]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/layout.cc
2007-08-21 Andreas Krebbel <krebbel1@de.ibm.com>
[thirdparty/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
a2fb1b05 5#include <cstring>
54dc6425 6#include <algorithm>
a2fb1b05
ILT
7#include <iostream>
8#include <utility>
9
10#include "output.h"
f6ce93d6 11#include "symtab.h"
a3ad94ed 12#include "dynobj.h"
a2fb1b05
ILT
13#include "layout.h"
14
15namespace gold
16{
17
92e059d8 18// Layout_task_runner methods.
a2fb1b05
ILT
19
20// Lay out the sections. This is called after all the input objects
21// have been read.
22
23void
92e059d8 24Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 25{
12e14209
ILT
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
61ba1cf9
ILT
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 36 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
37}
38
39// Layout methods.
40
54dc6425 41Layout::Layout(const General_options& options)
a3ad94ed 42 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
61ba1cf9 43 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed 44 unattached_section_list_(), special_output_list_(),
14b31740
ILT
45 tls_segment_(NULL), symtab_section_(NULL),
46 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL)
54dc6425
ILT
47{
48 // Make space for more than enough segments for a typical file.
49 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
50 this->segment_list_.reserve(12);
51
52 // We expect three unattached Output_data objects: the file header,
53 // the segment headers, and the section headers.
54 this->special_output_list_.reserve(3);
54dc6425
ILT
55}
56
a2fb1b05
ILT
57// Hash a key we use to look up an output section mapping.
58
59size_t
60Layout::Hash_key::operator()(const Layout::Key& k) const
61{
f0641a0b 62 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
63}
64
65// Whether to include this section in the link.
66
67template<int size, bool big_endian>
68bool
69Layout::include_section(Object*, const char*,
70 const elfcpp::Shdr<size, big_endian>& shdr)
71{
72 // Some section types are never linked. Some are only linked when
73 // doing a relocateable link.
74 switch (shdr.get_sh_type())
75 {
76 case elfcpp::SHT_NULL:
77 case elfcpp::SHT_SYMTAB:
78 case elfcpp::SHT_DYNSYM:
79 case elfcpp::SHT_STRTAB:
80 case elfcpp::SHT_HASH:
81 case elfcpp::SHT_DYNAMIC:
82 case elfcpp::SHT_SYMTAB_SHNDX:
83 return false;
84
85 case elfcpp::SHT_RELA:
86 case elfcpp::SHT_REL:
87 case elfcpp::SHT_GROUP:
88 return this->options_.is_relocatable();
89
90 default:
91 // FIXME: Handle stripping debug sections here.
92 return true;
93 }
94}
95
ead1e424 96// Return an output section named NAME, or NULL if there is none.
a2fb1b05 97
a2fb1b05 98Output_section*
ead1e424 99Layout::find_output_section(const char* name) const
a2fb1b05 100{
ead1e424
ILT
101 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
102 p != this->section_name_map_.end();
103 ++p)
f0641a0b 104 if (strcmp(p->second->name(), name) == 0)
ead1e424
ILT
105 return p->second;
106 return NULL;
107}
a2fb1b05 108
ead1e424
ILT
109// Return an output segment of type TYPE, with segment flags SET set
110// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 111
ead1e424
ILT
112Output_segment*
113Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
114 elfcpp::Elf_Word clear) const
115{
116 for (Segment_list::const_iterator p = this->segment_list_.begin();
117 p != this->segment_list_.end();
118 ++p)
119 if (static_cast<elfcpp::PT>((*p)->type()) == type
120 && ((*p)->flags() & set) == set
121 && ((*p)->flags() & clear) == 0)
122 return *p;
123 return NULL;
124}
a2fb1b05 125
ead1e424
ILT
126// Return the output section to use for section NAME with type TYPE
127// and section flags FLAGS.
a2fb1b05 128
ead1e424 129Output_section*
f0641a0b
ILT
130Layout::get_output_section(const char* name, Stringpool::Key name_key,
131 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424
ILT
132{
133 // We should ignore some flags.
134 flags &= ~ (elfcpp::SHF_INFO_LINK
135 | elfcpp::SHF_LINK_ORDER
b8e6aad9
ILT
136 | elfcpp::SHF_GROUP
137 | elfcpp::SHF_MERGE
138 | elfcpp::SHF_STRINGS);
a2fb1b05 139
f0641a0b 140 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
141 const std::pair<Key, Output_section*> v(key, NULL);
142 std::pair<Section_name_map::iterator, bool> ins(
143 this->section_name_map_.insert(v));
144
a2fb1b05 145 if (!ins.second)
ead1e424 146 return ins.first->second;
a2fb1b05
ILT
147 else
148 {
149 // This is the first time we've seen this name/type/flags
150 // combination.
ead1e424 151 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 152 ins.first->second = os;
ead1e424 153 return os;
a2fb1b05 154 }
ead1e424
ILT
155}
156
157// Return the output section to use for input section SHNDX, with name
158// NAME, with header HEADER, from object OBJECT. Set *OFF to the
159// offset of this input section without the output section.
160
161template<int size, bool big_endian>
162Output_section*
f6ce93d6 163Layout::layout(Relobj* object, unsigned int shndx, const char* name,
ead1e424
ILT
164 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
165{
166 if (!this->include_section(object, name, shdr))
167 return NULL;
168
169 // If we are not doing a relocateable link, choose the name to use
170 // for the output section.
171 size_t len = strlen(name);
172 if (!this->options_.is_relocatable())
173 name = Layout::output_section_name(name, &len);
174
175 // FIXME: Handle SHF_OS_NONCONFORMING here.
176
177 // Canonicalize the section name.
f0641a0b
ILT
178 Stringpool::Key name_key;
179 name = this->namepool_.add(name, len, &name_key);
ead1e424
ILT
180
181 // Find the output section. The output section is selected based on
182 // the section name, type, and flags.
f0641a0b
ILT
183 Output_section* os = this->get_output_section(name, name_key,
184 shdr.get_sh_type(),
ead1e424 185 shdr.get_sh_flags());
a2fb1b05
ILT
186
187 // FIXME: Handle SHF_LINK_ORDER somewhere.
