]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/dwarf2.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2021 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* Pointer to the .debug_rnglists section loaded into memory. */
134 bfd_byte *dwarf_rnglists_buffer;
135
136 /* Length of the loaded .debug_rnglists section. */
137 bfd_size_type dwarf_rnglists_size;
138
139 /* A list of all previously read comp_units. */
140 struct comp_unit *all_comp_units;
141
142 /* Last comp unit in list above. */
143 struct comp_unit *last_comp_unit;
144
145 /* Line table at line_offset zero. */
146 struct line_info_table *line_table;
147
148 /* Hash table to map offsets to decoded abbrevs. */
149 htab_t abbrev_offsets;
150 };
151
152 struct dwarf2_debug
153 {
154 /* Names of the debug sections. */
155 const struct dwarf_debug_section *debug_sections;
156
157 /* Per-file stuff. */
158 struct dwarf2_debug_file f, alt;
159
160 /* Pointer to the original bfd for which debug was loaded. This is what
161 we use to compare and so check that the cached debug data is still
162 valid - it saves having to possibly dereference the gnu_debuglink each
163 time. */
164 bfd *orig_bfd;
165
166 /* If the most recent call to bfd_find_nearest_line was given an
167 address in an inlined function, preserve a pointer into the
168 calling chain for subsequent calls to bfd_find_inliner_info to
169 use. */
170 struct funcinfo *inliner_chain;
171
172 /* Section VMAs at the time the stash was built. */
173 bfd_vma *sec_vma;
174 /* Number of sections in the SEC_VMA table. */
175 unsigned int sec_vma_count;
176
177 /* Number of sections whose VMA we must adjust. */
178 int adjusted_section_count;
179
180 /* Array of sections with adjusted VMA. */
181 struct adjusted_section *adjusted_sections;
182
183 /* Number of times find_line is called. This is used in
184 the heuristic for enabling the info hash tables. */
185 int info_hash_count;
186
187 #define STASH_INFO_HASH_TRIGGER 100
188
189 /* Hash table mapping symbol names to function infos. */
190 struct info_hash_table *funcinfo_hash_table;
191
192 /* Hash table mapping symbol names to variable infos. */
193 struct info_hash_table *varinfo_hash_table;
194
195 /* Head of comp_unit list in the last hash table update. */
196 struct comp_unit *hash_units_head;
197
198 /* Status of info hash. */
199 int info_hash_status;
200 #define STASH_INFO_HASH_OFF 0
201 #define STASH_INFO_HASH_ON 1
202 #define STASH_INFO_HASH_DISABLED 2
203
204 /* True if we opened bfd_ptr. */
205 bfd_boolean close_on_cleanup;
206 };
207
208 struct arange
209 {
210 struct arange *next;
211 bfd_vma low;
212 bfd_vma high;
213 };
214
215 /* A minimal decoding of DWARF2 compilation units. We only decode
216 what's needed to get to the line number information. */
217
218 struct comp_unit
219 {
220 /* Chain the previously read compilation units. */
221 struct comp_unit *next_unit;
222
223 /* Likewise, chain the compilation unit read after this one.
224 The comp units are stored in reversed reading order. */
225 struct comp_unit *prev_unit;
226
227 /* Keep the bfd convenient (for memory allocation). */
228 bfd *abfd;
229
230 /* The lowest and highest addresses contained in this compilation
231 unit as specified in the compilation unit header. */
232 struct arange arange;
233
234 /* The DW_AT_name attribute (for error messages). */
235 char *name;
236
237 /* The abbrev hash table. */
238 struct abbrev_info **abbrevs;
239
240 /* DW_AT_language. */
241 int lang;
242
243 /* Note that an error was found by comp_unit_find_nearest_line. */
244 int error;
245
246 /* The DW_AT_comp_dir attribute. */
247 char *comp_dir;
248
249 /* TRUE if there is a line number table associated with this comp. unit. */
250 int stmtlist;
251
252 /* Pointer to the current comp_unit so that we can find a given entry
253 by its reference. */
254 bfd_byte *info_ptr_unit;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointers to dwarf2_debug structures. */
281 struct dwarf2_debug *stash;
282 struct dwarf2_debug_file *file;
283
284 /* DWARF format version for this unit - from unit header. */
285 int version;
286
287 /* Address size for this unit - from unit header. */
288 unsigned char addr_size;
289
290 /* Offset size for this unit - from unit header. */
291 unsigned char offset_size;
292
293 /* Base address for this unit - from DW_AT_low_pc attribute of
294 DW_TAG_compile_unit DIE */
295 bfd_vma base_address;
296
297 /* TRUE if symbols are cached in hash table for faster lookup by name. */
298 bfd_boolean cached;
299 };
300
301 /* This data structure holds the information of an abbrev. */
302 struct abbrev_info
303 {
304 unsigned int number; /* Number identifying abbrev. */
305 enum dwarf_tag tag; /* DWARF tag. */
306 bfd_boolean has_children; /* TRUE if the abbrev has children. */
307 unsigned int num_attrs; /* Number of attributes. */
308 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
309 struct abbrev_info * next; /* Next in chain. */
310 };
311
312 struct attr_abbrev
313 {
314 enum dwarf_attribute name;
315 enum dwarf_form form;
316 bfd_vma implicit_const;
317 };
318
319 /* Map of uncompressed DWARF debug section name to compressed one. It
320 is terminated by NULL uncompressed_name. */
321
322 const struct dwarf_debug_section dwarf_debug_sections[] =
323 {
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_aranges", ".zdebug_aranges" },
326 { ".debug_frame", ".zdebug_frame" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_info", ".zdebug_info" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_pubnames", ".zdebug_pubnames" },
334 { ".debug_pubtypes", ".zdebug_pubtypes" },
335 { ".debug_ranges", ".zdebug_ranges" },
336 { ".debug_rnglists", ".zdebug_rnglist" },
337 { ".debug_static_func", ".zdebug_static_func" },
338 { ".debug_static_vars", ".zdebug_static_vars" },
339 { ".debug_str", ".zdebug_str", },
340 { ".debug_str", ".zdebug_str", },
341 { ".debug_line_str", ".zdebug_line_str", },
342 { ".debug_types", ".zdebug_types" },
343 /* GNU DWARF 1 extensions */
344 { ".debug_sfnames", ".zdebug_sfnames" },
345 { ".debug_srcinfo", ".zebug_srcinfo" },
346 /* SGI/MIPS DWARF 2 extensions */
347 { ".debug_funcnames", ".zdebug_funcnames" },
348 { ".debug_typenames", ".zdebug_typenames" },
349 { ".debug_varnames", ".zdebug_varnames" },
350 { ".debug_weaknames", ".zdebug_weaknames" },
351 { NULL, NULL },
352 };
353
354 /* NB/ Numbers in this enum must match up with indices
355 into the dwarf_debug_sections[] array above. */
356 enum dwarf_debug_section_enum
357 {
358 debug_abbrev = 0,
359 debug_aranges,
360 debug_frame,
361 debug_info,
362 debug_info_alt,
363 debug_line,
364 debug_loc,
365 debug_macinfo,
366 debug_macro,
367 debug_pubnames,
368 debug_pubtypes,
369 debug_ranges,
370 debug_rnglists,
371 debug_static_func,
372 debug_static_vars,
373 debug_str,
374 debug_str_alt,
375 debug_line_str,
376 debug_types,
377 debug_sfnames,
378 debug_srcinfo,
379 debug_funcnames,
380 debug_typenames,
381 debug_varnames,
382 debug_weaknames,
383 debug_max
384 };
385
386 /* A static assertion. */
387 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
388 == debug_max + 1 ? 1 : -1];
389
390 #ifndef ABBREV_HASH_SIZE
391 #define ABBREV_HASH_SIZE 121
392 #endif
393 #ifndef ATTR_ALLOC_CHUNK
394 #define ATTR_ALLOC_CHUNK 4
395 #endif
396
397 /* Variable and function hash tables. This is used to speed up look-up
398 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
399 In order to share code between variable and function infos, we use
400 a list of untyped pointer for all variable/function info associated with
401 a symbol. We waste a bit of memory for list with one node but that
402 simplifies the code. */
403
404 struct info_list_node
405 {
406 struct info_list_node *next;
407 void *info;
408 };
409
410 /* Info hash entry. */
411 struct info_hash_entry
412 {
413 struct bfd_hash_entry root;
414 struct info_list_node *head;
415 };
416
417 struct info_hash_table
418 {
419 struct bfd_hash_table base;
420 };
421
422 /* Function to create a new entry in info hash table. */
423
424 static struct bfd_hash_entry *
425 info_hash_table_newfunc (struct bfd_hash_entry *entry,
426 struct bfd_hash_table *table,
427 const char *string)
428 {
429 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 derived class. */
433 if (ret == NULL)
434 {
435 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
436 sizeof (* ret));
437 if (ret == NULL)
438 return NULL;
439 }
440
441 /* Call the allocation method of the base class. */
442 ret = ((struct info_hash_entry *)
443 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
444
445 /* Initialize the local fields here. */
446 if (ret)
447 ret->head = NULL;
448
449 return (struct bfd_hash_entry *) ret;
450 }
451
452 /* Function to create a new info hash table. It returns a pointer to the
453 newly created table or NULL if there is any error. We need abfd
454 solely for memory allocation. */
455
456 static struct info_hash_table *
457 create_info_hash_table (bfd *abfd)
458 {
459 struct info_hash_table *hash_table;
460
461 hash_table = ((struct info_hash_table *)
462 bfd_alloc (abfd, sizeof (struct info_hash_table)));
463 if (!hash_table)
464 return hash_table;
465
466 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
467 sizeof (struct info_hash_entry)))
468 {
469 bfd_release (abfd, hash_table);
470 return NULL;
471 }
472
473 return hash_table;
474 }
475
476 /* Insert an info entry into an info hash table. We do not check of
477 duplicate entries. Also, the caller need to guarantee that the
478 right type of info in inserted as info is passed as a void* pointer.
479 This function returns true if there is no error. */
480
481 static bfd_boolean
482 insert_info_hash_table (struct info_hash_table *hash_table,
483 const char *key,
484 void *info,
485 bfd_boolean copy_p)
486 {
487 struct info_hash_entry *entry;
488 struct info_list_node *node;
489
490 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
491 key, TRUE, copy_p);
492 if (!entry)
493 return FALSE;
494
495 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
496 sizeof (*node));
497 if (!node)
498 return FALSE;
499
500 node->info = info;
501 node->next = entry->head;
502 entry->head = node;
503
504 return TRUE;
505 }
506
507 /* Look up an info entry list from an info hash table. Return NULL
508 if there is none. */
509
510 static struct info_list_node *
511 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
512 {
513 struct info_hash_entry *entry;
514
515 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
516 FALSE, FALSE);
517 return entry ? entry->head : NULL;
518 }
519
520 /* Read a section into its appropriate place in the dwarf2_debug
521 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
522 not NULL, use bfd_simple_get_relocated_section_contents to read the
523 section contents, otherwise use bfd_get_section_contents. Fail if
524 the located section does not contain at least OFFSET bytes. */
525
526 static bfd_boolean
527 read_section (bfd * abfd,
528 const struct dwarf_debug_section *sec,
529 asymbol ** syms,
530 bfd_uint64_t offset,
531 bfd_byte ** section_buffer,
532 bfd_size_type * section_size)
533 {
534 const char *section_name = sec->uncompressed_name;
535 bfd_byte *contents = *section_buffer;
536
537 /* The section may have already been read. */
538 if (contents == NULL)
539 {
540 bfd_size_type amt;
541 asection *msec;
542 ufile_ptr filesize;
543
544 msec = bfd_get_section_by_name (abfd, section_name);
545 if (msec == NULL)
546 {
547 section_name = sec->compressed_name;
548 if (section_name != NULL)
549 msec = bfd_get_section_by_name (abfd, section_name);
550 }
551 if (msec == NULL)
552 {
553 _bfd_error_handler (_("DWARF error: can't find %s section."),
554 sec->uncompressed_name);
555 bfd_set_error (bfd_error_bad_value);
556 return FALSE;
557 }
558
559 amt = bfd_get_section_limit_octets (abfd, msec);
560 filesize = bfd_get_file_size (abfd);
561 if (amt >= filesize)
562 {
563 /* PR 26946 */
564 _bfd_error_handler (_("DWARF error: section %s is larger than its filesize! (0x%lx vs 0x%lx)"),
565 section_name, (long) amt, (long) filesize);
566 bfd_set_error (bfd_error_bad_value);
567 return FALSE;
568 }
569 *section_size = amt;
570 /* Paranoia - alloc one extra so that we can make sure a string
571 section is NUL terminated. */
572 amt += 1;
573 if (amt == 0)
574 {
575 /* Paranoia - this should never happen. */
576 bfd_set_error (bfd_error_no_memory);
577 return FALSE;
578 }
579 contents = (bfd_byte *) bfd_malloc (amt);
580 if (contents == NULL)
581 return FALSE;
582 if (syms
583 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
584 syms)
585 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
586 {
587 free (contents);
588 return FALSE;
589 }
590 contents[*section_size] = 0;
591 *section_buffer = contents;
592 }
593
594 /* It is possible to get a bad value for the offset into the section
595 that the client wants. Validate it here to avoid trouble later. */
596 if (offset != 0 && offset >= *section_size)
597 {
598 /* xgettext: c-format */
599 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
600 " greater than or equal to %s size (%" PRIu64 ")"),
601 (uint64_t) offset, section_name,
602 (uint64_t) *section_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 return TRUE;
608 }
609
610 /* Read dwarf information from a buffer. */
611
612 static unsigned int
613 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
614 {
615 if (buf + 1 > end)
616 return 0;
617 return bfd_get_8 (abfd, buf);
618 }
619
620 static int
621 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
622 {
623 if (buf + 1 > end)
624 return 0;
625 return bfd_get_signed_8 (abfd, buf);
626 }
627
628 static unsigned int
629 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
630 {
631 if (buf + 2 > end)
632 return 0;
633 return bfd_get_16 (abfd, buf);
634 }
635
636 static unsigned int
637 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
638 {
639 if (buf + 4 > end)
640 return 0;
641 return bfd_get_32 (abfd, buf);
642 }
643
644 static bfd_uint64_t
645 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
646 {
647 if (buf + 8 > end)
648 return 0;
649 return bfd_get_64 (abfd, buf);
650 }
651
652 static bfd_byte *
653 read_n_bytes (bfd_byte * buf,
654 bfd_byte * end,
655 struct dwarf_block * block)
656 {
657 unsigned int size = block->size;
658 bfd_byte * block_end = buf + size;
659
660 if (block_end > end || block_end < buf)
661 {
662 block->data = NULL;
663 block->size = 0;
664 return end;
665 }
666 else
667 {
668 block->data = buf;
669 return block_end;
670 }
671 }
672
673 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
674 Returns the number of characters in the string, *including* the NUL byte,
675 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
676 at or beyond BUF_END will not be read. Returns NULL if there was a
677 problem, or if the string is empty. */
678
679 static char *
680 read_string (bfd * abfd ATTRIBUTE_UNUSED,
681 bfd_byte * buf,
682 bfd_byte * buf_end,
683 unsigned int * bytes_read_ptr)
684 {
685 bfd_byte *str = buf;
686
687 if (buf >= buf_end)
688 {
689 * bytes_read_ptr = 0;
690 return NULL;
691 }
692
693 if (*str == '\0')
694 {
695 * bytes_read_ptr = 1;
696 return NULL;
697 }
698
699 while (buf < buf_end)
700 if (* buf ++ == 0)
701 {
702 * bytes_read_ptr = buf - str;
703 return (char *) str;
704 }
705
706 * bytes_read_ptr = buf - str;
707 return NULL;
708 }
709
710 /* Reads an offset from BUF and then locates the string at this offset
711 inside the debug string section. Returns a pointer to the string.
712 Returns the number of bytes read from BUF, *not* the length of the string,
713 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
714 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
715 a problem, or if the string is empty. Does not check for NUL termination
716 of the string. */
717
718 static char *
719 read_indirect_string (struct comp_unit * unit,
720 bfd_byte * buf,
721 bfd_byte * buf_end,
722 unsigned int * bytes_read_ptr)
723 {
724 bfd_uint64_t offset;
725 struct dwarf2_debug *stash = unit->stash;
726 struct dwarf2_debug_file *file = unit->file;
727 char *str;
728
729 if (buf + unit->offset_size > buf_end)
730 {
731 * bytes_read_ptr = 0;
732 return NULL;
733 }
734
735 if (unit->offset_size == 4)
736 offset = read_4_bytes (unit->abfd, buf, buf_end);
737 else
738 offset = read_8_bytes (unit->abfd, buf, buf_end);
739
740 *bytes_read_ptr = unit->offset_size;
741
742 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
743 file->syms, offset,
744 &file->dwarf_str_buffer, &file->dwarf_str_size))
745 return NULL;
746
747 str = (char *) file->dwarf_str_buffer + offset;
748 if (*str == '\0')
749 return NULL;
750 return str;
751 }
752
753 /* Like read_indirect_string but from .debug_line_str section. */
754
755 static char *
756 read_indirect_line_string (struct comp_unit * unit,
757 bfd_byte * buf,
758 bfd_byte * buf_end,
759 unsigned int * bytes_read_ptr)
760 {
761 bfd_uint64_t offset;
762 struct dwarf2_debug *stash = unit->stash;
763 struct dwarf2_debug_file *file = unit->file;
764 char *str;
765
766 if (buf + unit->offset_size > buf_end)
767 {
768 * bytes_read_ptr = 0;
769 return NULL;
770 }
771
772 if (unit->offset_size == 4)
773 offset = read_4_bytes (unit->abfd, buf, buf_end);
774 else
775 offset = read_8_bytes (unit->abfd, buf, buf_end);
776
777 *bytes_read_ptr = unit->offset_size;
778
779 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
780 file->syms, offset,
781 &file->dwarf_line_str_buffer,
782 &file->dwarf_line_str_size))
783 return NULL;
784
785 str = (char *) file->dwarf_line_str_buffer + offset;
786 if (*str == '\0')
787 return NULL;
788 return str;
789 }
790
791 /* Like read_indirect_string but uses a .debug_str located in
792 an alternate file pointed to by the .gnu_debugaltlink section.
793 Used to impement DW_FORM_GNU_strp_alt. */
794
795 static char *
796 read_alt_indirect_string (struct comp_unit * unit,
797 bfd_byte * buf,
798 bfd_byte * buf_end,
799 unsigned int * bytes_read_ptr)
800 {
801 bfd_uint64_t offset;
802 struct dwarf2_debug *stash = unit->stash;
803 char *str;
804
805 if (buf + unit->offset_size > buf_end)
806 {
807 * bytes_read_ptr = 0;
808 return NULL;
809 }
810
811 if (unit->offset_size == 4)
812 offset = read_4_bytes (unit->abfd, buf, buf_end);
813 else
814 offset = read_8_bytes (unit->abfd, buf, buf_end);
815
816 *bytes_read_ptr = unit->offset_size;
817
818 if (stash->alt.bfd_ptr == NULL)
819 {
820 bfd *debug_bfd;
821 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
822
823 if (debug_filename == NULL)
824 return NULL;
825
826 debug_bfd = bfd_openr (debug_filename, NULL);
827 free (debug_filename);
828 if (debug_bfd == NULL)
829 /* FIXME: Should we report our failure to follow the debuglink ? */
830 return NULL;
831
832 if (!bfd_check_format (debug_bfd, bfd_object))
833 {
834 bfd_close (debug_bfd);
835 return NULL;
836 }
837 stash->alt.bfd_ptr = debug_bfd;
838 }
839
840 if (! read_section (unit->stash->alt.bfd_ptr,
841 stash->debug_sections + debug_str_alt,
842 stash->alt.syms, offset,
843 &stash->alt.dwarf_str_buffer,
844 &stash->alt.dwarf_str_size))
845 return NULL;
846
847 str = (char *) stash->alt.dwarf_str_buffer + offset;
848 if (*str == '\0')
849 return NULL;
850
851 return str;
852 }
853
854 /* Resolve an alternate reference from UNIT at OFFSET.
