdbarch_register_size (gdbarch, 4);
1411 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1412 set_gdbarch_register_byte (gdbarch, i386_register_byte);
1413 set_gdbarch_register_raw_size (gdbarch, i386_register_raw_size);
1414 set_gdbarch_max_register_raw_size (gdbarch, 16);
1415 set_gdbarch_max_register_virtual_size (gdbarch, 16);
b6197528 1416 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1417
8201327c 1418 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1419
a62cc96e
AC
1420 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1421
1422 /* Call dummy code. */
1423 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8758dec1 1424 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
a62cc96e
AC
1425 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1426 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
8758dec1 1427 set_gdbarch_call_dummy_length (gdbarch, 8);
a62cc96e 1428 set_gdbarch_call_dummy_p (gdbarch, 1);
8758dec1
MK
1429 set_gdbarch_call_dummy_words (gdbarch, i386_call_dummy_words);
1430 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1431 sizeof (i386_call_dummy_words));
a62cc96e 1432 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
8758dec1 1433 set_gdbarch_fix_call_dummy (gdbarch, i386_fix_call_dummy);
a62cc96e 1434
b6197528
MK
1435 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1436 set_gdbarch_register_convert_to_virtual (gdbarch,
1437 i386_register_convert_to_virtual);
1438 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1439
a62cc96e
AC
1440 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1441 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1442
1443 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1444
8758dec1
MK
1445 /* "An argument's size is increased, if necessary, to make it a
1446 multiple of [32-bit] words. This may require tail padding,
1447 depending on the size of the argument" -- from the x86 ABI. */
1448 set_gdbarch_parm_boundary (gdbarch, 32);
1449
fc08ec52
MK
1450 set_gdbarch_deprecated_extract_return_value (gdbarch,
1451 i386_extract_return_value);
1452 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1453 set_gdbarch_push_dummy_frame (gdbarch, i386_push_dummy_frame);
1454 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1455 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1456 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1457 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1458 i386_extract_struct_value_address);
8201327c
MK
1459 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1460
42fdc8df 1461 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1462 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1463
1464 /* Stack grows downward. */
1465 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1466
1467 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1468 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1469 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1470
8201327c
MK
1471 /* The following redefines make backtracing through sigtramp work.
1472 They manufacture a fake sigtramp frame and obtain the saved pc in
1473 sigtramp from the sigcontext structure which is pushed by the
1474 kernel on the user stack, along with a pointer to it. */
1475
42fdc8df
MK
1476 set_gdbarch_frame_args_skip (gdbarch, 8);
1477 set_gdbarch_frameless_function_invocation (gdbarch,
1478 i386_frameless_function_invocation);
8201327c 1479 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
a62cc96e 1480 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
8201327c 1481 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1482 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1483 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1484 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1485 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1486 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1487
3ce1502b 1488 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1489 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1490
a62cc96e
AC
1491 return gdbarch;
1492}
1493
8201327c
MK
1494static enum gdb_osabi
1495i386_coff_osabi_sniffer (bfd *abfd)
1496{
762c5349
MK
1497 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1498 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1499 return GDB_OSABI_GO32;
1500
1501 return GDB_OSABI_UNKNOWN;
1502}
1503
1504static enum gdb_osabi
1505i386_nlm_osabi_sniffer (bfd *abfd)
1506{
1507 return GDB_OSABI_NETWARE;
1508}
1509\f
1510
28e9e0f0
MK
1511/* Provide a prototype to silence -Wmissing-prototypes. */
1512void _initialize_i386_tdep (void);
1513
c906108c 1514void
fba45db2 1515_initialize_i386_tdep (void)
c906108c 1516{
a62cc96e
AC
1517 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1518
917317f4
JM
1519 /* Initialize the table saying where each register starts in the
1520 register file. */
1521 {
1522 int i, offset;
1523
1524 offset = 0;
1cf88de5 1525 for (i = 0; i < I386_SSE_NUM_REGS; i++)
917317f4 1526 {
1a11ba71
MK
1527 i386_register_offset[i] = offset;
1528 offset += i386_register_size[i];
917317f4
JM
1529 }
1530 }
1531
c906108c
SS
1532 tm_print_insn = gdb_print_insn_i386;
1533 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1534
fc338970 1535 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1536 {
1537 struct cmd_list_element *new_cmd;
7a292a7a 1538
917317f4
JM
1539 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1540 valid_flavors,
1ed2a135 1541 &disassembly_flavor,
fc338970
MK
1542 "\
1543Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1544and the default value is \"att\".",
917317f4 1545 &setlist);
917317f4
JM
1546 add_show_from_set (new_cmd, &showlist);
1547 }
8201327c
MK
1548
1549 /* Add the variable that controls the convention for returning
1550 structs. */
1551 {
1552 struct cmd_list_element *new_cmd;
1553
1554 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1555 valid_conventions,
1556 &struct_convention, "\
1557Set the convention for returning small structs, valid values \
1558are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1559 &setlist);
1560 add_show_from_set (new_cmd, &showlist);
1561 }
1562
1563 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1564 i386_coff_osabi_sniffer);
1565 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1566 i386_nlm_osabi_sniffer);
1567
1568 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1569 i386_svr4_init_abi);
1570 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1571 i386_go32_init_abi);
1572 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1573 i386_nw_init_abi);
c906108c 1574}