188
ead1e424 189 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
190
191 return os;
192}
193
ead1e424
ILT
194// Add POSD to an output section using NAME, TYPE, and FLAGS.
195
196void
197Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
198 elfcpp::Elf_Xword flags,
199 Output_section_data* posd)
200{
201 // Canonicalize the name.
f0641a0b
ILT
202 Stringpool::Key name_key;
203 name = this->namepool_.add(name, &name_key);
ead1e424 204
f0641a0b 205 Output_section* os = this->get_output_section(name, name_key, type, flags);
ead1e424
ILT
206 os->add_output_section_data(posd);
207}
208
a2fb1b05
ILT
209// Map section flags to segment flags.
210
211elfcpp::Elf_Word
212Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
213{
214 elfcpp::Elf_Word ret = elfcpp::PF_R;
215 if ((flags & elfcpp::SHF_WRITE) != 0)
216 ret |= elfcpp::PF_W;
217 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
218 ret |= elfcpp::PF_X;
219 return ret;
220}
221
222// Make a new Output_section, and attach it to segments as
223// appropriate.
224
225Output_section*
226Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
227 elfcpp::Elf_Xword flags)
228{
b8e6aad9 229 Output_section* os = new Output_section(name, type, flags);
a3ad94ed 230 this->section_list_.push_back(os);
a2fb1b05
ILT
231
232 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 233 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
234 else
235 {
236 // This output section goes into a PT_LOAD segment.
237
238 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
239
240 // The only thing we really care about for PT_LOAD segments is
241 // whether or not they are writable, so that is how we search
242 // for them. People who need segments sorted on some other
243 // basis will have to wait until we implement a mechanism for
244 // them to describe the segments they want.
245
246 Segment_list::const_iterator p;
247 for (p = this->segment_list_.begin();
248 p != this->segment_list_.end();
249 ++p)
250 {
251 if ((*p)->type() == elfcpp::PT_LOAD
252 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
253 {
75f65a3e 254 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
255 break;
256 }
257 }
258
259 if (p == this->segment_list_.end())
260 {
261 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
262 seg_flags);
263 this->segment_list_.push_back(oseg);
75f65a3e 264 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
265 }
266
267 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
268 // segment.
269 if (type == elfcpp::SHT_NOTE)
270 {
271 // See if we already have an equivalent PT_NOTE segment.
272 for (p = this->segment_list_.begin();
273 p != segment_list_.end();
274 ++p)
275 {
276 if ((*p)->type() == elfcpp::PT_NOTE
277 && (((*p)->flags() & elfcpp::PF_W)
278 == (seg_flags & elfcpp::PF_W)))
279 {
75f65a3e 280 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
281 break;
282 }
283 }
284
285 if (p == this->segment_list_.end())
286 {
287 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
288 seg_flags);
289 this->segment_list_.push_back(oseg);
75f65a3e 290 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
291 }
292 }
54dc6425
ILT
293
294 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 295 // segment. There can only be one such segment.
54dc6425
ILT
296 if ((flags & elfcpp::SHF_TLS) != 0)
297 {
92e059d8 298 if (this->tls_segment_ == NULL)
54dc6425 299 {
92e059d8
ILT
300 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
301 seg_flags);
302 this->segment_list_.push_back(this->tls_segment_);
54dc6425 303 }
92e059d8 304 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 305 }
a2fb1b05
ILT
306 }
307
308 return os;
309}
310
a3ad94ed
ILT
311// Create the dynamic sections which are needed before we read the
312// relocs.
313
314void
315Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
316 Symbol_table* symtab)
317{
318 if (!input_objects->any_dynamic())
319 return;
320
321 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
322 this->dynamic_section_ = this->make_output_section(dynamic_name,
323 elfcpp::SHT_DYNAMIC,
324 (elfcpp::SHF_ALLOC
325 | elfcpp::SHF_WRITE));
326
14b31740 327 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
a3ad94ed
ILT
328 this->dynamic_section_, 0, 0,
329 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
330 elfcpp::STV_HIDDEN, 0, false, false);
16649710
ILT
331
332 this->dynamic_data_ = new Output_data_dynamic(input_objects->target(),
333 &this->dynpool_);
334
335 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
a3ad94ed
ILT
336}
337
75f65a3e
ILT
338// Find the first read-only PT_LOAD segment, creating one if
339// necessary.
54dc6425 340
75f65a3e
ILT
341Output_segment*
342Layout::find_first_load_seg()
54dc6425 343{
75f65a3e
ILT
344 for (Segment_list::const_iterator p = this->segment_list_.begin();
345 p != this->segment_list_.end();
346 ++p)
347 {
348 if ((*p)->type() == elfcpp::PT_LOAD
349 && ((*p)->flags() & elfcpp::PF_R) != 0
350 && ((*p)->flags() & elfcpp::PF_W) == 0)
351 return *p;
352 }
353
354 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
355 this->segment_list_.push_back(load_seg);
356 return load_seg;
54dc6425
ILT
357}
358
359// Finalize the layout. When this is called, we have created all the
360// output sections and all the output segments which are based on
361// input sections. We have several things to do, and we have to do
362// them in the right order, so that we get the right results correctly
363// and efficiently.
364
365// 1) Finalize the list of output segments and create the segment
366// table header.
367
368// 2) Finalize the dynamic symbol table and associated sections.
369
370// 3) Determine the final file offset of all the output segments.
371
372// 4) Determine the final file offset of all the SHF_ALLOC output
373// sections.
374
75f65a3e
ILT
375// 5) Create the symbol table sections and the section name table
376// section.
377
378// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
379// value and make a final determination of which symbols are going
380// into the output symbol table.
381
54dc6425
ILT
382// 7) Create the section table header.
383
384// 8) Determine the final file offset of all the output sections which
385// are not SHF_ALLOC, including the section table header.