855 Returns a pointer into the loaded alternate CU upon success
856 or NULL upon failure. */
857
858 static bfd_byte *
859 read_alt_indirect_ref (struct comp_unit * unit,
860 bfd_uint64_t offset)
861 {
862 struct dwarf2_debug *stash = unit->stash;
863
864 if (stash->alt.bfd_ptr == NULL)
865 {
866 bfd *debug_bfd;
867 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
868
869 if (debug_filename == NULL)
870 return NULL;
871
872 debug_bfd = bfd_openr (debug_filename, NULL);
873 free (debug_filename);
874 if (debug_bfd == NULL)
875 /* FIXME: Should we report our failure to follow the debuglink ? */
876 return NULL;
877
878 if (!bfd_check_format (debug_bfd, bfd_object))
879 {
880 bfd_close (debug_bfd);
881 return NULL;
882 }
883 stash->alt.bfd_ptr = debug_bfd;
884 }
885
886 if (! read_section (unit->stash->alt.bfd_ptr,
887 stash->debug_sections + debug_info_alt,
888 stash->alt.syms, offset,
889 &stash->alt.dwarf_info_buffer,
890 &stash->alt.dwarf_info_size))
891 return NULL;
892
893 return stash->alt.dwarf_info_buffer + offset;
894 }
895
896 static bfd_uint64_t
897 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
898 {
899 int signed_vma = 0;
900
901 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
902 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
903
904 if (buf + unit->addr_size > buf_end)
905 return 0;
906
907 if (signed_vma)
908 {
909 switch (unit->addr_size)
910 {
911 case 8:
912 return bfd_get_signed_64 (unit->abfd, buf);
913 case 4:
914 return bfd_get_signed_32 (unit->abfd, buf);
915 case 2:
916 return bfd_get_signed_16 (unit->abfd, buf);
917 default:
918 abort ();
919 }
920 }
921 else
922 {
923 switch (unit->addr_size)
924 {
925 case 8:
926 return bfd_get_64 (unit->abfd, buf);
927 case 4:
928 return bfd_get_32 (unit->abfd, buf);
929 case 2:
930 return bfd_get_16 (unit->abfd, buf);
931 default:
932 abort ();
933 }
934 }
935 }
936
937 /* Lookup an abbrev_info structure in the abbrev hash table. */
938
939 static struct abbrev_info *
940 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
941 {
942 unsigned int hash_number;
943 struct abbrev_info *abbrev;
944
945 hash_number = number % ABBREV_HASH_SIZE;
946 abbrev = abbrevs[hash_number];
947
948 while (abbrev)
949 {
950 if (abbrev->number == number)
951 return abbrev;
952 else
953 abbrev = abbrev->next;
954 }
955
956 return NULL;
957 }
958
959 /* We keep a hash table to map .debug_abbrev section offsets to the
960 array of abbrevs, so that compilation units using the same set of
961 abbrevs do not waste memory. */
962
963 struct abbrev_offset_entry
964 {
965 size_t offset;
966 struct abbrev_info **abbrevs;
967 };
968
969 static hashval_t
970 hash_abbrev (const void *p)
971 {
972 const struct abbrev_offset_entry *ent = p;
973 return htab_hash_pointer ((void *) ent->offset);
974 }
975
976 static int
977 eq_abbrev (const void *pa, const void *pb)
978 {
979 const struct abbrev_offset_entry *a = pa;
980 const struct abbrev_offset_entry *b = pb;
981 return a->offset == b->offset;
982 }
983
984 static void
985 del_abbrev (void *p)
986 {
987 struct abbrev_offset_entry *ent = p;
988 struct abbrev_info **abbrevs = ent->abbrevs;
989 size_t i;
990
991 for (i = 0; i < ABBREV_HASH_SIZE; i++)
992 {
993 struct abbrev_info *abbrev = abbrevs[i];
994
995 while (abbrev)
996 {
997 free (abbrev->attrs);
998 abbrev = abbrev->next;
999 }
1000 }
1001 free (ent);
1002 }
1003
1004 /* In DWARF version 2, the description of the debugging information is
1005 stored in a separate .debug_abbrev section. Before we read any
1006 dies from a section we read in all abbreviations and install them
1007 in a hash table. */
1008
1009 static struct abbrev_info**
1010 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
1011 struct dwarf2_debug_file *file)
1012 {
1013 struct abbrev_info **abbrevs;
1014 bfd_byte *abbrev_ptr;
1015 bfd_byte *abbrev_end;
1016 struct abbrev_info *cur_abbrev;
1017 unsigned int abbrev_number, bytes_read, abbrev_name;
1018 unsigned int abbrev_form, hash_number;
1019 size_t amt;
1020 void **slot;
1021 struct abbrev_offset_entry ent = { offset, NULL };
1022
1023 if (ent.offset != offset)
1024 return NULL;
1025
1026 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1027 if (slot == NULL)
1028 return NULL;
1029 if (*slot != NULL)
1030 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1031
1032 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1033 file->syms, offset,
1034 &file->dwarf_abbrev_buffer,
1035 &file->dwarf_abbrev_size))
1036 return NULL;
1037
1038 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1039 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1040 if (abbrevs == NULL)
1041 return NULL;
1042
1043 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1044 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1045 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1046 FALSE, abbrev_end);
1047 abbrev_ptr += bytes_read;
1048
1049 /* Loop until we reach an abbrev number of 0. */
1050 while (abbrev_number)
1051 {
1052 amt = sizeof (struct abbrev_info);
1053 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1054 if (cur_abbrev == NULL)
1055 goto fail;
1056
1057 /* Read in abbrev header. */
1058 cur_abbrev->number = abbrev_number;
1059 cur_abbrev->tag = (enum dwarf_tag)
1060 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1061 FALSE, abbrev_end);
1062 abbrev_ptr += bytes_read;
1063 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1064 abbrev_ptr += 1;
1065
1066 /* Now read in declarations. */
1067 for (;;)
1068 {
1069 /* Initialize it just to avoid a GCC false warning. */
1070 bfd_vma implicit_const = -1;
1071
1072 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1073 FALSE, abbrev_end);
1074 abbrev_ptr += bytes_read;
1075 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1076 FALSE, abbrev_end);
1077 abbrev_ptr += bytes_read;
1078 if (abbrev_form == DW_FORM_implicit_const)
1079 {
1080 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1081 &bytes_read, TRUE,
1082 abbrev_end);
1083 abbrev_ptr += bytes_read;
1084 }
1085
1086 if (abbrev_name == 0)
1087 break;
1088
1089 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1090 {
1091 struct attr_abbrev *tmp;
1092
1093 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1094 amt *= sizeof (struct attr_abbrev);
1095 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1096 if (tmp == NULL)
1097 goto fail;
1098 cur_abbrev->attrs = tmp;
1099 }
1100
1101 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1102 = (enum dwarf_attribute) abbrev_name;
1103 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1104 = (enum dwarf_form) abbrev_form;
1105 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1106 = implicit_const;
1107 ++cur_abbrev->num_attrs;
1108 }
1109
1110 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1111 cur_abbrev->next = abbrevs[hash_number];
1112 abbrevs[hash_number] = cur_abbrev;
1113
1114 /* Get next abbreviation.
1115 Under Irix6 the abbreviations for a compilation unit are not
1116 always properly terminated with an abbrev number of 0.
1117 Exit loop if we encounter an abbreviation which we have
1118 already read (which means we are about to read the abbreviations
1119 for the next compile unit) or if the end of the abbreviation
1120 table is reached. */
1121 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1122 >= file->dwarf_abbrev_size)
1123 break;
1124 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1125 &bytes_read, FALSE, abbrev_end);
1126 abbrev_ptr += bytes_read;
1127 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1128 break;
1129 }
1130
1131 *slot = bfd_malloc (sizeof ent);
1132 if (!*slot)
1133 goto fail;
1134 ent.abbrevs = abbrevs;
1135 memcpy (*slot, &ent, sizeof ent);
1136 return abbrevs;
1137
1138 fail:
1139 if (abbrevs != NULL)
1140 {
1141 size_t i;
1142
1143 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1144 {
1145 struct abbrev_info *abbrev = abbrevs[i];
1146
1147 while (abbrev)
1148 {
1149 free (abbrev->attrs);
1150 abbrev = abbrev->next;
1151 }
1152 }
1153 free (abbrevs);
1154 }
1155 return NULL;
1156 }
1157
1158 /* Returns true if the form is one which has a string value. */
1159
1160 static inline bfd_boolean
1161 is_str_attr (enum dwarf_form form)
1162 {
1163 return (form == DW_FORM_string || form == DW_FORM_strp
1164 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1165 }
1166
1167 /* Read and fill in the value of attribute ATTR as described by FORM.
1168 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1169 Returns an updated INFO_PTR taking into account the amount of data read. */
1170
1171 static bfd_byte *
1172 read_attribute_value (struct attribute * attr,
1173 unsigned form,
1174 bfd_vma implicit_const,
1175 struct comp_unit * unit,
1176 bfd_byte * info_ptr,
1177 bfd_byte * info_ptr_end)
1178 {
1179 bfd *abfd = unit->abfd;
1180 unsigned int bytes_read;
1181 struct dwarf_block *blk;
1182 size_t amt;
1183
1184 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1185 {
1186 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1187 bfd_set_error (bfd_error_bad_value);
1188 return info_ptr;
1189 }
1190
1191 attr->form = (enum dwarf_form) form;
1192
1193 switch (form)
1194 {
1195 case DW_FORM_ref_addr:
1196 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1197 DWARF3. */
1198 if (unit->version == 3 || unit->version == 4)
1199 {
1200 if (unit->offset_size == 4)
1201 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1202 else
1203 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1204 info_ptr += unit->offset_size;
1205 break;
1206 }
1207 /* FALLTHROUGH */
1208 case DW_FORM_addr:
1209 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1210 info_ptr += unit->addr_size;
1211 break;
1212 case DW_FORM_GNU_ref_alt:
1213 case DW_FORM_sec_offset:
1214 if (unit->offset_size == 4)
1215 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1216 else
1217 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1218 info_ptr += unit->offset_size;
1219 break;
1220 case DW_FORM_block2:
1221 amt = sizeof (struct dwarf_block);
1222 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1223 if (blk == NULL)
1224 return NULL;
1225 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 2;
1227 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1228 attr->u.blk = blk;
1229 break;
1230 case DW_FORM_block4:
1231 amt = sizeof (struct dwarf_block);
1232 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1233 if (blk == NULL)
1234 return NULL;
1235 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1236 info_ptr += 4;
1237 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1238 attr->u.blk = blk;
1239 break;
1240 case DW_FORM_data2:
1241 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1242 info_ptr += 2;
1243 break;
1244 case DW_FORM_data4:
1245 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1246 info_ptr += 4;
1247 break;
1248 case DW_FORM_data8:
1249 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1250 info_ptr += 8;
1251 break;
1252 case DW_FORM_string:
1253 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1254 info_ptr += bytes_read;
1255 break;
1256 case DW_FORM_strp:
1257 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1258 info_ptr += bytes_read;
1259 break;
1260 case DW_FORM_line_strp:
1261 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1262 info_ptr += bytes_read;
1263 break;
1264 case DW_FORM_GNU_strp_alt:
1265 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1266 info_ptr += bytes_read;
1267 break;
1268 case DW_FORM_exprloc:
1269 case DW_FORM_block:
1270 amt = sizeof (struct dwarf_block);
1271 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1272 if (blk == NULL)
1273 return NULL;
1274 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1275 FALSE, info_ptr_end);
1276 info_ptr += bytes_read;
1277 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1278 attr->u.blk = blk;
1279 break;
1280 case DW_FORM_block1:
1281 amt = sizeof (struct dwarf_block);
1282 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1283 if (blk == NULL)
1284 return NULL;
1285 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1286 info_ptr += 1;
1287 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1288 attr->u.blk = blk;
1289 break;
1290 case DW_FORM_data1:
1291 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1292 info_ptr += 1;
1293 break;
1294 case DW_FORM_flag:
1295 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1296 info_ptr += 1;
1297 break;
1298 case DW_FORM_flag_present:
1299 attr->u.val = 1;
1300 break;
1301 case DW_FORM_sdata:
1302 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1303 TRUE, info_ptr_end);
1304 info_ptr += bytes_read;
1305 break;
1306 case DW_FORM_udata:
1307 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1308 FALSE, info_ptr_end);
1309 info_ptr += bytes_read;
1310 break;
1311 case DW_FORM_ref1:
1312 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1313 info_ptr += 1;
1314 break;
1315 case DW_FORM_ref2:
1316 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1317 info_ptr += 2;
1318 break;
1319 case DW_FORM_ref4:
1320 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1321 info_ptr += 4;
1322 break;
1323 case DW_FORM_ref8:
1324 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1325 info_ptr += 8;
1326 break;
1327 case DW_FORM_ref_sig8:
1328 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1329 info_ptr += 8;
1330 break;
1331 case DW_FORM_ref_udata:
1332 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1333 FALSE, info_ptr_end);
1334 info_ptr += bytes_read;
1335 break;
1336 case DW_FORM_indirect:
1337 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1338 FALSE, info_ptr_end);
1339 info_ptr += bytes_read;
1340 if (form == DW_FORM_implicit_const)
1341 {
1342 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1343 TRUE, info_ptr_end);
1344 info_ptr += bytes_read;
1345 }
1346 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1347 info_ptr, info_ptr_end);
1348 break;
1349 case DW_FORM_implicit_const:
1350 attr->form = DW_FORM_sdata;
1351 attr->u.sval = implicit_const;
1352 break;
1353 case DW_FORM_data16:
1354 /* This is really a "constant", but there is no way to store that
1355 so pretend it is a 16 byte block instead. */
1356 amt = sizeof (struct dwarf_block);
1357 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1358 if (blk == NULL)
1359 return NULL;
1360 blk->size = 16;
1361 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1362 attr->u.blk = blk;
1363 break;
1364 default:
1365 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1366 form);
1367 bfd_set_error (bfd_error_bad_value);
1368 return NULL;
1369 }
1370 return info_ptr;
1371 }
1372
1373 /* Read an attribute described by an abbreviated attribute. */
1374
1375 static bfd_byte *
1376 read_attribute (struct attribute * attr,
1377 struct attr_abbrev * abbrev,
1378 struct comp_unit * unit,
1379 bfd_byte * info_ptr,
1380 bfd_byte * info_ptr_end)
1381 {
1382 attr->name = abbrev->name;
1383 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1384 unit, info_ptr, info_ptr_end);
1385 return info_ptr;
1386 }
1387
1388 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1389 for a function. */
1390
1391 static bfd_boolean
1392 non_mangled (int lang)
1393 {
1394 switch (lang)
1395 {
1396 default:
1397 return FALSE;
1398
1399 case DW_LANG_C89:
1400 case DW_LANG_C:
1401 case DW_LANG_Ada83:
1402 case DW_LANG_Cobol74:
1403 case DW_LANG_Cobol85:
1404 case DW_LANG_Fortran77:
1405 case DW_LANG_Pascal83:
1406 case DW_LANG_C99:
1407 case DW_LANG_Ada95:
1408 case DW_LANG_PLI:
1409 case DW_LANG_UPC:
1410 case DW_LANG_C11:
1411 return TRUE;
1412 }
1413 }
1414
1415 /* Source line information table routines. */
1416
1417 #define FILE_ALLOC_CHUNK 5
1418 #define DIR_ALLOC_CHUNK 5
1419
1420 struct line_info
1421 {
1422 struct line_info * prev_line;
1423 bfd_vma address;
1424 char * filename;
1425 unsigned int line;
1426 unsigned int column;
1427 unsigned int discriminator;
1428 unsigned char op_index;
1429 unsigned char end_sequence; /* End of (sequential) code sequence. */
1430 };
1431
1432 struct fileinfo
1433 {
1434 char * name;
1435 unsigned int dir;
1436 unsigned int time;
1437 unsigned int size;
1438 };
1439
1440 struct line_sequence
1441 {
1442 bfd_vma low_pc;
1443 struct line_sequence* prev_sequence;
1444 struct line_info* last_line; /* Largest VMA. */
1445 struct line_info** line_info_lookup;
1446 bfd_size_type num_lines;
1447 };
1448
1449 struct line_info_table
1450 {
1451 bfd * abfd;
1452 unsigned int num_files;
1453 unsigned int num_dirs;
1454 unsigned int num_sequences;
1455 char * comp_dir;
1456 char ** dirs;
1457 struct fileinfo* files;
1458 struct line_sequence* sequences;
1459 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1460 };
1461
1462 /* Remember some information about each function. If the function is
1463 inlined (DW_TAG_inlined_subroutine) it may have two additional
1464 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1465 source code location where this function was inlined. */
1466
1467 struct funcinfo
1468 {
1469 /* Pointer to previous function in list of all functions. */
1470 struct funcinfo * prev_func;
1471 /* Pointer to function one scope higher. */
1472 struct funcinfo * caller_func;
1473 /* Source location file name where caller_func inlines this func. */
1474 char * caller_file;
1475 /* Source location file name. */
1476 char * file;
1477 /* Source location line number where caller_func inlines this func. */
1478 int caller_line;
1479 /* Source location line number. */
1480 int line;
1481 int tag;
1482 bfd_boolean is_linkage;
1483 const char * name;
1484 struct arange arange;
1485 /* Where the symbol is defined. */
1486 asection * sec;
1487 };
1488
1489 struct lookup_funcinfo
1490 {
1491 /* Function information corresponding to this lookup table entry. */
1492 struct funcinfo * funcinfo;
1493
1494 /* The lowest address for this specific function. */
1495 bfd_vma low_addr;
1496
1497 /* The highest address of this function before the lookup table is sorted.