386
387// 9) Finalize the ELF file header.
388
75f65a3e
ILT
389// This function returns the size of the output file.
390
391off_t
392Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425 393{
5a6f7e2d 394 Target* const target = input_objects->target();
a3ad94ed 395 const int size = target->get_size();
dbe717ef 396
16649710 397 target->finalize_sections(&this->options_, this);
5a6f7e2d 398
dbe717ef 399 Output_segment* phdr_seg = NULL;
54dc6425
ILT
400 if (input_objects->any_dynamic())
401 {
dbe717ef
ILT
402 // There was a dynamic object in the link. We need to create
403 // some information for the dynamic linker.
404
405 // Create the PT_PHDR segment which will hold the program
406 // headers.
407 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
408 this->segment_list_.push_back(phdr_seg);
409
14b31740
ILT
410 // Create the dynamic symbol table, including the hash table.
411 Output_section* dynstr;
412 std::vector<Symbol*> dynamic_symbols;
413 unsigned int local_dynamic_count;
414 Versions versions;
415 this->create_dynamic_symtab(target, symtab, &dynstr,
416 &local_dynamic_count, &dynamic_symbols,
417 &versions);
dbe717ef
ILT
418
419 // Create the .interp section to hold the name of the
420 // interpreter, and put it in a PT_INTERP segment.
a3ad94ed
ILT
421 this->create_interp(target);
422
423 // Finish the .dynamic section to hold the dynamic data, and put
424 // it in a PT_DYNAMIC segment.
16649710 425 this->finish_dynamic_section(input_objects, symtab);
14b31740
ILT
426
427 // We should have added everything we need to the dynamic string
428 // table.
429 this->dynpool_.set_string_offsets();
430
431 // Create the version sections. We can't do this until the
432 // dynamic string table is complete.
433 this->create_version_sections(target, &versions, local_dynamic_count,
434 dynamic_symbols, dynstr);
54dc6425
ILT
435 }
436
437 // FIXME: Handle PT_GNU_STACK.
438
75f65a3e
ILT
439 Output_segment* load_seg = this->find_first_load_seg();
440
441 // Lay out the segment headers.
a3ad94ed 442 bool big_endian = target->is_big_endian();
75f65a3e 443 Output_segment_headers* segment_headers;
61ba1cf9
ILT
444 segment_headers = new Output_segment_headers(size, big_endian,
445 this->segment_list_);
75f65a3e 446 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 447 this->special_output_list_.push_back(segment_headers);
dbe717ef
ILT
448 if (phdr_seg != NULL)
449 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
450
451 // Lay out the file header.
452 Output_file_header* file_header;
453 file_header = new Output_file_header(size,
61ba1cf9 454 big_endian,
75f65a3e 455 this->options_,
a3ad94ed 456 target,
75f65a3e
ILT
457 symtab,
458 segment_headers);
459 load_seg->add_initial_output_data(file_header);
61ba1cf9 460 this->special_output_list_.push_back(file_header);
75f65a3e 461
ead1e424
ILT
462 // We set the output section indexes in set_segment_offsets and
463 // set_section_offsets.
464 unsigned int shndx = 1;
465
466 // Set the file offsets of all the segments, and all the sections
467 // they contain.
a3ad94ed 468 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e
ILT
469
470 // Create the symbol table sections.
16649710 471 this->create_symtab_sections(size, input_objects, symtab, &off);
75f65a3e
ILT
472
473 // Create the .shstrtab section.
474 Output_section* shstrtab_section = this->create_shstrtab();
475
476 // Set the file offsets of all the sections not associated with
477 // segments.
ead1e424
ILT
478 off = this->set_section_offsets(off, &shndx);
479
75f65a3e 480 // Create the section table header.
61ba1cf9 481 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
482
483 file_header->set_section_info(oshdrs, shstrtab_section);
484
485 // Now we know exactly where everything goes in the output file.
a3ad94ed 486 Output_data::layout_complete();
75f65a3e
ILT
487
488 return off;
489}
490
491// Return whether SEG1 should be before SEG2 in the output file. This
492// is based entirely on the segment type and flags. When this is
493// called the segment addresses has normally not yet been set.
494
495bool
496Layout::segment_precedes(const Output_segment* seg1,
497 const Output_segment* seg2)
498{
499 elfcpp::Elf_Word type1 = seg1->type();
500 elfcpp::Elf_Word type2 = seg2->type();
501
502 // The single PT_PHDR segment is required to precede any loadable
503 // segment. We simply make it always first.
504 if (type1 == elfcpp::PT_PHDR)
505 {
a3ad94ed 506 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
507 return true;
508 }
509 if (type2 == elfcpp::PT_PHDR)
510 return false;
511
512 // The single PT_INTERP segment is required to precede any loadable
513 // segment. We simply make it always second.
514 if (type1 == elfcpp::PT_INTERP)
515 {
a3ad94ed 516 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
517 return true;
518 }
519 if (type2 == elfcpp::PT_INTERP)
520 return false;
521
522 // We then put PT_LOAD segments before any other segments.
523 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
524 return true;
525 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
526 return false;
527
92e059d8
ILT
528 // We put the PT_TLS segment last, because that is where the dynamic
529 // linker expects to find it (this is just for efficiency; other
530 // positions would also work correctly).
531 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
532 return false;
533 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
534 return true;
535
75f65a3e
ILT
536 const elfcpp::Elf_Word flags1 = seg1->flags();
537 const elfcpp::Elf_Word flags2 = seg2->flags();
538
539 // The order of non-PT_LOAD segments is unimportant. We simply sort
540 // by the numeric segment type and flags values. There should not
541 // be more than one segment with the same type and flags.
542 if (type1 != elfcpp::PT_LOAD)
543 {
544 if (type1 != type2)
545 return type1 < type2;
a3ad94ed 546 gold_assert(flags1 != flags2);
75f65a3e
ILT
547 return flags1 < flags2;
548 }
549
550 // We sort PT_LOAD segments based on the flags. Readonly segments
551 // come before writable segments. Then executable segments come
552 // before non-executable segments. Then the unlikely case of a
553 // non-readable segment comes before the normal case of a readable
554 // segment. If there are multiple segments with the same type and
555 // flags, we require that the address be set, and we sort by
556 // virtual address and then physical address.
557 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
558 return (flags1 & elfcpp::PF_W) == 0;
559 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
560 return (flags1 & elfcpp::PF_X) != 0;
561 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
562 return (flags1 & elfcpp::PF_R) == 0;
563
564 uint64_t vaddr1 = seg1->vaddr();
565 uint64_t vaddr2 = seg2->vaddr();
566 if (vaddr1 != vaddr2)
567 return vaddr1 < vaddr2;
568
569 uint64_t paddr1 = seg1->paddr();
570 uint64_t paddr2 = seg2->paddr();
a3ad94ed 571 gold_assert(paddr1 != paddr2);
75f65a3e
ILT
572 return paddr1 < paddr2;
573}
574
ead1e424
ILT
575// Set the file offsets of all the segments, and all the sections they
576// contain. They have all been created. LOAD_SEG must be be laid out
577// first. Return the offset of the data to follow.
75f65a3e
ILT
578
579off_t
ead1e424
ILT
580Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
581 unsigned int *pshndx)
75f65a3e
ILT
582{
583 // Sort them into the final order.
54dc6425
ILT
584 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
585 Layout::Compare_segments());
586
75f65a3e
ILT
587 // Find the PT_LOAD segments, and set their addresses and offsets
588 // and their section's addresses and offsets.
589 uint64_t addr = target->text_segment_address();
590 off_t off = 0;
591 bool was_readonly = false;
592 for (Segment_list::iterator p = this->segment_list_.begin();
593 p != this->segment_list_.end();
594 ++p)
595 {
596 if ((*p)->type() == elfcpp::PT_LOAD)
597 {
598 if (load_seg != NULL && load_seg != *p)
a3ad94ed 599 gold_unreachable();
75f65a3e
ILT
600 load_seg = NULL;
601
602 // If the last segment was readonly, and this one is not,
603 // then skip the address forward one page, maintaining the
604 // same position within the page. This lets us store both
605 // segments overlapping on a single page in the file, but
606 // the loader will put them on different pages in memory.
607
608 uint64_t orig_addr = addr;
609 uint64_t orig_off = off;
610
611 uint64_t aligned_addr = addr;
612 uint64_t abi_pagesize = target->abi_pagesize();
613 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
614 {
ead1e424 615 uint64_t align = (*p)->addralign();
75f65a3e 616
ead1e424 617 addr = align_address(addr, align);
75f65a3e
ILT
618 aligned_addr = addr;
619 if ((addr & (abi_pagesize - 1)) != 0)
620 addr = addr + abi_pagesize;
621 }
622
ead1e424 623 unsigned int shndx_hold = *pshndx;
75f65a3e 624 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 625 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
626
627 // Now that we know the size of this segment, we may be able
628 // to save a page in memory, at the cost of wasting some
629 // file space, by instead aligning to the start of a new
630 // page. Here we use the real machine page size rather than
631 // the ABI mandated page size.
632
633 if (aligned_addr != addr)
634 {
635 uint64_t common_pagesize = target->common_pagesize();
636 uint64_t first_off = (common_pagesize
637 - (aligned_addr
638 & (common_pagesize - 1)));
639 uint64_t last_off = new_addr & (common_pagesize - 1);
640 if (first_off > 0
641 && last_off > 0
642 && ((aligned_addr & ~ (common_pagesize - 1))
643 != (new_addr & ~ (common_pagesize - 1)))
644 && first_off + last_off <= common_pagesize)
645 {
ead1e424
ILT
646 *pshndx = shndx_hold;
647 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 648 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 649 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
650 }
651 }
652
653 addr = new_addr;
654
655 if (((*p)->flags() & elfcpp::PF_W) == 0)
656 was_readonly = true;
657 }
658 }
659
660 // Handle the non-PT_LOAD segments, setting their offsets from their
661 // section's offsets.
662 for (Segment_list::iterator p = this->segment_list_.begin();
663 p != this->segment_list_.end();
664 ++p)
665 {
666 if ((*p)->type() != elfcpp::PT_LOAD)
667 (*p)->set_offset();
668 }
669
670 return off;
671}
672
673// Set the file offset of all the sections not associated with a
674// segment.
675
676off_t
ead1e424 677Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e 678{
a3ad94ed
ILT
679 for (Section_list::iterator p = this->unattached_section_list_.begin();
680 p != this->unattached_section_list_.end();
75f65a3e
ILT
681 ++p)
682 {
ead1e424
ILT
683 (*p)->set_out_shndx(*pshndx);
684 ++*pshndx;
61ba1cf9
ILT
685 if ((*p)->offset() != -1)
686 continue;
ead1e424 687 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
688 (*p)->set_address(0, off);
689 off += (*p)->data_size();
690 }
691 return off;
692}
693
b8e6aad9
ILT
694// Create the symbol table sections. Here we also set the final
695// values of the symbols. At this point all the loadable sections are
696// fully laid out.
75f65a3e
ILT
697
698void
61ba1cf9 699Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 700 Symbol_table* symtab,
16649710 701 off_t* poff)
75f65a3e 702{
61ba1cf9
ILT
703 int symsize;
704 unsigned int align;
705 if (size == 32)
706 {
707 symsize = elfcpp::Elf_sizes<32>::sym_size;
708 align = 4;
709 }
710 else if (size == 64)
711 {
712 symsize = elfcpp::Elf_sizes<64>::sym_size;
713 align = 8;
714 }
715 else
a3ad94ed 716 gold_unreachable();
61ba1cf9
ILT
717
718 off_t off = *poff;
ead1e424 719 off = align_address(off, align);
61ba1cf9
ILT
720 off_t startoff = off;
721
722 // Save space for the dummy symbol at the start of the section. We
723 // never bother to write this out--it will just be left as zero.