1498 The highest address of all prior functions after the lookup table is
1499 sorted, which is used for binary search. */
1500 bfd_vma high_addr;
1501 /* Index of this function, used to ensure qsort is stable. */
1502 unsigned int idx;
1503 };
1504
1505 struct varinfo
1506 {
1507 /* Pointer to previous variable in list of all variables. */
1508 struct varinfo *prev_var;
1509 /* The offset of the varinfo from the start of the unit. */
1510 bfd_uint64_t unit_offset;
1511 /* Source location file name. */
1512 char *file;
1513 /* Source location line number. */
1514 int line;
1515 /* The type of this variable. */
1516 int tag;
1517 /* The name of the variable, if it has one. */
1518 char *name;
1519 /* The address of the variable. */
1520 bfd_vma addr;
1521 /* Where the symbol is defined. */
1522 asection *sec;
1523 /* Is this a stack variable? */
1524 bfd_boolean stack;
1525 };
1526
1527 /* Return TRUE if NEW_LINE should sort after LINE. */
1528
1529 static inline bfd_boolean
1530 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1531 {
1532 return (new_line->address > line->address
1533 || (new_line->address == line->address
1534 && new_line->op_index > line->op_index));
1535 }
1536
1537
1538 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1539 that the list is sorted. Note that the line_info list is sorted from
1540 highest to lowest VMA (with possible duplicates); that is,
1541 line_info->prev_line always accesses an equal or smaller VMA. */
1542
1543 static bfd_boolean
1544 add_line_info (struct line_info_table *table,
1545 bfd_vma address,
1546 unsigned char op_index,
1547 char *filename,
1548 unsigned int line,
1549 unsigned int column,
1550 unsigned int discriminator,
1551 int end_sequence)
1552 {
1553 size_t amt = sizeof (struct line_info);
1554 struct line_sequence* seq = table->sequences;
1555 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1556
1557 if (info == NULL)
1558 return FALSE;
1559
1560 /* Set member data of 'info'. */
1561 info->prev_line = NULL;
1562 info->address = address;
1563 info->op_index = op_index;
1564 info->line = line;
1565 info->column = column;
1566 info->discriminator = discriminator;
1567 info->end_sequence = end_sequence;
1568
1569 if (filename && filename[0])
1570 {
1571 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1572 if (info->filename == NULL)
1573 return FALSE;
1574 strcpy (info->filename, filename);
1575 }
1576 else
1577 info->filename = NULL;
1578
1579 /* Find the correct location for 'info'. Normally we will receive
1580 new line_info data 1) in order and 2) with increasing VMAs.
1581 However some compilers break the rules (cf. decode_line_info) and
1582 so we include some heuristics for quickly finding the correct
1583 location for 'info'. In particular, these heuristics optimize for
1584 the common case in which the VMA sequence that we receive is a
1585 list of locally sorted VMAs such as
1586 p...z a...j (where a < j < p < z)
1587
1588 Note: table->lcl_head is used to head an *actual* or *possible*
1589 sub-sequence within the list (such as a...j) that is not directly
1590 headed by table->last_line
1591
1592 Note: we may receive duplicate entries from 'decode_line_info'. */
1593
1594 if (seq
1595 && seq->last_line->address == address
1596 && seq->last_line->op_index == op_index
1597 && seq->last_line->end_sequence == end_sequence)
1598 {
1599 /* We only keep the last entry with the same address and end
1600 sequence. See PR ld/4986. */
1601 if (table->lcl_head == seq->last_line)
1602 table->lcl_head = info;
1603 info->prev_line = seq->last_line->prev_line;
1604 seq->last_line = info;
1605 }
1606 else if (!seq || seq->last_line->end_sequence)
1607 {
1608 /* Start a new line sequence. */
1609 amt = sizeof (struct line_sequence);
1610 seq = (struct line_sequence *) bfd_malloc (amt);
1611 if (seq == NULL)
1612 return FALSE;
1613 seq->low_pc = address;
1614 seq->prev_sequence = table->sequences;
1615 seq->last_line = info;
1616 table->lcl_head = info;
1617 table->sequences = seq;
1618 table->num_sequences++;
1619 }
1620 else if (info->end_sequence
1621 || new_line_sorts_after (info, seq->last_line))
1622 {
1623 /* Normal case: add 'info' to the beginning of the current sequence. */
1624 info->prev_line = seq->last_line;
1625 seq->last_line = info;
1626
1627 /* lcl_head: initialize to head a *possible* sequence at the end. */
1628 if (!table->lcl_head)
1629 table->lcl_head = info;
1630 }
1631 else if (!new_line_sorts_after (info, table->lcl_head)
1632 && (!table->lcl_head->prev_line
1633 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1634 {
1635 /* Abnormal but easy: lcl_head is the head of 'info'. */
1636 info->prev_line = table->lcl_head->prev_line;
1637 table->lcl_head->prev_line = info;
1638 }
1639 else
1640 {
1641 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1642 are valid heads for 'info'. Reset 'lcl_head'. */
1643 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1644 struct line_info* li1 = li2->prev_line;
1645
1646 while (li1)
1647 {
1648 if (!new_line_sorts_after (info, li2)
1649 && new_line_sorts_after (info, li1))
1650 break;
1651
1652 li2 = li1; /* always non-NULL */
1653 li1 = li1->prev_line;
1654 }
1655 table->lcl_head = li2;
1656 info->prev_line = table->lcl_head->prev_line;
1657 table->lcl_head->prev_line = info;
1658 if (address < seq->low_pc)
1659 seq->low_pc = address;
1660 }
1661 return TRUE;
1662 }
1663
1664 /* Extract a fully qualified filename from a line info table.
1665 The returned string has been malloc'ed and it is the caller's
1666 responsibility to free it. */
1667
1668 static char *
1669 concat_filename (struct line_info_table *table, unsigned int file)
1670 {
1671 char *filename;
1672
1673 if (table == NULL || file - 1 >= table->num_files)
1674 {
1675 /* FILE == 0 means unknown. */
1676 if (file)
1677 _bfd_error_handler
1678 (_("DWARF error: mangled line number section (bad file number)"));
1679 return strdup ("<unknown>");
1680 }
1681
1682 filename = table->files[file - 1].name;
1683 if (filename == NULL)
1684 return strdup ("<unknown>");
1685
1686 if (!IS_ABSOLUTE_PATH (filename))
1687 {
1688 char *dir_name = NULL;
1689 char *subdir_name = NULL;
1690 char *name;
1691 size_t len;
1692
1693 if (table->files[file - 1].dir
1694 /* PR 17512: file: 0317e960. */
1695 && table->files[file - 1].dir <= table->num_dirs
1696 /* PR 17512: file: 7f3d2e4b. */
1697 && table->dirs != NULL)
1698 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1699
1700 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1701 dir_name = table->comp_dir;
1702
1703 if (!dir_name)
1704 {
1705 dir_name = subdir_name;
1706 subdir_name = NULL;
1707 }
1708
1709 if (!dir_name)
1710 return strdup (filename);
1711
1712 len = strlen (dir_name) + strlen (filename) + 2;
1713
1714 if (subdir_name)
1715 {
1716 len += strlen (subdir_name) + 1;
1717 name = (char *) bfd_malloc (len);
1718 if (name)
1719 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1720 }
1721 else
1722 {
1723 name = (char *) bfd_malloc (len);
1724 if (name)
1725 sprintf (name, "%s/%s", dir_name, filename);
1726 }
1727
1728 return name;
1729 }
1730
1731 return strdup (filename);
1732 }
1733
1734 static bfd_boolean
1735 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1736 bfd_vma low_pc, bfd_vma high_pc)
1737 {
1738 struct arange *arange;
1739
1740 /* Ignore empty ranges. */
1741 if (low_pc == high_pc)
1742 return TRUE;
1743
1744 /* If the first arange is empty, use it. */
1745 if (first_arange->high == 0)
1746 {
1747 first_arange->low = low_pc;
1748 first_arange->high = high_pc;
1749 return TRUE;
1750 }
1751
1752 /* Next see if we can cheaply extend an existing range. */
1753 arange = first_arange;
1754 do
1755 {
1756 if (low_pc == arange->high)
1757 {
1758 arange->high = high_pc;
1759 return TRUE;
1760 }
1761 if (high_pc == arange->low)
1762 {
1763 arange->low = low_pc;
1764 return TRUE;
1765 }
1766 arange = arange->next;
1767 }
1768 while (arange);
1769
1770 /* Need to allocate a new arange and insert it into the arange list.
1771 Order isn't significant, so just insert after the first arange. */
1772 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1773 if (arange == NULL)
1774 return FALSE;
1775 arange->low = low_pc;
1776 arange->high = high_pc;
1777 arange->next = first_arange->next;
1778 first_arange->next = arange;
1779 return TRUE;
1780 }
1781
1782 /* Compare function for line sequences. */
1783
1784 static int
1785 compare_sequences (const void* a, const void* b)
1786 {
1787 const struct line_sequence* seq1 = a;
1788 const struct line_sequence* seq2 = b;
1789
1790 /* Sort by low_pc as the primary key. */
1791 if (seq1->low_pc < seq2->low_pc)
1792 return -1;
1793 if (seq1->low_pc > seq2->low_pc)
1794 return 1;
1795
1796 /* If low_pc values are equal, sort in reverse order of
1797 high_pc, so that the largest region comes first. */
1798 if (seq1->last_line->address < seq2->last_line->address)
1799 return 1;
1800 if (seq1->last_line->address > seq2->last_line->address)
1801 return -1;
1802
1803 if (seq1->last_line->op_index < seq2->last_line->op_index)
1804 return 1;
1805 if (seq1->last_line->op_index > seq2->last_line->op_index)
1806 return -1;
1807
1808 /* num_lines is initially an index, to make the sort stable. */
1809 if (seq1->num_lines < seq2->num_lines)
1810 return -1;
1811 if (seq1->num_lines > seq2->num_lines)
1812 return 1;
1813 return 0;
1814 }
1815
1816 /* Construct the line information table for quick lookup. */
1817
1818 static bfd_boolean
1819 build_line_info_table (struct line_info_table * table,
1820 struct line_sequence * seq)
1821 {
1822 size_t amt;
1823 struct line_info **line_info_lookup;
1824 struct line_info *each_line;
1825 unsigned int num_lines;
1826 unsigned int line_index;
1827
1828 if (seq->line_info_lookup != NULL)
1829 return TRUE;
1830
1831 /* Count the number of line information entries. We could do this while
1832 scanning the debug information, but some entries may be added via
1833 lcl_head without having a sequence handy to increment the number of
1834 lines. */
1835 num_lines = 0;
1836 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1837 num_lines++;
1838
1839 seq->num_lines = num_lines;
1840 if (num_lines == 0)
1841 return TRUE;
1842
1843 /* Allocate space for the line information lookup table. */
1844 amt = sizeof (struct line_info*) * num_lines;
1845 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1846 seq->line_info_lookup = line_info_lookup;
1847 if (line_info_lookup == NULL)
1848 return FALSE;
1849
1850 /* Create the line information lookup table. */
1851 line_index = num_lines;
1852 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1853 line_info_lookup[--line_index] = each_line;
1854
1855 BFD_ASSERT (line_index == 0);
1856 return TRUE;
1857 }
1858
1859 /* Sort the line sequences for quick lookup. */
1860
1861 static bfd_boolean
1862 sort_line_sequences (struct line_info_table* table)
1863 {
1864 size_t amt;
1865 struct line_sequence *sequences;
1866 struct line_sequence *seq;
1867 unsigned int n = 0;
1868 unsigned int num_sequences = table->num_sequences;
1869 bfd_vma last_high_pc;
1870
1871 if (num_sequences == 0)
1872 return TRUE;
1873
1874 /* Allocate space for an array of sequences. */
1875 amt = sizeof (struct line_sequence) * num_sequences;
1876 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1877 if (sequences == NULL)
1878 return FALSE;
1879
1880 /* Copy the linked list into the array, freeing the original nodes. */
1881 seq = table->sequences;
1882 for (n = 0; n < num_sequences; n++)
1883 {
1884 struct line_sequence* last_seq = seq;
1885
1886 BFD_ASSERT (seq);
1887 sequences[n].low_pc = seq->low_pc;
1888 sequences[n].prev_sequence = NULL;
1889 sequences[n].last_line = seq->last_line;
1890 sequences[n].line_info_lookup = NULL;
1891 sequences[n].num_lines = n;
1892 seq = seq->prev_sequence;
1893 free (last_seq);
1894 }
1895 BFD_ASSERT (seq == NULL);
1896
1897 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1898
1899 /* Make the list binary-searchable by trimming overlapping entries
1900 and removing nested entries. */
1901 num_sequences = 1;
1902 last_high_pc = sequences[0].last_line->address;
1903 for (n = 1; n < table->num_sequences; n++)
1904 {
1905 if (sequences[n].low_pc < last_high_pc)
1906 {
1907 if (sequences[n].last_line->address <= last_high_pc)
1908 /* Skip nested entries. */
1909 continue;
1910
1911 /* Trim overlapping entries. */
1912 sequences[n].low_pc = last_high_pc;
1913 }
1914 last_high_pc = sequences[n].last_line->address;
1915 if (n > num_sequences)
1916 {
1917 /* Close up the gap. */
1918 sequences[num_sequences].low_pc = sequences[n].low_pc;
1919 sequences[num_sequences].last_line = sequences[n].last_line;
1920 }
1921 num_sequences++;
1922 }
1923
1924 table->sequences = sequences;
1925 table->num_sequences = num_sequences;
1926 return TRUE;
1927 }
1928
1929 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1930
1931 static bfd_boolean
1932 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1933 {
1934 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1935 {
1936 char **tmp;
1937 size_t amt;
1938
1939 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1940 amt *= sizeof (char *);
1941
1942 tmp = (char **) bfd_realloc (table->dirs, amt);
1943 if (tmp == NULL)
1944 return FALSE;
1945 table->dirs = tmp;
1946 }
1947
1948 table->dirs[table->num_dirs++] = cur_dir;
1949 return TRUE;
1950 }
1951
1952 static bfd_boolean
1953 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1954 unsigned int dir ATTRIBUTE_UNUSED,
1955 unsigned int xtime ATTRIBUTE_UNUSED,
1956 unsigned int size ATTRIBUTE_UNUSED)
1957 {
1958 return line_info_add_include_dir (table, cur_dir);
1959 }
1960
1961 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1962
1963 static bfd_boolean
1964 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1965 unsigned int dir, unsigned int xtime,
1966 unsigned int size)
1967 {
1968 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1969 {
1970 struct fileinfo *tmp;
1971 size_t amt;
1972
1973 amt = table->num_files + FILE_ALLOC_CHUNK;
1974 amt *= sizeof (struct fileinfo);
1975
1976 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1977 if (tmp == NULL)
1978 return FALSE;
1979 table->files = tmp;
1980 }
1981
1982 table->files[table->num_files].name = cur_file;
1983 table->files[table->num_files].dir = dir;
1984 table->files[table->num_files].time = xtime;
1985 table->files[table->num_files].size = size;
1986 table->num_files++;
1987 return TRUE;
1988 }
1989
1990 /* Read directory or file name entry format, starting with byte of
1991 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1992 entries count and the entries themselves in the described entry
1993 format. */
1994
1995 static bfd_boolean
1996 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1997 bfd_byte *buf_end, struct line_info_table *table,
1998 bfd_boolean (*callback) (struct line_info_table *table,
1999 char *cur_file,
2000 unsigned int dir,
2001 unsigned int time,
2002 unsigned int size))
2003 {
2004 bfd *abfd = unit->abfd;
2005 bfd_byte format_count, formati;
2006 bfd_vma data_count, datai;
2007 bfd_byte *buf = *bufp;
2008 bfd_byte *format_header_data;
2009 unsigned int bytes_read;
2010
2011 format_count = read_1_byte (abfd, buf, buf_end);
2012 buf += 1;
2013 format_header_data = buf;
2014 for (formati = 0; formati < format_count; formati++)
2015 {
2016 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2017 buf += bytes_read;
2018 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2019 buf += bytes_read;
2020 }
2021
2022 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2023 buf += bytes_read;
2024 if (format_count == 0 && data_count != 0)
2025 {
2026 _bfd_error_handler (_("DWARF error: zero format count"));
2027 bfd_set_error (bfd_error_bad_value);
2028 return FALSE;
2029 }
2030
2031 /* PR 22210. Paranoia check. Don't bother running the loop
2032 if we know that we are going to run out of buffer. */
2033 if (data_count > (bfd_vma) (buf_end - buf))
2034 {
2035 _bfd_error_handler
2036 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2037 (uint64_t) data_count);
2038 bfd_set_error (bfd_error_bad_value);
2039 return FALSE;
2040 }
2041
2042 for (datai = 0; datai < data_count; datai++)
2043 {
2044 bfd_byte *format = format_header_data;
2045 struct fileinfo fe;
2046
2047 memset (&fe, 0, sizeof fe);
2048 for (formati = 0; formati < format_count; formati++)
2049 {
2050 bfd_vma content_type, form;
2051 char *string_trash;
2052 char **stringp = &string_trash;
2053 unsigned int uint_trash, *uintp = &uint_trash;
2054 struct attribute attr;
2055
2056 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
2057 FALSE, buf_end);
2058 format += bytes_read;
2059 switch (content_type)
2060 {
2061 case DW_LNCT_path:
2062 stringp = &fe.name;
2063 break;
2064 case DW_LNCT_directory_index:
2065 uintp = &fe.dir;
2066 break;
2067 case DW_LNCT_timestamp:
2068 uintp = &fe.time;
2069 break;
2070 case DW_LNCT_size:
2071 uintp = &fe.size;
2072 break;
2073 case DW_LNCT_MD5:
2074 break;
2075 default:
2076 _bfd_error_handler
2077 (_("DWARF error: unknown format content type %" PRIu64),
2078 (uint64_t) content_type);
2079 bfd_set_error (bfd_error_bad_value);
2080 return FALSE;
2081 }
2082
2083 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
2084 buf_end);
2085 format += bytes_read;
2086
2087 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2088 if (buf == NULL)
2089 return FALSE;
2090 switch (form)
2091 {
2092 case DW_FORM_string:
2093 case DW_FORM_line_strp:
2094 *stringp = attr.u.str;
2095 break;
2096
2097 case DW_FORM_data1:
2098 case DW_FORM_data2:
2099 case DW_FORM_data4:
2100 case DW_FORM_data8:
2101 case DW_FORM_udata:
2102 *uintp = attr.u.val;
2103 break;
2104
2105 case DW_FORM_data16:
2106 /* MD5 data is in the attr.blk, but we are ignoring those. */
2107 break;
2108 }
2109 }
2110
2111 /* Skip the first "zero entry", which is the compilation dir/file. */
2112 if (datai != 0)
2113 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2114 return FALSE;
2115 }
2116
2117 *bufp = buf;
2118 return TRUE;
2119 }
2120
2121 /* Decode the line number information for UNIT. */
2122
2123 static struct line_info_table*
2124 decode_line_info (struct comp_unit *unit)
2125 {
2126 bfd *abfd = unit->abfd;
2127 struct dwarf2_debug *stash = unit->stash;
2128 struct dwarf2_debug_file *file = unit->file;
2129 struct line_info_table* table;
2130 bfd_byte *line_ptr;
2131 bfd_byte *line_end;
2132 struct line_head lh;
2133 unsigned int i, bytes_read, offset_size;
2134 char *cur_file, *cur_dir;
2135 unsigned char op_code, extended_op, adj_opcode;
2136 unsigned int exop_len;
2137 size_t amt;
2138
2139 if (unit->line_offset == 0 && file->line_table)
2140 return file->line_table;
2141
2142 if (! read_section (abfd, &stash->debug_sections[debug_line],
2143 file->syms, unit->line_offset,
2144 &file->dwarf_line_buffer, &file->dwarf_line_size))
2145 return NULL;
2146
2147 if (file->dwarf_line_size < 16)
2148 {
2149 _bfd_error_handler
2150 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2151 (int64_t) file->dwarf_line_size);
2152 bfd_set_error (bfd_error_bad_value);
2153 return NULL;
2154 }
2155 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2156 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2157
2158 /* Read in the prologue. */
2159 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2160 line_ptr += 4;
2161 offset_size = 4;
2162 if (lh.total_length == 0xffffffff)
2163 {
2164 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2165 line_ptr += 8;
2166 offset_size = 8;
2167 }
2168 else if (lh.total_length == 0 && unit->addr_size == 8)
2169 {
2170 /* Handle (non-standard) 64-bit DWARF2 formats. */
2171 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2172 line_ptr += 4;
2173 offset_size = 8;
2174 }
2175
2176 if (lh.total_length > (size_t) (line_end - line_ptr))
2177 {
2178 _bfd_error_handler
2179 /* xgettext: c-format */
2180 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2181 " than the space remaining in the section (%#lx)"),
2182 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2183 bfd_set_error (bfd_error_bad_value);
2184 return NULL;
2185 }
2186
2187 line_end = line_ptr + lh.total_length;
2188
2189 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2190 if (lh.version < 2 || lh.version > 5)
2191 {
2192 _bfd_error_handler
2193 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2194 bfd_set_error (bfd_error_bad_value);
2195 return NULL;
2196 }
2197 line_ptr += 2;
2198
2199 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2200 >= line_end)
2201 {
2202 _bfd_error_handler
2203 (_("DWARF error: ran out of room reading prologue"));
2204 bfd_set_error (bfd_error_bad_value);
2205 return NULL;
2206 }
2207
2208 if (lh.version >= 5)
2209 {
2210 unsigned int segment_selector_size;
2211
2212 /* Skip address size. */
2213 read_1_byte (abfd, line_ptr, line_end);
2214 line_ptr += 1;
2215
2216 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2217 line_ptr += 1;
2218 if (segment_selector_size != 0)
2219 {
2220 _bfd_error_handler
2221 (_("DWARF error: line info unsupported segment selector size %u"),
2222 segment_selector_size);
2223 bfd_set_error (bfd_error_bad_value);
2224 return NULL;
2225 }
2226 }
2227
2228 if (offset_size == 4)
2229 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2230 else