724 off += symsize;
c06b7b0b 725 unsigned int local_symbol_index = 1;
61ba1cf9 726
a3ad94ed
ILT
727 // Add STT_SECTION symbols for each Output section which needs one.
728 for (Section_list::iterator p = this->section_list_.begin();
729 p != this->section_list_.end();
730 ++p)
731 {
732 if (!(*p)->needs_symtab_index())
733 (*p)->set_symtab_index(-1U);
734 else
735 {
736 (*p)->set_symtab_index(local_symbol_index);
737 ++local_symbol_index;
738 off += symsize;
739 }
740 }
741
f6ce93d6
ILT
742 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
743 p != input_objects->relobj_end();
75f65a3e
ILT
744 ++p)
745 {
746 Task_lock_obj<Object> tlo(**p);
c06b7b0b
ILT
747 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
748 off,
749 &this->sympool_);
750 off += (index - local_symbol_index) * symsize;
751 local_symbol_index = index;
75f65a3e
ILT
752 }
753
c06b7b0b 754 unsigned int local_symcount = local_symbol_index;
a3ad94ed 755 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 756
16649710
ILT
757 off_t dynoff;
758 size_t dyn_global_index;
759 size_t dyncount;
760 if (this->dynsym_section_ == NULL)
761 {
762 dynoff = 0;
763 dyn_global_index = 0;
764 dyncount = 0;
765 }
766 else
767 {
768 dyn_global_index = this->dynsym_section_->info();
769 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
770 dynoff = this->dynsym_section_->offset() + locsize;
771 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
772 gold_assert(dyncount * symsize
773 == this->dynsym_section_->data_size() - locsize);
774 }
775
776 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
777 dyncount, &this->sympool_);
75f65a3e 778
61ba1cf9
ILT
779 this->sympool_.set_string_offsets();
780
f0641a0b 781 const char* symtab_name = this->namepool_.add(".symtab", NULL);
a3ad94ed
ILT
782 Output_section* osymtab = this->make_output_section(symtab_name,
783 elfcpp::SHT_SYMTAB,
784 0);
785 this->symtab_section_ = osymtab;
786
787 Output_section_data* pos = new Output_data_space(off - startoff,
788 align);
789 osymtab->add_output_section_data(pos);
61ba1cf9 790
f0641a0b 791 const char* strtab_name = this->namepool_.add(".strtab", NULL);
a3ad94ed
ILT
792 Output_section* ostrtab = this->make_output_section(strtab_name,
793 elfcpp::SHT_STRTAB,
794 0);
795
796 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
797 ostrtab->add_output_section_data(pstr);
61ba1cf9
ILT
798
799 osymtab->set_address(0, startoff);
16649710 800 osymtab->set_link_section(ostrtab);
61ba1cf9
ILT
801 osymtab->set_info(local_symcount);
802 osymtab->set_entsize(symsize);
61ba1cf9
ILT
803
804 *poff = off;
75f65a3e
ILT
805}
806
807// Create the .shstrtab section, which holds the names of the
808// sections. At the time this is called, we have created all the
809// output sections except .shstrtab itself.
810
811Output_section*
812Layout::create_shstrtab()
813{
814 // FIXME: We don't need to create a .shstrtab section if we are
815 // stripping everything.
816
f0641a0b 817 const char* name = this->namepool_.add(".shstrtab", NULL);
75f65a3e 818
61ba1cf9
ILT
819 this->namepool_.set_string_offsets();
820
a3ad94ed 821 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 822
a3ad94ed
ILT
823 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
824 os->add_output_section_data(posd);
75f65a3e
ILT
825
826 return os;
827}
828
829// Create the section headers. SIZE is 32 or 64. OFF is the file
830// offset.
831
832Output_section_headers*
61ba1cf9 833Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
834{
835 Output_section_headers* oshdrs;
16649710
ILT
836 oshdrs = new Output_section_headers(size, big_endian, this,
837 &this->segment_list_,
838 &this->unattached_section_list_,
61ba1cf9 839 &this->namepool_);
ead1e424 840 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 841 oshdrs->set_address(0, off);
61ba1cf9
ILT
842 off += oshdrs->data_size();
843 *poff = off;
844 this->special_output_list_.push_back(oshdrs);
75f65a3e 845 return oshdrs;
54dc6425
ILT
846}
847
dbe717ef
ILT
848// Create the dynamic symbol table.
849
850void
14b31740
ILT
851Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
852 Output_section **pdynstr,
853 unsigned int* plocal_dynamic_count,
854 std::vector<Symbol*>* pdynamic_symbols,
855 Versions* pversions)
dbe717ef 856{
a3ad94ed
ILT
857 // Count all the symbols in the dynamic symbol table, and set the
858 // dynamic symbol indexes.
dbe717ef 859
a3ad94ed
ILT
860 // Skip symbol 0, which is always all zeroes.
861 unsigned int index = 1;
dbe717ef 862
a3ad94ed
ILT
863 // Add STT_SECTION symbols for each Output section which needs one.
864 for (Section_list::iterator p = this->section_list_.begin();
865 p != this->section_list_.end();
866 ++p)
867 {
868 if (!(*p)->needs_dynsym_index())
869 (*p)->set_dynsym_index(-1U);
870 else
871 {
872 (*p)->set_dynsym_index(index);
873 ++index;
874 }
875 }
876
877 // FIXME: Some targets apparently require local symbols in the
878 // dynamic symbol table. Here is where we will have to count them,
879 // and set the dynamic symbol indexes, and add the names to
880 // this->dynpool_.
881
882 unsigned int local_symcount = index;
14b31740 883 *plocal_dynamic_count = local_symcount;
a3ad94ed
ILT
884
885 // FIXME: We have to tell set_dynsym_indexes whether the
886 // -E/--export-dynamic option was used.