2231 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2232 line_ptr += offset_size;
2233
2234 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2235 line_ptr += 1;
2236
2237 if (lh.version >= 4)
2238 {
2239 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2240 line_ptr += 1;
2241 }
2242 else
2243 lh.maximum_ops_per_insn = 1;
2244
2245 if (lh.maximum_ops_per_insn == 0)
2246 {
2247 _bfd_error_handler
2248 (_("DWARF error: invalid maximum operations per instruction"));
2249 bfd_set_error (bfd_error_bad_value);
2250 return NULL;
2251 }
2252
2253 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2254 line_ptr += 1;
2255
2256 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2257 line_ptr += 1;
2258
2259 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2260 line_ptr += 1;
2261
2262 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2263 line_ptr += 1;
2264
2265 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2266 {
2267 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2268 bfd_set_error (bfd_error_bad_value);
2269 return NULL;
2270 }
2271
2272 amt = lh.opcode_base * sizeof (unsigned char);
2273 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2274
2275 lh.standard_opcode_lengths[0] = 1;
2276
2277 for (i = 1; i < lh.opcode_base; ++i)
2278 {
2279 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2280 line_ptr += 1;
2281 }
2282
2283 amt = sizeof (struct line_info_table);
2284 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2285 if (table == NULL)
2286 return NULL;
2287 table->abfd = abfd;
2288 table->comp_dir = unit->comp_dir;
2289
2290 table->num_files = 0;
2291 table->files = NULL;
2292
2293 table->num_dirs = 0;
2294 table->dirs = NULL;
2295
2296 table->num_sequences = 0;
2297 table->sequences = NULL;
2298
2299 table->lcl_head = NULL;
2300
2301 if (lh.version >= 5)
2302 {
2303 /* Read directory table. */
2304 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2305 line_info_add_include_dir_stub))
2306 goto fail;
2307
2308 /* Read file name table. */
2309 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2310 line_info_add_file_name))
2311 goto fail;
2312 }
2313 else
2314 {
2315 /* Read directory table. */
2316 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2317 {
2318 line_ptr += bytes_read;
2319
2320 if (!line_info_add_include_dir (table, cur_dir))
2321 goto fail;
2322 }
2323
2324 line_ptr += bytes_read;
2325
2326 /* Read file name table. */
2327 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2328 {
2329 unsigned int dir, xtime, size;
2330
2331 line_ptr += bytes_read;
2332
2333 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2334 line_ptr += bytes_read;
2335 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2336 line_ptr += bytes_read;
2337 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2338 line_ptr += bytes_read;
2339
2340 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2341 goto fail;
2342 }
2343
2344 line_ptr += bytes_read;
2345 }
2346
2347 /* Read the statement sequences until there's nothing left. */
2348 while (line_ptr < line_end)
2349 {
2350 /* State machine registers. */
2351 bfd_vma address = 0;
2352 unsigned char op_index = 0;
2353 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2354 unsigned int line = 1;
2355 unsigned int column = 0;
2356 unsigned int discriminator = 0;
2357 int is_stmt = lh.default_is_stmt;
2358 int end_sequence = 0;
2359 unsigned int dir, xtime, size;
2360 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2361 compilers generate address sequences that are wildly out of
2362 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2363 for ia64-Linux). Thus, to determine the low and high
2364 address, we must compare on every DW_LNS_copy, etc. */
2365 bfd_vma low_pc = (bfd_vma) -1;
2366 bfd_vma high_pc = 0;
2367
2368 /* Decode the table. */
2369 while (!end_sequence && line_ptr < line_end)
2370 {
2371 op_code = read_1_byte (abfd, line_ptr, line_end);
2372 line_ptr += 1;
2373
2374 if (op_code >= lh.opcode_base)
2375 {
2376 /* Special operand. */
2377 adj_opcode = op_code - lh.opcode_base;
2378 if (lh.line_range == 0)
2379 goto line_fail;
2380 if (lh.maximum_ops_per_insn == 1)
2381 address += (adj_opcode / lh.line_range
2382 * lh.minimum_instruction_length);
2383 else
2384 {
2385 address += ((op_index + adj_opcode / lh.line_range)
2386 / lh.maximum_ops_per_insn
2387 * lh.minimum_instruction_length);
2388 op_index = ((op_index + adj_opcode / lh.line_range)
2389 % lh.maximum_ops_per_insn);
2390 }
2391 line += lh.line_base + (adj_opcode % lh.line_range);
2392 /* Append row to matrix using current values. */
2393 if (!add_line_info (table, address, op_index, filename,
2394 line, column, discriminator, 0))
2395 goto line_fail;
2396 discriminator = 0;
2397 if (address < low_pc)
2398 low_pc = address;
2399 if (address > high_pc)
2400 high_pc = address;
2401 }
2402 else switch (op_code)
2403 {
2404 case DW_LNS_extended_op:
2405 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2406 FALSE, line_end);
2407 line_ptr += bytes_read;
2408 extended_op = read_1_byte (abfd, line_ptr, line_end);
2409 line_ptr += 1;
2410
2411 switch (extended_op)
2412 {
2413 case DW_LNE_end_sequence:
2414 end_sequence = 1;
2415 if (!add_line_info (table, address, op_index, filename, line,
2416 column, discriminator, end_sequence))
2417 goto line_fail;
2418 discriminator = 0;
2419 if (address < low_pc)
2420 low_pc = address;
2421 if (address > high_pc)
2422 high_pc = address;
2423 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2424 goto line_fail;
2425 break;
2426 case DW_LNE_set_address:
2427 address = read_address (unit, line_ptr, line_end);
2428 op_index = 0;
2429 line_ptr += unit->addr_size;
2430 break;
2431 case DW_LNE_define_file:
2432 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2433 line_ptr += bytes_read;
2434 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2435 FALSE, line_end);
2436 line_ptr += bytes_read;
2437 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2438 FALSE, line_end);
2439 line_ptr += bytes_read;
2440 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2441 FALSE, line_end);
2442 line_ptr += bytes_read;
2443 if (!line_info_add_file_name (table, cur_file, dir,
2444 xtime, size))
2445 goto line_fail;
2446 break;
2447 case DW_LNE_set_discriminator:
2448 discriminator =
2449 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2450 FALSE, line_end);
2451 line_ptr += bytes_read;
2452 break;
2453 case DW_LNE_HP_source_file_correlation:
2454 line_ptr += exop_len - 1;
2455 break;
2456 default:
2457 _bfd_error_handler
2458 (_("DWARF error: mangled line number section"));
2459 bfd_set_error (bfd_error_bad_value);
2460 line_fail:
2461 free (filename);
2462 goto fail;
2463 }
2464 break;
2465 case DW_LNS_copy:
2466 if (!add_line_info (table, address, op_index,
2467 filename, line, column, discriminator, 0))
2468 goto line_fail;
2469 discriminator = 0;
2470 if (address < low_pc)
2471 low_pc = address;
2472 if (address > high_pc)
2473 high_pc = address;
2474 break;
2475 case DW_LNS_advance_pc:
2476 if (lh.maximum_ops_per_insn == 1)
2477 address += (lh.minimum_instruction_length
2478 * _bfd_safe_read_leb128 (abfd, line_ptr,
2479 &bytes_read,
2480 FALSE, line_end));
2481 else
2482 {
2483 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2484 &bytes_read,
2485 FALSE, line_end);
2486 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2487 * lh.minimum_instruction_length);
2488 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2489 }
2490 line_ptr += bytes_read;
2491 break;
2492 case DW_LNS_advance_line:
2493 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2494 TRUE, line_end);
2495 line_ptr += bytes_read;
2496 break;
2497 case DW_LNS_set_file:
2498 {
2499 unsigned int filenum;
2500
2501 /* The file and directory tables are 0
2502 based, the references are 1 based. */
2503 filenum = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2504 FALSE, line_end);
2505 line_ptr += bytes_read;
2506 free (filename);
2507 filename = concat_filename (table, filenum);
2508 break;
2509 }
2510 case DW_LNS_set_column:
2511 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2512 FALSE, line_end);
2513 line_ptr += bytes_read;
2514 break;
2515 case DW_LNS_negate_stmt:
2516 is_stmt = (!is_stmt);
2517 break;
2518 case DW_LNS_set_basic_block:
2519 break;
2520 case DW_LNS_const_add_pc:
2521 if (lh.line_range == 0)
2522 goto line_fail;
2523 if (lh.maximum_ops_per_insn == 1)
2524 address += (lh.minimum_instruction_length
2525 * ((255 - lh.opcode_base) / lh.line_range));
2526 else
2527 {
2528 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2529 address += (lh.minimum_instruction_length
2530 * ((op_index + adjust)
2531 / lh.maximum_ops_per_insn));
2532 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2533 }
2534 break;
2535 case DW_LNS_fixed_advance_pc:
2536 address += read_2_bytes (abfd, line_ptr, line_end);
2537 op_index = 0;
2538 line_ptr += 2;
2539 break;
2540 default:
2541 /* Unknown standard opcode, ignore it. */
2542 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2543 {
2544 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2545 FALSE, line_end);
2546 line_ptr += bytes_read;
2547 }
2548 break;
2549 }
2550 }
2551
2552 free (filename);
2553 }
2554
2555 if (unit->line_offset == 0)
2556 file->line_table = table;
2557 if (sort_line_sequences (table))
2558 return table;
2559
2560 fail:
2561 while (table->sequences != NULL)
2562 {
2563 struct line_sequence* seq = table->sequences;
2564 table->sequences = table->sequences->prev_sequence;
2565 free (seq);
2566 }
2567 free (table->files);
2568 free (table->dirs);
2569 return NULL;
2570 }
2571
2572 /* If ADDR is within TABLE set the output parameters and return the
2573 range of addresses covered by the entry used to fill them out.
2574 Otherwise set * FILENAME_PTR to NULL and return 0.
2575 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2576 are pointers to the objects to be filled in. */
2577
2578 static bfd_vma
2579 lookup_address_in_line_info_table (struct line_info_table *table,
2580 bfd_vma addr,
2581 const char **filename_ptr,
2582 unsigned int *linenumber_ptr,
2583 unsigned int *discriminator_ptr)
2584 {
2585 struct line_sequence *seq = NULL;
2586 struct line_info *info;
2587 int low, high, mid;
2588
2589 /* Binary search the array of sequences. */
2590 low = 0;
2591 high = table->num_sequences;
2592 while (low < high)
2593 {
2594 mid = (low + high) / 2;
2595 seq = &table->sequences[mid];
2596 if (addr < seq->low_pc)
2597 high = mid;
2598 else if (addr >= seq->last_line->address)
2599 low = mid + 1;
2600 else
2601 break;
2602 }
2603
2604 /* Check for a valid sequence. */
2605 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2606 goto fail;
2607
2608 if (!build_line_info_table (table, seq))
2609 goto fail;
2610
2611 /* Binary search the array of line information. */
2612 low = 0;
2613 high = seq->num_lines;
2614 info = NULL;
2615 while (low < high)
2616 {
2617 mid = (low + high) / 2;
2618 info = seq->line_info_lookup[mid];
2619 if (addr < info->address)
2620 high = mid;
2621 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2622 low = mid + 1;
2623 else
2624 break;
2625 }
2626
2627 /* Check for a valid line information entry. */
2628 if (info
2629 && addr >= info->address
2630 && addr < seq->line_info_lookup[mid + 1]->address
2631 && !(info->end_sequence || info == seq->last_line))
2632 {
2633 *filename_ptr = info->filename;
2634 *linenumber_ptr = info->line;
2635 if (discriminator_ptr)
2636 *discriminator_ptr = info->discriminator;
2637 return seq->last_line->address - seq->low_pc;
2638 }
2639
2640 fail:
2641 *filename_ptr = NULL;
2642 return 0;
2643 }
2644
2645 /* Read in the .debug_ranges section for future reference. */
2646
2647 static bfd_boolean
2648 read_debug_ranges (struct comp_unit * unit)
2649 {
2650 struct dwarf2_debug *stash = unit->stash;
2651 struct dwarf2_debug_file *file = unit->file;
2652
2653 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2654 file->syms, 0,
2655 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2656 }
2657
2658 /* Read in the .debug_rnglists section for future reference. */
2659
2660 static bfd_boolean
2661 read_debug_rnglists (struct comp_unit * unit)
2662 {
2663 struct dwarf2_debug *stash = unit->stash;
2664 struct dwarf2_debug_file *file = unit->file;
2665
2666 return read_section (unit->abfd, &stash->debug_sections[debug_rnglists],
2667 file->syms, 0,
2668 &file->dwarf_rnglists_buffer, &file->dwarf_rnglists_size);
2669 }
2670
2671 /* Function table functions. */
2672
2673 static int
2674 compare_lookup_funcinfos (const void * a, const void * b)
2675 {
2676 const struct lookup_funcinfo * lookup1 = a;
2677 const struct lookup_funcinfo * lookup2 = b;
2678
2679 if (lookup1->low_addr < lookup2->low_addr)
2680 return -1;
2681 if (lookup1->low_addr > lookup2->low_addr)
2682 return 1;
2683 if (lookup1->high_addr < lookup2->high_addr)
2684 return -1;
2685 if (lookup1->high_addr > lookup2->high_addr)
2686 return 1;
2687
2688 if (lookup1->idx < lookup2->idx)
2689 return -1;
2690 if (lookup1->idx > lookup2->idx)
2691 return 1;
2692 return 0;
2693 }
2694
2695 static bfd_boolean
2696 build_lookup_funcinfo_table (struct comp_unit * unit)
2697 {
2698 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2699 unsigned int number_of_functions = unit->number_of_functions;
2700 struct funcinfo *each;
2701 struct lookup_funcinfo *entry;
2702 size_t func_index;
2703 struct arange *range;
2704 bfd_vma low_addr, high_addr;
2705
2706 if (lookup_funcinfo_table || number_of_functions == 0)
2707 return TRUE;
2708
2709 /* Create the function info lookup table. */
2710 lookup_funcinfo_table = (struct lookup_funcinfo *)
2711 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2712 if (lookup_funcinfo_table == NULL)
2713 return FALSE;
2714
2715 /* Populate the function info lookup table. */
2716 func_index = number_of_functions;
2717 for (each = unit->function_table; each; each = each->prev_func)
2718 {
2719 entry = &lookup_funcinfo_table[--func_index];
2720 entry->funcinfo = each;
2721 entry->idx = func_index;
2722
2723 /* Calculate the lowest and highest address for this function entry. */
2724 low_addr = entry->funcinfo->arange.low;
2725 high_addr = entry->funcinfo->arange.high;
2726
2727 for (range = entry->funcinfo->arange.next; range; range = range->next)
2728 {
2729 if (range->low < low_addr)
2730 low_addr = range->low;
2731 if (range->high > high_addr)
2732 high_addr = range->high;
2733 }
2734
2735 entry->low_addr = low_addr;
2736 entry->high_addr = high_addr;
2737 }
2738
2739 BFD_ASSERT (func_index == 0);
2740
2741 /* Sort the function by address. */
2742 qsort (lookup_funcinfo_table,
2743 number_of_functions,
2744 sizeof (struct lookup_funcinfo),
2745 compare_lookup_funcinfos);
2746
2747 /* Calculate the high watermark for each function in the lookup table. */
2748 high_addr = lookup_funcinfo_table[0].high_addr;
2749 for (func_index = 1; func_index < number_of_functions; func_index++)
2750 {
2751 entry = &lookup_funcinfo_table[func_index];
2752 if (entry->high_addr > high_addr)
2753 high_addr = entry->high_addr;
2754 else
2755 entry->high_addr = high_addr;
2756 }
2757
2758 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2759 return TRUE;
2760 }
2761
2762 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2763 TRUE. Note that we need to find the function that has the smallest range
2764 that contains ADDR, to handle inlined functions without depending upon
2765 them being ordered in TABLE by increasing range. */
2766
2767 static bfd_boolean
2768 lookup_address_in_function_table (struct comp_unit *unit,
2769 bfd_vma addr,
2770 struct funcinfo **function_ptr)
2771 {
2772 unsigned int number_of_functions = unit->number_of_functions;
2773 struct lookup_funcinfo* lookup_funcinfo = NULL;
2774 struct funcinfo* funcinfo = NULL;
2775 struct funcinfo* best_fit = NULL;
2776 bfd_vma best_fit_len = 0;
2777 bfd_size_type low, high, mid, first;
2778 struct arange *arange;
2779
2780 if (number_of_functions == 0)
2781 return FALSE;
2782
2783 if (!build_lookup_funcinfo_table (unit))
2784 return FALSE;
2785
2786 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2787 return FALSE;
2788
2789 /* Find the first function in the lookup table which may contain the
2790 specified address. */
2791 low = 0;
2792 high = number_of_functions;
2793 first = high;
2794 while (low < high)
2795 {
2796 mid = (low + high) / 2;
2797 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2798 if (addr < lookup_funcinfo->low_addr)
2799 high = mid;
2800 else if (addr >= lookup_funcinfo->high_addr)
2801 low = mid + 1;
2802 else
2803 high = first = mid;
2804 }
2805
2806 /* Find the 'best' match for the address. The prior algorithm defined the
2807 best match as the function with the smallest address range containing
2808 the specified address. This definition should probably be changed to the
2809 innermost inline routine containing the address, but right now we want
2810 to get the same results we did before. */
2811 while (first < number_of_functions)
2812 {
2813 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2814 break;
2815 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2816
2817 for (arange = &funcinfo->arange; arange; arange = arange->next)
2818 {
2819 if (addr < arange->low || addr >= arange->high)
2820 continue;
2821
2822 if (!best_fit
2823 || arange->high - arange->low < best_fit_len
2824 /* The following comparison is designed to return the same
2825 match as the previous algorithm for routines which have the
2826 same best fit length. */
2827 || (arange->high - arange->low == best_fit_len
2828 && funcinfo > best_fit))
2829 {
2830 best_fit = funcinfo;
2831 best_fit_len = arange->high - arange->low;
2832 }
2833 }
2834
2835 first++;
2836 }
2837
2838 if (!best_fit)
2839 return FALSE;
2840
2841 *function_ptr = best_fit;
2842 return TRUE;
2843 }
2844
2845 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2846 and LINENUMBER_PTR, and return TRUE. */
2847
2848 static bfd_boolean
2849 lookup_symbol_in_function_table (struct comp_unit *unit,
2850 asymbol *sym,
2851 bfd_vma addr,
2852 const char **filename_ptr,
2853 unsigned int *linenumber_ptr)
2854 {
2855 struct funcinfo* each_func;
2856 struct funcinfo* best_fit = NULL;
2857 bfd_vma best_fit_len = 0;
2858 struct arange *arange;
2859 const char *name = bfd_asymbol_name (sym);
2860 asection *sec = bfd_asymbol_section (sym);
2861
2862 for (each_func = unit->function_table;
2863 each_func;
2864 each_func = each_func->prev_func)
2865 {
2866 for (arange = &each_func->arange;
2867 arange;
2868 arange = arange->next)
2869 {
2870 if ((!each_func->sec || each_func->sec == sec)
2871 && addr >= arange->low
2872 && addr < arange->high
2873 && each_func->name
2874 && strcmp (name, each_func->name) == 0
2875 && (!best_fit
2876 || arange->high - arange->low < best_fit_len))
2877 {
2878 best_fit = each_func;
2879 best_fit_len = arange->high - arange->low;
2880 }
2881 }
2882 }
2883
2884 if (best_fit)
2885 {
2886 best_fit->sec = sec;
2887 *filename_ptr = best_fit->file;
2888 *linenumber_ptr = best_fit->line;
2889 return TRUE;
2890 }
2891 else
2892 return FALSE;
2893 }
2894
2895 /* Variable table functions. */
2896
2897 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2898 LINENUMBER_PTR, and return TRUE. */
2899
2900 static bfd_boolean
2901 lookup_symbol_in_variable_table (struct comp_unit *unit,
2902 asymbol *sym,
2903 bfd_vma addr,
2904 const char **filename_ptr,
2905 unsigned int *linenumber_ptr)
2906 {
2907 const char *name = bfd_asymbol_name (sym);
2908 asection *sec = bfd_asymbol_section (sym);
2909 struct varinfo* each;
2910
2911 for (each = unit->variable_table; each; each = each->prev_var)
2912 if (! each->stack
2913 && each->file != NULL
2914 && each->name != NULL
2915 && each->addr == addr
2916 && (!each->sec || each->sec == sec)
2917 && strcmp (name, each->name) == 0)
2918 break;
2919
2920 if (each)
2921 {
2922 each->sec = sec;
2923 *filename_ptr = each->file;
2924 *linenumber_ptr = each->line;
2925 return TRUE;
2926 }
2927
2928 return FALSE;
2929 }
2930
2931 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2932 struct dwarf2_debug_file *);
2933 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *);
2934
2935 static bfd_boolean
2936 find_abstract_instance (struct comp_unit *unit,
2937 struct attribute *attr_ptr,
2938 unsigned int recur_count,
2939 const char **pname,
2940 bfd_boolean *is_linkage,
2941 char **filename_ptr,
2942 int *linenumber_ptr)
2943 {
2944 bfd *abfd = unit->abfd;
2945 bfd_byte *info_ptr = NULL;
2946 bfd_byte *info_ptr_end;
2947 unsigned int abbrev_number, bytes_read, i;
2948 struct abbrev_info *abbrev;
2949 bfd_uint64_t die_ref = attr_ptr->u.val;
2950 struct attribute attr;
2951 const char *name = NULL;
2952
2953 if (recur_count == 100)
2954 {
2955 _bfd_error_handler
2956 (_("DWARF error: abstract instance recursion detected"));
2957 bfd_set_error (bfd_error_bad_value);
2958 return FALSE;
2959 }
2960
2961 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2962 is an offset from the .debug_info section, not the current CU. */
2963 if (attr_ptr->form == DW_FORM_ref_addr)
2964 {
2965 /* We only support DW_FORM_ref_addr within the same file, so
2966 any relocations should be resolved already. Check this by
2967 testing for a zero die_ref; There can't be a valid reference
2968 to the header of a .debug_info section.
2969 DW_FORM_ref_addr is an offset relative to .debug_info.
2970 Normally when using the GNU linker this is accomplished by
2971 emitting a symbolic reference to a label, because .debug_info
2972 sections are linked at zero. When there are multiple section
2973 groups containing .debug_info, as there might be in a
2974 relocatable object file, it would be reasonable to assume that
2975 a symbolic reference to a label in any .debug_info section
2976 might be used. Since we lay out multiple .debug_info
2977 sections at non-zero VMAs (see place_sections), and read
2978 them contiguously into dwarf_info_buffer, that means the
2979 reference is relative to dwarf_info_buffer. */
2980 size_t total;
2981
2982 info_ptr = unit->file->dwarf_info_buffer;
2983 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2984 total = info_ptr_end - info_ptr;
2985 if (!die_ref)
2986 return TRUE;
2987 else if (die_ref >= total)
2988 {
2989 _bfd_error_handler
2990 (_("DWARF error: invalid abstract instance DIE ref"));
2991 bfd_set_error (bfd_error_bad_value);
2992 return FALSE;
2993 }
2994 info_ptr += die_ref;
2995 }
2996 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2997 {
2998 bfd_boolean first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2999
3000 info_ptr = read_alt_indirect_ref (unit, die_ref);
3001 if (first_time)
3002 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
3003 if (info_ptr == NULL)
3004 {
3005 _bfd_error_handler
3006 (_("DWARF error: unable to read alt ref %" PRIu64),
3007 (uint64_t) die_ref);
3008 bfd_set_error (bfd_error_bad_value);
3009 return FALSE;
3010 }
3011 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
3012 + unit->stash->alt.dwarf_info_size);
3013 if (unit->stash->alt.all_comp_units)
3014 unit = unit->stash->alt.all_comp_units;
3015 }
3016
3017 if (attr_ptr->form == DW_FORM_ref_addr
3018 || attr_ptr->form == DW_FORM_GNU_ref_alt)
3019 {
3020 /* Now find the CU containing this pointer. */
3021 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
3022 info_ptr_end = unit->end_ptr;
3023 else
3024 {
3025 /* Check other CUs to see if they contain the abbrev. */
3026 struct comp_unit *u;
3027
3028 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
3029 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3030 break;
3031
3032 if (u == NULL)
3033 for (u = unit->next_unit; u != NULL; u = u->next_unit)
3034 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3035 break;
3036
3037 if (attr_ptr->form == DW_FORM_ref_addr)
3038 while (u == NULL)
3039 {
3040 u = stash_comp_unit (unit->stash, &unit->stash->f);
3041 if (u == NULL)
3042 break;
3043 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3044 break;
3045 u = NULL;
3046 }
3047
3048 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3049 while (u == NULL)
3050 {
3051 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3052 if (u == NULL)
3053 break;
3054 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3055 break;
3056 u = NULL;
3057 }
3058
3059 if (u == NULL)
3060 {
3061 _bfd_error_handler
3062 (_("DWARF error: unable to locate abstract instance DIE ref %"
3063 PRIu64), (uint64_t) die_ref);
3064 bfd_set_error (bfd_error_bad_value);
3065 return FALSE;
3066 }
3067 unit = u;
3068 info_ptr_end = unit->end_ptr;
3069 }
3070 }
3071 else
3072 {
3073 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3074 DW_FORM_ref_udata. These are all references relative to the
3075 start of the current CU. */
3076 size_t total;
3077
3078 info_ptr = unit->info_ptr_unit;
3079 info_ptr_end = unit->end_ptr;
3080 total = info_ptr_end - info_ptr;
3081 if (!die_ref || die_ref >= total)
3082 {
3083 _bfd_error_handler
3084 (_("DWARF error: invalid abstract instance DIE ref"));
3085 bfd_set_error (bfd_error_bad_value);
3086 return FALSE;
3087 }
3088 info_ptr += die_ref;
3089 }
3090
3091 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3092 FALSE, info_ptr_end);
3093 info_ptr += bytes_read;
3094
3095 if (abbrev_number)
3096 {
3097 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3098 if (! abbrev)
3099 {
3100 _bfd_error_handler
3101 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3102 bfd_set_error (bfd_error_bad_value);
3103 return FALSE;
3104 }
3105 else
3106 {
3107 for (i = 0; i < abbrev->num_attrs; ++i)
3108 {
3109 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3110 info_ptr, info_ptr_end);
3111 if (info_ptr == NULL)
3112 break;
3113 switch (attr.name)
3114 {
3115 case DW_AT_name:
3116 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3117 over DW_AT_name. */
3118 if (name == NULL && is_str_attr (attr.form))
3119 {
3120 name = attr.u.str;
3121 if (non_mangled (unit->lang))
3122 *is_linkage = TRUE;
3123 }
3124 break;
3125 case DW_AT_specification:
3126 if (!find_abstract_instance (unit, &attr, recur_count + 1,
3127 &name, is_linkage,
3128 filename_ptr, linenumber_ptr))
3129 return FALSE;
3130 break;
3131 case DW_AT_linkage_name:
3132 case DW_AT_MIPS_linkage_name:
3133 /* PR 16949: Corrupt debug info can place
3134 non-string forms into these attributes. */
3135 if (is_str_attr (attr.form))
3136 {
3137 name = attr.u.str;
3138 *is_linkage = TRUE;
3139 }
3140 break;
3141 case DW_AT_decl_file:
3142 if (!comp_unit_maybe_decode_line_info (unit))
3143 return FALSE;
3144 *filename_ptr = concat_filename (unit->line_table,
3145 attr.u.val);
3146 break;
3147 case DW_AT_decl_line:
3148 *linenumber_ptr = attr.u.val;
3149 break;
3150 default:
3151 break;
3152 }
3153 }
3154 }
3155 }
3156 *pname = name;
3157 return TRUE;
3158 }
3159
3160 static bfd_boolean
3161 read_ranges (struct comp_unit *unit, struct arange *arange,
3162 bfd_uint64_t offset)
3163 {
3164 bfd_byte *ranges_ptr;
3165 bfd_byte *ranges_end;
3166 bfd_vma base_address = unit->base_address;
3167
3168 if (! unit->file->dwarf_ranges_buffer)
3169 {
3170 if (! read_debug_ranges (unit))
3171 return FALSE;
3172 }
3173
3174 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3175 if (ranges_ptr < unit->file->dwarf_ranges_buffer)
3176 return FALSE;
3177 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3178
3179 for (;;)
3180 {
3181 bfd_vma low_pc;
3182 bfd_vma high_pc;
3183
3184 /* PR 17512: file: 62cada7d. */
3185 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3186 return FALSE;
3187
3188 low_pc = read_address (unit, ranges_ptr, ranges_end);
3189 ranges_ptr += unit->addr_size;
3190 high_pc = read_address (unit, ranges_ptr, ranges_end);
3191 ranges_ptr += unit->addr_size;
3192
3193 if (low_pc == 0 && high_pc == 0)
3194 break;
3195 if (low_pc == -1UL && high_pc != -1UL)
3196 base_address = high_pc;
3197 else
3198 {
3199 if (!arange_add (unit, arange,
3200 base_address + low_pc, base_address + high_pc))
3201 return FALSE;
3202 }
3203 }
3204 return TRUE;
3205 }
3206
3207 static bfd_boolean
3208 read_rnglists (struct comp_unit *unit, struct arange *arange,
3209 bfd_uint64_t offset)
3210 {
3211 bfd_byte *rngs_ptr;
3212 bfd_byte *rngs_end;
3213 bfd_vma base_address = unit->base_address;
3214 bfd_vma low_pc;
3215 bfd_vma high_pc;
3216 bfd *abfd = unit->abfd;
3217
3218 if (! unit->file->dwarf_rnglists_buffer)
3219 {
3220 if (! read_debug_rnglists (unit))
3221 return FALSE;
3222 }
3223
3224 rngs_ptr = unit->file->dwarf_rnglists_buffer + offset;
3225 if (rngs_ptr < unit->file->dwarf_rnglists_buffer)
3226 return FALSE;
3227 rngs_end = unit->file->dwarf_rnglists_buffer;
3228 rngs_end += unit->file->dwarf_rnglists_size;
3229
3230 for (;;)
3231 {
3232 enum dwarf_range_list_entry rlet;
3233 unsigned int bytes_read;
3234
3235 if (rngs_ptr + 1 > rngs_end)
3236 return FALSE;
3237
3238 rlet = read_1_byte (abfd, rngs_ptr, rngs_end);
3239 rngs_ptr++;
3240
3241 switch (rlet)
3242 {
3243 case DW_RLE_end_of_list:
3244 return TRUE;
3245
3246 case DW_RLE_base_address:
3247 if (rngs_ptr + unit->addr_size > rngs_end)
3248 return FALSE;
3249 base_address = read_address (unit, rngs_ptr, rngs_end);
3250 rngs_ptr += unit->addr_size;
3251 continue;
3252
3253 case DW_RLE_start_length:
3254 if (rngs_ptr + unit->addr_size > rngs_end)
3255 return FALSE;
3256 low_pc = read_address (unit, rngs_ptr, rngs_end);
3257 rngs_ptr += unit->addr_size;
3258 high_pc = low_pc;
3259 high_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3260 FALSE, rngs_end);
3261 rngs_ptr += bytes_read;
3262 break;
3263
3264 case DW_RLE_offset_pair:
3265 low_pc = base_address;
3266 low_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3267 FALSE, rngs_end);
3268 high_pc = base_address;
3269 high_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3270 FALSE, rngs_end);
3271 break;
3272
3273 case DW_RLE_start_end:
3274 if (rngs_ptr + 2 * unit->addr_size > rngs_end)
3275 return FALSE;
3276 low_pc = read_address (unit, rngs_ptr, rngs_end);
3277 rngs_ptr += unit->addr_size;
3278 high_pc = read_address (unit, rngs_ptr, rngs_end);
3279 rngs_ptr += unit->addr_size;
3280 break;
3281
3282 /* TODO x-variants need .debug_addr support used for split-dwarf. */
3283 case DW_RLE_base_addressx:
3284 case DW_RLE_startx_endx:
3285 case DW_RLE_startx_length:
3286 default:
3287 return FALSE;
3288 }
3289
3290 if ((low_pc == 0 && high_pc == 0) || low_pc == high_pc)
3291 return FALSE;
3292
3293 if (!arange_add (unit, arange, low_pc, high_pc))
3294 return FALSE;
3295 }
3296 }
3297
3298 static bfd_boolean
3299 read_rangelist (struct comp_unit *unit, struct arange *arange,
3300 bfd_uint64_t offset)
3301 {
3302 if (unit->version <= 4)
3303 return read_ranges (unit, arange, offset);
3304 else
3305 return read_rnglists (unit, arange, offset);
3306 }
3307
3308 static struct varinfo *
3309 lookup_var_by_offset (bfd_uint64_t offset, struct varinfo * table)
3310 {
3311 while (table)
3312 {
3313 if (table->unit_offset == offset)
3314 return table;
3315 table = table->prev_var;
3316 }
3317
3318 return NULL;
3319 }
3320
3321
3322 /* DWARF2 Compilation unit functions. */
3323
3324 /* Scan over each die in a comp. unit looking for functions to add
3325 to the function table and variables to the variable table. */
3326
3327 static bfd_boolean
3328 scan_unit_for_symbols (struct comp_unit *unit)
3329 {
3330 bfd *abfd = unit->abfd;
3331 bfd_byte *info_ptr = unit->first_child_die_ptr;
3332 bfd_byte *info_ptr_end = unit->end_ptr;
3333 int nesting_level = 0;
3334 struct nest_funcinfo {
3335 struct funcinfo *func;
3336 } *nested_funcs;
3337 int nested_funcs_size;
3338
3339 /* Maintain a stack of in-scope functions and inlined functions, which we
3340 can use to set the caller_func field. */
3341 nested_funcs_size = 32;
3342 nested_funcs = (struct nest_funcinfo *)
3343 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3344 if (nested_funcs == NULL)
3345 return FALSE;
3346 nested_funcs[nesting_level].func = 0;
3347
3348 while (nesting_level >= 0)
3349 {
3350 unsigned int abbrev_number, bytes_read, i;
3351 struct abbrev_info *abbrev;
3352 struct attribute attr;
3353 struct funcinfo *func;
3354 struct varinfo *var;
3355 bfd_vma low_pc = 0;
3356 bfd_vma high_pc = 0;
3357 bfd_boolean high_pc_relative = FALSE;
3358 bfd_uint64_t current_offset;
3359
3360 /* PR 17512: file: 9f405d9d. */
3361 if (info_ptr >= info_ptr_end)
3362 goto fail;
3363
3364 current_offset = info_ptr - unit->info_ptr_unit;
3365 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3366 FALSE, info_ptr_end);
3367 info_ptr += bytes_read;
3368
3369 if (! abbrev_number)
3370 {
3371 nesting_level--;
3372 continue;
3373 }
3374
3375 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3376 if (! abbrev)
3377 {
3378 static unsigned int previous_failed_abbrev = -1U;
3379
3380 /* Avoid multiple reports of the same missing abbrev. */
3381 if (abbrev_number != previous_failed_abbrev)
3382 {
3383 _bfd_error_handler
3384 (_("DWARF error: could not find abbrev number %u"),
3385 abbrev_number);
3386 previous_failed_abbrev = abbrev_number;
3387 }
3388 bfd_set_error (bfd_error_bad_value);
3389 goto fail;
3390 }
3391
3392 if (abbrev->tag == DW_TAG_subprogram
3393 || abbrev->tag == DW_TAG_entry_point
3394 || abbrev->tag == DW_TAG_inlined_subroutine)
3395 {
3396 size_t amt = sizeof (struct funcinfo);
3397
3398 var = NULL;
3399 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3400 if (func == NULL)
3401 goto fail;
3402 func->tag = abbrev->tag;
3403 func->prev_func = unit->function_table;
3404 unit->function_table = func;
3405 unit->number_of_functions++;
3406 BFD_ASSERT (!unit->cached);
3407
3408 if (func->tag == DW_TAG_inlined_subroutine)
3409 for (i = nesting_level; i-- != 0; )
3410 if (nested_funcs[i].func)
3411 {
3412 func->caller_func = nested_funcs[i].func;
3413 break;
3414 }
3415 nested_funcs[nesting_level].func = func;
3416 }
3417 else
3418 {
3419 func = NULL;
3420 if (abbrev->tag == DW_TAG_variable
3421 || abbrev->tag == DW_TAG_member)
3422 {
3423 size_t amt = sizeof (struct varinfo);
3424 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3425 if (var == NULL)
3426 goto fail;
3427 var->tag = abbrev->tag;
3428 var->stack = TRUE;
3429 var->prev_var = unit->variable_table;
3430 unit->variable_table = var;
3431 var->unit_offset = current_offset;
3432 /* PR 18205: Missing debug information can cause this
3433 var to be attached to an already cached unit. */
3434 }
3435 else
3436 var = NULL;
3437
3438 /* No inline function in scope at this nesting level. */
3439 nested_funcs[nesting_level].func = 0;
3440 }
3441
3442 for (i = 0; i < abbrev->num_attrs; ++i)
3443 {
3444 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3445 unit, info_ptr, info_ptr_end);
3446 if (info_ptr == NULL)
3447 goto fail;
3448
3449 if (func)
3450 {
3451 switch (attr.name)
3452 {
3453 case DW_AT_call_file:
3454 func->caller_file = concat_filename (unit->line_table,
3455 attr.u.val);
3456 break;
3457
3458 case DW_AT_call_line:
3459 func->caller_line = attr.u.val;
3460 break;
3461
3462 case DW_AT_abstract_origin:
3463 case DW_AT_specification:
3464 if (!find_abstract_instance (unit, &attr, 0,
3465 &func->name,
3466 &func->is_linkage,
3467 &func->file,
3468 &func->line))
3469 goto fail;
3470 break;
3471
3472 case DW_AT_name:
3473 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3474 over DW_AT_name. */
3475 if (func->name == NULL && is_str_attr (attr.form))
3476 {
3477 func->name = attr.u.str;
3478 if (non_mangled (unit->lang))
3479 func->is_linkage = TRUE;
3480 }
3481 break;
3482
3483 case DW_AT_linkage_name:
3484 case DW_AT_MIPS_linkage_name:
3485 /* PR 16949: Corrupt debug info can place
3486 non-string forms into these attributes. */
3487 if (is_str_attr (attr.form))
3488 {
3489 func->name = attr.u.str;
3490 func->is_linkage = TRUE;
3491 }
3492 break;
3493
3494 case DW_AT_low_pc:
3495 low_pc = attr.u.val;
3496 break;
3497
3498 case DW_AT_high_pc:
3499 high_pc = attr.u.val;
3500 high_pc_relative = attr.form != DW_FORM_addr;
3501 break;
3502
3503 case DW_AT_ranges:
3504 if (!read_rangelist (unit, &func->arange, attr.u.val))
3505 goto fail;
3506 break;
3507
3508 case DW_AT_decl_file:
3509 func->file = concat_filename (unit->line_table,
3510 attr.u.val);
3511 break;
3512
3513 case DW_AT_decl_line:
3514 func->line = attr.u.val;
3515 break;
3516
3517 default:
3518 break;
3519 }
3520 }
3521 else if (var)
3522 {
3523 switch (attr.name)
3524 {
3525 case DW_AT_specification:
3526 if (attr.u.val)
3527 {
3528 struct varinfo * spec_var;
3529
3530 spec_var = lookup_var_by_offset (attr.u.val,
3531 unit->variable_table);
3532 if (spec_var == NULL)
3533 {
3534 _bfd_error_handler (_("DWARF error: could not find "
3535 "variable specification "
3536 "at offset %lx"),
3537 (unsigned long) attr.u.val);
3538 break;
3539 }
3540
3541 if (var->name == NULL)
3542 var->name = spec_var->name;
3543 if (var->file == NULL && spec_var->file != NULL)
3544 var->file = strdup (spec_var->file);
3545 if (var->line == 0)
3546 var->line = spec_var->line;
3547 if (var->sec == NULL)
3548 var->sec = spec_var->sec;
3549 }
3550 break;
3551
3552 case DW_AT_name:
3553 if (is_str_attr (attr.form))
3554 var->name = attr.u.str;
3555 break;
3556
3557 case DW_AT_decl_file:
3558 var->file = concat_filename (unit->line_table,
3559 attr.u.val);
3560 break;
3561
3562 case DW_AT_decl_line:
3563 var->line = attr.u.val;
3564 break;
3565
3566 case DW_AT_external:
3567 if (attr.u.val != 0)
3568 var->stack = FALSE;
3569 break;
3570
3571 case DW_AT_location:
3572 switch (attr.form)
3573 {
3574 case DW_FORM_block:
3575 case DW_FORM_block1:
3576 case DW_FORM_block2:
3577 case DW_FORM_block4:
3578 case DW_FORM_exprloc:
3579 if (attr.u.blk->data != NULL
3580 && *attr.u.blk->data == DW_OP_addr)
3581 {
3582 var->stack = FALSE;
3583
3584 /* Verify that DW_OP_addr is the only opcode in the
3585 location, in which case the block size will be 1
3586 plus the address size. */
3587 /* ??? For TLS variables, gcc can emit
3588 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3589 which we don't handle here yet. */
3590 if (attr.u.blk->size == unit->addr_size + 1U)
3591 var->addr = bfd_get (unit->addr_size * 8,
3592 unit->abfd,
3593 attr.u.blk->data + 1);
3594 }
3595 break;
3596
3597 default:
3598 break;
3599 }
3600 break;
3601
3602 default:
3603 break;
3604 }
3605 }
3606 }
3607
3608 if (high_pc_relative)
3609 high_pc += low_pc;
3610
3611 if (func && high_pc != 0)
3612 {
3613 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3614 goto fail;
3615 }
3616
3617 if (abbrev->has_children)
3618 {
3619 nesting_level++;
3620
3621 if (nesting_level >= nested_funcs_size)
3622 {
3623 struct nest_funcinfo *tmp;
3624
3625 nested_funcs_size *= 2;
3626 tmp = (struct nest_funcinfo *)
3627 bfd_realloc (nested_funcs,
3628 nested_funcs_size * sizeof (*nested_funcs));
3629 if (tmp == NULL)
3630 goto fail;
3631 nested_funcs = tmp;
3632 }
3633 nested_funcs[nesting_level].func = 0;
3634 }
3635 }
3636
3637 free (nested_funcs);
3638 return TRUE;
3639
3640 fail:
3641 free (nested_funcs);
3642 return FALSE;
3643 }
3644
3645 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3646 includes the compilation unit header that proceeds the DIE's, but
3647 does not include the length field that precedes each compilation
3648 unit header. END_PTR points one past the end of this comp unit.