14b31740
ILT
887 index = symtab->set_dynsym_indexes(&this->options_, target, index,
888 pdynamic_symbols, &this->dynpool_,
889 pversions);
a3ad94ed
ILT
890
891 int symsize;
892 unsigned int align;
893 const int size = target->get_size();
894 if (size == 32)
895 {
896 symsize = elfcpp::Elf_sizes<32>::sym_size;
897 align = 4;
898 }
899 else if (size == 64)
900 {
901 symsize = elfcpp::Elf_sizes<64>::sym_size;
902 align = 8;
903 }
904 else
905 gold_unreachable();
906
14b31740
ILT
907 // Create the dynamic symbol table section.
908
a3ad94ed
ILT
909 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
910 Output_section* dynsym = this->make_output_section(dynsym_name,
911 elfcpp::SHT_DYNSYM,
912 elfcpp::SHF_ALLOC);
913
914 Output_section_data* odata = new Output_data_space(index * symsize,
915 align);
916 dynsym->add_output_section_data(odata);
917
918 dynsym->set_info(local_symcount);
919 dynsym->set_entsize(symsize);
920 dynsym->set_addralign(align);
921
922 this->dynsym_section_ = dynsym;
923
16649710 924 Output_data_dynamic* const odyn = this->dynamic_data_;
a3ad94ed
ILT
925 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
926 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
927
14b31740
ILT
928 // Create the dynamic string table section.
929
a3ad94ed
ILT
930 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
931 Output_section* dynstr = this->make_output_section(dynstr_name,
932 elfcpp::SHT_STRTAB,
933 elfcpp::SHF_ALLOC);
934
935 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
936 dynstr->add_output_section_data(strdata);
937
16649710
ILT
938 dynsym->set_link_section(dynstr);
939 this->dynamic_section_->set_link_section(dynstr);
940
a3ad94ed
ILT
941 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
942 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
943
14b31740
ILT
944 *pdynstr = dynstr;
945
946 // Create the hash tables.
947
a3ad94ed
ILT
948 // FIXME: We need an option to create a GNU hash table.
949
950 unsigned char* phash;
951 unsigned int hashlen;
14b31740 952 Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
a3ad94ed
ILT
953 &phash, &hashlen);
954
955 const char* hash_name = this->namepool_.add(".hash", NULL);
956 Output_section* hashsec = this->make_output_section(hash_name,
957 elfcpp::SHT_HASH,
958 elfcpp::SHF_ALLOC);
959
960 Output_section_data* hashdata = new Output_data_const_buffer(phash,
961 hashlen,
962 align);
963 hashsec->add_output_section_data(hashdata);
964
16649710 965 hashsec->set_link_section(dynsym);
a3ad94ed 966 hashsec->set_entsize(4);
a3ad94ed
ILT
967
968 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
969}
970
14b31740
ILT
971// Create the version sections.
972
973void
974Layout::create_version_sections(const Target* target, const Versions* versions,
975 unsigned int local_symcount,
976 const std::vector<Symbol*>& dynamic_symbols,
977 const Output_section* dynstr)
978{
979 if (!versions->any_defs() && !versions->any_needs())
980 return;
981
982 if (target->get_size() == 32)
983 {
984 if (target->is_big_endian())
91da9340
ILT
985 this->sized_create_version_sections SELECT_SIZE_ENDIAN_NAME(32, true)(
986 versions, local_symcount, dynamic_symbols, dynstr
987 SELECT_SIZE_ENDIAN(32, true));
14b31740 988 else
91da9340
ILT
989 this->sized_create_version_sections SELECT_SIZE_ENDIAN_NAME(32, false)(
990 versions, local_symcount, dynamic_symbols, dynstr
991 SELECT_SIZE_ENDIAN(32, false));
14b31740
ILT
992 }
993 else if (target->get_size() == 64)
994 {
995 if (target->is_big_endian())
91da9340
ILT
996 this->sized_create_version_sections SELECT_SIZE_ENDIAN_NAME(64, true)(
997 versions, local_symcount, dynamic_symbols, dynstr
998 SELECT_SIZE_ENDIAN(64, true));
14b31740 999 else
91da9340
ILT
1000 this->sized_create_version_sections SELECT_SIZE_ENDIAN_NAME(64, false)(
1001 versions, local_symcount, dynamic_symbols, dynstr
1002 SELECT_SIZE_ENDIAN(64, false));
14b31740
ILT
1003 }
1004 else
1005 gold_unreachable();
1006}
1007
1008// Create the version sections, sized version.
1009
1010template<int size, bool big_endian>
1011void
1012Layout::sized_create_version_sections(
1013 const Versions* versions,
1014 unsigned int local_symcount,
1015 const std::vector<Symbol*>& dynamic_symbols,
91da9340
ILT
1016 const Output_section* dynstr
1017 ACCEPT_SIZE_ENDIAN)
14b31740
ILT
1018{
1019 const char* vname = this->namepool_.add(".gnu.version", NULL);
1020 Output_section* vsec = this->make_output_section(vname,
1021 elfcpp::SHT_GNU_versym,
1022 elfcpp::SHF_ALLOC);
1023
1024 unsigned char* vbuf;
1025 unsigned int vsize;
91da9340
ILT
1026 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1027 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1028 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1029
1030 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1031
1032 vsec->add_output_section_data(vdata);
1033 vsec->set_entsize(2);
1034 vsec->set_link_section(this->dynsym_section_);
1035
1036 Output_data_dynamic* const odyn = this->dynamic_data_;
1037 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1038
1039 if (versions->any_defs())
1040 {
1041 const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1042 Output_section *vdsec;
1043 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1044 elfcpp::SHF_ALLOC);
1045
1046 unsigned char* vdbuf;
1047 unsigned int vdsize;
1048 unsigned int vdentries;
91da9340
ILT
1049 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1050 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1051 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1052
1053 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1054 vdsize,
1055 4);
1056
1057 vdsec->add_output_section_data(vddata);
1058 vdsec->set_link_section(dynstr);
1059 vdsec->set_info(vdentries);
1060
1061 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1062 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1063 }
1064
1065 if (versions->any_needs())
1066 {
1067 const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1068 Output_section* vnsec;
1069 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1070 elfcpp::SHF_ALLOC);
1071
1072 unsigned char* vnbuf;
1073 unsigned int vnsize;
1074 unsigned int vnentries;
91da9340
ILT
1075 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1076 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1077 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1078
1079 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1080 vnsize,
1081 4);
1082
1083 vnsec->add_output_section_data(vndata);
1084 vnsec->set_link_section(dynstr);
1085 vnsec->set_info(vnentries);
1086
1087 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1088 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1089 }
1090}
1091
dbe717ef
ILT
1092// Create the .interp section and PT_INTERP segment.