3649 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3650
3651 This routine does not read the whole compilation unit; only enough
3652 to get to the line number information for the compilation unit. */
3653
3654 static struct comp_unit *
3655 parse_comp_unit (struct dwarf2_debug *stash,
3656 struct dwarf2_debug_file *file,
3657 bfd_byte *info_ptr,
3658 bfd_vma unit_length,
3659 bfd_byte *info_ptr_unit,
3660 unsigned int offset_size)
3661 {
3662 struct comp_unit* unit;
3663 unsigned int version;
3664 bfd_uint64_t abbrev_offset = 0;
3665 /* Initialize it just to avoid a GCC false warning. */
3666 unsigned int addr_size = -1;
3667 struct abbrev_info** abbrevs;
3668 unsigned int abbrev_number, bytes_read, i;
3669 struct abbrev_info *abbrev;
3670 struct attribute attr;
3671 bfd_byte *end_ptr = info_ptr + unit_length;
3672 size_t amt;
3673 bfd_vma low_pc = 0;
3674 bfd_vma high_pc = 0;
3675 bfd *abfd = file->bfd_ptr;
3676 bfd_boolean high_pc_relative = FALSE;
3677 enum dwarf_unit_type unit_type;
3678
3679 version = read_2_bytes (abfd, info_ptr, end_ptr);
3680 info_ptr += 2;
3681 if (version < 2 || version > 5)
3682 {
3683 /* PR 19872: A version number of 0 probably means that there is padding
3684 at the end of the .debug_info section. Gold puts it there when
3685 performing an incremental link, for example. So do not generate
3686 an error, just return a NULL. */
3687 if (version)
3688 {
3689 _bfd_error_handler
3690 (_("DWARF error: found dwarf version '%u', this reader"
3691 " only handles version 2, 3, 4 and 5 information"), version);
3692 bfd_set_error (bfd_error_bad_value);
3693 }
3694 return NULL;
3695 }
3696
3697 if (version < 5)
3698 unit_type = DW_UT_compile;
3699 else
3700 {
3701 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3702 info_ptr += 1;
3703
3704 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3705 info_ptr += 1;
3706 }
3707
3708 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3709 if (offset_size == 4)
3710 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3711 else
3712 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3713 info_ptr += offset_size;
3714
3715 if (version < 5)
3716 {
3717 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3718 info_ptr += 1;
3719 }
3720
3721 if (unit_type == DW_UT_type)
3722 {
3723 /* Skip type signature. */
3724 info_ptr += 8;
3725
3726 /* Skip type offset. */
3727 info_ptr += offset_size;
3728 }
3729
3730 if (addr_size > sizeof (bfd_vma))
3731 {
3732 _bfd_error_handler
3733 /* xgettext: c-format */
3734 (_("DWARF error: found address size '%u', this reader"
3735 " can not handle sizes greater than '%u'"),
3736 addr_size,
3737 (unsigned int) sizeof (bfd_vma));
3738 bfd_set_error (bfd_error_bad_value);
3739 return NULL;
3740 }
3741
3742 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3743 {
3744 _bfd_error_handler
3745 ("DWARF error: found address size '%u', this reader"
3746 " can only handle address sizes '2', '4' and '8'", addr_size);
3747 bfd_set_error (bfd_error_bad_value);
3748 return NULL;
3749 }
3750
3751 /* Read the abbrevs for this compilation unit into a table. */
3752 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3753 if (! abbrevs)
3754 return NULL;
3755
3756 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3757 FALSE, end_ptr);
3758 info_ptr += bytes_read;
3759 if (! abbrev_number)
3760 {
3761 /* PR 19872: An abbrev number of 0 probably means that there is padding
3762 at the end of the .debug_abbrev section. Gold puts it there when
3763 performing an incremental link, for example. So do not generate
3764 an error, just return a NULL. */
3765 return NULL;
3766 }
3767
3768 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3769 if (! abbrev)
3770 {
3771 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3772 abbrev_number);
3773 bfd_set_error (bfd_error_bad_value);
3774 return NULL;
3775 }
3776
3777 amt = sizeof (struct comp_unit);
3778 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3779 if (unit == NULL)
3780 return NULL;
3781 unit->abfd = abfd;
3782 unit->version = version;
3783 unit->addr_size = addr_size;
3784 unit->offset_size = offset_size;
3785 unit->abbrevs = abbrevs;
3786 unit->end_ptr = end_ptr;
3787 unit->stash = stash;
3788 unit->file = file;
3789 unit->info_ptr_unit = info_ptr_unit;
3790
3791 for (i = 0; i < abbrev->num_attrs; ++i)
3792 {
3793 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3794 if (info_ptr == NULL)
3795 return NULL;
3796
3797 /* Store the data if it is of an attribute we want to keep in a
3798 partial symbol table. */
3799 switch (attr.name)
3800 {
3801 case DW_AT_stmt_list:
3802 unit->stmtlist = 1;
3803 unit->line_offset = attr.u.val;
3804 break;
3805
3806 case DW_AT_name:
3807 if (is_str_attr (attr.form))
3808 unit->name = attr.u.str;
3809 break;
3810
3811 case DW_AT_low_pc:
3812 low_pc = attr.u.val;
3813 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3814 this is the base address to use when reading location
3815 lists or range lists. */
3816 if (abbrev->tag == DW_TAG_compile_unit)
3817 unit->base_address = low_pc;
3818 break;
3819
3820 case DW_AT_high_pc:
3821 high_pc = attr.u.val;
3822 high_pc_relative = attr.form != DW_FORM_addr;
3823 break;
3824
3825 case DW_AT_ranges:
3826 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3827 return NULL;
3828 break;
3829
3830 case DW_AT_comp_dir:
3831 {
3832 char *comp_dir = attr.u.str;
3833
3834 /* PR 17512: file: 1fe726be. */
3835 if (! is_str_attr (attr.form))
3836 {
3837 _bfd_error_handler
3838 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3839 comp_dir = NULL;
3840 }
3841
3842 if (comp_dir)
3843 {
3844 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3845 directory, get rid of it. */
3846 char *cp = strchr (comp_dir, ':');
3847
3848 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3849 comp_dir = cp + 1;
3850 }
3851 unit->comp_dir = comp_dir;
3852 break;
3853 }
3854
3855 case DW_AT_language:
3856 unit->lang = attr.u.val;
3857 break;
3858
3859 default:
3860 break;
3861 }
3862 }
3863 if (high_pc_relative)
3864 high_pc += low_pc;
3865 if (high_pc != 0)
3866 {
3867 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3868 return NULL;
3869 }
3870
3871 unit->first_child_die_ptr = info_ptr;
3872 return unit;
3873 }
3874
3875 /* Return TRUE if UNIT may contain the address given by ADDR. When
3876 there are functions written entirely with inline asm statements, the
3877 range info in the compilation unit header may not be correct. We
3878 need to consult the line info table to see if a compilation unit
3879 really contains the given address. */
3880
3881 static bfd_boolean
3882 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3883 {
3884 struct arange *arange;
3885
3886 if (unit->error)
3887 return FALSE;
3888
3889 arange = &unit->arange;
3890 do
3891 {
3892 if (addr >= arange->low && addr < arange->high)
3893 return TRUE;
3894 arange = arange->next;
3895 }
3896 while (arange);
3897
3898 return FALSE;
3899 }
3900
3901 /* If UNIT contains ADDR, set the output parameters to the values for
3902 the line containing ADDR. The output parameters, FILENAME_PTR,
3903 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3904 to be filled in.
3905
3906 Returns the range of addresses covered by the entry that was used
3907 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3908
3909 static bfd_vma
3910 comp_unit_find_nearest_line (struct comp_unit *unit,
3911 bfd_vma addr,
3912 const char **filename_ptr,
3913 struct funcinfo **function_ptr,
3914 unsigned int *linenumber_ptr,
3915 unsigned int *discriminator_ptr)
3916 {
3917 bfd_boolean func_p;
3918
3919 if (!comp_unit_maybe_decode_line_info (unit))
3920 return FALSE;
3921
3922 *function_ptr = NULL;
3923 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3924 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3925 unit->stash->inliner_chain = *function_ptr;
3926
3927 return lookup_address_in_line_info_table (unit->line_table, addr,
3928 filename_ptr,
3929 linenumber_ptr,
3930 discriminator_ptr);
3931 }
3932
3933 /* Check to see if line info is already decoded in a comp_unit.
3934 If not, decode it. Returns TRUE if no errors were encountered;
3935 FALSE otherwise. */
3936
3937 static bfd_boolean
3938 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
3939 {
3940 if (unit->error)
3941 return FALSE;
3942
3943 if (! unit->line_table)
3944 {
3945 if (! unit->stmtlist)
3946 {
3947 unit->error = 1;
3948 return FALSE;
3949 }
3950
3951 unit->line_table = decode_line_info (unit);
3952
3953 if (! unit->line_table)
3954 {
3955 unit->error = 1;
3956 return FALSE;
3957 }
3958
3959 if (unit->first_child_die_ptr < unit->end_ptr
3960 && ! scan_unit_for_symbols (unit))
3961 {
3962 unit->error = 1;
3963 return FALSE;
3964 }
3965 }
3966
3967 return TRUE;
3968 }
3969
3970 /* If UNIT contains SYM at ADDR, set the output parameters to the
3971 values for the line containing SYM. The output parameters,
3972 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3973 filled in.