1093
1094void
1095Layout::create_interp(const Target* target)
1096{
1097 const char* interp = this->options_.dynamic_linker();
1098 if (interp == NULL)
1099 {
1100 interp = target->dynamic_linker();
a3ad94ed 1101 gold_assert(interp != NULL);
dbe717ef
ILT
1102 }
1103
1104 size_t len = strlen(interp) + 1;
1105
1106 Output_section_data* odata = new Output_data_const(interp, len, 1);
1107
1108 const char* interp_name = this->namepool_.add(".interp", NULL);
1109 Output_section* osec = this->make_output_section(interp_name,
1110 elfcpp::SHT_PROGBITS,
1111 elfcpp::SHF_ALLOC);
1112 osec->add_output_section_data(odata);
1113
1114 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1115 this->segment_list_.push_back(oseg);
1116 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1117}
1118
a3ad94ed
ILT
1119// Finish the .dynamic section and PT_DYNAMIC segment.
1120
1121void
1122Layout::finish_dynamic_section(const Input_objects* input_objects,
16649710 1123 const Symbol_table* symtab)
a3ad94ed 1124{
a3ad94ed
ILT
1125 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1126 elfcpp::PF_R | elfcpp::PF_W);
1127 this->segment_list_.push_back(oseg);
1128 oseg->add_initial_output_section(this->dynamic_section_,
1129 elfcpp::PF_R | elfcpp::PF_W);
1130
16649710
ILT
1131 Output_data_dynamic* const odyn = this->dynamic_data_;
1132
a3ad94ed
ILT
1133 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1134 p != input_objects->dynobj_end();
1135 ++p)
1136 {
1137 // FIXME: Handle --as-needed.
1138 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1139 }
1140
1141 // FIXME: Support --init and --fini.
1142 Symbol* sym = symtab->lookup("_init");
14b31740 1143 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1144 odyn->add_symbol(elfcpp::DT_INIT, sym);
1145
1146 sym = symtab->lookup("_fini");
14b31740 1147 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1148 odyn->add_symbol(elfcpp::DT_FINI, sym);
1149
1150 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1151}
1152
a2fb1b05
ILT
1153// The mapping of .gnu.linkonce section names to real section names.
1154
ead1e424 1155#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
1156const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1157{
1158 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1159 MAPPING_INIT("t", ".text"),
1160 MAPPING_INIT("r", ".rodata"),
1161 MAPPING_INIT("d", ".data"),
1162 MAPPING_INIT("b", ".bss"),
1163 MAPPING_INIT("s", ".sdata"),
1164 MAPPING_INIT("sb", ".sbss"),
1165 MAPPING_INIT("s2", ".sdata2"),
1166 MAPPING_INIT("sb2", ".sbss2"),
1167 MAPPING_INIT("wi", ".debug_info"),
1168 MAPPING_INIT("td", ".tdata"),
1169 MAPPING_INIT("tb", ".tbss"),
1170 MAPPING_INIT("lr", ".lrodata"),
1171 MAPPING_INIT("l", ".ldata"),
1172 MAPPING_INIT("lb", ".lbss"),
1173};
1174#undef MAPPING_INIT
1175
1176const int Layout::linkonce_mapping_count =
1177 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1178
1179// Return the name of the output section to use for a .gnu.linkonce
1180// section. This is based on the default ELF linker script of the old
1181// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1182// to ".text". Set *PLEN to the length of the name. *PLEN is
1183// initialized to the length of NAME.
a2fb1b05
ILT
1184
1185const char*
ead1e424 1186Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1187{
1188 const char* s = name + sizeof(".gnu.linkonce") - 1;
1189 if (*s != '.')
1190 return name;
1191 ++s;
1192 const Linkonce_mapping* plm = linkonce_mapping;
1193 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1194 {
1195 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1196 {
1197 *plen = plm->tolen;
1198 return plm->to;
1199 }
a2fb1b05
ILT
1200 }
1201 return name;
1202}
1203
ead1e424
ILT
1204// Choose the output section name to use given an input section name.
1205// Set *PLEN to the length of the name. *PLEN is initialized to the
1206// length of NAME.
1207
1208const char*
1209Layout::output_section_name(const char* name, size_t* plen)
1210{
1211 if (Layout::is_linkonce(name))
1212 {
1213 // .gnu.linkonce sections are laid out as though they were named
1214 // for the sections are placed into.
1215 return Layout::linkonce_output_name(name, plen);
1216 }
1217
1218 // If the section name has no '.', or only an initial '.', we use
1219 // the name unchanged (i.e., ".text" is unchanged).
1220
1221 // Otherwise, if the section name does not include ".rel", we drop
1222 // the last '.' and everything that follows (i.e., ".text.XXX"
1223 // becomes ".text").
1224
1225 // Otherwise, if the section name has zero or one '.' after the
1226 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1227 // unchanged).
1228
1229 // Otherwise, we drop the last '.' and everything that follows
1230 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1231
1232 const char* s = name;
1233 if (*s == '.')