3974
3975 Return TRUE if UNIT contains SYM, and no errors were encountered;
3976 FALSE otherwise. */
3977
3978 static bfd_boolean
3979 comp_unit_find_line (struct comp_unit *unit,
3980 asymbol *sym,
3981 bfd_vma addr,
3982 const char **filename_ptr,
3983 unsigned int *linenumber_ptr)
3984 {
3985 if (!comp_unit_maybe_decode_line_info (unit))
3986 return FALSE;
3987
3988 if (sym->flags & BSF_FUNCTION)
3989 return lookup_symbol_in_function_table (unit, sym, addr,
3990 filename_ptr,
3991 linenumber_ptr);
3992
3993 return lookup_symbol_in_variable_table (unit, sym, addr,
3994 filename_ptr,
3995 linenumber_ptr);
3996 }
3997
3998 static struct funcinfo *
3999 reverse_funcinfo_list (struct funcinfo *head)
4000 {
4001 struct funcinfo *rhead;
4002 struct funcinfo *temp;
4003
4004 for (rhead = NULL; head; head = temp)
4005 {
4006 temp = head->prev_func;
4007 head->prev_func = rhead;
4008 rhead = head;
4009 }
4010 return rhead;
4011 }
4012
4013 static struct varinfo *
4014 reverse_varinfo_list (struct varinfo *head)
4015 {
4016 struct varinfo *rhead;
4017 struct varinfo *temp;
4018
4019 for (rhead = NULL; head; head = temp)
4020 {
4021 temp = head->prev_var;
4022 head->prev_var = rhead;
4023 rhead = head;
4024 }
4025 return rhead;
4026 }
4027
4028 /* Extract all interesting funcinfos and varinfos of a compilation
4029 unit into hash tables for faster lookup. Returns TRUE if no
4030 errors were enountered; FALSE otherwise. */
4031
4032 static bfd_boolean
4033 comp_unit_hash_info (struct dwarf2_debug *stash,
4034 struct comp_unit *unit,
4035 struct info_hash_table *funcinfo_hash_table,
4036 struct info_hash_table *varinfo_hash_table)
4037 {
4038 struct funcinfo* each_func;
4039 struct varinfo* each_var;
4040 bfd_boolean okay = TRUE;
4041
4042 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
4043
4044 if (!comp_unit_maybe_decode_line_info (unit))
4045 return FALSE;
4046
4047 BFD_ASSERT (!unit->cached);
4048
4049 /* To preserve the original search order, we went to visit the function
4050 infos in the reversed order of the list. However, making the list
4051 bi-directional use quite a bit of extra memory. So we reverse
4052 the list first, traverse the list in the now reversed order and
4053 finally reverse the list again to get back the original order. */
4054 unit->function_table = reverse_funcinfo_list (unit->function_table);
4055 for (each_func = unit->function_table;
4056 each_func && okay;
4057 each_func = each_func->prev_func)
4058 {
4059 /* Skip nameless functions. */
4060 if (each_func->name)
4061 /* There is no need to copy name string into hash table as
4062 name string is either in the dwarf string buffer or
4063 info in the stash. */
4064 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
4065 (void*) each_func, FALSE);
4066 }
4067 unit->function_table = reverse_funcinfo_list (unit->function_table);
4068 if (!okay)
4069 return FALSE;
4070
4071 /* We do the same for variable infos. */
4072 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4073 for (each_var = unit->variable_table;
4074 each_var && okay;
4075 each_var = each_var->prev_var)
4076 {
4077 /* Skip stack vars and vars with no files or names. */
4078 if (! each_var->stack
4079 && each_var->file != NULL
4080 && each_var->name != NULL)
4081 /* There is no need to copy name string into hash table as
4082 name string is either in the dwarf string buffer or
4083 info in the stash. */
4084 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
4085 (void*) each_var, FALSE);
4086 }
4087
4088 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4089 unit->cached = TRUE;
4090 return okay;
4091 }
4092
4093 /* Locate a section in a BFD containing debugging info. The search starts
4094 from the section after AFTER_SEC, or from the first section in the BFD if
4095 AFTER_SEC is NULL. The search works by examining the names of the
4096 sections. There are three permissiable names. The first two are given
4097 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
4098 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
4099 This is a variation on the .debug_info section which has a checksum
4100 describing the contents appended onto the name. This allows the linker to
4101 identify and discard duplicate debugging sections for different
4102 compilation units. */
4103 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
4104
4105 static asection *
4106 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
4107 asection *after_sec)
4108 {
4109 asection *msec;
4110 const char *look;
4111
4112 if (after_sec == NULL)
4113 {
4114 look = debug_sections[debug_info].uncompressed_name;
4115 msec = bfd_get_section_by_name (abfd, look);
4116 if (msec != NULL)
4117 return msec;
4118
4119 look = debug_sections[debug_info].compressed_name;
4120 if (look != NULL)
4121 {
4122 msec = bfd_get_section_by_name (abfd, look);
4123 if (msec != NULL)
4124 return msec;
4125 }
4126
4127 for (msec = abfd->sections; msec != NULL; msec = msec->next)
4128 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
4129 return msec;
4130
4131 return NULL;
4132 }
4133
4134 for (msec = after_sec->next; msec != NULL; msec = msec->next)
4135 {
4136 look = debug_sections[debug_info].uncompressed_name;
4137 if (strcmp (msec->name, look) == 0)
4138 return msec;
4139
4140 look = debug_sections[debug_info].compressed_name;
4141 if (look != NULL && strcmp (msec->name, look) == 0)
4142 return msec;
4143
4144 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
4145 return msec;
4146 }
4147
4148 return NULL;
4149 }
4150
4151 /* Transfer VMAs from object file to separate debug file. */
4152
4153 static void
4154 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4155 {
4156 asection *s, *d;
4157
4158 for (s = orig_bfd->sections, d = debug_bfd->sections;
4159 s != NULL && d != NULL;
4160 s = s->next, d = d->next)
4161 {
4162 if ((d->flags & SEC_DEBUGGING) != 0)
4163 break;
4164 /* ??? Assumes 1-1 correspondence between sections in the
4165 two files. */
4166 if (strcmp (s->name, d->name) == 0)
4167 {
4168 d->output_section = s->output_section;
4169 d->output_offset = s->output_offset;
4170 d->vma = s->vma;
4171 }
4172 }
4173 }
4174
4175 /* If the dwarf2 info was found in a separate debug file, return the
4176 debug file section corresponding to the section in the original file
4177 and the debug file symbols. */
4178
4179 static void
4180 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4181 asection **sec, asymbol ***syms)
4182 {
4183 if (stash->f.bfd_ptr != abfd)
4184 {
4185 asection *s, *d;
4186
4187 if (*sec == NULL)
4188 {
4189 *syms = stash->f.syms;
4190 return;
4191 }
4192
4193 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4194 s != NULL && d != NULL;
4195 s = s->next, d = d->next)
4196 {
4197 if ((d->flags & SEC_DEBUGGING) != 0)
4198 break;
4199 if (s == *sec
4200 && strcmp (s->name, d->name) == 0)
4201 {
4202 *sec = d;
4203 *syms = stash->f.syms;
4204 break;
4205 }
4206 }
4207 }
4208 }
4209
4210 /* Unset vmas for adjusted sections in STASH. */
4211
4212 static void
4213 unset_sections (struct dwarf2_debug *stash)
4214 {
4215 int i;
4216 struct adjusted_section *p;
4217
4218 i = stash->adjusted_section_count;
4219 p = stash->adjusted_sections;
4220 for (; i > 0; i--, p++)
4221 p->section->vma = 0;
4222 }
4223
4224 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4225 relocatable object file. VMAs are normally all zero in relocatable
4226 object files, so if we want to distinguish locations in sections by
4227 address we need to set VMAs so the sections do not overlap. We
4228 also set VMA on .debug_info so that when we have multiple
4229 .debug_info sections (or the linkonce variant) they also do not
4230 overlap. The multiple .debug_info sections make up a single
4231 logical section. ??? We should probably do the same for other
4232 debug sections. */
4233
4234 static bfd_boolean
4235 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4236 {
4237 bfd *abfd;
4238 struct adjusted_section *p;
4239 int i;
4240 const char *debug_info_name;
4241
4242 if (stash->adjusted_section_count != 0)
4243 {
4244 i = stash->adjusted_section_count;
4245 p = stash->adjusted_sections;
4246 for (; i > 0; i--, p++)
4247 p->section->vma = p->adj_vma;
4248 return TRUE;
4249 }
4250
4251 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4252 i = 0;
4253 abfd = orig_bfd;
4254 while (1)
4255 {
4256 asection *sect;
4257
4258 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4259 {
4260 int is_debug_info;
4261
4262 if ((sect->output_section != NULL
4263 && sect->output_section != sect
4264 && (sect->flags & SEC_DEBUGGING) == 0)
4265 || sect->vma != 0)
4266 continue;
4267
4268 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4269 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4270
4271 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4272 && !is_debug_info)
4273 continue;
4274
4275 i++;
4276 }
4277 if (abfd == stash->f.bfd_ptr)
4278 break;
4279 abfd = stash->f.bfd_ptr;
4280 }
4281
4282 if (i <= 1)
4283 stash->adjusted_section_count = -1;
4284 else
4285 {
4286 bfd_vma last_vma = 0, last_dwarf = 0;
4287 size_t amt = i * sizeof (struct adjusted_section);
4288
4289 p = (struct adjusted_section *) bfd_malloc (amt);
4290 if (p == NULL)
4291 return FALSE;
4292
4293 stash->adjusted_sections = p;
4294 stash->adjusted_section_count = i;
4295
4296 abfd = orig_bfd;
4297 while (1)
4298 {
4299 asection *sect;
4300
4301 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4302 {
4303 bfd_size_type sz;
4304 int is_debug_info;
4305
4306 if ((sect->output_section != NULL
4307 && sect->output_section != sect
4308 && (sect->flags & SEC_DEBUGGING) == 0)
4309 || sect->vma != 0)
4310 continue;
4311
4312 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4313 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4314
4315 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4316 && !is_debug_info)
4317 continue;
4318
4319 sz = sect->rawsize ? sect->rawsize : sect->size;
4320
4321 if (is_debug_info)
4322 {
4323 BFD_ASSERT (sect->alignment_power == 0);
4324 sect->vma = last_dwarf;
4325 last_dwarf += sz;
4326 }
4327 else
4328 {
4329 /* Align the new address to the current section
4330 alignment. */
4331 last_vma = ((last_vma
4332 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4333 & (-((bfd_vma) 1 << sect->alignment_power)));
4334 sect->vma = last_vma;
4335 last_vma += sz;
4336 }
4337
4338 p->section = sect;
4339 p->adj_vma = sect->vma;
4340 p++;
4341 }
4342 if (abfd == stash->f.bfd_ptr)
4343 break;
4344 abfd = stash->f.bfd_ptr;
4345 }
4346 }
4347
4348 if (orig_bfd != stash->f.bfd_ptr)
4349 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4350
4351 return TRUE;
4352 }
4353
4354 /* Look up a funcinfo by name using the given info hash table. If found,
4355 also update the locations pointed to by filename_ptr and linenumber_ptr.
4356
4357 This function returns TRUE if a funcinfo that matches the given symbol
4358 and address is found with any error; otherwise it returns FALSE. */
4359
4360 static bfd_boolean
4361 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4362 asymbol *sym,
4363 bfd_vma addr,
4364 const char **filename_ptr,
4365 unsigned int *linenumber_ptr)
4366 {
4367 struct funcinfo* each_func;
4368 struct funcinfo* best_fit = NULL;
4369 bfd_vma best_fit_len = 0;
4370 struct info_list_node *node;
4371 struct arange *arange;
4372 const char *name = bfd_asymbol_name (sym);
4373 asection *sec = bfd_asymbol_section (sym);
4374
4375 for (node = lookup_info_hash_table (hash_table, name);
4376 node;
4377 node = node->next)
4378 {
4379 each_func = (struct funcinfo *) node->info;
4380 for (arange = &each_func->arange;
4381 arange;
4382 arange = arange->next)
4383 {
4384 if ((!each_func->sec || each_func->sec == sec)
4385 && addr >= arange->low
4386 && addr < arange->high
4387 && (!best_fit
4388 || arange->high - arange->low < best_fit_len))
4389 {
4390 best_fit = each_func;
4391 best_fit_len = arange->high - arange->low;
4392 }
4393 }
4394 }
4395
4396 if (best_fit)
4397 {
4398 best_fit->sec = sec;
4399 *filename_ptr = best_fit->file;
4400 *linenumber_ptr = best_fit->line;
4401 return TRUE;
4402 }
4403
4404 return FALSE;
4405 }
4406
4407 /* Look up a varinfo by name using the given info hash table. If found,
4408 also update the locations pointed to by filename_ptr and linenumber_ptr.
4409
4410 This function returns TRUE if a varinfo that matches the given symbol
4411 and address is found with any error; otherwise it returns FALSE. */
4412
4413 static bfd_boolean
4414 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4415 asymbol *sym,
4416 bfd_vma addr,
4417 const char **filename_ptr,
4418 unsigned int *linenumber_ptr)
4419 {
4420 const char *name = bfd_asymbol_name (sym);
4421 asection *sec = bfd_asymbol_section (sym);
4422 struct varinfo* each;
4423 struct info_list_node *node;
4424
4425 for (node = lookup_info_hash_table (hash_table, name);
4426 node;
4427 node = node->next)
4428 {
4429 each = (struct varinfo *) node->info;
4430 if (each->addr == addr
4431 && (!each->sec || each->sec == sec))
4432 {
4433 each->sec = sec;
4434 *filename_ptr = each->file;
4435 *linenumber_ptr = each->line;
4436 return TRUE;
4437 }
4438 }
4439
4440 return FALSE;
4441 }
4442
4443 /* Update the funcinfo and varinfo info hash tables if they are
4444 not up to date. Returns TRUE if there is no error; otherwise
4445 returns FALSE and disable the info hash tables. */
4446
4447 static bfd_boolean
4448 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4449 {
4450 struct comp_unit *each;
4451
4452 /* Exit if hash tables are up-to-date. */
4453 if (stash->f.all_comp_units == stash->hash_units_head)
4454 return TRUE;
4455
4456 if (stash->hash_units_head)
4457 each = stash->hash_units_head->prev_unit;
4458 else
4459 each = stash->f.last_comp_unit;
4460
4461 while (each)
4462 {
4463 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4464 stash->varinfo_hash_table))
4465 {
4466 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4467 return FALSE;
4468 }
4469 each = each->prev_unit;
4470 }
4471
4472 stash->hash_units_head = stash->f.all_comp_units;
4473 return TRUE;
4474 }
4475
4476 /* Check consistency of info hash tables. This is for debugging only. */
4477
4478 static void ATTRIBUTE_UNUSED
4479 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4480 {
4481 struct comp_unit *each_unit;
4482 struct funcinfo *each_func;
4483 struct varinfo *each_var;
4484 struct info_list_node *node;
4485 bfd_boolean found;
4486
4487 for (each_unit = stash->f.all_comp_units;
4488 each_unit;
4489 each_unit = each_unit->next_unit)
4490 {
4491 for (each_func = each_unit->function_table;
4492 each_func;
4493 each_func = each_func->prev_func)
4494 {
4495 if (!each_func->name)
4496 continue;
4497 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4498 each_func->name);
4499 BFD_ASSERT (node);
4500 found = FALSE;
4501 while (node && !found)
4502 {
4503 found = node->info == each_func;
4504 node = node->next;
4505 }
4506 BFD_ASSERT (found);
4507 }
4508
4509 for (each_var = each_unit->variable_table;
4510 each_var;
4511 each_var = each_var->prev_var)
4512 {
4513 if (!each_var->name || !each_var->file || each_var->stack)
4514 continue;
4515 node = lookup_info_hash_table (stash->varinfo_hash_table,
4516 each_var->name);
4517 BFD_ASSERT (node);
4518 found = FALSE;
4519 while (node && !found)
4520 {
4521 found = node->info == each_var;
4522 node = node->next;
4523 }
4524 BFD_ASSERT (found);
4525 }
4526 }
4527 }
4528
4529 /* Check to see if we want to enable the info hash tables, which consume
4530 quite a bit of memory. Currently we only check the number times
4531 bfd_dwarf2_find_line is called. In the future, we may also want to
4532 take the number of symbols into account. */
4533
4534 static void
4535 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4536 {
4537 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4538
4539 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4540 return;
4541
4542 /* FIXME: Maybe we should check the reduce_memory_overheads
4543 and optimize fields in the bfd_link_info structure ? */
4544
4545 /* Create hash tables. */
4546 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4547 stash->varinfo_hash_table = create_info_hash_table (abfd);
4548 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4549 {
4550 /* Turn off info hashes if any allocation above fails. */
4551 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4552 return;
4553 }
4554 /* We need a forced update so that the info hash tables will
4555 be created even though there is no compilation unit. That
4556 happens if STASH_INFO_HASH_TRIGGER is 0. */
4557 if (stash_maybe_update_info_hash_tables (stash))
4558 stash->info_hash_status = STASH_INFO_HASH_ON;
4559 }
4560
4561 /* Find the file and line associated with a symbol and address using the
4562 info hash tables of a stash. If there is a match, the function returns
4563 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4564 otherwise it returns FALSE. */
4565
4566 static bfd_boolean
4567 stash_find_line_fast (struct dwarf2_debug *stash,
4568 asymbol *sym,
4569 bfd_vma addr,
4570 const char **filename_ptr,
4571 unsigned int *linenumber_ptr)
4572 {
4573 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4574
4575 if (sym->flags & BSF_FUNCTION)
4576 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4577 filename_ptr, linenumber_ptr);
4578 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4579 filename_ptr, linenumber_ptr);
4580 }
4581
4582 /* Save current section VMAs. */
4583
4584 static bfd_boolean
4585 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4586 {
4587 asection *s;
4588 unsigned int i;
4589
4590 if (abfd->section_count == 0)
4591 return TRUE;
4592 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4593 if (stash->sec_vma == NULL)
4594 return FALSE;
4595 stash->sec_vma_count = abfd->section_count;
4596 for (i = 0, s = abfd->sections;
4597 s != NULL && i < abfd->section_count;
4598 i++, s = s->next)
4599 {
4600 if (s->output_section != NULL)
4601 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4602 else
4603 stash->sec_vma[i] = s->vma;
4604 }
4605 return TRUE;
4606 }
4607
4608 /* Compare current section VMAs against those at the time the stash
4609 was created. If find_nearest_line is used in linker warnings or
4610 errors early in the link process, the debug info stash will be
4611 invalid for later calls. This is because we relocate debug info
4612 sections, so the stashed section contents depend on symbol values,
4613 which in turn depend on section VMAs. */
4614
4615 static bfd_boolean
4616 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4617 {
4618 asection *s;
4619 unsigned int i;
4620
4621 /* PR 24334: If the number of sections in ABFD has changed between
4622 when the stash was created and now, then we cannot trust the
4623 stashed vma information. */
4624 if (abfd->section_count != stash->sec_vma_count)
4625 return FALSE;
4626
4627 for (i = 0, s = abfd->sections;
4628 s != NULL && i < abfd->section_count;
4629 i++, s = s->next)
4630 {
4631 bfd_vma vma;
4632
4633 if (s->output_section != NULL)
4634 vma = s->output_section->vma + s->output_offset;
4635 else
4636 vma = s->vma;
4637 if (vma != stash->sec_vma[i])
4638 return FALSE;
4639 }
4640 return TRUE;
4641 }
4642
4643 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4644 If DEBUG_BFD is not specified, we read debug information from ABFD
4645 or its gnu_debuglink. The results will be stored in PINFO.
4646 The function returns TRUE iff debug information is ready. */
4647
4648 bfd_boolean
4649 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4650 const struct dwarf_debug_section *debug_sections,
4651 asymbol **symbols,
4652 void **pinfo,
4653 bfd_boolean do_place)
4654 {
4655 size_t amt = sizeof (struct dwarf2_debug);
4656 bfd_size_type total_size;
4657 asection *msec;
4658 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4659
4660 if (stash != NULL)
4661 {
4662 if (stash->orig_bfd == abfd
4663 && section_vma_same (abfd, stash))
4664 {
4665 /* Check that we did previously find some debug information
4666 before attempting to make use of it. */
4667 if (stash->f.bfd_ptr != NULL)
4668 {
4669 if (do_place && !place_sections (abfd, stash))
4670 return FALSE;
4671 return TRUE;
4672 }
4673
4674 return FALSE;
4675 }
4676 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4677 memset (stash, 0, amt);
4678 }
4679 else
4680 {
4681 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4682 if (! stash)
4683 return FALSE;
4684 }
4685 stash->orig_bfd = abfd;
4686 stash->debug_sections = debug_sections;
4687 stash->f.syms = symbols;
4688 if (!save_section_vma (abfd, stash))
4689 return FALSE;
4690
4691 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4692 del_abbrev, calloc, free);
4693 if (!stash->f.abbrev_offsets)
4694 return FALSE;
4695
4696 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4697 del_abbrev, calloc, free);
4698 if (!stash->alt.abbrev_offsets)
4699 return FALSE;
4700
4701 *pinfo = stash;
4702
4703 if (debug_bfd == NULL)
4704 debug_bfd = abfd;
4705
4706 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4707 if (msec == NULL && abfd == debug_bfd)
4708 {
4709 char * debug_filename;
4710
4711 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4712 if (debug_filename == NULL)
4713 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4714
4715 if (debug_filename == NULL)
4716 /* No dwarf2 info, and no gnu_debuglink to follow.
4717 Note that at this point the stash has been allocated, but
4718 contains zeros. This lets future calls to this function
4719 fail more quickly. */
4720 return FALSE;
4721
4722 debug_bfd = bfd_openr (debug_filename, NULL);
4723 free (debug_filename);
4724 if (debug_bfd == NULL)
4725 /* FIXME: Should we report our failure to follow the debuglink ? */
4726 return FALSE;
4727
4728 /* Set BFD_DECOMPRESS to decompress debug sections. */
4729 debug_bfd->flags |= BFD_DECOMPRESS;
4730 if (!bfd_check_format (debug_bfd, bfd_object)
4731 || (msec = find_debug_info (debug_bfd,
4732 debug_sections, NULL)) == NULL
4733 || !bfd_generic_link_read_symbols (debug_bfd))
4734 {
4735 bfd_close (debug_bfd);
4736 return FALSE;
4737 }
4738
4739 symbols = bfd_get_outsymbols (debug_bfd);
4740 stash->f.syms = symbols;
4741 stash->close_on_cleanup = TRUE;
4742 }
4743 stash->f.bfd_ptr = debug_bfd;
4744
4745 if (do_place
4746 && !place_sections (abfd, stash))
4747 return FALSE;
4748
4749 /* There can be more than one DWARF2 info section in a BFD these
4750 days. First handle the easy case when there's only one. If
4751 there's more than one, try case two: none of the sections is
4752 compressed. In that case, read them all in and produce one
4753 large stash. We do this in two passes - in the first pass we
4754 just accumulate the section sizes, and in the second pass we
4755 read in the section's contents. (The allows us to avoid
4756 reallocing the data as we add sections to the stash.) If
4757 some or all sections are compressed, then do things the slow
4758 way, with a bunch of reallocs. */
4759
4760 if (! find_debug_info (debug_bfd, debug_sections, msec))
4761 {
4762 /* Case 1: only one info section. */
4763 total_size = msec->size;
4764 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4765 symbols, 0,
4766 &stash->f.dwarf_info_buffer, &total_size))
4767 return FALSE;
4768 }
4769 else
4770 {
4771 /* Case 2: multiple sections. */
4772 for (total_size = 0;
4773 msec;
4774 msec = find_debug_info (debug_bfd, debug_sections, msec))
4775 {
4776 /* Catch PR25070 testcase overflowing size calculation here. */
4777 if (total_size + msec->size < total_size
4778 || total_size + msec->size < msec->size)
4779 {
4780 bfd_set_error (bfd_error_no_memory);
4781 return FALSE;
4782 }
4783 total_size += msec->size;
4784 }
4785
4786 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4787 if (stash->f.dwarf_info_buffer == NULL)
4788 return FALSE;
4789
4790 total_size = 0;
4791 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4792 msec;
4793 msec = find_debug_info (debug_bfd, debug_sections, msec))
4794 {
4795 bfd_size_type size;
4796
4797 size = msec->size;
4798 if (size == 0)
4799 continue;
4800
4801 if (!(bfd_simple_get_relocated_section_contents
4802 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4803 symbols)))
4804 return FALSE;
4805
4806 total_size += size;
4807 }
4808 }
4809
4810 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4811 stash->f.dwarf_info_size = total_size;
4812 return TRUE;
4813 }
4814
4815 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4816
4817 static struct comp_unit *
4818 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4819 {
4820 bfd_size_type length;
4821 unsigned int offset_size;
4822 bfd_byte *info_ptr_unit = file->info_ptr;
4823 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4824
4825 if (file->info_ptr >= info_ptr_end)
4826 return NULL;
4827
4828 length = read_4_bytes (file->bfd_ptr, file->info_ptr, info_ptr_end);
4829 /* A 0xffffff length is the DWARF3 way of indicating
4830 we use 64-bit offsets, instead of 32-bit offsets. */
4831 if (length == 0xffffffff)
4832 {
4833 offset_size = 8;
4834 length = read_8_bytes (file->bfd_ptr, file->info_ptr + 4,
4835 info_ptr_end);
4836 file->info_ptr += 12;
4837 }
4838 /* A zero length is the IRIX way of indicating 64-bit offsets,
4839 mostly because the 64-bit length will generally fit in 32
4840 bits, and the endianness helps. */
4841 else if (length == 0)
4842 {
4843 offset_size = 8;
4844 length = read_4_bytes (file->bfd_ptr, file->info_ptr + 4,
4845 info_ptr_end);
4846 file->info_ptr += 8;
4847 }
4848 /* In the absence of the hints above, we assume 32-bit DWARF2
4849 offsets even for targets with 64-bit addresses, because:
4850 a) most of the time these targets will not have generated
4851 more than 2Gb of debug info and so will not need 64-bit
4852 offsets,
4853 and
4854 b) if they do use 64-bit offsets but they are not using
4855 the size hints that are tested for above then they are
4856 not conforming to the DWARF3 standard anyway. */
4857 else
4858 {
4859 offset_size = 4;
4860 file->info_ptr += 4;
4861 }
4862
4863 if (length != 0
4864 && file->info_ptr + length <= info_ptr_end
4865 && file->info_ptr + length > file->info_ptr)
4866 {
4867 struct comp_unit *each = parse_comp_unit (stash, file,
4868 file->info_ptr, length,
4869 info_ptr_unit, offset_size);
4870 if (each)
4871 {
4872 if (file->all_comp_units)
4873 file->all_comp_units->prev_unit = each;
4874 else
4875 file->last_comp_unit = each;
4876
4877 each->next_unit = file->all_comp_units;
4878 file->all_comp_units = each;
4879
4880 file->info_ptr += length;
4881 return each;
4882 }
4883 }
4884
4885 /* Don't trust any of the DWARF info after a corrupted length or
4886 parse error. */
4887 file->info_ptr = info_ptr_end;
4888 return NULL;
4889 }
4890
4891 /* Hash function for an asymbol. */
4892
4893 static hashval_t
4894 hash_asymbol (const void *sym)
4895 {
4896 const asymbol *asym = sym;
4897 return htab_hash_string (asym->name);
4898 }
4899
4900 /* Equality function for asymbols. */
4901
4902 static int
4903 eq_asymbol (const void *a, const void *b)
4904 {
4905 const asymbol *sa = a;
4906 const asymbol *sb = b;
4907 return strcmp (sa->name, sb->name) == 0;
4908 }
4909
4910 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4911 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4912 symbol in SYMBOLS and return the difference between the low_pc and
4913 the symbol's address. Returns 0 if no suitable symbol could be found. */
4914
4915 bfd_signed_vma
4916 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4917 {
4918 struct dwarf2_debug *stash;
4919 struct comp_unit * unit;
4920 htab_t sym_hash;
4921 bfd_signed_vma result = 0;
4922 asymbol ** psym;
4923
4924 stash = (struct dwarf2_debug *) *pinfo;
4925
4926 if (stash == NULL || symbols == NULL)
4927 return 0;
4928
4929 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4930 NULL, xcalloc, free);
4931 for (psym = symbols; * psym != NULL; psym++)
4932 {
4933 asymbol * sym = * psym;
4934
4935 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4936 {
4937 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4938 *slot = sym;
4939 }
4940 }
4941
4942 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
4943 {
4944 struct funcinfo * func;
4945
4946 comp_unit_maybe_decode_line_info (unit);
4947
4948 for (func = unit->function_table; func != NULL; func = func->prev_func)
4949 if (func->name && func->arange.low)
4950 {
4951 asymbol search, *sym;
4952
4953 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4954
4955 search.name = func->name;
4956 sym = htab_find (sym_hash, &search);
4957 if (sym != NULL)
4958 {
4959 result = ((bfd_signed_vma) func->arange.low) -
4960 ((bfd_signed_vma) (sym->value + sym->section->vma));
4961 goto done;
4962 }
4963 }
4964 }
4965
4966 done:
4967 htab_delete (sym_hash);
4968 return result;
4969 }
4970
4971 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4972 then find the nearest source code location corresponding to
4973 the address SECTION + OFFSET.
4974 Returns 1 if the line is found without error and fills in
4975 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4976 NULL the FUNCTIONNAME_PTR is also filled in.
4977 Returns 2 if partial information from _bfd_elf_find_function is
4978 returned (function and maybe file) by looking at symbols. DWARF2
4979 info is present but not regarding the requested code location.
4980 Returns 0 otherwise.
4981 SYMBOLS contains the symbol table for ABFD.
4982 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
4983
4984 int
4985 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4986 asymbol **symbols,
4987 asymbol *symbol,
4988 asection *section,
4989 bfd_vma offset,
4990 const char **filename_ptr,
4991 const char **functionname_ptr,
4992 unsigned int *linenumber_ptr,
4993 unsigned int *discriminator_ptr,
4994 const struct dwarf_debug_section *debug_sections,
4995 void **pinfo)
4996 {
4997 /* Read each compilation unit from the section .debug_info, and check
4998 to see if it contains the address we are searching for. If yes,
4999 lookup the address, and return the line number info. If no, go
5000 on to the next compilation unit.
5001
5002 We keep a list of all the previously read compilation units, and
5003 a pointer to the next un-read compilation unit. Check the
5004 previously read units before reading more. */
5005 struct dwarf2_debug *stash;
5006 /* What address are we looking for? */
5007 bfd_vma addr;
5008 struct comp_unit* each;
5009 struct funcinfo *function = NULL;
5010 int found = FALSE;
5011 bfd_boolean do_line;
5012
5013 *filename_ptr = NULL;
5014 if (functionname_ptr != NULL)
5015 *functionname_ptr = NULL;
5016 *linenumber_ptr = 0;
5017 if (discriminator_ptr)
5018 *discriminator_ptr = 0;
5019
5020 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
5021 symbols, pinfo,
5022 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
5023 return FALSE;
5024
5025 stash = (struct dwarf2_debug *) *pinfo;
5026
5027 do_line = symbol != NULL;
5028 if (do_line)
5029 {
5030 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
5031 section = bfd_asymbol_section (symbol);
5032 addr = symbol->value;
5033 }
5034 else
5035 {
5036 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
5037 addr = offset;
5038
5039 /* If we have no SYMBOL but the section we're looking at is not a
5040 code section, then take a look through the list of symbols to see
5041 if we have a symbol at the address we're looking for. If we do
5042 then use this to look up line information. This will allow us to
5043 give file and line results for data symbols. We exclude code
5044 symbols here, if we look up a function symbol and then look up the
5045 line information we'll actually return the line number for the
5046 opening '{' rather than the function definition line. This is
5047 because looking up by symbol uses the line table, in which the
5048 first line for a function is usually the opening '{', while
5049 looking up the function by section + offset uses the
5050 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
5051 which will be the line of the function name. */
5052 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
5053 {
5054 asymbol **tmp;
5055
5056 for (tmp = symbols; (*tmp) != NULL; ++tmp)
5057 if ((*tmp)->the_bfd == abfd
5058 && (*tmp)->section == section
5059 && (*tmp)->value == offset
5060 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
5061 {
5062 symbol = *tmp;
5063 do_line = TRUE;
5064 /* For local symbols, keep going in the hope we find a
5065 global. */
5066 if ((symbol->flags & BSF_GLOBAL) != 0)
5067 break;
5068 }
5069 }
5070 }
5071
5072 if (section->output_section)
5073 addr += section->output_section->vma + section->output_offset;
5074 else
5075 addr += section->vma;
5076
5077 /* A null info_ptr indicates that there is no dwarf2 info
5078 (or that an error occured while setting up the stash). */
5079 if (! stash->f.info_ptr)
5080 return FALSE;
5081
5082 stash->inliner_chain = NULL;
5083
5084 /* Check the previously read comp. units first. */
5085 if (do_line)
5086 {
5087 /* The info hash tables use quite a bit of memory. We may not want to
5088 always use them. We use some heuristics to decide if and when to
5089 turn it on. */
5090 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
5091 stash_maybe_enable_info_hash_tables (abfd, stash);
5092
5093 /* Keep info hash table up to date if they are available. Note that we
5094 may disable the hash tables if there is any error duing update. */
5095 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5096 stash_maybe_update_info_hash_tables (stash);
5097
5098 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5099 {
5100 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
5101 linenumber_ptr);
5102 if (found)
5103 goto done;
5104 }
5105 else
5106 {
5107 /* Check the previously read comp. units first. */
5108 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5109 if ((symbol->flags & BSF_FUNCTION) == 0
5110 || each->arange.high == 0
5111 || comp_unit_contains_address (each, addr))
5112 {
5113 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
5114 linenumber_ptr);
5115 if (found)
5116 goto done;
5117 }
5118 }
5119 }
5120 else
5121 {
5122 bfd_vma min_range = (bfd_vma) -1;
5123 const char * local_filename = NULL;
5124 struct funcinfo *local_function = NULL;
5125 unsigned int local_linenumber = 0;
5126 unsigned int local_discriminator = 0;
5127
5128 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5129 {
5130 bfd_vma range = (bfd_vma) -1;
5131
5132 found = ((each->arange.high == 0
5133 || comp_unit_contains_address (each, addr))
5134 && (range = (comp_unit_find_nearest_line
5135 (each, addr, &local_filename,
5136 &local_function, &local_linenumber,
5137 &local_discriminator))) != 0);
5138 if (found)
5139 {
5140 /* PRs 15935 15994: Bogus debug information may have provided us
5141 with an erroneous match. We attempt to counter this by
5142 selecting the match that has the smallest address range
5143 associated with it. (We are assuming that corrupt debug info
5144 will tend to result in extra large address ranges rather than
5145 extra small ranges).
5146
5147 This does mean that we scan through all of the CUs associated
5148 with the bfd each time this function is called. But this does
5149 have the benefit of producing consistent results every time the
5150 function is called. */
5151 if (range <= min_range)
5152 {
5153 if (filename_ptr && local_filename)
5154 * filename_ptr = local_filename;
5155 if (local_function)
5156 function = local_function;
5157 if (discriminator_ptr && local_discriminator)
5158 * discriminator_ptr = local_discriminator;
5159 if (local_linenumber)
5160 * linenumber_ptr = local_linenumber;
5161 min_range = range;
5162 }
5163 }
5164 }
5165
5166 if (* linenumber_ptr)
5167 {
5168 found = TRUE;
5169 goto done;
5170 }
5171 }
5172
5173 /* Read each remaining comp. units checking each as they are read. */
5174 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5175 {
5176 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5177 compilation units. If we don't have them (i.e.,
5178 unit->high == 0), we need to consult the line info table
5179 to see if a compilation unit contains the given
5180 address. */
5181 if (do_line)
5182 found = (((symbol->flags & BSF_FUNCTION) == 0
5183 || each->arange.high == 0
5184 || comp_unit_contains_address (each, addr))
5185 && comp_unit_find_line (each, symbol, addr,
5186 filename_ptr, linenumber_ptr));
5187 else
5188 found = ((each->arange.high == 0
5189 || comp_unit_contains_address (each, addr))
5190 && comp_unit_find_nearest_line (each, addr,
5191 filename_ptr,
5192 &function,
5193 linenumber_ptr,
5194 discriminator_ptr) != 0);
5195
5196 if (found)
5197 break;
5198 }
5199
5200 done:
5201 if (functionname_ptr && function && function->is_linkage)
5202 *functionname_ptr = function->name;
5203 else if (functionname_ptr
5204 && (!*functionname_ptr
5205 || (function && !function->is_linkage)))
5206 {
5207 asymbol *fun;
5208 asymbol **syms = symbols;
5209 asection *sec = section;
5210
5211 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5212 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5213 *filename_ptr ? NULL : filename_ptr,
5214 functionname_ptr);
5215
5216 if (!found && fun != NULL)
5217 found = 2;
5218
5219 if (function && !function->is_linkage)
5220 {
5221 bfd_vma sec_vma;
5222
5223 sec_vma = section->vma;
5224 if (section->output_section != NULL)
5225 sec_vma = section->output_section->vma + section->output_offset;
5226 if (fun != NULL
5227 && fun->value + sec_vma == function->arange.low)
5228 function->name = *functionname_ptr;
5229 /* Even if we didn't find a linkage name, say that we have
5230 to stop a repeated search of symbols. */
5231 function->is_linkage = TRUE;
5232 }
5233 }
5234
5235 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5236 unset_sections (stash);
5237
5238 return found;
5239 }
5240
5241 bfd_boolean
5242 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5243 const char **filename_ptr,
5244 const char **functionname_ptr,
5245 unsigned int *linenumber_ptr,
5246 void **pinfo)
5247 {
5248 struct dwarf2_debug *stash;
5249
5250 stash = (struct dwarf2_debug *) *pinfo;
5251 if (stash)
5252 {
5253 struct funcinfo *func = stash->inliner_chain;
5254
5255 if (func && func->caller_func)
5256 {
5257 *filename_ptr = func->caller_file;
5258 *functionname_ptr = func->caller_func->name;
5259 *linenumber_ptr = func->caller_line;
5260 stash->inliner_chain = func->caller_func;
5261 return TRUE;
5262 }
5263 }
5264
5265 return FALSE;
5266 }
5267
5268 void
5269 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5270 {
5271 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5272 struct comp_unit *each;
5273 struct dwarf2_debug_file *file;
5274
5275 if (abfd == NULL || stash == NULL)
5276 return;
5277
5278 if (stash->varinfo_hash_table)
5279 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5280 if (stash->funcinfo_hash_table)
5281 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5282
5283 file = &stash->f;
5284 while (1)
5285 {
5286 for (each = file->all_comp_units; each; each = each->next_unit)
5287 {
5288 struct funcinfo *function_table = each->function_table;
5289 struct varinfo *variable_table = each->variable_table;
5290
5291 if (each->line_table && each->line_table != file->line_table)
5292 {
5293 free (each->line_table->files);
5294 free (each->line_table->dirs);
5295 }
5296
5297 free (each->lookup_funcinfo_table);
5298 each->lookup_funcinfo_table = NULL;
5299
5300 while (function_table)
5301 {
5302 free (function_table->file);
5303 function_table->file = NULL;
5304 free (function_table->caller_file);
5305 function_table->caller_file = NULL;
5306 function_table = function_table->prev_func;
5307 }
5308
5309 while (variable_table)
5310 {
5311 free (variable_table->file);
5312 variable_table->file = NULL;
5313 variable_table = variable_table->prev_var;
5314 }
5315 }
5316
5317 if (file->line_table)
5318 {
5319 free (file->line_table->files);
5320 free (file->line_table->dirs);
5321 }
5322 htab_delete (file->abbrev_offsets);
5323
5324 free (file->dwarf_line_str_buffer);
5325 free (file->dwarf_str_buffer);
5326 free (file->dwarf_ranges_buffer);
5327 free (file->dwarf_line_buffer);
5328 free (file->dwarf_abbrev_buffer);
5329 free (file->dwarf_info_buffer);
5330 if (file == &stash->alt)
5331 break;
5332 file = &stash->alt;
5333 }
5334 free (stash->sec_vma);
5335 free (stash->adjusted_sections);
5336 if (stash->close_on_cleanup)
5337 bfd_close (stash->f.bfd_ptr);
5338 if (stash->alt.bfd_ptr)
5339 bfd_close (stash->alt.bfd_ptr);
5340 }
5341
5342 /* Find the function to a particular section and offset,
5343 for error reporting. */
5344
5345 asymbol *
5346 _bfd_elf_find_function (bfd *abfd,
5347 asymbol **symbols,
5348 asection *section,
5349 bfd_vma offset,
5350 const char **filename_ptr,
5351 const char **functionname_ptr)
5352 {
5353 struct elf_find_function_cache
5354 {
5355 asection *last_section;
5356 asymbol *func;
5357 const char *filename;
5358 bfd_size_type func_size;
5359 } *cache;
5360
5361 if (symbols == NULL)
5362 return NULL;
5363
5364 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5365 return NULL;
5366
5367 cache = elf_tdata (abfd)->elf_find_function_cache;
5368 if (cache == NULL)
5369 {
5370 cache = bfd_zalloc (abfd, sizeof (*cache));
5371 elf_tdata (abfd)->elf_find_function_cache = cache;
5372 if (cache == NULL)
5373 return NULL;
5374 }
5375 if (cache->last_section != section
5376 || cache->func == NULL
5377 || offset < cache->func->value
5378 || offset >= cache->func->value + cache->func_size)
5379 {
5380 asymbol *file;
5381 bfd_vma low_func;
5382 asymbol **p;
5383 /* ??? Given multiple file symbols, it is impossible to reliably
5384 choose the right file name for global symbols. File symbols are
5385 local symbols, and thus all file symbols must sort before any
5386 global symbols. The ELF spec may be interpreted to say that a
5387 file symbol must sort before other local symbols, but currently
5388 ld -r doesn't do this. So, for ld -r output, it is possible to
5389 make a better choice of file name for local symbols by ignoring
5390 file symbols appearing after a given local symbol. */
5391 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5393
5394 file = NULL;
5395 low_func = 0;
5396 state = nothing_seen;
5397 cache->filename = NULL;
5398 cache->func = NULL;
5399 cache->func_size = 0;
5400 cache->last_section = section;
5401
5402 for (p = symbols; *p != NULL; p++)
5403 {
5404 asymbol *sym = *p;
5405 bfd_vma code_off;
5406 bfd_size_type size;
5407
5408 if ((sym->flags & BSF_FILE) != 0)
5409 {
5410 file = sym;
5411 if (state == symbol_seen)
5412 state = file_after_symbol_seen;
5413 continue;
5414 }
5415
5416 size = bed->maybe_function_sym (sym, section, &code_off);
5417 if (size != 0
5418 && code_off <= offset
5419 && (code_off > low_func
5420 || (code_off == low_func
5421 && size > cache->func_size)))
5422 {
5423 cache->func = sym;
5424 cache->func_size = size;
5425 cache->filename = NULL;
5426 low_func = code_off;
5427 if (file != NULL
5428 && ((sym->flags & BSF_LOCAL) != 0
5429 || state != file_after_symbol_seen))
5430 cache->filename = bfd_asymbol_name (file);
5431 }
5432 if (state == nothing_seen)
5433 state = symbol_seen;
5434 }
5435 }
5436
5437 if (cache->func == NULL)
5438 return NULL;
5439
5440 if (filename_ptr)
5441 *filename_ptr = cache->filename;
5442 if (functionname_ptr)
5443 *functionname_ptr = bfd_asymbol_name (cache->func);
5444
5445 return cache->func;
5446 }