1234 ++s;
1235 const char* sdot = strchr(s, '.');
1236 if (sdot == NULL)
1237 return name;
1238
1239 const char* srel = strstr(s, ".rel");
1240 if (srel == NULL)
1241 {
1242 *plen = sdot - name;
1243 return name;
1244 }
1245
1246 sdot = strchr(srel + 1, '.');
1247 if (sdot == NULL)
1248 return name;
1249 sdot = strchr(sdot + 1, '.');
1250 if (sdot == NULL)
1251 return name;
1252
1253 *plen = sdot - name;
1254 return name;
1255}
1256
a2fb1b05
ILT
1257// Record the signature of a comdat section, and return whether to
1258// include it in the link. If GROUP is true, this is a regular
1259// section group. If GROUP is false, this is a group signature
1260// derived from the name of a linkonce section. We want linkonce
1261// signatures and group signatures to block each other, but we don't
1262// want a linkonce signature to block another linkonce signature.
1263
1264bool
1265Layout::add_comdat(const char* signature, bool group)
1266{
1267 std::string sig(signature);
1268 std::pair<Signatures::iterator, bool> ins(
ead1e424 1269 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
1270
1271 if (ins.second)
1272 {
1273 // This is the first time we've seen this signature.
1274 return true;
1275 }
1276
1277 if (ins.first->second)
1278 {
1279 // We've already seen a real section group with this signature.
1280 return false;
1281 }
1282 else if (group)
1283 {
1284 // This is a real section group, and we've already seen a
1285 // linkonce section with tihs signature. Record that we've seen
1286 // a section group, and don't include this section group.
1287 ins.first->second = true;
1288 return false;
1289 }
1290 else
1291 {
1292 // We've already seen a linkonce section and this is a linkonce
1293 // section. These don't block each other--this may be the same
1294 // symbol name with different section types.
1295 return true;
1296 }
1297}
1298
61ba1cf9
ILT
1299// Write out data not associated with a section or the symbol table.
1300
1301void
a3ad94ed
ILT
1302Layout::write_data(const Symbol_table* symtab, const Target* target,
1303 Output_file* of) const
61ba1cf9 1304{
a3ad94ed
ILT
1305 const Output_section* symtab_section = this->symtab_section_;
1306 for (Section_list::const_iterator p = this->section_list_.begin();
1307 p != this->section_list_.end();
1308 ++p)
1309 {
1310 if ((*p)->needs_symtab_index())
1311 {
1312 gold_assert(symtab_section != NULL);
1313 unsigned int index = (*p)->symtab_index();
1314 gold_assert(index > 0 && index != -1U);
1315 off_t off = (symtab_section->offset()
1316 + index * symtab_section->entsize());
1317 symtab->write_section_symbol(target, *p, of, off);
1318 }
1319 }
1320
1321 const Output_section* dynsym_section = this->dynsym_section_;
1322 for (Section_list::const_iterator p = this->section_list_.begin();
1323 p != this->section_list_.end();
1324 ++p)
1325 {
1326 if ((*p)->needs_dynsym_index())
1327 {
1328 gold_assert(dynsym_section != NULL);
1329 unsigned int index = (*p)->dynsym_index();
1330 gold_assert(index > 0 && index != -1U);
1331 off_t off = (dynsym_section->offset()
1332 + index * dynsym_section->entsize());
1333 symtab->write_section_symbol(target, *p, of, off);
1334 }
1335 }
1336
1337 // Write out the Output_sections. Most won't have anything to
1338 // write, since most of the data will come from input sections which
1339 // are handled elsewhere. But some Output_sections do have
1340 // Output_data.
1341 for (Section_list::const_iterator p = this->section_list_.begin();
1342 p != this->section_list_.end();
1343 ++p)
1344 (*p)->write(of);
1345
1346 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
1347 for (Data_list::const_iterator p = this->special_output_list_.begin();
1348 p != this->special_output_list_.end();
1349 ++p)
1350 (*p)->write(of);
1351}
1352
1353// Write_data_task methods.
1354
1355// We can always run this task.
1356
1357Task::Is_runnable_type
1358Write_data_task::is_runnable(Workqueue*)
1359{
1360 return IS_RUNNABLE;
1361}
1362
1363// We need to unlock FINAL_BLOCKER when finished.
1364
1365Task_locker*
1366Write_data_task::locks(Workqueue* workqueue)
1367{
1368 return new Task_locker_block(*this->final_blocker_, workqueue);
1369}
1370
1371// Run the task--write out the data.
1372
1373void
1374Write_data_task::run(Workqueue*)
1375{
a3ad94ed 1376 this->layout_->write_data(this->symtab_, this->target_, this->of_);
61ba1cf9
ILT
1377}
1378
1379// Write_symbols_task methods.
1380
1381// We can always run this task.
1382
1383Task::Is_runnable_type
1384Write_symbols_task::is_runnable(Workqueue*)
1385{
1386 return IS_RUNNABLE;
1387}
1388
1389// We need to unlock FINAL_BLOCKER when finished.
1390
1391Task_locker*
1392Write_symbols_task::locks(Workqueue* workqueue)
1393{
1394 return new Task_locker_block(*this->final_blocker_, workqueue);
1395}
1396
1397// Run the task--write out the symbols.
1398
1399void
1400Write_symbols_task::run(Workqueue*)
1401{
16649710
ILT
1402 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1403 this->of_);
61ba1cf9
ILT
1404}
1405
92e059d8 1406// Close_task_runner methods.
61ba1cf9
ILT
1407
1408// Run the task--close the file.
1409
1410void
92e059d8 1411Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
1412{
1413 this->of_->close();
1414}
1415
a2fb1b05
ILT
1416// Instantiate the templates we need. We could use the configure
1417// script to restrict this to only the ones for implemented targets.
1418
1419template
1420Output_section*
f6ce93d6 1421Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1422 const elfcpp::Shdr<32, false>& shdr, off_t*);
1423
1424template
1425Output_section*
f6ce93d6 1426Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1427 const elfcpp::Shdr<32, true>& shdr, off_t*);
1428
1429template
1430Output_section*
f6ce93d6 1431Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1432 const elfcpp::Shdr<64, false>& shdr, off_t*);
1433
1434template
1435Output_section*
f6ce93d6 1436Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1437 const elfcpp::Shdr<64, true>& shdr, off_t*);
1438
1439
1440} // End namespace gold.